Cast Iron - Geers
Transcription
Cast Iron - Geers
Cast Iron Application Material Group 3.1 3.2 3.3 3.4 For details on the full Dormer product range, please order a copy of our current tooling catalogue. For correct tool selection and operation, please also refer to our Product Selector CD. © DORMER 2006 All rights reserved under the “Dormer” registered trademark. Although every effort has been made to ensure the accuracy of the information contained herein, no responsibility for loss or damage occasioned to any person acting from action as a result of any material in this publication can be accepted by the editors, publishers or product manufacturers. www.dormertools.com Further useful technical information can be found in our brand new 2005 Technical Handbook. Dormer Tools Shireoaks Road Worksop, S80 3HB UK T: F: +44 (0)1909 534700 +44 (0)1909 534701 dormer.uk@dormertools.com 2 >150 <300 <200 Lamellar graphite Nodular graphite/Malleable Cast Iron Nodular graphite/Malleable Cast Iron 3.2 3.3 3.4 Grade 200 , Grade 400 0125, 0130, 0140, 0217 420/12, P440/7, 700/2, 30g/72 420/12, P440/7, 700/2, 30g/72 Lamellar graphite Nodular graphite/Malleable Cast Iron Nodular graphite/Malleable Cast Iron 3.2 3.3 3.4 0221, 0223, 0737, 0854 0219, 0717, 0727, 0732, 0852 Grade 150 , Grade 400 0120, 0212, 0814 SS EN USA EN 1561 EN JL 2050 EN 1561 EN JL 2040 EN 1561 EN-JL 1050 EN 1561 EN-JL 1030 ASTM A220 grade 90001, ASTM A602 grade M8501 ASTM A220 grade 40010, ASTM A602 grade M4504 ASTM A48 class 40, ASTM A48 class 60 ASTM A48 class 20 middle/short middle/short extra short extra short Normal Chip Form Lamellar graphite BS >700 <1000 <700 >500 <1000 <500 Tensile Strength N/mm2 3.1 Application Material Group (AMG) <150 Lamellar graphite 3.1 >200 <300 Hardness HB Application Material Group (AMG) F26230, F20005 F22830, F,20001 F12801, F,14101 F11401, F12801 UNS 0.7040, 0.7070, 0.8145, 0.8045 0.7040, 0.7070, 0.8145, 0.8045 0.6025, 0.6040 0.6010, 0.6040 Werkstoff Number JIS GGG40, GGG70, GTS45-06, GTW45-07 GGG40, GGG70, GTS45-06, GTW45-07 GG25, GG40 GG10, GG40 DIN Examples of Workpiece Materials - Categorisation into Application Material Groups (AMG) General Information Classification of workpiece materials Application Material Groups Introduction to Cast Iron Principal Alloying Elements Machinability of Cast Iron Hints when machining Cast Iron AMG 3.1 AMG 3.2 AMG 3.3 AMG 3.4 General Hints on Drilling Drill Feed Chart Drill Selection General Hints on Tapping Drill diameters for cutting taps Tap Selection General Hints on Milling Milling parameters Applications Milling Feed Charts Milling Cutters Selection Table of cutting speeds 3 2 4 5 6 6 7 8 9 10 11 12 13 14 16 17 18 20 21 22 23 26 30 General Information Contents General Information Application Material Groups Application Material Groups (“AMGs”) are designed to assist in the selection of the optimum cutting tool for a particular application. Dormer classifies materials into 10 major Application Material Groups. Each major group is divided into subgroups on the basis of material properties, such as hardness and strength, and chip formation. This booklet concentrates on sub-groups 3.1 – 3.4, Cast Iron. Examples of national designations within each sub-group are shown on page 2. This booklet contains a selection of tools that are rated “excellent” for machining cast iron. Please see the Dormer catalogue or Product Selector for the full range, or contact your local Dormer representative or Technical Helpdesk if you need further advice. 4 Cast irons make up a family of ferrous metals with a wide range of mechanical properties. They are produced by being cast into shape as opposed to being formed. This makes them particularly suitable for the manufacture of engineering components. The widespread use of cast iron results from its low cost and versatilility. Its versatility arises due to the wide ranging physical properties which are possible due to alloy addition and various heattreatment procedures. The cooling rate of the casting can also affect the material’s hardness and structure. Historically, the first classification of cast iron was based on its fracture. Two types of iron were initially recognised:1) Grey cast iron – this exhibits a grey fracture surface, due to the large amounts of graphite flakes. 2) White cast iron - this exhibits a white crystalline fracture surface, as fracture occurs along the iron-carbide plates. The structure is generally made up of cementite (iron-carbide) and pearlite, which is lamellar plates of iron carbide in a soft iron matrix. This material is generally harder and more brittle than grey cast iron. It is more common today to divide cast iron into two main groups:• Common cast irons for general purpose applications, which are used for the majority of engineering applications. These tend to be low alloyed. • Special cast irons, which are used for applications involving extremes of heat, corrosion and abrasion. These are generally high alloyed. 5 General Information Introduction to Cast Iron General Information Principal Alloying Elements Cast iron is an iron-carbon-silicon alloy with a carbon content of mostly 2 – 4%, a silicon content of mostly 1 – 3%, as well as other elements like manganese (Mn), phosperous (P) and sulphur (S), with the balance made up of iron. The addition of nickel, copper, molybdenum and chromium, for example, can affect the heat and corrosion resistance, rigidity and strength of the cast iron. The alloying elements can be divided into two groups: carbide forming and graphite forming elements. The alloys greatly affect the machinability of cast iron. Machining of Cast Iron From a machining standpoint, cast iron consists of three basic structural constituents: Ferritic – Easy-to-machine, low strength and a hardness below 150 HB. At low cutting speed the cast iron can be “sticky” and result in built-up edges. Ferritic/pearlitic – vary from low strength and low hardness of 150 HB to high strength and a hardness of 290 HB. Pearlitic – its strength and hardness is dependent on the roughness of its lamellar plates. With fine lamellar plates, the cast iron is very hard and has high strength, causing it to smear and build up edges on the tool. 6 • Most cast iron materials are easy to machine because of the short chipping properties. The reason is that graphite makes chip breaking easier and can improve lubrication. • Tools with low rake angles are generally used in cast iron. • Most materials are abrasive, so coatings improve tool life. • Dry machining can be done in most applications. • The most significant difficulties are due to irregular shapes of casting, the presence of hard skins and sand inclusions. 7 General Information Important when machining Cast Iron General Information 3.1 Cast Iron, Lamellar graphite Hardness <150 HB Tensile strength <500 N/mm2 Typical Composition AMG 3.1 and AMG 3.2 encompass the grey lamellar (flake) irons, the most commonly used of the general purpose engineering irons. AMG 3.1 has a ferrite matrix and excellent machinability. It is relatively soft and ductile, with low strength, poor wear resistance, but good fracture toughness and thermal conductivity. Examples of uses Typical applications are low strength components such as stock fittings, valves, flanges, pipe fittings, brake drums and decorative use. 8 Typical Composition This group of irons represents the higher strength grades typically achieved through a pearlite matrix. Pearlite, whose name is derived from its mother of pearl appearance, is relatively hard and shows moderate toughness and good machinability. Examples of uses They are used in the manufacture of engine blocks, cylinder heads, moulds and hydraulic valve bodies. 9 General Information 3.2 Cast Iron, Lamellar graphite Hardness >150 <300 HB Tensile strength >500 <1000 N/mm2 General Information 3.3 Nodular graphite/Malleable Cast Iron, Hardness <200 HB Tensile strength <700 N/mm2 Typical Composition AMG 3.3 is represented by malleable and nodular cast iron grades. Malleable irons differ from other irons because they are cast as white iron. Heat treatment produces the final structure, the precise form of which controls the strength properties. Nodular cast iron/spheroidal graphite (SG) is manufactured by alloy addition. Small amounts of magnesium/nickel are added to change the shape of the graphite content from flake to rounded graphite. This improves the strength considerably. AMG 3.3 grades of cast iron are characterised by low cost and ease of machining. Examples of uses Typical uses are automotive and agricultural components, pipe fittings, mining machinery, electrical fittings, valve components and hardware tools. 10 Typical Composition AMG 3.4 represents the grades capable of achieving higher strength through heat treatment. Nodular cast iron/spheroidal graphite (SG) exhibit better mechanical properties which make them complementary to malleable irons and suitable replacements for steel in many applications. Examples of uses Typical components are flywheel castings, crankshafts, gears, valves and rocker arms. 11 General Information 3.4 Nodular graphite/Malleable Cast Iron Hardness >200 <300 HB Tensile strength >700 <1000 N/mm2 General Hints on Drilling 1. Select the most appropriate drill for the application, bearing in mind the material to be machined, the capability of the machine tool and the coolant to be used. 2. Flexibility within the component and machine tool spindle can cause damage to the drill as well as the component and machine - ensure maximum stability at all times. This can be improved by selecting the shortest possible drill for the application. 3. Tool holding is an important aspect of the drilling operation and the drill cannot be allowed to slip or move in the tool holder. 4. The use of suitable coolants and lubricants are recommended as required by the particular drilling operation. When using coolants and lubricants, ensure a copious supply, especially at the drill point. 5. Swarf evacuation whilst drilling is essential in ensuring the correct drilling procedure. Never allow the swarf to become stationary in the flute. 6. When regrinding a drill, always makes sure that the correct point geometry is produced and that any wear has been removed. 12 13 A C F G I J K L M V W X Y 2 3 4 5 6 8 10 12 15 16 20 25 30 40 50 mm/rev ± 25% 0.094 0.172 0.250 0.325 0.400 0.533 0.800 1.000 1.100 1.175 1.200 1.200 0.056 0.103 0.150 0.180 0.210 0.250 0.330 0.420 0.480 0.533 0.550 0.580 0.049 0.089 0.130 0.150 0.170 0.200 0.260 0.330 0.380 0.418 0.430 0.450 0.038 0.069 0.100 0.115 0.130 0.153 0.200 0.250 0.280 0.310 0.320 0.340 0.030 0.110 0.180 0.202 0.225 0.260 0.330 0.390 0.420 0.450 0.460 0.520 0.560 0.580 0.605 0.630 0.028 0.101 0.165 0.186 0.208 0.240 0.305 0.360 0.385 0.419 0.430 0.485 0.525 0.545 0.568 0.588 0.026 0.092 0.150 0.170 0.190 0.220 0.280 0.330 0.350 0.388 0.400 0.450 0.490 0.510 0.53 0.545 0.024 0.084 0.135 0.152 0.170 0.197 0.250 0.298 0.315 0.349 0.360 0.405 0.445 0.465 0.485 0.503 0.021 0.076 0.119 0.134 0.150 0.173 0.220 0.265 0.280 0.310 0.320 0.360 0.400 0.420 0.44 0.46 0.019 0.056 0.084 0.096 0.109 0.126 0.160 0.190 0.205 0.231 0.240 0.280 0.310 0.330 0.355 0.375 0.018 0.050 0.073 0.084 0.095 0.109 0.138 0.165 0.178 0.202 0.210 0.248 0.275 0.295 0.32 0.343 0.015 0.032 0.044 0.050 0.056 0.064 0.080 0.098 0.110 0.125 0.130 0.160 0.180 0.195 0.220 0.240 0.012 0.023 0.029 0.032 0.036 0.042 0.054 0.062 0.069 0.082 0.086 0.110 0.125 0.135 0.155 0.175 1 Ø [mm] A022 A124 A520 R022 R520 R557 R558 A551 0.50 3.0 3.0 - 16.0 3.0 - 13.0 3.0 - 16.5 5.0 - 20.0 3.0 - 20.0 5.0 - 20.0 - 16.00 - 17/32 3.1 3.2 3.3 3.4 ■ ● ■32K ■25I ■20G ●16G Excellent Good ■55C ■43C ■40C ■32A ■48M ■37K ■30J ■26F ■75X ■75X ■55X ■55X ■90Y ■90Y ■65X ■65X 14 ■130Y ■130Y ■90X ■90X ■110Y ■110Y ■80X ■80X ■55L ■40K ■37K ■33G A552 A160 A510 R002 A553 A554 R553 R554 R570 5.0 - 20.0 ■55L ■40K ■37K ■33G 4.0 - 16.0 ■50C ■40A ■35A ■30A 3.0 - 14.0 ■42K ■32J ■28J ■25F 3.0 - 14.0 ■75W ■75W ■55W ■55W 5.0 - 20.0 ■70K ■50J ■45J ■42F 15 5.0 - 30.0 ■70K ■50J ■45J ■42F 5.0 - 20.0 3.0 - 20.0 3.00 - 5/8 ■130W ■130W ■90V ■90V ■110W ■110W ■80V ■80V ■120W ■120W ■80V ■80V 3.1 3.2 3.3 3.4 General Hints on Tapping 1. Select the correct design of tap for the component material and type of hole, i.e. through or blind, from the Application Material Groups chart. 2. Ensure the component is securely clamped - lateral movement may cause tap breakage or poor quality threads. 3. Select the correct size of drill (see opposite). Always ensure that work hardening of the component material is kept to a minimum. 4. Select the correct cutting speed as shown in the tap selection pages, the catalogue or the Product Selector. 5. Use appropriate cutting fluid for correct application. 6. In NC applications ensure that the feed value chosen for the program is correct. When using a tapping attachment, 95% to 97% of the pitch is recommended to allow the tap to generate its own pitch. 7. Where possible, hold the tap in a good quality torque limiting tapping attachment, which ensures free axial movement of the tap and presents it squarely to the hole. It also protects the tap from breakage if accidentally ‘bottomed’ in a blind hole. 8. Ensure smooth entry of the tap into the hole, as an uneven feed may cause ‘bell mouthing’. 16 Drill Diameters for Cutting Taps Recommendation tables METRIC COARSE THREAD M 1.6 1.8 2 2.2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 14 16 18 20 22 24 27 30 Pitch mm 0.35 0.35 0.4 0.45 0.45 0.5 0.6 0.7 0.75 0.8 1 1 1.25 1.25 1.5 1.5 1.75 2 2 2.5 2.5 2.5 3 3 3.5 Max. Internal Diam. mm 1.321 1.521 1.679 1.833 2.138 2.599 3.010 3.422 3.878 4.334 5.153 6.153 6.912 7.912 8.676 9.676 10.441 12.210 14.210 15.744 17.744 19.744 21.252 24.252 26.771 DRILL DRILL Diam. mm 1.25 1.45 1.6 1.75 2.05 2.5 2.9 3.3 3.8 4.2 5 6 6.8 7.8 8.5 9.5 10.3 12 14 15.5 17.5 19.5 21 24 26.5 Diam. inch 3/64 54 1/16 50 46 40 33 30 27 19 9 15/64 H 5/16 Q 3/8 Y 15/32 35/64 39/64 11/16 49/64 53/64 61/64 1.3/64 METRIC COARSE THREAD FOR ADX/CDX TAP M Pitch mm DRILL Diameter mm 4 5 6 8 10 12 14 16 0.70 0.80 1.00 1.25 1.50 1.75 2.00 2.00 3.40 4.30 5.10 6.90 8.70 10.40 12.25 14.25 Drill diameter can be calculated from: D = Dnom- P D = Drill diameter (mm) Dnom = Tap nominal diameter (mm) P = Tap pitch (mm) RECOMMENDED DIAMETERS WHEN USING DORMER ADX AND CDX DRILLS The above table for drill diameters refer to ordinary standard drills. Modern drills such as Dormer ADX and CDX produce a smaller and more accurate hole which makes it necessary to increase the diameter of the drill in order to avoid breakage of the tap. Please see the small table to the left. 17 DIN E201 Other thread forms available. E252 E446 E447 E462 M3 - M10 M8 - M24 M3 - M10 M8 - M24 M6 - M10 3.1 3.2 3.3 3.4 ■ ● Excellent Good ■15 ■8 ■15 ●8 ■15 ■8 ■15 ●8 ■22 ■18 ■25 ●18 18 ■22 ■18 ■25 ●18 ■22 ■18 ■25 ●18 E463 M12 - M20 ■22 ■18 ■25 ●18 ISO Please see Dormer catalogue. E053 M3 - M20 ■22 ■18 ■25 ●18 3.1 3.2 3.3 3.4 19 General Hints on Milling 1. Where possible, use climb milling (down milling) for longer tool life. Climb milling allows easier chip disposal, less wear, improved surface finish and lower power requirements compared to conventional milling (up milling). 2. Always use a cutter in good condition. 3. Use well-maintained machine tools with sufficient power. 4. Use correct clamping system according to working operation and type of tool. 5. Check for damage or wear on the tool shank or in the holder itself. 6. Use the shortest cutters recommended for your application and work as close to the machine head as possible. 7. For optimum productivity, use coated or Solid Carbide cutters. 20 Milling parameters 1. Identify the type of end milling to be carried out - type of end mill - type of centre 2. Consider the condition and the age of the machine tool. 3. Select the best end mill dimensions in order to minimize the deflection and bending stress - the highest rigidity - the largest mill diameter - avoid excessive overhand of the tool from the tool holder. 4. Choose the number of flutes - more flutes - decreased space for chips increased rigidity - allows faster table feed - less flutes - increased space for chips decreased rigidity - easy chip ejection. 5. Determining the correct cutting speed and feed rate can only be done when the following factors are known: - type of material to be machined - end mill material - power available at the spindle - type of finish. 21 Application Slotting Roughing Ball nose Finishing Corner radius For details on how to use the feed charts in the tables which follow, please see below. 22 23 ↕ 1,5D ↔ 0,1D ↕D ↔ 0,8D ↕ 0,5D ↔D 5 6 8 10 12 14 16 18 20 22 25 28 30 32 36 40 0,010 0,015 0,023 0,029 0,039 0,051 0,071 0,086 0,100 0,114 0,129 0,143 0,113 0,129 0,107 0,114 0,122 0,137 0,133 0,009 0,014 0,021 0,026 0,035 0,046 0,064 0,077 0,090 0,103 0,116 0,129 0,102 0,116 0,096 0,103 0,110 0,123 0,120 T 0,023 0,031 0,032 0,039 0,045 0,051 0,058 0,064 0,064 0,049 0,048 0,049 0,048 0,050 0,051 H S 0,026 0,034 0,036 0,043 0,050 0,057 0,064 0,071 0,071 0,054 0,053 0,054 0,053 0,056 0,057 G 0,004 0,007 0,012 0,015 0,022 0,026 0,039 0,054 0,065 0,076 0,086 0,087 0,086 0,089 0,095 0,098 0,097 0,095 0,097 0,097 4 B 3 0,004 0,008 0,013 0,017 0,024 0,029 0,043 0,060 0,072 0,084 0,096 0,097 0,096 0,099 0,105 0,109 0,108 0,106 0,108 0,108 2 A 1 Ø mm mm/z ± 25% 24 3-4 2-3 3-4 3-4 >4 Z 0,5 ↕1 ↔ ↕ 0,5 ↔1 ↕ 0,5 ↔1 0,5 ↕1 ↔ 0,1 ↕ 1,5 ↔ 0,05 ↕ 1,5 ↔ B A B C A B C A B C A B C 0.002 0.003 0.002 0.001 0.6 0.001 0.001 >0,5 0.004 0.003 0.002 0.8 0.004 0.003 0.002 0.003 0.002 0.001 1 0.009 0.007 0.005 0.005 0.004 0.003 0.015 0.015 0.010 2 0.017 0.013 0.009 0.010 0.008 0.005 0.030 0.030 0.020 3 0.025 0.020 0.013 0.015 0.012 0.008 0.040 0.040 0.030 4 0.033 0.025 0.017 0.020 0.015 0.010 0.055 0.055 0.040 5 0.035 0.040 0.030 0.020 0.025 0.020 0.013 0.085 0.065 0.045 0.065 0.045 0.015 6 8 0.040 0.045 0.035 0.023 0.040 0.030 0.020 0.100 0.075 0.050 0.075 0.050 0.020 Ø mm mm/z ± 25% 10 0.055 0.065 0.050 0.035 0.050 0.040 0.027 0.120 0.090 0.060 0.090 0.060 0.025 12 0.065 0.080 0.060 0.040 0.065 0.050 0.035 0.140 0.110 0.075 0.110 0.075 0.030 14 0.080 0.090 0.070 0.050 0.080 0.060 0.040 0.150 0.120 0.080 0.120 0.080 0.035 16 0.090 0.105 0.080 0.055 0.090 0.070 0.050 0.170 0.130 0.090 0.130 0.090 0.040 18 0.100 0.120 0.090 0.060 0.105 0.080 0.055 0.200 0.150 0.100 0.150 0.100 0.050 20 0.110 0.130 0.100 0.070 0.120 0.090 0.060 0.220 0.170 0.120 0.170 0.110 0.060 25 3-4 3-4 Z 4 2 & 4 0,25 ↕ 1,5 ↔ 0,1 ↕ 1,5 ↔ ≤1 ↔ 0,01 - 0,1 ↕ 0,1 0,5mm ↔ 0,1 0,5mm ↕ 4 5 6 0.035 0.028 8 0.040 0.032 A B C A B C S044 0.013 0.012 0.010 0.016 0.015 0.012 0.020 0.018 0.015 0.025 0.022 0.019 0.030 0.027 0.023 0.038 0.034 0.028 0.038 0.034 0.028 0.047 0.042 0.036 0.051 0.046 0.038 0.063 0.057 0.048 0.051 0.046 0.038 0.063 0.057 0.048 0.070 0.063 0.053 0.088 0.079 0.070 10 0.060 0.050 0.050 0.040 Ø mm mm/z ± 25% 0.050 3 0.030 0.023 0.040 2 0.022 0.017 A 0.015 0.010 BC BC A 0.080 0.065 0.070 0.055 0.084 0.076 0.064 0.106 0.094 0.080 12 0.070 0.055 0.060 0.050 0.099 0.088 0.075 0.123 0.110 0.090 14 0.085 0.070 0.113 0.100 0.085 0.141 0.126 0.107 16 0.100 0.080 0.100 0.080 20 0.141 0.125 0.107 0.176 0.155 0.134 3.1 3.2 3.3 3.4 ■ ● C126 C139 C353 C352 C246 C920 C922 z2 z2 z3 z3 z4-6 z3-4 z3-4 1.0 - 30 2.0 - 30 3.0 - 30 3.0 - 20 2.0 - 32 6.0 - 25 6.0 - 40 ■60A ■50A ■87B ■54B ■55A ■45A ■79B ■49B ■67A ■55A ■96B ■60B ■61A ■50A ■88B ■55B ■55S ■45S ■79T ■49T ■55S ■45S ■79T ■49T 1.1 Excellent Good 1.1 1.1 1.1 26 1.1 0.6 ■61G ■50G ■88H ■55H 1.1 C428 C492 S102 S122 S302 S322 S044 S201 z3-6 z3-6 z2 z2 z3 z3 z4 z4 6.0 - 40 6.0 - 30 2.0 - 20 2.0 - 20 2.0 - 20 2.0 - 20 2.0 - 20 2.0 - 20 ■61G ■50G ■88H ■55H ■55G ■45G ■79H ■49H ■150B ■90B ■120B ■80B ■136B ■82B ■109B ■73B ■150B ■90B ■120B ■80B ■136B ■81B ■109B ■72B ■198B ■131B ■175B ■107B ■250B 3.1 ■150B 3.2 ■150B 3.3 ■125B 3.4 1.1 0.6 1 1 1 27 1 1 1 3.1 3.2 3.3 3.4 3.1 3.2 3.3 3.4 ■ ● S241 S250 S251 S332 S503 S532 S190 z4 z4 z4 z4 z2 z4 z2 3.5 - 20 3.0 - 20 6.0 - 20 6.0 - 20 1.0 - 16 6.0 - 16 3.0 - 16 ■192B ■115B ■115B ■96B ■220B ■130B ■130B ■110B ■185B ■110B ■110B ■90B ■90B ■80B ■90B ■80B ■300B ■180B ■180B ■150B ■300B ■180B ■180B ■150B ■300B ■180B ■180B ■150B 1 Excellent Good 1 1 1 28 1 1 1 29 30 mm 1,00 1,50 2,00 2,50 3,00 3,18 3,50 4,00 4,50 4,76 5,00 6,00 6,35 7,00 7,94 8,00 9,00 9,53 10,00 3/ 8 5/ 16 1/ 4 3/ 16 1/ 8 inch Tool Diameter Metres/Min. Feet/Min. 2546 1698 1273 1019 849 801 728 637 566 535 509 424 401 364 321 318 283 267 255 26 16 1592 1061 796 637 531 500 455 398 354 334 318 265 251 227 200 199 177 167 159 8 5 3138 2122 1592 1273 1061 1001 909 796 707 669 637 531 501 455 401 398 354 334 318 32 10 4775 3183 2387 1910 1592 1501 1364 1194 1061 1003 955 796 752 682 601 597 531 501 477 50 15 6366 4244 3183 2546 2122 2002 1819 1592 1415 1337 1273 1061 1003 909 802 796 707 668 637 66 20 98 30 40 130 50 165 60 197 9549 6366 4775 3820 3183 3003 2728 2387 2122 2006 1910 1592 1504 1364 1203 1194 1061 1002 955 12732 8488 6366 5093 4244 4004 3638 3183 2829 2675 2546 2122 2005 1819 1604 1592 1415 1336 1273 15916 10610 7958 6366 5305 5005 4547 3979 3537 3344 3183 2653 2506 2274 2004 1989 1768 1670 1592 19099 12732 9549 7639 6366 6006 5457 4775 4244 4012 3820 3183 3008 2728 2405 2387 2122 2004 1910 70 230 22282 14854 11141 8913 7427 7007 6366 5570 4951 4681 4456 3714 3509 3183 2806 2785 2476 2338 2228 REVOLUTIONS PER MINUTE (RPM) 7958 5305 3979 3183 2653 2502 2274 1989 1768 1672 1592 1326 1253 1137 1002 995 884 835 796 82 25 PERIPHERAL CUTTING SPEED Table of Cutting Speeds, <10mm 80 25465 16977 12732 10186 8488 8008 7176 6366 5659 5350 5093 4244 4010 3638 3207 3183 2829 2672 2546 262 28648 19099 14324 11459 9549 9009 8185 7162 6366 6018 5730 4775 4511 4093 3608 3581 3183 3006 2865 296 90 31831 21221 15916 12732 10610 10010 9095 7958 7074 6687 6366 5305 5013 4547 4009 3979 3537 3340 3183 330 100 35014 23343 17507 14006 11671 11011 10004 8754 7781 7356 7003 5836 5514 5002 4410 4377 3890 3674 3501 362 110 47747 31831 23873 19099 15916 15015 13642 11937 10610 10031 9549 7958 7519 6821 6013 5968 5305 5010 4775 495 150 General Information 31 mm 11,11 12,00 12,70 14,00 14,29 15,00 15,88 16,00 17,46 18,00 19,05 20,00 24,00 25,00 27,00 30,00 32,00 36,00 40,00 50,00 3/ 4 11/ 16 5/ 8 9/ 16 1/ 2 7/ 16 inch Tool Diameter Metres/Min. Feet/Min. 229 212 201 182 178 170 160 159 146 141 134 127 106 102 94 85 80 71 64 51 26 16 143 133 125 114 111 106 100 99 91 88 84 80 66 64 59 53 50 44 40 32 8 5 287 265 251 227 223 212 200 199 182 177 167 159 133 127 118 106 99 88 80 64 32 10 430 398 376 341 334 318 301 298 273 265 251 239 199 191 177 159 149 133 119 95 50 15 573 531 501 455 446 424 401 398 365 354 334 318 265 255 236 212 199 177 159 127 66 20 716 663 627 568 557 531 501 497 456 442 418 398 332 318 295 265 249 221 199 159 82 25 40 130 50 165 60 197 860 796 752 682 668 637 601 597 547 531 501 477 398 382 354 318 298 265 239 191 1146 1061 1003 909 891 849 802 796 729 707 668 637 531 509 472 424 398 354 318 255 1433 1326 1253 1137 1114 1061 1002 995 912 884 835 796 663 637 589 531 497 442 398 318 1719 1592 1504 1364 1337 1273 1203 1194 1094 1061 1003 955 796 764 707 637 597 531 477 382 REVOLUTIONS PER MINUTE (RPM) 98 30 PERIPHERAL CUTTING SPEED Table of Cutting Speeds, >10mm 70 2006 1857 1754 1592 1559 1485 1403 1393 1276 1238 1170 1114 928 891 825 743 696 619 557 446 230 80 90 2579 2387 2256 2046 2005 1910 1804 1790 1641 1592 1504 1432 1194 1146 1061 955 895 796 716 573 296 2865 2653 2506 2274 2228 2122 2004 1989 1823 1768 1671 1592 1326 1273 1179 1061 995 884 796 637 330 100 110 3152 2918 2757 2501 2450 2334 2205 2188 2005 1945 1838 1751 1459 1401 1297 1167 1094 973 875 700 362 4298 3979 3760 3410 3341 3183 3007 2984 2735 2653 2506 2387 1989 1910 1768 1592 1492 1326 1194 955 495 150 General Information 2292 2122 2005 1819 1782 1698 1604 1592 1458 1415 1337 1273 1061 1019 943 849 796 707 637 509 262
Similar documents
Machining Weldox and Hardox
For further information, please get in touch with our Technical Customer Service Department. The Machining brochure is included in a series of publications that offer advice and instructions for wo...
More informationHR 500 CAST
adhesion. These are optimal prerequisites for the application in grey cast iron and spheroidal graphite iron. With this optimisation of the range the machining of GG and GGG is possible with only o...
More information