JAWATAN KUASA PEMETAAN DAN DATA SPATIAL
Transcription
JAWATAN KUASA PEMETAAN DAN DATA SPATIAL
JAWATAN KUASA PEMETAAN DAN DATA SPATIAL NEGARA BIL. 1 2005 ISSN 1394 - 5505 PENDAHULU AN Jemaah Menteri berasaskan Kertas Kabinet No.243/385/65 bertajuk National Mapping Malaysia telah meluluskan jawatan dan terma-terma rujukan Surveyor-General Malaya and Singapore sebagai Pengarah Pemetaan Negara Malaysia dan mengesahkan keanggotaan serta terma-terma rujukan Jawatankuasa Pemetaan Negara pada 31 Mac 1965. Cabutan para-para 2(b), 2(c) dan 2(d) daripada kertas kabinet tersebut mengenai keanggotaan dan termaterma rujukannya adalah seperti berikut: 2(b) National Mapping Committee That a National Mapping Committee be appointed to comprise the following: i. ii. iii. iv. v. Director of National Mapping Director of Lands & Surveys, Sabah; Director of Lands & Surveys Sarawak; Representative of the Ministry of Defence; Representative of the Ministry of Rural Development (now substituted by the Ministry of Natural Resources and Environment); Assistant Director of Survey, FARELF vi. 2(c) The terms of reference of the National Mapping Committee to be as follows: i. to advise the Director of National Mapping on matters relating to mapping policy; ii. to advise the Director of National Mapping on mapping priorities. 2(d) That the Committee be empowered to appoint a Secretary and to co-opt persons who would be required to assist the Committee, Seterusnya pada 22 Januari 1997, Jemaah Menteri telah meluluskan pindaan terhadap nama, keanggotaan dan bidang-bidang rujukan Jawatankuasa Pemetaan Negara kepada Jawatankuasa Pemetaan dan Data Spatial Negara (JPDSN), bagi mencerminkan peranannya yang diperluaskan ke bidang data pemetaan berdigit. Keanggotaan JPDSN pada masa kini adalah terdiri daripada agensi-agensi seperti berikut: 1. 2. 3. 4. 5. 6. 7. 8. 9. Jabatan Ukur dan Pemetaan Malaysia Jabatan Tanah dan Ukur Sabah Jabatan Tanah dan Survei Sarawak Wakil Kementerian Pertahanan Jabatan Mineral dan Geosains Malaysia Jabatan Perhutanan Semenanjung Malaysia Jabatan Pertanian Semenanjung Malaysia Jabatan Perhutanan Sabah Pusat Infrastruktur Data Geospatial Negara (MaCGDI) (co-opted) 10. 11. 12. 13. 14. 15. 16. 17. 18. Jabatan Pertanian Sabah Jabatan Pertanian Sarawak Pusat Remote Sensing Negara (MACRES) Universiti Teknologi Malaysia Universiti Teknologi MARA (co-opted) Universiti Sains Malaysia (co-opted) Jabatan Laut Sarawak (co-opted) Jabatan Perhutanan Sarawak Jabatan Perancangan Bandar dan Desa Semenanjung Malaysia (co-opted) Buletin GIS ini yang diterbitkan dua kali setahun adalah merupakan salah satu aktiviti oleh Jawatankuasa Pemetaan dan Data Spatial Negara, sebagai salah satu media pendidikan dan penyebaran maklumat dalam mendidik masyarakat memanfaatkan maklumat spatial dalam pembangunan negara. Walau bagaimanapun, sebarang kandungan artikel adalah tanggungjawab penulis sepenuhnya dan bukan melambangkan pandangan penerbit. 6 LG D Q J 3 H Q J D UD Q J . DQGXQJDQ 3HQDXQJ 0 H V V D J H ) U R P 7 K H & K LH I ( G LW R U 9 D OLG D W LQ J 7 K H 3 H U I R U P D Q F H R I * ,6 < % K J ' D W R · + D P LG E LQ $ OL ' , 0 3 . 0 1 3 0 & 3 - & . H W X D 3 H Q J D U D K 8 N X U G D Q 3 H P H W D D Q 0 D OD \ V LD 3 H Q D V LK D W $ K P D G ) D X ] L E L Q 1 R U G L Q . 0 1 3 H Q J D U D K 8 N X U % D K D J LD Q 3 H P H W D D Q . H W X D ( G LW R U 7H Q J & K H H % R R 3 H Q J D U D K 8 N X U 6 H N V \ H Q 3 H U N K LG P D W D Q 3 H P H W D D Q ( G LW R U ' U $ ] K D U L E L Q 0 R K D P H G & K D Q . H D W / LP $ E G X O 0 D Q D Q E LQ $ E G X OO D K 6 K D E X G L Q E LQ 6 D D G + L V K D P E L Q + X V D L Q + M + D Q LQ E L Q + D V K LP ) D U LG D K + D Q LP E W 6 D K D N E D V H G & H OOX OD U $ X W R P D W D 6 S D W LD O 0 R G H O$ & D V H R I 6 H E H U D Q J 3 H U D L 3 H Q D Q J 0 D OD \ V LD 7 K H $ S S OLF D W LR Q R I * H R J U D S K LF D O ,Q I R U P D W LR Q 6 \ V W H P ,Q ) R U H V W 5 R D G 3 OD Q Q LQ J $ & D V H 6 W X G \ R I & R P S D U W P H Q W ' H U D P D N R W ) R U H V W 5 H V H U Y H 6 D Q G D N D Q 6 D E D K $ F T X LV LW LR Q R I D Q $ LU E R U Q H / D V H U 6 F D Q Q LQ J 6 \ V W H P $ / 6 6 D Q G ' LJ LW D O & D P H U D 6 \ V W H P ' & 6 % \ - 8 3 ( 0 / D S R U D Q % H U J D P E D U 0 H V \ X D U D W . H - D Z D W D Q N X D V D 3 H P H W D D Q G D Q ' D W D 6 S D W LD O 1 H J D U D - 3 ' 6 1 / D S R U D Q % H U J D P E D U 0 H V \ X D U D W . H - D Z D W D Q N X D V D . H E D Q J V D D Q 1 D P D * H R J U D I L - . 1 * 5 H S R U W R Q ( 6 5 ,* ,6 3 R U W D O 7 R R ON LW : R U N V K R S I R U 3 & * ,$ 3 6 X G X W 0 D & * ' , + D O LP E LQ $ E G X OO D K . 0 D W K D Y D Q . 6 L Y D J D Q D P ' D \ D Q J 1 R U D L Q LH E W $ Z D Q J - X Q LG H H 7 H U H Q J J D Q X $ Q MX U D Q 3 X V D W ,Q I U D V W U X N W X U ' D W D * H R V S D W LD O 1 H J D U D 0 D & * ' , G H Q J D Q . H WX D 5 H N D E H Q WX N 3 H Q F H WD N . H U MD V D P D 1 H J H U L7 H U H Q J J D Q X 3 H P E H OD MD U D Q 6 H F D U D G D Q ( 6 5 , / D S R U D Q % H Q J N H O 3 D Q J N D OD Q ' D W D 1 D P D * H R J U D I LG D Q 3 H Q H U E LW D Q * D ] H W LU 3 ' 1 * / D S R U D Q 7 D N OLP D W 0 H Q J H Q D L 0 D OD \ V LD Q 6 W D Q G D U G * H R J U D S K LF ,Q I R U P D W LR Q * H R P D W LF V ) H D W X U H V D Q G $ W W U LE X W H V & R G H V 0 6 G D Q 3 H Q J H P D V N LQ LD Q 0 H W D G D W D / D S R U D Q . D MLD Q G D Q 8 V D K D V D P D ' L D Q W D U D 0 D & * ' , + M 0 X K D P P D W 3 X ] L E LQ $ K P D W / D S R U D Q 6 H K D U L 0 \ * ' , 6 W D Q G D U G 0 \ * ' , / D S R UD Q 0 H V\ X D UD W - D Z D W D Q N X D V D 7 H N Q LN D O ) U D P H Z R U N G D Q & OH D U LQ J K R X V H . D OH Q G D U * ,6 1 R WD . D Q G X QJ D Q \ D Q J WH UVLD UE R OH K G LWH UE LWND QVH P X OD G H Q J D QL]LQ 8 UX V6H WLD -D Z D WD Q N XD VD 3H P H WD D Q G D Q ' D WD 6S D WLD O1 H J D UD MESSAGE FROM THE CHIEF EDITOR As we scurry through the first half of 2005 there were many headline news; some good but mostly bad (ever wonder what has gone wrong?). A most encouraging piece of news is the Prime Ministers approval of the 5-day working week and the reinstatement of the cost of living allowance (COLA). For me, the 5-day working week is a dream comes true, as I have always been looking forward to that which our friends in the private sector have long been enjoying. A 2-day weekend would definitely help in reinvigorating the weary mind, and improve family-tie. The reinstatement of COLA is also a shot in the arm especially for us living in cities like Kuala Lumpur, where ends are usually hard to meet. The 56th conference of the National Spatial Data and Mapping Committee (JPDSN), which was successfully held in Penang from 14-15 March 2005, had in principle agreed to the departments proposal of a new 1:50,000 topographic map specifications. There were various reasons that led to the introduction of the new map specifications. The key of which being the effectuation of the Malaysian Geocentric Datum (GDM2000) that has resulted in a new map series and map sheets numbering system. Coupled with the move by the department towards a 4-colour process printing, the new specification is absolutely necessary. Presently, efforts are being directed at completing the specifications for the rest of the map series. In tandem with the new map specifications, the department is currently also in the process of drafting a new digital map specification for its topographic database. This is a classical case of technological advancement out-pacing tedious documentation. The national topographic database was created since mid-1980s, without its specification until now. However, it is better late than never. This digital map specification is expected to be completed by early 2006. With it, and the ever increasing number of applications requiring digital map, perhaps it is time for us to bid sayonara to printed map and usher in the digital map era. Towards this end, it would be timely to mention that the infrastructure for the dissemination of digital spatial data is now in place. The Geospatial Information Dissemination Centre System (SPPMG) which is expected to be fully operational by early 2006 will facilitate the dissemination of spatial data to GIS users nationally and internationally. At the recently concluded meeting of the National Geographical Name Committee (JKNG) held in Kota Kinabalu, the Guidelines for the Determination of Geographical Names were finalised. The Committee has agreed for the document to be translated into English and also to be published as a Malaysian Standard (MS) document. It is hope that this document together with the geographical names database or the so-called Gazetteer will facilitate the creation of GIS systems and widen the usage of GIS-compliant databases. In another note, the department has recently been tasked with the responsibility of creating a new service scheme for GIS graduates. At present, the government do not have any specific service scheme for GIS and geo-information science graduates. As such they cannot be employed in any government services. A paper for this purpose has been prepared and presented to the Public Services Department for its consideration. The approval of this new service scheme by the Government will undoubtedly vitalise the GIS industry within the country. Thank you. 1 VALIDATING THE PERFORMANCE OF GIS-BASED CELLULAR AUTOMATA SPATIAL MODEL: A CASE OF SEBERANG PERAI PENANG, MALAYSIA By Narimah Samat Geography Section School of Humanities Universiti Sains Malaysia 11800 Penang, MALAYSIA E-mail: narimah@usm.my Abstract The integration of GIS and spatial dynamic models such as cellular automata has proven a useful tool for modelling the dynamic spatial pattern of urban development. However, the validation of the result has often been taken for granted. Usually, its validation was conducted by making a relative comparison between the simulated and the actual spatial pattern of urban growth. Once the model produced the simulated spatial pattern of urban growth that looked like actual areas, the model was terminated. This form of validation may reproduce the spatial pattern of urban growth that looks like actual urban area; it does not represent the accuracy of the actual urban locations. This paper demonstrates the application of a GIS-based CA model developed for the Seberang Perai region, Penang State, Malaysia. This model was developed using land use 1974 data and validated using land use 1981, 1990 and 1998 data. It was validated not only on the basis on its ability to reproduce actual urban areas but also the morphology of urban boundary. Although the overall result is quite satisfactory with accuracy exceeding 70%, the model performed quite poorly when the area experienced an anisotropic type of growth or noncontiguous growth. Keywords: Geographic Information Systems, Cellular Automata, Multi-Criteria Evaluation. 1.0 INTRODUCTION Rapid urban growth especially in many developing nations in the last 20 years has created many urban challenges to planners and urban managers (Devas and Rakodi, 1993; Drakakis-Smith, 2000). Thus, various methods and approaches have been devised to help in managing and planning urban spatial growth. Many studies have demonstrated the application of geographic information systems (GIS) in managing and planning urban development, since this technology can be used to analyse and manage spatial and non-spatial data from various sources and time period (Burrough and McDonnell, 1998; Yeh, 1999). However, GIS alone is still insufficient in strategic planning and monitoring urban spatial growth (Geertman, 1999; Narimah and Ruslan, 2001) The application of geographic information systems (GIS) and dynamic spatial models such as cellular automata (CA) has become popular recently since these approaches can be used to locate, plan, map, monitor and forecast areas undergoing urban transformation (Batty, 1997; Clarke et al., 1997; Narimah Samat, 2002). Cellular automata has gained significant interest in the recent literature since it is claimed to be capable of simulating complex urban systems based on a series of simple transition rules (Couclelis, 1985). It begins with a simple or a single cell and potentially capable of generating a complex behaviour when the same rule is repeatedly applied at each iteration (Batty, 1997). Figure 1 shows an example of simple cell evolution using a transition rule adopted from the Game of Life. The same concept was adopted and used to simulate cell evolution from a small town to major urban area. Cellular automata have 4 basic elements: cells, a set of local states, a neighbourhood, and a transition rule (Couclelis, 1985). These elements can be broadly defined to allow various kinds of rules or neighbourhood sizes to be used in order to suite objects it represents. In modeling urban systems cells may represent land parcels and states of the cells can be land use activities such as residential, commercial or agriculture. Neighbourhood represents the cells immediately adjacent to a certain cells. There is no theoretical guideline over the selection of the neighbourhood size, Von Neumann (cells located at the North, South, East and West of the central cell in question) and Moore neighbourhood (cells defined by Von Neumann plus cells at the NorthWest, SouthWest, NorthEast and SouthEast) is normally used (Batty et al., 1997). These neighbourhood sizes are sufficient to capture the local interaction among cells, since the dynamic nature of the model will be able to account for the diffusion of urban growth away from existing development. Transition rules determine the change of cells state during a subsequent iteration. It can be deterministic or stochastic (Batty, 1997). However, most cellular automata model used to model urban systems embedded stochastic elements or constraints to formulate a more realistic model. These include incorporating various criteria 2 defining physical, social and economic characteristics of the urban areas under investigation. 1 2 2 3 3 3 2 1 Initial state - t = 0 t=1 2 3 5 3 2 2 3 5 3 2 2 2 t=2 t=3 2 2 2 2 2 2 t=4 5 Occupied cell and number in the circle indicates the number of active neighbours within a 3x3 neighbourhood. Transition rule: Birth - vacant cell has three active neighbours Dead - active cells have more than 3 or less than 2 active neighbours Alive - active cells with 2 or 3 active neighbours Figure 1: Example of simple cell evolution using transition rule adopted from the Game of Life. (Source: Batty and Xie, 1994). Recently, many form of urban CA had developed in order to simulate the spatial pattern of an actual city or a synthetic city (Batty et al., 1997; Yeh and Li, 2001). Various different transition rules such as multicriteria evaluation approach, logistic regression and fuzzy logic (Wu, 1998; Wu and Webster, 1998; Sui and Zeng, 2000) had been applied in order to ensure that these models could be used to understand and simulate real urban systems. Although these models manage to mimic the behavior of urban transformation, few of these models actually validate the output produced using the models. Chapin and Kaiser (1979) and Sander (1996), however, stressed the importance of validation in model development since this step allows the actual ability of the model to be evaluated. This phase of model development is rarely conducted mainly due to insufficient of data sets to form a good validation parameter (Kok et al., 2001). 2.0 MODELLING METHODOLOGY Study Area The study was undertaken in the Seberang Region, Penang State Malaysia, which is located in the Northwest of Peninsular Malaysia. Figure 2 shows the location of the study area. It is centered at 5o 20N and 100o 25E. 3 Peninsular Malaysia Legend: Regional Center Growth Center District Center Major Settlement Center Small Settlement Center Rural Growth Center Figure 2: The study area. This region is important since it is one of a few regions in Malaysia where rapid urban development of a small town occurred as a result of industrialization. Seberang Perai is also a potential local center for population and economic growth for the Northern region of Malaysia (SPMC, 1998). Malaysias population census 1991 revealed that this area accommodated approximately 545,688 people. However, current population projections and related planning policies forecasted that this area would experience about 60% population growth from 1991 figure (Dept of Statistics, 1991; 2000). This increase of her population would require another 16% of land being converted to urban. Model Formulation The model was developed using a geographical modeling approach (Tobler, 1979) presently known as cellular automata (CA) (Batty, 1997). This model has the ability to imitate the dynamic behaviour of urban systems, which is useful to monitor urban transformation and land use changes. In this study, the GIS-based CA model was developed to simulate the spatial pattern of urban growth since 1974. Study area was divided into 30m grid resolution which can accommodate on average 4 unit of houses, the number that required a planning permission to be develop (SPMC, 1993). Land use defined as state of cells at time t, was represented by 5 major categories: urban, non-urban, wetland, forest reserved and village. Only non-developed land, which comprised of less valuable agriculture areas, vacant land and shrub, was available for new development. Neighbourhood was defined as a 3x3 cells representing 8,100m2 (average land parcel size in this study area) was thought to be sufficient in evaluating neighbourhood influence on cell evolution. The transition rules were derived from factors influencing urban development. These factors were divided into site criteria and situation criteria. Site criteria used was soils, which defined suitability of specific site for urban development. Situation criteria defined the relationship between sites and other activities included proximity to major roads, proximity to employment centers, proximity to health facilities, proximity to schools, proximity to town centers, and proximity to developed areas (Chapin and Kaiser, 1979; Eastman, 1999). Planning regulation that is the exclusion of paddy field agriculture from any development was also included in the model. These factors were mapped and evaluated using a multicriteria evaluation (MCE) approach. Weights reflecting their relative important in influencing urban developments were assigned on the basis of information gathered at the study areas and interviewed with local planners. Subsequently, a MCE-generated suitability map was produced to form an input of the model. 4 The evolution of a cell was governed by the MCE-suitability value and the number of developed neighbours within a neighbourhood. The formulation of the model is shown in Equation 1 below. u t +1 i, j = f (u i , j , Ωi , j , S i , j ) t t t (1) where, t +1 u u Ω = the state of the cell at row i and column j at time t + 1; i, j = the state of the cell at row i and column j at time t ; t i, j t i, j = the development of cells within the neighbourhood of the cell at row i and column j; and, S t i, j = the suitability score for the cell at row i and column j for urban development. In the above equation, the function f is formulated using IF, THEN and ELSE statements as shown in Equation 2. The repeated application of this rule produced a complex spatial pattern. IF (S t i, j Then Else * Ω u u t i, j t +1 i, j t +1 i, j ≥ threshold value ) ; = urban; = non - urban. (2) The Modeled Scenarios In this study, a GIS-based CA was developed to simulate the spatial pattern of urban growth of the Seberang Perai region using three planning scenarios. The three planning scenarios investigated were: (i) A compact city model where urban development was only allowed to occur around existing urban areas, (ii) an urban sprawl model which accounted not only for urban development around existing urban areas, but also allow new development to occur non-contiguous to existing urban areas, and (iii) a planned development model which took into account locations recognised within the regional strategic plan already allocated for urban development. Each planning scenario was modelled using GIS, the respective MCE-suitability maps and subsequent CA spatial simulation. Table 1 shows factors influencing urban development and their respective weights with respect to modelled scenarios. For each of the modelled scenarios, initial input was obtained from land use 1974 data and the model would simulate the spatial pattern of urban growth until the number of developed cells matched with the total developed cells (urban area) 1998. Criteria Proximity to Highway Proximity to Existing Developed Areas Proximity to Major Roads Proximity to Employment Centres Proximity to Major Towns Proximity to Schools Proximity to Health Clinics Proximity to Prioritised Land Consistency Ratio A Compact Development Scenario 0.16 0.38 0.25 0.10 0.06 0.05 0.02 An Urban Sprawl Scenario 0.28 0.09 0.35 0.11 0.08 0.05 0.04 0.02 A Planned Development Scenario 0.24 0.09 0.07 0.15 0.13 0.05 0.04 0.23 0.04 Table 1: Criteria and their weights used to produce MCE-suitability map to model the compact development scenario and a highway development scenario. 5 3.0 RESULTS AND DISCUSSION The actual urban areas of 1981, 1990 and 1998 were overlaid with the simulated urban areas of those respective dates in order to validate the model. Figure 3 shows actual urban area from 1981, 1990, 1998 which were used to validate the model performance. Figure 4, Figure 5, and Figure 6 show the spatial pattern of urban growth simulated using a compact development scenario, an urban sprawl scenario and a planned development scenario respectively. All models managed to produce the spatial pattern of urban growth that look relatively similar to actual urban areas. Furthermore, error matrix tables for these three dates were also produced. Table 2 shows the validation result of the modelled scenarios. Overall accuracy for the three model scenarios was quite high where a planned development model produced the best accuracy that was 97.3% for 1981, 92.1% for 1990 and 88.8% for 1998. This result, however, was only approximately 2-3% better that those produced using other scenarios. Assuming that the transition rule and related MCE value used in the models were realistic, the result suggested that urban growth in this area could be characterised by an expansion of existing urban areas. Modelled Scenarios A Compact Development Scenario An Urban Sprawl Scenario A Planned Development Scenario Accuracy User’s Accuracy Producer’s Accuracy Overall Accuracy User’s Accuracy Producer’s Accuracy Overall Accuracy User’s Accuracy Producer’s Accuracy Overall Accuracy 1981 66.9 69.0 97.3 68.0 66.6 97.2 67.9 69.9 97.3 1990 66.3 64.3 91.4 63.4 63.5 91.2 66.8 67.0 92.1 Table 2: Validation results for the three modeled scenarios from 1981 to 1998. Figure 3: Actual urban spatial pattern (from left) 1980, 1990 and 1998 used to validate the model. 6 1998 65.7 65.4 87.1 65.0 64.4 86.8 70.3 70.0 88.8 Figure 4: Simulated urban spatial pattern (from left) 1980, 1990 and 1998 obtained from a compact development scenario. Figure 5: Simulated urban spatial pattern (from left) 1980, 1990 and 1998 obtained from an urban sprawl scenario. 7 Figure 6: Simulated urban spatial pattern (from left) 1980, 1990 and 1998 obtained from a planned development scenario. The analysis at a local level suggested that although the overall accuracy of the model was quite high, it exhibited a different picture, where the accuracy for urban category modelled using a planned development scenario was around 67.9% (1981), 66.8% (1990) and 70.3% (1998). Figure 7 shows an example of detail analysis at Butterworth, one of major towns in this study area. At local level, many pixels were not accurately assigned to actual areas. This is due to either the limitation of the model in capturing urban growth trends within the study areas or the approach is unsuitable to represent urban systems. There were three factors contributing to the poor performance of the model. First, although the model could very well capture urban expansion around existing urban areas, it failed to recognise urban growth in an anisotropic manner (Narimah, 2002). For example, in some part of the study area, urban development can be characterised as ribbon-like development along major roads such as in the Southern District, while the Northern and Central District experienced compact type of growth and in-filling of urban development around existing urban areas respectively (Mohd Bazid, 2000; Mohd Hassan, 2000). Another aspect that is attributable to the poor performance of the model is that the model considered urban growth to be uniform across the study area. Thus, it tended to overestimate urban expansion in areas undergoing less rapid urban growth. On the other hand, it underestimated urban growth in areas experiencing rapid urban development. Finally, the third factor contributing to the poor performance of a GIS-based CA model was its inability to recognise new urban development that occurred away from existing urban areas. In the original CA type of model, vacant cells were urbanised based on their urban suitability value and the states of cells within a 3x3 neighbourhood. This rule results in cells that were highly contiguous to existing land experiencing a transformation from vacant to developed land (Engelen et al., 1999). This, however, was not able to capture or simulate true urban growth that has occurred away from existing urban areas. It should be noted, however, that these models had not accounted for economic and social criteria such as land value and land ownership in determining cell suitability. Further development of this model should attempt to incorporate these factors since they were likely to have a significant influence on planning policy and hence land use allocation. 8 LEGEND: Initial urban area 1974 Urban identified as Non-Urban Accurately predicted urban areas Non-Urban identified as Urban Figure 7: Evaluation of model accuracy at Butterworth areas as predicted using a planned development scenario. 4.0 CONCLUSION Although the evaluation of the model suggested that it produced approximately 30% to 35% spatial error, the model could be used to describe and understand the spatial pattern of urban growth. It provided a broad understanding of the spatial pattern of urban growth that was useful at an early stage of the planning process, by which planners could test different possible planning scenarios within a computer environment before actually choosing a specific plan. Furthermore, this model could be used to evaluate various policy options in order to adopt a cohesive plan for urban areas. 5.0 ACKNOWLEDGEMENT Author wishes to thank the Association of Commonwealth Universities for funding this research, Dr Stuart Barr and Dr Steve Carver of University of Leeds for their help and guidance during her three years PhD career at University of Leeds. REFERENCES Batty, M. (1997). Cellular automata and urban form: a primer, Journal of the American Planning Association, 63(2). Batty, M., Couclelis, H. & Eichen, M. (1997). Urban systems as cellular automata. Environment and Planning B, 24: 159-164. Burrough, P.A. & Mc Donnell, R.A. (1998) Principles of geographic information systems Oxford, Oxford University Press. Chapin, F.S. & Kaiser, E.J. (1979). Urban Land Use Planning, University of Illinios Press:Urbana. Clarke, K.C., Hoppen, S. & Gaydos, L. (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay Area. Environment and Planning B: Planning and Design, 24, 247-261. Couclelis, H. (1985). Cellular worlds: a framework for modelling micro-macro dynamics. Environment and Planning A, 1, 585-596. Department of statistics, Malaysia. (1991). Population and Housing Report, Malaysia. Department of Statistics Population Census Report. Kuala Lumpur, Malaysia. 9 Department of statistics, Malaysia. (1996). Urbanisation and Urban Growth in Malaysia. Department of Statistics Population census monographs series 1. Kuala Lumpur, Malaysia. Department of statistics, Malaysia. (2000). Laporan kiraan permulaan banci penduduk dan perumahan [internet] available from http://www.statistics.gov.my/bahasa/prebanci2k.htm accessed 22 August 2001. Eastman, J.R. (1999). Multicriteria Evaluation and GIS. in P.A. LONGLEY, M.F. GOODCHILD, D.W. MAGUIRE and D.W RHIND (Eds.) Geographic Information Systems: Management issues and applications. Chichester: John Wiley & Sons. 2nd edition. Engelen, G., Geertman, S., Smits, P. & Wessels, C. (1999). Dynamic GIS and Strategic Physical Planning Support: A Practical Application. In J. Stillwell, S. Geertman, and S. Openshaw (Eds.) Geographic Information and Planning, London: Springer. Geertman, S. (1999) Geographical Information Technology and Strategic Physical Planning. In J. Stillwell, S. Geertman, and S. Openshaw (Eds.) Geographic Information and Planning, London: Springer, 69 86. Mohd Bazid Kahar. (2000). Personal communication. Penang Development Corporation. Mohd Hassan. (2000). Personal communication. Urban Development Authority. Narimah Samat & Ruslan Rainis. (2001). Integration of GIS and statistical technique to model urban residential land use development: a case study on Butterworth, Penang. Malaysian Journal of Remote Sensing & GIS, 2: 87- 98. Narimah Samat. (2002). A Geographic Information System and Cellular Automata Spatial Model of Urban Development for Penang State, Malaysia, Unpublished PhD Thesis, School of Geography, University of Leeds. Seberang Perai municipal council. (1985). Structure plan (draft), Town and Country Planning Department, Malaysia. Seberang Perai municipal council. (1993). Structure plan, Town and Country Planning Department, Malaysia. Seberang Perai municipal council. (1998). Structure plan (Reviewed), Town and Country Planning Department, Malaysia. Tomlin, D. (1990) Geographic Information Systems and Cartographic Modelling. New Jersey: Prentice Hall. Urban Land Institute. (1991). Residential Development Handbook, Community Builders Handbook Series, ULI: Washington D.C. Wu, F. (1996). A linguistic cellular automata simulation approach for sustainable land development in a fast growing region. Computers, Environment and Urban Systems. 20(6):367-387. Wu, F. (1998). SimLand: a prototype to simulate land conversion through the integrated GIS and CA with ahp-derived transition rule. International Journal of Geographical Information Sciences, 12 (1), 63-82. Wu, F. & Webster, C. (1998). Simulation of land development through the integrated GIS and CA with ahp-derived transition rules. International Journal of Geographic Information Sciences, 12(1):6282. Yeh, A.G-O (1999). Urban Planning and GIS, in Longley, P.A, Goodchild, M.F., Maguire, D.W. and Rhind, D.W. (Eds) Geographic Information Systems: Management Issues and Applications, 2nd edition. New York: John Wiley and Sons, 877 888. Yeh, .A.G-O. & LI, X. (2001). A Constrained CA model for the simulation and planning of sustainable urban forms using GIS. Environment and Planning B, 28: 733-888 10 THE APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM IN FOREST ROAD PLANNING: A CASE STUDY OF COMPARTMENT 40 , DERAMAKOT FOREST RESERVE, SANDAKAN, SABAH. By Rosila Anthony (Management and Mapping Division) Raubin Gampilok, Paul Leo Lohuji (Forest Engineering Division) Sabah Forestry Department The concept of Sustainable Forest Management (SFM) planning in Sabah is not new. The good forest management practices take cognizance of the multiple functions or uses of the forests with high emphasis to its future productivity so that it is able to continuously contribute economically, socially and environmentally. At different management level, SFM implementation generally comprises planning procedure, implementing guidelines and monitoring tasks. Forest road planning is an important component of SFM implementation. Planning at the compartment level is operational in nature where the annual work plans and Comprehensive Harvesting Plan (CHP) for the production compartment are prepared. Field operations such as harvesting, rehabilitation, silvicultural tending and resource accounting, which takes into account the changes in the growing stock and quality of forest stands, are planned, implemented and recorded. In timber harvesting operation, Reduced Impact Logging (RIL) techniques are exclusively carried out in Sabah. RIL operation includes the marking of trees for numbering and directional felling, planning of road networks and skid trails aligned according to the location of trees and the terrain conditions. Road planning is part of the Comprehensive Harvesting Plan (CHP) and it is one of the most important activities of CHP preparation. A good road planning, which engages good preparatory works prior to logging can facilitate economic harvesting through an improved harvesting system. It will also results in less environmentally damaging harvesting operation as actual harvesting operation is strictly done on established guidelines. Conventional methods of forest road planning are time consuming, costly and error prone. New methods of forest planning were designed to replace inefficient traditional methods. GIS is a new technology that can be exploited for forest road planning. In this study, GIS technology is used to evaluate potential Forest Road Network Options (FRNO) in Compartment 40 of Deramakot Forest Reserve in Sabah. The specific objectives of the study are to plan different Forest Roads Network Option (FRNO) through the application of GIS software using slopes, terrain condition, water-bodies and harvestable trees position as criteria for road planning; to evaluate the net potential revenue that can be generated from each FRNO by comparing road construction costs and sales from harvested trees that lie within the road and skid trails buffer zones corridors and to select the best FRNO based on the maximum net potential revenue. The study required the study area to be surveyed for relevant information using sampling plots of 20m x 25m. This will enable mapping of timber stock to be done along 92 lines that stretched for 4,600 meters. ArcView GIS software was then used to plan forest roads network options, taking into consideration important parameters related to economic and environmental criteria. GIS technology is used to calculate potential revenue of harvestable trees along the planned FRNO corridors. The selection of best FRNO is then based on maximum potential revenue that can be expected from the alternative FRNOs. The results of the study showed that the best FRNO is FRNO #1, which has the maximum potential revenue of RM7.6 million. The results of the study suggest that automated planning and preparation of forest road option network can be done using GIS. 11 12 Figure 1: Study Methodology Flow Chart Stock Mapping Topographical mapping GIS Design/Automation Harvestable Trees; Location, Species group, Stumpage Value, Terrain condition, slopes, Streams, river buffers FRNO Design: Based on 3 Option FRNO 1 FRNO 2 FRNO 3 Net Potential Revenue Net Potential revenue Net potential Revenue Selection of Best Net Potential revenue 13 REFERENCES Akay, A.E., 1998. Estimating machine rates and production for selected harvesting machines in the Pacific Northwest, USA. Department of Forest Engineering, Oregon State University, Corvallis, OR. Anon, 1987. Our Common Future. World Commission on Environmental and Development (WCED), convened by the United Nations General Assembly, New York. Oxford University Press, Oxford, U.K. Anon. 1992. ITTO Guidelines For the sustainable Management of Natural Tropical Forests .ITTOPolicy Development Series 1. 11p Anon, 1997. Forest Management Plan; AWP of Forest Management Unit No. 19, Deramakot Forest Reserve Management Plan. Anon, 1990. Understanding GIS. The ARC/INFO Method. Environmental Systems Research Institute, Inc. Redland, California, U.S.A. Avery, T.E., Burkhat, H.E.,1983. Forest Measurements. Third Edition, McGraw-Hill Book Company. New York, U.S.A. 77p Berry, J.K. 1986. using microcomputer system to spatially characterize effective timber accessibility. Proceedings of Geographic Information Systems workshop, July 6-9, Indiana, USA, pp. 354-359. Bettinger, P., Bettinger, K.A., and Boston, K., 1997. Correlation among spatial and non-spatial variables describing a cut-to-length thinning site in the Pacific Northwest, USA. For. Ecol. And Manage. 104 (1998), 139-149. Cohen, W.B., Kushla, J.D., Ripple, W.J., and Garman, S.L. 1996. An introduction to Digital Methods in Remote Sensing of Forest Ecosystems: Focus on the Pacific Northwest, USA. Environmental Management Vol. 20, No. 3, pp. 421-435. Campbell, J. 1991. Map Use and Analysis. Second Edition. Wm.C. Brown Publishers. Pp. 323-336 Cowen, D.J. 1988. GIS versus CAD versus DBMS what are the differences? Photogram metric Engineering and Remote Sensing 54 : 1551-1554. Davis, C.J. 1987. Planning Timber Harvesting Activities With Geographic Information / Decision Support Systems. Submitted in partial fulfilment of the requirements for the degree of Doctor Of Philosophy, Purde University, Michigan, United States of America. U.M.I. Dissertation Services. Pp.202-204. Duerrstein, H. 1985. Computer-aided network planning and road design-needs and possibilities in European Alpine areas. Improving mountain Logging Planning, Techniques and Hardware, Forest Engineering Research. 45-48 Dykstra, 2001.Reduced Impact Logging : Concept and issue, International Conference on Application of RIL to advance SFM, Constraints Challenges and opportunities. 26 February, 1 March 2001, Kuching, Sarawak, Malaysia. (reference: REFERENCE: HTTP:CENTRIN.NET.ID/~AGUL/GIS_APL.HTML http://centrin.net.id/~agul/gis_apl.html Ekay, Abdullah. 2000. GIS Analysis For Preliminary Timber Harvesting Method Planning in the Pacific Northwest. Oregon State University, GEO580 Class Project, Spring 2000. HTTP://oregonstate.edu/ ~akayu%20/orst/GEO580Report.doc ESRI, 2003 ESRI.All rights reserved. ESRI, the ESRI globe logo, ArcView,ArcMap,Geography Matters,@esri.com,and www.esri.com Redlands,California923738100,USA. ESRI 1997, Forest Access and Road Planning (online). Available from: http://www.esri.com/base/markets/ forestry/access.html. 14 ACQUISITION OF AN AIRBORNE LASER SCANNING SYSTEM (ALSS) AND DIGITAL CAMERA SYSTEM (DCS) BY JUPEM By Wan Zainuddin Wan Yusoff and Faridah Hanim Sahak Department of Survey and Mapping Malaysia Mapping Division, Data Acquisition Section KEY WORDS: ALSS, Data Acquisition, DCS, Lidar, Small Format Digital Camera ABSTRACT By the end of 2004 JUPEM has fully commissioned its Optech ALTM 30/70 Airborne Laser Scanning System (ALSS) and Digital Camera System (DCS) for laser terrain mapping. This paper presents a conceptual outline of the systems and their functionalities. 1. INTRODUCTION The purchase of these systems serves to expand JUPEMs airborne mapping data acquisition capability under the 8th. Malaysia Plan. Besides classical digital photogrammetry and the use of spaceborne remotely-sensed data, laser terrain mapping can provide new avenues in expediting the production of orthophotos and the national base maps. 2. WHAT IS ALSS? ALSS is an active system which utilizes LIDAR technology. The system sends out narrow pulses or beams of light to objects on the earth surface which are then reflected back to the system receiver. The system then times, counts and process the reflected light. Laser measurements depend on knowing the speed of light to calculate how far the returning light photon has traveled to and from the surface object: Distance = (Speed of Light x Time of Flight) / 2 Accuracies to be expected from laser terrain mapping for an open area type of terrain are as follows: Elevation : + 15 cm (1 sigma) at 1200 m Posional : + 1/2000 x altitude (1 sigma) 15 3. ALSS AND DCS COMPONENTS Figure 1: Control Rack Optech Electronic Technology: Determines the accuracy and repeatability of range measurements, with accuracy of a few centimeters and resolution of 1 cm. Time Interval Meter: Used to measure the elapsed time of laser pulses returning to the ALTM. Airborne Computer: Records data and provides the operator display. Operator Control: Fully programmable hand-held unit. GPS Antenna: Receiver position, velocity and time on two carrier frequencies (L1, L2). )OLJKW0DQDJHPHQW 6XEV\VWHP Figure 2: Flight Management Subsystem Software: ALTM-NAV Flight Management Subsystem for complete mission planning and quality control package. It provides real-time navigation and swath coverage display. 16 &DPHUD6HQVRU+HDG '$&6HQVRU8QLW Figure 3: Sensors Solid-State Laser: High-energy, with a narrow beam divergence to maximize laser accuracy. Scanner: 40o scan range; operates at up to 90 Hz (for small scan angles); guides both outgoing and returning laser pulses; generate saw tooth pattern. Inertial Measurement Unit:Laser gyroscopes and accelerometers to measure roll, pitch and heading. 4. ALSS AND DCS PROCESSING WORKFLOW Figure 4 illustrates the typical data processing sequence. Figure 4 : Data processing workflow. 17 5. PRODUCT DELIVARABLES FROM ALSS AND DCS FOR CAMERON HIGHLANDS and PUTRAJAYA TEST AREAS § DEM and Contour Generation from ALSS TIN and grided DEM as well as contours at 5 m. interval are generated using TerraScan and TerraModeller softwares. § Orthorectification of the DCS digital photos The digital photos are rectified using ISAT/IMAGESTATION SSK PRO software. § Automatic feature classification from ALSS digital images Automatic feature classification, monoscopic heads-up digitizing and stereoscopic digitizing from the digital images to produce vector line maps using Terrascan, TerraModeller, TerraPhoto and QT Viewer softwares. Figure 5: Orthophoto generated from DCS for Cameron Highlands. Figure 6: Intensity Image generated from ALSS for Cameron Highlands. Figure 7 : Contours at 5 m. interval generated from ALSS for Cameron Highlands. Figure 8 : The contours at 20 m. interval generated from ALSS for Cameron Highlands. 18 Figure 9: Intensity and Range Images of Putrajaya Boulevard from ALSS data. Figure 10 : Orthophoto of Putrajaya from DCS data. 6. BENEFITS The main benefits of these systems are: § § § § § § 7. High-resolution, high-accuracy, digital elevation data. Day and night operation. Independently geo-referenced intensity ad elevation data. Ranges to trees and to the ground beneth in a single pass: Simultaneous first and last pulse capability. Rapid coverage and data output: 1000 square kilometres in less than 12 hours, with DEM data available within 24 hours. Range measurements independent of target composition: Bright targets such as land or sand give the same range as dark targets. CONCLUSION The ALSS AND DCS has provided JUPEM with new tools in acquiring airborne mapping data to supplement analog aerial photography which facilitates the production of its standard mapping products. 19 LAPORAN BERGAMBAR MESYUARAT KE-56 JAWATANKUASA PEMETAAN DAN DATA SPATIAL NEGARA (JPDSN) Oleh Hisham bin Husain Seksyen Perkhidmatan Pemetaan Jabatan Ukur dan Pemetaan Malaysia Jawatankuasa Pemetaan dan Data Spatial Negara (JPDSN) telah mengadakan mesyuarat tahunan kali ke-56 bertempat di Pulau Pinang pada 14 hingga 15 Mac 2005. Mesyuarat yang dipengerusikan oleh Y. Bhg. Dato Hamid bin Ali, Ketua Pengarah Ukur dan Pemetaan Malaysia, telah dihadiri oleh ahli-ahlinya dari seluruh negara yang terdiri daripada 40 wakil pelbagai Jabatan/Agensi Kerajaan serta Insititusi Pengajian Tinggi. Y. Bhg. Dato’ Pengerusi sedang mempengerusikan Mesyuarat Ke-56 JPDSN yang dijalankan sepenuhnya secara ’paperless’ Mesyuarat JPDSN ini telah dihadiri oleh ahli-ahli seramai 40 orang yang terdiri daripada wakil Jabatan-Jabatan/Agensi-Agensi Kerajaan dan Instituti-Institusi Pengajian Tinggi Dalam ucapan pembukaannya, Y. Bhg. Dato Hamid bin Ali menjelaskan bahawa JPDSN merupakan satu forum mempertemukan ahli-ahlinya bagi berbincang, mengkaji serta merangka aktiviti dan program yang berkaitan dengan pemetaan dan data spatial ke arah menjayakan pembangunan sosio-ekonomi dan pengurusan sumber negara yang terancang. Justeru itu, beliau menyeru agar ahliahli JPDSN dan ahli Jawatankuasa Teknikal (JT) JPDSN memainkan peranan lebih aktif dalam pelaksanaan projek dan program JPDSN yang boleh dimanfaatkan oleh pengguna sebagai satu sumbangan JPDSN di dalam pembangunan maklumat pemetaan dan data spatial negara. Seterusnya Y. Bhg. Dato Pengerusi menyorot kembali beberapa kejayaan dan program berkaitan pemetaan dan data spatial dalam tahun 2004 yang dijayakan oleh ahli-ahli JPDSN. Antaranya ialah projek-projek JUPEM seperti CATMAPS (Computer Assisted Topographic Mapping System); penubuhan RTK (Real Time Kinematic) Net; pelaksanaan IFOS (Interactive Field-Office System for Geodetic Measurement); pembangunan SPPMG (Sistem Pusat Penyebaran Maklumat Geospatial); penerbitan Peta Geoid Malaysia; penerbitan Peta Daerah; penubuhan Seksyen Pemetaan Utiliti; cadangan pindaan spesifikasi pemetaan bagi penerbitan peta topografi; dan seminar kesedaran aktiviti pemetaan/geodetik; dan juga projek-projek MaCGDI iaitu pembangunan Pangkalan Data Nama Geografi dan penerbitan Gazetir. 20 Selanjutnya Y. Bhg. Dato Pengerusi memaklumkan bahawa ekoran daripada kejadian gempa bumi pada 26 Disember 2004 yang lalu, terdapat pergerakkan ke atas stesen-stesen MASS dan RTK Net di Semenanjung Malaysia dengan anjakan maksimum 18 sm ke arah barat daya dan semakin mengecil di bahagian selatan dan pantai timur. Pergerakkan ini memberi implikasi ke atas aktiviti geodetik terutamanya penentuan titik pangkal negara, koordinat kerangka rujukan GDM 2000 dan rangkaian aras jitu. Oleh itu kajian dan pemantauan berterusan akan dijalankan bagi meneliti kesan anjakan tersebut. Akhir sekali, Y. Bhg. Dato Pengerusi menggesa supaya Jabatan/Agensi pemetaan agar peka kepada kehendak pelanggan mengenai produk dan perkhidmatan yang diperlukan. Jabatan/Agensi perlu memperkemaskan usaha penyelidikan dan pembangunan supaya dapat menghasilkan idea yang inovatif untuk produk serta mendapatkan maklumbalas secara berterusan daripada pelanggan bagi menilai tahap kepuasan pelanggan ke atas perkhidmatan dan produk masing-masing. Antara agenda mesyuarat ini adalah pembentangan laporan Jawatankuasa-jawatankuasa Teknikal dan Kumpulan Kerja Geodetik, pembentangan laporan aktiviti-aktiviti Jabatan/Agensi dan pembentangan kertas-kertas kerja. Antara kertas kerja yang telah dibentangkan di dalam mesyuarat tersebut adalah seperti berikut :i. ii. iii. iv. v. Cadangan Kaedah Baru Penomboran Siri Peta oleh JUPEM; Cadangan Sistem Penomboran Lembar Peta Topografi oleh JUPEM; Cadangan Pindaan Spesifikasi Pemetaan Bagi Penerbitan Peta Topografi Malaysia Skala 1l:l50l000 oleh JUPEM; Pembangunan Sistem Pengurusan Bencana oleh MACRES; dan Integrated Forest Management Information System Sarawak oleh Jabatan Perhutanan Sarawak. Bersempena dengan mesyuarat ini, satu sesi lawatan teknikal yang diketuai oleh Encik Ahmad Fauzi bin Nordin, Pengarah Ukur Bahagian (Pemetaan) JUPEM telah diadakan ke Pusat Sistem Maklumat Geografi Pulau Pinang (PEGIS), di KOMTAR, Pulau Pinang. Satu taklimat telah disampaikan oleh Encik Abdul Azhar bin Ibrahim, Pengurus PEGIS. Antara penerangan taklimat ini adalah mengenai fungsi utama PEGIS iaitu, mengumpul dan mengemaskini maklumat dari jabatan-jabatan kerajaan dan swasta di samping melakukan tugas-tugas di lapangan; pemprosesan dan penganalisaan maklumatmaklumat GIS mengikut keperluan dan kehendak pengguna; penyelenggaraan dan peningkatan aplikasi dan perkakasan/perisian GIS; membantu jabatan-jabatan kerajaan merancang projek-projek pembangunan negeri menggunakan teknologi GIS; dan memberi khidmat nasihat dan latihan GIS kepada jabatan-jabatan kerajaan. Ahli-ahli JPDSN mendengar taklimat mengenai fungsi Pusat PEGIS yang disampaikan oleh Encik Abdul Azhar Ibrahim, Pengurus Pusat PEGIS Sebahagian daripada ahli-ahli JPDSN mendengar penerangan bagaimana maklumat di Pusat PEGIS dikumpul dan dikemaskini untuk dibuat pemprosesan dan penganalisaan 21 Hasil daripada mesyuarat JPDSN Ke 56 ini, dapat dirumuskan bahawa JPDSN berfungsi sebagai satu forum yang efektif bagi merancang dan menjalankan aktiviti pemetaan dan data spatial Negara. Ahli-ahli JPDSN boleh berkongsi pengalaman dan pengetahuan antara satu sama lain dengan kerjasama yang lebih erat serta komited untuk menjayakan sebarang aktiviti yang akan menjadi pemangkin kepada perancangan pembangunan dan pengurusan sumber Negara. 22 LAPORAN BERGAMBAR MESYUARAT KE-3 JAWATANKUASA KEBANGSAAN NAMA GEOGRAFI (JKNG) Oleh Nornisha binti Ishak Seksyen Perkhidmatan Pemetaan Jabatan Ukur dan Pemetaan Malaysia Jawatankuasa Kebangsaan Nama Geografi (JKNG) telah mengadakan mesyuarat tahunan kali ke-3 bertempat di Kota Kinabalu, Sabah pada 14 Jun 2005. Mesyuarat yang telah dipengerusikan oleh Encik Ahmad Fauzi Bin Nordin, Pengarah Ukur Bahagian Pemetaan selaku setiausaha JKNG, telah dihadiri oleh wakil Setiausaha Kerajaan Negeri dan Jabatan/Agensi Kerajaan Persekutuan yang menganggotai jawatankuasa ini iaitu seramai 29 orang. Tuan Pengerusi sedang mempengerusikan Mesyuarat Ke-3 JKNG yang diadakan di Hotel Pacific Sutera, Kota Kinabalu, Sabah. Mesyuarat JKNG ini telah dihadiri oleh ahli-ahli seramai 29 orang yang terdiri daripada wakil Setiausaha Kerajaan Negeri /Jabatan / Agensi Kerajaan Dalam ucapan pembukaan, Tuan Pengerusi menjelaskan bahawa JKNG bermula daripada keanggotaan Malaysia dalam United Nations Group of Experts on Geographical Names (UNGEGN). Keanggotaan Malaysia ini bertujuan untuk memperkenalkan satu kaedah yang konsisten dan tepat dalam menggunakan nama-nama geografi bagi keberkesanan komunikasi di peringkat antarabangsa dan juga bertujuan untuk membantu di dalam pembangunan sosioekonomi dan pemuliharaan alam sekitar serta infrastruktur. Oleh yang demikian, pengwujudan JKNG ini adalah wajar dan tepat pada masanya bagi menyelaras dan menetapkan piawaian nama-nama geografi seluruh negara. Tuan Pengerusi juga turut memaklumkan mengenai beberapa kes yang melibatkan aspek toponimi seperti urusan penukaran nama geografi. Di antara kes yang dibangkitkan ialah mengenai penukaran nama Pulau Perak kepada Pulau Kedah oleh Pihak Berkuasa Kerajaan Negeri Kedah. Walaubagaimanapun, keputusan penukaran nama tersebut telah dibatalkan oleh Majlis Mesyuarat Kerajaan (MMK) Negeri Kedah apabila Jabatan Ukur dan Pemetaan Malaysia (JUPEM) memaklumkan bahawa pulau tersebut merupakan salah satu titik pangkal yang menentukan zon maritim negara dan titik pangkal ini juga termaktub di dalam perjanjian di antara Malaysia dengan negara jiran. Sekiranya penukaran nama dibuat, ianya akan melibatkan implikasi bagi zon maritim di sebelah Selat Melaka kerana masih terdapat tuntutan yang dibuat oleh pihak Indonesia. Sehubungan itu, beliau memaklumkan bahawa isu penukaran nama tersebut selaras dengan salah satu dasar yang telah disertakan dalam garis panduan yang mana urusan penukaran nama perlu dibuat dengan berhati-hati dan sekiranya melibatkan aspek perundangan, adalah dinasihatkan supaya penukaran nama tidak dibuat. 23 Wakil daripada DBP iaitu Pn. Hjh. Zainab binti Kasim membentangkan kertas kerja bertajuk Penulisan Nama-Nama Geografi Antarabangsa. Antara agenda mesyuarat pada kali ini adalah pembentangan laporan Jawatankuasa Teknikal Nama Geografi Kebangsaan (JTNGK), pembentangan laporan Jawatankuasa Negeri Nama Geografi (JNNG) oleh wakil Setiausaha Kerajaan Negeri Sarawak dan juga wakil Ketua Setiausaha Kementerian Wilayah Persekutuan. Wakil daripada Dewan Bahasa dan Pustaka (DBP) turut membentangkan kertaskerja yang bertajuk Penulisan Nama-Nama Geografi Antarabangsa. Selain daripada itu, wakil daripada Pusat Infrastruktur Data Geospatial Negara (MaCGDI) turut menunjukkan Demo Prototaip Pangkalan Data Nama Geografi bagi Negeri Pulau Pinang. Garis Panduan Penentuan Nama Geografi Draf Akhir Garis Panduan Penentuan Nama Geografi telah diedarkan dalam bentuk buku bersaiz A5 kepada ahli-ahli mesyuarat. Terdapat dua puluh satu prinsip (21) di dalam garis panduan ini yang mengambil kira segala aspek seperti perdagangan, perancangan bandar, penerbitan peta, navigasi, pelancongan dan lain-lain lagi. Sesi taklimat pengenalan dan pendedahan mengenai garis panduan ini telah dibentangkan oleh wakil daripada JUPEM dengan kerjasama MaCGDI melalui Seminar MyGDI di negeri-negeri berikut:· · · Seminar MyGDI Negeri Sembilan (Hotel Royal Adelphi, Seremban) - 20 Disember 2004 Seminar MyGDI Sabah (Hotel Shangri-La, Kota Kinabalu) 29 Disember 2004 Seminar MyGDI Terengganu (Primula Beach Resort, Kuala Terengganu) - 19 Mei 2005 D r a f A k h ir G a r is P a n d u a n P e n e n tu a n N a m a G e o g r a fi ya n g te la h d ie d a r k a n k e p a d a a h liSelain daripada itu, taklimat pengenalan dan a h li m e s yu a r a t d a n te la h m e n g a m b il k ir a m a k lu m b a la s d a r ip a d a s e tia p n e g e r i. pendedahan mengenai Garis Panduan Penentuan Nama Geografi turut dibentangkan di Bengkel Kumpulan Kerja Pangkalan Data Nama Geografi yang telah diadakan di IOI Resort, Putra Jaya pada 1 Julai 2004 serta di Mesyuarat Jawatankuasa Penamaan Geografi Negeri Sarawak yang telah diadakan di Mukah pada 6 Mei 2005. Pangkalan Data Nama Geografi dan Penerbitan Gazetir Pusat Infrastruktur Data Geospatial Malaysia (MaCGDI) telah dipertanggungjawabkan untuk menghasilkan Pangkalan Data Nama Geografi dan Penerbitan Gazetir yang berasaskan peta negeri berskala 1:100,000 bagi Semenanjung Malaysia, Sabah dan Sarawak. Pangkalan Data Nama Geografi dan Gazetir sedang dibangunkan oleh MaCGDI dalam Fasa 1 bagi Semenanjung Malaysia dan ianya dijangka siap pada penghujung tahun 2005. Wakil daripada MaCGDI iaitu Encik Mohd. Nizar bin Darmis menunjukkan Demo Prototaip Pangkalan Data Nama Geografi. 24 Hasil daripada mesyuarat JKNG ke-3 ini, dapat dirumuskan bahawa JKNG berfungsi sebagai satu forum yang efektif untuk menyelaraskan kegiatan penentuan nama geografi di Malaysia. Dengan perkembangan teknologi yang pesat dan kepekaan pengguna kepada produk dan perkhidmatan yang diberikan oleh Jabatan/Agensi Kerajaan, maka keperluan kepada pangkalan data, standard dan format bagi penukaran data toponimi serta aspek-aspek latihan dan pendidikan, keperluan saintifik dan teknologi serta isu-isu dan faedah perlaksanaan menjadi keutamaan kepada JKNG. Dalam hubungan ini, kerjasama daripada setiap ahli JKNG serta jawatankuasa teknikal dan negeri perlu diwujudkan agar peranan yang lebih aktif dan efektif dapat dipupuk demi menjayakan matlamat penubuhan JKNG. 25 REPORT ON ESRI GIS PORTAL TOOLKIT WORKSHOP FOR PCGIAP By Ahmad bin Hedar Principal Assistant Director and Mohamad Makros bin Rasimin Assistant Director Malaysian Center for Geospatial Data Infrastructure (MaCGDI) Ministry of Natural Resources and Environment 1.0. BACKGROUND The Permanent Committee On GIS Infrastructure For Asia and The Pacific (PCGIAP) has been established pursuant to resolution 16 of the 13th United Nations Regional Cartographic Conference for Asia and the Pacific (Beijing 1994) and shall operate under the purview of the United Nations Regional Cartographic Conference for Asia and the Pacific (UNRCC-AP) and submit its report and recommendations to that Conference. The aims of the Committee are to maximize the economic, social and environmental benefits of geographic information by providing a forum for nations from Asia and the Pacific to:a. b. c. d. 2.0. cooperate in the development of a regional geographic information infrastructure; contribute to the development of the global geographic information infrastructure; share experiences and consult on matters of common interest; and participate in any other form of activity such as education, training, and technology transfer. INTRODUCTION OF WORKSHOP The three days GIS Portal Toolkit Workshop has been organized from April 6 to 8, 2005 at ESRI China (Hong Kong) Headquarters office, located at Level 10, Cyberport 2, 100 Cyberport Road, Hong Kong. It was organized by PCGIAP Working Group 2 with collaboration of ESRI China (Hong Kong). ESRI China (Hong Kong) has provided the training free of charge and participation was opened to all PCGIAP member countries. 3.0. OBJECTIVE OF WORKSHOP The objective of the Workshop is to promote the establishment of geospatial clearinghouse nodes in PCGIAP member countries, and the development of geospatial portal of Asia Pacific region. 4.0. PARTICIPATION The workshop comprise of 13 participants registered from 8 members countries, namely: China, Indonesia, Japan, Korea, Malaysia and Nepal. Participants from Malaysia are as follows: 1. Encik Ahmad bin Hedar Principal Assistant Director Malaysian Center for Geospatial Data Infrastructure (MaCGDI) Ministry of Natural Resources and Environment 2. Encik Mohamad Makros bin Rasimin Assistant Director Malaysian Center for Geospatial Data Infrastructure (MaCGDI) Ministry of Natural Resources and Environment 26 5.0. PROGRAMME OF WORKSHOP The ESRI GIS Portal Toolkit supports an organization in setting up a GIS portal that gives users access to geographic information. Through a series of coordinated lectures and exercises, participants have learned how to configure and implement structural and functional components from the ESRI GIS Portal Development Toolkit. During the three-day workshop, most of the workshop attendees finished most of the installation process of ESRI GIS Portal Toolkit, and made the included sample application for each of the modules run well and set up a basic sample GIS portal on their own computer. Due to time limit, the other two planned optional lecture and exercise (customization and harvester) were left to attendees for further work when they return their office, and the Instructor, Ms. Margaret Lyszkiewicz kindly promised to keep answering coming questions from the students by email. 5.1. Preparation to Workshop With the requirement from ESRI, participants need to ensure that they are well prepared for the training. Prior to attendance, all participants need to sign a license agreement. This agreement must be signed and returned to ESRI prior to participant being allowed to attend the workshop. All participant also needs to make sure that they have all the software and hardware well installed and ready as required in the programme. Everyone should complete the specific exercise of the workshop which is given earlier by email from ESRI before they come to Hong Kong. This exercise goes through the Environment Verification, making sure that each machine has ArcIMS and ArcSDE properly functioned and working, as well as ensuring that all the required 3rd party software has been downloaded. 5.2. Programme Module The ESRI GIS Portal Toolkit consists of four modules: a portal framework, a map viewer, an administration tool, and a publication tool. Training for each module is covered within a half-day, and one additional day can be used to answer general questions on the usage of the portal toolkit in developing GIS portals. The ESRI GIS Portal Toolkit includes a sample application for each of the modules that can be installed and configured to quickly set up a basic GIS portal. During the three-day workshop, four modules of the ESRI GIS Portal Toolkit has been installed on hardware provided by the workshop attendees themselves. The workshop addresses the architecture of the ESRI GIS Portal Toolkit, the integration of the four modules, and the creation and population of the resulting GIS portal with metadata. The whole workshop has been conducted by Margaret Lyszkiewicz, The Internet and Metadata Products Specialist from ESRI, USA., while Guest Speaker, Dr Winnie Tang, CEO, ESRI China (Hong Kong) Limited has opened the workshop by welcome address and introduction of ESRI and its products. After an extended introduction about metadata and other concepts related to geospatial portal, the Instructor addressed the architecture of the ESRI GIS Portal Toolkit, the integration of the four modules, and the creation and population of the resulting GIS portal with metadata. Training for each module is covered generally within a half-day, and almost one day was used to answer general questions on the installation and usage of the portal toolkit in developing GIS portals. 5.3. Workshop Content The contents of the workshop are as follows:· · · · · · · · · Concepts, overview, and general system architecture Managing metadata using ArcGIS and ArcIMS Portal architecture Operational aspects of hosting a GIS portal Map Viewer architecture Interoperability ArcWeb Services Metadata harvesting Designing a portal site 27 5.4. Description of Training Modules MODULE 1 Framework Module The Framework Module homepage is the initial entry point for the users of the portals built using the toolkit and will provide a comfortable and consistent look and feel to access functionality of the portal. From the homepage the user can assess the following functionality: · · · · Search Metadata - The Search Metadata functionality will allow users of the portal to search for metadata by providing spatial, thematic, temporal, or keyword search criteria. Applications hosted by the portal will be made part of the metadata catalog as one of the specific content types. View Search Results - The Search Metadata functionality returns metadata records that match the users search criteria. From the View Search Results functionality, the user will be able to access the referenced services or applications. Map Viewer - The Map Viewer module (see below). Static Information - The toolkit contains several sample pages that provide placeholders for information related to the GIS Portal. MODULE 2 Administration Module The Administration Module provides the following capabilities: · Administering metadata and users. · Metadata or users can be selected based on specific criteria. · Users can perform a number of operations for a number of selected records at once to optimize bulk work. · Lists of metadata and users can be sorted on specific attributes. · Lists of metadata and users are broken down into pages that can be navigated. MODULE 3 Publication Module The Publication Module allows registered publishers to upload a XML files that contain metadata. In addition the Publication Module allows for entering a metadata document using an online form. MODULE 4 Map Viewer The Map Viewer module allows users of the portal to browse, navigate, and query map data, view multiple map services, and save map views. The Map Viewer module allows the simultaneous display of multiple WMS and ArcIMS map services, and supports scale dependent rendering by those services. 5.5. Questionnaire In order to evaluate the effect of the workshop and help to promote further activities, especially development of geospatial portal of Asia and Pacific Area, all participant need to fill a questionnaire form with their valuable ideas and return to the secretariat before 22nd April 2005. 6.0. CONCLUSION Through a series of lectures and exercises, participants learned how to configure and implement structural and functional components of the ESRI GIS Portal Development Toolkit. Most of the participant finished almost all of the installation process of ESRI GIS Portal Toolkit, and made the included sample application for each of the modules run well on their own computer. Generally, this workshop has exposed the ESRI GIS Portal Toolkit, which it can be used to supports an organization in setting up a GIS portal that gives users access to geographic information. The workshop explained in depth about a portal framework, a map viewer, an administration tool, and a publication tool. Through a series of lectures and exercises, participants learned how to configure and implement structural and functional components of the ESRI GIS Portal Development Toolkit. Finally, this workshop is really helpful to participants related work and help to promote an activities related to GIS, especially development of geospatial portal. 28 SUDUT MaCGDI LAPORAN SEMINAR SEHARI MyGDI TERENGGANU ANJURAN PUSAT INFRASTRUKTUR DATA GEOSPATIAL NEGARA (MaCGDI) DENGAN KERJASAMA KERAJAAN NEGERI TERENGGANU PRIMULA BEACH RESORT, TERENGGANU 19 MEI 2005 Oleh Abdul Manan bin Abdullah Malaysian Center for Geospatial Data Infrastructure (MaCGDI) Seminar Sehari MyGDI adalah merupakan salah satu program Outreach untuk mempromosikan dan mengetengahkan fungsi dan peranan MaCGDI kepada umum, terutama di peringkat agensi pembekal data di semua negeri di Malaysia. Selain itu, ia bertujuan untuk memberi pemahaman lanjut tentang kepentingan agensi pembekal data untuk berkongsi data demi kepentingan bersama. Inisiatif ini merupakan satu perkongsian pintar antara jabatan negeri dan persekutuan bagi memajukan pengurusan pentadbiran awam di Terengganu terutama dari aspek pembangunan tanah dan dengan menggunakan teknologi GIS untuk pembangunan negara. Seminar Sehari MyGDI di Terengganu ini telah dirasmikan oleh Y.B. Dato Haji Muhatar bin Abdullah, Setiausaha Kerajaan Negeri Terengganu. Sebanyak 4 kertas kerja telah dibentangkan iaitu dua dari pegawai MaCGDI, satu dari JUPEM dan diikuti oleh pihak Kerajaan Negeri Terengganu sendiri. Wakil MaCGDI iaitu Tuan Hj. Mazlan bin Hj. Asshaari membentangkan kertas kerja yang bertajuk Pengenalan GIS dan Perancangan MaCGDI diikuti oleh Encik Hashim bin Hamzah yang bertajuk Perancangan dan Perlaksanaan MyGDI di peringkat Negeri Terengganu. Pembentangan kertas kerja III yang bertajuk Garis Panduan Penentuan Nama Geografi dibentangkan oleh wakil JUPEM iaitu Cik Nornisha bt. Ishak diikuti oleh wakil Negeri Terengganu yang bertajuk Sistem Maklumat Geografi Majlis Perbandaran Kemaman. Ucapan perasmian oleh Y.B. Dato’ Haji Muhatar bin Abdullah, Setiausaha Kerajaan Negeri Terengganu Seminar ini diharapkan akan meningkatkan komitment jabatan/ agensi negeri dan persekutuan yang berkaitan dengan tanah peringkat negeri Terengganu untuk bersama MaCGDI membangunkan infrastruktur sebagai saluran perkongsian dan penggunaan maklumat geospatial bagi aktiviti-aktiviti perancangan, membuat keputusan, penggubalan dasar, pemantauan serta penguatkuasaan. 29 Sekitar Seminar Sehari MyGDI Terengganu di Hotel Primula Beach Resort pada 19 Mei 2005 30 SUDUT MaCGDI LAPORAN KAJIAN DAN PEMBELAJARAN SECARA USAHASAMA DI ANTARA MaCGDI DAN ESRI TASIK TITIWANGSA, KUALA LUMPUR 2 JUN 2005 Oleh Ahmad Nazlie B. Muhamad Penolong Pengarah MaCGDI Kajian dan pembelajaran secara usahasama diantara MaCGDI dan ESRI South Asia adalah merupakan program julung kali diadakan. Dalam program usahasama ini, kedua-dua pihak merancang untuk melaksanakan pembelajaran dalam bentuk seminar dan bengkel serta akan dilaksanakan dalam 12 kali kursus/bengkel. Setiap bengkel mengambil masa selama satu (1) hari serta melibatkan 25 hingga 30 orang pegawai MaCGDI dari gred J (JURUUKUR) dan F (ANALISIS SISTEM). Objektif program usahasama ini di antaranya adalah bagi mengeksploitasikan kebolehan dan potensi teknologi geospatial untuk pengaplikasian GIS secara praktikal. Selain itu, ianya bertujuan untuk mempamerkan kreativiti dan faedah aplikasi GIS kepada kerajaan Malaysia serta mengendalikan seminar teknologi GIS yang terkini bagi MaCGDI seiring dengan perkembangan teknologi GIS terkini terutamanya di ESRI. Kerjasama di antara ESRI South Asia dan MaCGDI selaku agensi kerajaan yang menerajui teknologi aplikasi geospatial dapat memberi kebaikan kepada kedua-dua pihak dalam pelbagai aspek. Diantaranya adalah; · Membantu/memberi sokongan kepada MaCGDI untuk memainkan peranan penting sebagai pusat kecermerlangan teknikal di dalam membangunkan aplikasi GIS dan Infrastruktur Data Geospatial. · Memudahkan pemindahan kemahiran dan teknologi daripada ESRI yang merupakan peneraju bidang GIS kepada MaCGDI dalam penggunaan GIS di kalangan agensi-agensi kerajaan. · Secara langsung, mengeksplotasi sepenuhnya kemampuan penggunaan aplikasi perisian GIS ESRI untuk memberi kebaikan kepada komuniti pengguna MaCGDI. Di bawah adalah senarai program yang telah dibuat sepanjang April hingga Jun dengan pemilihan topik kajian yang terkini: Tarikh Tempat Topik 26 April 2005 Bilik Latihan tingkat 2 Bangunan Ukur JUPEM Data Modelling and Spatial Analysis with Reference to Mangrove Mapping in Malaysia 26 Mei 2005 Tasik Titiwangsa Integaration of GPS within ArcGIS .Implement and issues 28 Jun 2005 Bilik Latihan tingkat 2 Bangunan Ukur JUPEM Natural Disaster Monitoring Techniques e.g Tsunami, Earthquake 31 32 33 SUDUT MaCGDI LAPORAN BENGKEL PANGKALAN DATA NAMA GEOGRAFI DAN PENERBITAN GAZETIR (PDNG) HOTEL GRAND SEASON, JLN PAHANG, KUALA LUMPUR 20 JUN 2005 Oleh Ahmad Nazlie B. Muhamad Penolong Pengarah MaCGDI Pusat Infrastruktur Data Geospatial Negara (MaCGDI) adalah merupakan Pengerusi Jawatankuasa Kumpulan Kerja Pangkalan Data Nama-Nama Geografi dan Penerbitan Web Gazetir. Tujuan bengkel ini diadakan adalah untuk memberi kefahaman kepada ahli-ahli dan pihak yang terlibat berkaitan garis panduan bagi menentukan nama-nama geografi serta pembangunan pangkalan data dan penerbitan web gazetir. Bengkel ini akan mendedahkan kepada peserta-peserta mengenai kepentingan penggunaan nama-nama geografi secara konsisten dalam usaha membantu pembangunan sosio ekonomi dan pembentukan prasarana negara. Bengkel ini juga bertujuan untuk memberi pendedahan kepada MS1759 dan pengemaskinian metadata. 34 SUDUT MaCGDI LAPORAN TAKLIMAT MENGENAI MALAYSIAN STANDARD GEOGRAPHIC INFORMATION / GEOMATICS - FEATURES AND ATTRIBUTES CODES (MS1759) DAN PENGEMASKINIAN METADATA STANDARD MyGDI HOTEL GRAND SEASON, JLN PAHANG, KUALA LUMPUR 21 JUN 2005 Oleh Ahmad Nazlie B. Muhamad Penolong Pengarah MaCGDI Taklimat ini diadakan bertujuan untuk memberikan pendedahan kepada peserta-peserta daripada agensi-agensi yang terlibat dengan MyGDI berkaitan penggunaan MS1759 di dalam pembangunan data geospatial di agensi masing-masing. Pemahaman kepada MS1759 adalah penting di kalangan agensiagensi pembekal data supaya ianya dapat digunakan secara menyeluruh bagi membolehkan proses perkongsian data dilaksanakan secara berkesan. Di samping itu, taklimat ini juga akan memberi kefahaman yang lebih jelas berkaitan elemen-elemen yang perlu dipenuhi di dalam metadata agar agensi-agensi pembekal data dapat mengemaskini dan mengisi semua elemen yang diperlukan di dalam metadata tanpa sebarang masalah. Peserta-peserta mendengar taklimat dengan tekun dan penuh minat 35 Antara menarik semasa Taklimat Malaysian Standard Geographic Information/ Geomatics dan Pengemaskinian Metadata Standard MyGDI di Hotel Grand Season pada 20 dan 21 Jun 2005 36 37 SUDUT MaCGDI LAPORAN MESYUARAT JAWATANKUASA TEKNIKAL FRAMEWORK DAN CLEARINGHOUSE ROYAL ADELPHI, SEREMBAN, NEGERI SEMBILAN 27 JUN 2005 Oleh Abdul Manan b. Abdullah Ketua Penolong Pengarag MaCGDI Mesyuarat Jawatankuasa Teknikal Framework dan Clearinghouse ini bertujuan untuk menggariskan cadangan mengadakan Mesyuarat Jawatankuasa Teknikal Clearinghouse dan Framework bagi negeri yang telah melaksanakan Clearinghouse MyGDI dan makluman 8 negeri baru untuk melaksanakan MyGDI , anjuran Pusat Infrastruktur Data Geospatial Negara (MaCGDI), Kementerian Sumber Asli dan Alam Sekitar. MyGDI merupakan satu projek peringkat nasional di mana kementerian sebelum ini dikenali sebagai Kementerian Tanah dan Pembangunan Koperasi, telah dipertanggungjawabkan oleh kerajaan untuk melaksanakan projek ini. Bagaimanapun Clearinghouse MyGDI yang telah digunakan di empat negeri iaitu Kedah, Perlis, Melaka , Sabah dan termasuk Wilayah Persekutuan Kuala Lumpur dan Labuan didapati masih tidak mencukupi kerana negeri lain masih tidak dapat untuk melaksanakan MyGDI serta menggunakan maklumat GIS didalam tugas-tugas harian. Oleh kerana itu, didalam Rancangan Malaysia ke 8, MyGDI akan diperluaskan ke 8 negeri yang lain iaitu Selangor, Perak, Pahang, Pulau Pinang, Negeri Sembilan, Kelantan, Terengganu dan Johor. Tujuan utama diadakan Mesyuarat Jawatankuasa Clearinghouse Dan Framework ini adalah seperti berikut: 1. Membentangkan aktiviti-aktiviti MyGDI di setiap negeri bagi membincangkan berkaitan dengan ; · Penambahan data dari agensi · Penambahan agensi baru · Penambahan dataset bagi agensi yang sediaada · Penentuan harga data · Penambahan data JUPEM seperti sempadan dan pendigitan data hardcopy · Penggunaan talian 2. Menbentangkan perkembangan data dari Agensi Berkuasa Tempatan (ABT) dan juga perkembangan berkaitan dengan perkakasan dan perisian. 3. Sebagai makluman, MaCGDI sekarang dalam usaha membangunkan National Data Center (NGDC), selaras dengan Perlaksanaan Perakuan Kajian Pentadbiran Daerah dan Tanah dengan Tumpuan Kepada Urusan Tanah yang dilaksanakan oleh Kementerian dan MAMPU. 4. Perancangan bagi penyediaan tapak bagi Clearinghouse MyGDI negeri-negeri baru . Memberi penerangan tentang keperluan asas sebelum membuat perlaksanaan untuk peralatan serta keperluan lain yang perlu dari segi talian elektrik, penghawa dingin, serta lain-lain keperluan. 5. Perancangan bagi rangkaian komputer bagi melaksanakan MyGDI . Memberi penerangan tentang keperluan rangkaian yang akan dibangunkan, dari segi kelajuan dan lain-lain keperluan yang melibatkan rangkaian. 38 Perbincangan mengenai penyediaan data bagi agensi NRE termasuklah cadangan produk data baru, agensi pembekal dan lead agensi baru dipilih bagi menentukan keperluan dan kepentingan data kepada agensi-agensi dan orang awam. Ini adalah bagi memastikan data tersebut dapat digunakan sepenuhnya oleh agensi dan orang awam untuk tujuan pembangunan negara khususnya. Tugas-tugas jawatankuasa teknikal clearinghouse adalah lebih kepada pengurusan Infrastruktur diperingkat negeri dan persekutuan, melibatkan penyebaran maklumat (setelah data dikutip dan dipublish) dan Human Resourses Development (mengenalpasti keperluan latihan). Hasil dari bengkel Framework ini, beberapa perkara telah diputuskan dan diambil tindakan dan rumusan tersebut adalah seperti berikut : a. Mengenalpasti tema dan dataset framework serta penyumbang data tersebut. b. Keperluan kepada data spatial yang sesuai untuk dijadikan data framework dan penyumbangnya c. Mewujudkan polisi dan garispanduan mengenai binaan dan perpindahan data kepada pengguna dengan mengambilkira isu-isu harga data, hakcipta, royalti and kerahsiaan. d. Mengenalpasti dan menerima-pakai common coordinate reference system. 39 KALENDAR GIS 2005 TARIKH 9 hingga 11 Jan 2005 TAJUK Program For MyGDI Application System User Requirement Study Workshop 7 hingga 9 Mac 2005 Persidangan Antarabangsa “Achieving Innovation and Best Practices in Urban Management ( INNOBP-Urban)“. 14 hingga 15 Mac 2005 Jawatankuasa Pemetaan dan Data Spatial (JPDSN) ke 56 19 Mac 2005 Seminar Sehari MyGDI, di Negeri Terengganu 28 Mac 2005 Seminar Projek F2F dan Ukur Hakmilik 12 Mei 2005 Pelancaran & Seminar Geoid Map & Real-Time Kinematic (RTK) Network LOKASI PENGANJUR Bukit Tinggi Resort, Colmar Tropocale, Bentong, Pahang Hotel Syuen, Ipoh, Perak Hotel Equatorial Pulau Pinang Primula Beach Resort, Kuala Terengganu Dewan Perdana FELDA Hotel Renaissance 2 Jun 2005 Bengkel Collaborative Learning Venture 14 Jun 2005 Jawatankuasa Kebangsaan Nama-nama Geografi (JKNG) Hotel Pacific Sutera, Kota Kinabalu, Sabah 20 Jun 2005 Bengkel Pangkalan Data Nama-nama Geografi dan Penerbitan Gazetier Hotel Grand Season, Jalan Pahang, Kuala Lumpur Tasik Titiwangsa 40 MaCGDI TALIAN PERTAN Encik Ahmad bin Hedar Tel : +03 26921566 ext . +603 26928278 Fax : + 603 26934941 E-mail : ahmad@macgdi INNOBP-URBAN Project Tel : +03 58829962 E-mail : info@innobp-urb MaCGDI Bahagian Pemetaan, JUPEM Encik Teng Chee Boo Tel:+03 26924034 Fax : +03 26970140 E-mail : cbteng@jupem.g MaCGDI Encik Abdul Manan bin A Tel : +603 26921556 ext Fax : +603 26934941 E-mail : manan@macgdi Bahagian Kadaster, JUPEM Dr.Teng Chee Hua Tel : +03 26170615 Fax : +03 26912757 E-mail : tengcheehua@ju Bahagian Pemetaan, JUPEM Dr.Samad bin Abu Tel : +03 26929930 Fax : +03 26912757 E-mail : samadabu@jupe MaCGDI Bahagian Pemetaan, JUPEM MaCGDI Encik Ahmad bin Hedar Tel : +03 26921566 ext . 26928278 Fax : + 603 26934941 E-mail : ahmad@macgd Encik Teng Chee Boo Tel:+03 26924034 Fax : +03 26970140 E-mail : cbteng@jupem.g Tuan Haji Mazlan bin Ash Tel : +603 26921566 ext. 26908876 Fax : +603 26934941 E-mail : mazlan@macgd TARIKH TAJUK 21 Jun 2005 Taklimat Mengenai Malaysian Standard Geographic Information / Geomatics – Features And Atribute Codes (MS1759) Dan Pengemaskinian Metadata Standard MyGDI LOKASI PENGANJUR Hotel Grand Season Jalan Pahang, Kuala Lumpur MaCGDI 21 hingga 22 Jun 2005 7 Surveyors Congress Sheraton Hotel, Subang Jaya, Selangor 27 Jun 2005 Mesyuarat Jawatankuasa Teknikal Framework MyGDI Bil 1. Tahun 2005 Hotel Royal Adelphi, Seremban, Negeri Sembilan 19 Julai 2005 Seminar Sehari MyGDI di Pulau Pinang 25 Julai 2005 Mesyuarat Jawatankuasa Penyelaras MyGDI Kebangsaan Bil.1 Tahun 2005 26 hingga 27 Julai 2005 Seminar Projek Sistem Kadaster Berkordinat (CCS) 7 hingga 8 Ogos 2005 23 Ogos 2005 th Taklimat Isu-Isu Perlaksanaan Field – to Finish (F2F) & Taklimat Aktiviti Pemetaan & Geodetik Di Semenanjung Taklimat Keselamatan dan Pengendalian Data Geospatial Institution Of Surveyors, Malaysia (ISM) Hotel Cititel, Pulau Pinang MaCGDI MaCGDI Hotel Sheraton, Pulau Pinang MaCGDI Bahagian Kadaster, JUPEM Melaka Hotel YT Midtown, Kuala Terengganu Hotel City Bayview, Pulau Pinang JUPEM MaCGDI 41 TALIAN PERTAN Tuan Haji Mazlan bin Ash Tel : +603 26921566 ext. +603 26908876 Fax : +603 26934941 E-mail : mazlan@macgd ISM Secretariat rd 3 Floor, Bangunan Juru 64-66, Jalan 52/4 46200 Petaling Jaya Selangor Darul Ehsan Tel : +603 79569728/795 Fax : +603 79550253 E-mail : secretariat@ism Katherine@ism. Tuan Haji Mazlan bin Ash Tel : +603 26921566 ext. +603 26908876 Fax : +603 26934941 E-mail : mazlan@macgd Encik Abdul Manan bin A Tel : +603 26921556 ext Fax : +603 26934941 E-mail : manan@macgdi Tuan Haji Mazlan bin Ash Tel : +603 26921566 ext. +603 26908876 Fax : +603 26934941 E-mail : mazlan@macgd Dr. Teng Chee Hua Tel : +603 26170615 Fax : +603 26897114 E-mail : tengcheehua@ju Encik Anual bin Aziz Tel : +603 26170971 Fax : + 603 26970140 Email : anual@jupem.go Tuan Haji Mazlan bin Ash Tel : +603 26921566 ext. +603 26908876 Fax : +603 26934941 E-mail : mazlan@macgd TARIKH 24 Ogos 2005 TAJUK Bengkel Penentuan Harga Data Geospatial 15 hingga 18 September 2005 Minggu ICT & Biotech Pahang 2005 21 September 2005 Mesyuarat Jawatankuasa Teknikal (AM/FM) Bil. 1/2005 September 2005 Seminar Sehari MyGDI bagi Agensi di bawah Kementerian Sumber Asli dan Alam Sekitar September 2005 Advanced Mapinfo For MaCGDI Trainner Course 27 hingga 29 September 2005 The International Symposium & Exhibition on Geoinformation 2005 ‘Geospatial Solutions for Managing the Borderless World‘ 20 Oktober 2005 November 2005 29 hingga 30 November 2005 Mesyuarat Jawatankuasa Teknikal (AM/FM) Bil. 2/2005 Seminar Sehari MyGDI di Selangor National GIS Conference and Exhibition LOKASI PENGANJUR Hotel Grand Season, Kuala Lumpur MaCGDI Megamall, Kuantan, Pahang Pejabat Setiausaha Kerajaan Pahang Bangunan CAMS, JUPEM JUPEM Putrajaya MaCGDI Akan ditentukan MaCGDI Grand Plaza, Park Royal Hotel, Batu Feringgi, Pulau Pinang USM dan ISM JUPEM, Pulau Pinang JUPEM Shah Alam MaCGDI PWTC MaCGDI 42 TALIAN PERTAN Tuan Haji Mazlan bin Ash Tel : +603 26921566 ext. +603 26908876 Fax : +603 26934941 E-mail : mazlan@macgd Encik Haris Fadzilah bin Tel : +609 5126600/ +60 Fax : +609 5163490 E-mail : haris@pahang.g Encik Teng Chee Boo Tel : +603 26924034 Fax : +603 26970140 E-mail : cbteng@jupem.g Encik Ahmad bin Hedar Tel : +603 26921566 ext +603 26928278 Fax : + 603 26934941 E-mail : ahmad@macgdi Encik Rahim bin Sidek Tel : +603 26921556 ext. Fax : +603 26934941 E-mail : rahim2k@macgd ISG 2005 Secretariat Tel : +604 5937788 ext 6 Fax : +604 5941009 E-mail : isg2005@eng.us isg 2005@ yaho http://www.civil.eng.usm. Encik Teng Chee Boo Tel : +603 26924034 Fax : +603 26970140 E-mail : cbteng@jupem.g Encik Abdul Manan bin A Tel : +603 26921556 ext Fax : +603 26934941 E-mail : manan@macgdi Encik Abdul Manan bin A Tel : +603 26921556 ext Fax : +603 26934941 E-mail : manan@macgdi SUMBANGAN ARTIKEL/CALL FOR PAPER Buletin GIS diterbitkan dua (2) kali setahun oleh Jawatankuasa Pemetaan dan Data Spatial Negara. Sidang Pengarang amat mengalu-alukan sumbangan sama ada berbentuk artikel atau laporan bergambar mengenai perkembangan Sistem Maklumat Geografi di Agensi Kerajaan, Badan Berkanun dan Institusi Pengajian Tinggi. Panduan Untuk Penulis 1. Manuskrip boleh ditulis dalam Bahasa Malaysia atau Bahasa Inggeris. 2. Abstrak di dalam setiap artikel mesti dicondongkan (Italic). 3. Format manuskrip adalah seperti berikut: Jenis huruf : Arial Saiz huruf bagi Tajuk : 12 Saiz huruf : 10 Langkau : Single Margin : Atas, bawah, kiri dan kanan= 2.5cm Justifikasi teks : Kiri Satu column setiap muka surat 4. Sumbangan hendaklah dikemukakakn dalam bentuk softcopy dalam format Microsoft Word. Semua imej grafik hendaklah dibekalkan secara berasingan dalam format .tif atau .jpg dengan resolusi 150 dpi dan ke atas. 5. Segala pertanyaan dan sumbangan bolehlah dikemukakan kepada: Ketua Editor Buletin GIS Bahagian Pemetaan Jabatan Ukur dan Pemetaan Malaysia Tingkat 3, Bangunan Ukur Jalan Semarak 50578 Kuala Lumpur Tel: 03-26924034 / 03-26170800 Fax: 03-26970140 E-mel: cbteng@jupem.gov.my Laman web:http://www.jupem.gov.my Rekabentuk dan cetakan oleh JUPEM