JAWATAN KUASA PEMETAAN DAN DATA SPATIAL

Transcription

JAWATAN KUASA PEMETAAN DAN DATA SPATIAL
JAWATAN KUASA PEMETAAN DAN DATA SPATIAL NEGARA
BIL. 1
2005
ISSN 1394 - 5505
PENDAHULU AN
Jemaah Menteri berasaskan Kertas Kabinet No.243/385/65 bertajuk National Mapping Malaysia telah
meluluskan jawatan dan terma-terma rujukan “Surveyor-General Malaya and Singapore” sebagai Pengarah
Pemetaan Negara Malaysia dan mengesahkan keanggotaan serta terma-terma rujukan Jawatankuasa
Pemetaan Negara pada 31 Mac 1965.
Cabutan para-para 2(b), 2(c) dan 2(d) daripada kertas kabinet tersebut mengenai keanggotaan dan termaterma rujukannya adalah seperti berikut:
“2(b) National Mapping Committee
That a National Mapping Committee be appointed to comprise the following:
i.
ii.
iii.
iv.
v.
Director of National Mapping
Director of Lands & Surveys, Sabah;
Director of Lands & Surveys Sarawak;
Representative of the Ministry of Defence;
Representative of the Ministry of Rural Development (now substituted by the Ministry of Natural
Resources and Environment);
Assistant Director of Survey, FARELF
vi.
2(c) The terms of reference of the National Mapping Committee to be as follows:
i.
to advise the Director of National Mapping on matters relating to mapping policy;
ii.
to advise the Director of National Mapping on mapping priorities.
2(d) That the Committee be empowered to appoint a Secretary and to co-opt persons who would be
required to assist the Committee,”
Seterusnya pada 22 Januari 1997, Jemaah Menteri telah meluluskan pindaan terhadap nama, keanggotaan
dan bidang-bidang rujukan Jawatankuasa Pemetaan Negara kepada Jawatankuasa Pemetaan dan Data
Spatial Negara (JPDSN), bagi mencerminkan peranannya yang diperluaskan ke bidang data pemetaan
berdigit. Keanggotaan JPDSN pada masa kini adalah terdiri daripada agensi-agensi seperti berikut:
1.
2.
3.
4.
5.
6.
7.
8.
9.
Jabatan Ukur dan Pemetaan Malaysia
Jabatan Tanah dan Ukur Sabah
Jabatan Tanah dan Survei Sarawak
Wakil Kementerian Pertahanan
Jabatan Mineral dan Geosains Malaysia
Jabatan Perhutanan Semenanjung Malaysia
Jabatan Pertanian Semenanjung Malaysia
Jabatan Perhutanan Sabah
Pusat Infrastruktur Data Geospatial Negara
(MaCGDI) (co-opted)
10.
11.
12.
13.
14.
15.
16.
17.
18.
Jabatan Pertanian Sabah
Jabatan Pertanian Sarawak
Pusat Remote Sensing Negara (MACRES)
Universiti Teknologi Malaysia
Universiti Teknologi MARA (co-opted)
Universiti Sains Malaysia (co-opted)
Jabatan Laut Sarawak (co-opted)
Jabatan Perhutanan Sarawak
Jabatan Perancangan Bandar dan Desa
Semenanjung Malaysia (co-opted)
Buletin GIS ini yang diterbitkan dua kali setahun adalah merupakan salah satu aktiviti oleh Jawatankuasa
Pemetaan dan Data Spatial Negara, sebagai salah satu media pendidikan dan penyebaran maklumat
dalam mendidik masyarakat memanfaatkan maklumat spatial dalam pembangunan negara. Walau
bagaimanapun, sebarang kandungan artikel adalah tanggungjawab penulis sepenuhnya dan bukan
melambangkan pandangan penerbit.
6 LG D Q J 3 H Q J D UD Q J . DQGXQJDQ
3HQDXQJ
0 H V V D J H ) U R P 7 K H & K LH I ( G LW R U 9 D OLG D W LQ J 7 K H 3 H U I R U P D Q F H R I * ,6 < % K J ' D W R · + D P LG E LQ $ OL ' , 0 3 . 0 1 3 0 & 3 - & . H W X D 3 H Q J D U D K 8 N X U G D Q 3 H P H W D D Q 0 D OD \ V LD 3 H Q D V LK D W
$ K P D G ) D X ] L E L Q 1 R U G L Q . 0 1 3 H Q J D U D K 8 N X U % D K D J LD Q 3 H P H W D D Q . H W X D ( G LW R U 7H Q J & K H H % R R 3 H Q J D U D K 8 N X U 6 H N V \ H Q 3 H U N K LG P D W D Q 3 H P H W D D Q ( G LW R U ' U $ ] K D U L E L Q 0 R K D P H G & K D Q . H D W / LP $ E G X O 0 D Q D Q E LQ $ E G X OO D K 6 K D E X G L Q E LQ 6 D D G + L V K D P E L Q + X V D L Q + M + D Q LQ E L Q + D V K LP ) D U LG D K + D Q LP E W 6 D K D N E D V H G & H OOX OD U $ X W R P D W D 6 S D W LD O
0 R G H O$ & D V H R I 6 H E H U D Q J 3 H U D L
3 H Q D Q J 0 D OD \ V LD 7 K H $ S S OLF D W LR Q R I * H R J U D S K LF D O
,Q I R U P D W LR Q 6 \ V W H P ,Q ) R U H V W 5 R D G 3 OD Q Q LQ J $ & D V H 6 W X G \ R I & R P S D U W P H Q W ' H U D P D N R W ) R U H V W 5 H V H U Y H 6 D Q G D N D Q 6 D E D K $ F T X LV LW LR Q R I D Q $ LU E R U Q H / D V H U 6 F D Q Q LQ J 6 \ V W H P $ / 6 6 D Q G ' LJ LW D O
& D P H U D 6 \ V W H P ' & 6 % \ - 8 3 ( 0 / D S R U D Q % H U J D P E D U 0 H V \ X D U D W . H - D Z D W D Q N X D V D 3 H P H W D D Q G D Q ' D W D 6 S D W LD O 1 H J D U D - 3 ' 6 1 / D S R U D Q % H U J D P E D U 0 H V \ X D U D W . H - D Z D W D Q N X D V D . H E D Q J V D D Q 1 D P D * H R J U D I L - . 1 * 5 H S R U W R Q ( 6 5 ,* ,6 3 R U W D O 7 R R ON LW : R U N V K R S I R U 3 & * ,$ 3 Œ
6 X G X W 0 D & * ' ,
+ D O LP E LQ $ E G X OO D K . 0 D W K D Y D Q . 6 L Y D J D Q D P ' D \ D Q J 1 R U D L Q LH E W $ Z D Q J - X Q LG H H 7 H U H Q J J D Q X $ Q MX U D Q 3 X V D W ,Q I U D V W U X N W X U ' D W D * H R V S D W LD O
1 H J D U D 0 D & * ' , G H Q J D Q Œ
. H WX D 5 H N D E H Q WX N 3 H Q F H WD N . H U MD V D P D 1 H J H U L7 H U H Q J J D Q X Œ
3 H P E H OD MD U D Q 6 H F D U D G D Q ( 6 5 ,
/ D S R U D Q % H Q J N H O 3 D Q J N D OD Q ' D W D 1 D P D * H R J U D I LG D Q Œ
3 H Q H U E LW D Q * D ] H W LU 3 ' 1 * / D S R U D Q 7 D N OLP D W 0 H Q J H Q D L
0 D OD \ V LD Q 6 W D Q G D U G * H R J U D S K LF ,Q I R U P D W LR Q * H R P D W LF V ) H D W X U H V D Q G $ W W U LE X W H V & R G H V 0 6 G D Q 3 H Q J H P D V N LQ LD Q 0 H W D G D W D Œ
/ D S R U D Q . D MLD Q G D Q 8 V D K D V D P D ' L D Q W D U D 0 D & * ' ,
+ M 0 X K D P P D W 3 X ] L E LQ $ K P D W / D S R U D Q 6 H K D U L 0 \ * ' ,
6 W D Q G D U G 0 \ * ' ,
/ D S R UD Q 0 H V\ X D UD W - D Z D W D Q N X D V D 7 H N Q LN D O
) U D P H Z R U N G D Q & OH D U LQ J K R X V H . D OH Q G D U * ,6 1 R WD . D Q G X QJ D Q \ D Q J WH UVLD UE R OH K G LWH UE LWND QVH P X OD G H Q J D QL]LQ 8 UX V6H WLD -D Z D WD Q N XD VD 3H P H WD D Q G D Q ' D WD 6S D WLD O1 H J D UD MESSAGE FROM THE CHIEF EDITOR
As we scurry through the first half of 2005 there were many headline news; some
good but mostly bad (ever wonder what has gone wrong?). A most encouraging piece
of news is the Prime Minister’s approval of the 5-day working week and the reinstatement of the cost of living allowance (COLA). For me, the 5-day working week is a
dream comes true, as I have always been looking forward to that which our friends in
the private sector have long been enjoying. A 2-day weekend would definitely help in
reinvigorating the weary mind, and improve family-tie. The reinstatement of COLA is
also a shot in the arm especially for us living in cities like Kuala Lumpur, where ends
are usually hard to meet.
The 56th conference of the National Spatial Data and Mapping Committee (JPDSN), which was successfully held in Penang from 14-15 March 2005, had in principle agreed to the department’s proposal of a
new 1:50,000 topographic map specifications. There were various reasons that led to the introduction of
the new map specifications. The key of which being the effectuation of the Malaysian Geocentric Datum
(GDM2000) that has resulted in a new map series and map sheets numbering system. Coupled with the
move by the department towards a 4-colour process printing, the new specification is absolutely necessary. Presently, efforts are being directed at completing the specifications for the rest of the map series.
In tandem with the new map specifications, the department is currently also in the process of drafting a
new digital map specification for its topographic database. This is a classical case of technological
advancement out-pacing tedious documentation. The national topographic database was created since
mid-1980’s, without its specification until now. However, it is better late than never. This digital map
specification is expected to be completed by early 2006. With it, and the ever increasing number of
applications requiring digital map, perhaps it is time for us to bid sayonara to printed map and usher in
the digital map era.
Towards this end, it would be timely to mention that the infrastructure for the dissemination of digital
spatial data is now in place. The Geospatial Information Dissemination Centre System (SPPMG) which
is expected to be fully operational by early 2006 will facilitate the dissemination of spatial data to GIS
users nationally and internationally.
At the recently concluded meeting of the National Geographical Name Committee (JKNG) held in Kota
Kinabalu, the Guidelines for the Determination of Geographical Names were finalised. The Committee
has agreed for the document to be translated into English and also to be published as a Malaysian
Standard (MS) document. It is hope that this document together with the geographical names database
or the so-called Gazetteer will facilitate the creation of GIS systems and widen the usage of GIS-compliant databases.
In another note, the department has recently been tasked with the responsibility of creating a new
service scheme for GIS graduates. At present, the government do not have any specific service scheme
for GIS and geo-information science graduates. As such they cannot be employed in any government
services. A paper for this purpose has been prepared and presented to the Public Services Department
for its consideration. The approval of this new service scheme by the Government will undoubtedly
vitalise the GIS industry within the country.
Thank you.
1
VALIDATING THE PERFORMANCE OF GIS-BASED CELLULAR AUTOMATA
SPATIAL MODEL: A CASE OF SEBERANG PERAI PENANG, MALAYSIA
By
Narimah Samat
Geography Section
School of Humanities
Universiti Sains Malaysia
11800 Penang, MALAYSIA
E-mail: narimah@usm.my
Abstract
The integration of GIS and spatial dynamic models such as cellular automata has proven a useful tool
for modelling the dynamic spatial pattern of urban development. However, the validation of the result has
often been taken for granted. Usually, its validation was conducted by making a relative comparison
between the simulated and the actual spatial pattern of urban growth. Once the model produced the
simulated spatial pattern of urban growth that looked like actual areas, the model was terminated. This
form of validation may reproduce the spatial pattern of urban growth that looks like actual urban area; it
does not represent the accuracy of the actual urban locations. This paper demonstrates the application
of a GIS-based CA model developed for the Seberang Perai region, Penang State, Malaysia. This
model was developed using land use 1974 data and validated using land use 1981, 1990 and 1998
data. It was validated not only on the basis on its ability to reproduce actual urban areas but also the
morphology of urban boundary. Although the overall result is quite satisfactory with accuracy exceeding
70%, the model performed quite poorly when the area experienced an anisotropic type of growth or noncontiguous growth.
Keywords: Geographic Information Systems, Cellular Automata, Multi-Criteria Evaluation.
1.0
INTRODUCTION
Rapid urban growth especially in many developing nations in the last 20 years has created many urban
challenges to planners and urban managers (Devas and Rakodi, 1993; Drakakis-Smith, 2000). Thus,
various methods and approaches have been devised to help in managing and planning urban spatial
growth. Many studies have demonstrated the application of geographic information systems (GIS) in
managing and planning urban development, since this technology can be used to analyse and manage
spatial and non-spatial data from various sources and time period (Burrough and McDonnell, 1998; Yeh,
1999). However, GIS alone is still insufficient in strategic planning and monitoring urban spatial growth
(Geertman, 1999; Narimah and Ruslan, 2001) The application of geographic information systems (GIS)
and dynamic spatial models such as cellular automata (CA) has become popular recently since these
approaches can be used to locate, plan, map, monitor and forecast areas undergoing urban transformation (Batty, 1997; Clarke et al., 1997; Narimah Samat, 2002).
Cellular automata has gained significant interest in the recent literature since it is claimed to be capable
of simulating complex urban systems based on a series of simple transition rules (Couclelis, 1985). It
begins with a simple or a single cell and potentially capable of generating a complex behaviour when the
same rule is repeatedly applied at each iteration (Batty, 1997). Figure 1 shows an example of simple
cell evolution using a transition rule adopted from the “Game of Life”. The same concept was adopted
and used to simulate cell evolution from a small town to major urban area. Cellular automata have 4
basic elements: cells, a set of local states, a neighbourhood, and a transition rule (Couclelis, 1985).
These elements can be broadly defined to allow various kinds of rules or neighbourhood sizes to be
used in order to suite objects it represents. In modeling urban systems cells may represent land parcels
and states of the cells can be land use activities such as residential, commercial or agriculture.
Neighbourhood represents the cells immediately adjacent to a certain cells. There is no theoretical
guideline over the selection of the neighbourhood size, Von Neumann (cells located at the North, South,
East and West of the central cell in question) and Moore neighbourhood (cells defined by Von Neumann
plus cells at the NorthWest, SouthWest, NorthEast and SouthEast) is normally used (Batty et al., 1997).
These neighbourhood sizes are sufficient to capture the local interaction among cells, since the dynamic
nature of the model will be able to account for the diffusion of urban growth away from existing development. Transition rules determine the change of cell’s state during a subsequent iteration. It can be
deterministic or stochastic (Batty, 1997). However, most cellular automata model used to model urban
systems embedded stochastic elements or constraints to formulate a more realistic model. These
include incorporating various criteria
2
defining physical, social and economic characteristics of the urban areas under investigation.
1
2
2
3
3
3
2
1
Initial state - t = 0
t=1
2
3
5
3
2
2
3
5
3
2
2
2
t=2
t=3
2
2
2
2
2
2
t=4
5 Occupied cell and number in the circle
indicates the number of active neighbours within
a 3x3 neighbourhood.
Transition rule:
Birth - vacant cell has three active neighbours
Dead - active cells have more than 3 or less than 2
active neighbours
Alive - active cells with 2 or 3 active neighbours
Figure 1: Example of simple cell evolution using transition rule adopted from the Game of Life.
(Source: Batty and Xie, 1994).
Recently, many form of urban CA had developed in order to simulate the spatial pattern of an actual city
or a synthetic city (Batty et al., 1997; Yeh and Li, 2001). Various different transition rules such as
multicriteria evaluation approach, logistic regression and fuzzy logic (Wu, 1998; Wu and Webster, 1998;
Sui and Zeng, 2000) had been applied in order to ensure that these models could be used to understand
and simulate real urban systems. Although these models manage to mimic the behavior of urban
transformation, few of these models actually validate the output produced using the models. Chapin and
Kaiser (1979) and Sander (1996), however, stressed the importance of validation in model development
since this step allows the actual ability of the model to be evaluated. This phase of model development
is rarely conducted mainly due to insufficient of data sets to form a good validation parameter (Kok et al.,
2001).
2.0
MODELLING METHODOLOGY
Study Area
The study was undertaken in the Seberang Region, Penang State Malaysia, which is located in the
Northwest of Peninsular Malaysia. Figure 2 shows the location of the study area. It is centered at 5o 20’N
and 100o 25’E.
3
Peninsular Malaysia
Legend:
Regional Center
Growth Center
District Center
Major Settlement Center
Small Settlement Center
Rural Growth Center
Figure 2: The study area.
This region is important since it is one of a few regions in Malaysia where rapid urban development of a
small town occurred as a result of industrialization. Seberang Perai is also a potential local center for
population and economic growth for the Northern region of Malaysia (SPMC, 1998). Malaysia’s population census 1991 revealed that this area accommodated approximately 545,688 people. However,
current population projections and related planning policies forecasted that this area would experience
about 60% population growth from 1991 figure (Dept of Statistics, 1991; 2000). This increase of her
population would require another 16% of land being converted to urban.
Model Formulation
The model was developed using a geographical modeling approach (Tobler, 1979) presently known as
cellular automata (CA) (Batty, 1997). This model has the ability to imitate the dynamic behaviour of
urban systems, which is useful to monitor urban transformation and land use changes. In this study, the
GIS-based CA model was developed to simulate the spatial pattern of urban growth since 1974. Study
area was divided into 30m grid resolution which can accommodate on average 4 unit of houses, the
number that required a planning permission to be develop (SPMC, 1993). Land use defined as state of
cells at time t, was represented by 5 major categories: urban, non-urban, wetland, forest reserved and
village. Only non-developed land, which comprised of less valuable agriculture areas, vacant land and
shrub, was available for new development. Neighbourhood was defined as a 3x3 cells representing
8,100m2 (average land parcel size in this study area) was thought to be sufficient in evaluating
neighbourhood influence on cell evolution.
The transition rules were derived from factors influencing urban development. These factors were
divided into site criteria and situation criteria. Site criteria used was soils, which defined suitability of
specific site for urban development. Situation criteria defined the relationship between sites and other
activities included proximity to major roads, proximity to employment centers, proximity to health facilities, proximity to schools, proximity to town centers, and proximity to developed areas (Chapin and
Kaiser, 1979; Eastman, 1999). Planning regulation that is the exclusion of paddy field agriculture from
any development was also included in the model. These factors were mapped and evaluated using a
multicriteria evaluation (MCE) approach. Weights reflecting their relative important in influencing urban
developments were assigned on the basis of information gathered at the study areas and interviewed
with local planners.
Subsequently, a MCE-generated suitability map was produced to form an input of the model.
4
The evolution of a cell was governed by the MCE-suitability value and the number of developed
neighbours within a neighbourhood. The formulation of the model is shown in Equation 1 below.
u
t +1
i, j
= f (u i , j , Ωi , j , S i , j )
t
t
t
(1)
where,
t +1
u
u
Ω
= the state of the cell at row i and column j at time t + 1;
i, j
= the state of the cell at row i and column j at time t ;
t
i, j
t
i, j
= the development of cells within the neighbourhood of the
cell at row i and column j; and,
S
t
i, j
= the suitability score for the cell at row i and column j for urban
development.
In the above equation, the function f is formulated using IF, THEN and ELSE statements as shown in
Equation 2. The repeated application of this rule produced a complex spatial pattern.
IF
(S
t
i, j
Then
Else
*
Ω
u
u
t
i, j
t +1
i, j
t +1
i, j
≥ threshold value ) ;
=
urban;
=
non - urban.
(2)
The Modeled Scenarios
In this study, a GIS-based CA was developed to simulate the spatial pattern of urban growth of the
Seberang Perai region using three planning scenarios. The three planning scenarios investigated were:
(i) A compact city model – where urban development was only allowed to occur around existing urban
areas, (ii) an urban sprawl model – which accounted not only for urban development around existing
urban areas, but also allow new development to occur non-contiguous to existing urban areas, and (iii) a
planned development model – which took into account locations recognised within the regional strategic
plan already allocated for urban development. Each planning scenario was modelled using GIS, the
respective MCE-suitability maps and subsequent CA spatial simulation. Table 1 shows factors
influencing urban development and their respective weights with respect to modelled scenarios. For
each of the modelled scenarios, initial input was obtained from land use 1974 data and the model would
simulate the spatial pattern of urban growth until the number of developed cells matched with the total
developed cells (urban area) 1998.
Criteria
Proximity to Highway
Proximity to Existing Developed Areas
Proximity to Major Roads
Proximity to Employment Centres
Proximity to Major Towns
Proximity to Schools
Proximity to Health Clinics
Proximity to Prioritised Land
Consistency Ratio
A Compact
Development
Scenario
0.16
0.38
0.25
0.10
0.06
0.05
0.02
An Urban Sprawl
Scenario
0.28
0.09
0.35
0.11
0.08
0.05
0.04
0.02
A Planned
Development
Scenario
0.24
0.09
0.07
0.15
0.13
0.05
0.04
0.23
0.04
Table 1: Criteria and their weights used to produce MCE-suitability map to model the compact development scenario and a
highway development scenario.
5
3.0
RESULTS AND DISCUSSION
The actual urban areas of 1981, 1990 and 1998 were overlaid with the simulated urban areas of those
respective dates in order to validate the model. Figure 3 shows actual urban area from 1981, 1990,
1998 which were used to validate the model performance. Figure 4, Figure 5, and Figure 6 show the
spatial pattern of urban growth simulated using a compact development scenario, an urban sprawl
scenario and a planned development scenario respectively. All models managed to produce the spatial
pattern of urban growth that look relatively similar to actual urban areas. Furthermore, error matrix
tables for these three dates were also produced. Table 2 shows the validation result of the modelled
scenarios. Overall accuracy for the three model scenarios was quite high where a planned development
model produced the best accuracy that was 97.3% for 1981, 92.1% for 1990 and 88.8% for 1998. This
result, however, was only approximately 2-3% better that those produced using other scenarios.
Assuming that the transition rule and related MCE value used in the models were realistic, the result
suggested that urban growth in this area could be characterised by an expansion of existing urban
areas.
Modelled Scenarios
A Compact Development
Scenario
An Urban Sprawl Scenario
A Planned Development
Scenario
Accuracy
User’s Accuracy
Producer’s Accuracy
Overall Accuracy
User’s Accuracy
Producer’s Accuracy
Overall Accuracy
User’s Accuracy
Producer’s Accuracy
Overall Accuracy
1981
66.9
69.0
97.3
68.0
66.6
97.2
67.9
69.9
97.3
1990
66.3
64.3
91.4
63.4
63.5
91.2
66.8
67.0
92.1
Table 2: Validation results for the three modeled scenarios from 1981 to 1998.
Figure 3: Actual urban spatial pattern (from left) 1980, 1990 and 1998 used to validate the model.
6
1998
65.7
65.4
87.1
65.0
64.4
86.8
70.3
70.0
88.8
Figure 4: Simulated urban spatial pattern (from left) 1980, 1990 and 1998 obtained from a compact development scenario.
Figure 5: Simulated urban spatial pattern (from left) 1980, 1990 and 1998 obtained from an urban sprawl scenario.
7
Figure 6: Simulated urban spatial pattern (from left) 1980, 1990 and 1998 obtained from a planned development scenario.
The analysis at a local level suggested that although the overall accuracy of the model was quite high, it
exhibited a different picture, where the accuracy for urban category modelled using a planned development scenario was around 67.9% (1981), 66.8% (1990) and 70.3% (1998). Figure 7 shows an example
of detail analysis at Butterworth, one of major towns in this study area. At local level, many pixels were
not accurately assigned to actual areas. This is due to either the limitation of the model in capturing
urban growth trends within the study areas or the approach is unsuitable to represent urban systems.
There were three factors contributing to the poor performance of the model. First, although the model
could very well capture urban expansion around existing urban areas, it failed to recognise urban growth
in an anisotropic manner (Narimah, 2002). For example, in some part of the study area, urban development can be characterised as ribbon-like development along major roads such as in the Southern
District, while the Northern and Central District experienced compact type of growth and in-filling of
urban development around existing urban areas respectively (Mohd Bazid, 2000; Mohd Hassan, 2000).
Another aspect that is attributable to the poor performance of the model is that the model considered
urban growth to be uniform across the study area. Thus, it tended to overestimate urban expansion in
areas undergoing less rapid urban growth. On the other hand, it underestimated urban growth in areas
experiencing rapid urban development. Finally, the third factor contributing to the poor performance of a
GIS-based CA model was its inability to recognise new urban development that occurred away from
existing urban areas. In the original CA type of model, vacant cells were urbanised based on their urban
suitability value and the states of cells within a 3x3 neighbourhood. This rule results in cells that were
highly contiguous to existing land experiencing a transformation from vacant to developed land (Engelen
et al., 1999). This, however, was not able to capture or simulate true urban growth that has occurred
away from existing urban areas. It should be noted, however, that these models had not accounted for
economic and social criteria such as land value and land ownership in determining cell suitability.
Further development of this model should attempt to incorporate these factors since they were likely to
have a significant influence on planning policy and hence land use allocation.
8
LEGEND:
Initial urban area 1974
Urban identified as Non-Urban
Accurately predicted urban areas
Non-Urban identified as Urban
Figure 7: Evaluation of model accuracy at Butterworth areas as predicted using a planned development scenario.
4.0
CONCLUSION
Although the evaluation of the model suggested that it produced approximately 30% to 35% spatial
error, the model could be used to describe and understand the spatial pattern of urban growth. It provided a broad understanding of the spatial pattern of urban growth that was useful at an early stage of
the planning process, by which planners could test different possible planning scenarios within a computer environment before actually choosing a specific plan. Furthermore, this model could be used to
evaluate various policy options in order to adopt a cohesive plan for urban areas.
5.0
ACKNOWLEDGEMENT
Author wishes to thank the Association of Commonwealth Universities for funding this research, Dr
Stuart Barr and Dr Steve Carver of University of Leeds for their help and guidance during her three years
PhD career at University of Leeds.
REFERENCES
Batty, M. (1997). Cellular automata and urban form: a primer, Journal of the American Planning Association, 63(2).
Batty, M., Couclelis, H. & Eichen, M. (1997). Urban systems as cellular automata. Environment and
Planning B, 24: 159-164.
Burrough, P.A. & Mc Donnell, R.A. (1998) Principles of geographic information systems Oxford, Oxford
University Press.
Chapin, F.S. & Kaiser, E.J. (1979). Urban Land Use Planning, University of Illinios Press:Urbana.
Clarke, K.C., Hoppen, S. & Gaydos, L. (1997) A self-modifying cellular automaton model of historical
urbanization in the San Francisco Bay Area. Environment and Planning B: Planning and Design,
24, 247-261.
Couclelis, H. (1985). Cellular worlds: a framework for modelling micro-macro dynamics. Environment
and Planning A, 1, 585-596.
Department of statistics, Malaysia. (1991). Population and Housing Report, Malaysia. Department of
Statistics Population Census Report. Kuala Lumpur, Malaysia.
9
Department of statistics, Malaysia. (1996). Urbanisation and Urban Growth in Malaysia. Department of
Statistics Population census monograph’s series 1. Kuala Lumpur, Malaysia.
Department of statistics, Malaysia. (2000). Laporan kiraan permulaan banci penduduk dan perumahan
[internet] available from http://www.statistics.gov.my/bahasa/prebanci2k.htm accessed 22 August
2001.
Eastman, J.R. (1999). Multicriteria Evaluation and GIS. in P.A. LONGLEY, M.F. GOODCHILD, D.W.
MAGUIRE and D.W RHIND (Eds.) Geographic Information Systems: Management issues and
applications. Chichester: John Wiley & Sons. 2nd edition.
Engelen, G., Geertman, S., Smits, P. & Wessels, C. (1999). Dynamic GIS and Strategic Physical
Planning Support: A Practical Application. In J. Stillwell, S. Geertman, and S. Openshaw (Eds.)
Geographic Information and Planning, London: Springer.
Geertman, S. (1999) Geographical Information Technology and Strategic Physical Planning. In J. Stillwell,
S. Geertman, and S. Openshaw (Eds.) Geographic Information and Planning, London: Springer, 69
– 86.
Mohd Bazid Kahar. (2000). Personal communication. Penang Development Corporation.
Mohd Hassan. (2000). Personal communication. Urban Development Authority.
Narimah Samat & Ruslan Rainis. (2001). Integration of GIS and statistical technique to model urban
residential land use development: a case study on Butterworth, Penang. Malaysian Journal of Remote Sensing & GIS, 2: 87- 98.
Narimah Samat. (2002). A Geographic Information System and Cellular Automata Spatial Model of Urban
Development for Penang State, Malaysia, Unpublished PhD Thesis, School of Geography, University of Leeds.
Seberang Perai municipal council. (1985). Structure plan (draft), Town and Country Planning Department,
Malaysia.
Seberang Perai municipal council. (1993). Structure plan, Town and Country Planning Department, Malaysia.
Seberang Perai municipal council. (1998). Structure plan (Reviewed), Town and Country Planning
Department, Malaysia.
Tomlin, D. (1990) Geographic Information Systems and Cartographic Modelling. New Jersey: Prentice
Hall.
Urban Land Institute. (1991). Residential Development Handbook, Community Builders Handbook Series,
ULI: Washington D.C.
Wu, F. (1996). A linguistic cellular automata simulation approach for sustainable land development in a
fast growing region. Computers, Environment and Urban Systems. 20(6):367-387.
Wu, F. (1998). SimLand: a prototype to simulate land conversion through the integrated GIS and CA with
ahp-derived transition rule. International Journal of Geographical Information Sciences, 12 (1),
63-82.
Wu, F. & Webster, C. (1998). Simulation of land development through the integrated GIS and CA with
ahp-derived transition rules. International Journal of Geographic Information Sciences, 12(1):6282.
Yeh, A.G-O (1999). Urban Planning and GIS, in Longley, P.A, Goodchild, M.F., Maguire, D.W. and Rhind,
D.W. (Eds) Geographic Information Systems: Management Issues and Applications, 2nd edition.
New York: John Wiley and Sons, 877 – 888.
Yeh, .A.G-O. & LI, X. (2001). A Constrained CA model for the simulation and planning of sustainable
urban forms using GIS. Environment and Planning B, 28: 733-888
10
THE APPLICATION OF GEOGRAPHICAL INFORMATION SYSTEM IN FOREST
ROAD PLANNING: A CASE STUDY OF COMPARTMENT 40 , DERAMAKOT
FOREST RESERVE, SANDAKAN, SABAH.
By
Rosila Anthony (Management and Mapping Division)
Raubin Gampilok, Paul Leo Lohuji (Forest Engineering Division)
Sabah Forestry Department
The concept of Sustainable Forest Management (SFM) planning in Sabah is not new. The good
forest management practices take cognizance of the multiple functions or uses of the forests with high
emphasis to its future productivity so that it is able to continuously contribute economically, socially
and environmentally. At different management level, SFM implementation generally comprises
planning procedure, implementing guidelines and monitoring tasks. Forest road planning is an
important component of SFM implementation.
Planning at the compartment level is operational in nature where the annual work plans and
Comprehensive Harvesting Plan (CHP) for the production compartment are prepared. Field operations
such as harvesting, rehabilitation, silvicultural tending and resource accounting, which takes into
account the changes in the growing stock and quality of forest stands, are planned, implemented and
recorded. In timber harvesting operation, Reduced Impact Logging (RIL) techniques are exclusively
carried out in Sabah. RIL operation includes the marking of trees for numbering and directional felling,
planning of road networks and skid trails aligned according to the location of trees and the terrain
conditions. Road planning is part of the Comprehensive Harvesting Plan (CHP) and it is one of the
most important activities of CHP preparation. A good road planning, which engages good preparatory
works prior to logging can facilitate economic harvesting through an improved harvesting system. It
will also results in less environmentally damaging harvesting operation as actual harvesting operation
is strictly done on established guidelines.
Conventional methods of forest road planning are time consuming, costly and error prone. New
methods of forest planning were designed to replace inefficient traditional methods. GIS is a new
technology that can be exploited for forest road planning. In this study, GIS technology is used to
evaluate potential Forest Road Network Options (FRNO) in Compartment 40 of Deramakot Forest
Reserve in Sabah. The specific objectives of the study are to plan different Forest Roads Network
Option (FRNO) through the application of GIS software using slopes, terrain condition, water-bodies
and harvestable trees position as criteria for road planning; to evaluate the net potential revenue that
can be generated from each FRNO by comparing road construction costs and sales from harvested
trees that lie within the road and skid trails buffer zones corridors and to select the best FRNO based
on the maximum net potential revenue.
The study required the study area to be surveyed for relevant information using sampling plots
of 20m x 25m. This will enable mapping of timber stock to be done along 92 lines that stretched for
4,600 meters. ArcView GIS software was then used to plan forest roads network options, taking into
consideration important parameters related to economic and environmental criteria. GIS technology is
used to calculate potential revenue of harvestable trees along the planned FRNO corridors. The
selection of best FRNO is then based on maximum potential revenue that can be expected from the
alternative FRNOs. The results of the study showed that the best FRNO is FRNO #1, which has the
maximum potential revenue of RM7.6 million. The results of the study suggest that automated
planning and preparation of forest road option network can be done using GIS.
11
12
Figure 1: Study Methodology Flow Chart
Stock
Mapping
Topographical
mapping
GIS
Design/Automation
Harvestable
Trees; Location, Species
group, Stumpage Value,
Terrain condition,
slopes,
Streams,
river buffers
FRNO Design:
Based on 3 Option
FRNO 1
FRNO 2
FRNO 3
Net Potential
Revenue
Net Potential
revenue
Net potential
Revenue
Selection of Best
Net Potential
revenue
13
REFERENCES
Akay, A.E., 1998. Estimating machine rates and production for selected harvesting machines in the Pacific
Northwest, USA. Department of Forest Engineering, Oregon State University, Corvallis, OR.
Anon, 1987. Our Common Future. World Commission on Environmental and Development (WCED),
convened by the United Nations General Assembly, New York. Oxford University Press, Oxford,
U.K.
Anon. 1992. ITTO Guidelines For the sustainable Management of Natural Tropical Forests .ITTOPolicy
Development Series 1. 11p
Anon, 1997. Forest Management Plan; AWP of Forest Management Unit No. 19, Deramakot Forest Reserve
Management Plan.
Anon, 1990. Understanding GIS. The ARC/INFO Method. Environmental Systems Research Institute, Inc.
Redland, California, U.S.A.
Avery, T.E., Burkhat, H.E.,1983. Forest Measurements. Third Edition, McGraw-Hill Book Company. New
York, U.S.A. 77p
Berry, J.K. 1986. using microcomputer system to spatially characterize effective timber accessibility.
Proceedings of Geographic Information Systems workshop, July 6-9, Indiana, USA, pp. 354-359.
Bettinger, P., Bettinger, K.A., and Boston, K., 1997. Correlation among spatial and non-spatial variables
describing a cut-to-length thinning site in the Pacific Northwest, USA. For. Ecol. And Manage. 104
(1998), 139-149.
Cohen, W.B., Kushla, J.D., Ripple, W.J., and Garman, S.L. 1996. An introduction to Digital Methods in
Remote Sensing of Forest Ecosystems: Focus on the Pacific Northwest, USA. Environmental
Management Vol. 20, No. 3, pp. 421-435.
Campbell, J. 1991. Map Use and Analysis. Second Edition. Wm.C. Brown Publishers. Pp. 323-336
Cowen, D.J. 1988. GIS versus CAD versus DBMS what are the differences? Photogram metric Engineering
and Remote Sensing 54 : 1551-1554.
Davis, C.J. 1987. Planning Timber Harvesting Activities With Geographic Information / Decision Support
Systems. Submitted in partial fulfilment of the requirements for the degree of Doctor Of Philosophy,
Purde University, Michigan, United States of America. U.M.I. Dissertation Services. Pp.202-204.
Duerrstein, H. 1985. Computer-aided network planning and road design-needs and possibilities in European
Alpine areas. Improving mountain Logging Planning, Techniques and Hardware, Forest Engineering
Research. 45-48
Dykstra, 2001.Reduced Impact Logging : Concept and issue, International Conference on Application of
RIL to advance SFM, Constraints Challenges and opportunities. 26 February, 1 March 2001, Kuching,
Sarawak, Malaysia. (reference: REFERENCE: HTTP:CENTRIN.NET.ID/~AGUL/GIS_APL.HTML
http://centrin.net.id/~agul/gis_apl.html
Ekay, Abdullah. 2000. GIS Analysis For Preliminary Timber Harvesting Method Planning in the Pacific
Northwest. Oregon State University, GEO580 Class Project, Spring 2000. HTTP://oregonstate.edu/
~akayu%20/orst/GEO580Report.doc
ESRI, 2003 ESRI.All rights reserved. ESRI, the ESRI globe logo, ArcView,ArcMap,Geography
Matters,@esri.com,and www.esri.com Redlands,California923738100,USA.
ESRI 1997, Forest Access and Road Planning (online). Available from: http://www.esri.com/base/markets/
forestry/access.html.
14
ACQUISITION OF AN AIRBORNE LASER SCANNING SYSTEM (ALSS)
AND DIGITAL CAMERA SYSTEM (DCS) BY JUPEM
By
Wan Zainuddin Wan Yusoff and Faridah Hanim Sahak
Department of Survey and Mapping Malaysia
Mapping Division, Data Acquisition Section
KEY WORDS:
ALSS, Data Acquisition, DCS, Lidar, Small Format Digital Camera
ABSTRACT
By the end of 2004 JUPEM has fully commissioned its Optech ALTM 30/70 Airborne Laser Scanning
System (ALSS) and Digital Camera System (DCS) for laser terrain mapping. This paper presents a
conceptual outline of the systems and their functionalities.
1.
INTRODUCTION
The purchase of these systems serves to expand JUPEM’s airborne mapping data acquisition capability
under the 8th. Malaysia Plan. Besides classical digital photogrammetry and the use of spaceborne
remotely-sensed data, laser terrain mapping can provide new avenues in expediting the production of
orthophotos and the national base maps.
2.
WHAT IS ALSS?
ALSS is an active system which utilizes LIDAR technology. The system sends out narrow pulses or
beams of light to objects on the earth surface which are then reflected back to the system receiver. The
system then times, counts and process the reflected light.
Laser measurements depend on knowing the speed of light to calculate how far the returning light
photon has traveled to and from the surface object:
Distance = (Speed of Light x Time of Flight) / 2
Accuracies to be expected from laser terrain mapping for an open area type of terrain are as follows:
Elevation : + 15 cm (1 sigma) at 1200 m
Posional : + 1/2000 x altitude (1 sigma)
15
3.
ALSS AND DCS COMPONENTS
Figure 1: Control Rack
Optech Electronic Technology: Determines the accuracy and repeatability of range measurements,
with accuracy of a few centimeters and resolution of 1 cm.
Time Interval Meter: Used to measure the elapsed time of laser pulses returning to the ALTM.
Airborne Computer: Records data and provides the operator display.
Operator Control: Fully programmable hand-held unit.
GPS Antenna: Receiver position, velocity and time on two carrier frequencies (L1, L2).
)OLJKW0DQDJHPHQW
6XEV\VWHP
Figure 2: Flight Management Subsystem
Software: ALTM-NAV Flight Management Subsystem for complete mission planning and quality control
package. It provides real-time navigation and swath coverage display.
16
&DPHUD6HQVRU+HDG
'$&6HQVRU8QLW
Figure 3: Sensors
Solid-State Laser: High-energy, with a narrow beam divergence to maximize laser accuracy.
Scanner: 40o scan range; operates at up to 90 Hz (for small scan angles); guides both outgoing and
returning laser pulses; generate saw tooth pattern.
Inertial Measurement Unit:Laser gyroscopes and accelerometers to measure roll, pitch and heading.
4.
ALSS AND DCS PROCESSING WORKFLOW
Figure 4 illustrates the typical data processing sequence.
Figure 4 : Data processing workflow.
17
5.
PRODUCT DELIVARABLES FROM ALSS AND DCS FOR CAMERON HIGHLANDS and
PUTRAJAYA TEST AREAS
§
DEM and Contour Generation from ALSS
TIN and grided DEM as well as contours at 5 m. interval are generated using TerraScan and
TerraModeller softwares.
§
Orthorectification of the DCS digital photos
The digital photos are rectified using ISAT/IMAGESTATION SSK PRO software.
§
Automatic feature classification from ALSS digital images
Automatic feature classification, monoscopic heads-up digitizing and stereoscopic digitizing from
the digital images to produce vector line maps using Terrascan, TerraModeller, TerraPhoto and
QT Viewer softwares.
Figure 5: Orthophoto generated from
DCS for Cameron Highlands.
Figure 6: Intensity Image generated
from ALSS for Cameron Highlands.
Figure 7 : Contours at 5 m. interval generated from ALSS for
Cameron Highlands.
Figure 8 : The contours at 20 m. interval generated from ALSS
for Cameron Highlands.
18
Figure 9: Intensity and Range Images of Putrajaya Boulevard from ALSS data.
Figure 10 : Orthophoto of Putrajaya from DCS data.
6.
BENEFITS
The main benefits of these systems are:
§
§
§
§
§
§
7.
High-resolution, high-accuracy, digital elevation data.
Day and night operation.
Independently geo-referenced intensity ad elevation data.
Ranges to trees and to the ground beneth in a single pass: Simultaneous first
and last pulse capability.
Rapid coverage and data output: 1000 square kilometres in less than 12 hours,
with DEM data available within 24 hours.
Range measurements independent of target composition: Bright targets such as
land or sand give the same range as dark targets.
CONCLUSION
The ALSS AND DCS has provided JUPEM with new tools in acquiring airborne mapping data to
supplement analog aerial photography which facilitates the production of its standard mapping
products.
19
LAPORAN BERGAMBAR
MESYUARAT KE-56
JAWATANKUASA PEMETAAN DAN DATA SPATIAL NEGARA (JPDSN)
Oleh
Hisham bin Husain
Seksyen Perkhidmatan Pemetaan
Jabatan Ukur dan Pemetaan Malaysia
Jawatankuasa Pemetaan dan Data Spatial Negara (JPDSN) telah mengadakan mesyuarat
tahunan kali ke-56 bertempat di Pulau Pinang pada 14 hingga 15 Mac 2005. Mesyuarat yang
dipengerusikan oleh Y. Bhg. Dato’ Hamid bin Ali, Ketua Pengarah Ukur dan Pemetaan Malaysia, telah
dihadiri oleh ahli-ahlinya dari seluruh negara yang terdiri daripada 40 wakil pelbagai Jabatan/Agensi
Kerajaan serta Insititusi Pengajian Tinggi.
Y. Bhg. Dato’ Pengerusi sedang mempengerusikan
Mesyuarat Ke-56 JPDSN yang dijalankan
sepenuhnya secara ’paperless’
Mesyuarat JPDSN ini telah dihadiri oleh ahli-ahli
seramai 40 orang yang terdiri daripada wakil
Jabatan-Jabatan/Agensi-Agensi Kerajaan dan
Instituti-Institusi Pengajian Tinggi
Dalam ucapan pembukaannya, Y. Bhg. Dato’ Hamid bin Ali menjelaskan bahawa JPDSN
merupakan satu forum mempertemukan ahli-ahlinya bagi berbincang, mengkaji serta merangka aktiviti
dan program yang berkaitan dengan pemetaan dan data spatial ke arah menjayakan pembangunan
sosio-ekonomi dan pengurusan sumber negara yang terancang. Justeru itu, beliau menyeru agar ahliahli JPDSN dan ahli Jawatankuasa Teknikal (JT) JPDSN memainkan peranan lebih aktif dalam
pelaksanaan projek dan program JPDSN yang boleh dimanfaatkan oleh pengguna sebagai satu
sumbangan JPDSN di dalam pembangunan maklumat pemetaan dan data spatial negara.
Seterusnya Y. Bhg. Dato’ Pengerusi menyorot kembali beberapa kejayaan dan program
berkaitan pemetaan dan data spatial dalam tahun 2004 yang dijayakan oleh ahli-ahli JPDSN. Antaranya
ialah projek-projek JUPEM seperti CATMAPS (Computer Assisted Topographic Mapping System);
penubuhan RTK (Real Time Kinematic) Net; pelaksanaan IFOS (Interactive Field-Office System for
Geodetic Measurement); pembangunan SPPMG (Sistem Pusat Penyebaran Maklumat Geospatial);
penerbitan Peta Geoid Malaysia; penerbitan Peta Daerah; penubuhan Seksyen Pemetaan Utiliti;
cadangan pindaan spesifikasi pemetaan bagi penerbitan peta topografi; dan seminar kesedaran aktiviti
pemetaan/geodetik; dan juga projek-projek MaCGDI iaitu pembangunan Pangkalan Data Nama
Geografi dan penerbitan Gazetir.
20
Selanjutnya Y. Bhg. Dato’ Pengerusi memaklumkan bahawa ekoran daripada kejadian gempa
bumi pada 26 Disember 2004 yang lalu, terdapat pergerakkan ke atas stesen-stesen MASS dan RTK
Net di Semenanjung Malaysia dengan anjakan maksimum 18 sm ke arah barat daya dan semakin
mengecil di bahagian selatan dan pantai timur. Pergerakkan ini memberi implikasi ke atas aktiviti
geodetik terutamanya penentuan titik pangkal negara, koordinat kerangka rujukan GDM 2000 dan
rangkaian aras jitu. Oleh itu kajian dan pemantauan berterusan akan dijalankan bagi meneliti kesan
anjakan tersebut.
Akhir sekali, Y. Bhg. Dato’ Pengerusi menggesa supaya Jabatan/Agensi pemetaan agar peka
kepada kehendak pelanggan mengenai produk dan perkhidmatan yang diperlukan. Jabatan/Agensi
perlu memperkemaskan usaha penyelidikan dan pembangunan supaya dapat menghasilkan idea yang
inovatif untuk produk serta mendapatkan maklumbalas secara berterusan daripada pelanggan bagi
menilai tahap kepuasan pelanggan ke atas perkhidmatan dan produk masing-masing.
Antara agenda mesyuarat ini adalah pembentangan laporan Jawatankuasa-jawatankuasa
Teknikal dan Kumpulan Kerja Geodetik, pembentangan laporan aktiviti-aktiviti Jabatan/Agensi dan
pembentangan kertas-kertas kerja. Antara kertas kerja yang telah dibentangkan di dalam mesyuarat
tersebut adalah seperti berikut :i.
ii.
iii.
iv.
v.
Cadangan Kaedah Baru Penomboran Siri Peta oleh JUPEM;
Cadangan Sistem Penomboran Lembar Peta Topografi oleh JUPEM;
Cadangan Pindaan Spesifikasi Pemetaan Bagi Penerbitan Peta Topografi Malaysia
Skala 1l:l50l000 oleh JUPEM;
Pembangunan Sistem Pengurusan Bencana oleh MACRES; dan
Integrated Forest Management Information System Sarawak oleh Jabatan Perhutanan
Sarawak.
Bersempena dengan mesyuarat ini, satu sesi lawatan teknikal yang diketuai oleh Encik Ahmad
Fauzi bin Nordin, Pengarah Ukur Bahagian (Pemetaan) JUPEM telah diadakan ke Pusat Sistem
Maklumat Geografi Pulau Pinang (PEGIS), di KOMTAR, Pulau Pinang. Satu taklimat telah disampaikan
oleh Encik Abdul Azhar bin Ibrahim, Pengurus PEGIS. Antara penerangan taklimat ini adalah mengenai
fungsi utama PEGIS iaitu, mengumpul dan mengemaskini maklumat dari jabatan-jabatan kerajaan dan
swasta di samping melakukan tugas-tugas di lapangan; pemprosesan dan penganalisaan maklumatmaklumat GIS mengikut keperluan dan kehendak pengguna; penyelenggaraan dan peningkatan
aplikasi dan perkakasan/perisian GIS; membantu jabatan-jabatan kerajaan merancang projek-projek
pembangunan negeri menggunakan teknologi GIS; dan memberi khidmat nasihat dan latihan GIS
kepada jabatan-jabatan kerajaan.
Ahli-ahli JPDSN mendengar taklimat mengenai fungsi
Pusat PEGIS yang disampaikan oleh Encik Abdul
Azhar Ibrahim, Pengurus Pusat PEGIS
Sebahagian daripada ahli-ahli JPDSN
mendengar penerangan bagaimana maklumat
di Pusat PEGIS dikumpul dan dikemaskini
untuk dibuat pemprosesan dan penganalisaan
21
Hasil daripada mesyuarat JPDSN Ke 56 ini, dapat dirumuskan bahawa JPDSN berfungsi
sebagai satu forum yang efektif bagi merancang dan menjalankan aktiviti pemetaan dan data spatial
Negara. Ahli-ahli JPDSN boleh berkongsi pengalaman dan pengetahuan antara satu sama lain dengan
kerjasama yang lebih erat serta komited untuk menjayakan sebarang aktiviti yang akan menjadi
pemangkin kepada perancangan pembangunan dan pengurusan sumber Negara.
22
LAPORAN BERGAMBAR
MESYUARAT KE-3
JAWATANKUASA KEBANGSAAN NAMA GEOGRAFI (JKNG)
Oleh
Nornisha binti Ishak
Seksyen Perkhidmatan Pemetaan
Jabatan Ukur dan Pemetaan Malaysia
Jawatankuasa Kebangsaan Nama Geografi (JKNG) telah mengadakan mesyuarat tahunan kali
ke-3 bertempat di Kota Kinabalu, Sabah pada 14 Jun 2005. Mesyuarat yang telah dipengerusikan oleh
Encik Ahmad Fauzi Bin Nordin, Pengarah Ukur Bahagian Pemetaan selaku setiausaha JKNG, telah
dihadiri oleh wakil Setiausaha Kerajaan Negeri dan Jabatan/Agensi Kerajaan Persekutuan yang
menganggotai jawatankuasa ini iaitu seramai 29 orang.
Tuan Pengerusi sedang mempengerusikan
Mesyuarat Ke-3 JKNG yang diadakan di Hotel
Pacific Sutera, Kota Kinabalu, Sabah.
Mesyuarat JKNG ini telah dihadiri oleh ahli-ahli seramai
29 orang yang terdiri daripada wakil Setiausaha
Kerajaan Negeri /Jabatan / Agensi Kerajaan
Dalam ucapan pembukaan, Tuan Pengerusi menjelaskan bahawa JKNG bermula daripada
keanggotaan Malaysia dalam ‘United Nations Group of Experts on Geographical Names’ (UNGEGN).
Keanggotaan Malaysia ini bertujuan untuk memperkenalkan satu kaedah yang konsisten dan tepat
dalam menggunakan nama-nama geografi bagi keberkesanan komunikasi di peringkat antarabangsa
dan juga bertujuan untuk membantu di dalam pembangunan sosioekonomi dan pemuliharaan alam
sekitar serta infrastruktur. Oleh yang demikian, pengwujudan JKNG ini adalah wajar dan tepat pada
masanya bagi menyelaras dan menetapkan piawaian nama-nama geografi seluruh negara.
Tuan Pengerusi juga turut memaklumkan mengenai beberapa kes yang melibatkan aspek
toponimi seperti urusan penukaran nama geografi. Di antara kes yang dibangkitkan ialah mengenai
penukaran nama Pulau Perak kepada Pulau Kedah oleh Pihak Berkuasa Kerajaan Negeri Kedah.
Walaubagaimanapun, keputusan penukaran nama tersebut telah dibatalkan oleh Majlis Mesyuarat
Kerajaan (MMK) Negeri Kedah apabila Jabatan Ukur dan Pemetaan Malaysia (JUPEM) memaklumkan
bahawa pulau tersebut merupakan salah satu titik pangkal yang menentukan zon maritim negara dan
titik pangkal ini juga termaktub di dalam perjanjian di antara Malaysia dengan negara jiran. Sekiranya
penukaran nama dibuat, ianya akan melibatkan implikasi bagi zon maritim di sebelah Selat Melaka
kerana masih terdapat tuntutan yang dibuat oleh pihak Indonesia. Sehubungan itu, beliau
memaklumkan bahawa isu penukaran nama tersebut selaras dengan salah satu dasar yang telah
disertakan dalam garis panduan yang mana urusan penukaran nama perlu dibuat dengan berhati-hati
dan sekiranya melibatkan aspek perundangan, adalah dinasihatkan supaya penukaran nama tidak
dibuat.
23
Wakil daripada DBP iaitu
Pn. Hjh. Zainab binti Kasim membentangkan
kertas kerja bertajuk Penulisan Nama-Nama
Geografi Antarabangsa.
Antara agenda mesyuarat pada kali ini adalah
pembentangan laporan Jawatankuasa Teknikal Nama
Geografi Kebangsaan (JTNGK), pembentangan
laporan Jawatankuasa Negeri Nama Geografi (JNNG)
oleh wakil Setiausaha Kerajaan Negeri Sarawak dan
juga wakil Ketua Setiausaha Kementerian Wilayah
Persekutuan. Wakil daripada Dewan Bahasa dan
Pustaka (DBP) turut membentangkan kertaskerja yang
bertajuk ”Penulisan Nama-Nama Geografi
Antarabangsa”. Selain daripada itu, wakil daripada Pusat Infrastruktur Data Geospatial Negara
(MaCGDI) turut menunjukkan Demo Prototaip Pangkalan Data Nama Geografi bagi Negeri Pulau
Pinang.
Garis Panduan Penentuan Nama Geografi
Draf Akhir Garis Panduan Penentuan Nama Geografi telah
diedarkan dalam bentuk buku bersaiz A5 kepada ahli-ahli
mesyuarat. Terdapat dua puluh satu prinsip (21) di dalam garis
panduan ini yang mengambil kira segala aspek seperti
perdagangan, perancangan bandar, penerbitan peta, navigasi,
pelancongan dan lain-lain lagi. Sesi taklimat pengenalan dan
pendedahan mengenai garis panduan ini telah dibentangkan oleh
wakil daripada JUPEM dengan kerjasama MaCGDI melalui
Seminar MyGDI di negeri-negeri berikut:·
·
·
Seminar MyGDI Negeri Sembilan (Hotel Royal Adelphi,
Seremban) - 20 Disember 2004
Seminar MyGDI Sabah (Hotel Shangri-La, Kota Kinabalu) 29 Disember 2004
Seminar MyGDI Terengganu (Primula Beach Resort, Kuala
Terengganu) - 19 Mei 2005
D r a f A k h ir G a r is P a n d u a n P e n e n tu a n N a m a
G e o g r a fi ya n g te la h d ie d a r k a n k e p a d a a h liSelain daripada itu, taklimat pengenalan dan
a h li m e s yu a r a t d a n te la h m e n g a m b il k ir a
m a k lu m b a la s d a r ip a d a s e tia p n e g e r i.
pendedahan mengenai Garis Panduan Penentuan Nama
Geografi turut dibentangkan di Bengkel Kumpulan Kerja
Pangkalan Data Nama Geografi yang telah diadakan di IOI
Resort, Putra Jaya pada 1 Julai 2004 serta di Mesyuarat Jawatankuasa Penamaan Geografi Negeri
Sarawak yang telah diadakan di Mukah pada 6 Mei 2005.
Pangkalan Data Nama Geografi dan Penerbitan Gazetir
Pusat Infrastruktur Data Geospatial Malaysia
(MaCGDI) telah dipertanggungjawabkan untuk
menghasilkan Pangkalan Data Nama Geografi dan
Penerbitan Gazetir yang berasaskan peta negeri berskala
1:100,000 bagi Semenanjung Malaysia, Sabah dan
Sarawak. Pangkalan Data Nama Geografi dan Gazetir
sedang dibangunkan oleh MaCGDI dalam Fasa 1 bagi
Semenanjung Malaysia dan ianya dijangka siap pada
penghujung tahun 2005.
Wakil daripada MaCGDI iaitu
Encik Mohd. Nizar bin Darmis
menunjukkan Demo Prototaip Pangkalan
Data Nama Geografi.
24
Hasil daripada mesyuarat JKNG ke-3 ini, dapat dirumuskan bahawa JKNG berfungsi sebagai
satu forum yang efektif untuk menyelaraskan kegiatan penentuan nama geografi di Malaysia. Dengan
perkembangan teknologi yang pesat dan kepekaan pengguna kepada produk dan perkhidmatan yang
diberikan oleh Jabatan/Agensi Kerajaan, maka keperluan kepada pangkalan data, standard dan format
bagi penukaran data toponimi serta aspek-aspek latihan dan pendidikan, keperluan saintifik dan
teknologi serta isu-isu dan faedah perlaksanaan menjadi keutamaan kepada JKNG. Dalam hubungan
ini, kerjasama daripada setiap ahli JKNG serta jawatankuasa teknikal dan negeri perlu diwujudkan agar
peranan yang lebih aktif dan efektif dapat dipupuk demi menjayakan matlamat penubuhan JKNG.
25
REPORT ON ESRI GIS PORTAL TOOLKIT WORKSHOP FOR PCGIAP
By
Ahmad bin Hedar
Principal Assistant Director
and
Mohamad Makros bin Rasimin
Assistant Director
Malaysian Center for Geospatial Data Infrastructure (MaCGDI)
Ministry of Natural Resources and Environment
1.0.
BACKGROUND
The Permanent Committee On GIS Infrastructure For Asia and The Pacific (PCGIAP) has been
established pursuant to resolution 16 of the 13th United Nations Regional Cartographic Conference for
Asia and the Pacific (Beijing 1994) and shall operate under the purview of the United Nations Regional
Cartographic Conference for Asia and the Pacific (UNRCC-AP) and submit its report and recommendations to that Conference.
The aims of the Committee are to maximize the economic, social and environmental benefits of geographic information by providing a forum for nations from Asia and the Pacific to:a.
b.
c.
d.
2.0.
cooperate in the development of a regional geographic information infrastructure;
contribute to the development of the global geographic information infrastructure;
share experiences and consult on matters of common interest; and
participate in any other form of activity such as education, training, and technology
transfer.
INTRODUCTION OF WORKSHOP
The three days GIS Portal Toolkit Workshop has been organized from April 6 to 8, 2005 at ESRI China
(Hong Kong) Headquarters office, located at Level 10, Cyberport 2, 100 Cyberport Road, Hong Kong. It
was organized by PCGIAP Working Group 2 with collaboration of ESRI China (Hong Kong).
ESRI China (Hong Kong) has provided the training free of charge and participation was opened to all
PCGIAP member countries.
3.0.
OBJECTIVE OF WORKSHOP
The objective of the Workshop is to promote the establishment of geospatial clearinghouse nodes in
PCGIAP member countries, and the development of geospatial portal of Asia Pacific region.
4.0.
PARTICIPATION
The workshop comprise of 13 participants registered from 8 members countries, namely: China, Indonesia, Japan, Korea, Malaysia and Nepal. Participants from Malaysia are as follows:
1.
Encik Ahmad bin Hedar
Principal Assistant Director
Malaysian Center for Geospatial Data Infrastructure (MaCGDI)
Ministry of Natural Resources and Environment
2.
Encik Mohamad Makros bin Rasimin
Assistant Director
Malaysian Center for Geospatial Data Infrastructure (MaCGDI)
Ministry of Natural Resources and Environment
26
5.0.
PROGRAMME OF WORKSHOP
The ESRI GIS Portal Toolkit supports an organization in setting up a GIS portal that gives users access
to geographic information. Through a series of coordinated lectures and exercises, participants have
learned how to configure and implement structural and functional components from the ESRI GIS Portal
Development Toolkit. During the three-day workshop, most of the workshop attendees finished most of
the installation process of ESRI GIS Portal Toolkit, and made the included sample application for each
of the modules run well and set up a basic sample GIS portal on their own computer. Due to time limit,
the other two planned optional lecture and exercise (customization and harvester) were left to attendees
for further work when they return their office, and the Instructor, Ms. Margaret Lyszkiewicz kindly promised to keep answering coming questions from the students by email.
5.1.
Preparation to Workshop
With the requirement from ESRI, participants need to ensure that they are well prepared for the training.
Prior to attendance, all participants need to sign a license agreement. This agreement must be signed
and returned to ESRI prior to participant being allowed to attend the workshop.
All participant also needs to make sure that they have all the software and hardware well installed and
ready as required in the programme. Everyone should complete the specific exercise of the workshop
which is given earlier by email from ESRI before they come to Hong Kong. This exercise goes through
the “Environment Verification”, making sure that each machine has ArcIMS and ArcSDE properly functioned and working, as well as ensuring that all the required 3rd party software has been downloaded.
5.2.
Programme Module
The ESRI GIS Portal Toolkit consists of four modules: a portal framework, a map viewer, an administration tool, and a publication tool. Training for each module is covered within a half-day, and one additional day can be used to answer general questions on the usage of the portal toolkit in developing GIS
portals. The ESRI GIS Portal Toolkit includes a sample application for each of the modules that can be
installed and configured to quickly set up a basic GIS portal.
During the three-day workshop, four modules of the ESRI GIS Portal Toolkit has been installed on
hardware provided by the workshop attendees themselves. The workshop addresses the architecture of
the ESRI GIS Portal Toolkit, the integration of the four modules, and the creation and population of the
resulting GIS portal with metadata.
The whole workshop has been conducted by Margaret Lyszkiewicz, The Internet and Metadata Products
Specialist from ESRI, USA., while Guest Speaker, Dr Winnie Tang, CEO, ESRI China (Hong Kong)
Limited has opened the workshop by welcome address and introduction of ESRI and it’s products.
After an extended introduction about metadata and other concepts related to geospatial portal, the
Instructor addressed the architecture of the ESRI GIS Portal Toolkit, the integration of the four modules,
and the creation and population of the resulting GIS portal with metadata. Training for each module is
covered generally within a half-day, and almost one day was used to answer general questions on the
installation and usage of the portal toolkit in developing GIS portals.
5.3.
Workshop Content
The contents of the workshop are as follows:·
·
·
·
·
·
·
·
·
Concepts, overview, and general system architecture
Managing metadata using ArcGIS and ArcIMS
Portal architecture
Operational aspects of hosting a GIS portal
Map Viewer architecture
Interoperability
ArcWeb Services
Metadata harvesting
Designing a portal site
27
5.4.
Description of Training Modules
MODULE 1 Framework Module
The Framework Module homepage is the initial entry point for the users of the portals built using
the toolkit and will provide a comfortable and consistent look and feel to access functionality of
the portal. From the homepage the user can assess the following functionality:
·
·
·
·
Search Metadata - The Search Metadata functionality will allow users of the portal to search
for metadata by providing spatial, thematic, temporal, or keyword search criteria. Applications hosted by the portal will be made part of the metadata catalog as one of the specific
content types.
View Search Results - The Search Metadata functionality returns metadata records that
match the user’s search criteria. From the View Search Results functionality, the user will be
able to access the referenced services or applications.
Map Viewer - The Map Viewer module (see below).
Static Information - The toolkit contains several sample pages that provide placeholders for
information related to the GIS Portal.
MODULE 2 Administration Module
The Administration Module provides the following capabilities:
· Administering metadata and users.
· Metadata or users can be selected based on specific criteria.
· Users can perform a number of operations for a number of selected records at once to
optimize bulk work.
· Lists of metadata and users can be sorted on specific attributes.
· Lists of metadata and users are broken down into pages that can be navigated.
MODULE 3 Publication Module
The Publication Module allows registered publishers to upload a XML files that contain
metadata. In addition the Publication Module allows for entering a metadata document using an
online form.
MODULE 4 Map Viewer
The Map Viewer module allows users of the portal to browse, navigate, and query map data,
view multiple map services, and save map views. The Map Viewer module allows the simultaneous display of multiple WMS and ArcIMS map services, and supports scale dependent
rendering by those services.
5.5.
Questionnaire
In order to evaluate the effect of the workshop and help to promote further activities, especially development of geospatial portal of Asia and Pacific Area, all participant need to fill a questionnaire form with
their valuable ideas and return to the secretariat before 22nd April 2005.
6.0.
CONCLUSION
Through a series of lectures and exercises, participants learned how to configure and implement structural and functional components of the ESRI GIS Portal Development Toolkit. Most of the participant
finished almost all of the installation process of ESRI GIS Portal Toolkit, and made the included sample
application for each of the modules run well on their own computer.
Generally, this workshop has exposed the ESRI GIS Portal Toolkit, which it can be used to supports an
organization in setting up a GIS portal that gives users access to geographic information. The workshop
explained in depth about a portal framework, a map viewer, an administration tool, and a publication
tool. Through a series of lectures and exercises, participants learned how to configure and implement
structural and functional components of the ESRI GIS Portal Development Toolkit.
Finally, this workshop is really helpful to participant’s related work and help to promote an activities
related to GIS, especially development of geospatial portal.
28
SUDUT MaCGDI
LAPORAN SEMINAR SEHARI MyGDI TERENGGANU
ANJURAN PUSAT INFRASTRUKTUR DATA GEOSPATIAL NEGARA (MaCGDI)
DENGAN KERJASAMA KERAJAAN NEGERI TERENGGANU
PRIMULA BEACH RESORT, TERENGGANU
19 MEI 2005
Oleh
Abdul Manan bin Abdullah
Malaysian Center for Geospatial Data Infrastructure (MaCGDI)
Seminar Sehari MyGDI adalah merupakan salah satu program Outreach untuk mempromosikan dan mengetengahkan fungsi dan peranan
MaCGDI kepada umum, terutama di peringkat agensi pembekal data di
semua negeri di Malaysia. Selain itu, ia bertujuan untuk memberi
pemahaman lanjut tentang kepentingan agensi pembekal data untuk
berkongsi data demi kepentingan bersama. Inisiatif ini merupakan satu
perkongsian pintar antara jabatan negeri dan persekutuan bagi memajukan
pengurusan pentadbiran awam di Terengganu terutama dari aspek
pembangunan tanah dan dengan menggunakan teknologi GIS untuk
pembangunan negara.
Seminar Sehari MyGDI di Terengganu ini telah dirasmikan oleh Y.B.
Dato’ Haji Muhatar bin Abdullah, Setiausaha Kerajaan Negeri Terengganu.
Sebanyak 4 kertas kerja telah dibentangkan iaitu dua dari pegawai MaCGDI,
satu dari JUPEM dan diikuti oleh pihak Kerajaan Negeri Terengganu sendiri.
Wakil MaCGDI iaitu Tuan Hj. Mazlan bin Hj. Asshaari membentangkan
kertas kerja yang bertajuk Pengenalan GIS dan Perancangan MaCGDI
diikuti oleh Encik Hashim bin Hamzah yang bertajuk Perancangan dan
Perlaksanaan MyGDI di peringkat Negeri Terengganu. Pembentangan kertas kerja III yang bertajuk
Garis Panduan Penentuan Nama Geografi dibentangkan oleh wakil JUPEM iaitu Cik Nornisha bt. Ishak
diikuti oleh wakil Negeri Terengganu yang bertajuk Sistem Maklumat Geografi Majlis Perbandaran
Kemaman.
Ucapan perasmian oleh
Y.B. Dato’ Haji Muhatar bin
Abdullah, Setiausaha
Kerajaan Negeri
Terengganu
Seminar ini diharapkan akan meningkatkan komitment jabatan/ agensi negeri dan persekutuan
yang berkaitan dengan tanah peringkat negeri Terengganu untuk bersama MaCGDI membangunkan
infrastruktur sebagai saluran perkongsian dan penggunaan maklumat geospatial bagi aktiviti-aktiviti
perancangan, membuat keputusan, penggubalan dasar, pemantauan serta penguatkuasaan.
29
Sekitar Seminar Sehari MyGDI Terengganu
di Hotel Primula Beach Resort
pada 19 Mei 2005
30
SUDUT MaCGDI
LAPORAN KAJIAN DAN PEMBELAJARAN SECARA USAHASAMA
DI ANTARA MaCGDI DAN ESRI
TASIK TITIWANGSA, KUALA LUMPUR
2 JUN 2005
Oleh
Ahmad Nazlie B. Muhamad
Penolong Pengarah MaCGDI
Kajian dan pembelajaran secara usahasama diantara MaCGDI dan ESRI South Asia adalah
merupakan program julung kali diadakan. Dalam program usahasama ini, kedua-dua pihak
merancang untuk melaksanakan pembelajaran dalam bentuk seminar dan bengkel serta akan
dilaksanakan dalam 12 kali kursus/bengkel. Setiap bengkel mengambil masa selama satu (1) hari
serta melibatkan 25 hingga 30 orang pegawai MaCGDI dari gred J (JURUUKUR) dan F (ANALISIS
SISTEM).
Objektif program usahasama ini di antaranya adalah bagi mengeksploitasikan kebolehan dan potensi
teknologi geospatial untuk pengaplikasian GIS secara praktikal. Selain itu, ianya bertujuan untuk
mempamerkan kreativiti dan faedah aplikasi GIS kepada kerajaan Malaysia serta mengendalikan
seminar teknologi GIS yang terkini bagi MaCGDI seiring dengan perkembangan teknologi GIS terkini
terutamanya di ESRI.
Kerjasama di antara ESRI South Asia dan MaCGDI selaku agensi kerajaan yang menerajui teknologi
aplikasi geospatial dapat memberi kebaikan kepada kedua-dua pihak dalam pelbagai aspek.
Diantaranya adalah;
·
Membantu/memberi sokongan kepada MaCGDI untuk memainkan peranan penting sebagai
pusat kecermerlangan teknikal di dalam membangunkan aplikasi GIS dan Infrastruktur Data
Geospatial.
·
Memudahkan pemindahan kemahiran dan teknologi daripada ESRI yang merupakan peneraju
bidang GIS kepada MaCGDI dalam penggunaan GIS di kalangan agensi-agensi kerajaan.
·
Secara langsung, mengeksplotasi sepenuhnya kemampuan penggunaan aplikasi perisian GIS
ESRI untuk memberi kebaikan kepada komuniti pengguna MaCGDI.
Di bawah adalah senarai program yang telah dibuat sepanjang April hingga Jun dengan pemilihan topik
kajian yang terkini:
Tarikh
Tempat
Topik
26 April 2005
Bilik Latihan tingkat 2
Bangunan Ukur
JUPEM
Data Modelling and Spatial Analysis with
Reference to Mangrove Mapping in Malaysia
26 Mei 2005
Tasik Titiwangsa
Integaration of GPS within ArcGIS .Implement
and issues
28 Jun 2005
Bilik Latihan tingkat 2
Bangunan Ukur
JUPEM
Natural Disaster Monitoring Techniques e.g
Tsunami, Earthquake
31
32
33
SUDUT MaCGDI
LAPORAN BENGKEL PANGKALAN DATA NAMA GEOGRAFI
DAN PENERBITAN GAZETIR (PDNG)
HOTEL GRAND SEASON, JLN PAHANG, KUALA LUMPUR
20 JUN 2005
Oleh
Ahmad Nazlie B. Muhamad
Penolong Pengarah MaCGDI
Pusat Infrastruktur Data Geospatial Negara (MaCGDI) adalah merupakan Pengerusi Jawatankuasa
Kumpulan Kerja Pangkalan Data Nama-Nama Geografi dan Penerbitan Web Gazetir. Tujuan bengkel ini
diadakan adalah untuk memberi kefahaman kepada ahli-ahli dan pihak yang terlibat berkaitan garis
panduan bagi menentukan nama-nama geografi serta pembangunan pangkalan data dan penerbitan
web gazetir. Bengkel ini akan mendedahkan kepada peserta-peserta mengenai kepentingan
penggunaan nama-nama geografi secara konsisten dalam usaha membantu pembangunan sosio
ekonomi dan pembentukan prasarana negara. Bengkel ini juga bertujuan untuk memberi pendedahan
kepada MS1759 dan pengemaskinian metadata.
34
SUDUT MaCGDI
LAPORAN TAKLIMAT MENGENAI MALAYSIAN STANDARD GEOGRAPHIC
INFORMATION / GEOMATICS - FEATURES AND ATTRIBUTES CODES (MS1759)
DAN PENGEMASKINIAN METADATA STANDARD MyGDI
HOTEL GRAND SEASON, JLN PAHANG, KUALA LUMPUR
21 JUN 2005
Oleh
Ahmad Nazlie B. Muhamad
Penolong Pengarah MaCGDI
Taklimat ini diadakan bertujuan untuk memberikan pendedahan kepada peserta-peserta daripada
agensi-agensi yang terlibat dengan MyGDI berkaitan penggunaan MS1759 di dalam pembangunan data
geospatial di agensi masing-masing. Pemahaman kepada MS1759 adalah penting di kalangan agensiagensi pembekal data supaya ianya dapat digunakan secara menyeluruh bagi membolehkan proses
perkongsian data dilaksanakan secara berkesan. Di samping itu, taklimat ini juga akan memberi
kefahaman yang lebih jelas berkaitan elemen-elemen yang perlu dipenuhi di dalam metadata agar
agensi-agensi pembekal data dapat mengemaskini dan mengisi semua elemen yang diperlukan di
dalam metadata tanpa sebarang masalah.
Peserta-peserta mendengar taklimat dengan tekun dan
penuh minat
35
Antara menarik semasa Taklimat Malaysian Standard Geographic Information/
Geomatics dan Pengemaskinian Metadata Standard MyGDI di Hotel Grand Season pada 20 dan 21 Jun 2005
36
37
SUDUT MaCGDI
LAPORAN MESYUARAT JAWATANKUASA TEKNIKAL
FRAMEWORK DAN CLEARINGHOUSE
ROYAL ADELPHI, SEREMBAN, NEGERI SEMBILAN
27 JUN 2005
Oleh
Abdul Manan b. Abdullah
Ketua Penolong Pengarag MaCGDI
Mesyuarat Jawatankuasa Teknikal Framework dan Clearinghouse ini bertujuan untuk menggariskan
cadangan mengadakan Mesyuarat Jawatankuasa Teknikal Clearinghouse dan Framework bagi negeri
yang telah melaksanakan Clearinghouse MyGDI dan makluman 8 negeri baru untuk melaksanakan
MyGDI , anjuran Pusat Infrastruktur Data Geospatial Negara (MaCGDI), Kementerian Sumber Asli dan
Alam Sekitar.
MyGDI merupakan satu projek peringkat nasional di mana kementerian sebelum ini dikenali sebagai
Kementerian Tanah dan Pembangunan Koperasi, telah dipertanggungjawabkan oleh kerajaan untuk
melaksanakan projek ini.
Bagaimanapun Clearinghouse MyGDI yang telah digunakan di empat negeri iaitu Kedah, Perlis, Melaka
, Sabah dan termasuk Wilayah Persekutuan Kuala Lumpur dan Labuan didapati masih tidak mencukupi
kerana negeri lain masih tidak dapat untuk melaksanakan MyGDI serta menggunakan maklumat GIS
didalam tugas-tugas harian.
Oleh kerana itu, didalam Rancangan Malaysia ke 8, MyGDI akan diperluaskan ke 8 negeri yang lain
iaitu Selangor, Perak, Pahang, Pulau Pinang, Negeri Sembilan, Kelantan, Terengganu dan Johor.
Tujuan utama diadakan Mesyuarat Jawatankuasa Clearinghouse Dan Framework ini adalah seperti
berikut:
1. Membentangkan aktiviti-aktiviti MyGDI di setiap negeri bagi membincangkan berkaitan dengan ;
·
Penambahan data dari agensi
·
Penambahan agensi baru
·
Penambahan dataset bagi agensi yang sediaada
·
Penentuan harga data
·
Penambahan data JUPEM seperti sempadan dan pendigitan data hardcopy
·
Penggunaan talian
2. Menbentangkan perkembangan data dari Agensi Berkuasa Tempatan (ABT) dan juga
perkembangan berkaitan dengan perkakasan dan perisian.
3. Sebagai makluman, MaCGDI sekarang dalam usaha membangunkan National Data Center
(NGDC), selaras dengan “Perlaksanaan Perakuan Kajian Pentadbiran Daerah dan Tanah
dengan Tumpuan Kepada Urusan Tanah yang dilaksanakan oleh Kementerian dan MAMPU.
4. Perancangan bagi penyediaan tapak bagi Clearinghouse MyGDI negeri-negeri baru
.
Memberi penerangan tentang keperluan asas sebelum membuat perlaksanaan untuk
peralatan serta keperluan lain yang perlu dari segi talian elektrik, penghawa dingin,
serta lain-lain keperluan.
5. Perancangan bagi rangkaian komputer bagi melaksanakan MyGDI
.
Memberi penerangan tentang keperluan rangkaian yang akan dibangunkan, dari
segi kelajuan dan lain-lain keperluan yang melibatkan rangkaian.
38
Perbincangan mengenai penyediaan data bagi agensi NRE termasuklah cadangan produk data baru,
agensi pembekal dan lead agensi baru dipilih bagi menentukan keperluan dan kepentingan data kepada
agensi-agensi dan orang awam. Ini adalah bagi memastikan data tersebut dapat digunakan
sepenuhnya oleh agensi dan orang awam untuk tujuan pembangunan negara khususnya.
Tugas-tugas jawatankuasa teknikal clearinghouse adalah lebih kepada pengurusan Infrastruktur
diperingkat negeri dan persekutuan, melibatkan penyebaran maklumat (setelah data dikutip dan
dipublish) dan Human Resourses Development (mengenalpasti keperluan latihan).
Hasil dari bengkel Framework ini, beberapa perkara telah diputuskan dan diambil tindakan dan
rumusan tersebut adalah seperti berikut :
a. Mengenalpasti tema dan dataset framework serta penyumbang data tersebut.
b. Keperluan kepada data spatial yang sesuai untuk dijadikan data framework dan
penyumbangnya
c. Mewujudkan polisi dan garispanduan mengenai binaan dan perpindahan data kepada
pengguna dengan mengambilkira isu-isu harga data, hakcipta, royalti and kerahsiaan.
d. Mengenalpasti dan menerima-pakai common coordinate reference system.
39
KALENDAR GIS 2005
TARIKH
9 hingga 11
Jan 2005
TAJUK
Program For MyGDI
Application System
User Requirement
Study Workshop
7 hingga 9
Mac 2005
Persidangan
Antarabangsa
“Achieving Innovation
and Best Practices in
Urban Management
( INNOBP-Urban)“.
14 hingga 15
Mac 2005
Jawatankuasa
Pemetaan dan Data
Spatial (JPDSN) ke 56
19 Mac 2005
Seminar Sehari
MyGDI, di Negeri
Terengganu
28 Mac 2005
Seminar Projek F2F
dan Ukur Hakmilik
12 Mei 2005
Pelancaran & Seminar
Geoid Map &
Real-Time Kinematic
(RTK) Network
LOKASI
PENGANJUR
Bukit Tinggi
Resort,
Colmar Tropocale,
Bentong, Pahang
Hotel Syuen, Ipoh,
Perak
Hotel Equatorial
Pulau Pinang
Primula Beach
Resort, Kuala
Terengganu
Dewan Perdana
FELDA
Hotel Renaissance
2 Jun 2005
Bengkel Collaborative
Learning Venture
14 Jun 2005
Jawatankuasa
Kebangsaan
Nama-nama
Geografi (JKNG)
Hotel Pacific
Sutera,
Kota Kinabalu,
Sabah
20 Jun 2005
Bengkel Pangkalan
Data Nama-nama
Geografi dan
Penerbitan Gazetier
Hotel Grand
Season, Jalan
Pahang, Kuala
Lumpur
Tasik Titiwangsa
40
MaCGDI
TALIAN PERTAN
Encik Ahmad bin Hedar
Tel : +03 26921566 ext .
+603 26928278
Fax : + 603 26934941
E-mail : ahmad@macgdi
INNOBP-URBAN Project
Tel : +03 58829962
E-mail : info@innobp-urb
MaCGDI
Bahagian Pemetaan,
JUPEM
Encik Teng Chee Boo
Tel:+03 26924034
Fax : +03 26970140
E-mail : cbteng@jupem.g
MaCGDI
Encik Abdul Manan bin A
Tel : +603 26921556 ext
Fax : +603 26934941
E-mail : manan@macgdi
Bahagian Kadaster,
JUPEM
Dr.Teng Chee Hua
Tel : +03 26170615
Fax : +03 26912757
E-mail : tengcheehua@ju
Bahagian Pemetaan,
JUPEM
Dr.Samad bin Abu
Tel : +03 26929930
Fax : +03 26912757
E-mail : samadabu@jupe
MaCGDI
Bahagian Pemetaan,
JUPEM
MaCGDI
Encik Ahmad bin Hedar
Tel : +03 26921566 ext .
26928278
Fax : + 603 26934941
E-mail : ahmad@macgd
Encik Teng Chee Boo
Tel:+03 26924034
Fax : +03 26970140
E-mail : cbteng@jupem.g
Tuan Haji Mazlan bin Ash
Tel : +603 26921566 ext.
26908876
Fax : +603 26934941
E-mail : mazlan@macgd
TARIKH
TAJUK
21 Jun 2005
Taklimat Mengenai
Malaysian Standard
Geographic
Information /
Geomatics – Features
And Atribute Codes
(MS1759) Dan
Pengemaskinian
Metadata Standard
MyGDI
LOKASI
PENGANJUR
Hotel Grand
Season Jalan
Pahang, Kuala
Lumpur
MaCGDI
21 hingga 22
Jun 2005
7 Surveyors
Congress
Sheraton Hotel,
Subang Jaya,
Selangor
27 Jun 2005
Mesyuarat
Jawatankuasa
Teknikal Framework
MyGDI Bil 1. Tahun
2005
Hotel Royal
Adelphi,
Seremban,
Negeri Sembilan
19 Julai 2005
Seminar Sehari
MyGDI di Pulau
Pinang
25 Julai 2005
Mesyuarat
Jawatankuasa
Penyelaras MyGDI
Kebangsaan Bil.1
Tahun 2005
26 hingga 27
Julai 2005
Seminar Projek
Sistem Kadaster
Berkordinat (CCS)
7 hingga 8
Ogos 2005
23 Ogos 2005
th
Taklimat Isu-Isu
Perlaksanaan Field –
to Finish (F2F) &
Taklimat Aktiviti
Pemetaan & Geodetik
Di Semenanjung
Taklimat Keselamatan
dan Pengendalian
Data Geospatial
Institution Of
Surveyors, Malaysia
(ISM)
Hotel Cititel,
Pulau Pinang
MaCGDI
MaCGDI
Hotel Sheraton,
Pulau Pinang
MaCGDI
Bahagian Kadaster,
JUPEM
Melaka
Hotel YT Midtown,
Kuala Terengganu
Hotel City
Bayview,
Pulau Pinang
JUPEM
MaCGDI
41
TALIAN PERTAN
Tuan Haji Mazlan bin Ash
Tel : +603 26921566 ext.
+603 26908876
Fax : +603 26934941
E-mail : mazlan@macgd
ISM Secretariat
rd
3 Floor, Bangunan Juru
64-66, Jalan 52/4
46200 Petaling Jaya
Selangor Darul Ehsan
Tel : +603 79569728/795
Fax : +603 79550253
E-mail : secretariat@ism
Katherine@ism.
Tuan Haji Mazlan bin Ash
Tel : +603 26921566 ext.
+603 26908876
Fax : +603 26934941
E-mail : mazlan@macgd
Encik Abdul Manan bin A
Tel : +603 26921556 ext
Fax : +603 26934941
E-mail : manan@macgdi
Tuan Haji Mazlan bin Ash
Tel : +603 26921566 ext.
+603 26908876
Fax : +603 26934941
E-mail : mazlan@macgd
Dr. Teng Chee Hua
Tel : +603 26170615
Fax : +603 26897114
E-mail : tengcheehua@ju
Encik Anual bin Aziz
Tel : +603 26170971
Fax : + 603 26970140
Email : anual@jupem.go
Tuan Haji Mazlan bin Ash
Tel : +603 26921566 ext.
+603 26908876
Fax : +603 26934941
E-mail : mazlan@macgd
TARIKH
24 Ogos 2005
TAJUK
Bengkel Penentuan
Harga Data
Geospatial
15 hingga 18
September
2005
Minggu ICT & Biotech
Pahang 2005
21 September
2005
Mesyuarat
Jawatankuasa
Teknikal (AM/FM)
Bil. 1/2005
September
2005
Seminar Sehari
MyGDI bagi Agensi di
bawah Kementerian
Sumber Asli dan Alam
Sekitar
September
2005
Advanced Mapinfo
For MaCGDI Trainner
Course
27 hingga 29
September
2005
The International
Symposium &
Exhibition on
Geoinformation 2005
‘Geospatial Solutions
for Managing the
Borderless World‘
20 Oktober
2005
November
2005
29 hingga 30
November
2005
Mesyuarat
Jawatankuasa
Teknikal (AM/FM)
Bil. 2/2005
Seminar Sehari
MyGDI di Selangor
National GIS
Conference and
Exhibition
LOKASI
PENGANJUR
Hotel Grand
Season,
Kuala Lumpur
MaCGDI
Megamall,
Kuantan, Pahang
Pejabat Setiausaha
Kerajaan Pahang
Bangunan CAMS,
JUPEM
JUPEM
Putrajaya
MaCGDI
Akan ditentukan
MaCGDI
Grand Plaza, Park
Royal Hotel,
Batu Feringgi,
Pulau Pinang
USM dan ISM
JUPEM,
Pulau Pinang
JUPEM
Shah Alam
MaCGDI
PWTC
MaCGDI
42
TALIAN PERTAN
Tuan Haji Mazlan bin Ash
Tel : +603 26921566 ext.
+603 26908876
Fax : +603 26934941
E-mail : mazlan@macgd
Encik Haris Fadzilah bin
Tel : +609 5126600/ +60
Fax : +609 5163490
E-mail : haris@pahang.g
Encik Teng Chee Boo
Tel : +603 26924034
Fax : +603 26970140
E-mail : cbteng@jupem.g
Encik Ahmad bin Hedar
Tel : +603 26921566 ext
+603 26928278
Fax : + 603 26934941
E-mail : ahmad@macgdi
Encik Rahim bin Sidek
Tel : +603 26921556 ext.
Fax : +603 26934941
E-mail : rahim2k@macgd
ISG 2005 Secretariat
Tel : +604 5937788 ext 6
Fax : +604 5941009
E-mail : isg2005@eng.us
isg 2005@ yaho
http://www.civil.eng.usm.
Encik Teng Chee Boo
Tel : +603 26924034
Fax : +603 26970140
E-mail : cbteng@jupem.g
Encik Abdul Manan bin A
Tel : +603 26921556 ext
Fax : +603 26934941
E-mail : manan@macgdi
Encik Abdul Manan bin A
Tel : +603 26921556 ext
Fax : +603 26934941
E-mail : manan@macgdi
SUMBANGAN ARTIKEL/CALL FOR PAPER
Buletin GIS diterbitkan dua (2) kali setahun oleh Jawatankuasa Pemetaan dan Data
Spatial Negara. Sidang Pengarang amat mengalu-alukan sumbangan sama ada
berbentuk artikel atau laporan bergambar mengenai perkembangan Sistem Maklumat
Geografi di Agensi Kerajaan, Badan Berkanun dan Institusi Pengajian Tinggi.
Panduan Untuk Penulis
1.
Manuskrip boleh ditulis dalam Bahasa Malaysia atau Bahasa Inggeris.
2.
Abstrak di dalam setiap artikel mesti dicondongkan (Italic).
3.
Format manuskrip adalah seperti berikut:
Jenis huruf
: Arial
Saiz huruf bagi Tajuk : 12
Saiz huruf
: 10
Langkau
: Single
Margin
: Atas, bawah, kiri dan kanan= 2.5cm
Justifikasi teks
: Kiri
Satu ‘column’ setiap muka surat
4.
Sumbangan hendaklah dikemukakakn dalam bentuk softcopy dalam format Microsoft Word.
Semua imej grafik hendaklah dibekalkan secara berasingan dalam format .tif atau .jpg dengan
resolusi 150 dpi dan ke atas.
5.
Segala pertanyaan dan sumbangan bolehlah dikemukakan kepada:
Ketua Editor
Buletin GIS
Bahagian Pemetaan
Jabatan Ukur dan Pemetaan Malaysia
Tingkat 3, Bangunan Ukur
Jalan Semarak
50578 Kuala Lumpur
Tel: 03-26924034 / 03-26170800
Fax: 03-26970140
E-mel: cbteng@jupem.gov.my
Laman web:http://www.jupem.gov.my
Rekabentuk dan cetakan oleh JUPEM