Phase Noise in RF and Microwave Amplifiers
Transcription
Phase Noise in RF and Microwave Amplifiers
Phase Noise in RF and Microwave Amplifiers Enrico Rubiola and Rodolphe Boudot IFCS, Newport, CA, 1–4 June 2010 Outline • • • • Noise types (white and flicker) Amplifier networks Experiments Conclusions home page http://rubiola.org DB 2 file: amp-noise-tree AM-PM noise types AM-PM noise parametric environmental noise originates near DC internal temperature 50 Hz B fields flicker (1/f) power supply rnd walk (1/f2) acoustic drift radiation additive noise originates around !0 environmental internal RF leakage white DB 3 The difference between additive and parametric noise additive noise u(t) input parametric noise v(t) noise-free amplifier Σ u(t) v(t) AM output input RF noise, close to !0 z(t) PM x(t) noise-free amplifier output y(t) file: amp-add-vs-param (output) (noise) Su(f) PSD Sv(f) Sz(f) sum PSD near-dc noise Sv(f) Sy(f) (output) (noise) ion s r ve n o -c p u Su(f) (input) (input) ! stopband passband !0 stopband the noise sidebands are independent of the carrier ! stopband passband !0 stopband the noise sidebands are proportional to the carrier DB White noise in cascaded amplifiers White noise is chiefly the noise of the first stage kT0 (F1–1)kT0 input file: amp-cascaded-Friis F1 A1 (F2–1)kT0 F2 A2 (F3–1)kT0 F3 A3 (F3 − 1)kT0 (F2 − 1)kT0 + + ... Ne = F1 kT0 + 2 2 2 A1 A2 A1 (F2 − 1) (F3 − 1) F = F1 + + + ... 2 2 2 A1 A2 A1 F kT0 b0 = P0 output Friis formulae H. T. Friis, Proc. IRE 32 p.419-422, jul 1944 Noise is chiefly that of the 1st stage white phase noise F1 kT0 (F2 − 1)kT0 (F3 − 1)kT0 b0 = + + + ... 2 2 2 P0 A 1 P0 A 2 A 1 P0 Friis formula for phase noise 4 DB Parametric noise in cascaded amplifiers 5 There is a nonlinear model that gives exactly the same results, see Chap. 2 of E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2 u(t) input file: cascaded-ampli !1 "1 AM PM x1(t) noise-free amplifier y1(t) !2 "2 AM PM x2(t) ampli 1 v(t) noise-free amplifier output y2(t) ! = !1 + !2 " = "1 + "2 ampli 2 Flicker: the two amplifiers are independent E{α2 } = E{α12 } + E{α22 } Sα = Sα 1 + Sα 2 E{ϕ2 } = E{ϕ21 } + E{ϕ22 } Sα = Sϕ 1 + Sϕ 2 Environment: a single process drives the two amplifiers α = α1 + α2 ϕ = ϕ1 + ϕ2 E{α } = E{(α1 + α2 ) } 2 2 E{ϕ2 } = E{(ϕ1 + ϕ2 )2 } Yet there can be a time constant, not necessarily the same for the two devices DB Flicker noise in parallel amplifiers 6 E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2 vi (t) uk (t) um(t) A1 v1 (t) ψ1 Ak vk (t) ψk Am vm(t) ψm m−way power combiner input m−way power divider u1 (t) output vo(t) ϕ • The phase flicker coefficient b–1 is about independent of power • The flicker of a branch is not increased by splitting the input power • At the output, � 1 � • the carrier adds up coherently b = b −1 −1 cell • the phase noise adds up statistically m • Hence, the 1/f phase noise is reduced by a factor m • Only the flicker noise can be reduced in this way DB Volume law The analysis of the parallel amplifier suggests that: For a given technology, the flicker coefficient b–1 should be proportional to the inverse of the volume of the active region Gedankenexperiment - Flicker is of microscopic origin because it has Gaussian PDF (central limit theorem) - Join the m branches of a parallel device forming a compound - Phase flicker is proportional to the inverse size of the amplifier active region 7 DB 8 Parametric noise in regenerative amplifiers R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT RF filter Vin Vout A0 A0 A= 1 − A0 β feedback ß short delay file: amp-regen-sch 10–10 10–15 S!(f) A = Am 0 phase adj. [rad2/Hz] 10 –1 1 /f (b –1 /f ) ampl. adj. A0 ejψ A→ 1 − A0 β ejψ � � A0 1 A= 1+j ψ . 1 − A0 β 1 − A0 β roundtrip carrier ≈10–19 rad2/Hz (few roundtrips) 10–16 (b0) 10–20 f file: amp-regen-mecha 1kHz 1MHz 1GHz • Short roundtrip time, vs. flicker time frame • Quasi-static analysis holds Am−1 −1 0 ⇒ β= Am 0 1 ϕ(t) = ψ(t) 1 − A0 β � �2 1 (b−1 )ampli (b−1 )RA = 1 − A0 β (b−1 )RA = m2 (b−1 )ampli 9 Measurement methods 3 dB atten atten RF DUT IF atten LNA LO FFT analyzer Saturated mixer (common laboratory practice) 90º adj Bridge (interferometer) V0 cos(!0t) pump 0º –90º dark bridge DUT 0º 0º hybrid junction –90º 0º 0º x(t) AM noise "(t) coherent detector #(t) y(t) FFT hybrid junction (microwave) error amplifier –90º PM noise –90º –90º phase & ampl. adjustment null x(t) cos(!0t) – y(t) sin(!0t) File: bridge E. Rubiola, V. Giordano, Rev. Sci. Instrum. 73(6) pp.2445-2457, June 2002 DB Flicker noise of some amplifiers R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT Amplifier AML812PNB1901 AML412L2001 AML612L2201 AML812PNB2401 AFS6 JS2 SiGe LPNT32 Avantek UTC573 Avantek UTO512 Frequency (GHz) 8 – 12 4 – 12 6 – 12 8 – 12 8 – 12 8 – 12 3.5 0.01 – 0.5 0.005–0.5 Gain (dB) 22 20 22 24 44 17.5 13 14.5 21 P1 dB (dBm) 17 10 10 26 16 13.5 11 13 8 F (dB) 7 2.5 2 7 1.2 1.3 1 3.5 2.5 DC bias 15 V, 425 mA 15 V, 100 mA 15 V, 100 mA 15 V, 1.1A 15 V, 171 mA 15 V, 92 mA 2 V, 10 mA 15 V, 100 mA 15 V, 23 mA b−1 (meas.) (dBrad2 /Hz) −122 −112.5 −115.5 −119 −105 −106 −130 −141.5 −137 10 Phase noise vs. power • The 1/f phase noise b–1 is about independent of power • The white noise b0 scales as the inverse of the power • The corner frequency is misleading because it depends on power 11 −100 Phase noise, dBrad 2 /Hz DB P=−50dBm Amplifier X−9.0−20H at 4.2 K P=−60dBm P=−70dBm Data from IEEE UFFC 47(6):1273 (2000) . P=−80dBm −110 P=−80dBm −120 P=−70dBm P=−60dBm P=−50dBm E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2 −130 1 101 R. Boudot, PhD thesis Measured at LAAS R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT 102 103 104 Fourier frequency, Hz 105 DB Phase noise in cascaded amplifiers R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT The expected flicker of a cascade increases by: 3 dB, with 2 amplifiers 4.8 dB, with 3 amplifiers White noise is limited by the (small) input power 12 DB Phase noise in parallel amplifiers R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT Connecting two amplifier in parallel, a 3 dB reduction of flicker is expected 13 DB Flicker noise in parallel amplifiers 14 E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2 −140 AML812PNA0901 (100mA) Phase noise, dBrad 2 /Hz AML812PNB0801 (200mA) AML812PNC0801 (400mA) −150 −160 AML812PND0801 (800mA) −170 101 102 103 104 105 Fourier frequency, Hz 106 Specification of low phase-noise amplifiers (AML web page) amplifier AML812PNA0901 AML812PNB0801 AML812PNC0801 AML812PND0801 unit gain 10 9 8 8 dB parameters F bias power 6.0 100 9 6.5 200 11 6.5 400 13 6.5 800 15 dB mA dBm 102 −145.0 −147.5 −150.0 −152.5 phase noise vs. f , Hz 103 104 −150.0 −158.0 −152.5 −160.5 −155.0 −163.0 −157.5 −165.5 dBrad2 /Hz 105 −159.0 −161.5 −164.0 −166.5 DB Phase noise of a regenerative amplifier R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT Thanks to K.Volyianskiy for the OEO noise spectrum Indirect measurement: The RA replaces the two-stage sustaining amplifier in a Opto-Electronic oscillator • A RA is set for the gain of two cascaded amplifiers • As expected, the RA flicker is 3 dB higher than the two amplifiers • Indirect measurement through the frequency flicker 15 DB Environmental effects in RF amplifiers 16 E. Rubiola, Phase Noise and Frequency Stability in Oscillators, Cambridge 2008, ISBN 978-0521-88677-2 Amplifier phase noise –5 f courtesy of J. Ackermann N8UR, http://www.febo.com comments on noise are of E. Rubiola –5 f –5 f Spectracom 8140T b–1 = –113.5 dB 1 D- D TA HP 5087A and TADD-1 10 MHz b–1 = –133 dB in dBrad2/Hz (dBc/Hz + 3 dB) 814 0T 087 1 D- D TA HP 5 b–1 is the 1/f noise coefficient A background b–1 = –142 dB TADD-1 5 MHz b–1 = –138.5 dB It is experimentally observed that the temperature fluctuations cause a spectrum Sα(f) or Sφ(f) of the 1/f5 type Yet, at low frequencies the spectrum folds back to 1/f DB Correlation between AM and PM noise 17 R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT u(t) AM input a noise-free amplifier PM c x(t) b d y(t) v(t) output correlated z(t) noise file: AM-PM-correl a=0.4 b=0.4 c=0.2 d=0.8 a=b=0.7 c=d=0 a=0.4 b=0.92 c=d=0 a=b=0 c=d=0.7 a2 + b2 + c2 + d2 = 1 The need for this model comes from the physics of popular amplifiers • Bipolar transistor. The fluctuation of the carriers in the base region acts on the base thickness, thus on the gain, and on the capacitance of the reverse-biased basecollector junction. • Field-effect transistor. The fluctuation of the carriers in the channel acts on the drain-source current, and also on the gatechannel capacitance because the distance between the `electrodes' is affected by the channel thickness. • Laser amplifier. The fluctuation of the pump power acts on the density of the excited atoms, and in turn on gain, on maximum power, and on refraction index. AM and PM fluctuations are correlated because originate from the same near-dc random process Conclusions • The model predicts the noise of the amplifier and of networks • First noise model of the regenerative (positive-feedback) amplifier • Experimental data validate the model • Correlation between AM noise and PM noise (needs further work) Thanks to K.Volyanskiy for the measurement of the OEO noise, to Y. Gruson for help with phase noise measurements, to P. Salzenstein and to V. Giordano for support and discussions. This work results from a long-term transverse program on oscillators and frequency synthesis, supported by the following contracts: ANR-05-BLAN-0135-02, CNES 60265/00, CNES 60281/00, ESA 20135/06/D/MRP, LNE/DRST 08 7 002. R. Boudot, E. Rubiola, arXiv:1001.2047v1, Jan 2010. Submitt. IEEE Transact. MTT home page http://rubiola.org 18