Determinación de la frecuencia de los deslizamientos

Transcription

Determinación de la frecuencia de los deslizamientos
ASSESSING FREQUENCY OF LANDSLIDES
Determinación de la frecuencia
de los deslizamientos
Primeras roturas y episodios de
reactivación
ASSESSING FREQUENCY OF LANDSLIDES
Aproximanciones para evaluar la probabilidad de
ocurrenca de los deslizamientos
Método Heurístico (criterio experto)
z Correlación con los desencadenantes
z Análisis probabilístico
z Realciones Magnitud – frecuencia
z Curvas de fluencia
z Modelación numérica
z
Picarelli et al. 2005. Hazard characterization and quantification.
In O. Hungr, R. Fell, R. Couture and E. Eberthardt (editors)
Landslide Risk Management. Taylor and Francis, London. pp. 27-61
ASSESSING FREQUENCY OF LANDSLIDES
Aproximación
heurística
z
Primeros intentos de
cartografía de peligrosidad
(Plan ZERMOS)
ASSESSING FREQUENCY OF LANDSLIDES
Aproximación heurística
60
z
Identificación de
umbrales (i.e. lluvia
crítica)
Caine:
I = 14.82 D-0.39
donde I, en mm/h
D, en hr
Caine 1980
Cancelli & Nova 1985
Rainfall Intensity (mm/h)
ASSESSING FREQUENCY OF LANDSLIDES
Correlación con desencadenantes
Wieckzorek 1987
40
Larsen & Simon 1993
20
0
0
12
24
Duration (hours)
36
48
ASSESSING FREQUENCY OF LANDSLIDES
Correlación con desencadenantes
Suposiciones:
La frecuencia de los deslizamientos es la del mecanismo
desencadenante
Restricciones desventajas:
Puede haber diferentes desencadenantes en la región (lluvia, fusión
de nieve, terremotos, socavación fluvial, etc)
Eventos desencadenantes de la misma intensidad pueden terner
distintas consecuencias en las laderas (agotamiento de derrubios
disponibles en eventos muy próximos, etc)
ASSESSING FREQUENCY OF LANDSLIDES
Correlación con desencadenantes: umbrales
críticos
Casos históricos. Serra de la Fembra
Morta, Pirineo Oriental. 1940
Correlación con desencadenantes: umbrales
críticos
ASSESSING FREQUENCY OF LANDSLIDES
6 - 7 / nov / 1982
Tres tormentas de gran
intensidad que provocaron
numerosos deslizamientos
superficiales
8 / se p / 1 9 9 2
Cuenca alta del río Llobregat,
Pirineo Oriental Upper
17 - 18 / dec / 1997
190 mm en 24/36
hr
1982
Cercs
1992
Port del Comte
200
Daily rainfall (mm)
Daily rainfall (mm)
ASSESSING FREQUENCY OF LANDSLIDES
Correlación con desencadenantes: umbrales
críticos
100
0
200
100
0
26-Sep
10-Oct
24-Oct
7-Nov
21-Nov
28-Jul
11-Aug
25-Aug
8-Sep
22-Sep
ASSESSING FREQUENCY OF LANDSLIDES
Correlación con desencadenantes: umbrales
críticos
Cal Borni, Vallcebre, Pirineo Oriental. Noviembre 1982
ASSESSING FREQUENCY OF LANDSLIDES
Correlación con desencadenantes: umbrales
críticos
Comprobando el umbral. Berga, Pirineo
Oriental. Diciembre 1997
ASSESSING FREQUENCY OF LANDSLIDES
Periodo de retorno en la estación de Cercs
ASSESSING FREQUENCY OF LANDSLIDES
Normalizando umbrales
RDN rainy-day
normal
Wilson, R.C. 1997. “Normalizing rainfall/debris flow thresholds along the
U.S. Pacific Coast for long-term variations in precipitation climate”.
In C-I Chen (ed.) Debris-flow hazards mitigation: mechanics, prediction,
and assessment. ASCE. pp. 32-43
ASSESSING FREQUENCY OF LANDSLIDES
Probability analysis: annual probability of
occurrence
ni
P=
N
ni number of landslides of magnitude M occurred within a span of time.
N the total number of landslides
The annual exceedance probability (PE) is
1
PE =
TR
TR return period of the event ( average # of years between two events
equally or exceeding magnitude M).
ASSESSING FREQUENCY OF LANDSLIDES
Probability of exceedance
Poisson probability models
P [ N (t ) ≥ 1] = 1 − e
−
t
µ
N(t) number of landslide (or landslide clusters) expected to occur during a
especified time interval (t)
µ future mean recurrence interval
Crovelli, R.A. 2000. Probabilistic models for estimation of number and cost of landlsides.
U.S. Geological Survey Open File Report 00-249, 23 pp.
http://pubs.usgs.gov/of/2000/ofr-00-0249/ProbModels.html
ASSESSING FREQUENCY OF LANDSLIDES
Magnitude – frequency relationships
Approach taken from seismology
Gutenberg- Richter power law:
log N ( m ) = a − bM
N number of events equal of greater than M
M magnitude
a and b , constants
ASSESSING FREQUENCY OF LANDSLIDES
Magnitude – frequency relationships
For landslides (Hovius et al.
1997; Pelletier et al. 1997)
found:
N E = CAL− β
NE number of events equal
of greater than A
A magnitude (area)
C and β , constants
Pelletier et al. 1997
ASSESSING FREQUENCY OF LANDSLIDES
Magnitude – frequency relationships
The linear segment of these
log-log relationships have been
suggested for assessing
(extrapolating) frequency of
Both mid-size and large
Landslides (Malamud et al.
2004; Picarelli et al. 2005)
Malamud, B.D.; Turcotte, D.L.; Guzzetti, F. And Reichenbach, P.
2004. Landslide inventories and their statistical properties.
Earth Surface Processes and Landforms, 29: 687-711
Malamud et al. 2004
ASSESSING FREQUENCY OF LANDSLIDES
Where the data for M-f analyses come from?
Direct information sources (landslide data bases)
- landslide incident records
- monitoring networks
- historical archives
- remote sensing techniques
ASSESSING FREQUENCY OF LANDSLIDES
Where the data for M-f analyses come from?
ASSESSING FREQUENCY OF LANDSLIDES
Reconstructing landslide series
Why are they needed?
z
z
z
Some historical records are not complete or they are
too short
Validity of the extrapolation of M-f relations for large
landslides has not been checked yet
M-f relationships are not conceived for assessing
landslide reactivation events !
ASSESSING FREQUENCY OF LANDSLIDES
Reconstructing landslide series
Available dating methods for reconstructing landslide series
and their reactivation events
z
z
z
z
Incremental dating
Radiometric methods
Age equivalence methods. Calibrated ages
Relative chronologies
ASSESSING FREQUENCY OF LANDSLIDES
Reconstructing landslide series
(1) Relative chronology may become numerical when calibrated
ASSESSING FREQUENCY OF LANDSLIDES
Incremental dating: Dendromorphology
ASSESSING FREQUENCY OF LANDSLIDES
Incremental dating: Dendromorphology
Sta. Coloma. Andorra
Bc. Boés. Llavorsí
ASSESSING FREQUENCY OF LANDSLIDES
Incremental dating: Dendromorphology
Osterkamp & Hupp. 1987. Reviews of Eng. Geology 7, pp. 157-163 GSA
ASSESSING FREQUENCY OF LANDSLIDES
Incremental dating: Dendromorphology
From concentric to
eccentric growth
Reaction wood
(darker colour)
1987
Reaction wood
ASSESSING FREQUENCY OF LANDSLIDES
Detecting reactivation events (earthflows)
Llavorsí earthflow, Central Pyrenees
ASSESSING FREQUENCY OF LANDSLIDES
Reconstructing landslide reactivation events
Interpreting dating results
ASSESSING FREQUENCY OF LANDSLIDES
Event age
Minimum age
Event and/or
Maximum age
Event age
Lang et al. 1999, Geomorphology, 30: 33-52
Event and/or minimum age
ASSESSING FREQUENCY OF LANDSLIDES
Obtaining landslide sequences
La Coma. Buried soil
Pedra. Buried tree stem
C-14 dating
ASSESSING FREQUENCY OF LANDSLIDES
Obtaining landslide sequences: successive events
Pedra, Eastern Pyrenees
Moya et al. 1997, Paleoclimate Research 19:55-73
ASSESSING FREQUENCY OF LANDSLIDES
Obtaining landslide sequences: successive events
Pottery fragment found at layer 2 belong to
the Bronze Age (consistent with C-14
dating of charcoal)
Return period of debris flows events: 730
yr (5 layers) to 610 yr (6 layers)
These are maximum TR values. Some
events might have been eroded
Pedra, Eastern Pyrenees
Moya et al. 1997, Paleoclimate Research 19:55-73
ASSESSING FREQUENCY OF LANDSLIDES
Obtaining landslide sequences from associated deposits
Sequences of earthflow events
deduced from associated
lacustrine deposits (valley
damming)
La Barraca, Eastern Pyrennes
ASSESSING FREQUENCY OF LANDSLIDES
Obtaining landslide sequences from associated deposits
Moya et al. 1997, Paleoclimate Research 19:55-73
ASSESSING FREQUENCY OF LANDSLIDES
Obtaining landslide sequences from associated deposits
ASSESSING FREQUENCY OF LANDSLIDES
Obtaining landslide sequences from associated deposits
Obtaining landslide sequences from associated deposits
ASSESSING FREQUENCY OF LANDSLIDES
At least, three damming events since AD 200
AD 350-375
AD 214 and 233
Moya et al. 1997, Paleoclimate Research 19:55-73
ASSESSING FREQUENCY OF LANDSLIDES
Obtaining landslide sequences from associated deposits
ASSESSING FREQUENCY OF LANDSLIDES
Identifying rock avalanches triggered by seismic events
Rock avalanches dams. South Puget
Sound. WA
Identifying rock avalanches triggered by seismic events
ASSESSING FREQUENCY OF LANDSLIDES
Dead trees (snags) Spider Lake, WA
Assumptions:
z
z
Rings predat the avalanche by
no more than 100 yr
Tree died after a year of being
drawned
4 of 6 dated rock avalanche
events gave an age of 1200 yr
B.P. (about 700 to 1000 A.D.)
Schuster, R.L.; Logan, R.L. & Pringle, P.T. 1992.
Prehistoric rock avalanches in the Olympic Mountains,
Washington. Science, 258: 1620-1621
Lichenometry
ASSESSING FREQUENCY OF LANDSLIDES
Non-lineal growth
Master curves are needed
Dating range: hundreds of years
(up to few thousand)
Sensitive to environmental
changes
ASSESSING FREQUENCY OF LANDSLIDES
Identifying a set of seismically triggered rock avalanches
Bull & Brandon. 1998. GSA Bull. 110: 60-84
ASSESSING FREQUENCY OF LANDSLIDES
Identifying a set of seismically triggered rock avalanches
Bull & Brandon. 1998. GSA Bull. 110: 60-84
ASSESSING FREQUENCY OF LANDSLIDES
Identifying a set of seismically triggered rock avalanches
ASSESSING FREQUENCY OF LANDSLIDES
Relative chronology: landslide sequences
Wieczorek, 1987
ASSESSING FREQUENCY OF LANDSLIDES
Relative chronology: landslide sequences
Lomoschitz et al. 2002, Geomorphology 42, 117-130
ASSESSING FREQUENCY OF LANDSLIDES
Relative chronology: landslide sequences
Barranco de Tirajana, Canary
Islands
Lomoschitz et al. 2002, Geomorphology 42, 117-130
ASSESSING FREQUENCY OF LANDSLIDES
Relative chronology: landslide sequences
Las Filipinas abannoded slide. Barranco de
Tirajana, Canary Islands
ASSESSING FREQUENCY OF LANDSLIDES
Relative chronology: landslide sequences
Agualatente large slide. Barranco de Tirajana, Canary Islands
ASSESSING FREQUENCY OF LANDSLIDES
Relative chronology: landslide sequences
Associated lacustrine deposits
next Agualatente landslide.
Barranco de Tirajana, Canary
Islands
ASSESSING FREQUENCY OF LANDSLIDES
Relative chronology: landslide sequences
Different landslide generations associated to Pajonales
landslide. Barranco de Tirajana, Canary Islands