Novel Physics of Nitride Devices
Transcription
Novel Physics of Nitride Devices
Novel Physics of Nitride Devices M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25, 2004 Flagstaff, Arizona, USA shurm@rpi.edu 1 Outline • Potential applications • Polarization effects – Piezo –Pyro -Movable Quantum Dots and THz • Electron transport • • • • • – Low field - High field – Ballistic and overshoot transport Trapping Noise New FET physics – MOSHFET and Current Collapse Plasma wave electronics Conclusions shurm@rpi.edu 2 Device Universe Is Both Infinite and Expanding 1200 1100 Number of Publications 1000 900 New Nitride Galactic INSPEC search query: Gallium Nitride or Indium Nitride or Aluminum Nitride 800 700 600 500 400 300 200 100 0 1970 1975 1980 1985 1990 1995 2000 Year shurm@rpi.edu 3 “The Universe is full of magical things patiently waiting for our wits to grow sharper” Eden Phillpott Isa Genzken (born 1948) Basic research Lembach Villa, Munich shurm@rpi.edu 4 Potential and Existing Applications of Nitride Devices • Blue, green, white light, and UV emitters • • • • • • • • • – Traffic lights – Displays – Water, food, air sterilization and detection of biological agents – Solid state lighting Visible-blind and solar-blind photodetectors High power microwave sources High power and microwave switches Wireless communications High temperature electronics SAW and acousto-optoelectronics Pyroelectric sensors Terahertz electronics Non volatile memories shurm@rpi.edu 5 White and UV applications (for 250 nm – 340 nm). Sensing and beyond • • • • • • • • • • • • • • Environmental protection Homeland security Plant growth Surgery lighting Visual stimuli Capillaroscopy Monitoring of arterial oxygen Phototherapyherapy of Seasonal Affective Disorder Water and air purification Solid-state white lighting Dense data storage Ballistic missile defense Photopolymerization of Dental Composites Photobioreactors UV-LED Based Fluorimeter with Integrated Lock-in Amplifier (after Prof. Zukauskas, U of V.) Applications of U of V/RPI/SET quadrichromatic Versatile Solid-State Lamp: Phototherapy of seasonal affective disorder at Psychiatric Clinic of Vilnius University shurm@rpi.edu 6 Nitrides: New Symmetry, New Physics Zinc Blende Structure (GaAs) Diamond Structure (Si, Ge) Wurtzite Structure (SiC, GaN) Si boule GaAs boule AlN boule (Courtesy Crystal IS shurm@rpi.edu 7 Crystal symmetry of pyroelectric crystals Crystal system Crystal class Crystal class (Schönflies) (Hermann-Mauguin) Triclinic C1 1 Monoclinic Cs m C2 2 Orthorhombic C2v 2mm Tetragonal C4 4 C4v 4mm C3 3 C3v 3m Rhombohedral Hexagonal HEXAGONAL C6 C6v C6 C6V 6 6mm 6 6mm ? shurm@rpi.edu 8 Wide Gap Semiconductors Enabling Technology for Piezoelectronics and Pyroelectronics GaAs • Zinc blende structure • No PE or SP effect in <100> direction • PE coefficient <111> ~0.15 C/m2 • No PE/SP ‘doping’ reported GaN/AlN • Wurtzite structure • c-axis growth direction • PE coeficient in cdirection ~1 C/m2 • PE/SP ‘doping’ demonstrated shurm@rpi.edu 9 Nitride Heterostructures: Polarization Induced Electron and Hole 2D Gases AlGaN on GaN C From A. Bykhovski, B. Gelmont, and M. S. Shur, J. Appl. Phys.74, p. 6734-6739 (1993) 4 6v P6 3 mc From O. Ambacher et al JAP 87, 334 (2000) shurm@rpi.edu 10 Polarization signs Ga face P sp AlG aN P sp GaN N face Relaxed P sp AlG aN Relaxed P sp GaN P pe Tensile Strain +σ Relaxed P sp AlG aN P pe P sp GaN -σ GaN P pe +σ 2D holes -σ 2D electrons P sp AlG aN P sp GaN 2D holes GaN AlG aN P peCom pressive Strain P sp -σ Relaxed P sp AlG aN +σ [0001] [0001] 2D electrons After O. Ambacher et al. J.Appl. Phys. 85, 3222 (1999) shurm@rpi.edu 11 Spontaneous polarization After F. AlN Bernardini et al. Phys Rev. 56, 10024(1997) GaN InN Spontaneous polarization (C/m2) (cm-2) -0.029 2.23 1014 -0.032 -0.057 -0.045 2.46 1014 4.39 1014 3.47 1014 -0.081 6.24 1014 ZnO BeO For comparison, in BaTiO3, Ps = 0.25 C/m2 (1.93x1015cm-2) shurm@rpi.edu 12 Pyroelectric effect -4 0 4 8 12 16 20 50 0 2 4 6 8 10 12 0 2 4 6 8 10 12 Time, s 100 a 0 50 -50 0 -100 b 0 50 -40 -80 01 3 0.7 c 2 0.4 1 0.1 0 -0.2 -1 -4 0 4 8 12 16 20 Time, s Pyroele ctr ic m ate rial Ip (after A. D. Bykhovski, V. V. Kaminski, M. S. Shur, Q. C. Chen, and M. A. Khan "Pyroelectricity in gallium nitride thin films", Appl. Phys. Lett., 69, 3254 (1996)). shurm@rpi.edu 13 ) C o( er 40 ut ar e 20 p m et 0 ht a B) 20 u. a( x 0 ul f t a e -20 H ) V 0.4 m ( e g 0 at l o V -0.4 (a) Pyroelectric voltage for primary pyroelectric effect (changing flux magnitude and direction) Two time constants: Sample cooling and Charge relaxation -4 0 4 8 12 16 20 50 a 0 -50 -100 (b) -40 Ga N ) C o( 200 T b 0 a. 300 -80 3 c 2 100 (c ) ) V m ( e g at l o V 1 0 0 12 -1 b. -4 10 20 30 Tim e (s ) 4 8 12 16 20 Time, s 8 4 0 0 0 40 0 10 20 30 40 Primary pyroelectric effect at 300o C (High Temperature Operation!) Tim e (s ) (after A. D. Bykhovski, V. V. Kaminski, M. S. Shur, Q. C. Chen, and M. A. Khan "Pyroelectricity in gallium nitride thin films", Appl. Phys. Lett., 69, 3254 (1996)). shurm@rpi.edu 14 Strain from the lattice mismatch • uxx = (aGaN -aAlGaN)/aGaN • Ppe = 2 uxx (e31-e33 C13/C33) How Piezoelectric constants are determined? •Electromechanical coefficients (difficult) •Optical experiments (indirect) •Estimate from transport measurements (very indirect) shurm@rpi.edu 15 Effect of Strain on Dislocation-Free Growth Critical thickness as a function of Al mole fraction in AlxGa1-xN/GaN: superlattice (solid line), SIS structure (dashed line). From A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, J. Appl. Phys. 81 (9), 6332-6338 (1997) Hall Mobility (cm /Vs) 60 2 • Thickness, nm 50 40 30 20 10 Effect of Critical Thickness on Electron Mobility 3,000 2,000 77K 300K 1,000 0 0 0.2 0.4 0.6 0.8 Al Mole Fraction 1 100 200 300 400 500 600 AlGaN Thickness (A) shurm@rpi.edu 16 Twice as large as in SiC SIS sensor Top Contact n - GaN 0.4 µm AlN 30 Å - 100 Å Bottom Contact F GaN n AlN GaN n u B A B AB A (1) (2) (3) n - GaN 1.0 µm i - GaN 1.0 µm Ec AlN Buffer Sapphire L Ef 45.3 45.2 Resistance, Ω • Piezoelectric sensors • Pyroelectric sensors Short range superlattice is four times larger than in SiC 45.1 45 44.9 44.8 44.7 44.6 44.5 Ev 44.4 0 0.5 1 1.5 2 2.5 3 Strain (compression), 10-4 After R. Gaska, J. Yang, A. D. Bykhovski, M. S. Shur, V. V. Kaminski, S. M. Soloviev, Appl. Phys. Lett. 71(26), 3817 (1997) shurm@rpi.edu 17 Polarization domain structure Surface Surface Surface Ga N Ga Ga N Ga N N N N N N Ga Ga Ga Ga N N Ga Ga N Ga Ga N After A. D. Bykhovski, V. V. Kaminskii, M. S. Shur, Q. C. Chen, and M. Asif Khan, Piezoresistive Effect in Wurtzite n-type GaN, Appl. Phys. Lett., 68 (6), pp. 818-819 (1996) shurm@rpi.edu 18 Superlattice Band Diagram and resistance change in SRSL 25 1 SRSL -3 δR/R (10 ) En erg y (eV) 20 e ffec tive A B AB AB A B band gap AB 15 2 SiC 1 10 2 5 3 GaN 3 (000 1) 0 y 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -4 Strain (10 ) After A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, Elastic Strain Relaxation in GaN-AlN, GaN-AlGaN, and GaN-InGaN Superlattices, J. Appl. Phys. Vol. 81, No. 9, pp. 6332, May (1997) Relative change in resistance under applied strain. (o) - correspond to [(AlN)6-(GaN)3]150 SRSL ; ( ) - [(AlN)3-(GaN)8]150 SRSL; solid line 1 shows dependence measured for GaN-AlN-GaN SIS 1; dashed line 2 - SiC p-n junction 1 ; 3 - GaAs 2. The GF for the measured samples was in the 30 to 90 range. The larger GF (higher sensitivity to strain) was measured in SRSLs with higher Al content. 1 J. S. Shor, L. Bemis, and A. D. Kurtz, IEEE Trans. Electron Dev. , 41 (5), 661 (1994). 2 A. Sagar, Phys. Rev., 112, 1533 (1958); 117, 101 (1960). shurm@rpi.edu 19 High Temperature p-GaN Pressure Sensor 0 .1 2 p -G a N 0 .1 0 δR/R 0 .0 8 0 .0 6 G a N /A lN /G a N 0 .0 4 S iC 0 .0 2 0 .0 0 Si 0 1 2 3 4 S tr a in , 1 0 5 -4 From R. Gaska, M. S. Shur, A. D. Bykhovski, J. W. Yang, M. A. Khan, V. V. Kaminski and S. M. Soloviov, Piezoresistive Effect in Metal-Semiconductor-Metal Structures on p-type GaN, Appl. Phys. Lett., vol. 76, No. 26, pp. 3956-3958, June 26 (2000) Static Gauge factors (GF) (measured under longitudinal mechanical deformation) GaN n-type GF=10 p-type GF > 200 GaN/AlN/GaN Sapphire AlGaN/GaN Heterostructures GF = 50 GF = 10-15 AlN/GaN Short Range Superlattices GF = 30-80 shurm@rpi.edu 20 Polarization effects in undoped and doped channel GaN/AlGaN HFETs ) Ve ( yg er n E Undoped 2 1 Nd = 5x1017 cm-3 . -20 20 0 Distance (nm) 40 ) V e( y g r e n E -20 0 20 40 -2 -4 Distance (nm) 0.01 •••• • • • 20 nm (100% s trained) • ••• 40 nm (60%) •••• • •• 60 nm (30%) ••• •• • • 100 nm (0%) •• • • ••• •• ••• • • • • •• • • • ••• • 10 nm (100% s trained) 0.008 0.006 0.004 0.002 0 -16 -12 -8 After M. S. Shur, GaN and related materials for high power applications, Mat. Res. Soc. Proc. Vol. 483, pp. 15-26 (1998) and From A. D. Bykhovski, R. Gaska, and M. S. Shur, Appl. Phys. Lett. 73 (24) (1998). -4 0 Voltage, V shurm@rpi.edu 21 Piezoelectric and Pyroelectric Doping in AlGaN/GaN 6 5 4 3 State-of-the-art 2 1 0 0 0 .2 0 .4 0 .6 A l M o la r 0 .8 1 F r a c t io n shurm@rpi.edu 22 Strain and Energy Band Engineering Dc (Angstroms) •Graded composition profile and quaternary AlGaInN 0.035 •Superlattice buffers for strain relief 0.030 •PALE and MEMOCVD epitaxial growth 0.025 •Homoepitaxial substrates 0.020 •Non-polar substrates 0.015 70 0.000 40 0.25 30 20 10 0 0.0 Al - 9% 0.005 50 DEg (eV) Thickness (nm) 60 0.010 Al - 17% 0.20 0.15 0.2 0.4 0.6 Al molar fraction 0.8 1.0 A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, Elastic Strain Relaxation in GaN-AlN Superlattices, Proceedings of International Semiconductor Device Research Symposium, Vol. II, pp. 541-544, Charlottesville, VA, ISBN 1-880920-04-4, Dec. 1995 0.10 0.0 0.5 1.0 1.5 2.0 In Molar Fraction (%) M. Asif Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, Hans-Conrad zur Loye, G. Tamulaitis, A. Zukauskas, David J. Smith, D. Chandrasekhar, and R. Bicknell-Tassius, Lattice and Energy Band Engineering in AlInGaN/GaN Heterostructures, Appl. Phys. Lett 76 (9) pp. 1161-1163 (2000) shurm@rpi.edu 23 New Screening Mechanism in Multilayer Pyroelectrics d e p le tio n p y ro e le c tric ( 2 ) a c c u m u la tio n Screening the polarization induced dipole involves smaller charges than the charges in polarization dipole Screening dipole – smaller changes but at larger separation r e g io n ( 3 ) re g io n (1 ) P o s e m ic o n d u c to r m a trix 0 L L d z + New screening length (larger than Debye Polarization dipole but smaller than depletion) shurm@rpi.edu 24 Electronic island at the surface of semiconductor grain in pyroelectric matrix (MQDs -Moveable Quantum Dots) Inversion electron and hole islands at the surface of pyroelectric grain in semiconductor matrix Pyroelectric Po Po Semiconductor Semiconductor Hole inversion island Pyroelectric Electronic island Electronic inversion island Control by external field – Zero dimensional Field Effect (ZFE) V. Kachorovskiy and M. S. Shur, APL, March 29 (2004) shurm@rpi.edu 25 Basic Equations 4 π P0 E = ε + 2ε p N= polarization induced electric field 4π nd R 3 3 nd total number of electrons in the grain donor concentration The size of the island should be determined by the minimum of the total energy QEa 2 Q 2 W = + R εa Potential energy in the field E Coulomb repulsion energy W should be minimal provided that the total charge of the island, Q=eN , is constant eN 4π end R Ec = 2 = screening field εR 3ε E >> Ec P0 >> end R Electrons cannot screen polarization induced field. Strong field push electrons into small 2D island 1/ 3 QR a~ E 1/ 3 end R R ~ P0 For typical values of polarization the size of electron island is small compared to R shurm@rpi.edu 26 Terahertz oscillations 2D island might oscillate as a whole over grain surface. The oscillations can be exited by ac field perpendicular to P0 Oscillation frequency w0 = 4p eP0 ( e+ 2 ep ) mR MOVABLE QUANTUM DOTS (MQD) Oscillation frequency is of the order of a terahertz w0 p/2~ 1 THz to 30 THz SWITCH OR SHIFT FREQUENCY BY EXTERNAL FIELD OR BY LIGHT shurm@rpi.edu 27 New Physics of Movable Quantum Dots • • • • Self-assembled quantum dot arrays Coulomb blockade Light concentration in quantum dots Left handed materials New Potential Applications • • • • • • • Terahertz detectors Terahertz emitters Terahertz mixers Photonic terahertz devices Photonic crystals Plasmonic crystals Solar cells and thermo voltaic cells shurm@rpi.edu 28 New features of electron transport in nitrides • Large polar optical phonon energy leads to two step scattering optical photon absorption and re-emission resulting in an elastic scattering process [1] • In high electric fields, an electron runaway plays a key role [2]. The runaway effects are enhanced in 2D electron gas [3] • In very short GaN-based structures, ballistic and overshoot effects are very pronounced [4] 1. B. Gelmont, K. S. Kim, and M. S. Shur, J. Appl. Phys. 74, 1818 (1993) 2. B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, Solid State Communications. 118, 79(2001) 3. A. Dmitriev, V. Kachorovskii, M. S. Shur, and M. Stroscio, International Journal of High Speed Electronics and Systems, 10, 103 (2000) 4. B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999) shurm@rpi.edu 29 Consequence of high polar optical energy: two step optical polar scattering process Active region 1,000 h w0 m obility (cm 2 /Vs) K=0 K = 0.3 100 0 Passive region 1017 K = 0.6 1018 1019 Doping (cm-3) From B. Gelmont, K. S. Kim, and M. S. Shur, J. Appl. Phys. 74, 1818 (1993) shurm@rpi.edu 30 Temperature dependencies 2000 Ga A s 8000 No impurit y sc at t er in g 6000 4000 T o t al 2000 Mobility (cm2/V-s) Mobility (cm2/V-s) 10000 1500 500 500 T o t al n = 5 x1 0 1 7 cm -3 0 400 No impurit y sc at t er in g 1000 n = 5 x1 0 1 7 cm -3 300 Ga N 600 0 300 Temperat ure ( K) ( a) 400 500 600 Temperat ure ( K) (b) Weaker contribution of impurity scattering for GaN because of heavier mass After M. S. Shur, Solid State Electronics, 42, 2131 (1998) shurm@rpi.edu 31 Evidence of penetration into AlGaN or 2D-3D transition 2,5 VT = -5.6 V 60 2 10 CG (F/cm ) 2,0 RDS (Ω) 1,5 7 1,0 40 20 0,5 0 0 0,0 -8 10 15 20 L (µm) -6 -4 -2 0 2 4 Gate voltage, VG (V) 1600 1200 8 Gch (mA/V) 2 Mobility, µ (cm /Vs) 5 800 400 6 4 2 0 -6 0 0.0 0.2 0.4 -4 0.6 13 -2 0 VG (V) 0.8 2 1.0 1.2 X. Hu, J. Deng, N. Pala, R. Gaska, M. S. Shur, C. Q. Chen, J. Yang, S. Simin, and A. Khan, C. Rojo, L. Schowalter, AlGaN/GaN Heterostructure Field Effect Transistor on Single Crystal Bulk AlN, Appl. Phys. Lett, 82, No 8, pp. 1299-1302, 24 Feb (2003) -2 ns / 10 (cm ) From R. Gaska, M. S. Shur, A. D. Bykhovski, A. O. Orlov, and G. L. Snider, Appl. Phys. Lett. 74, 287 (1999) shurm@rpi.edu 32 Effect of Substrates: Bulk GaN on GaN Ga N on b ul k GaN/saphire GaN/6H-SiC 5x10 SiC bulk GaN Sapphire 4 Al0.13Ga0.87N : 20 nm 4x10 4 n-type GaN : 1 µm 3x10 160 4 Mg-doped GaN crystal 150 µm 2x10 4 140 120 g m (m S/m m) 2 Hall mobility µH(cm /Vs) 6x10 4 100 80 60 Vd s= + 10V 40 20 1x10 4 (a) 0 -10 -8 -6 -4 -2 0 2 12 -2 carrier density nH*10 (cm ) 24 V gs (V) 22 20 110 µm 18 16 150 µm 14 After M. Asif Khan and J. W. Yang, W. Knap, E. Frayssinet, X. Hu and G. Simin, P. Prystawko, M. Leszczynski, Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, and G. Neu, GaN-AlGaN Heterostructure Field Effect Transistors Over Bulk GaN Substrates, Appl. Phys. Lett. 76, No. 25, pp. 3807-3809, 19 June (2000) 10 µm 630 µm 12 10 8 6 4 2 (b) 0 1 10 Temperature (K) 100 From E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean and J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, G. Simin, X. Hu, M. Asif Khan, M. Shur, R. Gaska, and D. Maude, Applied Physics Letters, 77, 2551 (2000) shurm@rpi.edu 33 Shubnikov de Hass (SdHO) and magnetoresistance results • Parallel conduction model yields the roomtemperature 2D carrier mobility exceeded 2,650 cm2/Vs High mobility channel Low mobility channel Ec GaN AlGaN 2D electrons After E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean and J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, G. Simin, X. Hu, M. Asif Khan, M. Shur, R. Gaska, and D. Maude, Applied Physics Letters, 77, 2551 (2000) Distance shurm@rpi.edu 34 Cryogenic low field transport: Acoustic Scattering Inverse Linear Dependence at Low Temperatures -5 9.0x10 Sample D Ns~5.4x10 -5 8.0x10 Extracted Deformation potential ac=8.1 0.2 eV 12 -5 2 1/µ (Vs/cm ) 7.0x10 -5 6.0x10 12 sample C Ns~5.7x10 -5 5.0x10 -5 4.0x10 -5 3.0x10 12 12 Sample A&B Ns~2.4x10 & Ns~2.7x10 -5 2.0x10 -5 1.0x10 0 5 10 15 20 25 30 35 40 45 50 55 Temperature (K) 1 1 = αT + µ0 µ From W. Knap, E. Borovitskaya, M. S. Shur, L. Hsu, W. Walukiewicz, E. Frayssinet, P. Lorenzini, N. Grandjean, C. Skierbiszewski, P. Prystawko, M. Leszczynski, I. Grzegory, Appl. Phys. Lett., 80, 1228 ( 2002) shurm@rpi.edu 35 New Features of Low Field Transport • “Quasi-elastic” optical polar scattering • 2D electron wave function penetration into AlGaN in undoped GaN channels • 2D-3D electron transition in doped GaN channels • Limiting role of acoustic scattering at cryogenic temperatures shurm@rpi.edu 36 High field transport in Nitrides Drift Velocity at Room and Elevated Temperatures GaN 3 GaAs 3 2 3 00 K 5 00 K 1,00 0 K 2 3 00 K 5 00 K 1 ,00 0 K 1 0 0.1 Elect ric 0.2 field ( a) 1 0 .3 ( MV/ cm) 0 5 Elect ric 10 field 15 20 ( kV/ cm) ( b) From: M. S. Shur, GaN and related materials for high power applications, Mat. Res. Soc. Symp. Proc., vol. 483, pp. 15-26 (1998) shurm@rpi.edu 37 Intervalley Transition From B. Gelmont, K. S. Kim, and M. S. Shur, J. Appl. Phys. 74, 1818 (1993) shurm@rpi.edu 38 Velocity-field characteristics of GaN: effect of doping and compensation 3.5 Electron Velocity [107 cm/s] 3 2.5 2 1e17 1e18 1e19 1.5 1 0.5 0 0 50 100 150 200 250 300 Electric Field [kV/cm] After B. E. Foutz, L. F. Eastman, U. V. Bhapkar, M. S. Shur, Appl. Phys. Lett., 70, No 21, pp. 2849-2851 (1997) shurm@rpi.edu 39 Velocity-Field Curves for Nitride Family InN is the fastest nitride material From B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999) shurm@rpi.edu 40 Ballistic and Overshoot Effects in GaN Velocity (105 m/s) GaN 600 kV/cm GaAs 30 kV/cm 8 6 4 2 After B. E. Foutz, L. F. Eastman, U. V. Bhapkar, M. S. Shur, Comparison of High Electron Transport in GaN and GaAs, Appl. Phys. Lett., 70, No 21, pp. 2849-2851, 1997 0 0.1 0.2 0.3 0.4 0.5 Distance (micron) shurm@rpi.edu 41 More on the overshoot InN – higher overshoot at smaller fields From B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999) shurm@rpi.edu 42 High Field Breakdown. Breakdown field measurement -7.5 ln (Ig/Id) -8 Gate - -8.5 o experiment, T=23 -9 ln(I ln(I -9.5 C, Vg=-4.75 V /I d ) leakage hole ln(I + /I d ) hole Drain High Field Region /I d ), approximation -10 -10.5 -11 0.014 0.016 0.018 1/(Vds-Vds sat) 0.02 0.022 After N. V. Dyakonova, A. Dickens, M. S. Shur, R. Gaska, J. W. Yang, Temperature dependence of impact ionization in AlGaN-GaN Heterostructure Field Effect Transistors, Applied Physics Letters, 72 (20), pp. 2562-2564, May 18 (1998) shurm@rpi.edu 43 Higher Breakdown Field in Heterostructures? AlGaN GaN Quantum Well AlGaN Breakdown field might be determined by cladding layers (see M. Dyakonov and M. S. Shur, Consequences of Space Dependence of Effective Mass in Heterostructures, J. Appl. Phys. Vol. 84, No. 7, pp. 3726-3730, October 1 (1998)) shurm@rpi.edu 44 3D and 2D Velocity-Field Characteristics 2D peak velocity and peak field in compound semiconductors are smaller than for 3D electrons because of Vdr VC3 3D VC2 •Subband shift •Runaway effect 2D •Runaway is an unstable situation when •the electron energy loss as a result of the •collision is smaller then the average E •energy gain in the electric field during •the free light time Both EC and VC are smaller for 2D case than for 3D case: EC2 < EC3 VC2 < VC3 EC2 EC3 ! shurm@rpi.edu 45 Shift of Valley Bottoms in 2D Case 2 Energy 1 m1 << m2 h2 δ2 ∝ m2 a 2 1 >> 2 h2 δ1 ∝ m1a 2 Wave vector The bottom of the upper valley (2) with heavy mass rises less than the bottom of the central valley (1) with light mass. shurm@rpi.edu 46 Comparison of Runaway in 2D and 3D Systems 3D Case •Deformation scattering on acoustic and optical phonons does not lead to runaway •Polar optical scattering (forward!) leads to runaway 2D Case •Even deformation scattering leads to runaway shurm@rpi.edu ! 47 Experimental data After V.T. Masselink, Applied Physics Letters, vol. 67(6), 801-805, 1995 Comparison of electron velocity in lightly doped In0.53Ga0.47As with that in a InGaAs/InAlAs modulation-doped heterostructure shurm@rpi.edu 48 New physics of 2D transport Vdr – High field velocity is smaller than in bulk (because of runaway) – Impact ionization in quantum well is determined by cladding layers VC3 3D VC2 2D EC2 EC3 E Experimental date after V.T. Masselink, Applied Physics Letters, vol. 67(6), 801-805, 1995 shurm@rpi.edu 49 Trapping in Nitrides: Reverse Gate Leakage Modeling Direct tunneling and trap-assisted tunneling From S. Karmalkar, D. Mahaveer Sathaiya, M. S. Shur, Mechanism of the Reverse Gate Leakage in AlGaN / GaN HEMTs, Appl. Phys. Lett. 82, 3976-3978 (2003) shurm@rpi.edu 50 Comparison with Experiment From S. Karmalkar, D. Mahaveer Sathaiya, M. S. Shur, Mechanism of the Reverse Gate Leakage in AlGaN / GaN HEMTs, Appl. Phys. Lett. 82, 3976-3978 (2003) shurm@rpi.edu 51 MOSHFET Gate Leakage Traps and leakage: Complexities of highly non-ideal systems Gate Current Density (A/cm^2) 1. E- 01 1. E- 02 o 150 C 1. E- 03 o 100 C 1. E- 04 o 75 C 1. E- 05 50oC 1. E- 06 o 25 C 1. E- 07 1. E- 08 - 10 -5 0 5 Voltage ( V ) From F. W. Clarke, Fat Duen Ho, M. A. Khan, G. Simin, J. Yang, R. Gaska, M. S. Shur, J. Deng, S. Karmalkar, Gate Current Modeling for Insulating Gate III-N Heterostructure Field-Effect Transistors, Mat. Res. Symp. Proc. Vol. 743, L 9.10 (2003) shurm@rpi.edu 52 GaN 1/f Noise surprises 1.E+01 10 GaN HFET on Sapphire [8-9] 1.E+00 1 1.E-01 10-1 1.E-02 10-2 1.E-03 10-3 GaN[8] GaAs[1-2] Si [1-2] GaAs HEMTs [5] GaN HFET on SiC [9] GaN MOS-HFET [10] 1.E-04 10-4 SiC [3-4] 1.E-05 10-5 1.E-06 10-6 Si NMOS [6-7] -7 10 1.E-07 Device noise is smaller than materials noise!!! shurm@rpi.edu 53 Data from • • • • • • • • • [1] R.H. Clevers, Volume and temperature dependence of the 1/f noise parameter alpha in Si, Physica B Vol.154, pp. 214-224, (1989) [2] F.N. Hooge, M. Tacano, Experimental studies of 1/f noise in n-GaAs Physica B Vol.190, pp. 145-149, (1993) [3] M. Levinshtein, S. Rumyantsev, J. Palmour, and D. Slater, Low frequency noise in 4H Silicon Carbide, Journ. Appl. Phys. Vol. 81, No.4, 1758-1762, (1997)) [4] M. Tacano and Y. Sugiyama, Comparison of 1/f noise of AlGaAs/GaAs HEMTs and GaAs MESFETs, Solid State Elect. Vol.34. No 10, pp. 1049-53,(1991). [5] D. Fleetwood, T.L. Meisenheimer, J. Scofield, 1/f noise and radiation effects in MOS devices IEEE Trans. Electron Dev. Vol. 41, No 11, pp. 1953-1964 (1994) [6] L.K. J Vandamme, X. Li, D. Rigaud, 1/f noise in MOS devices, mobility or number fluctuations? IEEE Trans. Electron Dev. Vol. 41, No:11, pp. 1936-1945 (1994) [7] A. Balandin, S. Morozov, G. Wijeratne, C. Cai, L. Wang, C. Viswanathan, Effect of channel doping on the low-frequency noise in GaN/AlGaN heterostructure field-effect transistors, Appl. Phys. Lett. V. 75, No 14 pp. 2064-2066 (1999) [8] S. Rumyantsev, M.E. Levinshtein, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, Low-frequency noise in AlGaN/GaN heterojunction field effect transistors on SiC and sapphire substrates" Journal of Applied Physics, Vol. 87, No4, pp. 1849-1854 (2000) [9] N. Pala, R. Gaska, S. Rumyantsev, M. S. Shur M. Asif Khan, X. Hu, G. Simin, and J. Yang, Low frequency noise in AlGaN/GaN MOS-HFETs, Electronics Lett. Vol.36,No.3, pp. 268-270, (2000) shurm@rpi.edu 54 A relatively low level of noise in GaN-based HFETs is related to a very high density of channel carriers S n 0 is the bottom of the conduction band 1,000 10 0.1 -10 -5 0 ΕF /kT 3 5 10 Dependence of noise on the Fermi level position in bulk semiconductor from E. Borovitskaya, M. Shur, On theory of 1/f nose in semiconductors Solid-State Electronics Vol. 45, No. 7, 1067 (2001) shurm@rpi.edu 55 Drain voltage, arb. units Correlation between current slump and 1/f noise in GaN transistors 1.0 0.5 HF ET 0.0 MOS-H FET 0 D rain voltage, arb. units a -3 α=(0.8-2) x 10 5x10 -8 -7 -7 1x10 1x10 Time t, s 2x10 -7 Longer transient – higher Hooge constant 1.0 b 0.5 α=0.1-0.4 0.0 α=(5-8) x 10 0 -3 -3 -2 1x10 5x10 Time t, s 2x10 -2 From S. L. Rumyantsev, M. S. Shur, R. Gaska, M. Asif Khan, G. Simin, J. Yang, N. Zhang, S. DenBaars, and U. Mishra, Transient Processes in AlGaN/GaN Heterostructure Field Effect Transistors, Electronics Letters, vol. 36, No.8, p. 757759 (2000) shurm@rpi.edu 56 In devices with relatively high noise no correlation between 1/f noise and gate leakage -80 SI/I2, dB/Hz -90 HFETs No leakage in MOSHFETs Gate leakage in HFETs -100 -110 After S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, G. Simin, X. Hu, and J. Yang, Effect of gate leakage current on noise properties of AlGaN/GaN field effect transistors", J. Appl. Phys., Vol. 88, No. 11, pp. 6726-6730, (2000) MOSHFETs -120 -130 -140 -5 10 Vg=0 10 -4 -3 10 10 Drain current I d, A -2 10 -1 shurm@rpi.edu 57 AlGaN barrier layer is main source of generation-recombination noise Arrhenius plots for several samples. diamonds—HFET, Fig. 1(b); crosses—MOS-HFET, Fig. 1(c). All other symbols represent HFETs. The slope of the lines determines activation energies of local level E 0:8–1.0 eV. S. L. Rumyantsev, N. Pala, M. S. Shur, E. Borovitskaya, A. P. Dmitriev, M. E. Levinshtein, R. Gaska, M. A. Khan, J. Yang, X. Hu, and G. Simin, Generation-Recombination Noise in GaN/ GaAlN Heterostructure Field Effect Transistors, IEEE Trans. Electron Dev. Vol. 48, No 3, pp. 530-533 (2001) shurm@rpi.edu 58 Where the traps are (from GR noise) AlGaN thin films 0.0 [30] 1-3 meV [42] 0.24 eV [37] 0.42 eV -0.5 Energy E (eV) -1.0 AlGaN/GaN heterostructures 1 eV [33] AlGaN/InGaN/GaN heterostructures GaN photodetectors [38] EC 0.2 eV [36,38] 0.35-0.36 eV 0.85 eV 1 eV -1.5 [38] 1 eV [4] 1.6 eV [54] [41] -2.0 -2.5 -3.0 -3.5 From S. L. Rumyantsev, Nezih Pala, M. E. Levinshtein, M. S. Shur, R. Gaska, M. Asif Khan and G. Simin, Generation-Recombination Noise in GaN-based Devices, from GaN-based Materials and Devices: Growth, Fabrication, Characterization and Performance, M. S. Shur and R. Davis, Editors, World Scientific, 2004 shurm@rpi.edu 59 Nitride-based FETs – promises and problems Promises • 30 W/mm at 10 GHz versus 1.5 W/mm • > 150 W per chip Problems • Gate leakage • Gate lag and current collapse • Reliability • Yield Solutions • Strain energy band engineering M. A. Khan, M. S. Shur, Q. C. • MEMOCVDtm Chen, and J. N. Kuznia, CurrentVoltage Characteristic Collapse in • Insulated gate designs AlGaN/GaN Heterostructure Insulated Gate Field Effect • Gate edge engineering Transistors at High Drain Bias, Electronics Letters, Vol. 30, No. 25, p. 2175-2176, Dec. 8, 1994 shurm@rpi.edu 60 High Electron Sheet Density Allows for a New Approach: AlGaN/GaN MISFET M. A. Khan, M. S. Shur, Q. C. Chen, and J. N. Kuznia, Current-Voltage Characteristic Collapse in AlGaN/GaN Heterostructure Insulated Gate Field Effect Transistors at High Drain Bias, Electronics Letters, Vol. 30, No. 25, p. 2175-2176, Dec. 8, 1994 shurm@rpi.edu 61 Resolving the issues: AlGaInN, gate dielectrics, InGaN channel SiO2 S G D Pd/Ag/Au Pd/Ag/Au AlInGaN GaN AlN Reducing the gate leakage current (104 - 106 times) MOSHFET (SiO2 ) Si3N4 S Reducing current collapse, Improving carrier confinement D Pd/Ag/Au Pd/Ag/Au AlInGaN GaN AlN MISHFET Si3N4 I-SiC G I-SiC Combining the advantages Si3N4 /SiO2 S G D S G D AlInGaN Pd/Ag/Au InGaN GaN AlN AlInGaN Pd/Ag/Au InGaN GaN AlN I-SiC I-SiC AlGaN/ InGaN GaN DHFET MISDHFET shurm@rpi.edu 62 Unified charge control model (UCCM) MOSFETs and HFETs 2.5 σs (mS) VGT ns − αVF = a ( ns − n0 ) + ηVth ln n0 VDS = 0.5 V Real space transfer 2.0 HFET Exp. HFET Sim. 1.5 MOSHFET Exp. MOSHFET Sim. 1.0 0.5 0.0 -12 -10 -8 -6 -4 -2 0 2 4 6 Vg ( V ) www.aimspice.com shurm@rpi.edu 63 Gate Lag and Current collapse in AlGaN/GaN HFETs: Pulsed measurements of “return current” VG 60 Idc(VG= 0) 50 Current collapse Time 40 Id (return @ VG= 0) VT IDS 30 Current collapse 20 10 Id (VG) 0 “Return” current -10 Time -8 VG(t) -6 -4 -2 VG= 0 Tarakji, G. Simin, N. Ilinskaya, X. Hu, A. Kumar, A. Koudymov, J. Zhang, and M. Asif Khan, M.S. Shur and R. Gaska, Appl. Phys. Lett., 78, N 15, pp. 2169-2171 (2001) G. Simin, A. Koudymov, A. Tarakji , X. Hu, J. Yang and M. Asif Khan, M. S. Shur and R. Gaska APL October 15 2001 shurm@rpi.edu 64 Nearly Identical Gate Lag Current Collapse was observed in: SiO 2 G S G S D n-GaN Pd/Ag/Au GaN AlN I-SiC/Sapphire D S G AlGaN Pd/Ag/Au GaN AlN I-SiC/Sapphire GaN MESFET AlGaN/GaN HFET R, kΩ LG GTLM pattern (LG variable, LGS= LGD =const) D Pd/Ag/Au AlGaN GaN AlN I-SiC AlGaN/GaN MOSHFET 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 R(0) R(τ) 0 20 40 60 80 100 120 140 LG , µm • AlGaN cap layer is not primarily responsible for CC • Only the gate edge regions contribute to the CC shurm@rpi.edu 65 Dynamic I-V characteristics of AlGaN-GaN HFETs 60 DC I-V (VG = 0) Drain bias: 30 V 20 V 10 V 50 40 60 50 40 30 20 10 0 0.0 -1.0 RD 0 10 RL 20 30 RL = 50 Ω....1kΩ 30 RL 20 Measured @ 2GHz -0.5 RF Power, dB Drain Current, mA (@ max V ) Peak drain current G Load impedance scan @ constant VD = 10 V… 30 V -1.5 -2.0 -2.5 -3.0 -3.5 Calculated from dynamic I-Vs 2 P RF ~ R L/(R D+R L) -4.0 10 -4.5 -5.0 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Drain Voltage, V 0 200 400 600 800 Load Impedance, Ω A. Koudymov, G. Simin and M. Asif Khan, A. Tarakji, M. S. Shur, and R. Gaska, Dynamic I-V Characteristics of III-N Heterostructure Field Effect transistors, IEEE EDL, Vol. 24, No. 11, pp. 680-682, November (2003) shurm@rpi.edu 66 InGaN channel DHFET Design – 2D simulations G-Pisces (VG= -1; VD = 20 V) • Better G S D AlGaNPd/Ag/Au (x=0.25,250 A) InGaN (x ≤ 5%, 50 A) S 2DEG confinement and Partial strain compensation • Significantly reduced carrier spillover •No current collapse G D G S D GaN ~0.1 mm AlN 1014 I-SiC 1017 1016 ~0.05 mm 1014 Regular HFET InGaN channel DHFET G. Simin et.al. Jpn. J. Appl. Phys. Vol.40 No.11A pp.L1142 - L1144 (2001) shurm@rpi.edu 67 Two Dimensional Simulation (ISE) ISE 2D GaN device simulator From N. Braga, R. Gaska, R. Mickevicius, M. S. Shur, M. Asif Khan, G. Simin, Simulation of Hot Electron and Quantum Effects in AlGaN/GaN HFET, submitted to JAP shurm@rpi.edu 68 Band Diagrams (a) (b) From N. Braga, R. Gaska, R. Mickevicius, M. S. Shur, M. Asif Khan, G. Simin, Simulation of Hot Electron and Quantum Effects in AlGaN/GaN HFET, accepted in JAP shurm@rpi.edu 69 Electron temperature contour map VD = 10V and VS = VG = 0V Importance of gate edge engineering confirmed From N. Braga, R. Gaska, R. Mickevicius, M. S. Shur, M. Asif Khan, G. Simin, Simulation of Hot Electron and Quantum Effects in AlGaN/GaN HFET, submitted to JAP shurm@rpi.edu 70 Mechanism of current collapse in GaN FETs • Current collapse is not related to AlGaN layer alone • Current collapse is caused by trapping at gate edges • Current collapse can be eliminated by using DHFET structures • Current collapse time delay correlates with 1/f noise spectrum • SOLVE THE CURRENT COLLAPSE ISSUE BY CHANNEL AND GATE EDGE ENGINEERING shurm@rpi.edu 71 RF Power of collapse free DHFET and MISHFET RF Power stability shurm@rpi.edu 72 Plasma Wave THz Devices Deep submicron FETs can operate in a new PLASMA regime at frequencies up to 20 times higher than for conventional transit mode of operation 5 A 4 3 B 2 1 C 14 12 1.0 InSb-bulk a) b) f (THz) 16 1.0 0.8 0.5 0.6 0.4 0.0 0 1 f (THz) 10 2 8 3 0.2 0.4 0.6 Usd (V) 0.8 InGaAs-HEMT 6 4 2 0 0 -600 -500 -400 -300 -200 -100 Gate Voltage(mV) 18 Emission (a.u.) Emission Intensity (a.U.) Resonant Peak (a.u.) 20 0 0 2 4 6 8 10 12 Detection Frequency (THz) Resonant detection THz emission from 60 nm InGaAs HEMT W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. Popov, and Of sub-THz and THz From M. S. Shur, Emission of terahertz radiation by plasma waves in sub-0.1 micron AlInAs/InGaAs high electron mobility transistors, Appl. Phys. Lett. , March 29 (2004) shurm@rpi.edu 73 8.0 T=8 K, GaN HEMT 600 GHz 5.0 6.0 Intensity (a.u.) Induced Vs-Vd (mV) (Lock-In X Output) Plasma Wave Electronics 4.0 2.0 8 GHz cutoff 4.0 3.0 2.0 1.0 0.0 0.0 -4 -2 0 Vg (V) 2 4 50 75 100 125 150 175 200 225 250 Frequency (GHz) 600 GHz radiation response Radiation intensity from 1.5 of GaN HEMT at 8 K micron GaN HFET at 8 K. shurm@rpi.edu 74 Conclusions •New device physics of nitride based materials requires new designs and new modeling approaches • Polarization devices •Pyroelectric sensors •Piezoelectric sensors • Electron runaway and overshoot effects determine high field transport • Traps can be easier filled because of high electron densities • Noise determined by tunneling into traps • Strain control: Strain Energy Band Engineering • FETs – MOSHFET, DHFET, MOSDHFET • Terahertz applications – plasma wave devices shurm@rpi.edu 75