Untitled - Journal of Environmental Sciences

Transcription

Untitled - Journal of Environmental Sciences
ISSN 1001–0742
Journal of Environmental Sciences
Vol. 26 No. 6 2014
CONTENTS
Special Issue: Sustainable water management for green infrastructure
Preface · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1213
Fractionation of heavy metals in runoff and discharge of a stormwater management system and its implications for treatment
Marla Maniquiz-Redillas, Lee-Hyung Kim · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1214
Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil
Evi Kurniati, Novi Arfarita, Tsuyoshi Imai, Takaya Higuchi, Ariyo Kanno, Koichi Yamamoto, Masahiko Sekine · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1223
Is urban development an urban river killer? A case study of Yongding Diversion Channel in Beijing, China
Xi Wang, Junqi Li, Yingxia Li, Zhenyao Shen, Xuan Wang, Zhifeng Yang, Inchio Lou · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1232
Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes
Junsik Oh, Dennis Espineli Salcedo, Carl Angelo Medriano, Sungpyo Kim · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1238
Genotoxicity removal of reclaimed water during ozonation
Xin Tang, Qianyuan Wu, Yang Yang, Hongying Hu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1243
Quantifying and managing regional greenhouse gas emissions:Waste sector of Daejeon, Korea
Sora Yi, Heewon Yang, Seung Hoon Lee, Kyoung-Jin An· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1249
Nitrogen mass balance in a constructed wetland treating piggery wastewater effluent
Soyoung Lee, Marla C. Maniquiz-Redillas, Jiyeon Choi, Lee-Hyung Kim · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1260
Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation
of Acid Orange 7 in water
Chun Cai, Liguo Wang, Hong Gao, Liwei Hou, Hui Zhang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1267
A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste
Jey-R Sabado Ventura, Jehoon Lee, Deokjin Jahng · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1274
Degradation of dibromophenols by UV irradiation
Keiko Katayama-Hirayama, Naoki Toda, Akihiko Tauchi, Atsushi Fujioka, Tetsuya Akitsu, Hidehiro Kaneko, Kimiaki Hirayama · · · · · · · · · · · · 1284
Anoxic gas recirculation system for fouling control in anoxic membrane reactor
Hansaem Lee, Daeju Lee, Seongwan Hong, Geum Hee Yun, Sungpyo Kim, Jung Ki Hwang, Woojae Lee, Zuwhan Yun · · · · · · · · · · · · · · · · · · · · · · · 1289
Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins
for controlling disinfection by-products
Athit Phetrak, Jenyuk Lohwacharin, Hiroshi Sakai, Michio Murakami, Kumiko Oguma, Satoshi Takizawa · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1294
Inactivation effect of pressurized carbon dioxide on bacteriophage Qβ and ΦX174 as a novel disinfectant for water treatment
Huy Thanh Vo, Tsuyoshi Imai, Truc Thanh Ho, Masahiko Sekine, Ariyo Kanno, Takaya Higuchi,
Koichi Yamamoto, Hidenori Yamamoto · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1301
Photoassisted Fenton degradation of phthalocyanine dyes from wastewater of printing industry using Fe(II)/γ-Al2 O3
catalyst in up-flow fluidized-bed
Hsuhui Cheng, Shihjie Chou, Shiaoshing Chen, Chiajen Yu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1307
Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics
Krish J. Madarang, Joo-Hyon Kang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1313
Non-point source analysis of a railway bridge area using statistical method: Case study of a concrete road-bed
Kyungik Gil, Jiyeol Im · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1321
Effects of ozonation and coagulation on effluent organic matter characteristics and ultrafiltration membrane fouling
Kwon Jeong, Dae-Sung Lee, Do-Gun Kim, Seok-Oh Ko · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1325
Decontamination of alachlor herbicide wastewater by a continuous dosing mode ultrasound/Fe2+ /H2 O2 process
Chikang Wang, Chunghan Liu· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1332
Comparison of biochemical characteristics between PAO and DPAO sludges
Hansaem Lee, Zuwhan Yun· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1340
Fouling distribution in forward osmosis membrane process
Junseok Lee, Bongchul Kim, Seungkwan Hong · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1348
Removal of estrogens by electrochemical oxidation process
Vo Huu Cong, Sota Iwaya, Yutaka Sakakibara · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1355
Delignification of disposable wooden chopsticks waste for fermentative hydrogen production by an enriched culture from a hot spring
Kanthima Phummala, Tsuyoshi Imai, Alissara Reungsang, Prapaipid Chairattanamanokorn, Masahiko Sekine,
Takaya Higuchi, Koichi Yamamoto, Ariyo Kanno · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1361
Characterization of a salt-tolerant bacterium Bacillus sp. from a membrane bioreactor for saline wastewater treatment
Xiaohui Zhang, Jie Gao, Fangbo Zhao, Yuanyuan Zhao, Zhanshuang Li · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1369
Serial parameter: CN 11-2629/X*1989*m*162*en*P*23*2014-6
Journal of Environmental Sciences 26 (2014) 1325–1331
Available online at www.sciencedirect.com
Journal of Environmental Sciences
www.jesc.ac.cn
Effects of ozonation and coagulation on effluent organic matter characteristics
and ultrafiltration membrane fouling
Kwon Jeong1 , Dae-Sung Lee2 , Do-Gun Kim1 , Seok-Oh Ko1,∗
1. Department of Civil Engineering, Kyung Hee University, Yongin 446-701, Korea. E-mail: devilgmr@khu.ac.kr
2. Institute of Construction Technology, KUMHO Engineering & Construction, Yongin 449-822, Korea
article info
abstract
Article history:
Special issue: Sustainable water management for green infrastructure
Effluent organic matter (EfOM) is the major cause of fouling in the low pressure membranes process
for wastewater reuse. Coagulation and oxidation of biological wastewater treatment effluent have
been applied for the fouling control of microfiltration membranes. However, the change in EfOM
structure by pre-treatments has not been clearly identified. The changes of EfOM characteristics
induced by coagulation and ozonation were investigated through size exclusion chromatography,
UV/Vis spectrophotometry, fluorescence spectrophotometry and titrimetric analysis to identify the
mechanisms in the reduction of ultrafiltration (UF) membrane fouling. The results indicated that
reduction of flux decline by coagulation was due to modified characteristics of dissolved organic
carbon (DOC) content. Total concentration of DOC was not reduced by ozonation. However, the
mass fraction of the molecules with molecular weight larger than 5 kDa, fluorescence intensity,
aromaticity, highly condensed chromophores, average molecular weight and soluble microbial
byproducts decreased greatly after ozonation. These results indicated that EfOM was partially
oxidized by ozonation to low molecular weight, highly charged compounds with abundant electronwithdrawing functional groups, which are favourable for alleviating UF membrane flux decline.
∗ Corresponding
author. E-mail: soko@khu.ac.kr
.cn
Ultrafiltration (UF) membranes are generally used for
wastewater reclamation and reuse (Wintgens et al., 2006).
However, deposition and adsorption of soluble and solid
components of the wastewater treatment effluent cause
membrane fouling, which results in the reduction of
productivity and increase in backwashing and membrane
replacement cost (Le-Clech et al., 2006). It is generally known that the less charged macromolecular and/or
colloidal organic components in effluent organic matter
(EfOM) are the major foulants of UF membranes (Shon
et al., 2006; Guo et al., 2011). EfOM is a highly heterogeneous mixture of natural organic matter (NOM) such as
humic acid (HA) and fulvic acid (FA), soluble microbial
.ac
Introduction
products (SMP) and other organic compounds generated
during water use and wastewater treatment (Shon et al.,
2006). The molecular weight (MW) of EfOM especially
increases after aerobic biological treatment by the aggregation of humic substances and SMP, accelerating UF
membrane flux decline (Guo et al., 2011).
Many pre-treatment processes, such as coagulation,
adsorption, prefiltration and oxidation, have been investigated for the removal and/or transformation of EfOM
to prevent fouling (Huang et al., 2009). Among them,
oxidation of EfOM by oxidants (e.g., ozone) has shown
a good potential for the reduction of UF membrane flux
decline by organic foulants (Wu et al., 2011). Genz et
al. (2011) reported that the flux decline of a ceramic UF
membrane was reduced significantly by the ozonation of
EfOM. It was thought that the decreased flux decline could
be attributed to the reduction of MW and aromaticity
of EfOM, which was evidenced partially by analyzing
sc
DOI: 10.1016/S1001-0742(13)60607-5
je
Keywords:
effluent organic matter
fouling
ultrafiltration
oxidation
molecular weight distribution
acidity
Journal of Environmental Sciences 26 (2014) 1325–1331
The RAW, COA and AOP+COA were used as feed water
to investigate the contributions of the pre-treatments to the
flux. For the pre-treatment, coagulant concentration was
2.5 mg/L and O3 concentration varied from 0 to 8 mg/L. A
polyvinylidene difluoride UF membrane with a molecular
weight cutoff of 100 kDa, a nominal pore size of 0.01 µm
and pure water permeability of 0.8 m/hr at 100 kPa was
used (TORAY, Japan). A single hollow fiber module of the
membrane with an active area of 0.03 m2 was used. The
experiments were carried out at (25 ± 1)◦ C, at a constant
pressure of 0.5 and 0.75 bar for filtration and backwashing,
respectively, and with a cycle of 7 min filtration and 1 min
backwashing (10 mg/L NaOCl solution). The permeate
weight was recorded by an electronic balance to obtain the
flux (Fig. 1).
PC
Backwash water
Inlet
valve
Fig. 1 Schematic of representation of membrane filtration system.
1.3 EfOM characterization
The RAW, COA, AOP and AOP+COA were filtered with
0.45 µm polyvinylidene difluoride filters. Total dissolved
solids (TDS), conductivity, pH, total phosphorus (TP) and
total nitrogen (TN) were measured according to standard
methods (APHA et al., 1998). DOC was measured by
a total organic carbon (TOC) analyzer (TOC-V CPH,
Shimadzu, Japan).
UV/Vis spectra were obtained with an UV/Vis spectrophotometer (UV mini 1240, Shimadzu, Japan) at
wavelengths from 800 to 200 nm. The absorbance at
254, 270, 280 and 400 nm was recorded. Fluorescence
spectra were recorded using a spectrofluorophotometer
(RF5301PC, Shimadzu, Japan). Excitation-emission matrices (EEMs) were obtained at excitation and emission
wavelengths of 220–400 and 280–600 nm, respectively,
and synchronous fluorescence (SF) spectra were obtained
with constant wavelength differences (∆λ) of 21, 32, 44,
66 and 77 nm. The MW distribution was analysed with
a size exclusion chromatography column (Protein Pak
125, Waters, USA), an absorbance detector (UV 730
D, Younglin, Korea), a solvent degasser (SDV 30 Plus,
Younglin, Korea) and a column oven (CTS 30, Younglin,
Korea). The detection wavelength was 254 nm and the
flow rate of the mobile phase was 0.8 mL/min. The mobile
phase was buffered at pH 6.8 by 2 mmol/L NaH2 PO4 .H2 O
and 2 mmol/L Na2 HPO4 to a 0.1 mol/L NaCl solution.
Sodium polystyrene sulfonate standards (Polysciences,
Inc., USA) and acetone were used as standards. The weight
of average molecular weight (MWw ) and the number of
average molecular weight (MWn ) were determined by Eqs.
(1) and (2):
MWw =
N
∑
(hi MWi )
i=1
MWn =
N
∑
i=1
N
/∑
(hi )
(1)
(hi /MWi )
(2)
i=1
(hi )
N
/∑
i=1
.cn
1.2 Membrane filtration experiment
Balance
Drain
valve
.ac
Wastewater treatment effluent was obtained from a local
biological municipal wastewater treatment plant in Kyunggi Province, Korea. The effluent, hereafter designated as
RAW, was pre-treated by coagulation (COA) at 2.5 mg/L
Fe3+ (FeCl3 ), with rapid mixing at 120 r/min for 1 min,
followed by slow mixing at 60 r/min for 4 min or ozonation
with 4 mg/L ozone (AOP), or both of them (AOP+COA).
All reagents in this study were purchased from Aldrich
(USA).
Membrane
module
sc
1.1 Pre-treatment of wastewater treatment effluent
Permeate
je
1 Materials and methods
Regulator
Raw water
dissolved organic carbon (DOC) and spectroscopy. Wu et
al. (2011) reported that the pre-ozonation of municipal
wastewater treatment effluent decreased the specific UV
absorbance at 254 nm (SUVA254 ) from (2.2 ± 0.2) to (0.8
± 0.3) L/(mg·m). DOC was slightly changed from (6.5 ±
1.1) to (6.4 ± 1.3) mg/L. Pisarenko et al. (2011) observed
a decrease in the UV/Vis absorbance at 254 nm and
fluorescence intensity after ozonation of EfOM, but DOC
did not decrease significantly. However, it is necessary to
investigate the relationships between the change in EfOM
characteristics after oxidation and flux decline, based on a
wide range of analytical methods.
Therefore, the objective of this study was to investigate the EfOM characteristics affected by pre-treatments
such as ozonation and its effects on UF membrane flux.
The characteristics of EfOM were widely evaluated with
size exclusion chromatography, UV/Vis spectrophotometry, fluorescence spectrophotometry; acidity measurements
and Fourier transform infrared spectroscopy (FT-IR).
Changes induced by coagulation were also investigated for
comparison.
N2 gas
1326
1327
Journal of Environmental Sciences 26 (2014) 1325–1331
where, hi and MWi represent signal height and MW,
respectively (Hur et al., 2006). The MW distribution was
also analysed for the UF membrane filtrates of COA
(COA+UF) and AOP+COA (AOP+COA+UF). The acidity was analysed according to Chi and Amy (2004). The
pH of the samples was adjusted to 3.0 with 0.1 mo/L HCl
and the samples were purged with N2 gas for 30 min. The
0.1 mo/L NaOH solution was added to the samples and the
base consumption was obtained until the pH increased to 8
and 11. For FT-IR analysis, the samples were freeze-dried
and the KBr discs were prepared with 1 mg freeze-dried
sample and 300 mg KBr. The spectra were recorded in
the 450 to 4000 cm−1 range on an FT-IR spectrometer
(Spectrum One, Perkin Elmer, USA).
2 Results and discussion
2.1 Water quality and UV/Vis spectrophotometry
Both COA and AOP did not show any notable change in
pH, TDS and TN. COA showed DOC and TP reductions
of 19.43% and 14.29%, respectively. Only color was
reduced by 51.85% after ozonation (AOP). AOP+COA
showed DOC and TP reductions of 17.63% and 25.00%,
respectively, probably by coagulation, as well as 37.03%
color reduction, probably by ozonation. SUVA254 decreased by 14.29%, 42.86% and 33.33%, and A270 /A400
increased by 44.32%, 86.5% and 31.57%, for COA, AOP
and AOP+COA, respectively (Table 1). SUVA254 is an
indicator of apparent MW and aromaticity (Hur et al.,
2006), while A270 /A400 is a color coefficient (Lipski et
al., 1999). The increase of SUVA254 and the decrease of
A270 /A400 indicate the decrease in aromaticity, MW and the
chromophores with a high degree of conjugation.
The results in Table 1 indicate that a part of EfOM
can be removed by coagulation, and that the organic
compounds with higher MW and high aromaticity are
removed preferentially. However, ozonation did not com-
360
340
320
300
280
260
300 350 400 450 500 550 600
Emission wavelength (nm)
COA
AOP
AOP+COA
7.02
5.623
27
402
820
1.12
3.65
0.021
6.899
6.94
4.482
30
403
822
0.96
3.80
0.018
9.957
6.93
5.859
13
400
815
1.06
3.60
0.012
12.867
7.02
4.582
17
394
804
0.84
3.80
0.014
9.077
pletely mineralize EfOM, but the organic compounds
were partially oxidized to form lower MW and lower
aromaticity products (Wu et al., 2011). In addition, the
high MW, highly condensed, color-forming moities were
transformed into less conjugated molecules, as evidenced
by the decrease in color and SUVA254 , as well as the
increase of A270 /A400 . It has been reported that the products
of NOM oxidation by ozone, Fenton and TiO2 are low
MW compounds showing negligible UV/Vis absorption at
wavelengths less than 300 nm (e.g., alcohols, aldehydes,
ketones and carboxylic acid) (Wu et al., 2011).
2.2 Fluorescence spectrophotometry
The EEM of wastewater effluent showed peaks of HA-like,
FA-like and SMP-like compounds at excitation/emmission
(Ex/Em) wavelengths of 300–350/400–450, 220–250/400–
450 and 250–300/330–380 nm, respectively (Fig. 2a,
Henderson et al., 2009). The fluorescence intensity decreased slightly after COA at all wavelengths in the EEM
and SF spectrum (Figs. 2b and 3). After AOP, the fluorescence intensity decreased greatly, especially for SMP-like
substances (Figs. 2c and 3). The decrease in characteristic
peak intensity for HA-like (Ex/Em 330/430 nm), FA-like
400
b
380
360
340
320
300
280
260
220
RAW
RAW: effluent, COA: effluent pre-treated by coagulation; AOP: effluent
pre-treated by ozonation, DOC: dissolved organic carbon, TDS: total
dissolved solids, SUVA254 : specific UV absorbance at 254 nm.
240
240
220
pH
DOC (mg/L)
Color (Pt-Co)
TDS (mg/L)
Conductivity (µS/cm)
TP (mg/L)
TN (mg/L)
SUVA254
A270 /A400
Excitation wavelength (nm)
380
400
a
Excitation wavelength (nm)
c
380
360
340
320
300
280
260
240
300 350 400 450 500 550 600
Emission wavelength (nm)
220
300 350 400 450 500 550 600
Emission wavelength (nm)
sc
.ac
.cn
Fig. 2 Excitation-emissioin matrices (EEMs) of the effluent organic matter (EfOM) of RAW (a), COA (b), and AOP (c) (DOC 1 mg/L).
je
Excitation wavelength (nm)
400
Table 1 Water quality and UV/Vis spectroscopy indicators
1328
Journal of Environmental Sciences 26 (2014) 1325–1331
300
400
500
Emission wavelength (nm)
600
700
Fig. 3 Synchronous fluorescence spectra of RAW, COA, AOP, and
AOP+COA (∆λ = 44 nm, DOC 1 mg/L).
(Ex/Em 240/440 nm) and SMP-like (Ex/Em 280/360 nm)
substances were 69%, 65% and 80%, respectively. For
AOP+COA, the EEM (data not shown) and SF spectrum
(Fig. 3) were similar to those of AOP. However, no shift
was observed for COA, AOP or AOP+COA in the EEM
and SF spectra (Figs. 2 and 3).
The significant reduction in the fluorescence intensity
for AOP indicates that electron-withdrawing groups and
the functional groups containing O were increased by the
partial oxidation. It has been reported that EfOM forms
oxidation products with abundant O-containing functional
groups, such as aldehydes and carboxylic acids (Van
Geluwe et al., 2011). The functional groups, such as
aldehydes, carboxylic acids, halogens, nitriles, carbonyls
and nitro and hydroxyl groups, are electron-withdrawing
groups that decrease fluorescence intensity (Senesi, 1990).
Meanwhile, partial oxidation was more significant for
SMP-like substances, which showed the most significant
reduction in fluorescence intensity (Fig. 3) compared to
HA-like or FA-like substances. SMP has a high MW,
which has been reported to consist of 25%–45% of >10
kDa molecules (Jarusutthirak and Amy, 2007). Therefore,
SMP removal by ozonation can contribute much to the
reduction of membrane flux decline.
2.4 Acidity
The total acidity and aromatic acidity of RAW was 6.40
and 2.99 meq/g-DOC, respectively. COA did not show
any notable change in acidity. After AOP, total acidity
and aromatic acidity increased to 8.06 and 4.10 meq/gDOC, respectively, mainly contributed by the increase
of aromatic acidity. It has been reported that ozonation
decreases the MW and increases the acidity of NOM
(Carlson and Silverstein, 1997), due to the increase of
charged functional groups via partial oxidation of aromatic
compounds (Jansen et al., 2006). The charge density of
hydrophobic acidic NOM can be quantified by acidity;
9
RAW
COA
AOP
AOP+COA
2.3 Molecular size distribution
Fraction (%)
The MWw , MWn and polydispersity of the wastewater treatment effluent were 3501.55 Da, 143.25 Da and
24.44, respectively. The MWw , MWn and polydispersity decreased slightly after COA, probably by removing
hydrophobic and high MW fractions of EfOM by flocs
(Saminathan et al., 2011). The molecules with >100 kDa
increased for COA, probably by coagulant flocs. Coagulation can contribute to the reduction of membrane flux
decline by preventing pore-blocking (Zhang et al., 2009).
The MWw , MWn and polydispersity decreased greatly
after AOP. Especially, polydispersity decreased to 8.37,
6
3
0
>100 kDa
50-100 kDa
10-50 kDa
Fig. 4 MW distributions of the molecules of >5 kDa of RAW, COA,
AOP, and AOP+COA (DOC 10 mg/L).
.cn
200
AOP
.ac
Intensity
AOP+COA
sc
COA
indicating a narrow MW distribution of oxidized EfOM
molecules. For the UF filtrates of COA and AOP+COA,
molecules >50 kDa were completely removed (Table 2).
The molecular size distribution of AOP presented in
Table 2 and Fig. 4 indicates that the decrease of MWw ,
MWn and polydispersity is due to the decrease of high
MW fractions (>5 kDa). Especially, the molecules with
>50 kDa were not detected for AOP. The slight increase
in molecules of 100 Da–5 kDa is regarded as the result of
the generation of lower MW compounds by the partial oxidation of higher MW compounds. High MW molecules of
NOM and EfOM are partially oxidized to form lower MW
molecules by oxidants, rather than completely mineralized.
Wu et al. (2011) and Van Geluwe et al. (2011) reported
that most of the aromatic rings in NOM can be degraded
by ozone, but without a complete mineralization, resulting
in the decrease of average MW. Jansen et al. (2006)
suggested that ozone reacts mainly with small molecules
on the periphery of humic substances molecules, but some
cleavages by oxidation reactions also occur in the stable
core structure with a high degree of condensation, as
indicated by the color decrease. Therefore, it is regarded
that the decrease in high MW molecules is attributed to the
partial oxidation of high MW molecules.
je
RAW
1329
Journal of Environmental Sciences 26 (2014) 1325–1331
Table 2 Molecular size distribution
Molecular size
>100 kDa
50–100 kDa
10–50 kDa
5–10 kDa
1–5 kDa
500–1000 Da
100–500 Da
50–100 Da
10–50 Da
<10 Da
MWw (Da)
MWn (Da)
Polydispersity
RAW
COA
AOP
AOP+COA
COA+UF
AOP+COA+UF
0.03
0.59
7.63
1.81
15.74
20.36
32.44
7.05
7.28
7.05
3501.55
143.25
24.44
0.18
0.80
5.48
0.18
6.46
21.88
41.83
7.65
7.88
7.65
3125.17
138.62
22.54
0.00
0.00
3.33
1.51
17.44
22.72
34.21
6.67
7.45
6.67
1235.19
147.62
8.37
0.36
0.39
1.65
2.39
14.14
24.02
38.25
6.20
6.42
6.20
2112.73
147.91
14.28
0.00
0.00
3.83
2.16
10.22
21.79
40.88
6.89
7.36
6.89
1687.48
138.46
12.19
0.00
0.00
1.74
0.01
10.11
28.09
41.15
6.41
6.08
6.41
690.14
143.49
4.81
UF: ultrafiltration, MWw : weight of average molecular weight, MWn : number of average molecular weight.
therefore, the increase in acidity can result in the variation
of the charge interactions between NOM and membrane
surfaces (Zularisam et al., 2007).
2950-2850
1550-1475
3400-3300
RAW
COA
AOP
1170-950
1400-1390
4000
3500
3000
2500
2000
1500
Wavelength (nm)
1000
500
Fig. 5 FT-IR spectra of RAW, COA, and AOP.
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
0
RAW
COA
(O3 0 mg/L, Fe3+
AOP + COA (O3 2 mg/L, Fe3+
AOP + COA (O3 4 mg/L, Fe3+
AOP + COA (O3 8 mg/L, Fe3+
5
10
15
2.5 mg/L)
2.5 mg/L)
2.5 mg/L)
2.5 mg/L)
20
25
Time (min)
30
35
40
Fig. 6 Relative flux of RAW, COA and AOP+COA (0.5 bar).
.ac
.cn
attributed to the decrease of aromaticity, the degree of
condensation, SMP, and high MW components, as well as
sc
As shown in Fig. 6, the flux decline significantly decreased when the feed was coagulated (COA) and further
decreased when ozonated (AOP+COA). After COA, the
little change in EfOM characteristics might not have had
any influence on the decrease in flux decline (Tables 1 and
2, Figs 2 and 3). It is considered that the removal of EfOM
resulted in the decreased flux decline. Also, the removal of
highly condensed chromophores, proven by the increase of
A270 /A400 (Table 1), might contribute to the improvement
in flux.
The great decrease of flux decline for AOP+COA is
1660-1630
je
2.6 Flux
2940-2900
J/J0
The FT-IR spectrum of RAW showed peaks at 3400–3300
cm−1 (O–H stretching), 2940–2900 cm−1 (aliphatic C–H
stretching), 2950–2850 cm−1 (aliphatic C–H, C–H2 , C–H3
stretching), 1660–1630 cm−1 (C=O stretching of amide
groups, quinone C=O and/or C=O of H-bonded C=O of
conjugated ketones), 1550–1475 cm−1 (N–O asymmetric
stretching), 1400–1390 cm−1 (OH deformation and C–
O stretching of phenolic OH, C–H deformation of CH2
and CH3 groups, COO– antisymmetric stretching) and
1170–950 cm−1 (C–O stretching of polysaccharide or
polysaccharide-like substances) (Wei et al., 2010). The FTIR spectra of COA and AOP were similar to that of RAW,
but the relative intensity of the peaks at 3400–3300 and
1400–1390 cm−1 decreased and the peaks at 2940–2900
and 2950–2850 cm−1 disappeared (Fig. 5). This indicates
that aliphatic C–H stretchings of EfOM participated in
reactions induced by coagulant or ozone.
Transmittence
2.5 FT-IR
Journal of Environmental Sciences 26 (2014) 1325–1331
Acknowledgments
This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2012R1A1B3002152,
2013R1A2A2A03016095).
.cn
The results suggest that coagulation and ozonation can
be promising pre-treatments for UF membrane processes,
showing notable reductions of UF membrane fouling by
EfOM. However, the results of EfOM characterization
showed different mechanisms of flux improvement by
coagulation or ozonation.
The UF membrane flux improved after coagulation.
The average MW, fluorescence intensity and aromaticity decreased slightly, but DOCs decreased notably after
coagulation. This indicates that the improvement in UF
membrane flux is mainly due to EfOM removal. The
UF membrane flux decline decreased more greatly after
ozonation along with coagulation. This was attributed to
the significant decrease of high MW fraction (>5 kDa)
aromatic moieties of EfOM and SMP, as supported by the
significant decrease in the SMP-like peak in fluorescence
spectrophotometry and the decrease of MWw , MWn and
polydispersity. The reduction of the UF membrane flux
decline was also due to the formation of low MW, highly
charged compounds with electron-withdrawing groups by
the partial oxidation of EfOM, which was supported by
the decrease of SUVA254 and fluorescence intensity, along
with the increase of A270 /A400 and acidity.
APHA, AWWA, WEF, 1998. Standard Methods for Examination of Water
and Wastewater, 20th ed. Washington, DC, USA.
Carlson, G., Silverstein, J., 1997. Effect of ozonation on sorption of
natural organic matter by biofilm. Water Res. 131(10), 2467–2478.
Chi, F.H., Amy, G.L., 2004. Kinetic study on the sorption of dissolved
natural organic matter onto different aquifer materials: the effects of
hydrophobicity and functional groups. J. Colloid Interf. Sci. 274(2),
380–391.
Genz, C., Miehe, U., Gnirss, R., Jekel, M., 2011. The effect of preozonation and subsequent coagulation on the filtration of WWTP
effluent with low-pressure membranes. Water Sci. Technol. 64(6),
1270–1276.
Guo, J., Peng, Y.Z., Guo, J.H., Ma, J., Wang, W., Wang, B.G., 2011.
Dissolved organic matter in biologically treated sewage effluent
(BTSE): Characteristics and comparison. Desalination 278(1-3),
365–372.
Henderson, R.K., Baker, A., Murphy, K.R., Hambly, A., Stuetz, R.M.,
Khan, S.J., 2009. Fluorescence as a potential monitoring tool for
recycled water systems: A review. Water Res. 43(4), 863–881.
Huang, H., Schwab, K., Jacangelo, G., 2009. Pretreatment for low
pressure membranes in water treatment: A review. Environ. Sci.
Technol. 43(9), 3011–3019.
Hur, J., Williams, M.A., Schlautman, M.A., 2006. Evaluating spectroscopic and chromatographic techniques to resolve dissolved
organic matter via end member mixing analysis. Chemosphere
63(3), 387–402.
Jansen, R.H.S., Zwijnenburg, A., van der Meer, W.G.J., Wessling, M.,
2006. Outside-in trimming of humic substances during ozonation in
a membrane contactor. Environ. Sci. Technol. 40(20), 6460–6465.
Jarusutthirak, C., Amy, G., 2007. Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM).
Water Res. 41(12), 2787–2793.
Le-Clech, P., Chen, V., Fane, T.A.G., 2006. Fouling in membrane
bioreactors used in wastewater treatment. J. Membrane Sci. 284(12), 17–53.
Lin, C.F., Huang, Y.J., Hao, O.J., 1999. Ultrafiltration processes for
removing humic substances: Effect of molecular weight fractions
and PAC treatment. Water Res. 33(5), 1252–1264.
Lipski, M., Slawinski, J., Zych, D., 1999. Changes in the luminescent
properties of humic acids induced by UV radiation. J. Fluoresc.
9(2), 133–138.
Pisarenko, A.N., Gerrity, D., Wert, E., Stanford, B.D., Korshin, G., Snyder, S., 2011. Use of organic characterization techniques to develop
predictive tools for water reuse applications. In: Proceedings of the
15th Annual Water Reuse & Desalination Research Conference,
Las Vegas, NV, May 16–17.
Saminathan, S., Liu, H., Nguyen, T.V., Vigneswaran, S., 2011. Organic
matter removal from biologically treated sewage effluent by flocculation and oxidation coupled with flocculation. Desalin. Water
Treat. 32(1-3), 133–137.
Senesi, N., 1990. Molecular and quantitative aspects of the chemistry
of fulvic acid and its interactions with metal ions and organic
chemicals. Part II. The fluorescence spectroscopy approach. Anal.
Chim. Acta 232, 77–106.
Shon, H.K., Vigneswaran, S., Kim, I.S., Cho, J., Ngo, H.H., 2006. Fouling
of ultrafiltration membrane by effluent organic matter: A detailed
characterization using different organic fractions in wastewater. J.
.ac
3 Conclusions
references
sc
the increase of charge, as the results of partial oxidation
by ozone. The decrease of aromaticity, and the degree
of condensation (Table 1) indicate the decrease of larger
molecules of NOM, which can cause fouling. The removal
of SMP as shown in the EEMs spectra (Fig. 2c) can also
greatly reduce the flux decline, because SMP is a major
organic foulant of biological wastewater treatment effluent.
Zhang (2009) found that the amount of SMP of 3–10 kDa
was positively correlated to the pore-blocking resistance.
The decrease of the high MW molecules can improve the
flux. Lin et al. (1999) showed that the fouling of a UF
membrane with a molecular weight cutoff of 100 kDa was
the most significant with HA of 6.5–22.6 kDa. The results
in this study showed a great removal of the molecules
of >10 kDa, which play a major role in UF membrane
fouling. In addition, the increase of charge, evidenced by
the increase of acidity after ozonation, can reduce the
EfOM adsorption onto membrane surface by electrostatic
repulsion, resulting in the increase of permeate flux (Zularisam et al., 2007).
je
1330
1331
Journal of Environmental Sciences 26 (2014) 1325–1331
sc
.ac
.cn
reclamation and reuse. Desalination 178(1-3), 1–11.
Zhang, H.F., 2009. Impact of soluble microbial products and extracellular
polymeric substances on filtration resistance in a membrane bioreactor. Environ. Eng. Sci. 26(6), 1115–1122.
Zhang, L.Q., Wang, L., Zhang, G., Wang, X.D., 2009. Fouling of
nanofiltration membrane by effluent organic matter: Characterization using dierent organic fractions in wastewater. J. Environ. Sci.
21(1), 49–53.
Zularisam, A.W., Ismail, A.F., Salim, M.R., Sakinah, M., Hiroaki, O.,
2007. Fabrication, fouling and foulant analyses of asymmetric
polysulfone (PSF) ultrafiltration membrane fouled with natural
organic matter (NOM) source waters. J. Membrane Sci. 299(1-2),
97–113.
je
Membrane Sci. 278(1-2), 232–238.
Van Geluwe, S., Braeken, S., Van der Bruggen, B., 2011. Ozone oxidation
for the alleviation of membrane fouling by natural organic matter:
a review. Water Res. 45(12), 3551–3570.
Wei, L.L., Wang, K., Zhao, Q.L., Jiang, J.Q., Xie, C.M., Qiu, W., 2010.
Organic matter extracted from activated sludge with ammonium
hydroxide and its characterization. J. Environ. Sci. 22(5), 641–647.
Wu, L.L., Zhao, X., Zhang, M., 2011. Removal of dissolved organic
matter in municipal effluent with ozonation, slow sand filtration
and nanofiltration as high quality pre-treatment option for artificial
groundwater recharge. Chemosphere 83(5), 693–699.
Wintgens, T., Melin, T., Schäfer, A., Khan, S., Muston, M., Bixio, D. et
al., 2005. The role of membrane processes in municipal wastewater
Editorial Board of Journal of Environmental Sciences
Editor-in-Chief
Hongxiao Tang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Associate Editors-in-Chief
Jiuhui Qu
Shu Tao
Nigel Bell
Po-Keung Wong
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Peking University, China
Imperial College London, United Kingdom
The Chinese University of Hong Kong, Hong Kong, China
Editorial Board
Aquatic environment
Baoyu Gao
Shandong University, China
Maohong Fan
University of Wyoming, USA
Chihpin Huang
National Chiao Tung University
Taiwan, China
Ng Wun Jern
Nanyang Environment &
Water Research Institute, Singapore
Clark C. K. Liu
University of Hawaii at Manoa, USA
Hokyong Shon
University of Technology, Sydney, Australia
Zijian Wang
Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, China
Zhiwu Wang
The Ohio State University, USA
Yuxiang Wang
Queen’s University, Canada
Min Yang
Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, China
Zhifeng Yang
Beijing Normal University, China
Han-Qing Yu
University of Science & Technology of China
Terrestrial environment
Christopher Anderson
Massey University, New Zealand
Zucong Cai
Nanjing Normal University, China
Xinbin Feng
Institute of Geochemistry,
Chinese Academy of Sciences, China
Hongqing Hu
Huazhong Agricultural University, China
Kin-Che Lam
The Chinese University of Hong Kong
Hong Kong, China
Erwin Klumpp
Research Centre Juelich, Agrosphere Institute
Germany
Peijun Li
Institute of Applied Ecology,
Chinese Academy of Sciences, China
Michael Schloter
German Research Center for Environmental Health
Germany
Xuejun Wang
Peking University, China
Lizhong Zhu
Zhejiang University, China
Atomospheric environment
Jianmin Chen
Fudan University, China
Abdelwahid Mellouki
Centre National de la Recherche Scientifique
France
Yujing Mu
Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, China
Min Shao
Peking University, China
James Jay Schauer
University of Wisconsin-Madison, USA
Yuesi Wang
Institute of Atmospheric Physics,
Chinese Academy of Sciences, China
Xin Yang
University of Cambridge, UK
Environmental biology
Yong Cai
Florida International University, USA
Henner Hollert
RWTH Aachen University, Germany
Jae-Seong Lee
Sungkyunkwan University, South Korea
Christopher Rensing
University of Copenhagen, Denmark
Bojan Sedmak
National Institute of Biology, Ljubljana
Lirong Song
Institute of Hydrobiology,
the Chinese Academy of Sciences, China
Chunxia Wang
National Natural Science Foundation of China
Gehong Wei
Northwest A & F University, China
Daqiang Yin
Tongji University, China
Zhongtang Yu
The Ohio State University, USA
Environmental toxicology and health
Jingwen Chen
Dalian University of Technology, China
Jianying Hu
Peking University, China
Guibin Jiang
Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, China
Sijin Liu
Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, China
Tsuyoshi Nakanishi
Gifu Pharmaceutical University, Japan
Willie Peijnenburg
University of Leiden, The Netherlands
Bingsheng Zhou
Institute of Hydrobiology,
Chinese Academy of Sciences, China
Environmental catalysis and materials
Hong He
Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, China
Junhua Li
Tsinghua University, China
Wenfeng Shangguan
Shanghai Jiao Tong University, China
Yasutake Teraoka
Kyushu University, Japan
Ralph T. Yang
University of Michigan, USA
Environmental analysis and method
Zongwei Cai
Hong Kong Baptist University,
Hong Kong, China
Jiping Chen
Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, China
Minghui Zheng
Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, China
Municipal solid waste and green chemistry
Pinjing He
Tongji University, China
Environmental ecology
Rusong Wang
Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences, China
Editorial office staff
Managing editor
Editors
English editor
Qingcai Feng
Zixuan Wang
Suqin Liu
Catherine Rice (USA)
Zhengang Mao
Copyright© Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
JOURNAL OF ENVIRONMENTAL SCIENCES
环境科学学报(英文版)
(http://www.jesc.ac.cn)
Aims and scope
Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and
valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid
communications, and special issues.
The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial
water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments;
toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.
For subscription to electronic edition
Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.
For subscription to print edition
China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic
postcode: 2-580).
Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office
nearest you.
Submission declaration
Submission of an article implies that the work described has not been published previously (except in the form of an
abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere.
The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work
was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other
language, including electronically without the written consent of the copyright-holder.
Submission declaration
Submission of the work described has not been published previously (except in the form of an abstract or as part of a
published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should
be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the
manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including
electronically without the written consent of the copyright-holder.
Editorial
Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel:
+86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.
Journal of Environmental Sciences (Established in 1989)
Vol. 26 No. 6
2014
Supervised by
Chinese Academy of Sciences
Sponsored by
Research Center for Eco-Environmental
Sciences, Chinese Academy of Sciences
Edited by
Editorial Office of Journal of
Published by
Elsevier Limited, The Netherlands
Distributed by
Domestic
North Street, Beijing 100717, China
P. O. Box 2871, Beijing 100085, China
Local Post Offices through China
Foreign
E-mail: jesc@263.net, jesc@rcees.ac.cn
CN 11-2629/X
Science Press, 16 Donghuangchenggen
Environmental Sciences
Tel: 86-10-62920553; http://www.jesc.ac.cn
Editor-in-chief
Science Press, Beijing, China
Hongxiao Tang
Domestic postcode: 2-580
Elsevier Limited
http://www.elsevier.com/locate/jes
Printed by
Beijing Beilin Printing House, 100083, China
Domestic price per issue
RMB ¥ 110.00