Untitled - Journal of Environmental Sciences
Transcription
Untitled - Journal of Environmental Sciences
ISSN 1001–0742 Journal of Environmental Sciences Vol. 26 No. 6 2014 CONTENTS Special Issue: Sustainable water management for green infrastructure Preface · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1213 Fractionation of heavy metals in runoff and discharge of a stormwater management system and its implications for treatment Marla Maniquiz-Redillas, Lee-Hyung Kim · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1214 Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil Evi Kurniati, Novi Arfarita, Tsuyoshi Imai, Takaya Higuchi, Ariyo Kanno, Koichi Yamamoto, Masahiko Sekine · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1223 Is urban development an urban river killer? A case study of Yongding Diversion Channel in Beijing, China Xi Wang, Junqi Li, Yingxia Li, Zhenyao Shen, Xuan Wang, Zhifeng Yang, Inchio Lou · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1232 Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes Junsik Oh, Dennis Espineli Salcedo, Carl Angelo Medriano, Sungpyo Kim · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1238 Genotoxicity removal of reclaimed water during ozonation Xin Tang, Qianyuan Wu, Yang Yang, Hongying Hu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1243 Quantifying and managing regional greenhouse gas emissions:Waste sector of Daejeon, Korea Sora Yi, Heewon Yang, Seung Hoon Lee, Kyoung-Jin An· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1249 Nitrogen mass balance in a constructed wetland treating piggery wastewater effluent Soyoung Lee, Marla C. Maniquiz-Redillas, Jiyeon Choi, Lee-Hyung Kim · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1260 Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of Acid Orange 7 in water Chun Cai, Liguo Wang, Hong Gao, Liwei Hou, Hui Zhang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1267 A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste Jey-R Sabado Ventura, Jehoon Lee, Deokjin Jahng · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1274 Degradation of dibromophenols by UV irradiation Keiko Katayama-Hirayama, Naoki Toda, Akihiko Tauchi, Atsushi Fujioka, Tetsuya Akitsu, Hidehiro Kaneko, Kimiaki Hirayama · · · · · · · · · · · · 1284 Anoxic gas recirculation system for fouling control in anoxic membrane reactor Hansaem Lee, Daeju Lee, Seongwan Hong, Geum Hee Yun, Sungpyo Kim, Jung Ki Hwang, Woojae Lee, Zuwhan Yun · · · · · · · · · · · · · · · · · · · · · · · 1289 Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins for controlling disinfection by-products Athit Phetrak, Jenyuk Lohwacharin, Hiroshi Sakai, Michio Murakami, Kumiko Oguma, Satoshi Takizawa · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1294 Inactivation effect of pressurized carbon dioxide on bacteriophage Qβ and ΦX174 as a novel disinfectant for water treatment Huy Thanh Vo, Tsuyoshi Imai, Truc Thanh Ho, Masahiko Sekine, Ariyo Kanno, Takaya Higuchi, Koichi Yamamoto, Hidenori Yamamoto · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1301 Photoassisted Fenton degradation of phthalocyanine dyes from wastewater of printing industry using Fe(II)/γ-Al2 O3 catalyst in up-flow fluidized-bed Hsuhui Cheng, Shihjie Chou, Shiaoshing Chen, Chiajen Yu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1307 Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics Krish J. Madarang, Joo-Hyon Kang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1313 Non-point source analysis of a railway bridge area using statistical method: Case study of a concrete road-bed Kyungik Gil, Jiyeol Im · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1321 Effects of ozonation and coagulation on effluent organic matter characteristics and ultrafiltration membrane fouling Kwon Jeong, Dae-Sung Lee, Do-Gun Kim, Seok-Oh Ko · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1325 Decontamination of alachlor herbicide wastewater by a continuous dosing mode ultrasound/Fe2+ /H2 O2 process Chikang Wang, Chunghan Liu· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1332 Comparison of biochemical characteristics between PAO and DPAO sludges Hansaem Lee, Zuwhan Yun· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1340 Fouling distribution in forward osmosis membrane process Junseok Lee, Bongchul Kim, Seungkwan Hong · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1348 Removal of estrogens by electrochemical oxidation process Vo Huu Cong, Sota Iwaya, Yutaka Sakakibara · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1355 Delignification of disposable wooden chopsticks waste for fermentative hydrogen production by an enriched culture from a hot spring Kanthima Phummala, Tsuyoshi Imai, Alissara Reungsang, Prapaipid Chairattanamanokorn, Masahiko Sekine, Takaya Higuchi, Koichi Yamamoto, Ariyo Kanno · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1361 Characterization of a salt-tolerant bacterium Bacillus sp. from a membrane bioreactor for saline wastewater treatment Xiaohui Zhang, Jie Gao, Fangbo Zhao, Yuanyuan Zhao, Zhanshuang Li · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1369 Serial parameter: CN 11-2629/X*1989*m*162*en*P*23*2014-6 Journal of Environmental Sciences 26 (2014) 1325–1331 Available online at www.sciencedirect.com Journal of Environmental Sciences www.jesc.ac.cn Effects of ozonation and coagulation on effluent organic matter characteristics and ultrafiltration membrane fouling Kwon Jeong1 , Dae-Sung Lee2 , Do-Gun Kim1 , Seok-Oh Ko1,∗ 1. Department of Civil Engineering, Kyung Hee University, Yongin 446-701, Korea. E-mail: devilgmr@khu.ac.kr 2. Institute of Construction Technology, KUMHO Engineering & Construction, Yongin 449-822, Korea article info abstract Article history: Special issue: Sustainable water management for green infrastructure Effluent organic matter (EfOM) is the major cause of fouling in the low pressure membranes process for wastewater reuse. Coagulation and oxidation of biological wastewater treatment effluent have been applied for the fouling control of microfiltration membranes. However, the change in EfOM structure by pre-treatments has not been clearly identified. The changes of EfOM characteristics induced by coagulation and ozonation were investigated through size exclusion chromatography, UV/Vis spectrophotometry, fluorescence spectrophotometry and titrimetric analysis to identify the mechanisms in the reduction of ultrafiltration (UF) membrane fouling. The results indicated that reduction of flux decline by coagulation was due to modified characteristics of dissolved organic carbon (DOC) content. Total concentration of DOC was not reduced by ozonation. However, the mass fraction of the molecules with molecular weight larger than 5 kDa, fluorescence intensity, aromaticity, highly condensed chromophores, average molecular weight and soluble microbial byproducts decreased greatly after ozonation. These results indicated that EfOM was partially oxidized by ozonation to low molecular weight, highly charged compounds with abundant electronwithdrawing functional groups, which are favourable for alleviating UF membrane flux decline. ∗ Corresponding author. E-mail: soko@khu.ac.kr .cn Ultrafiltration (UF) membranes are generally used for wastewater reclamation and reuse (Wintgens et al., 2006). However, deposition and adsorption of soluble and solid components of the wastewater treatment effluent cause membrane fouling, which results in the reduction of productivity and increase in backwashing and membrane replacement cost (Le-Clech et al., 2006). It is generally known that the less charged macromolecular and/or colloidal organic components in effluent organic matter (EfOM) are the major foulants of UF membranes (Shon et al., 2006; Guo et al., 2011). EfOM is a highly heterogeneous mixture of natural organic matter (NOM) such as humic acid (HA) and fulvic acid (FA), soluble microbial .ac Introduction products (SMP) and other organic compounds generated during water use and wastewater treatment (Shon et al., 2006). The molecular weight (MW) of EfOM especially increases after aerobic biological treatment by the aggregation of humic substances and SMP, accelerating UF membrane flux decline (Guo et al., 2011). Many pre-treatment processes, such as coagulation, adsorption, prefiltration and oxidation, have been investigated for the removal and/or transformation of EfOM to prevent fouling (Huang et al., 2009). Among them, oxidation of EfOM by oxidants (e.g., ozone) has shown a good potential for the reduction of UF membrane flux decline by organic foulants (Wu et al., 2011). Genz et al. (2011) reported that the flux decline of a ceramic UF membrane was reduced significantly by the ozonation of EfOM. It was thought that the decreased flux decline could be attributed to the reduction of MW and aromaticity of EfOM, which was evidenced partially by analyzing sc DOI: 10.1016/S1001-0742(13)60607-5 je Keywords: effluent organic matter fouling ultrafiltration oxidation molecular weight distribution acidity Journal of Environmental Sciences 26 (2014) 1325–1331 The RAW, COA and AOP+COA were used as feed water to investigate the contributions of the pre-treatments to the flux. For the pre-treatment, coagulant concentration was 2.5 mg/L and O3 concentration varied from 0 to 8 mg/L. A polyvinylidene difluoride UF membrane with a molecular weight cutoff of 100 kDa, a nominal pore size of 0.01 µm and pure water permeability of 0.8 m/hr at 100 kPa was used (TORAY, Japan). A single hollow fiber module of the membrane with an active area of 0.03 m2 was used. The experiments were carried out at (25 ± 1)◦ C, at a constant pressure of 0.5 and 0.75 bar for filtration and backwashing, respectively, and with a cycle of 7 min filtration and 1 min backwashing (10 mg/L NaOCl solution). The permeate weight was recorded by an electronic balance to obtain the flux (Fig. 1). PC Backwash water Inlet valve Fig. 1 Schematic of representation of membrane filtration system. 1.3 EfOM characterization The RAW, COA, AOP and AOP+COA were filtered with 0.45 µm polyvinylidene difluoride filters. Total dissolved solids (TDS), conductivity, pH, total phosphorus (TP) and total nitrogen (TN) were measured according to standard methods (APHA et al., 1998). DOC was measured by a total organic carbon (TOC) analyzer (TOC-V CPH, Shimadzu, Japan). UV/Vis spectra were obtained with an UV/Vis spectrophotometer (UV mini 1240, Shimadzu, Japan) at wavelengths from 800 to 200 nm. The absorbance at 254, 270, 280 and 400 nm was recorded. Fluorescence spectra were recorded using a spectrofluorophotometer (RF5301PC, Shimadzu, Japan). Excitation-emission matrices (EEMs) were obtained at excitation and emission wavelengths of 220–400 and 280–600 nm, respectively, and synchronous fluorescence (SF) spectra were obtained with constant wavelength differences (∆λ) of 21, 32, 44, 66 and 77 nm. The MW distribution was analysed with a size exclusion chromatography column (Protein Pak 125, Waters, USA), an absorbance detector (UV 730 D, Younglin, Korea), a solvent degasser (SDV 30 Plus, Younglin, Korea) and a column oven (CTS 30, Younglin, Korea). The detection wavelength was 254 nm and the flow rate of the mobile phase was 0.8 mL/min. The mobile phase was buffered at pH 6.8 by 2 mmol/L NaH2 PO4 .H2 O and 2 mmol/L Na2 HPO4 to a 0.1 mol/L NaCl solution. Sodium polystyrene sulfonate standards (Polysciences, Inc., USA) and acetone were used as standards. The weight of average molecular weight (MWw ) and the number of average molecular weight (MWn ) were determined by Eqs. (1) and (2): MWw = N ∑ (hi MWi ) i=1 MWn = N ∑ i=1 N /∑ (hi ) (1) (hi /MWi ) (2) i=1 (hi ) N /∑ i=1 .cn 1.2 Membrane filtration experiment Balance Drain valve .ac Wastewater treatment effluent was obtained from a local biological municipal wastewater treatment plant in Kyunggi Province, Korea. The effluent, hereafter designated as RAW, was pre-treated by coagulation (COA) at 2.5 mg/L Fe3+ (FeCl3 ), with rapid mixing at 120 r/min for 1 min, followed by slow mixing at 60 r/min for 4 min or ozonation with 4 mg/L ozone (AOP), or both of them (AOP+COA). All reagents in this study were purchased from Aldrich (USA). Membrane module sc 1.1 Pre-treatment of wastewater treatment effluent Permeate je 1 Materials and methods Regulator Raw water dissolved organic carbon (DOC) and spectroscopy. Wu et al. (2011) reported that the pre-ozonation of municipal wastewater treatment effluent decreased the specific UV absorbance at 254 nm (SUVA254 ) from (2.2 ± 0.2) to (0.8 ± 0.3) L/(mg·m). DOC was slightly changed from (6.5 ± 1.1) to (6.4 ± 1.3) mg/L. Pisarenko et al. (2011) observed a decrease in the UV/Vis absorbance at 254 nm and fluorescence intensity after ozonation of EfOM, but DOC did not decrease significantly. However, it is necessary to investigate the relationships between the change in EfOM characteristics after oxidation and flux decline, based on a wide range of analytical methods. Therefore, the objective of this study was to investigate the EfOM characteristics affected by pre-treatments such as ozonation and its effects on UF membrane flux. The characteristics of EfOM were widely evaluated with size exclusion chromatography, UV/Vis spectrophotometry, fluorescence spectrophotometry; acidity measurements and Fourier transform infrared spectroscopy (FT-IR). Changes induced by coagulation were also investigated for comparison. N2 gas 1326 1327 Journal of Environmental Sciences 26 (2014) 1325–1331 where, hi and MWi represent signal height and MW, respectively (Hur et al., 2006). The MW distribution was also analysed for the UF membrane filtrates of COA (COA+UF) and AOP+COA (AOP+COA+UF). The acidity was analysed according to Chi and Amy (2004). The pH of the samples was adjusted to 3.0 with 0.1 mo/L HCl and the samples were purged with N2 gas for 30 min. The 0.1 mo/L NaOH solution was added to the samples and the base consumption was obtained until the pH increased to 8 and 11. For FT-IR analysis, the samples were freeze-dried and the KBr discs were prepared with 1 mg freeze-dried sample and 300 mg KBr. The spectra were recorded in the 450 to 4000 cm−1 range on an FT-IR spectrometer (Spectrum One, Perkin Elmer, USA). 2 Results and discussion 2.1 Water quality and UV/Vis spectrophotometry Both COA and AOP did not show any notable change in pH, TDS and TN. COA showed DOC and TP reductions of 19.43% and 14.29%, respectively. Only color was reduced by 51.85% after ozonation (AOP). AOP+COA showed DOC and TP reductions of 17.63% and 25.00%, respectively, probably by coagulation, as well as 37.03% color reduction, probably by ozonation. SUVA254 decreased by 14.29%, 42.86% and 33.33%, and A270 /A400 increased by 44.32%, 86.5% and 31.57%, for COA, AOP and AOP+COA, respectively (Table 1). SUVA254 is an indicator of apparent MW and aromaticity (Hur et al., 2006), while A270 /A400 is a color coefficient (Lipski et al., 1999). The increase of SUVA254 and the decrease of A270 /A400 indicate the decrease in aromaticity, MW and the chromophores with a high degree of conjugation. The results in Table 1 indicate that a part of EfOM can be removed by coagulation, and that the organic compounds with higher MW and high aromaticity are removed preferentially. However, ozonation did not com- 360 340 320 300 280 260 300 350 400 450 500 550 600 Emission wavelength (nm) COA AOP AOP+COA 7.02 5.623 27 402 820 1.12 3.65 0.021 6.899 6.94 4.482 30 403 822 0.96 3.80 0.018 9.957 6.93 5.859 13 400 815 1.06 3.60 0.012 12.867 7.02 4.582 17 394 804 0.84 3.80 0.014 9.077 pletely mineralize EfOM, but the organic compounds were partially oxidized to form lower MW and lower aromaticity products (Wu et al., 2011). In addition, the high MW, highly condensed, color-forming moities were transformed into less conjugated molecules, as evidenced by the decrease in color and SUVA254 , as well as the increase of A270 /A400 . It has been reported that the products of NOM oxidation by ozone, Fenton and TiO2 are low MW compounds showing negligible UV/Vis absorption at wavelengths less than 300 nm (e.g., alcohols, aldehydes, ketones and carboxylic acid) (Wu et al., 2011). 2.2 Fluorescence spectrophotometry The EEM of wastewater effluent showed peaks of HA-like, FA-like and SMP-like compounds at excitation/emmission (Ex/Em) wavelengths of 300–350/400–450, 220–250/400– 450 and 250–300/330–380 nm, respectively (Fig. 2a, Henderson et al., 2009). The fluorescence intensity decreased slightly after COA at all wavelengths in the EEM and SF spectrum (Figs. 2b and 3). After AOP, the fluorescence intensity decreased greatly, especially for SMP-like substances (Figs. 2c and 3). The decrease in characteristic peak intensity for HA-like (Ex/Em 330/430 nm), FA-like 400 b 380 360 340 320 300 280 260 220 RAW RAW: effluent, COA: effluent pre-treated by coagulation; AOP: effluent pre-treated by ozonation, DOC: dissolved organic carbon, TDS: total dissolved solids, SUVA254 : specific UV absorbance at 254 nm. 240 240 220 pH DOC (mg/L) Color (Pt-Co) TDS (mg/L) Conductivity (µS/cm) TP (mg/L) TN (mg/L) SUVA254 A270 /A400 Excitation wavelength (nm) 380 400 a Excitation wavelength (nm) c 380 360 340 320 300 280 260 240 300 350 400 450 500 550 600 Emission wavelength (nm) 220 300 350 400 450 500 550 600 Emission wavelength (nm) sc .ac .cn Fig. 2 Excitation-emissioin matrices (EEMs) of the effluent organic matter (EfOM) of RAW (a), COA (b), and AOP (c) (DOC 1 mg/L). je Excitation wavelength (nm) 400 Table 1 Water quality and UV/Vis spectroscopy indicators 1328 Journal of Environmental Sciences 26 (2014) 1325–1331 300 400 500 Emission wavelength (nm) 600 700 Fig. 3 Synchronous fluorescence spectra of RAW, COA, AOP, and AOP+COA (∆λ = 44 nm, DOC 1 mg/L). (Ex/Em 240/440 nm) and SMP-like (Ex/Em 280/360 nm) substances were 69%, 65% and 80%, respectively. For AOP+COA, the EEM (data not shown) and SF spectrum (Fig. 3) were similar to those of AOP. However, no shift was observed for COA, AOP or AOP+COA in the EEM and SF spectra (Figs. 2 and 3). The significant reduction in the fluorescence intensity for AOP indicates that electron-withdrawing groups and the functional groups containing O were increased by the partial oxidation. It has been reported that EfOM forms oxidation products with abundant O-containing functional groups, such as aldehydes and carboxylic acids (Van Geluwe et al., 2011). The functional groups, such as aldehydes, carboxylic acids, halogens, nitriles, carbonyls and nitro and hydroxyl groups, are electron-withdrawing groups that decrease fluorescence intensity (Senesi, 1990). Meanwhile, partial oxidation was more significant for SMP-like substances, which showed the most significant reduction in fluorescence intensity (Fig. 3) compared to HA-like or FA-like substances. SMP has a high MW, which has been reported to consist of 25%–45% of >10 kDa molecules (Jarusutthirak and Amy, 2007). Therefore, SMP removal by ozonation can contribute much to the reduction of membrane flux decline. 2.4 Acidity The total acidity and aromatic acidity of RAW was 6.40 and 2.99 meq/g-DOC, respectively. COA did not show any notable change in acidity. After AOP, total acidity and aromatic acidity increased to 8.06 and 4.10 meq/gDOC, respectively, mainly contributed by the increase of aromatic acidity. It has been reported that ozonation decreases the MW and increases the acidity of NOM (Carlson and Silverstein, 1997), due to the increase of charged functional groups via partial oxidation of aromatic compounds (Jansen et al., 2006). The charge density of hydrophobic acidic NOM can be quantified by acidity; 9 RAW COA AOP AOP+COA 2.3 Molecular size distribution Fraction (%) The MWw , MWn and polydispersity of the wastewater treatment effluent were 3501.55 Da, 143.25 Da and 24.44, respectively. The MWw , MWn and polydispersity decreased slightly after COA, probably by removing hydrophobic and high MW fractions of EfOM by flocs (Saminathan et al., 2011). The molecules with >100 kDa increased for COA, probably by coagulant flocs. Coagulation can contribute to the reduction of membrane flux decline by preventing pore-blocking (Zhang et al., 2009). The MWw , MWn and polydispersity decreased greatly after AOP. Especially, polydispersity decreased to 8.37, 6 3 0 >100 kDa 50-100 kDa 10-50 kDa Fig. 4 MW distributions of the molecules of >5 kDa of RAW, COA, AOP, and AOP+COA (DOC 10 mg/L). .cn 200 AOP .ac Intensity AOP+COA sc COA indicating a narrow MW distribution of oxidized EfOM molecules. For the UF filtrates of COA and AOP+COA, molecules >50 kDa were completely removed (Table 2). The molecular size distribution of AOP presented in Table 2 and Fig. 4 indicates that the decrease of MWw , MWn and polydispersity is due to the decrease of high MW fractions (>5 kDa). Especially, the molecules with >50 kDa were not detected for AOP. The slight increase in molecules of 100 Da–5 kDa is regarded as the result of the generation of lower MW compounds by the partial oxidation of higher MW compounds. High MW molecules of NOM and EfOM are partially oxidized to form lower MW molecules by oxidants, rather than completely mineralized. Wu et al. (2011) and Van Geluwe et al. (2011) reported that most of the aromatic rings in NOM can be degraded by ozone, but without a complete mineralization, resulting in the decrease of average MW. Jansen et al. (2006) suggested that ozone reacts mainly with small molecules on the periphery of humic substances molecules, but some cleavages by oxidation reactions also occur in the stable core structure with a high degree of condensation, as indicated by the color decrease. Therefore, it is regarded that the decrease in high MW molecules is attributed to the partial oxidation of high MW molecules. je RAW 1329 Journal of Environmental Sciences 26 (2014) 1325–1331 Table 2 Molecular size distribution Molecular size >100 kDa 50–100 kDa 10–50 kDa 5–10 kDa 1–5 kDa 500–1000 Da 100–500 Da 50–100 Da 10–50 Da <10 Da MWw (Da) MWn (Da) Polydispersity RAW COA AOP AOP+COA COA+UF AOP+COA+UF 0.03 0.59 7.63 1.81 15.74 20.36 32.44 7.05 7.28 7.05 3501.55 143.25 24.44 0.18 0.80 5.48 0.18 6.46 21.88 41.83 7.65 7.88 7.65 3125.17 138.62 22.54 0.00 0.00 3.33 1.51 17.44 22.72 34.21 6.67 7.45 6.67 1235.19 147.62 8.37 0.36 0.39 1.65 2.39 14.14 24.02 38.25 6.20 6.42 6.20 2112.73 147.91 14.28 0.00 0.00 3.83 2.16 10.22 21.79 40.88 6.89 7.36 6.89 1687.48 138.46 12.19 0.00 0.00 1.74 0.01 10.11 28.09 41.15 6.41 6.08 6.41 690.14 143.49 4.81 UF: ultrafiltration, MWw : weight of average molecular weight, MWn : number of average molecular weight. therefore, the increase in acidity can result in the variation of the charge interactions between NOM and membrane surfaces (Zularisam et al., 2007). 2950-2850 1550-1475 3400-3300 RAW COA AOP 1170-950 1400-1390 4000 3500 3000 2500 2000 1500 Wavelength (nm) 1000 500 Fig. 5 FT-IR spectra of RAW, COA, and AOP. 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 0 RAW COA (O3 0 mg/L, Fe3+ AOP + COA (O3 2 mg/L, Fe3+ AOP + COA (O3 4 mg/L, Fe3+ AOP + COA (O3 8 mg/L, Fe3+ 5 10 15 2.5 mg/L) 2.5 mg/L) 2.5 mg/L) 2.5 mg/L) 20 25 Time (min) 30 35 40 Fig. 6 Relative flux of RAW, COA and AOP+COA (0.5 bar). .ac .cn attributed to the decrease of aromaticity, the degree of condensation, SMP, and high MW components, as well as sc As shown in Fig. 6, the flux decline significantly decreased when the feed was coagulated (COA) and further decreased when ozonated (AOP+COA). After COA, the little change in EfOM characteristics might not have had any influence on the decrease in flux decline (Tables 1 and 2, Figs 2 and 3). It is considered that the removal of EfOM resulted in the decreased flux decline. Also, the removal of highly condensed chromophores, proven by the increase of A270 /A400 (Table 1), might contribute to the improvement in flux. The great decrease of flux decline for AOP+COA is 1660-1630 je 2.6 Flux 2940-2900 J/J0 The FT-IR spectrum of RAW showed peaks at 3400–3300 cm−1 (O–H stretching), 2940–2900 cm−1 (aliphatic C–H stretching), 2950–2850 cm−1 (aliphatic C–H, C–H2 , C–H3 stretching), 1660–1630 cm−1 (C=O stretching of amide groups, quinone C=O and/or C=O of H-bonded C=O of conjugated ketones), 1550–1475 cm−1 (N–O asymmetric stretching), 1400–1390 cm−1 (OH deformation and C– O stretching of phenolic OH, C–H deformation of CH2 and CH3 groups, COO– antisymmetric stretching) and 1170–950 cm−1 (C–O stretching of polysaccharide or polysaccharide-like substances) (Wei et al., 2010). The FTIR spectra of COA and AOP were similar to that of RAW, but the relative intensity of the peaks at 3400–3300 and 1400–1390 cm−1 decreased and the peaks at 2940–2900 and 2950–2850 cm−1 disappeared (Fig. 5). This indicates that aliphatic C–H stretchings of EfOM participated in reactions induced by coagulant or ozone. Transmittence 2.5 FT-IR Journal of Environmental Sciences 26 (2014) 1325–1331 Acknowledgments This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2012R1A1B3002152, 2013R1A2A2A03016095). .cn The results suggest that coagulation and ozonation can be promising pre-treatments for UF membrane processes, showing notable reductions of UF membrane fouling by EfOM. However, the results of EfOM characterization showed different mechanisms of flux improvement by coagulation or ozonation. The UF membrane flux improved after coagulation. The average MW, fluorescence intensity and aromaticity decreased slightly, but DOCs decreased notably after coagulation. This indicates that the improvement in UF membrane flux is mainly due to EfOM removal. The UF membrane flux decline decreased more greatly after ozonation along with coagulation. This was attributed to the significant decrease of high MW fraction (>5 kDa) aromatic moieties of EfOM and SMP, as supported by the significant decrease in the SMP-like peak in fluorescence spectrophotometry and the decrease of MWw , MWn and polydispersity. The reduction of the UF membrane flux decline was also due to the formation of low MW, highly charged compounds with electron-withdrawing groups by the partial oxidation of EfOM, which was supported by the decrease of SUVA254 and fluorescence intensity, along with the increase of A270 /A400 and acidity. APHA, AWWA, WEF, 1998. Standard Methods for Examination of Water and Wastewater, 20th ed. Washington, DC, USA. Carlson, G., Silverstein, J., 1997. Effect of ozonation on sorption of natural organic matter by biofilm. Water Res. 131(10), 2467–2478. Chi, F.H., Amy, G.L., 2004. Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: the effects of hydrophobicity and functional groups. J. Colloid Interf. Sci. 274(2), 380–391. Genz, C., Miehe, U., Gnirss, R., Jekel, M., 2011. The effect of preozonation and subsequent coagulation on the filtration of WWTP effluent with low-pressure membranes. Water Sci. Technol. 64(6), 1270–1276. Guo, J., Peng, Y.Z., Guo, J.H., Ma, J., Wang, W., Wang, B.G., 2011. Dissolved organic matter in biologically treated sewage effluent (BTSE): Characteristics and comparison. Desalination 278(1-3), 365–372. Henderson, R.K., Baker, A., Murphy, K.R., Hambly, A., Stuetz, R.M., Khan, S.J., 2009. Fluorescence as a potential monitoring tool for recycled water systems: A review. Water Res. 43(4), 863–881. Huang, H., Schwab, K., Jacangelo, G., 2009. Pretreatment for low pressure membranes in water treatment: A review. Environ. Sci. Technol. 43(9), 3011–3019. Hur, J., Williams, M.A., Schlautman, M.A., 2006. Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis. Chemosphere 63(3), 387–402. Jansen, R.H.S., Zwijnenburg, A., van der Meer, W.G.J., Wessling, M., 2006. Outside-in trimming of humic substances during ozonation in a membrane contactor. Environ. Sci. Technol. 40(20), 6460–6465. Jarusutthirak, C., Amy, G., 2007. Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM). Water Res. 41(12), 2787–2793. Le-Clech, P., Chen, V., Fane, T.A.G., 2006. Fouling in membrane bioreactors used in wastewater treatment. J. Membrane Sci. 284(12), 17–53. Lin, C.F., Huang, Y.J., Hao, O.J., 1999. Ultrafiltration processes for removing humic substances: Effect of molecular weight fractions and PAC treatment. Water Res. 33(5), 1252–1264. Lipski, M., Slawinski, J., Zych, D., 1999. Changes in the luminescent properties of humic acids induced by UV radiation. J. Fluoresc. 9(2), 133–138. Pisarenko, A.N., Gerrity, D., Wert, E., Stanford, B.D., Korshin, G., Snyder, S., 2011. Use of organic characterization techniques to develop predictive tools for water reuse applications. In: Proceedings of the 15th Annual Water Reuse & Desalination Research Conference, Las Vegas, NV, May 16–17. Saminathan, S., Liu, H., Nguyen, T.V., Vigneswaran, S., 2011. Organic matter removal from biologically treated sewage effluent by flocculation and oxidation coupled with flocculation. Desalin. Water Treat. 32(1-3), 133–137. Senesi, N., 1990. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Part II. The fluorescence spectroscopy approach. Anal. Chim. Acta 232, 77–106. Shon, H.K., Vigneswaran, S., Kim, I.S., Cho, J., Ngo, H.H., 2006. Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater. J. .ac 3 Conclusions references sc the increase of charge, as the results of partial oxidation by ozone. The decrease of aromaticity, and the degree of condensation (Table 1) indicate the decrease of larger molecules of NOM, which can cause fouling. The removal of SMP as shown in the EEMs spectra (Fig. 2c) can also greatly reduce the flux decline, because SMP is a major organic foulant of biological wastewater treatment effluent. Zhang (2009) found that the amount of SMP of 3–10 kDa was positively correlated to the pore-blocking resistance. The decrease of the high MW molecules can improve the flux. Lin et al. (1999) showed that the fouling of a UF membrane with a molecular weight cutoff of 100 kDa was the most significant with HA of 6.5–22.6 kDa. The results in this study showed a great removal of the molecules of >10 kDa, which play a major role in UF membrane fouling. In addition, the increase of charge, evidenced by the increase of acidity after ozonation, can reduce the EfOM adsorption onto membrane surface by electrostatic repulsion, resulting in the increase of permeate flux (Zularisam et al., 2007). je 1330 1331 Journal of Environmental Sciences 26 (2014) 1325–1331 sc .ac .cn reclamation and reuse. Desalination 178(1-3), 1–11. Zhang, H.F., 2009. Impact of soluble microbial products and extracellular polymeric substances on filtration resistance in a membrane bioreactor. Environ. Eng. Sci. 26(6), 1115–1122. Zhang, L.Q., Wang, L., Zhang, G., Wang, X.D., 2009. Fouling of nanofiltration membrane by effluent organic matter: Characterization using dierent organic fractions in wastewater. J. Environ. Sci. 21(1), 49–53. Zularisam, A.W., Ismail, A.F., Salim, M.R., Sakinah, M., Hiroaki, O., 2007. Fabrication, fouling and foulant analyses of asymmetric polysulfone (PSF) ultrafiltration membrane fouled with natural organic matter (NOM) source waters. J. Membrane Sci. 299(1-2), 97–113. je Membrane Sci. 278(1-2), 232–238. Van Geluwe, S., Braeken, S., Van der Bruggen, B., 2011. Ozone oxidation for the alleviation of membrane fouling by natural organic matter: a review. Water Res. 45(12), 3551–3570. Wei, L.L., Wang, K., Zhao, Q.L., Jiang, J.Q., Xie, C.M., Qiu, W., 2010. Organic matter extracted from activated sludge with ammonium hydroxide and its characterization. J. Environ. Sci. 22(5), 641–647. Wu, L.L., Zhao, X., Zhang, M., 2011. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge. Chemosphere 83(5), 693–699. Wintgens, T., Melin, T., Schäfer, A., Khan, S., Muston, M., Bixio, D. et al., 2005. The role of membrane processes in municipal wastewater Editorial Board of Journal of Environmental Sciences Editor-in-Chief Hongxiao Tang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Associate Editors-in-Chief Jiuhui Qu Shu Tao Nigel Bell Po-Keung Wong Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Peking University, China Imperial College London, United Kingdom The Chinese University of Hong Kong, Hong Kong, China Editorial Board Aquatic environment Baoyu Gao Shandong University, China Maohong Fan University of Wyoming, USA Chihpin Huang National Chiao Tung University Taiwan, China Ng Wun Jern Nanyang Environment & Water Research Institute, Singapore Clark C. K. Liu University of Hawaii at Manoa, USA Hokyong Shon University of Technology, Sydney, Australia Zijian Wang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Zhiwu Wang The Ohio State University, USA Yuxiang Wang Queen’s University, Canada Min Yang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Zhifeng Yang Beijing Normal University, China Han-Qing Yu University of Science & Technology of China Terrestrial environment Christopher Anderson Massey University, New Zealand Zucong Cai Nanjing Normal University, China Xinbin Feng Institute of Geochemistry, Chinese Academy of Sciences, China Hongqing Hu Huazhong Agricultural University, China Kin-Che Lam The Chinese University of Hong Kong Hong Kong, China Erwin Klumpp Research Centre Juelich, Agrosphere Institute Germany Peijun Li Institute of Applied Ecology, Chinese Academy of Sciences, China Michael Schloter German Research Center for Environmental Health Germany Xuejun Wang Peking University, China Lizhong Zhu Zhejiang University, China Atomospheric environment Jianmin Chen Fudan University, China Abdelwahid Mellouki Centre National de la Recherche Scientifique France Yujing Mu Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Min Shao Peking University, China James Jay Schauer University of Wisconsin-Madison, USA Yuesi Wang Institute of Atmospheric Physics, Chinese Academy of Sciences, China Xin Yang University of Cambridge, UK Environmental biology Yong Cai Florida International University, USA Henner Hollert RWTH Aachen University, Germany Jae-Seong Lee Sungkyunkwan University, South Korea Christopher Rensing University of Copenhagen, Denmark Bojan Sedmak National Institute of Biology, Ljubljana Lirong Song Institute of Hydrobiology, the Chinese Academy of Sciences, China Chunxia Wang National Natural Science Foundation of China Gehong Wei Northwest A & F University, China Daqiang Yin Tongji University, China Zhongtang Yu The Ohio State University, USA Environmental toxicology and health Jingwen Chen Dalian University of Technology, China Jianying Hu Peking University, China Guibin Jiang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Sijin Liu Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Tsuyoshi Nakanishi Gifu Pharmaceutical University, Japan Willie Peijnenburg University of Leiden, The Netherlands Bingsheng Zhou Institute of Hydrobiology, Chinese Academy of Sciences, China Environmental catalysis and materials Hong He Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Junhua Li Tsinghua University, China Wenfeng Shangguan Shanghai Jiao Tong University, China Yasutake Teraoka Kyushu University, Japan Ralph T. Yang University of Michigan, USA Environmental analysis and method Zongwei Cai Hong Kong Baptist University, Hong Kong, China Jiping Chen Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China Minghui Zheng Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Municipal solid waste and green chemistry Pinjing He Tongji University, China Environmental ecology Rusong Wang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China Editorial office staff Managing editor Editors English editor Qingcai Feng Zixuan Wang Suqin Liu Catherine Rice (USA) Zhengang Mao Copyright© Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. JOURNAL OF ENVIRONMENTAL SCIENCES 环境科学学报(英文版) (http://www.jesc.ac.cn) Aims and scope Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues. The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials. For subscription to electronic edition Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes. For subscription to print edition China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580). Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you. Submission declaration Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. Submission declaration Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. Editorial Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn. Journal of Environmental Sciences (Established in 1989) Vol. 26 No. 6 2014 Supervised by Chinese Academy of Sciences Sponsored by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Edited by Editorial Office of Journal of Published by Elsevier Limited, The Netherlands Distributed by Domestic North Street, Beijing 100717, China P. O. Box 2871, Beijing 100085, China Local Post Offices through China Foreign E-mail: jesc@263.net, jesc@rcees.ac.cn CN 11-2629/X Science Press, 16 Donghuangchenggen Environmental Sciences Tel: 86-10-62920553; http://www.jesc.ac.cn Editor-in-chief Science Press, Beijing, China Hongxiao Tang Domestic postcode: 2-580 Elsevier Limited http://www.elsevier.com/locate/jes Printed by Beijing Beilin Printing House, 100083, China Domestic price per issue RMB ¥ 110.00