Au(111)
Transcription
Au(111)
Materiale nanostructurate: aplicatii practice in nanomedicinia si bio-senzoristica M. Simion, A. Radoi, R. Gavrila, A. Dinescu, M.Danila, M. Miu, D. Dascalu antonio.radoi@imt.ro Centrul de Nanotehnologii Laboratorul de Nanotehnologie Moleculara IMT-Bucuresti Tel: +40 21 269 07 70/int. 19 Fax: +40 21 269 07 72 www.imt.ro 21-24/09/2010 CONTENTS •Si – porous Si •Au – Au (111) •Graphene – metallic nanoparticles decorated •Applications Pores & fibrils size: Si SEM - PS morphology Si substrate macro-PS (1- 2 µm) meso-PS (50 - 100 nm) Process parameters SEM - PS morphology PS – Si–n+ (111) nano-PS (< 15 nm) PS – Si–n+ (100) Si Si substrate Pores & fibrils size depends on: • type and level of doping; • crystallographic orientation Process parameters Porous silicon – PS - is obtained by electrochemical dissolution of silicon in HF • electrolyte type / HF concentration; • current density; • illumination conditions. PS layers, have been obtained using the A.M.M.T etching system for 4’’ Si wafers with programmable power supply and dedicated software for time-based current profiles. Si Current-potential-time diagram for 150 cicles (0.554 A, 10 sec, 2.825 A, 4 sec). Nano-structured metallic thin films (NP-PVD) on PS substrate Au thin films - 100 nm – cathodic sputtering system Si Pt thin films - 100 nm e-beam deposition system Metallic nanoparticles (NP) on PS substrate Si Au NPs meso-PS + Au nano-PS + Au Colloidal Au Metallic nanoparticles (NP) on PS substrate Si Pt NPs nano-PS + Pt Electrochemically deposited Au (NP) on Si substrate Si Au NPs Substrate preparation: H2SO4:H2O2= 1:3 v/v; Si(111)-H; (NH4F 40%); (NH4)2SO3; 15 min. Electrochemical deposition of gold nanoislands (0.1mM KAu(CN)2, 0.2mM NaCN, 2M NaOH, pH=14). AFM images of gold-nano-islands on n-type silicon (111) substrates I=10 nm D= 50 nm I=50 nm D= 70 nm I=80 nm D= 100 nm Au nano-islands are prepared by electrochemical deposition on silicon. X-ray diffraction The microstructural characterisation of AuNP-PVD on macroPS and AuNP-CD on nanoPS. Si 5000 I [cps] A u N P-P V D / m a cro P S / S i I [cps] A u N P-C D / n a n o P S / S i 500 S i(400) A u (1 1 1 ) GIXRD X-ray diffraction spectra (ω = 0.35o) of samples as function of both deposition method and substrate nature Pt(111) PtNP-PVD / Si PtNP-PVD / nanoPS / Si 4000 PtNP-CD / nanoPS / Si 400 3000 Pt(200) A u (3 1 1 ) A u (2 0 0 ) 300 A u (2 2 0 ) 200 Pt(311) A u (2 2 2 ) 1000 100 0 35 Pt(220) 2000 Pt(222) 40 45 50 55 60 65 70 75 80 o 2θ [ ] 85 0 30 40 50 60 70 80 o 90 2θΒ [ ] -XRD reveals the high intensity ratios between (111) diffraction pattern and the peaks assigned to (200), (220), (311), (222), and (400) reflections of fcc structure of gold, indicating that the faces of these nanoparticles were primarily composed of (111) planes. - PtNP-PVD / Si : no preferential texture; - PtNP-PVD/CD / PS / Si : indicates a better defined degree of crystallization with no preferential orientation. Practical applications Microarray technology Si ALD -slides GLASS p-L-lysine slides PS PS GLASS Photoluminescence The orange - red photoluminescence of nanoPS is clearly visible when the wafer illuminated by UV light. No. Concetration HF (%) Current density (mA/cm2) Time (min) Porosity (%) 1 25 15 6 58 2 25 20 6 60 3 25 25 6 62 4 18 15 6 65 5 18 20 6 70 6 15 15 6 80 7 15 25 6 88 Si PL Intensity (normate values) 88% 82% 70% 62% 65% 58% 60% 1.0 0.8 0.6 0.4 0.2 0.0 550 600 650 700 750 800 850 W avelength (nm ) Photoluminescence spectra of PS / Si-p samples with different porosities (58% - 88%) • the PL peaks for high porosity PS samples are centred around 650-720 nm, in visible range due to quantuum confinement and surface states effects; • a shift of the PL peak position towards high photon energies with the increase of the PS porosity is observed; The PL emission from PS is observable at wavelengths ranging from the UV to the IR, the normalized experimental spectra recorded samples dependence on porosity. for different demonstrate the Si microstructuration and porosification Silicon substrate was micropatterned prior porosification process as: Si an array of pyramids (right) or as semi-circular cavities (left); LN3 interconnected lines LN2 pyramidal structures 14000 PL intensity (a.u.) 12000 LN 3 10000 8000 6000 4000 LN 2 2000 0 500 550 600 650 700 750 800 Wavelength (nm) • similar recording conditions were (488 nm frequency of excitation and 87 mW nominal power) • the intensity of PL emission is three times larger in the case of semicircular microcavities leading to an important improvement of detection. 850 TSG - "template stripped gold" STM – Scanning Tunneling Microscopy 200nm RMS = 8.5 Å Au/mica - TSG 200nm RMS = 37 Å Au/Si STM, Au (111)/mica Flame annealed vs. non-flame annealed 70nm 200nm RMS = 4.8 Å RMS = 4.4 Å STM, Au (111)/mica - flame annealed 59nm RMS = 1.5 Å STM, Au (111)/mica, Comm3, flame annealed STM, Au (111)/mica, IMT, flame annealed 3.5 6 3 5 2.5 4 Z[Å] Z[Å] RMS = 3.0 Å 100nm 2 1.5 3 2 1 1 0.5 0 0 0 20 40 60 X[nm] 80 100 0 50 100 X[nm] 150 200 XRD characterisation XRD characterisation IMT-mica Comm3-mica 200nm RMS = 4.8 Å 59nm RMS = 1.5 Å XRD characterisation Preferential orientation -Au(111)-(twinning spot) Average Intensity Cut Circle 1e+6 1e+4 0 90 180 270 360 Beta Average Intensity Cut Line 1e+6 1e+4 0 30 60 90 120 150 180 Human Serum Albumine/Au (111) 85nm 32nm 30 1.8 6.58 nm 0.00 nm 1.6 25 1.4 1.2 Z[nm] Z[Å] 20 15 1 0.8 0.6 10 0.4 5 0.2 0 0 0 10 20 30 40 X[nm] 50 60 70 80 0 5 10 15 X[nm] 20 25 30 35 •Graphene – metallic nanoparticles decorated •Graphene decorated with: •Au nanoparticles •Ag nanoparticles SEM - IDT •Graphene – Au nanoparticles decorated Graphene decorated with nanoAu Photocurrent Graphene – nanoAu 87.5% 100% 75% 62.5% 50% 37.5% 25% White light source (150 W) Photocurrent Graphene – nanoAg White light Photocurrent Graphene – nanoAg NIR
Similar documents
Tobin Marks Presentation
BHJ efficiency, durability • High-efficiency BHJ cells achieved without PEDOT:PSS
More information