Au(111)

Transcription

Au(111)
Materiale nanostructurate: aplicatii practice
in nanomedicinia si bio-senzoristica
M. Simion, A. Radoi, R. Gavrila, A. Dinescu,
M.Danila, M. Miu, D. Dascalu
antonio.radoi@imt.ro
Centrul de Nanotehnologii
Laboratorul de Nanotehnologie Moleculara
IMT-Bucuresti
Tel: +40 21 269 07 70/int. 19
Fax: +40 21 269 07 72
www.imt.ro
21-24/09/2010
CONTENTS
•Si – porous Si
•Au – Au (111)
•Graphene – metallic nanoparticles decorated
•Applications
Pores & fibrils size:
Si
SEM - PS morphology
Si substrate
macro-PS (1- 2 µm)
meso-PS
(50 - 100 nm)
Process parameters
SEM - PS morphology
PS – Si–n+ (111)
nano-PS
(< 15 nm)
PS – Si–n+ (100)
Si
Si substrate
Pores & fibrils size depends on:
• type and level of doping;
• crystallographic orientation
Process parameters
Porous silicon – PS - is obtained by
electrochemical dissolution of silicon in HF
• electrolyte type / HF concentration;
• current density;
• illumination conditions.
PS layers, have been obtained using the
A.M.M.T etching system for 4’’ Si wafers
with programmable power supply and
dedicated software for time-based current
profiles.
Si
Current-potential-time diagram for 150 cicles
(0.554 A, 10 sec, 2.825 A, 4 sec).
Nano-structured metallic thin films (NP-PVD) on PS substrate
Au thin films - 100 nm – cathodic
sputtering system
Si
Pt thin films - 100 nm
e-beam deposition system
Metallic nanoparticles (NP) on PS substrate
Si
Au NPs
meso-PS + Au
nano-PS + Au
Colloidal Au
Metallic nanoparticles (NP) on PS substrate
Si
Pt NPs
nano-PS + Pt
Electrochemically deposited Au (NP) on Si substrate
Si
Au NPs
Substrate preparation: H2SO4:H2O2= 1:3 v/v;
Si(111)-H; (NH4F 40%); (NH4)2SO3; 15 min.
Electrochemical deposition of gold nanoislands
(0.1mM KAu(CN)2, 0.2mM NaCN, 2M NaOH,
pH=14).
AFM images of gold-nano-islands on n-type silicon (111) substrates
I=10 nm
D= 50 nm
I=50 nm
D= 70 nm
I=80 nm
D= 100 nm
Au nano-islands are prepared by electrochemical deposition on silicon.
X-ray diffraction
The microstructural characterisation of AuNP-PVD on
macroPS and AuNP-CD on nanoPS.
Si
5000
I [cps]
A u N P-P V D / m a cro P S / S i
I [cps]
A u N P-C D / n a n o P S / S i
500
S i(400)
A u (1 1 1 )
GIXRD X-ray diffraction spectra (ω = 0.35o)
of samples as function of both deposition
method and substrate nature
Pt(111)
PtNP-PVD / Si
PtNP-PVD / nanoPS / Si
4000
PtNP-CD / nanoPS / Si
400
3000
Pt(200)
A u (3 1 1 )
A u (2 0 0 )
300
A u (2 2 0 )
200
Pt(311)
A u (2 2 2 )
1000
100
0
35
Pt(220)
2000
Pt(222)
40
45
50
55
60
65
70
75
80
o
2θ [ ]
85
0
30
40
50
60
70
80
o
90
2θΒ [ ]
-XRD reveals the high intensity ratios between (111)
diffraction pattern and the peaks assigned to (200),
(220), (311), (222), and (400) reflections of fcc
structure of gold, indicating that the faces of these
nanoparticles were primarily composed of (111)
planes.
- PtNP-PVD / Si : no preferential texture;
- PtNP-PVD/CD / PS / Si : indicates a better defined degree
of crystallization with no preferential orientation.
Practical applications
Microarray technology
Si
ALD -slides
GLASS
p-L-lysine slides
PS
PS
GLASS
Photoluminescence
The orange - red photoluminescence of
nanoPS is clearly visible when the wafer
illuminated by UV light.
No.
Concetration
HF
(%)
Current
density
(mA/cm2)
Time
(min)
Porosity
(%)
1
25
15
6
58
2
25
20
6
60
3
25
25
6
62
4
18
15
6
65
5
18
20
6
70
6
15
15
6
80
7
15
25
6
88
Si
PL Intensity (normate values)
88%
82%
70%
62%
65%
58%
60%
1.0
0.8
0.6
0.4
0.2
0.0
550
600
650
700
750
800
850
W avelength (nm )
Photoluminescence spectra of PS / Si-p samples with different porosities (58% - 88%)
• the PL peaks for high porosity PS samples are centred around 650-720 nm,
in visible range due to quantuum confinement and surface states effects;
• a shift of the PL peak position towards high photon energies with the
increase of the PS porosity is observed;
The PL emission from PS is observable at
wavelengths ranging from the UV to the IR, the
normalized
experimental
spectra
recorded
samples
dependence on porosity.
for
different
demonstrate
the
Si microstructuration and porosification
Silicon substrate was micropatterned prior porosification process as:
Si
an array of pyramids (right) or as semi-circular cavities (left);
LN3 interconnected lines
LN2 pyramidal structures
14000
PL intensity (a.u.)
12000
LN 3
10000
8000
6000
4000
LN 2
2000
0
500
550
600
650
700
750
800
Wavelength (nm)
• similar recording conditions were (488 nm frequency of excitation and 87 mW
nominal power)
• the intensity of PL emission is three times larger in the case of semicircular
microcavities leading to an important improvement of detection.
850
TSG - "template stripped gold"
STM – Scanning Tunneling Microscopy
200nm
RMS = 8.5 Å
Au/mica - TSG
200nm
RMS = 37 Å
Au/Si
STM, Au (111)/mica
Flame annealed vs. non-flame annealed
70nm
200nm
RMS = 4.8 Å
RMS = 4.4 Å
STM, Au (111)/mica - flame annealed
59nm
RMS = 1.5 Å
STM, Au (111)/mica, Comm3, flame annealed
STM, Au (111)/mica, IMT, flame annealed
3.5
6
3
5
2.5
4
Z[Å]
Z[Å]
RMS = 3.0 Å
100nm
2
1.5
3
2
1
1
0.5
0
0
0
20
40
60
X[nm]
80
100
0
50
100
X[nm]
150
200
XRD characterisation
XRD characterisation
IMT-mica
Comm3-mica
200nm
RMS = 4.8 Å
59nm
RMS = 1.5 Å
XRD characterisation
Preferential orientation
-Au(111)-(twinning spot)
Average Intensity
Cut Circle
1e+6
1e+4
0
90
180
270
360
Beta
Average Intensity
Cut Line
1e+6
1e+4
0
30
60
90
120
150
180
Human Serum Albumine/Au (111)
85nm
32nm
30
1.8
6.58 nm
0.00 nm
1.6
25
1.4
1.2
Z[nm]
Z[Å]
20
15
1
0.8
0.6
10
0.4
5
0.2
0
0
0
10
20
30
40
X[nm]
50
60
70
80
0
5
10
15
X[nm]
20
25
30
35
•Graphene – metallic nanoparticles decorated
•Graphene decorated with:
•Au nanoparticles
•Ag nanoparticles
SEM - IDT
•Graphene – Au nanoparticles decorated
Graphene decorated with nanoAu
Photocurrent
Graphene – nanoAu
87.5%
100%
75%
62.5%
50%
37.5%
25%
White light source (150 W)
Photocurrent
Graphene – nanoAg
White light
Photocurrent
Graphene – nanoAg
NIR

Similar documents

CEINT overview_nanoAg-LONG

CEINT overview_nanoAg-LONG Nanoparticle aggregation and deposition detector

More information

Tobin Marks Presentation

Tobin Marks Presentation BHJ efficiency, durability • High-efficiency BHJ cells achieved without PEDOT:PSS

More information

Slides - nanoHUB.org

Slides - nanoHUB.org Nano-heater Heat conductor Heated spot

More information