Presentation - Chandra X
Transcription
Presentation - Chandra X
Precipitation-Regulated Galaxies G M Voit / Michigan State University Fundamental Questions Precipitation-Regulated Galaxies G M Voit 1 Precipitation & Galaxy Evolution What turns galaxies on and off? What quenches star formation at Mhalo > 1012 MSun? QUENCHING G M Voit Why is star formation in small galaxies so inefficient? What limits star formation in the most massive galaxies? How are spheroids linked to black holes? Precipitation & Galaxy Evolution What turns galaxies on and off? What quenches star formation at Mhalo > 1012 MSun? How does feedback work? QUENCHING G M Voit Why is star formation in small galaxies so inefficient? What limits star formation in the most massive galaxies? How are spheroids linked to black holes? Precipitation & Galaxy Evolution Circumgalactic Conditions Tumlinson+ 11 (COS-Halos) Most of a galaxy’s baryons & metals are in the CGM G M Voit Precipitation & Cluster Cores Precipitation-Regulated Galaxies G M Voit 2 Precipitation-Regulated Galaxies G M Voit NGC 1275 / Fabian / NASA Precipitation & Galaxy Evolution Cold Triggering of AGN Feedback Cavagnolo+ 08 Black-Hole Power Requires Chandra-like resolution Multiphase Gas G M Voit Core Entropy Index = K0 = kTne-2/3 Precipitation-Regulated Galaxies Instability in a Thermally Balanced Medium McCourt+ 2012, Sharma+ 2012 ENZO: Greg Meece If the medium is kept in global thermal balance by feedback, then the threshold for formation of multiphase gas is: tcool/tff ~ 1 in a box tcool/tff ~ 10 in a spherical potential G M Voit … but see Meece, O’Shea, & Voit 2015 Voit & Donahue 2015; data: Cavagnolo thesis Dependence of LH⍺ on min(tc/tff) looks more like a steep ramp than a threshold. 1043 1042 LHα in aperture (erg s-1) Precipitation-Regulated Galaxies Evidence for Precipitation 1040 Implies a very stiff black-hole feedback response that maintains tc/tff ~ 10 for most systems. 1039 But there are outliers extending to tc/tff ~ 50. 1041 1038 G M Voit 1 10 min(tc/tff) 100 Voit & Donahue 2015; data: Cavagnolo thesis Heat Input 1043 1042 LHα in aperture (erg s-1) Precipitation-Regulated Galaxies Evidence for Precipitation Declining Precipitation Dependence of LH⍺ on min(tc/tff) looks more like a steep ramp than a threshold. 1040 Implies a very stiff black-hole feedback response that maintains tc/tff ~ 10 for most systems. 1039 But there are outliers extending to tc/tff ~ 50. 1041 Increasing Precipitation Cooling 1038 G M Voit 1 10 min(tc/tff) 100 10 11 Precipitation Threshold: 2.0 < max(kTX) < 10.0 1. Use 250 km/s singular isothermal sphere for the stars. 1010 2. Use NFW halo with c500 = 3 for the dark matter. K0 tcool (years) Precipitation-Regulated Galaxies Cooling-Time Profiles Voit+ 2015, Nature 100 109 3. Calculate tff(r). 30 4. Multiply by 10. 108 no cooling isothermal core conductive balance precipitating baseline 10 G M Voit 107 1 10 r (kpc) 100 Baseline: Voit+ 2005 No Cooling: Voit+ 2002 1000 Conduction: Voit 2011 11 11 10 10 Multiphase Gas No Multiphase Gas 2-10 keV, Hα 0.5-2 keV, far-IR 2-10 keV, no Hα 10 10 10 10 t cool (years) Precipitation-Regulated Galaxies Cooling-Time Profiles Voit+ 2015, Nature K0 K0 100 100 30 30 99 10 10 88 10 10 10 no cooling isothermal core conductive balance precipitation baseline 77 10 10 0.1 0.1 1.0 1.0 10.0 10.0 r (kpc) 100.0 100.0 0.1 1000.0 10 no cooling isothermal core conductive balance precipitation baseline 1.0 10.0 r (kpc) 100.0 1000.0 G M Voit 11 11 10 10 Multiphase Gas No Multiphase Gas 2-10 keV, Hα 0.5-2 keV, far-IR 2-10 keV, no 10 10 10 10 K0 K0 Requires 100 Chandra-like resolution 100 t cool (years) Precipitation-Regulated Galaxies Cooling-Time Profiles Voit+ 2015, Nature 99 10 10 Entropy Threshold 30 30 Precipitation Radius 88 10 10 10 G M Voit no cooling isothermal core conductive balance precipitation baseline 77 10 10 0.1 0.1 1.0 1.0 10.0 10.0 r (kpc) 100.0 100.0 0.1 1000.0 10 1.0 Gaspari+ 2012,2013,2014; Li & Bryan 2014a,b; Li+ 2015 300 kpc Precipitation-Regulated Galaxies Precipitation-Regulated Feedback G M Voit Gaspari+ 2012,2013,2014; Li & Bryan 2014a,b; Li+ 2015 300 kpc Precipitation-Regulated Galaxies Precipitation-Regulated Feedback G M Voit Precipitation & Galaxy Evolution Precipitation Cycles Li+ 2015 (in press, ApJ, arXiv:1503.02660) G M Voit Precipitation-Regulated Galaxies Toward Cosmological Implementation Meece Ph.D. Thesis G M Voit ρ T K P dye tc/tff Precipitation & Quenching Precipitation-Regulated Galaxies G M Voit 3 Werner+ 12, Werner+ 14 Single-Phase Multiphase 30 kpc Precipitation-Regulated Galaxies Two Kinds of Massive Ellipticals G M Voit NCG 1399 NGC 5044 Voit+ 15 (Apr 2015, ApJL) , data: Werner+ 12,14 100 K (keV cm2) Precipitation-Regulated Galaxies Entropy Profiles of Ellipticals 10 NGC4472 NGC4649 NGC1399 NGC1407 NGC4261 SN Ia sweeping prevents precipitation SN Ia heating = rad. cooling BH feedback required in multiphase systems 1 Requires Chandra-like resolution 0.1 1.0 r (kpc) G M Voit Single-phase ellipticals: K ≈ (5 keV cm2) rkpc Multiphase ellipticals: K ≈ (3.5 keV cm2) rkpc2/3 NGC4636 NGC5813 NGC5846 NGC5044 NGC6868 10.0 Voit+ 15 (Apr 2015, ApJL) , data: Werner+ 12,14 tcool/tff 100 10 1 100 tcool/tff Precipitation-Regulated Galaxies Precipitation Threshold NGC4472 NGC4649 NGC1399 NGC1407 NGC4261 AGN 100x more powerful than the others! 10 G M Voit 1 NGC4636 NGC5813 NGC5846 NGC5044 NGC6868 0.1 1.0 r (kpc) 10.0 Voit+ 15 (Apr 2015, ApJL) , data: Werner+ 12,14 tcool/tff 100 10 1 100 tcool/tff Precipitation-Regulated Galaxies Precipitation Threshold NGC4472 NGC4649 NGC1399 NGC1407 NGC4261 AGN 100x more powerful than the others! 10 G M Voit 1 NGC4636 NGC5813 NGC5846 NGC5044 NGC6868 0.1 1.0 r (kpc) 10.0 Precipitation & Regulation Precipitation-Regulated Galaxies G M Voit 4 Precipitation-Regulated Galaxies Regulation via Precipitation CGM expands cosmic accretion . CGM Min . Precipitation Threshold 3kT ne(r) ≈ 10 tff(r) Λ(T,Z) Mp wind . ηM* . ζMin . ζ << 1 M* η~1 Enrichment increases cooling and triggers feedback that lowers CGM density G M Voit Precipitation-Regulated Galaxies Regulation via Precipitation CGM expands cosmic accretion . CGM Min . Precipitation Threshold 3kT ne(r) ≈ 10 tff(r) Λ(T,Z) Mp wind . ηM* . ζMin . ζ << 1 M* Precipitation Rate ρCGM rc3 Mp ~ 10 tff(rc) . η~1 G M Voit Reducing CGM density reduces gas supply for star formation Precipitation-Regulated Galaxies Regulation via Precipitation CGM expands cosmic accretion . CGM Min . Precipitation Threshold 3kT ne(r) ≈ 10 tff(r) Λ(T,Z) Mp wind . ηM* . ζMin . ζ << 1 M* Precipitation Rate ρCGM rc3 Mp ~ 10 tff(rc) . η~1 Abundance Saturation G M Voit Saturation determines Zgas(M) and f (M) * . . . YM – Zgas Min Zgas ≈ * Mgas Enrichment ≈ Dilution Voit+ 15 (July 2015, ApJL) 1.00 Z / ZSun Precipitation-Regulated Galaxies Mass-Metallicity Relation Lower-mass systems reach saturation at low enrichment levels 0.10 0.01 G M Voit 104 106 108 M* / MSun 1010 Voit+ 15 (July 2015, ApJL) 1.00 f* = M* / fb M500 Precipitation-Regulated Galaxies Stellar Baryon Fraction Star formation rates in low-mass systems are limited by saturation 0.10 0.01 Higher-mass systems transform gas into stars more quickly and quench sooner G M Voit 100 vc,max (km s-1) Voit+ 15 (July 2015, ApJL) 1011 1010 Central Galaxies of Clusters NGC 1277 (member of Perseus Cluster) Ellipticals Classical Bulges Pseudobulges εBH = 10-3 εBH = 10-2.5 εBH = 10-2 εBH = 10-1 MBH Precipitation-Regulated Galaxies MBH–σv Relation 109 108 107 10 εBH MBH c2 ~ LCGM tH 6 G M Voit 100 σv,eff (km s-1) 1000 Precipitation & X-Ray Surveyor Precipitation-Regulated Galaxies G M Voit 5 100 K (keV cm2) Precipitation-Regulated Galaxies Driver 1: Hot Gas at ~100 pc Resolution 10 NGC4472 NGC4649 NGC1399 NGC1407 NGC4261 NGC4636 NGC5813 NGC5846 NGC5044 NGC6868 1 0.1 1.0 r (kpc) 10.0 G M Voit Resolving the Bondi radius in early-type galaxies requires Chandra-like optical quality and many photons. Precipitation-Regulated Galaxies Driver 2: CGM Imaging at < 0.5 keV Anderson+ 15 ROSAT stacks of SDSS LRGs indicate that Lx-Mhalo relation extends from cluster scales down to Milky Way scales G M Voit Requires Chandra-like resolution, large effective area, low background, soft X-ray sensitivity. Precipitation & Galaxy Evolution What turns galaxies on and off? Galaxies evolve in response to atmospheric conditions High-resolution X-ray imaging is essential for studying galaxy evolution G M Voit