Kan latent varmefrigjøring ha negativ effekt på intensiteten av polare
Transcription
Kan latent varmefrigjøring ha negativ effekt på intensiteten av polare
Can latent heat release have a negative effect on polar low intensity ? Ivan Føre, Jon Egill Kristjansson, Erik W. Kolstad, Thomas J. Bracegirdle and Øyvind Sætra Institutt for Geofag, Avdeling for Meteorologi og Oseanografi Polar lows: are intense mesoscale cyclones (200-1000km) are short-lived (<24 hours) are associated with wind speed 15 m/s develop in the cold air outbreak of Arctic air masses during winter time occur mainly over ocean, polewards of the main mid-latitude baroclinic zone o Given low coverage of observations by the conventional meteorological observation network in the Nordic seas polar lows are often poorly predicted Severe weather risk in polar and sub-polar waters Institutt for Geofag, Avdeling for Meteorologi og Oseanografi NOAA AVHRR Infra red (CH4 ) satellite image of our polar low case at 0200utc 20 December 2002 Sea ice Spitsbergen Objective: To contribute to an improved understanding of the role of condensational heating inAvdeling “hurricane-like” polar lows Institutt for Geofag, for Meteorologi og Oseanografi Russia Outline • • • • Model description Control run Sensitivity experiments Summary and conclusions Institutt for Geofag, Avdeling for Meteorologi og Oseanografi Weather Research and Forecast (WRF) Version 2.2.1 • National Center for Atmospheric Research (NCAR, USA) • 51 vertical levels • 9 and 3 km mesh grids • ECMWF (25km analysis) is used as initial and boundary condition • Run time: 00 UTC 17 to 12 UTC 21 December 2002 • 14 sensitivity experiments Physical Process Parameterization Cloud microphysics Thompson et al. scheme Moist convection Planetary Boundary Layer processes Betts-Miller-Janjic scheme Land Surface Noah Land Surface model Surface layer processes MM5 similarity Longwave radiation RRTM scheme Shortwave radiation Dudhia scheme Yonsei University scheme Institutt for Geofag, Avdeling for Meteorologi og Oseanografi Sea level pressure (hPa, black contours), 10-m wind speed (ms-1) and 2-m temperature (ºC, red contours) for the control run Spin-up stage 975 hPa Max wind speed ~20m s-1 Cold air outbreak Institutt for Geofag, Avdeling for Meteorologi og Oseanografi Mature stage 965 hPa Max wind speed ~25m s-1 Hurricane-like appearance SH fluxes (Wm-2) Mature stage extreme sensible heat fluxes ~ 1100 Wm-2 sensitive to variations in fluxes Institutt for Geofag, Avdeling for Meteorologi og Oseanografi LH fluxes (Wm-2) Mature stage extreme latent heat fluxes ~ 450 Wm-2 sensitive to variations in fluxes East-West cross section of temperature (2ºC intervals, red contours), condensational heating rate (Kh-1, black contours) and wind speed (ms-1, shaded colour) Institutt for Geofag, Avdeling for Meteorologi og Oseanografi Sensitivity experiments on latent heat release Minimum surface pressure (hPa) versus time NO condensational heating Control run NO condensational heating Control run Spin-up stage Mature stage Institutt for Geofag, Avdeling for Meteorologi og Oseanografi North-South cross section of temperature (2ºC intervals, red contours), condensational heating rate (Kh-1, black contours) and wind speed (ms-1, shaded colour) Control run Upper level low at 4000-8000 m Close to the sea ice edge More stable air masses Shallow development Institutt for Geofag, Avdeling for Meteorologi og Oseanografi Larger distance between the lows -LHatm Upper level low at 3000-8000 m Further south Less stable air masses Deeper development Shorter distance between the lows North-South cross section of potential vorticity (PVU, shaded colour) Control run UPV anomaly (> 3 PVU) at 2000m height Stratosphere (~2 PVU) at 3000m height PV destruction above the eye LPV anomaly (4 PVU) Institutt for Geofag, Avdeling for Meteorologi og Oseanografi -LHatm run UPV anomaly (> 3-5 PVU) at 3000m height Stratosphere (~2 PVU) at 3000m height No PV destruction above the eye Weaker LPV anomaly (~3 PVU) Conceptual model showing phase lock between upper level low (i.e. UPV anomaly) and the polar low (i.e. LPV anomaly) with and without latent heat release Control run (North) -LHatm run (South) Upper level cold low (~ -41ºC at 500 hPa) Upper level cold low (~ -43ºC at 500 hPa) Polar low Institutt for Geofag, Avdeling for Meteorologi og Oseanografi Polar low Summary and Conclusions • What's different from other hurricane-like polar lows? – unusually strong UPV anomaly (i.e., upper level low) – continuous strong upper level forcing – extremely high surface fluxes • Experiments omitting condensational heating (-LHatm) relative to experiments including its effect (C): – their position further south deepens their development – vertical alignment between UPV anomaly and polar low (unnatural) – stronger upper level forcing present at all times » results in more intense polar low • Condensational heating can be negative for the “hurricane-like” polar lows developing close to the sea ice edge – Condensational heating moves polar low developments north – The positive effect of condensational heating is less than the weakening of net surface fluxes entering the polar low system Institutt for Geofag, Avdeling for Meteorologi og Oseanografi Acknowledgement • Wrfhelp (WRF) • Gunnar Wollan, UIO, MetOs (WRF, matlab) • Greg Thompson, NCAR (Discussion, New MP scheme, WRF) • Simen Gaure, UIO, USIT (WRF) • Bjørn Egil Nygård, UIO, met.no (Discussion, WRF, matlab) • Øyvind Hodnebrog, UIO, MetOs (WRF, matlab) • Students and colleges, UIO, MetOs (Discussion) Institutt for Geofag, Avdeling for Meteorologi og Oseanografi • Thank you for your attention! • Questions? Institutt for Geofag, Avdeling for Meteorologi og Oseanografi