FDFD - hade.ch
Transcription
FDFD - hade.ch
Introduction Eigenmode Analysis FDFD The Finite-Difference Frequency-Domain Method Hans-Dieter Lang Friday, December 14, 2012 ECE 1252 β Computational Electrodynamics Course Project Presentation University of Toronto H.-D. Lang FDFD 1/18 Introduction Eigenmode Analysis The Finite-Difference Frequency-Domain Method Contents Derivation of the FDFD algorithm Eigenmode analysis Examples H.-D. Lang FDFD 2/18 Introduction Eigenmode Analysis Frequency Domain Considerations Examples Introduction Starting position Maxwellβs equations in phasor form β × E = βπππH β × H = πππE + J Wave equations (frequency domain) (β2 + π 2 )E = πππ J Discretization of space H.-D. Lang FDFD 3/18 Introduction Eigenmode Analysis Frequency Domain Considerations Examples Introduction 1D FDFD Maxwellβs equations in phasor form β × E = βπππH ππ₯ πΈπ¦ = βππππ»π§ ^ x k=^ β × H = πππE + J βββββββββββ ππ₯ π»π§ = βππππΈπ¦ β π½π¦ E=^ yπΈπ¦ , H=^ zπ» π§ Finite differences in space πΈπ¦π+1 β πΈπ¦π = βππππ»π§π+1/2 Ξπ₯ π+1/2 πβ1/2 β π»π§ Ξπ₯ π»π§ = βππππΈπ¦π β π½π¦π πΈ1= 0 π»1 πΈ2 π»2 πΈ3 π»3 πΈ4 π»4 πΈ5 π»5 πΈ6 π= 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Ξπ₯ H.-D. Lang FDFD 4/18 Introduction Eigenmode Analysis Frequency Domain Considerations Examples FDFD 1D FDFD Finite differences in space π+1/2 πΈπ¦π+1 β πΈπ¦π = βππππ»π§π+1/2 Ξπ₯ πβ1/2 β π»π§ Ξπ₯ π»π§ = βππππΈπ¦π β π½π¦π Matrix form β‘ β€ β‘ β€ β‘ β€ 1 0 0 0 ... πΈ1 0 β’1/Ξπ₯ πππ β1/Ξπ₯ β’ β₯ 0 . . .β₯ π»1 β₯ β’ β₯ β’ β₯ β’ 0 β₯ β’ 0 β₯ β’ β’ β₯ β’ 1/Ξπ₯ πππ β1/Ξπ₯ β’ β₯ β’ πΈ2 β₯ = β’βπ½2 β₯ β₯ β’ β₯ . β’ 0 β₯ ..β₯ β’ β’ 0 π»2 β₯ 0 1/Ξπ₯ πππ β£ β¦ β£ β¦ β£ β¦ . . .. . .. . .. . .. .. . .. πΈ1= 0 π»1 πΈ2 π»2 πΈ3 π»3 πΈ4 π»4 πΈ5 π»5 πΈ6 π= 1 1.5 2 2.5 3 H.-D. Lang 3.5 4 FDFD 4.5 5 5.5 6 5/18 Introduction Eigenmode Analysis Frequency Domain Considerations Examples FDFD 1D FDFD Matrix form β€ β‘ β€ β‘ β€ 1 0 0 0 ... 0 πΈ1 β’1/Ξπ₯ πππ β1/Ξπ₯ β₯ β’ 0 . . .β₯ π»1 β₯ β’ β₯ β’ β₯ β’ 0 β₯ β’ 0 β₯ β’ β’ β₯ β’ 1/Ξπ₯ πππ β1/Ξπ₯ β’ β₯ β’ πΈ2 β₯ = β’βπ½2 β₯ β₯ β’ β₯ β’ β₯ β’ . β₯ . β’ 0 β₯ 0 π» 2 . 0 1/Ξπ₯ πππ β£ β¦ β£ . β¦ β£ . β¦ β‘ .. . .. . .. .. . . .. .. Solve the linear system Ax = b β x = Aβ1 b β Direct inversion x=A\b β Least-square, iterative methods etc. H.-D. Lang FDFD 6/18 Introduction Eigenmode Analysis Frequency Domain Considerations Examples FDFD PML for FDFD Similar to FDTD ππππΈπ¦π+1 ππππ»π§π+1/2 (οΈ inside PML ββββββββ π2π+1 )οΈ π+1 ππ + ππΈ π )οΈ π¦ (οΈ π2π ππ + ππ»π¦π+1/2 π Gradual increase in conductivity π2π Empirical πmax , different from FDTD [2, 3] Anisotropic for > 1D H.-D. Lang FDFD 7/18 Introduction Eigenmode Analysis Frequency Domain Considerations 0.1Examples FDFD 0.05 PML for FDFD No PML: shorted TL, VSWRβ β Field amplitude (a.u.) 0 0.1 0.05 β0.05 0 β0.05 β0.1 0 20 40 60 80 Field amplitude (a.u.) With PML: VSWRβ1 β0.1 100 Cell number Re(E) 180 Im(E) Abs(E) Re(H) Im(H) Abs(H) 120 140 160 0 20 40 60 80 100 Cell number 120 140 160 180 β0.15 200 0.1 0.05 β0.2 0 100 120 β0.05 β0.1 0 20 40 60 80 H.-D. Lang FDFD 200 8/18 Introduction Eigenmode Analysis Frequency Domain Considerations Examples FDFD PML for FDFD |Ξ| = VSWR β 1 VSWR + 1 β60 |s11| in dB β70 Nabs=5 Nabs=10 Nabs=16 β80 β90 β100 β110 β120 0 1 2 3 Frequency (GHz) 4 5 Used parameters: π = 300 mm, π = exp(β12), exp(β14), exp(β16) and π = 4, 6, 8 H.-D. Lang FDFD 9/18 Introduction Eigenmode Analysis Frequency Domain Considerations Examples Why FDFD? FDFD vs. FDTD Why frequency domain? β Resonator characteristics (high π β long simulation time) β Eigenmodes direct β Dispersive media FDFD characteristics , No stability issues , Direct eigenmode analysis / Solver less general / Boundary conditions are more difficult to apply β PML even more important β Similar numerical dispersion issues FDTD: Broadband, FDFD: Narrow- (single) band H.-D. Lang FDFD 10/18 Introduction Eigenmode Analysis Frequency Domain Considerations Examples Examples Dispersive media Time vs. frequency domain Different measurements Example: Lorentz media β7 Timestep n=9701 5 0.4 x 10 Lorentz media Lorentz media 0.3 0.2 0 0.1 0 β0.1 0 1000 2000 3000 4000 5000 6000 β5 FDTD: 6000 cells 0 100 200 300 400 500 FDFD: 500 cells H.-D. Lang FDFD 11/18 Introduction Eigenmode Analysis Frequency Domain Considerations Examples Examples Dispersive media Reflection coefficient |Ξ(π)| of Lorentz media interface 1 FDTD: s=0.9 FDTD: s=1 analytic FDFD s11 (linear) 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 Frequency (Hz) 2.5 3 16 x 10 β FDTD: 8192 values/10 s β frequency band β FDFD: 40 values/2.6 s β specific frequencies H.-D. Lang FDFD 12/18 Introduction Eigenmode Analysis Introduction Examples Eigenmode Analysis Eigenmode analysis β × E = βπππH β × H = πππE [οΈ β 0 1 β ππ β× 1 ππ ]οΈ [οΈ ]οΈ [οΈ ]οΈ β× E E = π0 0 H H Resonator-π from resonance frequency π0 π= Re π0 πβ² = 0β²β² 2 Im π0 2π0 Propagation constant π½(π) (2.5D eigenmode analysis) E = E0 (π₯, π¦) e ππ½π§ β π½2 H.-D. Lang [οΈ ]οΈ [οΈ ]οΈ (οΈ )οΈ πΈπ₯ πΈπ₯ = ππ₯2 + ππ¦2 + π 2 ππ πΈπ¦ πΈπ¦ FDFD 13/18 Introduction Eigenmode Analysis Introduction Examples Examples Field amplitude (a.u.) Field amplitude (a.u.) Eigenmode analysis in 1D Dipole resonances Problem size: 100 cells (π = 150 mm), π‘sim < 0.01 s 0.2 πGHz = 0.1 0.9799 1.9556 2.9388 3.9173 4.8949 0 β0.1 β0.2 10 20 30 40 50 60 Cell number 70 80 90 100 0.2 πGHz = 0.1 0 0.9896 1.973 2.9079 3.956 0 β0.1 β0.2 10 20 30 40 50 60 Cell number H.-D. Lang FDFD 70 80 90 100 14/18 Introduction Eigenmode Analysis Introduction Examples Examples Eigenmode analysis in 2D Cavity resonator modes Problem size: 36 × 36 cells, (1369 × 1369 matrix), π‘sim β 6.5 s 30 0.04 20 0.05 30 20 0 0.05 30 20 0 0.02 10 10 10 20 30 10 β0.05 0 10 20 0.05 30 0 10 10 0.05 30 20 20 0 10 20 30 20 30 0.06 0.04 0.02 0 β0.02 β0.04 30 20 10 β0.05 β0.05 10 β0.05 30 10 20 H.-D. Lang 30 FDFD 10 20 30 15/18 Introduction Eigenmode Analysis Introduction Examples Examples Eigenmode analysis in 2.5D Waveguide modes (dimensions π = 2π) Problem size: 16 × 8 cells, π‘sim β 0.6 s 250 (rad/m), (Np/m) 200 150 TE10 100 analytic analytic FDFD FDFD TEM limit cutoffs TE20 TE01 TE30 50 0 2 4 6 8 10 Frequency (GHz) H.-D. Lang FDFD 12 14 16/18 Introduction Eigenmode Analysis Introduction Examples Conclusions FDFD = FD in space of Maxwellβs equations in phasor form Useful for: β Simulations of dispersive media β Eigenmode analysis β Simulations of resonators with high π Sparsity: Both matrix and literature on FDFD Steady-state simulation: Everything matters, everywhere! H.-D. Lang FDFD 17/18 Introduction Eigenmode Analysis Introduction Examples References [1] Umran S. Inan, Robert A. Marshall Numerical Electromagnetics β The FDTD Method Cambridge University Press 2011 [2] C. M. Rappaport, B. J. McCartin FDFD Analysis of Electromagnetic Scattering in Anisotropic Media Using Unconstrained Triangular Meshes IEEE Transactions on Antennas and Propagation, Vol. 39, No. 3, March 1991 [3] C. M. Rappaport Perfectly Matched Absorbing Boundary Conditions Based on Anisotropic Lossy Mapping of Space IEEE Microwave and Guided Wave Letters, Vol. 5, No. 3, March 1995 [4] M.-L. Lui, Z. Cheng A direct computation of propagation constant using compact 2-D full-wave eigen-based finite-difference frequency-domain technique Proceedings of the 1999 International Conference on Computational Electromagnetics and Its Applications (ICCEA β99), p. 78-81, 1999 [5] Y.-J. Zhao, K.-L. Wu, K.-K. M. Cheng A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, July 2002 [6] L.-Y. Li, J.-F. Mao An Improved Compact 2-D Finite-Difference Frequency-Domain Method for Guided Wave structures IEEE Microwave and Wireless Components Letters, Vol. 13, No. 12, December 2003 [7] Raymond C. Rumpf Design and Optimization of Nano-Optical Elements by Coupling Fabrication to Optical Behavior PhD Thesis, University of Central Florida, Orlando Florida, 2006 [8] Aliaksandra Ivinskaya Finite-Difference Frequency-Domain Method in Nanophotonics PhD Thesis, Department of Photonics Engineering, Technical University of Denmark, Lyngby, 2011 H.-D. Lang FDFD 18/18