Math Packet 6
Transcription
Math Packet 6
u % Math Packet #6 gclng Data; Addltl"" raaeuorro *"rn.},f eA >s r+*i+ fl)+ n+ = j/g nTb O+ v% ct l+ V, TE ?*"-"= Teacher: Quail Run Elementary5th crade Math packet #5,2OO9_2O\O JackieLujan,Ms. Sjursen'sClass ,^ T, 4* Vocabulary lmportrnt term tn Unit 6: angle of separation A measurer of howfar finger canbe spread apat Thefiguresho|r the angle ofieparationbetweenr personi thumb and firrt finger. L Angle ofiepaGtion common denominator Any numberexceptzero that ir a mulupleofthe denominatonof t'),! or more ior elampre.the iracnonr and ha\e rractronr. 2 ] commondenominato66, 12, 18,and on. 'o contour linc A cu^/eon a mapthroughplaceswherea (ruchastemperature certainmearurement o.elevatbn) ir tle 3ame.Often, contourline3repaEteregionrthat have beencoloreddifferentlyto showa rangeofconditionr. cubit An ancientunit of length,m€aruredftom the point oflhe elbow to the end oflhe middlefinger. A cubit n about 18 inchei. d€c€nnial Occurr,ngor be;ngdone everyl0 year. fair gam6 A gam€in whicheachplayerharthe $me chanceofwinning.lfany playerhasan advantageor (for example,by playin8fiBtl, then the dnadvantage tathom A unit u'ed by peoplevho work with boaB and rhiprto mearuredepthr underwaterand length! of cabler.A fathomir now defineda' 5 feeL p V I gr€at ip.n The ditance frornthe tip ofthe thumb to the Up ofthe little finger (pinheJ,when the hand ir stretch€da! far asporsible. 0 t- ,3 landma* A notablefeatureofa data ret. t-andmarks include rhe median, mode, maimum, minimum, and line plot A ofdata in which checkmarki,X, 'ketch marks or other abovea numberline showthe frequencyof eachvalue. Usewith Lesson5.13. map legend (map key) A diagramthJt explainrthe rymboL,markinSr, and coloBon a map. maximum The lsrte( amoun! the Bre.teit numberin mean The sumofa setotnumbeB dividedby the numberof numbeBin the ret. Th€ meanir often .efe.red to rimply ar the averag€. m€dian The middlevaluein a setofdata whenthe dataare lkted iD orderfrom rmallertto largerLlfthere n an evennumberofdat poinh, the mediann the mean ofthe two middlevalues. minimum Theimallertamounqthe rmallestnumber rnode the valueorvaltrerthat occurmostoften in a nor.nal 3pan The difance from the tip ofthe thumb to the tip ofthe fiRt {index) fingerofan ouBtrekhedhand. population In data collection,the collectionof peopleor objectrthat ir the focur ofthe itudy. rang€ The differ€nce bet\r€en the maxrham and minimum in a set of data. t.mpl€ A pat of a tloup cho'ento reprerentthe rimpl€'t tolm A I'aciion le$ than I is in ,imple( forrn if there n no numberotherthan 1 that divide'itr numeratorand d€nominatorevenly.A mixednumberir in dmplertformif iA fractionalpart ir in 'imple'tform. plot ttom-andl€af Slems A dnpby of data in vhich digib with larger 't12 pla€evaluerar€ \temf 113 and digitswith rmaller o2 placevaluo are "leaver." rurv€y A rtudythat collectrdata. 279 :. Youandyourclassmates countedthenumberot stateseachof youhasvisited. As thecountsare reported andyourteacherrecordsthem,writethemin the you spacebelow.When finish,circleyourowncountin the list. Decidewithyourgrouphowto organize thedatayoujust listed.(Forexample, youmightmakea lineplotor a tallytable.)Thenorganize thedataandshowthe resultsbelow. 3. Writetwothingsyouthinkare important aboutthedata. 4. Compareyour own countol stateswiththose of your classmates. r70 UIe with Legon 6.1. Date l. Youandyourclassmates eachrecorded the numberof statesthatan adulthad beenin.As thenumbersare reported andyourteacherrecordsthem,writethem in thespacebelow. 2. Drawa line plotto organizethe data you just listed. 3. Recordlandmarks forthedataaboutadultsandstudentsin thetablebelow. 4, Howarethecountsfor adultsandstudentsdifferent? Exolainvouranswe.. Urew|lh Leson6.1. 1rl The pizzashownhasbeencut into12 equalslices. 1. Fillin eachblankwitha fraction. pizzamay help.) .(Hinl.ColoFcodingthe of the sliceshavefust one type of topping. S P/M ./P P: P D s ,/s M/__-- 10 of the sliceshave 2 ot mofe typesof toppings. of the sliceshave only sausage. M of the sliceshave sausageas al teast one topping. of the sliceshaveno vegetables. of the sliceshave both meat andvegetables. o tu l O M ly Sausage P Pepperoni It/ushroom o Onion :, Supposethat all the sliceswith pepperoniare ealen first. How manyslicesremain? Whatfractionof the slicesremaininghavemushrooms'1 Whatfractionof the slicesremaininghaveonlymushroorns? Bob,Sara,Don,and Alice sharethe pizza.Eachpersonwill eat exactly3 slices. Bobwilleat sliceswithonlymeat(sausage and pepperoni). AIicewilleat sliceswith (mushrooms onlyvegetables pepperoni_ andonions).Donhates Saraloves mushrooms butwillearanyof the toppings. The slicesare numbered from1 to 12.Whichslicesshouldthevtake? (NolerThereis morethan one possiblesolution.) Bob: Don: Sara: Alice: 1 r2 Ure with L€r'on 6.1. Thereare five line plotson page 183. Eachplot showsa difterentset ol data abouta fifthgradeclass. Matcheach of the followingfour sets of datawith one of the five plots.Then fill in the "Unit"for each matchedgraphon page 183. l. The numberof hoursof TV eachfifth graderwatchedlast night Plot 2, The ages of the youngerbrothersand sistersof the filth graders Plot 3. Theheights,in inches,of somefifthgraders Plot Theagesof somefifthgraders'grandmothers Plot 5. Explainhowyouselectedthe lineplottor DataSet4 6. Tell why you thinkthe otherline plotsare not correctfor DataSet 4. 1E2 Uie with Le$on 6.4. Date Time Unit: Plot #1 xxx xxxxxx xxxxxxxxx 52 53 54 55 56 x x x x ,x x x x 59 60 61 62 63 64 65 66 XX X x x x x x x Unit; Plot #3 x 50 52 54 56 X X X XX x x x xx x 58 60 62 64 66 68 xx 7A 72 74 76 7A 80 82 Unit: Plol #4 x Plot #5 58 Unit: Plot #2 26 57 xx 28 30 32 x xxxx xxx xxx U 38 x 40 42 xxx 44 46 48 50 52 54 Unit: x Ure with Leson6.4. t83 l. Howmuchis f ot $r? Howmuchis t ol $10?- 3. Howmuchis C ot $1,000? A. Eightcountersis + of theset.Howmanycountersarein theset? counters 5. Twentycountersis fr of theset.Howmanycountersarein the set?- counters 6. A set has40 counters. Howmanycountersare in * of the set? counters A sethas36 counters. Howmanycounters are in * of theset? coumers a. Mariahsharedhersandwich equallywithher3 friends. Whatfractionof a sandwich did Mariahget? of a sandwich 9. Bernicegave6 of her 18fancypencilsto herbestfriend. Howmanypencilsdid Bernicehaveleft? .,}t{*l;Ml*l{X}s,llr'i,: ^6n^ila . i .-.: i, " : *rrrr*r**r*r**Xr*rr*rrar1!,Xta Challenge lo. Jamieand his two friendssharedi of his 12 candies. How manycandiesdid eachfriendget, ll. t86 candres Explainhow you solvedProblem10. Ure with Lesson6.5. Tirne A frequency table is a charton whichdata is talliedto tindthe frequencyof given eventsor values. Usethe frequencytablesbelowto tallythe Entertainment data and Favorite-Sports page data on 110 in your StudentRefercnceBook.Then completethe tables.lf you conductedyour own survey,use the frequencytablesto tallythe datayou collected. Thencomplete the tables. r. Whatis the surveyquestion? Number Totalnumberof tallies 2. What is the surveyquestion? Fraction Total numberol tallies 19 0 Ure with Lerlon 6.6. l. Drawa bargraphfor oneot thesurveyquestions on journalpage190. Labelthe partsof the graph.Givethe grapha title. 2. Drawa circlegraphfortheothersurveyquestionon journalpage'190. Labelthesectionsof thegraph.Givethe grapha title. Use with Leson 6.6. !91 plotforthe Shower/Bath 3, Makea stem-and-leaf Timedataon page110in your yourownsurvey,makea stem-andStudentReference Book.lf youconducted plot leaf for thedatayoucollected. Findthe landmarksfor this set ol data. Minimum: Maximum: Bange: Median: Mode: w:trt:la):,,r*r**rxr*rrrn rarr.rt:1rttffi:tr*xrrrrrrrx Challenge 4. Calculate the mean(average). Mean:- 192 Ure with Le$on 6.6. Date Time : Part 1: Math Message The numberson a clockfacedivideone hourinto twelfths.Each+ of an hour is 5 minutes. -..J Irth"r" f;---.l How many minutesdoes each of the followingfractionsand mixed numbersrepresent?The first one has beendonefor Vou. t. fnr=-min 4, ! nr: - * nr = min rnin m in - lnr : :' ,!ht = mtn a. *rrr= mrn Part 2 Usingtheclockface,fillin themissing numbers. Thefirstonehasbeendoneforyou. :.]nr=fhr a .in, : - , hr i_, r o .f nr:f n , - 12" L 'l rr. ---q,nr=$nr T---r e. $n,:\;rnr .:- l r4. ; hr = !:! '!t. Ll ,".t; n,.:Fn'' e. lnr : - f nr hr 12 hr L61 = :: Part3 Useclockfractions, if helpful,to solvetheseprobtems. Writeeachansweras a fraction. ex am pt e ] - [ = z : 25 minutes Think:45 minules 20 minutes c^ -? -1 ,1 ""4 3 12 ro.f,+ tr, 1- 2 3 Use with Le$on 6.9 3 12 q 2 20. 5 4 2 23, 1 1 t7. 3 ta, 11 12 j 12 21. ? 1 6 24. 5 6 3 3 201 Studytheexamples. Thenworkthe problems belowin thesameway. _t t - Exa m p te I a+;= Unlike Denominators 1 Common Unlike Denominators Denominators 44 66 Common Denominators 9!10 *1 6 612 12 412 12 5 6 r. 1+ 4: z Unlike Denominators Common Denominators :rc-a= ' Unlike Denominators z3 g 2 54 69 3. Unlike Denominators Common Denominators Unlike Denominators '| +; 202 Common Denominators Common Denominators .c 6 -9 4 Ure w|th Lerron6.9. . €.1+-8:? 9,9:,> Unlike Denominators Common Denominators Unlike Denominators Common Denominators 1+ 4 3 2 7. A pieceof ribbonis zj inchestong.ll a piece2$ incheslongis cut off,how piece? longis the remaining In. to showhowvousolvedthe problem. Writea numbersentence a. Threeboardsaregiuedtogether. Thediagrambelowshowsthethickness of each board.What is the totalthicknessof the threeboards? l- a5" ln. 1" 2 Writea numbersentence to showhowvousolvedtheproblem. Ure with Lesron5.9. 203 Date t. Subtract. (HintUsea number lineto helpyou.) Rewriteeach numberin exponential notation. a.50-56: b. 48 68: b.5*5'.5i.5= :23 d. _ 29 .- 9i9+9"9- =99- 1 0 5 *. 7 +7 : :75- ..2+2*2+ 2*2= 73 3. a. lvlakea stem-and-leaf plotfor the bowlingscoresfiom the pick'sfamilyreunjonbowl 1 0 6 , 1 3 5 , 1 6 8 , 1 6 2 , 1 30, 116, 109, 139, 161, 1 3 0 , 1 1 8 , 1 0 5 , 1 5 0 , 1 64, 130, 138, 112, 116 Stems Leaves (100sand10s) ( 1s) b. Whatis the maximum score? What is the modefor the scores? d. Whatis the medianscore? Usewith Leson 6.9. Commondenominators are usefulnotonlyfor addingandsubtracting fractions, our alsofor comparing fractions. A quickwayto lind a commondenominalor for a pairof fractionsis to findthe product of thedenominators. ExampleCompare ! and*. Use3 * 8 as a commondenominator. 2 s = l8-A 16 t-8.o z l 5 e = i3.5) 15 1- : . e 1 2 4 ;> ;'s o;r;. l. Rewriteeachpairof fractionsbelowas equivalent fractionswitha common denominator. Thenwrite< (lessthan)or > (greaterthan)to comparethefractions. Finda commondenominator. Thenaddor subtract. l1 3" n z= 6. 2o5 ,q 10 5 5. 53 I' i'6 +f Usewith Leson6.10. below: r. Foreachpairof lractions . Finda commondenominator. . Flewrite withthiscommondenominator. thefractions . Add the fractions. Original Fractions Fractionswith a CommonDenominator Sum j a nof !...r * 4 8 ' 16 ; andii' { a no$ fanoJ 1 *"" 9 5 "^.r 8 ;a n d ; 2. Explainhowyou lounda commondenominator for one of the fractionpairsabove. Usewitir Lesson5.10. E9