Diapositive 1
Transcription
Diapositive 1
MIE • Christophe Morisset & Antonio Peimbert – Chris.Morisset@Gmail.com – antonio@astroscu.unam.mx • • • • • Martes, Miercoles: 9h30:11h30 Jueves: 11h00:12h00 3 examenes (2/3) ~10 Tareas + 1 platica (= 2 tareas) (1/3) http://132.248.1.102/~morisset/MIS Temario 1. Introducción Condiciones físicas de Medio Interestelar Fases del Medio Interestelar. Halos de Galaxias Medio Intergaláctico Foresta de Lyman Gas de Núcleos de Galaxias Componentes de alta energí a: rayos cósmicos, rayos gamma 2. Polvo interestelar Propiedades radiativas del polvo Composición y propiedades físicas del polvo Formación y destrucción de granos Hidrocarbonos poliaromáticos 3. Regiones H I Estado de ionización Calentamiento y enfriamiento La línea de 21 cm El polvo en las regiones H I 4. Regiones fotoionizadas Regiones H~II y nebulosas planetarias Esfera de Strömgren Estructura del frente de ionización Radiación difusa Aproximación "on the spot" Estado de ionización de los elementos pesados Balance de energía 5. Espectro de Regiones HII y diagnósticos de plasma Líneas útiles para determinaciones de densidad, temperatura y abundancias químicas Corrección por extinción Propiedades físicas a partir del espectro en radio Temario 2 6. Nubes moleculares Estructura Balance de energía Líneas moleculares Química de las nubes moleculares Turbulencia y propiedades estadísticas de las nubes moleculares. Diagnósticos moleculares 7. Nubes en equilibrio Teorema del virial Soluciones hidrostáticas El efecto del campo magnético 8. Dinámica del medio interestelar Aplicabilidad de la mecánica de fluidos al medio interestelar. Ecuaciones de la dinámica de gases Ondas de sonido Teoría de Kolmogorov para turbulencia incompresible. Espectro de -5/3 y cascada de energía. Turbulencia astrofísica. Diferencias con la teoría de Kolmogorov: forzamiento a escalas intermedias, compresibilidad. 9. Formación estelar Criterio de Jeans Colapso de una nube esférica Acreción de una envolvente en rotación 10. Ondas de choque Condiciones de salto Zonas de relajamiento Choque isotérmico Ecuaciones para la zona post-choque Ecuaciones para la ionización Enfriamiento radiativo (curva de enfriamiento) y por ionización colisional Modelo mínimo: calentamiento y enfriamiento por ionización de hidrógeno. Efecto del campo magnético 11. Fenómenos dinámicos y su efecto en el medio interestelar Expansión de regiones H II: expansión inicial del frente de ionización, expansión dinámica, equilibrio final Vientos estelares: isotérmico, presión de radiación Burbujas de vientos estelares Remanentes de supernova Objetos Herbig-Haro y jets Historia • ~1800: W. Herschel, catalog of bright patches called “nebulae” • 1864: Huggins, spectra of Andromeda (Sun-like) and Orion (gaseous emission) nebulae. « Nebulium » • 1895: Helium discovered on earth • 1904: Hartmann: stationary Ca II lines in spectrum of spectroscopic binary δ Ori : interstellar or circumstellar? =>Discovery of ISM • 1919: Barnard, catalog of dark nebulae : holes in stellar distribution or obscuring matter? Historia • 1913: Hess, discovers “Höhenstrahlung” in balloon flights; cannot come from the Sun • 1927: Clay, proves that “Höhenstrahlung” consist of high energy charged particles : cosmic rays => ~1950: cosmic rays shown to consist of heavy particles (protons, alfa particles) • 1927: Bowen identify the « nebulium » emission lines as forbidden Oxygen lines • 1930: Trumpler, proof of interstellar extinction (distance to open clusters is overestimated) • 1933: Plaskett & Pearce, Ca II absorption is interstellar (stronger for more distant stars) Historia • 1922 Heger: discovery of diffuse interstellar bands (DIBs) • 1937 – 40: Swings & Rosenfeld, McKellar, Adams, first small interstellar molecules (CH, CH+, CN) • 1945: van de Hulst, prediction of H I 21 cm line • 1949: Hall & Hiltner, correlation of polarization of starlight with reddening : aligned grains : interstellar magnetic field. Confirmed by discoveries of synchrotron radiation, Faraday rotation and Zeeman splitting in 21 cm line • 1960s: Discovery of soft X-ray background from hot, ionized gas Historia • • • • • • • • • • 1951: Ewen & Purcell, Oort & Muller, detection of 21 cm line 1950’s – 60’s: 21 cm maps => galactic disk contains 5x109 MO of gas (=10% of disk mass) <n>=1 cm-3 1963: Weinreb, Townes et al.: interstellar OH masers 1968: NH3 (first polyatomic molecule) 1970: CO J = 1–0 emission at 2.6 mm (Penzias & Wilson!) 1970’s-1980’s: Galactic distribution of CO: distribution molecular vs atomic gas 1970’s-now: Many new interstellar molecules found (>100); some very exotic 1973: Carruthers, UV lines of H2 from rocket 1970’s – 80’s: Infrared astronomy (H2 infrared lines, small dust particles, very large molecules) 1980’s – 90’s: Submillimeter astronomy (warm interfaces of molecular clouds, cold protostellar regions) Historia The Impact of Space Astronomy – – – – – – – – – 1973 – 80: Copernicus UV satellite 1983: IRAS 1990 – 91: COBE 1990 – now : HST 1995 – 98 : Infrared Space Observatory (ISO) 1999 – now: Chandra & XMM-Newton: X-rays 2000 – 2007: Far Ultraviolet Space Explorer (FUSE) 2003-2009+warm now: Spitzer Space Telescope 2009- : Herschel General Properties of ISM • Mostly confined to Galactic disk (little gas in halo, as in elliptical galaxies) • Enormous ranges in temperature and density (T = 10 … 106 K, n = 10-3 … 106 cm-3) • Even dense regions are “ultra-high vacuum” (compare air at sea level n = 3.1019 cm-3) • Very far out of thermal equilibrium => complex processes (lots of interesting physics) Regions of ISM Classified by State of Hydrogen • Hydrogen is by far the most abundant element (> 90 % of atoms) • Composition of ISM is similar to Solar System • ISM regions characterized by state of hydrogen and temperature; 5 kinds: – Ionized atomic hydrogen (H+ or H II), Hot and Warm – Neutral atomic hydrogen (H0 or H I), Cold and Warm – Molecular hydrogen (H2) • Regions are nearly pure (100 % H II, H I, or H2) • Transition regions H II H I H2 are thin H II Regions • Traditional H II regions surrounding early type stars – T ~104 K, n ~0.1-104 cm-3, f small – Heated and ionized by photons with hν>13.6 eV, λ<912 Å – Cooled by forbidden lines of atoms +ions [OIII], [OII], [NII],…. – Observed by optical lines of atoms and ions, radio continuum, – radio recombination lines • Coronal gas: very hot, tenuous gas pervading ISM (=HIM) – T≥3x105 K, n ~ 0.003 cm-3, f ~0.6? – Heated by shocks from SN and collisionally ionized – Cooled by adiabatic expansion and X-ray emission – Observed by X-ray emission, optical emission, non-thermal radio emission, UV absorption lines of OVI H II Regions (2) • Warm ionized gas: warm diffuse gas throughout ISM (=WIM = DIG) – T 8000 K, nH ~0.25 cm-3, ne/nH ~0.7, f ~0.2? – Heated and ionized by stray photons from O and B Stars λ<912Å? Not clear... – Cooled by forbidden lines of atoms and ions – Observed by broad optical and radio recombination lines ( e.g. H166α) and pulsar dispersion measures. Some [NII] and [OIII] observations. H I Regions • Cold neutral clouds: HI clouds throughout ISM (=CNM) – – – – • T~80 K, nH~ 40 cm-3, f=0.025, ne/nH~10-4 Heated by UV photons with λ>912 Å through p.e. effect Cooled by [CII] fine-structure emission at 157µm Observed by HI 21cm emission + absorption, optical and UV absorption lines of atoms ( e.g. Na) Warm neutral gas: warm diffuse gas throughout ISM (=WNM) – T ~8000 K, nH ~ 0.4 cm-3, ne/nH ~ 0.15, f ~ 0.1-0.5? – Heated + partly ionized by soft X-rays – Cooled by atomic lines – Observed by HI 21 cm emission H2 Regions • Diffuse molecular clouds: includes translucent and high latitude clouds – – – – T ~ 0-80 K, nH ~100-103 cm-3, ne/nH ~10-4, f ~0.01 Heated by UV photons with λ>912 Å through p.e. effect Cooled by [C II] fine-structure emission Observed by HI21 cm emission, CO mm emission, optical + UVabsorption lines, IRAS 100 µm • Dense molecular clouds: dark clouds +GMCs – – – – T ~10-100 K, nH ~103-106 cm-3, ne/nH ~10-6, f ~0.0005 Heated by cosmic rays +newborn stars Cooled by mm emission from molecules such as CO Observed by mm lines from molecules, FIR and submm continuum emission from dust Other Ingredients of ISM • Heavier elements – He (= 10 %) – C, N, O (= “cosmic” abundances) – Si, Ca, Fe (depleted onto grains) • Grains ( 0.1 µm size, silicates or carbonaceous material, = 1% by mass of ISM) • Star light • Combined light of bright stars produces average interstellar radiation field • X-rays, cosmic rays • Magnetic fields The local ISM (within ~200 pc from the Sun) Interstellar absorption lines towards nearby stars => very little neutral matter within 100 pc of the Sun, N(H) ≤ 1019 H atoms cm–2 Confirmed by polarization data n< 0.3 cm–3 Soft X-ray emission mostly of local origin OVI absorption lines also indicate that there is a lot of hot gas locally => The Sun is inside a “local bubble” of hot, ionized gas! 3 phases model with fountains Purple= mol. Clouds || Solid green= cold H I clouds || Hatched green= warm H I || Hatched green on yellow = diffuse warm H II || Orange= Hotter gas with OVI || Red=Hot gas emitting X-rays|| Blue= star Why is ISM not in Thermal Equilibrium? • • • • Thermal equilibrium requires “detailed balance”, i.e., each process occurs as often as the inverse process This is frequently not true in ISM, e.g., collisional excitation is followed by radiative decay (because of low density) Example: O2+ = OIII in HII region The interstellar radiation field is far from thermal equilibrium : peak at 2000Å => Tcolor=104 K, but energy content ~1 eV cm-3 => 3 K Energy Densities in Local ISM Observations: images and spectroscopy • From radio, cm, IR, Visible, UV to X-rays. • Spectroscopy: art of giving values to colors ISM = filter ISM = filter Bubbles of ionized material blown by fast stellar winds are frequently observed in the ISM XMM-Newton [O III] Hα X-rays S 308 X-ray Detections of Hot Gas in PNe Chandra BD+30o3639 Chandra Hen 3-1475 Chandra NGC 40 XMM NGC 3242 XMM NGC 7009 NGC 2392 Chandra NGC 6543 XMM NGC 7026 XMM Chandra NGC 7027 Chandra Mz 3 X-ray Detections of Hot Gas in PNe Central Cavity Swept-up AGB Wind AGB Wind (!) HST [N II] HST Hα Chandra 0.2-1.5 keV X-rays Chu et al. (2001) Limb-brightened diffuse X-ray emission within a sharp central cavity Also unexpected hard X-ray source at the central star (Guerrero et al. 2001) Movies: Orion, Herschel