Module BP 11 - dynamicearth.de
Transcription
Module BP 11 - dynamicearth.de
11Subduktion zonen R. Bousquet 2009-2010 Module BP 11 - 11 Earthquakes R. Bousquet 2009-2010 Module BP 11 - 11 Haiti Earthquake 12.01.2010 USGS R. Bousquet 2009-2010 Module BP 11 - 11 Haiti Earthquake 12.01.2010 USGS R. Bousquet 2009-2010 Module BP 11 - 11 Haiti Earthquake 12.01.2010 USGS http://earthquake.usgs.gov/ R. Bousquet 2009-2010 Module BP 11 - 11 Haiti Earthquake 12.01.2010 USGS R. Bousquet 2009-2010 Module BP 11 - 11 Haiti Earthquake 12.01.2010 R. Bousquet 2009-2010 Module BP 11 - 11 Haiti Earthquake 12.01.2010 Calais, RENASS R. Bousquet 2009-2010 Module BP 11 - 11 Haiti Earthquake 12.01.2010 RENASS R. Bousquet 2009-2010 Module BP 11 - 11 Haiti Earthquake 12.01.2010 Woods Hole R. Bousquet 2009-2010 Module BP 11 - 11 Haiti Earthquake 12.01.2010 USGS Module BP 11 - 11 Back-arc basin Spreading axis Magmatic arc Magmatic front Forearc Forearc basin Trench Accretionary prism Outer trench high 0 Depth (km) Arc crust 500 C 1 Lithospheric mantle 50 Convecting 2 Asthenosphere S tin c u d ub he re p s o g lith 500 C 1000 C Oceanic crust Asthenosphere motions Plate motions 100 Partial melt diapir R. Bousquet 2009-2010 2 Areas of melt generation Fluid pathways 150 400 300 200 100 Distance from trench (km) 0 R. Bousquet 2009-2010 Module BP 11 - 11 An accretionary wedge is a wide submarine mountain belt… R. Bousquet 2009-2010 Module BP 11 - 11 Makran wedge 500 Km ! R. Bousquet 2009-2010 Module BP 11 - 11 Marianna wedge Module BP 11 - 11 Lesser Antilles wedge R. Bousquet 2009-2010 Barbados accretionary prism R. Bousquet 2009-2010 Module BP 11 - 11 from Kopp 17 R. Bousquet 2009-2010 Module BP 11 - 11 Sunda wedge from Kopp and Kukowski R. Bousquet 2009-2010 Module BP 11 - 11 Nankai wedge (Japan) P. Henry & JOIDES Team R. Bousquet 2009-2010 Module BP 11 - 11 Cascadia wedge Gutscher et al., 1996 31 R. Bousquet 2009-2010 Module BP 11 - 11 Ionian Sea wedge N. Kukowski et al. / Marine Geology 186 (2002) 29^42 Fig. 1. Bathymetric map of the Ionian Sea region, showing the tectonic setting of the IMERSE experiment with the location of the seismic pro¢les across the WMR. The part of line 5 shown in Fig. 2 is marked in bold, CS refers to Cyrene Seamount. Kukowski et al., 2002 R. Bousquet 2009-2010 Module BP 11 - 11 Ionian Sea wedge Fig. 2. Interpretation of a seismic section (in time) through the Mediterranean Ridge accretionary wedge based on the results of the IMERSE project and in particular pro¢le 5A (Reston et al., 1999a). See text for details of the tectonic interpretation. Kukowski et al., 2002 R. Bousquet 2009-2010 Module BP 11 - 11 Ionian Sea wedge N. Kukowski et al. / Marine Geology 186 (2002) 29^42 Kukowski et al., 2002 R. Bousquet 2009-2010 Module BP 11 - 11 Types of accretionary wedge Module BP 11 - 11 Mechanisms of accretion NW Cascadia wedge SE Gutscher, M.A., Kukowski, N., Malavieille, J., and Lallemand, S., 1998, JGR Changes in detachment levels Entrained duplexes R. Bousquet 2009-2010 Kukowski, Lallemand, Malavieille, Gutscher & Reston, 2002, Marine Geology Underplating + Frontal accretion - Strain partitioning - Two different growth processes acting simultaneously Module BP 11 - 11 Mechanisms of accretion In the eighties, mechanical modeling of mountain building bring geologists to consider mountain belts as crustal scale accretionary wedges. Taiwan wedge model by Davis, Suppe & Dahlen, 1983 R. Bousquet 2009-2010 -> Coulomb wedge theory (The wedge is considered to deform homogeneously). * Different tectonic regimes depending on wedge stability : critical, subcritical, supercritical… R. Bousquet 2009-2010 Module BP 11 - 11 Critical taper do not give any information on how the interior of the wedge deforms Module BP 11 - 11 Modeling accretionary wedge Sediments Fixed plate (Backstop) S Mobile plate R. Bousquet 2009-2010 Malavieille, com. pers. Module BP 11 - 11 Modeling accretionary wedge Sediments Fixed plate (Backstop) S Mobile plate Malavieille, com. pers. Fixed Backstop R. Bousquet 2009-2010 Coloured sand layers traction S “the sandbox“ Plastic sheet Module BP 11 - 11 Modeling accretionary wedge High friction R. Bousquet 2009-2010 Low friction Malavieille, com. pers. Module BP 11 - 11 Modeling accretionary wedge High friction R. Bousquet 2009-2010 Low friction Malavieille, com. pers. Module BP 11 - 11 Modeling accretionary wedge High angle underthrusting R. Bousquet 2009-2010 Low angle Frontal accretion Biagi & Malavieille, 1987 Module BP 11 - 11 Modeling accretionary wedge R. Bousquet 2009-2010 Localized exhumation window Progressive exhumation R. Bousquet 2009-2010 Module BP 11 - 11 Impact of backstop geometry Malavieille & Biaggi., 1987 Module BP 11 - 11 Types of wedge & exhumation of HP rocks Extension: Crete Croos-cutting sets of normal faults frontal accretion Major narmal fault (detachment) 0 Blueschist Platt, 1986 Depth (km) 20 40 underplatting by imbrication & folding Underplating & erosion : South-Chile, Taiwan Small normal faults erosion frontal accretion 0 20 Ring & Brandon, 1994 Depth (km) amincissement ductile 40 underplating Blueschist, Eclogites 0 20 Cloos, 1982 40 matter flow LP rocks jNEDU HP rocks jNEDU after Bousquet, 1998 0 100 km Depth (km) R. Bousquet 2009-2010 "Corner flow" or subduction channel : Western Alps Module BP 11 - 11 Tectonic plates around Taiwan R. Bousquet 2009-2010 TAIWAN Image K-J Chang Module BP 11 - 11 Geodynamic setting Taiwan, The classical example of R. Bousquet 2009-2010 Arc-continent collision ! Why not? But, what does it mean? R. Bousquet 2009-2010 Module BP 11 - 11 Tomography below Taiwan North profile Lallemand et al., 2001 R. Bousquet 2009-2010 Module BP 11 - 11 Tomography below Taiwan Profile in the Middle of the island Lallemand et al., 2001 R. Bousquet 2009-2010 Module BP 11 - 11 Tomography below Taiwan South profile Lallemand et al., 2001 R. Bousquet 2009-2010 Module BP 11 - 11 R. Bousquet 2009-2010 > 8cm/yr Module BP 11 - 11 R. Bousquet 2009-2010 Module BP 11 - 11 R. Bousquet 2009-2010 Module BP 11 - 11 Seismicity around Taiwan R. Bousquet 2009-2010 Module BP 11 - 11 Seismicity around Taiwan R. Bousquet 2009-2010 Module BP 11 - 11 Seismicity around Taiwan Carena et al., 2002 Module BP 11 - 11 Taiwan’s wedge geometry Orogenic wedge Backstop S R. Bousquet 2009-2010 Subducted plate Module BP 11 - 11 Taiwan’s wedge geometry Orogenic wedge Backstop S R. Bousquet 2009-2010 Subducted plate Carena et al., 2002 Module BP 11 - 11 3D geometry R. Bousquet 2009-2010 Lallemand et al., 2001 Oblique subduction of the chinese continental margin under the Philippine plate R. Bousquet 2009-2010 Module BP 11 - 11 Taiwan: geodynamic evolution Lallemand et al., 2001 R. Bousquet 2009-2010 Module BP 11 - 11 Taiwan: geodynamic evolution Lallemand et al., 2001 R. Bousquet 2009-2010 Module BP 11 - 11 Taiwan: geodynamic evolution Lallemand et al., 2001 R. Bousquet 2009-2010 Module BP 11 - 11 Taiwan: geodynamic evolution Lallemand et al., 2001 R. Bousquet 2009-2010 Module BP 11 - 11 Taiwan: geodynamic evolution Lallemand et al., 2001 R. Bousquet 2009-2010 Module BP 11 - 11 Taiwan: geodynamic evolution Lallemand et al., 2001 R. Bousquet 2009-2010 Module BP 11 - 11 R. Bousquet 2009-2010 Module BP 11 - 11 Taiwan: analogical models Malavieille, com. pers. R. Bousquet 2009-2010 Module BP 11 - 11 Taiwan: analogical models Although convergence & erosion being uniform, deformation recorded in the wedge is complex Malavieille, com. pers. R. Bousquet 2009-2010 Module BP 11 - 11 Taiwan: structure vs model Malavieille, com. pers. R. Bousquet 2009-2010 Module BP 11 - 11 Metamorphic evolution & erosion distribution Willett et al. 2001 R. Bousquet 2009-2010 Lallemand et al., 1999 Module BP 11 - 11 Module BP 11 - 11 Main forces of plate tectonics plate draged by convection R. Bousquet 2009-2010 plate pushed by density changes of the oceanic plate plate pulled by downgoing slab R. Bousquet 2009-2010 Module BP 11 - 11 Slab dip vs. age Lallemand et al., 2005 Module BP 11 - 11 Back-arc dynamics Non oceanic back-arc R. Bousquet 2009-2010 Back-arc oceanic crust R. Bousquet 2009-2010 Module BP 11 - 11 Back-arc dynamics Major Pacific slab geometries classified by groups of deep slab dips except the first group, which concerns flat subductions with variable deep slab dips: 30° to 50°, 50° to 60°, 60° to 70°, steeper than 70°. Active arc/ back-arc compression is observed for slab dips lower than 50°, whereas active arc/ back-arc extension occurs only for slabs dips steeper than 50°. Module BP 11 - 11 Absolute vs effective trench migration The shape produced by sinking slab elements depends upon the speed of the trench relative to the underlying mantle Similar profiles may result from (a) a fast trench and quiescent mantle or (b) a stationary trench and a fast flowing upper mantle; in both cases the effective migration rate is the same. Even in the absence of the global mantle flow, this coupling will result in steeper dips than produced in a. (c) Conversely, a fast moving trench may have zero effective velocity. R. Bousquet 2009-2010 (d) Plate motions alter mantle flow fields unless completely decoupled. (e) In one-sided subduction, plate/ mantle coupling will generate a flow associated with the trench's motion, thus limiting changes in effective migration. Tao & O’Connell, 1992 R. Bousquet 2009-2010 Module BP 11 - 11 Relative motions of subduction zones Arcay et al., 2008 R. Bousquet 2009-2010 Module BP 11 - 11 Relative motions of subduction zones Arcay et al., 2008 Module BP 11 - 11 Plate tectonic forces Vup Friction Arc deformation Trench 1 3c 3a Bending Ridgeïpush Interplate decoupling depth, zdec Vs Slabïpull Mantle shear 2 R. Bousquet 2009-2010 2 Vsub 3b Intraslab deformation Basal mantle shear