Biomech_DYN_2010 [Compatibility Mode]
Transcription
Biomech_DYN_2010 [Compatibility Mode]
Biomechanics Dynamics J. Paulo Vilas-Boas, Ph.D Leandro Machado, Ph.D Filipa Sousa, Ph.D jpvb@fade.up.pt; lmachado@fade.up.pt; filipas@fade.up.pt Dynamics Dynamics Forward dynamics: ∑ F = ma F Forward dynamics: a Inverse dynamics: x •• x ∑ F = ma a Force and pressure transducers: - Strain gauges •• mx = ∑F F F - Dynamometers - Force Plates - Isokinetic dynamometers - Pressure transducers - Isometric dynamometers - Dynamic dynamometers 1 Dynamics Force transducers Strain gauges Dynamics (Bartlett, 1997) Force transducers Force plates Force and torque components which act on the performer Dynamics Dynamics Force transducers Force plates Force plates Data examples Vertical RF Resultant vector Acceleration Horizontal RF Deceleration Pronation CP migration Lateral-medial RF Supination Ground contact forces in walking (3D) (from Amadio et al., 1996) 2 Dynamics Force plates Dynamics Force plates Naide Gomes - componente vertical 3 passagens Naide Gomes - componente médio-lateral 3 passagens 12 3 10 2 Força / Peso Força / Peso 8 6 4 1 0 2 0 -1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 20 40 60 80 100 t norm t (s) Naide Gomes - componente vertical 3 passagens Naide Gomes - componente antero-posterior 3 passagens 12 1 0 10 -1 Força / Peso Força / Peso 8 6 4 -2 -3 -4 -5 2 0 -6 0 20 40 60 80 100 -7 0 20 40 t norm Force plates Dynamics 60 80 100 t norm Force plates Dynamics Nelson Évora - componente antero-posterior 4 passagens 4 0 t apoio =paulo1 0.167 s Paulo -2 componente médio-lateral 1 0 0 20 40 60 80 3 2 1 100 3 -1 -2 -3 0 -0.5 -4 0 -1 Nelson Évora - componente médio-lateral 4 passagens força normalizada 4 t norm Nelson Évora - componente vertical 4 passagens força normalizada 0.5 -6 15 paulo1 Paulo componente antero-posterior 1 5 -4 -8 paulo1 Paulo componente vertical 6 força normalizada Força / Peso 2 0 20 40 60 tempo normalizado 80 -5 100 Vertical: Máx: 5.95 * Peso = 4422.2 N, aos 0.025 s 0 20 40 60 tempo normalizado 80 100 -1 0 20 Antero-posterior: Máx: 4.60 * Peso = 3419.2 N, aos 0.022 s 40 60 tempo normalizado 80 100 Médio-lateral: Máx: 0.91 * Peso = 675.2 N, aos 0.029 s 2 marisa1 Marisa componente vertical 4 3 2 1 0 0 20 40 60 t norm 80 100 -2 0 20 40 60 t norm 80 100 -1 -2 -3 1 0.5 0 -4 0 -1 força normalizada -1 componente médio-lateral 1.5 0 5 0 marisa1 Marisa componente antero-posterior 1 6 força normalizada 5 1 força normalizada Força / Peso Força / Peso t apoio =marisa1 0.154 s Marisa 7 10 0 20 40 60 tempo normalizado 80 Vertical: Máx: 7.00 * Peso = 3797.0 N, aos 0.013 s 100 -5 0 20 40 60 tempo normalizado 80 100 Antero-posterior: Máx: 4.38 * Peso = 2376.6 N, aos 0.015 s -0.5 0 20 40 60 tempo normalizado 80 100 Médio-lateral: Máx: 1.17 * Peso = 636.4 N, aos 0.022 s 3 Dynamics Force plates Force and torque components which act on the performer (Bartlett, 1997) Dynamics Force plates Force plate transducers They detect force and converts (transduce) it into electrical signal Strain gauges Vectorial expression of forces with location (and migration) of the centre of pressure No insight on force distribution along the contact surface Used for foot strike patterns, balance, input for inverse dynamics Whole-body measurements Material which electrical resistance changes with its deformation (strain) - sensitive to temperature - less expensive and easier to install - more suitable for statical situations Piezoelectric They rely on the development of a electrical charge by a crystal (e.g. Quartz) when subject to a force - drift disadvantage for static analysis Dynamics Force plates Operational characteristics: - high sensitivity - low force detection threshold - high linearity (a) - low hysteresis (b) - low cross-talk - no cable interference, electrical inductance, temperature and humidity variations - good dynamic response (c) - low amplitude ratio - low phase lag 4 Dynamics Dynamics Force plates Force plates Data examples Data examples Vertical GRF in standing vertical jump (Bartlett, 1997) Different surfaces Different foot strike Different shoes Ground contact forces in running (vertical component). (Adapted from Nigg, 1986, quoted by Bartlett, 1997) Dynamics Dynamics Force transducers Force transducers Force plates Dynamometrical parameters a) ∆t Force plates b) Fy1 c) ∆t Fy1 d) Fy min e) ∆t Fy min F f) Fy2 g) ∆t Fy2 Gaitway System (Kystler) h) Deflection i) Increment j) Fx min k) ∆t Fx min l) Fx max m) ∆t Fx max n) Force Gradient 1 (FG = b/c) o) Force Gradient 2 (FG = f/(g-e)) p) Vertical Impulse (Imp Y) q) Negative Impulse (ImpN) r) Propulsive Impulse (ImpP) s) Impulses relationships (Imp Rel) t Based on Soares, R. (2005) 5 Dynamics Dynamics Force transducers Force transducers GRF vertical component (Fy) Force plates (bw) Values of the first peak (PC) Force plates 1st Vertical Peak Slope (gradient)1 Intermediate minimal force 2nd Vertical Peak 75 ms vertical impulse (passive) Total vertical impulse Support time 18 16 14 12 10 8 6 4 2 0 Walking Running High J Long J Triple (step) Walking Running High J Long J Triple (step) Double support time Adapted from BAUMMAN & STUCKLE (1980) Based on Soares, R. (2005) Statics Dynamics Force plates use for balance evaluation Force plates and pressure transducers Stabilogrametry Rear foot 0% 15% Midfoot 30% 0% 15% Forward foot 30% 0% 15% 30% Rambling and trembling assessment for neuro-motor balance analysis Gait dynamometry of pre-pubertal children with different dorsal extra-loads (from Vilas-Boas et al., 2002) 6 Dynamics Pressure transducers Dynamics Pressure transducers - Foot area of contact - Qualitative assessment of pressure - Anthropometry of the foot Based on Soares, R. (2005) Dynamics Data processing Dynamics Pressure transducers - 2D “colour coded” displays - 3D wire frame displays - Force, maximal pressure and contact area - Pressure-time integral for all regions of the foot - Centre of pressure path 7 Dynamics Dynamics Capacitive pressure transducers Conductive pressure transducers N (Bartlett et al, 1991) Also a 3 layer construction : A matrix of rows and columns of conducting material, which sandwich a layer of resistive material - Not sensitive to temperature - Much thinner and inexpensive 3 layer construction: A matrix of rows and columns of conducting material, which sandwich a layer of capacitive (dielectric) material r x c = number of capacitors EMED insoles 85, 170 or 256 sensors - Calibration much more linear but instable - Flexible but fragile AMTI conform (Derrick and Hamill, 1992) F-Scan insoles 100Hz, 50Hz and 20Hz Accuracy = 5%; Hysteresis = 3%; Peak up to 1270 kPa - Can be cut to foot size 960 sensors (5.1 mm2) 100Hz Peak up to 1035 kPa Dynamics Dynamics Piezoelectric pressure transducers Pressure transducers Also a 3 layer construction : A matrix of rows and columns of conducting material, which sandwich a layer of resistive material - Sensitive to temperature - Thick (3 to 4 mm) and expensive - Each transducer requires individual connections - Flexible Developed by Henning et al, 1993) Platforms Insoles Hand grip Other transducers 499 sensors (23 mm2) not commercially 200 Hz available Accuracy = 2%; Hysteresis = 1%; Peak up to 1500 kPa 8 Dynamics Pressure transducers Dynamics Pressure transducers Dynamics Pressure transducers Dynamics Pressure transducers 9 Dynamics Data processing Dynamics Pressure transducers Dynamics Pressure transducers 10