neuronal plasticity
Transcription
neuronal plasticity
Aspectos Moleculares y Celulares de la Función Neuronal Plasticidad Intrínseca y Sináptica Marcela S. Nadal, Ph.D Grupo de Física Estadística e Interdisciplinaria Escuela "José A. Balseiro" 2009 Modelado en Neurociencias Instituto Balseiro - Centro Atómico Bariloche San Carlos de Bariloche, 5 al 30 de octubre de 2009 neuronal plasticity allows for behavioral adaptation intrinsic • • • • • • • neuronal plasticity firing threshold, firing patterns subthreshold Vm: Ih, IA, leak channels synaptic integration Ca2+ signaling metabotropic receptors kinases/phospatases and 2nd messengers ion channel localization synaptic • • • • • • structural • • • • rewiring spine formation spine morphology/motility neurogenesis Ca influx, p and N (pre) quantal size - N˚ of R (post) NMDA channels: Ca2+ signaling kinases/phospatases and 2nd messengers metabotropic receptors receptor turnover mecanismos de almacenamiento de la informacion: cambio localizado vs global Zhang & Linden 2003 functional recovery in mouse visual cortex after focal retinal lesions Keck, 2008 number of new persistent spines increases with functional recovery layout of the whisker sensory pathway Diamond, 2009 rodent barrel cortex somatosensory barrel cortex S1 primary motor cortex Petersen, 2007 secondary somatosensory cortex Functional Mapping of the Barrel Cortex barrels: cortical representation of whiskers in rodents sensory adaptation experience-dependent map plasticity Polley, 1999 plasticity of an individual WFR of an adult rat in response to changes in the habitat boring stronger and more interesting stimuli whisker functional representation (WFR): a population measure defined as the cortical area activated by single whisker stimulation intrinsic • • • • • • • neuronal plasticity firing threshold, firing patterns subthreshold Vm: Ih, IA, leak channels synaptic integration Ca2+ signaling metabotropic receptors kinases/phospatases and 2nd messengers ion channel localization synaptic • • • • • • structural • • • • rewiring spine formation spine morphology/motility neurogenesis Ca influx, p and N (pre) quantal size - N˚ of R (post) NMDA channels: Ca2+ signaling kinases/phospatases and 2nd messengers metabotropic receptors receptor turnover other receptors sensorial stimuli metabotropic receptors Na+, Ca+2 K+, Cl- voltagegated channels neurotransmitters ionotropic receptors: iGluR, GABA other signaling cascades enzymes contraction channel gating gene expression secretion of neurotransmitters calcium sensors signaling proteins enzymes gene expression retrograde signaling Activity-dependent eCB release inhibits neurotransmitter release from synapses of both pyramidal cells (Pyr) and cholecystokinin (CCK)+ interneurons receptores metabotrópicos from Hille, 2001 hay mas de mil receptores metabotropicos: Phylogenetic trees of human endoGPCRs Vassilatis D K et al. PNAS 2003;100:4903-4908 patterns of receptor/G protein coupling gene expression by G proteins and protein kinases effects of Ca2+ and calmodulin on neuronal plasticity Modulation of VG channels intrinsic plasticity synaptic plasticity neuronal substrates of CaMKII long term synaptic plasticity mechanism modulación de canales iónicos – dependencia de voltaje, tiempo – neurotransmisores a través de receptores metabotrópicos (GPCR) – mensajeros lipídicos: AA, PIP2 immediata, directa: ms a pocos segundos transiente: segundos a minutos – sistemas de señalización por calcio – otros sistemas de kinasas/PP prolongada: horas a días – inducida por neurotransmisores y protocolos que fortalecen o debilitan sinapsis a largo plazo – cambios en la densidad o localización de canales – asociación con subunidades auxiliares – síntesis de proteínas persistente bidirectional modification of Kv channel inactivation by lipids (Arachidonic Acid) the phospholipid PIP2 relieves inactivation of the Kv channel modulation of Kv4 currents by the auxiliary subunit DPPX-S Kv4.2 200 nA T0.5= 27.4ms Imax at 40mV (mA) 10 8 Kv4.2 6 Kv4.2 + DPPX-S 4 2 0 1 50 ms 1000 nA 3 4 5 6 7 8 time peak (ms) 1.0 G/Gmax Kv4.2 + DPPX-S T0.5= 10.0ms 2 0.8 0.6 0.4 0.2 50 ms 0.0 -80 -60 -40 -20 0 20 40 V (mV) back propagation of AP in dendrites of CA1 hippocampal neurons Na+ Ca2+ Ih K+ sust. ISA soma dendrite action potentials Hoffman et al., 1997; Magee & Johnston, 1997; Migliore et al. 1999; Jonhston et al., 2000 A-type K+ currents affect the back propagating action potentials in dendrites of CA1 hippocampal neurons bAP LTP = soma EPSP dendrites Hoffman et al., 1997; Magee & Johnston, 1997; Migliore et al. 1999; Jonhston et al., 2000 Hebb's Law – When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased "Neurons that fire together wire together." critical window for spike timing dependent plasticity different amounts and types of STDP evoked by repeated pairing of pre- and postsynaptic action potentials LTD (CA1) Sjostrom Nelson 2002 Induction of long term potentiation (LTP) in the hippocampus After Bliss & Lomo, 1973 Tsien, 1996 Mice that lack NMDAR in CA1 have a defect in LTP and in spatial memory Mayford, 1996; Tsien, 1996 NMDAR electrical effects are divided in three IV curve regimes Guy Major Synaptic activation of NMDA receptors causes local Ca2+ entry into a dendritic spine long-term potentiation and long-term depression at the Schaffer collateral–CA1 synapse depend on a series of calmodulin-regulated events LTD in pyramidal neurons of the neocortex LTD mediated by cannabinoid receptor CB1R cellular signaling by CaMKs Wayman et al., 2008 Structure and regulation of CaMKII Lisman et al., 2002 The binding of Ca2+/calmodulin (CaM) causes the gate to open and the kinase to become active (star). The kinase can now be phosphorylated at threonine residue 286 (T286) by a neighboring subunit and this autophosphorylation can keep the gate open, even after dissociation of Ca2+/calmodulin. Irvine et al., 2006 CaMK activation by Long‐Term Potentiation • CaMKII remains activated for at least one hour after LTP induction • LTP increases CaMKII bound in spines Wayman et al., 2008 Autophosphorylation of Thr286 • Decreases dissociation of bound Ca2+/Cam • Ca2+ independent, persistent activity (30‐60%) (until dephosphorylation) • promotes and stabilizes binding to PSD synaptic strength of individual spines (suppressed by P of Thr305/306) • is triggered by activity of NMDAR (CaMKII binds NR2B) • promotes P of AMPAR subunit GluR1 a mutation that eliminates phosphorylation of Thr 286 blocks LTP Barria and Malinow, 2005; Lisman, 2002; Wayman et al., 2008 LTP induced by a pairing protocol requires CaMKII activity Lisman, 2002 αCaMKII autophosphorylation is required for rapid memory formation (induction of LTP) than for memory storage (maintenance of LTP: requires protein synthesis) The T286A αCaMKII mutant mice are impaired compared with wild‐type (WT) mice after training with one or three tone–shock pairings . Irvine et al., 2006 Learning and memory are affected in animals that express a mutant form of CaMKII water maze platform visible hidden α-CaMKIIT286A α-CaMKII wt Lisman et al., 2002 CaMKII affects cortical plasticity: the α-CaMKIIT286A animals do not show the deprivation-induced plasticity of wild-type animals From Gazewsky et al., 2000 NMDAR-dependent signaling in learning and memory Cao et al., 2008 The Presence of Overexpressed αCaMKII‐F89G Leads to Larger LTP in Transgenic Mice Wang et al., 2008 Chemical‐Genetic Approach Alaimo et al., 2001 Wang et al., 2008 5 min 10 min 15 min 25 min the initial 10 min period represents the critical time window during which both potentiated synapses and short-term memory are in an especially labile state and are sensitive to numerical increases in CaMKII activity Wang et al., 2008 What temporal dynamics of activated CaMKII might underlie this critical time window? Wang et al., 2008 • Fear Conditioning Task: contextual or cued ‐ TONE: conditioned stimulus (CS): 85dB sound at 2800Hz ‐ SHOCK: unconditioned (aversive) stimulus (US): foot shock 0.75mA 2s • Novel Object Recognition Task 10 months hipocampus amygdala Days Medial temporal lobe structures Synaptic scaling is multiplicative Adaptada de Turrigiano et al., 1998 Stuart et al. 2001 • Hay informacion en el AHP