Geohydrology and Water Use in Southern Apache County, Arizona

Transcription

Geohydrology and Water Use in Southern Apache County, Arizona
ARIZONA DEPARTMENT OF WATER RESOURCES
BU(LETIN'1
GEOHYDROLOGY AND WATER USE IN SOUT~:fERN
APACHE COUNTY, ARIZONA
By
Larry J. Mann
U. S. Geological Survey
and
E. A. Nemec~k
Arizona Department
of Water Resources
Prepared by the. GEOLOGICAL SURVEY
UNITED. STATES DEPARTMENT OF THE INTERIOR
Phoenix, Arizona
January 1983
CONTENTS
Page
Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Location of the area..........................................
Methods of investigation......................................
Previous investigations.......................................
Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Regional setting...................................................
Geologic setting...................................................
Ground water.....................................................
Coconino aquifer.............................. . . . . . . . . . . . . . . .
Occurrence of water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recharge and movement of ground water ................
Depth to water..........................................
Well yields..............................................
Hydraulic characteristics of the aquifer..................
Chemical quality of water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Moenkopi and Chinle Formations..............................
Springerville aquifer... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Occurrence, recharge, and movement of water. . . . . . . . . . .
Depth to water..........................................
Well yields..............................................
Chemical quality of water......................... . . . . . . .
White Mountains aquifer ......................................
Occurrence of water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Availability of water.....................................
Chemical quality of water................................
B idahochi aquifer ............................................
Occurrence, recharge, and movement of water. . . . . . . . . . .
Availability of water.....................................
Chemical quality of water............ . . . . . . . . . . . . . . . . . . . .
Basaltic rocks................................................
Alluvium.. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . ... . . . .. .
Occurrence, recharge, and movement of water. . . . . . . . . . .
Availability of water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chemical quality of water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Water use.........................................................
Surface-water use............................................
Ground-water use and the effects of withdrawal ..............
Chemical suitability of water for drinking
and irrigation.........................................
Drinking water for public and domestic supplies.........
Water for irrigation .....................................
Areas of potential ground-water development ......................
References cited ..................................................
Hydrologic data ...................................................
1
2
3
3
6
6
6
7
10
10
11
11
12
12
12
14
15
16
16
16
17
17
17
17
18
18
18
19
19
20
20
21
21
22
22
23
23
23
25
25
27
28
31
35
III
CONTENTS
IV
ILLUSTRATIONS
[Plates are in pocket]
Plates 1-5.
Maps showing:
1.
Reconnaissance geology
County, Arizona.
in
southern
2.
Selected geohydrologic information
Apache County, Arizona.
3.
Ground-water conditions and the altitude of the
top of the Coconino aquifer, 1975, in southern
Apache County, Arizona.
4.
Ground-water conditions in the Moenkopi and
Chinle Formations, the Springerville aquifer,
the White Mountains and Bidahochi aquifers,
the basaltic rocks, the travertine deposits,
and the alluvium, 1975, in southern Apache
County, Arizona.
5.
Generalized areas in which domestic or municipal
ground-water
supplies
probably
can
be
southern
Apache
County,
developed
in
Arizona.
in
Apache
southern
Page
Figure 1.
2.
3.
Map showing area of report and Arizona's
water provinces......................................
4
Sketch showing well-numbering system in
Arizona ............................. ,. . . . . .. .. . . . . . . .
5
Diagram showing sodium and salinity hazards
of ground water......................................
29
CONTENTS
v
TABLES
Page
Table 1.
Hydraulic characteristics of wells that
penetrate the confined Coconino
aquifer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
Estimated amount of ground-water
withdrawal in 1975 ....................................
24
3.
Records of selected wells................................
36
4.
Measurements of the water level in
selected wells.........................................
54
5.
Records of selected springs .............................
57
6.
Chemical analyses of water from selected
wells. . .... ... . . . . .... . .. . . . . . . . ... . . . . . .. . . . . . .. .. . . ..
58
Chemical analyses of water from selected
springs ...............................................
66
Chemical analyses of water from selected
streamflow sites.......................................
68
Modified drillers ' logs of selected wells..................
74
2.
7.
8.
9.
VI
CONVERSION FACTORS
For readers who prefer to use the International System of Units
(S I) rather than inch-pound units, the conversion factors for the terms
used in this report are listed below:
Multiply inch-pound unit
inch (in.)
foot (ft)
mile (mi)
acre
square mile (mi2)
acre-foot (acre-ft)
foot squared per day
(ft2/d)
gallon per minute
(gal/min)
~
25.4
0.3048
1.609
0.4047
2.590
0.001233
0.0929
To obtain S I unit
millimeter (mm)
meter (m)
kilometer (km)
hectare (ha)
square kilometer (km2)
cubic hectometer (hm 3 )
meter squared per day
(m 2 /d)
0.06309
I iter per second
(L/s)
National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum
derived from a general adjustment of the first-order level nets of both
the United States and Canada, formerly .called II Mean Sea Level. II NGVD
of 1929 is referred to as sea level in this report.
GEOHYDROLOGY AND WATER USE IN SOUTHERN
APACHE COUNTY, ARIZONA
By
Larry J. Mann, U. S. Geological Survey
and
E. A. Nemecek, Arizona Department of Water Resources
ABSTRACT
In 1975 about 30,000 acre-feet of water-70 percent su rface
water and 30 percent ground water-was used in the 4,100-square-mile
area of southern Apache County.
Water use is expected to increase
nearly 100 percent by the mid-1980·s owing to projected demands for
public, irrigation, and industrial supplies. Ground water will be used to
meet the future demands because most of the surface water is allocated to
local and downstream users.
Ground water is present in places in most of the geologic formations that underlie the area.
The most widespread source of ground
water is the Coconino aquifer, which probably underlies the entire area.
The aquifer consists of the Coconino Sandstone, the overlying Kaibab
Limestone, and the uppermost beds of the underlying Supai Formation.
In 1975 the aquifer supplied about 7,700 acre-feet of water to pumping
and flowing wells, and in general, no appreciable decline in water levels
has taken place.
In most of the area the Coconino aquifer will yield 500
to 1,000 gallons per minute of water to properly constructed wells.
In
the southwestern and west-central parts of the study area, the water
contains moderate concentrations of dissolved solids; in the southeastern
and east-central parts, the water generally contains large concentrations
of dissolved solids.
In the northern part, the water generally is unfit
for human consumption and other uses.
In the southern part of the area, ground water is obtained
mainly from the Springerville and White Mountains aquifers and the
basaltic rocks that overlie the Coconino aquifer.
The Springerville
aquifer consists of undifferentiated Upper Cretaceous sedimentary rocks
that probably are equivalent to the Dakota Sandstone, Mancos Shale, and
Mesaverde Group.
The White Mountains aquifer consists of the Eagar
Formation of Sirrine (1958), Datil Formation, and undifferentiated Tertiary
sedimentary rocks.
In places the Springerville and White Mountains
aquifers and the basaltic rocks yield as much as 165 gallons per minute of
water to domestic and public-supply wells.
The water generally is of
suitable chemical quality for most uses.
1
2
In the northern part of the area, the Bidahochi aquifer and
alluvium overlie the Coconino aquifer and yield water to wells.
The
Bidahochi aquifer includes the Bidahochi Formation and the underlying
Mancos Shale and Dakota Sandstone; in places, the underlying Wingate(?)
Sandstone may be part of the aquifer. The aquifer yields 5 to 20 gallons
per minute of water to wells in the northeastern part of the area. The
water generally is of suitable chemical quality for most uses.
The alluvium along the channels and flood plains of the Puerco
and Little Colorado Rivers and their major tributaries consists of sand,
silt, gravel, and clay. The alluvium yields 20 to 500 gallons per minute
of water along the Puerco River and about 10 to 50 gallons per minute in
other places. The chemical quality of the water is marginal to unsuitable
for human consumption.
In places reliable ground-water supplies can be obtained from
the Moenkopi and Chinle Formations.
Most wells that obtain water from
the Moenkopi and Chinle Formations yield less than 20 gallons per minute
of highly mineralized water.
The water is used mainly for watering of
livestock.
In the northern part of the area, water from the Chinle is of
marginal chemical quality and is used for domestic purposes. Although
the travertine deposits yield small amounts of water to springs and seeps
and to one well, they are limited in areal extent and do not provide
reliable water supplies.
INTRODUCTION
Southern Apache County is a ranching and far-ming area in
northeastern Arizona that is undergoing a rapid growth in population.
The area is mainly grazing land except for small parcels of irrigated
pasture and cropland in the valleys of the Little Colorado River, its major
tributaries, and the San Francisco River.
Water use is expected to
increase greatly because several thousand acres of privately owned
grazing land has been divided into 1- to 40-acre units that are being sold
as homesites.
In addition, two coal-fired electric plants, which will be
major water users, are under construction.
One is being built near
St. Johns by the Salt River Project, and the other is being built near
Springerville by the Tucson Electric Power Co. By the mid-1980 ' s, water
use is expected to increase from about 30,000 acre-ft/yr to more than
50,000 acre-ft/yr. The water needed to support the increasing population
and industrial requirements must come mainly from ground water, because
most of the surface water is allocated to local and downstream users.
The water-resources. investigation in southern Apache County was
prompted by the increasing demand for water and was made by the U. S.
Geological Survey in cooperation with the Arizona Department of Water
Resources.
The purposes of this investigation were to determine the
occurrence, availability, and chemical quality of the ground water; to
locate favorable areas in which ground water of suitable chemical quality
3
can be developed; and to identify the uses of the water.
The report
describes (1) distribution and lithology of the rock units that underlie
the area; (2) occurrence, availability, and chemical quality of the ground
water; (3) areas of potential ground-water development; and (4) water
use in 1975.
Location of the Area
Southern Apache County includes about 4,100 mi 2 in northeastern Arizona (fig. 1).
The area is bounded on the north by the
Navajo Indian Reservation, on the east by the Arizona-New Mexico State
line, and on the west by the Apache-Navajo County line; the south
boundary is the Apache-Greenlee County line on the southeast and the
Fort Apache Indian Reservation on the southwest. The area is mainly in
the Plateau uplands water province, but the southern part is in the
Central highlands water province (fig. 1). The main popl1lation centers
are St. Johns, Springerville, and Eagar. The rest of the population live
in small communities-such as Greer, Alpine, Nutrioso, Hunt, Concho,
Sanders, and Navajo-and on widely scattered ranches.
Methods of Investigation
The fieldwork on which this report is based was done by
E. L. Gillespie and R. W. Harper during 1973-74 and by L. J. Mann and
E. A. Nemecek during 1975-76.
A field inventory was made of most
irrigation wells and many domestic and livestock wells and springs. Well
and spring locations are described in accordance with the well -numbering
system used in Arizona, which is explained and illustrated in figure 2.
Pumpage data were collected from private companies and county and city
agencies.
Pumpage for irrigation use was computed from powerconsumption records on the basis of measurements of well discharge per
unit of power consumption.
Selected hydrologic data collected prior to
and during this investigation and pertinent data collected by other
agencies are given in tables 3-9 at the end of this report.
Lithologic, geophysical, and drillers' logs of wells and test
holes were examined to determine the lithologic characteristics and
water-yielding potential of the rock units.
The approximate extent of
each water-yielding unit was defined by examination of well logs and by
reconnaissance geologic mapping at a scale of 1: 250,000. The altitudes of
wells and springs were obtained from U. S. Geological Survey topographic
maps at scales of 1:24,000 or 1:62,500.
Most of the available geohydrologic data are from small areas
near the main population centers. Few deep wells have been drilled south
of U. S. Highway 60 or in the northern part of the area. Additional data
may alter some of the geohydrologic concepts given in this report.
4
o
".
l12'
,
o
&0
100 MllU
b~_-,~,.-L',-<clo--,oo""'!
KILOMETER8
BASE FROM U.S. GEOLOGICAL SURVEY
STATE TOPOGRAPHIC MAP, 1.500,000
~===========liO=======-~~~~_~~20
109°30'
Figure 1.--Area of report and Arizona's
water provinces.
MILES
0~======~lL,O====::::i20 KILOMETERS
CONTOUR INTERVAL 500 FEET
NATIONAL GEODETIC VERTICAL
DATU'l OF 1929
R 21 E
RI W.
36
31
z
o
r
Rot E
2
3
,
4
R6 E.
6
N.
"
,. ,
32
0:
W
,
,,
,I
w 4
a
:
b
a
____ 6 ____ .1____
0:
':i
d
z
2
..J
r
.,""
'2
\
//
3
"
o
V>
N
(A-17-21)6 Wooo
A
;'
>
5
, I'
_-+----"L---'.'_+-_-+
die
17
r
0:
""
(A-17-21) 6Eooo
I/
! /
1
N.
i'"
Numbering for odd size sections
R.5E.
'ft :' " ' '
U"'
c
Well (A-4'5) geoo
R.5 E.
1.
4
6
5
-4
3
2
I
7
8
9
10
11
12
18
17
16
15
14
13
22
23
24
f---+--:>fL-t--t--H
N ~9 20
21
30
29
28
27
26
25
31
32
33
34
35
36
The well numbers and letters used by the Geological Survey in
Arizona are in accordance with the Bureau of Land Management's system
of land subdivision. The land survey in Arizona is based on the Gila
and Salt River meridian and base line, which divide the State into four
quadrants.
These quadrants are designated counterclockwise by the
capital letters A, B, C, and D. All land north and east of the point of
origin is in A quadrant, that north and west is in B quadrant, that
south and west in C quadrant, and that south and east in 0 quadrant.
The first digit of a well number indicates the township, the second the
range, and the third the section in which the well is situated. The
lowercase letters a, b, c, and d after the section number indicate the
well location within the section. The first letter denotes a particular
160-acre tract, the second the 40-acre tract, and the third the 10-acre
tract. These letters are also assigned in a counterclockwise direction,
beginning in the northeast quarter. If the location is known within the
10-acre tract, three lowercase letters are shown in the well number. In
the example shown in figure 2, well number (A-4-5)19caa designates the
well as being in the NE\NE\SW\ sec. 19, T. 4 N., R. 5 E. Where there
is more than one well within a 10-acre tract, consecutive numbers beginning with 1 are added as suffixes.
When a section is more than 1 mile in any dimension, the
section number applies as usual. The oversized section is divided so
that a full square-mile unit of the section is adjacent to a normal section
within the same township; the remainder is considered as a separate unit
of land.
Appropriate N., S., E., or W. letters are assigned to the
units, depending upon where they lie in relation to the full square-mile
unit. A well would be designated as shown in figure 2 with the appropriate letter following the section number in which the well is located.
Figure 2.--Well-numbering system in Arizona.
5
6
Previous Investigations
Geohydrologic studies by several investigators were helpful in
evaluating the ground-water conditions in southern Apache County. The
ground-water conditions were first described in a report by Harrell and
Eckel (1939).
Akers (1964) discussed the geology and ground-water
resources in central Apache County, and Feth and Hem (1963) described
the springs in the Mogollon Rim region. Ground-water conditions in the
White Mountains, Concho, and St. Johns areas were described by Harper
and Anderson (1976), and those in the Puerco-Zuni area were described
by Mann (1977).
Useful test-hole data were obtained from reports by
Peirce and Scurlock (1972) and Scurlock (1973).
The geology was
described by Sirrine (1958), Wilson and others (1960), Wrucke (1961),
and Pei rce and Gerrard (1966).
Ground-water investigations in two
adjoining areas-southern Navajo County (Mann, 1976) and the Navajo
Indian Reservation (Cooley and others, 1969)-were beneficial to this
investigation.
Acknowledgments
The authors gratefully acknowledge the many well drillers,
water companies, and residents of southern Apache County who granted
access to their property and who furnished many of the well data.
Mr. G. G. Small of the Salt River Project provided drill-hole and aquifertest data for test holes and wells near the Coronado Generation Station
near St. Johns.
Mr. A. R. Stanton of the U.S. Soil Conservation
Service provided the data for irrigated acreage. Special thanks are due
Messrs. J. N. Conley and J. R. Scurlock of the Arizona Oil and Gas
Conservation Commission for furnishing oil-, gas-, and mineral-exploration
test-hole data.
REGIONAL SETTING
Southern Apache County is in the high plateau country in
east-central Arizona and includes the White Mountains and associated
highlands in the extreme southern part.
Altitudes range from 5,200 ft
above sea level at the point where the Little Colorado River crosses the
Apache-Navajo County line to about 11,500 ft at Baldy Peak near the head
of the Little Colorado River drainage-a total relief of about 6,300 ft
(pl. 1). The White Mountains and associated highlands are between 7,000
and 11,000 ft. The plateau country consists of flatlands and rolling hills
separated by steep-walled canyons and is terminated near the south
boundary by the White Mountains and the Mogollon Rim escarpment.
In
much of central Arizona the Mogollon Rim escarpment is the boundary
between the Plateau uplands and Central highlands water provinces
(fig. 1).
In the southeastern part of Apache County, however, the rim
is lost in the White Mountains volcanic field.
7
Southern Apache County is drained by the Little Colorado River
in the central part of the area, the Puerco River in the northern part,
the Black River in the southwestern part, and the San Francisco River in
the southeastern part (pl. 1).
The Little Colorado River flows northeastward from its headwaters in the White Mountains to Springerville,
northward to St. Johns, and northwestward and across the west boundary
of the area.
The Puerco River flows southwestward across the northwestern part of the area, the Black River flows southwestward into
Greenlee County, and the San Francisco River flows southeastward into
New Mexico. The Black and San Francisco Rivers originate in the White
Mountains.
I n the southern part of the area the Little Colorado, Black,
and San Francisco Rivers and many of their major tributaries are
perennial. In the northern and central parts most streams are ephemeral.
The topographic high formed by the White Mountains impedes
the movement of airmasses that bring in moisture from the south and
southwest.
As a result, more precipitation falls in the White Mountains
than in the northern part of the area.
The orographic effect of the
White Mountains is indicated by the difference in the amount of normal
annual precipitation in the southern part of the area-20 to more than
25 in .-and the amount in the central and northern parts-9 to 12 in.
(Sellers and Hill, 1974). The average annual temperature is about 44°F
at Alpine and Greer, 53°F at St. Johns, and 51°F at Navajo and Sanders
(Sellers and Hill, 1974).
GEOLOGIC SETTING
Southern Apache County is underlain by a sequence of sedimentary and volcanic rocks that is about 2,000 to at least 4,600 ft thick.
The upper member of the Supai Formation of Permian age is the lowermost
unit that is tapped by water wells. The member is 550 to 1,250 ft thick
(Peirce and Gerrard, 1966, p. 6) and is composed mainly of siltstone,
sandstone,
and
silty
sandstone that contain
beds of evaporite
deposits-halite, gypsum, and anhydrite (pl. 1).
Geophysical logs and
core samples from oil, gas, and mineral test holes indicate that the upper
o to 130(?) ft of the member is mainly sandstone and silty sandstone that
contain beds of siltstone and evaporite deposits; the upper 130(?) ft is
underlain by several hundred feet of siltstone and evaporite deposits.
Although the Supai Formation does not crop out in southern Apache
County, the unit is penetrated by wells and can be correlated with
outcrops west of the area.
The Coconino Sandstone of Permian age· overlies the Supai
Formation. The Coconino ranges in thickness from 175 to 400 ft; the unit
is 250 to 300 ft thick near Springerville and St. Johns, 300 to 400 ft
thick along the west boundary of the area, and 175 to 200 ft thick near
Navajo and Sanders. The Coconino consists of sandstone that is weakly
to well cemented by quartz, iron oxide, and calcite. Quartz grains are
well sorted, subangular to rounded, and frosted; quartz overgrowths
constitute the most common cement.
The degree of cementation varies
8
considerably horizontally and vertically throughout the unit.
Although
the Coconino does not crop out in southern Apache County, the unit is
penetrated by wells and can be correlated with outcrops west of the area,
where it exhibits fractures and large-scale crossbeds that locally are
parted along bedding planes.
The Kaibab Limestone of Permian age overlies the Coconino
Sandstone in the southern and central parts of the area. The Kaibab is
o to 350 ft thick, thins to the northwest, and is the oldest unit exposed
in the area.
The Kaibab is composed of jointed and locally fractured
limestone and sandstone beds; the sandstone beds are lithologically similar
to those of the Coconino Sandstone.
The Moen kopi Formation of Triassic age overlies the Kaibab
Limestone. The Moenkopi is 0 to 200 ft thick in the central part of the
area and 100 to 250 ft thick in the northern part. The thickness is not
uniform owing to erosional unconformities at the top and bottom of the
unit.
The Moenkopi consists of siltstone and mudstone that contain
lenticular and wedge-shaped beds of sandstone, silty sandstone, and
conglomerate.
I n places the siltstone and mudstone contain stringers,
nodules, and lenticular beds of gypsum and halite.
The Moenkopi is
exposed mainly in the central part of the area.
The Chinle Formation of Triassic age overlies the Moenkopi
Formation in most of the area. The Chinle Formation consists of several
members that form a gradational and intertonguing depositional sequence;
because of the gradational and intertonguing relations and the discontinuity of some of the members, the Chinle is mapped as one unit in this
report (pl. 1). The thickness of the Chinle is 0 to 500 ft in the central
and southern parts of the area and as much as 1,600 ft in the northern
part.
The Chinle consists mainly of siltstone, claystone, mudstone, and
Iimestone, which, in places, contain sandstone and conglomerate beds.
The basal Shinarump Member consists mainly of lenticular beds of sandstone and conglomerate.
The Petrified Forest Member overlies the
Shinarump Member and consists mainly of grayish-blue to grayish-purple
claystone, siltstone, and mUdstone that contain a few thin lenticular beds
of sandstone, conglomerate, and limestone.
In the central and northern
parts of the area, the Sonsela Sandstone Bed divides the Petrified Forest
Member into an upper part and a lower part. The Sonsela is composed
mainly of lenticular beds of sandstone and conglomerate.
The Chinle
Formation is exposed in the central and northwestern parts of the area.
The Dakota Sandstone and Mancos Shale of Cretaceous
overlie the Chinle Formation in the east-central part of the area.
composite thickness of the Dakota Sandstone and Mancos Shale
to 265+ ft.
The units consist mainly of sandstone, siltstone,
claystone.
age
The
is 0
and
A sequence of undifferentiated Upper Cretaceous sedimentary
rocks overlies the Chinle Formation in the east-central and southern
part of the area. The sequence probably is equivalent to the Dakota
Sandstone, Mancos Shale, and Mesaverde Group.
Although the thickness
9
of the undifferentiated Upper Cretaceous sedimentary rocks is not known
in most of the area, a thickness of 488 ft has been penetrated in sec. 4,
T. 10 N., R. 24 E. (Peirce and Scurlock, 1972, p. 121). The undifferentiated Upper Cretaceous sedimentary rocks consist of interbedded
feldspathic sandstone, shale, si It?tone, and mudstone. The sandstone is
weakly to well cemented and fine to medium grained.
The Eagar Formation of Sirrine (1958) overlies the undifferentiated Upper Cretaceous sedimentary rocks and underlies the Datil Formation near Springerville and Eager. The formation is about 600(?) ft thick
near Springervi lie and is composed of alternating beds of conglomerate,
sandstone, and siltstone (Sirrine, 1958).
The Datil Formation is exposed south and east of Springerville
and consists of an upper andesite member and a lower sedimentary
member (Wrucke, 1961).
The andesite member, which has a maximum
thickness of 400 ft, is exposed on the slopes of Escudilla Mountain and at
Luna Lake and is present in the subsurface near Alpine. The sedimentary member, which is at least 1,000 ft thick near Nutrioso, is composed
of interbedded mudstone, sandstone, and conglomerate.
Undifferentiated Tertiary sedimentary rocks overlie the Datil
Formation in the southern part of the area. The rocks crop out in large
areas near Greer, Alpine, and Nutrioso, and isolated outcrops are present
near Crosby Crossing, Lake Sierra Blanca, Three Forks, and in the White
Mountains.
The Bidahochi Formation of Tertiary age overlies the Chinle
Formation in places in the northeastern and central parts of the area.
The Bidahochi Formation was deposited on an irregular erosion surface,
and in places in the subsurface it overlies a series of sedimentary rocks
that clearly are not part of the Chinle Formation. As determined from
drillers l logs, the lithologic characteristics of these rocks indicate that
they are part of the Mancos Shale and Dakota Sandstone of Cretaceous
age or the Wingate(?) Sandstone of Triassic age.
The Wingate(?),
Dakota, and Mancos have been removed by erosion in most of the area.
The Bidahochi Formation is exposed mainly in the highlands along U.S.
Highway 666 between St. Johns and Sanders along the Puerco River,
Mi I ky Wash, and southwest of the Painted Desert Inn. The formation is
160 ft thick near Navajo and thins to a few feet in Surprise Valley. More
than 1,000 ft was penetrated by a well drilled in T. 19 N., R. 30 E.
The Bidahochi consists of sandstone, mudstone, claystone, conglomerate,
and travertine.
The basaltic and volcanic rocks of Tertiary and Quaternary age
are present mainly in the southern part of the area but also cap a few
ridges and buttes in the central and northern parts.
The travertine
deposits of Tertiary and Quaternary age generally cap buttes or form
domes around present or ancient spring orifices. Some springs along the
Little Colorado River near Lyman Lake actively deposit travertine. A thin
veneer of Quaternary alluvium covers large parts of the area, and
alluvium is present in varying thicknesses along most major streams.
10
The most stri king structural characteristic of the sedimentary
rocks that underlie southern Apache County is their gentle dip to the
north, which is interrupted in places by small folds and faults.
Nearly
all the folds-anticlines, synclines, and monoclines-trend northwest and
parallel to the axis of a broad syncline near Witch Well in the northeastern part of the area (pl. 1). Anticlines generally are well defined,
and dips are steepest on the southwest limbs.
Synclines generally are
mas ked by the Tertiary and Quaternary units. The closure of most folds
ranges from 75 to 350 ft.
The monocline about 1 mi west of Sanders
trends north to northwest and dips between 5° and 10° WSW. Although
the monocline is buried by the Bidahochi Formation and the alluvium in
most of the area, it can be traced south of the Puerco River for about
6 mi in the subsurface.
Only a few faults are present in southern
Apache County, the most prominent of which are near Navajo. Although
the faults are buried by the Bidahochi Formation and the alluvium, they
were detected during the dri II ing of several dozen test holes and production wells in the helium fields near Pinta and Navajo.
The faults are
downthrown on the north, and, in places, the strata are offset more than
200 ft.
Small faults were observed in other places in the county, but
most were not mapped during this study. Additional faults may be buried
by the Tertiary and Quaternary units, but they have not been detected
from the avai lable subsurface data.
GROUND WATER
Ground water is present in places in most of the geologic formations that underlie southern Apache County. Many of the formations are
hydraulically connected and form aquifers in large areas. An aquifer is a
formation, group of formations, or part of a formation that contains
sufficient saturated permeable material to yield significant quantities of
water to wells and springs (Lohman and others, 1972, p. 2).
On the
basis of the available geohydrologic data, the formations are divided into
five major aquifers-Coconino aquifer,
Springerville aquifer, White
Mountains aquifer, Bidahochi aquifer, and the alluvium (pl. 1).
In
places, water is present in the Moenkopi and Chinle Formations, basaltic
rocks, and travertine deposits. The Moenkopi and Chinle Formations and
the basaltic rocks are reliable sources of water; however, the travertine
deposits are not a reliable source because of their small areal extent.
Most of the available geohydrologic data are from small areas
near the main population centers. Few deep water wells have been drilled
south of U . S. Highway 60 or in the northern part of the area.
Additional data may alter some of the geohydrologic concepts given in this
report.
Coconino Aquifer'
The Coconino aquifer-which is composed of the Coconino
Sandstone, the uppermost beds of the underlying Supai Formation, and
11
the overlying Kaibab Limestone-probably underlies the enti re area. The
Coconino aquifer is the deepest developed source of water in southern
Apache County. The Coconino Sandstone is the main water-bearing unit
in the Coconino aquifer. The upper 0 to 130(?) ft of the Supai Formation
is hydraulically connected to the Coconino Sandstone and yields water to
wells.
The upper 0 to 130(?) ft of the Supai is underlain by a thick
sequence of siltstone and evaporite deposits, which is nearly impermeable
and probably impedes the downward movement of water.
In most of the
area the Kaibab Limestone is hydraulically connected to the Coconino
Sandstone and yields water to wells. The Kaibab is nearly impermeable
except where it is jointed or fractured or contains solution cavities. The
Coconino aquifer is about 275 ft thick near Chambers and slightly less
than 600 ft thick southeast of Lyman Lake (pl. 2A).
Occurrence of water.--The
Coconino
aquifer
is
the
most
widespread and productive source of ground water in southern Apache
County.
I n the northern and central parts of the area, the water is
under confined or artesian conditions; the water is confined by the si Itstone and mudstone beds in the Moenkopi and Chinle Formations. The
confined water will rise as much as 1,400 ft above the top of the aquifer
where tapped by wells (pl. 2B).
In most of the southern part of the
area the aquifer is partly drained, and water is under unconfined or
water-table conditions.
Drill-hole data indicate that water levels may rise
a few feet above the point at which water is first found but do not rise
above the top of the aquifer. The rises in water levels probably are the
result of vertical changes in lithology.
Along the crest of the anticline
southeast of St. Johns (pl. 3), the Kaibab Limestone and Coconino
Sandstone may be completely drained of ground water.
Recharge and movement of ground water. --Ground water in the
Coconino aquifer is derived mainly from the infiltration of precipitation
and streamflow.
The main area of recharge is in the southern part,
where the normal annual precipitation ranges from 12 to more than 25 in.
(Sellers and Hill, 1974).
Much of the water that infiltrates to the
permeable sedimentary and basaltic rocks is recharged to the aquifer.
The rate of infiltration is large in relation to that in the central and
northern parts of the area, where the nearly impermeable siltstone and
mudstone beds of the Moenkopi and Chinle Formations overlie the aquifer.
In the northeastern and eastern parts of the area, water in the Coconino
aquifer is derived mainly from underflow that enters the area along the
Arizona-New Mexico State line on the east and the boundary of the Navajo
Indian Reservation on the north.
Ground water in the Coconino aquifer moves northwestward from
the areas of inflow on the south and east.
Most of the water leaves the
area as underflow across the west and northwest boundaries, but some of
the water is discharged to springs along the Little Colorado River and to
wells in the area.
The movement of water in the aquifer is controlled
mainly by the regional dip of the sedimentary rocks.
In places in the
north-central part of the area, ground-water movement is controlled by
12
faulting.
The faults act as impediments to the movement of ground water
and cause differences of about 100 ft in the altitudes of the potentiometric
surface on opposite sides of the fault (pl. 3A). Such impediments result
where the permeable beds of the Coconino aquifer are faulted against the
nearly impermeable beds of the underlying Supai Formation and the overlying Moen kopi and Chinle Formations. Subsurface data indicate that the
displacement along the faults may be as much as 200 ft, and, in places,
less than 100 ft of the aquifer may be hydraulically connected across the
faults.
The altitude and the configuration of the level at which water
will stand in wells that tap the Coconino aquifer are shown by potentiometric contour lines on plate 3A.
In most of the area, few water wells
tap the aquifer, and many of the water levels used to define the contours
were reported or were calculated from the shut-in pressures recorded in
oil, mineral, and gas test holes.
Water levels calculated from recorded
shut-in pressures differ 50 ft or more among several test holes in a small
area, and an average value was used to define the inferred potentiometric
contours on plate 3A, which may be in error more than 100 ft.
The
approximate potentiometric contours are believed to be accurate to the
nearest 50 ft.
Depth to water. --Water levels in wells that penetrate the
Coconino aquifer are from several feet above the land surface to more
than 1,000 ft below the land surface (table 3).
In 1975, several wells
near St. Johns, Carrizo Wash, and Hunt flowed at the land surface. In
the northern part of the area, few wells tap the aquifer; however, on the
basis of data from oil, gas, and mineral test holes, the depth to water is
more than 1,000 ft below the land surface (pl. 2C). Because no wells are
known to penetrate the aquifer south of Eagar, the depth to water is not
known.
Well yields. --Wells that penetrate the Coconino aquifer in the
central part of the area yield from a few to more than 2,500 gal/min.
Wells used for domestic and livestock supplies yield from a few to about
50 gal/min, whereas wells used for irrigation and industrial supplies yield
from 200 to more than 2,500 gal/min. The largest well yields are obtained
in places where at least 75 percent of the total thickness of the units that
make up the aquifer is saturated or where the aquifer is confined.
In
most of the area, 500 to 1,000 gal/min probably could be obtained from
properly constructed wells.
Hydraulic characteristics of the aquifer. --The hydraulic characteristics of the Coconino aquifer govern its ability to transmit and store
water.
Transmissivity is a measure of the ability of the aquifer to
transmit water.
Storage coefficient is a measure of the ability of the
aquifer to store water.
13
Transmissivity is the rate at which water of the prevailing
kinematic viscosity is transmitted through a unit width of the aquifer
under a unit hydraulic gradient (Lohman and others, 1972, p. 13).
Transmissivity is the product of the saturated thickness and the
hydraulic conductivity of the aquifer and is expressed in feet squared
per day.
Hydraulic conductivity is the volume of water at the existing
kinematic viscosity that will move in unit time under a unit hydraulic
gradient through a unit area measured at right angles to the direction of
flow (Lohman and others, 1972, p. 4).
The storage coefficient is the
volume of water an aquifer releases from or takes into storage per unit
surface area of the aquifer per unit change in head (Lohman and others,
1972, p. 13).
The hydraulic characteristics of an aquifer are determined by
aquifer tests.
An aquifer test consists of pumping a well at a constant
rate for a specified time and measuring the resultant water-level declines
in the pumped well and in nearby observation wells that are not pumped
during the testing period. After the pumping is stopped, measurements
are made to define the rate of recovery of water levels. These field data
are analyzed to define the hydraulic characteristics of the aquifer, which
are used to determine the potential effects of ground-water withdrawals.
In southern Apache County, aquifer-test data are avai lable
mainly for wells in the central part of the area where water in the aquifer
is confined.
The data indicate that the transmissivity of the Coconino
aquifer in the central part of the area ranges from 940 to 9,100 ft2/d
(table 1). The wide range in transmissivity is in part a result of areal
differences in lithology and fracturing.
Hydraulic conductivity of the
aquifer is greatest in areas where the aquifer is fractured.
In addition,
some wells that were tested are open only to the upper part and do not
completely penetrate the aquifer.
Transmissivity values calculated from
aquifer-test data for wells that are open to only a small part of the
aquifer generally are less than the calculated values for wells that are
open to nearly all the aquifer.
Where the aquifer is completely saturated and the water is
confined, the storage coefficient is an indication of the volume of water
released by expansion of the water and compression of the aquifer as a
result of a decrease in the confining pressure when a well is pumped. A
typical storage coefficient for the confined Coconino aquifer probably
ranges from 1.0x10- 4 to 1. Ox10- 3 .
Values of the storage coefficient
determined from aquifer tests on wells that penetrate the confined
Coconino aquifer are shown in table 1.
Where the water in the aquifer is unconfined, the storage
coefficient is virtually equal to the specific yield of the saturated strata.
Specific yield, which is expressed as a percentage, is the volume of water
that is released by gravity drainage per unit volume of the aquifer. The
storage coefficient of the unconfined Coconino aquifer cannot be determined using the available data but probably is near zero where the
aquifer is mainly a dense unfractured limestone to about 0.15 or more
where it is a well-sorted and fractured sandstone.
14
Table 1. --Hydraulic characteristics of wells that penetrate
the confined Coconino aquifer
Location
Length of well
open to aquifer,
in feet
Transmissivity,
in feet squared
per day
Storage
coefficient
(A-11-28)9dbb1
272
19,100
13.8x10- 3
(A -12-26)18dcc2
80
21,900
(A -12-27)19bcd
450
12,800
(A-12-28)7cdb
475(?)
23,200
-------------------------------
(A-13-26)6dcb
357
(A -13-27)15bda
350
(A-13-27)15bdc
269
(A -13-27)15bdd
(A-13-28)12cac
2 34,000
1 33,900
2 31.0x10- 4
309
1 33,900
1 34,800
1 39.0x10- 5
1 36.7x10- 4
377
3940
-----------
-----------
1Value calculated from recovery data.
2Value calculated from pumping data.
3Data provided by Salt River Project.
Chemical guality of water. --The chemical quality of water in the
Coconino aquifer differs greatly from place to place. Ground water in the
southwestern part of the area contains smaller concentrations of dissolved
solids than water in the northern and eastern parts (pl. 3A).
In the
southwestern part of the area the water contains 125 to 1,000 mg/L
(milligrams per liter) of dissolved solids and is mainly a calcium bicarbonate type.
Near Carrizo Wash in the eastern part of the area, the
water contains about 900 to 1,600 mg/L of dissolved solids and is a
calcium bicarbonate type.
In the rest of the area the water generally
contains from 1,000 to 64,100 mg/L of dissolved solids.
The dominant
ions generally are sodium, chloride, and sulfate, but in places large
quantities of calcium and bicarbonate also are in solution.
The areal difference in chemical composition is coincident with
an increase in dissolved solids.
The dominance of the calcium and
bicarbonate in the water in the southwestern part and near Carrizo Wash
in the eastern part of the area probably results from the solution of these
ions as the water moves downward through the carbonate beds in the
Kaibab Limestone to the water table.
The south-to-north and west-toeast increase in dissolved solids and the difference in chemical composition
probably result from the addition of sodium, chloride, and sulfate from
the halite and gypsum beds in the uppermost part of the Supai Formation.
15
The dissolved-solids concentration in water in the Coconino
aquifer is related closely to geologic structure as is indicated by
comparing the location of the line of equal dissolved-solids concentration
representing 1,000 mg/L shown on plate 3A with the axes of the major
folds in the area shown on plate 3B.
The increase in dissolved solids
occurs mainly as the water moves through the anticlinal and synclinal
folds near Lyman Lake and Hunt and in the northern part of the area.
Along the folds, the siltstone beds in the uppermost part of the Supai
Formation, which may insulate the halite, gypsum, and anhydrite deposits
in the southwestern part of the area, probably are fractured and allow
solution of the deposits by moving ground water.
I n places water in the aquifer may be contaminated by the
solution of gypsum and halite from the Moen kopi Formation.
The
Moenkopi generally is fractured along the major anticlines and synclines
and locally may be hydraulically connected to the Coconino aquifer.
Another source of contamination is from the movement of water
into and out of the aquifer through the well bore.
Many wells drilled
into the Coconino aquifer also are open to water-bearing beds in the
Moenkopi and Chinle Formations, which normally contain highly mineralized
water.
Moenkopi and Chinle Formations
The Moenkopi and Chinle Formations contain water in parts of
southern Apache County but yield only small amounts of water to wells,
and the water generally contains large concentrations of dissolved sol ids.
The water is used mainly for livestock; however, several wells near
St. Johns, Concho, and along the Puerco River provide water for
domestic and public supplies (pl. 4A).
The Moenkopi Formation yields water to wells in the central and
western parts of the area near the Little Colorado River (pl. 4A). Water
in the Moenkopi is present mainly in fractures and joints in the lenticular
and wedge-shaped beds of sandstone, silty sandstone, and conglomerate
near the top and base of the unit. In most places, the depth to water in
wells that tap the Moen kopi is from about 25 to 220 ft below the land
surface (table 3); one well near Concho flows at the land surface.
Reported well yields are from a few to about 30 gal/min.
The water
generally contains large concentrations of dissolved solids and is marginal
to unsuitable for most uses.
In five water samples from wells that
tap the Moen kopi, the di ssolved -sol ids concentrations range from 776 to
6,180 mg/L (pI. 4A).
The Chinle Formation yields water to wells in the central and
northern parts of the area, mainly near Carrizo Wash, the Zuni River,
and the Puerco River (pl. 4A).
The Chinle contains water in the
lenticular sandstone and conglomerate beds of the Shinarump Member,
the Sonsela Sandstone Bed of the Petrified Forest Member, and the thin
16
sandstone beds in the upper part of the unit.
Data indicate that the
claystone, mudstone, and siltstone beds are nearly impermeable and do
not yield usable quantities of water. Water levels in wells that tap the
Chinle range from flowing at the, land surface to about 340 ft below the
land surface.
Reported well yields are from a few to about 50 gal/min.
The chemical quality of the water from wells that tap the Chinle is
suitable to unsuitable for most uses. In 20 water samples from wells that
obtain water from the Chinle, the dissolved-solids concentrations range
from 181 to 8,300 mg/L (pl. 4A). The specific conductance of the water
from well (A-19-24)20bcc is 103,000, which indicates the dissolved-solids
concentration probably is about 60,000 mg/L (table 6).
Springerville Aquifer
The Springerville aquifer yields water to several wells in the
south-central part of the area.
The aquifer includes a sequence of
undifferentiated Upper Cretaceous sedimentary rocks that consist of
interbedded sandstone, shale, and, in places, shaly coal beds a few feet
thick (pl. 1). The rocks that form the aquifer are exposed in isolated
outcrops near Vernon and Springerville.
The areal distribution of the
outcrops and the drilling data indicate that the rocks are present in the
subsurface in most of the area between Vernon and Springerville and
northeast of Springerville (pl. 1).
Occurrence, recharge, and movement of water. --The Springerville aquifer contains water in the south-central part of the area. The
water is perched on the nearly impermeable beds of the Moenkopi and
Chinle Formations or on shale in the lower part of the unit. The nearly
impermeable beds retard the downward percolation of water into underlying rocks; where the impermeable beds are absent or where they form
mesas, the Springerville aquifer generally is dry. In places water in the
aquifer is hydraulically connected to water in the White Mountains aquifer
or to water in the basaltic rocks.
In the SpringerviHe aquifer water is derived from the downward
infiltration of snowmelt, rainfall, and storm runoff that collects in streams
and lakes. Because the rocks that form the aquifer are exposed only in
isolated outcrops, most of the recharge occurs from downward infiltration
through overlying rock formations.
Water-level data for wells that obtain water from the Springerville aquifer indicate that the general direction of ground-water movement
is to the north.
As the water moves northward, it is discharged to
springs, seeps, or weJls or infiltrates downward into underlying rocks.
Depth to water. --The depth to water in wells that penetrate the
Springerville aquifer ranges from about 25 to 575 ft below the land
surface (pl. 4A). The depth to water in wells in the western part of the
17
area near Vernon ranges from 27 to 575 ft below the land surface. The
depth to water in wells in the eastern part near Springerville ranges from
36 to 518 ft below the land surface.
The depth to water in wells that penetrate only the upper part
of the aquifer generally is less than the depth to water in wells that
penetrate the entire thickness of the aquifer. During drilling, the water
level may decline as much as 50 ft as water from one permeable zone
moves downward through the well bore into another permeable zone.
Because depth to water generally increases with well depth, the depth to
water in wells of various depths in a small area may differ 50 ft or more.
Well yields. --Wells that penetrate the Springerville aquifer
provide water for domestic, public, and livestock supplies. The rate at
which water is withdrawn depends on the use of the water.
Livestocksupply wells generally are drilled in the upper part of the aquifer and
are equipped with windmills that pump less than 5 gal/min. Most domestic
and public-supply wells, which generally penetrate a greater thickness of
aquifer, are equipped with electric submersible pumps and yield from a
few gallons per minute to as much as 165 gal/min. The maximum yield
that could be obtained from a properly constructed and developed well
is unknown, but in places probably is 100 to 300 gal/min.
Well
(A-11-25)18dcc is reported to produce 1,000 gal/min (table 3); however,
part of the water may be derived from the overlying basaltic rocks or
from seepage through fractures from a small lake a few hundred feet from
the well.
Chemical quality of water. --Water in the Springerville aquifer
contains small to moderate quantities of dissolved solids and is suitable
for most uses.
The dissolved-solids concentrations range from 156 to
1,000 mg/L and average 405 mg/L in water samples from 16 wells that
obtain water from the Springerville aquifer (pl. 4A). The water is mainly
a sodium calcium bicarbonate type. I n some places the dominant ions also
include magnesium, sulfate, and chloride.
The fluoride concentrations
range from 0.1 to 2.3 mg/L and average about 1.0 mg/L.
White Mountains Aquifer
The White Mountains aquifer underlies most of the southern part
of the area and yields water to wells near Greer, Alpine, Nutrioso,
Springerville, east of Springerville, and at Big Lake.
The aquifer
includes the Eagar Formation of Sirrine (1958), the Datil Formation, and
the undifferentiated Tertiary sedimentary rocks.
In places the rocks are
hydraulically connected and function as a single aquifer (pl. 1).
Occurrence of water. --The White Mountains aquifer probably
contains water in most of the southeastern part of the area. Wells near
18
Greer, Alpine, Nutrioso, Springerville, east of Springerville, and at Big
Lake obtain water from the aquifer (pl. 4B). Most of the southeastern
part of the area is undeveloped, and the exact areal extent of the
saturated part of the aquifer is not known.
In the White Mountains aquifer, water is contained in the
permeable sandstone beds that in places are separated by mudstone,
andesite, and basalt. The andesite and basalt are nearly impermeable but
probably contain water where they are fractured.
Locally, water is
perched on the nearly impermeable mudstone and andesite. Near Alpine,
the andesite forms a confining bed for water contained in the underlying
sedimentary rocks; however, the areal extent of confined ground water is
not known. The aquifer is, at least locally, hydraulically connected with
other water-bearing units.
Near Greer, the aquifer is hydraulically
connected to the overlying basaltic rocks; near Springerville, it probably
is connected also to the underlying Springerville aquifer. The subsurface
data are inadequate to define the location and the units to which the
aquifer may be connected throughout the area.
Near Nutrioso, four wells drilled to depths from 93 to 235 ft
into this aquifer reportedly are dry. All four wells are within one-half
mile of wells of' comparable depth in which the depth to water is from
about 10 to 60 ft below the land surface. The occurrence of water in the
aquifer, therefore, probably is controlled locally by differences in
Iithology or concealed faults or fractures.
Availability of water.--In the southeastern part of the area, the
White Mountains aquifer has been developed locally as a source of ground
water.
Wells that penetrate the aquifer are used to supply water for
public, domestic, and livestock uses.
The depth to water generally is
less than 200 ft, and the wells yield a few to about 80 gal/min (table 3).
Chemical quality of water. --The chemical quality of water in the
White Mountains aquifer is suitable for most uses. In general, the water
is a sodium bicarbonate type, but near Springerville, calcium and
magnesium also are dominant constituents (pl. 4B). The dissolved-solids
concentrations range from 160 to 384 mg/L and average 249 mg/L in eight
water samples.
Fluoride concentrations range from 0.1 to 1.4 mg/L and
average 0.6 mg/L.
Bidahochi Aquifer
The Bidahochi aquifer yields water to wells in the northeastern
part of the area and near St. Johns. The aquifer includes the Bidahochi
Formation, the underlying Mancos Shale, and the Dakota Sandstone; in
places, the sedimentary rocks that underlie the Bidahochi may include
the Wingate(?) Sandstone (pl. 1). The underlying units are buried by
the Bidahochi Formation and a precise correlation cannot be made from
19
existing subsurface data.
The composite thickness of the sedimentary
rocks that form the aquifer ranges from a to 1, 000 ft.
I n places, the
upper 700 ft of the unit does not yield water to wells.
Occurrence, recharge, and movement of water. --The
Bidahochi
aquifer contains water under unconfined conditions in most of the northeastern part of the area and near st. Johns (pl. 4B). The occurrence of
water is controlled mainly by ancient valleys and ridges buried by the
Bidahochi Formation.
Between Carrizo Wash and Hardscrabble Wash,
buried ridges formed by the nearly impermeable material of the Chinle
Formation are above the zone of saturation; wells that tap the ridges do
not yield water.
The location of the ridges cannot be determined from
the drilling data; however, the aquifer probably contains water in most of
the northeastern part of the area (pl. 4B).
The aquifer is recharged by precipitation that falls on areas of
outcrop.
When the soil-moisture requirements are satisfied, part of the
precipitation infiltrates downward to the water table.
If the rate of
precipitation exceeds the rate of absorption by the soil, the water collects
in stream channels as surface runoff.
Topographic maps of the area
indicate that several closed basins are in the northeastern part of the
area.
Many of the basins are less than 2 mi 2 ; however, a few basins
include several tens of square miles.
Part of the surface runoff that
collects in the natural lakes and ponds in the closed basins probably
infiltrates downward to the zone of saturation and becomes ground water
in the Bidahochi aquifer.
The general direction of ground-water movement in the aquifer
is northwestward toward the Puerco River and southward toward the Zuni
River and Hardscrabble Wash. The approximate location of the groundwater divide is shown on plate 4B. As the water moves downgradient, it
is discharged to springs and seeps and to the alluvium along the valleys
of the Puerco River, Zuni River, Hardscrabble Wash, and their major
tributaries, or it is pumped from wells.
Availability of water.--Most wells that penetrate the Bidahochi
aquifer provide water for livestock and domestic supplies. The depth to
water ranges from 10 to 709 ft below the land surface (pl. 4B).
The
depth to water depends mainly on the topography and is greatest in wells
on the high ridges between the Puerco, Little Colorado, and Zuni Rivers
and least in the valleys between the ridges.
The rate at which wells are pumped depends on the use of the
water.
Livestock-supply wells are equipped with windmills that generally
pump less than 5 gal/min.
A few wells used for domestic supplies are
equipped with electric submersible pumps that yield from 10 to 20 gal/min.
The maximum yield that could be obtained from a properly constructed
and developed well drilled into the aquifer is not known. Bailing tests
20
indicate that as much as 50 to 100 gal/min might be obtained in some
places.
Chemical quality of water. --Water in the
Bidahochi aquifer
contains small to moderate quantities of dissolved solids and is suitable
for most uses.
The dissolved-solids concentrations range from 170 to
415 mg/L and average 229 mg/L in 24 water samples from wells that tap
the aquifer in the northeastern part of the area. The water is mainly a
sodium calcium bicarbonate type (pl. 4B).
The chemical composition of
eight water samples from wells and springs in the central part of the area
near St. Johns and in T. 15 N., R. 31 E., ranges from a sodium bicarbonate sulfate to a calcium magnesium bicarbonate type. The dissolvedsolids concentrations range from 262 to 1,380 mg/L and average about 670
mg/L (pl. 4B). The differences in the chemical composition of water from
the aquifer probably result from the solution of specific ions in the lower
un its of the aqu ifer.
Basaltic Rocks
The basaltic rocks yield water to wells and springs in the
southern part of the area (pl. 4B).
The rocks consist mainly of an
extensive sequence of basalt flows and cinder cones; in places, the basalt
flows are interbedded with cinder beds or are separated by clay lenses
(pl. 1). The basaltic rocks are deposited on an irregular surface eroded
into the underlying sedimentary units.
The thickness is extremely
variable and ranges from a thin cap on a ridge or mesa to several
hundred feet in old stream channels cut into the underlying sedimentary
rocks.
Water occurs mainly in fractures and in the permeable cinder
beds.
In places where the basaltic rocks are underlain by nearly
impermeable siltstone or mudstone or where clay lenses are present
between basalt flows, the ground water is perched. Where the basaltic
rocks are underlain by permeable sandstone, however, the rocks are
either hydraulically connected to the sandstone or are drained of water.
Near Greer, the basaltic rocks are hydraulically connected to the
permeable sandstone units of the underlying White Mountains aquifer and,
near Vernon, to the Springerville aquifer.
The general direction of
ground-water movement in the basaltic rocks is to the north from the
recharge areas in the White Mountains, but water also infiltrates downward into underlying units. Ground-water movement is controlled mainly
by the interbedded layers of clay and the irregular surface underlying
the unit.
The basaltic rocks yield water to many springs and seeps and
to a few domestic and livestock wells in the southern part of the area.
Springs generally issue at the contact of the underlying siltstone and
mudstone or interbedded clay lenses and the overlying basaltic rocks.
Spring discharges range from a few tenths to about 1,000 gal/min. Some
21
springs flow mainly in response to precipitation. Wells that penetrate the
basaltic rocks generally are less than 100 to 500 ft deep and yield from 0
to about 50 gal/min (table 3).
Water in the basaltic rocks contains small amounts of dissolved
solids and is suitable for most uses. The dissolved-solids concentrations
range from 56 to 395 mg/L and average about 150 mg/L in water samples
from 15 springs (pl. 4B). Fluoride concentrations range from 0.0 to 1.2
mg/L and average about 0.2 mg/L. Dissolved-solids concentrations range
from 118 to 405 mg/L and average about 176 mg/L in water samples from
eight wells.
Fluoride concentrations range from 0.1 to 0.9 mg/L and
average about 0.3 mg/L.
In general, the dissolved-solids concentrations
in water from springs and wells increase from south to north (pl. 4B).
Alluvium
The alluvium along the channels and flood plains of the Puerco
and Little Colorado Rivers and their major tributaries is from a few
hundred feet to about 4 mi wide (pl. 1) and is an important source of
ground water in southern Apache County.
The alluvium consists of
poorly sorted deposits of sand, silt, gravel, and clay that are from 0 to
about 150+ ft thick. The alluvium is irregular in cross section and contains many buried ridges and stream channels eroded into the underlying
sedimentary rocks.
In general, the buried channels contain coarse sand
and gravel that grade upward into fine sand and silt.
Occurrence, recharge, and movement of water. --Water occurs in
the sand, silt, gravel, and clay deposits and is under water-table conditions.
In most places the alluvium is underlain by the nearly impermeable
siltstone of the Chinle Formation, which impedes downward movement of
water into underlying strata.
I n some places the alluvium overlies the
permeable strata in the Bidahochi Formation or the sandstone beds in the
Chinle Formation, and the alluvium is hydraulically connected to the
underlying unit.
The alluvium is recharged mainly by the downward infiltration
of streamflow. Most streams that are underlain by extensive alluvium,
such as those along the valley of the Puerco River, are ephemeral, and
recharge occurs only during storm runoff.
Where the alluvium is
hydraulically connected to underlying units, some ground water may be
derived from the vertical and lateral movement of water from the underlying units. Along the channels and flood plains of the Puerco River and
its major tributaries, the alluvium is in hydraulic connection laterally and
vertically with the Bidahochi aquifer and with sandstone beds in the
Chinle Formation.
Ground water in the alluvium moves downgradient parallel to the
local stream gradient and is discharged as underflow across the west
boundary, lost to evapotranspiration, or discharged to pumping wells.
22
Although the quantity of water that is discharged annually cannot be
determined on the basis of the available data, most of the water probably
is lost to evapotranspiration.
Availability of water. --I n the valley of the Puerco River the
alluvium provides water for domestic, public, irrigation, and industrial
supplies.
Several wells equipped with electric submersible or turbine
pumps reportedly yield 20 to as much as 500 gal/min; larger yields probably could be obtained.
I n other parts of the area wells that tap the
alluvium are used to supply water for livestock and domestic use and are
equipped with windmills that pump less than 5 gal/min. Most wells that
tap the alluvium are drilled, but some are dug or are sand points driven
into the upper part of the unit.
The depth to water in the alluvium is less than 10 to as much
as 65 ft below the land surface (pl. 4B).
Near stream channels, the
depth to water generally is 3 to 8 ft below the stream bed; near the edge
of the valleys, the depth is 20 to 65 ft below the land surface. Along
most of the major tributaries, the depth to water is 5 to 15 ft below the
land surface.
The most productive wells typically penetrate the entire thickness of the alluvium. The sand and gravel deposits, which generally are
near the base of the alluvium, yield considerably more water to wells than
the overlying deposits of sand and silt. Because of the irregular crosssectional shape of the alluvium, the deeper parts of the valleys that
contain the coarser sediments are difficult to locate without test drilling
or geophysical studies.
Chemical guality of water. --The water in the alluvium contains
large amounts of dissolved solids and generally is marginal to unsuitable
for public and domestic supplies. The dominant chemical constituents are
sodium, calcium, bicarbonate, chloride, and sulfate (pl. 4B).
In water
samples from wells that tap the alluvium, the dissolved-solids concentrations range from 188 to 3,410 mg/L and average about 1,060 mg/L
(pl. 4B).
Although the water is classed as marginal to unsuitable for
public and domestic supplies, it is used in many places where a better
quality of water is not locally available.
The wide range in the dissolved-solids concentrations in the
water in the alluvium probably is a result of one or more of the following:
(1) the dissolved-solids concentrations in water derived from surface
runoff on the Chinle Formation probably are greater than the concentrations in surface runoff on the Bidahochi Formation and alluvium; (2) in
places where the alluvium is hydraulically connected to the B idahochi
aquifer, the water in the alluvium is very similar in chemical quality to
that in the Bidahochi aquifer; (3) evapotranspiration losses may
concentrate the dissolved solids in water occurring near the surface;
and (4) the geochemical composition of the alluvium differs from place
to place.
23
WATER USE
In 1975 about 30,000 acre-ft of water was used in southern
Apache County. About 70 percent was supplied by surface-water storage
and diversions, and about 30 percent was obtained from pumping and
flowing wells. Ground water will be used to meet future demands because
most of the surface water is allocated to local and downstream users.
The use of surface water is limited owing to the lack of reservoirs to
impound floodwaters and the large sediment concentrations in floodwater
from most of the larger drainages in the northern and central parts of
the area.
Surface-Water Use
Many streams in southern Apache County are ephemeral. The
perennial streams that provide a reliable source of water are the Little
Colorado River, the Black River, the San Francisco River, and some of
their major tributaries. The main source of surface water in the area is
the Little Colorado River and some of its tributaries. The Black and the
San Francisco Rivers drain only small parts of the area near the south
boundary.
Several reservoirs have been constructed on the Little Colorado
River and its major tributaries to impound water for agricultural and
recreational uses.
The reservoirs include Lyman Lake near St. Johns;
Tunnel, River, Bunch, and White Mountain Reservoirs near Greer; and
Concho Lake near Concho (pl. 1).
The reservoirs have a combined
storage capacity of about 38,200 acre-ft.
In 1975 the amount of water
released from the reservoirs and diverted from the Little Colorado River
and its tributaries is estimated to be 21,100 acre-ft.
The amount of
water from several small diversions from the San Francisco River and
Nutrioso Creek near Alpine and Nutrioso and other small drainages was
not estimated.
Ground-Water Use and the Effects of Withdrawal
In southern Apache County the ground-water resources are
largely undeveloped. Several hundred wells have been drilled, but most
of them are used for livestock and domestic supplies or for small publicsupply systems at the main population centers.
The only large-scale
withdrawals are for irrigation in the valley of the Little Colorado River
near Hunt and St. Johns. Most of the ground water used for irrigation
is from the Coconino aquifer. The water is obtained directly from pumping and flowing wells and indirectly from springs that discharge into the
Little Colorado River and its tributaries. Most of the water from flowing
wells and springs is diverted and stored for irrigation, and part of the
stored water is lost to evapotranspiration and infiltration.
24
In 1975 an estimated 8,900 acre-ft of ground water was obtained
from pumping and flowing wells. About 84 percent of the water was used
for irrigation; 10 percent for public, domestic, and livestock supplies;
and 6 percent for industrial purposes. The Coconino aquifer furnished
about 7,700 acre-ft or about 87 percent of the water withdrawn; about
500 acre-ft was obtained from the alluvium, and about 700 acre-ft from
the rest of the aquifers (table 2).
Ground-water pumpage for industrial use will increase greatly
in the next few years.
It is estimated that about 10,000 acre-ft/yr of
ground water will be produced from the Coconino aquifer to supply a
coal-fired electric plant being constructed by the Salt River Project near
St. Johns and about 13,000 acre-ft/yr will be required to supply the
Tucson Electric Power Co. plant near Springerville.
In the valley of the Little Colorado River between Lyman Lake
and the west boundary of the area and along Carrizo Wash, many of the
wells that penetrate the Coconino aquifer flowed at the land surface when
they were drilled in 1945-61.
The largest flow was reportedly about
1,200 gal/min from well (A-13-30)5dca in 1961 (table 3). By 1976, some
wells had ceased to flow, and the flow from many wells had decreased.
The decline in the rate of flow is the result of an areal decline in the
potentiometric surface owing to the withdrawal of ground water by
pumping and flowing wells and the loss of confining pressure owing to
deterioration of the well casings.
Part of the water is lost into units
overlying the aquifer because of casing deterioration.
Table 2. --Estimated amount of ground-water withdrawal in 1975
Source
Ground-water withdrawal,
in acre-feet
Coconino aquifer
Pumped wells ......................... .
5,800
Flowing wells ......................... .
1,900
Moenkopi and Chinle Formations .......... .
100
Springerville aquifer
200
White Mountains aquifer .................. .
200
Bidahochi aquifer ......................... .
100
Basaltic rocks ............................ .
100
Alluvium ................................. .
500
Total .............................. .
8,900
25
In most parts of the area water levels fluctuate seasonally in
response to pumping or recharge, but in the past 25 to 30 years the net
change has been negligible. Although water levels in several wells that
tap the Coconino aquifer near the Little Colorado River between Lyman
Lake and Hunt have declined as much as 17 ft, the decline generally was
less than 10ft. No appreciable long-term water-level declines have been
measured in wells that tap other aquifers.
The withdrawal of ground water for irrigation has resulted in a
slight decline in the water level in most wells near Hunt. The greatest
amount of decline occurred in well (A-14-25)E12cdd2, where the water
level declined from about 13 ft below the land surface in July 1953 to
about 30 ft in January 1975 (table 4). Water-level measurements made in
the 1950's and in 1975-76 indicate that similar declines have occurred in a
few other wells near Hunt, but in general, water levels have declined less
than 10 ft.
Chemical Suitability of Water for Drinking and Irrigation
The chemical suitability of water for drinking and irrigation
depends on the concentration of dissolved solids and the relative concentration of specific ions in solution.
In general, water. that contains more
than 500 mg/L of dissolved solids is not preferred for use as a public
supply; however, water that contains 500 to 1,000 mg/L is used if better
water is not available.
Water that contains 1,000 to 3,000 mg/L can be
used for the irrigation of salt-tolerant crops on well-drained soil. Livestock will sometimes drink water that contains 5,000 mg/L or more of
dissolved solids if the water is cold, but not if the same water is warm.
In southern Apache County the dissolved-solids concentrations
in ground water are from less than 100 to more than 64,000 mg/L. The
concerltration of dissolved solids and the concentration of specific ions in
solution differ from place to place and depend on the source of the water.
Surface water commonly is used for irrigation or livestock supplies and
generally is within acceptable limits in chemical constituents.
Drinking water for public and domestic supplies. --The maximum
contaminant level for dissolved solids in public water supplies is
500 mg/L, as proposed in the secondary drin king-water regulations of the
u.S. Environmental Protection Agency (1977b, p. 17146) in accordance
with provisions of the Safe Drinking Water Act (Public Law 93-523). The
u. S. Environmental Protection Agency (1977a, b) has established national
regulations and guidelines for the quality of water provided by public
water systems.
Primary drin king-water regulations govern contaminants
in drinking water that have been shown to affect human health.
Secondary drin king-water regulations apply to contaminants that affect
esthetic quality.
The primary regulations are enforceable either by
the Environmental Protection Agency or by the States; in contrast, the
26
secondary regulations are not Federally enforceable but are intended as
guidelines for the States. The maximum contaminant level for fluoride in
public water supplies differs according to the annual average maximum
daily air temperature (Bureau of Water Quality Control, 1978, p. 6). The
amount of water consumed by humans, and therefore the amount of
fluoride ingested, depends partly on air temperature.
The maximum
contaminant level for selected chemical constituents are as follows:
Con stituent
Maximum contaminant level,
in milligrams per liter
Fluoride (F)
11.6 to 2.0
Iron (Fe)
0.3
Sulfate (S04)
250
Chloride (CI)
250
Nitrate (N0 3 )
45
1Based on the annual average maximum daily air
temperatures in Alpine, Springerville, St. Johns, and
Sanders (Sellers and Hill, 1974).
The chemical quality of ground water in southern Apache
County differs from one aquifer to another and from place to place in an
aquifer.
I n the southern part and in most of the central part of the
area, water that contains less than 1,000 mg/L of dissolved solids can be
obtained from wells and springs. Water from the basaltic rocks and the
White Mountains and Springerville aquifers generally contains less than
400 mg/L of dissolved solids and is suitable in chemical quality for drinking (pl. 4).
Water from the Coconino aquifer generally contains 125 to
1,000 mg/L of dissolved solids in the southwestern and west-central parts
of the area but contains about 900 to 2,600 mg/L in the southeastern and
east-central parts (pl. 3A).
In the northern part of the area, water
from the Coconino aquifer contains 2,000 to 64,100 mg/L of dissolved
solids (pI. 3A).
Water for domestic, public, and livestock supplies is obtained
from the Bidahochi aquifer in the northeastern part of the area. Water in
the Bidahochi aquifer generally contains 175 to about 400 mg/L of dissolved solids (pl. 4B). Water in the alluvium along the Puerco River and
its major tributaries generally contains 500 to 1,200 mg/L of dissolved
solids (pl. 4B).
In places along the Puerco River near Navajo,
Chambers, and Sanders, water from the Chinle Formation contains 181 to
slightly more than 1,000 mg/L of dissolved solids (pl. 4A). Water from
wells that tap the Chinle in most other parts of the area contains large
concentrations of dissolved solids and is unfit for human consumption.
27
In the east-central part of the area near the Little Colorado
River and Carrizo Wash, most wells yield water that contains concentrations of fluoride that exceed the maximum contaminant level. Wells in
this area obtain water from the Coconino aquifer, the Moenkopi Formation,
the Chinle Formation, and the Bidahochi aquifer; fluoride concentrations
are from 2.0 to as much as 4.9 mg/L (pl. 4; table 8).
Fluoride
concentrations in the rest of the area generally are within acceptable
limits.
Fluoride concentrations between 2 and 3 mg/L are present in
water from a few wells that penetrate the Springerville aquifer near Eagar
and the alluvium near Chambers and Pinta (pl. 4).
Water from a well
that taps the alluvium about 8 mi southeast of Black Knoll contains 9.1
mg/L of fluoride (pI. 4B).
Water for irrigation. --The suitability of water for irrigation
depends on the ratio of sodium to calcium and magnesium, the amount of
dissolved solids in the water, the soil type, and the type of crops to be
grown.
I n southern Apache County the main chemical characteristics in
ground water that are harmful to plant growth are the dissolved-solids
concentrations or salinity and the ratio of sodium to calcium and magnesium.
The dissolved-solids concentrations are critical to plant growth
because large salt concentrations may accumulate in the root zones of
plants where leaching is inadequate.
Excessive concentrations of sodium in irrigation water may
produce a breakdown of soil structure and cause a nutritional disturbance
in crops. A useful parameter in evaluating the sodium hazard in irrigation water is the sodium-adsorption ratio (SAR) formulated by the U.S.
Salinity Laboratory Staff (1954).
The SAR is defined by the equation
SA R
( Na +)
= ------"--""-----
)
in which the concentrations
milliequivalents per liter.
of
the
constituents
are
expressed
in
The salinity hazard can be critical to plant growth.
The
common test for salinity in irrigation water is to measure the specific
conductance. Specific conductance is a measure of the ability of the ions
in solution to conduct an electrical current and is an indication of the
amount of dissolve9 solids in the water.
About 5,000 micromhos per
centimeter is the approximate upper limit of specific conductance for
irrigation water if salt-tolerant crops are grown and if leaching in the
root zone is adequate.
A summary of the different sodium and salinity
hazards of irrigation water, according to the U. S. Salinity Laboratory
Staff (1954), follows.
28
Low-sodium water (51) can be used for irrigation of most soils;
however, use of medium to very high sodium water (52 to 54) may
require special soil management and chemical amendments.
Low-salinity
water (C1) can be used for irrigation of most soils, and medium to very
high salinity water (C2 to C4) can be used for irrigation if the soil is
permeable, drainage is adequate, and salt-tolerant crops are grown.
The sodium and salinity hazards of water in southern Apache
County are low to very high (fig. 3). Water from the Little Colorado
River between Eagar and its junction with the west boundary of the area
has a low to high sodium hazard and a low to very high salinity hazard.
The sodium and salinity hazards increase markedly between Lyman Lake
and St. Johns. Above Lyman Lake, water from the Little Colorado River
generally has a low sodium hazard and a low to medium salinity hazard.
Below Lyman Lake, springs and flowing wells that derive water from the
Coconino aquifer flow into the river and increase the sodium and salinity
hazards of the water.
Water from the Coconino aquifer and the Moenkopi and Chinle
Formations has low to very high sodium and salinity hazards.
In the
southwestern part of the area, water from the Coconino aquifer generally
has a low sodium hazard and a low to medium salinity hazard, but in the
central and eastern parts, the water has high to very high sodium and
salinity hazards.
In the northern part, water from the Coconino aquifer
exceeds the criteria establ ished for irrigation uses.
Water from the Springerville, White Mountains, and Bidahochi
aquifers has a low to very high sodium hazard and a medium to high
salinity hazard.
Water from the basaltic rocks has a low sodium hazard
and a low to medium salinity hazard. Water from the alluvium has a low
to very high sodium hazard and a medium to very high salinity hazard.
Water from the alluvium, however, is being used successfully for
irrigation of salt-tolerant crops in permeable soils.
AREAS OF POTENTIAL GROUND-WATER DEVELOPMENT
The usability of ground water as a water supply depends on
the chemical quality of the water, well depth, depth to water, and yield
that can be obtained from wells.
The chemical quality of the water is
often the main factor that governs its use for specific applications. Water
that contains more than 500 mg/L of dissolved solids is not preferred
for use as a domestic or public supply, but water with 500 to 1,000 mg/L
of dissolved solids is used in places where better quality water is not
available. Water that contains as much as 3,000 mg/L of dissolved solids
can be used successfully for irrigation of salt-tolerant crops on
well-drained soils.
The concentration of dissolved solids in water used
for industrial purposes varies greatly and depends on the type of
industry.
3
2
100
5000
30
::III\:
CIlI
-
=:
.....
ca:
...""
SOURCE OF WATER
28
6
::00-
26
24
0
X
...•
0
=:
CD
::a:::
..,
""
22
-•
Little Colorado River
All uvium
Basaltic rocks
•
Bidahochi aquifer
C3-S4
White Mountains aquifer
Springerville aquifer
Moenkopi and Chinle Formations
Coconino aquifer
0
-
C4-S4
0
CI-S3
20
-
C»
C»
ca:
PC
a:
N
c
=:
""'
P-
ilL
II1II:
lIllIE
=
CII
C»
""
C2-S3 •
18
•
ca:
C
'-'
18
::l1li:
C»
-'
-'
c
0
C»
lIllIE
=
""
c
CII
-
'""
..... ""
CII
I
lIllIE
14
=
C»
Vol
•
Cl-S2
CII
12
•
-
0
-
•
0
C2-S2
10
•
•
8
•
6
•
C»
-'
""
Cl-Sl
4
...
-.
--
•
C3~S2
•
..
0
o C2-S1
2
•
o
-0
A
_
C3A"s~
750
2250
CONDUCT I VI TY , IN MICROMHOS PER CENTIMETER AT 25° CELSIUS
Cl
C2
C3
C4
LOW
IUDIUM
HIGH
VERY HIGH
SALINITY HAZARD
Figure 3.--Sodium and salinity hazards of ground water.
Diagram from U.S. Salinity Laboratory Staff (1954).
29
30
Well depth, depth to water, and well yields are mainly economic
factors.
For example, the expense of drilling deep wells and lifting the
water several hundred feet to the land surface may preclude the use of
ground water for small domestic supplies. Some municipal, agricultural,
and industrial users can afforc;l the expense of drilling deep wells and
lifting moderate to large quantities of water several hundred feet if the
economic return from use of the water exceeds the cost of production.
The following criteria were selected to delineate areas of potential
development:
Maximum
concentration of
dissolved solids, in
milligrams per liter
Well yield,
in gallons
per minute
Domestic
1,000
5-20
Municipal
1,000
20-200
13,000
200
Type of
supply
Agricultural
1Varies greatly and
characteristics.
Maximum
depth to water,
in feet
200
1,000
500
depends on type of crops and (or) soil
Criteria for industrial supplies are not shown because each factor varies
greatly and depends on the type of industry.
The approximate areas where domestic or municipal groundwater supplies can probably be developed are shown on plate 5.
The
data shown on plate 5 are not site specific and should be used only as a
general guide.
For a specific site, local conditions, such as aquifer
inhomogeneity or legal constraints, could preclude the development of an
adequate ground-water supply.
In the southern part of the area, water for domestic or
municipal supplies probably can be obtained from the basaltic rocks, the
White Mountains aquifer, or the Springerville aquifer.
The depth to
water and potential well yield are not known in most of the southern
part, but the chemical quality of the water generally is suitable for most
uses.
Yields of 100 gal/min or more probably could be obtained by
drilling deep wells into the White Mountains aquifer or underlying
aquifers.
In some places, however, well depth and the depth to water
may increase drilling and pumping costs so that it is not economically
feasible to develop the water.
In the west-central part, 500 gal/min or more of water can be
obtained from the Coconino aquifer, but in places the well depth and the
depth to water are more than 500 ft (pl. 5). Near Vernon and Floy, 5 to
100 gal/min of water probably can be obtained from the Springerville
aquifer and the basaltic rocks.
31
In most of the east-central part, the Coconino aquifer will
yield 1,000 gal/min or more of water, but the water contains more than
1,000 mg/L of dissolved solids and should not be used for drinking
without being treated.
About 12 mi east-northeast of St. Johns,
however, water in the aquifer is marginal for domestic and municipal use
and could be used with little or no treatment.
In general, the rock
formations that overlie the Coconino aquifer in the east-central part of
the area will not yield usable quantities of water or the water is highly
mineralized and unfit for drinking without being treated.
About 2 mi
west of st. Johns, the Bidahochi aquifer will yield water of acceptable
chemical quality for domestic supplies.
In the northern part, the main sources of ground water for
domestic and municipal supplies are the alluvium and the Bidahochi
aquifer.
The alluvium along the Puerco River generally will yield 20 to
500 gal/min of water that is marginal in chemical quality for drinking
(pl. 5). The alluvium along some of the larger tributaries to the Puerco
River may yield 10 to 50 gal/min of water, but this water may be· unfit
for drinking without treatment.
In the northeastern part, the Bidahochi aquifer contains water
suitable for domestic use, but in most places will not yield more than
20 gal/min (pl. 5).
Well yields of 50 to 100 gal/min probably could be
obtained in some places.
In the northern and central parts, the Moenkopi and Chinle
Formations locally contain water, but the water is generally highly
mineralized.
It is used locally for domestic supplies where better quality
water cannot be obtained.
In the valley of the Puerco River near
Chambers, Sanders, and Navajo, sandstone and conglomerate in the
Chinle Formation yield as much as 50 gal/min of water that is of marginal
chemical quality for domestic and municipal use.
In the central and southern parts, ground water of sufficient
quantity and chemical quality for irrigation can be developed from the
Coconino aquifer.
North of the valley of the Little Colorado River in the
western and central parts and in T. 16 N. in the eastern part, the water
generally contains more than 3,000 mg/L of dissolved solids.
In the
central and southern parts, water in the Coconino aquifer is suitable for
irrigation i however, the well depth and depth to water are more than
500 ft in much of the area, and development and pumping costs may
restrict its use for irrigation (pl. 2C).
REFERENCES CITED
Akers,
J.
P., 1964, Geology and ground water in the central part of
Apache County, Arizona: U. S. Geological Survey Water-Supply
Paper 1771, 107 p.
32
Bureau of Water Quality Control, 1978, Drinking water regulations for the
State of Arizona:
Arizona Department of Health Services
duplicated report, 39 p.
Cooley, M. E., Harshbarger, J. W., Akers, J. P., and Hardt, W. F.,
1969, Regional hydrogeology of the Navajo and Hopi Indian
Reservations, Arizona, New Mexico, and Utah, with a section
on
Vegetation, by o. N. Hicks:
U.S. Geological Survey
Professional Paper 521-A, 61 p.
Feth, J. H., and Hem, J. D., 1963, Reconnaissance of headwater springs
in the Gila River drainage basin, Arizona:
U. S. Geological
Survey Water-Supply Paper 1619-H, 54 p.
Harper, R. W., and Anderson, T. W., 1976, Maps showing ground-water
conditions in the Concho, St. Johns, and White Mountains
areas, Apache and Navajo Counties, Arizona-1975:
U.S.
Geological Survey Water-Resources Investigations 76-104, maps.
Harrell, M. A., and Eckel, E. B., 1939, Ground-water resources of the
Holbrook region, Arizona:
U.S. Geological Survey WaterSupply Paper 836-B, p. 19-105.
Lohman, S. W., and others, 1972, Definitions of selected ground-water
terms-revisions and conceptual refinements:
U. S. Geological
Survey Water-Supply Paper 1988, 21 p.
Mann,
L.
J., 1976, Ground-water resources and water use in southern
Navajo County, Arizona: Arizona Water Commission Bulletin 10,
106 p.
_____=-1977, Maps showing ground-water conditions in the PuercoZuni area, Apache and Navajo Counties, Arizona-1975: U.S.
Geological Survey Water- Resources Investigations 77-5, maps.
Peirce,
H. W., and Gerrard, T. A., 1966, Evaporite deposits of the
Permian Holbrook basin, Arizona, in Second symposium on salt,
J. L. Rau, ed.: Cleveland, Northern Ohio Geological Society,
v. 1, p. 1-10.
Peirce,
H. W., and Scurlock, J. R., 1972, Arizona well
Arizona Bureau of Mines Bulletin 185, 195 p.
information:
Scurlock, J. R., 1973, Arizona well information-supplement 1-Records of
wells dri lied for oil, natural gas, helium, and stratigraphic
information since publication of Arizona well information,
Bulletin 185, 1972, by the Arizona Bureau of Mines: Arizona
Oil and Gas Conservation Commission, Report of Investigation 5,
28 p.
Sellers, W. D., and Hill, R. H., eds., 1974, Arizona climate 1931-1972:
Tucson, University of Arizona Press, 616 p.
33
Sirrine,
U. S.
G. K., 1958, Geology of the Springerville-St. Johns area,
Apache
County,
Arizona:
Austin,
University of Texas
unpublished Ph. D. thesis, 248 p.
Environmental Protection Agency, 1977a, National interim primary
drinking water regulations:
U.S. Environmental Protection
Agency Report, EPA-570/9-76-003, 159 p.
1977b, National secondary drinking water regulations: Federal
-------,..Register, v. 42, no. 62, March 31,1977, p. 17143-17147.
U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline
and alkali soils: U.S. Department of Agriculture Handbook 60,
160 p.
Wilson, E. D., Moore, R. T., and O'Haire, R. T., 1960, Geologic map of
Navajo and Apache Counties, Arizona: Arizona Bureau of Mines
map, scale 1: 375, 000.
Wrucke, C. T., 1961, Paleozoic and Cenozoic rocks in the Alpine-Nutrioso
area, Apache County, Arizona: U. S. Geological Survey Bulletin
1121-H, 26 p.
HYD
LOG Ie DATA
Table 3, --Records
36
Local number: See figure 2 for description of weil-numbering and location system.
Use of water: H, domestic; I, irrigation; N, industrial; P f public supply; R, recreation i 5, stock; T, institutional;
U/ unused; Z, other.
Finish:
C, porous concrete; F I gravel pack with perforations; 0, open end; P, perforated or slotted; T, sand
point; WI walled; X, open hole.
Water level:
In feet below land surface; A, airline; D/ dry; E, estimated; F, flowing, but head could not be
measured; P, pumping; R, reported; Sf steel tape; T, electric tape.
Method constructed: A, air rotary; B, bored or augered; C, cable tool; Of dug; H, hydraulic rotary; R, reverse
rotary; V I driven.
CASING
U!:it.
UA He
LOCAL NUMHEH
Sllt-IU
COUNTY
CaMPLEltO
A-05-30
A-05-30
A-05-30
A-OS-30
A-05-30
01HHCl
01HHC2
03DHA
10HAH
l1AC8
34514110913<701
3350391 OY08,lU 1
001
001
001
001
001
A-OS-30
A-05-30
A-05-30
A-05-30
A-OS-30
11ACC
11HUA
llUBH
12BCA
12UDA
33503510909UOUI
33504010Y0901Ul
3350291090"UOOl
335043109081,01
33501Y1090730Ul
001
001
001
001
001
1 ~ 14
A-05-30 13CDC
A-05-30 DUBC
A-OS-30 l~DOU
A-05-30 14AOA
A-O~-30 14UAA
J34Yl4109080dUl
344914109073101
334Y4410';OB3"UI
33493710';08JIul
001
001
001
001
001
10/JU/ln,
1971
01/1.,/191b
10,68
A-05-30
A-05-31
A-05-31
A-OS-31
A-05-31
17CAA
IMbDB
19AUAl
334918109083801
334944109062101
3349431090553Ul
334951109070201
33485810Y0627Ul
001
001
001
001
001
A-OS-31
A-05-31
A-05-31
A-05-31
A-OS-31
lYAUA2
lYADA3
lYAIlA4
lWACl
19UAC2
3348541U9063001
3349541090628Ul
334b5410900""Ol
OUI
001
001
001
001
A-05-~1
A-05-31
A-05-31
A-05-31
A-05-31
A-05-31
A-05-31
A-06-28
A-06-28
A-06-2B
1400C
17~CC
20HBCl
20bHC<
20HBCJ
20bBD
20HCAl
20HCAc
20HCb
30CAO
30U8b
30UCH
A-06-28 3UDCC
A-06-29 01ACA
A-06-29 01BBA
A-06-30wObAA8
A-06-30WObbBA
A-06-30WObHB~
34S141!u~13.c/j\H
3351221090",001
3350~71091017Ul
33492910901~301
J34840IU';ObJ~Ul
3348381U9063201
33490410900",,01
J34Y04109002101
33490610Y0020Ul
33490610';061601
334859109001iUl
3348551 U9UolJO 1
3349001090621Ul
3J52511U92~,OUI
3353091092,40Ul
3352S31U9co41Ul
001
001
001
001
001
19bO
1932
196B
H
H
H
H
1966
196.
19b8
h
19bti
196'
1974
191U
1912
1912
1972
020ADl
020AU2
02DDAl
0200A2
34013~IU9C71801
llUA~l
J400~61Un72YUl
001
001
001
001
001
A-07-27
A-07-27
A-07-27
A-07-27
A-07-27
11UAb2
110HU
11UCA
12bCA
14ACBl
3400541092730Ul
340()4HI0,,<1J501
340 U431 U9""7 JbO 1
34011010,,2"/U,,01
3400141u9n40Ul
001
001
001
OUI
001
1970
A-07-2"1
A-07-27
A-07-27
A-07-27
A-07-27
14ACB2
HACCI
14ACC2
HACDI
14ACU"
3400131U9274601
"340UU71 Un74cOI
3400081U9214501
340009109C13601
34000BIO''',38Ul
OUI
Oul
001
001
001
0710211""/3
0612"/1973
1973
191J
A-07-27
A-07-27
A-07-27
A-07-28
A-07-2B
l'tHDA
hoDB
14UHb
06UAC
ObUBBl
340U151UYC1,OUl
340U161ul,lctiuOOl
340004Iu';<7.401
340138Iu'2,2"01
3401441U''''JYUl
oul
001
001
001
001
1963
1"11
A-07-28
A-07-28
A-07-30
A-07-30
A-07-30
06UbH2
ObUBe
04DBA
04UCO
llCBH
34014'lU~"5.301
001
001
001
001
UOI
A-07-30
A-07-30
A-07-30
A-07-30
A-07-30
34000510"111,,01
001
335'~8IU"111cOl
001
3400031U910,7Ul
34000410"110001
3.U0021U910,701
001
001
OUI
16CAB
16CAC
IbUHBl
IbUHBc
IbUBb3
h
H
H
H
10
10
10
10
10
10
10
8
10
8
5
U
5
U
5
19,7
H
B
8
H
H
H
h
4
6
H
H
H
6
H
H
H
H
4
H
H
1 <; /3
1'13
1913
H
H
H
H
5
U
H
!>
1911
lY12
1"74
1"13
Ub/1'::1/1'171
1.11
1 Ii 14
30.00
H
X
I.
x
6
~
4
4
T
T
R
OS/IB/1976
OS/IB/1976
101 11971
OU
11973
BOlO
B050
H030
79"0
7960
35.00
2B2
480
12U
440
HObO
B020
8034
8040
8050
175.00
97.00
175.30
1.00
40.00
180
"00
100
120
loS
8090
79JO
7B80
7920
7990
35.00
H
OBI
20.00
50.00
27.00
S
08/2211973
081 11973
08/22/1973
125
100
14,
18,
16,
8010
BOlO
B080
8090
20.00
20.00
20.00
60.00
60.00
125
165
IH5
165
135
7990
7990
79BO
7980
7980
25.00
23.00
20.00
20.00
21.00
150
10'
12,
156
125
79HO
7990
20.00
H
20.00
I-(
~030
19.00
R
9030
9030
225
100
115
85
150
,,03U
7BOO
7840
7680
7790
100
140
100
101
lUO
7760
82H,
82BO
8280
8260
147
280
leO
65
8445
8460
8450
H42S
8320
100
250
155
8,
100
834U
H3bO
8370
B305
B4BO
110
130
100
IOU
8460
8430
8440
8410
8410
100
220
85
170
155
H480
8600
H420
8380
8370
IS,
83b5
8360
745';
2bll-
7C
4
1'; /3
x
~
U
H
I.
X
I.
10
10
H
A-07-27
A-0"1-27
A-07-27
A-07-27
A-07-27
340000IU~11U"01
h
H
08/"3/1"/2
lY72
1910
196"
10
10
1967
1967
19b6
1'6,
001
001
001
001
001
001
001
001
001
001
H
1909
33570310'134uul
3401501unlu701
34013710'2701ul
34013710927u201
3401351U9<7uOOl
34003810,08J801
340UI01U9U'01UI
3400081U9103101
340004109110,01
H
H
l'b5
19'U
L:w
13,
DATE
wATER
LEVEL
MtA!>UREU
WATER
LEVEL
IFoE! I
16.90
12.50
34.00
4%
P
001
001
001
001
001
A-07-30 IlDDC
A-07-~0 14BDU
A-07-30 lOADU
A-07-30 10CAAl
A-07-30 16CAA"
U
AL TI lUOE
OF LAND
!>UKFACE
IFoU)
200
100
320
150
200
210
190
120
H
01CHA
01CCAl
01CCA2
01CUb
34014810910,,7Ul
3401321091040,01
3400591090n301
x
H
h
A-07-27
A-07-27
A-07-27
A-07-27
J40143109i!:lJ701
FINl!>H IFtEI)
b
OUI
OUI
001
001
001
340142109<721UI
34013710n7cl0l
34013610'27,,001
UtPTH
Ur .oLL
10
335655109140,,01
335"10110" 1'370 1
3356561U91254Ul
33S70310"133001
3~S24BI0925.101
uF
wAltH
0IAMoToK
IINCHt.!»
IB,
41
27
280
185
220
50
2u
~010
7460
7915
8020
8021
"566
ao
IS,S
7565
93
75~U
1,1
100
20
luO
1540
7555
7555
7560
S
30.00
R
34.00
30.00
R
S
o
T
S
'T
H
H
o
H
S
H
H
H
R
R
K
5
R
H
S
081 11973
"08/2111973
081 11973
04/26/1976
08/22/1973
OS/Ob/1970
081 11973
OHI 11973
OBI
081
081
OBI
U81
11973
11973
11973
11973
11973
11973
081 11973
08/2211973
081 11973
081 11973
08/2211973
081 11973
081 11973
11/29/1909
U
35.00
4.00
~
20.00
75.00
R
32.00
S
H
3,.00
R
55.00
45.00
26.00
S
5
S
180.UO
IbO.OO
H
111
11969
OBI
071
081
11972
11972
11973
OB/07/1973
071 11973
0712611973
07126/1973
07126/1913
~
13.00
H
071
11973
30.00
~
OIl
11973
36.40
30.UO
R
08/0111973
H
08/0111973
08/01/1973
41.20
4~.OO
18.00
23.00
08/0111973
08/01/1973
5
S
40.70
125.00
27.00
151.00
85.00
5
5
5
8.00
10.00
210.00
S
K
R
OB/01/1973
08/0111973
06/19/1974
08/13/1973
071 11973
07124/1974
120.00
156.00
12.00
10.00
5
H
08/06/1973
08/0011973
081 11973
O~/l ~1197S
~
~
~
o
OM/06/1973
08/0711973
08/06/1973
o
o
2U.00
1,.00
15.00
06/1~/1971
H
081
11973
37
of selected wells
Types of logs available: C, caliper; D, drillers; E, electric; F, fluid conductivity or fluid resistivity; G, geologist
or sample; I, induction; J, gamma ray; N, neutron; T, t-emperature.
Principal aquifer: 111ALVM, alluvium; 112BLCF, basaltic rocks; 121BDHC, Bidahochi Formation;
sedimentary rocks, undifferentiated; 120DTIL, Datil Formation; 124SDMR, Eagar Formation
211SDMR, Upper Cretaceous sedimentary rocks, undifferentiated; 211DOKT, Dakota Sandstone;
Sandstone; 231CHNL, Chinle Formation; 231SNSL, Sonsela Sandstone Bed; 231SRMP, Shinarump
Moenkopi Formation; 310KIBB, Kaibab Limestone; 310CCNN, Coconino Sandstone; 310SUPI, Supai
UI,CHAkGE
(GALLONS
PtR
MINUH.)
JS R
55 R
30
UAT~
01,CHARGe
MeASUREU
0,/1"/1976
05/1"/1976
DHA~-
001'1"
(FEET J
130
",
UtPTH TO
I'IH5T
METHOD
CONSTUPeNING
(FoU)
RUCTEU
50
SO
260
C
C
C
TYP~'
OF LOGo
AVAILAf<Lt
PklNCIPAL
AQUIFEk
0
120SDMH
120S0MR
120SUMH
120SDMH
120SUMH
~O
C
C
04/26/1976
05/10/1976
Id:
"68
262
71
240
C
C
C
100
C
0
0
0
20
7
OIBBCI
0lBBC2
03DBA
10BAB
llACB
A-05-30
A-05-30
A-05-30
A-05-30
A-05-30
IIACC
llBOA
IIDBB
li1BCA
120DA
A-05-30
A-05-30
A-05-30
A-05-30
A-05-30
13CDC
130BC
lJODO
14AOA
140AA
A-05-30
A-05-31
A-05-31
A-05-31
A-05-31
140DC
17BCC
17CAA
18BOB
19AOAI
A-05-31
A-05-31
A-05-31
A-05-31
A-05-31
19AOA2
19AOA3
19AOA4
19DACI
190AC2
A-05-31
A-05-31
A-05-31
A-05-31
A-05-31
20BBCI
20BBC2
20BBC3
20BBO
20BCAI
112BLCF
1I28LCF
A-05-31
A-05-31
A-06-28
A-06-28
A-06-28
20BCA2
20BCB
30CAO
30DBB
300CB
112BLCF
1200TlL
120DTlL
1200TlL
120UTlL
A-06-28 300CC
A-06-29 OIACA
A-06-29 01BBA
A-06-30W06AAB
A-06-30W06BBA
120DTlL
120DTlL
1200TIL
120SDMR
1200TIL
7
10
7
7
7
35
10
10
10
10
10
C
C
C
C
C
120S0MH
120S0MR
120S0Mk
120S0MH
120S0MA
7
7
7
8
10
10
7
10
C
C
C
C
C
120S0MH
120S0MR
120S0MR
120S0MR
120S0MR
25
'r
8
10
10
7
7
c5
71
95
10
t>4
u
u
0
A
0
4
20
C
C
C
U
0
22
480
15.0
280
550
600
520
120S0MR
120SDMR
C
C
A
A
A
29
C
55
C
0
"0
60
40
C
C
C
0
112~LCF
120DTlL
120S0MR
120S0MH
120SDMH
120S0MR
350
360
370
380
20
A
u
40
100
C
u
u
20
85
IDS
C
C
2S
75
85
C
C
0
0
0
0
80
180
80
140
C
C
C
C
H
145
~
,"
0
02DADI
02DAD2
020DAI
0200A2
IIDABI
A-07-27
A-07-27
A-07-27
A-07-27
A-07-27
lIOAB2
IIDBO
IIDCA
12BCA
14ACBI
A-07-27
A-07-'27
A-07-27
A-07-27
A-07-27
14ACB2
HACCI
14ACC2
14ACOI
14AC02
U
100
160
480
A-07-27
A-07-27
A-07-27
A-07-28
A-07-28
1480A
14BDB
140BB
06DAC
060BBI
200
A-07-28
A-07-28
A-07-30
A-07-30
A-07-30
06DBB2
ObOBC
04DBA
040CO
IICBB
A-07-30
A-07-30
A-07-30
A-07-30
A-07-30
IIODC
14BOD
16AOO
16CAAI
16CAA2
A-07-30
A-07-30
A-07-30
A-07-30
A-07-30
16CAB
16CAC
160B81
160882
160BB3
U
120S0M~
112BLCF
120S0Mtl
120S0MR
D
0
120
160
C
U
H
H
C
H
0
u
C
C
C
330
1128LCF
1I28LCF
120SDMH
120SDMH
120S0MR
U
U
H
60
IS
350
130
160
150
120SUMH
130
110
IS
120S0MH
120S0MH
120S0MH
120SDMH
120S0MH
120S0MR
120S0MH
120S0MR
120S0MH
U
0
120S0MR
120S0MH
I11ALVM
II1ALVM
1200HL
1200TlL
1200TlL
1200TlL
IllALVM
120DTlL
120DTlL
1200TlL
120S0MH
IIIALVM
120S0MH
16.5
350
13.0
A-06-30W06BBB
A-07-27 OlCBA
A-07-27 OICCAI
A-07-27 01CCA2
A-07-27 01COB
A-07-27
A-07-27
A-07-27
A-07-27
A-07-27
120SUM~
u
u
0
LOCAL NUMBER
A-05-30
A-05-30
A-05-30
A-05-30
A-05-30
318
1200TlL
1200TlL
120S0MH
120SDMR
120S0MH
3
17
SPECIFIC
CONDUCTANCE
IUHMOS/CM
AT 25' C)
120SDMR
120SDMH
120SDMH
120UTIL
120DTlL
3
50
10
15
20
40
50
TEMPERATURE
IUEGHEES C)
120SDMR, Tertiary
of Sirrine (1958) ;
231WNGT, Wingate
Member; 230MNKP,
Formation.
300
300
Table 3.-·Records of
38
DAn
LOCAL NUMtieK
A-07-30 20tiBti
A-07-30 23AAC
A-07-30 2YAOC
A-07-30 32~C~
A-07-30 32~CD
51 ft-LU
335~3710~12JYOl
3J592810~Oti4eOl
33582310911:>201
3J5730109123201
3357291091<2501
COUNTY
COMPlETCU
001
OUI
001
001
001
19'ti
1972
1972
H
1972
1959
19'0
1963
1972
H
1913
1970
H
1971
1973
H
H
H
A-07-30
A-07-31
A-08-24
A-08-<4
A-08-27
32CHA
33572310912<301
02~HA
34014~IU9030101
19C80
20C80
15HeA
3404201 U''''>121 0 I
340420109,01YOl
340533109291601
001
001
001
oul
001
A-08-27
A-08-27
A-08-27
A-OH-27
A-08-27
26tiOO
26CAA
26CAS
26CAOl
26eADe
340337109C75401
340330109<7:.201
J4033410n7,YOl
340324109C75701
34032910YC75501
001
001
001
001
001
H
19"13
197 e
A-08-27
A-08-27
A-08-27
A-08-27
A-08-2"
26COC
26COO
26UAA
ZbOH"
26ueOl
34031710n,,0001
34031710n75601
34033510927 e50 1
340331109274901
34031110YC73601
001
001
001
001
001
1970
1964
A-08-27
A-08-27
A-08-27
A-08-28
A-08-28
,,6UW2
358AA
35tiAO
09CBti
17"oe
J40315109273501
3403051 On.,5JO 1
340302109275701
340613109<41801
340522109230701
001
001
001
001
001
1972
1973
1973
1950
1973
A-08-29
A-08-29
A-08-29
A-08-29
A-08-29
02ABA
02C8e
02COC
03"8A
03CUD
340729109150801
34065810Y154701
3406451091,3401
340729109164101
340642109163001
001
001
001
001
001
A-08-29
A-08-29
A-08-29
A-08-,,9
A-08-29
03uBC
04DBD
040CC
05AO"
07ABU
340656109162201
J4065810n 718Ul
340645109172201
3407181091"1501
3406281091Y2201
001
001
001
001
001
A-08-29
A-08-29
A-08-29
A-08-29
A-08-29
07ACD
07tiCA
07tiC8
340015109191901
340622109200001
J4Q602109184701
340548109182001
001
001
001
001
001
A-08-29
A-08-29
A-08-29
A-08-29
A-OB-29
09tiOU
llABC
II ADA
340615109173401
340633109151901
J40626109145301
340631109104701
3405271 0 91706U 1
001
001
001
001
001
08C~O
OBOCD
ll~BC
16ADa
3406211091~5001
USE
OF
wATEH
H
U
S
6
8
8
H
1956
H
H
5
20.00
S
091 11973
091 11973
07/2511973
160
155
98.00
K
071
95.00
92.00
5
5
07/25/1973
140
8060
8140
8080
B175
8140
190
100
400
140
120
8210
8200
8135
8150
8180
215
155
265
103
no
817,
8230
8260
7497
7400
102
290
235
J60
100
7060
7070
7110
7090
7090
106
200
J80
100
140.00
H
8.00
5
1525
100
100
50
68
7075
7080
7070
7100
7160
626.00
14.00
S
5
5.00
to<
bOO
400
460
210
70
7130
7160
7160
7170
7265
134
625
7eO
850
7270
7210
7200
7265
7335
375.00
51B.00
458.00
18.00
H50
35
7470
7460
7570
7598
7750
525.00
23.00
164.00
228.UO
312.00
H
5
160
105
125
160
300
7170
7260
7358
7415
7576
100.00
S
78.00
S
100.00
85.00
62.00
H
5
H
1211811974
1211911 974
lU 11974
07118/1957
071 11959
100
150
1400
246
202
7480
6966
7BOO
0645
6632
25.00
75.00
5
H
12/19/1974
12120/1974
140
110
76
250
10
6850
7080
6720
6998
6690
6
205
150
12
290
U
7
U
S
10
5
6
0713111967
6
6
001
001
001
001
001
1968
1955
1967
19:'0
1949
H
H
N
P
U
10
U
6
S
5
5
A-U9-cti 031:1UC
J403071 U903.,,01
34120110n54YOl
341 041109<Y190 1
3412301 on0440 1
J4122410>2COYOl
A-09-28
A-09-2H
A-09-29
A-09-2Y
0-09-29
08CAD
27UAO
01AHU
02ACA
05CO"
34112110ge40801
J408401092140U1
J4123810111312Uol
J412281U9141801
34120<109175501
001
001
001
001
001
1950
1969
1964
1906
A-09-29
A-09-29
A-09-29
A-09-2Y
A-09-29
O""AH
10DCC
20CBA
2000H
ZlCCC
341149109175701
J410111091640Ul
34093710Y180"01
001
001
001
001
001
1972
1971
6
6
6
o
5
6
5
5
5
H
I
S
12
A
X
H
1914
U
0712511973
OBI 11~73
S
H
H
A-OH-31 34A~8
A-09-27 OlOOB
A-09~27 16AC"
A-09-28 02ACA
07l2~11973
08/1211973
0712;/1973
71.00
76.00
69.00
100.00
200.00
P
8
1950
1948
1950
195Y
lY55
11973
7060
7050
7070
7030
7050
12
001
001
001
001
001
H
5
051 1196;
0311 YI 1957
051 11973
H
340B2109054dOl
340602109054801
340454109055501
34041410903e801
34024410Y0624Ul
5!j.00
182.00
"
S
H
P
O,A""
080BC
17CUO
CiWAC
31AOO
08/0711973
5
80.00
171.00
10.00
6
6
A-08-31
A-08-31
A-08-31
A-08-31
A-08-31
D
61.00
H
H
H
1958
1947
K
11972
11973
11973
11972
OBI 11973
07/2511973
1113011 950
III 11973
P
P
A
001
001
001
001
001
001
001
001
001
001
250.00
ti40S
9.00
081
081
OBI
081
H
5
"
6
J404181U9173"01
34044810915J901
340348109155401
J40410109085501
340325109104501
3410081UYIJ01U!
3408281091427Ul
J4083810915,7Ul
340,,2,10Y161eOl
J40Y12109175501
7700
7635
7250
7310
Ii
H
H
110.00
134.00
247.00
4
8
A-08-29 21eAC
A-08-29 23~BA
A-08-29 26tlB~
A-08-30 2JOeti
A-08-30 "80AC
c.4AAA
c60CD
27CBO
28UOO
29tiAti
140
75
250
700
265
36.00
180.00
120.00
5
M
1 ~67
1953
1974
1962
MtA"UHc.O
(FeET)
Ii
6
1967
1964
(FEU)
UATE
WATE"
LEVEL
95.00
S
1908
1968
1904
06/25/1966
10/0311963
lEVEL
7560
8240
7650
7660
7720
P
1970
WATCH
SU"fACE
"2.00
6
8
H
H
H
ALTITUDE
OF LAND
17,
280
155
60
235
~OO
H
001
001
001
001
001
A-U9-2'1
A-09-29
A-09-29
A-09-29
A-09-29
10
H
340524109170401
34054410917JI01
3405211091 7JtiOl
34050810917:'801
34045310Y172901
J40~17109171201
8
U
U
H
A-OB-29 16ADe
A-U~-2Y IbBAA
A-OB-29 16tiOe
A-08-29 16eBe
A-08-2Y 21~AA
340n~109172501
CASING
UIAMUePrH
ETcH
Of welL
(INCMES) I'IN15H (fEEll
5
6
"
12
8
770
100
92
80
234
4.00
101
31.00
18.00
30.00
H
11973
12116/1974
05/1611969
011 11970
08/2211974
06/13/1968
0111911968
1966
06/25/1966
10/03/1903
195.00
H
250.00
K
140.00
H
051 11959
07/3111967
021 11960
45.00
021
60.00
021
H
H
S
$
5
S
11964
11967
1953
08/1011974
05/1711969
08/14/1Y74
031 11958
0811411974
08114/1974
08/06/1973
08/06/1973
D
160.00
5
05/06/1959
100.00
72.00
H
S
36.00
S
200.00
9.00
H
S
121 11974
08/21/1974
09126/1974
031 11966
02/1211974
6690
7090
6920
6915
6914
3.00
56.00
21.00
H
S
S
4.00
S
6.00
5
7320
7018
6970
6900
6920
750.00
H
42.00
10.00
s
4.00
19.00
H
H
121 11972
06/04/1974
02/14/1975
06/04/1974
06/04/1974
09/25/1974
06/1111974
OIl 11946
III 11965
39
selected wells-"Cantinued
uEeTH TO
UI!:ICHAHGt:..
(bALLUN~
PO"
M!NUTIo)
liA Tt
Ul!::l(,hAHbt:..
Mi:.A::'Ul1tu
UHA-It-
UUWf',
(fEU)
FIH~T
UI-'t.NING
"t.tT)
MUHUO
CO"~T-
HUCTtLJ
fYPo,
Of LUG'
AVAILAoLE
PHINCIPAL
AUUIFt.'
LJ
U
120UTlL
1200TIL
1200T!L
120tJT!L
1200TIL
,b
1,,0
10
,3
C
leu
",U
I"
c
10
25
C
C
C
C
"0
U
U
A-OB-27
A-OB-27
A-OB-27
A-OB-27
A-OB-27
26BDD
2bCAA
2bCAB
26CADI
26CAD2
1205DMH
1l2BLCF
12050MH
12U50MH
120S0MH
A-OB-27
A-OB-27
A-OB-27
A-OB-27
A-OB-27
26CDC
2bCUD
26DAA
260BB
26DCDI
1128LCF
120SDMH
112BLCF
112SLCF
12UUTlL
A-OB-27
A-OB-27
A-OB-27
A-OB-2B
A-OB-28
35BAA
35BAD
09CBB
17BDC
02ABA
02CBC
02CDC
031111A
03CDD
030BC
04DBD
040CC
OSAUB
07ABD
U
H
u
IS
C
C
30
1,7
70
J""
20
C
C
C
C
C
IS
19
25
03
ct
122
140
64
33
63
40
Ultl"/196~
!=
ju7
I
%5
,,5
IS
10
15
6/
LJ
e,
u
0
boO
12450MH
12450MH
2l1SUMH
"llSLJMH
124SDMH
A-OB-29
A-OB-29
A-OB-29
A-08-29
A-OB-29
toO
U
U
U
C
C
C
U
U
U
U
U
·/~6
!UO
00
IUO
u
eb
20
IUOO
C
C
C
D
310CCNN
I 24,OMH
124S0MH
le4S0Hk
124SDMk
211SUMH
21lSDMH
211'UMH
124S0M'
12,SUMH
124SDMH
ellSDM"
"1150MH
ellSDMH
IllALVM
C
C
C
0
u
u
25
U
15.0
17 .0
5B5
410
2b.0
3970
IS.O
342
526
16.0
510
633
20.0
B2b
19.0
793
650
400
.,U
C
u
JU
,U
OU
!
"o0
LJ
u
LJ
0
A-OB-29
A-OB-29
A-OB-29
A-OB-29
A-OB-29
09BDD
llABC
llADA
IIBBC
16ADB
A-OB-29 16ADC
A-OB-,,9 16BAA
A-OB-29 16BOC
A-OB-29 16CaC
A-OB-29 21BAA
A-OB-29 21CAC
A-OB-29 23BBA
A-OB-29 26BBC
A-OB-30 230CB
A-OB-30 2BOAC
120UTIL
120UTIL
1200TIL
120UTIL
1200TlL
550
490
500
340
474
A-OB-31
A-OB-31
A-OB-31
A-OB-31
A-OB-31
31ADD
1200TlL
ll28LCF
3B7
A-OB-Jl
A-09-27
A-09-27
A-09-2B
A-09-2B
34ABB
OIOOB
IbACB
02ACA
03BDC
112~LCF
ll28LCF
112BLCF
2llSDMH
<USDHR
IllALIiM
2JICHNL
124S0HI<
124SUM"
12't!lDMH
"ll SUMH
05ABB
0~D8C
17CDD
22DAC
18.0
620
I~.O
410
540
470
A-09-2B OBCAO
A-09-2B 270AD
A-09-29 01ABD
A-09-29 02ACA
A-09-29 OSCOS
700
360
A-09-29
A-09-29
A-09-29
A-09-29
A-09-29
OBBAB
16DCC
20CIIA
2000B
21CCC
5bl
420
A-09-29
A-09-29
A-09-29
A-09-29
A-09-29
24AAA
260CO
27CBO
2BDOU
29BAB
19.0
18.5
2llS0MH
12450H"
12450MH
IllALIiM
C
A-OB-29 07ACD
A-OB-29 07BCA
A-OB-29 07BCB
A-OB-~9 OBCBD
A-OB-29 OBOCO
650
300
350
124~UMH
JDU
2bDCD2
2llS0MH
1200TlL
120DTIL
120UTlL
1200TlL
112BLCF
112bLCF
4U
21
35
,,10
320
1245UMH
II
bU
16.0
i::!ll~DMH
C
C
C
b
410
0
U
,0
"-(,,
3BO
U
Ttl" ,(:
C
2BO
A-OB-29
A-OB-29
A-OB-29
A-OB-29
A-08-29
U
C
C
12.0
124SDMH
1245UMH
1245DMI<
::J~O
45
lU~
U
U
C
20BBB
23AAC
29ADC
32BCC
32BCD
112BLCF
C
A
A
c
A-07-30
A-07-30
A-07-30
A-0'7-30
A-07-30
112"LCF
112bLCF
112BLCF
112bLCF
112BLCF
DO
!SU
-(5
2BO
LOCAL NUMBEH
A-07-30 32CBA
A-07-31 02CBA
A-OB-2419CBD
A-OB-2420CBD
A-OB-27 15BCA
1200TIL
120uTlL
hU
hO
SPECIFIC
CONDUCTANCE
(UHMUS/CM
AT 25' C)
U
u
U
C
100
I uO
It:..MPE.KATUHt:
(OEGHtE5 C)
16.5
Table
40
U~t.
LOCAL
NUM~t."
Sl1O-1O
COUNTY
DATE
COMPLETED
340800lU917,401
001
001
001
001
001
1974
1963
1967
1962
1964
3408001091757UI
340758109174701
340746109171701
340803109161201
340800lU9171001
001
001
001
001
001
1911
1968
33BOA
33BDC
33CBA
33CtlB
34tlOC
3408081U9165001
3408"00 I 091 65~0 I
3407571 091 6580 I
3407,81U9170701
340803109155301
001
001
001
001
001
1953
1950
A-09-29 34UCC
A-U9-29 35CAU
A-09-30 14C8B
3407321U9153201
340746 I 0 9144 I 0 I
3410301090844UI
3410171090847111
340950109111601
001
001
001
001
001
A-09-29
A-09-29
A-09-29
A-09-29
A-09-29
29tlAO
32tlCA
328UCI
3"BDC2
32bDC3
A-09-29
A-U9-29
A-09-29
A-09-29
A-U9-29
32BOC4
32tlDO
320AO
33AOO
33BCC
A-09-c9
A-09-29
A-09-29
A-09-29
A-09-29
A-0~-30
14CC~
A-09-30 20ACO
340907109174BOI
340H071 U918040 I
3408021U918UIOI
34080010917~801
19~1
1941
1965
341005109U45401
340948109051701
3417451094H0601
341,71610950350 I
341704109501601
001
001
001
001
001
1931
1959
1967
A-IO-24
A-I0-24
A-I0-24
A-IO-25
A-IO-25
10000
22A8A
29A8o
09tlBA
10CCC
341625109464501
341527109470501
3414221094913UI
341711109422301
3416211 0941320 I
001
001
001
001
001
1967
1970
1957
1971
A-IO-2~ 1l0AC
A-IO-25 14~DO
A-IO-25 15AAU
A-IO-2~ 15C88
A-IO-25 15UAC
341638109393701
341553109395901
34160810940:;301
34155-3109413101
341545109404201
001
001
001
001
001
22tlBC2
J41~151094126UI
A-IO-25
A-IU-25
A-10-25
A-I0-26
A-IO-26
22<;AC
22CAU
22CCA
03ADA
050UC
3414511 0941 02U I
34144410941"401
3417511U93413UI
A-IO-27
A-IU-27
A-IO-27
A-IO-2"1
A-IU-2B
OICBC
14CBA
3417221un64101
17UC~
341530109302201
34143310n552Ul
24DOC
OdACCI
A-IO-2tl OdACC2
A-lD-28 118AA
A-IU-28 lltl88
A-IO-28 I1~CB
A-IO-28 II~CUI
A-IO-28
A-IU-28
A-IO-28
A-IO-28
A-I0-cd
IItlCU2
18UCA
clACA
21ACB
22U08
A-IO-28 26CCB
A-IO-2~ 05CBC
A-IO-29 14UCU
A-IO-29 15dAB
A-IU-29 25UA8
A-IO-<9
A-IO-30
A-IO-30
A-IU-30
A-IO-31
A-Io-31
A-Il-24
A-1l-24
A-I1-24
A-1l-24
33UDC
08AAA
34144910~411bUI
3417121U936~9UI
341549IU9273~UI
3416441un3~8Ul
3416461u9a~dOI
34170710920~~UI
3417031092121UI
3416541U9d2UUI
341646 I U921 ueu I
3416461U9211uUI
341533IU924~5UI
3415071U9<24501
341507109225501
341440lUnlJ8UI
34134H10nl2101
34172410918U901
3415281 U9142U UI
341613109154~UI
3414001U9131101
341~46109161eul
341659109110401
~6CCO
34134110~OH4"UI
27CAA
21UBU
3414471U9035301
34135710909~~ul
2'::titH:H)
3414191U90532UI
ObAAC
IHODA
34221810~4d57UI
c~UBC
3420061U~47U801
2bWC
341~0010~482401
342053IU~49~5UI
001
001
001
001
"00 I
001
001
001
001
001
001
001
001
001
OUI
001
OUI
001
001
001
001
001
001
001
001
001
001
001
OUI
001
001
OUI
001
OUI
001
5
1947
1967
1933
6970
6960
6960
6980
6965
61.00
93.00
6
250
360
8
108
196
232
286
265
110
126
6970
6980
69HO
6980
7000
98.00
S
08/15/1914
87.00
10.00
25.00
R
S
H
10/23/1956
081 11965
80
132
30
15U
220
7035
7045
6947
6980
7220
30
100
100
460
18U
7070
7315
7315
7180
7383
33
2921
4657
190
190
7100
7290
6855
6500
6520
175
12
8
6
6
x
P
S
5
5
5
48
16
10
H
R
10/
031
031
111
22.00
R
10/10/1957
50.00
220.00
126.00
5
09/2~/1974
R
R
041 /1967
12122/1933
30.00
S
04/21/1958
150.00
5
128.00
~
575.00
370.00
265.00
S
5
56.00
27.00
75.00
102.00
R
S
5
5
410.00
R
460.00
~5.00
H
H
90.00
R
110.00
H
10.00
R
60.00
180.00
H
11965
11975
11975
11966
09/26/1974
P
725
415
317
200
135
III
82
170
6705
6790
6805
6895
6910
U
6
6
12
6
6
500
500
320
155
310
6932
6952
6960
6n8
6930
H
6
255
114
160
35U
450
6960
7060
6965
7028
6832
75.00
80.00
100.00
300.00
H
H
I~O
383
280
301
IH
6460
6692
6972
6660
6240
123.00
257.00
202.00
226.00
7.00
5
5
S
5
R
20
100
100
100
60
6240
6075
6100
6120
6120
7.00
8.00
12.00
4.00
13.00
H
121 11956
01116/1975
01/16/1975
071 /1946
100
100
250
242
180
6130
6370
6360
6380
6520
21.00
S
01/16/1975
42.00
59.00
156.00
5
5
5
01/15/1975
01/16/1975
01/1711975
6586
6281
6580
6510
6657
215.00
10.00
12.00
13.00
20.00
5
16
13
20
5U
12/20/1974
01/16/1975
12114/1956
12114/1956
12118/1965
179.00
17.00
5
"351
954
6995
6915
7022
6950
7273
850.00
360
180
20
850
819
7276
6350
6270
6650
6690
250.00
145.00
7.UO
709.00
400.00
H
H
10
4
8
p
P
H
S
1900
5
19~7
5
1946
5
5
1967
1909
5
6
4
6
5
6
6
4
X
P
HoI
U
I
H,!:)
,
I
H
I
1964
5
5
S
,
5
8
5
6
8
6
P
P
P
6
48
36
6
1907
36
13
9
6
0
X
5
S
5
6
6
P
U
12
S
6
1967
1962
1950
1962
11~75
08/1~/1974
P
P
19~3
03/07/1957
03/07/1957
H
H
1946
1967
04/"
S
S
5
H
H
H
U
196,
H
6800
6735
6980
6791
6885
H
19~~
08/151 I 974
03/ 11962
09/ 11964
7~0
H
1966
68.00
60.00
R
k
5
P
S
1973
1909
0.10
S
H
H
H
1959
1944
08/2211974
7.00
30.00
42.00
80.00
65.00
1906
1973
(FEET)
6910
H480
6975
6970
6970
s
20AA8
20BOO
04ACO
06COC
07ABC
A-IO-2~
S
1945
1966
A-09-31
A-09-31
A-10-24
A-IO-24
A-IO-24
22~~CI
H
P
5
H
5
OUI
001
001
001
001
A-IO-2~
P
DATE
WATER
LEVEL
Mt.ASUHEO
WATER
LEVEL
120
110
155
252
135
H
P
S
S
S
AL Tl TUDE
OF LAND
SURFACE
(FEET)
of
8
6
6
H
P
P
P
S
340850109071701
340805109105001
34080110910,101
340"23109085201
3411341 090327U I
001
001
001
001
001
(INCHE~)
O~PTH
OF "EcLL
FINISH (FEET>
H
25CAA
32AOA
338CC
34AAA
10BCA
3416061094356Ul
3415041094334UI
34145310 94lJ40 I
3415161U94132UI
CASING
DIAMETCH
H
1965
A-09-30
A-09-30
A-09-30
A-09-30
A-09-31
A-lO-25 18ABD
A-IU-25 ZOBCC
A-I{J-~5 210AU
OF
WATER
3~ --Records
~
380
30
1~77
061
061
1957
11971
11957
06/20/1974
06/20/1957
06/20/1974
5
H
01/15/1975
01/15/1975
11/21/1974
12116/1914
H
H
S
5
5
5
5
H
s
02/29/1960
03/19/1975
06/28/1948
~
S
5
S
R
1967
06/1<11957
12119/1974
12118/1974
41
selected wells--Continued
U~PTH
DI!)('HAI-<Gt::.
<GALLUNS
P~k
",INUTU
U1SCHAHbe
URAw'"
00",,,
r-lt.A:::'Ukt'..U
IFt~1
t..AIt::
TO
AVAILA~Lt
2~
C
0
200
C
C
C
OP~NINU
)
TYPE.S
OF LOGS
METHOD
CONSTfWCTEU
FI",T
IF~H)
U
~\l
25
6~
.,0
.,0
"0
90
C
C
U
0
U
U
U
0
..,
~~
b~
14
,0
10
U
C
U,l;i
c
U,l;i
U
27
C
a
103
C
U
c
195
C
4"
c50
c
32
0
C
H
C
"0
f<
J1~
C
C
C
C
3"
•C
19~7
72
100
20
0
U
0
u
U
0
C
U
C
C
C
C
C
U
0
50
C
c
C
U
20
C
C
C
C
16
C
U
C
0
G
0
0
20
63
C
330
61
H
SPECIFIC
CONDUCTANCE
IUHMOS/CM
AT 25° C)
U
U
U
211S0MH
211S0MH
IIIALVM
124S0MK
211S0MK
A-09-29
A-09-29
A-09-29
A-09-29
A-09-29
32BOC4
32BOO
320Aa
33AOO
33BCC
211S0MK
ellSOMR
211S0MR
124S0MH
124SDMH
A-09-29
A-09-29
A-09-29
A-09-29
A-09-29
33BOA
33BOC
33CBA
33CBB
34BOC
12450MH
12450MH
IllAUM
211S0MH
211S0MH
A-09-29
A-09-29
A-09-30
A-09-30
A-09-30
340CC
35CAO
14CBB
14CCB
20ACO
A-09-30
A-09-30
A-09-30
A-09-30
A-09-31
25CAA
32AOA
33BCC
34AAA
10BCA
520
480
439
IllALVM
124S0MH
124S0MH
211S0MR
124S0MH
410
15.5
435
A-09-31
A-09-31
A-IO-24
A-10-24
A-IO-24
20AAB
20BOD
04ACD
06CDC
01ABC
11.0
540
14.0
305
A-IO-24
A-IO-24
A-IO-24
A-IO-25
A-IO-25
10000
22ABA
29ABO
09BBA
10CCC
A-IO-25
A-IO-25
A-IO-25
A-I0-25
A-IO-25
llOAC
14BOD
15AAO
15CBB
150AC
350
165
A-IO-25
A-IO-25
A-IO-25
A-IO-25
A-IO-25
18ABD
20BCC
2lDAO
22BBCI
22BBC2
198
A-IO-25
A-IO-25
A-IO-25
A-IO-26
A-IO-26
22CAC
22CAD
22CCA
03AOA
05DOC
A-IO-21
A-IO-21
A-IO-21
A-I0-21
A-IO-28
OICBC
14CBA
I1DCB
24DDC
08ACCI
A-IO-28
A-I0-28
A-IO-28
A-IO-28
A-IO-28
08ACC2
llBAA
llBBB
llBCB
llBCDI
A-IO-28
A-IO-28
A-IO-28
A-I0-28
A-IO-28
11BCD2
18DCA
21ACA
21ACB
22DOB
A-IO-28
A-IO-29
A-IO-29
A-IO-29
A-IO-29
26CCB
05CBC
14DCD
15BAB
25DAB
A-IO-29
A-IO-30
A-IO-30
A-IO-30
A-IO-31
33DDC
08AAA
2oCCO
21CAA
21DBO
A-IO-31
A-1l-24
A-1l-24
A-11-24
A-Il-24
29BHD
08AAC
leDDA
220BC
2HCDC
21150MH
1128LCF
112"LCF
1128LCF
211S0MH
211SUMH
211S0MR
211S0MR
211SaMH
211SDMM
211S0"K
211S0MR
211S0Mk
1128LCF
112BLCF
1128LCF
1128LCF
1128LCF
1128LCF
1128LCF
112BLCF
211S0MR
13.0
18.0
18.0
160
5.5
215
14.0
19.0
213
680
250
1128LCF
1128LCF
112BLCF
211S0MM
IllALVM
11IALVM
IllALVM
230MNKP
230MNKP
IllALVM
15.5
610
lllAUM
112BLCF
211SUMK
211S0MK
1128LCF
112HLCF
lllALVM
lllALVM
IIIAUM
IllAUM
1650
14.0
1150
562
690
211SUMR
IllALVM
(;.1
JUO
15
C
c
U
JIOKIBB
U
211SDMK
231CHNL
IIIALVM
310CCNN
310CCNN
u
LOCAL NUMBER
29BAO
32BCA
32BOCI
32BOC2
32BOC3
15.0
G
u
0
40
IEMPEHATUHE
!DEGREES C)
A-09-29
A~09-29
A-09-29
A-09-29
A-09-29
124S0MH
124S0MH
124S0MH
211S0MH
124S0MH
lllAUM
c
25
PHINCIPAL
AUUIFER
19.0
11.7
16.~
190
500
458
Table 3.--Records of
42
CASll"b
UATE
lOCAL NUMtleK
SITI:-IU
COUNTY
CUMPlETeU
USI:
UF
WATEK
UIAMU~PTH
ETtH
u< Well
(INCHES) fiNISH «I:U)
(fElOn
DATE
WATEH
lEVEL
WATEt<
lEVEL
(Ft.ET)
Mt:'.ASUHEU
6422
6437
282.00
425.00
100.00
25.00
80.00
·H
80
<80
.l80
48
30
6435
6430
6435
6440
6400
44.00
Ii
26.00
30.00
41.00
22.00
5
83
53.00
55.00
H
125
190
200
643S
6444
6435
81.00
!;,
b4H3
55.00
S
190
180
550
385
"80
6450
6500
681S
6680
6620
410
15
6660
6275
6425
6392
6385
485
5
5
5
ALTITUDE
OF LANG
SUHFACE
6740
6358
H
H
5
S
A-Il-24
A-Il-2S
A-11-2S
A·II-25
A-Il-2S
360AH
OSAAA
08AHU
OBuee
IIAeA
34182510944,001
3423141U94240Ul
3422171094':S5Ul
342131109430201
3422011093945Ul
001
001
001
001
001
A-II-2S
A-Il-2S
A-II-2S
A-11-25
A-II-25
18COD
I euec
I ~AB
19AHA
3420431094007Ul
342044109440001
3420301U943,001
342030lU94353Ul
342U1310943«01
001
001
001
001
001
H
U
3420101U9433801
3420141094014Ul
.l41935109432301
3419131U9434001
3422071U9.l400Ul
001
001
001
001
001
H
5
H
S
3421271093<3S01
3421l3109.l62S01
001
001
001
OUI
001
H
5
5
5
5
6
H
5
S
S
5
10
5
5
5
5
4
12
6350
6355
6475
6680
6490
10.00
7.00
135.00
390.00
5
H
4
179
410
175
80
333
34S
113
300
5940
5950
5950
5930
5995
6.00
13.00
12.00
5
5
5
6315
6092
6060
6320
6295
16.00
107.00
56.00
54.00
S
S
S
E
10/23/1956
1211411956
01/08/1975
121 11956
20eA~
A-II-25
A-li-25
A-II-25
A-II-25
A-11-26
20GBH
23GAH
300AO
11HCC
A-II-26
A-11-26
A-11-26
A-II-26
A-II-26
13tlAe
17Aoe
27ADB
29tlBB
31BeH
29~0~
3419361U9341~01
.l419461093715Ul
341837109.l82001
A-Il-26
A-II-27
A-11-27
A-11-27
A-ll-27
31UUC
I<CBH
17UDA
23AAA
23cee
341~5010921.l&01
001
001
001
001
001
A-Il-27
A-Il-27
A-11-27
A-Il-27
A-II-27
230De
25tlD
2aeAA
31VBS
34eDA
341948109(:64601
34192010n6<SOI
3419161 09':~18Ul
3418261093122Ul
341814109281601
001
001
001
001
001
A-II-28
A-11-28
A-II-2B
A-11-28
A-II-28
05DBC
09AeCI
09Ace2
098DA
09UAO
342240109(:40001
342159109225901
342158 I 09«,90 1
342203109c30601
3421481092«901
001
001
001
001
001
A-II-28
A-11-28
A-II-28
A-11-28
A-11-28
19AAU
21ABA
22HUA
290W
300ee
342030109243701
001
001
001
001
001
A-II-29 04B~e
A-II-29 10AeA
A-II-,,9 23000
A-Il-29 258~A
A-Il-29 2"B88
A-Il-29
A-11-29
A-11-30
A-II-30
A-11-30
21 AGA
360ee
0.lCAD
07AHe
"OAW
341e081U~j73301
34220010926<801
342U481092~5701
3420.l510nb3701
3420361u~a4601
342024109220201
3418531un34701
341b5&109b0401
3423131091703Ul
3422071091S18Ul
34194810~140"01
34191510~134501
.l419151U~I.l5S01
3419301 091t>240 1
341905109132601
342<44109092501
.l4221810912C001
342014109111301
8
S
5
1960
1940
193&
H,S
8
4
6
4
42U
80
8
5
U
6
17
u
17
06/1111957
06/11/1957
~
11/1711966
08/14/1959
06/1211957
06/11/1957
S
06/1211957
H
06/11/1957
061 11957
6520
150.00
80.00
,20.00
340.00
H
~
k
H
Ib8.00
H
6.00
S
01107/1975
392.00
40.00
S
12120/1974
12120/1974
E
S
121 11974
1210711956
0110811975
03/19/1975
01l0tll1975
F
01108/1975
02/05/1958
Hol
6
5
6
1961
S
U
12
1920
5
5
42
S7
600
1684
61
12
9.00
5
12/0711956
001
001
001
001
001
1944
S
6305
6660
6680
6710
6690
307.00
650.00
5
14.00
S
5
72
320
720
21
12
16
03120/1975
031 11975
1211411956
03/19/197S
121 119S6
001
001
001
001
001
1961
68S
890
6S0
715
710
6600
6835
6820
6795
6895
530.00
650
660
610
830
348
7041.0
6997
7060
7162
5945
320
90
320
260
290
6046
6480
6600
S885
5907
325
5S0
90
.l51
12
28
100
230
222
200
165
27S
300
60
875
6025
6030
5970
6159
6390
777
903
40
100
100
6300
6300
6320
6300
6300
34265410~4b1401
001
001
001
001
001
A-12-24
A-12-24
A-12-24
A-12-2S
A-12-25
Hoec
l7ece
2600
03AA8
04CUA
342600109460501
342557109494101
342420109454001
3428311 09404801
342150109.2':001
001
001
001
001
001
A-12-2S
A-12-25
A-12-2S
A-12-25
A-12-2S
14UtlO
16Gee
leGCel
18cec<
3426161093~"'01
2ewC
342558109423<01
342600109442801
34260010944':901
3424101094219ul
001
001
001
001
001
A-12-25
A-12-26
A-12-c6
A-12-26
A-12-26
34CAH
0280A
0488"
048SC
04B8o
3423391U9411101
3428171U9.l33601
342833109.l61801
342829109362001
342828109360901
001
001
001
001
001
A-12-26
A-12-26
A-12-26
A-12-26
A-12-26
O,UCtl
UIlAAC
130CU
IS8ce
18C"H
34275910936:;201
342738109.l634Ul
3425551093':1601
3426241 0.93S040 1
OUI
001
001
001
001
A-12-26
A-12-26
A-12-26
A-12-26
A-12-26
18UCCI
180ec"
2uGCC
342601109.l7,,701
nC~81
3424291093"0201
.l424291093"0101
27Ctl8"
5
12
b4e:!l
12
341807109084101
3421101090.:>801
341818109061S01
341833109050101
342010IU~3115Ul
S
170
42,
170
I
35ceA
17ACD
31eAD
32Aeu
II CUA
342:>591U~37,701
450
19.19
19&0
A-11-30
A-II-31
A-Il-31
A-Il-31
A-12-24
.l4262310~.l8"901
1957
001
001
001
OUI
001
4
S
5
H,S
U
5
5
5
6
S
5
1948
OU23/19t>l
1963
1914
S
5
5
6
U
10
I,H
6
6
8
H,S
&
19S0
U
S
6
6
6
IIJ'tH
5
6
1935
1915
p
p
5
S
6
U
60
5
6
U
96
s
24
6
1965
19.18
S
T
H
H
1965
H
19"0
U
6
8
6
5
6
H,S
5
1970
P
9
1967
1968
1937
19,2
U
2
P
12
S
S
U
6
6
W
P
55.00
7.00
11.00
81~.OO
630.00
600.00
654.00
H
$
R
H
R
R
b20.00
H
580.00
620.00
H
R
01/16/1975
121 11956
05/20/1975
0511311976
05/13/1976
101
200.00
11974
<80.00
S
168.00
250.00
S
R
611S
6274
6090
6093
6334
234.00
425.00
57.0U
245.00
S
tI.OO
S
632~
7.00
0112211975
6295
5930
5940
5940
/:iO.CO
5
H
38.00
24.00
R
031
95.00
H
F
H
5
H
07/09/1965
414.00
5
423.00
21.00
5
1210711967
06108/1966
04/03/1957
01/1,/1975
04/03/1957
40.00
8.00
545.00
Ib.OO
10.UO
o
H
5
S
H
A
:,
S
0611311957
Otll2U1956
Otl/2211956
01104/1934
06/1211957
01/04/1934
11965
1958
011221197S
1958
05/0':11957
09/12/1970
43
selected wells--Continued
Ut.t-'lH
UI~CHAHGE
(GALLUNS
P~H
MINUTt.>
OAfE
Ul::'ChAI"H,t,
MtA~UHI:.U
OHAIVUO"'I\
(Ff.U)
fIN!,T
OP~NING
(F ~~ Tl
~PECIFIC
fu
MI'.T"OO
CUNSTHUUt:U
TY"'!:.!)
OF LUbS
AVAILAtiLt.
PHINCIPAL
AYUIFt:.H
<lI~UMH
U
C
310CCNN
211S0MH
dl~O"H
fE"Pt.HATUHE
ltJEGHEES C)
18.2
15.5
IS.5
12.0
dlSUMH
211S0MH
211SUMH
1000
30
15.5
14.5
cllSDMH
CONDUCTANCE
IUHMOS/CM
AT 25' C)
607
202
1~0
1430
230
690
522
725
l11ALVM
111ALVI~
211SDM"
1I2~LCF
<lISUMH
211S0MH
13.8
257
550
112~LCF
0
JUO
20
35U
317
C
C
0
10
tJ
0
20
bOO
116
110
22
lou
~Ju
C
C
b
G
U
~40
JI0KIB~
I~.O
190
180
7.0
257
380
11.5
1450
250
15.0
1300
16.6
17.0
2610
2000
2420
1300
310KI~~
U
G
G
C
C
0
0
C
0
0
b2S
230MNKP
310KIBB
JI0KltiB
JI0KIBB
JI0KltiB
U
0
U
225
11IALVM
ll1ALVM
112BLCF
21150MH
112BLCF
121BOHC
310CCNN
310CCNN
121BDHC
121BOHC
C
0
C
C
10
21150MH
121BDHC
112BLCf
JIOCCNN
1I2BLCF
N
C
10
1I2tiLCF
112BLCF
<31CHNL
21150M"
112BLCf
U
U
ll1ALVM
lllALVM
lllALVM
31uCCNN
31 OSUP I
JI0KIBS
JIUCCNN
310CCNN
14.5
875
3500
19.0
2900
3300
3800
310KI~8
Ib.O
3400
3300
3000
310CCNN
16.0
400
310CCNN
231CHNL
231CHNL
310CCNN
310CCNN
Ib.2
26~
19.0
15.0
741
240
250
10.5
356
60.0
442
JI0KIB8
310Kltiti
b
;,75
0
180
5
~OO
U
.>15
U
C
0
G
U
IUO
310CCNN
310CCNN
231CHNL
JI0CCNN
1I1ALVM
673
ll1ALVM
bu
15
182
7,0
"
dJJ
H
2U
C
C
18CDD
18DCC
19AB
19ABA
20CAB
A-11-25
A-11-25
A-11-25
A-11-25
A-11-26
20CBB
23CAB
29BOB
300AD
11BCC
A-II-26
A-11-26
A-11-26
A-II-26
A-11-26
13BAC
l7AOC
27A08
29BBB
31BCB
A-11-26
A-II-27
A-II-27
A-l1-27
A-11-27
3100C
12CBB
1700A
23AAA
23CCC
A-11-27
A-II-27
A-II-27
A-11-27
,\-11-27
2300C
25BO
2BCAA
310BB
34COA
A-11-28
A-11-28
A-1I-28
A-1I-28
A-II-28
050BC
09ACCI
09ACC2
09BDA
090AO
A-11-28
A-1I-28
A-1I-28
A-1I-28
A-1I-28
19AAO
21ABA
22BOA
290CO
30DCC
A-1I-29 04BBC
A-1I-29 10ACA
A-1I-2~ 2JDOD
A-II-29 25BBA
A-II-29 25BBB
A-11-29 27ACA
A~II-29 360CC
A-II-30 03CAO
A-1I-30 07ABC
A-1I-30 20ACD
A-1I-30
A-11-31
A-1I-31
A-II-31
A-12-24
35CCA
I7ACD
31CAO
32ACO
llCOA
A-12-24
A-12-24
A-12-24
A-12-25
A-12-25
140CC
17CCC
2600
03AAB
04COA
A-12-25
A-12-25
A-12-25
A-12-25
A-12-25
14DBO
16CCC
IBCCCI
18CCC2
2BCOC
A-12-25
A-12-26
A-12-26
A-12-26
A-12-26
34CAB
02BOA
04BBB
04BBC
04BBD
050CB
08AAC
IJDCD
15BCC
IbCBB
18DCCI
18DCC2
20CCC
27CBBI
27CBB2
D
13.0
394
230MNKP
231CHNL
JI0CCNN
1l1ALVM
JI0CCNN
Ib.5
16.6
10~O
375
386
A-12-26
A-12-26
A-12-26
A-12-26
A-12-26
310KIBB
310CCNN
112BLCF
18.0
15.5
495
215
355
285
A-12-26
A-12-26
A-12-26
A-12-26
A-12-26
,,0
Ob/U/j/l'ibd
A-1I-25
A-II-25
A-1I-25
A-1I-25
A-1I-25
1l2~LCF
7~.>
bUS
3bDAB
05AAA
OBABO
OBDCC
llACA
.>IOCCNN
JIOCCNN
310CCNN
U
U,E.
U,"
1I2~LCF
112bLCF
NUM~ER
A-II-24
A-11-25
A-11-25
A-1I-25
A-II-25
0
U
1"5
LOCAL
Table 3. --Records of
44
U~t.
IJA Tt.
L{JtAL f\/UMI:H:.11
A-12-<7 14C"UI
A-lc-27 I~"CU
A-12-<I 23~bU
A-12-<7 ncue
A-12-27 <'3U""
A-12-27 260A"1
A-12-27 cb"A"2
A-12-27 3'~lJA
A-12-27 3,C""
A-12-27502""A
511 e.-iu
C.OUNTy
34260910 ••U<bOI
34252b1U931,,01
3425191U~c131Ul
342S03IU""'1"01
342!:>2i:!lu~.cb!:>lUl
3q2!:>OO.l.UY~711Ul
342'00lV"C7lbOI
34<'32410~C71602
j4~j.c4
i u ~~ fl 7 u 1
j42M30iUY.::!lJ~vl
34~6S51Ll';tl.::!~10Ul
.-12-2b o"{CUA
A-12-ctl 1l1(.Uti
~42701J1U~~tJl.c:Ul
A-l~-2b
o(UbU
j421U31U'i~4.c:uul
A-12-2b u7UCIJ
A-12-2" O"A
J420~11U'i~447ul
A-12-~i:I
j421~OiU9~.c:jOUl
lctlUA
34C12710"1~'2Ul
A-12-2" IICC"
A-12-c" I/eec
A-12-2" 10"AA
j42bU21u~c"'.J4Ul
A-IZ-c:tI l(jbAt:I
342b451U"'~~14Ul
A-12-21:1 li::H;AU
342bObI0~c'0301
A-12-2" ItluB~
A-12-co I"UOb
A-12-e<l 10UUCI
A-12-2" 10UUCc
342b131U~bOIOl
A-12-2" I~AAOI
A-12-20 l"AAti2
A-12-2" l"AoC
j42bUI1UIji:!4.J4Ul
342b421U~ctJl(JtJl
34260210.c43001
J42bOU1U9c44.c:ul
342b001U'i~44UUl
j425!;)31U~c44UUl
342SS310~c437uI
342S4710",,'Ulul
A-12-2/j l'1tHW
j4~tJ481U~ctJUJUI
A-12-2" 30UbA
J4c4JIIU'j~44bUl
A-12-2" 30UUC
A-12-20NUcCb"
A-12-cbN04bAU
A-12-2b;U4CAC
A-12-20504GCC
j4241611Y244~UJ.
A-12-2050",,"A
A-12-2. 10ACA
A-12-2~ ,>OAAC
A-12-29 cSUW
A-12-2" 31"UCI
A-12-29 31"UC<
A-12-<''' 3;oAb
342056IU~<'115UI
j42t1441U~t:!3UtJUl
J427tJtHUl.Jc.JIUUI
34274211J1jc.3Jcul
34283010"c423Ul
34nc810~I'UUl
34204 710"111 oU I
34<'41310,,13IYOI
34234i:ilUYitjtJlUl
J4234MUJliil:bOUl
3424UtHU':1!41UUl
A-12-:JU OI:WbA
A-12-30 OtWtlU
342~1041
A-lc-.:HJ IJACA
3426J31U"JU1UbOl
A-12-.:HI
A-12-:n
34250010~0"llUI
2/AbA
OIjUtHi
A-12-31 UbUbC
A-IC:-.H
U'1t1AC
A-13-24 o,>uCC
A-IJ-c4 IcACb
A-J.:s-24 I~AW
A-I 03-24 cct:l~iU
A-13-24 cbUC!.,;
A-13-25 04eCA
UY11 c 10 I
34270310~llclUI
34270b1U.USlOOl
34270710"OSOSOI
3421331UIJ04ccUl
j431tl61UY4tj4JUl
J432ctH
U~45jbU
1
j43UjBIUI.J~0.cbUl
343041::11Uf.J4ltJ4Ul
342n21U~4610UI
J433021U,,)4~tJOUl
CUMI-'LI:. ft.u
16
H
6
8
5
lY62
1910
Ott/
6
6
~
6
:.
6
U
6
IIJJIJ
::i,Hd
8
U
U
~
U
H
1960
U
H
~.H
H
001
001
001
001
001
H
U
H
36
48
36
96
1~62
H.~
001
001
001
001
001
1940
OUI
001
001
001
001
19,6
U
5
001
001
001
001
001
1960
19 ",
19 ",
1 ~74
IY40
2tlACU
2SAUC
2,hAC
2S"bU
J4301I.J1U".ctlJOUl
343u ltH U':;Ic~t!.c:u 1
34303210Yc"IUI
J43U271UYcSbl:iUl
c!:>Utltl
34301110~cSISOI
001
001
001
001
001
lYIS
1914
1914
1 Y 14
19(4
001
001
001
001
001
1';7tJ
H.~
IIJ~1t
H,I,:;:'
1 YI4
19S9
19"9
H
U
8
IJ
10
j42'7tt91lJ"Jc~33lJl
A-13-2/ 2bAAC
A-13-c7 cbCCU
A-13-27 clt:H:1C
JttJ02tllUYCb.c:bUl
J43uctd. Uyctj 1 :dJ 1
A-13-c: I .cdAbC
J43U271U".c:l:i4CU1
J421.J471Uyc7ulUl
!:>9CS
64.00
3b.80
Ii
11.00
7.00
5
S
03/21/1975
05/18/1956
"9/1b/19S6
12/06119,6
1211111956
20
Ib
17
SO
bO
,,850
5855
58,S
,967
5925
1::1.00
13.00
14.00
16.UO
4b.00
S
5
5
II
S920
S920
5870
5875
5b70
7.00
15.00
20.00
16.00
20.00
5
5
5
5b75
5870
5920
S925
5930
13.00
IS.00
12.00
25.00
5
5
H
H
S920
5760
5840
5b80
5915
7.00
37.00
,3.00
7b,UO
166.00
5
5
5
S
6002
6221
b066
659S
6220
310.00
30.00
46.00
f2.00
5
6220
b562
b492
6"5
b,50
32.00
511.UO
160.00
177.00
396.00
H
6700
628,
6280
625b
5670
642.00
49.00
67.00
5640
5850
,740
5770
S595
140.00
Ii
144.00
120.00
40.00
H
08/20/1956
5640
56bO
5640
5650
6105
79.00
!)
08120/1956
89.00
98.00
36.47
YO
300
140
216
6100
5835
S920
56bO
5920
113.00
112.UO
5
5
cb5
0,>0
S74
221.00
260.00
co9.00
259.00
250.00
:,
•
•
Ih
130
571
J4J.i:.'4 0 1 U9CI:JS50 1
J43t!U41U':1.c!7tJ.c!Ul
J43cOUl UI.J.c: f:JtHJl
343cU2J.Uyc7:lcOl
343103IU,>"""OUI
A-13-c7 2':>l.Jec
IS
120
328
13
16
350
"UO
001
001
001
001
001
001
001
001
001
001
A-13-27
A-13-<I
A-13-2"/
A-13-27
A-l..3-c7
01/07l1Y75
1210711956
0110711975
011 11Y75
02106/1975
680
5U
cbO
'8S
3~322610"JIJIOI
A-IJ-21 21t1CC
5
S
5
H
5
SOO
3430,,51UY3c33Ul
34300blUY363YOI
34284310936<201
34340110"ctljYOI
3433S11U"3U30ul
A-13-27 u~CAU
A-13-27 ISblJA
A-13-<7 15of)C
A-13-27 1'"OU
76.00
62.00
301.00
MO.OO
46.00
550
leu
200
A-13-2b c:oAAu
A-IJ-2b 2i:1tlCA
.-13-26 32CUU
UbAUA
bltt/j
614b
6240
6245
5b55
~50
34J2001UY441701
34321,10'>431501
34330210""7<OUI
34324b1U937<'501
A-13-~'(
c42
YO
3bS
90
160
IS
U
olUCU
ObUbC
UbUCh
07hAU
IcUUA
A-13-,n UjljbA
01/0711975
02l2Y/1960
Oil 11975
071 11972
01/ 11975
4UU
227
100
4Y
;
IY74
1974
U
N
12
20
:.
:.
1",3
p
16
H
5
5
44-'
b75
7S
592S
580"
5880
5913
~10.00
12
7~0
5
6
400
6
6
57bO
,800
,750
5730
5lYO
165.00
104.00
36.00
37.00
155.00
5830
5730
S740
S920
6000
164.00
30.00
55.00
2b6.00
342.00
b
H
6
H
H
6
17S
loS
140
1,>5
Ib,
6
6
102
190
6
6
lOS
400
oMS
5
F
03/20/1975
02/26/1975
0212611975
12/05/1956
1210611956
~
5
1210511956
02/26/1975
1210b/1956
0212611975
12106/1956
t-(
!)
;
H
~
~
12106/1956
02126/1975
031
11975
031
11975
12107l1Y56
12107/1956
03/1811975
12106/19S6
12/06/1956
12/06/1956
0210611975
011
11953
12112/1956
121h11956
12111/19,6
071
11946
05/21/1975
031
11975
03/20/1975
0~9/1211975
H
~
5
Obi 1195b
0711611957
03/20/1975
Ob/17/1956
14.00
U
U
20
~
F
57bO
5b40
S84S
5840
5900
6
N
MtASUHEO
H
H
H
'b
u
001
001
001
001
001
(ftU)
DATE
WATER
LEVEL
wATEk
LEVEL
(FEET)
4.00
45.00
230.00
90.00
100.00
u
19Sb
~UHFACE
6020
5980
6150
b145
6130
p
I
AL TI TUDE
OF LAND
10
630
42u
100
400
250
23
lY
24
6
4b
48
48
36
36
wtLL
FINI:'H (rtfT)
10
001
001
001
001
001
A-13-25
A-13-25
A-13-<'6
A-I3-26
.-13-26
IJr
8
U
/l~tJo
001
001
001
001
UOI
001
001
001
001
001
(INCHt~)
U
H
H
001
001
001
001
001
001
001
001
001
001
wA rt.1"<
Ut.P1H
tTtH
M.oe
001
Oul
001
001
001
OUI
001
001
001
001
UF
CASING
OIAM-
!)
Ob/17/1956
H
061
11974
061
11974
04/15/1Y76
!)
H
H
H
!)
H
5
:.
H
!)
Ii
5
0212411975
02/2411975
0212511975
0211411975
0211111975
051
11914
021 11975
041
11975
02l07l197S
021 11975
0110611975
121 11974
02/07/1975
051 119S7
0210111975
051 11959
03/1711975
45
selected wells--Conttnued
DISCHAHGE
((;ALLUNS
UAIE
Ul:;,l,;HARGt.
P~k
MINUTU
t"f:.A~UHt:U
OHAw'"
OO/tl"O
(Ft"l)
400
,,,
40
0
UEPTH TO
FIHST
METHOD
W"NING
CONST(feU)
RUCTEU
TY~E'
Of LOGS
AVAILABLe
PHINCIPAL
AQUIfER
0
lllALVM
310CCNN
310KIBB
I<lBDHC
310KIB8
0
leO
G
C
bO
G
169
C
3 e
U
121BOHC
121BOHC
231CHNL
121BDHC
230MNKP
D
G
30
07l14/1~5b
1809 "
400
'b
no
Jb
G
D
0
0
100
1
G
C
F
D
jU07/j~56
SPECIfIC
CONOUCTANCE
(UHHOS/CH
TEMPERATUHE.
(DEGREES C)
AT 25° C)
15.5
1400
5210
16.5
480
19.0
14.0
870
540
231CHNL
310CCNN
310KIBB
111ALVM
11IALVM
17.0
18.0
14.0
3000
3190
2900
111ALVM
11IALVM
111ALVM
111ALVM
111ALVM
12.0
710
13.0
14.5
13.5
1500
1670
2800
111ALVM
231CHNL
l11ALVM
l11ALVM
11IALVM
111ALVM
111ALliM
IllALVM
310CCNN
310KIBB
1350
8.5
12.7
15.0
15.0
1300
3500
3000
U
0
0
0
G
B
D
G
G
C
0
D
310KIBB
310KIB8
231CHNL
I11ALVM
I11ALVM
310KIBB
310CCNN
121BOHC
1218DHC
310KIBB
3500
13.0
15.0
380
15.5
3700
3700
0
320
0
BOO
225
2500
15
2~'
190
eoo
G
14
156
G
U
2500
240
020
285
G
G
444
l.l
~~1
G
6
15
20
lJ
20
,,.,
30
0
U
230MNK~
C
C
C
C
C
C
C
U
40
135
C
C
iJ
U
C
(.i,U
0
U
A-12-28
A-12-28
A-12-28
A-12-28
A-12-28
19AABI
19AAB2
19ABC
19BAD
30DBA
A-12-28505BBA
A-12-29 10ACA
A-12-29 20AAC
A-12-29 25DCD
A-12-29 31BOCI
16.5
365
A-13-24
A-13-24
A-13-24
A-13-24
A-13-25
12ACB
19ACD
22BBO
260CC
04CCA
16.5
390
A-13-25
A-13-25
A-13-26
A-13-26
A-13-26
07DCD
08DBC
060CB
07BAO
12DDA
A-13-26
A-13-26
A-13-26
A-13-27
A-13-27
26AAO
29BCA
32COD
03BSA
06ADA
A-13-27
A-13-27
A-13-27
A-13-27
A-13-27
09CAD
15BDA
15S0C
15800
21BCC
A-13-27
A-13-27
A-13-27
A-13-27
A-13-27
25ACO
25AOC
25BAC
25BBD
250BB
A-13-27
A-13-27
A-13-27
A-13-27
A-13-27
25DCC
20AAC
2eCCD
27BBC
28ABC
1550
310KIBB
230MNKP
230MNKP
230HNKP
230MNKP
230MNKP
0
ISS
135
lIO
105
165
18CAD
18DBC
18DDB
180DCl
180DC2
500
16.0
21.0
1600
2500
18.0
1900
310KI~B
2~
A-12-28
A-12-28
A-12-28
A-12-28
A-12-28
16.0
16.0
11IALVM
230MNKP
310CCNN
310CCNN
310CCNN
A-12-28 12BOA
A~12-28 17CCB
A-12-28 17CCC
A-12-28 18BAA
A-12-28 18BAB
27ABA
080BB
080BC
09BAC
090CC
310KI~~
16
07CDA
07COB
070BD
07DCD
09A
A-12-30
A-12-31
A-12-31
A-12-31
A-13-24
3300
112BLCf
310CCNN
C
A-12-28
A-12-28
A-12-28
A-12-28
A-12-28
3000
430
2870
20.5
17.0
310CCNN
310CCNN
Jl0CCNN
310CCNN
112BLCf
A-12-27 26BABI
A-12-27 26BAB2
A-12-27 35CDA
A-12-27 35COB
A-12-27502BBA
31BDC2
35BAB
OBDBA
08DBD
13ACA
310CCNN
I11ALVM
231SRMP
310CCNN
310CCNN
310CCNN
310CCNN
310CCNN
14CBOI
19BCO
23CBO
23COC
230BO
A-12-29
A-12-29
A-12-30
A-12-30
A-12-30
G
cO
A-12-27
A-12-27
A-12-27
A-12-27
A-12-27
A-12-28 30DOC
A-12-28N02CBO
A-12-28N04BAD
A-12-28S04CAC
A-12-28S04CCC
IllALVM
310KIBB
231CHNL
231CHNL
231CHNL
30
LOCAL NUMBER
14.0
1610
310KI~B
15.5
310KIBB
230MNKP
310KIB"
310CCNN
12.0
1800
1400
18.2
2350
46
Table 3.--Records of
U~E
LOCAL NUMHb,
SII"-IO
34293210~305201
COUNTY
A-13-27
A-13-27
A-13-28
A-13-2H
A-13-2B
31A8C
34ABA
050U8
060DO
12CAC
342938109273201
343326 I 0923240 1
343320109241901
343245109193001
001
001
001
001
001
A-13-28
A-13-28
A-13-28
A-13-28
A-13-28
IbOAO
17ACA
l1ACC
17CBB
17CCOI
343153109220101
343207109232401
343202109232401
343151109240201
.343135109234901
001
001
001
001
001
DATE
COMPLETW
1945
09/14/1961
5
191~
u
1950
1965
1939
1955
H,S
34313610n34801
343158109232401
343200109240501
343155109240501
3431511 U924'340 I
001
001
001
001
001
1965
1914
1939
A-13-28
A-13-28
A-13-28
A-13-28
A-13-28
19CAA
19UCC
19DOC
20ABO
20HBA
3431041U9243801
343043109242801
34304310924130 I
3431231U9231801
343131109234801
001
001
001
001
001
1946
A-13-28
A-!3-28
A-13-28
A-13-28
A-13-28
20CAC
34305 71 092~430 1
34305 71 092~250 1
343043109230501
3~304410ncJ601
343052109191801
001
001
001
001
001
1961
1945
20000
21CDO
24UHC
A-13-28 26ACO
A-13-28 c7"AO
A-13-28 27~CB
A-!3-26 27~OC
A-13-2M 28"C~
3430271U9201l01
3430341U9212701
343026109215501
3430201U9214001
3430271092JOOOI
001
001
001
001
001
2bCCD
28DAU
29AAO
29ABOI
29A802
34295010922410 I
343010109215201
3430171U9230301
343030 I 09231901
34303410n32401
001
001
001
001
001
A-13-28
A-13-28
A-13-26
A-13-28
A-13-28
29"CD
3080A
32C8A
33A8A
3.3ACC
343015109234801
343026109243701
342923109235601
342914109221301
342925109222201
001
001
001
001
001
1941
A-13-28
A-13-29
A-13-29
A-13-30
A-13-30
338M
3200C
35AAA
038CDI
342949109223001
34290410916,2UI
342946109133501
343356109090301
343356109090302
001
001
001
001
001
19,7
1950
10/20/1960
A-13-30 O,DCA
A-13-30 28AOC
A-13~31 3uDCD
A-14-24 04DUA
A-14-24 06A~C
343331109103601
34304810909i!8UI
342957109052701
3438071 U948060 1
343840109502501
001
001
001
001
001
10/10/1961
1949
1946
A-14-24
A-14-24
A-14-24
A-14-24
A-14-24
06808
108BA
10888
12CAC
290CC
343837109504301
343753109475001
343758109475701
343726109453901
343432109500401
001
001
001
001
001
1967
A-14-24
A-14-25
A-14-25
A-14-25
A-14-25
34AD8
01ABD
U~ABO
343417109474301
343846109384301
3438481094148111
10AOC
14CCO
343623109403201
001
001
001
001
001
03~CU<
343742109~03701
I,S
Ht~
u
H
U
U
H.5
5
U
H
S
6
12
6
8
6
6
40
65
68
65
230
5680
5690
5695
5735
5750
3.00
57.00
60.00
30.00
40.00
40
70
55
332
200
5750
5695
5735
5740
5800
36.00
45.00
33.00
120.00
58.00
R
5
952
500
65
60
90
5850
5840
5820
5725
5750
164.00
72.00
47.00
35.20
31.00
S
60
165
65
100
180
5765
5740
5730
5720
5750
24.00
40.00
30.00
47.00
4.00
18O
565
225
162
90
5720
5680
5700
5670
5720
20.00
2.00
20.00
H
250
85
178
98
5760
5700
5740
5760
5750
35.00
33.00
36.00
66.00
42.00
S
S
47
287
125
b8
5600
5920
5860
5760
5770
12.00
191.00
140.00
H
06/0711944
02114/1975
121 11956
43.00
R
061
5740
5963
6176
5876
5878
48.00
190
327
855
863
5
F
R
F
5
12106/1956
12112/1956
021 11957
09/2111955
05/21/1975
F
10/10/1961
09/1211955
03/20/1975
0811711956
48
~
6
10
8
6
6
1.5
1958
S
:;
1.5
1915
I
5
1952
HoI
6
5
U
5
H,S
U
U
U
H,S
6
I
5
S
5
1.5
S
S
I
6.25
6
6
16
I
I
I
S
F
F
212.00
3.30
5
03/18/1975
12114/1956
021 11961
06/0711944
02126/1975
12106/1956
04./18/1975
121 11956
12119/1956
02107/1975
H
5
S
5
11946
2610
375
452
375
380
5500
5430
5430
5435
5445
10.00
30.00
400
400
318
5440
5440
5430
5540
5450
32.00
17.00
29.00
72.00
36.00
S
5
S
425
468
40
345
500
54BO
5480
5480
5475
5510
20.32
54.00
H
12.00
30.00
H
03/09/1955
09/05/1956
360
007
665
5510
5510
5510
5710
5460
8.00
3.00
10.00
26.00
R
S
09/05/1956
01129/1959
no
I
I
16
1965
I
P
5
14
1950
I,~
12
3434151093151UI
343626109373101'
:;
S
5
5
A
H
H
12
S
5
8
12
10
8
8
6.50
H
1963
S
02125/1975
021 11975
021 11975
03/2111975
03/18/1975
15.00
6.00
172.00
1945
1955
1963
001
001
001
001
001
H
5600
5420
5430
5435
5600
001
001
001
001
001
34342010~J4aOI
:;
H
200
260
350
14
6
8
8
343608109371001
343~3010Y342001
02125/1975
0211211975
02/1211975
02125/1975
12118/1956
5
5
5
5
R
A-14-26
A-14-26
A-14-26
A-14-26
A-14-26
343455109342201
021 11975
02125/1975
1211911956
121 11956
12119/1956
S
R
S
40.00
180.00
19,6
1938
1946
A-14-26 dUC"
A-!4-26 34AC8
A"ltt-2b 34UtJ8
A-14-26 360CA
A-14-26EI8UCC
5
5380
5355
5360
5385
5640
001
001
001
001
001
34360310Y362Sui
343601109355801
3435031U93435ul
H
03/18/1975
1211911956
021 11975
121 11956
02125/1975
454
365
323
400
335
3436401U9383001
343116109393101
3437161093911UI
343824109324901
343837109344701
21~CC
5
S
H
12
12
6
12
A-14-25EI3UAO
A-14-25w 12CCO
A-14-2swI2CDO
A-14-26 02UIIO
A-14-26 03C8C
27CAC
5
5
325
300
001
001
001
001
001
34360210~n571J1
S
S
S
5805
5913
6075
5350
5365
I
U
H54
79,00
665
60
1940
1961
28.00
12
4
8
10
343716109385702
3431031U9390301
343103109392101
3~31111093858Ul
P
p
H
H
01116/1975
02106/1975
02114/1975
0211411975
10/0111974
9.00
92.00
101.00
5
H
H
DATE
WATER
LEVEL
MEASURED
WATER
LEVEL
(FEET)
6152
5780
5600
5670
5755
5
5
1940
AL T1TUDE
OF LAND
SURFACE
(FEt::ll
HO
120
30
740
967
6
A-14-25 18808
A-14-25El2CDDI
A-14-.5El2CD02
A-14-25U3BAC
A-14-25EI3BHC
19AOA
19"00
20ACC
3436571U9443501
(INCHES) FINISH (f"~T )
~
17CC02
17D8A
18ADO
180AA
18DBC
A-13-28
A-13-28
A-13-28
A-13-2M
A-13-28
5
O"PTH
Or wt.LL
ET~H
U
A-13-28
A-13-28
A-13-28
A-13-28
A-13-28
20U~C
OF
WATER
CASING
DIAM-
12
12
16
A
A
A
320
9.00
59.00
5
F
27.00
5
F
F
R
5
5
03/22/1972
08/17/1956
08/17/1956
0611 0/1956
06/17/1956
03/09/1955
03/09/1955
03/05/1975
1.00
07130/1953
10/14/1956
10/14/1956
13.15
:;
H
5
S
08/14/1956
101 11956
03/03/1975
03/1711975
03/1711975
03/09/1955
08/24/1960
H
S
02124/1975
q7
selected wells--Continued
DISCHAHGe
(GALLONS
Pt."
MINUTt.)
UATt::
DISCHAIiGt.
/'<It.A!::lUHtu
UHAW0011"
(FEU)
Ut.PIH 10
FIHST
METHOD
CON5TOPeNING
(FeU)
RUCTED
TYPES
OF LOGS
AVAILABLE
C
G
D
la
3,,0
590
li
37
210
12
,,0
3S
C
C
C
C
0
0
G
5U
0
G
G
C
"
03
B
<10
C
C
H
1200 F
C
H
10/10/I~01
U
0
U
0
421
0
0
c
.;00
J,u
2900
3500
3300
12.0
1700
310CCNN
230MNKP
121BDHC
121BDHC
121BDHC
2400
1580
16.0
1200
IJ .5
1600
1350
121BDHC
231CHNL
121BDHC
121BDHC
JIOKIBB
C
C
20
654
13.5
16.0
21.0
121BDHC
121BDHC
121BDHC
310KIBB
231CHNL
D
C
112BLCF
230MNKP
11IALVM
310CCNN
310CCNN
11IALVM
121tiDHC
121BDHC
121BDHC
231CHNL
1<
10
"
PHINCIPAL
AQUIFER
SPECIFIC
CONDUCTANCE
(UHMOS/CM
TEMPt.RATUHE
(OE.GHEESC)
AT 25' C)
2500
100
35U
YOO
1,
8
B
e
D
C
110
7,0
C
C
U
1000 "
dO
~bO
C
3u
103
1000
C
U
u
U
C
1000
1000
11 uO
1320 L
440
0
A-13-28
A-13-28
A-13-28
A-13-28
A-13-28
17CCD2
17DBA
18ADD
18DAA
18DBC
A-13-28
A-13-28
A-13-28
A-13-28
A-13-28
19CAA
190CC
190DC
20ABD
20BBA
A-13-28
A-13-28
A-13-28
A-13-28
A-13-28
20CAC
20DBC
20DDD
21CDD
24DBC
A-13-28
A-13-28
A-13-28
A-13-28
A-13-28
26ACD
27BAD
27BCB
27BOC
28BCB
2640
310KIBB
310KIBB
2JICHNL
231CHNL
231CHNL
16.0
15.0
3000
3500
4350
A-13-28
A-13-28
A-13-28
A-13-28
A-13-28
28CCO
280AO
29AAO
29ABDI
29ABD2
121BOHC
230MNKP
2JOMNKP
121SDHC
121BDHC
15.0
1880
A-13-28
A-13-28
A-13-28
A-13-28
A-13-28
29BCO
30BDA
32CBA
33ABA
3JACC
17 .0
1380
3800
A-13-28
A-13-29
A-13-29
A-13-30
A-13-30
33BAA
320DC
35AAA
038COI
038CD2
1800
618
7JO
A-13-30
A-13-30
A-13-31
A-14-24
A-14-24
05DCA
28ADC
300CD
040DA
06ABe
A-14-24
A-14-24
A-14-24
A-14-24
A-14-24
06BDB
10BBA
10BSB
12CAC
29DCe
A-14-24
A-14-25
A-14-25
A-14-25
A-14-25
34ADB
OIABD
04ABD
10ADC
14CCD
121BOHC
310KIBB
JIOKIBB
310CCNN
JIOCCNN
JI0CCNN
120S0MH
310KIBB
310CCNN
310CCNN
1300
1240
16.5
15.5
310CCNN
310CCNN
310CCNN
310CCNN
310CCNN
17.7
18.5
710
572
600
310CCNN
JIOCCNN
16.5
3000
732
310CCNN
310CCNN
310CCNN
310CCNN
17 .0
1960
17.1
1160
310CCNN
JIOCCNN
310CCNN
16.0
1460
310KIB~
16.0
16.5
4500
4800
310CCNN
310CCNN
I11ALVM
310CCNN
310CCNN
18.0
774
510
18.5
18.0
790
504
310CCNN
310CCNN
310CCNN
15.5
16.0
1010
30B
17 .5
1000
1050
~3ICHNL
0111011975
160AO
17ACA
17ACC
17CBB
17CCDI
18.8
310KIBB
leoO
A-13-28
A-13-28
A-13-28
A-13-28
A-13-28
2600
3300
J
300
31ABC
34ABA
05DDB
06000
12CAC
15.0
15.5
310CCNN
310KIBB
e
A-13-27
A-13-27
A-13-28
A-13-28
A-13-28
310KIBB
310KIBB
JIOKIBB
310KIBB
121S0HC
310KI~B
~uO
LOCAL NUMBER
.lIOCCNN
A-14-25 18BOB
A-14-25EI2CDDI
A-14-25EI2CDD2
A-14-25EI3BAC
A-14-25EI3BBC
A-14-25E13DAO
A-14-25WI2CCO
A-14-25WI2CDD
A-14-26 02000
A-14-26 03CBC
A-14-26
A-14-26
A-14-26
A-14-26
A-14-26
19ADA
19BDD
20ACC
218CC
27CAC
A-14-26 27DCB
A-14-26 34ACB
A-14-26 34DBB
A-14-26 30DCA
A-14-26El8DCC
48
Table 3.--Records of
U,E
DATE
LOCAL
NUM8~H
51 fE-lD
COUNTY
A-14-26EI8UOU
A-14-26wI8U8C
A-14-27 01ABH
A-I4-27 OlUCO
A-14-27 U3AeO
343b24iU"37U401
343931JUn54001
343843J09253701
3439221U9374501
001
001
001
001
001
A-14-27
A-14-27
A-I4-2-'
A-14-27
0-14-27
08DOA
12UCU
1580C
UOAC
22D8U
343802J09293401
343743JOn54901
343713J09282001
343608 J 0927480 1
343609J 0927500 1
001
001
001
001
001
A-14-27
A-14-27
A-14-27
A-14-27
A-14-28
26AAD
280CO
30HAC
35"OC
13UHU
343542JOnb3401
3435011 0928500 1
343536109312601
343439109270301
343710J09192001
001
001
001
001
001
A-14-28
A-14-29
A-I4-29
A-14-30
A-14-30
.-14-30
A-14-31
A-15-24
A-15-24
A-15-24
20C8A
338B8
35WC
07ACO
21A08
2bU08
29AUC
130AC
29CAO
33BBO
343637JO~3749Ul
343618109241101
3435101091&4001
34341410"1420Ul
343842109114201
343646109093101
343521JU9073001
343539i090413Ul
344150109445401
343958109493301
343936109484101
001
001
001
001
001
001
001
001
001
001
COMPLET~U
1947
5
5
1974
11/26/1960
1942
1941
U
N
"
H,S
5
1945
5
0~/02l1960
5
S
5
5
105
20
15
65
156
344217109192101
344230109223901
344122J09a4001
344101109235301
344000J09224201
001
001
001
001
001
A-15-28
A-15-29
A-15-29
A-15-29
A-15-29
34DDC
09COO
17CDA
30CoC
33ABC
343939109211101
344245109161001
344225109171501
344046109184301
344019109160801
001
001
001
001
001
A-15-3U
A-15-30
A-15-31
A-16-24
A-16-24
21A8A
33008
17ADA
344206J09092901
34394 7l 09092~0 1
344238J09040901
200~A
344619J094~1501
31CCC
344407109510001
001
001
001
001
001
A-16-24
A-16-25
A-16-25
A-16-25
A-16-28
33COO
HaAB
15BAC
2088C
18AOB
3448271 09441 0 0 1
3447391094125Ul
344643109433801
344800109243001
001
001
001
001
001
A-16-28
A-.16-29
A-16-30
A-16-30
A-16-30
35DAO
19AOC
14800
1908Cl
1908C2
344459109195801
344710109180001
344800J09074001
344650 J 091145U 1
344650109114502
001
001
001
001
001
A-17-24
A-17-26
A-17-27
A-17-27
A-17-27
12ABO
13CCD
345330109443001
345300109333001
345420109264501
3454141093029UI
345130109283001
001
001
001
001
001
A-17-2~ l1AC8
A-17-28 13080
A-17':28 1988C
A-17-28 21ACA
A-17-28 318~C
345310109201001
345157109250601
345140J09222001
344950J09253001
001
001
001
001
001
A-17-28
A-17-28
A-17-29
A-17-29
0-17-29
3588C
3bOUO
0280A
03808
03088
345000109205001
344910109190001
345420109141001
345411109145801
345400109144501
001
001
001
001
001
A-17-29
A-17-29
A-17-30
A-17-30
A-17-31
20COA
24AAO
33.08
160BC
345110J09173001
345043J09143601
345128109060901
344958109093001
345150J09032001
001
001
001
001
001
1937
071 J5/1975
01103/1949
031 11949
A-18-24 020DC
A-18-24 08A.o
A-18-24 08BCB
A-18~24 08"CC
A-18-24 09A88
345900J09452301
345855109482701
345841J094817Ul
345830109492801
345850109475001
001
001
001
001
001
1971
03/1211975
1971
071 11927
1958
1950
I
5
5
100
215
1181
855
675
715
5638
5780
5762
6010
5990
1022
1192
700
263
280
6000
6087
5535
5320
5350
6
6
8
5
12
4
OBI
1946
11946
5
5
1970
5
S
H,S
5
19~9
S
s
~
OBI
11947
071
11973
U
5
1955
12112119~4
07/11/1956
06/05/1953
S
5
S
H
Z
6
6
5.50
5
14
H
P
13
X
X
X
R
H
S
F
F
54.30
H
5
R
R
5
R
5
5
1945
09/0211960
12117/1971
1211711971
12117/1971
10114/1956
01129/1959
0710211975
07/02/1975
07/0211975
07102/1975
02115/1956
5
07/0211975
03/20/1975
04/18/1957
01/09/1957
091 11963
S
5
5
H
07131/1975
081 11946
5
R
336.90
S
35.40
S
22.10
5
07/3111975
5550
5845
6455
6010
6268
220.00
42.10
475.00
34.40
297.70
K
071 11973
08119/1975
T
08/19/1975
08/13/1975
349
270
170
6244
6085
6301
6182
6102
289.40
175.20
340.00
244.90
144.10
S
5
R
5
5
08/13/1975
08/13/1975
07111/1956
08/1311975
08/13/1975
105
56
300
2b6
320
6005
5862
6215
6180
6166
73.10
29.60
220.00
200.10
168.00
T
5
R
5
08/13/1975
08113/1975
111 11965
08/20/1975
12103/1958
28
700
225
2b5
80
5915
6240
6166
6164
6025
22.1 0
S
165.00
200.00
50.00
R
H
K
60
50
600
87
110
5360
5315
5299.0
5295
5320
14.90
S
6.40
5
300
S
R
5862
6015
5922
579B
579B
6
4
6
4
6
5
48.00
8.00
181.00
R
S
5
5
5
5
U
5
20.00
5
5
S
ti,:)
257.00
85.00
1212211971
08/08/1956
08/0811956
60
1360
150
6
6.63
6
02114/1975
1210"/1914
09/17/1975
05121/1975
1941
R
S
360
73
500
80
P
S
30.00
12.80
23.10
630
5
5
1965
04/08/1975
1.19
02114/1975
02124/1975
03/17/1975
02125/1975
08/12/1975
F
5350
5565
5524
5450
5940
8
8
8
5
6
H
5
83.00
40.00
5
5
R
R
S
12117/1971
1212211971
100
6
5
6
7
6
34.00
148.00
26.00
82.00
87.20
S
5
30
12
6
6
0
0
124.40
275.00
200.00
96.80
11.40
1204
1300
250
665
5
5
07/0211975
12/20/1956
0710211975
02114/1975
02114/1975
5964
6118
6595
5430
5325
530
8
6
5
8
6
5
126.40
75.50
75.39
41.10
440.00
150
104
130
5
s
41.30
5635
5731
5682
5643
5795
6
10
6
5
114.30
105.70
100.00
120.00
152.40
94.20
34.60
39.20
180
130
135
5
119b3
07/0211975
0710211975
5741
5701
5638
5605
5585
6
5
091
07/30/1~53
S
5
R
24.00
13.00
300.00
6
6
S
17.00
25.80
40.60
5405
5435
5727
5682
5515
5
5
DATE
WATER
LEVEL
MEA,UREO
WATER
LEVEL
(FEET)
30
360
350
180
JOO
U
5
5
5595
5619
5565
5520
5520
6
12
7
4
6
~
1952
5460
5430
5551
5553
5538
5590
5670
5520
5635
5622
S
5,H
ALTITUDE
OF LAND
SURFACE
IFEE TJ
6
6
6
5
13CDD
16CAU
210CC
298DC
33CAA
2b~C8
252
6
6
6
5
"5
A-15-2B
A-15-28
A-15-28
A-15-28
A-15-28
3452201091~0001
5
5
s
001
001
001
001
001
06AOB
21CBA
J40
S
1950
344036J09423201
343859109393101
344152J09314001
344135109282601
343942109304501
02~AD
425
410
J
U
s
35000
24AOA
28AAA
3lU08
3448401093~1701
WATE"
5
A-15-25
A-15-25
A-15-26
A-15-27
A-15-27
28~~C
UF
CASING
U~PTH
DIAMO~
Wt.LL
Eft"
(INCHE5) FINISH (fEET)
5
S
07/0211975
07131/1975
F
5
R
5
0
F
12.00
13.00
R
S
08/1311975
08/20/1975
01/03/1949
031 11949
06/18/1975
0912211975
0711211971
071 11927
0~/26/1975
selected
49
wells~-Continued
OI~Ct1AKGI:.
(GALLONS
~~K
Mlf'JUTt:.)
13~0
~
UA IE
UIiAw"
U1SCHARG~
Mt.A::'UkELJ
OO,,~
(FE~ I)
UE~TH
FIK~T
TO
OP"NIN~
(F~UI
METHOU
CONSTRUCTEU
TY~ES
OF LOGS
PHINCI~AL
AVAILA~LE
AQUIFI:.H
310CCNN
310CCNN
231CHNL
231CHNL
230HNKP
07110/1975
C
U
310KIBB
G
230MNKP
12180HC
121BDHC
SPECIFIC
CUNOUCTANCE
(UHMUS/CM
TEMPERATUHE
(UEGHEES~CI
AT 25° CI
17.5
1000
18.0
17 .0
17 .0
4420
6000
4750
G
G
121BOHC
310KIBB
310KIB8
18.0
4180
8800
A-14-27
A-14-27
A-14-27
A-14-27
A-14-27
08DDA
12DCD
15BDC
220AC
22080
16.5
2400
2200
2250
2100
3900
A-14-27
A-14-27
A-14-27
A-14-27
A-14-28
26AAD
280CO
30BAC
35BDC
13DBD
310KIB~
U
670
100 k
j
~
U
11I~6/1"60
05/~11197"
660
H
C
H
U
0
U
300
10
515
., t.
0.,/21/1975
300 H
1970
303
600
0
H
H
U
U
C
U
1228
<40
0
H
C
U
C
4"
<0
240
lHO
199
II
C
0
C
D
C
C
0
0
C
H
H
49
J50
H
8.,
R
15.5
310KIBB
310CCNN
310KI8B
231CHNL
310KIBB
21.5
19.0
15.5
3550
2400
1850
1750
1480
A-14-28
A-14-29
A-14-29
A-14-30
A-14-30
20CBA
33BBB
35CDC
07ACO
21AOB
12BO
18.0
15.5
16.5
5000
660
605
A-14-30
A-14-31
A-15-24
A-15-24
A-15-24
2600B
29AOC
130AC
29CAO
33BBO
18.0
15.0
5300
1600
4200
A-15-25
A-15-25
A-15-26
A-15-27
A-15-27
28BBC
35000
24AOA
28AAA
3100B
231CHNL
231CHNL
231CHNL
231CHNL
231CHNL
16.5
21.0
1620
2200
17 .0
1550
A-15-28
A-15-28
A-15-28
A-15-28
A-15-28
13COO
16CAO
210CC
29BOC
33CAA
231CHNL
231CHNL
231CHNL
231CHNL
231CHNL
16.0
19.0
3580
1800
A-15-28
A-15-29
A-15-29
A-15-29
A-15-29
3400C
09COO
17COA
30CBC
33A8C
21ABA
3300B
17AOA
200BA
31CCC
310KI8B
310KIBB
310CCNN
310CCNN
310CC.NN
310KIBB
310KIBB
21100KT
310CCNN
310CCNN
310CCNN
I11ALVM
l11ALVM
11IALVH
12180HC
H
0
C
231CHNL
11IALVH
310CCNN
231CHNL
231CHNL
230MNKP
D
1000
0
D
U
U
U
0
U
A-14-26EI8DDD
A-14-26WI8DBC
A-14-27 OlABB
A-14-27 01DCD
A-14-27 03ABD
15.0
310KI~ti
0"I<U/I~~6
LOCAL NUMBER
231CHNL
12180HC
I11ALVH
310KI88
111ALVH
231CHNL
l11ALVM
121BOHC
l11ALVM
12180HC
3430
7000
15.5
1600
A-IS-3D
A-IS-3D
A-15-31
A-16-24
A-16-24
17.5
2300
1400
3200
1600
670
A-16-24
A-16-25
A-16-25
A-16-25
A-16-28
33COO
12BAB
15BAC
20BBC
18ADB
12400
1000
3950
A-16-28
A-16-29
A-16-30
A-16-30
A-16-30
350AO
19ADC
14BDO
190BC1
190BC2
A-17-24
A-17-26
A-17-27
A-17-27
A-17-27
12ABO
13CCO
02BAO
06AOB
21CBA
A-17-28
A-17-28
A-17-28
A-17-2e
A-17-28
llACB
130BO
19BBC
21ACA
31B8C
A-17-28
A-17-28
A-17-29
A-17-29
A-17-29
35BBC
36000
0280A
03BOB
03DBB
A-17-29
A-17-29
A-17-30
A-17-30
A-17-31
20COA
26BCB
24AAO
33AAB
160BC
A-18-24
A-18-24
A-18-24
A-18-24
A-1H-24
0200C
08AAA
08BCB
08BCC
09ABB
15.5
15.0
18.0
15.5
18.5
1980
1750
440
1750
1500
15.0
20.0
580
320
121BOHC
121BOHC
121BOHC
12180HC
121BOHC
17 .0
16.0
270
560
121BOHC
1l1ALVM
231WNGT
231WNGT
121BOHC
18.5
14.5
11lALVM
231CHNL
21100KT
21100KT
11IALVM
231CHNL
l11ALVM
310CCNN
11lALVM
l11ALVM
410
650
420
620
350
360
340
15.0
1650
18.0
1190
1700
90400
18.0
16HO
Table 3. -- Records of
50
LOCAL
NUM~EH
SITE-XU
06~CA
3457371 0932050 I
345450109312001
345930109312001
001
001
001
001
001
A-18-27 16Caa
A-18-28 22ABC
A-16-28 30~BC
A-18-29 04CC~
A-IB-29 13~CA
345700109302001
345650109212001
345610109301001
3458401091600UI
345740109132001
001
001
001
001
001
A-18-29
A-18-29
A-16-30
A-18-30
A-Ie-30
26eDS
29BCC
04CaC
14DaD
20COO
345610109142001
345550109174001
345910109101001
345720109072001
345620109104001
001
001
001
001
001
A-18-30
A-16-31
A-IB-31
A-19-24
A-19-24
36ABC
16CAC
29B06
05CaB
060C
345510109063001
345730109033001
345550109042001
350434109492101
35041011 049500 1
001
001
001
001
001
A-19-24
A-19-24
A-19-24
A-19-24
A-19-24
13ABo
13ACC
208CC
270AC
30COC
350306109442701
350252109443601
3502051 0949170 1
350054109462601
350045109501501
001
001
001
001
001
01AAB
05ABB
l00AC
12CBB
16CCA
350456109375101
350452109423001
3503271 0940020 1
350336109084701
350233109415001
001
001
001
001
001
A-19-25 21~OA
A-19-25 22~HD
A-19-25 30HOD
A-19-25 32HBB
A-19-26 01~DO
350206109413201
350209109404701
350111109434401
350040109430701
350430109315501
001
001
001
001
001
A-18-24
A-18-26
A-18-26
A-18-26
A-IB-27
A-19-25
A-19-25
A-19-25
A-19-25
A-19-25
09ACA
02AA8
1380C
36AAo
A-19-26 040~A
A-19-27 19ABC
A-19-28 23DCO
A-19-26 28BDB
A-19-28 30~BA
3458381094H401
COUNTY
34593710~~00701
350425109344101
350129109200801
3501.o71092242Ul
350051109245401
001
001
001
001
001
3~0209109305201
DATE
COMPLETI:.O
USE
OF
WATEK
U
S
1947
H,S
05nl/1954
S
S
041
5
11947
1935
1965
1965
19~6
1965
1965
1965
05/1411969
1938
S
S
S
S
5
5
5
6
6
6
U
U
U
5
U
0712611955
S
5
1965
H,S
5
1960
1925
041
121
5
U
5
5
5
119~7
11945
1945
5
5
5
5
1958
5
1960
1958
1965
5
5
5
001
001
001
001
001
A-19-30
A-19-30
A-19-31
A-19-31
A-t9-31
18CAB
36HCC
09CAC
IHBBO
20BOB
350240109121001
350010109071 0 0 1
3503201090330'01
350300109054001
350208109044401
001
001
001
001
001
A-20-25
A-20-25
A-20-25
A-20-25
A-20-25
15~CO
28BAA
320CCl
320CC2
32DCC3
350804109404001
3,0638109413101
350504109422801
350503109422801
350';01109423201
001
001
001
001
001
5
5
350747109313101
350649109350301
3507071 0934130 1
3';0713109330201
350713109312801
001
001
001
001
001
5
N
S
5
350638109320401
350633109330701
350617109340401
350527109361501
350501109342101
001
001
001
001
001
051
001
001
001
001
001
031
A-20-26
A-20-26
A-20-26
A-20-26
A-20-26
13DAC
210CB
22BUC
2~BDA
24AOA
2~BA8
26BAA
27HOU
3280D
34CCO
A-20-26
A-20-27
A-20-27
A-20-27
A-20-27
34CDC
01COC
05UOAl
050oA2
350500109341901
350925109254201
350959109290501
350n7109292601
350930109292301
A-20-27
A-20-27
A-20-27
A-20-27
A-20-27
088B8
09CAO
19HoA
24BDAl
24BoA2
350914109301301
350842109284301
350"113109305201
3507171092,3301
350716109253401
001
001
001
001
001
A-20-27
A-20-27
A-20-28
A-20-28
A-20-28
24CAC
36HBH
l4AAB
19CAC
21BA8
350656109254501
3505471092601Ul
350624109200001
350657109244101
350726109223101
001
001
001
001
001
04~CA
X
~315
517
5975
6095
6108
6090
10.70
81.80
107.00
159.50
490.00
300
617
500
915
400
6123
6482
6455
6630
6274
138.90
509.90
475.00
709.00
261.00
430
440
700
695
420
6267
63H
6558
6624
6361
264.00
s
390.00
509.00
570.00
360.00
5
5
5
552
27
40
6424
626B
6406
5405
5390
382.00
192.00
349.00
7.00
8.00
51
15
460
34
040
5460
5442
5558
5376
5550
S
H,S
19~9
1959
1955
1959
S
5
S
S
U
H,S
071
11964
11962
081 11961
03/15119,3
5
5
0711011969
07110/1969
07110/1969
05/17/1969
061 /1945
6.50
6.20
228.00
10.70
5
5
5
5
06119/1975
06/1911975
06/1711975
06/1911975
25.00
5
06/17/1975
3.80
20.00
15.30
T
R
06/17/1975
1965
09/23/1956
06/1811975
06/1811975
06/17/1975
S
5-
S
21.60
62.80
21.00
15.00
40.70
5
5
5
5
06/1611975
1198
112
790.00
13.30
106.55
240.00
263.90
R
5
450
4,0
5766
5901
6090
6168
6216
05/0711957
06/16/1975
10/3011956
121 11945
06/2111975
381
400
465
460
1096
6312
6181
6181
6389
6765
317.00
212.00
210.00
370.00
678.00
S
420
600
495
632
600
6395
6622
6623
6641
6581
341.00
546.00
447.00
555.00
550.00
S
C7
5642
5569
5535
5525
5525
15.60
8.62
8
6
6
6
8
6
9
8
6
6
8
8
8
8
30
78
5
12
8
8
4
6.~O
P
P
F
P
P
P
R
5
07/09/1969
07111/1969
07/09/1969
07/09/1969
07110/1969
S
S
5
5
07110/1969
07110/1969
07/10/1969
07110/1969
09/2211959
s
S
5
06/17/1975
06/17/1975
20.00
20.00
R
H
03/1311969
03113/1969
5647
5615
5655
5655
5655
46.60
5
5
S
S
5
06/17/1975
0811211975
06/18/1975
06/18/1975
06/17/1975
5645
5630
5601
5570
5795
40.00
27.90
14.60
48.30
102.40
H
051 11956
06/1811975
06/18/1975
06/18/1975
06/1811975
1550
200
100
39
5795
6061
5710
5690
5665
186.30
25.50
21.20
15.20
5734
5692
5661
5760
5780
103
130
180
120
204
125
U
4
5
6
12
S
5
5
6
6
12
137
,,2
10
6
6
650
115
P,S
6.62
H
5
S
12
200
32
32
S
H
U
07109/1969
07109/1969
07110/1969
07110/1969
07110/1969
5435
5470
5402
5407
5728
8
14
8
4
5
5
P,S
5
07109/1969
07109/1969
S
66
65
60
35
150
P,S
101
s
6
5
S
S
S
5
08/19/1975
08113/1975
S
R
S
60
60
11950
1956
5
H
6
6
U
P
P
11956
194H
09/26/1975
08/19/1975
08/19/1975
06/19/1975
05/21/1954
5
S
T
5510
5519
5465
5488
5432
30
5
U
350350109155001
350300109170001
350250109171001
350000109142001
350340109084001
A-20-26
A-20-26
A-20-26
1>-20-26
A-20-26
12
6
6
5
6
DATE
wATEH
LEVEL
MI:.ASUKED
WATER
LEVEL
(FEET)
,0
5
17AC82
35CoB
10ASD
17AC~1
6
AL TllUDE
OF LAND
SURFACE
(FEI:.T)
~OO
132
8
6
6
6
6
6
6
119~5
071
6
5
6
4
5
5
5
5
5
A-19-29
A-19-29
A-19-29
A-19-29
A-19-30
09AAC
CASING
DI:.PTH
DIAMOF WELL
ETI:.H
( INCHES) FINISH (FI:.ET)
204
221
5772
5784
6131
5613
6075
7.60
35.30
72.50
16.10
5.70
5
5
S
5
0H/20/1975
06/1811975
06/18/1975
U6/1811975
5
5
5
5
107.10
31.80
5
44.00
5
sp
F
F
06/17/1975
08/20/1975
06/1711975
11/18/1975
11118/1975
F
08/2111975
193.20
~p
200.00
~
08/19/1975
11118/1975
03115/1953
F
51
selected wells--Continued
UISCHAKb~
(GALLONS
P~H
MINUT~)
UAT~
uI,CHAHGE
M~A,UHEU
DHA.DO.~
(FE~
I)
UEPTH TO
fIHST
METHOD
CONSTOP~"'ING
IF~U)
RUCTEO
SP~CIFlC
TYPES
OF LUGS
AVAILAbLE
PHINCIPAL
AQUIFER
D
121BOHC
121BOHC
121BOHC
TEMPERATURE
IOEGHEES C)
CONDUCTANCE
IUHMOS/CM
AT 25' C)
16.5
17 .0
370
460
A-18-24
A-18-26
A-18-26
A-18-26
A-18-27
17 .0
A-18-27
A-18-28
A-18-28
A-18-29
A-18-29
18C8B
22A8C
3088C
04CCB
138CA
IIlIl.LVM
121~OHC
16 K
0~/2111904
C
12
.0
14
12
30
12
J5
12
15
H
U
330
H
0
0
560
b04
H
H
0
0
H
H
0
y
448
I~
499
R
C
0
V
C
5 H
121
11945
<0
15
1010
E
JOO
0
;;~O
C
<2
20
15
12
50
I~
,,0
"
~O
15
14
441
420
520
455
0
C
C
H
0
C
U
0
C
0
0
2
4
4
0
U
H
H
14 k
OJ/15/1975
09ACA
02AAB
13BOC
36AAO
06BCA
121BOHC
121BOHC
121BOHC
231WNGT
121BOHC
20.0
510
500
260
400
360
121BOHC
121BOHC
121BOHC
121BOHC
12180HC
18.5
21.5
19.5
20.0
19.5
340
360
315
330
310
A-18-29
A-18-29
A-18-30
A-18-30
A-18-30
26808
298CC
04C8C
14080
20COO
20.0
260
420
320
A-18-30
A-18-31
A-18-31
A-19-24
A-19-24
36A8C
16CAC
2980B
05CBB
060C
1950
A-19-24
A-19-24
A-19-24
A-19-24
A-19-24
13ABO
13ACC
20BCC
270AC
30COC
A-19-25
A-19-25
A-19-25
A-19-25
A-19-25
O,lAAB
05ABB
100AC
12CBB
16CCA
A-19-25
A-19-25
A-19-25
A-19-25
A-19-26
21BOA
22B80
30BOO
32BB8
OIBOO
A-19-26
A-19-27
A-19-28
A-19-28
A-19-28
040BA
19A8C
230CO
28BOB
30C8A
A-19-29
A-19-29
A-19-29
A-19-29
A-19-30
09AAC
I7ACBl
I7ACB2
35COB
10ABO
280
260
360
A-19-30
A-19-30
A-19-31
A-19-31
A-19-31
18CAB
36BCC
09CAC
18BBO
20BOB
1340
1300
A-20-25
A-20-25
A-20-25
A-20-25
A-20-25
15BCO
288AA
320CCI
32UCC2
320CC3
A-20-26
A-20-26
A-20-26
A-20-26
A-20-26
130AC
210CB
2280C
23BOA
24AUA
A-20-26
A-20-26
A-20-26
A-20-26
A-20-26
25BAB
26BAA
27BOO
32BOO
34CCO
12180HC
121BOHC
21l00KT
IllALVM
lllALVM
15.0
.14.5
IIIALVM
lllALVM
231CHNL
lllALVM
231CHNL
14.5
1l1ALVM
1l1ALVM
IIlALVM
lllALVM
lllALVM
16.0
17.0
900
1750
15.5
16.5
1150
1070
lllALVM
231CHNL
lllALVM
!!IALVM
231CHNL
16.5
1190
17 .0
14.5
16.0
1250
1500
1700
310CCNN
231CHNL
121BOHC
121BOHC
12lBOHC
121BOHC
12lBOHG
121BOHC
121BDHC
121BOHC
103000
59300
16.5
290
20.0
360
21.5
320
480
460
121BOHC
121BOHC
121BOHC
121BOHC
121BOHC
1l1ALVM
1l1ALVM
IIIALVM
IlIALVM
IIlALVM
16.0
16.0
IIIALVM
231CHNL
231CHNL
IIIALVM
IlIALVM
16.0
1020
1100
16.0
1100
16.0
1100
1160
16.0
Ilao
16.0
14.5
9490
360
920
1350
A-20-26
A-20-27
A-20-27
A-20-27
A-20-27
34COC
OICOC
04BCA
0500AI
0500A2
231CHNL
IlIALVM
lllALVM
231SNSL
231SNSL
20.0
17.0
1320
1220
15.5
15.5
300
A-20-27
A-20-27
A-20-27
A-20-27
A-20-27
08BBB
09CAO
19BOA
24BOAI
24BOA2
231SNSL
IIIALVM
121BOHC
231SNSL
19.0
19.0
15.0
17.5
330
330
300
280
A-20-27
A-20-27
A-20-28
A-20-28
A-20-28
24CAC
36BBB
14AAB
19CAC
21BAB
lllALVM
IlIALVM
lllALVM
231CHNL
231CHNL
C
LOCAL NUMBER
231CHNL
121BOHC
IIlALVM
IIIALVM
IlIALVM
121~DHC
1750
Table 3. --Records of
52
LOCAL NUMBt::R
51 fE-W
COUNTY
A-20-28
A-20-2B
A-20-26
A-20-28
A-20-29
32CAB
33AOB
36AAAI
36AAA2
06CAO
0923420 I
J50528109220201
350544109184301
350543109164801
350840109171601
DOl
001
001
001
001
A-20-29
A-20-30
A-20-30
A-20-30
A-20-30
350CO
0388B
12ABD
27080
36UAB
350506109134601
350959109091YOI
35085810906J201
350608109084201
350522109062301
001
001
001
001
001
A-20-31
A-20-31
A-21-27
A-21-27
A-21-27
29AOCI
29AOC2
15MB
23A
24CCC
350623109041401
350623109041501
351341109273801
351240109263001
351158109261601
001
001
001
001
001
251lBDI
258802
25C 1
25C 2
25CAD
3511491 09c6080 1
351149109C60802
351120109261501
351120109261001
351119109255301
001
001
DOl
001
001
A-21-27
A-21-27
A-21-27
A-21-27
A-21-27
3~07171
DATE
COMPLEftD
06/30/19~3
1113011954
5
11946
1945
194B
1944
1938
S
121
1950
1970
031
6
6
6
6
6
P
H.s,I
5
S
U
6
4
051 11974
031 11902
11/2311905
A-21-28
A-21-28
A-21-28
A-21-28
A-21-28
20DCA
21CAU
21U80
23AAC
23000
351204109232503
351212109224201
3512171 09~22301
351224109202401
351149109195901
001
001
001
DOl
001
1964
A-21-28
A-21-28
A-21-26
A-21-28
A-21-29
24B8C
24CCC
29BBA
308AA
22CCA
351229109195101
351147109194901
35115510923580 I
351154109145001
35115510915250 I
001
001
001
001
001
06/25/1967
11/30/1954
653.40
145.00
500.00
350.00
570.00
6652
6652
5925
5830
5789
820.00
580.00
59.00
R
160.00
k
03/2811956
S
11/1611975
11118/1975
03/3111902
11/2311905
235
50
110
37
160
5750
5762
5765
5753
5820
28.90
37.10
49.40
31.30
120.00
III
130
230
80
60
5842
5860
5855
5765
5750
65.00
70.00
143.00
32.70
18.40
5775
5790
5802
5825
5600
30.80
180.00
70.00
59.00
35.70
5825
5810
5755
5755
5957
104.00
30.70
29.90
30.00
31.20
6038
70.00
H
U
P
H
U
P
X
X
10
6
6
10
6
8.62
6
4
P
5
5
12
8
180
340
238
175
50
P
S
6
6
6
6
8
256
135
100
100
75
H,N
R,H
10
6
P
H
U
11/11/1954
R
6671
6230
6537
6463
6639
65.20
84.50
58.00
58.00
38.00
5
T
11/0211974
140.00
.795
165
600
500
600
5785
5785
5750
5750
5750
1969
351253109201401
351200109251201
351159109243701
10/11/1956
06/30/1953
07103/1975
110
250
605
303
91
H
001
001
001
001
001
R
S
71.~0
6
6
9
12
16
1956
3~1241109193101
351258109~00101
50.00
92.50
6
5
U
13COC
14DAD
140CA
19CCC
19DCC
5884
5885
6050
6050
6134
S,H
1964
A-21-28
A-21-28
A-21-28
A-21-'28
A-21-28
100
103
145
136
158
900
600
61
402
235
P
S
DATE
WATER
LEVEL
MEASURW
\jATER
LEVEL
(FEET)
6
6
6
U
S
P
001
001
001
001
001
AL TITUDE
OF LAND
5UKFACE
(FEU)
H,5
5
351118109261001
351123109262101
351119109263901
351045109265501
351254109194501
001
CASING
O~PTH
DIAMOF WELL
ETEH
(INCHES) FINISH (FtETI
11953
25CCA
260AA
26080
358DO
13C8C
35115H09130001
S
5
S
5
A-21-27
A-21-27
A-21-27
A-21-27
A-21-28
A-21-29 24DCC
USE
OF
WATER
11/18/1975
04124/1957
R
R
H
H
0
S
R
R
03/2B/19~6
5
S
S
5
11/19/1975
08120/1975
11/18/1975
08/2111975
RP
H
R
R
5
11/0211974
11/19/1975
5
T
11/19/1975
H
H
S
051 11968
08/1911975
S
5
S
07124/1967
08/1911975
II/IY/1975
R
SP
H
08/1911975
53
selected 'wells--Continued
DI$Ct1AHGE
(GALLONS
PoR
MINUTU
12 H
OATo
Ul!>CHARuo
Mt.A!>UREU
ORA.DOwr-,
(FEt 1)
UEPTH TO
FIRST
METHOD
CONSTuPoNING
(Ft.U)
HUCTEU
U
Ob/3U/19'~
lO H
!l/30/1~04
12 R
IU
TYPE!>
Of LU&S
AVAILABLE
747
/1946
~
U3/31119U2
II/c~/19U5
101
101
195
212
D
250
30
60
190
0
0
20 R
11/11/1904
16.0
I21BOHC
I21BOHC
121BOHC
121BOHC
121BOHC
14.5
D
280
14.0
14.5
290
300
270
280
16.5
290
LOCAL NUMBER
A-20-28
A-20-28
A-20-28
A-20-28
A-20-29
32CAB
33ADB
36AAAI
36AAA2
08CAO
A-20-2~
A-20-30
A-20-30
A-20-30
A-20-30
35DCO
03B8B
12ABD
27DBD
36DAB
A-20-31
A-20-31
A-21-21
A-21-27
A-21-21
29ADCl
29ADC2
15MB
23A
24CCC
A-21-21
A-21-21
A-21-21
A-21-21
A-21-21
25BBDI
25BBD2
25C 1
25C 2
25CAD
A-21-21
A-21-21
A-21-21
A-21-21
A-21-28
25CCA
26DAA
26DBD
35BDD
13CBC
l11ALVM
231CHNL
l11ALVM
IllALVM
lllALVM
1280
1250
l11ALVM
I11ALVM
I11ALVM
l11ALVM
l11ALVM
1160
I11ALVM
231CHNL
231CHNL
IllALVM
I llALVI1
1150
1360
1000
2500
A-21-28
A-21-28
A-21-28
A-21-28
A-21-28
13CDC
14DAD
14DCA
19CCC
19DCC
16.0
1100
2340
A-21-28
A-21-28
A-21-28
A-21-28
A-21-28
20DCA
21CAD
21DBO
23AAC
23000
13.0
910
1150
14.5
~lO
A-21-28
A-21-28
A-21-28
A-21-28
A-21-29
24BBC
24CCC
29BBA
30BAA
22CCA
360
A-21-29 24DCC
I11ALVM
231CHNL
11IALVM
11IALVM
l11ALVM
165
200
121BDHC
121BDHC
I21BDHC
121BOHC
121BOHC
121BDHC
121BOHC
lllALVM
231CHNL
231CHNL
C
14
70
110
PRINCIPAL
AQUIFER
SPECIF IC
CONDUCTANCE
TEMPERATURE IUHMOS/CM
AT 25' C)
!DEGREES C)
231SRMP
I11ALVM
l11ALVM
I11ALVM
lllALVM
121BDHC
1100
1110
910
54
Table 4. --Measurements of the water level in selected wells
Water level:
Method of measurement: R, reported; 5, steel tape;
T, electric tape; Z, other.
P, pumping; R, recently pumped.
WA TER LEVEL,
IN FEET BELOW
LAND SURFACE
LOCAL NUMBER
DATE MEASURED
A-05-30 13DBC
10/17/1971
08/2211913
104.80
96.90
A-05-31 nCAA
08/22/1973
01/21/1975
01/29/1976
21.50
19.30
9.30
A-07-27 OICCAI
07126/1973
01/0211975
01/28/1976
55.00
49.20
53.05
A-07-27 OICDS
07/26/1973
01/29/1974
01/0211975
01/28/1976
26.50
25.70
22.00
25.35
A-07-30 14BDD
08/06/1973
01/29/1974
01/0211975
01/29/1976
156.50
156.30
153.70
169.20
A-08-29 IIADA
0212511960
09/2511974
140.00
141.60
A-S8-29 16BAA
01/01/1953
05/22/1969
08/13/1974
375.00
413.00
334.30
A-08-31 22DAC
07/18/1957
1211911974
85.50
91.70
A-09-31 10BCA
1212211933
07/09/1959
126.00
140.00
A-IO-29 15BAB
12/14/1956
01/16/1975
13.00
11.40
A-10-31 21DBD
07108/1959
854.00
METHUD OF
MEASUREMENT
LOCAL NUMBER
DATE MEASURED
WA TER LEVEL,
IN FEET BELOW
LAND SURFACE
A-12-27 19BCD
12/09/1957
02129/1960
03/03/1975
05/06/1975
47.30
45.43
48.30
47.77
A-12-28 07CDS
05/18/1956
11/17/1956
04/06/1957
03/15/1967
10/06/1967
02/06/1968
10/13/1968
03/19/1970
03/3111971
02/01/1972
01/29/1974
01/0311975
02126/1975
09/1211975
01/28/1976
01/29/1976
02128/1976
38.80
32.85
28.60
35.91
35.92
35.78
31.15
33.52
33.50
34.10
32.40
31.65
35.50
55.18
38.98
38.98
32.60
A-12-2S 19BAD
0311 B/1975
0511011975
09/11/1975
0471511976
09/09/1976
25.00
32.37
23.76
32.65
38.80
A-12-28S04CCC
0211311975
172.40
A-12-29 20AAC
09/2111974
30.80
A-12-29 25DCD
12114/1956
03/2111975
46.10
44.00
A-13-24 12ACB
05113/1975
112.40
A-13-24 22BBD
08/17/1956
05/13/1975
09112/1975
04/13/1976
09/08/1976
144.40
134.42
143.30
143.80
145.72
A-i3-25 04CCA
06/06/1947
08/20/1956
03/0411975
46.00
40.00
49.20
A-13-26 06DCB
06/0111974
03/17/1975
01/28/1976
89.00
86.20
88.42
A-13-26 12DDA
04115/1976
09/09/1976
36.47
36.74
A-1l-24 OBAAC
0611211957
1211911974
144.80
104.00
A-1l-24 22DBC
12118/1974
01/2811976
709.00
709.25
A-II-25 08DCC
01/15/1975
31.40
A-II-25 18DCC
07/01/1946
06/1311957
08/21/1958
1111711966
04/16/1969
02/0111972
01/29/1974
01/03/1975
01/28/1976
22.06
23.60
22.00
25.59
27.13
26,90
27.90
27.45
27.35
A-13-27 03BBA
04119/1974
02124/1975
157.60
113.30
12/20/1974
05/1111975
01/28/1976
392.50
390.05
394.30
A-i3-27 09CAD
04/19/1974
02125/1975
217.50
221.30
12/07/1956
12/20/1974
8.75
10.00
A-13-27 15SDC
01/28/1976
264.00
A-13-27 27BBC
05/04/1959
02/24/1975
05/06/1975
256.00
271.00
247.33
A-1l-27 23AAA
A-O-28 ]ODCC
A-II-29 04BBC
01/29/1976
293.10
A-12-24 IICDA
10/01/1974
04/2211975
200.00
234.30
A-13-28 06DDD
A-12-25 03AAB
08/2211956
01/2111975
05/0711975
09112/1975
167.70
173.60
172.16
171.07
04/2211974
02/14/1975
05/12/1975
85.13
92.00
96.52
A-i3-28 12CAC
A-12-25 04CDA
05/07/1975
09/12/1975
183.16
182.00
01101/1974
10101/1974
03/2111975
0511 OIl 975
01129/1976
12/28/1976
101.30
101.30
102.50
103.50
129.53
108.38
A-12-25 18CCC2
06/1211957
05/07/1975
244.90
289.02
A-13-28 18ADD
A-12-26 02BDA
05/06/1975
04/15/1976
09/08/1976
68.33
88.60
84.86
06/01/1946
12/19/1946
0212511975
38.03
33.40
31.30
A-13-28 180M
01/01/1958
05/06/1975
24.00
140.60
12119/1956
05/14/1975
09/17/1975
120.00
132.98
131.24
A-13-28 18DBC
02/25/1975
78.90
01/01/1958
01/16/1975
05/06/1975
09/11/1975
04/14/1976
09/09/1976
40.00
49.10
47.70
46.14
45.25
49.95
A-13-28 19CAA
05/25/1955
02/25/1975
170.60
163.80
A-13-28 24DBC
03/18/1975
4.50
A-13-28 27BDC
06/07/1944
08/09/1944
07/15/1949
08/07/1950
02/26/1951
08/07/1951
07/0211952
1.57
4.51
-.93
-.95
-.78
5.73
8.93
A-12-26 04BBD
A-12-26 13DCD
A-12-26 15BCC
05/0211957
01/15/1975
7.80
13.40
A-12-26 18DCCI
12/07/1967
06/08/1968
04/16/1969
413.50
415.10
413.50
METHOD OF
MEASUREMENT
5
5
S
S
S
S
5
S
55
Table 4. ~-Measurements of the water level in selected wells--Contlnued
LOCAL NUMBER
DATE MEASURED
A-13-28 218UC--CONT 07/30/1953
10111/1954
10/23/1956
04/0&/19&0
10/23/19&3
04/03/19&4
11/05/19&4
04/23/19&5
04/14/19&6
03/15/19&7
02/06/1968
04/16/1969
03/19/1970
03/3111971
0210111972
02128/1973
01/29/1974
01/03/1975
02/25/1975
01/29/197&
WATER LEVEL,
IN FEET BELOW
LAND SURFACE
2.&5
3.12
3.74
.&5
.8&
.68
.52
1.43
.52
.77
.75
.95
-.58
-.40
-.25
- .90
-.90
-.90
-.90
.09
METHOD OF
MEASUREMENT
S
S
S
S
S
S
S
WATER LEVEL,
IN FEET BELOW
LAND SURF ACE
DATE MEASURED
A-14-2&W 18DBC
10/23/195&
04/20/19&0
11/05/19&4
04/23/19&5
10/03/19&5
04/14/19&&
11/1&119&&
03/15/19&7
10/0&/19&7
02/0&/19&8
10/03/1968
04/1&/19&9
03/19/1970
03/31/1971
02/01/1972
02128/1973
01/29/1974
01/03/1975
05/13/1975
01/28/1976
17 .&&
14.90
29.10
22.12
22.17
25.&5
27.70
21.85
39.30
22.94
41.01
36.73
19.82
21.&5
20.05
2&.42
2&.30
33.80
41.92
34.10
A-14-27 010CO
12120/195&
07/0211975
27.03
40.80
A-14-27 080DA
12/19/195&
05/1211975
07/0211975
09/12/1975
105.40
11&.7&
114.30
114.&0
A-14-27 35BOC
02125/1975
0511211975
09/1211975
04/14/197&
09/09/197&
82.20
101.00
96.13
97.2&
94.72
A-14-29 33BBB
03/17/1975
92.40
A-14-30 21ADB
01/QII1941
05/21/1975
05/19/197&
091211197&
85.00
17B.00
158.30
125.15
R
S
S
S
A-14-30 2&ODB
01/01/1945
05/2111975
48.00
76.90
R
S
A-14-31 29ADC
09/02119&0
01/01/1975
8.00
40.00
A-15-28 210CC
01/09/1957
07/02/1975
81.&0
94.20
A-15-30 21ABA
01/011194&
05112/1975
07/31/1975
102.00
122.55
124.40
A-I&-25 15BAC
08/08/195&
09/17/1975
23.10
13.70
A-P-29 030BB
07/01/194&
1210311958
167.80
1&8.00
A-18-29 04CCB
05/0211965
07/09/1969
725.00
709.40
A-18-29 2&BDB
07/30/19&5
07/09119&9
08/12/1975
270.00
2&4.30
2&5.10
A-18-29 29BCC
10/3111958
09/30/1959
07/0911969
379.00
395.00
390.20
A-18-30 04C8C
05/3111965
07110/19&9
08112/1975
521.00
509.10
511.30
R
S
S
A-18-30 140BO
0&/13119&5
07/10/19&9
580.00
569.90
R
A-18-30 20COO
0210211972
02/27/1973
01/29/1974
01/3111975
08/1211975
01/291197&
365.20
3&0.40
361.20
3&3.00
3&5.00
3&6.80
A-18-31 I&CAC
08/12/1975
189.30
A-18-31 29BOB
07/02119&5
07/10/1%9
3&4.00
349.40
S
S
S
S
S
S
S
S
S
S
S
S
S
A-13-28 298CD
0&/07/1944
04/14/19&&
01/29/1976
12.05
11.65
13.9&
A-13-28 33ACC
0&/01/1946
03/2111975
42.66
32.00
A-13-29 35AAA
0210111957
02/19/1957
03/20/1975
05/08/1975
09/1111975
01129/19]&
04/13/197&
09/09/1976
212.00
1&5.00
1&7.00
1&&.07
1&7.30
1&7.50
1&9.70
1&7.95
A-13-30 28ADC
09/1211955
05/21/1975
9.00
&.30
A-13-31 30DCD
03/20/1975
05/08/1975
59.00
59.60
A-14-24 290CC
08/17/195&
05/13/1975
09/1111975
04/13/197&
09/08/197&
180.00
238.55
257.10
245.30
262.34
03/05/1975
0511311975
09111/1975
04/14/1976
09/09/1976
172.40
192.04
212.05
201.87
189.22
07/30/1953
10/28/1953
1011111954
06128/1955
10/26/1955
05/03/1956
10/23/1956
05115/1957
10/11/1957
04/2111958
04/0&/19&0
10/0711960
04/28/19&1
05/01119&2
04/08/19&3
11/05/1964
04/23/1965
10103/19&5
04/14119&6
11/1&/196&
03/15/19&7
0210&119&8
04/1&/19&9
03/14/1970
03/31/1971
0210111972
02128/1973
01/29/1974
01103/1975
13.15
13.44
15.&2
16.70
18.25
16.17
16.57
15.97
15.&&
15.51
11.80
12.&1
15.22
11.66
17.40
25.28
15.71
16.31
17.&0
23.39
13.82
13.58
40.00
18.03
18.90
19.80
23.65
23.10
30.25
10/14/195&
03/0511975
05113/1975
31.67
51.20
46.83
A-14-25WI2COO
02128/1973
23.&5
A-14-26 21BCC
11/0111950
03/0911955
05/13/1975
09/11/1975
04/14/1976
09/09/1976
9.00
11.&4
21.10
28.05
21.52
3&.15
A-19-25 30BOO
10117/1956
0&/17/1975
10.00
21.00
A-19-28 230CO
10/30/195&
04/22/1959
11/2111975
10& .55
150.00
14&.70
01/01/19&3
05/13/1975
10.00
48.19
A-19-28 28BDB
12101/1945
11/2111975
240.00
22&.30
A-14-25 14CCO
A-14-25EI2COD2
A-14-25E 130AO
A-14-26 340BB
S
S
S
S
METHOD OF
MEASUREMENT
LOCAL NUMBER
S
S
S
S
S
S
R
T
S
T
T
T
T
R
T
R
S
56
Table 4. --Measurements of the water level in selected wells--Continued
WATER LEVEL,
IN FEET BELOW
LAND SURFACE
LOCAL NUMBER
DATE MEASURED
A-I9-Z9 09AAC
08/05/1958
0913011 959
07/09/1969
08/12/1975
323.00
342.00
316.80
319.30
A-19-29 17ACBI
07/11/1969
03/30/1971
02102/1972
02/27/1973
212.00
210.20
212.00
210.80
03/23/1960
07109/1969
03/30/1971
02102/1972
02/27/19n
0112911974
01131/1975
01/29/1976
218.50
210.00
211.00
211.30
210.20
210.60
215.15
213.80
08/24/1958
09130/1959
07/09/1969
08/12/1975
397.00
370.40
369.90
A-19-]0 10ABD
05/18/1965
07/10/1969
704.00
678.20
A-19-30 18CAB
07/10/1969
08/1211975
341.20
338.70
A-19-30 36BCC
08/2211959
01110/1969
550.00
A-I 9-29 17 ACB2
A-19-29 35CDB
METHOD OF
MEASUREMENT
DATE MEASURED
A-19-31 09CAC
09/011 I 959
07/1011969
445.00
446.60
A-20-25 15BCO
08/07/1956
06/17/1975
13.80
15.60
A-20-28 32CAB
10111/1956
11/21/1975
71.80
70.30
A-20-26 36AAA I
10/1111956
07/03/1 n5
111.50
92.50
A-20-30 270BO
01/01/1944
11118/1975
350.00
427.00
A-20-30 36DAB
01/01/1938
11/18/1975
570.00
512.20
A-20-31 29ADCI
0110111950
11118/1975
820.00
574.20
A-21-28 23AAC
05/2111968
In/18/1968
04/03/1969
03/06/1970
03/30/1971
58.59
58.17
58.20
58.18
58.20
385.00
545.70
WATER LEVEL,
IN FEET BELOW
LAND SURFACE
LOCAL NUMBER
A-21-28 24CCC
0210211972
58.30
01/29/1974
01/31/1975
01/30/1976
58.80
60.40
10/1111956
0811 9/1975
31.80
30.70
58.90
METHOD OF
MEASUREMENT
R
T
57
Table 5. --Records of selected springs
Principal
aquiferi
112BLCF,
basaltic
rocks;
121BDHC,
Bldahochi Formation; 120SDMR, Tertiary sedimentary rocks,
undifferentiated; 211SDMR, Upper Cretaceous sedimentary
rocks, undifferentiated; 231SNSL, Sonsela Sandstone Bed;
310KIBB, Kalbab Limestone.
Local number: See figure 2 for description of location system.
Use of water: H, domestici I, irrigationi P, public supplYi
R, recreation; S, stock; U, unused.
Discharge!
C, current meter; E, estimated; F 1 flume; M,
meter; R, reportedi V, volumetric.
LOCAL NUMBER
USE
OF
WATER
A-08-26
A-08-26
A-08-26
A-08-26
A-08-26
05BCB
05CCA
09DAB
14DCD
25AAA
H.S
H.S
A-08-26
A-09-25
A-09-25
A-09-25
A-09-25
26DCD
02DCB
20ADC
28DAA
29BAD
S
S
S
020BB
04DCD
15DAC
20CAA
A-09-26 28BDB
S
U
S
S
S
A-09-26
A-09-26
A-09-26
A-09-26
A-09-26
A-09-27
A-09-27
A-09-30
A-10-28
34BBB
18000
26BBB
21CDB
02CCA
A-10-28
A-10-28
A-10-28
A-10-28
A-10-28
03AAD
06DAC
08DBC
IICDA
12CBB
A-10-28
A-10-29
A-II-25
A-II-27
A-II-27
21BAA
20AAD
20BCD
OICAB
09DAA
A-II-27
A-II-28
A-II-28
A-12-26
A-12-26
25CAC
04DBA
18BDD
10CCB
19ABA
A-12-26
A-12-27
A-12-27
A-12-27
A-12-31
26DBB
14CBD2
21AAD
30ABD
16BBD
A-I3-27
A-13-27
A-I3-27
A-13-29
A-I3-29
13A
13COC
32CDB
20C
33BCB
A-14-26 10CDC
A-20-27 26BCB
A-20-27 29DBD
S
S
H.S
S
AL nTUDE
OF LAND
SURF ACE
(FEET)
8891
8900
9290
9400
9150
9150
7460
8107
8490
DISCHARGE
(GALLONS
PER
MI~UTE)
2 V
2 V
DATE
DISCHARGE
MEASURED
09/24/1974
09/24/1974
8.0
110
8.0
12.0
10.0
153
III
86
9.0
8.0
130
112BLCF
112BLCF
112BLCF
112BLCF
112BLCF
10.0
B.O
8.0
200
01/16/1975
112BLCF
112BLCF
112BLCF
112BLCF
211SDMR
12.0
15.0
17.0
14.0
15.0
01/15/1975
01/16/1975
01/15/1975
01/07/1975
01/07/1975
112BLCF
112BLCF
211SDMR
121BDHC
112BLCF
13.0
1212011974
112BLCF
120SDMR
121BDHC
112BLCF
112BLCF
0.1
11/19/1974
8 E
10 E
09/24/1974
1112011974
8 E
3 E
09/24/1974
12/24/1974
E
01/16/1975
7740
7800
8710
S
S
8920
8050
7600
7180
I.S
HOO
H.S
I.H
6080
S
S
6295
6235
6100
6180
H.S
U
5
S
S
S
S
6320
6460
6390
6230
6260
6335
5930
6220
6150
I.R
6300
8 V
20 V
100 E
3 E
0.1
0.3
0.1
3 V
0.3
5 E
0.1 E
350 E
0.1
5 E
1120 C
01/1711975
01/06/1975
01/06/1975
01/16/1975
01/08/1975
01/0711975
01/15/1975
1210611951
6180
4 V
6020
6060
0.3 E
0.1 E
01/15/1975
01/07/1975
01/07/1975
S
6040
U
6350
2 V
0.1
03/20/1975
5700
5720
5960
5900
6040
67 F
50 E
10 M
5 R
29
5450
5730
5670
18
S
S
S
I.S
P
P
S
S
S
S
F
I E
5 E
SPECIFIC
CONDUCTANCE
(UMHOS/CM
AT 25 0 C)
110
165
I V
112BLCF
112BLCF
112BLCF
112BLCF
112BLCF
TEMPERATURE
(DEGREES C)
8.0
8.0
8290
8350
8520
PRINCIPAL
AQUIFER
112BLCF
112BLCF
112BLCF
112BLCF
112BLCF
112BLCF
112BLCF
112BLCF
112BLCF
112BLCF
140
111
188
532
250
500
244
230
320
350
190
424
400
440
15.0
13.5
172
267
1200
13.0
10.0
460
940
18.0
16.0
14.5
15.0
8.0
1450
1200
510
400
1957
121BDHC
121BDHC
112BLCF
121 BDHC
121BDHC
04/14/1976
1111811975
11/18/1975
310KIBB
1218DHC
121ADHC
16.0
3900
25.0
780
0211211975
02/06/1975
071 11946
SHEEP
BUCKELEW
QUAKIE PATCH
PORTER
FIREBOX
MALLORY
KITCHEN
LITTLE GIANT
MINERAL
SAWMILL
BURNT MILL
ATASCACITA
HORSESHOE
SHERWOOD
NEILSON
24 RANCH
WILTBANK
HALL
HALL RANCH
LAGUNA SALDA
HIDDEN
MUD
STRADDLING
650
700
282
14.0
09/17/1975
FRANEY
FIREMAN CAB
UDALL DRAW
SWINBORNE
BEEHIVE
740
7.0
15.0
8.5
112BLCF
121BDHC
121BDHC
112BLCF
231SNSL
01/15/1975
NAME OF SPR ING
470
COTTONWOOD
ORTEGA
CONCHO
MALPAIS
ROMERO
GALLEGOS
BIG HOLLOW
SCHUSTER
MC INTOSH
DAVIS
STINKING
SAL T SEPPS
NAVAJO
58
Table 6. --Chemical analyses
Local identifier:
See figure 2 for description of well-numbering and location system.
Agency analyzing sample (code number):
1028, U.S. Geological Survey; 9704, Arizona
LOCAL
!DENT1-
FIER
DATE
OF
SAMPLE
TEMPERATURE
(DEG C)
OIBBCI
030BA
130BC
140AA
75-03-19
75-03-19
74-07-30
75-03-09
75-03-19
A-07-28 060BB2
A-08-29 02ABA
A-08-29 03BBA
74-07-24
74-08-15
57-03-07
74-08-15
66-08-16
16.5
16.5
74-08-14
70-01-22
66-08-18
74-08-22
68-06-13
26.0
15.0
14.0
17 .0
26.0
A-05-30
A-05-30
A-05-30
A-05-30
A-08-29 040CC
A-08-29 05AOB
A-08-29 07ABO
A-08-29 07ACO
18.0
SILICA,
DISSOLVED
(MG/L
AS
SI02)
CALCIUM
DISSOLVED
(MG/L
AS CAl
MAGNESIUM,
DISSOLVED
(MG/L
AS MG)
SODIUM,
DISSOLVED
(MG/L
AS NA)
7.9
36
46
38
42
1.8
19
27
19
24
48
42
32
34
41
23
6.0
26
40
42
43
26
19
19
29
74
19
390
60
472
842
61
14
22
23
26
468
844
236
268
307
314
21
A-08-29 16BOC
A-08-29 16CBC
7'4-08-15
66-10-09
74-08-13
74-11-01
66-08-16
16.0
20.0
21.0
15.0
22.0
23
12
10
II
8.0
47
3.2
4.2
7.8
3.2
27
3.9
1.6
2.5
1.4
11
14
30
4.0
4.0
4.7
1.7
44
1.0
1.0
2.0
A-08-31 31ADD
A-08-31 34ABB
68-04-04
69-11-05
74-08-13
74-12-19
74-12-19
13
16
70
50
56
57
8.1
17
19
19
20
26
40
36
28
28
10
19
IS
13
18
70
64
37
60
64
34
35
48
28
27
13
13
15
60
50
27
26
8.6
A-09-27
A-09-29
A-09-29
A-09-29
OIOOB
28000
32BOCI
32BDC2
A-09-29 32BOO
A-09-29 33BOA
A-09-29 33CBA
74-06-24
66-08-17
69-04-03
74-06-24
66-08-17
A-09-30 14CCB
A-09-31 IOBCA
A-IO-25 15DAC
69-04-03
74-06-24
75-03-20
33-12-22
74-07-30
A-IO-25
A-IO-25
A-IO-25
A-IO-25
A-IO-27
18ABO
20BCC
22BBCl
22CAC
170CB
57-06-13
57-06-13
34-01-04
57-06-13
74-11-21
A-IO-28
A-IO-28
A-10-29
A-IO-29
A-IO-30
IIBAA
2beCB
15BAB
33DDC
08AAA
75-01-16
74-12-20
75-01-16
57-03-07
75-03-19
A-IO-31 29BBD
A-II-24 08AAC
A-09-29 33CBA
A-II-24 1800A
A-II-24 360AB
A-II-25 05AAA
A-II-25 080CC
A-II-25 18COO
A-II-25 180CC
A-II-25 23CAB
A-II-25 29BOB
A-II-26 17ADC
IS
6.0
24
16.0
8.3
16.0
7.9
23
25
13.0
18.0
25
14.0
22
15.0
29
19
17
14
28
.3
9.9
1.1
6.5
2.7
281
368
244
1.5
.1
.1
8.0
49
40
54
3.2
5.7
55
2.4
200
170
182
4.8
5.6
6.7
206
396
370
467
187
218
180
179
190
110
20
6.6
1.2
II
2.3
26
22
37
1.6
.9
33
2.5
8.2
2.6
26
1.3
55
41
8.7
100
27
38
9.5
4.9
41
9.3
200
1.3
1.9
1.3
435
110
453
.7
74-12-17
57-06-12
74-12-19
74-12-19
57-06-13
19.0
18.0
7.2
62
20
27
41
49
57-06-11
66-08-17
57-06-11
46-07-05
57-06-12
16.0
18.0
12.0
13.0
16.0
21
IS
19
20
58-08-21
59-08-14
66-11-17
75-01-15
75-01-15
14.0
14
65
18
14.0
12.0
14
12
31
71
62
20
15
21
13
12
13
5.2
4.4
260
260
268
257
106
25
35
8.0
20
19
20
12
13
15
12
11
9.8
5.0
5.9
4.9
288
131
141
150
157
13
30
28
8.1
16
130
20
46
42
13
22
46
60
A-II-26 29BBB
A-II-26 31DDC
A-II-27
A-II-27
A-II-27
A-II-28
A-II-28
74-12-20
74-12-20
75-01-08
75-03-19
55-07-15
52
10
247
29
270
15
45
25
46
21
635
247
235
226
278
6.1
3.9
18.0
13
9.0
2.3
22
14.0
11.0
12.0
15.0
17.0
99
248
130
13
18
110
13
4.3
4.2
14
6
11
27
IS
4
35
338
78
8.6
8.8
o
24
228
232
237
192
128
10.0
33
o
o
o
108
324
275
286
306
192
97
134
112
124
19
9.0
10
CARBONATE
(MG/L
AS C03)
230
304
208
236
312
8.6
6.7
16
320
444
350
462
412
23
55
46
II
57-06-11
46-08-14
75-01-14
75-01-14
74-11-22
23AAA
23CCC
34CDA
05DBC
09ACC2
392
29
12.0
14.5
16.0
16.0
145
290
338
296
320
16
26
33
13
14
13
15
74-12-20
66-07-15
74-08-15
69-05-17
74-08-15
.7
.5
.5
20.0
10.0
95
189
241
166
166
27
60
39
63
63
49
46
40
24
23.0
1.6
1.7
1.0
1.7
1.7
3.4
2.1
9.7
21
29
A-08-29 IIBBC
A-0-e-29 16BAA
BICARBONATE
(MG/L
AS
HC03)
14
9.1
37
4.0
4.0
27.0
15.0
A-08-29 IIAOA
SODIUM,
POTASSIUM
DISSOLVED
(MG/L
AS NA)
14
23
27
22
22
68-06-14
66-08-18
69-11-05
74-08-14
74-09-25
A-08-29 07BCB
A-08-29 09BOO
POTASSIUM,
DISSOLVED
(MG/L
AS K)
113
110
364
208
189
414
U2
2n
129
369
636
o
o
o
o
o
o
o
o
13
o
o
59
of water from selected well s
state Health Laboratory;
9801,
private
Association; 9902, University of Arizona.
DATE
OF
SAMPLE
75-03-19
75-03-19
74-07-30
75-03-09
75-03-19
74-07-24
74-08-15
57-03-07
74-08-15
66-08-16
74-08-14
70-01-22
66-08-18
74-08-22
68-06-13
SULF ATE
DISSOLVED
(MG/L
AS S04)
22
10
15
6.0
6.0
8.2
13
27
9.3
18
14
CHLORIDE,
DISSOLVED
(MG/L
AS CL)
FLUORIDE,
DISSOLVED
(MG/L
AS F)
5.2
5.0
7.&
2.6
2.6
.2
.4
.2
.4
.4
5.6
5.7
17
7.7
17
.2
.9
.8
.5
16
16
.6
.7
.&
SOLIDS,
SUM OF
CONSTITUENTS,
DISSOLVED
(MG/L)
SOLIDS,
RESIDUE
AT 180
DEG. C
DISSOLVED
(MG/Ll
135
134
208
248
173
173
205
25&
183
183
160
290
378
274
318
292
372
173
282
262
283
374
HARDNESS
(MG/L
AS
CAC03)
laboratory;
HARDNESS,
NONCARBONATE
(MG/L
CAC03)
49
54
31
80
39
91
22
130
12
12
27
170
226
170
204
o
o
o
o
o
13
.1
252
770
530
2.7
2660
1220
530
68-06-14
66-08-18
69-11-05
74-08-14
74-09-25
770
8.0
16
530
19
7.3
.7
2660
227
340
292
307
539
12
2.8
.1
.8
.9
1230
10
8.2
74-08-15
66-10-09
74-08-13
74-11-01
66-08-16
42
41
44
32
39
68-04-04
69-11-05
74-08-13
74-12-19
74-12-19
42
38
74-12-20
6&-07-15
74-08-15
69-05-17
74-08-15
21
14
93
II
II
39
12
9.0
9.0
10
10
19
4.5
3.2
20
13
8.2
17
74-0&-24
66-08-17
&9-04-03
74-06-24
66-08-17
13
17
9.0
8.0
16
69-04-03
74-06-24
75-03-20
33-12-22
74-07-30
12
9.0
20
12
57-0&-13
57-06-13
34-01-04
57-06-13
74-11-21
9.7
3.5
21
17
18
19
7.0
10
4.0
5.0
11
8.0
.8
2.2
2.2
2.2
2.3
384
525
539
470
468
178
368
504
482
535
501
278
241
505
280
240
129
321
278
427
124
275
335
323
.1
.3
.1
.3
.6
.9
.5
.7
1.0
290
240
308
.7
.7
.6
325
.3
2&4
274
206
156
4.9
16
3.2
4.0
23
3.0
.4
.1
118
175
3.8
.3
134
.4
.1
391
17
.8
.7
413
134
1210
378
394
1.6
1000
998
.7
.3
437
304
441
.4
.0
133
125
79
54
74-12-17
57-06-12
74-12-19
74-12-19
57-06-13
280
24
88
60
34
93
57-06-11
6&-08-17
57-06-11
46-07-05
57-06-12
11
12
58-08-21
59-08-14
6&-11-17
75-01-15
75-01-15
30
16
17
1.0
286
34
20
15
16
.7
.6
.2
309
291
169
6.5
28
6.0
4.0
4.0
127
1230
412
286
78
.0
36
5.4
29
1.1
1.3
30
51
68
283
170
5.0
57-06-11
46-08-14
75-01-14
75-01-14
74-11-22
4.6
4.5
3.8
4.0
5.9
3.2
3.5
.6
.2
.1
.3
157
1&7
145
140
74-12-20
74-12-20
75-01-08
75-03-19
55-07-15
220
5.3
47
200
521
140
6.6
60
140
310
2.2
.2
.2
1.9
3.1
895
167
317
801
1770
904
159
339
789
156
139
.9
2.4
.6
.3
1.5
30
40
34
95
91
95
1.2
1.8
1.&
21
14
21
21
21
19
20
21
.7
24
.6
22
26
310
93
550
226
180
270
322
290
230
299
42
220
318
480
277
277
8.1
237
477
562
467
538
8.0
7.7
7.9
7.5
494
585
410
610
3970
7.8
3980
355
526
512
510
6.7
7.3
633
826
700
7.7
7.6
6.7
7.8
8.0
7.8
8.7
8.5
784
8.5
833
667
827
474
387
8.4
7.8
3.0
400
2.1
445
454
7.8
7.3
2.3
2.2
385
455
7.8
7.4
7.7
8.1
7.7
500
417
439
7.9
.4
480
7.9
7.0
32
.7
350
165
198
7.2
o
1.8
24
.9
3
15
Users·
AGENCY
ANALYlING
SAMPLE
(CODE
NUMBER)
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
9801
1028
1028
1028
1028
1028
9704
1028
1028
1028
1028
1028
1028
1028
9704
9704
1028
1028
1028
1028
1028
1028
9801
1028
9704
1028
9704
9704
1028
9704
9704
1028
1028
1028
o
o
19
.5
213
1028
1028
1028
1028
1028
22
3
180
44
1.0
.4
3.7
46
2.5
670
260
1750
562
690
1028
1028
1028
1028
1028
67
7.1
25
17
1.2
.6
7.2
31
6
o
o
o
120
95
40
71
83
86
o
o
635
336
272
117
238
240
238
240
100
25
27
18
30
287
51
o
99
100
110
500
100
210
440
866
PH
(UNITS)
8.1
o
o
o
o
Water
.8
.7
1.1
2.4
o
SPECIFIC
CONDUCTANCE
(MICROMHOS)
Valley
188
561
480
542
555
1.3
47
River
793
73
244
200
220
220
130
.1
14
1&
6.3
590
27
1.4
97
120
62
141
98
81
22
75-01-16
74-12-20
75-01-1&
57-03-07
75-03-19
4.0
5
160
144
7.5
7.9
7.9
94
140
142
180
138
110
263
1.5
20
108
178
152
124
142
250
318
.8
10
10
13
8.3
230
24
17
30
14
1.7
4.7
1.5
18
o
o
o
o
o
o
o
o
o
SODIUM
ADSORPTION
RATIO
35
14
16
2.6
2.6
2.7
1.4
.3
204
190
170
Salt
33
182
186
274
285
79
23
210
16
10
3.0
SODIUM
PERCENT
9802,
1&0
o
100
130
344
17
1540
790
720
500
607
202
208
1430
650
690
25
18
.4
10
21
.3
.6
257
20
18
15
.5
.5
.4
550
225
248
190
257
36
21
16
2.5
.6
.5
2.3
4.4
1450
250
480
1300
2&10
35
7.2
7.2
7.2
7.2
7.2
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
492
506
522
12
43
7.7
499
7.3
7.9
8.1
7.6
8.1
8.1
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
60
Table 6. --Chemical analyses of water
LOCAL
IOENTlFIER
DATE
OF
SAMPLE
TEMPERATURE
(DEG C)
CALCIUM
DISSOLVED
(MG/L
AS CAl
SODIUM,
DISSOLVED
(MG/L
AS NA)
POT ASSlUM,
OISSOLVED
(MG/L
AS K)
14
13
9.5
12
II
190
160
110
250
200
48
59
34
66
90
200
280
100
430
460
16
IS
13
32
42
523
296
339
473
363
320
320
260
320
59
56
75
75
430
410
450
390
29
8.0
37
35
490
741
740
530
885
190
200
210
50
27
69
64
64
16
10
380
400
370
18
36
37
38
4.1
09BDA
090AO
21ABA
070BB
10ACA
75-01-08
75-01-17
74-12-19
75-01-16
75-03-19
17.0
A-II-29 23000
A-II-29 27ACA
14.5
22.5
A-II-30 03CAD
A-II-30 20ACO
56-12-14
75-01-16
75-05-13
75-05-20
75-03-19
19.0
IS
17
13
10
35CCA
17ACO
31CAO
I1CDA
14DCC
75-03-19
75-03-19
75-03-19
74-10-14
57-06-12
15.0
13.0
16.0
16.0
18.0
8.1
7.6
3.9
14
17
A-II-28
A-II-28
A-II-28
A-II-29
A-II-29
A-II-30
A-II-31
A-II-31
A-12-24
A-12-24
A-12-25 140BO
A-12-25 18CCCI
A-12-25 18CCC2
A-12-25
A-12-25
A-12-26
A-12-26
A-12-26
28CDC
34CA8
02BDA
04BBC
130CO
A-12-26 15BCC
A-12-26 18CBB
A-12-26 18DCC2
A-12-27 19BCO
A-12-27 26BABI
A-12-27 35CDA
A-12-27 35CDB
A-12-28 07COB
A-12-28 07DBD
A-12-28 12BOA
A-12-28 17CCC
A-12-28 18BAA
75-04-22
56-08-22
75-01-21
34-01-04
75-01-21
34-01-04
75-01-22
76-04-15
75-01-22
57-04-24
15
BICARBONATE
(MG/L
AS
HC03)
113
176
143
532
164
14
28
13
II
17 .0
16.0
17
16
27
74
48
12
83
20
16
323
11
2.9
16.0
93
44
31
99
41
25
16
32
97
22
3.6
4.1
4.8
350
287
231
164
371
3.1
200
3.3
226
5.0
3.9
10.0
13.0
17 .0
15.0
17 .0
15.0
57-05-23
69-06-26
75-01-07
68-11-27
75-01-07
16.0
16.5
12.0
19.0
17.0
69-06-26
75-01-07
56-03-21
66-11-17
75-09-10
17.0
14.0
18.0
18.0
17.0
14.0
27
26
17
6.4
33
4.7
2.6
86
29
IS
19
14
48
37
9.4
15
20
34
20
20
19
83
82
IS
30
29
47
60
55
39
246
348
310
27
88
47
61
27
360
25
190
49
380
28
66
21
18
10
57
320
34
164
156
186
466
8.6
25
18
15
12
8.8
12.0
13.0
14.5
16
12
75-02-26
56-12-06
75-03-18
75-03-20
75-09-11
13.5
13.0
15.0
14
2.7
222
260
329
IS
4.6
346
384
206
697
758
1020
723
266
517
340
6.2
1.7
46
24
260
II
8.0
290
62
430
31
587
510
780
16.5
7.6
260
64
460
23
776
76-04-15
76-09-09
75-01-07
75-03-18
75-03-20
18.0
17 .5
15.0
9.4
8.8
12
17
3.0
310
240
280
190
190
68
67
61
68
100
360
470
360
560
400
26
25
26
18
38
764
712
741
353
327
56-12-11
75-03-20
75-03-21
75-03-20
75-05-20
15.5
15.5
II
9.8
6.8
1.8
370
200
220
220
96
88
100
110
370
480
270
540
31
41
38
48
420
772
387
489
541
75-03-20
75-05-20
75-09-12
76-04-13
76-09-08
17.0
A-13-24 22BBO
7.9
12
12
12
300
60
62
63
B3
19
20
19
260
18
17
18
34
2.7
2.9
2.8
821
192
196
184
A-13-25
A-13-26
A-I3-27
A-13-27
A-13-27
04CCA
06DCB
09CAD
15BDA
15BDD
56-08-20
74-06-00
75-02-25
75-02-22
74-05-00
17 .0
16.5
13
251
490
A-13-27
A-I3-27
A-I3-27
A-13-27
A-I3-27
25BBD
25DCC
26AAC
27BBC
31ABC
75-02-06
75-02-07
75-02-07
59-05-04
75-01-16
14.0
15.5
14
19
II
423
405
510
501
238
A-I3-28
A-I3-28
A-I3-28
A-I3-28
A-13-28
06000
12CAC
17ACA
180AA
19DCC
75-02-14
74-05-00
75-02-06
75-09-17
75-03-21
16.0
21.0
A-12-28 18DBC
A-12-28 18DDC2
A-12-28 19BAO
A-12-28 30DBA
A-12-28N02CBD
A-12-29 10ACA
A-12-29
A-12-29
A-12-29
A-12-30
A-12-30
31BDCI
31BDC2
35BAB
13ACA
27ABA
A-12-31 080BC
16.0
18.0
18.0
143
6.3
9.0
110
227
45
51
150
197
8.6
8.4
7.3
68
100
44
238
29
18
35
II
59
26
280
260
260
18.0
18.0
16.0
33
9.4
79
19
8.4
11
51
130
11
232
67
3.7
CARBONATE
(MG/L
AS C03)
396
389
411
185
119
3.4
75-01-16
57-05-02
75-01-15
75-01-22
68-06-09
75-03-21
75-01-22
75-03-20
75-02-26
56-12-06
SODIUM.
POT ASSlUM
DISSOLVED
(MG/L
AS NA)
MAGNESlUM,
DISSOLVED
(MG/L
AS MG)
SILICA,
DISSOLVED
(MG/L
AS
SI02)
18
750
14
814
21
33
8.3
300
430
250
12
18
4.6
473
766
463
82
from selected
DATE
OF
SAMPLE
61
wells~-Continued
SULFATE
DISSOLVED
(MG/L
AS S04)
FLUORIDE,
DISSOLVED
(MG/L
AS F)
SOLIDS,
SUM OF
CONSTITUENTS,
DISSOLVED
(MG/L)
220
350
120
520
550
2.4
2.6
2.4
.1
2.3
1320
1580
726
2340
2430
CHLORIDE,
DISSOLVED
(MG/L
AS CL)
SOLIDS,
RESIDUE
AT 180
DEG. C
DISSOLVED
(MG/Ll
SODIUM
ADSORPTION
RATIO
SPECIFIC
CONDUCTANCE
(MICROMHOS)
39
48
34
50
52
3.4
4.8
2.1
6.3
6.8
2000
2420
1300
3500
3700
7.1
8.2
7.9
7.6
1028
1028
1028
1028
1028
430
420
520
380
46
46
49
42
5.8
5.6
6.3
5.1
875
3500
3400
3560
3800
8.4
7.5
1028
1028
1028
1028
1028
7&0
760
790
190
108
430
440
450
39
11
51
52
49
17
23
6.0
6.3
5.7
.6
.6
3400
3300
3000
460
269
8.0
7.2
120
150
120
525
200
31
1.1
HARDNESS
(MG/L
AS
CAC03)
HARDNESS,
NONCARBONATE
(MG/L
CAC03)
PE~CENT
1270
1660
712
2260
2450
670
640
410
900
870
240
400
140
510
570
370
1000
1000
960
1100
75-01-08
75-01-17
H-12-19
75-01-16
75-03-19
370
550
170
800
890
56-12-14
75-01-16
75-05-13
75-05-20
75-03-19
720
820
590
16
500
430
520
460
1.0
2.7
2.3
2.1
2460
2330
2420
2320
2260
2300
2440
2290
75-03-19
75-03-19
75-03-19
74-10-14
57-06-12
610
680
680
66
28
460
490
460
17
9.5
1.8
2.0
1.8
.1
.4
1950
2070
2030
2110
2140
2020
75-04-22
5&-08-22
75-01-21
34-01-04
75-01-21
34
9.3
8.5
9.0
260
8.5
.2
169
170
.2
1.2
.2
182
1416
268
174
.2
.5
371
458
207
638
280
180
150
380
HO
27
383
81
277
167
27&
34-01-04
75-01-22
76-04-15
75-01-22
57-04-24
160
45
51
32
250
48
100
19
100
1.2
.2
885
391
470
225
75-01-16
57-05-02
75-01-15
75-01-22
68-06-09
38
81
3.1
535
549
25
.2
188
319
284
181
354
74
180
57-05-23
69-06-26
75-01-07
68-11-27
75-01-07
69-06-26
75-01-07
56-03-21
66-11-17
75-09-10
75-03-21
75-01-22
75-03-20
75-02-26
56-12-06
75-02-26
56-12-06
75-03-18
75-03-20
75-09-11
8.8
100
51
5.0
18
31
1240
19
108
97
II
67
69
2.7
248
550
521
234
511
.4
249
356
296
89
68
10
.6
6.1
.3
442
1028
1028
1028
1028
1028
20
53
24
.8
3.1
.8
673
800
394
1090
1028
1028
1028
1028
1028
350
43
o
14
76
94
o
54
24
725
343
110
335
320
o
48
2.0
120
54
26
1.4
1.3
1690
680
83
54
6.4
2900
442
964
457
240
94
130
21
974
33
88
1.6
14
710
1500
1670
71
7.7
6.0
1350
1860
3500
1.6
7.5
48
52
6.6
3500
6.5
42
53
4.8
6.9
5.1
8.9
5.8
2500
3300
3000
8000
3500
4.4
7.1
3.8
949
3700
3700
2870
4120
4.1
908
873
2130
210
91
980
o
2290
340
600
470
2.5
2270
1970
910
280
2.2
2.3
2160
2220
2090
2670
2270
2240
2230
2060
2760
2340
1100
880
950
150
890
2.8
.4
2.0
1.8
2640
2420
1870
2670
2680
2450
1950
2670
200
1300
860
960
1000
690
540
560
560
1990
311
322
321
210
218
2.3
3.3
254
971
1490
1235
440
490
270
486
49
110
33
295
1.9
1.3
40
39
3.0
2.3
.9
600
440
3.2
370
94
240
92
1.9
310
305
75-02-06
75-02-07
75-02-07
59-05-04
75-01-16
75-02-14
74-05-00
75-02-06
75-09-17
75-03-21
140
3.4
3.8
420
71
76
85
1100
230
240
161
44
1050
460
718
250
210
240
44
61
48
o
1950
317
337
325
15
480
o
430
290
340
470
620
2.5
.3
.4
.2
310
17
22
18
8.3
8.4
1028
1028
1028
1028
1028
1830
2.1
590
87
89
97
1028
1028
1028
1028
1028
4.9
69
56
470
45
450
560
360
660
7.0
6.7
6.2
43
190
930
850
630
820
1.6
2010
o
o
37
53
37
53
7.4
33
14
13
14
3.4
41
3.0
.5
.5
.5
3000
3000
500
500
475
365
240
390
160
835
180
3.1
o
70
62
58
77
7.8
5.7
9.1
44
2.2
1090
1220
891
1580
405
1030
1230
891
2320
2145
1120
1720
716
2430
270
85
1110
1700
782
210
460
74
406
77
o
424
o
66
87
20
8.9
8.7
12
1610
1800
1400
2350
654
3500
3300
1700
2400
1200
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
7.9
7.7
6.8
7.4
7.3
390
1600
2500
1900
1028
1028
1028
1028
1028
1028
1028
1028
9704
1028
8.1
.8
4.8
610
56-12-11
75-03-20
75-03-21
75-03-20
75-05-20
1.1
1.4
22
44
2.5
5.3
2.7
5210
480
400
870
850
7.4
8.8
40
405
439
190
15
57
110
2.4
2.3
.6
944
375
282
386
495
210
97&
1060
1000
120
280
410
550
380
220
470
1.7
177
2.4
500
48
19
18
540
540
3040
3240
3200
306
1028
1028
1028
1028
1028
16
310
2.4
7.4
22
2.3
.3
1.7
60
390
405
420
PH
(UNITS)
o
6
315
2010
2240
2430
21
600
510
600
1400
900
56-08-20
74-06-00
75-02-25
75-02-22
74-05-00
.5
2.8
578
670
740
7&-04-15
76-09-09
75-01-07
75-03-18
75-03-20
75-03-20
75-05-20
75-09-12
76-04-13
76-09-08
.4
.3
o
SODIUM
AGENCY
ANALYZING
SAMPLE
(CODE
NUMBER)
8.0
7.6
7.7
7.6
7.1
8.2
7.5
7.8
6.6
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
9802
1028
9801
9802
1028
1028
1028
1028
1028
1028
9802
1028
1028
1028
62
Table 6. --Chemical analyses of water
LOCAL
IOENTlFIER
DATE
OF
SAMPLE
TEMPERATURE
(OEG C)
CALCIUM
015SOLVED
(MG/L
AS CAl
MAGNESlUM,
015SOLVED
(MG/L
AS MG)
21
8.3
7.8
II
9.3
75
93
230
312
310
33
26
65
108
90
10
7.0
18
8.7
30
270
240
490
140
52
1.7
12
12
4.2
330
240
340
14
10
7.6
7.9
7.3
SILICA,
015SOLVED
(MG/L
AS
5102)
SODIUM,
015SOLVED
(MG/L
AS NA)
POT ASSlUM,
DISSOLVED
(MG/L
AS K)
320
420
250
8.1
16
31
320
29
51
60
200
59
30
240
940
740
28
16
17
38
92
100
94
200
360
400
370
27
35
33
29
171
180
160
66
66
52
39
62
22
22
93
240
32
17
27
5.8
5.1
10
10
9.4
9.5
3.8
54
60
51
77
70
20
24
22
25
24
25
21
520
41
3.6
3.3
6.3
8.1
17.5
17 .0
17 .0
17.0
16.0
10
9.4
!3
13
63
66
170
99
22
23
28
34
44
37
4.9
4.9
16.5
16.5
18.0
18.0
II
330
270
39
38
39
86
96
16
16
14
550
600
A-14-26 19S0D
75-03-17
75-03-17
66-08-04
66-08-17
75-03-05
A-14-26 21BCC
A-14-26 27CAC
A-14-26 27DCS
A-14-26 34ACB
A-I4-26E 180CC
57-05-23
57-05-23
57-05-23
57-05-23
66-08-04
18.5
18.0
16.0
16.0
18.0
A-14-26EI80DD
A-14-27 OIDCD
A-14-27 08DDA
A-I4-27 15BDC
A-I4-27 28DCD
66-08-17
75-07-02
75-07-02
75-07-02
75-02-24
18.0
17.0
18.0
15.0
A-14-27 30BAC
A-14-27 35SDC
75-03-17
75-02-25
75-09-12
76-04-14
76-09-09
16.5
A-14-28 13DBD
57-01-08
75-08-12
46-06-20
75-03-19
75-09-17
13.5
20ABD
200BC
26ACD
27BAD
75-02-25
75-02-06
75-03-18
55-05-26
75-03-18
A-I3-28 27S0C
66-11-17
75-02-25
75-03-18
75-03-06
46-06-11
14.0
13.0
75-02-07
75-03-20
75-03-20
76-04-13
76-09-09
10.0
55-09-17
75-11-20
75-03-20
66-08-17
66-08-09
21.0
A-14-25 OIABO
A-14-25 14CCO
56-08-10
76-04-13
76-09-08
75-05-12
75-03-05
18.0
18.5
18.0
16.5
A-14-25EI2COOI
A-14-25EI3SBC
A-14-25EI30AO
75-09-11
76-04-14
66-11-18
56-10-14
57-05-21
A-I3-28
A-I3-28
A-I3-28
A-I3-28
A-13-28 28DAO
A-13-28 29AAO
A-I3-28 29SCD
A-I3-29 3200C
A-13-29 35AAA
A-I3-30
A-I3-30
A-13-31
A-14-24
A-14-24
03SCDI
05DCA
30DCO
04DOA
10BBS
A-14-24 12CAC
A-14-24 29DCC
A-14-26 02000
A-14-26 03CBC
A-14-26 19ADA
A-14-28 20CBA
A-I4-29 33SBS
A-14-29 35CDCI
A-I4-30 07ACD
A-14-30 21ADS
76-04-14
76-09-09
75-05-21
55-08-30
75-05-21
15.0
16.0
15.0
I~.O
17.0
17.5
18.5
17 .0
17.0
17.0
18.0
33
5.8
6.4
18
15
25
162
641
610
434
300
0
0
0
0
115
8.5
17
12
13
7.6
38
110
290
600
150
15
22
80
230
76
44
1100
460
1200
260
13
220
63
190
22
549
160
64
110
43
17
29
290
350
310
18
10
14
514
409
458
94
15
49
46
610
260
170
25
21
8.9
7.9
9.0
4.8
42
45
28
170
170
320
21
21
17
9.7
120
29
210
13
II
II
8.7
150
410
64
41
46
18
100
660
45
12
8.2
4.4
56
17
40
3.9
A-15-30 33DDS
A-15-31 17ADA
A-16-24 31CCC
33CDD
15BAC
20BBC
18ADB
71-12-22
72-03-23
75-09-17
75-09-17
75-08-13
15.5
17.5
15.5
689
662
192
188
161
15
200
210
65
18.5
15.5
15.0
16.0
102
103
178
199
172
160
140
42
10
10
8.3
75-07-31
76-04-13
75-05-21
75-05-21
57-05-14
148
139
156
266
219
0
0
0
0
0
19.0
19.5
15.5
20.0
16.5
16.5
17 .0
16.0
34
190
190
495
160
199
10
9.9
56-11-14
57-01-09
75-07-02
75-07-02
57-01-08
510
491
480
237
552
590
945
692
165
171
26
24
6.8
5.5
II
CARBONATE
(MG/L
AS C03)
433
579
680
772
750
98
78
10
45
BICARBONATE
(MG/L
AS
HC03)
232
827
560
873
225
22.0
19.0
A-15-25 28SBC
A-15-28 13COD
A-16-24
A-16-25
A-16-25
A-16-28
391
190
54
220
200
18.0
15.5
15.5
16.5
A-15-30 21ABA
8.0
9.6
258
21
75-05-21
72-03-23
71-12-17
56-09-12
72-03-23
A-15-28 29BDC
A-15-28 34DDC
13
324
15.5
26DDS
13DAC
29CAD
33SBD
A-14-30
A-15-24
A-15-24
A-15-24
II
SODIUM.
POTASSlUM
015SOLVED
(MG/L
AS NA)
750
21
16
140
55
25
12
200
280
6.0
2.7
12
12
13
25
5.5
150
150
160
45
118
34
29
38
12
28
220
220
410
30
12
II
II
1.6
8.2
II
10
10
19
110
150
28
5.7
15
27
23
3.3
.9
3.0
200
330
790
370
130
660
653
534
610
597
541
159
156
155
160
343
513
441
244
139
208
13
10
1.8
1.2
1.5
334
334
298
659
654
430
425
515
247
175
168
264
519
771
193
63
from selected wells--Continued
CHLORIDE,
DISSOLVED
(MG/L
AS CLl
FLUORIDE,
DISSOLVED
(MG/L
AS F)
SOLIDS,
SUM OF
CONSTITUENTS,
DISSOLVED
(MG/L)
SOLIDS,
RESIDUE
AT 180
DEG. C
DISSOLVED
(MG/Ll
1310
1620
1480
SODIUM
ADSORPTION
RATIO
SPECIFIC
CONDUCTANCE
(MICROMHOS)
HARDNESS
(MG/L
AS
CAC03)
HARDNESS,
NONCARBONATE
(MG/L
CAC03)
SODIUM
PERCENT
320
340
840
122<1'
1100
0
0
280
590
530
68
72
38
37
37
7.7
9.9
3.8
4.0
4.1
1600
2500
2600
3300
3400
7.6
7.7
2600
2600
3500
4350
1880
7.1
7.1
AGENCY
ANALYZING
SAMPLE
(CODE
NUMBER)
DATE
OF
SAMPLE
SULFATE
DISSOLVED
(MG/L
AS S04)
75-02-25
75-02-06
75-03-18
55-05-26
75-03-18
500
540
440
606
610
96
180
280
465
450
1.9
4.4
1.9
2.3
1.2
1290
1570
1640
2210
2190
66-11-17
75-02-25
75-03-18
75-03-06
46-06-11
504
430
1600
1000
479
362
350
1500
630
78
3.2
3.1
2.2
6.1
2.3
1720
1600
5000
2740
1380
1690
5180
2900
900
850
2000
590
253
482
440
1700
400
0
37
50
72
3.6
9.0
13
75-02-07
75-03-20
75-03-20
76-04-13
76-09-09
51
640
680
640
290
510
500
500
1.2
1.7
1.7
2.2
728
2390
2240
2430
743
2380
2380
2290
170
1200
1000
1200
0
520
550
520
68
39
45
39
6.7
4.5
5.5
4.6
1680
1380
3800
2500
3400
55-09-17
75-11-20
75-03-20
66-08-17
66-08-09
274
280
400
132
127
52
60
180
36
37
4.0
3.3
2.2
.2
.0
955
952
1420
385
380
640
610
650
255
253
157
160
87
122
121
25
24
43
21
21
1.7
1.6
4.1
.9
.9
1450
1240
1800
618
616
6.7
56-08-10
76-04-13
76-09-08
75-05-12
75-03-05
97
120
100
180
120
47
44
25
750
51
.8
.4
.3
.6
.5
336
356
309
1700
427
216
250
220
300
270
95
130
90
77
94
26
18
17
79
24
1.0
.7
.6
13
1.1
572
600
520
3000
732
7.2
1028
1028
1028
1028
1028
75-09-11
76-04-14
66-11-18
56-10-14
57-05-21
110
110
412
170
51
46
325
170
200
.5
.4
.6
.6
393
395
1260
643
397
417
250
260
540
390
510
100
96
399
260
390
27
23
1.2
1.0
600
690
1960
1160
1460
7.5
1028
1028
1028
1028
1028
75-03-17
75-03-17
66-08-04
66-08-17
75-03-05
760
660
50
52
59
770
750
125
124
52
.8
1.9
.5
.5
.5
2870
2730
427
349
304
2850
2600
1200
1100
164
161
160
610
530
6
7
23
50
54
57-05-23
57-05-23
57-05-23
57-05-23
66-08-04
52
120
39
20
18
143
160
180
150
140
168
6
26
0
8
5
66-08-17
75-07-02
75-07-02
75-07-02
75-02-24
54
420
670
1700
550
42
1400
680
2200
290
.5
1.1
1.6
1.1
2.4
3590
2600
6330
1640
158
370
1100
2400
690
25
0
550
2100
440
37
87
48
51
44
75-03-17
75-02-25
75-09-12
76-04-14
76-09-09
490
230
2.1
1500
1470
810
360
420
400
400
270
170
210
1.6
1.9
1.8
1470
1230
1320
1370
1250
1320
580
230
390
160
0
18
1300
819
400
330
440
430
510
300
160
.4
3.6
2.2
3.0
2820
2300
1590
1260
2920
785
860
196
750
690
512
590
0
210
150
150
160
170
92
110
3.0
3.3
4.9
1220
1250
1180
1220
1190
1110
4.2
1060
950
670
710
280
400
420
70
1500
54
54
53
3.2
.6
.3
904
3070
401
925
.4
370
57-01-08
75-08-12
46-06-20
75-03-18
75-09-17
76-04-14
76-09-09
75-05-21
55-08-30
75-05-21
300
310
300
75-05-21
72-03-23
71-12-17
56-09-12
72-03-23
250
360
130
56-11-14
57-01-09
75-07-02
75-07-02
57-01-08
270
110
420
170
335
76
74
300
835
2150
929
1310
412
321
1750
429
312
465
288
3390
2510
6180
1510
1450
994
.3
.8
1100
957
1200
970
1190
1200
1580
265
75-07 -31
76-04-13
75-05-21
75-05-21
57-05-14
270
260
420
16
211
260
270
400
8.8
350
2.3
2.7
2.0
.5
1.4
1170
1160
1710
262
1010
7\-12-22
72-03-23
75-09-17
75-09-17
75-08-13
190
350
300
110
22
360
430
760
65
85
1.6
2.6
1.6
1.6
.3
993
1440
2160
947
415
2060
934
424
1.7
7.1
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
7.5
7.4
7.8
7.4
1028
1028
1028
1028
1028
790
504
1010
368
828
8.1
7.4
7.8
7.5
7.9
1028
1028
1028
1028
1028
1.5
25
6.2
11
4.3
487
6000
4480
8800
2200
7.7
7.7
6.9
6.9
8.1
1028
1028
1028
1028
1028
33
2.9
51
76
62
5.3
10
6.8
2250
2100
2100
1800
2000
6.5
1028
1028
1028
1028
1028
60
9.0
42
34
4.1
2.8
130
170
0
0
0
35
33
70
2.9
2.8
8.4
51
4.5
540
1200
230
225
210
100
1100
110
98
79
28
54
29
1.9
8.2
1.3
29
1.2
256
568
450
190
139
0
148
91
0
25
49
76
4.1
8.9
510
490
560
160
410
160
150
130
0
266
47
49
61
29
52
390
470
84
18
50
250
250
0
0
0
52
60
95
98
85
II
.3
1.6
4500
4800
1028
1028
1028
1028
1028
8.2
7.8
38
7.0
8.0
PH
(UNITS)
774
510
3980
3900
3550
2400
1850
7.4
7.5
6.1
1028
1028
1028
1028
1028
2000
1900
1840
1580
1570
8.0
7.6
7.4
1028
1028
1028
1028
1028
1410
5470
674
610
609
7.0
7.5
7.5
7.3
7.7
1028
1028
1028
1028
1028
3430
1720
1620
1550
3570
7.5
7.2
7.1
7.8
7.4
1028
1028
1028
1028
1028
4.2
4.3
7.6
1.0
4.5
1980
1400
2630
440
1730
7.5
7.7
7.4
7.1
1028
1028
1028
1028
1028
4.4
6.6
38
38
8.0
1770
2390
3200
1600
670
7.7
7.4
7.1
7.7
8.0
1028
1028
1028
1028
1028
64
Table 6. --Chemical analyses of water
LOCAL
IDENTlFIER
DATE
OF
SAMPLE
A-16-28
A-16-29
A-16-30
A-16-30
A-16-30
35DAO
19ADC
14BOO
190BCI
190BC2
75-07-02
75-08-13
75-07-31
47-09-12
75-07-31
A-I7-26
A-17-27
A-17-28
A-I7-28
A-I7-28
13CCO
21CBA
IIACB
130BD
21ACA
75-08-19
75-08-13
75-08-13
75-08-13
75-08-13
A-I7-28
A-17-28
A-I7-28
A-I7-29
31BBC
35BBC
36000
030BB
75-08-13
75-08-13
75-08-13
57-04-28
75-08-20
A-I7-29
A-17-30
A-I7-31
A-18-24
A-18-24
20CDA
33AAB
16DBC
OBAAA
08BCa
75-08-13
49-09-10
75-07-31
75-09-22
71-12-22
A-18-24
A-18-26
A-18-27
A-18-28
A-18-28
09ABB
36AAO
06BCA
18CBB
22ABC
75-09-26
75-08-19
75-08-19
75-08-19
75-08-13
A-18-28
A-18-29
A-18-30
A-IS-30
A-18-31
30BBC
26BOB
04CBC
20COD
16CAC
75-08-13
75-08-12
75-08-12
75-08-12
75-08-12
A-19-24 05CBB
A-19-24 06DC
A-19-24 20BCC
69-05-17
69-03-17
55-07-20
55-07-21
75-06-17
A-19-25 OIAAB
TEMPERATURE
(OEG C)
18.5
20.0
17.0
16.0
18.5
14.5
CALCIUM
OISSOLVED
(MG/L
AS CAl
MAGNESlUM,
015SOLVED
(MG/L
AS MG)
SODIUM,
OISSOLVED
(MG/L
AS NA)
POTASSlUM,
015SOLVED
(MG/L
AS K)
SODIUMt
POTASSlUM
oISSOLVED
(MG/L
AS NA)
BICARBONATE
(MG/L
AS
HC03)
20
4.0
312
262
307
434
450
33
17
18
12
12
20
7.9
21
3.6
3.7
3.3
1.4
2.8
.8
.0
420
68
34
120
87
.7
.9
2.9
.5
.8
661
185
150
176
148
112
0
0
8
18
32
18
20
6.1
20
19
.3
4.6
3.3
130
65
120
1.4
2.2
1.2
21
24
4.4
47
2.3
126
146
288
197
194
43
0
0
0
0
12
12
23
200
15
880
6.4
8.0
45
4.9
190
60
53
160
430
24000
4.8
2.6
37
161
2!0
328
580
530
9
0
0
0
0
0
2
0
0
69
63
.2
100
19
41
2800
230
510
1288
210
26
.5
2.2
1.4
17
7.8
8.3
18.0
16.5
17.0
17.0
20
15
19
17
15
26
2.9
16
7.0
2.8
6.6
.2
2.7
1.7
.0
320
84
87
100
110
1.6
.6
1.8
1.0
.7
526
164
180
179
82
18.5
19.5
19.5
16.0
19
19
26
22
25
23
28
45
37
52
6.0
5.1
5.8
6.2
8.8
29
41
12
20
13
3.2
2.5
2.6
2.6
3.8
138
184
175
170
148
15.0
14.0
15
II
16.0
17
65
23
19
20
25
27
22
39
26
657
49
17.0
16.5
17.0
05ABB
16CCA
30BDO
09AAC
75-06-17
75-06-17
75-06-17
57-05-07
75-08-12
A-19-29
A-19-30
A-20-25
A-20-25
A-20-a5
35COB
18CAB
15BCD
28BAA
32DCC3
75-08-12
75-08-12
75-06-17
75-06-17
69-03-13
21.5
A-20-26
A-20-26
A-20-26
A-20-26
A-20-27
130AC
21DCB
32BOO
34COC
04BCA
75-06-17
75-08-12
75-06-18
50-03-06
75-06-18
16.0
A-20-27
A-20-27
A-20-27
A-20-28
A-20-28
09CAO
24BOAI
36BBB
14AAB
19CAC
A-20-28
A-20-29
A-20-30
A-20-30
A-20-30
A-20-31
A-21-27
A-21-27
A-21-27
20.0
2.8
8.8
368
627
.7
2.2
130
1.6
6.1
4.8
4.8
122
5.6
420
290
290
1.4
3.4
1.9
II
2.3
13
15000
478
318
86
76
257
5.3
5.3
1.1
.9
14
47
IS
340
420
3.6
3.4
1.4
1,4
76
25
5.7
98
69
18
6.3
3.7
15
21
170
260
290
4.3
3.3
2.6
16.0
24
14
19
8.5
16
180
2.6
561
461
619
174
428
75-08-20
75-11-18
75-08-21
75-08-19
75-11-18
17.0
15.5
19.0
15.0
17.5
15
19
7.8
30
20
36
2.8
3.2
42
24
8.1
.4
.3
4.8
2.6
240
73
67
14
34
5.0
1.0
1,2
3.1
3.1
485
189
162
161
167
36AAAI
350CO
03BBB
12ABD
75-08-20
75-11-18
75-08-19
59-04-22
75-11-18
14.5
22.0
1S.5
14.0
26
26
19
28
25
31
43
41
34
34
7.4
3.3
3.5
5.1
3.2
21
16
17
3.2
3.6
3.1
14
1.9
166
178
142
126
121
270BO
29AOC2
25BBDI
25BB02
25CAD
75-11-18
75-11-18
75-11-18
75-11-18
75-11-19
21
24
9.9
II
13
45
48
4.2
6.0
B4
3.6
3.9
.6
1,3
17
8.0
12
440
430
170
1.9
1.8
3.8
6.4
2.7
153
158
1010
930
337
200
4.7
210
126
3.6
A-21-27 25CCA
A-21-27 260BD
A-21-28 HCBC
16.0
16.5
2260
17
75-11-19
56-03-29
75-11-18
69-06-00
74-03-27
20
19
16
100
64
69
78
81
21
19
16
12
II
13
9.0
20
19
12
137
110
92
110
4.0
68
46
36
25
1.0
52
500
140
8.2
20
5.3
15
13
23
3.2
85
32
28
17
15
6.1
2.9
5.0
100
220
61
2.7
9.3
1.7
A-21-28
A-21-28
A-21-28
A-21-28
A-21-28
140AD
140CA
19CCC
200CA
21CAD
55-09-15
75-11-18
75-11-21
75-11-19
56-03-28
A-21-28
A-21-28
A-21-29
A-21-29
24BBC
24CCC
22CCA
240CC
75-11-20
75-08-22
75-08-19
54-11-04
13.0
14.5
211
77
84
618
43
22
0
0
145
157
653
890
530
34
35
4.9
6.9
56
668
0
II
0
0
0
580
723
529
150
179
19
26
15
19
24
16.0
16.0
CARBONATE
(MG/L
AS C03)
210
6.1
400
225
150
10
10
12
15.0
18.0
18.0
A-19-25
A-19-25
A-19-25
A-19-26
A-19-29
04DB~
SILICA,
oISSOLVED
(MG/L
AS
SI02)
850
566
503
204
194
356
361
825
478
1240
296
358
172
146
51
from selected wells--Continued
DATE
Of
SAMPLE
75-07-02
75-08-13
75-07-31
47-09-12
75-07-31
75-08-19
75-08-13
75-08-13
75-08-13
75-08-13
75-08-13
SULfATE
015SOLVED
(MG/L
AS S04)
fLUORIDE.
015SOLVED
(MG/L
(MG/L
AS CL)
AS f)
SOLlDS.
SUM Of
CONSTITUENTS.
015SOLVED
(MG/L)
SOLIDS.
RESIDUE
AT 180
DEG. C
015SOLVED
(MG/Ll
HARDNESS
(MG/L
AS
CAC03)
HARDNESS.
NONCARBONATE
(MG/L
CAC03)
8280
780
530
625
16
0
26
1.0
3600
1400
1700
616
1200
260
81
1.1
.7
3410
3750
1230
1280
540
170
45
1750
7.7
1028
35
3.2
4.2
26
19
9.1
.5
.2
.3
.2
1110
64
26
64
12
9
0
0
0
0
0
93
85
52
95
95
23
5.9
1.9
15
12
1500
8.9
8.3
7.8
8.5
9.3
1028
175
349
246
1100
215
179
354
255
88
41
33
12
9.5
.3
.3
.3
382
264
376
418
262
378
94
66
81
14
3.4
6.7
.5
222
222
16
69
61
85
78
56
2.3
650
420
620
360
360
9.4
16
100
190
207
210
206
56
92
0
0
69
1300
1180
64100
1360
1180
680
420
34
94
95
3.5
2.4
2.7
25
191
974
235
310
314
88
95
78
89
97
15
13
5.3
8.8
18
42
49
16
26
14
1.4
1.9
.4
.8
.4
140
13
10
82
15
13
209
49-09-10
75-07-31
75-09-22
71-12-22
1700
37000
.2
.2
.3
1.5
3.2
75-09-26
75-08-19
75-08-19
75-08-19
75-08-13
210
11
18
17
35
110
19
35
34
22
1.1
1.0
.5
.5
.5
956
233
306
306
296
.3
.2
.2
.2
.3
172
207
197
191
239
580
1.5
1.1
956
1680
32600
51000
42
1.0
607
610
220
1.7
.5
1.6
1200
821
856
1220
774
853
80
.2
200
199
58
6.4
21
20
575
.2
.2
2.7
251
178
916
1090
1980
253
183
55-07-20
610
240
13
11
6.4
9.7
10
176
266
1670
55-07-21
75-06-17
2020
75-06-17
230
65
170
1760
5.7
75-06-17
75-06-17
57-05-07
75-08-12
75-08-12
75-08-12
210
9.6
6.5
6.8
5.2
4.9
5.2
44
114
190
42
79
23900
4.5
75-06-17
75-06-17
69-03-13
200
75-06-17
120
75-08-12
75-06-18
240
93
38
37
59
170
382
4.0
1.9
50-03-06
3720
850
75-06-18
190
62
.5
1.0
.8
.8
.7
75-08-20
75-11-18
200
10
13
6.2
8.4
39
3.1
5.5
8.9
3.3
75-11-18
75-08-19
59-04-22
75-11-18
11
11
12
8.6
7.7
75-11-16
75-11-18
75-11-18
75-11-18
75-11-19
728
817
780
308
172
204
200
190
292
58
0
3000
2500
92
8
51
24
7
82
91
140
120
170
930
1100
625
831
790
120
85
25
19
73
44
99
1.6
1.1
11
3.1
72
1360
1000
2500
1100
2340
8.7
110
31
0
82
63
0
0
44
80
61
2.6
9.3
2.9
910
1150
410
7.4
7.5
.4
.3
2.3
2.3
.7
179
190
1100
190
130
140
75-11-19
56-03-29
75-11-18
69-06-00
3.4
159
220
74-03-27
268
38
45
36
44
48
.4
1.0
.7
.7
.7
807
796
820
565
565
55-09-15
75-11-18
75-11-21
75-11-19
56-03-28
462
250
36
33
64
34
38
.7
.6
.4
.4
986
689
1780
724
30
21
71
110
164
1110
983
763
13
20
280
740
340
238
240
244
264
662
460
380
380
14
270
1028
1028
1028
1028
1028
1028
330
170
0
0
0
7.7
10
47
45
44
120
1028
1028
1028
1160
1250
1110
8.3
6.3
68
61
270
110
1750
1280
1250
59300
360
8.8
8.7
6.8
4.7
5.9
5.9
3.5
2.1
96
75-08-19
54-11-04
410
1580
2930
80300
103000
900
56
66
65
153
75-08-22
315
310
0
0
0
77
110
170
589
696
247
1028
1028
1028
1028
1028
.3
.4
53
42
4.4
120
120
106
574
692
251
7.8
7.4
7.4
7.5
7.1
260
340
12
16
96
97
57
201
.5
1.5
.4
.8
1028
510
500
2
6
0
0
3
213
198
39
10.0
460
.9
.6
.7
.7
.6
191
199
200
179
170
110
18
8.8
1028
1028
1028
370
29
22
23
25
23
.7
.2
.2
.6
.3
75-11-20
7.6
8.4
7.6
8.1
1680
0
0
0
0
0
8.2
5.6
13
15
13
1520
1028
1028
58
86
95
9
9
10
8.0
7.0
90400
0
0
0
164
0
177
190
167
150
170
1028
9902
1028
260
209
640
8.7
7.2
2.0
185
193
181
732
1860
774
340
48
22
98
98
88
29
1028
1028
1650
1700
0
0
0
0
0
207
230
1028
110
110
17
21
196
120
849
8.0
.4
799
776
1028
1028
14
784
1020
3.9
20
12
14
1028
1028
1028
1028
9.7
7.7
7.8
7.7
0
1.2
.7
1.9
.4
.3
75-06-20
92
84
88
410
2020
306
260
7040
57
0
0
0
320
270
560
2140
150
739
75-08-19
75-11-18
0
0
0
0
45
88
97
44
10
31
759
75-08-21
1028·
1028
1028
9902
618
2200
300
500
44
25
5.9
22
3.9
75-08-13
69-03-17
7.9
8.6
7.6
8300
13
69-05-17
(UNITS)
12400
1000
3950
PH
AGENCY
ANALYZING
SAMPLE
(CODE
NUMBER)
2.7
.6
57-04-28
75-08-20
75-08-12
SPECIFIC
CONOUCTANCE
(MICROMHOS)
4300
130
75-08-13
75-08-13
75-08-12
75-08-12
75-08-12
SODIUM
PERCENT
SODIUM
ADSORPTION
RATIO
730
91
14
9,4
33
75-08-13
CHLORIDE.
DISSOLVED
7.2
7.4
1028
480
280
1340
1710
7.9
7.6
1028
1028
3330
8.1
1028
1028
1028
4.6
12
23
1140
11 00
1180
7.9
60
4.9
9490
920
1028
1028
1028
1028
80
94
93
19
50
9.4
11
9.6
.5
1.8
7.2
1028
1028
.6
36
40
1220
1028
300
330
300
280
8.3
7.3
280
290
7.7
300
7.5
7.3
270
290
1028
1028
1028
1026
1026
1028
1028
1028
1028
280
1026
290
1026
1028
1026
1028
1280
1250
1100
909
909
7.8
1028
1028
1028
7.7
9704
7.0
1028
1028
1028
1028
1028
9704
1028
1026
1028
1028
65
Table 7. --Chemical analyses
66
See figure 2 for description of well-numbering and location system.
Geologic unit: 112BLCF, basaltic rocks; 120SDMR, Tertiary sedimentary rocks J
undifferentiated; 121BDHC, Bidahochi Formation; 211SDMR, Upper Cretaceous
local identifier:
sedimentary rocks, undifferentiated; 310KIBB, Kaibab
LOCAL
IDENl1FIEH
DAlE
OF
SAMPLE
GEOLOGIC
UNIT
lEMPERAlURE
IDEG C)
Limestone.
DISSOLVED
SILICA
(5102)
(MG/Ll
OISSOLVED
CALClUM
(CA)
(MG/Ll
DISSOLVtD
MAG-
015SOLVED
SODIUM
(NAi
(MG/Ll
(MG/Ll
6.9
5.3
3.5
8.0
5.4
3.7
3.6
3.7
5.6
3.5
.6
.6
.9
1.6
1.8
64
58
43
79
37
4.0
8.4
7.9
5.1
14
2.8
4.1
3.8
4.8
5.2
1.5
1.4
1.2
1.3
1.6
32
79
74
62
115
6.8
29
54
12
13
1.9
4.2
10
4.3
3.8
106
275
252
137
133
2.9
1.8
2.7
3.5
6.5
212
183
325
259
272
14-0'7-24
74-09-23
74-09-24
74-11-19
74-11-19
112BLCF
112BLCF
1128LCF
112BLCF
112BLCF
8.0
8.0
10.0
8.0
12.0
25
25
23
31
14
11
11
A-09-25
A-O'J-Z'b
A-09-26
A-09-Z6
A-09-27
ctlUAA
0208B
15DAC
20CAA
l!IODD
7.-11-1'7
70-09-24
74-09-24
74-11-20
74-09-24
112BLCF
112BLCF
112BLCF
1128LCF
112BLCF
10.0
20.0
9.0
8.0
10.0
e.1
27
28
14
33
7.5
13
A-09-27
A-09-30
A-I0-28
A-10-2e
A-IO-26
26BBB
21 CUB
03AAD
060AC
O!lOeC
74-12-20
74-12-18
75-01-17
75-01-0b
/!;-01-06
112BLCF
112BLCF
112BLCF
112BLCF
112BLCF
12.0
15.0
17.0
31
28
32
28
26
15
46
42
17
23
11
22
33
12
A-IO-28
A-II-2S
A-II-27
A-1l-27
A-1l-2!l
12CeB
20eCD
OICAB
09DAA
04UBA
15-01-16
15-01-15
75-01-07
75-01-07
75-01-011
211SDMR
112BLCF
112BLCF
112BLCF
I?OSDMR
15.0
7.0
15.0
8.5
7.0
18
19
29
26
18
27
44
41
46
48
14
A-11-28 18BDD
A-12-Z6 10CCB
75-01-07
34-01-04
75-01-15
34-01-04
121BDHC
112BLCF
112BLCF
112BLCF
112BLCF
4.0
30
15.0
29
15.0
29
37
14
14
14
18
A-12-26 19ABA
~1-12-06
10
14
11
17
26
23
19
34
9.4
28
19
30
20
62
lASSLUM
(K)
eICAHeONAll:.
(HC03)
(MG/Ll
414
14!l
164
98
102
69
601
34
8.0
5.0
10
7.8
10
8.7
11
2.9
2.6
2.9
2.9
3.0
100
95
99
101
89
Sol
157
490
574
522
644
27
3.9
9.4
112BLCF
112BLCF
112BLCF
112BLCF
112BLCF
15.0
13.5
15.5
15.0
15.5
23
30
28
27
Co7
13
14
16
14
18
9.1
8.4
8.5
9.0
9.0
75-01-15 112BLCF
75-01-07 121BOHC
7~-09-17 121BDHC
76-04-14 121BDHC
76-09-09 121BDHC
14.0
211
21
20
IS
16
16
15
38
51
49
12
5.0
16
20
22
25
270
320
390
1.2
5.6
6.1
8.4
21
35
20
12
29
26
31
260
260
12
14
5.5
89
87
230
81
57
480
480
4.4
2.9
9.8
25
21
334
220
225
600
611
II
35
12
15
250
49
2.6
1.3
87
8.1
.3
.5
480
140
210
160
20
1.2
1.4
.9
617
322
399
373
66-08-16
74-01-16
75-11-20
76-04-16
76-09-08
A-12-20 26UBB
A-12-27 14CBD2
A-13-27 13A SPHGS E OF B
11
1'0-
DISSOLVED
SODIUM
PLUS
"'OlASSlUM
(MG/Ll
SlUM
(MG)
(MG/Ll
Nt:.-
A-oe-26 058C8
A-08-~6 cSAAA
A-08-27 07CAC
A-09-25 02UC8
A-09-2S 20AUC
8.8
14
8.5
OISSOLVED
A-l3-27 13CDC
A-l3-27 neDe
A-13-2'J ZOC
A-14-26 10CDC
75-02-ll
75-02-07
75-03-18
75-03-17
75-09-12
121BDHC
112BLCF
121BDHC
310KIBB
310KIBB
A-14-26 10COC
A-20-27 261lCB
A-20-27 29DBD
'16-04-14
75-11-18
75-08-21
75-11-19
310KIBB
121BDHC
121BDHC
121BDHC
18.0
14.5
22.0
16.0
14.5
15.0
16.0
17.0
25.0
25.0
11
3~0
67
of water from selected springs
Specific conductance:
Code
CAH«;03)
",bill
36
39
agency
analyzing
are in micromhos
sample:
1028,
per
U.S.
DISSODIUM
AUSORPTION
RATIO
centimeter
Geological
SPECIFIC
CONDUCTANCE
(MICROMHOS)
at
25° Celsius.
Survey.
CODE
fOR
AGENCY
ANALYZING
SAMPLE
(MG/Ll
SULIDS
(RtSIDU~ AT
180 C)
(M(,/Ll
HARDNESS
(CA,MG)
(MG/Ll
NONCAR1l0NATE
HARDNE:'S
(MG/Ll
.0
.0
.0
.1
01
84
82
70
111
71
71
70
63
108
83
56
49
36
68
43
3
2
1
3
13
12
14
18
15
14
.2
.2
.3
.2
110
110
85
153
III
2.3
2.3
.3
.0
.0
01
.0
56
101
96
73
134
75
88
83
76
112
35
67
60
46
93
9
2
0
0
0
14
11
12
18
11
.2
.2
.2
.3
.2
86
140
130
III
200
601
20
41
5.4
5.4
2.6
25
20
3.5
3.1
01
.4
1.0
.2
.2
128
311
395
156
154
123
312
357
142
141
83
210
240
92
100
15
23
32
21
21
.3
.9
1.5
.5
.6
188
532
500
244
230
8.2
42
9.9
21
100
5.b
18
7.8
15
13
1.7
.4
.5
.3
2.1
212
254
308
285
404
198
253
292
277
402
130
180
210
210
200
0
30
0
32
19
23
17
40
101
.6
.9
.6
1.9
350
424
400
440
650
7.9
8.3
8.2
24
5.0
8.8
2.0
301
23
2.0
.8
.0
.2
.6
.2
433
135
188
91
118
415
230
72
74
72
84
0
0
0
0
0
38
2.0
700
7.8
48
1.7
282
7.9
4.0
4.5
7.7
5.5
15
... 5
116
119
128
126
142
109
138
ilS
153
70
70
75
72
82
0
0
0
0
9
23
19
22
20
22
.5
.4
.5
.4
.5
178
172
170
180
178
7.2
8.1
J.6
5.!>
13
.0
.0
.2
.3
01
1028
1028
1028
1028
1028
6.3
200
2bO
J70
350
6.0
21
78
110
120
.3
2.0
3.2
2.4
2.6
179
790
1030
1180
1280
165
791
995
1220
1280
89
58
160
210
210
36
91
81
78
79
1.2
15
11
11
12
272
1200
1450
2000
1800
8.1
8.3
7.4
1028
1028
1028
1028
1028
210
J5
J2
600
680
74
27
13
6bU
670
2.6
1.2
.2
.5
1.8
759
374
293
2420
2510
756
363
299
2390
2260
120
120
100
1000
1000
0
0
0
520
510
80
58
52
50
50
9.1
3.2
2.5
6.6
6.6
1200
510
400
3400
3900
8.3
7.9
1028
1028
1028
1028
1028
570
43
45
40
b50
lUO
12
9.8
1.9
1.3
101
.9
2370
538
523
413
2490
514
446
393
980
160
8
5
480
0
0
51
66
98
98
6.7
4.9
33
30
3500
800
780
780
DIS~ONAT~
DISSOLVED
SOLIDS
(~UM Of
CONSTITUENIS)
for
Values
lJIS50LVED
SULFATE
(S04)
(MG/Ll
CHLOKIDE
(CLl
(Mu/Ll
DISSOLVED
fLUOHIDE
(f)
(MG/L)
4.0
4.6
6.3
8.5
12
1.4
1.5
1.6
2.7
7.U
12
5.2
Sol
4.3
6.1
1.9
1.b
SOLV~U
l.~
5.0
3.0
3.U
3.~
~OLVED
181
0
0
0
PtKCENT
~ODIUM
03
PH
(UNITS)
1028
1028
1028
1028
1028
7.5
1028
1028
1028
1028
1028
174
9
1028
1028
1028
1028
1028
6.5
8.5
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
1028
68
Table 8. --Chemical analyses of water
[Agency analyzing sample (code number):
DATE
TEMPERATURE,
WATER
(DEG C)
SILICA,
DISSOLVED
(MG/L
AS
SI02)
341730109191200 JAN, 1975
16...
1.0
343922109495600 FEB, 1975
13...
2.0
341616109212400 FEB, 1975
13...
NOV
19...
2.0
FEB, 1975
13...
7.0
NOV
16...
40,0
343025109212500 FEB, 1975
13...
10.0
NOV
20...
4.5
340518109244200 -
17...
34
6.7
190
78
POTASSIUM,
DISSOLVED
(MG/L
AS K)
240
550
LCR AT RICHEY RCH NR SPRINGERVILLE ARIZ
22
BICARBONATE
(MG/L
AS
HC03)
CARBONATE
(MG/L
AS C03)
SULFATE
DISSOLVED
(MG/L
AS S04)
CHLORIDE,
DISSOLVED
(MG/L
AS el)
2.2
305
500
36
SITE32 (L4T 34 39 22 LONG 109 49 56)
22
SITE14
990
295
(L~T
550
34 18 t6 LONG 109 21 24)
44
21
36
2.1
301
19
1&
57
26
45
3.3
367
18
16
LCR BEL BECKER LK NR SPRINGERVILLE ARIZ
SITE 8 (LAT 34 09 44 LONG 109 18 06)
20
40
18
34
1.8
275
22
49
19
36
1.8
283
LCR BEL HIGHWAY AT ST JOHNS ARIZ
11
21
13
9.9
12
SITE23 (LAT 34 30 25 LONG 109 21 25)
16
190
58
360
27
390
660
420
17
170
52
320
24
261
560
360
LCR BEL S FK NR SPRINGERVILLE ARIZ
20
19
7.0
19
19
7.4
8.7
10
LCR BEL SALADO SP NR ST JOHNS ARIZ
SITE
(LAT 34 05 18 LONG 109 24 42)
1.7
100
5.2
3.0
1.9
109
9.8
&.3
SITE18 (lAT 34 2& 00 LONG 109 22 40)
7.0
17
240
59
370
2&
519
660
410
7.0
17
200
51
330
2&
443
540
350
1.0
340834109170000 FEB, 1975
13...
10.0
NOV
17...
7.0
340528109120900 FEB, 1975
13...
54
1.0
343618109292200 FEB, 1975
13...
SODIUM,
DISSOLVED
(MG/l
AS NA)
COYOTE CREEK AB DIV NR MOUTH (LAT 34 17 30 LONG 109 19 12)
7.0
342600109224000 FEB, 1975
13...
NOV
19...
MAGNESIUM,
DISSOLVED
(MG/l
AS MG)
LCR AT APACHE-NAVAJO CO lINE ARIZ
6.0
340944109180600 -
FEB, 1975
13...
NOV
17
CALCIUM
DISSOLVED
(MG/L
AS CAl
4.0
LCR BEL ZION RES NR ST JOHNS ARIZ
10
210
98
650
NUTRIOSO CR AT MOUTH SPRINGERVILLE ARIZ
SITE26 (LAT 34 3& 18 LONG 109 29 22)
360
27
1?00
&60
SITE 6 (LAT 34 08 34 LONG 109 17 00)
24
45
21
41
1.0
295
27
24
25
53
20
38
.6
290
17
20
NUTRIOSO CR BEL CORREJO XING
ARIZ
56
36
15
18
SITE 4 (lAT 34 05 28 LONG 109 12 09)
1.2
310
19
19
69
from selected streamflow sites
1028,
u.s.
DATE
Geological
FLUORIDE,
DISSOLVED
(MG/L
AS F)
Survey]
SOLIDS,
SI1M OF
CONSTITUENTS,
DISSOLVED
(MG/L)
341730109191200 JAN, 1975
16 •••
.3
343922109495800 FEB, 1975
13...
1.6
341816109212400 FEB, 1975
13 •••
NOV
19 •••
17 •••
17 •••
2590
13
800
SODIUM
ADSORPTION
RATIO
SPECIFIC
CONDUCTANCE
(MICROMHOS)
PH
(UNITS)
AGENCY
ANALYZING
SAMPLE
(CODE
NUMBER)
.4
1500
65
1028
SITE32 (LAT 34 39 22 LONG 109 49 58)
550
LCR AT RICHEY RCH NR SPRINGERVILLE ARIZ
200
o
LCR BEL BECKER LK NR SPRINGERVILLE ARIZ
8.5
3800
1028
STTE14 (LAT 34 18 16 LONG 109 21 24)
29
1.2
500
1028
28
1.2
610
1028
SITE 8 (LAT 34 09 44 LONG 109 18 06)
.3
274
273
170
30
1.1
460
1028
.4
315
322
200
28
1.1
500
1028
LCR BEL HIGHWAY AT ST JOHNS ARIZ
SITE23 (LAT 34 30 25 LONG 109 21 25)
2.2
1970
2000
710
390
53
6.2
3000
1028
2.0
1640
1700
&40
420
51
5.5
2500
1028
LCR BEL S FK NR SPRINGERVILLE ARIZ
.2
114
106
7&
.2
128
136
78
SITE
o
o
LCR BEL SALADO SP NR 5T JOHNS ARIZ
(LAT 34 05 18 LONG 109 24 42)
19
.4
185
1028
21
.5
170
1028
SITE18 (LAT 34 2& 00 LONG 109 22 40)
C!.3
2040
20&0
840
420
48
5.5
3100
1028
2.0
1740
1710
710
350
49
5.4
2500
1028
1.8
LCR BEL ZION RES NR ST JOHNS ARIZ
3030
3090
930
SITE26
630
NUTRIOSO CR AT MOUTH SPRINGERVILLE ARIZ
60
(L~T
9.3
34 3& 18 LONG 109 29 (2)
4200
1028
SITE 6 (LAT 34 08 34 LONG 109 17 00)
.6
330
338
200
31
1.3
530
1028
.4
318
328
210
28
I. I
550
1028
340528109120900 FEB, 1975
13 •••
2540
250
340834109170000 FEB, 1975
13 •••
NOV
SODIUM
PERCENT
LCR AT APACHE-NAVAJO CO LINE ARIZ
377
343618109292200 FEB , 1975
13...
270
312
342600109224000 FEB, 1975
13...
NOV
19...
1020
303
340518109244200 FEB, 1975
13 •••
NOV
HARDNESS,
NONCARBONATE
(MG/L
CAC03)
COYOTE CREEK AB DIV NR MOUTH (LAT 34 17 30 LONG 109 19 12)
380
343025109212500 FEB, 1975
13...
NOV
20...
(MG/Ll
HARDNESS
(MG/L
AS
CACU3)
.4
340944109180600 FEB, 1975
13 •••
NOV
18 •••
1040
SOLIDS,
RESIOUE
AT 180
DEG. C
DISSOLVED
.3
NUTRIOSO CR BEL CORREJO XING
320
326
210
ARIZ
SYTE 4 (LAT 34 05 28 LONG 109 12 09)
o
28
1.1
540
1028
70
Table 8.--Chemical analyses of water from
TEMPERATURE,
WATER
(DEG Cl
DATE
341717109220300 FEB , 1975
13 •••
NOV
18 ...
SILICA,
DISSOLVED
(MG/L
AS
5102)
CALCIUM
015SOLVED
(MGiL
AS CAl
MAGNESlUM,
015SOLVED
(MG/L
AS MGl
SODIUM,
015SOLVED
(MG/L
AS NA)
POT ASSlUM,
015SOLVED
(MG/L
AS Kl
BICARBONATE
(MG/L
AS
HC03)
CARBONATE
(MG/L
AS C03)
SULFATE
OlSSOLVED
(MG/L
AS 504)
CHLORIDE,
DISSOLVED
(MG/L
AS CL)
VIGIL RUN BEL HIWA NR SPRINGERVILLE ARIZ SITE11 (LAT 34 17 17 LONG 109 22 03)
2.5
22
40
23
25
&.5
2&5
16
7.0
22
34
24
26
9.6
274
14
9.9
12
342&00109224001 - A-12-28 I&DDC LCR BLW SALADO SPRGS (LAT 34 26 00 LONG 109 22 40)
FEB , 1975
7.0
13 •••
SEP
15 ...
23.5
NOV
19 •••
7.0
APR , 1976
14.5
15 ...
SEP
10 ...
17.5
APR , 1977
15.0
06 •••
SEP
20 •••
17.0
17
240
5'1
370
26
519
660
410
1&
190
44
270
20
451
17
200
51
330
26
443
16
210
60
340
23
486
';50
380
17
130
3&
200
15
388
320
200
18
220
58
3&0
22
450
18
250
59
370
27
340
0
0
470
310
540
350
660
390
800
400
342453109241001 - A-12-28 29BAD LCR ABV SALAOO SPRGS (LAT 34 24 53 LONG 109 24 10)
SEP , 1975
\5 ...
NOV
19 ...
APR , 1970
15 ...
SEP
10 ...
APR , 1977
06 •••
SEP
20 •••
150
23.5
14
100
31
150
11
304
230
5.0
17
150
40
200
14
332
310
190
442
440
260
2B6
130
67
10.0
16.5
14.5
16.0
16
17
17
17
160
68
1&0
170
54
250
24
81
52
55
250
240
1&
7.0
15
450
420
240
17
390
400
250
560
370
342804109212400 - LCR ABV ST JOHNS DIV (LAT 34 28 04 LONG 109 21 24)
NOV , 1975
19 ...
6.5
17
190
53
320
24
325
341208109175500 - LCR AT CLINTON SLADE RANCH FORD (LAT 34 12 08 LONG 109 17 55)
NOV , 1975
18 ••
~
4.5
23
57
22
47
3.2
371
14
1&
343230109221000 - LCR AT COUNTY BRDG N OF ST JOHNS (LAT 34 32 30 LONG 109 22 10)
NOV , 1975
20 •••
2.0
17
190
50
320
23
396
550
350
71
selected streamflow sites--Continued
DATE
FLUORIDE,
DISSOLVED
(MG/L
AS F)
SOLIDS,
SUM OF
CONSTITUENTS,
DISSOLVED
(MG/L)
SOLIDS,
RESIDUE
AT 180
DEG. C
DISSOLVED
(MG/Ll
HARDNESS
(MG/L
AS
CAC03)
HARDNESS,
NONCARBONATE
(MG/L
CAC03)
SODIUM
PERCENT
SODIUM
ADSORPHON
RATIO
SPECIFIC
CONDUCTANCE
(MICROJ.lHOS)
PH
(UNITS)
AGENCY
ANALYZING
SAMPLE
(CODE
NUMBER)
342314109235300 - LCR AT EL TULE (LAT 34 23 14 LONG 109 23 53)
NOV , 1975
19 •••
1.7
84&
7&&
430
160
41
2.9
1300
1028
340615109203300 - LCR AT HIWAY 273 (LAT 34 06 15 LONG 109 20 33)
NOV , 1975
17 •••
.2
148
130
110
15
.4
220
1028
340848109173700 - LCR AT HIWAY 666 (LAT 34 08 48 LONG 109 17 37>
NOV , 1975
17 •••
.3
266
265
190
22
.8
430
1028
341110109181200 - LCR AT HOOPER RANCH RD CROSSING (LAT 34 11 10 LONG 109 18 12)
NOV , 1975
18 •••
.4
330
321
220
0
29
1.2
520
1028
342453109241000 - LCR AT L. HALLS (LAT 34 24 53 LONG 109 24 10)
NOV , 1975
19 •••
l.b
1090
1130
540
270
44
3.7
1700
1028
342925109212100 - LCR AT LITTLE RES. (LAT 34 29 25 LONG 109 21 21)
NOV , 1975
20 •••
1.9
1750
1730
690
460
51
5.6
1028
2500
341706109210600 - LCR AT SHERWOOD CROSSING (LAT 34 17 06 LONG 109 21 06)
NOV , 1975
18 •••
.5
364
366
240
28
1.2
1028
570
340747109174500 - LCR BEL BECKER LK DIV (LAT 34 07 47 LONG 109 17 45)
NOV , 1975
18 •••
.3
243
238
170
0
23
.8
1028
380
340225109180300 - WATER CANYON AT ELDERBERRY SPRING, ARIZ. (LAT 34 02 25 LONG 109 18 03)
AUG , 1974
14 •••
.1
154
152
110
0
17
.4
250
7.9
1028
72
Table 8. --Chemical analyses of water from
DATE
TEMPERATURE,
WATER
CDEG C)
SILICA,
DISSOLVED
(MG/L
AS
5102)
CALCIUM
DISSOLVED
(MG/L
AS CAl
MAGNESlUM,
DISSOLVED
(MG/L
AS MG)
SODIUM,
DISSOLVED
CMG/L
AS NA)
POTASSlUM,
DISSOLVED
(MG/L
AS K)
BICARBONATE
CMG/L
AS
HC03)
CARBnNATE
(MG/L
AS C03)
SULFATE
OlSSOLVED
(MG/L
AS S04)
CHLORIDE,
015-
SOLVED
(MG/L
AS CLl
342314109235300 - LCR AT EL TULE CLAT 34 23 14 LONG 109 23 53)
NOV , 1975
19 •••
6.0
15
120
32
140
11
336
240
120
340615109203300 - LCR AT HIWAY 273 (LAT 34 06 15 LONG 109 20 33)
NOV , 1975
17 ...
7.5
20
28
9.9
9.5
2.1
140
5.8
2.4
6.5
3.9
340848109173700 - LCR AT HIWAV 666 CUT 34 08 48 LONG 109 17 371
NOV , 1975
17 ...
5.5
23
49
16
25
1.6
284
341110109181200 - LCR AT HOOPER RANCH RD CROSSING CLAT 34 11 10 LONG 109 18 12)
NOV , 1975
18 ...
4.5
22
55
20
41
2.2
336
11
12
310
190
610
370
19
17
342453109241000 - LCR AT L. HALLS CUT 34 24 53 LONG 109 24 10)
NOV , 1975
19 ...
5.0
17
150
40
200
14
332
342925109212100 - LCR AT LITTLE RES. CLAT 34 29 25 LONG 109 21 21)
NOV , 1975
20 •••
3.5
17
190
53
340
24
282
341706109210600 - LCR AT SHERWOOD CROSSING CLAT 34 17 06 LONG 109 21 06)
NOV , 1975
18 ...
5.5
21
53
26
44
3.3
365
340747109174500 - LCR BEL BECKER LK DIV CUT 34 07 47 LONG 109 17 45)
NOV , 1975
18 ...
1.5
22
44
14
23
1.6
259
6.7
3.2
340225109180300 - wATER CANYON AT ELDERBERRY SPRING, ARIZ. (UT 34 02 25 LONG 109 18 03)
AUG , 1974
14 ...
16.0
25
27
9.6
10
2.0
146
5.3
2.7
73
selected streamflow sites--Continued
DATE
FLUORIDE,
DISSOLVED
(MG/L
AS F)
341717109220300 FEB , 1975
13 •••
SOLIDS,
SUM OF
CONSTITUENTS,
DISSOLVED
(MG/Ll
SOLIDS,
I?ESIDUE
AT 180
DEG. C
DISSOLVED
(MG/LJ
HARDNESS
(MG/L
AS
CAC03)
HARDNESS,
NONCARBONATE
(MG/L
CAC03)
SODIUM
PERCENT
SODIUM
ADSORPTION
RATIO
SPECIFlC
CONDUCTANCE
(MICROMHOS)
PH
(UNITS)
AGENCY
ANALYZING
SAMPLE
(CODE
NUMBER)
VIGIL RUN BEL HIWA NR SPRINGERVILLE ARIZ SITE11 (LAT 34 17 17 LONG 109 22 03)
.3
274
258
190
.4
278
2&5
180
0
21
.8
350
1028
22
.8
450
1028
NOV
18 •••
342&00109224001 - A-12-28 I&DDC LCR BLW SALADO SPRGS (LAT 34 2& 00 LONG 109 22 40)
FEB , 1975
13 •••
SEP
15 •••
2.3
2040
2060
840
420
48
5.5
3100
7.6
2.0
1540
1550
&&0
290
4&
4.6
2250
7.1
2.0
1740
1710
710
350
49
5.4
2500
1028
1.9
1820
1930
710
370
48
5.3
2&00
1028
1.5
1110
1150
470
150
47
4.0
1&20
1028
2.3
1950
2000
790
420
49
5.&
2750
7.4
1028
2.3
2090
1990
870
590
47
5.5
3000
7.7
1028
1028
1028
NOV
19 ...
APR , 197&
15 ...
SEP
10 ...
APR , 1977
06 •••
SEP
20 ...
342453109241001 - A-12-28 29BAD LCR ABV SALADO SPRGS (LAT 34 24 53 LONG 109 24 10)
SEP , 1975
15 ...
NOV
19 ...
APR , 197&
15 •••
SEP
10 ...
APR , 1917
06 •••
SEP
20 •••
1.4
838
813
380
130
45
3.4
1220
1.&
1090
1130
540
270
44
3.7
1700
1028
2.0
1420
1470
&20
260
46
4.4
2100
1028
.9
536
522
270
34
39
2.2
840
1026
2.0
1380
1460
&10
250
4&
4.4
1990
7.5
1028
1.9
1340
1370
650
330
44
4.1
3000
8.0
1028
7.4
1028
342804109212400 - LCR ABV ST JOHNS DIV (LAT 34 28 04 LONG 109 21 24)
NOV , 1975
19 ...
2.2
1700
1700
690
430
49
5.3
2500
1028
341208109175500 - LCR AT CLINTON SLADE RANCH FORD (LA T 34 12 08 LONG 109 17 55)
NOV , 1975
18 •••
.4
3&&
375
230
0
30
1.3
&00
1028
343230109221000 - LCR AT COUNTY BRDG N OF ST JOHNS (LAT 34 32 30 LONG 109 22 101
NOV , 1975
20 •••
1.8
1700
1800
&80
360
50
5.3
2&00
1028
74
Table 9.--Modified drillers' logs of selected wells
Depth
(feet)
(A-5-30)3dba
QUATERNARY:
Surficial material:
Topsoil and fill ......................... .
TERTIARY:
Sedimentary rocks (undifferentiated):
Sandstone, light-brown ................. .
Red sandstone and
168
layers of shale ...................... .
Sandstone, red ......................... .
Sandstone, light-gray;
with water-bearing
fractures .......... .................. .
176
64
70
240
310
10
320
5
(A-5-30)11 ace
QUATERNARY:
Surficial material:
Topsoil ................................. .
TERTIARY:
Sedimentary rocks (undifferentiated):
Conglomerate . .......................... .
Sandstone ............. ................. .
tan; little water at 42 feet .. .
reddish ..................... .
red; plenty of water at
............................. .
37
46
19
21
58
104
31
135
Sandstone and shale .................... .
Sandstone, brown,fine, with some shale .. .
Sandstone, yellow, hard ................ .
Datil Formation:
Andesite member:
Andesite ............................... .
Sedimentary member:
Sandy shale ............................ .
90
40
5
260
300
305
167
472
23
495
60
80
170
250
27
277
3
2
280
282
100
20
30
10
60
340
360
390
400
460
26
486
Conglomerate . .......................... .
2
12
Sandstone,
Sandstone,
Sandstone,
127 feet
14
2
(A-5-30)13cdc
QUATERNARY:
Surficial material:
Topsoil and subsoil .....................
Sandy clay .............................
TERTIARY:
Sedimentary rocks (undifferentiated):
Sandstone ..............................
Sandstone with some shale ..............
.
.
10
8
10
18
.
.
102
50
120
170
(A-5-30)13dbc
QUATERNARY:
Surficial material:
Topsoil ................................. .
TERTIARY:
Sedimentary rocks (undifferentiated):
Sandstone, hard; half a gallon per
minute of water at 15 feet ........ .. ..
Sandstone, soft ........................ .
5
95
10
100
110
Sandy shale ............................ .
Sandstone .. ............................ .
Datil Formation:
Andesite member:
Andesite ............................... .
Andesite, fractured; 21 gallons per
minute of water ..................... .
Andesite ............................... .
(A-5-30)13ddd
QUATERNARY:
Surficial material:
Topsoil and subsoil ..................... .
TERTIARY:
Sedimentary rocks (undifferentiated):
Sandstone ................... ........... .
Sandstone and shale .................... .
DatIl Formation:
Andesite member:
Andesite ............................... .
10
10
50
110
60
170
70
240
Sedimentary member:
Sandstone ........ ...................... .
Shale .................................. .
Sandstone, hard ....................... .
Shale .................................. .
Sandstone .............................. .
Sandy shale; formation is water bearing
from 240-486 feet; water under
artesian pressure and stands at
172 feet in well ...................... .
(A-5-30)14daa
QUATERNARY:
Surficial material:
Soil, black ............................. .
TERTIARY:
Sedimentary rocks (undifferentiated):
Sandstone, brown ...................... .
Clay, pink ............................. .
Clay, brown ........................... .
Sandstone, brown, with thin streaks
of clay approximately 2 inches thick ..
Sandstone, brown ...................... .
Clay, reddish-brown ................... .
Sandstone, brown, with some clay
seams ......................... ...... .
2
2
79
13
4
81
94
98
62
45
2
160
205
207
47
254
Hard black rOck ........................ .
Sandstone, dark-brown ................. .
Light-brown rock, fractured;
water ... ............................ .
Andesite, dark-brown .................. .
Sandstone, red and brown ............. .
4
14
258
272
13
50
30
285
335
365
Datil Formation:
Andesite member:
Andesite, brown ....................... .
Andesite, brown, interbedded with
green stone and brown rock ......... .
Andesite, fractured; water ............. .
Andesite, brown, hard ................. .
18
383
12
3
42
395
398
440
16
1
96
97
2
99
12
111
14
125
(A-6-28)30cad
QUATERNARY:
Surficial material:
Soil .....................................
QUATERNARY AND TERTIARY:
Basaltic rocks:
Basalt, weatheredi show of water at
20 feet ...... .........................
Cinders and clay, red, weathered .......
Welded black cinders, soft streaks;
possible increase in water at 70 to
80 feet .............................. .
10
10
16
24
26
50
30
80
Basalt, welded cinders ..................
Clay, dark-gray ........................
Welded cinders,
possible fractured
basalt . ...............................
Cinders, redi estimate 30
to 35 gallons per minute
of water .............................
Clay, red, tighti blew
1 hour at 30 to 35
gallons per minute ...................
75
Table 9. "-Modified drillers' logs of selected wells--Continued
Depth
(feet)
(A-6-28)30dcc
QUATERNARY:
Surficial material:
Soil ............. , .....................•.
4
Basalt, fractured, weathered;
measured discharge at 85
feet about 20 gallons
per minute •...•......................
Cinders, welded ........................ .
Basalt .........................•.•...•...
Cinders, weathered with clay streaks
and some basalt splits ............... .
4
QUATERNARY AND TERTIARY:
Basaltic rocks:
Basalt, very fine grained i seep of
water at 6 feet ...................... .
Clay with weathered cinders ............ .
Basalt, fractured; water at 20 and 22
feet ................................. .
We~thered ci.nders; possible slight
Increase In water .....•...............
Basalt, fractured ....................... .
Black cinders over red clay; estimate
10 gallons per minute .............. ..
9
2
13
15
24
39
5
24
44
68
15
5
13
85
90
103
35
138
TERTIARY:
70
Sedimentary(?) rocks (undifferentiated):
Pumice, white, appears
to drill blind as the
pumice floats ........................ .
Red cinders, sand, and reworked
material .••....••..•...............•..
44
182
43
225
(A-6-29)1bba
QUATERNARY:
Surficial material:
Topsoil .............••.......•...........
Sandstone with clay ........•.....•.•....
Conglomerate;
hit more water ....•...........••.....
11
32
4
21
53
Clay ...........•..........•..•.....••...
7
60
17
Sandstone with gravel
and small layers
of clay ..•.....•......•..•••.•.•......
55
115
30
35
47
82
85
TERTIARY:
Datil Formation:
Sedimentary member:
Dark clay and gravel, soft; hit water
at 5 feet •.•..........................
21
(A-6-30)6Waab
QUATERNARY:
TERTIARY:
Surficial material:
Topsoil and rocks ....••.......•.........
5
Datil Formation:
Sedimentary member:
Sandstone, whitish; hit water at 32 feet.
Sandstone, reddish f more water
at 77 feet ..•....................•....
Sandstone, whitish ...•...•••...••.....••
3
(A-6-30)6Wbbb
QUATERNARY:
TERTIARY:
Datil Formation:
Sedimentary member:
Sandstone, soft •.....•....••.....•....••
Gravel and rocks; hit water at 39 feet ..
Sandstone .............................. .
Surficial material:
Topsoil •..........••............•...•..••
6
64
29
35
41
105
118
130
8
30
70
100
219
220
151
168
6
(A-7-27)14acc1
QUATERNARY AND TERTIARY:
QUATERNARY:
Surficial material:
Soil .....•.....•.........................
Clay .....••..........•......•••..•......
3
9
3
12
Basaltic rocks:
Malpais; started encountering water at
80 feet ...•...•.....•.••..•...••....•.
(A-7-27)14acd1
TERTIARY:
QUATERNARY:
Surficial material:
Soil and bou Iders .•......•.....•........
Sedimentary rocks (undifferentiated):
3
QUATERNARY AND TERTIARY:
Basaltic rocks:
Malpais ............•••....••.•...•••.....
59
Shale .....••.........•....•.............
Sandstone ....................•••.•..•...
62
(A-7-27)14bdb
TERTIARY:
QUATERNARY:
Sedimentary rocks (undifferentiated):
Sandrock l light-brown, medium-brittle;
1.5 to 2 gallons per minute from
150 to 152 feet; 6 to 7 gallons per
minute from 162 to 170 feet; water
rises to depth of 120 feet .......... ..
Surficial material:
Topsoil •.•.............•.......•........•
(A-7-28)6dac
TERTIARY:
QUATERNARY:
Surficial material:
Soil ...............•.........•...........
Swamp bog ...•..........................
3
14
3
17
Sedimentary rocks (undifferentiated):
Sandstone with shaly sandstone;
started hitting water at 55 ft ....•....
76
Table 9. --Modified drillers' logs of selected wells--Continued
Depth
(feet)
(A-7-28)6dbb1
QUATERNARY:
Surficial material:
TERTIARY:
Surface soil ............................ .
4
4
31
35
Sedimentary rocks (undifferentiated):
QUATERNARY AND TERTIARY:
Shale, sandy ........................... .
Sandstone .............................. .
Basaltic rocks:
Malpais ................................. .
Sandy shale ............................ .
90
9
21
125
134
155
Basalt, black ........................... .
Cinders, black ......................... .
Basalt . ................................. .
32
2
3
110
112
115
(A-7-30)11ddc
QUATERNARY:
Surficial material:
Alluvi4mi topsoil ....................... .
4
4
31
3
10
2
25
3
35
38
48
50
75
78
QUATERNARY AND TERTIARY:
Basaltic rocks:
Basalt rock, black ..................... .
Cinders, red ........................... .
Basalt, reddish ........................ .
Cinders, black ......................... .
Basalt, black ........................... .
Cinders, red ........................... .
TERTIARY:
Sedimentary(?) rocks (undifferentiated):
Pink sandy clay ........................ .
Pink sandy clay and gravel;
water ............................... .
Pink sandy clay and gravel;
lots of water .. ...................... .
Basalt rock ............................ .
5
120
5
125
5
10
130
140
(A-7-30)16cab
QUATERNARY:
Gravelly clay and sand ................. .
Surficial material:
Loam ................................... .
3
5
Gravelly clay .......................... ..
35
42
TERTIARY:
Datil Formation:
Sedimentary member:
Gravelly clay ...................... ..... .
27
30
Sandy clay ............................. .
28
70
Hard clay ............................. ..
23
93
40
50
50
100
4
32
50
24
4
6
17
42
74
124
148
152
158
175
31
22
38
60
43
3
65
68
5
29
24
14
73
102
126
140
135
190
(A-7-30)16dbb1
QUATERNARY:
TERTIARY:
Surficial material:
Topsoil ................................. .
10
10
Datil Formation:
Sedimentary member:
Streaks of sand and gravel and claYi
water from 21 to 50 feet ....... ...... .
Streaks of clay and sandstone .......... .
(A-7-30)20bbb
Rocks; water at 41 feet ................ .
Conglomerate ......... .................. .
Sandstone .............................. .
Brownish sticky clay ................... .
Brownish sticky clay with crystals ..... .
Reddish clay ........................... .
Sandstone, coarse ...................... .
QUATERNARY:
Surficial material:
Topsoil; dirt and rocks
22
22
16
38
TERTIARY:
Datil Formation:
Sedimentary member:
Gravel and clay ........................ .
(A -7 -30 )32bcc
TERTIARY:
QUATERNARY:
Surficial material:
Topsoil ................................. .
7
7
Datil Formation:
Sedimentary member:
Gravel, rocks and clay; water at
9 feet ............................... .
Sandstone .............................. .
(A-7-30)32cba
Sandstone .............................. .
Sticky clay ............................. .
Gravel and rocks; little water at
69 feet .............................. .
Sandstone, gray ....................... .
Sandstone, reddish ..................... .
Sandstone, gray ....................... .
QUATERNARY:
Surficial material:
Topsoil with clay ....................... .
TERTIARY:
Datil Formation:
Sedimentary member:
Clay ................................... .
14
22
(A-8-27)26cdc
TERTIARY:
QUATERNARY:
Surficial material:
Surface with boulders .................. .
2
2
53
55
QUATERNARY AND TERTIARY:
Basaltic rocks:
Malpais ................................. .
Sedimentary rocks (undifferentiated):
Sand and sandy shale;
started into water
at 160 feet .......................... .
77
Table 9. --Modified drillers' logs of selected wells--Continued
Depth
(feet)
(A-8-27)26dcd1
QUATERNARY:
TERTIARY:
Surficial material:
Soil .................................... .
Sedimentary rocks (undifferentiated):
QUATERNARY AND TERTIARY:
Basaltic rocks:
Malpais ................................. .
47
Gravel and
coarse sand ......................... .
55
65
120
18
35
180
215
14
12
73
18
30
103
30
330
30
360
50
30
10
60
90
100
16
160
157
70
317
387
(A-8-27)35baa
QUATERNARY:
QUATERNARY AND TERTIARY:
Basaltic rocks:
Cinders ............................ .... .
Surficial material:
TERTIARY:
Overburden .................... ........ .
Clay ................................... .
3
14
3
17
Sedimentary rocks (undifferentiated):
Sandstone with shale streaks ........... .
(A-8-28)17bdc
QUATERNARY:
TERTIARY:
Surficial material:
Topsoil ................................. .
4
4
Datil Formation:
Sedimentary member:
Clay with gravel ....................... .
Gravel and sandi water bearing ........ .
Sandy clay, gray ...................... .
(A-8-29)3bba
Blue clay with patches
of gray rock;
some water here ..................... .
Sandstone, gray;
water bearing;
main aquifer; hit
yellowish clay at
360 feet ............................. .
TERTIARY AND CRETACEOUS:
Eagar Formation of Sirrine (1958):
Clay, red .............................. .
Sandstone, red, tUrns lighter in color
with depth i some water ............. .
90
90
130
220
80
300
UPPER CRETACEOUS
Sedimentary rocks (undifferentiated):
Clay, blue ............................. .
(A -8-29 )3cdd
TERTIARY AND CRETACEOUS:
QUATERNARY:
Surficial material:
Sandy topsoil
10
10
Eagar Formation of Sirrine (1958):
Layers of sand and gravel ............. .
Clay, red .............................. .
Sandstone, red, fine .................. ..
(A-8-29)5adb
TERTIARY AND CRETACEOUS:
QUATERNARY AND TERTIARY:
Basaltic rocks:
Malpais, hard .......................... .
Malpais boulders
and cinders ...................... . , .. .
Cinders and boulders with streaks of
blue-gray shale ..................... .
38
38
Eagar Formation of Sirrine (1958):
Streaks of red sandstone ............... .
UPPER CRETACEOUS:
87
125
19
144
Sedimentary rocks (undifferentiated):
Shale, blue-gray; caving most of way .. .
Sandstone, gray ....................... .
(A-8-29)7acd
Shale, red ............................. .
Shale, gray ............................ .
Sandy lime ............................. .
Gray sand ............................. .
QUATERNARY:
Surficial material:
Topsoil ................................. .
Boulder fill ............................ .
10
50
10
60
560.
770
988
1,010
PERMIAN:
TERTIARY AND CRETACEOUS:
Eagar Formation of Sirrine (1958)
and upper Cretaceous sedimentary
rocks (undifferentiated):
Sand, red .............................. .
Sand, gray ............................ .
12
210
218
22
480
8
540
548
Kaibab Limestone:
Lime, hard ............................. .
Coconino Sandstone:
Sand ................................... .
Supai Formation:
Supai .................................. .
250
1,260
260
1,520
1,525
(A-9-29)2aca
UPPER CRETACEOUS:
QUATERNARY:
Surficial material:
Topsoil ................................. .
2
2
QUATERNARY AND TERTIARY:
Basaltic rocks:
Volcanic rock .......................... .
208
210
Sedimentary rocks (undifferentiated):
Sandstone, gray, hard i
water-bearing ................. ...... .
Sandstone, gray ....................... .
Clay, gray ............................. .
20
15
5
230
245
250
78
Table 9. --Modified drillers' logs of selected wells--Continued
Depth
(feet)
(A-9-29)8bab
QUATERNARY:
Surficial material:
Alluvium; sand, gravel, and clay mixed ..
streaks of clay
12
and coarse
sandstone;
water ................. .............. .
Shale, gray ............................ .
Sandstone, yellow;
water ............................... .
12
UPPER CRETACEOUS:
Sedimentary rocks (undifferentiated):
Sandstone, yellow I fractured below
40 feet; water at 40 feet ............ .
33
45
15
130
60
190
15
205
54
17
20
58
98
115
120
140
198
14
22
212
234
30
50
100
150
210
360
7
10
16
4
8
65
75
91
95
103
at 103 feet ......................... ..
7
22
110
132
19
15
179
194
16
10
210
220
60
13
45
112
190
203
248
360
10
10
69
11
370
380
449
460
85
25
130
155
160
170
190
(A-9-29)29bab
QUATERNARY:
Surficial material:
Gravel ................................. .
Clay and gravel i seep of water
at 19 feet ........................... .
TERTIARY AND CRETACEOUS:
Eagar Formation of Sirrine (1958):
Clay, dark-gray; 12 gallons per
minute of water ..................... .
Sand and gravel i more water ........... .
Gravel, very hard; drilled 4 feet
per day ............................. .
10
9
Clay, red .............................. .
Clay, red, blue, and yellow ............ .
Sandstone, red and clay layers ......... .
Clay, gray ............................. .
10
19
5
UPPER CRETACEOUS:
21
4
40
44
Sedimentary rocks (undifferentiated):
Sandstone, yellow and gray, very fine ..
Sandstone, IIght-graYi water ........... .
(A-9-29)32bdd
Sandstone and clay;
some water .......................... .
Clay, blue ............................. .
QUATERNARY:
Surficial material:
Soil .................................... .
5
5
Gravel and sand ....................... .
10
15
55
70
TERTIARY AND CRETACEOUS:
Eagar Formation of Sirrine (1958):
Clay, red .............................. .
UPPER CRETACEOUS:
Sedimentary rocks (undifferentiated):
Sandstone, gray; water ................ .
(A-9-29)35cad
44
48
Clay, red .............................. .
Sandstone, red, fine, hard ............. .
Clay, red .............................. .
Sandstone, red ......................... .
Red clay with sandstone streaks ...... .. .
Sandstonei water; most water in crack
10
58
Sandstone, coarse ...................... .
QUATERNARY:
Surficial material:
Soil .................................... .
4
4
TERTIARY AND CRETACEOUS:
Eagar Formation of Sirrine (1958):
Clay, red .............................. .
Coarse, very hard sandstone and
flint rock ........................... .
(A-9-30)20acd
Clay, red ............................... .
QUATERNARY AND TERTIARY:
Basaltic rocks:
Clay, gray .............................. .
Basalt •.•••••••••.••••••••••••••.•••••..•
TERTIARY AND CRETACEOUS:
Eagar Formation of Sirrine (1958):
90
90
Gravel, cemented ....................... .
Sandstone .............................. .
38
32
128
160
UPPER CRETACEOUS:
Sedimentary rocks (undifferentiated):
Sandstone, gray; water ................ .
Clay, gray ............................. .
(A-9-30)34aaa
Sandstone, red ......................... .
QUATERNARY:
Surficial material:
Soil .................................... .
QUATERNARY AND TERTIARY:
Basaltic rocks:
Basalt .................................. .
Clay, red .............................. .
Sandstone, red ......................... .
Sandstone, red, finei water ............ .
2
UPPER CRETACEOUS:
50
52
Sedimentary rocks (undifferentiated):
Clay, yellow ........................... .
Clay, gray ............................. .
TERTIARY AND CRETACEOUS:
Eagar Formation of Sirrine (1958):
Sandstone .............................. .
Gravel, clay and sand .................. .
8
70
Sandstone, yellow ...................... .
Shale, gray ............................ .
60
130
(A-10-24)6cdc
UPPER CRETACEOUS:
QUATERNARY:
Surficial material:
Topsoil ................................. .
10
10
QUATERNARY AND TERTIARY:
Basaltic rocks:
Malpais ................................. .
35
Sedimentary rocks (undifferentiated):
Clay, yellow ........................... .
Sandstone, yellow; water ............... .
45
5
Clay, black ............................ .
Sandstone, yellow i water ............... .
No log ................................. .
10
20
Malpais ................................. .
Cinders ........... ..................... .
Malpais ................................. .
Cinders ................................ .
Malpaisj seems to be plenty of water
178
13
57
385
392
570
583
640
85
725
(A-10-24)29abd
QUATERNARY:
Surficial material:
Topsoil and clay ....................... .
15
15
Malpais ................................ ..
70
Cinders ................................ .
Malpais ........... ...................... .
Cinders ................................ .
160
15
85
90
250
265
QUATERNARY AND TERTIARY:
Basaltic rocks:
5
120
7
UPPER CRETACEOUS:
Sedimentary rocks (undifferentiated):
Sandy shale and clay, some gravel
on top ........... ".................... .
79
Table 9. --Modified drillers ' logs of selected weJls--Continued
Depth
(feet)
(A-10-25)14bdd
Shale, gray and blue; no water
QUATERNARY:
Surficial material:
Topsoil, clay, and boulders ............ .
Clay and some gravel .................. .
7
35
UPPER CRETACEOUS:
Sedimentary rocks (undifferentiated):
Yellow clay and some sandy layers;
small amount of water at this
level ................................ .
Shale, yellow and blue; no change
in water level ....................... .
188
308
TRIASSIC:
7
28
32
67
53
120
Chinle and Moenkopi Formations:
Blue shale, resembles
Chinle; no water .....................
Blue shale and some limestone;
very cavy; no water .................
167
475
48
523
Limestone, gray, some fractures;
no water .............................
77
600
Sandstone with streaks of clay ......... .
70
140
80
22
220
242
60
13
45
190
203
248
112
10
10
10
360
370
380
390
to 380 feet .•••••.•..•••••...•••••..•.
60
450
Conglomerate, hard .................... .
Shale, brown ........................... .
Sandstone .............................. .
10
20
18
420
440
458
27
76
31
485
561
592
66
658
.
.
.
.
46
6
218
25
704
710
928
953
Sand rock, yellow ....................... .
30
70
30
110
200
270
300
410
75
485
10
40
188
228
192
420
PERMIAN:
Kaibab Limestone:
(A-10-25)20bcc
QUATERNARY AND TERTIARY:
Basaltic rocks:
Lava ................................... .
Cinders; hit water at 460 feet .......... .
460
40
460
500
(A-10-28)21acb
QUATERNARY AND TERTIARY:
Basaltic rocks:
Clay and lava .......................... .
30
30
40
70
UPPER CRETACEOUS:
Sedimentary rocks (undifferentiated):
Sandstone .............................. ,
TRIASSIC:
Chinle(?) Formation:
Shale, red and blue .................... .
Sandstone; water ....................... .
(A-10-29)33ddc
TERTIARY AND CRETACEOUS:
Eagar(?) Formation of Sirrine (1958):
QUATERNARY:
Surficial material:
Topsoil ................................. .
2
2
50
52
Sandstone, red ......................... .
Clay, red .............................. .
Sandstone, red, hard .................. .
UPPER CRETACEOUS:
QUATERNARY AND TERTIARY:
Basaltic rocks:
Malpais ................................. .
TERTIARY:
Bidahochi(?) Formation:
Sandstone, red ......................... .
Gravel, clay and sandstone mix ........ .
8
70
60
130
Sedimentary rocks (undifferentiated):
Sand, gray, fine; water and
running sand ....................... .
Clay, yellow ........................... .
Shale, gray ............................ .
Sandstone, yellow ...................... .
Shale, graYi well plugged back
(A -1 0-31 )21 dbd
QUATERNARY AND TERTIARY:
Basaltic rocks:
Fill and boulders ....................... .
Basalt or lava .......................... .
26
24
26
50
20
70
TERTIARY(?):
Bidahochi(?) Formation:
Sandstone, hard, abrasive ............. .
TRIASSIC:
Chinle Formation:
Purple shale witt) lenses
of bentonite ......................... .
Red beds of clay ..•••.•••••.•.....•••...
UPPER CRETACEOUS:
Sedimentary rocks (undifferentiated):
Shale, blue ............................ .
Sand, hard ............................ .
Shale and lime shells •.•.....••••....•..•
Shale with streaks of sand .............
Shale, bro\vn ...........................
Iron pyrites ............................
Brown shale and shells .................
Sandstone ..............................
.
.
.
.
.
135
20
28
52
68
2
20
15
205
225
253
305
373
375
395
410
Sandy lime, broken, fractured ......... .
Moenkopi Formation:
Shale, red ............................. .
PERMIAN:
Kaibab Limestone:
Limestone, white, hard .................
Sand, fleecy white, hard ...............
Lime, brown, hard .....................
Lime, brown, porous; water ............
(A-11-24)36dab
UPPER CRETACEOUS:
Sedimentary rocks (undifferentiated):
Clay, yellow ........................... .
Shale, gray ............................ .
Shale, yellOw ........................... .
Shale, gray ............................ .
Clay, gray .•..••••••••.•..•••••.•....•..
50
20
30
70
Sandrock, yellow ....................... .
Clay, gray ............................. .
Gray shale and
sandrock ............................ .
50
70
100
170
(A-11-27)23aaa
TRIASSIC:
QUATERNARY:
Moenkopi Formation:
Surficial material:
Fill •••......•.•••••.....•••.•...•....•••
10
10
QUATERNARY AND TERTIARY:
Basaltic rocks:
Malpais ................................. .
Cinders ................................ .
10
10
20
30
Shale •.•....••.••••..•.•.••.••••...•.•..
PERMIAN:
Kaibab Limestone:
Limestone .............................. .
Coconino Sandstone:
Coconino ............................... .
80
Table 9. --Modified dritlers' logs of selected wellsR-Continued
Depth
(feet)
(A-11-27)31dbb
QUATERNARY AND TERTIARY:
UPPER CRETACEOUS:
Sedimentary rocks (undifferentiated):
Basaltic rocks:
Shale .................................. .
Volcanics ............................... .
250
250
Sandstone .............................. .
100
60
350
410
45
54
44
2
21
200
254
298
300
321
(A-11-28)9acc2
TRIASSIC:
Moenkopi Formation:
Clay, red .............................. .
Sandy breaks in shale; a little water ... .
Sand, red, hard ....................... .
Bluish-gray, hard, sharp sand; dry ... .
Sticky clay, red ....................... .
25
2
13
10
3
White, hard, sharp, medium sand;
some increase in water .............. .
Sandy lime, brown, hard ............... .
Lime, brown, hard ..................... .
Crevice ................................ .
Lime, brown, hard, in part sandy ...... .
Sand, brown, hard; some water
increase ............................. .
Lime, brown, very hard, in part
25
27
40
50
53
PERMIAN:
Kaibab Limestone:
Gray, hard, sandy shale, few streaks
of limestone; small increase in water ..
Lime, brown, hard ..................... .
Crevice; 60 gallons per minute with
39 feet of d raw down ...............•..
sandy .............................. ..
17
76
323
3
5
326
331
from 322 feet. ....................... .
14
345
Clay, red .............................. .
Gravel ................................. .
13
30
85
115
21
No log ................................. .
5
15
10
127
18
136
145
150
165
175
302
320
Moenkopi Formation:
Broken colored shale ................... .
125
285
245
530
625 feet ............................. .
155
685
Sandstone I red ......................... .
Sh"ale, gray ............................ .
Sandstone, whIte ....................... .
Shale, red ............................. .
40
60
40
20
200
260
300
320
230
550
40
275
20
375
295
670
10
680
70
146
Crevices ............................... .
Lime, brown, hard, in part sandy;
sand running into hole badly
155
(A-11-29)4bbc
QUATERNARY:
Surficial material:
Sand ................................... .
TRIASSIC: .
Chinle(?) Formation:
Chinle .................................
Moenkopi Formation:
Shale, red .............................
Sandstone, red .........................
Clay, red ..............................
Sandstone, red; little water ............
.
.
.
.
.
3
7
PERMIAN:
10
35
15
10
45
60
70
2
72
Kaibab Limestone:
Limestone ..............................
Shale, gray ............................
Shale, brown ...........................
Lime and sandrock .....................
Sandrock, red .........................
Limerock ...............................
.
.
.
.
.
.
9
(A-11-29)27aca
QUATERNARY:
Surficial material:
Sandy soil ............................. .
No log ................................. .
TRIASSIC:
Chinle(?) Formation:
Clay, red .............................. .
Shale, gray ............................ .
10
10
70
70
10
20
90
160
PERMIAN:
Kaibab Limestone:
Broken lime ................ '............ .
Coconino Sandstone:
Sandstone; hit water at
(A-12-25)16ccc
QUATERNARY AND TERTIARY:
Basaltic rocks:
Malpais .......................... ~ ...... .
10
10
150
160
TRIASSIC:
Chinle and Moenkopi Formations:
Shale, red ............................. .
PERMIAN:
Coconino Sandstone:
Sandstone, white ....................... .
(A-12-30)27aba
TERTIARY:
Bidahochi Formation:
Gravel, gray ........................... .
Sahd and blue badland ................. .
PERMIAN:
160
160
30
45
190
235
TRIASSIC:
Chinle and Moenkopi Formations:
Yellow clay and shale ................. ..
Gravel, gray ........................... .
Kaibab Limestone:
Lime, broken ........................... .
Limerock ............................... .
Coconino(7) Sandstone:
Sandstone .............................. .
(A-12-31)8dbc
Chinle Formation:
Shale, red ............................. .
Red badland ........................... .
20
50
190
Blue badland ........................... .
120
Shale, red ............................. .
65
255
Sandstone I red ......................... .
25
280
Shale, red ............................. .
Shale, blue ............................ .
Moenkopi Formation:
Sandstone, red ......................... .
Shale, red ............................. .
60
20
130
150
20
80
170
250
100
350
TRIASSIC:
20
70
(A-13-24)12acb
QUATERNARY:
Surficial material:
Alluvium ............................... .
10
10
30
40
30
70
TERTIARY:
Bidahochi Formation:
Sandstone, red ......................... .
TRIASSIC:
Chinle Formation:
Shale, blue ............................ .
PERMIAN:
Coconino Sandstone:
Sandstone .............................. .
81
Table 9. --Modified drillers' logs of selected wells--Continued
Depth
(feet)
(A-13-25)4cca
QUATERNARY:
Surficial material:
Soil and gravel formation ............... .
TRIASSIC:
Chinle(?) Formation:
Sandstone r red ......................... .
Shale, yellow ........................... .
Shale, blue ............................ .
Shale, red ............................. .
Sandstone, red ......................... .
Shaler red ............................. .
Sandstone r gray ....................... .
Moen kopi Formation:
Shaler red and blue .................... .
18
18
21
5
6
18
55
4
19
39
44
50
68
123
127
146
12
158
Shale, red ............................. .
Sandstone, light-red ................... .
Shale, red and blue .................... .
Sandstone, light-brown ................. .
Sandstone, light-gray .................. .
Shaler blue ............................ .
Sandstone, brown ...................... .
PERMIAN:
Kaibab Limestone;
Lime, gray ............................. .
Sandstone, white ....................... .
Lime, dark-gray ....................... .
Coconino Sandstone:
Sandstone ..... ......................... .
3
70
12
13
16
6
12
161
231
243
256
272
278
290
8
22
7
298
320
327
244
571
10
160
20
20
40
50
230
390
410
430
470
520
50
10
30
570
580
610
65
675
(A-13-26)7bad
TRIASSIC:
No log ................................. .
Moen kopi Formation:
Interbedded reddish sandstone ahd
shale ................................ .
Light·reddish sandstone grading into
a white sandstone ................... .
White sandstone grading into lightgray limestone ...................... .
PERMIAN:
Kaibab Limestone:
Limestone, light-brownish"'gray ......... .
Limestone, dark ........................ .
Limestone, light ........................ .
50
50
80
130
10
140
10
150
10
30
30
160
190
220
White limestone grading into white
sandstone .. ......................... .
Sandstone, white ....................... .
No sample .............................. .
Sandstone, brown, flesh color .......... .
No sample .............................. .
Sandstone, light-brown ................. .
Interbedded light-brown to mediumbrown sandstone ........
No sample .............................. .
Sandstone, light-brown ................. .
Interbedded light-brown and
medium-brown
sandstone .. ......................... .
H
•••••••••••
(A-13-27)15bda
TERTIARY:
Bidahochi Formation:
Light-brown sand and clay ............. .
Sand, light-brown ...................... .
Sand, brown ........................... .
TRIASSIC:
Chinle Formation:
Blue shale and sand .................... .
Shale, blue ............................ .
Clay, light-red ......................... .
Limestone, gray ........................ .
Shale, gray, hard ...................... .
Shale, blue ............................ .
Shale, red ............................. .
Sandstone, brown ...................... .
Shale, blUe ........................... ..
Sandstone, brown ...................... .
SI It5tone, red ....... ................... .
Shaler blue ............................ .
Moenkopi Formation:
5i Itstone, red .......................... .
Shale, red ............................. .
Siltstone, red .......................... .
Siltstone, red, hard .................... .
Shale, red ............................. .
Clay, red .............................. .
Sandy clay, red ........................ .
Sandstone, red ......................... .
Sandy clay, red ........................ .
Sandstone, red ......................... .
Sandy clay I red ........................ .
Clay, red .............................. .
10
20
2
6
10
30
32
9
10
30
10
10
30
10
20
38
40
46
51
60
70
100
110
120
150
160
180
20
10
25
18
10
6
10
13
3
8
11
7
200
210
235
253
263
269
279
292
295
303
314
321
2
6
5
Sandy clay, red ........................ .
Sandy clay I reddishbrown ............................... .
Sandstone, light-red ................... .
PERMIAN:
Kaibab Limestone:
Limestone, light-red .................... .
Limestone, gray ........................ .
Limestone r gray, hard ................. .
Limestone, gray ........................ .
Limestone I gray, hard .... , ............ .
Limestone, gray ........................ .
Limestone, gray, hard ................. .
Limestone, gray ........................ .
Shale, gray t sticky .................... .
Shale, gray, hard ...................... .
Limestone, gray ........................ .
Limestone, gray, hard ................. .
Limestone, gray ........................ .
Limestone, gray, hard ................. .
Sandy limestone, gray .................. .
Limestone, gray ........................ .
Cocon ina Sandstone:
Sandstone, light-gray ................. ..
Sandstone, white ....................... .
Sandstone, gray ....................... .
Sandstone, white ....................... .
Sandstone, red ......................... .
Sandstone, brown ...................... .
Supai Formation:
Red sandstone and clay ............... ,.
Shaly clay, red ........................ .
329
4
2
3
4
7
20
17
2
4
9
1
4
40
51
15
6
2
3
333
335
338
342
349
369
386
388
392
401
402
406
446
497
512
518
520
523
6
30
10
185
19
10
529
559
569
754
2
35
785
820
15
35
20
130
165
185
45
230
20
480
120
120
600
720
225
950
967
773
783
(A-13-27)25dcc
TRIASSIC:
Chinle(?) Formation:
Shale, blue ............................ .
Shale, red ............................ ..
Shale, brownish-blue ................... .
Moenkopi Formation:
Shale, red ................... , ......... .
15
45
20
15
60
80
35
115
Shale, blue ............................ .
Shale t red ............................. .
Sandstone ..... ......................... .
PERMIAN:
Kaibab Limestone:
Limestone; hit cavity at 180 feet and
bottom is deeper than 230 feet ...... .
(A-13'28)12cac
TRIASSIC:
Chinle Formation:
Blue clay and bentonite clay ........... .
Clayey shale, red ...................... .
Shale, gray ............................ .
Shale, red ............................. .
Shale, blue ............................ .
Shale, red ............................. .
Moen kopi Formation:
Sandrock, red, soft .................... .
No samples ............................. .
Shale, gray ............................ .
Gray shale grading into reddish-gray
limestone . ........................... .
30
80
40
90
20
70
30
110
150
240
260
330
50
70
10
380
450
460
PERMIAN:
Kaibab Limestone:
Limestone, gray ........................ .
Limestone, tan ......................... .
Tan limestone grading into tan
sandstone .... ....................... .
Coconino Sandstone:
Sandstone, white, hard ................ .
Sandstone, white, medium·hard ......... .
725
17
82
Table 9. --Modified drillers· Jogs of selected wells--Continued
Depth
(feet)
(A-13-29)35aaa
TERTIARY:
Bidahochi Formation:
Sand and gravel ....................... .
Clay, \vhite ............................ .
Shale, blue ..........................•..
Shale, red ............................. .
60
20
60
80
Sandstone .................. ............ .
Shale l blue ............................ .
TRIASSIC:
21
14
20
20
10
226
240
260
280
290
37
327
PERMIAN:
Chinle and Moenkopi Formations:
Sandstone ...................... ........ .
Shale, blue ............................ .
125
205
Kaibab Limestone:
Limestone .............................. .
(A-13-30)3bcd1
QUATERNARY:
Alluvium:
Fill ...........•..........•............•.
TERTIARY:
Bidahochi Formation:
Clay, yellow ........................... .
20
20
50
70
200
270
TRIASSIC:
Chinle Formation:
Shale .••.........•••.........•..........
Conglomerate, hard .................... .
Moenkopi Formation:
Shale and sandstone .................... .
PERMIAN:
Kaibab Limestone:
Limestone, white ....................... .
Limestone, brown ...................... .
Coconino Sandstone:
Sandstone; water ....................... .
10
280
140
420
20
220
440
660
195
855
37
16
182
198
47
49
245
294
42
345
10
85
285
370
(A-14-26)21bcc
QUATERNARY:
Surficial material:
Soil .................................... .
TRIASSIC:
Chinle Formation:
Sandstone! red ......................... .
Shale! blue ............................ .
Shale! red ............................. .
Sandstone, yellow; good stream of
water at 71 feet ..................... .
Moen kop i Formation:
Shale, red, some sand; all water shut
off at 103 feet with 12-inch casing ..•
2
29
7
23
31
38
61
15
76
69
145
Sandstone, red; a good
stream of water at
168 feet ...•.........•.........•......
Shale, red ............................. .
Sandstone, brown;
lots of water at
205 feet ........•................•....
Shale, red ............................. .
PERMIAN:
Kaibab Limestone:
Lime! white ............................ .
Coconino Sandstone:
Sandstone, white ....................... .
303
(A-14-26)34dbb
QUATERNARY:
Alluvium(7):
Shale and boulders ..................... .
TRIASSIC:
Chinle Formation:
Shale, red ............................. .
Sandstone, red ......................... .
Shale! gray ............................ .
Shale, red ............................. .
Sandstone, red ......................... .
48
48
67
25
60
35
40
115
140
200
235
275
Moenkopi Formation:
Shale, gray .......... .................. .
Sandstone, brown ...................... .
PERMIAN:
Kaibab Limestone:
Limestone, gray ........................ .
Coconino Sandstone:
Sandstone, white ....................... .
Silty sandstone, brown ................. .
70
440
221
4
661
665
10
10
120
130
(A-14-27)8dda
TERTIARY(?) :
Bidahochl(?) Formation:
Soil .•........•......••.......•..........
20
20
90
110
TRIASSIC:
Moenkopi Formation:
Red beds ...............•..••.....•.....
Red beds, some lime ................... .
Red beds ...•.•..•...........•...•......
PERMIAN:
Kaibab Limestone:
Lime ................................... .
Coconino Sandstone:
Sandstone; water, 240 to 250 feet ...... .
100
230
22
252
40
60
600
660
35
695
(A-14-29)33bbb
TERTIARY:
Bidahochi Formation:
Fine sand and clay streaks ............. .
Coarse sand and gravel!
one-eighth inch ..................... .
80
80
25
105
TRIASSIC:
Chinle(?) Formation:
Sand, fine to coarse ................... .
Blue shale and clay .................... .
Red clay and shale ..................... .
Brown and gray sandstone,
streaks of shale ..................... .
270
100
60
375
475
535
25
560
Moenkopi(?) Formation:
Limestone, gray .•.....•..•....••......•.
Red clay and shale ......................
PERMIAN:
Kaibab Limestone:
Limestone! brown .......................
Limestone, shale stringers; lost
circulation at 735 feet ........•.......
Coconino Sandstone:
Sandstone, white, brown, and gray . ....
Supai Formation:
Hard dark shale with streaks
of white clay ............... ..........
40
735
424
1,159
22
1,181
83
Table 9. --Modified drillers' logs of selected wells--Continued
Depth
(feet)
(A-14-30)26ddb
TERTIARY:
Bidahochi Formation:
Fill ...••...••.••....................•...
Sandstone ............................. . .
TRIASSIC:
Chinle Formation:
Red beds ...........•.......•..........•
Shale, green ........................... .
Blue muck ............................. .
Chert and quartz, hard ................ .
Shale, red ............................. .
Lime, hard ............................. .
Red sand and shale .................... .
Shale, red, sticky ..................... .
Sandy shale, broken ............. , ... , ..
Shale, red, sticky ..................... .
Limestone, soft, ........................ .
Moen kopi Formation:
Shale, red, hard ....................... .
50
26
50
76
162
172
96
15
19
15
25
12
18
15
4
238
410
506
521
540
555
580
592
610
625
629
22
651
29
30
85
6
3
14
22
37
8
7
680
710
795
801
804
818
840
877
885
892
130
1,022
24
22
18
9
17
890
912
930
939
956
29
19
23
6
85
985
1,004
1,027
1,033
1,118
PERMIAN:
Kaibab Limestone:
Lime rock, hard ........................ .
Limestone, porous; water ............... .
Limestone, hard ................ , ....... .
Shale, red .................. , ...... . , .. .
Limestone, porous ...................... .
Limestone, gray, hard ................. .
Limestone and shale .................... .
LImestone, gray, hard ............... , ..
Limestone, gray, soft .................. .
Shale, red, hard ....................... .
Coconino Sandstone:
Sandstone; water., ..................... .
(A-15-30)21aba"
QUATERNARY:
Alluvium:
Fill .................................... .
Clay ................................... .
Sand and gravel ....................... .
TRIASSIC:
Chinle Formation:
Clay, red .............................. .
Sandstone, hard ....................... .
Shale and shells ........................ .
Lime, medium .......................... .
Hard sand boulders .. , ...........
Red bed shells ........................ ..
Sand, hard, fine ....................... .
Shale, sticky ........................... .
Broken Iime and sand ., ................ .
Shale, red and green .................. .
Clay, plue ............................. .
Shale, red, hard ....................... .
Hard sand and streaks of shale ........ .
4
,
•••••
5
53
12
5
58
70
20
35
65
22
14
209
140
28
44
98
22
23
76
90
125
190
212
226
435
575
603
647
745
767
790
866
Moenkopi Formation;
Shale, red ............................. .
Sandstone, red ............ , ............ .
Sand, white, hard ..................... .
Shale, green ........ , ...... , ... , ....... .
Red shale and shells .................. ..
PERMIAN:
Kaibab Limestone:
Very hard lime and chert .... " ........ .
Lime, white, porous .................... .
Lime, white, hard .................. , ... .
Shale ....................••.............
Lime, gray., ........................ , .. .
Red shale and traces
of white sand ........ , .............. .
Coconino Sandstohe:
Sandstone, broken ................ , .... .
Sandstone, porous ..................... .
Very white quartz sand ................ .
31
1,149
20
4
31
1,169
1,173
1,204
40
40
70
120
10
40
10
740
780
850
970
980
1,020
1,030
80
20
1,110
1,130
130
1,260
100
1,360
100
40
80
170
210
290
10
300
.
.
105
15
245
260
.
.
80
9
340
349
Sand; water ................. , ... , ...... .
10
160
10
170
(A-16-30)19dbc1
QUATERNARY:
Alluvium:
Valley fill .............................. .
50
50
130
180
120
30
100
30
70
150
20
300
330
430
460
530
680
700
TERTIARY(?):
Bidahochi(?) Formation:
Quicksand ........ , ............. ........ .
TRIASSIC:
Chinle Formation:
Red beds .............................. .
Sand, red .................... , ......... .
Shale, red and green .................. .
Sandy shale, red ........ , .............. .
Shale, red and green .................. .
Sandy shale, red ....... , ............... .
Sand, white .................... , ....... .
Shale, red, sticky ..................... .
Sand, red .............................. .
Shale, red, sticky ..................... .
Sand rock, green, white and red ....... .
Shale, blue ............................ .
Shale, red, sticky ..................... .
Hard sand and chert ..... , ............. .
Moenkopi Formation:
Shale, red, sticky ..................... .
Conglomerate, hard .................... .
PERMIAN:
Kaibab Limestone:
Limestone, hard ........................ .
Coconino Sandstone:
Coconino ........... .................... .
(A-17-28)11acd
QUATERNARY:
Surficial material:
Fill .................................... .
TERTIARY:
Bidahochi Formation:
Clay ................................... .
Sand ................................... .
Clay ................................... .
20
20
50
70
Sand .................... , ........... , .. .
Sand; water; Chinle
Formation at
300 feet ............................. .
(A-17-28)19bbc
Sand ............................. , .....
Clay and benton ite ... , .................
Sand with streaks
of bentonite ...... " ............ , ....
Sand; water ............................
TERTIARY:
Bidahochi Formation:
Sand and clay .... , ..................... .
Sandstone .............. ................ .
Clay and bentonite ... , ................. .
5
25
110
5
30
140
(A-17-28)31bbc
TERTIARY:
Bidahochi Formation:
No log ................................. .
Sand ................................... .
TRIASSIC:
10
140
10
150
Chinle Formation:
Chinle ................................ , .
84
Table 9. --Modified drillers! logs of selected wells--Continued
Depth
(feet)
(A-17-29)2bda
QUATERNARY:
Surficial material:
Topsoil ................................ ..
TERTIARY:
Bidahochi Formation:
Sand fill ............................... .
Caliche ................................. .
Boulders ............................... .
Sandstone, red ......................... .
Shale, red ............................. .
20
20
60
70
30
80
150
180
30
10
210
220
50
30
270
300
40
15
10
160
175
185
55
240
25
265
TRIASSIC(?):
Wingate(?) Sandstone:
Pale-red sandstone; first water at
240 feet ............................. .
Sandstone, gray ....................... .
(A-17-29)3bdb
QUATERNARY:
Surficial material:
Sandy topsoil
TERTIARY:
Bidahochi Formation:
Sandy clay, tan ........................ .
SandI tan .............................. .
Sandstone, tan ......................... .
Sand, tan .............................. .
Shale, white ........................... .
4
4
6
85
10
10
5
10
95
105
115
120
Sand, red .............................. .
Red sandy shale ....................... .
Red shale with gravel ................. ..
TRIASSIC:
Wingate(?) Sandstone:
Sandstone, pink ........................ .
Sandstone, wh ite, coarse;
water ............................... .
Chinle Formation:
Shale, red, hard ....................... .
266
(A-17-29)26bcb
TERTIARY:
Bidahochi Formation:
Sand and shale,
brown ............................... .
Limestone, gray ........................ .
45
35
Shale, yellow ........................... .
15
95
Shale, red ............................ ..
15
110
45
80
TRIASSIC:
Wingate(?) Sandstone:
Yellow sandstone and shale ............. .
Sandstone, yellow ...................... .
Chinle Formation:
Shale, red ............................. .
Shale, blue ........................... ..
Shale l red ............................. .
10
30
120
150
30
30
490
180
210
700
3
9
36
9
171
180
216
225
10
10
10
10
30
40
160
170
180
190
220
260
(A-17-30)24aad
TERTIARY:
Bidahochi Formation:
Sandi traceS of water near base ........ .
102
102
Clay, yellow .......................... ..
53
155
Clay, blue and white '................... .
13
168
CRETACEOUS:
Dakota Sandstone:
Black shale and traces of coal .......... .
Shale, blue ............................ .
Sandstone l porous; water .............. .
Shale, green" ........................... .
(A-17-30)33aab
TERTIARY:
Bidahochi Formation:
Caliche ................................. .
Sand, soft ............................. .
Boulders ............................... .
CRETACEOUS:
Mancos Shale:
Clay, yellow .......................... ..
Sandstone l yellow ...................... .
Shale, black ........................... .
10
30
10
10
40
50
30
10
60
80
90
150
Dakota Sandstone:
Sandstone ...... ........................ .
Shale, brown ........................... .
Coal ................................... .
Shale, black ........................... .
Sandstone, hard, tight ................. .
Sandstone, porous; water .............. .
TRIASSIC:
Chinle Formation:
Badland clay ........................... .
265
(A -18-24 )8bcb
QUATERNARY:
Alluvium:
Clay with sand ........................ ..
TRIASSIC:
Chinle and Moenkopi Formations:
Sand and shale ........................ ..
41
41
115
156
Sandy shale with clay streaks .......... .
Sandy lime and shale with gypsum ...... .
Shale with lime streaks ................. .
PERMIAN:
Coconino Sandstone:
Sand , .................................. .
60
78
8
216
294
302
298
600
10
105
5
110
20
70
28
12
320
390
418
430
(A -18-24 )9abb
QUATERNARY:
Alluvium:
Sand ................................... .
Clay ................................... .
Sand and clay .......................... .
Gravel ................................. .
75
15
5
75
90
95
TRIASSIC:
Chinle Formation:
Clay and shale ......................... .
(A-18-29)26bdb
TERTIARY:
Bidahochi Formation:
Topsoil, shale and sand, soft .......... .
Reddish sandstone and blue shale, 50ft ..
270
30
270
300
Brown shale and white sandstone, soft ..
Reddish sandstone and red shale, soft ..
Shale, red ............................. .
Sandstone, white ....................... .
85
Table 9.--Modified drilJers t logs of selected welJs--Continued
Depth
(feet)
(A-18-30)4cbc
TERTIARY;
Bidahochi Formatlon:
Sand, gray, medium-hard ..............
Sandy shale, medium-hard ..............
Sandstone, white, light, soft ...........
Sandstone, brown and white, soft ......
.
.
.
.
160
80
109
51
Sandy clay, tan, soft .................. .
Clay, white, soft ....................... .
Shale! brown and white!
hard ................................ .
Sandy shale, red, hard ................ .
Sandy shale, red and white, hard ...... .
160
240
349
400
150
30
550
580
6
64
50
586
650
700
.
70
500
.
.
.
70
48
18
570
618
636
.
59
695
(A-18-30)14dbd
TERTIARY;
Bldahochi Formation:
Sand and shale lenses, soft ............ .
Sand and shale, hard .................. .
Sandstone, white, hard ................ .
Shal-e and sandstone, brown, hard ..... .
White sandstone and brown sand,
hard ........................•........
120
125
47
78
120
245
292
370
60
430
Sandstone, white, medium-hard .........
Brownish clay and sandstone!
medium-hard ........................
Sandstone! white, soft .................
Sandstone! gray, 50ft ..................
TRIASSIC;
Chinle Formation:
Shale, red .............................
(A-18-31 )29bdb
TERTIARY;
Bidahochi Formation:
Variable colored sand, soft ............. .
Sand, mostly gravel, soft .............. .
Fine sand with clay, soft ............... .
Sandstone, yellow, soft ................ .
CRETACEOUS;
Dakota Sandstone:
Charc.oal with gray sandy clay, soft .....
Charcoal and yel/ow sandstone,
hard ....•............................
140
120
80
16
140
260
340
356
10
366
14
380
Sandstone! white, hard ................ .
Gray shale and white sandstone,
hard .......................•.........
TRIASSIC(?);
Wingate(?) Sandstone;
Blue and reddish-brown
shale and siltstone,
hard ................................•
Reddish-orange
sandstone, fine,
hard ................................ .
37
417
56
473
32
505
47
552
6
2
8
369
371
379
2
381
(A-19-29)9aac
TERTIARY;
Bidahochi Formation:
Sand ................................... .
Sandy clay .•..................•.........
Sand; water at 342 feet ................ .
Clay ................................... .
Sandstone .............................. .
194
78
77
12
2
194
272
349
361
363
Sand and clay .......................... .
Sandstone ........... " ................. .
Sand ................................... .
TRIASSIC;
Chinle Formation:
Shale ..•.........•....•.........•......•
(A-19-29)17acb2
TERTIARY;
Bidahochi Formation:
Sand, soft ............................. .
Sandstone and clay ..................... .
Sandstone .................... .......... .
Sandstone and clay ..................... .
65
1S
120
60
65
80
200
260
Clay, red and white .................... .
Red and white clay with sandstone
ledges; water ....................... .
TRIASSIC;
Chinle Formation:
Shale, red, hard ....................... .
15
275
180
455
10
465
42
8
106
77
53
14
3
23
11
11
154
162
268
345
398
412
415
438
449
460
(A-19-29)35cdb
QUATERNARY;
Surficial material:
Soil ......•..............................
4
4
34
38
47
103
112
Sand and clay .......................... .
Clay ................................... .
Sand ................................... .
Sandy clay ............................. .
Sand ................................... .
Clay ..........•............•............
Sand; first water ...................... .
Sandy clay .........................•....
Sand; water ............................ .
Sandstone; water ....................... .
TERTIARY;
Bidahochl Formation:
Sand and sandy clay ................... .
Clay ...............•....................
Sand and clay .......................... .
Clay .........•............•...•.........
9
56
9
(A-19-30)10abd
TERTIARY;
Bidahochi Formation:
White shaly mud, soft .................. .
Yellowish clay, hard and sticky ........ .
Light-yellowish shale, soft ............. .
Shale, white and brown, soft ........... .
Brownish, shale, soft .................. .
Sand and clay with streaks of white
clay, soft ........................... .
120
90
170
30
50
120
210
380
410
460
240
700
15
715
133
848
72
165
920
1,085
11
1,096
.
.
10
15
170
185
.
.
15
4
200
204
Clay and sand, tan, soft ............... .
Variable colored fine
sand, soft .......................... .
Clay and sand,
tan, soft ............................ .
Variable colored fine sand, soft ........ .
TRIASSIC;
Chinle Formation:
Reddish shale, medium~hard ...•.•.......
(A-20-26)25bab
QUATERNARY;
Alluvium:
Sandy soil ............................. .
Sandy clay ............................. .
Fine quicksand ......................... .
Clay and sand ......................... .
10
20
70
60
10
30
100
160
Clay, red ..............................
Gravel and sandstone ..................
TRIASSIC;
Chinle Formation:
Sandstone, red; water .................
Badland ................................
86
Table 9. --Modified drillers l logs of selected wells--Contlnued
Depth
(feet)
(A-20-29)25dcd
QUATERNARY:
Sandstone, with an occasional
Su rficial material:
Surface soil ............................ .
Drift sand ............................•.
boulder .... .......................... .
3
32
35
138
212
173
385
Sandstone, dirty, porous i weak
show of water ............. ........... .
Medium-hard sandstone with thin
crystal ized sandstone from
2 to 4 Inches ......•...................
3
TERTIARY:
Bidahochi Formation:
Sandstone, white, soft ................. .
Sandstone, brown, 50ft ................ .
Sand and gravel; water ................. .
216
601
8
609
137
49
746
795
100
76
180
256
(A-21-28)24bbc
QUATERNARY:
TRIASSIC:
Chinle Formation:
Alluvium:
Sand and gravel
Red shale and some layers
80
80
of sandstone ........................ .
Light-colored sandstone ................ .

Similar documents

Abstract - Procyanidln B-2 3. is subject to facile C

Abstract - Procyanidln B-2 3. is subject to facile C an A~ystem (64.16 (3-H), ..29 (4-H), J3,4 3.5 Hz] characteristic2 of the C-ri~ protons of A-type procyanidins. Confirmation of the chemical shift of 3-H was obtained by its pronounc81 n.O.e. aasoci...

More information

Sprocket Catalog

Sprocket Catalog • Type A Plain Bore (no hub extension) • Type B Plain Bore (one-sided hub extension) • Type C Plain Bore (two-sided hub extension) • Finished Bore • TAPER-LOCK® Sprockets and Bushings • QD® Sprocke...

More information