Geohydrology and Water Use in Southern Apache County, Arizona
Transcription
Geohydrology and Water Use in Southern Apache County, Arizona
ARIZONA DEPARTMENT OF WATER RESOURCES BU(LETIN'1 GEOHYDROLOGY AND WATER USE IN SOUT~:fERN APACHE COUNTY, ARIZONA By Larry J. Mann U. S. Geological Survey and E. A. Nemec~k Arizona Department of Water Resources Prepared by the. GEOLOGICAL SURVEY UNITED. STATES DEPARTMENT OF THE INTERIOR Phoenix, Arizona January 1983 CONTENTS Page Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of the area.......................................... Methods of investigation...................................... Previous investigations....................................... Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regional setting................................................... Geologic setting................................................... Ground water..................................................... Coconino aquifer.............................. . . . . . . . . . . . . . . . Occurrence of water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recharge and movement of ground water ................ Depth to water.......................................... Well yields.............................................. Hydraulic characteristics of the aquifer.................. Chemical quality of water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Moenkopi and Chinle Formations.............................. Springerville aquifer... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Occurrence, recharge, and movement of water. . . . . . . . . . . Depth to water.......................................... Well yields.............................................. Chemical quality of water......................... . . . . . . . White Mountains aquifer ...................................... Occurrence of water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Availability of water..................................... Chemical quality of water................................ B idahochi aquifer ............................................ Occurrence, recharge, and movement of water. . . . . . . . . . . Availability of water..................................... Chemical quality of water............ . . . . . . . . . . . . . . . . . . . . Basaltic rocks................................................ Alluvium.. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . ... . . . .. . Occurrence, recharge, and movement of water. . . . . . . . . . . Availability of water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chemical quality of water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Water use......................................................... Surface-water use............................................ Ground-water use and the effects of withdrawal .............. Chemical suitability of water for drinking and irrigation......................................... Drinking water for public and domestic supplies......... Water for irrigation ..................................... Areas of potential ground-water development ...................... References cited .................................................. Hydrologic data ................................................... 1 2 3 3 6 6 6 7 10 10 11 11 12 12 12 14 15 16 16 16 17 17 17 17 18 18 18 19 19 20 20 21 21 22 22 23 23 23 25 25 27 28 31 35 III CONTENTS IV ILLUSTRATIONS [Plates are in pocket] Plates 1-5. Maps showing: 1. Reconnaissance geology County, Arizona. in southern 2. Selected geohydrologic information Apache County, Arizona. 3. Ground-water conditions and the altitude of the top of the Coconino aquifer, 1975, in southern Apache County, Arizona. 4. Ground-water conditions in the Moenkopi and Chinle Formations, the Springerville aquifer, the White Mountains and Bidahochi aquifers, the basaltic rocks, the travertine deposits, and the alluvium, 1975, in southern Apache County, Arizona. 5. Generalized areas in which domestic or municipal ground-water supplies probably can be southern Apache County, developed in Arizona. in Apache southern Page Figure 1. 2. 3. Map showing area of report and Arizona's water provinces...................................... 4 Sketch showing well-numbering system in Arizona ............................. ,. . . . . .. .. . . . . . . . 5 Diagram showing sodium and salinity hazards of ground water...................................... 29 CONTENTS v TABLES Page Table 1. Hydraulic characteristics of wells that penetrate the confined Coconino aquifer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Estimated amount of ground-water withdrawal in 1975 .................................... 24 3. Records of selected wells................................ 36 4. Measurements of the water level in selected wells......................................... 54 5. Records of selected springs ............................. 57 6. Chemical analyses of water from selected wells. . .... ... . . . . .... . .. . . . . . . . ... . . . . . .. . . . . . .. .. . . .. 58 Chemical analyses of water from selected springs ............................................... 66 Chemical analyses of water from selected streamflow sites....................................... 68 Modified drillers ' logs of selected wells.................. 74 2. 7. 8. 9. VI CONVERSION FACTORS For readers who prefer to use the International System of Units (S I) rather than inch-pound units, the conversion factors for the terms used in this report are listed below: Multiply inch-pound unit inch (in.) foot (ft) mile (mi) acre square mile (mi2) acre-foot (acre-ft) foot squared per day (ft2/d) gallon per minute (gal/min) ~ 25.4 0.3048 1.609 0.4047 2.590 0.001233 0.0929 To obtain S I unit millimeter (mm) meter (m) kilometer (km) hectare (ha) square kilometer (km2) cubic hectometer (hm 3 ) meter squared per day (m 2 /d) 0.06309 I iter per second (L/s) National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly .called II Mean Sea Level. II NGVD of 1929 is referred to as sea level in this report. GEOHYDROLOGY AND WATER USE IN SOUTHERN APACHE COUNTY, ARIZONA By Larry J. Mann, U. S. Geological Survey and E. A. Nemecek, Arizona Department of Water Resources ABSTRACT In 1975 about 30,000 acre-feet of water-70 percent su rface water and 30 percent ground water-was used in the 4,100-square-mile area of southern Apache County. Water use is expected to increase nearly 100 percent by the mid-1980·s owing to projected demands for public, irrigation, and industrial supplies. Ground water will be used to meet the future demands because most of the surface water is allocated to local and downstream users. Ground water is present in places in most of the geologic formations that underlie the area. The most widespread source of ground water is the Coconino aquifer, which probably underlies the entire area. The aquifer consists of the Coconino Sandstone, the overlying Kaibab Limestone, and the uppermost beds of the underlying Supai Formation. In 1975 the aquifer supplied about 7,700 acre-feet of water to pumping and flowing wells, and in general, no appreciable decline in water levels has taken place. In most of the area the Coconino aquifer will yield 500 to 1,000 gallons per minute of water to properly constructed wells. In the southwestern and west-central parts of the study area, the water contains moderate concentrations of dissolved solids; in the southeastern and east-central parts, the water generally contains large concentrations of dissolved solids. In the northern part, the water generally is unfit for human consumption and other uses. In the southern part of the area, ground water is obtained mainly from the Springerville and White Mountains aquifers and the basaltic rocks that overlie the Coconino aquifer. The Springerville aquifer consists of undifferentiated Upper Cretaceous sedimentary rocks that probably are equivalent to the Dakota Sandstone, Mancos Shale, and Mesaverde Group. The White Mountains aquifer consists of the Eagar Formation of Sirrine (1958), Datil Formation, and undifferentiated Tertiary sedimentary rocks. In places the Springerville and White Mountains aquifers and the basaltic rocks yield as much as 165 gallons per minute of water to domestic and public-supply wells. The water generally is of suitable chemical quality for most uses. 1 2 In the northern part of the area, the Bidahochi aquifer and alluvium overlie the Coconino aquifer and yield water to wells. The Bidahochi aquifer includes the Bidahochi Formation and the underlying Mancos Shale and Dakota Sandstone; in places, the underlying Wingate(?) Sandstone may be part of the aquifer. The aquifer yields 5 to 20 gallons per minute of water to wells in the northeastern part of the area. The water generally is of suitable chemical quality for most uses. The alluvium along the channels and flood plains of the Puerco and Little Colorado Rivers and their major tributaries consists of sand, silt, gravel, and clay. The alluvium yields 20 to 500 gallons per minute of water along the Puerco River and about 10 to 50 gallons per minute in other places. The chemical quality of the water is marginal to unsuitable for human consumption. In places reliable ground-water supplies can be obtained from the Moenkopi and Chinle Formations. Most wells that obtain water from the Moenkopi and Chinle Formations yield less than 20 gallons per minute of highly mineralized water. The water is used mainly for watering of livestock. In the northern part of the area, water from the Chinle is of marginal chemical quality and is used for domestic purposes. Although the travertine deposits yield small amounts of water to springs and seeps and to one well, they are limited in areal extent and do not provide reliable water supplies. INTRODUCTION Southern Apache County is a ranching and far-ming area in northeastern Arizona that is undergoing a rapid growth in population. The area is mainly grazing land except for small parcels of irrigated pasture and cropland in the valleys of the Little Colorado River, its major tributaries, and the San Francisco River. Water use is expected to increase greatly because several thousand acres of privately owned grazing land has been divided into 1- to 40-acre units that are being sold as homesites. In addition, two coal-fired electric plants, which will be major water users, are under construction. One is being built near St. Johns by the Salt River Project, and the other is being built near Springerville by the Tucson Electric Power Co. By the mid-1980 ' s, water use is expected to increase from about 30,000 acre-ft/yr to more than 50,000 acre-ft/yr. The water needed to support the increasing population and industrial requirements must come mainly from ground water, because most of the surface water is allocated to local and downstream users. The water-resources. investigation in southern Apache County was prompted by the increasing demand for water and was made by the U. S. Geological Survey in cooperation with the Arizona Department of Water Resources. The purposes of this investigation were to determine the occurrence, availability, and chemical quality of the ground water; to locate favorable areas in which ground water of suitable chemical quality 3 can be developed; and to identify the uses of the water. The report describes (1) distribution and lithology of the rock units that underlie the area; (2) occurrence, availability, and chemical quality of the ground water; (3) areas of potential ground-water development; and (4) water use in 1975. Location of the Area Southern Apache County includes about 4,100 mi 2 in northeastern Arizona (fig. 1). The area is bounded on the north by the Navajo Indian Reservation, on the east by the Arizona-New Mexico State line, and on the west by the Apache-Navajo County line; the south boundary is the Apache-Greenlee County line on the southeast and the Fort Apache Indian Reservation on the southwest. The area is mainly in the Plateau uplands water province, but the southern part is in the Central highlands water province (fig. 1). The main popl1lation centers are St. Johns, Springerville, and Eagar. The rest of the population live in small communities-such as Greer, Alpine, Nutrioso, Hunt, Concho, Sanders, and Navajo-and on widely scattered ranches. Methods of Investigation The fieldwork on which this report is based was done by E. L. Gillespie and R. W. Harper during 1973-74 and by L. J. Mann and E. A. Nemecek during 1975-76. A field inventory was made of most irrigation wells and many domestic and livestock wells and springs. Well and spring locations are described in accordance with the well -numbering system used in Arizona, which is explained and illustrated in figure 2. Pumpage data were collected from private companies and county and city agencies. Pumpage for irrigation use was computed from powerconsumption records on the basis of measurements of well discharge per unit of power consumption. Selected hydrologic data collected prior to and during this investigation and pertinent data collected by other agencies are given in tables 3-9 at the end of this report. Lithologic, geophysical, and drillers' logs of wells and test holes were examined to determine the lithologic characteristics and water-yielding potential of the rock units. The approximate extent of each water-yielding unit was defined by examination of well logs and by reconnaissance geologic mapping at a scale of 1: 250,000. The altitudes of wells and springs were obtained from U. S. Geological Survey topographic maps at scales of 1:24,000 or 1:62,500. Most of the available geohydrologic data are from small areas near the main population centers. Few deep wells have been drilled south of U. S. Highway 60 or in the northern part of the area. Additional data may alter some of the geohydrologic concepts given in this report. 4 o ". l12' , o &0 100 MllU b~_-,~,.-L',-<clo--,oo""'! KILOMETER8 BASE FROM U.S. GEOLOGICAL SURVEY STATE TOPOGRAPHIC MAP, 1.500,000 ~===========liO=======-~~~~_~~20 109°30' Figure 1.--Area of report and Arizona's water provinces. MILES 0~======~lL,O====::::i20 KILOMETERS CONTOUR INTERVAL 500 FEET NATIONAL GEODETIC VERTICAL DATU'l OF 1929 R 21 E RI W. 36 31 z o r Rot E 2 3 , 4 R6 E. 6 N. " ,. , 32 0: W , ,, ,I w 4 a : b a ____ 6 ____ .1____ 0: ':i d z 2 ..J r .,"" '2 \ // 3 " o V> N (A-17-21)6 Wooo A ;' > 5 , I' _-+----"L---'.'_+-_-+ die 17 r 0: "" (A-17-21) 6Eooo I/ ! / 1 N. i'" Numbering for odd size sections R.5E. 'ft :' " ' ' U"' c Well (A-4'5) geoo R.5 E. 1. 4 6 5 -4 3 2 I 7 8 9 10 11 12 18 17 16 15 14 13 22 23 24 f---+--:>fL-t--t--H N ~9 20 21 30 29 28 27 26 25 31 32 33 34 35 36 The well numbers and letters used by the Geological Survey in Arizona are in accordance with the Bureau of Land Management's system of land subdivision. The land survey in Arizona is based on the Gila and Salt River meridian and base line, which divide the State into four quadrants. These quadrants are designated counterclockwise by the capital letters A, B, C, and D. All land north and east of the point of origin is in A quadrant, that north and west is in B quadrant, that south and west in C quadrant, and that south and east in 0 quadrant. The first digit of a well number indicates the township, the second the range, and the third the section in which the well is situated. The lowercase letters a, b, c, and d after the section number indicate the well location within the section. The first letter denotes a particular 160-acre tract, the second the 40-acre tract, and the third the 10-acre tract. These letters are also assigned in a counterclockwise direction, beginning in the northeast quarter. If the location is known within the 10-acre tract, three lowercase letters are shown in the well number. In the example shown in figure 2, well number (A-4-5)19caa designates the well as being in the NE\NE\SW\ sec. 19, T. 4 N., R. 5 E. Where there is more than one well within a 10-acre tract, consecutive numbers beginning with 1 are added as suffixes. When a section is more than 1 mile in any dimension, the section number applies as usual. The oversized section is divided so that a full square-mile unit of the section is adjacent to a normal section within the same township; the remainder is considered as a separate unit of land. Appropriate N., S., E., or W. letters are assigned to the units, depending upon where they lie in relation to the full square-mile unit. A well would be designated as shown in figure 2 with the appropriate letter following the section number in which the well is located. Figure 2.--Well-numbering system in Arizona. 5 6 Previous Investigations Geohydrologic studies by several investigators were helpful in evaluating the ground-water conditions in southern Apache County. The ground-water conditions were first described in a report by Harrell and Eckel (1939). Akers (1964) discussed the geology and ground-water resources in central Apache County, and Feth and Hem (1963) described the springs in the Mogollon Rim region. Ground-water conditions in the White Mountains, Concho, and St. Johns areas were described by Harper and Anderson (1976), and those in the Puerco-Zuni area were described by Mann (1977). Useful test-hole data were obtained from reports by Peirce and Scurlock (1972) and Scurlock (1973). The geology was described by Sirrine (1958), Wilson and others (1960), Wrucke (1961), and Pei rce and Gerrard (1966). Ground-water investigations in two adjoining areas-southern Navajo County (Mann, 1976) and the Navajo Indian Reservation (Cooley and others, 1969)-were beneficial to this investigation. Acknowledgments The authors gratefully acknowledge the many well drillers, water companies, and residents of southern Apache County who granted access to their property and who furnished many of the well data. Mr. G. G. Small of the Salt River Project provided drill-hole and aquifertest data for test holes and wells near the Coronado Generation Station near St. Johns. Mr. A. R. Stanton of the U.S. Soil Conservation Service provided the data for irrigated acreage. Special thanks are due Messrs. J. N. Conley and J. R. Scurlock of the Arizona Oil and Gas Conservation Commission for furnishing oil-, gas-, and mineral-exploration test-hole data. REGIONAL SETTING Southern Apache County is in the high plateau country in east-central Arizona and includes the White Mountains and associated highlands in the extreme southern part. Altitudes range from 5,200 ft above sea level at the point where the Little Colorado River crosses the Apache-Navajo County line to about 11,500 ft at Baldy Peak near the head of the Little Colorado River drainage-a total relief of about 6,300 ft (pl. 1). The White Mountains and associated highlands are between 7,000 and 11,000 ft. The plateau country consists of flatlands and rolling hills separated by steep-walled canyons and is terminated near the south boundary by the White Mountains and the Mogollon Rim escarpment. In much of central Arizona the Mogollon Rim escarpment is the boundary between the Plateau uplands and Central highlands water provinces (fig. 1). In the southeastern part of Apache County, however, the rim is lost in the White Mountains volcanic field. 7 Southern Apache County is drained by the Little Colorado River in the central part of the area, the Puerco River in the northern part, the Black River in the southwestern part, and the San Francisco River in the southeastern part (pl. 1). The Little Colorado River flows northeastward from its headwaters in the White Mountains to Springerville, northward to St. Johns, and northwestward and across the west boundary of the area. The Puerco River flows southwestward across the northwestern part of the area, the Black River flows southwestward into Greenlee County, and the San Francisco River flows southeastward into New Mexico. The Black and San Francisco Rivers originate in the White Mountains. I n the southern part of the area the Little Colorado, Black, and San Francisco Rivers and many of their major tributaries are perennial. In the northern and central parts most streams are ephemeral. The topographic high formed by the White Mountains impedes the movement of airmasses that bring in moisture from the south and southwest. As a result, more precipitation falls in the White Mountains than in the northern part of the area. The orographic effect of the White Mountains is indicated by the difference in the amount of normal annual precipitation in the southern part of the area-20 to more than 25 in .-and the amount in the central and northern parts-9 to 12 in. (Sellers and Hill, 1974). The average annual temperature is about 44°F at Alpine and Greer, 53°F at St. Johns, and 51°F at Navajo and Sanders (Sellers and Hill, 1974). GEOLOGIC SETTING Southern Apache County is underlain by a sequence of sedimentary and volcanic rocks that is about 2,000 to at least 4,600 ft thick. The upper member of the Supai Formation of Permian age is the lowermost unit that is tapped by water wells. The member is 550 to 1,250 ft thick (Peirce and Gerrard, 1966, p. 6) and is composed mainly of siltstone, sandstone, and silty sandstone that contain beds of evaporite deposits-halite, gypsum, and anhydrite (pl. 1). Geophysical logs and core samples from oil, gas, and mineral test holes indicate that the upper o to 130(?) ft of the member is mainly sandstone and silty sandstone that contain beds of siltstone and evaporite deposits; the upper 130(?) ft is underlain by several hundred feet of siltstone and evaporite deposits. Although the Supai Formation does not crop out in southern Apache County, the unit is penetrated by wells and can be correlated with outcrops west of the area. The Coconino Sandstone of Permian age· overlies the Supai Formation. The Coconino ranges in thickness from 175 to 400 ft; the unit is 250 to 300 ft thick near Springerville and St. Johns, 300 to 400 ft thick along the west boundary of the area, and 175 to 200 ft thick near Navajo and Sanders. The Coconino consists of sandstone that is weakly to well cemented by quartz, iron oxide, and calcite. Quartz grains are well sorted, subangular to rounded, and frosted; quartz overgrowths constitute the most common cement. The degree of cementation varies 8 considerably horizontally and vertically throughout the unit. Although the Coconino does not crop out in southern Apache County, the unit is penetrated by wells and can be correlated with outcrops west of the area, where it exhibits fractures and large-scale crossbeds that locally are parted along bedding planes. The Kaibab Limestone of Permian age overlies the Coconino Sandstone in the southern and central parts of the area. The Kaibab is o to 350 ft thick, thins to the northwest, and is the oldest unit exposed in the area. The Kaibab is composed of jointed and locally fractured limestone and sandstone beds; the sandstone beds are lithologically similar to those of the Coconino Sandstone. The Moen kopi Formation of Triassic age overlies the Kaibab Limestone. The Moenkopi is 0 to 200 ft thick in the central part of the area and 100 to 250 ft thick in the northern part. The thickness is not uniform owing to erosional unconformities at the top and bottom of the unit. The Moenkopi consists of siltstone and mudstone that contain lenticular and wedge-shaped beds of sandstone, silty sandstone, and conglomerate. I n places the siltstone and mudstone contain stringers, nodules, and lenticular beds of gypsum and halite. The Moenkopi is exposed mainly in the central part of the area. The Chinle Formation of Triassic age overlies the Moenkopi Formation in most of the area. The Chinle Formation consists of several members that form a gradational and intertonguing depositional sequence; because of the gradational and intertonguing relations and the discontinuity of some of the members, the Chinle is mapped as one unit in this report (pl. 1). The thickness of the Chinle is 0 to 500 ft in the central and southern parts of the area and as much as 1,600 ft in the northern part. The Chinle consists mainly of siltstone, claystone, mudstone, and Iimestone, which, in places, contain sandstone and conglomerate beds. The basal Shinarump Member consists mainly of lenticular beds of sandstone and conglomerate. The Petrified Forest Member overlies the Shinarump Member and consists mainly of grayish-blue to grayish-purple claystone, siltstone, and mUdstone that contain a few thin lenticular beds of sandstone, conglomerate, and limestone. In the central and northern parts of the area, the Sonsela Sandstone Bed divides the Petrified Forest Member into an upper part and a lower part. The Sonsela is composed mainly of lenticular beds of sandstone and conglomerate. The Chinle Formation is exposed in the central and northwestern parts of the area. The Dakota Sandstone and Mancos Shale of Cretaceous overlie the Chinle Formation in the east-central part of the area. composite thickness of the Dakota Sandstone and Mancos Shale to 265+ ft. The units consist mainly of sandstone, siltstone, claystone. age The is 0 and A sequence of undifferentiated Upper Cretaceous sedimentary rocks overlies the Chinle Formation in the east-central and southern part of the area. The sequence probably is equivalent to the Dakota Sandstone, Mancos Shale, and Mesaverde Group. Although the thickness 9 of the undifferentiated Upper Cretaceous sedimentary rocks is not known in most of the area, a thickness of 488 ft has been penetrated in sec. 4, T. 10 N., R. 24 E. (Peirce and Scurlock, 1972, p. 121). The undifferentiated Upper Cretaceous sedimentary rocks consist of interbedded feldspathic sandstone, shale, si It?tone, and mudstone. The sandstone is weakly to well cemented and fine to medium grained. The Eagar Formation of Sirrine (1958) overlies the undifferentiated Upper Cretaceous sedimentary rocks and underlies the Datil Formation near Springerville and Eager. The formation is about 600(?) ft thick near Springervi lie and is composed of alternating beds of conglomerate, sandstone, and siltstone (Sirrine, 1958). The Datil Formation is exposed south and east of Springerville and consists of an upper andesite member and a lower sedimentary member (Wrucke, 1961). The andesite member, which has a maximum thickness of 400 ft, is exposed on the slopes of Escudilla Mountain and at Luna Lake and is present in the subsurface near Alpine. The sedimentary member, which is at least 1,000 ft thick near Nutrioso, is composed of interbedded mudstone, sandstone, and conglomerate. Undifferentiated Tertiary sedimentary rocks overlie the Datil Formation in the southern part of the area. The rocks crop out in large areas near Greer, Alpine, and Nutrioso, and isolated outcrops are present near Crosby Crossing, Lake Sierra Blanca, Three Forks, and in the White Mountains. The Bidahochi Formation of Tertiary age overlies the Chinle Formation in places in the northeastern and central parts of the area. The Bidahochi Formation was deposited on an irregular erosion surface, and in places in the subsurface it overlies a series of sedimentary rocks that clearly are not part of the Chinle Formation. As determined from drillers l logs, the lithologic characteristics of these rocks indicate that they are part of the Mancos Shale and Dakota Sandstone of Cretaceous age or the Wingate(?) Sandstone of Triassic age. The Wingate(?), Dakota, and Mancos have been removed by erosion in most of the area. The Bidahochi Formation is exposed mainly in the highlands along U.S. Highway 666 between St. Johns and Sanders along the Puerco River, Mi I ky Wash, and southwest of the Painted Desert Inn. The formation is 160 ft thick near Navajo and thins to a few feet in Surprise Valley. More than 1,000 ft was penetrated by a well drilled in T. 19 N., R. 30 E. The Bidahochi consists of sandstone, mudstone, claystone, conglomerate, and travertine. The basaltic and volcanic rocks of Tertiary and Quaternary age are present mainly in the southern part of the area but also cap a few ridges and buttes in the central and northern parts. The travertine deposits of Tertiary and Quaternary age generally cap buttes or form domes around present or ancient spring orifices. Some springs along the Little Colorado River near Lyman Lake actively deposit travertine. A thin veneer of Quaternary alluvium covers large parts of the area, and alluvium is present in varying thicknesses along most major streams. 10 The most stri king structural characteristic of the sedimentary rocks that underlie southern Apache County is their gentle dip to the north, which is interrupted in places by small folds and faults. Nearly all the folds-anticlines, synclines, and monoclines-trend northwest and parallel to the axis of a broad syncline near Witch Well in the northeastern part of the area (pl. 1). Anticlines generally are well defined, and dips are steepest on the southwest limbs. Synclines generally are mas ked by the Tertiary and Quaternary units. The closure of most folds ranges from 75 to 350 ft. The monocline about 1 mi west of Sanders trends north to northwest and dips between 5° and 10° WSW. Although the monocline is buried by the Bidahochi Formation and the alluvium in most of the area, it can be traced south of the Puerco River for about 6 mi in the subsurface. Only a few faults are present in southern Apache County, the most prominent of which are near Navajo. Although the faults are buried by the Bidahochi Formation and the alluvium, they were detected during the dri II ing of several dozen test holes and production wells in the helium fields near Pinta and Navajo. The faults are downthrown on the north, and, in places, the strata are offset more than 200 ft. Small faults were observed in other places in the county, but most were not mapped during this study. Additional faults may be buried by the Tertiary and Quaternary units, but they have not been detected from the avai lable subsurface data. GROUND WATER Ground water is present in places in most of the geologic formations that underlie southern Apache County. Many of the formations are hydraulically connected and form aquifers in large areas. An aquifer is a formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs (Lohman and others, 1972, p. 2). On the basis of the available geohydrologic data, the formations are divided into five major aquifers-Coconino aquifer, Springerville aquifer, White Mountains aquifer, Bidahochi aquifer, and the alluvium (pl. 1). In places, water is present in the Moenkopi and Chinle Formations, basaltic rocks, and travertine deposits. The Moenkopi and Chinle Formations and the basaltic rocks are reliable sources of water; however, the travertine deposits are not a reliable source because of their small areal extent. Most of the available geohydrologic data are from small areas near the main population centers. Few deep water wells have been drilled south of U . S. Highway 60 or in the northern part of the area. Additional data may alter some of the geohydrologic concepts given in this report. Coconino Aquifer' The Coconino aquifer-which is composed of the Coconino Sandstone, the uppermost beds of the underlying Supai Formation, and 11 the overlying Kaibab Limestone-probably underlies the enti re area. The Coconino aquifer is the deepest developed source of water in southern Apache County. The Coconino Sandstone is the main water-bearing unit in the Coconino aquifer. The upper 0 to 130(?) ft of the Supai Formation is hydraulically connected to the Coconino Sandstone and yields water to wells. The upper 0 to 130(?) ft of the Supai is underlain by a thick sequence of siltstone and evaporite deposits, which is nearly impermeable and probably impedes the downward movement of water. In most of the area the Kaibab Limestone is hydraulically connected to the Coconino Sandstone and yields water to wells. The Kaibab is nearly impermeable except where it is jointed or fractured or contains solution cavities. The Coconino aquifer is about 275 ft thick near Chambers and slightly less than 600 ft thick southeast of Lyman Lake (pl. 2A). Occurrence of water.--The Coconino aquifer is the most widespread and productive source of ground water in southern Apache County. I n the northern and central parts of the area, the water is under confined or artesian conditions; the water is confined by the si Itstone and mudstone beds in the Moenkopi and Chinle Formations. The confined water will rise as much as 1,400 ft above the top of the aquifer where tapped by wells (pl. 2B). In most of the southern part of the area the aquifer is partly drained, and water is under unconfined or water-table conditions. Drill-hole data indicate that water levels may rise a few feet above the point at which water is first found but do not rise above the top of the aquifer. The rises in water levels probably are the result of vertical changes in lithology. Along the crest of the anticline southeast of St. Johns (pl. 3), the Kaibab Limestone and Coconino Sandstone may be completely drained of ground water. Recharge and movement of ground water. --Ground water in the Coconino aquifer is derived mainly from the infiltration of precipitation and streamflow. The main area of recharge is in the southern part, where the normal annual precipitation ranges from 12 to more than 25 in. (Sellers and Hill, 1974). Much of the water that infiltrates to the permeable sedimentary and basaltic rocks is recharged to the aquifer. The rate of infiltration is large in relation to that in the central and northern parts of the area, where the nearly impermeable siltstone and mudstone beds of the Moenkopi and Chinle Formations overlie the aquifer. In the northeastern and eastern parts of the area, water in the Coconino aquifer is derived mainly from underflow that enters the area along the Arizona-New Mexico State line on the east and the boundary of the Navajo Indian Reservation on the north. Ground water in the Coconino aquifer moves northwestward from the areas of inflow on the south and east. Most of the water leaves the area as underflow across the west and northwest boundaries, but some of the water is discharged to springs along the Little Colorado River and to wells in the area. The movement of water in the aquifer is controlled mainly by the regional dip of the sedimentary rocks. In places in the north-central part of the area, ground-water movement is controlled by 12 faulting. The faults act as impediments to the movement of ground water and cause differences of about 100 ft in the altitudes of the potentiometric surface on opposite sides of the fault (pl. 3A). Such impediments result where the permeable beds of the Coconino aquifer are faulted against the nearly impermeable beds of the underlying Supai Formation and the overlying Moen kopi and Chinle Formations. Subsurface data indicate that the displacement along the faults may be as much as 200 ft, and, in places, less than 100 ft of the aquifer may be hydraulically connected across the faults. The altitude and the configuration of the level at which water will stand in wells that tap the Coconino aquifer are shown by potentiometric contour lines on plate 3A. In most of the area, few water wells tap the aquifer, and many of the water levels used to define the contours were reported or were calculated from the shut-in pressures recorded in oil, mineral, and gas test holes. Water levels calculated from recorded shut-in pressures differ 50 ft or more among several test holes in a small area, and an average value was used to define the inferred potentiometric contours on plate 3A, which may be in error more than 100 ft. The approximate potentiometric contours are believed to be accurate to the nearest 50 ft. Depth to water. --Water levels in wells that penetrate the Coconino aquifer are from several feet above the land surface to more than 1,000 ft below the land surface (table 3). In 1975, several wells near St. Johns, Carrizo Wash, and Hunt flowed at the land surface. In the northern part of the area, few wells tap the aquifer; however, on the basis of data from oil, gas, and mineral test holes, the depth to water is more than 1,000 ft below the land surface (pl. 2C). Because no wells are known to penetrate the aquifer south of Eagar, the depth to water is not known. Well yields. --Wells that penetrate the Coconino aquifer in the central part of the area yield from a few to more than 2,500 gal/min. Wells used for domestic and livestock supplies yield from a few to about 50 gal/min, whereas wells used for irrigation and industrial supplies yield from 200 to more than 2,500 gal/min. The largest well yields are obtained in places where at least 75 percent of the total thickness of the units that make up the aquifer is saturated or where the aquifer is confined. In most of the area, 500 to 1,000 gal/min probably could be obtained from properly constructed wells. Hydraulic characteristics of the aquifer. --The hydraulic characteristics of the Coconino aquifer govern its ability to transmit and store water. Transmissivity is a measure of the ability of the aquifer to transmit water. Storage coefficient is a measure of the ability of the aquifer to store water. 13 Transmissivity is the rate at which water of the prevailing kinematic viscosity is transmitted through a unit width of the aquifer under a unit hydraulic gradient (Lohman and others, 1972, p. 13). Transmissivity is the product of the saturated thickness and the hydraulic conductivity of the aquifer and is expressed in feet squared per day. Hydraulic conductivity is the volume of water at the existing kinematic viscosity that will move in unit time under a unit hydraulic gradient through a unit area measured at right angles to the direction of flow (Lohman and others, 1972, p. 4). The storage coefficient is the volume of water an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in head (Lohman and others, 1972, p. 13). The hydraulic characteristics of an aquifer are determined by aquifer tests. An aquifer test consists of pumping a well at a constant rate for a specified time and measuring the resultant water-level declines in the pumped well and in nearby observation wells that are not pumped during the testing period. After the pumping is stopped, measurements are made to define the rate of recovery of water levels. These field data are analyzed to define the hydraulic characteristics of the aquifer, which are used to determine the potential effects of ground-water withdrawals. In southern Apache County, aquifer-test data are avai lable mainly for wells in the central part of the area where water in the aquifer is confined. The data indicate that the transmissivity of the Coconino aquifer in the central part of the area ranges from 940 to 9,100 ft2/d (table 1). The wide range in transmissivity is in part a result of areal differences in lithology and fracturing. Hydraulic conductivity of the aquifer is greatest in areas where the aquifer is fractured. In addition, some wells that were tested are open only to the upper part and do not completely penetrate the aquifer. Transmissivity values calculated from aquifer-test data for wells that are open to only a small part of the aquifer generally are less than the calculated values for wells that are open to nearly all the aquifer. Where the aquifer is completely saturated and the water is confined, the storage coefficient is an indication of the volume of water released by expansion of the water and compression of the aquifer as a result of a decrease in the confining pressure when a well is pumped. A typical storage coefficient for the confined Coconino aquifer probably ranges from 1.0x10- 4 to 1. Ox10- 3 . Values of the storage coefficient determined from aquifer tests on wells that penetrate the confined Coconino aquifer are shown in table 1. Where the water in the aquifer is unconfined, the storage coefficient is virtually equal to the specific yield of the saturated strata. Specific yield, which is expressed as a percentage, is the volume of water that is released by gravity drainage per unit volume of the aquifer. The storage coefficient of the unconfined Coconino aquifer cannot be determined using the available data but probably is near zero where the aquifer is mainly a dense unfractured limestone to about 0.15 or more where it is a well-sorted and fractured sandstone. 14 Table 1. --Hydraulic characteristics of wells that penetrate the confined Coconino aquifer Location Length of well open to aquifer, in feet Transmissivity, in feet squared per day Storage coefficient (A-11-28)9dbb1 272 19,100 13.8x10- 3 (A -12-26)18dcc2 80 21,900 (A -12-27)19bcd 450 12,800 (A-12-28)7cdb 475(?) 23,200 ------------------------------- (A-13-26)6dcb 357 (A -13-27)15bda 350 (A-13-27)15bdc 269 (A -13-27)15bdd (A-13-28)12cac 2 34,000 1 33,900 2 31.0x10- 4 309 1 33,900 1 34,800 1 39.0x10- 5 1 36.7x10- 4 377 3940 ----------- ----------- 1Value calculated from recovery data. 2Value calculated from pumping data. 3Data provided by Salt River Project. Chemical guality of water. --The chemical quality of water in the Coconino aquifer differs greatly from place to place. Ground water in the southwestern part of the area contains smaller concentrations of dissolved solids than water in the northern and eastern parts (pl. 3A). In the southwestern part of the area the water contains 125 to 1,000 mg/L (milligrams per liter) of dissolved solids and is mainly a calcium bicarbonate type. Near Carrizo Wash in the eastern part of the area, the water contains about 900 to 1,600 mg/L of dissolved solids and is a calcium bicarbonate type. In the rest of the area the water generally contains from 1,000 to 64,100 mg/L of dissolved solids. The dominant ions generally are sodium, chloride, and sulfate, but in places large quantities of calcium and bicarbonate also are in solution. The areal difference in chemical composition is coincident with an increase in dissolved solids. The dominance of the calcium and bicarbonate in the water in the southwestern part and near Carrizo Wash in the eastern part of the area probably results from the solution of these ions as the water moves downward through the carbonate beds in the Kaibab Limestone to the water table. The south-to-north and west-toeast increase in dissolved solids and the difference in chemical composition probably result from the addition of sodium, chloride, and sulfate from the halite and gypsum beds in the uppermost part of the Supai Formation. 15 The dissolved-solids concentration in water in the Coconino aquifer is related closely to geologic structure as is indicated by comparing the location of the line of equal dissolved-solids concentration representing 1,000 mg/L shown on plate 3A with the axes of the major folds in the area shown on plate 3B. The increase in dissolved solids occurs mainly as the water moves through the anticlinal and synclinal folds near Lyman Lake and Hunt and in the northern part of the area. Along the folds, the siltstone beds in the uppermost part of the Supai Formation, which may insulate the halite, gypsum, and anhydrite deposits in the southwestern part of the area, probably are fractured and allow solution of the deposits by moving ground water. I n places water in the aquifer may be contaminated by the solution of gypsum and halite from the Moen kopi Formation. The Moenkopi generally is fractured along the major anticlines and synclines and locally may be hydraulically connected to the Coconino aquifer. Another source of contamination is from the movement of water into and out of the aquifer through the well bore. Many wells drilled into the Coconino aquifer also are open to water-bearing beds in the Moenkopi and Chinle Formations, which normally contain highly mineralized water. Moenkopi and Chinle Formations The Moenkopi and Chinle Formations contain water in parts of southern Apache County but yield only small amounts of water to wells, and the water generally contains large concentrations of dissolved sol ids. The water is used mainly for livestock; however, several wells near St. Johns, Concho, and along the Puerco River provide water for domestic and public supplies (pl. 4A). The Moenkopi Formation yields water to wells in the central and western parts of the area near the Little Colorado River (pl. 4A). Water in the Moenkopi is present mainly in fractures and joints in the lenticular and wedge-shaped beds of sandstone, silty sandstone, and conglomerate near the top and base of the unit. In most places, the depth to water in wells that tap the Moen kopi is from about 25 to 220 ft below the land surface (table 3); one well near Concho flows at the land surface. Reported well yields are from a few to about 30 gal/min. The water generally contains large concentrations of dissolved solids and is marginal to unsuitable for most uses. In five water samples from wells that tap the Moen kopi, the di ssolved -sol ids concentrations range from 776 to 6,180 mg/L (pI. 4A). The Chinle Formation yields water to wells in the central and northern parts of the area, mainly near Carrizo Wash, the Zuni River, and the Puerco River (pl. 4A). The Chinle contains water in the lenticular sandstone and conglomerate beds of the Shinarump Member, the Sonsela Sandstone Bed of the Petrified Forest Member, and the thin 16 sandstone beds in the upper part of the unit. Data indicate that the claystone, mudstone, and siltstone beds are nearly impermeable and do not yield usable quantities of water. Water levels in wells that tap the Chinle range from flowing at the, land surface to about 340 ft below the land surface. Reported well yields are from a few to about 50 gal/min. The chemical quality of the water from wells that tap the Chinle is suitable to unsuitable for most uses. In 20 water samples from wells that obtain water from the Chinle, the dissolved-solids concentrations range from 181 to 8,300 mg/L (pl. 4A). The specific conductance of the water from well (A-19-24)20bcc is 103,000, which indicates the dissolved-solids concentration probably is about 60,000 mg/L (table 6). Springerville Aquifer The Springerville aquifer yields water to several wells in the south-central part of the area. The aquifer includes a sequence of undifferentiated Upper Cretaceous sedimentary rocks that consist of interbedded sandstone, shale, and, in places, shaly coal beds a few feet thick (pl. 1). The rocks that form the aquifer are exposed in isolated outcrops near Vernon and Springerville. The areal distribution of the outcrops and the drilling data indicate that the rocks are present in the subsurface in most of the area between Vernon and Springerville and northeast of Springerville (pl. 1). Occurrence, recharge, and movement of water. --The Springerville aquifer contains water in the south-central part of the area. The water is perched on the nearly impermeable beds of the Moenkopi and Chinle Formations or on shale in the lower part of the unit. The nearly impermeable beds retard the downward percolation of water into underlying rocks; where the impermeable beds are absent or where they form mesas, the Springerville aquifer generally is dry. In places water in the aquifer is hydraulically connected to water in the White Mountains aquifer or to water in the basaltic rocks. In the SpringerviHe aquifer water is derived from the downward infiltration of snowmelt, rainfall, and storm runoff that collects in streams and lakes. Because the rocks that form the aquifer are exposed only in isolated outcrops, most of the recharge occurs from downward infiltration through overlying rock formations. Water-level data for wells that obtain water from the Springerville aquifer indicate that the general direction of ground-water movement is to the north. As the water moves northward, it is discharged to springs, seeps, or weJls or infiltrates downward into underlying rocks. Depth to water. --The depth to water in wells that penetrate the Springerville aquifer ranges from about 25 to 575 ft below the land surface (pl. 4A). The depth to water in wells in the western part of the 17 area near Vernon ranges from 27 to 575 ft below the land surface. The depth to water in wells in the eastern part near Springerville ranges from 36 to 518 ft below the land surface. The depth to water in wells that penetrate only the upper part of the aquifer generally is less than the depth to water in wells that penetrate the entire thickness of the aquifer. During drilling, the water level may decline as much as 50 ft as water from one permeable zone moves downward through the well bore into another permeable zone. Because depth to water generally increases with well depth, the depth to water in wells of various depths in a small area may differ 50 ft or more. Well yields. --Wells that penetrate the Springerville aquifer provide water for domestic, public, and livestock supplies. The rate at which water is withdrawn depends on the use of the water. Livestocksupply wells generally are drilled in the upper part of the aquifer and are equipped with windmills that pump less than 5 gal/min. Most domestic and public-supply wells, which generally penetrate a greater thickness of aquifer, are equipped with electric submersible pumps and yield from a few gallons per minute to as much as 165 gal/min. The maximum yield that could be obtained from a properly constructed and developed well is unknown, but in places probably is 100 to 300 gal/min. Well (A-11-25)18dcc is reported to produce 1,000 gal/min (table 3); however, part of the water may be derived from the overlying basaltic rocks or from seepage through fractures from a small lake a few hundred feet from the well. Chemical quality of water. --Water in the Springerville aquifer contains small to moderate quantities of dissolved solids and is suitable for most uses. The dissolved-solids concentrations range from 156 to 1,000 mg/L and average 405 mg/L in water samples from 16 wells that obtain water from the Springerville aquifer (pl. 4A). The water is mainly a sodium calcium bicarbonate type. I n some places the dominant ions also include magnesium, sulfate, and chloride. The fluoride concentrations range from 0.1 to 2.3 mg/L and average about 1.0 mg/L. White Mountains Aquifer The White Mountains aquifer underlies most of the southern part of the area and yields water to wells near Greer, Alpine, Nutrioso, Springerville, east of Springerville, and at Big Lake. The aquifer includes the Eagar Formation of Sirrine (1958), the Datil Formation, and the undifferentiated Tertiary sedimentary rocks. In places the rocks are hydraulically connected and function as a single aquifer (pl. 1). Occurrence of water. --The White Mountains aquifer probably contains water in most of the southeastern part of the area. Wells near 18 Greer, Alpine, Nutrioso, Springerville, east of Springerville, and at Big Lake obtain water from the aquifer (pl. 4B). Most of the southeastern part of the area is undeveloped, and the exact areal extent of the saturated part of the aquifer is not known. In the White Mountains aquifer, water is contained in the permeable sandstone beds that in places are separated by mudstone, andesite, and basalt. The andesite and basalt are nearly impermeable but probably contain water where they are fractured. Locally, water is perched on the nearly impermeable mudstone and andesite. Near Alpine, the andesite forms a confining bed for water contained in the underlying sedimentary rocks; however, the areal extent of confined ground water is not known. The aquifer is, at least locally, hydraulically connected with other water-bearing units. Near Greer, the aquifer is hydraulically connected to the overlying basaltic rocks; near Springerville, it probably is connected also to the underlying Springerville aquifer. The subsurface data are inadequate to define the location and the units to which the aquifer may be connected throughout the area. Near Nutrioso, four wells drilled to depths from 93 to 235 ft into this aquifer reportedly are dry. All four wells are within one-half mile of wells of' comparable depth in which the depth to water is from about 10 to 60 ft below the land surface. The occurrence of water in the aquifer, therefore, probably is controlled locally by differences in Iithology or concealed faults or fractures. Availability of water.--In the southeastern part of the area, the White Mountains aquifer has been developed locally as a source of ground water. Wells that penetrate the aquifer are used to supply water for public, domestic, and livestock uses. The depth to water generally is less than 200 ft, and the wells yield a few to about 80 gal/min (table 3). Chemical quality of water. --The chemical quality of water in the White Mountains aquifer is suitable for most uses. In general, the water is a sodium bicarbonate type, but near Springerville, calcium and magnesium also are dominant constituents (pl. 4B). The dissolved-solids concentrations range from 160 to 384 mg/L and average 249 mg/L in eight water samples. Fluoride concentrations range from 0.1 to 1.4 mg/L and average 0.6 mg/L. Bidahochi Aquifer The Bidahochi aquifer yields water to wells in the northeastern part of the area and near St. Johns. The aquifer includes the Bidahochi Formation, the underlying Mancos Shale, and the Dakota Sandstone; in places, the sedimentary rocks that underlie the Bidahochi may include the Wingate(?) Sandstone (pl. 1). The underlying units are buried by the Bidahochi Formation and a precise correlation cannot be made from 19 existing subsurface data. The composite thickness of the sedimentary rocks that form the aquifer ranges from a to 1, 000 ft. I n places, the upper 700 ft of the unit does not yield water to wells. Occurrence, recharge, and movement of water. --The Bidahochi aquifer contains water under unconfined conditions in most of the northeastern part of the area and near st. Johns (pl. 4B). The occurrence of water is controlled mainly by ancient valleys and ridges buried by the Bidahochi Formation. Between Carrizo Wash and Hardscrabble Wash, buried ridges formed by the nearly impermeable material of the Chinle Formation are above the zone of saturation; wells that tap the ridges do not yield water. The location of the ridges cannot be determined from the drilling data; however, the aquifer probably contains water in most of the northeastern part of the area (pl. 4B). The aquifer is recharged by precipitation that falls on areas of outcrop. When the soil-moisture requirements are satisfied, part of the precipitation infiltrates downward to the water table. If the rate of precipitation exceeds the rate of absorption by the soil, the water collects in stream channels as surface runoff. Topographic maps of the area indicate that several closed basins are in the northeastern part of the area. Many of the basins are less than 2 mi 2 ; however, a few basins include several tens of square miles. Part of the surface runoff that collects in the natural lakes and ponds in the closed basins probably infiltrates downward to the zone of saturation and becomes ground water in the Bidahochi aquifer. The general direction of ground-water movement in the aquifer is northwestward toward the Puerco River and southward toward the Zuni River and Hardscrabble Wash. The approximate location of the groundwater divide is shown on plate 4B. As the water moves downgradient, it is discharged to springs and seeps and to the alluvium along the valleys of the Puerco River, Zuni River, Hardscrabble Wash, and their major tributaries, or it is pumped from wells. Availability of water.--Most wells that penetrate the Bidahochi aquifer provide water for livestock and domestic supplies. The depth to water ranges from 10 to 709 ft below the land surface (pl. 4B). The depth to water depends mainly on the topography and is greatest in wells on the high ridges between the Puerco, Little Colorado, and Zuni Rivers and least in the valleys between the ridges. The rate at which wells are pumped depends on the use of the water. Livestock-supply wells are equipped with windmills that generally pump less than 5 gal/min. A few wells used for domestic supplies are equipped with electric submersible pumps that yield from 10 to 20 gal/min. The maximum yield that could be obtained from a properly constructed and developed well drilled into the aquifer is not known. Bailing tests 20 indicate that as much as 50 to 100 gal/min might be obtained in some places. Chemical quality of water. --Water in the Bidahochi aquifer contains small to moderate quantities of dissolved solids and is suitable for most uses. The dissolved-solids concentrations range from 170 to 415 mg/L and average 229 mg/L in 24 water samples from wells that tap the aquifer in the northeastern part of the area. The water is mainly a sodium calcium bicarbonate type (pl. 4B). The chemical composition of eight water samples from wells and springs in the central part of the area near St. Johns and in T. 15 N., R. 31 E., ranges from a sodium bicarbonate sulfate to a calcium magnesium bicarbonate type. The dissolvedsolids concentrations range from 262 to 1,380 mg/L and average about 670 mg/L (pl. 4B). The differences in the chemical composition of water from the aquifer probably result from the solution of specific ions in the lower un its of the aqu ifer. Basaltic Rocks The basaltic rocks yield water to wells and springs in the southern part of the area (pl. 4B). The rocks consist mainly of an extensive sequence of basalt flows and cinder cones; in places, the basalt flows are interbedded with cinder beds or are separated by clay lenses (pl. 1). The basaltic rocks are deposited on an irregular surface eroded into the underlying sedimentary units. The thickness is extremely variable and ranges from a thin cap on a ridge or mesa to several hundred feet in old stream channels cut into the underlying sedimentary rocks. Water occurs mainly in fractures and in the permeable cinder beds. In places where the basaltic rocks are underlain by nearly impermeable siltstone or mudstone or where clay lenses are present between basalt flows, the ground water is perched. Where the basaltic rocks are underlain by permeable sandstone, however, the rocks are either hydraulically connected to the sandstone or are drained of water. Near Greer, the basaltic rocks are hydraulically connected to the permeable sandstone units of the underlying White Mountains aquifer and, near Vernon, to the Springerville aquifer. The general direction of ground-water movement in the basaltic rocks is to the north from the recharge areas in the White Mountains, but water also infiltrates downward into underlying units. Ground-water movement is controlled mainly by the interbedded layers of clay and the irregular surface underlying the unit. The basaltic rocks yield water to many springs and seeps and to a few domestic and livestock wells in the southern part of the area. Springs generally issue at the contact of the underlying siltstone and mudstone or interbedded clay lenses and the overlying basaltic rocks. Spring discharges range from a few tenths to about 1,000 gal/min. Some 21 springs flow mainly in response to precipitation. Wells that penetrate the basaltic rocks generally are less than 100 to 500 ft deep and yield from 0 to about 50 gal/min (table 3). Water in the basaltic rocks contains small amounts of dissolved solids and is suitable for most uses. The dissolved-solids concentrations range from 56 to 395 mg/L and average about 150 mg/L in water samples from 15 springs (pl. 4B). Fluoride concentrations range from 0.0 to 1.2 mg/L and average about 0.2 mg/L. Dissolved-solids concentrations range from 118 to 405 mg/L and average about 176 mg/L in water samples from eight wells. Fluoride concentrations range from 0.1 to 0.9 mg/L and average about 0.3 mg/L. In general, the dissolved-solids concentrations in water from springs and wells increase from south to north (pl. 4B). Alluvium The alluvium along the channels and flood plains of the Puerco and Little Colorado Rivers and their major tributaries is from a few hundred feet to about 4 mi wide (pl. 1) and is an important source of ground water in southern Apache County. The alluvium consists of poorly sorted deposits of sand, silt, gravel, and clay that are from 0 to about 150+ ft thick. The alluvium is irregular in cross section and contains many buried ridges and stream channels eroded into the underlying sedimentary rocks. In general, the buried channels contain coarse sand and gravel that grade upward into fine sand and silt. Occurrence, recharge, and movement of water. --Water occurs in the sand, silt, gravel, and clay deposits and is under water-table conditions. In most places the alluvium is underlain by the nearly impermeable siltstone of the Chinle Formation, which impedes downward movement of water into underlying strata. I n some places the alluvium overlies the permeable strata in the Bidahochi Formation or the sandstone beds in the Chinle Formation, and the alluvium is hydraulically connected to the underlying unit. The alluvium is recharged mainly by the downward infiltration of streamflow. Most streams that are underlain by extensive alluvium, such as those along the valley of the Puerco River, are ephemeral, and recharge occurs only during storm runoff. Where the alluvium is hydraulically connected to underlying units, some ground water may be derived from the vertical and lateral movement of water from the underlying units. Along the channels and flood plains of the Puerco River and its major tributaries, the alluvium is in hydraulic connection laterally and vertically with the Bidahochi aquifer and with sandstone beds in the Chinle Formation. Ground water in the alluvium moves downgradient parallel to the local stream gradient and is discharged as underflow across the west boundary, lost to evapotranspiration, or discharged to pumping wells. 22 Although the quantity of water that is discharged annually cannot be determined on the basis of the available data, most of the water probably is lost to evapotranspiration. Availability of water. --I n the valley of the Puerco River the alluvium provides water for domestic, public, irrigation, and industrial supplies. Several wells equipped with electric submersible or turbine pumps reportedly yield 20 to as much as 500 gal/min; larger yields probably could be obtained. I n other parts of the area wells that tap the alluvium are used to supply water for livestock and domestic use and are equipped with windmills that pump less than 5 gal/min. Most wells that tap the alluvium are drilled, but some are dug or are sand points driven into the upper part of the unit. The depth to water in the alluvium is less than 10 to as much as 65 ft below the land surface (pl. 4B). Near stream channels, the depth to water generally is 3 to 8 ft below the stream bed; near the edge of the valleys, the depth is 20 to 65 ft below the land surface. Along most of the major tributaries, the depth to water is 5 to 15 ft below the land surface. The most productive wells typically penetrate the entire thickness of the alluvium. The sand and gravel deposits, which generally are near the base of the alluvium, yield considerably more water to wells than the overlying deposits of sand and silt. Because of the irregular crosssectional shape of the alluvium, the deeper parts of the valleys that contain the coarser sediments are difficult to locate without test drilling or geophysical studies. Chemical guality of water. --The water in the alluvium contains large amounts of dissolved solids and generally is marginal to unsuitable for public and domestic supplies. The dominant chemical constituents are sodium, calcium, bicarbonate, chloride, and sulfate (pl. 4B). In water samples from wells that tap the alluvium, the dissolved-solids concentrations range from 188 to 3,410 mg/L and average about 1,060 mg/L (pl. 4B). Although the water is classed as marginal to unsuitable for public and domestic supplies, it is used in many places where a better quality of water is not locally available. The wide range in the dissolved-solids concentrations in the water in the alluvium probably is a result of one or more of the following: (1) the dissolved-solids concentrations in water derived from surface runoff on the Chinle Formation probably are greater than the concentrations in surface runoff on the Bidahochi Formation and alluvium; (2) in places where the alluvium is hydraulically connected to the B idahochi aquifer, the water in the alluvium is very similar in chemical quality to that in the Bidahochi aquifer; (3) evapotranspiration losses may concentrate the dissolved solids in water occurring near the surface; and (4) the geochemical composition of the alluvium differs from place to place. 23 WATER USE In 1975 about 30,000 acre-ft of water was used in southern Apache County. About 70 percent was supplied by surface-water storage and diversions, and about 30 percent was obtained from pumping and flowing wells. Ground water will be used to meet future demands because most of the surface water is allocated to local and downstream users. The use of surface water is limited owing to the lack of reservoirs to impound floodwaters and the large sediment concentrations in floodwater from most of the larger drainages in the northern and central parts of the area. Surface-Water Use Many streams in southern Apache County are ephemeral. The perennial streams that provide a reliable source of water are the Little Colorado River, the Black River, the San Francisco River, and some of their major tributaries. The main source of surface water in the area is the Little Colorado River and some of its tributaries. The Black and the San Francisco Rivers drain only small parts of the area near the south boundary. Several reservoirs have been constructed on the Little Colorado River and its major tributaries to impound water for agricultural and recreational uses. The reservoirs include Lyman Lake near St. Johns; Tunnel, River, Bunch, and White Mountain Reservoirs near Greer; and Concho Lake near Concho (pl. 1). The reservoirs have a combined storage capacity of about 38,200 acre-ft. In 1975 the amount of water released from the reservoirs and diverted from the Little Colorado River and its tributaries is estimated to be 21,100 acre-ft. The amount of water from several small diversions from the San Francisco River and Nutrioso Creek near Alpine and Nutrioso and other small drainages was not estimated. Ground-Water Use and the Effects of Withdrawal In southern Apache County the ground-water resources are largely undeveloped. Several hundred wells have been drilled, but most of them are used for livestock and domestic supplies or for small publicsupply systems at the main population centers. The only large-scale withdrawals are for irrigation in the valley of the Little Colorado River near Hunt and St. Johns. Most of the ground water used for irrigation is from the Coconino aquifer. The water is obtained directly from pumping and flowing wells and indirectly from springs that discharge into the Little Colorado River and its tributaries. Most of the water from flowing wells and springs is diverted and stored for irrigation, and part of the stored water is lost to evapotranspiration and infiltration. 24 In 1975 an estimated 8,900 acre-ft of ground water was obtained from pumping and flowing wells. About 84 percent of the water was used for irrigation; 10 percent for public, domestic, and livestock supplies; and 6 percent for industrial purposes. The Coconino aquifer furnished about 7,700 acre-ft or about 87 percent of the water withdrawn; about 500 acre-ft was obtained from the alluvium, and about 700 acre-ft from the rest of the aquifers (table 2). Ground-water pumpage for industrial use will increase greatly in the next few years. It is estimated that about 10,000 acre-ft/yr of ground water will be produced from the Coconino aquifer to supply a coal-fired electric plant being constructed by the Salt River Project near St. Johns and about 13,000 acre-ft/yr will be required to supply the Tucson Electric Power Co. plant near Springerville. In the valley of the Little Colorado River between Lyman Lake and the west boundary of the area and along Carrizo Wash, many of the wells that penetrate the Coconino aquifer flowed at the land surface when they were drilled in 1945-61. The largest flow was reportedly about 1,200 gal/min from well (A-13-30)5dca in 1961 (table 3). By 1976, some wells had ceased to flow, and the flow from many wells had decreased. The decline in the rate of flow is the result of an areal decline in the potentiometric surface owing to the withdrawal of ground water by pumping and flowing wells and the loss of confining pressure owing to deterioration of the well casings. Part of the water is lost into units overlying the aquifer because of casing deterioration. Table 2. --Estimated amount of ground-water withdrawal in 1975 Source Ground-water withdrawal, in acre-feet Coconino aquifer Pumped wells ......................... . 5,800 Flowing wells ......................... . 1,900 Moenkopi and Chinle Formations .......... . 100 Springerville aquifer 200 White Mountains aquifer .................. . 200 Bidahochi aquifer ......................... . 100 Basaltic rocks ............................ . 100 Alluvium ................................. . 500 Total .............................. . 8,900 25 In most parts of the area water levels fluctuate seasonally in response to pumping or recharge, but in the past 25 to 30 years the net change has been negligible. Although water levels in several wells that tap the Coconino aquifer near the Little Colorado River between Lyman Lake and Hunt have declined as much as 17 ft, the decline generally was less than 10ft. No appreciable long-term water-level declines have been measured in wells that tap other aquifers. The withdrawal of ground water for irrigation has resulted in a slight decline in the water level in most wells near Hunt. The greatest amount of decline occurred in well (A-14-25)E12cdd2, where the water level declined from about 13 ft below the land surface in July 1953 to about 30 ft in January 1975 (table 4). Water-level measurements made in the 1950's and in 1975-76 indicate that similar declines have occurred in a few other wells near Hunt, but in general, water levels have declined less than 10 ft. Chemical Suitability of Water for Drinking and Irrigation The chemical suitability of water for drinking and irrigation depends on the concentration of dissolved solids and the relative concentration of specific ions in solution. In general, water. that contains more than 500 mg/L of dissolved solids is not preferred for use as a public supply; however, water that contains 500 to 1,000 mg/L is used if better water is not available. Water that contains 1,000 to 3,000 mg/L can be used for the irrigation of salt-tolerant crops on well-drained soil. Livestock will sometimes drink water that contains 5,000 mg/L or more of dissolved solids if the water is cold, but not if the same water is warm. In southern Apache County the dissolved-solids concentrations in ground water are from less than 100 to more than 64,000 mg/L. The concerltration of dissolved solids and the concentration of specific ions in solution differ from place to place and depend on the source of the water. Surface water commonly is used for irrigation or livestock supplies and generally is within acceptable limits in chemical constituents. Drinking water for public and domestic supplies. --The maximum contaminant level for dissolved solids in public water supplies is 500 mg/L, as proposed in the secondary drin king-water regulations of the u.S. Environmental Protection Agency (1977b, p. 17146) in accordance with provisions of the Safe Drinking Water Act (Public Law 93-523). The u. S. Environmental Protection Agency (1977a, b) has established national regulations and guidelines for the quality of water provided by public water systems. Primary drin king-water regulations govern contaminants in drinking water that have been shown to affect human health. Secondary drin king-water regulations apply to contaminants that affect esthetic quality. The primary regulations are enforceable either by the Environmental Protection Agency or by the States; in contrast, the 26 secondary regulations are not Federally enforceable but are intended as guidelines for the States. The maximum contaminant level for fluoride in public water supplies differs according to the annual average maximum daily air temperature (Bureau of Water Quality Control, 1978, p. 6). The amount of water consumed by humans, and therefore the amount of fluoride ingested, depends partly on air temperature. The maximum contaminant level for selected chemical constituents are as follows: Con stituent Maximum contaminant level, in milligrams per liter Fluoride (F) 11.6 to 2.0 Iron (Fe) 0.3 Sulfate (S04) 250 Chloride (CI) 250 Nitrate (N0 3 ) 45 1Based on the annual average maximum daily air temperatures in Alpine, Springerville, St. Johns, and Sanders (Sellers and Hill, 1974). The chemical quality of ground water in southern Apache County differs from one aquifer to another and from place to place in an aquifer. I n the southern part and in most of the central part of the area, water that contains less than 1,000 mg/L of dissolved solids can be obtained from wells and springs. Water from the basaltic rocks and the White Mountains and Springerville aquifers generally contains less than 400 mg/L of dissolved solids and is suitable in chemical quality for drinking (pl. 4). Water from the Coconino aquifer generally contains 125 to 1,000 mg/L of dissolved solids in the southwestern and west-central parts of the area but contains about 900 to 2,600 mg/L in the southeastern and east-central parts (pl. 3A). In the northern part of the area, water from the Coconino aquifer contains 2,000 to 64,100 mg/L of dissolved solids (pI. 3A). Water for domestic, public, and livestock supplies is obtained from the Bidahochi aquifer in the northeastern part of the area. Water in the Bidahochi aquifer generally contains 175 to about 400 mg/L of dissolved solids (pl. 4B). Water in the alluvium along the Puerco River and its major tributaries generally contains 500 to 1,200 mg/L of dissolved solids (pl. 4B). In places along the Puerco River near Navajo, Chambers, and Sanders, water from the Chinle Formation contains 181 to slightly more than 1,000 mg/L of dissolved solids (pl. 4A). Water from wells that tap the Chinle in most other parts of the area contains large concentrations of dissolved solids and is unfit for human consumption. 27 In the east-central part of the area near the Little Colorado River and Carrizo Wash, most wells yield water that contains concentrations of fluoride that exceed the maximum contaminant level. Wells in this area obtain water from the Coconino aquifer, the Moenkopi Formation, the Chinle Formation, and the Bidahochi aquifer; fluoride concentrations are from 2.0 to as much as 4.9 mg/L (pl. 4; table 8). Fluoride concentrations in the rest of the area generally are within acceptable limits. Fluoride concentrations between 2 and 3 mg/L are present in water from a few wells that penetrate the Springerville aquifer near Eagar and the alluvium near Chambers and Pinta (pl. 4). Water from a well that taps the alluvium about 8 mi southeast of Black Knoll contains 9.1 mg/L of fluoride (pI. 4B). Water for irrigation. --The suitability of water for irrigation depends on the ratio of sodium to calcium and magnesium, the amount of dissolved solids in the water, the soil type, and the type of crops to be grown. I n southern Apache County the main chemical characteristics in ground water that are harmful to plant growth are the dissolved-solids concentrations or salinity and the ratio of sodium to calcium and magnesium. The dissolved-solids concentrations are critical to plant growth because large salt concentrations may accumulate in the root zones of plants where leaching is inadequate. Excessive concentrations of sodium in irrigation water may produce a breakdown of soil structure and cause a nutritional disturbance in crops. A useful parameter in evaluating the sodium hazard in irrigation water is the sodium-adsorption ratio (SAR) formulated by the U.S. Salinity Laboratory Staff (1954). The SAR is defined by the equation SA R ( Na +) = ------"--""----- ) in which the concentrations milliequivalents per liter. of the constituents are expressed in The salinity hazard can be critical to plant growth. The common test for salinity in irrigation water is to measure the specific conductance. Specific conductance is a measure of the ability of the ions in solution to conduct an electrical current and is an indication of the amount of dissolve9 solids in the water. About 5,000 micromhos per centimeter is the approximate upper limit of specific conductance for irrigation water if salt-tolerant crops are grown and if leaching in the root zone is adequate. A summary of the different sodium and salinity hazards of irrigation water, according to the U. S. Salinity Laboratory Staff (1954), follows. 28 Low-sodium water (51) can be used for irrigation of most soils; however, use of medium to very high sodium water (52 to 54) may require special soil management and chemical amendments. Low-salinity water (C1) can be used for irrigation of most soils, and medium to very high salinity water (C2 to C4) can be used for irrigation if the soil is permeable, drainage is adequate, and salt-tolerant crops are grown. The sodium and salinity hazards of water in southern Apache County are low to very high (fig. 3). Water from the Little Colorado River between Eagar and its junction with the west boundary of the area has a low to high sodium hazard and a low to very high salinity hazard. The sodium and salinity hazards increase markedly between Lyman Lake and St. Johns. Above Lyman Lake, water from the Little Colorado River generally has a low sodium hazard and a low to medium salinity hazard. Below Lyman Lake, springs and flowing wells that derive water from the Coconino aquifer flow into the river and increase the sodium and salinity hazards of the water. Water from the Coconino aquifer and the Moenkopi and Chinle Formations has low to very high sodium and salinity hazards. In the southwestern part of the area, water from the Coconino aquifer generally has a low sodium hazard and a low to medium salinity hazard, but in the central and eastern parts, the water has high to very high sodium and salinity hazards. In the northern part, water from the Coconino aquifer exceeds the criteria establ ished for irrigation uses. Water from the Springerville, White Mountains, and Bidahochi aquifers has a low to very high sodium hazard and a medium to high salinity hazard. Water from the basaltic rocks has a low sodium hazard and a low to medium salinity hazard. Water from the alluvium has a low to very high sodium hazard and a medium to very high salinity hazard. Water from the alluvium, however, is being used successfully for irrigation of salt-tolerant crops in permeable soils. AREAS OF POTENTIAL GROUND-WATER DEVELOPMENT The usability of ground water as a water supply depends on the chemical quality of the water, well depth, depth to water, and yield that can be obtained from wells. The chemical quality of the water is often the main factor that governs its use for specific applications. Water that contains more than 500 mg/L of dissolved solids is not preferred for use as a domestic or public supply, but water with 500 to 1,000 mg/L of dissolved solids is used in places where better quality water is not available. Water that contains as much as 3,000 mg/L of dissolved solids can be used successfully for irrigation of salt-tolerant crops on well-drained soils. The concentration of dissolved solids in water used for industrial purposes varies greatly and depends on the type of industry. 3 2 100 5000 30 ::III\: CIlI - =: ..... ca: ..."" SOURCE OF WATER 28 6 ::00- 26 24 0 X ...• 0 =: CD ::a::: .., "" 22 -• Little Colorado River All uvium Basaltic rocks • Bidahochi aquifer C3-S4 White Mountains aquifer Springerville aquifer Moenkopi and Chinle Formations Coconino aquifer 0 - C4-S4 0 CI-S3 20 - C» C» ca: PC a: N c =: ""' P- ilL II1II: lIllIE = CII C» "" C2-S3 • 18 • ca: C '-' 18 ::l1li: C» -' -' c 0 C» lIllIE = "" c CII - '"" ..... "" CII I lIllIE 14 = C» Vol • Cl-S2 CII 12 • - 0 - • 0 C2-S2 10 • • 8 • 6 • C» -' "" Cl-Sl 4 ... -. -- • C3~S2 • .. 0 o C2-S1 2 • o -0 A _ C3A"s~ 750 2250 CONDUCT I VI TY , IN MICROMHOS PER CENTIMETER AT 25° CELSIUS Cl C2 C3 C4 LOW IUDIUM HIGH VERY HIGH SALINITY HAZARD Figure 3.--Sodium and salinity hazards of ground water. Diagram from U.S. Salinity Laboratory Staff (1954). 29 30 Well depth, depth to water, and well yields are mainly economic factors. For example, the expense of drilling deep wells and lifting the water several hundred feet to the land surface may preclude the use of ground water for small domestic supplies. Some municipal, agricultural, and industrial users can afforc;l the expense of drilling deep wells and lifting moderate to large quantities of water several hundred feet if the economic return from use of the water exceeds the cost of production. The following criteria were selected to delineate areas of potential development: Maximum concentration of dissolved solids, in milligrams per liter Well yield, in gallons per minute Domestic 1,000 5-20 Municipal 1,000 20-200 13,000 200 Type of supply Agricultural 1Varies greatly and characteristics. Maximum depth to water, in feet 200 1,000 500 depends on type of crops and (or) soil Criteria for industrial supplies are not shown because each factor varies greatly and depends on the type of industry. The approximate areas where domestic or municipal groundwater supplies can probably be developed are shown on plate 5. The data shown on plate 5 are not site specific and should be used only as a general guide. For a specific site, local conditions, such as aquifer inhomogeneity or legal constraints, could preclude the development of an adequate ground-water supply. In the southern part of the area, water for domestic or municipal supplies probably can be obtained from the basaltic rocks, the White Mountains aquifer, or the Springerville aquifer. The depth to water and potential well yield are not known in most of the southern part, but the chemical quality of the water generally is suitable for most uses. Yields of 100 gal/min or more probably could be obtained by drilling deep wells into the White Mountains aquifer or underlying aquifers. In some places, however, well depth and the depth to water may increase drilling and pumping costs so that it is not economically feasible to develop the water. In the west-central part, 500 gal/min or more of water can be obtained from the Coconino aquifer, but in places the well depth and the depth to water are more than 500 ft (pl. 5). Near Vernon and Floy, 5 to 100 gal/min of water probably can be obtained from the Springerville aquifer and the basaltic rocks. 31 In most of the east-central part, the Coconino aquifer will yield 1,000 gal/min or more of water, but the water contains more than 1,000 mg/L of dissolved solids and should not be used for drinking without being treated. About 12 mi east-northeast of St. Johns, however, water in the aquifer is marginal for domestic and municipal use and could be used with little or no treatment. In general, the rock formations that overlie the Coconino aquifer in the east-central part of the area will not yield usable quantities of water or the water is highly mineralized and unfit for drinking without being treated. About 2 mi west of st. Johns, the Bidahochi aquifer will yield water of acceptable chemical quality for domestic supplies. In the northern part, the main sources of ground water for domestic and municipal supplies are the alluvium and the Bidahochi aquifer. The alluvium along the Puerco River generally will yield 20 to 500 gal/min of water that is marginal in chemical quality for drinking (pl. 5). The alluvium along some of the larger tributaries to the Puerco River may yield 10 to 50 gal/min of water, but this water may be· unfit for drinking without treatment. In the northeastern part, the Bidahochi aquifer contains water suitable for domestic use, but in most places will not yield more than 20 gal/min (pl. 5). Well yields of 50 to 100 gal/min probably could be obtained in some places. In the northern and central parts, the Moenkopi and Chinle Formations locally contain water, but the water is generally highly mineralized. It is used locally for domestic supplies where better quality water cannot be obtained. In the valley of the Puerco River near Chambers, Sanders, and Navajo, sandstone and conglomerate in the Chinle Formation yield as much as 50 gal/min of water that is of marginal chemical quality for domestic and municipal use. In the central and southern parts, ground water of sufficient quantity and chemical quality for irrigation can be developed from the Coconino aquifer. North of the valley of the Little Colorado River in the western and central parts and in T. 16 N. in the eastern part, the water generally contains more than 3,000 mg/L of dissolved solids. In the central and southern parts, water in the Coconino aquifer is suitable for irrigation i however, the well depth and depth to water are more than 500 ft in much of the area, and development and pumping costs may restrict its use for irrigation (pl. 2C). REFERENCES CITED Akers, J. P., 1964, Geology and ground water in the central part of Apache County, Arizona: U. S. Geological Survey Water-Supply Paper 1771, 107 p. 32 Bureau of Water Quality Control, 1978, Drinking water regulations for the State of Arizona: Arizona Department of Health Services duplicated report, 39 p. Cooley, M. E., Harshbarger, J. W., Akers, J. P., and Hardt, W. F., 1969, Regional hydrogeology of the Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah, with a section on Vegetation, by o. N. Hicks: U.S. Geological Survey Professional Paper 521-A, 61 p. Feth, J. H., and Hem, J. D., 1963, Reconnaissance of headwater springs in the Gila River drainage basin, Arizona: U. S. Geological Survey Water-Supply Paper 1619-H, 54 p. Harper, R. W., and Anderson, T. W., 1976, Maps showing ground-water conditions in the Concho, St. Johns, and White Mountains areas, Apache and Navajo Counties, Arizona-1975: U.S. Geological Survey Water-Resources Investigations 76-104, maps. Harrell, M. A., and Eckel, E. B., 1939, Ground-water resources of the Holbrook region, Arizona: U.S. Geological Survey WaterSupply Paper 836-B, p. 19-105. Lohman, S. W., and others, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U. S. Geological Survey Water-Supply Paper 1988, 21 p. Mann, L. J., 1976, Ground-water resources and water use in southern Navajo County, Arizona: Arizona Water Commission Bulletin 10, 106 p. _____=-1977, Maps showing ground-water conditions in the PuercoZuni area, Apache and Navajo Counties, Arizona-1975: U.S. Geological Survey Water- Resources Investigations 77-5, maps. Peirce, H. W., and Gerrard, T. A., 1966, Evaporite deposits of the Permian Holbrook basin, Arizona, in Second symposium on salt, J. L. Rau, ed.: Cleveland, Northern Ohio Geological Society, v. 1, p. 1-10. Peirce, H. W., and Scurlock, J. R., 1972, Arizona well Arizona Bureau of Mines Bulletin 185, 195 p. information: Scurlock, J. R., 1973, Arizona well information-supplement 1-Records of wells dri lied for oil, natural gas, helium, and stratigraphic information since publication of Arizona well information, Bulletin 185, 1972, by the Arizona Bureau of Mines: Arizona Oil and Gas Conservation Commission, Report of Investigation 5, 28 p. Sellers, W. D., and Hill, R. H., eds., 1974, Arizona climate 1931-1972: Tucson, University of Arizona Press, 616 p. 33 Sirrine, U. S. G. K., 1958, Geology of the Springerville-St. Johns area, Apache County, Arizona: Austin, University of Texas unpublished Ph. D. thesis, 248 p. Environmental Protection Agency, 1977a, National interim primary drinking water regulations: U.S. Environmental Protection Agency Report, EPA-570/9-76-003, 159 p. 1977b, National secondary drinking water regulations: Federal -------,..Register, v. 42, no. 62, March 31,1977, p. 17143-17147. U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Department of Agriculture Handbook 60, 160 p. Wilson, E. D., Moore, R. T., and O'Haire, R. T., 1960, Geologic map of Navajo and Apache Counties, Arizona: Arizona Bureau of Mines map, scale 1: 375, 000. Wrucke, C. T., 1961, Paleozoic and Cenozoic rocks in the Alpine-Nutrioso area, Apache County, Arizona: U. S. Geological Survey Bulletin 1121-H, 26 p. HYD LOG Ie DATA Table 3, --Records 36 Local number: See figure 2 for description of weil-numbering and location system. Use of water: H, domestic; I, irrigation; N, industrial; P f public supply; R, recreation i 5, stock; T, institutional; U/ unused; Z, other. Finish: C, porous concrete; F I gravel pack with perforations; 0, open end; P, perforated or slotted; T, sand point; WI walled; X, open hole. Water level: In feet below land surface; A, airline; D/ dry; E, estimated; F, flowing, but head could not be measured; P, pumping; R, reported; Sf steel tape; T, electric tape. Method constructed: A, air rotary; B, bored or augered; C, cable tool; Of dug; H, hydraulic rotary; R, reverse rotary; V I driven. CASING U!:it. UA He LOCAL NUMHEH Sllt-IU COUNTY CaMPLEltO A-05-30 A-05-30 A-05-30 A-OS-30 A-05-30 01HHCl 01HHC2 03DHA 10HAH l1AC8 34514110913<701 3350391 OY08,lU 1 001 001 001 001 001 A-OS-30 A-05-30 A-05-30 A-05-30 A-OS-30 11ACC 11HUA llUBH 12BCA 12UDA 33503510909UOUI 33504010Y0901Ul 3350291090"UOOl 335043109081,01 33501Y1090730Ul 001 001 001 001 001 1 ~ 14 A-05-30 13CDC A-05-30 DUBC A-OS-30 l~DOU A-05-30 14AOA A-O~-30 14UAA J34Yl4109080dUl 344914109073101 334Y4410';OB3"UI 33493710';08JIul 001 001 001 001 001 10/JU/ln, 1971 01/1.,/191b 10,68 A-05-30 A-05-31 A-05-31 A-OS-31 A-05-31 17CAA IMbDB 19AUAl 334918109083801 334944109062101 3349431090553Ul 334951109070201 33485810Y0627Ul 001 001 001 001 001 A-OS-31 A-05-31 A-05-31 A-05-31 A-OS-31 lYAUA2 lYADA3 lYAIlA4 lWACl 19UAC2 3348541U9063001 3349541090628Ul 334b5410900""Ol OUI 001 001 001 001 A-05-~1 A-05-31 A-05-31 A-05-31 A-05-31 A-05-31 A-05-31 A-06-28 A-06-28 A-06-2B 1400C 17~CC 20HBCl 20bHC< 20HBCJ 20bBD 20HCAl 20HCAc 20HCb 30CAO 30U8b 30UCH A-06-28 3UDCC A-06-29 01ACA A-06-29 01BBA A-06-30wObAA8 A-06-30WObbBA A-06-30WObHB~ 34S141!u~13.c/j\H 3351221090",001 3350~71091017Ul 33492910901~301 J34840IU';ObJ~Ul 3348381U9063201 33490410900",,01 J34Y04109002101 33490610Y0020Ul 33490610';061601 334859109001iUl 3348551 U9UolJO 1 3349001090621Ul 3J52511U92~,OUI 3353091092,40Ul 3352S31U9co41Ul 001 001 001 001 001 19bO 1932 196B H H H H 1966 196. 19b8 h 19bti 196' 1974 191U 1912 1912 1972 020ADl 020AU2 02DDAl 0200A2 34013~IU9C71801 llUA~l J400~61Un72YUl 001 001 001 001 001 A-07-27 A-07-27 A-07-27 A-07-27 A-07-27 11UAb2 110HU 11UCA 12bCA 14ACBl 3400541092730Ul 340()4HI0,,<1J501 340 U431 U9""7 JbO 1 34011010,,2"/U,,01 3400141u9n40Ul 001 001 001 OUI 001 1970 A-07-2"1 A-07-27 A-07-27 A-07-27 A-07-27 14ACB2 HACCI 14ACC2 HACDI 14ACU" 3400131U9274601 "340UU71 Un74cOI 3400081U9214501 340009109C13601 34000BIO''',38Ul OUI Oul 001 001 001 0710211""/3 0612"/1973 1973 191J A-07-27 A-07-27 A-07-27 A-07-28 A-07-2B l'tHDA hoDB 14UHb 06UAC ObUBBl 340U151UYC1,OUl 340U161ul,lctiuOOl 340004Iu';<7.401 340138Iu'2,2"01 3401441U''''JYUl oul 001 001 001 001 1963 1"11 A-07-28 A-07-28 A-07-30 A-07-30 A-07-30 06UbH2 ObUBe 04DBA 04UCO llCBH 34014'lU~"5.301 001 001 001 001 UOI A-07-30 A-07-30 A-07-30 A-07-30 A-07-30 34000510"111,,01 001 335'~8IU"111cOl 001 3400031U910,7Ul 34000410"110001 3.U0021U910,701 001 001 OUI 16CAB 16CAC IbUHBl IbUHBc IbUBb3 h H H H 10 10 10 10 10 10 10 8 10 8 5 U 5 U 5 19,7 H B 8 H H H h 4 6 H H H 6 H H H H 4 H H 1 <; /3 1'13 1913 H H H H 5 U H !> 1911 lY12 1"74 1"13 Ub/1'::1/1'171 1.11 1 Ii 14 30.00 H X I. x 6 ~ 4 4 T T R OS/IB/1976 OS/IB/1976 101 11971 OU 11973 BOlO B050 H030 79"0 7960 35.00 2B2 480 12U 440 HObO B020 8034 8040 8050 175.00 97.00 175.30 1.00 40.00 180 "00 100 120 loS 8090 79JO 7B80 7920 7990 35.00 H OBI 20.00 50.00 27.00 S 08/2211973 081 11973 08/22/1973 125 100 14, 18, 16, 8010 BOlO B080 8090 20.00 20.00 20.00 60.00 60.00 125 165 IH5 165 135 7990 7990 79BO 7980 7980 25.00 23.00 20.00 20.00 21.00 150 10' 12, 156 125 79HO 7990 20.00 H 20.00 I-( ~030 19.00 R 9030 9030 225 100 115 85 150 ,,03U 7BOO 7840 7680 7790 100 140 100 101 lUO 7760 82H, 82BO 8280 8260 147 280 leO 65 8445 8460 8450 H42S 8320 100 250 155 8, 100 834U H3bO 8370 B305 B4BO 110 130 100 IOU 8460 8430 8440 8410 8410 100 220 85 170 155 H480 8600 H420 8380 8370 IS, 83b5 8360 745'; 2bll- 7C 4 1'; /3 x ~ U H I. X I. 10 10 H A-07-27 A-0"1-27 A-07-27 A-07-27 A-07-27 340000IU~11U"01 h H 08/"3/1"/2 lY72 1910 196" 10 10 1967 1967 19b6 1'6, 001 001 001 001 001 001 001 001 001 001 H 1909 33570310'134uul 3401501unlu701 34013710'2701ul 34013710927u201 3401351U9<7uOOl 34003810,08J801 340UI01U9U'01UI 3400081U9103101 340004109110,01 H H l'b5 19'U L:w 13, DATE wATER LEVEL MtA!>UREU WATER LEVEL IFoE! I 16.90 12.50 34.00 4% P 001 001 001 001 001 A-07-30 IlDDC A-07-~0 14BDU A-07-30 lOADU A-07-30 10CAAl A-07-30 16CAA" U AL TI lUOE OF LAND !>UKFACE IFoU) 200 100 320 150 200 210 190 120 H 01CHA 01CCAl 01CCA2 01CUb 34014810910,,7Ul 3401321091040,01 3400591090n301 x H h A-07-27 A-07-27 A-07-27 A-07-27 J40143109i!:lJ701 FINl!>H IFtEI) b OUI OUI 001 001 001 340142109<721UI 34013710n7cl0l 34013610'27,,001 UtPTH Ur .oLL 10 335655109140,,01 335"10110" 1'370 1 3356561U91254Ul 33S70310"133001 3~S24BI0925.101 uF wAltH 0IAMoToK IINCHt.!» IB, 41 27 280 185 220 50 2u ~010 7460 7915 8020 8021 "566 ao IS,S 7565 93 75~U 1,1 100 20 luO 1540 7555 7555 7560 S 30.00 R 34.00 30.00 R S o T S 'T H H o H S H H H R R K 5 R H S 081 11973 "08/2111973 081 11973 04/26/1976 08/22/1973 OS/Ob/1970 081 11973 OHI 11973 OBI 081 081 OBI U81 11973 11973 11973 11973 11973 11973 081 11973 08/2211973 081 11973 081 11973 08/2211973 081 11973 081 11973 11/29/1909 U 35.00 4.00 ~ 20.00 75.00 R 32.00 S H 3,.00 R 55.00 45.00 26.00 S 5 S 180.UO IbO.OO H 111 11969 OBI 071 081 11972 11972 11973 OB/07/1973 071 11973 0712611973 07126/1973 07126/1913 ~ 13.00 H 071 11973 30.00 ~ OIl 11973 36.40 30.UO R 08/0111973 H 08/0111973 08/01/1973 41.20 4~.OO 18.00 23.00 08/0111973 08/01/1973 5 S 40.70 125.00 27.00 151.00 85.00 5 5 5 8.00 10.00 210.00 S K R OB/01/1973 08/0111973 06/19/1974 08/13/1973 071 11973 07124/1974 120.00 156.00 12.00 10.00 5 H 08/06/1973 08/0011973 081 11973 O~/l ~1197S ~ ~ ~ o OM/06/1973 08/0711973 08/06/1973 o o 2U.00 1,.00 15.00 06/1~/1971 H 081 11973 37 of selected wells Types of logs available: C, caliper; D, drillers; E, electric; F, fluid conductivity or fluid resistivity; G, geologist or sample; I, induction; J, gamma ray; N, neutron; T, t-emperature. Principal aquifer: 111ALVM, alluvium; 112BLCF, basaltic rocks; 121BDHC, Bidahochi Formation; sedimentary rocks, undifferentiated; 120DTIL, Datil Formation; 124SDMR, Eagar Formation 211SDMR, Upper Cretaceous sedimentary rocks, undifferentiated; 211DOKT, Dakota Sandstone; Sandstone; 231CHNL, Chinle Formation; 231SNSL, Sonsela Sandstone Bed; 231SRMP, Shinarump Moenkopi Formation; 310KIBB, Kaibab Limestone; 310CCNN, Coconino Sandstone; 310SUPI, Supai UI,CHAkGE (GALLONS PtR MINUH.) JS R 55 R 30 UAT~ 01,CHARGe MeASUREU 0,/1"/1976 05/1"/1976 DHA~- 001'1" (FEET J 130 ", UtPTH TO I'IH5T METHOD CONSTUPeNING (FoU) RUCTEU 50 SO 260 C C C TYP~' OF LOGo AVAILAf<Lt PklNCIPAL AQUIFEk 0 120SDMH 120S0MR 120SUMH 120SDMH 120SUMH ~O C C 04/26/1976 05/10/1976 Id: "68 262 71 240 C C C 100 C 0 0 0 20 7 OIBBCI 0lBBC2 03DBA 10BAB llACB A-05-30 A-05-30 A-05-30 A-05-30 A-05-30 IIACC llBOA IIDBB li1BCA 120DA A-05-30 A-05-30 A-05-30 A-05-30 A-05-30 13CDC 130BC lJODO 14AOA 140AA A-05-30 A-05-31 A-05-31 A-05-31 A-05-31 140DC 17BCC 17CAA 18BOB 19AOAI A-05-31 A-05-31 A-05-31 A-05-31 A-05-31 19AOA2 19AOA3 19AOA4 19DACI 190AC2 A-05-31 A-05-31 A-05-31 A-05-31 A-05-31 20BBCI 20BBC2 20BBC3 20BBO 20BCAI 112BLCF 1I28LCF A-05-31 A-05-31 A-06-28 A-06-28 A-06-28 20BCA2 20BCB 30CAO 30DBB 300CB 112BLCF 1200TlL 120DTlL 1200TlL 120UTlL A-06-28 300CC A-06-29 OIACA A-06-29 01BBA A-06-30W06AAB A-06-30W06BBA 120DTlL 120DTlL 1200TIL 120SDMR 1200TIL 7 10 7 7 7 35 10 10 10 10 10 C C C C C 120S0MH 120S0MR 120S0Mk 120S0MH 120S0MA 7 7 7 8 10 10 7 10 C C C C C 120S0MH 120S0MR 120S0MR 120S0MR 120S0MR 25 'r 8 10 10 7 7 c5 71 95 10 t>4 u u 0 A 0 4 20 C C C U 0 22 480 15.0 280 550 600 520 120S0MR 120SDMR C C A A A 29 C 55 C 0 "0 60 40 C C C 0 112~LCF 120DTlL 120S0MR 120S0MH 120SDMH 120S0MR 350 360 370 380 20 A u 40 100 C u u 20 85 IDS C C 2S 75 85 C C 0 0 0 0 80 180 80 140 C C C C H 145 ~ ," 0 02DADI 02DAD2 020DAI 0200A2 IIDABI A-07-27 A-07-27 A-07-27 A-07-27 A-07-27 lIOAB2 IIDBO IIDCA 12BCA 14ACBI A-07-27 A-07-'27 A-07-27 A-07-27 A-07-27 14ACB2 HACCI 14ACC2 14ACOI 14AC02 U 100 160 480 A-07-27 A-07-27 A-07-27 A-07-28 A-07-28 1480A 14BDB 140BB 06DAC 060BBI 200 A-07-28 A-07-28 A-07-30 A-07-30 A-07-30 06DBB2 ObOBC 04DBA 040CO IICBB A-07-30 A-07-30 A-07-30 A-07-30 A-07-30 IIODC 14BOD 16AOO 16CAAI 16CAA2 A-07-30 A-07-30 A-07-30 A-07-30 A-07-30 16CAB 16CAC 160B81 160882 160BB3 U 120S0M~ 112BLCF 120S0Mtl 120S0MR D 0 120 160 C U H H C H 0 u C C C 330 1128LCF 1I28LCF 120SDMH 120SDMH 120S0MR U U H 60 IS 350 130 160 150 120SUMH 130 110 IS 120S0MH 120S0MH 120S0MH 120SDMH 120S0MH 120S0MR 120S0MH 120S0MR 120S0MH U 0 120S0MR 120S0MH I11ALVM II1ALVM 1200HL 1200TlL 1200TlL 1200TlL IllALVM 120DTlL 120DTlL 1200TlL 120S0MH IIIALVM 120S0MH 16.5 350 13.0 A-06-30W06BBB A-07-27 OlCBA A-07-27 OICCAI A-07-27 01CCA2 A-07-27 01COB A-07-27 A-07-27 A-07-27 A-07-27 A-07-27 120SUM~ u u 0 LOCAL NUMBER A-05-30 A-05-30 A-05-30 A-05-30 A-05-30 318 1200TlL 1200TlL 120S0MH 120SDMR 120S0MH 3 17 SPECIFIC CONDUCTANCE IUHMOS/CM AT 25' C) 120SDMR 120SDMH 120SDMH 120UTIL 120DTlL 3 50 10 15 20 40 50 TEMPERATURE IUEGHEES C) 120SDMR, Tertiary of Sirrine (1958) ; 231WNGT, Wingate Member; 230MNKP, Formation. 300 300 Table 3.-·Records of 38 DAn LOCAL NUMtieK A-07-30 20tiBti A-07-30 23AAC A-07-30 2YAOC A-07-30 32~C~ A-07-30 32~CD 51 ft-LU 335~3710~12JYOl 3J592810~Oti4eOl 33582310911:>201 3J5730109123201 3357291091<2501 COUNTY COMPlETCU 001 OUI 001 001 001 19'ti 1972 1972 H 1972 1959 19'0 1963 1972 H 1913 1970 H 1971 1973 H H H A-07-30 A-07-31 A-08-24 A-08-<4 A-08-27 32CHA 33572310912<301 02~HA 34014~IU9030101 19C80 20C80 15HeA 3404201 U''''>121 0 I 340420109,01YOl 340533109291601 001 001 001 oul 001 A-08-27 A-08-27 A-08-27 A-OH-27 A-08-27 26tiOO 26CAA 26CAS 26CAOl 26eADe 340337109C75401 340330109<7:.201 J4033410n7,YOl 340324109C75701 34032910YC75501 001 001 001 001 001 H 19"13 197 e A-08-27 A-08-27 A-08-27 A-08-27 A-08-2" 26COC 26COO 26UAA ZbOH" 26ueOl 34031710n,,0001 34031710n75601 34033510927 e50 1 340331109274901 34031110YC73601 001 001 001 001 001 1970 1964 A-08-27 A-08-27 A-08-27 A-08-28 A-08-28 ,,6UW2 358AA 35tiAO 09CBti 17"oe J40315109273501 3403051 On.,5JO 1 340302109275701 340613109<41801 340522109230701 001 001 001 001 001 1972 1973 1973 1950 1973 A-08-29 A-08-29 A-08-29 A-08-29 A-08-29 02ABA 02C8e 02COC 03"8A 03CUD 340729109150801 34065810Y154701 3406451091,3401 340729109164101 340642109163001 001 001 001 001 001 A-08-29 A-08-29 A-08-29 A-08-,,9 A-08-29 03uBC 04DBD 040CC 05AO" 07ABU 340656109162201 J4065810n 718Ul 340645109172201 3407181091"1501 3406281091Y2201 001 001 001 001 001 A-08-29 A-08-29 A-08-29 A-08-29 A-08-29 07ACD 07tiCA 07tiC8 340015109191901 340622109200001 J4Q602109184701 340548109182001 001 001 001 001 001 A-08-29 A-08-29 A-08-29 A-08-29 A-OB-29 09tiOU llABC II ADA 340615109173401 340633109151901 J40626109145301 340631109104701 3405271 0 91706U 1 001 001 001 001 001 08C~O OBOCD ll~BC 16ADa 3406211091~5001 USE OF wATEH H U S 6 8 8 H 1956 H H 5 20.00 S 091 11973 091 11973 07/2511973 160 155 98.00 K 071 95.00 92.00 5 5 07/25/1973 140 8060 8140 8080 B175 8140 190 100 400 140 120 8210 8200 8135 8150 8180 215 155 265 103 no 817, 8230 8260 7497 7400 102 290 235 J60 100 7060 7070 7110 7090 7090 106 200 J80 100 140.00 H 8.00 5 1525 100 100 50 68 7075 7080 7070 7100 7160 626.00 14.00 S 5 5.00 to< bOO 400 460 210 70 7130 7160 7160 7170 7265 134 625 7eO 850 7270 7210 7200 7265 7335 375.00 51B.00 458.00 18.00 H50 35 7470 7460 7570 7598 7750 525.00 23.00 164.00 228.UO 312.00 H 5 160 105 125 160 300 7170 7260 7358 7415 7576 100.00 S 78.00 S 100.00 85.00 62.00 H 5 H 1211811974 1211911 974 lU 11974 07118/1957 071 11959 100 150 1400 246 202 7480 6966 7BOO 0645 6632 25.00 75.00 5 H 12/19/1974 12120/1974 140 110 76 250 10 6850 7080 6720 6998 6690 6 205 150 12 290 U 7 U S 10 5 6 0713111967 6 6 001 001 001 001 001 1968 1955 1967 19:'0 1949 H H N P U 10 U 6 S 5 5 A-U9-cti 031:1UC J403071 U903.,,01 34120110n54YOl 341 041109<Y190 1 3412301 on0440 1 J4122410>2COYOl A-09-28 A-09-2H A-09-29 A-09-2Y 0-09-29 08CAD 27UAO 01AHU 02ACA 05CO" 34112110ge40801 J408401092140U1 J4123810111312Uol J412281U9141801 34120<109175501 001 001 001 001 001 1950 1969 1964 1906 A-09-29 A-09-29 A-09-29 A-09-2Y A-09-29 O""AH 10DCC 20CBA 2000H ZlCCC 341149109175701 J410111091640Ul 34093710Y180"01 001 001 001 001 001 1972 1971 6 6 6 o 5 6 5 5 5 H I S 12 A X H 1914 U 0712511973 OBI 11~73 S H H A-OH-31 34A~8 A-09-27 OlOOB A-09~27 16AC" A-09-28 02ACA 07l2~11973 08/1211973 0712;/1973 71.00 76.00 69.00 100.00 200.00 P 8 1950 1948 1950 195Y lY55 11973 7060 7050 7070 7030 7050 12 001 001 001 001 001 H 5 051 1196; 0311 YI 1957 051 11973 H 340B2109054dOl 340602109054801 340454109055501 34041410903e801 34024410Y0624Ul 5!j.00 182.00 " S H P O,A"" 080BC 17CUO CiWAC 31AOO 08/0711973 5 80.00 171.00 10.00 6 6 A-08-31 A-08-31 A-08-31 A-08-31 A-08-31 D 61.00 H H H 1958 1947 K 11972 11973 11973 11972 OBI 11973 07/2511973 1113011 950 III 11973 P P A 001 001 001 001 001 001 001 001 001 001 250.00 ti40S 9.00 081 081 OBI 081 H 5 " 6 J404181U9173"01 34044810915J901 340348109155401 J40410109085501 340325109104501 3410081UYIJ01U! 3408281091427Ul J4083810915,7Ul 340,,2,10Y161eOl J40Y12109175501 7700 7635 7250 7310 Ii H H 110.00 134.00 247.00 4 8 A-08-29 21eAC A-08-29 23~BA A-08-29 26tlB~ A-08-30 2JOeti A-08-30 "80AC c.4AAA c60CD 27CBO 28UOO 29tiAti 140 75 250 700 265 36.00 180.00 120.00 5 M 1 ~67 1953 1974 1962 MtA"UHc.O (FeET) Ii 6 1967 1964 (FEU) UATE WATE" LEVEL 95.00 S 1908 1968 1904 06/25/1966 10/0311963 lEVEL 7560 8240 7650 7660 7720 P 1970 WATCH SU"fACE "2.00 6 8 H H H ALTITUDE OF LAND 17, 280 155 60 235 ~OO H 001 001 001 001 001 A-U9-2'1 A-09-29 A-09-29 A-09-29 A-09-29 10 H 340524109170401 34054410917JI01 3405211091 7JtiOl 34050810917:'801 34045310Y172901 J40~17109171201 8 U U H A-OB-29 16ADe A-U~-2Y IbBAA A-OB-29 16tiOe A-08-29 16eBe A-08-2Y 21~AA 340n~109172501 CASING UIAMUePrH ETcH Of welL (INCMES) I'IN15H (fEEll 5 6 " 12 8 770 100 92 80 234 4.00 101 31.00 18.00 30.00 H 11973 12116/1974 05/1611969 011 11970 08/2211974 06/13/1968 0111911968 1966 06/25/1966 10/03/1903 195.00 H 250.00 K 140.00 H 051 11959 07/3111967 021 11960 45.00 021 60.00 021 H H S $ 5 S 11964 11967 1953 08/1011974 05/1711969 08/14/1Y74 031 11958 0811411974 08114/1974 08/06/1973 08/06/1973 D 160.00 5 05/06/1959 100.00 72.00 H S 36.00 S 200.00 9.00 H S 121 11974 08/21/1974 09126/1974 031 11966 02/1211974 6690 7090 6920 6915 6914 3.00 56.00 21.00 H S S 4.00 S 6.00 5 7320 7018 6970 6900 6920 750.00 H 42.00 10.00 s 4.00 19.00 H H 121 11972 06/04/1974 02/14/1975 06/04/1974 06/04/1974 09/25/1974 06/1111974 OIl 11946 III 11965 39 selected wells-"Cantinued uEeTH TO UI!:ICHAHGt:.. (bALLUN~ PO" M!NUTIo) liA Tt Ul!::l(,hAHbt:.. Mi:.A::'Ul1tu UHA-It- UUWf', (fEU) FIH~T UI-'t.NING "t.tT) MUHUO CO"~T- HUCTtLJ fYPo, Of LUG' AVAILAoLE PHINCIPAL AUUIFt.' LJ U 120UTlL 1200TIL 1200T!L 120tJT!L 1200TIL ,b 1,,0 10 ,3 C leu ",U I" c 10 25 C C C C "0 U U A-OB-27 A-OB-27 A-OB-27 A-OB-27 A-OB-27 26BDD 2bCAA 2bCAB 26CADI 26CAD2 1205DMH 1l2BLCF 12050MH 12U50MH 120S0MH A-OB-27 A-OB-27 A-OB-27 A-OB-27 A-OB-27 26CDC 2bCUD 26DAA 260BB 26DCDI 1128LCF 120SDMH 112BLCF 112SLCF 12UUTlL A-OB-27 A-OB-27 A-OB-27 A-OB-2B A-OB-28 35BAA 35BAD 09CBB 17BDC 02ABA 02CBC 02CDC 031111A 03CDD 030BC 04DBD 040CC OSAUB 07ABD U H u IS C C 30 1,7 70 J"" 20 C C C C C IS 19 25 03 ct 122 140 64 33 63 40 Ultl"/196~ != ju7 I %5 ,,5 IS 10 15 6/ LJ e, u 0 boO 12450MH 12450MH 2l1SUMH "llSLJMH 124SDMH A-OB-29 A-OB-29 A-OB-29 A-08-29 A-OB-29 toO U U U C C C U U U U U ·/~6 !UO 00 IUO u eb 20 IUOO C C C D 310CCNN I 24,OMH 124S0MH le4S0Hk 124SDMk 211SUMH 21lSDMH 211'UMH 124S0M' 12,SUMH 124SDMH ellSDM" "1150MH ellSDMH IllALVM C C C 0 u u 25 U 15.0 17 .0 5B5 410 2b.0 3970 IS.O 342 526 16.0 510 633 20.0 B2b 19.0 793 650 400 .,U C u JU ,U OU ! "o0 LJ u LJ 0 A-OB-29 A-OB-29 A-OB-29 A-OB-29 A-OB-29 09BDD llABC llADA IIBBC 16ADB A-OB-29 16ADC A-OB-,,9 16BAA A-OB-29 16BOC A-OB-29 16CaC A-OB-29 21BAA A-OB-29 21CAC A-OB-29 23BBA A-OB-29 26BBC A-OB-30 230CB A-OB-30 2BOAC 120UTIL 120UTIL 1200TIL 120UTIL 1200TlL 550 490 500 340 474 A-OB-31 A-OB-31 A-OB-31 A-OB-31 A-OB-31 31ADD 1200TlL ll28LCF 3B7 A-OB-Jl A-09-27 A-09-27 A-09-2B A-09-2B 34ABB OIOOB IbACB 02ACA 03BDC 112~LCF ll28LCF 112BLCF 2llSDMH <USDHR IllALIiM 2JICHNL 124S0HI< 124SUM" 12't!lDMH "ll SUMH 05ABB 0~D8C 17CDD 22DAC 18.0 620 I~.O 410 540 470 A-09-2B OBCAO A-09-2B 270AD A-09-29 01ABD A-09-29 02ACA A-09-29 OSCOS 700 360 A-09-29 A-09-29 A-09-29 A-09-29 A-09-29 OBBAB 16DCC 20CIIA 2000B 21CCC 5bl 420 A-09-29 A-09-29 A-09-29 A-09-29 A-09-29 24AAA 260CO 27CBO 2BDOU 29BAB 19.0 18.5 2llS0MH 12450H" 12450MH IllALIiM C A-OB-29 07ACD A-OB-29 07BCA A-OB-29 07BCB A-OB-~9 OBCBD A-OB-29 OBOCO 650 300 350 124~UMH JDU 2bDCD2 2llS0MH 1200TlL 120DTIL 120UTlL 1200TlL 112BLCF 112bLCF 4U 21 35 ,,10 320 1245UMH II bU 16.0 i::!ll~DMH C C C b 410 0 U ,0 "-(,, 3BO U Ttl" ,(: C 2BO A-OB-29 A-OB-29 A-OB-29 A-OB-29 A-08-29 U C C 12.0 124SDMH 1245UMH 1245DMI< ::J~O 45 lU~ U U C 20BBB 23AAC 29ADC 32BCC 32BCD 112BLCF C A A c A-07-30 A-07-30 A-07-30 A-0'7-30 A-07-30 112"LCF 112bLCF 112BLCF 112bLCF 112BLCF DO !SU -(5 2BO LOCAL NUMBEH A-07-30 32CBA A-07-31 02CBA A-OB-2419CBD A-OB-2420CBD A-OB-27 15BCA 1200TIL 120uTlL hU hO SPECIFIC CONDUCTANCE (UHMUS/CM AT 25' C) U u U C 100 I uO It:..MPE.KATUHt: (OEGHtE5 C) 16.5 Table 40 U~t. LOCAL NUM~t." Sl1O-1O COUNTY DATE COMPLETED 340800lU917,401 001 001 001 001 001 1974 1963 1967 1962 1964 3408001091757UI 340758109174701 340746109171701 340803109161201 340800lU9171001 001 001 001 001 001 1911 1968 33BOA 33BDC 33CBA 33CtlB 34tlOC 3408081U9165001 3408"00 I 091 65~0 I 3407571 091 6580 I 3407,81U9170701 340803109155301 001 001 001 001 001 1953 1950 A-09-29 34UCC A-U9-29 35CAU A-09-30 14C8B 3407321U9153201 340746 I 0 9144 I 0 I 3410301090844UI 3410171090847111 340950109111601 001 001 001 001 001 A-09-29 A-09-29 A-09-29 A-09-29 A-09-29 29tlAO 32tlCA 328UCI 3"BDC2 32bDC3 A-09-29 A-U9-29 A-09-29 A-09-29 A-U9-29 32BOC4 32tlDO 320AO 33AOO 33BCC A-09-c9 A-09-29 A-09-29 A-09-29 A-09-29 A-0~-30 14CC~ A-09-30 20ACO 340907109174BOI 340H071 U918040 I 3408021U918UIOI 34080010917~801 19~1 1941 1965 341005109U45401 340948109051701 3417451094H0601 341,71610950350 I 341704109501601 001 001 001 001 001 1931 1959 1967 A-IO-24 A-I0-24 A-I0-24 A-IO-25 A-IO-25 10000 22A8A 29A8o 09tlBA 10CCC 341625109464501 341527109470501 3414221094913UI 341711109422301 3416211 0941320 I 001 001 001 001 001 1967 1970 1957 1971 A-IO-2~ 1l0AC A-IO-25 14~DO A-IO-25 15AAU A-IO-2~ 15C88 A-IO-25 15UAC 341638109393701 341553109395901 34160810940:;301 34155-3109413101 341545109404201 001 001 001 001 001 22tlBC2 J41~151094126UI A-IO-25 A-IU-25 A-10-25 A-I0-26 A-IO-26 22<;AC 22CAU 22CCA 03ADA 050UC 3414511 0941 02U I 34144410941"401 3417511U93413UI A-IO-27 A-IU-27 A-IO-27 A-IO-2"1 A-IU-2B OICBC 14CBA 3417221un64101 17UC~ 341530109302201 34143310n552Ul 24DOC OdACCI A-IO-2tl OdACC2 A-lD-28 118AA A-IU-28 lltl88 A-IO-28 I1~CB A-IO-28 II~CUI A-IO-28 A-IU-28 A-IO-28 A-IO-28 A-I0-cd IItlCU2 18UCA clACA 21ACB 22U08 A-IO-28 26CCB A-IO-2~ 05CBC A-IO-29 14UCU A-IO-29 15dAB A-IU-29 25UA8 A-IO-<9 A-IO-30 A-IO-30 A-IU-30 A-IO-31 A-Io-31 A-Il-24 A-1l-24 A-I1-24 A-1l-24 33UDC 08AAA 34144910~411bUI 3417121U936~9UI 341549IU9273~UI 3416441un3~8Ul 3416461u9a~dOI 34170710920~~UI 3417031092121UI 3416541U9d2UUI 341646 I U921 ueu I 3416461U9211uUI 341533IU924~5UI 3415071U9<24501 341507109225501 341440lUnlJ8UI 34134H10nl2101 34172410918U901 3415281 U9142U UI 341613109154~UI 3414001U9131101 341~46109161eul 341659109110401 ~6CCO 34134110~OH4"UI 27CAA 21UBU 3414471U9035301 34135710909~~ul 2'::titH:H) 3414191U90532UI ObAAC IHODA 34221810~4d57UI c~UBC 3420061U~47U801 2bWC 341~0010~482401 342053IU~49~5UI 001 001 001 001 "00 I 001 001 001 001 001 001 001 001 001 OUI 001 OUI 001 001 001 001 001 001 001 001 001 001 001 OUI 001 001 OUI 001 OUI 001 5 1947 1967 1933 6970 6960 6960 6980 6965 61.00 93.00 6 250 360 8 108 196 232 286 265 110 126 6970 6980 69HO 6980 7000 98.00 S 08/15/1914 87.00 10.00 25.00 R S H 10/23/1956 081 11965 80 132 30 15U 220 7035 7045 6947 6980 7220 30 100 100 460 18U 7070 7315 7315 7180 7383 33 2921 4657 190 190 7100 7290 6855 6500 6520 175 12 8 6 6 x P S 5 5 5 48 16 10 H R 10/ 031 031 111 22.00 R 10/10/1957 50.00 220.00 126.00 5 09/2~/1974 R R 041 /1967 12122/1933 30.00 S 04/21/1958 150.00 5 128.00 ~ 575.00 370.00 265.00 S 5 56.00 27.00 75.00 102.00 R S 5 5 410.00 R 460.00 ~5.00 H H 90.00 R 110.00 H 10.00 R 60.00 180.00 H 11965 11975 11975 11966 09/26/1974 P 725 415 317 200 135 III 82 170 6705 6790 6805 6895 6910 U 6 6 12 6 6 500 500 320 155 310 6932 6952 6960 6n8 6930 H 6 255 114 160 35U 450 6960 7060 6965 7028 6832 75.00 80.00 100.00 300.00 H H I~O 383 280 301 IH 6460 6692 6972 6660 6240 123.00 257.00 202.00 226.00 7.00 5 5 S 5 R 20 100 100 100 60 6240 6075 6100 6120 6120 7.00 8.00 12.00 4.00 13.00 H 121 11956 01116/1975 01/16/1975 071 /1946 100 100 250 242 180 6130 6370 6360 6380 6520 21.00 S 01/16/1975 42.00 59.00 156.00 5 5 5 01/15/1975 01/16/1975 01/1711975 6586 6281 6580 6510 6657 215.00 10.00 12.00 13.00 20.00 5 16 13 20 5U 12/20/1974 01/16/1975 12114/1956 12114/1956 12118/1965 179.00 17.00 5 "351 954 6995 6915 7022 6950 7273 850.00 360 180 20 850 819 7276 6350 6270 6650 6690 250.00 145.00 7.UO 709.00 400.00 H H 10 4 8 p P H S 1900 5 19~7 5 1946 5 5 1967 1909 5 6 4 6 5 6 6 4 X P HoI U I H,!:) , I H I 1964 5 5 S , 5 8 5 6 8 6 P P P 6 48 36 6 1907 36 13 9 6 0 X 5 S 5 6 6 P U 12 S 6 1967 1962 1950 1962 11~75 08/1~/1974 P P 19~3 03/07/1957 03/07/1957 H H 1946 1967 04/" S S 5 H H H U 196, H 6800 6735 6980 6791 6885 H 19~~ 08/151 I 974 03/ 11962 09/ 11964 7~0 H 1966 68.00 60.00 R k 5 P S 1973 1909 0.10 S H H H 1959 1944 08/2211974 7.00 30.00 42.00 80.00 65.00 1906 1973 (FEET) 6910 H480 6975 6970 6970 s 20AA8 20BOO 04ACO 06COC 07ABC A-IO-2~ S 1945 1966 A-09-31 A-09-31 A-10-24 A-IO-24 A-IO-24 22~~CI H P 5 H 5 OUI 001 001 001 001 A-IO-2~ P DATE WATER LEVEL Mt.ASUHEO WATER LEVEL 120 110 155 252 135 H P S S S AL Tl TUDE OF LAND SURFACE (FEET) of 8 6 6 H P P P S 340850109071701 340805109105001 34080110910,101 340"23109085201 3411341 090327U I 001 001 001 001 001 (INCHE~) O~PTH OF "EcLL FINISH (FEET> H 25CAA 32AOA 338CC 34AAA 10BCA 3416061094356Ul 3415041094334UI 34145310 94lJ40 I 3415161U94132UI CASING DIAMETCH H 1965 A-09-30 A-09-30 A-09-30 A-09-30 A-09-31 A-lO-25 18ABD A-IU-25 ZOBCC A-I{J-~5 210AU OF WATER 3~ --Records ~ 380 30 1~77 061 061 1957 11971 11957 06/20/1974 06/20/1957 06/20/1974 5 H 01/15/1975 01/15/1975 11/21/1974 12116/1914 H H S 5 5 5 5 H s 02/29/1960 03/19/1975 06/28/1948 ~ S 5 S R 1967 06/1<11957 12119/1974 12118/1974 41 selected wells--Continued U~PTH DI!)('HAI-<Gt::. <GALLUNS P~k ",INUTU U1SCHAHbe URAw'" 00",,, r-lt.A:::'Ukt'..U IFt~1 t..AIt:: TO AVAILA~Lt 2~ C 0 200 C C C OP~NINU ) TYPE.S OF LOGS METHOD CONSTfWCTEU FI",T IF~H) U ~\l 25 6~ .,0 .,0 "0 90 C C U 0 U U U 0 .., ~~ b~ 14 ,0 10 U C U,l;i c U,l;i U 27 C a 103 C U c 195 C 4" c50 c 32 0 C H C "0 f< J1~ C C C C 3" •C 19~7 72 100 20 0 U 0 u U 0 C U C C C C C U 0 50 C c C U 20 C C C C 16 C U C 0 G 0 0 20 63 C 330 61 H SPECIFIC CONDUCTANCE IUHMOS/CM AT 25° C) U U U 211S0MH 211S0MH IIIALVM 124S0MK 211S0MK A-09-29 A-09-29 A-09-29 A-09-29 A-09-29 32BOC4 32BOO 320Aa 33AOO 33BCC 211S0MK ellSOMR 211S0MR 124S0MH 124SDMH A-09-29 A-09-29 A-09-29 A-09-29 A-09-29 33BOA 33BOC 33CBA 33CBB 34BOC 12450MH 12450MH IllAUM 211S0MH 211S0MH A-09-29 A-09-29 A-09-30 A-09-30 A-09-30 340CC 35CAO 14CBB 14CCB 20ACO A-09-30 A-09-30 A-09-30 A-09-30 A-09-31 25CAA 32AOA 33BCC 34AAA 10BCA 520 480 439 IllALVM 124S0MH 124S0MH 211S0MR 124S0MH 410 15.5 435 A-09-31 A-09-31 A-IO-24 A-10-24 A-IO-24 20AAB 20BOD 04ACD 06CDC 01ABC 11.0 540 14.0 305 A-IO-24 A-IO-24 A-IO-24 A-IO-25 A-IO-25 10000 22ABA 29ABO 09BBA 10CCC A-IO-25 A-IO-25 A-IO-25 A-I0-25 A-IO-25 llOAC 14BOD 15AAO 15CBB 150AC 350 165 A-IO-25 A-IO-25 A-IO-25 A-IO-25 A-IO-25 18ABD 20BCC 2lDAO 22BBCI 22BBC2 198 A-IO-25 A-IO-25 A-IO-25 A-IO-26 A-IO-26 22CAC 22CAD 22CCA 03AOA 05DOC A-IO-21 A-IO-21 A-IO-21 A-I0-21 A-IO-28 OICBC 14CBA I1DCB 24DDC 08ACCI A-IO-28 A-I0-28 A-IO-28 A-IO-28 A-IO-28 08ACC2 llBAA llBBB llBCB llBCDI A-IO-28 A-IO-28 A-IO-28 A-I0-28 A-IO-28 11BCD2 18DCA 21ACA 21ACB 22DOB A-IO-28 A-IO-29 A-IO-29 A-IO-29 A-IO-29 26CCB 05CBC 14DCD 15BAB 25DAB A-IO-29 A-IO-30 A-IO-30 A-IO-30 A-IO-31 33DDC 08AAA 2oCCO 21CAA 21DBO A-IO-31 A-1l-24 A-1l-24 A-11-24 A-Il-24 29BHD 08AAC leDDA 220BC 2HCDC 21150MH 1128LCF 112"LCF 1128LCF 211S0MH 211SUMH 211S0MR 211S0MR 211SaMH 211SDMM 211S0"K 211S0MR 211S0Mk 1128LCF 112BLCF 1128LCF 1128LCF 1128LCF 1128LCF 1128LCF 112BLCF 211S0MR 13.0 18.0 18.0 160 5.5 215 14.0 19.0 213 680 250 1128LCF 1128LCF 112BLCF 211S0MM IllALVM 11IALVM IllALVM 230MNKP 230MNKP IllALVM 15.5 610 lllAUM 112BLCF 211SUMK 211S0MK 1128LCF 112HLCF lllALVM lllALVM IIIAUM IllAUM 1650 14.0 1150 562 690 211SUMR IllALVM (;.1 JUO 15 C c U JIOKIBB U 211SDMK 231CHNL IIIALVM 310CCNN 310CCNN u LOCAL NUMBER 29BAO 32BCA 32BOCI 32BOC2 32BOC3 15.0 G u 0 40 IEMPEHATUHE !DEGREES C) A-09-29 A~09-29 A-09-29 A-09-29 A-09-29 124S0MH 124S0MH 124S0MH 211S0MH 124S0MH lllAUM c 25 PHINCIPAL AUUIFER 19.0 11.7 16.~ 190 500 458 Table 3.--Records of 42 CASll"b UATE lOCAL NUMtleK SITI:-IU COUNTY CUMPlETeU USI: UF WATEK UIAMU~PTH ETtH u< Well (INCHES) fiNISH «I:U) (fElOn DATE WATEH lEVEL WATEt< lEVEL (Ft.ET) Mt:'.ASUHEU 6422 6437 282.00 425.00 100.00 25.00 80.00 ·H 80 <80 .l80 48 30 6435 6430 6435 6440 6400 44.00 Ii 26.00 30.00 41.00 22.00 5 83 53.00 55.00 H 125 190 200 643S 6444 6435 81.00 !;, b4H3 55.00 S 190 180 550 385 "80 6450 6500 681S 6680 6620 410 15 6660 6275 6425 6392 6385 485 5 5 5 ALTITUDE OF LANG SUHFACE 6740 6358 H H 5 S A-Il-24 A-Il-2S A-11-2S A·II-25 A-Il-2S 360AH OSAAA 08AHU OBuee IIAeA 34182510944,001 3423141U94240Ul 3422171094':S5Ul 342131109430201 3422011093945Ul 001 001 001 001 001 A-II-2S A-Il-2S A-II-2S A-11-25 A-II-25 18COD I euec I ~AB 19AHA 3420431094007Ul 342044109440001 3420301U943,001 342030lU94353Ul 342U1310943«01 001 001 001 001 001 H U 3420101U9433801 3420141094014Ul .l41935109432301 3419131U9434001 3422071U9.l400Ul 001 001 001 001 001 H 5 H S 3421271093<3S01 3421l3109.l62S01 001 001 001 OUI 001 H 5 5 5 5 6 H 5 S S 5 10 5 5 5 5 4 12 6350 6355 6475 6680 6490 10.00 7.00 135.00 390.00 5 H 4 179 410 175 80 333 34S 113 300 5940 5950 5950 5930 5995 6.00 13.00 12.00 5 5 5 6315 6092 6060 6320 6295 16.00 107.00 56.00 54.00 S S S E 10/23/1956 1211411956 01/08/1975 121 11956 20eA~ A-II-25 A-li-25 A-II-25 A-II-25 A-11-26 20GBH 23GAH 300AO 11HCC A-II-26 A-11-26 A-11-26 A-II-26 A-II-26 13tlAe 17Aoe 27ADB 29tlBB 31BeH 29~0~ 3419361U9341~01 .l419461093715Ul 341837109.l82001 A-Il-26 A-II-27 A-11-27 A-11-27 A-ll-27 31UUC I<CBH 17UDA 23AAA 23cee 341~5010921.l&01 001 001 001 001 001 A-Il-27 A-Il-27 A-11-27 A-Il-27 A-II-27 230De 25tlD 2aeAA 31VBS 34eDA 341948109(:64601 34192010n6<SOI 3419161 09':~18Ul 3418261093122Ul 341814109281601 001 001 001 001 001 A-II-28 A-11-28 A-II-2B A-11-28 A-II-28 05DBC 09AeCI 09Ace2 098DA 09UAO 342240109(:40001 342159109225901 342158 I 09«,90 1 342203109c30601 3421481092«901 001 001 001 001 001 A-II-28 A-11-28 A-II-28 A-11-28 A-11-28 19AAU 21ABA 22HUA 290W 300ee 342030109243701 001 001 001 001 001 A-II-29 04B~e A-II-29 10AeA A-II-,,9 23000 A-Il-29 258~A A-Il-29 2"B88 A-Il-29 A-11-29 A-11-30 A-II-30 A-11-30 21 AGA 360ee 0.lCAD 07AHe "OAW 341e081U~j73301 34220010926<801 342U481092~5701 3420.l510nb3701 3420361u~a4601 342024109220201 3418531un34701 341b5&109b0401 3423131091703Ul 3422071091S18Ul 34194810~140"01 34191510~134501 .l419151U~I.l5S01 3419301 091t>240 1 341905109132601 342<44109092501 .l4221810912C001 342014109111301 8 S 5 1960 1940 193& H,S 8 4 6 4 42U 80 8 5 U 6 17 u 17 06/1111957 06/11/1957 ~ 11/1711966 08/14/1959 06/1211957 06/11/1957 S 06/1211957 H 06/11/1957 061 11957 6520 150.00 80.00 ,20.00 340.00 H ~ k H Ib8.00 H 6.00 S 01107/1975 392.00 40.00 S 12120/1974 12120/1974 E S 121 11974 1210711956 0110811975 03/19/1975 01l0tll1975 F 01108/1975 02/05/1958 Hol 6 5 6 1961 S U 12 1920 5 5 42 S7 600 1684 61 12 9.00 5 12/0711956 001 001 001 001 001 1944 S 6305 6660 6680 6710 6690 307.00 650.00 5 14.00 S 5 72 320 720 21 12 16 03120/1975 031 11975 1211411956 03/19/197S 121 119S6 001 001 001 001 001 1961 68S 890 6S0 715 710 6600 6835 6820 6795 6895 530.00 650 660 610 830 348 7041.0 6997 7060 7162 5945 320 90 320 260 290 6046 6480 6600 S885 5907 325 5S0 90 .l51 12 28 100 230 222 200 165 27S 300 60 875 6025 6030 5970 6159 6390 777 903 40 100 100 6300 6300 6320 6300 6300 34265410~4b1401 001 001 001 001 001 A-12-24 A-12-24 A-12-24 A-12-2S A-12-25 Hoec l7ece 2600 03AA8 04CUA 342600109460501 342557109494101 342420109454001 3428311 09404801 342150109.2':001 001 001 001 001 001 A-12-2S A-12-25 A-12-2S A-12-25 A-12-2S 14UtlO 16Gee leGCel 18cec< 3426161093~"'01 2ewC 342558109423<01 342600109442801 34260010944':901 3424101094219ul 001 001 001 001 001 A-12-25 A-12-26 A-12-c6 A-12-26 A-12-26 34CAH 0280A 0488" 048SC 04B8o 3423391U9411101 3428171U9.l33601 342833109.l61801 342829109362001 342828109360901 001 001 001 001 001 A-12-26 A-12-26 A-12-26 A-12-26 A-12-26 O,UCtl UIlAAC 130CU IS8ce 18C"H 34275910936:;201 342738109.l634Ul 3425551093':1601 3426241 0.93S040 1 OUI 001 001 001 001 A-12-26 A-12-26 A-12-26 A-12-26 A-12-26 18UCCI 180ec" 2uGCC 342601109.l7,,701 nC~81 3424291093"0201 .l424291093"0101 27Ctl8" 5 12 b4e:!l 12 341807109084101 3421101090.:>801 341818109061S01 341833109050101 342010IU~3115Ul S 170 42, 170 I 35ceA 17ACD 31eAD 32Aeu II CUA 342:>591U~37,701 450 19.19 19&0 A-11-30 A-II-31 A-Il-31 A-Il-31 A-12-24 .l4262310~.l8"901 1957 001 001 001 OUI 001 4 S 5 H,S U 5 5 5 6 S 5 1948 OU23/19t>l 1963 1914 S 5 5 6 U 10 I,H 6 6 8 H,S & 19S0 U S 6 6 6 IIJ'tH 5 6 1935 1915 p p 5 S 6 U 60 5 6 U 96 s 24 6 1965 19.18 S T H H 1965 H 19"0 U 6 8 6 5 6 H,S 5 1970 P 9 1967 1968 1937 19,2 U 2 P 12 S S U 6 6 W P 55.00 7.00 11.00 81~.OO 630.00 600.00 654.00 H $ R H R R b20.00 H 580.00 620.00 H R 01/16/1975 121 11956 05/20/1975 0511311976 05/13/1976 101 200.00 11974 <80.00 S 168.00 250.00 S R 611S 6274 6090 6093 6334 234.00 425.00 57.0U 245.00 S tI.OO S 632~ 7.00 0112211975 6295 5930 5940 5940 /:iO.CO 5 H 38.00 24.00 R 031 95.00 H F H 5 H 07/09/1965 414.00 5 423.00 21.00 5 1210711967 06108/1966 04/03/1957 01/1,/1975 04/03/1957 40.00 8.00 545.00 Ib.OO 10.UO o H 5 S H A :, S 0611311957 Otll2U1956 Otl/2211956 01104/1934 06/1211957 01/04/1934 11965 1958 011221197S 1958 05/0':11957 09/12/1970 43 selected wells--Continued Ut.t-'lH UI~CHAHGE (GALLUNS P~H MINUTt.> OAfE Ul::'ChAI"H,t, MtA~UHI:.U OHAIVUO"'I\ (Ff.U) fIN!,T OP~NING (F ~~ Tl ~PECIFIC fu MI'.T"OO CUNSTHUUt:U TY"'!:.!) OF LUbS AVAILAtiLt. PHINCIPAL AYUIFt:.H <lI~UMH U C 310CCNN 211S0MH dl~O"H fE"Pt.HATUHE ltJEGHEES C) 18.2 15.5 IS.5 12.0 dlSUMH 211S0MH 211SUMH 1000 30 15.5 14.5 cllSDMH CONDUCTANCE IUHMOS/CM AT 25' C) 607 202 1~0 1430 230 690 522 725 l11ALVM 111ALVI~ 211SDM" 1I2~LCF <lISUMH 211S0MH 13.8 257 550 112~LCF 0 JUO 20 35U 317 C C 0 10 tJ 0 20 bOO 116 110 22 lou ~Ju C C b G U ~40 JI0KIB~ I~.O 190 180 7.0 257 380 11.5 1450 250 15.0 1300 16.6 17.0 2610 2000 2420 1300 310KI~~ U G G C C 0 0 C 0 0 b2S 230MNKP 310KIBB JI0KltiB JI0KIBB JI0KltiB U 0 U 225 11IALVM ll1ALVM 112BLCF 21150MH 112BLCF 121BOHC 310CCNN 310CCNN 121BDHC 121BOHC C 0 C C 10 21150MH 121BDHC 112BLCf JIOCCNN 1I2BLCF N C 10 1I2tiLCF 112BLCF <31CHNL 21150M" 112BLCf U U ll1ALVM lllALVM lllALVM 31uCCNN 31 OSUP I JI0KIBS JIUCCNN 310CCNN 14.5 875 3500 19.0 2900 3300 3800 310KI~8 Ib.O 3400 3300 3000 310CCNN 16.0 400 310CCNN 231CHNL 231CHNL 310CCNN 310CCNN Ib.2 26~ 19.0 15.0 741 240 250 10.5 356 60.0 442 JI0KIB8 310Kltiti b ;,75 0 180 5 ~OO U .>15 U C 0 G U IUO 310CCNN 310CCNN 231CHNL JI0CCNN 1I1ALVM 673 ll1ALVM bu 15 182 7,0 " dJJ H 2U C C 18CDD 18DCC 19AB 19ABA 20CAB A-11-25 A-11-25 A-11-25 A-11-25 A-11-26 20CBB 23CAB 29BOB 300AD 11BCC A-II-26 A-11-26 A-11-26 A-II-26 A-11-26 13BAC l7AOC 27A08 29BBB 31BCB A-11-26 A-II-27 A-II-27 A-l1-27 A-11-27 3100C 12CBB 1700A 23AAA 23CCC A-11-27 A-II-27 A-II-27 A-11-27 ,\-11-27 2300C 25BO 2BCAA 310BB 34COA A-11-28 A-11-28 A-1I-28 A-1I-28 A-II-28 050BC 09ACCI 09ACC2 09BDA 090AO A-11-28 A-1I-28 A-1I-28 A-1I-28 A-1I-28 19AAO 21ABA 22BOA 290CO 30DCC A-1I-29 04BBC A-1I-29 10ACA A-1I-2~ 2JDOD A-II-29 25BBA A-II-29 25BBB A-11-29 27ACA A~II-29 360CC A-II-30 03CAO A-1I-30 07ABC A-1I-30 20ACD A-1I-30 A-11-31 A-1I-31 A-II-31 A-12-24 35CCA I7ACD 31CAO 32ACO llCOA A-12-24 A-12-24 A-12-24 A-12-25 A-12-25 140CC 17CCC 2600 03AAB 04COA A-12-25 A-12-25 A-12-25 A-12-25 A-12-25 14DBO 16CCC IBCCCI 18CCC2 2BCOC A-12-25 A-12-26 A-12-26 A-12-26 A-12-26 34CAB 02BOA 04BBB 04BBC 04BBD 050CB 08AAC IJDCD 15BCC IbCBB 18DCCI 18DCC2 20CCC 27CBBI 27CBB2 D 13.0 394 230MNKP 231CHNL JI0CCNN 1l1ALVM JI0CCNN Ib.5 16.6 10~O 375 386 A-12-26 A-12-26 A-12-26 A-12-26 A-12-26 310KIBB 310CCNN 112BLCF 18.0 15.5 495 215 355 285 A-12-26 A-12-26 A-12-26 A-12-26 A-12-26 ,,0 Ob/U/j/l'ibd A-1I-25 A-II-25 A-1I-25 A-1I-25 A-1I-25 1l2~LCF 7~.> bUS 3bDAB 05AAA OBABO OBDCC llACA .>IOCCNN JIOCCNN 310CCNN U U,E. U," 1I2~LCF 112bLCF NUM~ER A-II-24 A-11-25 A-11-25 A-1I-25 A-II-25 0 U 1"5 LOCAL Table 3. --Records of 44 U~t. IJA Tt. L{JtAL f\/UMI:H:.11 A-12-<7 14C"UI A-lc-27 I~"CU A-12-<I 23~bU A-12-<7 ncue A-12-27 <'3U"" A-12-27 260A"1 A-12-27 cb"A"2 A-12-27 3'~lJA A-12-27 3,C"" A-12-27502""A 511 e.-iu C.OUNTy 34260910 ••U<bOI 34252b1U931,,01 3425191U~c131Ul 342S03IU""'1"01 342!:>2i:!lu~.cb!:>lUl 3q2!:>OO.l.UY~711Ul 342'00lV"C7lbOI 34<'32410~C71602 j4~j.c4 i u ~~ fl 7 u 1 j42M30iUY.::!lJ~vl 34~6S51Ll';tl.::!~10Ul .-12-2b o"{CUA A-12-ctl 1l1(.Uti ~42701J1U~~tJl.c:Ul A-l~-2b o(UbU j421U31U'i~4.c:uul A-12-2b u7UCIJ A-12-2" O"A J420~11U'i~447ul A-12-~i:I j421~OiU9~.c:jOUl lctlUA 34C12710"1~'2Ul A-12-2" IICC" A-12-c" I/eec A-12-2" 10"AA j42bU21u~c"'.J4Ul A-IZ-c:tI l(jbAt:I 342b451U"'~~14Ul A-12-21:1 li::H;AU 342bObI0~c'0301 A-12-2" ItluB~ A-12-co I"UOb A-12-e<l 10UUCI A-12-2" 10UUCc 342b131U~bOIOl A-12-2" I~AAOI A-12-20 l"AAti2 A-12-2" l"AoC j42bUI1UIji:!4.J4Ul 342b421U~ctJl(JtJl 34260210.c43001 J42bOU1U9c44.c:ul 342b001U'i~44UUl j425!;)31U~c44UUl 342SS310~c437uI 342S4710",,'Ulul A-12-2/j l'1tHW j4~tJ481U~ctJUJUI A-12-2" 30UbA J4c4JIIU'j~44bUl A-12-2" 30UUC A-12-20NUcCb" A-12-cbN04bAU A-12-2b;U4CAC A-12-20504GCC j4241611Y244~UJ. A-12-2050",,"A A-12-2. 10ACA A-12-2~ ,>OAAC A-12-29 cSUW A-12-2" 31"UCI A-12-29 31"UC< A-12-<''' 3;oAb 342056IU~<'115UI j42t1441U~t:!3UtJUl J427tJtHUl.Jc.JIUUI 34274211J1jc.3Jcul 34283010"c423Ul 34nc810~I'UUl 34204 710"111 oU I 34<'41310,,13IYOI 34234i:ilUYitjtJlUl J4234MUJliil:bOUl 3424UtHU':1!41UUl A-12-:JU OI:WbA A-12-30 OtWtlU 342~1041 A-lc-.:HJ IJACA 3426J31U"JU1UbOl A-12-.:HI A-12-:n 34250010~0"llUI 2/AbA OIjUtHi A-12-31 UbUbC A-IC:-.H U'1t1AC A-13-24 o,>uCC A-IJ-c4 IcACb A-J.:s-24 I~AW A-I 03-24 cct:l~iU A-13-24 cbUC!.,; A-13-25 04eCA UY11 c 10 I 34270310~llclUI 34270b1U.USlOOl 34270710"OSOSOI 3421331UIJ04ccUl j431tl61UY4tj4JUl J432ctH U~45jbU 1 j43UjBIUI.J~0.cbUl 343041::11Uf.J4ltJ4Ul 342n21U~4610UI J433021U,,)4~tJOUl CUMI-'LI:. ft.u 16 H 6 8 5 lY62 1910 Ott/ 6 6 ~ 6 :. 6 U 6 IIJJIJ ::i,Hd 8 U U ~ U H 1960 U H ~.H H 001 001 001 001 001 H U H 36 48 36 96 1~62 H.~ 001 001 001 001 001 1940 OUI 001 001 001 001 19,6 U 5 001 001 001 001 001 1960 19 ", 19 ", 1 ~74 IY40 2tlACU 2SAUC 2,hAC 2S"bU J4301I.J1U".ctlJOUl 343u ltH U':;Ic~t!.c:u 1 34303210Yc"IUI J43U271UYcSbl:iUl c!:>Utltl 34301110~cSISOI 001 001 001 001 001 lYIS 1914 1914 1 Y 14 19(4 001 001 001 001 001 1';7tJ H.~ IIJ~1t H,I,:;:' 1 YI4 19S9 19"9 H U 8 IJ 10 j42'7tt91lJ"Jc~33lJl A-13-2/ 2bAAC A-13-c7 cbCCU A-13-27 clt:H:1C JttJ02tllUYCb.c:bUl J43uctd. Uyctj 1 :dJ 1 A-13-c: I .cdAbC J43U271U".c:l:i4CU1 J421.J471Uyc7ulUl !:>9CS 64.00 3b.80 Ii 11.00 7.00 5 S 03/21/1975 05/18/1956 "9/1b/19S6 12/06119,6 1211111956 20 Ib 17 SO bO ,,850 5855 58,S ,967 5925 1::1.00 13.00 14.00 16.UO 4b.00 S 5 5 II S920 S920 5870 5875 5b70 7.00 15.00 20.00 16.00 20.00 5 5 5 5b75 5870 5920 S925 5930 13.00 IS.00 12.00 25.00 5 5 H H S920 5760 5840 5b80 5915 7.00 37.00 ,3.00 7b,UO 166.00 5 5 5 S 6002 6221 b066 659S 6220 310.00 30.00 46.00 f2.00 5 6220 b562 b492 6"5 b,50 32.00 511.UO 160.00 177.00 396.00 H 6700 628, 6280 625b 5670 642.00 49.00 67.00 5640 5850 ,740 5770 S595 140.00 Ii 144.00 120.00 40.00 H 08/20/1956 5640 56bO 5640 5650 6105 79.00 !) 08120/1956 89.00 98.00 36.47 YO 300 140 216 6100 5835 S920 56bO 5920 113.00 112.UO 5 5 cb5 0,>0 S74 221.00 260.00 co9.00 259.00 250.00 :, • • Ih 130 571 J4J.i:.'4 0 1 U9CI:JS50 1 J43t!U41U':1.c!7tJ.c!Ul J43cOUl UI.J.c: f:JtHJl 343cU2J.Uyc7:lcOl 343103IU,>"""OUI A-13-c7 2':>l.Jec IS 120 328 13 16 350 "UO 001 001 001 001 001 001 001 001 001 001 A-13-27 A-13-<I A-13-2"/ A-13-27 A-l..3-c7 01/07l1Y75 1210711956 0110711975 011 11Y75 02106/1975 680 5U cbO '8S 3~322610"JIJIOI A-IJ-21 21t1CC 5 S 5 H 5 SOO 3430,,51UY3c33Ul 34300blUY363YOI 34284310936<201 34340110"ctljYOI 3433S11U"3U30ul A-13-27 u~CAU A-13-27 ISblJA A-13-<7 15of)C A-13-27 1'"OU 76.00 62.00 301.00 MO.OO 46.00 550 leu 200 A-13-2b c:oAAu A-IJ-2b 2i:1tlCA .-13-26 32CUU UbAUA bltt/j 614b 6240 6245 5b55 ~50 34J2001UY441701 34321,10'>431501 34330210""7<OUI 34324b1U937<'501 A-13-~'( c42 YO 3bS 90 160 IS U olUCU ObUbC UbUCh 07hAU IcUUA A-13-,n UjljbA 01/0711975 02l2Y/1960 Oil 11975 071 11972 01/ 11975 4UU 227 100 4Y ; IY74 1974 U N 12 20 :. :. 1",3 p 16 H 5 5 44-' b75 7S 592S 580" 5880 5913 ~10.00 12 7~0 5 6 400 6 6 57bO ,800 ,750 5730 5lYO 165.00 104.00 36.00 37.00 155.00 5830 5730 S740 S920 6000 164.00 30.00 55.00 2b6.00 342.00 b H 6 H H 6 17S loS 140 1,>5 Ib, 6 6 102 190 6 6 lOS 400 oMS 5 F 03/20/1975 02/26/1975 0212611975 12/05/1956 1210611956 ~ 5 1210511956 02/26/1975 1210b/1956 0212611975 12106/1956 t-( !) ; H ~ ~ 12106/1956 02126/1975 031 11975 031 11975 12107l1Y56 12107/1956 03/1811975 12106/19S6 12/06/1956 12/06/1956 0210611975 011 11953 12112/1956 121h11956 12111/19,6 071 11946 05/21/1975 031 11975 03/20/1975 0~9/1211975 H ~ 5 Obi 1195b 0711611957 03/20/1975 Ob/17/1956 14.00 U U 20 ~ F 57bO 5b40 S84S 5840 5900 6 N MtASUHEO H H H 'b u 001 001 001 001 001 (ftU) DATE WATER LEVEL wATEk LEVEL (FEET) 4.00 45.00 230.00 90.00 100.00 u 19Sb ~UHFACE 6020 5980 6150 b145 6130 p I AL TI TUDE OF LAND 10 630 42u 100 400 250 23 lY 24 6 4b 48 48 36 36 wtLL FINI:'H (rtfT) 10 001 001 001 001 001 A-13-25 A-13-25 A-13-<'6 A-I3-26 .-13-26 IJr 8 U /l~tJo 001 001 001 001 UOI 001 001 001 001 001 (INCHt~) U H H 001 001 001 001 001 001 001 001 001 001 wA rt.1"< Ut.P1H tTtH M.oe 001 Oul 001 001 001 OUI 001 001 001 001 UF CASING OIAM- !) Ob/17/1956 H 061 11974 061 11974 04/15/1Y76 !) H H H !) H 5 :. H !) Ii 5 0212411975 02/2411975 0212511975 0211411975 0211111975 051 11914 021 11975 041 11975 02l07l197S 021 11975 0110611975 121 11974 02/07/1975 051 119S7 0210111975 051 11959 03/1711975 45 selected wells--Conttnued DISCHAHGE ((;ALLUNS UAIE Ul:;,l,;HARGt. P~k MINUTU t"f:.A~UHt:U OHAw'" OO/tl"O (Ft"l) 400 ,,, 40 0 UEPTH TO FIHST METHOD W"NING CONST(feU) RUCTEU TY~E' Of LOGS AVAILABLe PHINCIPAL AQUIfER 0 lllALVM 310CCNN 310KIBB I<lBDHC 310KIB8 0 leO G C bO G 169 C 3 e U 121BOHC 121BOHC 231CHNL 121BDHC 230MNKP D G 30 07l14/1~5b 1809 " 400 'b no Jb G D 0 0 100 1 G C F D jU07/j~56 SPECIfIC CONOUCTANCE (UHHOS/CH TEMPERATUHE. (DEGREES C) AT 25° C) 15.5 1400 5210 16.5 480 19.0 14.0 870 540 231CHNL 310CCNN 310KIBB 111ALVM 11IALVM 17.0 18.0 14.0 3000 3190 2900 111ALVM 11IALVM 111ALVM 111ALVM 111ALVM 12.0 710 13.0 14.5 13.5 1500 1670 2800 111ALVM 231CHNL l11ALVM l11ALVM 11IALVM 111ALVM 111ALliM IllALVM 310CCNN 310KIBB 1350 8.5 12.7 15.0 15.0 1300 3500 3000 U 0 0 0 G B D G G C 0 D 310KIBB 310KIB8 231CHNL I11ALVM I11ALVM 310KIBB 310CCNN 121BOHC 1218DHC 310KIBB 3500 13.0 15.0 380 15.5 3700 3700 0 320 0 BOO 225 2500 15 2~' 190 eoo G 14 156 G U 2500 240 020 285 G G 444 l.l ~~1 G 6 15 20 lJ 20 ,,., 30 0 U 230MNK~ C C C C C C C U 40 135 C C iJ U C (.i,U 0 U A-12-28 A-12-28 A-12-28 A-12-28 A-12-28 19AABI 19AAB2 19ABC 19BAD 30DBA A-12-28505BBA A-12-29 10ACA A-12-29 20AAC A-12-29 25DCD A-12-29 31BOCI 16.5 365 A-13-24 A-13-24 A-13-24 A-13-24 A-13-25 12ACB 19ACD 22BBO 260CC 04CCA 16.5 390 A-13-25 A-13-25 A-13-26 A-13-26 A-13-26 07DCD 08DBC 060CB 07BAO 12DDA A-13-26 A-13-26 A-13-26 A-13-27 A-13-27 26AAO 29BCA 32COD 03BSA 06ADA A-13-27 A-13-27 A-13-27 A-13-27 A-13-27 09CAD 15BDA 15S0C 15800 21BCC A-13-27 A-13-27 A-13-27 A-13-27 A-13-27 25ACO 25AOC 25BAC 25BBD 250BB A-13-27 A-13-27 A-13-27 A-13-27 A-13-27 25DCC 20AAC 2eCCD 27BBC 28ABC 1550 310KIBB 230MNKP 230MNKP 230HNKP 230MNKP 230MNKP 0 ISS 135 lIO 105 165 18CAD 18DBC 18DDB 180DCl 180DC2 500 16.0 21.0 1600 2500 18.0 1900 310KI~B 2~ A-12-28 A-12-28 A-12-28 A-12-28 A-12-28 16.0 16.0 11IALVM 230MNKP 310CCNN 310CCNN 310CCNN A-12-28 12BOA A~12-28 17CCB A-12-28 17CCC A-12-28 18BAA A-12-28 18BAB 27ABA 080BB 080BC 09BAC 090CC 310KI~~ 16 07CDA 07COB 070BD 07DCD 09A A-12-30 A-12-31 A-12-31 A-12-31 A-13-24 3300 112BLCf 310CCNN C A-12-28 A-12-28 A-12-28 A-12-28 A-12-28 3000 430 2870 20.5 17.0 310CCNN 310CCNN Jl0CCNN 310CCNN 112BLCf A-12-27 26BABI A-12-27 26BAB2 A-12-27 35CDA A-12-27 35COB A-12-27502BBA 31BDC2 35BAB OBDBA 08DBD 13ACA 310CCNN I11ALVM 231SRMP 310CCNN 310CCNN 310CCNN 310CCNN 310CCNN 14CBOI 19BCO 23CBO 23COC 230BO A-12-29 A-12-29 A-12-30 A-12-30 A-12-30 G cO A-12-27 A-12-27 A-12-27 A-12-27 A-12-27 A-12-28 30DOC A-12-28N02CBO A-12-28N04BAD A-12-28S04CAC A-12-28S04CCC IllALVM 310KIBB 231CHNL 231CHNL 231CHNL 30 LOCAL NUMBER 14.0 1610 310KI~B 15.5 310KIBB 230MNKP 310KIB" 310CCNN 12.0 1800 1400 18.2 2350 46 Table 3.--Records of U~E LOCAL NUMHb, SII"-IO 34293210~305201 COUNTY A-13-27 A-13-27 A-13-28 A-13-2H A-13-2B 31A8C 34ABA 050U8 060DO 12CAC 342938109273201 343326 I 0923240 1 343320109241901 343245109193001 001 001 001 001 001 A-13-28 A-13-28 A-13-28 A-13-28 A-13-28 IbOAO 17ACA l1ACC 17CBB 17CCOI 343153109220101 343207109232401 343202109232401 343151109240201 .343135109234901 001 001 001 001 001 DATE COMPLETW 1945 09/14/1961 5 191~ u 1950 1965 1939 1955 H,S 34313610n34801 343158109232401 343200109240501 343155109240501 3431511 U924'340 I 001 001 001 001 001 1965 1914 1939 A-13-28 A-13-28 A-13-28 A-13-28 A-13-28 19CAA 19UCC 19DOC 20ABO 20HBA 3431041U9243801 343043109242801 34304310924130 I 3431231U9231801 343131109234801 001 001 001 001 001 1946 A-13-28 A-!3-28 A-13-28 A-13-28 A-13-28 20CAC 34305 71 092~430 1 34305 71 092~250 1 343043109230501 3~304410ncJ601 343052109191801 001 001 001 001 001 1961 1945 20000 21CDO 24UHC A-13-28 26ACO A-13-28 c7"AO A-13-28 27~CB A-!3-26 27~OC A-13-2M 28"C~ 3430271U9201l01 3430341U9212701 343026109215501 3430201U9214001 3430271092JOOOI 001 001 001 001 001 2bCCD 28DAU 29AAO 29ABOI 29A802 34295010922410 I 343010109215201 3430171U9230301 343030 I 09231901 34303410n32401 001 001 001 001 001 A-13-28 A-13-28 A-13-26 A-13-28 A-13-28 29"CD 3080A 32C8A 33A8A 3.3ACC 343015109234801 343026109243701 342923109235601 342914109221301 342925109222201 001 001 001 001 001 1941 A-13-28 A-13-29 A-13-29 A-13-30 A-13-30 338M 3200C 35AAA 038CDI 342949109223001 34290410916,2UI 342946109133501 343356109090301 343356109090302 001 001 001 001 001 19,7 1950 10/20/1960 A-13-30 O,DCA A-13-30 28AOC A-13~31 3uDCD A-14-24 04DUA A-14-24 06A~C 343331109103601 34304810909i!8UI 342957109052701 3438071 U948060 1 343840109502501 001 001 001 001 001 10/10/1961 1949 1946 A-14-24 A-14-24 A-14-24 A-14-24 A-14-24 06808 108BA 10888 12CAC 290CC 343837109504301 343753109475001 343758109475701 343726109453901 343432109500401 001 001 001 001 001 1967 A-14-24 A-14-25 A-14-25 A-14-25 A-14-25 34AD8 01ABD U~ABO 343417109474301 343846109384301 3438481094148111 10AOC 14CCO 343623109403201 001 001 001 001 001 03~CU< 343742109~03701 I,S Ht~ u H U U H.5 5 U H S 6 12 6 8 6 6 40 65 68 65 230 5680 5690 5695 5735 5750 3.00 57.00 60.00 30.00 40.00 40 70 55 332 200 5750 5695 5735 5740 5800 36.00 45.00 33.00 120.00 58.00 R 5 952 500 65 60 90 5850 5840 5820 5725 5750 164.00 72.00 47.00 35.20 31.00 S 60 165 65 100 180 5765 5740 5730 5720 5750 24.00 40.00 30.00 47.00 4.00 18O 565 225 162 90 5720 5680 5700 5670 5720 20.00 2.00 20.00 H 250 85 178 98 5760 5700 5740 5760 5750 35.00 33.00 36.00 66.00 42.00 S S 47 287 125 b8 5600 5920 5860 5760 5770 12.00 191.00 140.00 H 06/0711944 02114/1975 121 11956 43.00 R 061 5740 5963 6176 5876 5878 48.00 190 327 855 863 5 F R F 5 12106/1956 12112/1956 021 11957 09/2111955 05/21/1975 F 10/10/1961 09/1211955 03/20/1975 0811711956 48 ~ 6 10 8 6 6 1.5 1958 S :; 1.5 1915 I 5 1952 HoI 6 5 U 5 H,S U U U H,S 6 I 5 S 5 1.5 S S I 6.25 6 6 16 I I I S F F 212.00 3.30 5 03/18/1975 12114/1956 021 11961 06/0711944 02126/1975 12106/1956 04./18/1975 121 11956 12119/1956 02107/1975 H 5 S 5 11946 2610 375 452 375 380 5500 5430 5430 5435 5445 10.00 30.00 400 400 318 5440 5440 5430 5540 5450 32.00 17.00 29.00 72.00 36.00 S 5 S 425 468 40 345 500 54BO 5480 5480 5475 5510 20.32 54.00 H 12.00 30.00 H 03/09/1955 09/05/1956 360 007 665 5510 5510 5510 5710 5460 8.00 3.00 10.00 26.00 R S 09/05/1956 01129/1959 no I I 16 1965 I P 5 14 1950 I,~ 12 3434151093151UI 343626109373101' :; S 5 5 A H H 12 S 5 8 12 10 8 8 6.50 H 1963 S 02125/1975 021 11975 021 11975 03/2111975 03/18/1975 15.00 6.00 172.00 1945 1955 1963 001 001 001 001 001 H 5600 5420 5430 5435 5600 001 001 001 001 001 34342010~J4aOI :; H 200 260 350 14 6 8 8 343608109371001 343~3010Y342001 02125/1975 0211211975 02/1211975 02125/1975 12118/1956 5 5 5 5 R A-14-26 A-14-26 A-14-26 A-14-26 A-14-26 343455109342201 021 11975 02125/1975 1211911956 121 11956 12119/1956 S R S 40.00 180.00 19,6 1938 1946 A-14-26 dUC" A-!4-26 34AC8 A"ltt-2b 34UtJ8 A-14-26 360CA A-14-26EI8UCC 5 5380 5355 5360 5385 5640 001 001 001 001 001 34360310Y362Sui 343601109355801 3435031U93435ul H 03/18/1975 1211911956 021 11975 121 11956 02125/1975 454 365 323 400 335 3436401U9383001 343116109393101 3437161093911UI 343824109324901 343837109344701 21~CC 5 S H 12 12 6 12 A-14-25EI3UAO A-14-25w 12CCO A-14-2swI2CDO A-14-26 02UIIO A-14-26 03C8C 27CAC 5 5 325 300 001 001 001 001 001 34360210~n571J1 S S S 5805 5913 6075 5350 5365 I U H54 79,00 665 60 1940 1961 28.00 12 4 8 10 343716109385702 3431031U9390301 343103109392101 3~31111093858Ul P p H H 01116/1975 02106/1975 02114/1975 0211411975 10/0111974 9.00 92.00 101.00 5 H H DATE WATER LEVEL MEASURED WATER LEVEL (FEET) 6152 5780 5600 5670 5755 5 5 1940 AL T1TUDE OF LAND SURFACE (FEt::ll HO 120 30 740 967 6 A-14-25 18808 A-14-25El2CDDI A-14-.5El2CD02 A-14-25U3BAC A-14-25EI3BHC 19AOA 19"00 20ACC 3436571U9443501 (INCHES) FINISH (f"~T ) ~ 17CC02 17D8A 18ADO 180AA 18DBC A-13-28 A-13-28 A-13-28 A-13-2M A-13-28 5 O"PTH Or wt.LL ET~H U A-13-28 A-13-28 A-13-28 A-13-28 A-13-28 20U~C OF WATER CASING DIAM- 12 12 16 A A A 320 9.00 59.00 5 F 27.00 5 F F R 5 5 03/22/1972 08/17/1956 08/17/1956 0611 0/1956 06/17/1956 03/09/1955 03/09/1955 03/05/1975 1.00 07130/1953 10/14/1956 10/14/1956 13.15 :; H 5 S 08/14/1956 101 11956 03/03/1975 03/1711975 03/1711975 03/09/1955 08/24/1960 H S 02124/1975 q7 selected wells--Continued DISCHAHGe (GALLONS Pt." MINUTt.) UATt:: DISCHAIiGt. /'<It.A!::lUHtu UHAW0011" (FEU) Ut.PIH 10 FIHST METHOD CON5TOPeNING (FeU) RUCTED TYPES OF LOGS AVAILABLE C G D la 3,,0 590 li 37 210 12 ,,0 3S C C C C 0 0 G 5U 0 G G C " 03 B <10 C C H 1200 F C H 10/10/I~01 U 0 U 0 421 0 0 c .;00 J,u 2900 3500 3300 12.0 1700 310CCNN 230MNKP 121BDHC 121BDHC 121BDHC 2400 1580 16.0 1200 IJ .5 1600 1350 121BDHC 231CHNL 121BDHC 121BDHC JIOKIBB C C 20 654 13.5 16.0 21.0 121BDHC 121BDHC 121BDHC 310KIBB 231CHNL D C 112BLCF 230MNKP 11IALVM 310CCNN 310CCNN 11IALVM 121tiDHC 121BDHC 121BDHC 231CHNL 1< 10 " PHINCIPAL AQUIFER SPECIFIC CONDUCTANCE (UHMOS/CM TEMPt.RATUHE (OE.GHEESC) AT 25' C) 2500 100 35U YOO 1, 8 B e D C 110 7,0 C C U 1000 " dO ~bO C 3u 103 1000 C U u U C 1000 1000 11 uO 1320 L 440 0 A-13-28 A-13-28 A-13-28 A-13-28 A-13-28 17CCD2 17DBA 18ADD 18DAA 18DBC A-13-28 A-13-28 A-13-28 A-13-28 A-13-28 19CAA 190CC 190DC 20ABD 20BBA A-13-28 A-13-28 A-13-28 A-13-28 A-13-28 20CAC 20DBC 20DDD 21CDD 24DBC A-13-28 A-13-28 A-13-28 A-13-28 A-13-28 26ACD 27BAD 27BCB 27BOC 28BCB 2640 310KIBB 310KIBB 2JICHNL 231CHNL 231CHNL 16.0 15.0 3000 3500 4350 A-13-28 A-13-28 A-13-28 A-13-28 A-13-28 28CCO 280AO 29AAO 29ABDI 29ABD2 121BOHC 230MNKP 2JOMNKP 121SDHC 121BDHC 15.0 1880 A-13-28 A-13-28 A-13-28 A-13-28 A-13-28 29BCO 30BDA 32CBA 33ABA 3JACC 17 .0 1380 3800 A-13-28 A-13-29 A-13-29 A-13-30 A-13-30 33BAA 320DC 35AAA 038COI 038CD2 1800 618 7JO A-13-30 A-13-30 A-13-31 A-14-24 A-14-24 05DCA 28ADC 300CD 040DA 06ABe A-14-24 A-14-24 A-14-24 A-14-24 A-14-24 06BDB 10BBA 10BSB 12CAC 29DCe A-14-24 A-14-25 A-14-25 A-14-25 A-14-25 34ADB OIABD 04ABD 10ADC 14CCD 121BOHC 310KIBB JIOKIBB 310CCNN JIOCCNN JI0CCNN 120S0MH 310KIBB 310CCNN 310CCNN 1300 1240 16.5 15.5 310CCNN 310CCNN 310CCNN 310CCNN 310CCNN 17.7 18.5 710 572 600 310CCNN JIOCCNN 16.5 3000 732 310CCNN 310CCNN 310CCNN 310CCNN 17 .0 1960 17.1 1160 310CCNN JIOCCNN 310CCNN 16.0 1460 310KIB~ 16.0 16.5 4500 4800 310CCNN 310CCNN I11ALVM 310CCNN 310CCNN 18.0 774 510 18.5 18.0 790 504 310CCNN 310CCNN 310CCNN 15.5 16.0 1010 30B 17 .5 1000 1050 ~3ICHNL 0111011975 160AO 17ACA 17ACC 17CBB 17CCDI 18.8 310KIBB leoO A-13-28 A-13-28 A-13-28 A-13-28 A-13-28 2600 3300 J 300 31ABC 34ABA 05DDB 06000 12CAC 15.0 15.5 310CCNN 310KIBB e A-13-27 A-13-27 A-13-28 A-13-28 A-13-28 310KIBB 310KIBB JIOKIBB 310KIBB 121S0HC 310KI~B ~uO LOCAL NUMBER .lIOCCNN A-14-25 18BOB A-14-25EI2CDDI A-14-25EI2CDD2 A-14-25EI3BAC A-14-25EI3BBC A-14-25E13DAO A-14-25WI2CCO A-14-25WI2CDD A-14-26 02000 A-14-26 03CBC A-14-26 A-14-26 A-14-26 A-14-26 A-14-26 19ADA 19BDD 20ACC 218CC 27CAC A-14-26 27DCB A-14-26 34ACB A-14-26 34DBB A-14-26 30DCA A-14-26El8DCC 48 Table 3.--Records of U,E DATE LOCAL NUM8~H 51 fE-lD COUNTY A-14-26EI8UOU A-14-26wI8U8C A-14-27 01ABH A-I4-27 OlUCO A-14-27 U3AeO 343b24iU"37U401 343931JUn54001 343843J09253701 3439221U9374501 001 001 001 001 001 A-14-27 A-14-27 A-I4-2-' A-14-27 0-14-27 08DOA 12UCU 1580C UOAC 22D8U 343802J09293401 343743JOn54901 343713J09282001 343608 J 0927480 1 343609J 0927500 1 001 001 001 001 001 A-14-27 A-14-27 A-14-27 A-14-27 A-14-28 26AAD 280CO 30HAC 35"OC 13UHU 343542JOnb3401 3435011 0928500 1 343536109312601 343439109270301 343710J09192001 001 001 001 001 001 A-14-28 A-14-29 A-I4-29 A-14-30 A-14-30 .-14-30 A-14-31 A-15-24 A-15-24 A-15-24 20C8A 338B8 35WC 07ACO 21A08 2bU08 29AUC 130AC 29CAO 33BBO 343637JO~3749Ul 343618109241101 3435101091&4001 34341410"1420Ul 343842109114201 343646109093101 343521JU9073001 343539i090413Ul 344150109445401 343958109493301 343936109484101 001 001 001 001 001 001 001 001 001 001 COMPLET~U 1947 5 5 1974 11/26/1960 1942 1941 U N " H,S 5 1945 5 0~/02l1960 5 S 5 5 105 20 15 65 156 344217109192101 344230109223901 344122J09a4001 344101109235301 344000J09224201 001 001 001 001 001 A-15-28 A-15-29 A-15-29 A-15-29 A-15-29 34DDC 09COO 17CDA 30CoC 33ABC 343939109211101 344245109161001 344225109171501 344046109184301 344019109160801 001 001 001 001 001 A-15-3U A-15-30 A-15-31 A-16-24 A-16-24 21A8A 33008 17ADA 344206J09092901 34394 7l 09092~0 1 344238J09040901 200~A 344619J094~1501 31CCC 344407109510001 001 001 001 001 001 A-16-24 A-16-25 A-16-25 A-16-25 A-16-28 33COO HaAB 15BAC 2088C 18AOB 3448271 09441 0 0 1 3447391094125Ul 344643109433801 344800109243001 001 001 001 001 001 A-16-28 A-.16-29 A-16-30 A-16-30 A-16-30 35DAO 19AOC 14800 1908Cl 1908C2 344459109195801 344710109180001 344800J09074001 344650 J 091145U 1 344650109114502 001 001 001 001 001 A-17-24 A-17-26 A-17-27 A-17-27 A-17-27 12ABO 13CCD 345330109443001 345300109333001 345420109264501 3454141093029UI 345130109283001 001 001 001 001 001 A-17-2~ l1AC8 A-17-28 13080 A-17':28 1988C A-17-28 21ACA A-17-28 318~C 345310109201001 345157109250601 345140J09222001 344950J09253001 001 001 001 001 001 A-17-28 A-17-28 A-17-29 A-17-29 0-17-29 3588C 3bOUO 0280A 03808 03088 345000109205001 344910109190001 345420109141001 345411109145801 345400109144501 001 001 001 001 001 A-17-29 A-17-29 A-17-30 A-17-30 A-17-31 20COA 24AAO 33.08 160BC 345110J09173001 345043J09143601 345128109060901 344958109093001 345150J09032001 001 001 001 001 001 1937 071 J5/1975 01103/1949 031 11949 A-18-24 020DC A-18-24 08A.o A-18-24 08BCB A-18~24 08"CC A-18-24 09A88 345900J09452301 345855109482701 345841J094817Ul 345830109492801 345850109475001 001 001 001 001 001 1971 03/1211975 1971 071 11927 1958 1950 I 5 5 100 215 1181 855 675 715 5638 5780 5762 6010 5990 1022 1192 700 263 280 6000 6087 5535 5320 5350 6 6 8 5 12 4 OBI 1946 11946 5 5 1970 5 S H,S 5 19~9 S s ~ OBI 11947 071 11973 U 5 1955 12112119~4 07/11/1956 06/05/1953 S 5 S H Z 6 6 5.50 5 14 H P 13 X X X R H S F F 54.30 H 5 R R 5 R 5 5 1945 09/0211960 12117/1971 1211711971 12117/1971 10114/1956 01129/1959 0710211975 07/02/1975 07/0211975 07102/1975 02115/1956 5 07/0211975 03/20/1975 04/18/1957 01/09/1957 091 11963 S 5 5 H 07131/1975 081 11946 5 R 336.90 S 35.40 S 22.10 5 07/3111975 5550 5845 6455 6010 6268 220.00 42.10 475.00 34.40 297.70 K 071 11973 08119/1975 T 08/19/1975 08/13/1975 349 270 170 6244 6085 6301 6182 6102 289.40 175.20 340.00 244.90 144.10 S 5 R 5 5 08/13/1975 08/13/1975 07111/1956 08/1311975 08/13/1975 105 56 300 2b6 320 6005 5862 6215 6180 6166 73.10 29.60 220.00 200.10 168.00 T 5 R 5 08/13/1975 08113/1975 111 11965 08/20/1975 12103/1958 28 700 225 2b5 80 5915 6240 6166 6164 6025 22.1 0 S 165.00 200.00 50.00 R H K 60 50 600 87 110 5360 5315 5299.0 5295 5320 14.90 S 6.40 5 300 S R 5862 6015 5922 579B 579B 6 4 6 4 6 5 48.00 8.00 181.00 R S 5 5 5 5 U 5 20.00 5 5 S ti,:) 257.00 85.00 1212211971 08/08/1956 08/0811956 60 1360 150 6 6.63 6 02114/1975 1210"/1914 09/17/1975 05121/1975 1941 R S 360 73 500 80 P S 30.00 12.80 23.10 630 5 5 1965 04/08/1975 1.19 02114/1975 02124/1975 03/17/1975 02125/1975 08/12/1975 F 5350 5565 5524 5450 5940 8 8 8 5 6 H 5 83.00 40.00 5 5 R R S 12117/1971 1212211971 100 6 5 6 7 6 34.00 148.00 26.00 82.00 87.20 S 5 30 12 6 6 0 0 124.40 275.00 200.00 96.80 11.40 1204 1300 250 665 5 5 07/0211975 12/20/1956 0710211975 02114/1975 02114/1975 5964 6118 6595 5430 5325 530 8 6 5 8 6 5 126.40 75.50 75.39 41.10 440.00 150 104 130 5 s 41.30 5635 5731 5682 5643 5795 6 10 6 5 114.30 105.70 100.00 120.00 152.40 94.20 34.60 39.20 180 130 135 5 119b3 07/0211975 0710211975 5741 5701 5638 5605 5585 6 5 091 07/30/1~53 S 5 R 24.00 13.00 300.00 6 6 S 17.00 25.80 40.60 5405 5435 5727 5682 5515 5 5 DATE WATER LEVEL MEA,UREO WATER LEVEL (FEET) 30 360 350 180 JOO U 5 5 5595 5619 5565 5520 5520 6 12 7 4 6 ~ 1952 5460 5430 5551 5553 5538 5590 5670 5520 5635 5622 S 5,H ALTITUDE OF LAND SURFACE IFEE TJ 6 6 6 5 13CDD 16CAU 210CC 298DC 33CAA 2b~C8 252 6 6 6 5 "5 A-15-2B A-15-28 A-15-28 A-15-28 A-15-28 3452201091~0001 5 5 s 001 001 001 001 001 06AOB 21CBA J40 S 1950 344036J09423201 343859109393101 344152J09314001 344135109282601 343942109304501 02~AD 425 410 J U s 35000 24AOA 28AAA 3lU08 3448401093~1701 WATE" 5 A-15-25 A-15-25 A-15-26 A-15-27 A-15-27 28~~C UF CASING U~PTH DIAMO~ Wt.LL Eft" (INCHE5) FINISH (fEET) 5 S 07/0211975 07131/1975 F 5 R 5 0 F 12.00 13.00 R S 08/1311975 08/20/1975 01/03/1949 031 11949 06/18/1975 0912211975 0711211971 071 11927 0~/26/1975 selected 49 wells~-Continued OI~Ct1AKGI:. (GALLONS ~~K Mlf'JUTt:.) 13~0 ~ UA IE UIiAw" U1SCHARG~ Mt.A::'UkELJ OO,,~ (FE~ I) UE~TH FIK~T TO OP"NIN~ (F~UI METHOU CONSTRUCTEU TY~ES OF LOGS PHINCI~AL AVAILA~LE AQUIFI:.H 310CCNN 310CCNN 231CHNL 231CHNL 230HNKP 07110/1975 C U 310KIBB G 230MNKP 12180HC 121BDHC SPECIFIC CUNOUCTANCE (UHMUS/CM TEMPERATUHE (UEGHEES~CI AT 25° CI 17.5 1000 18.0 17 .0 17 .0 4420 6000 4750 G G 121BOHC 310KIBB 310KIB8 18.0 4180 8800 A-14-27 A-14-27 A-14-27 A-14-27 A-14-27 08DDA 12DCD 15BDC 220AC 22080 16.5 2400 2200 2250 2100 3900 A-14-27 A-14-27 A-14-27 A-14-27 A-14-28 26AAD 280CO 30BAC 35BDC 13DBD 310KIB~ U 670 100 k j ~ U 11I~6/1"60 05/~11197" 660 H C H U 0 U 300 10 515 ., t. 0.,/21/1975 300 H 1970 303 600 0 H H U U C U 1228 <40 0 H C U C 4" <0 240 lHO 199 II C 0 C D C C 0 0 C H H 49 J50 H 8., R 15.5 310KIBB 310CCNN 310KI8B 231CHNL 310KIBB 21.5 19.0 15.5 3550 2400 1850 1750 1480 A-14-28 A-14-29 A-14-29 A-14-30 A-14-30 20CBA 33BBB 35CDC 07ACO 21AOB 12BO 18.0 15.5 16.5 5000 660 605 A-14-30 A-14-31 A-15-24 A-15-24 A-15-24 2600B 29AOC 130AC 29CAO 33BBO 18.0 15.0 5300 1600 4200 A-15-25 A-15-25 A-15-26 A-15-27 A-15-27 28BBC 35000 24AOA 28AAA 3100B 231CHNL 231CHNL 231CHNL 231CHNL 231CHNL 16.5 21.0 1620 2200 17 .0 1550 A-15-28 A-15-28 A-15-28 A-15-28 A-15-28 13COO 16CAO 210CC 29BOC 33CAA 231CHNL 231CHNL 231CHNL 231CHNL 231CHNL 16.0 19.0 3580 1800 A-15-28 A-15-29 A-15-29 A-15-29 A-15-29 3400C 09COO 17COA 30CBC 33A8C 21ABA 3300B 17AOA 200BA 31CCC 310KI8B 310KIBB 310CCNN 310CCNN 310CC.NN 310KIBB 310KIBB 21100KT 310CCNN 310CCNN 310CCNN I11ALVM l11ALVM 11IALVH 12180HC H 0 C 231CHNL 11IALVH 310CCNN 231CHNL 231CHNL 230MNKP D 1000 0 D U U U 0 U A-14-26EI8DDD A-14-26WI8DBC A-14-27 OlABB A-14-27 01DCD A-14-27 03ABD 15.0 310KI~ti 0"I<U/I~~6 LOCAL NUMBER 231CHNL 12180HC I11ALVH 310KI88 111ALVH 231CHNL l11ALVM 121BOHC l11ALVM 12180HC 3430 7000 15.5 1600 A-IS-3D A-IS-3D A-15-31 A-16-24 A-16-24 17.5 2300 1400 3200 1600 670 A-16-24 A-16-25 A-16-25 A-16-25 A-16-28 33COO 12BAB 15BAC 20BBC 18ADB 12400 1000 3950 A-16-28 A-16-29 A-16-30 A-16-30 A-16-30 350AO 19ADC 14BDO 190BC1 190BC2 A-17-24 A-17-26 A-17-27 A-17-27 A-17-27 12ABO 13CCO 02BAO 06AOB 21CBA A-17-28 A-17-28 A-17-28 A-17-2e A-17-28 llACB 130BO 19BBC 21ACA 31B8C A-17-28 A-17-28 A-17-29 A-17-29 A-17-29 35BBC 36000 0280A 03BOB 03DBB A-17-29 A-17-29 A-17-30 A-17-30 A-17-31 20COA 26BCB 24AAO 33AAB 160BC A-18-24 A-18-24 A-18-24 A-18-24 A-1H-24 0200C 08AAA 08BCB 08BCC 09ABB 15.5 15.0 18.0 15.5 18.5 1980 1750 440 1750 1500 15.0 20.0 580 320 121BOHC 121BOHC 121BOHC 12180HC 121BOHC 17 .0 16.0 270 560 121BOHC 1l1ALVM 231WNGT 231WNGT 121BOHC 18.5 14.5 11lALVM 231CHNL 21100KT 21100KT 11IALVM 231CHNL l11ALVM 310CCNN 11lALVM l11ALVM 410 650 420 620 350 360 340 15.0 1650 18.0 1190 1700 90400 18.0 16HO Table 3. -- Records of 50 LOCAL NUM~EH SITE-XU 06~CA 3457371 0932050 I 345450109312001 345930109312001 001 001 001 001 001 A-18-27 16Caa A-18-28 22ABC A-16-28 30~BC A-18-29 04CC~ A-IB-29 13~CA 345700109302001 345650109212001 345610109301001 3458401091600UI 345740109132001 001 001 001 001 001 A-18-29 A-18-29 A-16-30 A-18-30 A-Ie-30 26eDS 29BCC 04CaC 14DaD 20COO 345610109142001 345550109174001 345910109101001 345720109072001 345620109104001 001 001 001 001 001 A-18-30 A-16-31 A-IB-31 A-19-24 A-19-24 36ABC 16CAC 29B06 05CaB 060C 345510109063001 345730109033001 345550109042001 350434109492101 35041011 049500 1 001 001 001 001 001 A-19-24 A-19-24 A-19-24 A-19-24 A-19-24 13ABo 13ACC 208CC 270AC 30COC 350306109442701 350252109443601 3502051 0949170 1 350054109462601 350045109501501 001 001 001 001 001 01AAB 05ABB l00AC 12CBB 16CCA 350456109375101 350452109423001 3503271 0940020 1 350336109084701 350233109415001 001 001 001 001 001 A-19-25 21~OA A-19-25 22~HD A-19-25 30HOD A-19-25 32HBB A-19-26 01~DO 350206109413201 350209109404701 350111109434401 350040109430701 350430109315501 001 001 001 001 001 A-18-24 A-18-26 A-18-26 A-18-26 A-IB-27 A-19-25 A-19-25 A-19-25 A-19-25 A-19-25 09ACA 02AA8 1380C 36AAo A-19-26 040~A A-19-27 19ABC A-19-28 23DCO A-19-26 28BDB A-19-28 30~BA 3458381094H401 COUNTY 34593710~~00701 350425109344101 350129109200801 3501.o71092242Ul 350051109245401 001 001 001 001 001 3~0209109305201 DATE COMPLETI:.O USE OF WATEK U S 1947 H,S 05nl/1954 S S 041 5 11947 1935 1965 1965 19~6 1965 1965 1965 05/1411969 1938 S S S S 5 5 5 6 6 6 U U U 5 U 0712611955 S 5 1965 H,S 5 1960 1925 041 121 5 U 5 5 5 119~7 11945 1945 5 5 5 5 1958 5 1960 1958 1965 5 5 5 001 001 001 001 001 A-19-30 A-19-30 A-19-31 A-19-31 A-t9-31 18CAB 36HCC 09CAC IHBBO 20BOB 350240109121001 350010109071 0 0 1 3503201090330'01 350300109054001 350208109044401 001 001 001 001 001 A-20-25 A-20-25 A-20-25 A-20-25 A-20-25 15~CO 28BAA 320CCl 320CC2 32DCC3 350804109404001 3,0638109413101 350504109422801 350503109422801 350';01109423201 001 001 001 001 001 5 5 350747109313101 350649109350301 3507071 0934130 1 3';0713109330201 350713109312801 001 001 001 001 001 5 N S 5 350638109320401 350633109330701 350617109340401 350527109361501 350501109342101 001 001 001 001 001 051 001 001 001 001 001 031 A-20-26 A-20-26 A-20-26 A-20-26 A-20-26 13DAC 210CB 22BUC 2~BDA 24AOA 2~BA8 26BAA 27HOU 3280D 34CCO A-20-26 A-20-27 A-20-27 A-20-27 A-20-27 34CDC 01COC 05UOAl 050oA2 350500109341901 350925109254201 350959109290501 350n7109292601 350930109292301 A-20-27 A-20-27 A-20-27 A-20-27 A-20-27 088B8 09CAO 19HoA 24BDAl 24BoA2 350914109301301 350842109284301 350"113109305201 3507171092,3301 350716109253401 001 001 001 001 001 A-20-27 A-20-27 A-20-28 A-20-28 A-20-28 24CAC 36HBH l4AAB 19CAC 21BA8 350656109254501 3505471092601Ul 350624109200001 350657109244101 350726109223101 001 001 001 001 001 04~CA X ~315 517 5975 6095 6108 6090 10.70 81.80 107.00 159.50 490.00 300 617 500 915 400 6123 6482 6455 6630 6274 138.90 509.90 475.00 709.00 261.00 430 440 700 695 420 6267 63H 6558 6624 6361 264.00 s 390.00 509.00 570.00 360.00 5 5 5 552 27 40 6424 626B 6406 5405 5390 382.00 192.00 349.00 7.00 8.00 51 15 460 34 040 5460 5442 5558 5376 5550 S H,S 19~9 1959 1955 1959 S 5 S S U H,S 071 11964 11962 081 11961 03/15119,3 5 5 0711011969 07110/1969 07110/1969 05/17/1969 061 /1945 6.50 6.20 228.00 10.70 5 5 5 5 06119/1975 06/1911975 06/1711975 06/1911975 25.00 5 06/17/1975 3.80 20.00 15.30 T R 06/17/1975 1965 09/23/1956 06/1811975 06/1811975 06/17/1975 S 5- S 21.60 62.80 21.00 15.00 40.70 5 5 5 5 06/1611975 1198 112 790.00 13.30 106.55 240.00 263.90 R 5 450 4,0 5766 5901 6090 6168 6216 05/0711957 06/16/1975 10/3011956 121 11945 06/2111975 381 400 465 460 1096 6312 6181 6181 6389 6765 317.00 212.00 210.00 370.00 678.00 S 420 600 495 632 600 6395 6622 6623 6641 6581 341.00 546.00 447.00 555.00 550.00 S C7 5642 5569 5535 5525 5525 15.60 8.62 8 6 6 6 8 6 9 8 6 6 8 8 8 8 30 78 5 12 8 8 4 6.~O P P F P P P R 5 07/09/1969 07111/1969 07/09/1969 07/09/1969 07110/1969 S S 5 5 07110/1969 07110/1969 07/10/1969 07110/1969 09/2211959 s S 5 06/17/1975 06/17/1975 20.00 20.00 R H 03/1311969 03113/1969 5647 5615 5655 5655 5655 46.60 5 5 S S 5 06/17/1975 0811211975 06/18/1975 06/18/1975 06/17/1975 5645 5630 5601 5570 5795 40.00 27.90 14.60 48.30 102.40 H 051 11956 06/1811975 06/18/1975 06/18/1975 06/1811975 1550 200 100 39 5795 6061 5710 5690 5665 186.30 25.50 21.20 15.20 5734 5692 5661 5760 5780 103 130 180 120 204 125 U 4 5 6 12 S 5 5 6 6 12 137 ,,2 10 6 6 650 115 P,S 6.62 H 5 S 12 200 32 32 S H U 07109/1969 07109/1969 07110/1969 07110/1969 07110/1969 5435 5470 5402 5407 5728 8 14 8 4 5 5 P,S 5 07109/1969 07109/1969 S 66 65 60 35 150 P,S 101 s 6 5 S S S 5 08/19/1975 08113/1975 S R S 60 60 11950 1956 5 H 6 6 U P P 11956 194H 09/26/1975 08/19/1975 08/19/1975 06/19/1975 05/21/1954 5 S T 5510 5519 5465 5488 5432 30 5 U 350350109155001 350300109170001 350250109171001 350000109142001 350340109084001 A-20-26 A-20-26 A-20-26 1>-20-26 A-20-26 12 6 6 5 6 DATE wATEH LEVEL MI:.ASUKED WATER LEVEL (FEET) ,0 5 17AC82 35CoB 10ASD 17AC~1 6 AL TllUDE OF LAND SURFACE (FEI:.T) ~OO 132 8 6 6 6 6 6 6 119~5 071 6 5 6 4 5 5 5 5 5 A-19-29 A-19-29 A-19-29 A-19-29 A-19-30 09AAC CASING DI:.PTH DIAMOF WELL ETI:.H ( INCHES) FINISH (FI:.ET) 204 221 5772 5784 6131 5613 6075 7.60 35.30 72.50 16.10 5.70 5 5 S 5 0H/20/1975 06/1811975 06/18/1975 U6/1811975 5 5 5 5 107.10 31.80 5 44.00 5 sp F F 06/17/1975 08/20/1975 06/1711975 11/18/1975 11118/1975 F 08/2111975 193.20 ~p 200.00 ~ 08/19/1975 11118/1975 03115/1953 F 51 selected wells--Continued UISCHAKb~ (GALLONS P~H MINUT~) UAT~ uI,CHAHGE M~A,UHEU DHA.DO.~ (FE~ I) UEPTH TO fIHST METHOD CONSTOP~"'ING IF~U) RUCTEO SP~CIFlC TYPES OF LUGS AVAILAbLE PHINCIPAL AQUIFER D 121BOHC 121BOHC 121BOHC TEMPERATURE IOEGHEES C) CONDUCTANCE IUHMOS/CM AT 25' C) 16.5 17 .0 370 460 A-18-24 A-18-26 A-18-26 A-18-26 A-18-27 17 .0 A-18-27 A-18-28 A-18-28 A-18-29 A-18-29 18C8B 22A8C 3088C 04CCB 138CA IIlIl.LVM 121~OHC 16 K 0~/2111904 C 12 .0 14 12 30 12 J5 12 15 H U 330 H 0 0 560 b04 H H 0 0 H H 0 y 448 I~ 499 R C 0 V C 5 H 121 11945 <0 15 1010 E JOO 0 ;;~O C <2 20 15 12 50 I~ ,,0 " ~O 15 14 441 420 520 455 0 C C H 0 C U 0 C 0 0 2 4 4 0 U H H 14 k OJ/15/1975 09ACA 02AAB 13BOC 36AAO 06BCA 121BOHC 121BOHC 121BOHC 231WNGT 121BOHC 20.0 510 500 260 400 360 121BOHC 121BOHC 121BOHC 121BOHC 12180HC 18.5 21.5 19.5 20.0 19.5 340 360 315 330 310 A-18-29 A-18-29 A-18-30 A-18-30 A-18-30 26808 298CC 04C8C 14080 20COO 20.0 260 420 320 A-18-30 A-18-31 A-18-31 A-19-24 A-19-24 36A8C 16CAC 2980B 05CBB 060C 1950 A-19-24 A-19-24 A-19-24 A-19-24 A-19-24 13ABO 13ACC 20BCC 270AC 30COC A-19-25 A-19-25 A-19-25 A-19-25 A-19-25 O,lAAB 05ABB 100AC 12CBB 16CCA A-19-25 A-19-25 A-19-25 A-19-25 A-19-26 21BOA 22B80 30BOO 32BB8 OIBOO A-19-26 A-19-27 A-19-28 A-19-28 A-19-28 040BA 19A8C 230CO 28BOB 30C8A A-19-29 A-19-29 A-19-29 A-19-29 A-19-30 09AAC I7ACBl I7ACB2 35COB 10ABO 280 260 360 A-19-30 A-19-30 A-19-31 A-19-31 A-19-31 18CAB 36BCC 09CAC 18BBO 20BOB 1340 1300 A-20-25 A-20-25 A-20-25 A-20-25 A-20-25 15BCO 288AA 320CCI 32UCC2 320CC3 A-20-26 A-20-26 A-20-26 A-20-26 A-20-26 130AC 210CB 2280C 23BOA 24AUA A-20-26 A-20-26 A-20-26 A-20-26 A-20-26 25BAB 26BAA 27BOO 32BOO 34CCO 12180HC 121BOHC 21l00KT IllALVM lllALVM 15.0 .14.5 IIIALVM lllALVM 231CHNL lllALVM 231CHNL 14.5 1l1ALVM 1l1ALVM IIlALVM lllALVM lllALVM 16.0 17.0 900 1750 15.5 16.5 1150 1070 lllALVM 231CHNL lllALVM !!IALVM 231CHNL 16.5 1190 17 .0 14.5 16.0 1250 1500 1700 310CCNN 231CHNL 121BOHC 121BOHC 12lBOHC 121BOHC 12lBOHG 121BOHC 121BDHC 121BOHC 103000 59300 16.5 290 20.0 360 21.5 320 480 460 121BOHC 121BOHC 121BOHC 121BOHC 121BOHC 1l1ALVM 1l1ALVM IIIALVM IlIALVM IIlALVM 16.0 16.0 IIIALVM 231CHNL 231CHNL IIIALVM IlIALVM 16.0 1020 1100 16.0 1100 16.0 1100 1160 16.0 Ilao 16.0 14.5 9490 360 920 1350 A-20-26 A-20-27 A-20-27 A-20-27 A-20-27 34COC OICOC 04BCA 0500AI 0500A2 231CHNL IlIALVM lllALVM 231SNSL 231SNSL 20.0 17.0 1320 1220 15.5 15.5 300 A-20-27 A-20-27 A-20-27 A-20-27 A-20-27 08BBB 09CAO 19BOA 24BOAI 24BOA2 231SNSL IIIALVM 121BOHC 231SNSL 19.0 19.0 15.0 17.5 330 330 300 280 A-20-27 A-20-27 A-20-28 A-20-28 A-20-28 24CAC 36BBB 14AAB 19CAC 21BAB lllALVM IlIALVM lllALVM 231CHNL 231CHNL C LOCAL NUMBER 231CHNL 121BOHC IIlALVM IIIALVM IlIALVM 121~DHC 1750 Table 3. --Records of 52 LOCAL NUMBt::R 51 fE-W COUNTY A-20-28 A-20-2B A-20-26 A-20-28 A-20-29 32CAB 33AOB 36AAAI 36AAA2 06CAO 0923420 I J50528109220201 350544109184301 350543109164801 350840109171601 DOl 001 001 001 001 A-20-29 A-20-30 A-20-30 A-20-30 A-20-30 350CO 0388B 12ABD 27080 36UAB 350506109134601 350959109091YOI 35085810906J201 350608109084201 350522109062301 001 001 001 001 001 A-20-31 A-20-31 A-21-27 A-21-27 A-21-27 29AOCI 29AOC2 15MB 23A 24CCC 350623109041401 350623109041501 351341109273801 351240109263001 351158109261601 001 001 001 001 001 251lBDI 258802 25C 1 25C 2 25CAD 3511491 09c6080 1 351149109C60802 351120109261501 351120109261001 351119109255301 001 001 DOl 001 001 A-21-27 A-21-27 A-21-27 A-21-27 A-21-27 3~07171 DATE COMPLEftD 06/30/19~3 1113011954 5 11946 1945 194B 1944 1938 S 121 1950 1970 031 6 6 6 6 6 P H.s,I 5 S U 6 4 051 11974 031 11902 11/2311905 A-21-28 A-21-28 A-21-28 A-21-28 A-21-28 20DCA 21CAU 21U80 23AAC 23000 351204109232503 351212109224201 3512171 09~22301 351224109202401 351149109195901 001 001 001 DOl 001 1964 A-21-28 A-21-28 A-21-26 A-21-28 A-21-29 24B8C 24CCC 29BBA 308AA 22CCA 351229109195101 351147109194901 35115510923580 I 351154109145001 35115510915250 I 001 001 001 001 001 06/25/1967 11/30/1954 653.40 145.00 500.00 350.00 570.00 6652 6652 5925 5830 5789 820.00 580.00 59.00 R 160.00 k 03/2811956 S 11/1611975 11118/1975 03/3111902 11/2311905 235 50 110 37 160 5750 5762 5765 5753 5820 28.90 37.10 49.40 31.30 120.00 III 130 230 80 60 5842 5860 5855 5765 5750 65.00 70.00 143.00 32.70 18.40 5775 5790 5802 5825 5600 30.80 180.00 70.00 59.00 35.70 5825 5810 5755 5755 5957 104.00 30.70 29.90 30.00 31.20 6038 70.00 H U P H U P X X 10 6 6 10 6 8.62 6 4 P 5 5 12 8 180 340 238 175 50 P S 6 6 6 6 8 256 135 100 100 75 H,N R,H 10 6 P H U 11/11/1954 R 6671 6230 6537 6463 6639 65.20 84.50 58.00 58.00 38.00 5 T 11/0211974 140.00 .795 165 600 500 600 5785 5785 5750 5750 5750 1969 351253109201401 351200109251201 351159109243701 10/11/1956 06/30/1953 07103/1975 110 250 605 303 91 H 001 001 001 001 001 R S 71.~0 6 6 9 12 16 1956 3~1241109193101 351258109~00101 50.00 92.50 6 5 U 13COC 14DAD 140CA 19CCC 19DCC 5884 5885 6050 6050 6134 S,H 1964 A-21-28 A-21-28 A-21-28 A-21-'28 A-21-28 100 103 145 136 158 900 600 61 402 235 P S DATE WATER LEVEL MEASURW \jATER LEVEL (FEET) 6 6 6 U S P 001 001 001 001 001 AL TITUDE OF LAND 5UKFACE (FEU) H,5 5 351118109261001 351123109262101 351119109263901 351045109265501 351254109194501 001 CASING O~PTH DIAMOF WELL ETEH (INCHES) FINISH (FtETI 11953 25CCA 260AA 26080 358DO 13C8C 35115H09130001 S 5 S 5 A-21-27 A-21-27 A-21-27 A-21-27 A-21-28 A-21-29 24DCC USE OF WATER 11/18/1975 04124/1957 R R H H 0 S R R 03/2B/19~6 5 S S 5 11/19/1975 08120/1975 11/18/1975 08/2111975 RP H R R 5 11/0211974 11/19/1975 5 T 11/19/1975 H H S 051 11968 08/1911975 S 5 S 07124/1967 08/1911975 II/IY/1975 R SP H 08/1911975 53 selected 'wells--Continued DI$Ct1AHGE (GALLONS PoR MINUTU 12 H OATo Ul!>CHARuo Mt.A!>UREU ORA.DOwr-, (FEt 1) UEPTH TO FIRST METHOD CONSTuPoNING (Ft.U) HUCTEU U Ob/3U/19'~ lO H !l/30/1~04 12 R IU TYPE!> Of LU&S AVAILABLE 747 /1946 ~ U3/31119U2 II/c~/19U5 101 101 195 212 D 250 30 60 190 0 0 20 R 11/11/1904 16.0 I21BOHC I21BOHC 121BOHC 121BOHC 121BOHC 14.5 D 280 14.0 14.5 290 300 270 280 16.5 290 LOCAL NUMBER A-20-28 A-20-28 A-20-28 A-20-28 A-20-29 32CAB 33ADB 36AAAI 36AAA2 08CAO A-20-2~ A-20-30 A-20-30 A-20-30 A-20-30 35DCO 03B8B 12ABD 27DBD 36DAB A-20-31 A-20-31 A-21-21 A-21-27 A-21-21 29ADCl 29ADC2 15MB 23A 24CCC A-21-21 A-21-21 A-21-21 A-21-21 A-21-21 25BBDI 25BBD2 25C 1 25C 2 25CAD A-21-21 A-21-21 A-21-21 A-21-21 A-21-28 25CCA 26DAA 26DBD 35BDD 13CBC l11ALVM 231CHNL l11ALVM IllALVM lllALVM 1280 1250 l11ALVM I11ALVM I11ALVM l11ALVM l11ALVM 1160 I11ALVM 231CHNL 231CHNL IllALVM I llALVI1 1150 1360 1000 2500 A-21-28 A-21-28 A-21-28 A-21-28 A-21-28 13CDC 14DAD 14DCA 19CCC 19DCC 16.0 1100 2340 A-21-28 A-21-28 A-21-28 A-21-28 A-21-28 20DCA 21CAD 21DBO 23AAC 23000 13.0 910 1150 14.5 ~lO A-21-28 A-21-28 A-21-28 A-21-28 A-21-29 24BBC 24CCC 29BBA 30BAA 22CCA 360 A-21-29 24DCC I11ALVM 231CHNL 11IALVM 11IALVM l11ALVM 165 200 121BDHC 121BDHC I21BDHC 121BOHC 121BOHC 121BDHC 121BOHC lllALVM 231CHNL 231CHNL C 14 70 110 PRINCIPAL AQUIFER SPECIF IC CONDUCTANCE TEMPERATURE IUHMOS/CM AT 25' C) !DEGREES C) 231SRMP I11ALVM l11ALVM I11ALVM lllALVM 121BDHC 1100 1110 910 54 Table 4. --Measurements of the water level in selected wells Water level: Method of measurement: R, reported; 5, steel tape; T, electric tape; Z, other. P, pumping; R, recently pumped. WA TER LEVEL, IN FEET BELOW LAND SURFACE LOCAL NUMBER DATE MEASURED A-05-30 13DBC 10/17/1971 08/2211913 104.80 96.90 A-05-31 nCAA 08/22/1973 01/21/1975 01/29/1976 21.50 19.30 9.30 A-07-27 OICCAI 07126/1973 01/0211975 01/28/1976 55.00 49.20 53.05 A-07-27 OICDS 07/26/1973 01/29/1974 01/0211975 01/28/1976 26.50 25.70 22.00 25.35 A-07-30 14BDD 08/06/1973 01/29/1974 01/0211975 01/29/1976 156.50 156.30 153.70 169.20 A-08-29 IIADA 0212511960 09/2511974 140.00 141.60 A-S8-29 16BAA 01/01/1953 05/22/1969 08/13/1974 375.00 413.00 334.30 A-08-31 22DAC 07/18/1957 1211911974 85.50 91.70 A-09-31 10BCA 1212211933 07/09/1959 126.00 140.00 A-IO-29 15BAB 12/14/1956 01/16/1975 13.00 11.40 A-10-31 21DBD 07108/1959 854.00 METHUD OF MEASUREMENT LOCAL NUMBER DATE MEASURED WA TER LEVEL, IN FEET BELOW LAND SURFACE A-12-27 19BCD 12/09/1957 02129/1960 03/03/1975 05/06/1975 47.30 45.43 48.30 47.77 A-12-28 07CDS 05/18/1956 11/17/1956 04/06/1957 03/15/1967 10/06/1967 02/06/1968 10/13/1968 03/19/1970 03/3111971 02/01/1972 01/29/1974 01/0311975 02126/1975 09/1211975 01/28/1976 01/29/1976 02128/1976 38.80 32.85 28.60 35.91 35.92 35.78 31.15 33.52 33.50 34.10 32.40 31.65 35.50 55.18 38.98 38.98 32.60 A-12-2S 19BAD 0311 B/1975 0511011975 09/11/1975 0471511976 09/09/1976 25.00 32.37 23.76 32.65 38.80 A-12-28S04CCC 0211311975 172.40 A-12-29 20AAC 09/2111974 30.80 A-12-29 25DCD 12114/1956 03/2111975 46.10 44.00 A-13-24 12ACB 05113/1975 112.40 A-13-24 22BBD 08/17/1956 05/13/1975 09112/1975 04/13/1976 09/08/1976 144.40 134.42 143.30 143.80 145.72 A-i3-25 04CCA 06/06/1947 08/20/1956 03/0411975 46.00 40.00 49.20 A-13-26 06DCB 06/0111974 03/17/1975 01/28/1976 89.00 86.20 88.42 A-13-26 12DDA 04115/1976 09/09/1976 36.47 36.74 A-1l-24 OBAAC 0611211957 1211911974 144.80 104.00 A-1l-24 22DBC 12118/1974 01/2811976 709.00 709.25 A-II-25 08DCC 01/15/1975 31.40 A-II-25 18DCC 07/01/1946 06/1311957 08/21/1958 1111711966 04/16/1969 02/0111972 01/29/1974 01/03/1975 01/28/1976 22.06 23.60 22.00 25.59 27.13 26,90 27.90 27.45 27.35 A-13-27 03BBA 04119/1974 02124/1975 157.60 113.30 12/20/1974 05/1111975 01/28/1976 392.50 390.05 394.30 A-i3-27 09CAD 04/19/1974 02125/1975 217.50 221.30 12/07/1956 12/20/1974 8.75 10.00 A-13-27 15SDC 01/28/1976 264.00 A-13-27 27BBC 05/04/1959 02/24/1975 05/06/1975 256.00 271.00 247.33 A-1l-27 23AAA A-O-28 ]ODCC A-II-29 04BBC 01/29/1976 293.10 A-12-24 IICDA 10/01/1974 04/2211975 200.00 234.30 A-13-28 06DDD A-12-25 03AAB 08/2211956 01/2111975 05/0711975 09112/1975 167.70 173.60 172.16 171.07 04/2211974 02/14/1975 05/12/1975 85.13 92.00 96.52 A-i3-28 12CAC A-12-25 04CDA 05/07/1975 09/12/1975 183.16 182.00 01101/1974 10101/1974 03/2111975 0511 OIl 975 01129/1976 12/28/1976 101.30 101.30 102.50 103.50 129.53 108.38 A-12-25 18CCC2 06/1211957 05/07/1975 244.90 289.02 A-13-28 18ADD A-12-26 02BDA 05/06/1975 04/15/1976 09/08/1976 68.33 88.60 84.86 06/01/1946 12/19/1946 0212511975 38.03 33.40 31.30 A-13-28 180M 01/01/1958 05/06/1975 24.00 140.60 12119/1956 05/14/1975 09/17/1975 120.00 132.98 131.24 A-13-28 18DBC 02/25/1975 78.90 01/01/1958 01/16/1975 05/06/1975 09/11/1975 04/14/1976 09/09/1976 40.00 49.10 47.70 46.14 45.25 49.95 A-13-28 19CAA 05/25/1955 02/25/1975 170.60 163.80 A-13-28 24DBC 03/18/1975 4.50 A-13-28 27BDC 06/07/1944 08/09/1944 07/15/1949 08/07/1950 02/26/1951 08/07/1951 07/0211952 1.57 4.51 -.93 -.95 -.78 5.73 8.93 A-12-26 04BBD A-12-26 13DCD A-12-26 15BCC 05/0211957 01/15/1975 7.80 13.40 A-12-26 18DCCI 12/07/1967 06/08/1968 04/16/1969 413.50 415.10 413.50 METHOD OF MEASUREMENT 5 5 S S S S 5 S 55 Table 4. ~-Measurements of the water level in selected wells--Contlnued LOCAL NUMBER DATE MEASURED A-13-28 218UC--CONT 07/30/1953 10111/1954 10/23/1956 04/0&/19&0 10/23/19&3 04/03/19&4 11/05/19&4 04/23/19&5 04/14/19&6 03/15/19&7 02/06/1968 04/16/1969 03/19/1970 03/3111971 0210111972 02128/1973 01/29/1974 01/03/1975 02/25/1975 01/29/197& WATER LEVEL, IN FEET BELOW LAND SURFACE 2.&5 3.12 3.74 .&5 .8& .68 .52 1.43 .52 .77 .75 .95 -.58 -.40 -.25 - .90 -.90 -.90 -.90 .09 METHOD OF MEASUREMENT S S S S S S S WATER LEVEL, IN FEET BELOW LAND SURF ACE DATE MEASURED A-14-2&W 18DBC 10/23/195& 04/20/19&0 11/05/19&4 04/23/19&5 10/03/19&5 04/14/19&& 11/1&119&& 03/15/19&7 10/0&/19&7 02/0&/19&8 10/03/1968 04/1&/19&9 03/19/1970 03/31/1971 02/01/1972 02128/1973 01/29/1974 01/03/1975 05/13/1975 01/28/1976 17 .&& 14.90 29.10 22.12 22.17 25.&5 27.70 21.85 39.30 22.94 41.01 36.73 19.82 21.&5 20.05 2&.42 2&.30 33.80 41.92 34.10 A-14-27 010CO 12120/195& 07/0211975 27.03 40.80 A-14-27 080DA 12/19/195& 05/1211975 07/0211975 09/12/1975 105.40 11&.7& 114.30 114.&0 A-14-27 35BOC 02125/1975 0511211975 09/1211975 04/14/197& 09/09/197& 82.20 101.00 96.13 97.2& 94.72 A-14-29 33BBB 03/17/1975 92.40 A-14-30 21ADB 01/QII1941 05/21/1975 05/19/197& 091211197& 85.00 17B.00 158.30 125.15 R S S S A-14-30 2&ODB 01/01/1945 05/2111975 48.00 76.90 R S A-14-31 29ADC 09/02119&0 01/01/1975 8.00 40.00 A-15-28 210CC 01/09/1957 07/02/1975 81.&0 94.20 A-15-30 21ABA 01/011194& 05112/1975 07/31/1975 102.00 122.55 124.40 A-I&-25 15BAC 08/08/195& 09/17/1975 23.10 13.70 A-P-29 030BB 07/01/194& 1210311958 167.80 1&8.00 A-18-29 04CCB 05/0211965 07/09/1969 725.00 709.40 A-18-29 2&BDB 07/30/19&5 07/09119&9 08/12/1975 270.00 2&4.30 2&5.10 A-18-29 29BCC 10/3111958 09/30/1959 07/0911969 379.00 395.00 390.20 A-18-30 04C8C 05/3111965 07110/19&9 08112/1975 521.00 509.10 511.30 R S S A-18-30 140BO 0&/13119&5 07/10/19&9 580.00 569.90 R A-18-30 20COO 0210211972 02/27/1973 01/29/1974 01/3111975 08/1211975 01/291197& 365.20 3&0.40 361.20 3&3.00 3&5.00 3&6.80 A-18-31 I&CAC 08/12/1975 189.30 A-18-31 29BOB 07/02119&5 07/10/1%9 3&4.00 349.40 S S S S S S S S S S S S S A-13-28 298CD 0&/07/1944 04/14/19&& 01/29/1976 12.05 11.65 13.9& A-13-28 33ACC 0&/01/1946 03/2111975 42.66 32.00 A-13-29 35AAA 0210111957 02/19/1957 03/20/1975 05/08/1975 09/1111975 01129/19]& 04/13/197& 09/09/1976 212.00 1&5.00 1&7.00 1&&.07 1&7.30 1&7.50 1&9.70 1&7.95 A-13-30 28ADC 09/1211955 05/21/1975 9.00 &.30 A-13-31 30DCD 03/20/1975 05/08/1975 59.00 59.60 A-14-24 290CC 08/17/195& 05/13/1975 09/1111975 04/13/197& 09/08/197& 180.00 238.55 257.10 245.30 262.34 03/05/1975 0511311975 09111/1975 04/14/1976 09/09/1976 172.40 192.04 212.05 201.87 189.22 07/30/1953 10/28/1953 1011111954 06128/1955 10/26/1955 05/03/1956 10/23/1956 05115/1957 10/11/1957 04/2111958 04/0&/19&0 10/0711960 04/28/19&1 05/01119&2 04/08/19&3 11/05/1964 04/23/1965 10103/19&5 04/14119&6 11/1&/196& 03/15/19&7 0210&119&8 04/1&/19&9 03/14/1970 03/31/1971 0210111972 02128/1973 01/29/1974 01103/1975 13.15 13.44 15.&2 16.70 18.25 16.17 16.57 15.97 15.&& 15.51 11.80 12.&1 15.22 11.66 17.40 25.28 15.71 16.31 17.&0 23.39 13.82 13.58 40.00 18.03 18.90 19.80 23.65 23.10 30.25 10/14/195& 03/0511975 05113/1975 31.67 51.20 46.83 A-14-25WI2COO 02128/1973 23.&5 A-14-26 21BCC 11/0111950 03/0911955 05/13/1975 09/11/1975 04/14/1976 09/09/1976 9.00 11.&4 21.10 28.05 21.52 3&.15 A-19-25 30BOO 10117/1956 0&/17/1975 10.00 21.00 A-19-28 230CO 10/30/195& 04/22/1959 11/2111975 10& .55 150.00 14&.70 01/01/19&3 05/13/1975 10.00 48.19 A-19-28 28BDB 12101/1945 11/2111975 240.00 22&.30 A-14-25 14CCO A-14-25EI2COD2 A-14-25E 130AO A-14-26 340BB S S S S METHOD OF MEASUREMENT LOCAL NUMBER S S S S S S R T S T T T T R T R S 56 Table 4. --Measurements of the water level in selected wells--Continued WATER LEVEL, IN FEET BELOW LAND SURFACE LOCAL NUMBER DATE MEASURED A-I9-Z9 09AAC 08/05/1958 0913011 959 07/09/1969 08/12/1975 323.00 342.00 316.80 319.30 A-19-29 17ACBI 07/11/1969 03/30/1971 02102/1972 02/27/1973 212.00 210.20 212.00 210.80 03/23/1960 07109/1969 03/30/1971 02102/1972 02/27/19n 0112911974 01131/1975 01/29/1976 218.50 210.00 211.00 211.30 210.20 210.60 215.15 213.80 08/24/1958 09130/1959 07/09/1969 08/12/1975 397.00 370.40 369.90 A-19-]0 10ABD 05/18/1965 07/10/1969 704.00 678.20 A-19-30 18CAB 07/10/1969 08/1211975 341.20 338.70 A-19-30 36BCC 08/2211959 01110/1969 550.00 A-I 9-29 17 ACB2 A-19-29 35CDB METHOD OF MEASUREMENT DATE MEASURED A-19-31 09CAC 09/011 I 959 07/1011969 445.00 446.60 A-20-25 15BCO 08/07/1956 06/17/1975 13.80 15.60 A-20-28 32CAB 10111/1956 11/21/1975 71.80 70.30 A-20-26 36AAA I 10/1111956 07/03/1 n5 111.50 92.50 A-20-30 270BO 01/01/1944 11118/1975 350.00 427.00 A-20-30 36DAB 01/01/1938 11/18/1975 570.00 512.20 A-20-31 29ADCI 0110111950 11118/1975 820.00 574.20 A-21-28 23AAC 05/2111968 In/18/1968 04/03/1969 03/06/1970 03/30/1971 58.59 58.17 58.20 58.18 58.20 385.00 545.70 WATER LEVEL, IN FEET BELOW LAND SURFACE LOCAL NUMBER A-21-28 24CCC 0210211972 58.30 01/29/1974 01/31/1975 01/30/1976 58.80 60.40 10/1111956 0811 9/1975 31.80 30.70 58.90 METHOD OF MEASUREMENT R T 57 Table 5. --Records of selected springs Principal aquiferi 112BLCF, basaltic rocks; 121BDHC, Bldahochi Formation; 120SDMR, Tertiary sedimentary rocks, undifferentiated; 211SDMR, Upper Cretaceous sedimentary rocks, undifferentiated; 231SNSL, Sonsela Sandstone Bed; 310KIBB, Kalbab Limestone. Local number: See figure 2 for description of location system. Use of water: H, domestici I, irrigationi P, public supplYi R, recreation; S, stock; U, unused. Discharge! C, current meter; E, estimated; F 1 flume; M, meter; R, reportedi V, volumetric. LOCAL NUMBER USE OF WATER A-08-26 A-08-26 A-08-26 A-08-26 A-08-26 05BCB 05CCA 09DAB 14DCD 25AAA H.S H.S A-08-26 A-09-25 A-09-25 A-09-25 A-09-25 26DCD 02DCB 20ADC 28DAA 29BAD S S S 020BB 04DCD 15DAC 20CAA A-09-26 28BDB S U S S S A-09-26 A-09-26 A-09-26 A-09-26 A-09-26 A-09-27 A-09-27 A-09-30 A-10-28 34BBB 18000 26BBB 21CDB 02CCA A-10-28 A-10-28 A-10-28 A-10-28 A-10-28 03AAD 06DAC 08DBC IICDA 12CBB A-10-28 A-10-29 A-II-25 A-II-27 A-II-27 21BAA 20AAD 20BCD OICAB 09DAA A-II-27 A-II-28 A-II-28 A-12-26 A-12-26 25CAC 04DBA 18BDD 10CCB 19ABA A-12-26 A-12-27 A-12-27 A-12-27 A-12-31 26DBB 14CBD2 21AAD 30ABD 16BBD A-I3-27 A-13-27 A-I3-27 A-13-29 A-I3-29 13A 13COC 32CDB 20C 33BCB A-14-26 10CDC A-20-27 26BCB A-20-27 29DBD S S H.S S AL nTUDE OF LAND SURF ACE (FEET) 8891 8900 9290 9400 9150 9150 7460 8107 8490 DISCHARGE (GALLONS PER MI~UTE) 2 V 2 V DATE DISCHARGE MEASURED 09/24/1974 09/24/1974 8.0 110 8.0 12.0 10.0 153 III 86 9.0 8.0 130 112BLCF 112BLCF 112BLCF 112BLCF 112BLCF 10.0 B.O 8.0 200 01/16/1975 112BLCF 112BLCF 112BLCF 112BLCF 211SDMR 12.0 15.0 17.0 14.0 15.0 01/15/1975 01/16/1975 01/15/1975 01/07/1975 01/07/1975 112BLCF 112BLCF 211SDMR 121BDHC 112BLCF 13.0 1212011974 112BLCF 120SDMR 121BDHC 112BLCF 112BLCF 0.1 11/19/1974 8 E 10 E 09/24/1974 1112011974 8 E 3 E 09/24/1974 12/24/1974 E 01/16/1975 7740 7800 8710 S S 8920 8050 7600 7180 I.S HOO H.S I.H 6080 S S 6295 6235 6100 6180 H.S U 5 S S S S 6320 6460 6390 6230 6260 6335 5930 6220 6150 I.R 6300 8 V 20 V 100 E 3 E 0.1 0.3 0.1 3 V 0.3 5 E 0.1 E 350 E 0.1 5 E 1120 C 01/1711975 01/06/1975 01/06/1975 01/16/1975 01/08/1975 01/0711975 01/15/1975 1210611951 6180 4 V 6020 6060 0.3 E 0.1 E 01/15/1975 01/07/1975 01/07/1975 S 6040 U 6350 2 V 0.1 03/20/1975 5700 5720 5960 5900 6040 67 F 50 E 10 M 5 R 29 5450 5730 5670 18 S S S I.S P P S S S S F I E 5 E SPECIFIC CONDUCTANCE (UMHOS/CM AT 25 0 C) 110 165 I V 112BLCF 112BLCF 112BLCF 112BLCF 112BLCF TEMPERATURE (DEGREES C) 8.0 8.0 8290 8350 8520 PRINCIPAL AQUIFER 112BLCF 112BLCF 112BLCF 112BLCF 112BLCF 112BLCF 112BLCF 112BLCF 112BLCF 112BLCF 140 111 188 532 250 500 244 230 320 350 190 424 400 440 15.0 13.5 172 267 1200 13.0 10.0 460 940 18.0 16.0 14.5 15.0 8.0 1450 1200 510 400 1957 121BDHC 121BDHC 112BLCF 121 BDHC 121BDHC 04/14/1976 1111811975 11/18/1975 310KIBB 1218DHC 121ADHC 16.0 3900 25.0 780 0211211975 02/06/1975 071 11946 SHEEP BUCKELEW QUAKIE PATCH PORTER FIREBOX MALLORY KITCHEN LITTLE GIANT MINERAL SAWMILL BURNT MILL ATASCACITA HORSESHOE SHERWOOD NEILSON 24 RANCH WILTBANK HALL HALL RANCH LAGUNA SALDA HIDDEN MUD STRADDLING 650 700 282 14.0 09/17/1975 FRANEY FIREMAN CAB UDALL DRAW SWINBORNE BEEHIVE 740 7.0 15.0 8.5 112BLCF 121BDHC 121BDHC 112BLCF 231SNSL 01/15/1975 NAME OF SPR ING 470 COTTONWOOD ORTEGA CONCHO MALPAIS ROMERO GALLEGOS BIG HOLLOW SCHUSTER MC INTOSH DAVIS STINKING SAL T SEPPS NAVAJO 58 Table 6. --Chemical analyses Local identifier: See figure 2 for description of well-numbering and location system. Agency analyzing sample (code number): 1028, U.S. Geological Survey; 9704, Arizona LOCAL !DENT1- FIER DATE OF SAMPLE TEMPERATURE (DEG C) OIBBCI 030BA 130BC 140AA 75-03-19 75-03-19 74-07-30 75-03-09 75-03-19 A-07-28 060BB2 A-08-29 02ABA A-08-29 03BBA 74-07-24 74-08-15 57-03-07 74-08-15 66-08-16 16.5 16.5 74-08-14 70-01-22 66-08-18 74-08-22 68-06-13 26.0 15.0 14.0 17 .0 26.0 A-05-30 A-05-30 A-05-30 A-05-30 A-08-29 040CC A-08-29 05AOB A-08-29 07ABO A-08-29 07ACO 18.0 SILICA, DISSOLVED (MG/L AS SI02) CALCIUM DISSOLVED (MG/L AS CAl MAGNESIUM, DISSOLVED (MG/L AS MG) SODIUM, DISSOLVED (MG/L AS NA) 7.9 36 46 38 42 1.8 19 27 19 24 48 42 32 34 41 23 6.0 26 40 42 43 26 19 19 29 74 19 390 60 472 842 61 14 22 23 26 468 844 236 268 307 314 21 A-08-29 16BOC A-08-29 16CBC 7'4-08-15 66-10-09 74-08-13 74-11-01 66-08-16 16.0 20.0 21.0 15.0 22.0 23 12 10 II 8.0 47 3.2 4.2 7.8 3.2 27 3.9 1.6 2.5 1.4 11 14 30 4.0 4.0 4.7 1.7 44 1.0 1.0 2.0 A-08-31 31ADD A-08-31 34ABB 68-04-04 69-11-05 74-08-13 74-12-19 74-12-19 13 16 70 50 56 57 8.1 17 19 19 20 26 40 36 28 28 10 19 IS 13 18 70 64 37 60 64 34 35 48 28 27 13 13 15 60 50 27 26 8.6 A-09-27 A-09-29 A-09-29 A-09-29 OIOOB 28000 32BOCI 32BDC2 A-09-29 32BOO A-09-29 33BOA A-09-29 33CBA 74-06-24 66-08-17 69-04-03 74-06-24 66-08-17 A-09-30 14CCB A-09-31 IOBCA A-IO-25 15DAC 69-04-03 74-06-24 75-03-20 33-12-22 74-07-30 A-IO-25 A-IO-25 A-IO-25 A-IO-25 A-IO-27 18ABO 20BCC 22BBCl 22CAC 170CB 57-06-13 57-06-13 34-01-04 57-06-13 74-11-21 A-IO-28 A-IO-28 A-10-29 A-IO-29 A-IO-30 IIBAA 2beCB 15BAB 33DDC 08AAA 75-01-16 74-12-20 75-01-16 57-03-07 75-03-19 A-IO-31 29BBD A-II-24 08AAC A-09-29 33CBA A-II-24 1800A A-II-24 360AB A-II-25 05AAA A-II-25 080CC A-II-25 18COO A-II-25 180CC A-II-25 23CAB A-II-25 29BOB A-II-26 17ADC IS 6.0 24 16.0 8.3 16.0 7.9 23 25 13.0 18.0 25 14.0 22 15.0 29 19 17 14 28 .3 9.9 1.1 6.5 2.7 281 368 244 1.5 .1 .1 8.0 49 40 54 3.2 5.7 55 2.4 200 170 182 4.8 5.6 6.7 206 396 370 467 187 218 180 179 190 110 20 6.6 1.2 II 2.3 26 22 37 1.6 .9 33 2.5 8.2 2.6 26 1.3 55 41 8.7 100 27 38 9.5 4.9 41 9.3 200 1.3 1.9 1.3 435 110 453 .7 74-12-17 57-06-12 74-12-19 74-12-19 57-06-13 19.0 18.0 7.2 62 20 27 41 49 57-06-11 66-08-17 57-06-11 46-07-05 57-06-12 16.0 18.0 12.0 13.0 16.0 21 IS 19 20 58-08-21 59-08-14 66-11-17 75-01-15 75-01-15 14.0 14 65 18 14.0 12.0 14 12 31 71 62 20 15 21 13 12 13 5.2 4.4 260 260 268 257 106 25 35 8.0 20 19 20 12 13 15 12 11 9.8 5.0 5.9 4.9 288 131 141 150 157 13 30 28 8.1 16 130 20 46 42 13 22 46 60 A-II-26 29BBB A-II-26 31DDC A-II-27 A-II-27 A-II-27 A-II-28 A-II-28 74-12-20 74-12-20 75-01-08 75-03-19 55-07-15 52 10 247 29 270 15 45 25 46 21 635 247 235 226 278 6.1 3.9 18.0 13 9.0 2.3 22 14.0 11.0 12.0 15.0 17.0 99 248 130 13 18 110 13 4.3 4.2 14 6 11 27 IS 4 35 338 78 8.6 8.8 o 24 228 232 237 192 128 10.0 33 o o o 108 324 275 286 306 192 97 134 112 124 19 9.0 10 CARBONATE (MG/L AS C03) 230 304 208 236 312 8.6 6.7 16 320 444 350 462 412 23 55 46 II 57-06-11 46-08-14 75-01-14 75-01-14 74-11-22 23AAA 23CCC 34CDA 05DBC 09ACC2 392 29 12.0 14.5 16.0 16.0 145 290 338 296 320 16 26 33 13 14 13 15 74-12-20 66-07-15 74-08-15 69-05-17 74-08-15 .7 .5 .5 20.0 10.0 95 189 241 166 166 27 60 39 63 63 49 46 40 24 23.0 1.6 1.7 1.0 1.7 1.7 3.4 2.1 9.7 21 29 A-08-29 IIBBC A-0-e-29 16BAA BICARBONATE (MG/L AS HC03) 14 9.1 37 4.0 4.0 27.0 15.0 A-08-29 IIAOA SODIUM, POTASSIUM DISSOLVED (MG/L AS NA) 14 23 27 22 22 68-06-14 66-08-18 69-11-05 74-08-14 74-09-25 A-08-29 07BCB A-08-29 09BOO POTASSIUM, DISSOLVED (MG/L AS K) 113 110 364 208 189 414 U2 2n 129 369 636 o o o o o o o o 13 o o 59 of water from selected well s state Health Laboratory; 9801, private Association; 9902, University of Arizona. DATE OF SAMPLE 75-03-19 75-03-19 74-07-30 75-03-09 75-03-19 74-07-24 74-08-15 57-03-07 74-08-15 66-08-16 74-08-14 70-01-22 66-08-18 74-08-22 68-06-13 SULF ATE DISSOLVED (MG/L AS S04) 22 10 15 6.0 6.0 8.2 13 27 9.3 18 14 CHLORIDE, DISSOLVED (MG/L AS CL) FLUORIDE, DISSOLVED (MG/L AS F) 5.2 5.0 7.& 2.6 2.6 .2 .4 .2 .4 .4 5.6 5.7 17 7.7 17 .2 .9 .8 .5 16 16 .6 .7 .& SOLIDS, SUM OF CONSTITUENTS, DISSOLVED (MG/L) SOLIDS, RESIDUE AT 180 DEG. C DISSOLVED (MG/Ll 135 134 208 248 173 173 205 25& 183 183 160 290 378 274 318 292 372 173 282 262 283 374 HARDNESS (MG/L AS CAC03) laboratory; HARDNESS, NONCARBONATE (MG/L CAC03) 49 54 31 80 39 91 22 130 12 12 27 170 226 170 204 o o o o o 13 .1 252 770 530 2.7 2660 1220 530 68-06-14 66-08-18 69-11-05 74-08-14 74-09-25 770 8.0 16 530 19 7.3 .7 2660 227 340 292 307 539 12 2.8 .1 .8 .9 1230 10 8.2 74-08-15 66-10-09 74-08-13 74-11-01 66-08-16 42 41 44 32 39 68-04-04 69-11-05 74-08-13 74-12-19 74-12-19 42 38 74-12-20 6&-07-15 74-08-15 69-05-17 74-08-15 21 14 93 II II 39 12 9.0 9.0 10 10 19 4.5 3.2 20 13 8.2 17 74-0&-24 66-08-17 &9-04-03 74-06-24 66-08-17 13 17 9.0 8.0 16 69-04-03 74-06-24 75-03-20 33-12-22 74-07-30 12 9.0 20 12 57-0&-13 57-06-13 34-01-04 57-06-13 74-11-21 9.7 3.5 21 17 18 19 7.0 10 4.0 5.0 11 8.0 .8 2.2 2.2 2.2 2.3 384 525 539 470 468 178 368 504 482 535 501 278 241 505 280 240 129 321 278 427 124 275 335 323 .1 .3 .1 .3 .6 .9 .5 .7 1.0 290 240 308 .7 .7 .6 325 .3 2&4 274 206 156 4.9 16 3.2 4.0 23 3.0 .4 .1 118 175 3.8 .3 134 .4 .1 391 17 .8 .7 413 134 1210 378 394 1.6 1000 998 .7 .3 437 304 441 .4 .0 133 125 79 54 74-12-17 57-06-12 74-12-19 74-12-19 57-06-13 280 24 88 60 34 93 57-06-11 6&-08-17 57-06-11 46-07-05 57-06-12 11 12 58-08-21 59-08-14 6&-11-17 75-01-15 75-01-15 30 16 17 1.0 286 34 20 15 16 .7 .6 .2 309 291 169 6.5 28 6.0 4.0 4.0 127 1230 412 286 78 .0 36 5.4 29 1.1 1.3 30 51 68 283 170 5.0 57-06-11 46-08-14 75-01-14 75-01-14 74-11-22 4.6 4.5 3.8 4.0 5.9 3.2 3.5 .6 .2 .1 .3 157 1&7 145 140 74-12-20 74-12-20 75-01-08 75-03-19 55-07-15 220 5.3 47 200 521 140 6.6 60 140 310 2.2 .2 .2 1.9 3.1 895 167 317 801 1770 904 159 339 789 156 139 .9 2.4 .6 .3 1.5 30 40 34 95 91 95 1.2 1.8 1.& 21 14 21 21 21 19 20 21 .7 24 .6 22 26 310 93 550 226 180 270 322 290 230 299 42 220 318 480 277 277 8.1 237 477 562 467 538 8.0 7.7 7.9 7.5 494 585 410 610 3970 7.8 3980 355 526 512 510 6.7 7.3 633 826 700 7.7 7.6 6.7 7.8 8.0 7.8 8.7 8.5 784 8.5 833 667 827 474 387 8.4 7.8 3.0 400 2.1 445 454 7.8 7.3 2.3 2.2 385 455 7.8 7.4 7.7 8.1 7.7 500 417 439 7.9 .4 480 7.9 7.0 32 .7 350 165 198 7.2 o 1.8 24 .9 3 15 Users· AGENCY ANALYlING SAMPLE (CODE NUMBER) 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 9801 1028 1028 1028 1028 1028 9704 1028 1028 1028 1028 1028 1028 1028 9704 9704 1028 1028 1028 1028 1028 1028 9801 1028 9704 1028 9704 9704 1028 9704 9704 1028 1028 1028 o o 19 .5 213 1028 1028 1028 1028 1028 22 3 180 44 1.0 .4 3.7 46 2.5 670 260 1750 562 690 1028 1028 1028 1028 1028 67 7.1 25 17 1.2 .6 7.2 31 6 o o o 120 95 40 71 83 86 o o 635 336 272 117 238 240 238 240 100 25 27 18 30 287 51 o 99 100 110 500 100 210 440 866 PH (UNITS) 8.1 o o o o Water .8 .7 1.1 2.4 o SPECIFIC CONDUCTANCE (MICROMHOS) Valley 188 561 480 542 555 1.3 47 River 793 73 244 200 220 220 130 .1 14 1& 6.3 590 27 1.4 97 120 62 141 98 81 22 75-01-16 74-12-20 75-01-1& 57-03-07 75-03-19 4.0 5 160 144 7.5 7.9 7.9 94 140 142 180 138 110 263 1.5 20 108 178 152 124 142 250 318 .8 10 10 13 8.3 230 24 17 30 14 1.7 4.7 1.5 18 o o o o o o o o o SODIUM ADSORPTION RATIO 35 14 16 2.6 2.6 2.7 1.4 .3 204 190 170 Salt 33 182 186 274 285 79 23 210 16 10 3.0 SODIUM PERCENT 9802, 1&0 o 100 130 344 17 1540 790 720 500 607 202 208 1430 650 690 25 18 .4 10 21 .3 .6 257 20 18 15 .5 .5 .4 550 225 248 190 257 36 21 16 2.5 .6 .5 2.3 4.4 1450 250 480 1300 2&10 35 7.2 7.2 7.2 7.2 7.2 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 492 506 522 12 43 7.7 499 7.3 7.9 8.1 7.6 8.1 8.1 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 60 Table 6. --Chemical analyses of water LOCAL IOENTlFIER DATE OF SAMPLE TEMPERATURE (DEG C) CALCIUM DISSOLVED (MG/L AS CAl SODIUM, DISSOLVED (MG/L AS NA) POT ASSlUM, OISSOLVED (MG/L AS K) 14 13 9.5 12 II 190 160 110 250 200 48 59 34 66 90 200 280 100 430 460 16 IS 13 32 42 523 296 339 473 363 320 320 260 320 59 56 75 75 430 410 450 390 29 8.0 37 35 490 741 740 530 885 190 200 210 50 27 69 64 64 16 10 380 400 370 18 36 37 38 4.1 09BDA 090AO 21ABA 070BB 10ACA 75-01-08 75-01-17 74-12-19 75-01-16 75-03-19 17.0 A-II-29 23000 A-II-29 27ACA 14.5 22.5 A-II-30 03CAD A-II-30 20ACO 56-12-14 75-01-16 75-05-13 75-05-20 75-03-19 19.0 IS 17 13 10 35CCA 17ACO 31CAO I1CDA 14DCC 75-03-19 75-03-19 75-03-19 74-10-14 57-06-12 15.0 13.0 16.0 16.0 18.0 8.1 7.6 3.9 14 17 A-II-28 A-II-28 A-II-28 A-II-29 A-II-29 A-II-30 A-II-31 A-II-31 A-12-24 A-12-24 A-12-25 140BO A-12-25 18CCCI A-12-25 18CCC2 A-12-25 A-12-25 A-12-26 A-12-26 A-12-26 28CDC 34CA8 02BDA 04BBC 130CO A-12-26 15BCC A-12-26 18CBB A-12-26 18DCC2 A-12-27 19BCO A-12-27 26BABI A-12-27 35CDA A-12-27 35CDB A-12-28 07COB A-12-28 07DBD A-12-28 12BOA A-12-28 17CCC A-12-28 18BAA 75-04-22 56-08-22 75-01-21 34-01-04 75-01-21 34-01-04 75-01-22 76-04-15 75-01-22 57-04-24 15 BICARBONATE (MG/L AS HC03) 113 176 143 532 164 14 28 13 II 17 .0 16.0 17 16 27 74 48 12 83 20 16 323 11 2.9 16.0 93 44 31 99 41 25 16 32 97 22 3.6 4.1 4.8 350 287 231 164 371 3.1 200 3.3 226 5.0 3.9 10.0 13.0 17 .0 15.0 17 .0 15.0 57-05-23 69-06-26 75-01-07 68-11-27 75-01-07 16.0 16.5 12.0 19.0 17.0 69-06-26 75-01-07 56-03-21 66-11-17 75-09-10 17.0 14.0 18.0 18.0 17.0 14.0 27 26 17 6.4 33 4.7 2.6 86 29 IS 19 14 48 37 9.4 15 20 34 20 20 19 83 82 IS 30 29 47 60 55 39 246 348 310 27 88 47 61 27 360 25 190 49 380 28 66 21 18 10 57 320 34 164 156 186 466 8.6 25 18 15 12 8.8 12.0 13.0 14.5 16 12 75-02-26 56-12-06 75-03-18 75-03-20 75-09-11 13.5 13.0 15.0 14 2.7 222 260 329 IS 4.6 346 384 206 697 758 1020 723 266 517 340 6.2 1.7 46 24 260 II 8.0 290 62 430 31 587 510 780 16.5 7.6 260 64 460 23 776 76-04-15 76-09-09 75-01-07 75-03-18 75-03-20 18.0 17 .5 15.0 9.4 8.8 12 17 3.0 310 240 280 190 190 68 67 61 68 100 360 470 360 560 400 26 25 26 18 38 764 712 741 353 327 56-12-11 75-03-20 75-03-21 75-03-20 75-05-20 15.5 15.5 II 9.8 6.8 1.8 370 200 220 220 96 88 100 110 370 480 270 540 31 41 38 48 420 772 387 489 541 75-03-20 75-05-20 75-09-12 76-04-13 76-09-08 17.0 A-13-24 22BBO 7.9 12 12 12 300 60 62 63 B3 19 20 19 260 18 17 18 34 2.7 2.9 2.8 821 192 196 184 A-13-25 A-13-26 A-I3-27 A-13-27 A-13-27 04CCA 06DCB 09CAD 15BDA 15BDD 56-08-20 74-06-00 75-02-25 75-02-22 74-05-00 17 .0 16.5 13 251 490 A-13-27 A-I3-27 A-I3-27 A-13-27 A-I3-27 25BBD 25DCC 26AAC 27BBC 31ABC 75-02-06 75-02-07 75-02-07 59-05-04 75-01-16 14.0 15.5 14 19 II 423 405 510 501 238 A-I3-28 A-I3-28 A-I3-28 A-I3-28 A-13-28 06000 12CAC 17ACA 180AA 19DCC 75-02-14 74-05-00 75-02-06 75-09-17 75-03-21 16.0 21.0 A-12-28 18DBC A-12-28 18DDC2 A-12-28 19BAO A-12-28 30DBA A-12-28N02CBD A-12-29 10ACA A-12-29 A-12-29 A-12-29 A-12-30 A-12-30 31BDCI 31BDC2 35BAB 13ACA 27ABA A-12-31 080BC 16.0 18.0 18.0 143 6.3 9.0 110 227 45 51 150 197 8.6 8.4 7.3 68 100 44 238 29 18 35 II 59 26 280 260 260 18.0 18.0 16.0 33 9.4 79 19 8.4 11 51 130 11 232 67 3.7 CARBONATE (MG/L AS C03) 396 389 411 185 119 3.4 75-01-16 57-05-02 75-01-15 75-01-22 68-06-09 75-03-21 75-01-22 75-03-20 75-02-26 56-12-06 SODIUM. POT ASSlUM DISSOLVED (MG/L AS NA) MAGNESlUM, DISSOLVED (MG/L AS MG) SILICA, DISSOLVED (MG/L AS SI02) 18 750 14 814 21 33 8.3 300 430 250 12 18 4.6 473 766 463 82 from selected DATE OF SAMPLE 61 wells~-Continued SULFATE DISSOLVED (MG/L AS S04) FLUORIDE, DISSOLVED (MG/L AS F) SOLIDS, SUM OF CONSTITUENTS, DISSOLVED (MG/L) 220 350 120 520 550 2.4 2.6 2.4 .1 2.3 1320 1580 726 2340 2430 CHLORIDE, DISSOLVED (MG/L AS CL) SOLIDS, RESIDUE AT 180 DEG. C DISSOLVED (MG/Ll SODIUM ADSORPTION RATIO SPECIFIC CONDUCTANCE (MICROMHOS) 39 48 34 50 52 3.4 4.8 2.1 6.3 6.8 2000 2420 1300 3500 3700 7.1 8.2 7.9 7.6 1028 1028 1028 1028 1028 430 420 520 380 46 46 49 42 5.8 5.6 6.3 5.1 875 3500 3400 3560 3800 8.4 7.5 1028 1028 1028 1028 1028 7&0 760 790 190 108 430 440 450 39 11 51 52 49 17 23 6.0 6.3 5.7 .6 .6 3400 3300 3000 460 269 8.0 7.2 120 150 120 525 200 31 1.1 HARDNESS (MG/L AS CAC03) HARDNESS, NONCARBONATE (MG/L CAC03) PE~CENT 1270 1660 712 2260 2450 670 640 410 900 870 240 400 140 510 570 370 1000 1000 960 1100 75-01-08 75-01-17 H-12-19 75-01-16 75-03-19 370 550 170 800 890 56-12-14 75-01-16 75-05-13 75-05-20 75-03-19 720 820 590 16 500 430 520 460 1.0 2.7 2.3 2.1 2460 2330 2420 2320 2260 2300 2440 2290 75-03-19 75-03-19 75-03-19 74-10-14 57-06-12 610 680 680 66 28 460 490 460 17 9.5 1.8 2.0 1.8 .1 .4 1950 2070 2030 2110 2140 2020 75-04-22 5&-08-22 75-01-21 34-01-04 75-01-21 34 9.3 8.5 9.0 260 8.5 .2 169 170 .2 1.2 .2 182 1416 268 174 .2 .5 371 458 207 638 280 180 150 380 HO 27 383 81 277 167 27& 34-01-04 75-01-22 76-04-15 75-01-22 57-04-24 160 45 51 32 250 48 100 19 100 1.2 .2 885 391 470 225 75-01-16 57-05-02 75-01-15 75-01-22 68-06-09 38 81 3.1 535 549 25 .2 188 319 284 181 354 74 180 57-05-23 69-06-26 75-01-07 68-11-27 75-01-07 69-06-26 75-01-07 56-03-21 66-11-17 75-09-10 75-03-21 75-01-22 75-03-20 75-02-26 56-12-06 75-02-26 56-12-06 75-03-18 75-03-20 75-09-11 8.8 100 51 5.0 18 31 1240 19 108 97 II 67 69 2.7 248 550 521 234 511 .4 249 356 296 89 68 10 .6 6.1 .3 442 1028 1028 1028 1028 1028 20 53 24 .8 3.1 .8 673 800 394 1090 1028 1028 1028 1028 1028 350 43 o 14 76 94 o 54 24 725 343 110 335 320 o 48 2.0 120 54 26 1.4 1.3 1690 680 83 54 6.4 2900 442 964 457 240 94 130 21 974 33 88 1.6 14 710 1500 1670 71 7.7 6.0 1350 1860 3500 1.6 7.5 48 52 6.6 3500 6.5 42 53 4.8 6.9 5.1 8.9 5.8 2500 3300 3000 8000 3500 4.4 7.1 3.8 949 3700 3700 2870 4120 4.1 908 873 2130 210 91 980 o 2290 340 600 470 2.5 2270 1970 910 280 2.2 2.3 2160 2220 2090 2670 2270 2240 2230 2060 2760 2340 1100 880 950 150 890 2.8 .4 2.0 1.8 2640 2420 1870 2670 2680 2450 1950 2670 200 1300 860 960 1000 690 540 560 560 1990 311 322 321 210 218 2.3 3.3 254 971 1490 1235 440 490 270 486 49 110 33 295 1.9 1.3 40 39 3.0 2.3 .9 600 440 3.2 370 94 240 92 1.9 310 305 75-02-06 75-02-07 75-02-07 59-05-04 75-01-16 75-02-14 74-05-00 75-02-06 75-09-17 75-03-21 140 3.4 3.8 420 71 76 85 1100 230 240 161 44 1050 460 718 250 210 240 44 61 48 o 1950 317 337 325 15 480 o 430 290 340 470 620 2.5 .3 .4 .2 310 17 22 18 8.3 8.4 1028 1028 1028 1028 1028 1830 2.1 590 87 89 97 1028 1028 1028 1028 1028 4.9 69 56 470 45 450 560 360 660 7.0 6.7 6.2 43 190 930 850 630 820 1.6 2010 o o 37 53 37 53 7.4 33 14 13 14 3.4 41 3.0 .5 .5 .5 3000 3000 500 500 475 365 240 390 160 835 180 3.1 o 70 62 58 77 7.8 5.7 9.1 44 2.2 1090 1220 891 1580 405 1030 1230 891 2320 2145 1120 1720 716 2430 270 85 1110 1700 782 210 460 74 406 77 o 424 o 66 87 20 8.9 8.7 12 1610 1800 1400 2350 654 3500 3300 1700 2400 1200 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 7.9 7.7 6.8 7.4 7.3 390 1600 2500 1900 1028 1028 1028 1028 1028 1028 1028 1028 9704 1028 8.1 .8 4.8 610 56-12-11 75-03-20 75-03-21 75-03-20 75-05-20 1.1 1.4 22 44 2.5 5.3 2.7 5210 480 400 870 850 7.4 8.8 40 405 439 190 15 57 110 2.4 2.3 .6 944 375 282 386 495 210 97& 1060 1000 120 280 410 550 380 220 470 1.7 177 2.4 500 48 19 18 540 540 3040 3240 3200 306 1028 1028 1028 1028 1028 16 310 2.4 7.4 22 2.3 .3 1.7 60 390 405 420 PH (UNITS) o 6 315 2010 2240 2430 21 600 510 600 1400 900 56-08-20 74-06-00 75-02-25 75-02-22 74-05-00 .5 2.8 578 670 740 7&-04-15 76-09-09 75-01-07 75-03-18 75-03-20 75-03-20 75-05-20 75-09-12 76-04-13 76-09-08 .4 .3 o SODIUM AGENCY ANALYZING SAMPLE (CODE NUMBER) 8.0 7.6 7.7 7.6 7.1 8.2 7.5 7.8 6.6 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 9802 1028 9801 9802 1028 1028 1028 1028 1028 1028 9802 1028 1028 1028 62 Table 6. --Chemical analyses of water LOCAL IOENTlFIER DATE OF SAMPLE TEMPERATURE (OEG C) CALCIUM 015SOLVED (MG/L AS CAl MAGNESlUM, 015SOLVED (MG/L AS MG) 21 8.3 7.8 II 9.3 75 93 230 312 310 33 26 65 108 90 10 7.0 18 8.7 30 270 240 490 140 52 1.7 12 12 4.2 330 240 340 14 10 7.6 7.9 7.3 SILICA, 015SOLVED (MG/L AS 5102) SODIUM, 015SOLVED (MG/L AS NA) POT ASSlUM, DISSOLVED (MG/L AS K) 320 420 250 8.1 16 31 320 29 51 60 200 59 30 240 940 740 28 16 17 38 92 100 94 200 360 400 370 27 35 33 29 171 180 160 66 66 52 39 62 22 22 93 240 32 17 27 5.8 5.1 10 10 9.4 9.5 3.8 54 60 51 77 70 20 24 22 25 24 25 21 520 41 3.6 3.3 6.3 8.1 17.5 17 .0 17 .0 17.0 16.0 10 9.4 !3 13 63 66 170 99 22 23 28 34 44 37 4.9 4.9 16.5 16.5 18.0 18.0 II 330 270 39 38 39 86 96 16 16 14 550 600 A-14-26 19S0D 75-03-17 75-03-17 66-08-04 66-08-17 75-03-05 A-14-26 21BCC A-14-26 27CAC A-14-26 27DCS A-14-26 34ACB A-I4-26E 180CC 57-05-23 57-05-23 57-05-23 57-05-23 66-08-04 18.5 18.0 16.0 16.0 18.0 A-14-26EI80DD A-14-27 OIDCD A-14-27 08DDA A-I4-27 15BDC A-I4-27 28DCD 66-08-17 75-07-02 75-07-02 75-07-02 75-02-24 18.0 17.0 18.0 15.0 A-14-27 30BAC A-14-27 35SDC 75-03-17 75-02-25 75-09-12 76-04-14 76-09-09 16.5 A-14-28 13DBD 57-01-08 75-08-12 46-06-20 75-03-19 75-09-17 13.5 20ABD 200BC 26ACD 27BAD 75-02-25 75-02-06 75-03-18 55-05-26 75-03-18 A-I3-28 27S0C 66-11-17 75-02-25 75-03-18 75-03-06 46-06-11 14.0 13.0 75-02-07 75-03-20 75-03-20 76-04-13 76-09-09 10.0 55-09-17 75-11-20 75-03-20 66-08-17 66-08-09 21.0 A-14-25 OIABO A-14-25 14CCO 56-08-10 76-04-13 76-09-08 75-05-12 75-03-05 18.0 18.5 18.0 16.5 A-14-25EI2COOI A-14-25EI3SBC A-14-25EI30AO 75-09-11 76-04-14 66-11-18 56-10-14 57-05-21 A-I3-28 A-I3-28 A-I3-28 A-I3-28 A-13-28 28DAO A-13-28 29AAO A-I3-28 29SCD A-I3-29 3200C A-13-29 35AAA A-I3-30 A-I3-30 A-13-31 A-14-24 A-14-24 03SCDI 05DCA 30DCO 04DOA 10BBS A-14-24 12CAC A-14-24 29DCC A-14-26 02000 A-14-26 03CBC A-14-26 19ADA A-14-28 20CBA A-I4-29 33SBS A-14-29 35CDCI A-I4-30 07ACD A-14-30 21ADS 76-04-14 76-09-09 75-05-21 55-08-30 75-05-21 15.0 16.0 15.0 I~.O 17.0 17.5 18.5 17 .0 17.0 17.0 18.0 33 5.8 6.4 18 15 25 162 641 610 434 300 0 0 0 0 115 8.5 17 12 13 7.6 38 110 290 600 150 15 22 80 230 76 44 1100 460 1200 260 13 220 63 190 22 549 160 64 110 43 17 29 290 350 310 18 10 14 514 409 458 94 15 49 46 610 260 170 25 21 8.9 7.9 9.0 4.8 42 45 28 170 170 320 21 21 17 9.7 120 29 210 13 II II 8.7 150 410 64 41 46 18 100 660 45 12 8.2 4.4 56 17 40 3.9 A-15-30 33DDS A-15-31 17ADA A-16-24 31CCC 33CDD 15BAC 20BBC 18ADB 71-12-22 72-03-23 75-09-17 75-09-17 75-08-13 15.5 17.5 15.5 689 662 192 188 161 15 200 210 65 18.5 15.5 15.0 16.0 102 103 178 199 172 160 140 42 10 10 8.3 75-07-31 76-04-13 75-05-21 75-05-21 57-05-14 148 139 156 266 219 0 0 0 0 0 19.0 19.5 15.5 20.0 16.5 16.5 17 .0 16.0 34 190 190 495 160 199 10 9.9 56-11-14 57-01-09 75-07-02 75-07-02 57-01-08 510 491 480 237 552 590 945 692 165 171 26 24 6.8 5.5 II CARBONATE (MG/L AS C03) 433 579 680 772 750 98 78 10 45 BICARBONATE (MG/L AS HC03) 232 827 560 873 225 22.0 19.0 A-15-25 28SBC A-15-28 13COD A-16-24 A-16-25 A-16-25 A-16-28 391 190 54 220 200 18.0 15.5 15.5 16.5 A-15-30 21ABA 8.0 9.6 258 21 75-05-21 72-03-23 71-12-17 56-09-12 72-03-23 A-15-28 29BDC A-15-28 34DDC 13 324 15.5 26DDS 13DAC 29CAD 33SBD A-14-30 A-15-24 A-15-24 A-15-24 II SODIUM. POTASSlUM 015SOLVED (MG/L AS NA) 750 21 16 140 55 25 12 200 280 6.0 2.7 12 12 13 25 5.5 150 150 160 45 118 34 29 38 12 28 220 220 410 30 12 II II 1.6 8.2 II 10 10 19 110 150 28 5.7 15 27 23 3.3 .9 3.0 200 330 790 370 130 660 653 534 610 597 541 159 156 155 160 343 513 441 244 139 208 13 10 1.8 1.2 1.5 334 334 298 659 654 430 425 515 247 175 168 264 519 771 193 63 from selected wells--Continued CHLORIDE, DISSOLVED (MG/L AS CLl FLUORIDE, DISSOLVED (MG/L AS F) SOLIDS, SUM OF CONSTITUENTS, DISSOLVED (MG/L) SOLIDS, RESIDUE AT 180 DEG. C DISSOLVED (MG/Ll 1310 1620 1480 SODIUM ADSORPTION RATIO SPECIFIC CONDUCTANCE (MICROMHOS) HARDNESS (MG/L AS CAC03) HARDNESS, NONCARBONATE (MG/L CAC03) SODIUM PERCENT 320 340 840 122<1' 1100 0 0 280 590 530 68 72 38 37 37 7.7 9.9 3.8 4.0 4.1 1600 2500 2600 3300 3400 7.6 7.7 2600 2600 3500 4350 1880 7.1 7.1 AGENCY ANALYZING SAMPLE (CODE NUMBER) DATE OF SAMPLE SULFATE DISSOLVED (MG/L AS S04) 75-02-25 75-02-06 75-03-18 55-05-26 75-03-18 500 540 440 606 610 96 180 280 465 450 1.9 4.4 1.9 2.3 1.2 1290 1570 1640 2210 2190 66-11-17 75-02-25 75-03-18 75-03-06 46-06-11 504 430 1600 1000 479 362 350 1500 630 78 3.2 3.1 2.2 6.1 2.3 1720 1600 5000 2740 1380 1690 5180 2900 900 850 2000 590 253 482 440 1700 400 0 37 50 72 3.6 9.0 13 75-02-07 75-03-20 75-03-20 76-04-13 76-09-09 51 640 680 640 290 510 500 500 1.2 1.7 1.7 2.2 728 2390 2240 2430 743 2380 2380 2290 170 1200 1000 1200 0 520 550 520 68 39 45 39 6.7 4.5 5.5 4.6 1680 1380 3800 2500 3400 55-09-17 75-11-20 75-03-20 66-08-17 66-08-09 274 280 400 132 127 52 60 180 36 37 4.0 3.3 2.2 .2 .0 955 952 1420 385 380 640 610 650 255 253 157 160 87 122 121 25 24 43 21 21 1.7 1.6 4.1 .9 .9 1450 1240 1800 618 616 6.7 56-08-10 76-04-13 76-09-08 75-05-12 75-03-05 97 120 100 180 120 47 44 25 750 51 .8 .4 .3 .6 .5 336 356 309 1700 427 216 250 220 300 270 95 130 90 77 94 26 18 17 79 24 1.0 .7 .6 13 1.1 572 600 520 3000 732 7.2 1028 1028 1028 1028 1028 75-09-11 76-04-14 66-11-18 56-10-14 57-05-21 110 110 412 170 51 46 325 170 200 .5 .4 .6 .6 393 395 1260 643 397 417 250 260 540 390 510 100 96 399 260 390 27 23 1.2 1.0 600 690 1960 1160 1460 7.5 1028 1028 1028 1028 1028 75-03-17 75-03-17 66-08-04 66-08-17 75-03-05 760 660 50 52 59 770 750 125 124 52 .8 1.9 .5 .5 .5 2870 2730 427 349 304 2850 2600 1200 1100 164 161 160 610 530 6 7 23 50 54 57-05-23 57-05-23 57-05-23 57-05-23 66-08-04 52 120 39 20 18 143 160 180 150 140 168 6 26 0 8 5 66-08-17 75-07-02 75-07-02 75-07-02 75-02-24 54 420 670 1700 550 42 1400 680 2200 290 .5 1.1 1.6 1.1 2.4 3590 2600 6330 1640 158 370 1100 2400 690 25 0 550 2100 440 37 87 48 51 44 75-03-17 75-02-25 75-09-12 76-04-14 76-09-09 490 230 2.1 1500 1470 810 360 420 400 400 270 170 210 1.6 1.9 1.8 1470 1230 1320 1370 1250 1320 580 230 390 160 0 18 1300 819 400 330 440 430 510 300 160 .4 3.6 2.2 3.0 2820 2300 1590 1260 2920 785 860 196 750 690 512 590 0 210 150 150 160 170 92 110 3.0 3.3 4.9 1220 1250 1180 1220 1190 1110 4.2 1060 950 670 710 280 400 420 70 1500 54 54 53 3.2 .6 .3 904 3070 401 925 .4 370 57-01-08 75-08-12 46-06-20 75-03-18 75-09-17 76-04-14 76-09-09 75-05-21 55-08-30 75-05-21 300 310 300 75-05-21 72-03-23 71-12-17 56-09-12 72-03-23 250 360 130 56-11-14 57-01-09 75-07-02 75-07-02 57-01-08 270 110 420 170 335 76 74 300 835 2150 929 1310 412 321 1750 429 312 465 288 3390 2510 6180 1510 1450 994 .3 .8 1100 957 1200 970 1190 1200 1580 265 75-07 -31 76-04-13 75-05-21 75-05-21 57-05-14 270 260 420 16 211 260 270 400 8.8 350 2.3 2.7 2.0 .5 1.4 1170 1160 1710 262 1010 7\-12-22 72-03-23 75-09-17 75-09-17 75-08-13 190 350 300 110 22 360 430 760 65 85 1.6 2.6 1.6 1.6 .3 993 1440 2160 947 415 2060 934 424 1.7 7.1 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 7.5 7.4 7.8 7.4 1028 1028 1028 1028 1028 790 504 1010 368 828 8.1 7.4 7.8 7.5 7.9 1028 1028 1028 1028 1028 1.5 25 6.2 11 4.3 487 6000 4480 8800 2200 7.7 7.7 6.9 6.9 8.1 1028 1028 1028 1028 1028 33 2.9 51 76 62 5.3 10 6.8 2250 2100 2100 1800 2000 6.5 1028 1028 1028 1028 1028 60 9.0 42 34 4.1 2.8 130 170 0 0 0 35 33 70 2.9 2.8 8.4 51 4.5 540 1200 230 225 210 100 1100 110 98 79 28 54 29 1.9 8.2 1.3 29 1.2 256 568 450 190 139 0 148 91 0 25 49 76 4.1 8.9 510 490 560 160 410 160 150 130 0 266 47 49 61 29 52 390 470 84 18 50 250 250 0 0 0 52 60 95 98 85 II .3 1.6 4500 4800 1028 1028 1028 1028 1028 8.2 7.8 38 7.0 8.0 PH (UNITS) 774 510 3980 3900 3550 2400 1850 7.4 7.5 6.1 1028 1028 1028 1028 1028 2000 1900 1840 1580 1570 8.0 7.6 7.4 1028 1028 1028 1028 1028 1410 5470 674 610 609 7.0 7.5 7.5 7.3 7.7 1028 1028 1028 1028 1028 3430 1720 1620 1550 3570 7.5 7.2 7.1 7.8 7.4 1028 1028 1028 1028 1028 4.2 4.3 7.6 1.0 4.5 1980 1400 2630 440 1730 7.5 7.7 7.4 7.1 1028 1028 1028 1028 1028 4.4 6.6 38 38 8.0 1770 2390 3200 1600 670 7.7 7.4 7.1 7.7 8.0 1028 1028 1028 1028 1028 64 Table 6. --Chemical analyses of water LOCAL IDENTlFIER DATE OF SAMPLE A-16-28 A-16-29 A-16-30 A-16-30 A-16-30 35DAO 19ADC 14BOO 190BCI 190BC2 75-07-02 75-08-13 75-07-31 47-09-12 75-07-31 A-I7-26 A-17-27 A-17-28 A-I7-28 A-I7-28 13CCO 21CBA IIACB 130BD 21ACA 75-08-19 75-08-13 75-08-13 75-08-13 75-08-13 A-I7-28 A-17-28 A-I7-28 A-I7-29 31BBC 35BBC 36000 030BB 75-08-13 75-08-13 75-08-13 57-04-28 75-08-20 A-I7-29 A-17-30 A-I7-31 A-18-24 A-18-24 20CDA 33AAB 16DBC OBAAA 08BCa 75-08-13 49-09-10 75-07-31 75-09-22 71-12-22 A-18-24 A-18-26 A-18-27 A-18-28 A-18-28 09ABB 36AAO 06BCA 18CBB 22ABC 75-09-26 75-08-19 75-08-19 75-08-19 75-08-13 A-18-28 A-18-29 A-18-30 A-IS-30 A-18-31 30BBC 26BOB 04CBC 20COD 16CAC 75-08-13 75-08-12 75-08-12 75-08-12 75-08-12 A-19-24 05CBB A-19-24 06DC A-19-24 20BCC 69-05-17 69-03-17 55-07-20 55-07-21 75-06-17 A-19-25 OIAAB TEMPERATURE (OEG C) 18.5 20.0 17.0 16.0 18.5 14.5 CALCIUM OISSOLVED (MG/L AS CAl MAGNESlUM, 015SOLVED (MG/L AS MG) SODIUM, OISSOLVED (MG/L AS NA) POTASSlUM, 015SOLVED (MG/L AS K) SODIUMt POTASSlUM oISSOLVED (MG/L AS NA) BICARBONATE (MG/L AS HC03) 20 4.0 312 262 307 434 450 33 17 18 12 12 20 7.9 21 3.6 3.7 3.3 1.4 2.8 .8 .0 420 68 34 120 87 .7 .9 2.9 .5 .8 661 185 150 176 148 112 0 0 8 18 32 18 20 6.1 20 19 .3 4.6 3.3 130 65 120 1.4 2.2 1.2 21 24 4.4 47 2.3 126 146 288 197 194 43 0 0 0 0 12 12 23 200 15 880 6.4 8.0 45 4.9 190 60 53 160 430 24000 4.8 2.6 37 161 2!0 328 580 530 9 0 0 0 0 0 2 0 0 69 63 .2 100 19 41 2800 230 510 1288 210 26 .5 2.2 1.4 17 7.8 8.3 18.0 16.5 17.0 17.0 20 15 19 17 15 26 2.9 16 7.0 2.8 6.6 .2 2.7 1.7 .0 320 84 87 100 110 1.6 .6 1.8 1.0 .7 526 164 180 179 82 18.5 19.5 19.5 16.0 19 19 26 22 25 23 28 45 37 52 6.0 5.1 5.8 6.2 8.8 29 41 12 20 13 3.2 2.5 2.6 2.6 3.8 138 184 175 170 148 15.0 14.0 15 II 16.0 17 65 23 19 20 25 27 22 39 26 657 49 17.0 16.5 17.0 05ABB 16CCA 30BDO 09AAC 75-06-17 75-06-17 75-06-17 57-05-07 75-08-12 A-19-29 A-19-30 A-20-25 A-20-25 A-20-a5 35COB 18CAB 15BCD 28BAA 32DCC3 75-08-12 75-08-12 75-06-17 75-06-17 69-03-13 21.5 A-20-26 A-20-26 A-20-26 A-20-26 A-20-27 130AC 21DCB 32BOO 34COC 04BCA 75-06-17 75-08-12 75-06-18 50-03-06 75-06-18 16.0 A-20-27 A-20-27 A-20-27 A-20-28 A-20-28 09CAO 24BOAI 36BBB 14AAB 19CAC A-20-28 A-20-29 A-20-30 A-20-30 A-20-30 A-20-31 A-21-27 A-21-27 A-21-27 20.0 2.8 8.8 368 627 .7 2.2 130 1.6 6.1 4.8 4.8 122 5.6 420 290 290 1.4 3.4 1.9 II 2.3 13 15000 478 318 86 76 257 5.3 5.3 1.1 .9 14 47 IS 340 420 3.6 3.4 1.4 1,4 76 25 5.7 98 69 18 6.3 3.7 15 21 170 260 290 4.3 3.3 2.6 16.0 24 14 19 8.5 16 180 2.6 561 461 619 174 428 75-08-20 75-11-18 75-08-21 75-08-19 75-11-18 17.0 15.5 19.0 15.0 17.5 15 19 7.8 30 20 36 2.8 3.2 42 24 8.1 .4 .3 4.8 2.6 240 73 67 14 34 5.0 1.0 1,2 3.1 3.1 485 189 162 161 167 36AAAI 350CO 03BBB 12ABD 75-08-20 75-11-18 75-08-19 59-04-22 75-11-18 14.5 22.0 1S.5 14.0 26 26 19 28 25 31 43 41 34 34 7.4 3.3 3.5 5.1 3.2 21 16 17 3.2 3.6 3.1 14 1.9 166 178 142 126 121 270BO 29AOC2 25BBDI 25BB02 25CAD 75-11-18 75-11-18 75-11-18 75-11-18 75-11-19 21 24 9.9 II 13 45 48 4.2 6.0 B4 3.6 3.9 .6 1,3 17 8.0 12 440 430 170 1.9 1.8 3.8 6.4 2.7 153 158 1010 930 337 200 4.7 210 126 3.6 A-21-27 25CCA A-21-27 260BD A-21-28 HCBC 16.0 16.5 2260 17 75-11-19 56-03-29 75-11-18 69-06-00 74-03-27 20 19 16 100 64 69 78 81 21 19 16 12 II 13 9.0 20 19 12 137 110 92 110 4.0 68 46 36 25 1.0 52 500 140 8.2 20 5.3 15 13 23 3.2 85 32 28 17 15 6.1 2.9 5.0 100 220 61 2.7 9.3 1.7 A-21-28 A-21-28 A-21-28 A-21-28 A-21-28 140AD 140CA 19CCC 200CA 21CAD 55-09-15 75-11-18 75-11-21 75-11-19 56-03-28 A-21-28 A-21-28 A-21-29 A-21-29 24BBC 24CCC 22CCA 240CC 75-11-20 75-08-22 75-08-19 54-11-04 13.0 14.5 211 77 84 618 43 22 0 0 145 157 653 890 530 34 35 4.9 6.9 56 668 0 II 0 0 0 580 723 529 150 179 19 26 15 19 24 16.0 16.0 CARBONATE (MG/L AS C03) 210 6.1 400 225 150 10 10 12 15.0 18.0 18.0 A-19-25 A-19-25 A-19-25 A-19-26 A-19-29 04DB~ SILICA, oISSOLVED (MG/L AS SI02) 850 566 503 204 194 356 361 825 478 1240 296 358 172 146 51 from selected wells--Continued DATE Of SAMPLE 75-07-02 75-08-13 75-07-31 47-09-12 75-07-31 75-08-19 75-08-13 75-08-13 75-08-13 75-08-13 75-08-13 SULfATE 015SOLVED (MG/L AS S04) fLUORIDE. 015SOLVED (MG/L (MG/L AS CL) AS f) SOLlDS. SUM Of CONSTITUENTS. 015SOLVED (MG/L) SOLIDS. RESIDUE AT 180 DEG. C 015SOLVED (MG/Ll HARDNESS (MG/L AS CAC03) HARDNESS. NONCARBONATE (MG/L CAC03) 8280 780 530 625 16 0 26 1.0 3600 1400 1700 616 1200 260 81 1.1 .7 3410 3750 1230 1280 540 170 45 1750 7.7 1028 35 3.2 4.2 26 19 9.1 .5 .2 .3 .2 1110 64 26 64 12 9 0 0 0 0 0 93 85 52 95 95 23 5.9 1.9 15 12 1500 8.9 8.3 7.8 8.5 9.3 1028 175 349 246 1100 215 179 354 255 88 41 33 12 9.5 .3 .3 .3 382 264 376 418 262 378 94 66 81 14 3.4 6.7 .5 222 222 16 69 61 85 78 56 2.3 650 420 620 360 360 9.4 16 100 190 207 210 206 56 92 0 0 69 1300 1180 64100 1360 1180 680 420 34 94 95 3.5 2.4 2.7 25 191 974 235 310 314 88 95 78 89 97 15 13 5.3 8.8 18 42 49 16 26 14 1.4 1.9 .4 .8 .4 140 13 10 82 15 13 209 49-09-10 75-07-31 75-09-22 71-12-22 1700 37000 .2 .2 .3 1.5 3.2 75-09-26 75-08-19 75-08-19 75-08-19 75-08-13 210 11 18 17 35 110 19 35 34 22 1.1 1.0 .5 .5 .5 956 233 306 306 296 .3 .2 .2 .2 .3 172 207 197 191 239 580 1.5 1.1 956 1680 32600 51000 42 1.0 607 610 220 1.7 .5 1.6 1200 821 856 1220 774 853 80 .2 200 199 58 6.4 21 20 575 .2 .2 2.7 251 178 916 1090 1980 253 183 55-07-20 610 240 13 11 6.4 9.7 10 176 266 1670 55-07-21 75-06-17 2020 75-06-17 230 65 170 1760 5.7 75-06-17 75-06-17 57-05-07 75-08-12 75-08-12 75-08-12 210 9.6 6.5 6.8 5.2 4.9 5.2 44 114 190 42 79 23900 4.5 75-06-17 75-06-17 69-03-13 200 75-06-17 120 75-08-12 75-06-18 240 93 38 37 59 170 382 4.0 1.9 50-03-06 3720 850 75-06-18 190 62 .5 1.0 .8 .8 .7 75-08-20 75-11-18 200 10 13 6.2 8.4 39 3.1 5.5 8.9 3.3 75-11-18 75-08-19 59-04-22 75-11-18 11 11 12 8.6 7.7 75-11-16 75-11-18 75-11-18 75-11-18 75-11-19 728 817 780 308 172 204 200 190 292 58 0 3000 2500 92 8 51 24 7 82 91 140 120 170 930 1100 625 831 790 120 85 25 19 73 44 99 1.6 1.1 11 3.1 72 1360 1000 2500 1100 2340 8.7 110 31 0 82 63 0 0 44 80 61 2.6 9.3 2.9 910 1150 410 7.4 7.5 .4 .3 2.3 2.3 .7 179 190 1100 190 130 140 75-11-19 56-03-29 75-11-18 69-06-00 3.4 159 220 74-03-27 268 38 45 36 44 48 .4 1.0 .7 .7 .7 807 796 820 565 565 55-09-15 75-11-18 75-11-21 75-11-19 56-03-28 462 250 36 33 64 34 38 .7 .6 .4 .4 986 689 1780 724 30 21 71 110 164 1110 983 763 13 20 280 740 340 238 240 244 264 662 460 380 380 14 270 1028 1028 1028 1028 1028 1028 330 170 0 0 0 7.7 10 47 45 44 120 1028 1028 1028 1160 1250 1110 8.3 6.3 68 61 270 110 1750 1280 1250 59300 360 8.8 8.7 6.8 4.7 5.9 5.9 3.5 2.1 96 75-08-19 54-11-04 410 1580 2930 80300 103000 900 56 66 65 153 75-08-22 315 310 0 0 0 77 110 170 589 696 247 1028 1028 1028 1028 1028 .3 .4 53 42 4.4 120 120 106 574 692 251 7.8 7.4 7.4 7.5 7.1 260 340 12 16 96 97 57 201 .5 1.5 .4 .8 1028 510 500 2 6 0 0 3 213 198 39 10.0 460 .9 .6 .7 .7 .6 191 199 200 179 170 110 18 8.8 1028 1028 1028 370 29 22 23 25 23 .7 .2 .2 .6 .3 75-11-20 7.6 8.4 7.6 8.1 1680 0 0 0 0 0 8.2 5.6 13 15 13 1520 1028 1028 58 86 95 9 9 10 8.0 7.0 90400 0 0 0 164 0 177 190 167 150 170 1028 9902 1028 260 209 640 8.7 7.2 2.0 185 193 181 732 1860 774 340 48 22 98 98 88 29 1028 1028 1650 1700 0 0 0 0 0 207 230 1028 110 110 17 21 196 120 849 8.0 .4 799 776 1028 1028 14 784 1020 3.9 20 12 14 1028 1028 1028 1028 9.7 7.7 7.8 7.7 0 1.2 .7 1.9 .4 .3 75-06-20 92 84 88 410 2020 306 260 7040 57 0 0 0 320 270 560 2140 150 739 75-08-19 75-11-18 0 0 0 0 45 88 97 44 10 31 759 75-08-21 1028· 1028 1028 9902 618 2200 300 500 44 25 5.9 22 3.9 75-08-13 69-03-17 7.9 8.6 7.6 8300 13 69-05-17 (UNITS) 12400 1000 3950 PH AGENCY ANALYZING SAMPLE (CODE NUMBER) 2.7 .6 57-04-28 75-08-20 75-08-12 SPECIFIC CONOUCTANCE (MICROMHOS) 4300 130 75-08-13 75-08-13 75-08-12 75-08-12 75-08-12 SODIUM PERCENT SODIUM ADSORPTION RATIO 730 91 14 9,4 33 75-08-13 CHLORIDE. DISSOLVED 7.2 7.4 1028 480 280 1340 1710 7.9 7.6 1028 1028 3330 8.1 1028 1028 1028 4.6 12 23 1140 11 00 1180 7.9 60 4.9 9490 920 1028 1028 1028 1028 80 94 93 19 50 9.4 11 9.6 .5 1.8 7.2 1028 1028 .6 36 40 1220 1028 300 330 300 280 8.3 7.3 280 290 7.7 300 7.5 7.3 270 290 1028 1028 1028 1026 1026 1028 1028 1028 1028 280 1026 290 1026 1028 1026 1028 1280 1250 1100 909 909 7.8 1028 1028 1028 7.7 9704 7.0 1028 1028 1028 1028 1028 9704 1028 1026 1028 1028 65 Table 7. --Chemical analyses 66 See figure 2 for description of well-numbering and location system. Geologic unit: 112BLCF, basaltic rocks; 120SDMR, Tertiary sedimentary rocks J undifferentiated; 121BDHC, Bidahochi Formation; 211SDMR, Upper Cretaceous local identifier: sedimentary rocks, undifferentiated; 310KIBB, Kaibab LOCAL IDENl1FIEH DAlE OF SAMPLE GEOLOGIC UNIT lEMPERAlURE IDEG C) Limestone. DISSOLVED SILICA (5102) (MG/Ll OISSOLVED CALClUM (CA) (MG/Ll DISSOLVtD MAG- 015SOLVED SODIUM (NAi (MG/Ll (MG/Ll 6.9 5.3 3.5 8.0 5.4 3.7 3.6 3.7 5.6 3.5 .6 .6 .9 1.6 1.8 64 58 43 79 37 4.0 8.4 7.9 5.1 14 2.8 4.1 3.8 4.8 5.2 1.5 1.4 1.2 1.3 1.6 32 79 74 62 115 6.8 29 54 12 13 1.9 4.2 10 4.3 3.8 106 275 252 137 133 2.9 1.8 2.7 3.5 6.5 212 183 325 259 272 14-0'7-24 74-09-23 74-09-24 74-11-19 74-11-19 112BLCF 112BLCF 1128LCF 112BLCF 112BLCF 8.0 8.0 10.0 8.0 12.0 25 25 23 31 14 11 11 A-09-25 A-O'J-Z'b A-09-26 A-09-Z6 A-09-27 ctlUAA 0208B 15DAC 20CAA l!IODD 7.-11-1'7 70-09-24 74-09-24 74-11-20 74-09-24 112BLCF 112BLCF 112BLCF 1128LCF 112BLCF 10.0 20.0 9.0 8.0 10.0 e.1 27 28 14 33 7.5 13 A-09-27 A-09-30 A-I0-28 A-10-2e A-IO-26 26BBB 21 CUB 03AAD 060AC O!lOeC 74-12-20 74-12-18 75-01-17 75-01-0b /!;-01-06 112BLCF 112BLCF 112BLCF 112BLCF 112BLCF 12.0 15.0 17.0 31 28 32 28 26 15 46 42 17 23 11 22 33 12 A-IO-28 A-II-2S A-II-27 A-1l-27 A-1l-2!l 12CeB 20eCD OICAB 09DAA 04UBA 15-01-16 15-01-15 75-01-07 75-01-07 75-01-011 211SDMR 112BLCF 112BLCF 112BLCF I?OSDMR 15.0 7.0 15.0 8.5 7.0 18 19 29 26 18 27 44 41 46 48 14 A-11-28 18BDD A-12-Z6 10CCB 75-01-07 34-01-04 75-01-15 34-01-04 121BDHC 112BLCF 112BLCF 112BLCF 112BLCF 4.0 30 15.0 29 15.0 29 37 14 14 14 18 A-12-26 19ABA ~1-12-06 10 14 11 17 26 23 19 34 9.4 28 19 30 20 62 lASSLUM (K) eICAHeONAll:. (HC03) (MG/Ll 414 14!l 164 98 102 69 601 34 8.0 5.0 10 7.8 10 8.7 11 2.9 2.6 2.9 2.9 3.0 100 95 99 101 89 Sol 157 490 574 522 644 27 3.9 9.4 112BLCF 112BLCF 112BLCF 112BLCF 112BLCF 15.0 13.5 15.5 15.0 15.5 23 30 28 27 Co7 13 14 16 14 18 9.1 8.4 8.5 9.0 9.0 75-01-15 112BLCF 75-01-07 121BOHC 7~-09-17 121BDHC 76-04-14 121BDHC 76-09-09 121BDHC 14.0 211 21 20 IS 16 16 15 38 51 49 12 5.0 16 20 22 25 270 320 390 1.2 5.6 6.1 8.4 21 35 20 12 29 26 31 260 260 12 14 5.5 89 87 230 81 57 480 480 4.4 2.9 9.8 25 21 334 220 225 600 611 II 35 12 15 250 49 2.6 1.3 87 8.1 .3 .5 480 140 210 160 20 1.2 1.4 .9 617 322 399 373 66-08-16 74-01-16 75-11-20 76-04-16 76-09-08 A-12-20 26UBB A-12-27 14CBD2 A-13-27 13A SPHGS E OF B 11 1'0- DISSOLVED SODIUM PLUS "'OlASSlUM (MG/Ll SlUM (MG) (MG/Ll Nt:.- A-oe-26 058C8 A-08-~6 cSAAA A-08-27 07CAC A-09-25 02UC8 A-09-2S 20AUC 8.8 14 8.5 OISSOLVED A-l3-27 13CDC A-l3-27 neDe A-13-2'J ZOC A-14-26 10CDC 75-02-ll 75-02-07 75-03-18 75-03-17 75-09-12 121BDHC 112BLCF 121BDHC 310KIBB 310KIBB A-14-26 10COC A-20-27 261lCB A-20-27 29DBD '16-04-14 75-11-18 75-08-21 75-11-19 310KIBB 121BDHC 121BDHC 121BDHC 18.0 14.5 22.0 16.0 14.5 15.0 16.0 17.0 25.0 25.0 11 3~0 67 of water from selected springs Specific conductance: Code CAH«;03) ",bill 36 39 agency analyzing are in micromhos sample: 1028, per U.S. DISSODIUM AUSORPTION RATIO centimeter Geological SPECIFIC CONDUCTANCE (MICROMHOS) at 25° Celsius. Survey. CODE fOR AGENCY ANALYZING SAMPLE (MG/Ll SULIDS (RtSIDU~ AT 180 C) (M(,/Ll HARDNESS (CA,MG) (MG/Ll NONCAR1l0NATE HARDNE:'S (MG/Ll .0 .0 .0 .1 01 84 82 70 111 71 71 70 63 108 83 56 49 36 68 43 3 2 1 3 13 12 14 18 15 14 .2 .2 .3 .2 110 110 85 153 III 2.3 2.3 .3 .0 .0 01 .0 56 101 96 73 134 75 88 83 76 112 35 67 60 46 93 9 2 0 0 0 14 11 12 18 11 .2 .2 .2 .3 .2 86 140 130 III 200 601 20 41 5.4 5.4 2.6 25 20 3.5 3.1 01 .4 1.0 .2 .2 128 311 395 156 154 123 312 357 142 141 83 210 240 92 100 15 23 32 21 21 .3 .9 1.5 .5 .6 188 532 500 244 230 8.2 42 9.9 21 100 5.b 18 7.8 15 13 1.7 .4 .5 .3 2.1 212 254 308 285 404 198 253 292 277 402 130 180 210 210 200 0 30 0 32 19 23 17 40 101 .6 .9 .6 1.9 350 424 400 440 650 7.9 8.3 8.2 24 5.0 8.8 2.0 301 23 2.0 .8 .0 .2 .6 .2 433 135 188 91 118 415 230 72 74 72 84 0 0 0 0 0 38 2.0 700 7.8 48 1.7 282 7.9 4.0 4.5 7.7 5.5 15 ... 5 116 119 128 126 142 109 138 ilS 153 70 70 75 72 82 0 0 0 0 9 23 19 22 20 22 .5 .4 .5 .4 .5 178 172 170 180 178 7.2 8.1 J.6 5.!> 13 .0 .0 .2 .3 01 1028 1028 1028 1028 1028 6.3 200 2bO J70 350 6.0 21 78 110 120 .3 2.0 3.2 2.4 2.6 179 790 1030 1180 1280 165 791 995 1220 1280 89 58 160 210 210 36 91 81 78 79 1.2 15 11 11 12 272 1200 1450 2000 1800 8.1 8.3 7.4 1028 1028 1028 1028 1028 210 J5 J2 600 680 74 27 13 6bU 670 2.6 1.2 .2 .5 1.8 759 374 293 2420 2510 756 363 299 2390 2260 120 120 100 1000 1000 0 0 0 520 510 80 58 52 50 50 9.1 3.2 2.5 6.6 6.6 1200 510 400 3400 3900 8.3 7.9 1028 1028 1028 1028 1028 570 43 45 40 b50 lUO 12 9.8 1.9 1.3 101 .9 2370 538 523 413 2490 514 446 393 980 160 8 5 480 0 0 51 66 98 98 6.7 4.9 33 30 3500 800 780 780 DIS~ONAT~ DISSOLVED SOLIDS (~UM Of CONSTITUENIS) for Values lJIS50LVED SULFATE (S04) (MG/Ll CHLOKIDE (CLl (Mu/Ll DISSOLVED fLUOHIDE (f) (MG/L) 4.0 4.6 6.3 8.5 12 1.4 1.5 1.6 2.7 7.U 12 5.2 Sol 4.3 6.1 1.9 1.b SOLV~U l.~ 5.0 3.0 3.U 3.~ ~OLVED 181 0 0 0 PtKCENT ~ODIUM 03 PH (UNITS) 1028 1028 1028 1028 1028 7.5 1028 1028 1028 1028 1028 174 9 1028 1028 1028 1028 1028 6.5 8.5 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 68 Table 8. --Chemical analyses of water [Agency analyzing sample (code number): DATE TEMPERATURE, WATER (DEG C) SILICA, DISSOLVED (MG/L AS SI02) 341730109191200 JAN, 1975 16... 1.0 343922109495600 FEB, 1975 13... 2.0 341616109212400 FEB, 1975 13... NOV 19... 2.0 FEB, 1975 13... 7.0 NOV 16... 40,0 343025109212500 FEB, 1975 13... 10.0 NOV 20... 4.5 340518109244200 - 17... 34 6.7 190 78 POTASSIUM, DISSOLVED (MG/L AS K) 240 550 LCR AT RICHEY RCH NR SPRINGERVILLE ARIZ 22 BICARBONATE (MG/L AS HC03) CARBONATE (MG/L AS C03) SULFATE DISSOLVED (MG/L AS S04) CHLORIDE, DISSOLVED (MG/L AS el) 2.2 305 500 36 SITE32 (L4T 34 39 22 LONG 109 49 56) 22 SITE14 990 295 (L~T 550 34 18 t6 LONG 109 21 24) 44 21 36 2.1 301 19 1& 57 26 45 3.3 367 18 16 LCR BEL BECKER LK NR SPRINGERVILLE ARIZ SITE 8 (LAT 34 09 44 LONG 109 18 06) 20 40 18 34 1.8 275 22 49 19 36 1.8 283 LCR BEL HIGHWAY AT ST JOHNS ARIZ 11 21 13 9.9 12 SITE23 (LAT 34 30 25 LONG 109 21 25) 16 190 58 360 27 390 660 420 17 170 52 320 24 261 560 360 LCR BEL S FK NR SPRINGERVILLE ARIZ 20 19 7.0 19 19 7.4 8.7 10 LCR BEL SALADO SP NR ST JOHNS ARIZ SITE (LAT 34 05 18 LONG 109 24 42) 1.7 100 5.2 3.0 1.9 109 9.8 &.3 SITE18 (lAT 34 2& 00 LONG 109 22 40) 7.0 17 240 59 370 2& 519 660 410 7.0 17 200 51 330 2& 443 540 350 1.0 340834109170000 FEB, 1975 13... 10.0 NOV 17... 7.0 340528109120900 FEB, 1975 13... 54 1.0 343618109292200 FEB, 1975 13... SODIUM, DISSOLVED (MG/l AS NA) COYOTE CREEK AB DIV NR MOUTH (LAT 34 17 30 LONG 109 19 12) 7.0 342600109224000 FEB, 1975 13... NOV 19... MAGNESIUM, DISSOLVED (MG/l AS MG) LCR AT APACHE-NAVAJO CO lINE ARIZ 6.0 340944109180600 - FEB, 1975 13... NOV 17 CALCIUM DISSOLVED (MG/L AS CAl 4.0 LCR BEL ZION RES NR ST JOHNS ARIZ 10 210 98 650 NUTRIOSO CR AT MOUTH SPRINGERVILLE ARIZ SITE26 (LAT 34 3& 18 LONG 109 29 22) 360 27 1?00 &60 SITE 6 (LAT 34 08 34 LONG 109 17 00) 24 45 21 41 1.0 295 27 24 25 53 20 38 .6 290 17 20 NUTRIOSO CR BEL CORREJO XING ARIZ 56 36 15 18 SITE 4 (lAT 34 05 28 LONG 109 12 09) 1.2 310 19 19 69 from selected streamflow sites 1028, u.s. DATE Geological FLUORIDE, DISSOLVED (MG/L AS F) Survey] SOLIDS, SI1M OF CONSTITUENTS, DISSOLVED (MG/L) 341730109191200 JAN, 1975 16 ••• .3 343922109495800 FEB, 1975 13... 1.6 341816109212400 FEB, 1975 13 ••• NOV 19 ••• 17 ••• 17 ••• 2590 13 800 SODIUM ADSORPTION RATIO SPECIFIC CONDUCTANCE (MICROMHOS) PH (UNITS) AGENCY ANALYZING SAMPLE (CODE NUMBER) .4 1500 65 1028 SITE32 (LAT 34 39 22 LONG 109 49 58) 550 LCR AT RICHEY RCH NR SPRINGERVILLE ARIZ 200 o LCR BEL BECKER LK NR SPRINGERVILLE ARIZ 8.5 3800 1028 STTE14 (LAT 34 18 16 LONG 109 21 24) 29 1.2 500 1028 28 1.2 610 1028 SITE 8 (LAT 34 09 44 LONG 109 18 06) .3 274 273 170 30 1.1 460 1028 .4 315 322 200 28 1.1 500 1028 LCR BEL HIGHWAY AT ST JOHNS ARIZ SITE23 (LAT 34 30 25 LONG 109 21 25) 2.2 1970 2000 710 390 53 6.2 3000 1028 2.0 1640 1700 &40 420 51 5.5 2500 1028 LCR BEL S FK NR SPRINGERVILLE ARIZ .2 114 106 7& .2 128 136 78 SITE o o LCR BEL SALADO SP NR 5T JOHNS ARIZ (LAT 34 05 18 LONG 109 24 42) 19 .4 185 1028 21 .5 170 1028 SITE18 (LAT 34 2& 00 LONG 109 22 40) C!.3 2040 20&0 840 420 48 5.5 3100 1028 2.0 1740 1710 710 350 49 5.4 2500 1028 1.8 LCR BEL ZION RES NR ST JOHNS ARIZ 3030 3090 930 SITE26 630 NUTRIOSO CR AT MOUTH SPRINGERVILLE ARIZ 60 (L~T 9.3 34 3& 18 LONG 109 29 (2) 4200 1028 SITE 6 (LAT 34 08 34 LONG 109 17 00) .6 330 338 200 31 1.3 530 1028 .4 318 328 210 28 I. I 550 1028 340528109120900 FEB, 1975 13 ••• 2540 250 340834109170000 FEB, 1975 13 ••• NOV SODIUM PERCENT LCR AT APACHE-NAVAJO CO LINE ARIZ 377 343618109292200 FEB , 1975 13... 270 312 342600109224000 FEB, 1975 13... NOV 19... 1020 303 340518109244200 FEB, 1975 13 ••• NOV HARDNESS, NONCARBONATE (MG/L CAC03) COYOTE CREEK AB DIV NR MOUTH (LAT 34 17 30 LONG 109 19 12) 380 343025109212500 FEB, 1975 13... NOV 20... (MG/Ll HARDNESS (MG/L AS CACU3) .4 340944109180600 FEB, 1975 13 ••• NOV 18 ••• 1040 SOLIDS, RESIOUE AT 180 DEG. C DISSOLVED .3 NUTRIOSO CR BEL CORREJO XING 320 326 210 ARIZ SYTE 4 (LAT 34 05 28 LONG 109 12 09) o 28 1.1 540 1028 70 Table 8.--Chemical analyses of water from TEMPERATURE, WATER (DEG Cl DATE 341717109220300 FEB , 1975 13 ••• NOV 18 ... SILICA, DISSOLVED (MG/L AS 5102) CALCIUM 015SOLVED (MGiL AS CAl MAGNESlUM, 015SOLVED (MG/L AS MGl SODIUM, 015SOLVED (MG/L AS NA) POT ASSlUM, 015SOLVED (MG/L AS Kl BICARBONATE (MG/L AS HC03) CARBONATE (MG/L AS C03) SULFATE OlSSOLVED (MG/L AS 504) CHLORIDE, DISSOLVED (MG/L AS CL) VIGIL RUN BEL HIWA NR SPRINGERVILLE ARIZ SITE11 (LAT 34 17 17 LONG 109 22 03) 2.5 22 40 23 25 &.5 2&5 16 7.0 22 34 24 26 9.6 274 14 9.9 12 342&00109224001 - A-12-28 I&DDC LCR BLW SALADO SPRGS (LAT 34 26 00 LONG 109 22 40) FEB , 1975 7.0 13 ••• SEP 15 ... 23.5 NOV 19 ••• 7.0 APR , 1976 14.5 15 ... SEP 10 ... 17.5 APR , 1977 15.0 06 ••• SEP 20 ••• 17.0 17 240 5'1 370 26 519 660 410 1& 190 44 270 20 451 17 200 51 330 26 443 16 210 60 340 23 486 ';50 380 17 130 3& 200 15 388 320 200 18 220 58 3&0 22 450 18 250 59 370 27 340 0 0 470 310 540 350 660 390 800 400 342453109241001 - A-12-28 29BAD LCR ABV SALAOO SPRGS (LAT 34 24 53 LONG 109 24 10) SEP , 1975 \5 ... NOV 19 ... APR , 1970 15 ... SEP 10 ... APR , 1977 06 ••• SEP 20 ••• 150 23.5 14 100 31 150 11 304 230 5.0 17 150 40 200 14 332 310 190 442 440 260 2B6 130 67 10.0 16.5 14.5 16.0 16 17 17 17 160 68 1&0 170 54 250 24 81 52 55 250 240 1& 7.0 15 450 420 240 17 390 400 250 560 370 342804109212400 - LCR ABV ST JOHNS DIV (LAT 34 28 04 LONG 109 21 24) NOV , 1975 19 ... 6.5 17 190 53 320 24 325 341208109175500 - LCR AT CLINTON SLADE RANCH FORD (LAT 34 12 08 LONG 109 17 55) NOV , 1975 18 •• ~ 4.5 23 57 22 47 3.2 371 14 1& 343230109221000 - LCR AT COUNTY BRDG N OF ST JOHNS (LAT 34 32 30 LONG 109 22 10) NOV , 1975 20 ••• 2.0 17 190 50 320 23 396 550 350 71 selected streamflow sites--Continued DATE FLUORIDE, DISSOLVED (MG/L AS F) SOLIDS, SUM OF CONSTITUENTS, DISSOLVED (MG/L) SOLIDS, RESIDUE AT 180 DEG. C DISSOLVED (MG/Ll HARDNESS (MG/L AS CAC03) HARDNESS, NONCARBONATE (MG/L CAC03) SODIUM PERCENT SODIUM ADSORPHON RATIO SPECIFIC CONDUCTANCE (MICROJ.lHOS) PH (UNITS) AGENCY ANALYZING SAMPLE (CODE NUMBER) 342314109235300 - LCR AT EL TULE (LAT 34 23 14 LONG 109 23 53) NOV , 1975 19 ••• 1.7 84& 7&& 430 160 41 2.9 1300 1028 340615109203300 - LCR AT HIWAY 273 (LAT 34 06 15 LONG 109 20 33) NOV , 1975 17 ••• .2 148 130 110 15 .4 220 1028 340848109173700 - LCR AT HIWAY 666 (LAT 34 08 48 LONG 109 17 37> NOV , 1975 17 ••• .3 266 265 190 22 .8 430 1028 341110109181200 - LCR AT HOOPER RANCH RD CROSSING (LAT 34 11 10 LONG 109 18 12) NOV , 1975 18 ••• .4 330 321 220 0 29 1.2 520 1028 342453109241000 - LCR AT L. HALLS (LAT 34 24 53 LONG 109 24 10) NOV , 1975 19 ••• l.b 1090 1130 540 270 44 3.7 1700 1028 342925109212100 - LCR AT LITTLE RES. (LAT 34 29 25 LONG 109 21 21) NOV , 1975 20 ••• 1.9 1750 1730 690 460 51 5.6 1028 2500 341706109210600 - LCR AT SHERWOOD CROSSING (LAT 34 17 06 LONG 109 21 06) NOV , 1975 18 ••• .5 364 366 240 28 1.2 1028 570 340747109174500 - LCR BEL BECKER LK DIV (LAT 34 07 47 LONG 109 17 45) NOV , 1975 18 ••• .3 243 238 170 0 23 .8 1028 380 340225109180300 - WATER CANYON AT ELDERBERRY SPRING, ARIZ. (LAT 34 02 25 LONG 109 18 03) AUG , 1974 14 ••• .1 154 152 110 0 17 .4 250 7.9 1028 72 Table 8. --Chemical analyses of water from DATE TEMPERATURE, WATER CDEG C) SILICA, DISSOLVED (MG/L AS 5102) CALCIUM DISSOLVED (MG/L AS CAl MAGNESlUM, DISSOLVED (MG/L AS MG) SODIUM, DISSOLVED CMG/L AS NA) POTASSlUM, DISSOLVED (MG/L AS K) BICARBONATE CMG/L AS HC03) CARBnNATE (MG/L AS C03) SULFATE OlSSOLVED (MG/L AS S04) CHLORIDE, 015- SOLVED (MG/L AS CLl 342314109235300 - LCR AT EL TULE CLAT 34 23 14 LONG 109 23 53) NOV , 1975 19 ••• 6.0 15 120 32 140 11 336 240 120 340615109203300 - LCR AT HIWAY 273 (LAT 34 06 15 LONG 109 20 33) NOV , 1975 17 ... 7.5 20 28 9.9 9.5 2.1 140 5.8 2.4 6.5 3.9 340848109173700 - LCR AT HIWAV 666 CUT 34 08 48 LONG 109 17 371 NOV , 1975 17 ... 5.5 23 49 16 25 1.6 284 341110109181200 - LCR AT HOOPER RANCH RD CROSSING CLAT 34 11 10 LONG 109 18 12) NOV , 1975 18 ... 4.5 22 55 20 41 2.2 336 11 12 310 190 610 370 19 17 342453109241000 - LCR AT L. HALLS CUT 34 24 53 LONG 109 24 10) NOV , 1975 19 ... 5.0 17 150 40 200 14 332 342925109212100 - LCR AT LITTLE RES. CLAT 34 29 25 LONG 109 21 21) NOV , 1975 20 ••• 3.5 17 190 53 340 24 282 341706109210600 - LCR AT SHERWOOD CROSSING CLAT 34 17 06 LONG 109 21 06) NOV , 1975 18 ... 5.5 21 53 26 44 3.3 365 340747109174500 - LCR BEL BECKER LK DIV CUT 34 07 47 LONG 109 17 45) NOV , 1975 18 ... 1.5 22 44 14 23 1.6 259 6.7 3.2 340225109180300 - wATER CANYON AT ELDERBERRY SPRING, ARIZ. (UT 34 02 25 LONG 109 18 03) AUG , 1974 14 ... 16.0 25 27 9.6 10 2.0 146 5.3 2.7 73 selected streamflow sites--Continued DATE FLUORIDE, DISSOLVED (MG/L AS F) 341717109220300 FEB , 1975 13 ••• SOLIDS, SUM OF CONSTITUENTS, DISSOLVED (MG/Ll SOLIDS, I?ESIDUE AT 180 DEG. C DISSOLVED (MG/LJ HARDNESS (MG/L AS CAC03) HARDNESS, NONCARBONATE (MG/L CAC03) SODIUM PERCENT SODIUM ADSORPTION RATIO SPECIFlC CONDUCTANCE (MICROMHOS) PH (UNITS) AGENCY ANALYZING SAMPLE (CODE NUMBER) VIGIL RUN BEL HIWA NR SPRINGERVILLE ARIZ SITE11 (LAT 34 17 17 LONG 109 22 03) .3 274 258 190 .4 278 2&5 180 0 21 .8 350 1028 22 .8 450 1028 NOV 18 ••• 342&00109224001 - A-12-28 I&DDC LCR BLW SALADO SPRGS (LAT 34 2& 00 LONG 109 22 40) FEB , 1975 13 ••• SEP 15 ••• 2.3 2040 2060 840 420 48 5.5 3100 7.6 2.0 1540 1550 &&0 290 4& 4.6 2250 7.1 2.0 1740 1710 710 350 49 5.4 2500 1028 1.9 1820 1930 710 370 48 5.3 2&00 1028 1.5 1110 1150 470 150 47 4.0 1&20 1028 2.3 1950 2000 790 420 49 5.& 2750 7.4 1028 2.3 2090 1990 870 590 47 5.5 3000 7.7 1028 1028 1028 NOV 19 ... APR , 197& 15 ... SEP 10 ... APR , 1977 06 ••• SEP 20 ... 342453109241001 - A-12-28 29BAD LCR ABV SALADO SPRGS (LAT 34 24 53 LONG 109 24 10) SEP , 1975 15 ... NOV 19 ... APR , 197& 15 ••• SEP 10 ... APR , 1917 06 ••• SEP 20 ••• 1.4 838 813 380 130 45 3.4 1220 1.& 1090 1130 540 270 44 3.7 1700 1028 2.0 1420 1470 &20 260 46 4.4 2100 1028 .9 536 522 270 34 39 2.2 840 1026 2.0 1380 1460 &10 250 4& 4.4 1990 7.5 1028 1.9 1340 1370 650 330 44 4.1 3000 8.0 1028 7.4 1028 342804109212400 - LCR ABV ST JOHNS DIV (LAT 34 28 04 LONG 109 21 24) NOV , 1975 19 ... 2.2 1700 1700 690 430 49 5.3 2500 1028 341208109175500 - LCR AT CLINTON SLADE RANCH FORD (LA T 34 12 08 LONG 109 17 55) NOV , 1975 18 ••• .4 3&& 375 230 0 30 1.3 &00 1028 343230109221000 - LCR AT COUNTY BRDG N OF ST JOHNS (LAT 34 32 30 LONG 109 22 101 NOV , 1975 20 ••• 1.8 1700 1800 &80 360 50 5.3 2&00 1028 74 Table 9.--Modified drillers' logs of selected wells Depth (feet) (A-5-30)3dba QUATERNARY: Surficial material: Topsoil and fill ......................... . TERTIARY: Sedimentary rocks (undifferentiated): Sandstone, light-brown ................. . Red sandstone and 168 layers of shale ...................... . Sandstone, red ......................... . Sandstone, light-gray; with water-bearing fractures .......... .................. . 176 64 70 240 310 10 320 5 (A-5-30)11 ace QUATERNARY: Surficial material: Topsoil ................................. . TERTIARY: Sedimentary rocks (undifferentiated): Conglomerate . .......................... . Sandstone ............. ................. . tan; little water at 42 feet .. . reddish ..................... . red; plenty of water at ............................. . 37 46 19 21 58 104 31 135 Sandstone and shale .................... . Sandstone, brown,fine, with some shale .. . Sandstone, yellow, hard ................ . Datil Formation: Andesite member: Andesite ............................... . Sedimentary member: Sandy shale ............................ . 90 40 5 260 300 305 167 472 23 495 60 80 170 250 27 277 3 2 280 282 100 20 30 10 60 340 360 390 400 460 26 486 Conglomerate . .......................... . 2 12 Sandstone, Sandstone, Sandstone, 127 feet 14 2 (A-5-30)13cdc QUATERNARY: Surficial material: Topsoil and subsoil ..................... Sandy clay ............................. TERTIARY: Sedimentary rocks (undifferentiated): Sandstone .............................. Sandstone with some shale .............. . . 10 8 10 18 . . 102 50 120 170 (A-5-30)13dbc QUATERNARY: Surficial material: Topsoil ................................. . TERTIARY: Sedimentary rocks (undifferentiated): Sandstone, hard; half a gallon per minute of water at 15 feet ........ .. .. Sandstone, soft ........................ . 5 95 10 100 110 Sandy shale ............................ . Sandstone .. ............................ . Datil Formation: Andesite member: Andesite ............................... . Andesite, fractured; 21 gallons per minute of water ..................... . Andesite ............................... . (A-5-30)13ddd QUATERNARY: Surficial material: Topsoil and subsoil ..................... . TERTIARY: Sedimentary rocks (undifferentiated): Sandstone ................... ........... . Sandstone and shale .................... . DatIl Formation: Andesite member: Andesite ............................... . 10 10 50 110 60 170 70 240 Sedimentary member: Sandstone ........ ...................... . Shale .................................. . Sandstone, hard ....................... . Shale .................................. . Sandstone .............................. . Sandy shale; formation is water bearing from 240-486 feet; water under artesian pressure and stands at 172 feet in well ...................... . (A-5-30)14daa QUATERNARY: Surficial material: Soil, black ............................. . TERTIARY: Sedimentary rocks (undifferentiated): Sandstone, brown ...................... . Clay, pink ............................. . Clay, brown ........................... . Sandstone, brown, with thin streaks of clay approximately 2 inches thick .. Sandstone, brown ...................... . Clay, reddish-brown ................... . Sandstone, brown, with some clay seams ......................... ...... . 2 2 79 13 4 81 94 98 62 45 2 160 205 207 47 254 Hard black rOck ........................ . Sandstone, dark-brown ................. . Light-brown rock, fractured; water ... ............................ . Andesite, dark-brown .................. . Sandstone, red and brown ............. . 4 14 258 272 13 50 30 285 335 365 Datil Formation: Andesite member: Andesite, brown ....................... . Andesite, brown, interbedded with green stone and brown rock ......... . Andesite, fractured; water ............. . Andesite, brown, hard ................. . 18 383 12 3 42 395 398 440 16 1 96 97 2 99 12 111 14 125 (A-6-28)30cad QUATERNARY: Surficial material: Soil ..................................... QUATERNARY AND TERTIARY: Basaltic rocks: Basalt, weatheredi show of water at 20 feet ...... ......................... Cinders and clay, red, weathered ....... Welded black cinders, soft streaks; possible increase in water at 70 to 80 feet .............................. . 10 10 16 24 26 50 30 80 Basalt, welded cinders .................. Clay, dark-gray ........................ Welded cinders, possible fractured basalt . ............................... Cinders, redi estimate 30 to 35 gallons per minute of water ............................. Clay, red, tighti blew 1 hour at 30 to 35 gallons per minute ................... 75 Table 9. "-Modified drillers' logs of selected wells--Continued Depth (feet) (A-6-28)30dcc QUATERNARY: Surficial material: Soil ............. , .....................•. 4 Basalt, fractured, weathered; measured discharge at 85 feet about 20 gallons per minute •...•...................... Cinders, welded ........................ . Basalt .........................•.•...•... Cinders, weathered with clay streaks and some basalt splits ............... . 4 QUATERNARY AND TERTIARY: Basaltic rocks: Basalt, very fine grained i seep of water at 6 feet ...................... . Clay with weathered cinders ............ . Basalt, fractured; water at 20 and 22 feet ................................. . We~thered ci.nders; possible slight Increase In water .....•............... Basalt, fractured ....................... . Black cinders over red clay; estimate 10 gallons per minute .............. .. 9 2 13 15 24 39 5 24 44 68 15 5 13 85 90 103 35 138 TERTIARY: 70 Sedimentary(?) rocks (undifferentiated): Pumice, white, appears to drill blind as the pumice floats ........................ . Red cinders, sand, and reworked material .••....••..•...............•.. 44 182 43 225 (A-6-29)1bba QUATERNARY: Surficial material: Topsoil .............••.......•........... Sandstone with clay ........•.....•.•.... Conglomerate; hit more water ....•...........••..... 11 32 4 21 53 Clay ...........•..........•..•.....••... 7 60 17 Sandstone with gravel and small layers of clay ..•.....•......•..•••.•.•...... 55 115 30 35 47 82 85 TERTIARY: Datil Formation: Sedimentary member: Dark clay and gravel, soft; hit water at 5 feet •.•.......................... 21 (A-6-30)6Waab QUATERNARY: TERTIARY: Surficial material: Topsoil and rocks ....••.......•......... 5 Datil Formation: Sedimentary member: Sandstone, whitish; hit water at 32 feet. Sandstone, reddish f more water at 77 feet ..•....................•.... Sandstone, whitish ...•...•••...••.....•• 3 (A-6-30)6Wbbb QUATERNARY: TERTIARY: Datil Formation: Sedimentary member: Sandstone, soft •.....•....••.....•....•• Gravel and rocks; hit water at 39 feet .. Sandstone .............................. . Surficial material: Topsoil •..........••............•...•..•• 6 64 29 35 41 105 118 130 8 30 70 100 219 220 151 168 6 (A-7-27)14acc1 QUATERNARY AND TERTIARY: QUATERNARY: Surficial material: Soil .....•.....•......................... Clay .....••..........•......•••..•...... 3 9 3 12 Basaltic rocks: Malpais; started encountering water at 80 feet ...•...•.....•.••..•...••....•. (A-7-27)14acd1 TERTIARY: QUATERNARY: Surficial material: Soil and bou Iders .•......•.....•........ Sedimentary rocks (undifferentiated): 3 QUATERNARY AND TERTIARY: Basaltic rocks: Malpais ............•••....••.•...•••..... 59 Shale .....••.........•....•............. Sandstone ....................•••.•..•... 62 (A-7-27)14bdb TERTIARY: QUATERNARY: Sedimentary rocks (undifferentiated): Sandrock l light-brown, medium-brittle; 1.5 to 2 gallons per minute from 150 to 152 feet; 6 to 7 gallons per minute from 162 to 170 feet; water rises to depth of 120 feet .......... .. Surficial material: Topsoil •.•.............•.......•........• (A-7-28)6dac TERTIARY: QUATERNARY: Surficial material: Soil ...............•.........•........... Swamp bog ...•.......................... 3 14 3 17 Sedimentary rocks (undifferentiated): Sandstone with shaly sandstone; started hitting water at 55 ft ....•.... 76 Table 9. --Modified drillers' logs of selected wells--Continued Depth (feet) (A-7-28)6dbb1 QUATERNARY: Surficial material: TERTIARY: Surface soil ............................ . 4 4 31 35 Sedimentary rocks (undifferentiated): QUATERNARY AND TERTIARY: Shale, sandy ........................... . Sandstone .............................. . Basaltic rocks: Malpais ................................. . Sandy shale ............................ . 90 9 21 125 134 155 Basalt, black ........................... . Cinders, black ......................... . Basalt . ................................. . 32 2 3 110 112 115 (A-7-30)11ddc QUATERNARY: Surficial material: Alluvi4mi topsoil ....................... . 4 4 31 3 10 2 25 3 35 38 48 50 75 78 QUATERNARY AND TERTIARY: Basaltic rocks: Basalt rock, black ..................... . Cinders, red ........................... . Basalt, reddish ........................ . Cinders, black ......................... . Basalt, black ........................... . Cinders, red ........................... . TERTIARY: Sedimentary(?) rocks (undifferentiated): Pink sandy clay ........................ . Pink sandy clay and gravel; water ............................... . Pink sandy clay and gravel; lots of water .. ...................... . Basalt rock ............................ . 5 120 5 125 5 10 130 140 (A-7-30)16cab QUATERNARY: Gravelly clay and sand ................. . Surficial material: Loam ................................... . 3 5 Gravelly clay .......................... .. 35 42 TERTIARY: Datil Formation: Sedimentary member: Gravelly clay ...................... ..... . 27 30 Sandy clay ............................. . 28 70 Hard clay ............................. .. 23 93 40 50 50 100 4 32 50 24 4 6 17 42 74 124 148 152 158 175 31 22 38 60 43 3 65 68 5 29 24 14 73 102 126 140 135 190 (A-7-30)16dbb1 QUATERNARY: TERTIARY: Surficial material: Topsoil ................................. . 10 10 Datil Formation: Sedimentary member: Streaks of sand and gravel and claYi water from 21 to 50 feet ....... ...... . Streaks of clay and sandstone .......... . (A-7-30)20bbb Rocks; water at 41 feet ................ . Conglomerate ......... .................. . Sandstone .............................. . Brownish sticky clay ................... . Brownish sticky clay with crystals ..... . Reddish clay ........................... . Sandstone, coarse ...................... . QUATERNARY: Surficial material: Topsoil; dirt and rocks 22 22 16 38 TERTIARY: Datil Formation: Sedimentary member: Gravel and clay ........................ . (A -7 -30 )32bcc TERTIARY: QUATERNARY: Surficial material: Topsoil ................................. . 7 7 Datil Formation: Sedimentary member: Gravel, rocks and clay; water at 9 feet ............................... . Sandstone .............................. . (A-7-30)32cba Sandstone .............................. . Sticky clay ............................. . Gravel and rocks; little water at 69 feet .............................. . Sandstone, gray ....................... . Sandstone, reddish ..................... . Sandstone, gray ....................... . QUATERNARY: Surficial material: Topsoil with clay ....................... . TERTIARY: Datil Formation: Sedimentary member: Clay ................................... . 14 22 (A-8-27)26cdc TERTIARY: QUATERNARY: Surficial material: Surface with boulders .................. . 2 2 53 55 QUATERNARY AND TERTIARY: Basaltic rocks: Malpais ................................. . Sedimentary rocks (undifferentiated): Sand and sandy shale; started into water at 160 feet .......................... . 77 Table 9. --Modified drillers' logs of selected wells--Continued Depth (feet) (A-8-27)26dcd1 QUATERNARY: TERTIARY: Surficial material: Soil .................................... . Sedimentary rocks (undifferentiated): QUATERNARY AND TERTIARY: Basaltic rocks: Malpais ................................. . 47 Gravel and coarse sand ......................... . 55 65 120 18 35 180 215 14 12 73 18 30 103 30 330 30 360 50 30 10 60 90 100 16 160 157 70 317 387 (A-8-27)35baa QUATERNARY: QUATERNARY AND TERTIARY: Basaltic rocks: Cinders ............................ .... . Surficial material: TERTIARY: Overburden .................... ........ . Clay ................................... . 3 14 3 17 Sedimentary rocks (undifferentiated): Sandstone with shale streaks ........... . (A-8-28)17bdc QUATERNARY: TERTIARY: Surficial material: Topsoil ................................. . 4 4 Datil Formation: Sedimentary member: Clay with gravel ....................... . Gravel and sandi water bearing ........ . Sandy clay, gray ...................... . (A-8-29)3bba Blue clay with patches of gray rock; some water here ..................... . Sandstone, gray; water bearing; main aquifer; hit yellowish clay at 360 feet ............................. . TERTIARY AND CRETACEOUS: Eagar Formation of Sirrine (1958): Clay, red .............................. . Sandstone, red, tUrns lighter in color with depth i some water ............. . 90 90 130 220 80 300 UPPER CRETACEOUS Sedimentary rocks (undifferentiated): Clay, blue ............................. . (A -8-29 )3cdd TERTIARY AND CRETACEOUS: QUATERNARY: Surficial material: Sandy topsoil 10 10 Eagar Formation of Sirrine (1958): Layers of sand and gravel ............. . Clay, red .............................. . Sandstone, red, fine .................. .. (A-8-29)5adb TERTIARY AND CRETACEOUS: QUATERNARY AND TERTIARY: Basaltic rocks: Malpais, hard .......................... . Malpais boulders and cinders ...................... . , .. . Cinders and boulders with streaks of blue-gray shale ..................... . 38 38 Eagar Formation of Sirrine (1958): Streaks of red sandstone ............... . UPPER CRETACEOUS: 87 125 19 144 Sedimentary rocks (undifferentiated): Shale, blue-gray; caving most of way .. . Sandstone, gray ....................... . (A-8-29)7acd Shale, red ............................. . Shale, gray ............................ . Sandy lime ............................. . Gray sand ............................. . QUATERNARY: Surficial material: Topsoil ................................. . Boulder fill ............................ . 10 50 10 60 560. 770 988 1,010 PERMIAN: TERTIARY AND CRETACEOUS: Eagar Formation of Sirrine (1958) and upper Cretaceous sedimentary rocks (undifferentiated): Sand, red .............................. . Sand, gray ............................ . 12 210 218 22 480 8 540 548 Kaibab Limestone: Lime, hard ............................. . Coconino Sandstone: Sand ................................... . Supai Formation: Supai .................................. . 250 1,260 260 1,520 1,525 (A-9-29)2aca UPPER CRETACEOUS: QUATERNARY: Surficial material: Topsoil ................................. . 2 2 QUATERNARY AND TERTIARY: Basaltic rocks: Volcanic rock .......................... . 208 210 Sedimentary rocks (undifferentiated): Sandstone, gray, hard i water-bearing ................. ...... . Sandstone, gray ....................... . Clay, gray ............................. . 20 15 5 230 245 250 78 Table 9. --Modified drillers' logs of selected wells--Continued Depth (feet) (A-9-29)8bab QUATERNARY: Surficial material: Alluvium; sand, gravel, and clay mixed .. streaks of clay 12 and coarse sandstone; water ................. .............. . Shale, gray ............................ . Sandstone, yellow; water ............................... . 12 UPPER CRETACEOUS: Sedimentary rocks (undifferentiated): Sandstone, yellow I fractured below 40 feet; water at 40 feet ............ . 33 45 15 130 60 190 15 205 54 17 20 58 98 115 120 140 198 14 22 212 234 30 50 100 150 210 360 7 10 16 4 8 65 75 91 95 103 at 103 feet ......................... .. 7 22 110 132 19 15 179 194 16 10 210 220 60 13 45 112 190 203 248 360 10 10 69 11 370 380 449 460 85 25 130 155 160 170 190 (A-9-29)29bab QUATERNARY: Surficial material: Gravel ................................. . Clay and gravel i seep of water at 19 feet ........................... . TERTIARY AND CRETACEOUS: Eagar Formation of Sirrine (1958): Clay, dark-gray; 12 gallons per minute of water ..................... . Sand and gravel i more water ........... . Gravel, very hard; drilled 4 feet per day ............................. . 10 9 Clay, red .............................. . Clay, red, blue, and yellow ............ . Sandstone, red and clay layers ......... . Clay, gray ............................. . 10 19 5 UPPER CRETACEOUS: 21 4 40 44 Sedimentary rocks (undifferentiated): Sandstone, yellow and gray, very fine .. Sandstone, IIght-graYi water ........... . (A-9-29)32bdd Sandstone and clay; some water .......................... . Clay, blue ............................. . QUATERNARY: Surficial material: Soil .................................... . 5 5 Gravel and sand ....................... . 10 15 55 70 TERTIARY AND CRETACEOUS: Eagar Formation of Sirrine (1958): Clay, red .............................. . UPPER CRETACEOUS: Sedimentary rocks (undifferentiated): Sandstone, gray; water ................ . (A-9-29)35cad 44 48 Clay, red .............................. . Sandstone, red, fine, hard ............. . Clay, red .............................. . Sandstone, red ......................... . Red clay with sandstone streaks ...... .. . Sandstonei water; most water in crack 10 58 Sandstone, coarse ...................... . QUATERNARY: Surficial material: Soil .................................... . 4 4 TERTIARY AND CRETACEOUS: Eagar Formation of Sirrine (1958): Clay, red .............................. . Coarse, very hard sandstone and flint rock ........................... . (A-9-30)20acd Clay, red ............................... . QUATERNARY AND TERTIARY: Basaltic rocks: Clay, gray .............................. . Basalt •.•••••••••.••••••••••••••.•••••..• TERTIARY AND CRETACEOUS: Eagar Formation of Sirrine (1958): 90 90 Gravel, cemented ....................... . Sandstone .............................. . 38 32 128 160 UPPER CRETACEOUS: Sedimentary rocks (undifferentiated): Sandstone, gray; water ................ . Clay, gray ............................. . (A-9-30)34aaa Sandstone, red ......................... . QUATERNARY: Surficial material: Soil .................................... . QUATERNARY AND TERTIARY: Basaltic rocks: Basalt .................................. . Clay, red .............................. . Sandstone, red ......................... . Sandstone, red, finei water ............ . 2 UPPER CRETACEOUS: 50 52 Sedimentary rocks (undifferentiated): Clay, yellow ........................... . Clay, gray ............................. . TERTIARY AND CRETACEOUS: Eagar Formation of Sirrine (1958): Sandstone .............................. . Gravel, clay and sand .................. . 8 70 Sandstone, yellow ...................... . Shale, gray ............................ . 60 130 (A-10-24)6cdc UPPER CRETACEOUS: QUATERNARY: Surficial material: Topsoil ................................. . 10 10 QUATERNARY AND TERTIARY: Basaltic rocks: Malpais ................................. . 35 Sedimentary rocks (undifferentiated): Clay, yellow ........................... . Sandstone, yellow; water ............... . 45 5 Clay, black ............................ . Sandstone, yellow i water ............... . No log ................................. . 10 20 Malpais ................................. . Cinders ........... ..................... . Malpais ................................. . Cinders ................................ . Malpaisj seems to be plenty of water 178 13 57 385 392 570 583 640 85 725 (A-10-24)29abd QUATERNARY: Surficial material: Topsoil and clay ....................... . 15 15 Malpais ................................ .. 70 Cinders ................................ . Malpais ........... ...................... . Cinders ................................ . 160 15 85 90 250 265 QUATERNARY AND TERTIARY: Basaltic rocks: 5 120 7 UPPER CRETACEOUS: Sedimentary rocks (undifferentiated): Sandy shale and clay, some gravel on top ........... ".................... . 79 Table 9. --Modified drillers ' logs of selected weJls--Continued Depth (feet) (A-10-25)14bdd Shale, gray and blue; no water QUATERNARY: Surficial material: Topsoil, clay, and boulders ............ . Clay and some gravel .................. . 7 35 UPPER CRETACEOUS: Sedimentary rocks (undifferentiated): Yellow clay and some sandy layers; small amount of water at this level ................................ . Shale, yellow and blue; no change in water level ....................... . 188 308 TRIASSIC: 7 28 32 67 53 120 Chinle and Moenkopi Formations: Blue shale, resembles Chinle; no water ..................... Blue shale and some limestone; very cavy; no water ................. 167 475 48 523 Limestone, gray, some fractures; no water ............................. 77 600 Sandstone with streaks of clay ......... . 70 140 80 22 220 242 60 13 45 190 203 248 112 10 10 10 360 370 380 390 to 380 feet .•••••.•..•••••...•••••..•. 60 450 Conglomerate, hard .................... . Shale, brown ........................... . Sandstone .............................. . 10 20 18 420 440 458 27 76 31 485 561 592 66 658 . . . . 46 6 218 25 704 710 928 953 Sand rock, yellow ....................... . 30 70 30 110 200 270 300 410 75 485 10 40 188 228 192 420 PERMIAN: Kaibab Limestone: (A-10-25)20bcc QUATERNARY AND TERTIARY: Basaltic rocks: Lava ................................... . Cinders; hit water at 460 feet .......... . 460 40 460 500 (A-10-28)21acb QUATERNARY AND TERTIARY: Basaltic rocks: Clay and lava .......................... . 30 30 40 70 UPPER CRETACEOUS: Sedimentary rocks (undifferentiated): Sandstone .............................. , TRIASSIC: Chinle(?) Formation: Shale, red and blue .................... . Sandstone; water ....................... . (A-10-29)33ddc TERTIARY AND CRETACEOUS: Eagar(?) Formation of Sirrine (1958): QUATERNARY: Surficial material: Topsoil ................................. . 2 2 50 52 Sandstone, red ......................... . Clay, red .............................. . Sandstone, red, hard .................. . UPPER CRETACEOUS: QUATERNARY AND TERTIARY: Basaltic rocks: Malpais ................................. . TERTIARY: Bidahochi(?) Formation: Sandstone, red ......................... . Gravel, clay and sandstone mix ........ . 8 70 60 130 Sedimentary rocks (undifferentiated): Sand, gray, fine; water and running sand ....................... . Clay, yellow ........................... . Shale, gray ............................ . Sandstone, yellow ...................... . Shale, graYi well plugged back (A -1 0-31 )21 dbd QUATERNARY AND TERTIARY: Basaltic rocks: Fill and boulders ....................... . Basalt or lava .......................... . 26 24 26 50 20 70 TERTIARY(?): Bidahochi(?) Formation: Sandstone, hard, abrasive ............. . TRIASSIC: Chinle Formation: Purple shale witt) lenses of bentonite ......................... . Red beds of clay ..•••.•••••.•.....•••... UPPER CRETACEOUS: Sedimentary rocks (undifferentiated): Shale, blue ............................ . Sand, hard ............................ . Shale and lime shells •.•.....••••....•..• Shale with streaks of sand ............. Shale, bro\vn ........................... Iron pyrites ............................ Brown shale and shells ................. Sandstone .............................. . . . . . 135 20 28 52 68 2 20 15 205 225 253 305 373 375 395 410 Sandy lime, broken, fractured ......... . Moenkopi Formation: Shale, red ............................. . PERMIAN: Kaibab Limestone: Limestone, white, hard ................. Sand, fleecy white, hard ............... Lime, brown, hard ..................... Lime, brown, porous; water ............ (A-11-24)36dab UPPER CRETACEOUS: Sedimentary rocks (undifferentiated): Clay, yellow ........................... . Shale, gray ............................ . Shale, yellOw ........................... . Shale, gray ............................ . Clay, gray .•..••••••••.•..•••••.•....•.. 50 20 30 70 Sandrock, yellow ....................... . Clay, gray ............................. . Gray shale and sandrock ............................ . 50 70 100 170 (A-11-27)23aaa TRIASSIC: QUATERNARY: Moenkopi Formation: Surficial material: Fill •••......•.•••••.....•••.•...•....••• 10 10 QUATERNARY AND TERTIARY: Basaltic rocks: Malpais ................................. . Cinders ................................ . 10 10 20 30 Shale •.•....••.••••..•.•.••.••••...•.•.. PERMIAN: Kaibab Limestone: Limestone .............................. . Coconino Sandstone: Coconino ............................... . 80 Table 9. --Modified dritlers' logs of selected wellsR-Continued Depth (feet) (A-11-27)31dbb QUATERNARY AND TERTIARY: UPPER CRETACEOUS: Sedimentary rocks (undifferentiated): Basaltic rocks: Shale .................................. . Volcanics ............................... . 250 250 Sandstone .............................. . 100 60 350 410 45 54 44 2 21 200 254 298 300 321 (A-11-28)9acc2 TRIASSIC: Moenkopi Formation: Clay, red .............................. . Sandy breaks in shale; a little water ... . Sand, red, hard ....................... . Bluish-gray, hard, sharp sand; dry ... . Sticky clay, red ....................... . 25 2 13 10 3 White, hard, sharp, medium sand; some increase in water .............. . Sandy lime, brown, hard ............... . Lime, brown, hard ..................... . Crevice ................................ . Lime, brown, hard, in part sandy ...... . Sand, brown, hard; some water increase ............................. . Lime, brown, very hard, in part 25 27 40 50 53 PERMIAN: Kaibab Limestone: Gray, hard, sandy shale, few streaks of limestone; small increase in water .. Lime, brown, hard ..................... . Crevice; 60 gallons per minute with 39 feet of d raw down ...............•.. sandy .............................. .. 17 76 323 3 5 326 331 from 322 feet. ....................... . 14 345 Clay, red .............................. . Gravel ................................. . 13 30 85 115 21 No log ................................. . 5 15 10 127 18 136 145 150 165 175 302 320 Moenkopi Formation: Broken colored shale ................... . 125 285 245 530 625 feet ............................. . 155 685 Sandstone I red ......................... . Sh"ale, gray ............................ . Sandstone, whIte ....................... . Shale, red ............................. . 40 60 40 20 200 260 300 320 230 550 40 275 20 375 295 670 10 680 70 146 Crevices ............................... . Lime, brown, hard, in part sandy; sand running into hole badly 155 (A-11-29)4bbc QUATERNARY: Surficial material: Sand ................................... . TRIASSIC: . Chinle(?) Formation: Chinle ................................. Moenkopi Formation: Shale, red ............................. Sandstone, red ......................... Clay, red .............................. Sandstone, red; little water ............ . . . . . 3 7 PERMIAN: 10 35 15 10 45 60 70 2 72 Kaibab Limestone: Limestone .............................. Shale, gray ............................ Shale, brown ........................... Lime and sandrock ..................... Sandrock, red ......................... Limerock ............................... . . . . . . 9 (A-11-29)27aca QUATERNARY: Surficial material: Sandy soil ............................. . No log ................................. . TRIASSIC: Chinle(?) Formation: Clay, red .............................. . Shale, gray ............................ . 10 10 70 70 10 20 90 160 PERMIAN: Kaibab Limestone: Broken lime ................ '............ . Coconino Sandstone: Sandstone; hit water at (A-12-25)16ccc QUATERNARY AND TERTIARY: Basaltic rocks: Malpais .......................... ~ ...... . 10 10 150 160 TRIASSIC: Chinle and Moenkopi Formations: Shale, red ............................. . PERMIAN: Coconino Sandstone: Sandstone, white ....................... . (A-12-30)27aba TERTIARY: Bidahochi Formation: Gravel, gray ........................... . Sahd and blue badland ................. . PERMIAN: 160 160 30 45 190 235 TRIASSIC: Chinle and Moenkopi Formations: Yellow clay and shale ................. .. Gravel, gray ........................... . Kaibab Limestone: Lime, broken ........................... . Limerock ............................... . Coconino(7) Sandstone: Sandstone .............................. . (A-12-31)8dbc Chinle Formation: Shale, red ............................. . Red badland ........................... . 20 50 190 Blue badland ........................... . 120 Shale, red ............................. . 65 255 Sandstone I red ......................... . 25 280 Shale, red ............................. . Shale, blue ............................ . Moenkopi Formation: Sandstone, red ......................... . Shale, red ............................. . 60 20 130 150 20 80 170 250 100 350 TRIASSIC: 20 70 (A-13-24)12acb QUATERNARY: Surficial material: Alluvium ............................... . 10 10 30 40 30 70 TERTIARY: Bidahochi Formation: Sandstone, red ......................... . TRIASSIC: Chinle Formation: Shale, blue ............................ . PERMIAN: Coconino Sandstone: Sandstone .............................. . 81 Table 9. --Modified drillers' logs of selected wells--Continued Depth (feet) (A-13-25)4cca QUATERNARY: Surficial material: Soil and gravel formation ............... . TRIASSIC: Chinle(?) Formation: Sandstone r red ......................... . Shale, yellow ........................... . Shale, blue ............................ . Shale, red ............................. . Sandstone, red ......................... . Shaler red ............................. . Sandstone r gray ....................... . Moen kopi Formation: Shaler red and blue .................... . 18 18 21 5 6 18 55 4 19 39 44 50 68 123 127 146 12 158 Shale, red ............................. . Sandstone, light-red ................... . Shale, red and blue .................... . Sandstone, light-brown ................. . Sandstone, light-gray .................. . Shaler blue ............................ . Sandstone, brown ...................... . PERMIAN: Kaibab Limestone; Lime, gray ............................. . Sandstone, white ....................... . Lime, dark-gray ....................... . Coconino Sandstone: Sandstone ..... ......................... . 3 70 12 13 16 6 12 161 231 243 256 272 278 290 8 22 7 298 320 327 244 571 10 160 20 20 40 50 230 390 410 430 470 520 50 10 30 570 580 610 65 675 (A-13-26)7bad TRIASSIC: No log ................................. . Moen kopi Formation: Interbedded reddish sandstone ahd shale ................................ . Light·reddish sandstone grading into a white sandstone ................... . White sandstone grading into lightgray limestone ...................... . PERMIAN: Kaibab Limestone: Limestone, light-brownish"'gray ......... . Limestone, dark ........................ . Limestone, light ........................ . 50 50 80 130 10 140 10 150 10 30 30 160 190 220 White limestone grading into white sandstone .. ......................... . Sandstone, white ....................... . No sample .............................. . Sandstone, brown, flesh color .......... . No sample .............................. . Sandstone, light-brown ................. . Interbedded light-brown to mediumbrown sandstone ........ No sample .............................. . Sandstone, light-brown ................. . Interbedded light-brown and medium-brown sandstone .. ......................... . H ••••••••••• (A-13-27)15bda TERTIARY: Bidahochi Formation: Light-brown sand and clay ............. . Sand, light-brown ...................... . Sand, brown ........................... . TRIASSIC: Chinle Formation: Blue shale and sand .................... . Shale, blue ............................ . Clay, light-red ......................... . Limestone, gray ........................ . Shale, gray, hard ...................... . Shale, blue ............................ . Shale, red ............................. . Sandstone, brown ...................... . Shale, blUe ........................... .. Sandstone, brown ...................... . SI It5tone, red ....... ................... . Shaler blue ............................ . Moenkopi Formation: 5i Itstone, red .......................... . Shale, red ............................. . Siltstone, red .......................... . Siltstone, red, hard .................... . Shale, red ............................. . Clay, red .............................. . Sandy clay, red ........................ . Sandstone, red ......................... . Sandy clay, red ........................ . Sandstone, red ......................... . Sandy clay I red ........................ . Clay, red .............................. . 10 20 2 6 10 30 32 9 10 30 10 10 30 10 20 38 40 46 51 60 70 100 110 120 150 160 180 20 10 25 18 10 6 10 13 3 8 11 7 200 210 235 253 263 269 279 292 295 303 314 321 2 6 5 Sandy clay, red ........................ . Sandy clay I reddishbrown ............................... . Sandstone, light-red ................... . PERMIAN: Kaibab Limestone: Limestone, light-red .................... . Limestone, gray ........................ . Limestone r gray, hard ................. . Limestone, gray ........................ . Limestone I gray, hard .... , ............ . Limestone, gray ........................ . Limestone, gray, hard ................. . Limestone, gray ........................ . Shale, gray t sticky .................... . Shale, gray, hard ...................... . Limestone, gray ........................ . Limestone, gray, hard ................. . Limestone, gray ........................ . Limestone, gray, hard ................. . Sandy limestone, gray .................. . Limestone, gray ........................ . Cocon ina Sandstone: Sandstone, light-gray ................. .. Sandstone, white ....................... . Sandstone, gray ....................... . Sandstone, white ....................... . Sandstone, red ......................... . Sandstone, brown ...................... . Supai Formation: Red sandstone and clay ............... ,. Shaly clay, red ........................ . 329 4 2 3 4 7 20 17 2 4 9 1 4 40 51 15 6 2 3 333 335 338 342 349 369 386 388 392 401 402 406 446 497 512 518 520 523 6 30 10 185 19 10 529 559 569 754 2 35 785 820 15 35 20 130 165 185 45 230 20 480 120 120 600 720 225 950 967 773 783 (A-13-27)25dcc TRIASSIC: Chinle(?) Formation: Shale, blue ............................ . Shale, red ............................ .. Shale, brownish-blue ................... . Moenkopi Formation: Shale, red ................... , ......... . 15 45 20 15 60 80 35 115 Shale, blue ............................ . Shale t red ............................. . Sandstone ..... ......................... . PERMIAN: Kaibab Limestone: Limestone; hit cavity at 180 feet and bottom is deeper than 230 feet ...... . (A-13'28)12cac TRIASSIC: Chinle Formation: Blue clay and bentonite clay ........... . Clayey shale, red ...................... . Shale, gray ............................ . Shale, red ............................. . Shale, blue ............................ . Shale, red ............................. . Moen kopi Formation: Sandrock, red, soft .................... . No samples ............................. . Shale, gray ............................ . Gray shale grading into reddish-gray limestone . ........................... . 30 80 40 90 20 70 30 110 150 240 260 330 50 70 10 380 450 460 PERMIAN: Kaibab Limestone: Limestone, gray ........................ . Limestone, tan ......................... . Tan limestone grading into tan sandstone .... ....................... . Coconino Sandstone: Sandstone, white, hard ................ . Sandstone, white, medium·hard ......... . 725 17 82 Table 9. --Modified drillers· Jogs of selected wells--Continued Depth (feet) (A-13-29)35aaa TERTIARY: Bidahochi Formation: Sand and gravel ....................... . Clay, \vhite ............................ . Shale, blue ..........................•.. Shale, red ............................. . 60 20 60 80 Sandstone .................. ............ . Shale l blue ............................ . TRIASSIC: 21 14 20 20 10 226 240 260 280 290 37 327 PERMIAN: Chinle and Moenkopi Formations: Sandstone ...................... ........ . Shale, blue ............................ . 125 205 Kaibab Limestone: Limestone .............................. . (A-13-30)3bcd1 QUATERNARY: Alluvium: Fill ...........•..........•............•. TERTIARY: Bidahochi Formation: Clay, yellow ........................... . 20 20 50 70 200 270 TRIASSIC: Chinle Formation: Shale .••.........•••.........•.......... Conglomerate, hard .................... . Moenkopi Formation: Shale and sandstone .................... . PERMIAN: Kaibab Limestone: Limestone, white ....................... . Limestone, brown ...................... . Coconino Sandstone: Sandstone; water ....................... . 10 280 140 420 20 220 440 660 195 855 37 16 182 198 47 49 245 294 42 345 10 85 285 370 (A-14-26)21bcc QUATERNARY: Surficial material: Soil .................................... . TRIASSIC: Chinle Formation: Sandstone! red ......................... . Shale! blue ............................ . Shale! red ............................. . Sandstone, yellow; good stream of water at 71 feet ..................... . Moen kop i Formation: Shale, red, some sand; all water shut off at 103 feet with 12-inch casing ..• 2 29 7 23 31 38 61 15 76 69 145 Sandstone, red; a good stream of water at 168 feet ...•.........•.........•...... Shale, red ............................. . Sandstone, brown; lots of water at 205 feet ........•................•.... Shale, red ............................. . PERMIAN: Kaibab Limestone: Lime! white ............................ . Coconino Sandstone: Sandstone, white ....................... . 303 (A-14-26)34dbb QUATERNARY: Alluvium(7): Shale and boulders ..................... . TRIASSIC: Chinle Formation: Shale, red ............................. . Sandstone, red ......................... . Shale! gray ............................ . Shale, red ............................. . Sandstone, red ......................... . 48 48 67 25 60 35 40 115 140 200 235 275 Moenkopi Formation: Shale, gray .......... .................. . Sandstone, brown ...................... . PERMIAN: Kaibab Limestone: Limestone, gray ........................ . Coconino Sandstone: Sandstone, white ....................... . Silty sandstone, brown ................. . 70 440 221 4 661 665 10 10 120 130 (A-14-27)8dda TERTIARY(?) : Bidahochl(?) Formation: Soil .•........•......••.......•.......... 20 20 90 110 TRIASSIC: Moenkopi Formation: Red beds ...............•..••.....•..... Red beds, some lime ................... . Red beds ...•.•..•...........•...•...... PERMIAN: Kaibab Limestone: Lime ................................... . Coconino Sandstone: Sandstone; water, 240 to 250 feet ...... . 100 230 22 252 40 60 600 660 35 695 (A-14-29)33bbb TERTIARY: Bidahochi Formation: Fine sand and clay streaks ............. . Coarse sand and gravel! one-eighth inch ..................... . 80 80 25 105 TRIASSIC: Chinle(?) Formation: Sand, fine to coarse ................... . Blue shale and clay .................... . Red clay and shale ..................... . Brown and gray sandstone, streaks of shale ..................... . 270 100 60 375 475 535 25 560 Moenkopi(?) Formation: Limestone, gray .•.....•..•....••......•. Red clay and shale ...................... PERMIAN: Kaibab Limestone: Limestone! brown ....................... Limestone, shale stringers; lost circulation at 735 feet ........•....... Coconino Sandstone: Sandstone, white, brown, and gray . .... Supai Formation: Hard dark shale with streaks of white clay ............... .......... 40 735 424 1,159 22 1,181 83 Table 9. --Modified drillers' logs of selected wells--Continued Depth (feet) (A-14-30)26ddb TERTIARY: Bidahochi Formation: Fill ...••...••.••....................•... Sandstone ............................. . . TRIASSIC: Chinle Formation: Red beds ...........•.......•..........• Shale, green ........................... . Blue muck ............................. . Chert and quartz, hard ................ . Shale, red ............................. . Lime, hard ............................. . Red sand and shale .................... . Shale, red, sticky ..................... . Sandy shale, broken ............. , ... , .. Shale, red, sticky ..................... . Limestone, soft, ........................ . Moen kopi Formation: Shale, red, hard ....................... . 50 26 50 76 162 172 96 15 19 15 25 12 18 15 4 238 410 506 521 540 555 580 592 610 625 629 22 651 29 30 85 6 3 14 22 37 8 7 680 710 795 801 804 818 840 877 885 892 130 1,022 24 22 18 9 17 890 912 930 939 956 29 19 23 6 85 985 1,004 1,027 1,033 1,118 PERMIAN: Kaibab Limestone: Lime rock, hard ........................ . Limestone, porous; water ............... . Limestone, hard ................ , ....... . Shale, red .................. , ...... . , .. . Limestone, porous ...................... . Limestone, gray, hard ................. . Limestone and shale .................... . LImestone, gray, hard ............... , .. Limestone, gray, soft .................. . Shale, red, hard ....................... . Coconino Sandstone: Sandstone; water., ..................... . (A-15-30)21aba" QUATERNARY: Alluvium: Fill .................................... . Clay ................................... . Sand and gravel ....................... . TRIASSIC: Chinle Formation: Clay, red .............................. . Sandstone, hard ....................... . Shale and shells ........................ . Lime, medium .......................... . Hard sand boulders .. , ........... Red bed shells ........................ .. Sand, hard, fine ....................... . Shale, sticky ........................... . Broken Iime and sand ., ................ . Shale, red and green .................. . Clay, plue ............................. . Shale, red, hard ....................... . Hard sand and streaks of shale ........ . 4 , ••••• 5 53 12 5 58 70 20 35 65 22 14 209 140 28 44 98 22 23 76 90 125 190 212 226 435 575 603 647 745 767 790 866 Moenkopi Formation; Shale, red ............................. . Sandstone, red ............ , ............ . Sand, white, hard ..................... . Shale, green ........ , ...... , ... , ....... . Red shale and shells .................. .. PERMIAN: Kaibab Limestone: Very hard lime and chert .... " ........ . Lime, white, porous .................... . Lime, white, hard .................. , ... . Shale ....................••............. Lime, gray., ........................ , .. . Red shale and traces of white sand ........ , .............. . Coconino Sandstohe: Sandstone, broken ................ , .... . Sandstone, porous ..................... . Very white quartz sand ................ . 31 1,149 20 4 31 1,169 1,173 1,204 40 40 70 120 10 40 10 740 780 850 970 980 1,020 1,030 80 20 1,110 1,130 130 1,260 100 1,360 100 40 80 170 210 290 10 300 . . 105 15 245 260 . . 80 9 340 349 Sand; water ................. , ... , ...... . 10 160 10 170 (A-16-30)19dbc1 QUATERNARY: Alluvium: Valley fill .............................. . 50 50 130 180 120 30 100 30 70 150 20 300 330 430 460 530 680 700 TERTIARY(?): Bidahochi(?) Formation: Quicksand ........ , ............. ........ . TRIASSIC: Chinle Formation: Red beds .............................. . Sand, red .................... , ......... . Shale, red and green .................. . Sandy shale, red ........ , .............. . Shale, red and green .................. . Sandy shale, red ....... , ............... . Sand, white .................... , ....... . Shale, red, sticky ..................... . Sand, red .............................. . Shale, red, sticky ..................... . Sand rock, green, white and red ....... . Shale, blue ............................ . Shale, red, sticky ..................... . Hard sand and chert ..... , ............. . Moenkopi Formation: Shale, red, sticky ..................... . Conglomerate, hard .................... . PERMIAN: Kaibab Limestone: Limestone, hard ........................ . Coconino Sandstone: Coconino ........... .................... . (A-17-28)11acd QUATERNARY: Surficial material: Fill .................................... . TERTIARY: Bidahochi Formation: Clay ................................... . Sand ................................... . Clay ................................... . 20 20 50 70 Sand .................... , ........... , .. . Sand; water; Chinle Formation at 300 feet ............................. . (A-17-28)19bbc Sand ............................. , ..... Clay and benton ite ... , ................. Sand with streaks of bentonite ...... " ............ , .... Sand; water ............................ TERTIARY: Bidahochi Formation: Sand and clay .... , ..................... . Sandstone .............. ................ . Clay and bentonite ... , ................. . 5 25 110 5 30 140 (A-17-28)31bbc TERTIARY: Bidahochi Formation: No log ................................. . Sand ................................... . TRIASSIC: 10 140 10 150 Chinle Formation: Chinle ................................ , . 84 Table 9. --Modified drillers! logs of selected wells--Continued Depth (feet) (A-17-29)2bda QUATERNARY: Surficial material: Topsoil ................................ .. TERTIARY: Bidahochi Formation: Sand fill ............................... . Caliche ................................. . Boulders ............................... . Sandstone, red ......................... . Shale, red ............................. . 20 20 60 70 30 80 150 180 30 10 210 220 50 30 270 300 40 15 10 160 175 185 55 240 25 265 TRIASSIC(?): Wingate(?) Sandstone: Pale-red sandstone; first water at 240 feet ............................. . Sandstone, gray ....................... . (A-17-29)3bdb QUATERNARY: Surficial material: Sandy topsoil TERTIARY: Bidahochi Formation: Sandy clay, tan ........................ . SandI tan .............................. . Sandstone, tan ......................... . Sand, tan .............................. . Shale, white ........................... . 4 4 6 85 10 10 5 10 95 105 115 120 Sand, red .............................. . Red sandy shale ....................... . Red shale with gravel ................. .. TRIASSIC: Wingate(?) Sandstone: Sandstone, pink ........................ . Sandstone, wh ite, coarse; water ............................... . Chinle Formation: Shale, red, hard ....................... . 266 (A-17-29)26bcb TERTIARY: Bidahochi Formation: Sand and shale, brown ............................... . Limestone, gray ........................ . 45 35 Shale, yellow ........................... . 15 95 Shale, red ............................ .. 15 110 45 80 TRIASSIC: Wingate(?) Sandstone: Yellow sandstone and shale ............. . Sandstone, yellow ...................... . Chinle Formation: Shale, red ............................. . Shale, blue ........................... .. Shale l red ............................. . 10 30 120 150 30 30 490 180 210 700 3 9 36 9 171 180 216 225 10 10 10 10 30 40 160 170 180 190 220 260 (A-17-30)24aad TERTIARY: Bidahochi Formation: Sandi traceS of water near base ........ . 102 102 Clay, yellow .......................... .. 53 155 Clay, blue and white '................... . 13 168 CRETACEOUS: Dakota Sandstone: Black shale and traces of coal .......... . Shale, blue ............................ . Sandstone l porous; water .............. . Shale, green" ........................... . (A-17-30)33aab TERTIARY: Bidahochi Formation: Caliche ................................. . Sand, soft ............................. . Boulders ............................... . CRETACEOUS: Mancos Shale: Clay, yellow .......................... .. Sandstone l yellow ...................... . Shale, black ........................... . 10 30 10 10 40 50 30 10 60 80 90 150 Dakota Sandstone: Sandstone ...... ........................ . Shale, brown ........................... . Coal ................................... . Shale, black ........................... . Sandstone, hard, tight ................. . Sandstone, porous; water .............. . TRIASSIC: Chinle Formation: Badland clay ........................... . 265 (A -18-24 )8bcb QUATERNARY: Alluvium: Clay with sand ........................ .. TRIASSIC: Chinle and Moenkopi Formations: Sand and shale ........................ .. 41 41 115 156 Sandy shale with clay streaks .......... . Sandy lime and shale with gypsum ...... . Shale with lime streaks ................. . PERMIAN: Coconino Sandstone: Sand , .................................. . 60 78 8 216 294 302 298 600 10 105 5 110 20 70 28 12 320 390 418 430 (A -18-24 )9abb QUATERNARY: Alluvium: Sand ................................... . Clay ................................... . Sand and clay .......................... . Gravel ................................. . 75 15 5 75 90 95 TRIASSIC: Chinle Formation: Clay and shale ......................... . (A-18-29)26bdb TERTIARY: Bidahochi Formation: Topsoil, shale and sand, soft .......... . Reddish sandstone and blue shale, 50ft .. 270 30 270 300 Brown shale and white sandstone, soft .. Reddish sandstone and red shale, soft .. Shale, red ............................. . Sandstone, white ....................... . 85 Table 9.--Modified drilJers t logs of selected welJs--Continued Depth (feet) (A-18-30)4cbc TERTIARY; Bidahochi Formatlon: Sand, gray, medium-hard .............. Sandy shale, medium-hard .............. Sandstone, white, light, soft ........... Sandstone, brown and white, soft ...... . . . . 160 80 109 51 Sandy clay, tan, soft .................. . Clay, white, soft ....................... . Shale! brown and white! hard ................................ . Sandy shale, red, hard ................ . Sandy shale, red and white, hard ...... . 160 240 349 400 150 30 550 580 6 64 50 586 650 700 . 70 500 . . . 70 48 18 570 618 636 . 59 695 (A-18-30)14dbd TERTIARY; Bldahochi Formation: Sand and shale lenses, soft ............ . Sand and shale, hard .................. . Sandstone, white, hard ................ . Shal-e and sandstone, brown, hard ..... . White sandstone and brown sand, hard ........................•........ 120 125 47 78 120 245 292 370 60 430 Sandstone, white, medium-hard ......... Brownish clay and sandstone! medium-hard ........................ Sandstone! white, soft ................. Sandstone! gray, 50ft .................. TRIASSIC; Chinle Formation: Shale, red ............................. (A-18-31 )29bdb TERTIARY; Bidahochi Formation: Variable colored sand, soft ............. . Sand, mostly gravel, soft .............. . Fine sand with clay, soft ............... . Sandstone, yellow, soft ................ . CRETACEOUS; Dakota Sandstone: Charc.oal with gray sandy clay, soft ..... Charcoal and yel/ow sandstone, hard ....•............................ 140 120 80 16 140 260 340 356 10 366 14 380 Sandstone! white, hard ................ . Gray shale and white sandstone, hard .......................•......... TRIASSIC(?); Wingate(?) Sandstone; Blue and reddish-brown shale and siltstone, hard ................................• Reddish-orange sandstone, fine, hard ................................ . 37 417 56 473 32 505 47 552 6 2 8 369 371 379 2 381 (A-19-29)9aac TERTIARY; Bidahochi Formation: Sand ................................... . Sandy clay .•..................•......... Sand; water at 342 feet ................ . Clay ................................... . Sandstone .............................. . 194 78 77 12 2 194 272 349 361 363 Sand and clay .......................... . Sandstone ........... " ................. . Sand ................................... . TRIASSIC; Chinle Formation: Shale ..•.........•....•.........•......• (A-19-29)17acb2 TERTIARY; Bidahochi Formation: Sand, soft ............................. . Sandstone and clay ..................... . Sandstone .................... .......... . Sandstone and clay ..................... . 65 1S 120 60 65 80 200 260 Clay, red and white .................... . Red and white clay with sandstone ledges; water ....................... . TRIASSIC; Chinle Formation: Shale, red, hard ....................... . 15 275 180 455 10 465 42 8 106 77 53 14 3 23 11 11 154 162 268 345 398 412 415 438 449 460 (A-19-29)35cdb QUATERNARY; Surficial material: Soil ......•.............................. 4 4 34 38 47 103 112 Sand and clay .......................... . Clay ................................... . Sand ................................... . Sandy clay ............................. . Sand ................................... . Clay ..........•............•............ Sand; first water ...................... . Sandy clay .........................•.... Sand; water ............................ . Sandstone; water ....................... . TERTIARY; Bidahochl Formation: Sand and sandy clay ................... . Clay ...............•.................... Sand and clay .......................... . Clay .........•............•...•......... 9 56 9 (A-19-30)10abd TERTIARY; Bidahochi Formation: White shaly mud, soft .................. . Yellowish clay, hard and sticky ........ . Light-yellowish shale, soft ............. . Shale, white and brown, soft ........... . Brownish, shale, soft .................. . Sand and clay with streaks of white clay, soft ........................... . 120 90 170 30 50 120 210 380 410 460 240 700 15 715 133 848 72 165 920 1,085 11 1,096 . . 10 15 170 185 . . 15 4 200 204 Clay and sand, tan, soft ............... . Variable colored fine sand, soft .......................... . Clay and sand, tan, soft ............................ . Variable colored fine sand, soft ........ . TRIASSIC; Chinle Formation: Reddish shale, medium~hard ...•.•....... (A-20-26)25bab QUATERNARY; Alluvium: Sandy soil ............................. . Sandy clay ............................. . Fine quicksand ......................... . Clay and sand ......................... . 10 20 70 60 10 30 100 160 Clay, red .............................. Gravel and sandstone .................. TRIASSIC; Chinle Formation: Sandstone, red; water ................. Badland ................................ 86 Table 9. --Modified drillers l logs of selected wells--Contlnued Depth (feet) (A-20-29)25dcd QUATERNARY: Sandstone, with an occasional Su rficial material: Surface soil ............................ . Drift sand ............................•. boulder .... .......................... . 3 32 35 138 212 173 385 Sandstone, dirty, porous i weak show of water ............. ........... . Medium-hard sandstone with thin crystal ized sandstone from 2 to 4 Inches ......•................... 3 TERTIARY: Bidahochi Formation: Sandstone, white, soft ................. . Sandstone, brown, 50ft ................ . Sand and gravel; water ................. . 216 601 8 609 137 49 746 795 100 76 180 256 (A-21-28)24bbc QUATERNARY: TRIASSIC: Chinle Formation: Alluvium: Sand and gravel Red shale and some layers 80 80 of sandstone ........................ . Light-colored sandstone ................ .
Similar documents
Abstract - Procyanidln B-2 3. is subject to facile C
an A~ystem (64.16 (3-H), ..29 (4-H), J3,4 3.5 Hz] characteristic2 of the C-ri~ protons of A-type procyanidins. Confirmation of the chemical shift of 3-H was obtained by its pronounc81 n.O.e. aasoci...
More informationSprocket Catalog
• Type A Plain Bore (no hub extension) • Type B Plain Bore (one-sided hub extension) • Type C Plain Bore (two-sided hub extension) • Finished Bore • TAPER-LOCK® Sprockets and Bushings • QD® Sprocke...
More information