R - AGH
Transcription
R - AGH
Nanoelectronics Magnetoelectronics Tomasz Stobiecki AGH Katedra Elektroniki Semestr letni 2009 HDD for 50 years and now First Hard Disk Drive with 24" Diameter Disks Compared with Modern 2.5" HDD. The first HDD was introduced in 1956 with 50 disks of 24" diameter holding a total of 4.4 Mbytes of data. The purchase price of this HDD was $10,000,000 per Gbyte. For comparison in the foreground a modern HDD is shown holding 160 Gbyte of data on two 2.5" diameter disks at a purchase price of less than $1 per Gbyte. Miniaturyzacja Areal data storage density vs. time for inductive and MR read heads Disc drive The slider carrying the magnetic write/read head. The slider is mounted on the end of head gimbal assembly (HGA) The magnetic disks (up to 10) in diameter 1 – 5.25 inches. 5.400 – 15.000 RPM it is related to about 100 km/h The air-bearing surface (ABS) allowing the head to fly at a distance above the medium about 10 nm Schematic representation of a longitudinal recording process Magnetic force micrograph (MFM)of recorded bit patterns. Track width is 350 nm recorded in antiferromagnetic coupled layers (AFC media) Historia spintroniki 1986 – oscillatory interlayer exchange coupling (IEC) in Fe/Cr/Fe multilayers P. Grünberg et al. Phys. Rev.Lett. 57 (1986), 2442 1988 – Giant Magnetoresistance (GMR) in Fe/Cr/Fe multilayers M. N. Baibich,..., A.Fert,.. et.al. Phys. Rev.Lett. 61 (1988), 2472 1991 – Spin Valve (SV) in NiFe/Cu/NiFe/FeMn B. Dieny, et al. Phys. Rev.B (1991) 1995 – Tunnel Magnetoresistance (TMR =15%) in CoFe/Al2O3/Co J.S. Moodera, et al. Phys.Rev.Lett, 74 (1995) 2004 – Giant TMR at room temperature with MgO(100) barrier; TMR =220% CoFe/MgO/CoFe S.S.P. Parkin et al.- Nature vol.3 December (2004), 86 2006 – Hayakawa et al.- APL 89 (2006),23 2510; TMR =472% CoFeB/MgO/CoFeB Interlayer Exchange Coupling (IEC) Structure of Fe film/ Cr wedge/ Fe whisker illustrating the Cr thickness dependence of Fe-Fe exchange. Above, SEMPA image of domain pattern generated from top Fe film. (J. Unguris et al., PRL 67(1991)140.) Thickness dependnce of Cu spacer For ferromagnetic 3d metals D↑(EF) ≠ D↓(EF) ⇒ ρ↑ ≠ ρ↓ GMR ⇒ due scattering into the empty quantum states above the Fermi level ⇒ ρ ∝D(EF) Spinowo zależne przewodnictwo elektryczne Analogia do równoległego połączenia dwóch rezystancji M I R duże M I R małe Spin Polarization, Density of States (DOS) Density of states 3d Spin Polarization Normal metal (Cu) Ferromagnetic metal (Fe) ↑ P = n −n ↑ n +n ↓ E E EF ↓ N n EF n n DOS Material Polarizations Ni 33 % Co 42 % Fe 45 % Ni80 Fe20 48 % Majority Spin Minority Spin Majority Spin n DOS Minority Spin n↑ ( EF ) > n↓ ( EF ) n ↑ ( E F ) = n ↓ ( E F ) ρ↑ = ρ↓ ρ↑ > ρ↓ Co84 Fe16 55 % CoFeB 60% GMR ⇒ due scattering into the empty quantum states above the Fermi level ⇒ ρ ∝D(EF) Zasada działania zaworu spinowego (Spin-Valve) w głowicy twardego dysku AFM: FeMn, NiO, NiMn, IrMn USignal FM: Co, Fe, NiFe, CoFe NM: Cu, Ag, Au AFM Warstwa mocująca (pin-layer) 10 I = const warstwa swobodna 10 zamocowana 1(free-layer) 0 warstwa (pinned-layer) kierunek ruchu nośnika informacji SV – charakterystyki magnetorezystancyjne Zależność rezystancji od wzajemnego położenia wektorów namagnesowania: R↑↑+ ΔR FeMn/Ni80Fe20/Cu/Ni80Fe20 R = R↑↑ + R↓↑ − R↑↑ 2 [1− cos(θ −θ )] 1 2 R [a.u.] Antysymetryczna charakterystyka M(H) zakresie małych pól Duża czułość magnetorezystancyjna SR = ΔR R↑↑ HEB -1,5 -1,0 ∂ ( R0 − RS RS ∂H R ↑↑ ≈ 16 % ) ⋅ 100% SR ≈8%/Oe HF -0,5 Field [a.u.] 0,0 0,5 M.Czapkiewicz – praca doktorska (1999) Write/read head of HDD GMR & TMR- as read head GMR & TMR effect can be described as a change of resistance in respect to the angles Θ between magnetizations M of adjacent ferromagnetic layers R = R↑↑ + R↓↑ − R↑↑ 2 [1− cos(θ −θ )] 1 2 Disk layer structure Thin film disks Substrate – Al Mg (or glass) + electroplated Ni80P20 (Tc<Troom). NiP undercoat layer make disk hard and smooth. Cr underlayer is used to control microstructure and magnetic properties the main magnetic recording layer of CoPtCr doped with B. The magnetic layer is covered by a carbon overcoat layer and lubricant. The last two layers are necessary for the tribological performance of the head-disk interface and for the protection of the magnetic layer. Microscopic properties Coercivity Hc - control and modification: • magnetocrystalline anisotropy (grain shape anisotropy), •selection of alloying elements (Al, Cr, Pt, Ta, B,...) •determination of influence: •deposition conditions and parameters: substrate temperature, bias voltage, sputtering power (deposition rate), sputtering gas pressure (Ar) •microstructure: film stresses, grain size, texture (grain orientation), grain boundaries, crystal defects. If the grain structure is noticably voided, leading to reduced magnetic intractions and lower transition noise. Thermal stability For high density recording the grains are small in comaprison to the bit cell. In a simplified model, assuming isolated grains, the thermally induced switching of magnetization has to overcome an energy barier. The switching probability f is given by an Arrhenius equation: ⎛ ΔW ⎞ f = f 0 exp ⎜ − ⎟ kT ⎠ ⎝ where ΔW = KuV (6) ΔW is energy barier, Ku is the uniaxial anisotropy constant, V is grain volume. If the grains become very small, the magnetization switch very easily which leads to superparamagnetic efect. Estimation of minimum grain size (example): Ku=2×105 J/m3. Bit stored 10 years at room temperature (f<3.33×10-9Hz at T=300 K), than diameter of spherical grain is 9 nm. Granular media vs. patterned media Antiferromagnetic – coupled (AFC) media A precise control of the Ru thickness allows to establish an anti-parallel (antiferromagnetic coupling) between two ferromagnetic layers. Decreasing the Mrδ in AFC recording media leads to shrap transition, small grains and good S/N. Mrδ (eff)= Mrδ (top) - Mrδ (bottom) Storage density of AFC media >25Gbit/in2. (6) Longitudal recording vs. perpendicular Perpendicular Recording Schematic of the perpendicular recording scheme. The soft underlayer in the medium acts as an efficient write field flux path and effectively becomes part of the write head. The transmission electron micrograph (top right) shows a cross-section of a prototype perpendicular recording head used in a recent laboratory demo of 150 Gbit/in2 area recording density. SV-MTJ Based Read Heads SV-MTJ as a read sensor for high density (> 100Gb/in2) must fulfill requirements - Resistance area product (RxA) < 6 Ω-μm2 - High TMR at low RxA 2006 – New world record of TMR 472% Anelva & Advanced Industrial Science and Technology (AIST), Japan 128 Mbit ⇒ 370 mV Tunneling in FM/I/FM junction Material Polarizations FM I (PI) Ni 33 % Co 42 % Fe 45 % FM II (PII) E E E EF N n eV n EE F F N nn Barrier Ni80 Fe20 48 % n N nII↑ − nII↓ PII = ↑ nII + nII↓ n Co84 Fe16 55 % CoFeB 60% DOS Majority Spin Minority Spin n I↑ − n I↓ ↑ ↑ ↓ ↓ PI = ↑ I ∝ n n + n I II I n II n I + n I↓ M ↑↑ ↑ I I↑ ↓ I TMR = I M ↑↑ − I M ↑↓ 2 PI PII = I M ↑↓ 1 − PI PII TMR = I↓ I↑ ↓ II I M ↑↓ ∝ n n + n n ↑ II DOS DOS Majority Spin Minority Minority Spin Spin R↑↓ − R↑↑ R↑↑ I↓ Our results Motivation •How to optimize the multilayers structure of MTJ in order to obtain desirable tunnelling and magnetic parametrs? Structure analysis •Texture •Interface roughness •Correlations between microstructure exchange coupling and tunnelling parameters of IrMn based MTJs. Conclusions MTJ systems for electrical measurements 100×100 μm 10 mm TIMARIS: Tool status Tool #1 – process optimization on ∅200 mm wafers since mid of March 03 Tool #2 – The Worlds 1st ∅300 mm MRAM System is Ready for Process in August 03 Clean room Multi (10) Target Module Oxidation / Pre-clean Module Transport Module Sputtering System Tohoku LL : wafer-in Plasma Oxidation LL : Bridge Metal depo. Reactive sputter : surface smooth Sputtering system Uni Bielefeld Magnetic Random Access Memory (M-RAM) current conductors non-magnetic spacer ferromagnet antiferromagnet 0 1 ≈ 150 nm Ra - high Rp - low M-RAM fabrication compatible to CMOS technology SV-MTJ Based Spin Logic Gates (+, − ) IA RM TJ3 NAND RM TJ 4 MTJ 1 SV-MTJs Programing Inputs RM TJ2 IS MTJ 2 NOR MTJ 1 MTJ 2 2 VOUT IS VO UT Logic Output Logic Output RM TJ1 VOUT= IS(RMTJ3 + RMTJ3 – RMTJ1 – RMTJ2) Logic Inputs (+, − ) IB „1" 0 „0" -2 VOUT SV- MTJ as spin logic gates must fulfill requirements - Thermal stability Magnetic stability Centered minor loop Single domain like switching behaviour Reproducibility of R and TMR Siemens & Univ. Bielefeld: R. Richter et al. J. Magn.Magn. Mat. 240 (2002) 127–129 (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1) Logic Inputs MTJ 3, MTJ 4 Infineon and IBM Present World´s First 16 Mbit MRAM - Innovative Chip Design Results in Highest Density Reported to Date The increasing number of mobile applications such as smartphones and notebooks with additional multimedia features results in the need for more advanced memory chips. MRAM is a promising candidate for universal memory in high performance and mobile computing as it is faster and consumes less power than existing technologies. A new class of device based on the quantum of electron spin, rather than on charge, may yield the next generation of microelectronics. Pamięć Parkina DW – przemieszczane impulsami prądu. Porównanie ruchu dwóch DW pod wpływem impulsu pola i prądu Flux of information Information Information Information transmission Processing storage Outside word Input Information Output DRAM, MRAM Magnetic(HDD) Optical (CD, DVD) MAGNETOELECTRONICS SPIN ENGINEERING SPINTRONICS Schedule •Lecture 1 - Fundamentals of magnetism •Lecture 2 - Spin depend electron transport: AMR, GMR •Lecture 3 - HDD •Lecture 4 - Spin depend electron transport: TMR •Lecture 5 - MRAM •Lecture 6 - Biosensor, Magnetic wireless actuator for medical applications •Lecture 7 – Millipede Lecture 1 Fundamentals of Magnetism Definitions of magnetic fields ( r r r Induction: B = μ0 H + M External magnetic field: ) → H average magnetic moment of M magnetic material → Magnetization χ Susceptibility → tensor representing anisotropic material → M =χH → → B = μ 0 H (χ + 1) = μ H where: μ = μ0 (1 + χ ) permability of the material Maxwell’s equations r r r ∇ o B = divB = 0 r r r r ∇ × H = rotH = j r r ∫ H o dl = i [oe] H= l r r r r ∂B ∇ × E = rotE = − ∂t r r ∂ r r ∂φ o E d l = − B d s = − =U o ∫ ∫ ∂t S ∂t i 2πr [A/m] [oe] H= iN l [A/m] Demagnetization field poles density, magnetic „charge” density r r ⎛ B − μ0 M ∇o ⎜⎜ ⎝ μ0 → → → ⎞ ⎟ = − ∇o M = ρ m ⎟ ⎠ r r Hd = −NM Demagnetization field when magnetic materials becomes magnetized by application of external magnetic field, it reacts by generating an opposing field. To compute the demagnetization field, the magnetization at all points must be known. r r ⎛ dMx dMy dMz ⎞ ⎟⎟ + + ρm = −∇ o M = −⎜⎜ dy dz ⎠ ⎝ dx [emu/cm4] The magnetic field caused by magnetic poles can be obtained from: 4 πρ dV dH = r2 The fields points radially out from the positive or north poles of long line. The s is the pole strength per unit length [emu/cm2] H = 0.2s / r [oe= emu/cm3] Demagnetization tensor N For ellipsoids, the demagnetization tensor is the same at all the points within the given body. The demagnetizing tensors for three cases are shown below: xx yx xy yy xz yz zx zy zz 0 0 0 0 0 0 0 0 4π 4π / 3 0 0 0 4π / 3 0 0 0 4π / 3 2π 0 0 2π 0 0 0 0 0 The flat plate has no demagnetization within its x-y plane but shows a 4π demagnetizing factor on magnetization components out of plane. A sphere shows a 4/3 π factor in all directions. A long cylinder has no demagnetization along its axis, but shows 2π in the x and y directions of its cross sections. H total = H S − H D HS - the solenoid field (4π) Exchange coupling The saturation of magnetization MS for body-centered cubic Fe crystal can be calculated if lattice constant a=2.86 Å and two iron atoms per unit cell. 2.2 μ B 3 M S (T = 0) = = 1700 emu / cm (2.86 × 10 −8 )3 2 Electron Spin The magnetic moment of spining electron is called the Bohr magneton eh μB = = 0.93 × 10 − 20 emu 4πm 3d shells of Fe are unfilled and have uncompensated electron spin magnetic moments when Fe atoms condense to form a solid-state metallic crystal, the electronic distribution (density of states), changes. Whereas the isolated atom has 3d: 5+, 1-; 4s:1+, 1-, in the solid state the distribution becomes 3d: 4.8+, 2.6-; 4s: 0.3+,0.3-. Uncompensated spin magnetic moment of Fe is 2.2 μB . Electron spin Orbital momentum r r r L=r×p Magnetic moment of electron L = rmv = r 2 mω μL = i ⋅ S = 2π ω= T r L μL μL r r i L r p = μL = e 2m e 2 πr T eπr 2ω μL = 2π L= eh l (l + 1) 4πm h 2π l (l + 1) Electron spin Spin polarization of ferrmagnets Energy Energy Energia Magnetization EF d d d Density of states Spin s s s Spin Polarization, Density of States (DOS) Density of states 3d Spin Polarization Normal metal (Cu) Ferromagnetic metal (Fe) ↑ P = n −n ↑ n +n ↓ E E EF ↓ N n EF n n DOS Material Polarizations Ni 33 % Co 42 % Fe 45 % Ni80 Fe20 48 % Majority Spin Minority Spin Majority Spin n DOS Minority Spin n↑ ( EF ) > n↓ ( EF ) n ↑ ( E F ) = n ↓ ( E F ) ρ↑ = ρ↓ ρ↑ > ρ↓ Co84 Fe16 55 % CoFeB 60% GMR ⇒ due scattering into the empty quantum states above the Fermi level ⇒ ρ ∝D(EF) „A new class of device based on the quantum of elctron spin, rather than on charge, may yield the next generation of microelectronics.”