Aljabar Boolean, Penyederhanaan Logika dan Peta
Transcription
Aljabar Boolean, Penyederhanaan Logika dan Peta
Aljabar Boolean, Penyederhanaan Logika dan Peta Karnaugh ENDY SA Program Studi Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Prof. Dr. HAMKA Program Studi T. Elektro FT - UHAMKA Slide - 6 1 Standard Forms of Boolean Expressions Sum of Product (SOP) Product of Sum (POS) Program Studi T. Elektro FT - UHAMKA Slide - 6 2 The Sum-of-Products (SOP) Form When two or more product terms are summed by Boolean addition AB ABC ABC CDE BC D Program Studi T. Elektro FT - UHAMKA Slide - 6 3 Conversion of a General Expression to SOP Form Any logic expression can be change into SOP form by applying Boolean Algebra techniques AB CD AB ACD Try This: A B C A B C A B C AC B C Program Studi T. Elektro FT - UHAMKA Slide - 6 4 The Standard SOP Form ABC ABD ABC D D D C C A BD C C ABC D D ABC D ABC D ABCD ABC D ABC D Program Studi T. Elektro FT - UHAMKA Slide - 6 5 The Products-of-Sum (POS) Form When two or more sum terms are multiplied. A B A B C A B A B C A C Program Studi T. Elektro FT - UHAMKA Slide - 6 6 The Standard POS Form A B C B C D A B C D D D A Rule 12! A A B D D D A A B C C A B C D A B C D A B C D A B C D A B C D Program Studi T. Elektro FT - UHAMKA Slide - 6 7 Boolean Expression and Truth Table Program Studi T. Elektro FT - UHAMKA Slide - 6 8 Converting SOP to Truth Table Examine each of the products to determine where the product is equal to a 1. Set the remaining row outputs to 0. Program Studi T. Elektro FT - UHAMKA Slide - 6 9 Converting POS to Truth Table Opposite process from the SOP expressions. Each sum term results in a 0. Set the remaining row outputs to 1. Program Studi T. Elektro FT - UHAMKA Slide - 6 10 Converting from Truth Table to SOP and POS Inputs Output A B C X 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 Program Studi T. Elektro FT - UHAMKA X ABC ABC ABC ABC X A B C A B C A B C A B C Slide - 6 11 The Karnaugh Map Program Studi T. Elektro FT - UHAMKA Slide - 6 12 The Karnaugh Map Provides a systematic method for simplifying Boolean expressions Produces the simplest SOP or POS expression Similar to a truth table because it presents all of the possible values of input variables Program Studi T. Elektro FT - UHAMKA Slide - 6 13 The 3-Variable K-Map Program Studi T. Elektro FT - UHAMKA Slide - 6 14 The 4-Variable K-Map Program Studi T. Elektro FT - UHAMKA Slide - 6 15 K-Map SOP Minimization Program Studi T. Elektro FT - UHAMKA Slide - 6 A 1 is placed on the KMap for each product term in the expression. Each 1 is placed in a cell corresponding to the value of a product term 16 Example: Map the following standard SOP expression on a K-Map: ABC ABC ABC ABC Solution: Program Studi T. Elektro FT - UHAMKA Slide - 6 17 Example: Map the following standard SOP expression on a K-Map: ABCD ABC D ABC D ABCD ABC D ABC D ABC D Solution: Program Studi T. Elektro FT - UHAMKA Slide - 6 18 Exercise: Map the following standard SOP expression on a K-Map: ABC A BC A BC ABC D ABC D AB C D ABCD Program Studi T. Elektro FT - UHAMKA Slide - 6 19 Answer: Program Studi T. Elektro FT - UHAMKA Slide - 6 20 K-Map Simplification of SOP Expressions A group must contain either 1, 2, 4, 8 or 16 cells. Each cell in group must be adjacent to one or more cells in that same group but all cells in the group do not have to be adjacent to each other Always include the largest possible number 1s in a group in accordance with rule 1 Each 1 on the map must be included in at least one group. The 1s already in a group can be included in another group as long as the overlapping groups include noncommon 1s Program Studi T. Elektro FT - UHAMKA Slide - 6 21 To maximize the size of the groups and to minimize the number of groups Example: Group the 1s in each KMaps Program Studi T. Elektro FT - UHAMKA Slide - 6 22 Determining the minimum SOP Expression from the Map Groups the cells that have 1s. Each group of cells containing 1s create one product term composed of all variables that occur in only one form (either uncomplemented or complemented) within the group. Variable that occurs both uncomplemented and complemented within the group are eliminated. These are called contradictory variables. Program Studi T. Elektro FT - UHAMKA Slide - 6 23 Example: Determine the product term for the KMap below and write the resulting minimum SOP expression B AC AC D CD 1 B AC AC D C D Program Studi T. Elektro FT - UHAMKA Slide - 6 24 Program Studi T. Elektro FT - UHAMKA Slide - 6 25 Example: Use a K-Map to minimize the following standard SOP expression A BC ABC A BC A BC A BC B AC Program Studi T. Elektro FT - UHAMKA Slide - 6 26 Example: Use a K-Map to minimize the following standard SOP expression BC D ABC D ABC D ABCBD ABCD ABC D ABC D ABC D ABC D D BC Program Studi T. Elektro FT - UHAMKA Slide - 6 27 Mapping Directly from a Truth Table Program Studi T. Elektro FT - UHAMKA Slide - 6 28 Don’t Care (X) Conditions A situation arises in which input variable combinations are not allowed Don’t care terms either a 1 or a 0 may be assigned to the output Program Studi T. Elektro FT - UHAMKA Slide - 6 29 Don’t Care (X) Conditions Example of the use of “don’t care” conditions to simplify an expression Program Studi T. Elektro FT - UHAMKA Slide - 6 30 Exercise: Use K-Map to find the minimum SOP from 1 A B C A BC A BC ABC B C ABC B C Program Studi T. Elektro FT - UHAMKA Slide - 6 2 31 Thank You “Gagal Setelah Mencuba Seribu Kali Lebih Baik Daripada Tidak Pernah Mencuba. Keperitan dan Kepayahan Adalah Jalan Menuju Kebenaran” Program Studi T. Elektro FT - UHAMKA Slide - 6 32