Professor David A. Horsley Hemispherical Resonator Gyroscope
Transcription
Professor David A. Horsley Hemispherical Resonator Gyroscope
Micromechanical Gyroscopes Professor David A. Horsley Hemispherical Resonator Gyroscope Diamond Hemispherical Shells Researchers: Amir Heidari, Hadi Najar, Hseuh-An Sean Yang, Gerardo Jaramillo, Parsa Taheri Frequency Match High-Q Diamond DETF 8 Objectives: 1 10 Realize 3D micro shell resonators 1 10 7 1 10 6 1 10 5 1 10 4 Fabricate highly symmetric hemispheres using a combination precision machining and traditional MEMS micromachining techniques Silicon Quartz SiGe Diamond 1 μm 3 1 10 3 1 10 Process Flow 4 1 10 5 1 10 6 1 10 7 1 10 Microcrystalline Diamond (MCD) 8 Theoretical TED-limited Q vs. frequency Parameters: f = 5 Hz Pressure: 4.3e-8 bar Excitation: Electrostatic/Probe Sensing: LDV Investigate polycrystalline diamond as high Q‐factor structural material 1 10 Ring-Down Test = 180 mSec Parameters: Vac: 7.5e-5 Torr fn = 24.420 KHz Q = 10,000 Double-Ended Tuning Fork (DETF) Integrated Electrodes Polysilicon electrodes 250 m 1 mm Disk Resonator Gyroscope Diamond DETF sample frequency response showing Q = 81,646 and fn = 473.303kHz Resonator Q factor matches thermoelastic damping limit predicted using experimentally measured thermal conductivity Researchers: Sarah Nitzan, Jason Su, Mo Li 0.6 mm DRG - Setup Mode-Matching Tuning and quadrature null: • Bias Voltage: 15 V • Sense-Axis tuning: 0 V • Drive-Axis tuning: 9 V • Quadrature Null: 4.5 V After Mode-Match: ARW, Bias-Stability & Scale Factor Q = 55,000 • Bandwidth = 4 Hz 2 mm DRG and Ring w/ Integrated Electronics DRG Nonlinearity at large drive amplitudes: • Tuning Ring Gyro: Ring 85 40.0 • increases noise • leads to instability DRG Modes: On-Chip Electronics: Fall 2012 ©2012 University of California Prepublication Data March 2013 Berkeley Sensor & Actuator Center