Detection and mapping of Posidonia oceanica dead matte by high
Transcription
Detection and mapping of Posidonia oceanica dead matte by high
Rivista Italiana di Telerilevamento - 2009, 41 (2): 139-146 Italian Journal of Remote Sensing - 2009, 41 (2): 139-146 Detection and mapping of Posidonia oceanica dead matte by high-resolution acoustic imaging Agostino Tomasello, Filippo Luzzu, Germana Di Maida, Carla Orestano, Maria Pirrotta, Antonino Scannavino and Sebastiano Calvo Dipartimento di Ecologia, Università di Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy. E-mail: agtoma@unipa.it Abstract A high-resolution echosounder was used to acquire seismo-acoustic records of P. oceanica dead matte patches in the Gulf of Palermo. Seismo-acoustic profiling enabled detection of dead matte structures that are invisible to visual inspection, being hidden by variable layers of sandy sediment. The thickness of the dead matte measured reaches a maximum of 2.2 m. The mean volume of the matte per unit area of seabed surface (MEIx) varies from 0.2 to 2.2 m3/m2, with an average value of 1.6 m3/m2 and a total volume estimated at 73,000 m3. From literature data and from the volume of dead matte calculated in the present work we estimated that total carbon accumulated in the matte is about 2,484 tons. Seismo-acoustic technologies proves to be a powerful, non-destructive method to measure the thickness, extension, volume of dead matte and its potential carbon content. Keywords: Posidonia oceanica, dead matte, sub-bottom profiler, remote sensing, carbon sink. Individuazione e mappatura di matte morta di Posidonia oceanica attraverso immagini acustiche ad alta risoluzione Riassunto Un sistema acustico ad alta risoluzione è stato utilizzato per acquisire profili sismoacustici su matte morta di P. oceanica nel Golfo di Palermo. Le indagini hanno permesso di individuare matte morta altrimenti invisibile tramite ispezioni visive. Lo spessore della matte raggiunge valori di 2,2 m. Il volume medio di matte per unità di superficie (MEIx) varia da 0,2 a 2,2 m3/m2, con un valore medio di 1,6 m3/m2 e un volume di 73.000 m3. Utilizzando dati bibliografici ed il volume di matte morta calcolato nel presente lavoro è stato stimato che il carbonio totale contenuto nella matte è di 2.484 t. La tecnologia sismoacustica rappresenta uno strumento efficace e non distruttivo per misurare lo spessore, l’estensione, il volume della matte morta e la quantità potenziale di carbonio in essa contenuto. Parole chiave: Posidonia oceanica, matte morta, sub-bottom profiler, telerilevamento, riserva di carbonio. Introduction The endemic Mediterranean seagrass Posidonia oceanica (L.) Delile is a key species in 139 Tomasello et al. Detection and mapping of Posidonia oceanica dead matte Mediterranean coastal environments, where it forms a very extensive and productive ecosystem [Ott, 1980; Pergent et al., 1995]. This species is the only marine phanerogam able to form matte, a biogenic structure resulting from growth of plagiotropic and orthotropic rhizomes intertwined with roots and autochthonous and allochthonous detritus [Boudouresque and Meisnez, 1982]. These long-term organic reservoirs, due to their highly refractory nature, can be preserved over thousands of years, forming structures several meters thick [Mateo et al., 1997] that represent a potential carbon sink [Mateo et al., 2006]. The structure of matte provides important information on the health of the meadows, the sedimentary dynamics and hydrodynamic regime [Pergent-Martini et al., 2005]. Natural and/or anthropogenic causes can lead to formation of a regressive structure, called “dead matte”, caused by the regression of the P. oceanica meadow and disappearance of living shoots in the upper part of the matte [Pergent et al., 1995]. Historically, matte thickness has been evaluated by direct visual inspection or core sampling [Pergent-Martini et al., 2005]. Earlier remote sensing methods based on acoustic technologies attempted to estimate the thickness of the matte, but gave results for only the upper few layers [Rey and Diaz del Rio, 1989]. Recently, a very high-resolution seismoacoustic (Sub-Bottom Profiler) technique was successfully applied to assess the volume occupied by the matte underlying P. oceanica meadows [Lo Iacono et al., 2008]. Acoustic-based geophysical methods are remote-sensing techniques commonly used in aquatic environments [Garcia et al., 2004; Nitsche et al., 2004; Schrottke et al., 2006] to indirectly provide images of seabed features and sub-bottom sediment layers. These methods offer a cost-effective and non-destructive approach that allows for continuous mapping of bathymetry and subsurface information, representing a valid alternative to traditional surveys. In particular, the Sub-Bottom Profiler (SBP) uses a combination of sonic and ultrasonic waves to provide images of the water-sediment interface and underlying sediment layers by detecting changes in the mechanical impedance through reflections from the subbottom stratigraphy [Schock et al., 1989; Ballard et al., 1993; Schock, 2004]. In particular, the use of the very high-resolution sediment sub-bottom profiler, using the parametric effect [Grant and Schreiber, 1990; Spieß, 1993], can detect small impedance variations, like that created by the presence of organic matter storage in the matte [Wunderlich and Müller, 2003]. In this study a seismo-acoustic survey was carried out in the Gulf of Palermo (NW coast of Sicily, Italy) (Fig. 1) where very extensive P. oceanica dead matte patches occur [Tomasello et al., 2007], as a consequence of several decades of multiple pollution sources due to city planning disorder, improper waste disposal and untreated wastewaters [Genchi et al., 1982; Calvo et al., 1994]. The aim of this study is to assess the effective extension and volume of dead matte by seismo-acoustic techniques and to estimate indirectly the amount of carbon stored. Materials and methods Data acquisition On 28 July 2008 a high-resolution non-linear parametric echosounder Innomar SES-2000 compact was used to acquire seismo-acoustic records of P. oceanica dead matte patches in the inner sector of the Gulf of Palermo (Fig. 1); the transducer was mounted on the sides of 140 Rivista Italiana di Telerilevamento - 2009, 41 (2): 139-146 Italian Journal of Remote Sensing - 2009, 41 (2): 139-146 R/V “Antonino Borzi” (www.unipa.it/cisac). The track lines of R/V were run by navigation software using as background a morpho-bathymetric ������������������������������������������������������ map previously acquired by a Multi Beam Sonar System (Reson SeaBat 8125), on which the dead matte emerging from the bottom was �������������������������������������� identified [Luzzu, 2009] (Fig. 2). Seismo-acoustic profiling was carried out using a secondary frequency of 6 kHz. The data were corrected for loss of energy (spreading corrections) by using a linear time-varying gain (TVG). Ship movements were corrected by a motion reference unit. Data processing The upper and lower depth limits of each acoustic layer were selected in all sub-bottom profiles using the software Innomar-ISE 2.9 (Interactive Sediment layer Editor). All selected points were interpolated by the kriging method to reconstruct via DTM (pixel size of 1 m2) the top and the base of the dead matte. Matte thickness and volume were then calculated. In particular, we defined a Matte Edification Index (MEIx) obtained by the ratio between matte and sea bottom surface (m3/m2). Finally, the total dead matte volume of the area was determined by the sum of the MEIx values in all pixels. Figure 1 - Study area. Results and discussion The area investigated has a depth of -14.8 to -20.8 m and covers a surface of about 45,000 m2. The topography of the seafloor is irregular and includes areas with sandy bottom, dead matte and circular eroded structures delimited by matte walls of up to 1 m high (Fig. 2). Emerging dead matte covers up to 22,000 m2, corresponding to 49% of the total area investigated. Circular-shaped eroded morphologies (termed marmites by French authors) are common structures within P. oceanica meadows and are caused by a whirling hydrodynamic regime [Pergent and Pergent-Martini, 1995]. Seismo-acoustic profiling enabled us to identify different acoustic layers, interpreted as sand and rock, which constitute the present-day base of the matte. The rocky structure was identified by a high amplitude reflector positioned below the sediment at depths of ranging from 1.5 to 4 m below the seabed (Fig. 3). This suggests that rock and sand represent the 141 Tomasello et al. Detection and mapping of Posidonia oceanica dead matte native substrata on which P. oceanica meadow started to settle in the area. Seismo-acoustic profiling also enabled detection of other dead matte structures that are invisible to multibeam inspection, being hidden by variable layers of sandy sediment (Figs. 3 and 4). Figure 2 - Seismo-acoustic tracks (white lines) acquired on P. oceanica dead matte in the Gulf of Palermo. The black square delimits the area in which all the analyses were performed. The morpho-bathymetric map was acquired by Multi Beam Sonar System Reson SeaBat 8125. Figure 3 - Example of a seismo-acoustic profile in which the three different layers can be recognized: the base of the matte over sand is marked with a black line; the rocky layer is marked with dots through point sequence. 142 Rivista Italiana di Telerilevamento - 2009, 41 (2): 139-146 Italian Journal of Remote Sensing - 2009, 41 (2): 139-146 Hidden dead matte covers a total surface of 19,000 m2, which corresponds to 42% of the area investigated. The cause of complete loss of the meadow and its coverage by sandy sediment was probably the erosion, transport and deposition of inert solid waste that has been discharged along the shoreline since the end of the second world war. The thickness of the dead matte measured seismo-acoustically reaches a maximum of 2.2 m. The vertical accretion of matte including production, decomposition and erosion events estimated over centuries or millennia in several sites of Mediterranean sea, ranged from 0.06 to 0.41 cm year-1 [Mateo et al., 1997; Lo Iacono et al., 2008]. According to these estimates, settlement of the meadow in the area investigated may thus have occurred between 3,600 and 530 years ago. Figure 4 - Map distribution of emerging matte (grey) and sediments above the matte revealed by a sub-bottom profiler (red and yellow). The volume of the matte per unit area of seabed surface (MEIx) varies from 0.2 to 2.2 m3/m2 with an average value of 1.6 m3/m2 (Fig. 5). Considering the coverage of dead matte in the area its total volume was estimated at 73,000 m3. The amount of carbon storage in the matte is 0.034 tons/m3 [Lo Iacono et al., 2008]. The computation excludes the carbon storage in 143 Tomasello et al. Detection and mapping of Posidonia oceanica dead matte other species (e.g. Cymodocea nodosa or macroalge) living on this substrate. Finally, we extrapolate that the total carbon accumulated in 4.5 ha of dead matte is about 2,484 tons. Conclusion The use of seismo-acoustic technologies proves to be a powerful, non-destructive method to measure the thickness, extension and volume of matte [Lo Iacono et al., 2008; Endler, 2009]. These technologies can provide an accurate assessment of the potential size of the carbon stored in the dead matte, confirming the importance of P. oceanica as a sink for this element. Moreover, seismo-acoustic technologies will be applied to larger scales in the future, providing a better understanding of the role of P. oceanica in the carbon cycle of the entire coastal marine Mediterranean ecosystem. Figure 5 - Distribution map of Matte Edification Index (MEIx). References Ballard R.F., Sjostrom K.J., McGee R.G., Leist R.L. (1993) - A rapid geophysical technique for subbottom imaging. Geophysical ��������������������������������������������������������������� Techniques for Site and Material Characterization. GA, Atlanta, pp. 117-128. Boudouresque C.F., Meisnez A. (1982) - Découverte de l’herbier de Posidonie. Parc National de Port-Cros, Parc Naturel Regional de la Corse, Cahier n. 4, pp. 79. 144 Rivista Italiana di Telerilevamento - 2009, 41 (2): 139-146 Italian Journal of Remote Sensing - 2009, 41 (2): 139-146 Calvo S., Galluzzo M., Viviani G. (1994) - Water pollution problems in the Palermo area. In: Dellow B. and Puusola T. Editors, Proceedings UETP-EEE Annual Conference “Improving the Urban Environment”. London, pp. 73-87. Endler R. (2009) - Sediment physical properties of the DYNAS study area. J. Marine Syst., 75: 317-329. Garcia G.A., Garcia-Gil S., Vilas F. (2004) - Echo characters and recent sedimentary processes as indicted by high-resolution sub-bottom profiling in Ria de Vigo, NW Spain. Geo Mar. Lett., 24: 32-45. Genchi G., Di Bernardo F., Lugaro A., Calvo S., Ragonese S., Riggio S. (1982) - Dystrophic and eutrophic states of coastal sea-water in Palermo bay during the summer season (august 1981). VI° Journees Etud. Poll., CIESM. Cannes, pp. 635-639. Grant J.A., Schreiber R. (1990) - Modern swaths sounding and subbottom profiling technology for research applications: the Atlas Hydrosweep and Parasound system. Mar. Geophys. Res., 12: 9-19. Lo Iacono C., Mateo M.A., Gràcia E., Guasch C., Carbonell R., Serrano L., Serrano O., Dan J. (2008) - Very high-resolution seismo-acoustic imaging of seagrass meadows (Mediterranean Sea): Implications for carbon sink estimates. Geophys. ������������������������� Res. Lett., 35: L18601, doi:10.1029/2008GL034773. Luzzu F. (2009) - Sistemi avanzati a controllo remoto nel monitoraggio ambientale lungo la fascia costiera. PhD Thesis, Università di Palermo. pp. 107. Mateo M.A., Romero J., Pérez M., Littler M.M., Littler D.S. (1997) - Dynamics of millenary organic deposits resulting from the growth of the ����������������������� Mediterranean seagrass Posidonia oceanica. Estuar. Coast. Shelf Sci., 44: 103-110. Mateo M.A., Cebrìan J., Dunton K., Mutchler T. (2006) - Carbon flux in seagrass ecosystem. In: Larkum A.W.D., Orth R.J., Duarte C.M. Editors, Seagrasses: Biology, Ecology and Conservation. Springer, The Netherland, 7: 159-192. Nitsche F.O., Bell R., Carbotte S.M., Ryan W.B.F., Flood R. (2004) - Process-related classification of acoustic data from Hudson River Estuary. Mar. Geol., 209: 131-145. Ott J.A. (1980) - Growth and Production in Posidonia oceanica (L.) Delile. P.S.Z.N.I. Mar. Ecol., 1: 47-64. Pergent G., Pergent-Martini C. (1995) - Dynamique et èvolution de l’herbier à Posidonia oceanica en Méditerranée. G. Bot. Ital., 129(1): 303-317. Pergent G., Pergent-Martini C., Boudouresque C.F. (1995) - Utilisation de l’herbièr a Posidonia oceanica comme indicateur biologique de la qualité du milieu littoral en Méditerranée: état des connaissances. Mésogée, 54: 3-27. Pergent-Martini C., Leoni V., Pasqualini V., Ardizzone G.D., Balestri E., Bedini R., Belluscio A., Belsher T., Borg J., Boudouresque C.F., Boumaza S., Bouquegneau J.M., Buia M.C., Calvo S., Cebrian J., Charbonnel E., Cinelli F., Cossu A., Di Maida G., Dural B., Francour P., Gobert S., Lepoint G., Meinesz A., Molenaar H., Mansour H.M., Panayotidis P., Peirano A., Pergent G., Piazzi L., Pirrotta M., Relini G., Romero J., Sanchez-Lizaso J.L., Semroud R., Shembri P., Shili A., Tomasello A., Velimirov B. (2005) - Descriptors of Posidonia oceanica meadows: Use and application. Ecol. ������ Indicat., 5: 213-230. Rey J., Diaz del Rio V. (1989) - Cartografìa de los fondos marinos de la bahìa de Palma (Baleares, España): Distribuciòn de las praderas vegetales y sedimentos superficiales. 145 Tomasello et al. Detection and mapping of Posidonia oceanica dead matte In: Boudouresque C.F., Meinesz A., Fresi E., Gravez V. Editors. International Workshop Posidonia oceanica Beds, GIS Posidonie. Marseille, France, pp. 28-41. Schock S.G. (2004) - A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data. IEEE J. Oceanic Eng., 29(4): 1200-1217. Schock S.G., LeBlanc L.R., Mayer L.A. (1989) - Chirp subbottom profiler for quantitative sediment analysis. Geophysics, 54(4): 445-450. Schrottke K., Marius B., Alexander B., Burghard F., Dierk H. (2006) - Fluid mud dynamics in the Weser estuary turbidity zone tracked by high-resolution side-scan sonar and parametric sub-bottom profiler. Geo Mar. Lett., ���������������������� 26(3): 185-198. Spieß V. (1993) - Digitale Sedimentechographie - Neue Wege zu einer hochauflösenden Akustostratigraphie. �������������������������������������� Ber. Geowiss. Univ. ������������������ Bremen, 35: 1-199. Tomasello A., Calvo S., Di Maida G., Lovison G., Pirrotta M., Sciandra M. (2007) - Shoot age as a confounding factor on detecting the effect of human-induced disturbance on Posidonia oceanica growth performance. J. Exp. Mar. Biol. Ecol., 343: 166-175. Wunderlich J., Müller S. (2003) - High-resolution subbottom profiling using parametric acoustics. International Ocean Systems, 7(4): ����������� 6-11. Received 25/03/2009, accepted 30/04/2009. 146