subhalide
Transcription
subhalide
A New High speed Titanium Production by Subhalide Reduction Process – For Developing Affluent Society by Materials Innovation – Osamu Takeda1 and Toru H. Okabe2 Graduate student, Graduate School of Engineering, The University of Tokyo 1 2 Institute of Industrial Science, The University of Tokyo Institute of Industrial Science, The University of Tokyo 050218Caltech 1 Excellent Material, Titanium! Aerospace industry Feature of Titanium 1. Light and high-strength 2. Corrosion resistance 3. Biocompatibility 4. Some titanium alloy: shape memory alloy super elasticity Japan Aerospace Exploration Agency Dental material Power generation plant http://village.infoweb.ne.jp/~etou/indexhome.htm The JAPAN TITANIUM SOCIETY Institute of Industrial Science, The University of Tokyo 050218Caltech 2 Current Status of Titanium Production (a) Production of titanium sponge in the world (2003) China USA 4 kt 8 kt Kazakhstan Total 42.1 kt 9 kt Russia 2.6 kt JAPAN 18.5 kt (44% share) (b) Production of titanium mill products in Japan Amount of titanium mill products [kt] 16 13.8 kt (2003) 14 12 10 8 6 4 2 0 1970 1980 Year 1990 Institute of Industrial Science, The University of Tokyo 2000 050218Caltech 3 Comparison with common metals Table Comparison between common metals and titanium Metal Iron Aluminum Titanium Symbol Melting point (°C) Density (g/cm3@25 °C) Specific strength [(kgf/mm2)/(g/cm3)] Fe Al Ti 1536 660 1680 7.9 2.7 4.5 4.1(Pure) 2.2(Pure) 6.7(SUS304) 8.9(0.5Mg0.5Si) 5.1(Pure) 24.6(6Al4V) Clarke No. 4 3 10 Price (¥/kg) 50 600 3000 Production volume 9.6 x 108 2.2 x 107 6.6 x 104 1/300 (t/world@2003) 1/15000 Although titanium is the 10th most abundant element in the earth’s crust, its production volume is very small Institute of Industrial Science, The University of Tokyo 050218Caltech 4 The Kroll Process Chlorination: TiO2 + C + 2Cl2 → TiCl4 + CO2 Reduction: TiCl4 + 2Mg → Ti + 2MgCl2 Electrolysis: MgCl2 → Mg + Cl2 Crushing TiCl4 Mg & MgCl2 recovery ports Sponge Ti Mild steel reactor Mg & MgCl2 Features: ◎High-purity Ti can be obtained. ◎Metal/salt separation is easy. ○Chlorine circulation is Established. ○Efficient Mg electrolysis can be utilized. ○Reduction and electrolysis can be carried out independently. ×Process is complicated. ×Reduction process is a batch type. ×Production speed is low. Reduction speed of Ti is <1 t/day·batch, which is one of the contributors to its high cost. Institute of Industrial Science, The University of Tokyo 050218Caltech 5 Current Status of Titanium Metallurgy The FFC Cambridge process (2000) The direct reduction processes of titanium oxide (TiO2) (e.g., the OS process, the_EMR/MSE process, the ESR process) TiO2(s) + e- → Ti(s) + O2– (in CaCl2) TiO2(s) + Ca → Ti(s) + CaO (in CaCl2) Difficulties in using TiO2: Production of high-purity TiO2 feed is expensive. Energy efficiency is low. Metal/salt separation is difficult. Purity control of obtained Ti is difficult. Advantages of the Kroll process: Oxygen and iron removal by the chlorination process is highly efficient. Metal/salt separation by vacuum distillation is easy. High-purity Ti with low oxygen is obtainable. Mg and Cl2 are reusable. Institute of Industrial Science, The University of Tokyo 050218Caltech 6 Purpose of this Study Establishment of a continuous and high-speed titanium reduction process based on the magnesiothermic reduction of titanium chlorides The Kroll process Feed: TiCl4 High reduction heat Stability as a gas phase →Low reduction speed to control the reactor temperature →Long cool time for the reactor after reduction Subhalide reduction process Feed: Titanium subchlorides (TiClx, x = 2, 3) Low reduction heat Stability as a condensed phase →High reduction speed Institute of Industrial Science, The University of Tokyo 050218Caltech 7 Properties of Titanium Chloride TiCl4 TiCl3 TiCl2 Color Clear Red Black Molecular weight (g/mol) 189.7 154.2 118.8 Density (g/cm3) 1.70 No data 3.13 Melting point (°C) −24.1 – – Boiling point (°C) 136.5 – – – 830 1307 ∆G°f at 800°C −317 −327 −344 ∆G’°f at 800°C −637 −491 −344 – 0.74 1.2 × 10−4 Appearance Sublimation point (°C) (kJ/mol Cl2) (kJ/mol Ti) Vapor pressure at 800°C (atm) Institute of Industrial Science, The University of Tokyo 050218Caltech 8 New Titanium Production Process Using Titanium Subhalides (TiClx, x = 2, 3) ① TiCl4(l, g) + Mg(l, g) → TiClx(s, l) + MgCl2(l) TiCl4(l, g) + Ti(s, scrap) → TiClx(s, l) ② TiClx(s, l) + Mg (l, g) → Ti (s) + MgCl2 (l, g) TiCl4 Mg or Ti MgCl2 –TiClx TiClx Step 1: High-speed production of Ti subchlorides and enrichment of TiClx Ti vessel Step 2: High-speed Mg magnesiothermic TiClx reduction of TiCl x Mg, MgCl2 (g) Mg, MgCl2 (l) Step 3: High-speed removal Ti of Mg and MgCl2 from sponge Ti sponge by draining and vacuum distillation Institute of Industrial Science, The University of Tokyo 050218Caltech 9 Features of the New Process Table Comparison of the Kroll process and new process Kroll process New process Process type Batch-type, limited speed (Semi-)Continuous, high speed Feed material TiCl4 (l, g) TiCl2 or TiCl3 (s, l) Heat of reduction, High (–434) Low (–94 ~ –191) Reactor material Mild steel (Iron contamination unavoidable) Titanium (No iron contamination) Reactor size Large (Crush and melt) Small (No crush and direct melt) Flux, sealant Not used MgCl2, Ti Common features Magnesiothermic reduction of chloride Removal of MgCl2 and Mg from Ti sponge by draining and vacuum distillation Production of high-purity Ti with low oxygen content ∆H° / kJ mol Ti Institute of Industrial Science, The University of Tokyo 050218Caltech 10 Today’s Report Investigation of magnesiothermic reduction of titanium subchloride (TiClx, x = 2, 3) Route A: 2 TiCl3 + 3 Mg → 2 Ti + 3 MgCl2 Route B: 2 TiCl3 + Ti → 3 TiCl2 TiCl2 + Mg → Ti + MgCl2 Feed material 1073 K 1/2 Cl2 (g) TiCl4 (g) TiCl3 (s) TiCl2 (s) A B Reaction pathways MgCl2 (l) Exp. overall composition Reductant Ti (s) Mg (l) Figure Isothermal phase diagram for the Ti–Mg–Cl ternary system at 1073-K. [Ref. Okabe et al.: J. Japan Inst. Metals 61 (1997) pp. 610-618.] Institute of Industrial Science, The University of Tokyo 050218Caltech 11 Experimental Apparatus T1 T2 (a) (b) Ar inlet/outlet Thermocouple Alumina tube Stainless steel chamber Stainless steel condenser Heating element Stainless steel vessel (c) Stainless steel (d) cell Ti reaction container TiClx powder Mg lump Figure Schematic illustration of the experimental apparatus for the magnesiothermic reduction of TiClx. Institute of Industrial Science, The University of Tokyo 050218Caltech 12 1100 Exp. A, feed; TiCl3 1050 800 150 s 40 K Temperature, T /K (a) 750 1000 2 TiCl3 + 3 Mg → 2 Ti + 3 MgCl2 950 900 0 :T1 (inside) :T2 (outside) 200 400 600 800 700 650 Temperature, T’ /°C Results: Transition of Temperature 1000 Time, Δt /s Exp. B, feed; TiCl2 800 183 s 1050 750 1000 TiCl2 + Mg → Ti + MgCl2 950 900 700 :T1 (inside) :T2 (outside) 0 200 400 600 800 650 Temperature, T’ /°C 1100 32 K Temperature, T /K (b) 1000 Time, Δt /s Figure Representative transition of the sample temperature during the magnesiothermic reduction. [G, R] Institute of Industrial Science, The University of Tokyo 050218Caltech 13 Results: Appearance of Sample (a) Sectioned reaction (b) Initial setup of (a) container after reduction Exp. A, feed; TiCl3 Stainless steel cell Ti reaction container TiCl3 powder Porous Ti metal Mg lump 10 mm (c) Sectioned reaction (d) Initial setup of (c) container after reduction Exp. B, feed; TiCl2 Stainless steel cell Porous Ti metal Ti reaction container TiCl2 powder Mg lump 10 mm Figure Sectioned titanium reaction container after the experiment for the magnesiothermic reduction of TiClx. [G,S] Institute of Industrial Science, The University of Tokyo 050218Caltech 14 Results: XRD and Composition Intensity, I (a.u.) Exp. A, feed; TiCl3 : α-Ti (PDF: 44-1294) Pure Ti was obtained Exp. B, feed; TiCl2 20 40 60 Angle, 2θ (degree) 80 100 Figure X-ray diffraction patterns of the obtained powder samples. [G, R] Table Analytical results of the obtained titanium samples Exp. a Concentration of element i, Ci (mass%) a Ti Fe Ni Cr A 99.37 0.16 <0.01 0.02 B 99.92 0.03 <0.01 0.04 Mg Yield Al (%) 0.44 99 <0.01 <0.01 94 0.16 Determined by X-ray fluorescence analysis, and the value excludes carbon and gaseous elements. [G, R] Institute of Industrial Science, The University of Tokyo 050218Caltech 15 Results: Microstructure (a) Obtained titanium from TiCl3 Ti sponge (Exp. A, feed; TiCl3) Coral-like structure 10 µm (b) Obtained titanium from TiCl2 Ti sponge (Exp. B, feed; TiCl2) 10 µm Figure Scanning electron micrographs of the obtained titanium samples. [F, Q] Institute of Industrial Science, The University of Tokyo 050218Caltech 16 Separation Process by the Combination of Draining and Vacuum Distillation T1 T2 Argon inlet / outlet (c) 100 mm (a) Thermocouple Alumina tube Stainless steel reaction chamber Stainless steel Mg and MgCl2 condenser Heating element Stainless steel reaction vessel (b) Plug and outlet port for Mg and MgCl2 drain Stainless steel tray for Mg and MgCl2 drain Ti reaction vessel 50 mm TiCl3 powder (100 g) Mg rod (ca. 5x5x80 mm, 23 g) Figure Schematic illustration of the experimental apparatus for the magnesiothermic reduction of TiCl3. [J] Institute of Industrial Science, The University of Tokyo 050218Caltech 17 Separation Process by the Combination of Draining and Vacuum Distillation After Exp. Before Exp. Ti tube Ti-reaction container TiCl3 powder (100 g) Mg rod (23 g) Ti sponge Ti sponge 20 mm 20 µm Table Analytical results for the magnesiothermic reduction of TiCl3 Concentration of element i, Ci (mass%) a, b Exp. J Yield Ti Fe Ni Cr Mg Al (%) 99.18 0.50 0.01 0.02 0.09 0.21 87 N 99.04 0.18 0.02 0.02 0.09 0.65 82 a Determined by X-ray fluorescence analysis, and the obtained value excludes carbon and gaseous elements. b This value is the average of top and bottom of the obtained Ti sponge. Pure metallic titanium was effectively obtained by this process. Institute of Industrial Science, The University of Tokyo 050218Caltech 18 Conclusions A new titanium production process based on the magnesiothermic reduction of titanium subhalides was proposed, and its feasibility was demonstrated. Further details: High-speed magnesiothermic reduction of TiClx was carried out and feasibility of this high-speed reduction process was demonstrated. It was demonstrated that a titanium crucible can be utilized as a construction material for the reduction process, and a new Fe-contamination free process was proposed. Mg (g), MgCl2 (g) Heating element TiCl2+Mg (+MgCl2 + Ti) MgCl2 (l) Institute of Industrial Science, The University of Tokyo Titanium container 050218Caltech 19 Future Works Production process of TiClx from TiCl4 Enrichment process of TiClx → Establishment of a continuous and high-speed titanium production process Vacuum TiClx production chamber TiCl4 Mg or Ti Mg and MgCl2 condensation chamber Mg and MgCl2 draining chamber VAR electrode Ti crucible and Mg reductant TiClx and MgCl2 TiClx charging reduction chamber chamber Vacuum-distillation chamber for Mg and MgCl2 Mg and MgCl2 storage chamber Institute of Industrial Science, The University of Tokyo 050218Caltech 20 Epilogue 1858 Yes! Fig. The table centerpiece made of aluminum, which was crafted for Emperor Napoleon III in 1858. (Carnegie Museum of Art, Pittsburgh, Pennsylvania, cover page of JOM, Nov. 2000) Aluminum was changed from a rare metal to a common metal by the process innovation, and it contributed to develop our society. Can titanium be a common metal? Institute of Industrial Science, The University of Tokyo 050218Caltech 21 これ以後補足資料 Institute of Industrial Science, The University of Tokyo 050218Caltech 22 Gibbs Energy of Formation of Chloride -200 ∆H° -400 f -600 TiCl4 MgCl2 ∆G°f Reduction Electrolysis 0 Reduction Standard Gibbs energy of formation, ∆Gf°/ kJ ·(mol·Cl2)-1 ∆Gf° = ∆Hf° + T∆Sf° TiCl3 TiCl2 CaCl2 -800 NaCl -1000 0 200 KCl 400 600 800 1000 1200 1400 Temperature, T / K Heat of reduction is halved by utilizing titanium subhalides Fig. Standard Gibbs energy of formation of several Chlorides.[Ref. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).] Institute of Industrial Science, The University of Tokyo 050218Caltech 23 Elementary Reaction Equation and Total Reaction Equation At 1073 K ① TiCl4(g) + Mg(l) → TiCl2(s) + MgCl2(l) ∆H° = −339 kJ, ∆G° = −185kJ This is suitable for developing high speed process ② TiCl2(s) + Mg(l) → Ti (s) + MgCl2(l) ∆H° = −91 kJ, ∆G° = −130 kJ ③ TiCl4(g) + 2 Mg(l) → Ti (s) + 2 MgCl2(l) (=①+②) ∆H° = −430 kJ, ∆G° = −315 kJ Institute of Industrial Science, The University of Tokyo 050218Caltech 24 Mass Balance of Titanium Production TiCl4 + 2 Mg → 3.96 ton 1.02 ton 2.33 m3 Ti + 1 ton 0.59 m3 2 MgCl2 3.98 ton 0.22 m3 1.71 m3 ∆H° = −8980 MJ (2.50 MW・h) 1/2 TiCl2 + Mg → Ti + MgCl2 2.48 ton 0.51 ton 1 ton 1.99 ton 0.79 m3 0.29 m3 0.22 m3 0.85 m3 ∆H° = −1900 MJ (0.53 MW・h) Institute of Industrial Science, The University of Tokyo 050218Caltech 25 Vapor Pressure of some Chemicals Temperature, T’ /℃ 500 1000 0 Vapor pressure, log p゜i (atm) -2 TiCl4 MgCl2 TiCl3 CaCl2 -4 Ca -6 -8 TiCl2 Mg -10 -12 400 Ti 600 800 1000 1200 1400 Temperature, T /K Titanium subhalides are stable as a condensed phase even at elevated temperatures Figure Vapor pressure of several chemical species. [Ref. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).] Institute of Industrial Science, The University of Tokyo 050218Caltech 26 Vapor Pressure of some Chemicals 0 Mg MgCl2 Ca Na K Vapor pressure, log p゜i (atm) -2 -4 CaCl2 TiCl3 -6 -8 KCl -10 Ti NaCl TiCl2 -12 600 800 1000 1200 1400 Temperature, T / K Fig. Vapor pressure of several chemical species. [Ref. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).] Institute of Industrial Science, The University of Tokyo 050218Caltech 27 Vapor Pressure of some Chemicals Temperature, T / K 2000 0 1000 500 400 TiCl4 Vapor pressure, log p゜i (atm) -2 -4 K Na -6 MgCl2 -8 NaCl Mg KCl -10 Ti -12 0.5 CaCl2 1.0 TiCl3 TiCl2 Ca 1.5 2.0 2.5 Reciprocal temperature, 1000 T-1 / K-1 Fig. Vapor pressure of several chemical species. [Ref. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).] Institute of Industrial Science, The University of Tokyo 050218Caltech 28 The Kroll Process Calcined coke Rutile, Upgraded ilmenite Cl2 Carbo-chlorination CO, CO2 Crude TiCl4 (VOClx, SiCl4, SnCl4) Purification of TiCl4 Mg VOClx, SiCl4 SnCl4 TiCl4 Reduction of TiCl4 by Mg MgCl2 Sponge Ti, MgCl2 and Mg Vacuum distillation Electrolysis of MgCl2 Mg, MgCl2 Sponge Ti Arc melting Ti or Ti alloy ingot Fig Flowchart of the Kroll process for titanium production. Institute of Industrial Science, The University of Tokyo 050218Caltech 29 New Titanium Production Process Using Titanium Subhalides Calcined coke Rutile, Upgraded ilmenite Cl2 CO, CO2 Fluidized bed chlorination Crude TiCl4 (+ VOClx, SiCl4, SnCl4) VOClx, SiCl4 SnCl4 Purification of TiCl4 Scrap Ti TiCl4 Production of TiClx TiClx + MgCl2 MgCl2 Mg MgCl2 Enrichment of TiClx Ti (+ MgCl2) Mg TiClx (+ MgCl2) Reduction of TiClx Sponge Ti (+MgCl2, Mg) Vacuum distillation Electrolysis of MgCl2 Sponge Ti Mg, MgCl2 This study Arc melting Ti or Ti alloy ingot Fig Flowchart of the new titanium production process. Institute of Industrial Science, The University of Tokyo 050218Caltech 30 Key Factors of the Development of a New Titanium Reduction Process Impurity control Morphology & reaction site control Continuous / High speed system Low cost reduction process Institute of Industrial Science, The University of Tokyo 050218Caltech 31 History of titanium metallurgy 1791 Gregor: Discovery of titanium element 1795 Klaproth: Denominated as “Titanium” 1885 1887 Nilson, Petterson: Reduction of TiCl4 by Na 1905 1910 Hunter: Reduction of TiCl4 by Na 1925 Year 1925 van Arkel, DeBore: Thermal dissociation of TiCI4 1945 1940 Kroll: Reduction of TiCl4 by Mg Current titanium production process based on the Kroll process. 1965 1985 2005 0 10 20 30 Amount of titanium sponge production in Japan [kt] Institute of Industrial Science, The University of Tokyo 050218Caltech 32 Features of the New Process Table Features of various reduction processes Advantages Disadvantages Kroll ◎High purity titanium available ◎Easy metal / salt separation ○Established chlorine circulation ○Utilizes efficient Mg electrolysis ○Reduction and electrolysis operation can be carried out Independently ×Complicated process ×Slow production speed ×Batch type process FFC ◎Simple process ○Semi-continuous process ×Difficult metal / salt separation ×Reduction and electrolysis have to be carried outsimultaneously △Sensitive to carbon and iron contamination △Low current efficiency OS ◎Simple process ○Semi-continuous process ×Difficult metal / salt separation △Sensitive to carbon and iron contamination △Low current efficiency EMR / MSE ◎Resistant to iron and carbon contamination ○Semi-continuous process ○Reduction and electrolysis operation can be carried out Independently ×Difficult metal / salt separation when oxide system ×Complicated cell structure △Complicated process PRP ◎Effective control of purity and morphology ◎Flexible scalability ◎Resistant to contamination ○Small amount of fluxes necessary ×Difficult recovery of reductant ×Environmental burden by leaching This study ◎High speed reduction process ○Semi-continuous process ○Titanium scrap enable ○Facilities for Kroll process can be utilized ×Difficulty of TiCl2 handling △Multiple reduction process Institute of Industrial Science, The University of Tokyo 050218Caltech 33 Reaction Mechanism in The Kroll Process 1. TiCl4 is dropped into a reactor. TiCl4 Mg MgCl2 2. TiCl4 vaporizes. TiCl4 (l) → TiCl4 (g) TiCl4 TiCl4 Mg MgCl2 Institute of Industrial Science, The University of Tokyo 050218Caltech 34 Reaction Mechanism in The Kroll Process 3. A part of gaseous TiCl4 is reduced to TiCl2 by Mg, and TiCl2 dissolves into molten MgCl2. TiCl4 (g) + Mg (l) → TiCl2 (l) + MgCl2 (l) TiCl4 Mg TiCl2 MgCl2 4. TiCl2 is reduced to Ti by Mg. TiCl2 (l) + Mg (l) → Ti (s) + MgCl2 (l) TiCl2 Institute of Industrial Science, The University of Tokyo Mg Ti MgCl2 050218Caltech 35 Reaction Mechanism in The Kroll Process 5. A part of gaseous TiCl4 is directly reduced to Ti by Mg. TiCl4 (g) + 2 Mg (l) → Ti (s) + 2 MgCl2 (l) TiCl4 Ti Mg MgCl2 Institute of Industrial Science, The University of Tokyo 050218Caltech 36 Comparison of Various Reduction Processes of Titanium Oxide in Molten Calcium Chloride Medium (a) FFC Process (Fray et al.) TiO2 preform e- Carbon anode Electrolysis Cathode: TiO2 + 4e- → Ti + 2O2- (a1) CaCl2 molten salt Anode: C + x O2- → COx + 2x e- (a2) (b) OS Process (Ono & Suzuki) TiO2 powder Carbon anode TiO2 + 2Ca → Ti + 2O2- + Ca2+ (b1) e- Electrolysis Ca Cathode: Ca2+ + 2e- → Ca CaCl2 molten salt (b2) Anode: C + x O2- → COx + 2x e- (b3) (c) EMR/MSE Process (Okabe et al.) Current monitor/controller e- e- Carbon anode Cathode: TiO2 + 4e- → Ti + 2O2- (c1) Anode: 2Ca → 2Ca2+ + 4e- (c2) Electrolysis Cathode: Ca2+ + 2e- → Ca (c3) Anode: C + x O2- → COx + 2x e- (c4) TiO2 CaCl2–CaO Ca molten salt alloy Overall reaction TiO2 + C → Ti + CO2 Institute of Industrial Science, The University of Tokyo 050218Caltech (d) 37 Properties of Materials Used in this Study Table Name of chemical species Symbol of chemical species Ti Titanium Titanium (II) TiCl2 chloride Titanium (III) TiCl3 chloride 47.88 a 4.5 a 118.77 b 3.13 c 154.22 b no data TiCl4 Titanium (VI) chloride 189.67 b 1.702 c Mg Magnesium 24.31 a 1.74 a 95.21 b 2.325 c Magnesium MgCl2 (II) chloride Cl2 a: b: c: d: e: Physical properties of chemical species used in this study. Density Melting point, Boiling point, Molecular at 20 °C, weight Tm / K Tb’ / °C Tb / K d20 / g・cm-3 Tm’ / °C Chlorine 70.90 b 3.21 x 10-3 d 1680 a 1953 a 3262 a 3535 Sublimation point Ts’ / °C a - -a -d 1660 d 1933 d 3300 d 3573 d -d 1035 c 1308 c 1500 c 1773 c -c e e e e - - - -e -e -e -e 136.5 c 134.9 e 409.7 c 408 e -c e 1580 e 830 e 1103 e -c -e -c -e 1307 - Ts / K a -24.1 c -24.1 e 249.1 c 249.1 e 659 a 932 a 1103 a 1376 a -a -a 649 d 922 d 1090 d 1363 d -d -d 714 c 987 c 1412 c 1685 c -c -c 714 d 987 d 1410 d 1683 d -d -d -101 c 172 c -34.6 c 238.6 c -c -c d d d d d -d -101 172 -34.1 239.1 - Kinzoku Data Book, 3rd ed. , (ed. by Japan Inst. Metals, Maruzen, Tokyo, 1993) pp. 1-11. Calculated from reference a. M. Nakahara: Dictionary of Inorganic Compounds & Complexes, (Koudansya, Tokyo, 1997) p 87. R. Kubo et al. : Rikagaku Jiten, 4th ed. , (Iwanami Shyoten, Tokyo, 1992) pp 159-784. I. Barin: Thermochemical Data of Pure Substances, (VCH Verlagsgesellschaft, Weinheim, 1989) Table Temperature at specific vapor pressure Temperature at vapor Temperature at vapor pressure 0.01 atm pressure 0.1 atm T’p0.01 / °C Tp0.01 / K T’p0.1 / °C T’p0.1 / K TiCl2 1010 1283 1133 1407 TiCl3 613 887 707 980 Mg 701 975 859 1133 MgCl2 922 1195 1085 1358 Institute of Industrial Science, The University of Tokyo 050218Caltech 38 Properties of Materials Used in this Study Table Composition of titanium tri-chloride a used in this study Element i Composition of element i x'i (mass%) xi (mol%) Ti 24.3 18.9 Cl 71.1 74.8 Al 4.5 6.3 TiCl2.96 77.6 b 75.1 b AlCl3 22.4 b 24.9 b a: Supplied by Toho titanium Co., Ltd. b: Calculated value. This chemical is produced as a catalyst for polymerization of polypropylene. Institute of Industrial Science, The University of Tokyo 050218Caltech 39 Enrichment of TiClx TiCl2 content, xTiCl (mass%) 2 0 20 40 60 80 1300 100 1298 K 1000 1200 1173 K, MgCl2– 33 mol% TiCl2 1100 800 1073 K, MgCl2– 8 mol% TiCl2 989 K ? 1000 700 987 K 900 900 0 20 40 60 80 MgCl2 TiCl2 content, xTiCl (mol%) 2 Temperature, T’ /℃ Temperature, T / K L 100 TiCl2 Fig. Phase diagram for the MgCl2-TiCl2 system. [Ref. K. Komarek and P. Herasymenko: J. Electrochem. Soc. 105 (1958) p 210.] Institute of Industrial Science, The University of Tokyo 050218Caltech 40 Enrichment of TiClx TiCl2 content, xTiCl (mass%) 2 0 20 40 60 80 100 1298 K 1000 1300 1200 1173 K, MgCl2– 33 mol% TiCl2 1100 800 1073 K, MgCl2– 8 mol% TiCl2 989 K ? 1000 700 987 K 900 900 0 20 40 60 80 MgCl2 TiCl2 content, xTiCl (mol%) 100 TiCl2 Temp. 2 Temperature, T’ /℃ Temperature, T / K L Distance High temp. zone Low temp. zone Transportation of TiCl2 Heating element MgCl2-TiCl2 Institute of Industrial Science, The University of Tokyo TiCl2 deposit 050218Caltech 41 Experimental Apparatus, Small Scale, Wet/Dry Separation Argon inlet / outlet 100 mm (a) Thermocouple Alumina tube Stainless steel reaction chamber Stainless steel Mg and MgCl2 condenser Heat element 20 mm (b) Stainless steel reaction vessel Stainless steel capsule Ti reaction vessel TiCl3 powder (10 g) Mg lump (2 g) Fig. Schematic illustration of the experimental apparatus for the magnesiothermic reduction of TiCl3. (Exp. o & g) (a) Total appearance, (b) reaction vessel part. Institute of Industrial Science, The University of Tokyo 050218Caltech 42 Results, Small Scale, Wet/Dry Separation 820 800 ca. 180 s Leaching 760 740 720 0 820 200 400 600 800 Time, ∆t / s Exp. g, reduction 800 : T1 (inner) : T2 (outer) 1000 2TiCl3 + 3Mg → 2Ti + 3MgCl2 ca. 150 s 780 ca. 40 ℃ Temperature, T’ / ℃ 2TiCl3 + 3Mg → 2Ti + 3MgCl2 780 700 (b) Exp. o, reduction ca. 41 ℃ Temperature, T’ / ℃ (a) 760 740 720 700 Vacuum distillation : T1 (inner) : T2 (outer) 0 200 400 600 Time, ∆t / s 800 1000 Fig. Transition of sampler temperature on the experiment of magnesiothermic reduction of TiCl3, (a) Exp. o, (b) Exp. g. Institute of Industrial Science, The University of Tokyo 050218Caltech 43 Results, Small Scale, Wet/Dry Separation Temperature, T’ / ℃ 1000 Exp. g, vacuum distillation 950 900 850 Mg(l) → Mg(g) MgCl2(l) → MgCl2(g) 800 750 700 Mechanical separation : T1 (inner) : T2 (outer) 0 1000 2000 3000 4000 5000 Time, ∆t / s Fig. Transition of sampler temperature on the removal of Mg and MgCl2 from titanium product (Exp. g). Institute of Industrial Science, The University of Tokyo 050218Caltech 44 Results, Small Scale, Wet/Dry Separation (a) Exp. o (b) Stainless steel capsule Ti reaction vessel TiCl3 powder (10 g) Titanium Mg lump (2 g) 20 mm (d) (c) Exp. g Stainless steel capsule Ti reaction vessel Titanium 20 mm TiCl3 powder (10 g) Mg lump (2 g) Fig. Photograph of sectioned stainless steel capsule after the experiment of magnesiothermic reduction of TiCl3 and schematic illustration of initial setup before experiment, (a) (b) Exp. o, (c) (d) Exp. g. Institute of Industrial Science, The University of Tokyo 050218Caltech 45 Results, Small Scale, Wet/Dry Separation Intensity, I (a.u.) (a) Exp. o : Ti (PDF: 44-1294) : TiH2 (PDF: 9-371) (b) Exp. g 20 40 60 Angle, 2θ (degree) 80 100 Fig. X-ray diffraction patterns of the obtained samples. Table Experimental results for the magnesiothermic reduction of TiCl3. Concentration of element i, Ci (mass%) a Exp. a: Ti Fe o 96.35 0.13 g 99.37 0.16 Ni Yield Cr Mg Al (%) <0.01 0.03 0.02 3.47 86 <0.01 0.02 <0.01 0.44 99 Determined by X-ray fluorescence analysis, and the value exclueds carbon and gaseous elements. Institute of Industrial Science, The University of Tokyo 050218Caltech 46 Results, Small Scale, Wet/Dry Separation (a) SUS crucible Ti deposit 50 µm (b) Intensity of X–ray, I (a.u.) :Ti :Cr :Fe :Ni 0 100 Distance, x / µm 200 Fig. (a) Scanning electron micrograph of sectioned reduction crucible after the experiment of magnesiothermic reduction of TiCl3. (b) Element concentration profile across the boundary between stainless steel crucible and Ti deposit. Institute of Industrial Science, The University of Tokyo 050218Caltech 47 Results, Small Scale, Wet/Dry Separation (a) SUS crucible 1 2 Ti deposit 3 4 5 50 µm Table Analytical results of point at the boundary between SUS crucible and titanium deposit Pt. Concentration of element i, Ci (mass%) a, b Ti Fe Ni Cr 1 0.22 72.79 8.33 18.65 2 0.13 72.66 8.83 18.38 3 76.60 14.66 1.69 7.04 4 68.29 22.74 3.77 5.20 5 76.34 15.77 1.49 6.39 Table Analytical results of obtained titanium deposit Yield Exp. Concentration of element i, Ci (mass%) a, b l Ti Fe Ni Cr Mg Al (%) 95.79 1.74 0.33 0.36 0.00 0.21 82 Institute of Industrial Science, The University of Tokyo 050218Caltech 48 Results, Small Scale, Wet/Dry Separation (a) Ti crucible Ti deposit 50 µm (b) Intensity of X–ray, I (a.u.) :Ti :Cr :Fe :Ni 0 100 Distance, x / µm 200 Fig. (a) Scanning electron micrograph of sectioned reduction crucible after the experiment of magnesiothermic reduction of TiCl3. (b) Element concentration profile across the boundary between titanium crucible and titanium deposit (Exp. g). Institute of Industrial Science, The University of Tokyo 050218Caltech 49 Results, Small Scale, Wet/Dry Separation (a) Ti deposit 50 µm (b) Intensity of X–ray, I (a.u.) :Ti :Cr :Fe :Ni 0 100 Distance, x / µm 200 Fig. (a) Scanning electron micrograph of sectioned reduction crucible after the experiment of magnesiothermic reduction of TiCl3. (b) Element concentration profile in a titanium deposit at center of crucible (Exp. g). Institute of Industrial Science, The University of Tokyo 050218Caltech 50 Results, Small Scale, Wet/Dry Separation (a) Ti deposit 50 µm (b) Intensity of X–ray, I (a.u.) :Ti :Cr :Fe :Ni 0 100 Distance, x / µm 200 Fig. (a) Scanning electron micrograph of sectioned reduction crucible after the experiment of magnesiothermic reduction of TiCl3. (b) Element concentration profile in a titanium deposit at center of crucible (Exp. l). Institute of Industrial Science, The University of Tokyo 050218Caltech 51 Experimental Apparatus, Large Scale, Wet Separation T1 T2 (a) 100 mm Argon inlet / outlet Thermocouple Alumina tube Stainless steel reaction chamber Stainless steel Mg and MgCl2 condenser Heating element Stainless steel reaction vessel (c) Exp. I 20 mm (b) Exp. M Ti reaction vessel TiCl3 powder Mg lump (Exp. M) Mg rod (Exp. I) Fig. Schematic illustration of the experimental apparatus for the magnesiothermic reduction of TiCl3, (a) total appearance (b) setup for Exp. M, (c) setup for Exp. I. Institute of Industrial Science, The University of Tokyo 050218Caltech 52 Experimental Apparatus, Large Scale, Wet Separation (a) Exp. M, Mg setup (b) Ti tube Ti reaction vessel TiCl3 powder (100 g) Mg lump (ca. 10x 10x10 mm, 22 g) 20 mm 20 mm (c) Exp. I, Mg setup (d) Ti tube Ti reaction vessel TiCl3 powder (102 g) Mg rod (ca. 5x 5x80 mm, 23 g) 20 mm 20 mm Fig. Photograph and schematic illustration of initial Mg setup before experiment, (a) (b) Exp. M, (c) (d) Exp. I. Institute of Industrial Science, The University of Tokyo 050218Caltech 53 Experimental, Large Scale, Wet Separation 1000 950 2 TiCl3 + 3 Mg → 2 Ti + 3 MgCl2 Leaching 850 800 750 0 200 400 : T1 (inner) : T2 (outer) 600 Time, ∆t / s 800 1000 1000 Exp. I, reduction 2 TiCl + 3 Mg → 2 Ti + 3 MgCl 3 2 950 ca. 80 s 900 ca. 180 ℃ Temperature, T’ / ℃ ca. 78 s 900 700 (b) Exp. M, reduction ca. 191 ℃ Temperature, T’ / ℃ (a) 850 800 Leaching 750 700 : T1 : T2 0 200 400 600 Time, ∆t / s 800 1000 Fig. Transition of sample temperature during experiment of magnesiothermic reduction of TiCl3, (a) Exp. M, (b) Exp. I. Institute of Industrial Science, The University of Tokyo 050218Caltech 54 Results, Large Scale, Wet Separation (a) Exp. M, obtained Ti sponge (b) Ti tube TiCl2 残存 Ti reaction vessel TiCl3 powder (100 g) Ti Mg 残存 (c) Mg lump (ca. 10x 10x10 mm, 22 g) 20 mm 20 mm Exp. I, obtained Ti sponge (d) Ti tube Ti reaction vessel 均一 還元 TiCl3 powder (102 g) Ti 20 mm Mg rod (ca. 5x 5x80 mm, 23 g) 20 mm Ti製容器に損傷は見られない Fig. Photographs of titanium block obtained after the experiment of magnesiothermic reduction of TiCl3 and schematic illustration of initial setup before experiment, (a), (b); Exp. M, (c), (d); Exp. I. Institute of Industrial Science, The University of Tokyo 050218Caltech 55 Results, Large Scale, Wet Separation Intensity, I (a.u.) (a) Exp. M : Ti (PDF: 44-1294) : TiH2 (PDF: 9-371) (b) Exp. I 20 40 60 80 100 Angle, 2θ (degree) Fig. X-ray diffraction patterns of the obtained samples. Table Experimental results for the magnesiothermic reduction of TiCl3 Concentration of element i, Ci (mass%) a, b Exp. Ti Fe M 99.26 0.29 I 99.52 0.12 Ni Yield Cr Mg Al (%) <0.01 <0.01 0.10 0.36 66 0.01 <0.01 0.11 0.24 91 a: Determined by X-ray fluorescence analysis, and the determined value excludes carbon and gaseous elements. b: This value is an average of top and bottom in obtained Ti sponge. Institute of Industrial Science, The University of Tokyo 050218Caltech 56 Results, Large Scale, Wet Separation (a) Exp. M, Ti deposit 10 µm (b) Exp. I, Ti deposit 10 µm 球状の一次粒が結合し、そのネック成長は著しい Fig. Scanning electron micrograph of Ti sponge after the experiment of magnesiothermic reduction of TiCl3 (a) Exp. M, (b) Exp. I. Institute of Industrial Science, The University of Tokyo 050218Caltech 57 Experimental, Large Scale, Dry Separation (a) 950 Temperature, T’ / ℃ ca. 80 s 2 TiCl3 + 3 Mg → 2 Ti + 3 MgCl2 900 Vacuum distillation 850 800 750 700 (b) Exp. J, reduction ca. 210 ℃ Temperature, T’ / ℃ 1000 0 1000 200 : T1 (inner) : T2 (outer) 400 600 800 Time, ∆t / s 1000 Exp. J, vacuum distillation 950 900 850 Mg(l) → Mg(g) MgCl2(l) → MgCl2(g) 800 750 700 Mechanical separation : T1 (inner) : T2 (outer) 0 1000 2000 3000 Time, ∆t / s 4000 Fig. Temperature change on the experiment of titanium production from TiCl3, (a) reduction, (b) separation (Exp. J). Institute of Industrial Science, The University of Tokyo 050218Caltech 58 Results, Large Scale, Dry Separation (a) Obtained Ti sponge (b) Ti tube Ti reaction vessel TiCl3 powder (100 g) 分離 良好 Ti Mg rod (ca. 5x 5x80 mm, 22 g) 20 mm Ti製容器に損傷は見られない (c) Drained Mg/MgCl2 mixture (d) Mg/MgCl2 deposit Mg&MgCl2 Mg&MgCl2 20 mm 20 mm (a) Photograph of obtained Ti sponge after the magnesiothermic reduction of TiCl3, (b) schematic illustration of initial setup before experiment, (c) photograph of drained MgCl2 and Mg, (d) precipitate of MgCl2 and Mg by evaporation (Exp. J). Institute of Industrial Science, The University of Tokyo 050218Caltech 59 Results, Large Scale, Dry Separation Intensity, I (a.u.) Exp. J : Ti (PDF: 44-1294) Exp. N 20 40 60 80 100 Angle, 2θ (degree) Fig. X-ray diffraction patterns of the obtained sample. Table Experimental results for the magnesiothermic reduction of TiCl3 Concentration of element i, Ci (mass%) a, b Exp. J Yield Ti Fe Ni Cr Mg Al (%) 99.18 0.50 0.01 0.02 0.09 0.21 87 N 99.04 0.18 0.02 0.02 0.09 0.65 82 a: Determined by X-ray fluorescence analysis, and the determined value excludes carbon and gaseous elements. b: This value is average of top and bottom in obtained Ti sponge. Institute of Industrial Science, The University of Tokyo 050218Caltech 60 Results, Large Scale, Dry Separation (a) Exp. J, Ti deposit 10 µm (b) Exp. N, Ti deposit 10 µm 角ばった粗大粒が見られる Fig. Scanning electron micrograph of Ti sponge after the experiment of magnesiothermic reduction of TiCl3 (a) Exp. J, (b) Exp. N. Institute of Industrial Science, The University of Tokyo 050218Caltech 61 Results, Large Scale, Dry Separation (a) Ti deposit 500 µm (b) Ti deposit 50 µm Fig. Scanning electron micrograph of titanium deposit after the experiment of magnesiothermic reduction of TiCl3. Institute of Industrial Science, The University of Tokyo 050218Caltech 62 T1 T2 (a) 100 mm Argon inlet / outlet Thermocouple Alumina tube Stainless steel reaction chamber Stainless steel Mg and MgCl2 condenser Heating element Stainless steel reaction vessel 20 mm (b) Exp. SY 1 (c) Exp. RE 1&2 Ti reaction vessel 1 2 TiCl3 and Ti powder 1 2 3 TiCl2 powder Stainless steel cell Mg lump Figure 2. Schematic illustration of the experimental apparatus for the magnesiothermic reduction of TiCl2, (a) total appearance (b) setup for Exp. SY 1, (c) setup for Exp. RE 1&2. Institute of Industrial Science, The University of Tokyo 050218Caltech 63 (a) Polyimide film Intensity, I (a.u.) (b) Starting material (TiCl3 + AlCl3) (c) Product (SY1_1) : TiCl2 (d) Product (SY1_2) (e) Product (SY1_3) 20 40 60 80 Angle, 2θ (degree) 100 Figure 3. X-ray diffraction patterns of the samples. Institute of Industrial Science, The University of Tokyo 050218Caltech 64 1100 Exp. RE 1 750 1000 950 900 700 TiCl2 + Mg → Ti + MgCl2 : T1 (inner) : T2 (outer) 0 200 400 600 800 Temperature, T’ / °C 167 s 1050 44 K Temperature, T / K 800 650 1000 Time, ∆t / s Figure 4. Transition of sampler temperature on experiment of magnesiothermic reduction of TiCl2 [Exp. RE 1]. Institute of Industrial Science, The University of Tokyo 050218Caltech 65 1100 (a) Exp. RE 2, reduction TiCl2 + Mg → Ti + MgCl2 950 : T1 (inner) : T2 (outer) 0 1300 Temperature, T / K 700 200 400 600 Time, ∆t / s 800 1000 Exp. RE 2, evaporation 1000 1200 900 1100 Mg(l) → Mg(g) MgCl2(l) → MgCl2(g) 800 1000 900 650 : T1 (inner) : T2 (outer) 0 1000 2000 3000 Time, ∆t / s 4000 Temperature, T’ / °C 1000 Temperature, T’ / °C 750 900 (b) 150 s 1050 30 K Temperature, T / K 800 700 5000 Figure 5. Transition of sampler temperature; (a) on experiment of magnesiothermic reduction of TiCl2 , (b) on removal of Mg and MgCl2 from titanium product [Exp. RE 2]. Institute of Industrial Science, The University of Tokyo 050218Caltech 66 (a) (b) Exp. RE 1_2 Stainless steel cell Ti reaction vessel TiCl2 powder (10 g) Mg lump (2.7 g) 10 mm (c) (d) Exp. RE 2_1 Stainless steel cell Ti reaction vessel TiCl2 powder (6 g) 10 mm Mg lump (1.4 g) Figure 6. Photograph of sectioned stainless steel capsule after the experiment of magnesiothermic reduction of TiCl2 and schematic illustration of initial setup before experiment, (a) and (b) Exp. RE 1_2, (c) and (d) Exp. RE 2_1. Institute of Industrial Science, The University of Tokyo 050218Caltech 67 Intensity, I (a.u.) (a) Product (RE1_2) : Ti : TiH2 (b) Product (RE2_1) : Ti 20 40 60 80 100 Angle, 2θ (degree) Figure 7. X-ray diffraction patterns of the samples. Institute of Industrial Science, The University of Tokyo 050218Caltech 68 (a) Exp. RE 1_2, Ti deposit 10 µm (b) Exp. RE 2_1, Ti deposit 10 µm Figure 8 Scanning electron micrograph of Ti sponge after the experiment of magnesiothermic reduction of TiCl2 (a) Exp. RE 1, (b) Exp. RE 2. Institute of Industrial Science, The University of Tokyo 050218Caltech 69 800 1000 Temperature, T / K 600 800 400 600 Exothermic heat? 200 : T1 (inner) : T2 (outer) 400 0 2 4 6 8 10 Temperature, T’ / °C 2 TiCl3 + Ti → 3 TiCl2 12 3 Time, ∆t / ks Figure 4. Transition of sampler temperature [Exp. SY1]. Institute of Industrial Science, The University of Tokyo 050218Caltech 70 (a) Starting material 10 mm (b) Product (SY1_3) 10 mm Figure 5. Photograph of powder sample in the experiment of TiCl2 synthesis, (a) starting material (TiCl3 + AlCl3) (b) TiCl2 product (SY1_3). Institute of Industrial Science, The University of Tokyo 050218Caltech 71 Results, Appearance of Sample (a) Sectioned reaction container after reduction (prior to leaching) Porous Ti Ti reaction container Drained MgCl2 10 mm (b) Initial setup of (a) Stainless steel cell Ti reaction container TiCl3 powder Mg lump MgCl2 drain zone (a) Figure Sectioned titanium reaction container after the experiment for the magnesiothermic reduction of TiCl3: (a) photograph of obtained sample, (b) initial setup of the reaction vessel [A]. Institute of Industrial Science, The University of Tokyo 050218Caltech 72