subhalide

Transcription

subhalide
A New High speed
Titanium Production
by Subhalide Reduction Process
– For Developing Affluent Society
by Materials Innovation –
Osamu Takeda1 and Toru H. Okabe2
Graduate student,
Graduate School of Engineering,
The University of Tokyo
1
2
Institute of Industrial Science,
The University of Tokyo
Institute of Industrial Science, The University of Tokyo
050218Caltech
1
Excellent Material, Titanium!
Aerospace industry
Feature of Titanium
1. Light and high-strength
2. Corrosion resistance
3. Biocompatibility
4. Some titanium alloy:
shape memory alloy
super elasticity
Japan Aerospace Exploration Agency
Dental material
Power generation plant
http://village.infoweb.ne.jp/~etou/indexhome.htm
The JAPAN TITANIUM SOCIETY
Institute of Industrial Science, The University of Tokyo
050218Caltech
2
Current Status of Titanium Production
(a) Production of titanium sponge in the world
(2003)
China
USA
4 kt
8 kt
Kazakhstan Total
42.1 kt
9 kt
Russia
2.6 kt
JAPAN
18.5 kt (44% share)
(b) Production of titanium mill products in Japan
Amount of titanium
mill products [kt]
16
13.8 kt (2003)
14
12
10
8
6
4
2
0
1970
1980
Year
1990
Institute of Industrial Science, The University of Tokyo
2000
050218Caltech
3
Comparison with common metals
Table
Comparison between common metals and titanium
Metal
Iron
Aluminum Titanium
Symbol
Melting point
(°C)
Density
(g/cm3@25 °C)
Specific
strength
[(kgf/mm2)/(g/cm3)]
Fe
Al
Ti
1536
660
1680
7.9
2.7
4.5
4.1(Pure)
2.2(Pure)
6.7(SUS304) 8.9(0.5Mg0.5Si)
5.1(Pure)
24.6(6Al4V)
Clarke No.
4
3
10
Price (¥/kg)
50
600
3000
Production
volume
9.6 x 108
2.2 x 107
6.6 x 104
1/300
(t/world@2003)
1/15000
Although titanium is the 10th most abundant
element in the earth’s crust, its production
volume is very small
Institute of Industrial Science, The University of Tokyo
050218Caltech
4
The Kroll Process
Chlorination: TiO2 + C + 2Cl2 → TiCl4 + CO2
Reduction: TiCl4 + 2Mg
→ Ti + 2MgCl2
Electrolysis: MgCl2
→ Mg + Cl2
Crushing
TiCl4
Mg & MgCl2
recovery ports
Sponge Ti
Mild steel reactor
Mg & MgCl2
Features:
◎High-purity Ti can be obtained.
◎Metal/salt separation is easy.
○Chlorine circulation is Established.
○Efficient Mg electrolysis can be utilized.
○Reduction and electrolysis
can be carried out independently.
×Process is complicated.
×Reduction process is a batch type.
×Production speed is low.
Reduction speed of Ti is <1 t/day·batch,
which is one of the contributors to its high cost.
Institute of Industrial Science, The University of Tokyo
050218Caltech
5
Current Status of Titanium Metallurgy
The FFC Cambridge process (2000)
The direct reduction processes of titanium
oxide (TiO2) (e.g., the OS process,
the_EMR/MSE process, the ESR process)
TiO2(s) + e- → Ti(s) + O2– (in CaCl2)
TiO2(s) + Ca → Ti(s) + CaO (in CaCl2)
Difficulties in using TiO2:
Production of high-purity TiO2 feed
is expensive.
Energy efficiency is low.
Metal/salt separation is difficult.
Purity control of obtained Ti is difficult.
Advantages of the Kroll process:
Oxygen and iron removal
by the chlorination process is highly efficient.
Metal/salt separation
by vacuum distillation is easy.
High-purity Ti with low oxygen is obtainable.
Mg and Cl2 are reusable.
Institute of Industrial Science, The University of Tokyo
050218Caltech
6
Purpose of this Study
Establishment of a continuous and
high-speed titanium reduction process
based on the magnesiothermic reduction of
titanium chlorides
The Kroll process
Feed: TiCl4
High reduction heat
Stability as a gas phase
→Low reduction speed to control
the reactor temperature
→Long cool time for the reactor
after reduction
Subhalide reduction process
Feed: Titanium subchlorides (TiClx, x = 2, 3)
Low reduction heat
Stability as a condensed phase
→High reduction speed
Institute of Industrial Science, The University of Tokyo
050218Caltech
7
Properties of Titanium Chloride
TiCl4
TiCl3
TiCl2
Color
Clear
Red
Black
Molecular
weight
(g/mol)
189.7
154.2
118.8
Density
(g/cm3)
1.70
No data
3.13
Melting
point (°C)
−24.1
–
–
Boiling
point (°C)
136.5
–
–
–
830
1307
∆G°f at 800°C
−317
−327
−344
∆G’°f at 800°C
−637
−491
−344
–
0.74
1.2 × 10−4
Appearance
Sublimation
point (°C)
(kJ/mol Cl2)
(kJ/mol Ti)
Vapor pressure
at 800°C (atm)
Institute of Industrial Science, The University of Tokyo
050218Caltech
8
New Titanium Production Process
Using Titanium Subhalides (TiClx, x = 2, 3)
① TiCl4(l, g) + Mg(l, g)
→ TiClx(s, l) + MgCl2(l)
TiCl4(l, g) + Ti(s, scrap) → TiClx(s, l)
② TiClx(s, l) + Mg (l, g) → Ti (s) + MgCl2 (l, g)
TiCl4 Mg or Ti
MgCl2
–TiClx
TiClx
Step 1:
High-speed production
of Ti subchlorides and
enrichment of TiClx
Ti vessel Step 2:
High-speed
Mg
magnesiothermic
TiClx
reduction of TiCl
x
Mg, MgCl2 (g)
Mg, MgCl2 (l)
Step 3:
High-speed removal
Ti
of Mg and MgCl2 from
sponge Ti sponge by draining
and vacuum distillation
Institute of Industrial Science, The University of Tokyo
050218Caltech
9
Features of the New Process
Table
Comparison of the Kroll process and new process
Kroll process
New process
Process
type
Batch-type,
limited speed
(Semi-)Continuous,
high speed
Feed
material
TiCl4 (l, g)
TiCl2 or TiCl3 (s, l)
Heat of
reduction,
High
(–434)
Low
(–94 ~ –191)
Reactor
material
Mild steel (Iron
contamination
unavoidable)
Titanium (No iron
contamination)
Reactor
size
Large (Crush and
melt)
Small (No crush
and direct melt)
Flux, sealant
Not used
MgCl2, Ti
Common
features
Magnesiothermic reduction of chloride
Removal of MgCl2 and Mg from Ti
sponge by draining and vacuum
distillation
Production of high-purity Ti with low
oxygen content
∆H° / kJ mol Ti
Institute of Industrial Science, The University of Tokyo
050218Caltech
10
Today’s Report
Investigation of magnesiothermic reduction
of titanium subchloride (TiClx, x = 2, 3)
Route A: 2 TiCl3 + 3 Mg → 2 Ti + 3 MgCl2
Route B: 2 TiCl3 + Ti
→ 3 TiCl2
TiCl2 + Mg → Ti + MgCl2
Feed material
1073 K
1/2 Cl2 (g)
TiCl4 (g)
TiCl3 (s)
TiCl2 (s)
A
B
Reaction
pathways
MgCl2 (l)
Exp. overall
composition
Reductant
Ti (s)
Mg (l)
Figure Isothermal phase diagram for the Ti–Mg–Cl
ternary system at 1073-K. [Ref. Okabe et al.: J. Japan Inst. Metals 61
(1997) pp. 610-618.]
Institute of Industrial Science, The University of Tokyo
050218Caltech
11
Experimental Apparatus
T1 T2
(a)
(b)
Ar inlet/outlet
Thermocouple
Alumina tube
Stainless steel
chamber
Stainless steel
condenser
Heating
element
Stainless steel
vessel
(c)
Stainless steel (d)
cell
Ti reaction
container
TiClx powder
Mg lump
Figure Schematic illustration of the experimental
apparatus for the magnesiothermic reduction of TiClx.
Institute of Industrial Science, The University of Tokyo
050218Caltech
12
1100
Exp. A,
feed; TiCl3
1050
800
150 s
40 K
Temperature, T /K
(a)
750
1000
2 TiCl3 + 3 Mg → 2 Ti + 3 MgCl2
950
900
0
:T1 (inside)
:T2 (outside)
200
400
600
800
700
650
Temperature, T’ /°C
Results: Transition of Temperature
1000
Time, Δt /s
Exp. B, feed; TiCl2
800
183 s
1050
750
1000
TiCl2 + Mg → Ti + MgCl2
950
900
700
:T1 (inside)
:T2 (outside)
0
200
400
600
800
650
Temperature, T’ /°C
1100
32 K
Temperature, T /K
(b)
1000
Time, Δt /s
Figure Representative transition of the sample
temperature during the magnesiothermic reduction. [G, R]
Institute of Industrial Science, The University of Tokyo
050218Caltech
13
Results: Appearance of Sample
(a) Sectioned reaction
(b) Initial setup of (a)
container after reduction
Exp. A, feed; TiCl3
Stainless steel
cell
Ti reaction
container
TiCl3 powder
Porous Ti metal
Mg lump
10 mm
(c) Sectioned reaction
(d) Initial setup of (c)
container after reduction
Exp. B, feed; TiCl2
Stainless steel
cell
Porous Ti metal
Ti reaction
container
TiCl2 powder
Mg lump
10 mm
Figure Sectioned titanium reaction container after the
experiment for the magnesiothermic reduction of TiClx. [G,S]
Institute of Industrial Science, The University of Tokyo
050218Caltech
14
Results: XRD and Composition
Intensity, I (a.u.)
Exp. A,
feed; TiCl3
: α-Ti (PDF: 44-1294)
Pure Ti was obtained
Exp. B,
feed; TiCl2
20
40
60
Angle, 2θ (degree)
80
100
Figure X-ray diffraction patterns of the obtained powder
samples. [G, R]
Table Analytical results of the obtained titanium samples
Exp.
a
Concentration of element i, Ci (mass%) a
Ti
Fe
Ni
Cr
A
99.37
0.16
<0.01
0.02
B
99.92
0.03
<0.01
0.04
Mg
Yield
Al
(%)
0.44
99
<0.01 <0.01
94
0.16
Determined by X-ray fluorescence analysis, and the value excludes
carbon and gaseous elements.
[G, R]
Institute of Industrial Science, The University of Tokyo
050218Caltech
15
Results: Microstructure
(a) Obtained titanium from TiCl3
Ti sponge (Exp. A, feed; TiCl3)
Coral-like structure
10 µm
(b) Obtained titanium from TiCl2
Ti sponge (Exp. B, feed; TiCl2)
10 µm
Figure Scanning electron micrographs of the obtained
titanium samples. [F, Q]
Institute of Industrial Science, The University of Tokyo
050218Caltech
16
Separation Process by the Combination of
Draining and Vacuum Distillation
T1 T2
Argon inlet / outlet (c)
100 mm
(a)
Thermocouple
Alumina tube
Stainless steel
reaction chamber
Stainless steel
Mg and MgCl2
condenser
Heating element
Stainless steel
reaction vessel
(b)
Plug and outlet
port for Mg and
MgCl2 drain
Stainless steel tray
for Mg and MgCl2
drain
Ti reaction vessel
50 mm
TiCl3 powder (100 g)
Mg rod (ca. 5x5x80 mm, 23 g)
Figure Schematic illustration of the experimental apparatus
for the magnesiothermic reduction of TiCl3. [J]
Institute of Industrial Science, The University of Tokyo
050218Caltech
17
Separation Process by the Combination of
Draining and Vacuum Distillation
After Exp.
Before Exp.
Ti tube
Ti-reaction container
TiCl3 powder (100 g)
Mg rod (23 g)
Ti sponge
Ti sponge
20 mm
20 µm
Table
Analytical results for the magnesiothermic reduction of TiCl3
Concentration of element i, Ci (mass%) a, b
Exp.
J
Yield
Ti
Fe
Ni
Cr
Mg
Al
(%)
99.18
0.50
0.01
0.02
0.09
0.21
87
N
99.04
0.18
0.02
0.02
0.09
0.65
82
a Determined by X-ray fluorescence analysis, and the obtained
value excludes carbon and gaseous elements.
b This value is the average of top and bottom of the obtained Ti sponge.
Pure metallic titanium was effectively
obtained by this process.
Institute of Industrial Science, The University of Tokyo
050218Caltech
18
Conclusions
A new titanium production process based
on the magnesiothermic reduction of
titanium subhalides was proposed, and
its feasibility was demonstrated.
Further details:
High-speed magnesiothermic reduction of
TiClx was carried out and feasibility of
this high-speed reduction process
was demonstrated.
It was demonstrated that a titanium
crucible can be utilized as a construction
material for the reduction process, and
a new Fe-contamination free process
was proposed.
Mg (g), MgCl2 (g)
Heating
element
TiCl2+Mg
(+MgCl2 + Ti)
MgCl2 (l)
Institute of Industrial Science, The University of Tokyo
Titanium
container
050218Caltech
19
Future Works
Production process of TiClx from TiCl4
Enrichment process of TiClx
→ Establishment of a continuous and
high-speed titanium production process
Vacuum
TiClx production chamber
TiCl4 Mg or Ti
Mg and MgCl2
condensation chamber
Mg and MgCl2
draining chamber
VAR electrode
Ti crucible
and Mg
reductant
TiClx and MgCl2 TiClx
charging
reduction
chamber
chamber
Vacuum-distillation
chamber for
Mg and MgCl2
Mg and MgCl2
storage chamber
Institute of Industrial Science, The University of Tokyo
050218Caltech
20
Epilogue
1858
Yes!
Fig. The table centerpiece made of aluminum, which was crafted
for Emperor Napoleon III in 1858. (Carnegie Museum of Art,
Pittsburgh, Pennsylvania, cover page of JOM, Nov. 2000)
Aluminum was changed from
a rare metal to a common metal
by the process innovation, and
it contributed to develop our society.
Can titanium be a common metal?
Institute of Industrial Science, The University of Tokyo
050218Caltech
21
これ以後補足資料
Institute of Industrial Science, The University of Tokyo
050218Caltech
22
Gibbs Energy of Formation of Chloride
-200
∆H°
-400
f
-600
TiCl4
MgCl2
∆G°f
Reduction
Electrolysis
0
Reduction
Standard Gibbs energy of formation, ∆Gf°/ kJ ·(mol·Cl2)-1
∆Gf° = ∆Hf° + T∆Sf°
TiCl3 TiCl2
CaCl2
-800
NaCl
-1000
0
200
KCl
400
600
800
1000
1200
1400
Temperature, T / K
Heat of reduction is halved by utilizing
titanium subhalides
Fig. Standard Gibbs energy of formation of several
Chlorides.[Ref. I. Barin, Thermochemical Data of Pure
Substances, VCH Verlagsgesellschaft, Weinheim, (1989).]
Institute of Industrial Science, The University of Tokyo
050218Caltech
23
Elementary Reaction Equation and
Total Reaction Equation
At 1073 K
① TiCl4(g) + Mg(l) → TiCl2(s) + MgCl2(l)
∆H° = −339 kJ, ∆G° = −185kJ
This is suitable for developing high speed process
② TiCl2(s) + Mg(l) → Ti (s) + MgCl2(l)
∆H° = −91 kJ, ∆G° = −130 kJ
③ TiCl4(g) + 2 Mg(l) → Ti (s) + 2 MgCl2(l)
(=①+②) ∆H° = −430 kJ, ∆G° = −315 kJ
Institute of Industrial Science, The University of Tokyo
050218Caltech
24
Mass Balance of Titanium Production
TiCl4
+
2 Mg
→
3.96 ton 1.02 ton
2.33 m3
Ti
+
1 ton
0.59 m3
2 MgCl2
3.98 ton
0.22 m3 1.71 m3
∆H° = −8980 MJ (2.50 MW・h)
1/2
TiCl2
+
Mg
→
Ti
+
MgCl2
2.48 ton
0.51 ton
1 ton
1.99 ton
0.79 m3
0.29 m3
0.22 m3 0.85 m3
∆H° = −1900 MJ (0.53 MW・h)
Institute of Industrial Science, The University of Tokyo
050218Caltech
25
Vapor Pressure of some Chemicals
Temperature, T’ /℃
500
1000
0
Vapor pressure, log p゜i (atm)
-2
TiCl4
MgCl2
TiCl3
CaCl2
-4
Ca
-6
-8
TiCl2
Mg
-10
-12
400
Ti
600
800
1000
1200
1400
Temperature, T /K
Titanium subhalides are stable as a condensed
phase even at elevated temperatures
Figure Vapor pressure of several chemical species.
[Ref. I. Barin, Thermochemical Data of Pure Substances,
VCH Verlagsgesellschaft, Weinheim, (1989).]
Institute of Industrial Science, The University of Tokyo
050218Caltech
26
Vapor Pressure of some Chemicals
0
Mg
MgCl2
Ca
Na
K
Vapor pressure, log p゜i (atm)
-2
-4
CaCl2
TiCl3
-6
-8
KCl
-10
Ti
NaCl
TiCl2
-12
600
800
1000
1200
1400
Temperature, T / K
Fig. Vapor pressure of several chemical species.
[Ref. I. Barin, Thermochemical Data of Pure Substances,
VCH Verlagsgesellschaft, Weinheim, (1989).]
Institute of Industrial Science, The University of Tokyo
050218Caltech
27
Vapor Pressure of some Chemicals
Temperature, T / K
2000
0
1000
500
400
TiCl4
Vapor pressure, log p゜i (atm)
-2
-4
K
Na
-6
MgCl2
-8
NaCl
Mg
KCl
-10
Ti
-12
0.5
CaCl2
1.0
TiCl3
TiCl2
Ca
1.5
2.0
2.5
Reciprocal temperature, 1000 T-1 / K-1
Fig. Vapor pressure of several chemical species.
[Ref. I. Barin, Thermochemical Data of Pure Substances,
VCH Verlagsgesellschaft, Weinheim, (1989).]
Institute of Industrial Science, The University of Tokyo
050218Caltech
28
The Kroll Process
Calcined coke Rutile, Upgraded ilmenite
Cl2
Carbo-chlorination
CO, CO2
Crude TiCl4 (VOClx, SiCl4, SnCl4)
Purification of TiCl4
Mg
VOClx, SiCl4
SnCl4
TiCl4
Reduction of TiCl4 by Mg
MgCl2 Sponge Ti, MgCl2 and Mg
Vacuum distillation
Electrolysis
of MgCl2
Mg, MgCl2
Sponge Ti
Arc melting
Ti or Ti alloy ingot
Fig Flowchart of the Kroll process for titanium production.
Institute of Industrial Science, The University of Tokyo
050218Caltech
29
New Titanium Production Process
Using Titanium Subhalides
Calcined coke Rutile, Upgraded ilmenite
Cl2
CO, CO2
Fluidized bed chlorination
Crude TiCl4 (+ VOClx, SiCl4, SnCl4)
VOClx, SiCl4
SnCl4
Purification of TiCl4
Scrap Ti
TiCl4
Production of TiClx
TiClx + MgCl2
MgCl2
Mg
MgCl2
Enrichment of TiClx
Ti (+ MgCl2)
Mg TiClx (+ MgCl2)
Reduction of TiClx
Sponge Ti (+MgCl2, Mg)
Vacuum distillation
Electrolysis
of MgCl2
Sponge Ti
Mg, MgCl2
This study
Arc melting
Ti or Ti alloy ingot
Fig Flowchart of the new titanium production process.
Institute of Industrial Science, The University of Tokyo
050218Caltech
30
Key Factors of the Development of a
New Titanium Reduction Process
Impurity control
Morphology &
reaction site
control
Continuous /
High speed
system
Low cost
reduction process
Institute of Industrial Science, The University of Tokyo
050218Caltech
31
History of titanium metallurgy
1791
Gregor: Discovery of titanium element
1795
Klaproth: Denominated as “Titanium”
1885
1887 Nilson, Petterson:
Reduction of TiCl4 by Na
1905
1910 Hunter: Reduction of TiCl4 by Na
1925
Year
1925 van Arkel, DeBore:
Thermal dissociation of TiCI4
1945
1940 Kroll: Reduction of TiCl4 by Mg
Current titanium production
process based on
the Kroll process.
1965
1985
2005
0
10
20
30
Amount of titanium sponge production
in Japan [kt]
Institute of Industrial Science, The University of Tokyo
050218Caltech
32
Features of the New Process
Table
Features of various reduction processes
Advantages
Disadvantages
Kroll
◎High purity titanium available
◎Easy metal / salt separation
○Established chlorine circulation
○Utilizes efficient Mg electrolysis
○Reduction and electrolysis
operation can be carried out
Independently
×Complicated process
×Slow production speed
×Batch type process
FFC
◎Simple process
○Semi-continuous process
×Difficult metal / salt separation
×Reduction and electrolysis have to
be carried outsimultaneously
△Sensitive to carbon and iron
contamination
△Low current efficiency
OS
◎Simple process
○Semi-continuous process
×Difficult metal / salt separation
△Sensitive to carbon and iron
contamination
△Low current efficiency
EMR /
MSE
◎Resistant to iron and carbon
contamination
○Semi-continuous process
○Reduction and electrolysis
operation can be carried out
Independently
×Difficult metal / salt separation
when oxide system
×Complicated cell structure
△Complicated process
PRP
◎Effective control of purity and
morphology
◎Flexible scalability
◎Resistant to contamination
○Small amount of fluxes
necessary
×Difficult recovery of reductant
×Environmental burden by leaching
This
study
◎High speed reduction process
○Semi-continuous process
○Titanium scrap enable
○Facilities for Kroll process can be
utilized
×Difficulty of TiCl2 handling
△Multiple reduction process
Institute of Industrial Science, The University of Tokyo
050218Caltech
33
Reaction Mechanism in The Kroll Process
1. TiCl4 is dropped into a reactor.
TiCl4
Mg
MgCl2
2. TiCl4 vaporizes.
TiCl4 (l) → TiCl4 (g)
TiCl4 TiCl4
Mg
MgCl2
Institute of Industrial Science, The University of Tokyo
050218Caltech
34
Reaction Mechanism in The Kroll Process
3. A part of gaseous TiCl4 is reduced to TiCl2
by Mg, and TiCl2 dissolves into molten MgCl2.
TiCl4 (g) + Mg (l) → TiCl2 (l) + MgCl2 (l)
TiCl4
Mg
TiCl2
MgCl2
4. TiCl2 is reduced to Ti by Mg.
TiCl2 (l) + Mg (l) → Ti (s) + MgCl2 (l)
TiCl2
Institute of Industrial Science, The University of Tokyo
Mg
Ti
MgCl2
050218Caltech
35
Reaction Mechanism in The Kroll Process
5. A part of gaseous TiCl4 is directly
reduced to Ti by Mg.
TiCl4 (g) + 2 Mg (l) → Ti (s) + 2 MgCl2 (l)
TiCl4
Ti
Mg
MgCl2
Institute of Industrial Science, The University of Tokyo
050218Caltech
36
Comparison of Various Reduction Processes
of Titanium Oxide in Molten Calcium Chloride Medium
(a) FFC Process (Fray et al.)
TiO2
preform e-
Carbon anode
Electrolysis
Cathode: TiO2 + 4e- → Ti + 2O2- (a1)
CaCl2
molten salt
Anode: C + x O2- → COx + 2x e- (a2)
(b) OS Process (Ono & Suzuki)
TiO2
powder
Carbon
anode TiO2 + 2Ca → Ti + 2O2- + Ca2+ (b1)
e-
Electrolysis
Ca
Cathode: Ca2+ + 2e- → Ca
CaCl2
molten salt
(b2)
Anode: C + x O2- → COx + 2x e- (b3)
(c) EMR/MSE Process (Okabe et al.)
Current
monitor/controller
e-
e-
Carbon
anode
Cathode: TiO2 + 4e- → Ti + 2O2- (c1)
Anode: 2Ca → 2Ca2+ + 4e-
(c2)
Electrolysis
Cathode: Ca2+ + 2e- → Ca
(c3)
Anode: C + x O2- → COx + 2x e- (c4)
TiO2 CaCl2–CaO Ca
molten salt alloy
Overall reaction
TiO2 + C → Ti + CO2
Institute of Industrial Science, The University of Tokyo
050218Caltech
(d)
37
Properties of Materials Used in this Study
Table
Name of
chemical
species
Symbol of
chemical
species
Ti
Titanium
Titanium (II)
TiCl2
chloride
Titanium (III)
TiCl3
chloride
47.88 a
4.5 a
118.77 b
3.13 c
154.22 b
no data
TiCl4
Titanium (VI)
chloride
189.67 b
1.702 c
Mg
Magnesium
24.31 a
1.74 a
95.21 b
2.325 c
Magnesium
MgCl2
(II) chloride
Cl2
a:
b:
c:
d:
e:
Physical properties of chemical species used in this study.
Density
Melting point,
Boiling point,
Molecular
at 20 °C,
weight
Tm / K
Tb’ / °C
Tb / K
d20 / g・cm-3 Tm’ / °C
Chlorine
70.90 b
3.21 x 10-3 d
1680
a
1953
a
3262
a
3535
Sublimation point
Ts’ / °C
a
-
-a
-d
1660 d
1933 d
3300 d
3573 d
-d
1035 c
1308 c
1500 c
1773 c
-c
e
e
e
e
-
-
-
-e
-e
-e
-e
136.5 c
134.9 e
409.7 c
408 e
-c
e
1580 e
830 e
1103 e
-c
-e
-c
-e
1307
-
Ts / K
a
-24.1 c
-24.1 e
249.1 c
249.1 e
659 a
932 a
1103 a
1376 a
-a
-a
649 d
922 d
1090 d
1363 d
-d
-d
714 c
987 c
1412 c
1685 c
-c
-c
714 d
987 d
1410 d
1683 d
-d
-d
-101 c
172 c
-34.6 c
238.6 c
-c
-c
d
d
d
d
d
-d
-101
172
-34.1
239.1
-
Kinzoku Data Book, 3rd ed. , (ed. by Japan Inst. Metals, Maruzen, Tokyo, 1993) pp. 1-11.
Calculated from reference a.
M. Nakahara: Dictionary of Inorganic Compounds & Complexes, (Koudansya, Tokyo, 1997) p 87.
R. Kubo et al. : Rikagaku Jiten, 4th ed. , (Iwanami Shyoten, Tokyo, 1992) pp 159-784.
I. Barin: Thermochemical Data of Pure Substances, (VCH Verlagsgesellschaft, Weinheim, 1989)
Table Temperature at specific vapor pressure
Temperature at vapor
Temperature at vapor
pressure 0.01 atm
pressure 0.1 atm
T’p0.01 / °C
Tp0.01 / K
T’p0.1 / °C
T’p0.1 / K
TiCl2
1010
1283
1133
1407
TiCl3
613
887
707
980
Mg
701
975
859
1133
MgCl2
922
1195
1085
1358
Institute of Industrial Science, The University of Tokyo
050218Caltech
38
Properties of Materials Used in this Study
Table
Composition of titanium tri-chloride a used in this study
Element i
Composition of element i
x'i (mass%)
xi (mol%)
Ti
24.3
18.9
Cl
71.1
74.8
Al
4.5
6.3
TiCl2.96
77.6 b
75.1 b
AlCl3
22.4 b
24.9 b
a: Supplied by Toho titanium Co., Ltd.
b: Calculated value.
This chemical is produced as a catalyst
for polymerization of polypropylene.
Institute of Industrial Science, The University of Tokyo
050218Caltech
39
Enrichment of TiClx
TiCl2 content, xTiCl (mass%)
2
0
20
40
60
80
1300
100
1298 K
1000
1200
1173 K, MgCl2– 33 mol% TiCl2
1100
800
1073 K, MgCl2– 8 mol% TiCl2
989 K ?
1000
700
987 K
900
900
0
20
40
60
80
MgCl2 TiCl2 content, xTiCl (mol%)
2
Temperature, T’ /℃
Temperature, T / K
L
100
TiCl2
Fig. Phase diagram for the MgCl2-TiCl2 system.
[Ref. K. Komarek and P. Herasymenko:
J. Electrochem. Soc. 105 (1958) p 210.]
Institute of Industrial Science, The University of Tokyo
050218Caltech
40
Enrichment of TiClx
TiCl2 content, xTiCl (mass%)
2
0
20
40
60
80
100
1298 K
1000
1300
1200
1173 K, MgCl2– 33 mol% TiCl2
1100
800
1073 K, MgCl2– 8 mol% TiCl2
989 K ?
1000
700
987 K
900
900
0
20
40
60
80
MgCl2 TiCl2 content, xTiCl (mol%)
100
TiCl2
Temp.
2
Temperature, T’ /℃
Temperature, T / K
L
Distance
High temp. zone
Low temp. zone
Transportation of TiCl2
Heating element
MgCl2-TiCl2
Institute of Industrial Science, The University of Tokyo
TiCl2 deposit
050218Caltech
41
Experimental Apparatus,
Small Scale, Wet/Dry Separation
Argon inlet / outlet
100 mm
(a)
Thermocouple
Alumina tube
Stainless steel
reaction chamber
Stainless steel
Mg and MgCl2
condenser
Heat element
20 mm
(b)
Stainless steel
reaction vessel
Stainless steel
capsule
Ti reaction vessel
TiCl3 powder (10 g)
Mg lump (2 g)
Fig. Schematic illustration of the experimental apparatus
for the magnesiothermic reduction of TiCl3. (Exp. o & g)
(a) Total appearance, (b) reaction vessel part.
Institute of Industrial Science, The University of Tokyo
050218Caltech
42
Results, Small Scale, Wet/Dry Separation
820
800
ca. 180 s
Leaching
760
740
720
0
820
200
400
600
800
Time, ∆t / s
Exp. g, reduction
800
: T1 (inner)
: T2 (outer)
1000
2TiCl3 + 3Mg → 2Ti + 3MgCl2
ca. 150 s
780
ca. 40 ℃
Temperature, T’ / ℃
2TiCl3 + 3Mg → 2Ti + 3MgCl2
780
700
(b)
Exp. o, reduction
ca. 41 ℃
Temperature, T’ / ℃
(a)
760
740
720
700
Vacuum
distillation
: T1 (inner)
: T2 (outer)
0
200
400
600
Time, ∆t / s
800
1000
Fig. Transition of sampler temperature on the experiment of
magnesiothermic reduction of TiCl3, (a) Exp. o, (b) Exp. g.
Institute of Industrial Science, The University of Tokyo
050218Caltech
43
Results, Small Scale, Wet/Dry Separation
Temperature, T’ / ℃
1000
Exp. g, vacuum distillation
950
900
850
Mg(l)
→ Mg(g)
MgCl2(l) → MgCl2(g)
800
750
700
Mechanical
separation
: T1 (inner)
: T2 (outer)
0
1000
2000
3000
4000
5000
Time, ∆t / s
Fig. Transition of sampler temperature on the removal of
Mg and MgCl2 from titanium product (Exp. g).
Institute of Industrial Science, The University of Tokyo
050218Caltech
44
Results, Small Scale, Wet/Dry Separation
(a) Exp. o
(b)
Stainless steel
capsule
Ti reaction
vessel
TiCl3 powder
(10 g)
Titanium
Mg lump
(2 g)
20 mm
(d)
(c) Exp. g
Stainless steel
capsule
Ti reaction
vessel
Titanium
20 mm
TiCl3 powder
(10 g)
Mg lump
(2 g)
Fig. Photograph of sectioned stainless steel capsule
after the experiment of magnesiothermic reduction of TiCl3
and schematic illustration of initial setup before experiment,
(a) (b) Exp. o, (c) (d) Exp. g.
Institute of Industrial Science, The University of Tokyo
050218Caltech
45
Results, Small Scale, Wet/Dry Separation
Intensity, I (a.u.)
(a) Exp. o
: Ti (PDF: 44-1294)
: TiH2 (PDF: 9-371)
(b) Exp. g
20
40
60
Angle, 2θ (degree)
80
100
Fig. X-ray diffraction patterns of the obtained samples.
Table
Experimental results for the magnesiothermic reduction of TiCl3.
Concentration of element i, Ci (mass%) a
Exp.
a:
Ti
Fe
o
96.35
0.13
g
99.37
0.16
Ni
Yield
Cr
Mg
Al
(%)
<0.01
0.03
0.02
3.47
86
<0.01
0.02
<0.01
0.44
99
Determined by X-ray fluorescence analysis, and the value exclueds
carbon and gaseous elements.
Institute of Industrial Science, The University of Tokyo
050218Caltech
46
Results, Small Scale, Wet/Dry Separation
(a)
SUS crucible
Ti deposit
50 µm
(b)
Intensity of X–ray, I (a.u.)
:Ti
:Cr
:Fe
:Ni
0
100
Distance, x / µm
200
Fig. (a) Scanning electron micrograph of sectioned reduction
crucible after the experiment of magnesiothermic reduction of
TiCl3. (b) Element concentration profile across the boundary
between stainless steel crucible and Ti deposit.
Institute of Industrial Science, The University of Tokyo
050218Caltech
47
Results, Small Scale, Wet/Dry Separation
(a)
SUS crucible
1
2
Ti deposit
3
4
5
50 µm
Table Analytical results of point at the boundary between
SUS crucible and titanium deposit
Pt.
Concentration of element i, Ci (mass%) a, b
Ti
Fe
Ni
Cr
1
0.22
72.79
8.33
18.65
2
0.13
72.66
8.83
18.38
3
76.60
14.66
1.69
7.04
4
68.29
22.74
3.77
5.20
5
76.34
15.77
1.49
6.39
Table Analytical results of obtained titanium deposit
Yield
Exp. Concentration of element i, Ci (mass%) a, b
l
Ti
Fe
Ni
Cr
Mg
Al
(%)
95.79
1.74
0.33
0.36
0.00
0.21
82
Institute of Industrial Science, The University of Tokyo
050218Caltech
48
Results, Small Scale, Wet/Dry Separation
(a)
Ti crucible
Ti deposit
50 µm
(b)
Intensity of X–ray, I (a.u.)
:Ti
:Cr
:Fe
:Ni
0
100
Distance, x / µm
200
Fig. (a) Scanning electron micrograph of sectioned reduction
crucible after the experiment of magnesiothermic reduction of
TiCl3. (b) Element concentration profile across the boundary
between titanium crucible and titanium deposit (Exp. g).
Institute of Industrial Science, The University of Tokyo
050218Caltech
49
Results, Small Scale, Wet/Dry Separation
(a)
Ti deposit
50 µm
(b)
Intensity of X–ray, I (a.u.)
:Ti
:Cr
:Fe
:Ni
0
100
Distance, x / µm
200
Fig. (a) Scanning electron micrograph of sectioned reduction
crucible after the experiment of magnesiothermic reduction of
TiCl3. (b) Element concentration profile in a titanium deposit at
center of crucible (Exp. g).
Institute of Industrial Science, The University of Tokyo
050218Caltech
50
Results, Small Scale, Wet/Dry Separation
(a)
Ti deposit
50 µm
(b)
Intensity of X–ray, I (a.u.)
:Ti
:Cr
:Fe
:Ni
0
100
Distance, x / µm
200
Fig. (a) Scanning electron micrograph of sectioned reduction
crucible after the experiment of magnesiothermic reduction of
TiCl3. (b) Element concentration profile in a titanium deposit at
center of crucible (Exp. l).
Institute of Industrial Science, The University of Tokyo
050218Caltech
51
Experimental Apparatus,
Large Scale, Wet Separation
T1 T2
(a)
100 mm
Argon inlet / outlet
Thermocouple
Alumina tube
Stainless steel
reaction chamber
Stainless steel
Mg and MgCl2
condenser
Heating element
Stainless steel
reaction vessel
(c) Exp. I
20 mm
(b) Exp. M
Ti reaction vessel
TiCl3 powder
Mg lump (Exp. M)
Mg rod (Exp. I)
Fig. Schematic illustration of the experimental apparatus
for the magnesiothermic reduction of TiCl3, (a) total appearance
(b) setup for Exp. M, (c) setup for Exp. I.
Institute of Industrial Science, The University of Tokyo
050218Caltech
52
Experimental Apparatus,
Large Scale, Wet Separation
(a)
Exp. M, Mg setup
(b)
Ti tube
Ti reaction vessel
TiCl3 powder (100 g)
Mg lump (ca. 10x
10x10 mm, 22 g)
20 mm
20 mm
(c)
Exp. I, Mg setup
(d)
Ti tube
Ti reaction vessel
TiCl3 powder (102 g)
Mg rod (ca. 5x
5x80 mm, 23 g)
20 mm
20 mm
Fig. Photograph and schematic illustration of initial Mg setup
before experiment, (a) (b) Exp. M, (c) (d) Exp. I.
Institute of Industrial Science, The University of Tokyo
050218Caltech
53
Experimental,
Large Scale, Wet Separation
1000
950
2 TiCl3 + 3 Mg → 2 Ti + 3 MgCl2
Leaching
850
800
750
0
200
400
: T1 (inner)
: T2 (outer)
600
Time, ∆t / s
800
1000
1000
Exp. I, reduction 2 TiCl + 3 Mg → 2 Ti + 3 MgCl
3
2
950
ca. 80 s
900
ca. 180 ℃
Temperature, T’ / ℃
ca. 78 s
900
700
(b)
Exp. M, reduction
ca. 191 ℃
Temperature, T’ / ℃
(a)
850
800
Leaching
750
700
: T1
: T2
0
200
400
600
Time, ∆t / s
800
1000
Fig. Transition of sample temperature during experiment of
magnesiothermic reduction of TiCl3, (a) Exp. M, (b) Exp. I.
Institute of Industrial Science, The University of Tokyo
050218Caltech
54
Results, Large Scale, Wet Separation
(a)
Exp. M, obtained
Ti sponge
(b)
Ti tube
TiCl2
残存
Ti reaction vessel
TiCl3 powder (100 g)
Ti
Mg
残存
(c)
Mg lump (ca. 10x
10x10 mm, 22 g)
20 mm
20 mm
Exp. I, obtained
Ti sponge
(d)
Ti tube
Ti reaction vessel
均一
還元
TiCl3 powder (102 g)
Ti
20 mm
Mg rod (ca. 5x
5x80 mm, 23 g)
20 mm
Ti製容器に損傷は見られない
Fig. Photographs of titanium block obtained
after the experiment of magnesiothermic reduction of TiCl3
and schematic illustration of initial setup before experiment,
(a), (b); Exp. M, (c), (d); Exp. I.
Institute of Industrial Science, The University of Tokyo
050218Caltech
55
Results, Large Scale, Wet Separation
Intensity, I (a.u.)
(a) Exp. M
: Ti (PDF: 44-1294)
: TiH2 (PDF: 9-371)
(b) Exp. I
20
40
60
80
100
Angle, 2θ (degree)
Fig. X-ray diffraction patterns of the obtained samples.
Table
Experimental results for the magnesiothermic reduction of TiCl3
Concentration of element i, Ci (mass%) a, b
Exp.
Ti
Fe
M
99.26
0.29
I
99.52
0.12
Ni
Yield
Cr
Mg
Al
(%)
<0.01
<0.01
0.10
0.36
66
0.01
<0.01
0.11
0.24
91
a: Determined by X-ray fluorescence analysis, and the determined
value excludes carbon and gaseous elements.
b: This value is an average of top and bottom in obtained Ti sponge.
Institute of Industrial Science, The University of Tokyo
050218Caltech
56
Results, Large Scale, Wet Separation
(a) Exp. M, Ti deposit
10 µm
(b) Exp. I, Ti deposit
10 µm
球状の一次粒が結合し、そのネック成長は著しい
Fig. Scanning electron micrograph of Ti sponge after
the experiment of magnesiothermic reduction of TiCl3
(a) Exp. M, (b) Exp. I.
Institute of Industrial Science, The University of Tokyo
050218Caltech
57
Experimental,
Large Scale, Dry Separation
(a)
950
Temperature, T’ / ℃
ca. 80 s
2 TiCl3 + 3 Mg → 2 Ti + 3 MgCl2
900
Vacuum
distillation
850
800
750
700
(b)
Exp. J, reduction
ca. 210 ℃
Temperature, T’ / ℃
1000
0
1000
200
: T1 (inner)
: T2 (outer)
400
600
800
Time, ∆t / s
1000
Exp. J, vacuum distillation
950
900
850
Mg(l) → Mg(g)
MgCl2(l) → MgCl2(g)
800
750
700
Mechanical
separation
: T1 (inner)
: T2 (outer)
0
1000
2000
3000
Time, ∆t / s
4000
Fig. Temperature change on the experiment of titanium
production from TiCl3, (a) reduction, (b) separation (Exp. J).
Institute of Industrial Science, The University of Tokyo
050218Caltech
58
Results, Large Scale, Dry Separation
(a)
Obtained Ti
sponge
(b)
Ti tube
Ti reaction vessel
TiCl3 powder (100 g)
分離
良好
Ti
Mg rod (ca. 5x
5x80 mm, 22 g)
20 mm
Ti製容器に損傷は見られない
(c)
Drained Mg/MgCl2
mixture
(d)
Mg/MgCl2 deposit
Mg&MgCl2
Mg&MgCl2
20 mm
20 mm
(a) Photograph of obtained Ti sponge after
the magnesiothermic reduction of TiCl3,
(b) schematic illustration of initial setup before experiment,
(c) photograph of drained MgCl2 and Mg,
(d) precipitate of MgCl2 and Mg by evaporation (Exp. J).
Institute of Industrial Science, The University of Tokyo
050218Caltech
59
Results, Large Scale, Dry Separation
Intensity, I (a.u.)
Exp. J
: Ti (PDF: 44-1294)
Exp. N
20
40
60
80
100
Angle, 2θ (degree)
Fig. X-ray diffraction patterns of the obtained sample.
Table
Experimental results for the magnesiothermic reduction of TiCl3
Concentration of element i, Ci (mass%) a, b
Exp.
J
Yield
Ti
Fe
Ni
Cr
Mg
Al
(%)
99.18
0.50
0.01
0.02
0.09
0.21
87
N
99.04
0.18
0.02
0.02
0.09
0.65
82
a: Determined by X-ray fluorescence analysis, and the determined
value excludes carbon and gaseous elements.
b: This value is average of top and bottom in obtained Ti sponge.
Institute of Industrial Science, The University of Tokyo
050218Caltech
60
Results, Large Scale, Dry Separation
(a) Exp. J, Ti deposit
10 µm
(b) Exp. N, Ti deposit
10 µm
角ばった粗大粒が見られる
Fig. Scanning electron micrograph of Ti sponge after
the experiment of magnesiothermic reduction of TiCl3
(a) Exp. J, (b) Exp. N.
Institute of Industrial Science, The University of Tokyo
050218Caltech
61
Results, Large Scale, Dry Separation
(a)
Ti deposit
500 µm
(b)
Ti deposit
50 µm
Fig. Scanning electron micrograph of titanium deposit after
the experiment of magnesiothermic reduction of TiCl3.
Institute of Industrial Science, The University of Tokyo
050218Caltech
62
T1 T2
(a)
100 mm
Argon inlet / outlet
Thermocouple
Alumina tube
Stainless steel
reaction chamber
Stainless steel
Mg and MgCl2
condenser
Heating element
Stainless steel
reaction vessel
20 mm
(b) Exp. SY 1
(c) Exp. RE 1&2
Ti reaction vessel
1
2
TiCl3 and Ti powder
1
2
3
TiCl2 powder
Stainless steel cell
Mg lump
Figure 2. Schematic illustration of the experimental apparatus
for the magnesiothermic reduction of TiCl2, (a) total appearance
(b) setup for Exp. SY 1, (c) setup for Exp. RE 1&2.
Institute of Industrial Science, The University of Tokyo
050218Caltech
63
(a) Polyimide film
Intensity, I (a.u.)
(b) Starting material
(TiCl3 + AlCl3)
(c) Product (SY1_1)
: TiCl2
(d) Product (SY1_2)
(e) Product (SY1_3)
20
40
60
80
Angle, 2θ (degree)
100
Figure 3. X-ray diffraction patterns of the samples.
Institute of Industrial Science, The University of Tokyo
050218Caltech
64
1100
Exp. RE 1
750
1000
950
900
700
TiCl2 + Mg → Ti + MgCl2
: T1 (inner)
: T2 (outer)
0
200
400
600
800
Temperature, T’ / °C
167 s
1050
44 K
Temperature, T / K
800
650
1000
Time, ∆t / s
Figure 4. Transition of sampler temperature on experiment of
magnesiothermic reduction of TiCl2 [Exp. RE 1].
Institute of Industrial Science, The University of Tokyo
050218Caltech
65
1100
(a)
Exp. RE 2, reduction
TiCl2 + Mg → Ti + MgCl2
950
: T1 (inner)
: T2 (outer)
0
1300
Temperature, T / K
700
200
400
600
Time, ∆t / s
800
1000
Exp. RE 2, evaporation
1000
1200
900
1100
Mg(l) → Mg(g)
MgCl2(l) → MgCl2(g)
800
1000
900
650
: T1 (inner)
: T2 (outer)
0
1000
2000
3000
Time, ∆t / s
4000
Temperature, T’ / °C
1000
Temperature, T’ / °C
750
900
(b)
150 s
1050
30 K
Temperature, T / K
800
700
5000
Figure 5. Transition of sampler temperature; (a) on experiment
of magnesiothermic reduction of TiCl2 , (b) on removal of Mg
and MgCl2 from titanium product [Exp. RE 2].
Institute of Industrial Science, The University of Tokyo
050218Caltech
66
(a)
(b)
Exp. RE 1_2
Stainless steel
cell
Ti reaction
vessel
TiCl2 powder
(10 g)
Mg lump
(2.7 g)
10 mm
(c)
(d)
Exp. RE 2_1
Stainless steel
cell
Ti reaction
vessel
TiCl2 powder
(6 g)
10 mm
Mg lump
(1.4 g)
Figure 6. Photograph of sectioned stainless steel capsule
after the experiment of magnesiothermic reduction of TiCl2
and schematic illustration of initial setup before experiment,
(a) and (b) Exp. RE 1_2, (c) and (d) Exp. RE 2_1.
Institute of Industrial Science, The University of Tokyo
050218Caltech
67
Intensity, I (a.u.)
(a) Product (RE1_2)
: Ti
: TiH2
(b) Product (RE2_1)
: Ti
20
40
60
80
100
Angle, 2θ (degree)
Figure 7. X-ray diffraction patterns of the samples.
Institute of Industrial Science, The University of Tokyo
050218Caltech
68
(a) Exp. RE 1_2, Ti deposit
10 µm
(b) Exp. RE 2_1, Ti deposit
10 µm
Figure 8 Scanning electron micrograph of Ti sponge after
the experiment of magnesiothermic reduction of TiCl2
(a) Exp. RE 1, (b) Exp. RE 2.
Institute of Industrial Science, The University of Tokyo
050218Caltech
69
800
1000
Temperature, T / K
600
800
400
600
Exothermic heat?
200
: T1 (inner)
: T2 (outer)
400
0
2
4
6
8
10
Temperature, T’ / °C
2 TiCl3 + Ti → 3 TiCl2
12
3
Time, ∆t / ks
Figure 4. Transition of sampler temperature [Exp. SY1].
Institute of Industrial Science, The University of Tokyo
050218Caltech
70
(a)
Starting material
10 mm
(b)
Product (SY1_3)
10 mm
Figure 5. Photograph of powder sample in the experiment
of TiCl2 synthesis, (a) starting material (TiCl3 + AlCl3)
(b) TiCl2 product (SY1_3).
Institute of Industrial Science, The University of Tokyo
050218Caltech
71
Results, Appearance of Sample
(a) Sectioned reaction container
after reduction (prior to leaching)
Porous Ti
Ti reaction
container
Drained
MgCl2
10 mm
(b) Initial setup of (a)
Stainless steel cell
Ti reaction container
TiCl3 powder
Mg lump
MgCl2 drain zone
(a)
Figure Sectioned titanium reaction container after the
experiment for the magnesiothermic reduction of TiCl3:
(a) photograph of obtained sample, (b) initial setup of
the reaction vessel [A].
Institute of Industrial Science, The University of Tokyo
050218Caltech
72

Similar documents