diseño y construcción de un sensor de nivel utilizando fibras ópticas

Transcription

diseño y construcción de un sensor de nivel utilizando fibras ópticas
INSTITUTO POLITECNICO NACIONAL
ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA
SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN
DISEÑO Y CONSTRUCCIÓN DE UN SENSOR
DE NIVEL UTILIZANDO FIBRAS ÓPTICAS
TESIS QUE PARA OBTENER EL GRADO DE
MAESTRO EN CIENCIAS EN INGENIERÍA ELECTRÓNICA
OPCIÓN: INSTRUMENTACIÓN
PRESENTA:
FREDDY LÓPEZ VILLAFUERTE
DIRECTOR DE TESIS
Dr. Walter Humberto Fonseca Araujo
MÉXICO, D.F.
DICIEMBRE 2002
DEDICATORIAS
A mis padres Luis López Moreno y Evelia López Villafuerte a quienes
amo mucho.
Les dedico este trabajo por las multiples atenciones y sacrificios que
realizaron para que lograra culminar mis estudios y por haberme
guiado en el camino del bien.
A mis hermanos Tania y Luis con los que comparto mi vivir y me han
apoyado en los momentos difíciles con comprensión y cariño.
AGRADECIMIENTOS
Agradezco todas las atenciones recibidas, la paciencia y tolerancia del
director de esta Tesis, el Dr. Walter Humberto Fonseca Araujo.
Gracias por su amistad y su confianza, le reitero mi admiración y
profundo respeto.
Al Dr. Argeo Vázquez Martínez quien sin su apoyo no hubiera sido
posible la culminación de este trabajo. Gracias por tu amistad y por el
tiempo invertido.
A mis profesores de la maestría y comisión revisora:
Dr. José Manuel de la Rosa Vázquez
Dr. Roberto Linares y Miranda
Dr. Alexandre Michtchenko
M. en C. José Héctor Caltenco Franca
M. en C. Raúl Peña Rivero
M. en C. Artemio Ramírez Antonio
Gracias por su tiempo, consejos y enseñanzas.
A mis compañeros de maestría que enriquecieron mi vida:
Miguel Ángel Rodríguez Zuno
Onofre Alonso Lárraga
Tirso Javier Salazar Sandoval
Gracias por su amistad y apoyo.
ABSTRACT
ABSTRACT
This Work presents the design and construction of a level sensor
with optical fibers. This level sensor is classified as a transmissive,
extrinsic and digitally intensity-modulated sensor, it uses the floating
force and binary code metallic plate to measure in litres the level of a
fluid in a liquid container.
The sensor described in this work measures the level of the
fluids independently from the physical and/or chemical characteristics
of the fluid such as viscosity, density, transparency, etc.
The fiber optics light signal is processed by the COP8SGR
microcontroller. This electronic device interprets the signal received
and it shows the level of the fluid on a Liquid Crystal Display AND491.
According to the digital nature and the features of the optical
fibers, the sensor can operate in environments with high levels of
electromagnetic interference. This is why it is useful for any industrial
application.
IX
RESUMEN
RESUMEN
En este trabajo se expone el diseño y la construcción de un
sensor de nivel de líquidos con fibras ópticas. Este sensor de nivel es
de tipo transmisivo, extrínseco y de amplitud modulada digitalmente;
utiliza el principio de flotación para determinar el nivel de un líquido en
un contenedor.
Este sensor puede realizar mediciones independientemente de
las características físicas o químicas del fluido en el contenedor, tales
como la viscosidad, densidad, transparencia, etc.
El procesamiento de la señal lumínica entregada por las fibras
ópticas se realiza con el microcontrolador COP8SGR, el cual interpreta
la señal recibida y muestra el nivel del liquido del contenedor por
medio del exhibidor de cristal líquido AND491.
Debido a la naturaleza digital del sensor y a la utilización de las
fibras ópticas, es posible que éste opere en ambientes donde existe
una alta interferencia electromagnética, lo que lo hace atractivo para
muchas aplicaciones industriales.
X
Glosario de términos
GLOSARIO DE TÉRMINOS
VI
Glosario de términos
GLOSARIO DE TÉRMINOS
Arquitectura
Harvard
Modificada:
Construcción lógica interna del microcontrolador
COP8 en donde la memoria de programa y la
memoria de datos tienen su propio bus de datos
y direcciones respectivamente.
Calibración:
El proceso de ajuste en la respuesta de un
instrumento sobre un intervalo lineal de
operación.
Código binario:
Representación discreta de dígitos binarios
(discretización con los dígitos uno y cero).
Densidad:
Masa por unidad
sustancia(Kg/m3).
Exactitud:
Relación entre el valor más cercano de una
lectura en un dispositivo de medición y el valor
real de la cantidad medida. Usualmente
expresada en ± el por ciento de la escala
completa
de
salida
o
de
lectura.
Extrínseco:
Que viene de afuera, que se realiza de forma
externa.
Interferencia:
Cualquier energía indeseada que dificulta la
recepción de una señal deseada, esta puede
ser originada por fenómenos naturales o
artificiales.
de
volumen
de
una
VII
Glosario de términos
Intervalo de
operación:
Esta definido por los limites máximo y mínimo
que puede tomar el instrumento, bajo
condiciones controladas.
Linealidad:
La linealidad del instrumento se define como el
intervalo sobre el cual la variable tiene un
comportamiento repetitivo y donde el efecto es
proporcional
a
la
causa.
Modulación:
Cambio de amplitud o de frecuencia de una
señal portadora.
Régimen
turbulento:
Cuando en un fluido las fuerzas de inercia son
mucho más significativas que las fuerzas
viscosas.
Ruido:
Cualquier perturbación que atenúa o interfiere a
la señal deseada.
Sensibilidad:
Cualidad de un instrumento o dispositivo para
mostrar su rapidez de respuesta (en el tiempo
y/o magnitud) a un estimulo específico.
Sistema digital:
Circuitos electrónicos en los cuales la
información es transmitida en forma de trenes
de
pulsos
(información
discreta).
Viscosidad:
La resistencia inherente de una sustancia a fluir.
Lux:
Unidad de iluminación
internacional, 1 lm/m2.
en
el
sistema
VIII
Glosario de términos
9
Indice
SENSOR DE NIVEL DE LÍQUIDOS UTILIZANDO
FIBRAS ÓPTICAS
Contenido:
Índice....................................................................................................I
Índice de figuras................... .............................................................III
Índice de tablas..................................................................................IV
Índice de fotografías............................................................................V
Índice de programas en ensamblador.................................................V
Glosario..............................................................................................VI
Abstract...............................................................................................IX
Resumen.............................................................................................X
Justificación y objetivo........................................................................XI
Introducción.......................................................................................XII
Antecedentes....................................................................................XIII
Capitulo 1. Sistemas de medición de nivel
1.1 Introducción.
1.2 Características de las fibras ópticas en los sensores.
1.3 Sensores de nivel con fibras ópticas.
1.3.1 Concepto transmisivo.
1.3.2 Concepto reflectivo.
1.3.3 Clasificación.
1.4 Sensores de nivel transmisivo.
1.4.1 Nivel de líquidos bicolor.
1.4.2 Sensor de nivel por obstrucción.
1.5 Sensor de nivel por fuerza de flotación.
1.5.1 Sensor de pistón desplazable
1.5.2 Sensor de nivel lector de tarjeta.
1.6 Sensores de nivel por presión.
1.7 Sensor de superficie reflejante.
1.8 Sensor de nivel por cambios de índice de refracción.
1
2
2
3
4
4
5
6
6
7
8
8
9
9
10
11
I
Indice
Capitulo 2. Medición de nivel por lectura de código
2.1
2.2
2.3
Características generales del sensor.
Principio de operación .
Condiciones para realizar la medición de nivel bajo el
principio seleccionado.
Capitulo 3. Diseño y construcción del sensor
de nivel
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
Introducción.
Elemento sensor.
Sistema hidráulico.
Sistema óptico del sensor.
Fibra óptica.
Caracterización de las fibras ópticas de vidrio.
Fuente óptica.
Receptor óptico.
Capitulo 4. Procesamiento de la señal eléctrica e
interfase periférica
4.1
4.2
4.3
4.4
4.5
Introducción.
Procesador de señal.
Periférico de salida.
Interfase periférica.
Programación del microcontrolador COP8SGR7
Capitulo 5. Caracterización del sistema y análisis de
pérdidas
5.1
5.2
5.3
5.4
5.4.1
5.4.2
Introducción.
Sistema general de medición.
Elementos principales que conforman al sistema.
Evaluación del sistema.
Desalineación lateral.
Desalineación angular.
13
14
15
18
21
22
22
24
26
27
29
32
37
47
48
48
51
51
52
55
56
56
57
58
60
61
II
Indice
5.4.3
5.4.4
5.5
5.6
Separación entre terminales.
Terminales mal pulidas.
Tolerancia en la lectura del nivel.
Calibración en el sistema de medición.
63
69
69
70
Conclusiones.
Recomendaciones y sugerencias
Bibliografía.
Anexo A
71
72
73
Diagramas del sistema
76
Anexo B
Especificaciones eléctricas de dispositivos electrónicos
79
Anexo C
Programas en lenguaje ensamblador COP8SGR7
99
Anexo D
Fotografías del sistema
113
Índice de figuras
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
2.1
3.1
3.2
3.3
3.4
3.5
3.6
Configuración de sensor reflectivo
Nivel de líquido bicolor
Bosquejo de un sensor de nivel por obstrucción
Interruptor de nivel de líquidos
Sensor de nivel de líquidos con fibra óptica (digital)
Sensor de nivel de líquidos con transductor de presión
Medición de nivel de líquido por superficie reflejante
Sensor de nivel de líquidos con cambio de índice
refracción (Refracciométricos)
Bosquejo del código binario en la placa perforada
Bosquejo de la placa ranurada y acanalada
Sistema hidráulico
Elementos generales de un sistema de medición óptico
Partes que integran a una fibra óptica
Cono de aceptación de la fibra óptica dependiente de
la apertura numérica
Medición de la apertura numérica de la fibra óptica
5
6
7
8
9
10
11
12
16
24
25
26
27
29
30
III
Indice
3.7 Fuente óptica con LED emisor de 850 nm
3.8 Circuito para caracterizar a los diodos del emisor
3.9 Diagrama del circuito eléctrico del receptor óptico
3.10 Curvas características Corriente vs. Voltaje y línea de carga
3.11 Circuito equivalente del fotodiodo PIN
3.12 Curvas características capacitancia CJ vs. Voltaje inverso
3.13 Curvas características Corriente obscuridad vs. Voltaje
Inverso
3.14 Circuito equivalente del diodo PIN y una etapa de
amplificación con sus respectivas fuentes de ruido
4.1 Diagrama del circuito integrado COP8SGR7
4.2 Diagrama eléctrico de la interfase periférica
4.3 Diagrama de flujo del programa principal
5.1 Diagrama a bloques del sistema general de medición
5.2 Pérdidas de potencia óptica
5.3 Desalineamiento entre dos fibras ópticas del mismo radio
5.4 Desalineamiento angular entre dos fibras ópticas
5.5 Separación existente entre dos fibras ópticas
5.6 Eficiencia de acoplamiento
5.7 Análisis del ángulo incidente de un haz de luz
5.8 Fuente óptica de potencia variable
5.9 Bosquejo del código binario en la placa perforada
34
35
39
40
41
42
43
43
48
52
53
56
59
60
62
63
64
66
68
70
Índice de tablas
Tabla 3.1 Mediciones de la NA para la fibra óptica de 100/140
Tabla 3.2 Mediciones de la NA para la fibra óptica de 50/125
Tabla 3.3 Mediciones de corriente de LED vs Voltaje de
referencia
Tabla 3.4 Mediciones de la potencia óptica de LED vs corriente
del LED
Tabla 5.1 Pérdidas por desalineamiento lateral
Tabla 5.2 Pérdidas por desalineamiento angular
Tabla 5.3 Medición de las pérdidas en decibeles en la
discontinuidad del sistema
31
31
35
36
61
63
66
IV
Indice
Índice de fotografías
Fotografía 1
Fotografía 2
Fotografía 3
Fotografía 4
Fotografía 5
Fotografía 6
Sistema completo del sensor de nivel con
fibras ópticas
Vista en planta del receptor óptico y del
exhibidor AND491
Vista en planta del contenedor con el sensor
de nivel
Circuito electrónico del emisor óptico
Circuito electrónico de la interfase y el receptor
óptico
Detalle de la placa perforada con el código binario
114
115
116
117
118
119
Índice de programas en ensamblador
Programa principal del sensor de nivel
Programa de la macro “display” para controlar el
exhibidor de cristal líquido
100
109
V
Justificación y Objetivo
JUSTIFICACIÓN
El diseño y construcción de un sensor de nivel donde se
emplean los sistemas ópticos en conjunto con la electrónica
programable da origen a un sistema robusto y práctico para una
amplia variedad de aplicaciones en la industria, en donde se puede
llevar a cabo el control de la variable independientemente de las
características físicas y químicas de las sustancias que se manejen.
Este sensor presenta ventajas en ambientes agresivos y
contaminados, tales
como los altos índices de interferencia
electromagnética y de radiofrecuencia, siendo el sensor inmune a
estos ambientes que dificultan
la medición que con sistemas
eléctricos convencionales, no sería posible implementar.
OBJETIVO
Diseño y desarrollo de un sensor de nivel utilizando fibras ópticas
bajo el principio de flotación y lectura de una tarjeta perforada.
En el trabajo se contemplan las siguientes metas:
a) Análisis de los métodos de medición de nivel con fibras ópticas
existentes.
b) Selección del sistema de medición.
c) Selección de materiales para la construcción del sensor.
d) Diseño y construcción del sistema opto-mecánico.
e) Diseño y construcción del sistema opto-electrónico.
f) Procesamiento de las señales entregadas por el sensor.
g) Pruebas finales.
XI
INTRODUCCIÓN
INTRODUCCIÓN
Todos los sistemas de medición electrónicos consisten de tres
partes: una entrada derivada de un sensor, un dispositivo electrónico
que realiza el procesamiento de la señal de entrada, probablemente
en paralelo con las entradas de otras fuentes, y finalmente un
dispositivo de salida, típicamente un actuador.
Quizá uno de los retos de la tecnología de los sensores es la
conversión de energía de un tipo a otro para medir un determinado
parámetro que representa un fenómeno físico o químico por medio de
un transductor; lo cual alude a un arte multidisciplinario, ya que en los
sensores están incluidas varias ramas de la ciencia como la
electrónica, la ingeniería mecánica, química, física, etc.
La función esencial de un sensor es detectar una variación de
energía para procesarla y transformarla a un valor correspondiente en
otra forma de energía, empleando en este proceso un transductor. Por
ejemplo, los cambios en la presión acústica producen cambios en la
corriente eléctrica de un micrófono, cambios en la temperatura
produce cambios en el voltaje eléctrico de un termopar, y los cambios
en las características espaciales de una escena representan cambios
en la corriente eléctrica de una cámara de televisión.
En este trabajo se presenta un sensor de nivel, que muestra en
un exhibidor, el nivel de un líquido cualquiera, que se encuentre en un
contenedor determinado, por lo que la variable del nivel del líquido en
el contenedor será transformado a información visual en el exhibidor.
El nivel de líquidos es una de las etapas primarias de control de
procesos, especialmente en la industria petroquímica y química. La
naturaleza explosiva de muchos de los procesos hacen a los sensores
con fibras ópticas una buena opción para estas aplicaciones.
XII
ANTECEDENTES
ANTECEDENTES
Debido a que la medición del nivel de líquidos es un parámetro
importante para el control de procesos, en la industria, se han
implementado diferentes instrumentos para la medición de esta
variable.
Utilizando principios mecánicos, eléctricos o la combinación de
estos se han desarrollado sensores que monitorean el nivel de ciertos
líquidos contenidos en un recipiente. Las condiciones en las que se
encuentren estos líquidos y las características físicas y/o químicas del
mismo, determinaran que elemento sensor es apropiado para la
medición de esta variable.
En este trabajo se presenta el desarrollo de un instrumento para
medir el nivel de un líquido en un contenedor, independientemente de
las características fisico-químicas del mismo.
Se construirá un sensor óptico que permita la medición del nivel
del líquido en el contenedor, así como el receptor y emisor óptico del
sistema.
Se implementará en el sistema un procesador (microcontrolador)
que permita visualizar el estado actual del nivel del líquido en el
contenedor así como el hardware respectivo para el correcto
funcionamiento del mismo.
Se realizarán las pruebas finales del sistema y se caracterizará
al sistema en general.
XIII
Capitulo 1
Sistemas de medición de nivel
CAPÍTULO 1
SISTEMAS DE MEDICIÓN DE NIVEL
1
Capitulo 1
Sistemas de medición de nivel
1.1 INTRODUCCIÓN
La medición del nivel de un líquido es una parte integral de los
parámetros de un proceso de control, que se usa en una amplia
variedad de industrias.
La utilización de las fibras ópticas ha revolucionado el campo de
los sensores y representan un avance para la medición de distintas
variables utilizadas en un proceso, así como en muchas áreas de la
instrumentación han marcado un claro adelanto tecnológico como
principio para la medición del nivel tal como a continuación se expone.
1.2 CARACTERÍSTICAS DE LAS FIBRAS ÓPTICAS
EN LOS SENSORES
Los sensores con fibras ópticas son esencialmente un medio
donde la luz es guiada dentro de una fibra óptica y puede ser
modificada debido a una influencia física, química, biológica, etc.
La luz de una fuente óptica con intensidad constante se
introduce en una fibra óptica por medio de un acoplador y es guiada
hasta un punto donde la medición se lleva a cabo.
En este punto la luz puede salir de la fibra y ser modulada en
alguna zona fuera de ella antes de ser nuevamente introducida en la
misma fibra o alguna otra diferente (estos sensores son llamados
sensores extrínsecos) o la luz puede continuar dentro de la fibra y ser
modulada dentro de la misma (sensores intrínsecos) o una
combinación de las anteriores (sensores evanescentes) [5].
Los sensores con fibras ópticas representan un recurso
tecnológico que se aplica en una gran variedad de instrumentos.
Algunas de las características que hacen atractiva la utilización de las
fibras ópticas como sensores son las siguientes:
• Carácter no-eléctrico.
• Principio de operación no explosivo.
2
Capitulo 1
Sistemas de medición de nivel
• A menudo no requiere contacto directo con la variable a
medir.
• Capacidad de operación remota.
• Dimensiones pequeñas y de poco peso.
• Opera en áreas de acceso difícil.
• Instalación potencialmente sencilla.
• Inmune a interferencias de radio frecuencias (RFI) y a la
interferencia electromagnética (EMI).
• Alta precisión en las mediciones.
• Capacidad de acoplamiento con sistemas de comunicación de
datos.
• Transmisión de datos segura.
• Potencialmente resistente a la radiación ionizante.
• Reducción de costos de protección contra ruido.
• Menor mantenimiento.
• Reducción de los costos de instalación y reparación.
1.3 SENSORES DE NIVEL CON FIBRAS ÓPTICAS
Todos los sensores de fibras ópticas pueden detectar la variable
física por medio de la modulación de intensidad óptica o por la
modulación de la fase del haz de luz. Los sensores de nivel
regularmente operan con intensidad modulada.
Los sensores de intensidad modulada están asociados
generalmente con el desplazamiento o alguna otra perturbación física
que interactúa con la fibra o un transductor mecánico aunado a la
fibra. La perturbación causa un cambio en la intensidad de la luz
recibida, la cual es función del fenómeno que se está midiendo.
Los conceptos generales asociados con la modulación de
intensidad incluyen al concepto transmisivo y reflectivo, sin embargo,
se usan otros mecanismos independiente de o en conjunto con los dos
conceptos anteriores, tales como: la absorción, los cambios de
densidad, fluorescencia, polarización y rejillas ópticas.
Los sensores de intensidad modulada son analógicos por
naturaleza pero tienen un uso importante en aplicaciones digitales
para interruptores y contadores.
3
Capitulo 1
Sistemas de medición de nivel
1.3.1 CONCEPTO TRANSMISIVO
El concepto de sensor transmisivo normalmente se asocia con la
interrupción de un rayo de luz. Por ejemplo si se quiere sensar el
desplazamiento axial entre dos fibras ópticas se observará que el
acoplamiento de luz sigue la ley de 1/r2 donde r es la distancia entre
las sondas.
Otro sensor transmisivo más sensible es el de desplazamiento
radial donde el sensor no transmite si las sondas se desplazan una
distancia igual un diámetro de la sonda, aproximadamente el primer
20% del desplazamiento da una respuesta lineal en la luz acoplada.
1.3.2 CONCEPTO REFLECTIVO
El concepto reflectivo es atractivo para mucho sensores debido a
su precisión, simplicidad y su bajo costo. El sensor está compuesto de
dos fibras ópticas (ya sean de núcleos múltiples o de un solo núcleo),
por una de ellas se transmite luz a una tarjeta reflejante, mientras la
otra atrapará la luz reflejada y la transmitirá al detector, la intensidad
de la luz detectada depende de la distancia a la que se encuentre la
tarjeta reflejante.
Al graficar la intensidad de la luz reflejada contra la distancia a la
que se encuentra la superficie reflejante muestra que las pendientes
iniciales de la curva permiten tener una precisión potencial de
millonésimas de pulgada. La precisión también depende del tipo de
sonda que se utilice, ya sea hemisférica, coaxial, de par de núcleos o
sencilla.
Para aplicaciones que requieren de un intervalo dinámico más
grande, generalmente se utiliza un sistema de lentes, que expanden el
intervalo de medición, desde 5.08 mm (0.2 pulgadas) hasta 13cm
(≈5pulgadas) o más.
4
Capitulo 1
Sistemas de medición de nivel
Figura 1.1 Configuración de sensor reflectivo.
1.3.3 CLASIFICACIÓN
Los sensores de nivel pueden dividirse en dos categorías[5]:
Sensores de nivel puntual:
Este tipo de sensores se utilizan para marcar un nivel discreto
previamente establecido, regularmente funcionan como interruptores
de nivel alto y/o nivel bajo; se emplean como alarmas para la
condición de sobreflujo o para marcar el estado de nivel bajo o vacío.
Sensores de nivel continuo:
Este tipo de sensores proveen un monitoreo completo del nivel
del sistema, ya que como su nombre lo indica mide el nivel del fluido
en un intervalo determinado. Con ellos se pueden detectar fugas o
medir la magnitud actual del nivel del líquido en cuestión.
Los sensores de nivel continuo tienen una salida analógica que
correlaciona directamente el nivel de esta señal con el fluido del
contenedor.
En este trabajo se expone un medidor de nivel discreto, ya que
solamente mide niveles discretizados de fluido en el contenedor.
5
Capitulo 1
Sistemas de medición de nivel
1.4 SENSORES DE NIVEL TRANSMISIVO
1.4.1 NIVEL DE LÍQUIDOS BICOLOR
Las calderas generalmente usan cristales de dos colores para
detectar el nivel del agua. Se coloca un prisma de tal forma que si en
el compartimento se encuentra vapor, se observa una luz roja; pero si
el compartimiento se encuentra lleno de agua, la luz roja se refracta y
solo la luz verde se transmite.
La interfase entre las fibras y el compartimiento de color debe de
estar aislada de la luz ambiental para evitar interferencias del medio
externo. Este tipo de sensor es pasivo, sin sistemas mecánicos en
movimiento u otros componentes eléctricos (mas que el iluminador ).
Figura 1.2 Nivel de líquido bicolor.
Regularmente estos sensores se encuentran a un lado de la
caldera, pero si se deseara monitorear el proceso se tendría que
equipar con fibras ópticas de apertura numérica grande y de núcleos
de fibra óptica grandes.
6
Capitulo 1
Sistemas de medición de nivel
1.4.2 SENSOR DE NIVEL POR OBSTRUCCIÓN
Otro sistema transmisivo con fibras ópticas es como el que se
muestra en la figura 1.3, en ella se puede apreciar que con el líquido
del contenedor, la luz se ve interrumpida en su trayectoria hacia la
fibra receptora, de tal forma que al obstruirse el haz, se tiene la
información del nivel en el tanque.
El número de fibras ópticas utilizadas es igual al número de
niveles discretos que se requieran en el contenedor; cabe aclarar que
este tipo de sensor necesita protecciones para la fibra óptica en la
discontinuidad para que no se encuentren en contacto directo con el
líquido.
Una desventaja de este tipo de sensores es que no puede
detectar líquidos que sean transparentes a la longitud de onda de luz
empleada.
Figura 1.3 Bosquejo de un sensor de nivel por obstrucción.
7
Capitulo 1
Sistemas de medición de nivel
1.5 SENSOR DE NIVEL POR FUERZA DE
FLOTACIÓN
Este tipo de sensores detectan el nivel de líquidos empleando
flotadores, por medio de ellos y aprovechando la fuerza de flotación es
posible seguir el nivel del líquido.
1.5.1 SENSOR DE PISTÓN DESPLAZABLE
Este tipo de sensor utiliza un émbolo que es impulsado por un
flotador para detectar un nivel alto o bajo en el tanque, tal como lo
muestra la figura 1.4.
Se puede apreciar que el sensor puede ser de tipo transmisivo o
reflectivo dependiendo si el sensor, por medio del pistón, interrumpe el
haz de luz o lo refleja.
Figura 1.4 Interruptor de nivel de líquidos.
8
Capitulo 1
Sistemas de medición de nivel
1.5.2 SENSOR DE NIVEL LECTOR DE TARJETA
Este sensor de nivel utiliza una tarjeta que contiene un código
binario (el código puede estar impreso con superficies reflejantes o
perforado en la misma placa), por lo que con el uso de n fibras se
pueden determinar valores discretos de nivel de líquido.
Figura 1.5 Sensor de nivel de líquidos con fibra óptica (digital).
1.6 SENSORES DE NIVEL POR PRESION (CABEZA
HIDROSTÁTICA)
El nivel de líquidos puede determinarse midiendo la presión
ejercida sobre una membrana debido al peso de la columna de líquido
que ésta ejerce sobre de ella.
La medición se complica cuando por ejemplo se tiene un tanque
presurizado, ya que el sistema requiere de dos sensores de presión,
uno que mida la presión de la presurización y otro más que mida la
9
Capitulo 1
Sistemas de medición de nivel
presión ejercida por una columna de agua; la diferencia de estas
presiones corresponde al nivel de líquidos.
El inconveniente es que este método al tener pequeños errores
en la medición de presión se tendrán errores grandes en el nivel de
líquidos.
Figura 1.6 Sensor de nivel de líquidos con transductor de presión.
1.7 SENSOR DE SUPERFICIE REFLEJANTE.
Las técnicas de superficie reflejante usan la reflexión de la luz en
la superficie de un determinado líquido, en donde existe una fibra
transmisora y varias fibras receptoras.
10
Capitulo 1
Sistemas de medición de nivel
Figura 1.7 Medición de nivel de líquido por superficie reflejante.
Para un intervalo dinámico muy grande (resolución del nivel del
líquido) puede parecer muy costoso pero es atractivo para sustancias
corrosivas o líquidos a alta temperatura donde el contacto no es
posible.
1.8 SENSORES DE NIVEL POR CAMBIOS DE
ÍNDICE DE REFRACCIÓN
Los sensores de nivel con cambios en el índice de refracción
funcionan al transmitir un haz de luz en un prisma, típicamente un
cuarzo (índice de refracción de 1.46).
Cuando el prisma se encuentra en el aire se tiene una reflexión
interna total, pero en presencia de un líquido circundante cuyo índice
de refracción sea mayor que el del prisma, la luz no se refleja
totalmente hacia el interior del prisma ya que el cambio de índice de
11
Capitulo 1
Sistemas de medición de nivel
refracción a su alrededor, hará que parte de la luz se refracte en el
líquido.
Estos sensores son ideales para monitorear nivel alto o bajo, o
para detectar fugas en un sistema.
Figura 1.8 Sensor de nivel de líquidos con cambio de índice de refracción
(Refractométricos).
Algunos sensores con fibras ópticas presentados en este
capitulo dependen de las cualidades físicas y/o químicas del líquido
que se desee medir ( como el índice de refracción del líquido,
viscosidad, transparencia, corrosividad, etc.), otros más dependen de
las condiciones en que se encuentre el líquido o el contenedor (como
la presión interna del tanque, que el líquido se en cuentre en un
regimen no turbulento, etc.).
El principio elegido para medir el nivel de un líquido fue el de
lector de tarjeta, ya que presenta ventajas con respecto a los otros
métodos, las características de este principio de medición son
analizados en el capitulo 2.
12
Capitulo 2
Medición de nivel por lectura de código
CAPÍTULO 2
MEDICIÓN DE NIVEL POR LECTURA DE CÓDIGO
13
Capitulo 2
Medición de nivel por lectura de código
2.1 CARACTERÍSTICAS GENERALES DEL SENSOR
El principio seleccionado para la medición del nivel fue el del
sensor de nivel con lector de tarjeta, el elemento principal para este
sensor es la tarjeta con código. El sistema fue diseñado para ser
modulado en intensidad (presencia o ausencia de luz) y de forma
transmisiva (extrínseca).
Una de las ventajas importantes de este medidor es la capacidad
de poder trabajar con una variedad de sustancias que puedan fluir en
el tanque. Dado que la medición se realiza en base a un principio de
flotación, se puede determinar el nivel de diversos líquidos sin importar
su densidad, transparencia, agresividad, etc.
El sensor presenta además la cualidad de operar en ambientes
contaminados electromagnéticamente.
Las ventajas y características que presenta este principio de
operación en el sensor son las siguientes:
• Un número alto de discretización con un mínimo de fibras
ópticas.
• Amplio intervalo de medición.
• Versatilidad en la instalación.
• Elemento sensor de tamaño reducido.
• Amplia variedad para los materiales de construcción
(dependiendo del fluido a tratar).
• Diversidad en la aplicación de procesos
• Construcción simple y duradera.
• Flexibilidad en la utilización de sistemas digitales para el
procesamiento de la señal y control de la variable.
• Amplia variedad para la conexión de salida (interfaz de
computadora, exhibidores de led´s o de cristal líquido, etc).
• Correcta operación en un amplio intervalo de temperatura y
presión (solo dependiente de los materiales de construcción y
fibra óptica).
14
Capitulo 2
Medición de nivel por lectura de código
• El principio de operación por lectura de código permite
procesarse de modo enteramente digital.
• El diseño del sensor es compacto, seguro y con posibilidades de
miniaturizarse por medio de elementos mecánicos.
• La operación del sensor es intrínsecamente seguro en
ambientes inflamables y agresivos.
• Facilidad de instalación en lugares poco accesibles
• Utilización de fibras ópticas de plástico o de vidrio con diferentes
diámetros y núcleos.
• Utilización de fuentes ópticas poco estabilizadas con niveles de
potencia ajustables a un valor fijo.
• La fuente óptica no requiere compensación alguna.
• El sistema de calibración es práctico y muy sencillo.
• El sistema de modulación del haz de luz es sencillo (ausencia o
presencia del haz).
• Sistema de procesamiento por microcontrolador COP8 con
capacidad de control de procesos.
2.2 PRINCIPIO DE OPERACIÓN
El elemento primario del sensor es la placa con código binario,
este código puede incorporarse al sensor en forma reflectiva o
transmisiva, dependiendo de si la tarjeta se construye con superficies
reflejantes o con perforaciones en la misma que permitan pasar la luz
hacia el sistema receptor.
En la realización del proyecto se utilizó el concepto transmisivo al
perforar la placa con un código binario de 8 bits, de tal forma que la
lectura del código en la placa perforada se realiza con la interrupción o
la presencia de luz en el extremo receptor, tal como se muestra en la
figura 2.1.
15
Capitulo 2
Medición de nivel por lectura de código
Los niveles discretos (N) detectables en el contenedor con este
sistema están en función del número de bits utilizados en la placa
perforada, debido a que la placa tiene un código binario de 8 bits
entonces los niveles discretos son:
N = 2n = 28 = 256niveles
(1)
El número de fibras emisoras (n) o lectoras del sistema son 8 ya
que la placa perforada contiene un código binario de 8 bits.
Figura 2.1 Bosquejo del código binario en la placa perforada.
Cada uno de las 256 combinaciones en la tarjeta perforada
indican un nivel de líquido determinado en el tanque.
16
Capitulo 2
Medición de nivel por lectura de código
La lectura de cada combinación en la tarjeta se realiza por medio
de las fibras ópticas. El sistema dispone de 8 fibras ópticas emisoras
de luz y 8 fibras ópticas receptoras que se encuentran en la parte
superior del contenedor.
La placa perforada con el código binario se desplaza entre las
fibras ópticas emisoras y receptoras impulsada por el nivel del líquido
contenido en el tanque.
La placa perforada puede desplazarse entre las fibras ópticas
debido a que en la base de la misma se encuentran unos flotadores de
plástico que permiten impulsarla conforme el contenedor se llena o se
vacía de líquido.
La forma en que se lleva a cabo la lectura del código binario en
la tarjeta perforada por medio de las fibras ópticas es de carácter
transmisivo, es decir, las fibras ópticas emisoras transmiten haces de
luz hacia las fibras ópticas receptoras, mismas que logran acoplar la
potencia lumínica de las primeras dependiendo de la posición de la
tarjeta perforada .
Si una de las fibras ópticas emisoras coincide con un hueco de la
tarjeta perforada con el código binario, entonces la fibra óptica
receptora podrá acoplar esta radiación ya que la tarjeta permitirá un
paso libre y directo entre ambas fibras. Por el contrario, si no hay
ranura entre las fibras ópticas entonces la fibra óptica receptora no
recibe radiación lumínica, de modo que la ausencia o presencia de luz
en las fibras ópticas representan los dígitos binarios de la placa
perforada.
Como se tienen 8 fibras ópticas emisoras, entonces se podrá
obtener la lectura de un byte del código de la tarjeta perforada.
Esta información se procesa posteriormente y se interpreta como
un determinado nivel del líquido dentro del contenedor.
17
Capitulo 2
Medición de nivel por lectura de código
2.3 CONDICIONES PARA REALIZAR LA
MEDICIÓN DE NIVEL BAJO EL PRINCIPIO
SELECCIONADO
Como se ha mencionado, las características del líquido que se
somete a la medición con este prototipo pueden ser muy variadas. Los
fluidos en cuestión pueden tener un alto índice de viscosidad o pueden
ser fluidos muy delgados.
Debido a esta cualidad del sensor, los cambios en la densidad y
viscosidad de un fluido (que cambian principalmente por las
variaciones de temperatura y presión) no intervienen en la medición
del dispositivo, por lo que se hace inmune a los cambios de
temperatura y presión dentro del tanque.
La dilatación de ciertos líquidos pueden ser medidos por el
dispositivo, siempre y cuando el nivel de discretización del sensor lo
permita.
El sensor puede medir líquidos opacos así como fluidos no
homogéneos; los líquidos a medir pueden no estar limpios o pueden
ser una combinación de ellos, ya que el desplazamiento del líquido en
el tanque es lo primordial para este principio de operación.
Debido a que los flotadores que desplazan la placa perforada
con el código binario son el único elemento que se encuentra en
contacto directo con el fluido, es de especial cuidado elegir el material
de los mismos.
El material de los flotadores debe elegirse previamente para
soportar la agresividad del líquido (corrosión, densidad, temperatura
del líquido), así como las variaciones de temperatura y presión dentro
del contenedor, además debe asegurar su flotabilidad en el líquido.
Para realizar la medición bajo este principio es menester que el
perfil de llenado o de vaciado del líquido dentro del tanque sea lo más
plano posible, es decir, que se mantenga una velocidad constante de
llenado o vaciado para obtener una lectura estable y bien definida.
18
Capitulo 2
Medición de nivel por lectura de código
En caso de trabajar con líquidos donde el ambiente sea de
régimen turbulento, se tendría que establecer factores de corrección
en el procesamiento de la señal para obtener una lectura promedio del
sistema.
Para este tipo de esquema turbulento, puede ser conveniente
implementar sistemas de rectificación mecánica para reducir las
variaciones del perfil del nivel y obtener de esta manera las
condiciones de velocidad apropiadas para el sistema.
Para realizar la medición de nivel de un líquido dentro del
contenedor se consideraron los siguientes elementos:
• Una placa perforada con el código binario con las
dimensiones adecuadas para su correcto funcionamiento, a
fin de aplicar el principio de operación descrito
anteriormente.
• Elementos que conforman el sistema óptico (emisor,
receptor, fibras ópticas, etc).
- Diseño electrónico de una fuente óptica de potencia
fija ajustable.
- Diseño electrónico de un receptor óptico adecuado
para tratamiento digital.
- Elección de la fibra óptica para el sistema.
- Desarrollo de un método de calibración para el
sistema.
• Desarrollo del sistema electrónico para el procesamiento
de las señales entregadas por el sensor.
• Implementación del sistema de salida para obtener la
lectura del nivel en el tanque.
19
Capitulo 2
Medición de nivel por lectura de código
• Sistema hidráulico de prueba utilizando ductos de plástico
(poliductos PVC o acrílico).
- El líquido de control dentro del tanque es el agua
(Densidad = 1g/cm3, viscosidad absoluta = 1 cP).
- Diseño del sistema con tubos de PVC hidráulicos de
1”∅.
20
Capitulo 3
Diseño y construcción del sensor de nivel
CAPÍTULO 3
DISEÑO Y CONSTRUCCIÓN DEL SENSOR DE
NIVEL
21
Capitulo 3
Diseño y construcción del sensor de nivel
3.1 INTRODUCCIÓN
La construcción de un sensor con las características descritas,
implica la correcta selección de los materiales a utilizar tanto para el
diseño opto-mecánico como para el elemento sensor. El diseño debe
considerar la sustancia con que se trabajará para reducir al mínimo el
mantenimiento del mismo.
3.2 ELEMENTO SENSOR
El elemento sensor del sistema está conformado por la placa
perforada y los flotadores que se encuentran en su base.
El código binario en la placa fue elegido para tener una conexión
semidirecta con la electrónica digital y de esta forma obtener el byte de
información correspondiente al nivel del líquido en el contenedor.
El material de la placa perforada debe cubrir los siguientes
requerimientos:
• Debe soportar las condiciones ambientales dentro del
contenedor.
• Debe construirse con materiales livianos que permitan la
flotabilidad de las boyas en su base.
• El material debe ser rígido para obtener una buena lectura
del código.
Para el prototipo implementado en el laboratorio, se utilizó una
placa de duraluminio de 27.8 cm (10.94 pulgadas) de largo por 6 cm
(2.36 pulgadas) de ancho, el grosor de la placa es de 0.76 mm (30
milésimas de pulgada) ( véase el anexo A).
La razón para utilizar duraluminio en el sistema de medición de
nivel fue la de tener una placa ligera y que fuera rígida a la vez, a
pesar de tener un grosor pequeño.
22
Capitulo 3
Diseño y construcción del sensor de nivel
La placa con el código binario no debe interactuar químicamente
con el agua ni presentar oxidación a largo plazo. Otras alternativas
pueden ser placas de magnesio, titanio o algún plástico rígido como el
PVC.
Dado que el líquido elegido para las mediciones de prueba es el
agua, los flotadores utilizados para impulsar la placa perforada con el
código binario fueron 2 boyas hidráulicas de plástico de 3.5 pulgadas
de diámetro.
La placa impulsada por los flotadores se desplaza a través de las
fibras ópticas emisoras y receptoras por medio de unas flechas de
aluminio que guían la tarjeta perforada hacia una placa ranurada
(también de aluminio) donde descansan las fibras ópticas.
La placa ranurada de aluminio se encuentra en la parte superior
del contenedor. El propósito de esta placa ranurada es el de sostener
y alinear las fibras ópticas emisoras y receptoras.
La alineación de las fibras ópticas emisoras y receptoras es tanto
transversal como longitudinal.
La alineación longitudinal es necesaria para la lectura de la placa
perforada con el código binario, ya que en la placa perforada cada
código está dispuesto en forma horizontal y las 8 fibras ópticas deben
mantener la horizontalidad para la lectura correcta de la placa
perforada.
La alineación transversal se obtiene con el acanalamiento en “V”
de la placa ranurada, este acanalamiento recorre la placa ranurada de
un extremo a otro, tal como lo muestra la figura 3.1.
En los canales descansan las fibras ópticas emisoras y
receptoras, de tal forma que al asentarse en el fondo del canal cada
fibra óptica queda alineada con su par en el otro extremo de la ranura;
de esta manera se obtiene la mejor alineación transversal y lateral.
23
Capitulo 3
Diseño y construcción del sensor de nivel
Figura 3.1 Bosquejo de la placa ranurada y acanalada.
En la figura 3.1 Se puede apreciar el espacio existente entre fibra
óptica emisora y receptora, esta es la ranura en la placa de aluminio
por donde se desplaza la placa perforada con el código binario. En
este punto es donde se encuentra la mayor pérdida de potencia óptica
entre fibra óptica emisora y receptora. Para mayor detalle referirse al
anexo A.
3.3 SISTEMA HIDRÁULICO.
El sistema hidráulico utilizado para el sensor de nivel fue el
existente en el laboratorio de electrónica. El objeto de utilizar este
sistema es el de aprovechar la trayectoria del circuito hidráulico de un
contenedor de 50 litros hacia otro de 60 litros (el cual tiene el sensor
de nivel de líquidos).
24
Capitulo 3
Diseño y construcción del sensor de nivel
El flujo del líquido es bidireccional, de tal forma que se puedan
hacer pruebas de llenado y vaciado en el tanque que tiene instalado el
sensor.
El sistema hidráulico propuesto puede llenar o vaciar el tanque
con el sensor de nivel a través de un arreglo de tuberías en conjunto
con un juego de válvulas que pueden transportar el líquido de un
contenedor a otro y viceversa, tal como se observa en la figura 3.2.
Figura 3.2 Sistema hidráulico.
Debido a las dimensiones del contenedor de 60 litros, a la
potencia de la bomba hidráulica, así como al conjunto de tuberías, se
logra obtener un perfil de velocidad constante de llenado sin
turbulencias excesivas en el contenedor; de tal forma que facilita la
medición de la variable.
25
Capitulo 3
Diseño y construcción del sensor de nivel
3.4 SISTEMA ÓPTICO DEL SENSOR
Todo sistema óptico está conformado por tres componentes
principales: un transmisor, un medio de transmisión óptica (fibras
ópticas), la cual sirve como vía o canal de comunicación y un
receptor[3].
La fibra óptica, que es un medio dieléctrico, permite guiar a
la luz misma que puede contener la información pertinente a la
variable física medida (en este caso el nivel de un líquido).
Figura 3.3 Elementos generales de un sistema de medición óptico.
Para cualquier sistema óptico de medición es necesario la
utilización de transductores, que pueden ser de conversión de señales
eléctricas (voltaje o corriente) a energía luminosa (transductores
emisores) o transductores que conviertan la energía luminosa a
señales eléctricas (transductores receptores).
El bosquejo de los elementos generales que conforman al
sistema óptico del sensor se presenta en la figura 3.3; cada elemento
del sistema se trata por separado más adelante.
26
Capitulo 3
Diseño y construcción del sensor de nivel
3.4.1 FIBRA ÓPTICA
Las fibras ópticas son filamentos de vidrio o dióxido de silicio
largos y flexibles, constan de un núcleo transparente rodeado por un
material dieléctrico llamado revestimiento (aunque también existen
varios núcleos dentro de un mismo revestimiento) y un recubrimiento
que dota de protección al revestimiento[1].
El núcleo es la sección central principal por la que viaja la
información en forma de luz. El revestimiento es la capa que rodea al
núcleo, su objeto es actuar como pantalla reflejante que atrapa los
rayos de luz en el núcleo, su índice de refracción es ligeramente
menor al del núcleo.
Figura 3.4 Partes que integran a una fibra óptica.
La transmisión de información en las fibras ópticas se logra
aprovechando el fenómeno de la reflexión interna total dentro del
núcleo.
La selección de las fibras ópticas para el sensor de nivel está
limitada por los tipos de fibras ópticas existentes en el laboratorio de
electrónica. Las fibras ópticas disponibles en el laboratorio son:
- Fibra óptica de plástico con un diámetro de núcleo de
1000 µm.
- Fibra óptica de vidrio con un diámetro de 50/125 µm.
- Fibra óptica de vidrio con un diámetro de 100/140 µm
27
Capitulo 3
Diseño y construcción del sensor de nivel
Para la elección de alguna de las fibras ópticas anteriores se
estudiaron sus características individuales, ventajas e inconvenientes
para implementar el sensor.
En primera instancia, se descartó la fibra óptica de plástico de
1000 µm de diámetro debido a que este tipo de fibra óptica tiene una
atenuación relativamente elevada a las longitudes de onda localizadas
en el infrarrojo, es por esta razón que las fibras ópticas de vidrio tienen
más uso, más variedad y una mayor gama de aplicaciones en el
mercado de las comunicaciones.
Aunque las fibras ópticas de plástico tienen un núcleo
considerablemente grande y por tanto puede acoplar más luz a la
misma, resulta inconveniente para el sensor de nivel, el que esta fibra
óptica esté diseñada para ser transparente a las longitudes de onda en
el espectro visible, lo cual puede provocar interferencia al sensor
debido a la luz ambiental.
La fibra óptica de plástico tiene atenuaciones de hasta más de
1000 dB/Km para longitudes de onda en el infrarrojo, por lo que no son
capaces de transmitir luz infrarroja a grandes distancias.
La luz que se propaga en un conductor de fibra óptica de vidrio
experimenta atenuaciones mayores en las longitudes de onda del
espectro visible, mientras que en la región del infrarrojo presenta
atenuaciones menores.
Para cubrir grandes distancias sin emplear regeneradores
intermedios, es necesario mantener estas pérdidas en el mínimo
posible, es por esto, que en este tipo de fibras ópticas conviene
emplear luz que se encuentre en longitudes de onda pertenecientes al
infrarrojo.
Para la elección de las fibras ópticas de vidrio existentes en el
laboratorio, se caracterizaron ambas fibras ópticas tal como se explica
adelante.
28
Capitulo 3
Diseño y construcción del sensor de nivel
3.4.2 CARACTERIZACIÓN
ÓPTICAS DE VIDRIO
DE
LAS
FIBRAS
Una característica importante de las fibras ópticas es su
habilidad de colectar luz emitida por una fuente. Cuando se acopla una
fuente óptica a una fibra óptica, se presentan dos mecanismos de
pérdidas, uno de ellos está relacionado al desacoplamiento de área y
el otro está relacionado con la apertura numérica.
El desacoplamiento de área se presenta cuando el patrón de
radiación de la fuente (cono de la emisión de luz) es más grande que
el área transversal del núcleo.
En ocasiones aunque el área iluminada por la fuente sea menor
que el área del núcleo, existe otra pérdida asociada con el cono de
aceptación de la fibra[4].
El ángulo de aceptación (θa) de luz de la fibra óptica está
relacionado con el ángulo crítico, dado que se pretende colectar la
mayor cantidad de luz al núcleo de una fibra óptica, entonces es
importante conocer este parámetro de las fibras ópticas conocido
como apertura numérica (figura 3.5).
Figura 3.5 Cono de aceptación de la fibra óptica dependiente de la apertura
numérica.
Para determinar el cono de apertura de las fibras ópticas de
vidrio se utilizó un diodo láser como fuente óptica (por su alta
capacidad de acoplamiento de potencia óptica a la fibra).
29
Capitulo 3
Diseño y construcción del sensor de nivel
Se inyectó luz por un extremo de la fibra óptica sometida a
prueba, y en el otro extremo de la misma se midió la mota de luz
conducida por la fibra, observada en una pantalla blanca, tal como se
muestra en la figura 3.6.
Figura 3.6 Medición de la apertura numérica de la fibra óptica.
Se determinó la apertura numérica de la fibra óptica por medio
de la siguiente expresión[7]:
senθ a = NA =
d
2
d2
+ h2
4
(2)
donde d= diámetro de la mota de luz en la pantalla blanca (mm).
h= distancia entre la fibra óptica y la pantalla blanca (mm).
NA= apertura numérica de la fibra óptica (adimensional).
θa = ángulo de apertura (grados).
Con la expresión matemática anterior se puede determinar el
radio de iluminación de la luz entregada por la fibra óptica a una
distancia d.
30
Capitulo 3
Diseño y construcción del sensor de nivel
Para realizar la medición se montó la fibra de 100/140 frente a
una pantalla de papel blanco en donde se marcó la imagen del cono
de luz proyectado por la fibra. El proceso se realizó a diferentes
distancias, para tener más precisión en el cálculo.
La fuente óptica fue un apuntador láser comercial al cual se le
alteró su lente interna para enfocar el haz hacia la fibra óptica y de
esta manera inyectar mayor potencia lumínica a la fibra óptica.
Los resultados se presentan en las siguientes tablas:
Tabla 3.1 Mediciones de la NA para la fibra óptica de 100/140 µm
h(mm)
d(mm)
NA(adimensional)
8.43
5.33
0.301
2.59
1.98
0.35
2
1.16
0.27
1.28
0.79
0.29
Promedio
0.302
Tabla 3.2 Mediciones de la NA para la fibra óptica de 50/125 µm
h(mm)
d(mm)
NA(adimensional)
8.43
3.81
0.22
2.6
1
0.192
2
0.81
0.199
1.28
0.6
0.232
Promedio
0.211
En las pruebas que se realizaron a las fibras ópticas de vidrio se
puede apreciar que la fibra óptica que tiene una apertura numérica
ligeramente mayor es la fibra óptica de 100/140 µm. , por lo que tiene
un cono de apertura mayor que la otra fibra óptica.
Se eligió la fibra óptica de 100/140 µm dado que tiene un núcleo
mayor y por tanto es posible acoplar más potencia lumínica a esta
fibra óptica.
31
Capitulo 3
Diseño y construcción del sensor de nivel
3.4.3 FUENTE ÓPTICA
Las fuentes ópticas pueden construirse a base de tres tipos
de emisores de luz: Diodos Láser (LD), Diodos Emisores de Luz (LED)
o Diodos Súper luminiscentes(SLD)[2].
Los diodos láser son fuentes de luz coherente, producto de la
emisión estimulada que tiene lugar en una cavidad resonante,
compuesta por una superficie reflejante y otra parcialmente reflejante,
en donde se da la retroalimentación óptica. Su ancho espectral es
menor a 5nm y tiene un patrón de radiación muy direccional, con lo
que se obtiene un acoplamiento de potencia óptica grande.
Los diodos emisores de luz son fuentes de luz incoherente
debido a que trabajan bajo el principio de emisión espontánea, su
fabricación es mucho más sencilla y robusta en comparación con los
LD´s, regularmente se modulan en amplitud ya que la potencia
luminosa del LED es proporcional a la corriente inyectada en éste; el
patrón de radiación de este dispositivo es omnidireccional por lo que el
acoplamiento con fibras ópticas es pobre.
Los diodos súper luminiscentes (SLD) son similares a los LD´s,
su diferencia principal es que en estos dispositivos no se tiene
retroalimentación óptica como en los LD´s. La radiación emitida por un
SLD es de emisión espontánea amplificada, aunque la emisión no es
coherente, su ancho espectral es más reducido que el de un LED,
pero más ancha que la de un LD y su patrón de intensidad radiante es
más reducido y potente que el de los LED´s.
Para seleccionar el tipo de fuente luminosa fue necesario tomar
en cuenta las ventajas y los inconvenientes de cada dispositivo, así
como los requerimientos del sistema mismo:
El diodo Láser, aunque tiene un mayor acoplamiento óptico a la
fibra óptica, es críticamente dependiente de la corriente de operación
(corriente de umbral de emisión láser) y de la temperatura. Además,
este dispositivo es muy delicado en la presencia de transitorios
eléctricos y es muy costoso cuando radían en el infrarrojo.
32
Capitulo 3
Diseño y construcción del sensor de nivel
Los diodos súper luminiscentes son de alto costo y requieren de
una gran corriente de inyección para producir una ganancia sustancial.
Por tanto el dispositivo elegido fue el LED, que tiene mayor
estabilidad térmica, mayor tiempo de vida, es menos susceptible a
transitorios eléctricos y es económico.
Para los propósitos del sistema es suficiente la utilización de un
LED a pesar de su baja eficiencia de acoplamiento de luz a la fibra
óptica, ya que sólo se requiere de una fuente óptica relativamente
estable.
Las ventanas de operación de la fibra óptica de vidrio preferidas
para telecomunicaciones se encuentran en el espectro infrarrojo,
siendo 850, 1300 y 1550 nm las longitudes de onda más empleadas
para esa aplicación.
Debido a que se utilizó la fibra óptica multimodo de vidrio de
100/140 µm, se realizaron pruebas con diferentes LED´s que radian en
el espectro infrarrojo, siendo el LED OPF371 de OPTEK[11] el que
proporcionó el mayor acoplamiento de luz a la fibra óptica elegida.
El LED OPF371 tiene la ventaja de tener integrado al
semiconductor un receptáculo SMA. Este tipo de conectores son los
empleados por las fibras ópticas del sistema. Las hojas de
especificaciones técnicas del OPF371 se encuentran en el anexo B.
La configuración de la fuente óptica es un circuito electrónico de
control de corriente por medio de un transistor y una referencia de
voltaje, tal como se puede apreciar en la figura 3.7.
La referencia de voltaje de la fuente óptica la proporciona el
integrado LM 399[13], esta referencia de voltaje tiene una estabilidad
térmica de una millonésima de volt por cada grado centígrado.
33
Capitulo 3
Diseño y construcción del sensor de nivel
Figura 3.7 Fuente óptica con LED emisor de 850 nm.
El integrado LM399 mantiene un voltaje de 6.9 volts entre sus
terminales de cátodo y ánodo, de tal forma que el voltaje de referencia
se obtiene por medio del divisor de voltaje entre las resistencias de
1KΩ y 100KΩ tal como sigue:
100000Ω
⎤
⎡
VREF = 6.9Volts ⎢
⎥ = 6.832Volts
⎣100000Ω + 1000Ω ⎦
(3)
Se puede observar en el diagrama eléctrico que el voltaje de
referencia se ve reflejado en el emisor del transistor BD139, lo que
provoca una corriente de magnitud semejante en el colector del
mismo.
La corriente en el LED se calcula con la siguiente ecuación:
I E ≅ IC =
VE 6.832Volts
=
= 83.3mA
RE
82ohms
(4)
La corriente en el LED se estableció de este valor para obtener
la máxima potencia lumínica del diodo pero sin llegar a su corriente
límite de operación, en las hojas de especificación del anexo B se
puede observar que la corriente límite de este LED es de 100 mA.
El capacitor de 22 µF proporciona estabilidad a posibles
transitorios por el valor de la constante de tiempo, esta constante está
determinada por la resistencia en paralelo y tiene un valor de 2.2
segundos.
34
Capitulo 3
Diseño y construcción del sensor de nivel
Figura 3.8 Circuito para caracterizar a los diodos del emisor.
Con el circuito de la figura 3.8 se caracterizaron los LED´s de
cada emisor óptico. Por medio de la resistencia variable de 100 KΩ, se
varió el voltaje de referencia de tal forma que se obtuvieron diferentes
corrientes en el OPF371, obteniéndose las siguientes mediciones:
Tabla 3.3 Mediciones de corriente de LED vs. Voltaje de referencia.
Voltaje de referencia VREF (Volts)
Corriente en el LED ILED (mA)
1.2
15
1.54
20
2
25
2.41
30
2.78
35
3.14
40
3.56
45
4.03
50
4.47
55
4.89
60
5.23
65
5.7
70
6.05
75
6.48
80
6.87
85
7.25
90
7.69
95
8.2
100
35
Capitulo 3
Diseño y construcción del sensor de nivel
Cabe aclarar que para corrientes que son mayores a 80 mA, las
mediciones se realizaron sin el integrado LM399, esto fue con el fin de
caracterizar al diodo emisor en su máxima conducción de corriente.
Se caracterizó la salida óptica del LED OPF371 a partir de las
diferentes corrientes en el dispositivo. La medición de la potencia
óptica se realizó con el multímetro óptico Tektroniks Modelo TFC200,
obteniéndose las siguientes mediciones.
Corriente en el LED ILED (mA)
Potencia óptica PO (µW)
15
26.6
20
38.9
25
48.1
30
59.3
35
61.4
40
80.1
45
87.9
50
99.2
55
106.8
60
113.5
65
123.6
70
132.7
75
139.3
80
146.7
85
153.9
90
160.2
95
165.4
100
171.3
Tabla 4. Mediciones de la potencia óptica de LED vs. corriente del
LED.
De acuerdo con la tabla 3.4, la potencia promedio para una
corriente de 80 mA para un lote de 8 LED´s OPF371 fue de 150µW.
De los cuales, al acoplarse a la fibra óptica emisora se obtuvo una
lectura de potencia promedio de 126µW a la salida de cada fibra
óptica.
36
Capitulo 3
Diseño y construcción del sensor de nivel
3.4.4 RECEPTOR ÓPTICO
El proceso de conversión de fotones a electrones libres
(portadores) es esencial para el sistema óptico. Esta conversión se
realiza por medio de fotodetectores que pueden clasificarse como[2]:
a) Elementos fotoemisivos.
b) Elementos fotoconductivos.
c) Elementos fotovoltaicos.
A los elementos fotoemisivos se les conoce también como
elementos de efecto fotoeléctrico externo, mientras que los dos
restantes se les llama elementos de efecto fotoeléctrico interno.
Los detectores fotoemisivos pueden ser los fotodiodos de vacío y
los tubos fotomultiplicadores. El componente principal para este tipo
de detectores es el material fotosensitivo en el cátodo.
En este tipo de detectores cuando el cátodo se ilumina por
radiación externa, se desprenden electrones del material sensitivo que
viajan por el tubo de vacío donde los electrones se aceleran y colectan
por el ánodo, formándose una trayectoria eléctrica completa que fluye
hacia un circuito externo. Dado que este tipo de elementos tienen un
costo elevado, son poco robustos y además requieren de fuentes de
alimentación de alto voltaje (150 – 2000V), se descartó la utilización de
los mismos.
Los detectores fotoconductivos son dispositivos de un solo tipo
de material semiconductor; en este tipo de detectores, la conductividad
del semiconductor varía linealmente con la incidencia de luz, la cual se
traduce en variaciones de corriente o de voltaje para un circuito
eléctrico externo. Estos detectores tienen la desventaja de trabajar en
un intervalo de longitudes de onda que van de 3µm a 100µm por lo
que su utilización fue descartada en el proyecto.
37
Capitulo 3
Diseño y construcción del sensor de nivel
La característica principal de los detectores fotovoltaicos es la
presencia de una unión de material semiconductor. La unión puede ser
una homounión, una heterounión, una unión semiconductor y metal
(como la barrera Schottky), una unión de contacto puntual o una
estructura PIN.
Existen
básicamente
dos
tipos
de
semiconductores
fotodetectores empleados en los receptores ópticos de este tipo; el
primero es comúnmente referido como fotodetector PIN, éste genera
menos de un de electrón-hueco por fotón absorbido.
El segundo se refiere como fotodetector de avalancha debido al
proceso de ionización de impacto, este proceso produce una ganancia
interna, ya que genera más de un par electrón-hueco por fotón
absorbido; a esta ganancia se le conoce como ganancia de avalancha.
En algunas aplicaciones, donde se requiere alta sensibilidad, es
ventajoso diseñar los receptores con fotodetectores de avalancha; sin
embargo, el proceso de ganancia es estadístico, en donde cada par
electrón-hueco primario genera un número aleatorio M de pares
electrón-hueco secundarios, con un valor medio N.
Por lo aleatorio del proceso de multiplicación de ionización de
impacto se introduce ruido, que puede en algunas circunstancias ser
un factor dominante en la sensibilidad del receptor.
Por los argumentos anteriores, se prefirió el diodo PIN OPF471
para la construcción del receptor óptico, ya que además resulta
atractivo por las siguientes características:
1.- Alta sensibilidad a la longitud de onda de operación (850 nm).
2.- Contribución mínima al ruido total del receptor.
3.- Tiempo de respuesta mínimo a los cambios de potencia
lumínica.
4.- Dimensiones físicas compatibles con la fibra óptica.
5.- Receptáculo SMA integrado al LED.
38
Capitulo 3
Diseño y construcción del sensor de nivel
6.- Baja corriente de obscuridad.
7.- Amplio intervalo de operación térmica.
En la figura 3.9 se muestra el diagrama eléctrico del receptor
óptico con el OPF471, en ella se puede apreciar que para polarizar al
diodo PIN (en forma inversa) se utilizó una resistencia de 10 KΩ.
Figura 3.9 Diagrama del circuito eléctrico del receptor óptico.
Las curvas características de un diodo PIN se muestran en la
figura 3.10, en ellas se puede observar que conforme incide más luz
en el diodo PIN OPF471, la curva característica del diodo PIN se
desplaza en el eje negativo de iD, por lo que la corriente inversa en el
OPF471 se incrementa conforme aumenta la luz incidente sobre el
mismo [14].
39
Capitulo 3
Diseño y construcción del sensor de nivel
Figura 3.10 Curvas características de corriente vs. Voltaje y línea de carga
El voltaje de polarización inversa se eligió de 5 volts, por lo que
los valores críticos para la recta de carga son:
VD⏐iD=0 = Vcc-IDR = 5 Volts.
(5)
ID ⏐vD=0 = (Vcc-VD)/R = 5 Volts/10 KΩ = 500 µA. (6)
El intervalo dinámico debido a la resistencia de 10KΩ, es
apropiado para el OPF471, dado que para una incidencia de 104 Lux
proporciona una corriente de corto circuito (Isc) de aproximadamente
500 µA.
Si se incrementara la resistencia de carga se obtendría un
intervalo dinámico de corriente más pequeño, con el riesgo de
incrementar el ruido en el sistema debido al ruido térmico que es
directamente proporcional a la magnitud del resistor de carga, como se
demuestra con la siguiente ecuación:
Et = 4kTR∆f
(7)
donde Et = ruido rms térmico
k = constante de Boltzmann (1.38x10-23 W-s/K)
T = temperatura de el conductor en grados Kelvin.
R = resistor o parte real de la impedancia del conductor
∆f = ancho de banda de ruido (Hz).
40
Capitulo 3
Diseño y construcción del sensor de nivel
Cabe aclarar que el incremento del voltaje inverso aplicado al
diodo PIN mejora la rapidez en la respuesta del mismo, ya que existe
una capacitancia de unión intrínseca entre las terminales del diodo PIN
(como se muestra en el circuito equivalente de la figura 3.11), lo que
provoca que se forme una constante de tiempo entre la carga y la
capacitancia de unión.
En la figura 3.12 se puede notar que conforme se incrementa el
voltaje inverso aplicado, la capacitancia de unión (CJ) disminuye y por
tanto aumenta la rapidez de respuesta del diodo PIN.
Figura 3.11 Circuito equivalente del fotodiodo PIN.
El valor de CJ es proporcional al área activa (A) e inversamente
proporcional a la resistivad del material del sustrato (ρ) y al voltaje
inverso aplicado (VR), tal como lo indica la siguiente expresión[13]:
CJ = A[(VR+0.5)ρ]1/3
(8)
41
Capitulo 3
Diseño y construcción del sensor de nivel
Figura 3.12 Curvas características capacitancia CJ vs voltaje inverso.
Tomada de [14].
Debido a que la variación del nivel de un líquido es lenta (en el
orden de décimas de segundos), no es necesario reducir el valor de CJ
con voltajes inversos grandes, sino por el contrario, en el sistema no
es conveniente incrementar el voltaje inverso ya que se incrementaría
la corriente de obscuridad (como se aprecia en la figura 3.13).
Por esta razón el circuito se polarizó con 5 volts, aprovechando
de esta manera la fuente de polarización para la etapa receptora.
42
Capitulo 3
Diseño y construcción del sensor de nivel
Figura 3.13 Curvas características corriente de oscuridad vs.
voltaje inverso. Tomada de [14].
El circuito equivalente del diodo PIN con una primera etapa de
amplificación se muestra en la figura 3.14.
Figura 3.14 Circuito equivalente del diodo PIN y una etapa de amplificación
con sus respectivas fuentes de ruido.
En la figura 3.14 se aprecian los siguientes elementos:
IL = Corriente generada por la luz incidente (A)
VD= Voltaje a través del diodo, VD = Vcc-VRL ≈ 5V - 0.1V = 4.9V
ID = Corriente promedio a través del diodo (≈10µA)
CJ = Capacitancia de unión (≈1.5 pF)
43
Capitulo 3
Diseño y construcción del sensor de nivel
ISh = Corriente de ruido de granalla de fotodiodo (A)
ISh = 2qI dc B .................................................(9)
donde q= 1.602x10-19 coulombs, Idc= Corriente promedio (A)
B = ancho de banda de ruido (Hz).
Por tanto I Sh = 2qI dc B = 2(1.602 x10−19 )(10µA)(1Hz ) ≈ 1.8pA / Hz
RSh = Resistencia de fuga (Ω) 107 Ω<RSh<1011Ω.
RS = Resistencia en serie (Ω), Rs<10Ω
RL = Resistencia de carga (Ω), RL = 10 KΩ.
EnRL= Voltaje de ruido térmico de RL.
EnRL = 4kTRB
donde k= constante de Boltzman = 1.38 x 10-23 W-s/K.
T= temperatura del ambiente en grados Kelvin.
R= Resistencia o parte real de la impedancia del conductor (Ω).
B= Ancho de banda de ruido (Hz).
Por tanto EnRL = 4kTRB = 4(1.38 x10−23 )(300 K )(10 KΩ)(1Hz ) = 13nV / Hz
En = Voltaje de ruido del amplificador operacional. (18nV / Hz ) .
In = Corriente de ruido del amplificador operacional. (0.01pA / Hz )
Ci = Capacitancia de entrada del amplificador operacional (pF).
Ri=Resistencia de entrada del amplificador operacional (≈1012Ω).
La señal en corriente proveniente de la excitación del diodo PIN
(proporcional a la potencia óptica incidente en una fibra óptica
receptora) se amplifica mediante dos etapas, ambas etapas tienen la
configuración de un amplificador no inversor.
La expresión matemática de la ganancia (AV) de un amplificador
no inversor es:
AV = 1 +
Rf
RI
(10)
Donde Rf = Resistor de retroalimentación y RI = Resistor de
entrada.
La primera etapa es un preamplificador de señal, la cual
acondiciona la señal eléctrica del diodo PIN OPF471; la ganancia de
esta etapa es A1=101.
44
Capitulo 3
Diseño y construcción del sensor de nivel
Esta primera etapa amplificadora se construyó con el operacional
TL071 debido a que es un amplificador operacional de bajo ruido, por
lo que es adecuado para amplificar señales muy pequeñas.
Cuando incide la luz infrarroja de una fibra óptica receptora en el
diodo PIN OPF471 del receptor óptico, se tienen en promedio una
señal eléctrica un poco mayor a 1mV en la resistencia de polarización
del diodo PIN (10KΩ). Por lo que después del preamplificador se tiene
una señal promedio de 0.1 Volt a la salida.
La segunda etapa de amplificación tiene una ganancia A2 = 47.
Esta etapa tiene el propósito de asegurar los niveles de voltaje
compatibles con la tecnología TTL para procesar dicha información
posteriormente.
Se seleccionó el amplificador operacional LM399, debido a que
es de tecnología de colector abierto, por lo que se tiene voltajes de
saturación cercanos a los 5 Volts. Después de esta etapa la señal
eléctrica se encuentra en un intervalo de 4.75 a 5 Volts.
Para minimizar el ruido en el circuito receptor se sugiere que la
primera etapa amplificadora tenga la máxima ganancia, ya que la
segunda etapa de amplificación se conecta en cascada.
El factor de ruido de un sistema con dos etapas de amplificación
está definido por la siguiente expresión[15]:
F12 = F1 +
(F2 − 1)
G1
(11)
Donde F12 = factor de ruido del sistema con dos etapas de
amplificación.
F1 = factor de ruido del primer amplificador.
F2 = factor de ruido del segundo amplificador
G1 = ganancia del primer amplificador.
Se concluye que el factor de ruido de una red en cascada está
influenciado principalmente por el ruido de la primera etapa, por lo que
la ganancia de está etapa debe de ser lo más grande posible.
45
Capitulo 3
Diseño y construcción del sensor de nivel
La ganancia de la primera etapa amplificadora no fue
implementada con un valor alto con respecto a la segunda etapa,
porque no se deseaba la saturación en la entrada de la segunda
etapa.
Después de esta segunda etapa amplificadora se manda la señal
a un buffer Schmitt antes de ser procesado por el microcontrolador
COP8SGR7, tal como se describe en el siguiente capítulo.
46
Capitulo 4
Procesamiento de la señal eléctrica e interfase periférica
CAPÍTULO 4
PROCESAMIENTO DE LA SEÑAL ELÉCTRICA E
INTERFASE PERIFÉRICA
47
Capitulo 4
Procesamiento de la señal eléctrica e interfase periférica
4.1 INTRODUCCIÓN
Después de obtener una señal eléctrica de un sensor es
necesario procesar esta señal para poder interpretar correctamente la
información contenida en ella.
Para una mejor comprensión del fenómeno físico, químico o
biológico que se somete a medición, es necesario tener alguna
interfase con el procesador ya sea visual o auditiva.
4.2 PROCESADOR DE SEÑAL
Para procesar la señal entregada por el sensor óptico, se
empleó el microcontrolador COP8SGR7 de National Semiconductors
[10] de 40 pines.
En la figura 4.1 se observan los pines del microcontrolador y
algunas de sus funciones alternas. Se puede apreciar que el
microcontrolador empleado fue el de encapsulado DIP (Dual in Line
Package).
Figura 4.1 Diagrama del circuito integrado COP8SGR7
48
Capitulo 4
Procesamiento de la señal eléctrica e interfase periférica
El microcontrolador COP8SGR7 fue empleado en el sistema por
las siguientes características y ventajas:
• Bajo costo del microcontrolador y de su sistema mínimo de
programación.
• Puede operar en ambientes con alta contaminación
electromagnética.
• Memoria EEPROM de 32Kbytes integrada.
• Opera con niveles de bajo voltaje (2.5 Volts) o niveles TTL.
• Puertos programables de entrada / salida de alta corriente
(capaces de manejar LED´s, motores
y altavoces
pequeños).
• Puede operar con un cristal de hasta 10MHz con alta
fiabilidad.
• Basado en arquitectura Harvard Modificada.
• Sistema de temporización avanzado y de fácil
programación.
• Biblioteca de programación avanzada con macros.
• Alta eficiencia en los códigos de programación.
• Consumo de muy baja potencia (en modos HALT e IDLE).
• Ultrabaja emisión de interferencia electromagnética.
• Monitoreo del reloj y sistema de protección anticorrupción
de programa
• Protección contra descargas electrostáticas (de más de
2000V).
• Reset de encendido por fuente.
• Puertos programables de entrada / salida avanzados que
minimizan componentes externos.
El microcontrolador COP8SGR7 tiene diferentes opciones para
el oscilador, tales como la utilización de un cristal, un circuito
resonador interno, activación por onda cuadrada externa o reloj R-C
interno o externo.
Se utilizó el modo de cristal para la activación del reloj, ya que
este modo es más estable y a diferencia de las otras opciones es
menos dependiente de la fuente de alimentación del sistema.
49
Capitulo 4
Procesamiento de la señal eléctrica e interfase periférica
El ciclo de máquina o la frecuencia de trabajo interno del
microcontrolador depende del valor del cristal (fcristal) con que se
trabaje, la expresión para calcular el tiempo del ciclo de máquina es:
TC =
1
f cristal
10
(12)
Debido a que se tiene un cristal de 4 MHz en operación, el
tiempo de máquina (TC) es:
TC =
1
= 2.5µseg.
4 MHz
10
(13)
El microcontrolador COP8SGR7 tiene una arquitectura Harvard
modificada (el diagrama a bloques de la arquitectura interna se puede
apreciar en el anexo B).
La característica principal de este tipo de arquitectura (a
diferencia de la arquitectura Von Neumann) es que la memoria de
programa y de datos son independientes. Cada memoria tiene su
propio bus de datos y bus de direcciones, por lo que se tiene acceso
simultáneo a los datos y al programa.
Debido a esta cualidad, la próxima instrucción puede ser
alimentada desde la memoria del programa mientras que la instrucción
actual está siendo ejecutada.
Las instrucciones de este microcontrolador puede realizar más
operaciones lógicas por unidad de instrucción con menos ciclos de
máquina.
Cada terminal (PIN) de los puertos del microcontrolador puede
ser programado en forma independiente como entrada / salida.
Este microcontrolador no solo procesa la señal recibida de las
fibras ópticas sino que controla el funcionamiento adecuado del
exhibidor de cristal líquido AND491[12].
50
Capitulo 4
Procesamiento de la señal eléctrica e interfase periférica
4.3 PERIFÉRICO DE SALIDA
Para desplegar los resultados del procesamiento del
microcontrolador COP8SGR7, proveniente de la señal de las fibras
ópticas del sistema, se empleó como interfase periférica al exhibidor
de cristal líquido AND491.
Por medio de este dispositivo electrónico se puede visualizar la
lectura del nivel de líquidos en litros contenido en el tanque sometido a
medición. En él se aprecian los mensajes de llenado o de vaciado del
contenedor dependiendo del caso en que se encuentre el tanque.
El exhibidor de cristal líquido AND491 es un dispositivo
electrónico inteligente, compacto (88mm x 36mm x 12mm) de 16
caracteres por 2 líneas en pantalla. Este exhibidor puede mostrar 160
caracteres (números, letras y símbolos).
El formato de cada carácter puede ser programado de 5x7
puntos o de 5x10 puntos, cuenta con 11 comandos de control tal como
se aprecia en el anexo C.
El exhibidor trabaja con niveles TTL (5 Volts) y tiene un bus de
direcciones y datos de 8 bits, puede ser programada para ser
compatible con CPU´s de 4 bits.
4.4 INTERFASE PERIFÉRICA.
La interconexión entre el microcontrolador COP8SGR7 y el
exhibidor de cristal líquido AND491 fue directa por medio del puerto D
de alta corriente del microcontrolador y el bus de datos y direcciones
del exhibidor.
En la figura 4.2 se puede apreciar que los pines de control del
exhibidor están conectados a los pines L5 y L7 del puerto L del
microcontrolador, el resistor variable de 10 KΩ conectado a la terminal
3 del exhibidor permite controlar el contraste de la pantalla del mismo.
51
Capitulo 4
Procesamiento de la señal eléctrica e interfase periférica
En el caso de no contar con una fuente externa de iluminación,
se puede activar manualmente la luz que ilumina la pantalla completa
del exhibidor por medio de un interruptor normalmente abierto.
Figura 4.2 Diagrama eléctrico de la interfase periférica.
En la figura 4.2 se puede observar que la señal que proviene de
la segunda etapa amplificadora del receptor óptico, pasa a través de
un buffer con disparadores Schmitt internos (74LS541).
Aunque los disparadores Schmitt cambian de estado a los 2.4
Volts, es necesaria la segunda etapa amplificadora del receptor óptico
para obtener una señal confiable y de esta manera mandar un “1”
lógico al puerto del microcontrolador cuando se tiene una señal en el
diodo PIN OPF471. Los buffer Schmitt también cumplen con el fin de
proteger al puerto “F” del microcontrolador COP8SGR7.
4.5 PROGRAMACIÓN DEL COP8SGR7
El microcontrolador COP8SGR7 se programó para procesar la
señal de las fibras ópticas y controlar el exhibidor de cristal AND491.
52
Capitulo 4
Procesamiento de la señal eléctrica e interfase periférica
Al procesar la señal proveniente de las fibras ópticas se conoce el
nivel actual del líquido en el contenedor, esta información se despliega
en el exhibidor de cristal líquido.
En la programación se configuraron las terminales de los puertos
D (salida de pull-up), F (entrada de alta impedancia) y L (salida de pullup) del microcontrolador para enviar los datos al exhibidor, obtener la
señal de las fibras ópticas y controlar el exhibidor AND491
respectivamente.
Se utilizó el temporizador interno t0 de corrida libre para
sincronizar la actualización de la lectura del nivel en el exhibidor de
cristal líquido con la señal obtenida de las fibras ópticas.
Figura 4.3 Diagrama de flujo del programa principal.
53
Capitulo 4
Procesamiento de la señal eléctrica e interfase periférica
El temporizador t0 se decrementa continuamente a la velocidad
del ciclo de máquina y genera una interrupción cada 4096 ciclos. Dado
que el tiempo de máquina es de 2.5 µseg entonces genera una
interrupción cada 10.24 mseg.
Por medio del temporizador t0, se actualiza la lectura del nivel del
líquido en el contenedor, desplegado en el exhibidor de cristal líquido.
La actualización de la lectura del nivel del líquido se realiza cada
medio segundo por medio de la lógica del programa. El programa
principal en lenguaje ensamblador puede encontrarse en el anexo C.
Dado que el tiempo de actualización de lectura del sistema es
menor a un segundo, podría éste operar en tiempo real.
Para mostrar los mensajes en el exhibidor AND491 de llenado o
de vaciado del contenedor, así como la lectura del nivel de líquido en
el mismo, se modificó e implemento la macro “display” de las
bibliotecas de programación para COP8SAC y COP8SGR de National
Semiconductor. El programa en extenso de la macro se muestra en el
anexo C.
En la Figura 4.3 se muestra el diagrama de flujo general para el
procesamiento de la señal de las fibras ópticas y la lectura del nivel del
líquido en el exhibidor de cristal líquido.
54
Capitulo 5
Caracterización del sistema y análisis de pérdidas
CAPITULO 5
CARACTERIZACIÓN DEL SISTEMA Y ANÁLISIS DE
PÉRDIDAS
55
Capitulo 5
Caracterización del sistema y análisis de pérdidas
5.1 INTRODUCCIÓN
Para evaluar un sistema en operación es necesario caracterizar
cada etapa del proceso para tener conocimiento de la eficiencia,
pérdidas de energía, potencia consumida, etc.
El obtener estos parámetros del sistema nos permite comparar el
mismo con respecto a otros sistemas del mismo propósito.
5.2 SISTEMA GENERAL DE MEDICIÓN
El sensor de nivel con fibras ópticas se construyó en 5 bloques
principales (tal como se muestra en la figura 5.1):
1.- Fuente óptica.
2.- Sensor óptico (modulador).
3.- Receptor óptico.
4.- Procesador de señal.
5.- Periférico de salida.
Figura 5.1 Diagrama a bloques del sistema general de medición.
56
Capitulo 5
Caracterización del sistema y análisis de pérdidas
5.3 ELEMENTOS PRINCIPALES QUE CONFORMAN
AL SISTEMA
• Sistema óptico.
- Fibras ópticas transmisoras:
Fibra óptica multimodo de vidrio, índice escalonado, 100/140 µm
de núcleo, apertura numérica de 0.302, atenuación de 4 dB/Km.
Longitud: 1.5 mts.
- Fibras ópticas receptoras:
Fibra óptica multimodo de vidrio, índice escalonado, 100/140 µm
de núcleo, apertura numérica de 0.302, atenuación de 4 dB/Km.
Longitud: 1.5 mts.
- Elemento emisor:
Diodo Emisor de Luz (LED) OPF371 infrarrojo GaAlAs, longitud
de onda de emisión máxima de 850 nm, ancho de banda
espectral de 35 nm, encapsulado con conector SMA, fabricante
OPTEK.
- Elemento detector:
Fotodiodo PIN OPF471, encapsulado con conector SMA,
respuesta a longitud de onda de 850 nm (respuesta pico),
Responsividad de 0.55 A/W. Fabricante OPTEK.
- Conectores:
Conectores SMA, Fabricante FIS.
• Sistema mecánico.
- Placa perforada con código binario de 8 bits de duraluminio,
1.27 mm de centro a centro, 0.127 mm de peralte entre líneas de
código.
57
Capitulo 5
Caracterización del sistema y análisis de pérdidas
- Placa soporte acanalada en “V” de aluminio con profundidad de
0.76mm (30 mil), ranura al centro transversalmente con 2mm de
separación entre bordes.
- Sujetador para fibras ópticas de aluminio, ranurada al centro
con 2mm de separación entre bordes y 16 prisioneros de
1.58mm (1/16´´).
- Guías de Aluminio ranuradas longitudinalmente de 40 cm.
• Procesador e interfase periférica.
- Procesador de señal:
Microcontrolador COP8SGR7 con memoria EEPROM de 32
Kbytes integrada, Fabricante National Semiconductors.
- Periférico de salida:
Exhibidor de cristal líquido AND491, 16 caracteres en pantalla
por 2 líneas. Fabricante AND.
5.4 EVALUACIÓN DEL SISTEMA
Las distancias existentes entre la fuente óptica, el sensor (punto
de medición), y los receptores ópticos están determinados por las
pérdidas de potencia en todo el sistema.
En ambientes agresivos (como los existentes en la industria
petroquímica, química, etc), es necesario localizar los puntos del
procesamiento de la señal y monitoreo de la misma.
Tener una distancia prudente del proceso que se desea
monitorear permite realizar la medición sin causar riesgos a los
usuarios y un ambiente intrínsecamente más seguro.
Es por la razón anterior que cobra importancia la caracterización
de las pérdidas totales que se originan en la transmisión y recepción
de luz en el sensor de nivel.
58
Capitulo 5
Caracterización del sistema y análisis de pérdidas
El análisis de pérdidas de potencia óptica está centrada en
4 casos principales[8]:
a) Desalineación lateral.
b) Desalineación angular
c) Separación entre terminales
d) Terminales mal pulidas.
En la figura 5.2 se puede apreciar gráficamente cada caso.
Figura 5.2 Pérdidas de potencia óptica.
Para estimar las pérdidas de potencia óptica en cada caso se
tomaron las siguientes consideraciones:
1.- La potencia óptica está uniformemente distribuida sobre el
núcleo de la fibra óptica.
2.- Se muestra separadamente el análisis de los cuatro casos
anteriores.
59
Capitulo 5
Caracterización del sistema y análisis de pérdidas
La potencia óptica acoplada al receptor se determina de acuerdo
a la siguiente expresión[2]:
Pfotodetector = Pfuente - Σ Pérdidas.
(14)
Donde Pfotodetector = Potencia acoplada al receptor.
Pfuente= Potencia óptica de la fuente que se acopla a la fibra
transmisora.
Σ Pérdidas = Suma de pérdidas de potencias ópticas.
La contribución más grande a las pérdidas de potencia óptica en
el sistema, se debe a la discontinuidad existente entre la fibra óptica
emisora y receptora, siendo menores las pérdidas en los casos
restantes.
5.4.1 DESALINEACIÓN LATERAL
Para estimar las pérdidas por desalineación lateral se considera
el desplazamiento de dos fibras ópticas (emisora y receptora), en
donde sus núcleos están desplazados por una distancia d, como se
observa en el esquema de la figura 5.3.
Figura 5.3 Desalineamiento entre dos fibras ópticas del mismo radio.
60
Capitulo 5
Caracterización del sistema y análisis de pérdidas
La eficiencia de acoplamiento η1 es la razón del área de
superposición con respecto al área del núcleo. Matemáticamente se
determina como sigue[8]:
2⎡
d
d
⎛ d ⎞
η1 = ⎢arc. cos −
1− ⎜ ⎟
π⎢
2a 2a
⎝ 2a ⎠
⎣
2
⎤
⎥
⎥⎦
(15)
donde el coseno inverso es calculado en radianes.
La pérdida de potencia en decibeles (L1), correspondiente al
desplazamiento d se calcula como sigue:
L1 = −10 ⋅ Log ⋅ η1
(16)
donde L1 es la pérdida de potencia en decibeles y η1 es la
eficiencia.
Para estimar las pérdidas de potencia debido al desalineamiento
lateral, se supuso desplazamientos entre los núcleos de las fibras
ópticas menores al 10% del diámetro de las mismas, como se observa
en la tabla 5.
Tabla 5.1 Pérdidas por desalineamiento lateral.
L (dB)
d (µm)
2.5
0.1404
5
0.2855
10
0.5904
5.4.2 DESALINEACIÓN ANGULAR
La eficiencia de acoplamiento (η2) debido a un desalineamiento
angular para una fibra multimodo de índice escalonado, se determina
por la siguiente expresión [8]:
η2 = 1 −
n0 ⋅ θ
π ⋅ NA
(17)
61
Capitulo 5
Caracterización del sistema y análisis de pérdidas
Donde n0 es el índice de refracción de la sustancia existente
entre las dos fibras ópticas, el ángulo θ es el ángulo de desalineación
en radianes y NA es la apertura numérica de la fibra óptica.
La pérdida de potencia (L2) en dB se determina como sigue:
L2 = −10 ⋅ Log ⋅ η2
(18)
La eficiencia se evalúa calculando la superposición de los conos
de transmisión y recepción, tal como se muestra en la figura 5.4.
Figura 5.4 Desalineamiento angular entre dos fibras ópticas.
El cono de transmisión puede determinarse a partir de la
siguiente expresión:
NA = n0 ⋅ Sen ⋅ α 0
(19)
Donde NA es la apertura numérica y α es el ángulo del cono de
transmisión.
Dado que entre las fibras ópticas se encuentra el aire, entonces
n0=1, se considera NA= 0.3 para la fibra óptica de vidrio de 100/140
µm.
62
Capitulo 5
Caracterización del sistema y análisis de pérdidas
A continuación se determinan las pérdidas de potencia en
decibeles para un desalineamiento de hasta ±5 grados.
Tabla 5.2 Pérdidas por desalineamiento angular.
Angulo de inclinación.
Eficiencia
Pérdidas
(dB)
Grados
Radianes
(η)
2
0.0349
0.9629
0.1642
3
0.0524
0.9444
0.2484
4
0.0698
0.9259
0.3344
5
0.0873
0.9074
0.4220
5.4.3 SEPARACIÓN ENTRE TERMINALES
En la discontinuidad que existe entre fibras ópticas emisoras y
receptoras, ocurren dos fenómenos diferentes de pérdidas de
potencia:
1.- En esta discontinuidad existen dos fronteras entre la fibra
óptica y el aire, lo que produce una pérdida por reflexión en la frontera
de aproximadamente un 4% (0.177), de tal manera que entre las dos
superficies de frontera vidrio-aire, se contribuye a una pérdida total por
reflexión de 0.35 dB.
Figura 5.5 Separación existente entre dos fibras ópticas.
2.- Cuando se encuentra un espacio entre dos fibras ópticas tal
como se muestra en la figura 5.5, algunos haces de luz transmitidos
no son interceptados por la fibra óptica receptora.
Conforme la separación existente entre ellas aumenta, las
pérdidas se incrementan debido a la divergencia del haz radiado por la
fibra óptica emisora.
63
Capitulo 5
Caracterización del sistema y análisis de pérdidas
Las fibras ópticas con aperturas numéricas grandes tendrán más
pérdidas por separación dado que la radiación emitida diverge más
rápido.
Para determinar las pérdidas por separación, se determina el
área del cono de apertura de los haces de luz en la fibra óptica
emisora (dependiente de la apertura numérica de la fibra óptica) y se
establece una razón entre el área del núcleo de la fibra óptica
receptora superpuesta al área del cono de apertura.
De esta forma se puede establecer la siguiente relación:
A
Ps
= cono
Pe Anúcleo
(20)
Tomando como referencia la figura 5.6 se puede determinar la
eficiencia de acoplamiento del sistema como sigue:
Figura 5.6 Eficiencia de acoplamiento.
El área del cono de luz depende de la apertura numérica de la
fibra óptica emisora, por lo que de la figura 5.6 se desprende que:
θ = arcsen ⋅ NA , φ = Diámetro del núcleo de la fibra
x= separación entre fibras = 2 mm
r= Radio del cono de luz a una distancia x.
r= x.tg θ
64
Capitulo 5
Caracterización del sistema y análisis de pérdidas
por tanto r=x.tg[arc.sen (N.A)].
La eficiencia (η3) puede definirse como:
⎛φ ⎞
π ⋅⎜ ⎟
η3 =
2
⎝2⎠ = ⎛ φ ⎞
⎜ ⎟
π ⋅ r2
⎝ 2r ⎠
2
(21)
Las pérdidas (L3) en decibeles se definen como:
⎛φ ⎞
L3 = −10 log⋅ η3 = −10 log⎜ ⎟
⎝ 2r ⎠
2
(22)
Por tanto el cálculo teórico de las pérdidas de potencia óptica
en la discontinuidad del sistema es:
Apertura Numérica (NA)= 0.3;
x= 2mm;
r= (x) [tg (arc. sen 0.3)] = 0.62897mm ≈ 628 µm
η3= 6.5 x 10-3
L3= 21.87 dB.
Realizando un análisis en la discontinuidad por medio de la
óptica geométrica, se tiene que el ángulo de incidencia de un haz que
proviene del núcleo de la fibra óptica emisora hacia el núcleo de la
fibra óptica receptora es menor a 1.43° (tal como se aprecia en la
figura 5.7), por lo que la incidencia de dichos rayos se consideran
normales a la superficie de la fibra óptica receptora.
Considerando que los haces de luz que inciden en la fibra
óptica receptora son perpendiculares a su superficie, se puede tomar
en cuenta las pérdidas por la reflexión de fresnel en las fronteras
equivalentes a una pérdida de 0.35 dB (≈ 4%) tal como se mencionó
anteriormente.
65
Capitulo 5
Caracterización del sistema y análisis de pérdidas
Por tanto la pérdida total debida a la discontinuidad en el
sistema es de 22.22 dB.
Figura 5.7 Análisis del ángulo incidente de un haz de luz.
Las mediciones que se efectuaron en la discontinuidad se
presentan en la tabla 5.3.
Tabla 5.3 Medición de las pérdidas en decibeles en la discontinuidad
del sistema.
Fibra óptica
0
1
2
3
4
5
6
7
Emisor (µW)
116.3
110.2
120.2
110.7
103.9
122
151.1
161.1
Receptor (µW)
1.87
2.116
2.016
1.065
1.125
1.92
1.298
1.206
Pérdidas (dB)
17.94
17.16
17.75
20.17
19.65
18
20.65
21.26
En la tabla anterior se tiene en cuenta las pérdidas ocasionadas
de manera intrínseca por las fibras ópticas emisoras (1.5 mts) y
receptoras (0.5 mts).
66
Capitulo 5
Caracterización del sistema y análisis de pérdidas
Se sabe que la fibra óptica de vidrio de 100/140 µm de núcleo
tiene una pérdida de 4 dB/km por lo que en las fibras ópticas se tienen
pérdidas de 0.006 dB(≈0.138% ) y 0.002 dB (≈0.046%)
respectivamente.
Si se calculan las pérdidas ocasionadas por estos tres
mecanismos de pérdidas de potencia óptica, se tiene que las pérdidas
totales para los casos críticos son:
L(total) = L(discontinuidad) + L(desalineación lateral) +
+ L(desalineación angular) + L( fibras ópticas)
(23)
L(total)= 22.22 dB + 0.6 dB + 0.4 dB + 0.008 dB = 23.228 dB
En la ecuación (23) se observa que la pérdida de potencia total
está concentrada en la discontinuidad del sistema.
En la tabla 5.3 se puede apreciar que las perdidas en el sistema
se encuentran aproximadamente en 19 dB mientras que el valor
calculado fue de 23.228 dB.
Esta diferencia se debe principalmente a la consideración de
que la potencia óptica está uniformemente distribuida en el espacio,
siendo que en realidad el patrón de radiación lumínico se encuentra
más concentrado en alrededor del eje axial de la fibra óptica (núcleo
de la fibra óptica), esto permite que exista un mejor acoplamiento
óptico entre fibra óptica emisora y receptora, de tal forma que las
pérdidas sean menores a las estimadas.
67
Capitulo 5
Caracterización del sistema y análisis de pérdidas
Para determinar la sensibilidad del receptor óptico se implementó
una fuente óptica de potencia variable, como se muestra en la figura
5.8.
Figura 5.8 Fuente óptica de potencia lumínica variable.
Con el circuito anterior se determinó que la mínima potencia
óptica de salida (entregada por una fibra óptica receptora del sistema)
para que el buffer schmitt entregue un “1” lógico al microcontrolador,
debería de ser aproximadamente de 200 nW.
Si la pérdida de potencia en las fibras ópticas receptoras es de
0.046% por cada 50 cm de fibra óptica, entonces para que la potencia
más baja del sistema receptor (1.065µW) disminuya a la potencia
mínima requerida para reconocer el haz de luz (200nW), es necesario
que se incremente la longitud de la fibra óptica receptora en 883 mts.
Por lo anterior se desprende que el sistema óptico receptor se
puede posicionar a 883 mts del lugar de medición.
De manera similar se puede posicionar el emisor óptico a una
distancia de 880 mts del sensor, considerando que la potencia mínima
de emisión para que se acople a la salida de las fibras ópticas
receptoras 200nW es de 20µW y tomando en cuenta que la potencia
de inyección mas baja del sistema es de 103.9µW.
68
Capitulo 5
Caracterización del sistema y análisis de pérdidas
5.4.4 TERMINALES MAL PULIDAS
Si los cabos de las fibras ópticas no se encuentran bien pulidas,
es decir, si las terminales de las mismas no son lisas y paralelas, se
pueden tener pérdidas bastantes significativas (hasta del 80% de la
señal de entrada).
Estas pérdidas pueden reducirse considerablemente, si en el
espacio entre las fibras ópticas se llena de fluido igualador de índice
de refracción (matching gel). Esta técnica es utilizada habitualmente
para el acoplamiento máximo entre la unión fibra óptica-receptor,
logrando acoplar mayor potencia óptica al sistema receptor.
En el caso del espacio existente entre fibras ópticas emisoras y
receptoras del sistema no es posible utilizar el fluido igualador, por lo
que las caras de las fibras ópticas deben de estar lo más pulidas
posibles y tratar de que permanezcan lo mas alineadas posible una de
la otra.
5.5 TOLERANCIA EN LA LECTURA DEL NIVEL
Dado que el sensor de nivel de líquidos trabaja con niveles
discretos, es necesario estimar el error intrínseco del mismo entre el
cambio de la lectura de un determinado nivel y el siguiente.
La precisión en la medición del nivel se ve afectada por el
sistema optomecánico, ya que la distancia existente entre el centro de
una línea de código en la placa perforada y el código siguiente es de
50 milésimas de pulgada.
Se tiene un peralte entre códigos de 0.127mm (5 milésimas de
pulgada) tal como se muestra en el bosquejo de la figura 5.9.
69
Capitulo 5
Caracterización del sistema y análisis de pérdidas
Figura 5.9 Bosquejo del código binario en la placa perforada.
Debido a las dimensiones del tanque y de la placa perforada con
el código binario, se tiene que para cada código se detecta un cambio
de 0.188 lts.
Si el código no se encuentra alineado con las fibras ópticas
emisoras y receptoras, se presentan pérdidas por desalineamiento
lateral (aunque en este caso sea por oclusión), de tal forma que al
desalinearse en 60 µm las pérdidas serán de 4.5 dB y se estará
cercano al valor de potencia óptica radiada límite.
Si se considera que al estar desalineado 60 µm se obtiene una
lectura estable límite, entonces se deduce que entre códigos se tiene
una tolerancia de ±0.094 lts.
5.6 CALIBRACIÓN DEL SISTEMA DE MEDICIÓN
La calibración del sensor de nivel de líquidos se hizo a partir del
desplazamiento del código en la tarjeta perforada.
Para su calibración se tomó una lectura estable (centro del
código) del nivel del líquido en el contenedor, posteriormente se virtió
líquido (previamente cuantificado) dentro del contenedor hasta lograr
el cambio de la lectura del nivel siguiente.
Debido a que la tarjeta es isométrica en toda la extensión del
código, se puede determinar el nivel de líquido máximo y mínimo
dentro del tanque.
Obteniendo el paso de líquido por código se puede determinar
los límites de medición del sensor.
70
Recomendaciones
RECOMENDACIONES Y SUGERENCIAS.
Se puede miniaturizar la tarjeta perforada con el código binario
para hacer mediciones más finas en el sistema.
Debido a la potencialidad del microcontrolador COP8 se puede
crear el programa adecuado en lenguaje ensamblador para el control
de actuadores a partir de las señales obtenidas de las fibras ópticas;
logrando de esta manera, el monitoreo de otros parámetros del
proceso a muy bajo costo.
Pueden implementarse sistemas mecánicos en el sensor para
reducir al mínimo el desplazamiento de la tarjeta perforada con
respecto al desplazamiento del líquido en el contenedor.
El instrumento puede operar con otros tipos de fibras ópticas,
siempre y cuando se ajusten los niveles de potencia óptica en el
transmisor y la ganancia en el receptor para proporcionar una señal
bien definida.
El sistema de calibración puede realizarse en forma automática a
partir del desarrollo de un programa en el microcontrolador que
determine el paso de líquido por código. Para realizar esto, es
necesario obtener las dimensiones del tanque (introducidas por
teclado) y de la placa perforada con código binario.
Para mejorar la exactitud de las mediciones, se puede
implementar por programación factores de corrección en la lectura del
nivel del líquido dependiendo del tipo de fluido, temperatura y presión
dentro del tanque, variaciones de densidad y viscosidad del fluido, etc.
Puede implementarse un sistema mecánico que permita que el
llenado o vaciado del contenedor no se encuentre en el régimen
turbulento. En su defecto programar con un factor de corrección para
este tipo de sistemas.
El sensor puede introducirse en un tubo ranurado para evitar el
oleaje excesivo dentro del contenedor.
72
Conclusiones
CONCLUSIONES
El enorme potencial de este dispositivo en aplicaciones de
sistemas industriales donde se manejan sustancias peligrosas lo
hacen atractivo para una amplia gama de procesos .
Las fuentes ópticas construidas para el sensor de nivel son
económicas y de fácil construcción, ya que no se requiere mucha
estabilidad, ni sistemas de compensación sofisticados debido al
principio de operación digital del mismo.
La aplicación puede extenderse no solo a fluidos transparentes,
sino que la medición se realiza con casi cualquier fluido que se
encuentre en el contenedor, sin importar su viscosidad, grado de
explosividad, densidad, corrosión, etc.
Las bondades de las fibras ópticas hacen que este sensor sea
robusto bajo condiciones inoperantes para los métodos
convencionales
(electromecánicos
generalmente),
haciéndolo
intrínsecamente seguro en ambientes con alta contaminación
electromagnética.
Se puede tener control del nivel del líquido en forma remota, con
un alto grado de fiabilidad.
La caracterización del sistema se realizó exclusivamente para el
sistema mecánico e hidráulico situado en el laboratorio, sin necesidad
de aplicar factores de corrección (por cambios en temperatura,
presión, viscosidad, densidad, régimen turbulento, etc.) al sistema
debido a las consideraciones ambientales y geométricas del mismo.
71
Bibliografía
BIBLIOGRAFIA
73
Bibliografía
[1] Chomycz, Bob, Instalaciones de Fibra Óptica, Fundamentos
técnicas y aplicaciones
Mc. Graw Hill (1998)
[2] Chen, Chin-Lin, Elements of Optoelectronics and Fiber Optics
Times Mirror, First edition (1996)
[3] Jardón Aguilar, Hildeberto
Linares y Miranda, Roberto, Sistemas de Comunicaciones por
Fibras Ópticas
Alfaomega (1995)
[4] D.A., Krohn, Fiber Optics Sensor, Fundamentals and aplications
Instruments society of america (1988)
[5] Dakin, John
Culshaw, Brian, Optical Fiber Sensor Vol. I y II, Principles and
components
Artech House (1988)
[6] Mahlke, Günther
Gössing Peter, Conductores de Fibra Óptica, Conceptos básicos
Siemens (1987)
[7] Instructor´s guide, Course Opcom-1, Principles of fiber optics
communication systems
Degem systems, First edition (1985)
[8] C. Palais, Joseph, Fiber optic communications
Prentice Hall, Inc. (1984)
[9] Flow and Level Handbook
Omega, Vol 29
[10] Basic Family COP8.
National Semiconductor
[11] OPTEK technology, inc.
Optic product, catalog 1989
74
Bibliografía
[12] AND LED and LCD products
Display products catalog 1991
[13] Data Conversion / Acquisition
National Semiconductor
[14] Photodiodes
Hamamatsu catalog
[15] Hecht, Eugene, Óptica
Addison Wesley, Tercera Edición (1999)
75
Anexo
ANEXO A
DIAGRAMAS DEL SISTEMA
76
Anexo B
ANEXO B
ESPECIFICACIONES ELÉCTRICAS DE
DISPOSITIVOS ELECTRÓNICOS
79
COP8SGx7 Family
8-Bit CMOS OTP Microcontrollers with 8k or 32k
Memory, Two Comparators and USART
General Description
Note: COP8SGx7 devices are form-fit-function compatible supersets of the COP888xG/CS and COP87L88xG
Family devices, and are replacements for these in new
designs, and design upgrades with minimum effort.
The COP8SGx7 Family of OTP (One Time Programmable)
microcontrollers are highly integrated COP8™ Feature core
devices with 8k or 32k memory and advanced features including Analog comparators, and zero external components.
These single-chip CMOS devices are suited for more complex applications requiring a full featured controller with
larger memory, low EMI, two comparators, and a full-duplex
USART. 100% form-fit-function compatible 8k to 32k ROM
Device
Memory (bytes)
RAM (bytes)
I/O Pins
Packages
Temperature
COP8SGE7
8k OTP EPROM
256
24/36/40
28 DIP/SOIC, 40 DIP, 44
PLCC/QFP
-40 to +85˚C
COP8SGR7
32k OTP EPROM
512
24/36/40
28 DIP/SOIC, 40 DIP, 44
PLCC/QFP
-40 to +85˚C
32k EPROM
512
24/36/40
28 DIP, 40 DIP, 44 PLCC
Room Temp.
COP8SGR7-Q3
Key Features
n
n
n
n
n
n
n
n
n
n
n
versions are available (COP8SGx5 Family). Erasable windowed versions are available for use with a range of COP8
software and hardware development tools.
Family features include an 8-bit memory mapped architecture, 10 MHz CKI with 1µs instruction cycle, three multifunction 16-bit timer/counters with PWM, full duplex USART,
MICROWIRE/PLUS™, two analog comparators, two power
saving HALT/IDLE modes, MIWU, idle timer, on-chip R/C oscillator, high current outputs, user selectable options
(WATCHDOG™, 4 clock/oscillator modes, power-on-reset),
2.7V to 5.5V operation, program code security, and 28/40/44
pin packages.
Devices included in this datasheet are:
Low cost 8-bit OTP microcontroller
Quiet Design (low radiated emissions)
Multi-Input Wakeup pins with optional interrupts (8 pins)
8 bytes of user storage space in EPROM
User selectable clock options
— Crystal oscillator
— Crystal oscillator with on-chip bias resistor
— External oscillator
— Internal R/C oscillator
Internal Power-On-Reset — user selectable
WATCHDOG and Clock Monitor Logic — user selectable
Eight high current outputs
256 or 512 bytes on-board RAM
8 or 32 kbytes on-board OTP EPROM with security
feature for COP8SGE7
4 to 32 kbytes ROM based versions available
CPU Features
n Versatile easy to use instruction set
n 1 µs instruction cycle time
n Fourteen multi-source vectored interrupts servicing
— External interrupt / Timers T0 — T3
— MICROWIRE/PLUS Serial Interface
— Multi-Input Wake Up
— Software Trap
— USART (2; 1 receive and 1 transmit)
— Default VIS (default interrupt)
n 8-bit Stack Pointer SP (stack in RAM)
n Two 8-bit Register Indirect Data Memory Pointers
n True bit manipulation
n Memory mapped I/O
n BCD arithmetic instructions
Peripheral Features
n Multi-Input Wakeup Logic
n Three 16-bit timers (T1 — T3), each with two 16-bit
registers supporting:
— Processor Independent PWM mode
— External Event Counter mode
— Input Capture mode
n Idle Timer (T0)
n MICROWIRE/PLUSSerial Interface (SPI Compatible)
n Full Duplex USART
n Two Analog Comparators
TRI-STATE ® is a registered trademark of National Semiconductor Corporation.
MICROWIRE/PLUS™, COP8™, MICROWIRE™ and WATCHDOG™ are trademarks of National Semiconductor Corporation.
iceMASTER™ is a trademark of MetaLink Corporation.
© 1999 National Semiconductor Corporation
DS100155
www.national.com
COP8SGx7 Family, 8-Bit CMOS OTP Microcontrollers with 8k or 32k Memory, Two Comparators
and USART
July 1999
I/O Features
Fully Static CMOS Design
n Software selectable I/O options (TRI-STATE ®
Output,Push-Pull Output, Weak Pull-Up Input, and High
Impedance Input)
n Schmitt trigger inputs on ports G and L
n Eight high current outputs
n Packages: 28 SO with 24 I/O pins, 40 DIP with 36 I/O
pins, 44 PLCC and PQFP with 40 I/O pins
n Two power saving modes: HALT and IDLE
Temperature Range
n −40˚C to +85˚C
Development Support
n Windowed packages for DIP and PLCC
n Real time emulation and full program debug offered by
MetaLink Development System
Block Diagram
DS100155-44
FIGURE 1. COP8SGx7 Block Diagram
www.national.com
2
many cases, the instruction set can simultaneously execute
as many as three functions with the same single-byte instruction.
JID: (Jump Indirect); Single byte instruction; decodes external events and jumps to corresponding service routines
(analogous to “DO CASE” statements in higher level languages).
LAID: (Load Accumulator-Indirect); Single byte look up table
instruction provides efficient data path from the program
memory to the CPU. This instruction can be used for table
lookup and to read the entire program memory for checksum
calculations.
RETSK: (Return Skip); Single byte instruction allows return
from subroutine and skips next instruction. Decision to
branch can be made in the subroutine itself, saving code.
1.0 Device Description
1.1 ARCHITECTURE
The COP8 family is based on a modified Harvard architecture, which allows data tables to be accessed directly from
program memory. This is very important with modern
microcontroller-based applications, since program memory
is usually ROM or EPROM, while data memory is usually
RAM. Consequently data tables need to be contained in
non-volatile memory, so they are not lost when the microcontroller is powered down. In a modified Harvard architecture,
instruction fetch and memory data transfers can be overlapped with a two stage pipeline, which allows the next instruction to be fetched from program memory while the current instruction is being executed using data memory. This is
not possible with a Von Neumann single-address bus architecture.
The COP8 family supports a software stack scheme that allows the user to incorporate many subroutine calls. This capability is important when using High Level Languages. With
a hardware stack, the user is limited to a small fixed number
of stack levels.
AUTOINC/DEC: (Auto-Increment/Auto-Decrement); These
instructions use the two memory pointers B and X to efficiently process a block of data (analogous to “FOR NEXT” in
higher level languages).
1.2.3 Bit-Level Control
Bit-level control over many of the microcontroller’s I/O ports
provides a flexible means to ease layout concerns and save
board space. All members of the COP8 family provide the
ability to set, reset and test any individual bit in the data
memory address space, including memory-mapped I/O ports
and associated registers.
1.2 INSTRUCTION SET
In today’s 8-bit microcontroller application arena cost/
performance, flexibility and time to market are several of the
key issues that system designers face in attempting to build
well-engineered products that compete in the marketplace.
Many of these issues can be addressed through the manner
in which a microcontroller’s instruction set handles processing tasks. And that’s why COP8 family offers a unique and
code-efficient instruction set — one that provides the flexibility, functionality, reduced costs and faster time to market that
today’s microcontroller based products require.
Code efficiency is important because it enables designers to
pack more on-chip functionality into less program memory
space (ROM/OTP). Selecting a microcontroller with less program memory size translates into lower system costs, and
the added security of knowing that more code can be packed
into the available program memory space.
1.2.4 Register Set
Three memory-mapped pointers handle register indirect addressing and software stack pointer functions. The memory
data pointers allow the option of post-incrementing or postdecrementing with the data movement instructions (LOAD/
EXCHANGE). And 15 memory-maped registers allow designers to optimize the precise implementation of certain
specific instructions.
1.3 EMI REDUCTION
The COP8SGx7 family of devices incorporates circuitry that
guards against electromagnetic interference — an increasing
problem in today’s microcontroller board designs. National’s
patented EMI reduction technology offers low EMI clock circuitry, gradual turn-on output drivers (GTOs) and internal ICC
smoothing filters, to help circumvent many of the EMI issues
influencing embedded control designs. National has
achieved 15 dB–20 dB reduction in EMI transmissions when
designs have incorporated its patented EMI reducing circuitry.
1.2.1 Key Instruction Set Features
The COP8 family incorporates a unique combination of instruction set features, which provide designers with optimum
code efficiency and program memory utilization.
Single Byte/Single Cycle Code Execution
The efficiency is due to the fact that the majority of instructions are of the single byte variety, resulting in minimum program space. Because compact code does not occupy a substantial amount of program memory space, designers can
integrate additional features and functionality into the microcontroller program memory space. Also, the majority instructions executed by the device are single cycle, resulting in
minimum program execution time. In fact, 77% of the instructions are single byte single cycle, providing greater code and
I/O efficiency, and faster code execution.
1.4 PACKAGING/PIN EFFICIENCY
Real estate and board configuration considerations demand
maximum space and pin efficiency, particularly given today’s
high integration and small product form factors. Microcontroller users try to avoid using large packages to get the I/O
needed. Large packages take valuable board space and increases device cost, two trade-offs that microcontroller designs can ill afford.
The COP8 family offers a wide range of packages and do not
waste pins: up to 90.9% (or 40 pins in the 44-pin package)
are devoted to useful I/O.
1.2.2 Many Single-Byte, Multifunction Instructions
The COP8 instruction set utilizes many single-byte, multifunction instructions. This enables a single instruction to accomplish multiple functions, such as DRSZ, DCOR, JID, LD
(Load) and X (Exchange) instructions with post-incrementing
and post-decrementing, to name just a few examples. In
3
www.national.com
Connection Diagrams
DS100155-4
Note 1: Note: x = E for 8k, and R for 32k
Top View
Order Number COP8SGx728M8
See NS Package Number M28B
Order Number COP8SGx728N8
See NS Package Number N28B
Order Number COP8SGR728Q3
See NS Package Number D28JQ
DS100155-5
Top View
Order Number COP8SGx740N8
See NS Package Number N40A
Order Number COP8SGR740Q3
See NS Package Number D40KQ
DS100155-6
DS100155-43
Top View
Order Number COP8SGx744V8
See NS Package Number V44A
Order Number COP8SGR744J3
See NS Package Number EL44C
Top View
Order Number COP8SGx7VEJ8
See NS Package Number VEJ44A
FIGURE 2. Connection Diagrams
www.national.com
4
Connection Diagrams
(Continued)
Pinouts for 28 -, 40- and 44-Pin Packages
28-Pin SO
40-Pin DIP
44-Pin PLCC
44-Pin PQFP
L0
Port
Type
I/O
MIWU
Alt. Fun
11
17
17
11
L1
I/O
MIWU or CKX
12
18
18
12
L2
I/O
MIWU or TDX
13
19
19
13
L3
I/O
MIWU or RDX
14
20
20
14
L4
I/O
MIWU or T2A
15
21
25
19
L5
I/O
MIWU or T2B
16
22
26
20
L6
I/O
MIWU or T3A
17
23
27
21
L7
I/O
MIWU or T3B
18
24
28
22
G0
I/O
INT
25
35
39
33
G1
I/O
WDOUT*
26
36
40
34
G2
I/O
T1B
27
37
41
35
G3
I/O
T1A
28
38
42
36
G4
I/O
SO
1
3
3
41
G5
I/O
SK
2
4
4
42
G6
I
SI
3
5
5
43
G7
I
CKO
4
6
6
44
D0
O
19
25
29
23
D1
O
20
26
30
24
D2
O
21
27
31
25
D3
O
22
28
32
26
D4
O
29
33
27
D5
O
30
34
28
D6
O
31
35
29
D7
O
32
36
30
F0
I/O
7
9
9
3
F1
I/O
COMP1IN−
8
10
10
4
F2
I/O
COMP1IN+
9
11
11
5
F3
I/O
COMP1OUT
10
12
12
6
F4
I/O
COMP2IN−
13
13
7
F5
I/O
COMP2IN+
14
14
8
F6
I/O
COMP2OUT
15
15
9
F7
I/O
16
16
10
C0
I/O
39
43
37
C1
I/O
40
44
38
C2
I/O
1
1
39
C3
I/O
2
2
40
C4
I/O
21
15
C5
I/O
22
16
C6
I/O
23
17
C7
I/O
24
18
VCC
6
8
8
2
GND
23
33
37
31
CKI
I
5
7
7
1
RESET
I
24
34
38
32
* G1 operation as WDOUT is controlled by ECON bit 2.
5
www.national.com
2.1 Ordering Information
DS100155-8
FIGURE 3. Part Numbering Scheme
www.national.com
6
3.0 Electrical Characteristics
Total Current out of GND
Pin (Sink)
Storage Temperature
Range
ESD Protection Level
Absolute Maximum Ratings (Note 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage (VCC)
Voltage at Any Pin
Total Current into VCC
Pin (Source)
110 mA
−65˚C to +140˚C
2kV (Human Body Model)
Note 2: Absolute maximum ratings indicate limits beyond which damage to
the device may occur. DC and AC electrical specifications are not ensured
when operating the device at absolute maximum ratings.
7V
−0.3V to VCC +0.3V
100 mA
DC Electrical Characteristics
−40˚C ≤ TA ≤ +85˚C unless otherwise specified.
Parameter
Conditions
Min
Typ
Max
Units
Operating Voltage
2.7
5.5
V
Power Supply Rise Time
10
50 x 106
ns
VCC Start Voltage to Guarantee POR
Power Supply Ripple (Note 4)
0
Peak-to-Peak
0.25
V
0.1 Vcc
V
Supply Current (Note 5)
CKI = 10 MHz
VCC = 5.5V, tC = 1 µs
6.0
mA
CKI = 4 MHz
VCC = 4.5V, tC = 2.5 µs
2.1
mA
10
µA
HALT Current (Note 6)
<4
VCC = 5.5V, CKI = 0 MHz
IDLE Current (Note 5)
CKI = 10 MHz
VCC = 5.5V, tC = 1 µs
1.5
mA
CKI = 4 MHz
VCC = 4.5V, tC = 2.5 µs
0.8
mA
Input Levels (VIH, VIL)
RESET
Logic High
0.8 Vcc
V
Logic Low
0.2 Vcc
V
CKI, All Other Inputs
Logic High
0.7 Vcc
V
Logic Low
Internal Bias Resistor for the
Crystal/Resonator Oscillator
0.2 Vcc
V
0.5
1
2
MΩ
5
8
11
kΩ
CKI Resistance to VCC or GND when R/C
Oscillator is selected
VCC = 5.5V
Hi-Z Input Leakage
VCC = 5.5V
−2
+2
µA
Input Pullup Current
VCC = 5.5V, VIN = 0V
−40
−250
µA
G and L Port Input Hysteresis
VCC = 5.5V
0.25 Vcc
V
VCC = 4.5V, VOH = 3.3V
−0.4
mA
VCC = 2.7V, VOH = 1.8V
−0.2
mA
VCC = 4.5V, VOL = 1.0V
10
mA
VCC = 2.7V, VOL = 0.4V
2
mA
VCC = 4.5V, VOH = 2.7V
−10.0
−110
VCC = 2.7V, VOH = 1.8V
−2.5
−33
VCC = 4.5V, VOH = 3.3V
−0.4
VCC = 2.7V, VOH = 1.8V
−0.2
mA
VCC = 4.5V, VOL = 0.4V
1.6
mA
VCC = 2.7V, VOL = 0.4V
0.7
VCC = 5.5V
−2
Output Current Levels
D Outputs
Source
Sink
All Others
Source (Weak Pull-Up Mode)
Source (Push-Pull Mode)
Sink (Push-Pull Mode)
TRI-STATE Leakage
7
µA
µA
mA
mA
+2
µA
www.national.com
DC Electrical Characteristics
(Continued)
−40˚C ≤ TA ≤ +85˚C unless otherwise specified.
Parameter
Conditions
Min
Typ
Max
Units
Allowable Sink Current per Pin (Note 9)
D Outputs and L0 to L3
15
mA
All Others
3
mA
Maximum Input Current without Latchup
(Note 7)
Room Temp.
± 200
RAM Retention Voltage, Vr
mA
2.0
V
12
µs
VCC Rise Time from a VCC ≥ 2.0V
(Note 10)
Input Capacitance
(Note 9)
7
pF
Load Capacitance on D2
(Note 9)
1000
pF
AC Electrical Characteristics
−40˚C ≤ TA ≤ +85˚C unless otherwise specified.
Parameter
Conditions
Min
Typ
Max
Units
Instruction Cycle Time (tC)
Crystal/Resonator, External
R/C Oscillator (Internal)
Frequency Variation (Note 9)
External CKI Clock Duty Cycle (Note 9)
4.5V ≤ VCC ≤ 5.5V
1
2.7V ≤ VCC < 4.5V
2
µs
µs
4.5V ≤ VCC ≤ 5.5V
2
4.5V ≤ VCC ≤ 5.5V
± 35
fr = Max
45
µs
%
55
%
Rise Time (Note 9)
fr = 10 MHz Ext Clock
12
ns
Fall Time (Note 9)
fr = 10 MHz Ext Clock
8
ns
Output Propagation Delay (Note 8)
RL = 2.2k, CL = 100 pF
tPD1, tPD0
SO, SK
All Others
4.5V ≤ VCC ≤ 5.5V
0.7
µs
2.7V ≤ VCC < 4.5V
1.75
µs
4.5V ≤ VCC ≤ 5.5V
1.0
µs
2.7V ≤ VCC < 4.5V
2.5
µs
MICROWIRE Setup Time (tUWS) (Note
11)
20
ns
MICROWIRE Hold Time (tUWH) (Note
11)
56
ns
220
MICROWIRE Output Propagation
Delay (tUPD) (Note 11)
ns
Input Pulse Width (Note 9)
Interrupt Input High Time
1
tC
Interrupt Input Low Time
1
tC
Timer 1, 2, 3, Input High Time
1
tC
Timer 1 2, 3, Input Low Time
1
tC
1
µs
Reset Pulse Width
Note 3: tC = Instruction cycle time.
Note 4: Maximum rate of voltage change must be < 0.5 V/ms.
Note 5: Supply and IDLE currents are measured with CKI driven with a square wave Oscillator, External Oscillator, inputs connected to VCC and outputs driven low
but not connected to a load.
Note 6: The HALT mode will stop CKI from oscillating in the R/C and the Crystal configurations. In the R/C configuration, CKI is forced high internally. In the crystal
or external configuration, CKI is TRI-STATE. Measurement of IDD HALT is done with device neither sourcing nor sinking current; with L. F, C, G0, and G2–G5 programmed as low outputs and not driving a load; all outputs programmed low and not driving a load; all inputs tied to VCC; clock monitor disabled. Parameter refers
to HALT mode entered via setting bit 7 of the G Port data register.
Note 7: Pins G6 and RESET are designed with a high voltage input network. These pins allow input voltages > VCC and the pins will have sink current to VCC when
biased at voltages > VCC (the pins do not have source current when biased at a voltage below VCC). The effective resistance to VCC is 750Ω (typical). These two
pins will not latch up. The voltage at the pins must be limited to < 14V. WARNING: Voltages in excess of 14V will cause damage to the pins. This warning excludes
ESD transients.
Note 8: The output propagation delay is referenced to the end of the instruction cycle where the output change occurs.
www.national.com
8
AC Electrical Characteristics
(Continued)
Note 9: Parameter characterized but not tested.
Note 10: Rise times faster than the minimum specification may trigger an internal power-on-reset.
Note 11: MICROWIRE Setup and Hold Times and Propagation Delays are referenced to the appropriate edge of the MICROWIRE clock. See and the MICROWIRE
operation description.
Comparators AC and DC Characteristics
VCC = 5V, −40˚C ≤ TA ≤ +85˚C.
Parameter
Input Offset Voltage (Note 12)
Conditions
Min
0.4V ≤ VIN ≤ VCC − 1.5V
Input Common Mode Voltage Range
Typ
Max
Units
±5
± 15
mV
0.4
Voltage Gain
VCC − 1.5
100
V
dB
Low Level Output Current
VOL = 0.4V
−1.6
mA
High Level Output Current
VOH = VCC − 0.4V
1.6
mA
DC Supply Current per Comparator
(When Enabled)
Response Time (Note 13)
200 mV step input
100 mV Overdrive,
150
µA
200
ns
100 pF Load
Note 12: The comparator inputs are high impedance port inputs and, as such, input current is limited to port input leakage current.
Note 13: Response time is measured from a step input to a valid logic level at the comparator output. software response time is dependent of instruction execution.
DS100155-9
FIGURE 4. MICROWIRE/PLUS Timing
9
www.national.com
Typical Performance Characteristics
www.national.com
TA = 25˚C (unless otherwise specified)
DS100155-49
DS100155-50
DS100155-51
DS100155-52
10
WATCHDOG feature is selected by the ECON register.
The pin is a general purpose I/O if WATCHDOG feature is
not selected. If WATCHDOG feature is selected, bit 1 of the
Port G configuration and data register does not have any effect on Pin G1 setup. Pin G7 is either input or output depending on the oscillator option selected. With the crystal oscillator option selected, G7 serves as the dedicated output pin for
the CKO clock output. With the internal R/C or the external
oscillator option selected, G7 serves as a general purpose
Hi-Z input pin and is also used to bring the device out of
HALT mode with a low to high transition on G7.
Since G6 is an input only pin and G7 is the dedicated CKO
clock output pin (crystal clock option) or general purpose input (R/C or external clock option), the associated bits in the
data and configuration registers for G6 and G7 are used for
special purpose functions as outlined below. Reading the G6
and G7 data bits will return zeroes.
Each device will be placed in the HALT mode by writing a “1”
to bit 7 of the Port G Data Register. Similarly the device will
be placed in the IDLE mode by writing a “1” to bit 6 of the
Port G Data Register.
Writing a “1” to bit 6 of the Port G Configuration Register enables the MICROWIRE/PLUS to operate with the alternate
phase of the SK clock. The G7 configuration bit, if set high,
enables the clock start up delay after HALT when the R/C
clock configuration is used.
4.0 Pin Descriptions
The COP8SGE7/COP8SGR7 I/O structure enables designers to reconfigure the microcontroller’s I/O functions with a
single instruction. Each individual I/O pin can be independently configured as output pin low, output high, input with
high impedance or input with weak pull-up device. A typical
example is the use of I/O pins as the keyboard matrix input
lines. The input lines can be programmed with internal weak
pull-ups so that the input lines read logic high when the keys
are all open. With a key closure, the corresponding input line
will read a logic zero since the weak pull-up can easily be
overdriven. When the key is released, the internal weak
pull-up will pull the input line back to logic high. This eliminates the need for external pull-up resistors. The high current options are available for driving LEDs, motors and
speakers. This flexibility helps to ensure a cleaner design,
with less external components and lower costs. Below is the
general description of all available pins.
VCC and GND are the power supply pins. All VCC and GND
pins must be connected.
CKI is the clock input. This can come from the Internal R/C
oscillator, external, or a crystal oscillator (in conjunction with
CKO). See Oscillator Description section.
RESET is the master reset input. See Reset description section.
Each device contains four bidirectional 8-bit I/O ports (C, G,
L and F), where each individual bit may be independently
configured as an input (Schmitt trigger inputs on ports L and
G), output or TRI-STATE under program control. Three data
memory address locations are allocated for each of these
I/O ports. Each I/O port has two associated 8-bit memory
mapped registers, the CONFIGURATION register and the
output DATA register. A memory mapped address is also reserved for the input pins of each I/O port. (See the memory
map for the various addresses associated with the I/O ports.)
Figure 5 shows the I/O port configurations. The DATA and
CONFIGURATION registers allow for each port bit to be individually configured under software control as shown below:
CONFIGURATION
Register
DATA
Register
0
0
Hi-Z Input
0
1
Input with Weak Pull-Up
1
0
Push-Pull Zero Output
1
1
Push-Pull One Output
Config. Reg.
Port Set-Up
Port L supports the Multi-Input Wake Up feature on all eight
pins. Port L has the following alternate pin functions:
L7 Multi-input Wakeup or T3B (Timer T3B Input)
L6 Multi-input Wakeup or T3A (Timer T3A Input)
Wakeup
Wakeup
Wakeup
Wakeup
HALT
G6
Alternate SK
IDLE
G1 WDOUT WATCHDOG and/or CLock Monitor if WATCHDOG enabled, otherwise it is a general purpose I/O
G0 INTR (External Interrupt Input)
Port C is an 8-bit I/O port. The 40-pin device does not have
a full complement of Port C pins. The unavailable pins are
not terminated. A read operation on these unterminated pins
will return unpredictable values. The 28 pin device do not offer Port C. On this device, the associated Port C Data and
Configuration registers should not be used.
Port F is an 8-bit I/O port. The 28--pin device does not have
a full complement of Port F pins. The unavailable pins are
not terminated. A read operation on these unterminated pins
will return unpredictable values.
Port F1–F3 are used for Comparator 1. Port F4–F6 are used
for Comparator 2.
The Port F has the following alternate features:
Port L is an 8-bit I/O port. All L-pins have Schmitt triggers on
the inputs.
Multi-input
Multi-input
Multi-input
Multi-input
CLKDLY
Port G has the following alternate features:
G7 CKO Oscillator dedicated output or general purpose input
G6 SI (MICROWIRE Serial Data Input)
G5 SK (MICROWIRE Serial Clock)
G4 SO (MICROWIRE Serial Data Output)
G3 T1A (Timer T1 I/O)
G2 T1B (Timer T1 Capture Input)
(TRI-STATE Output)
L5
L4
L3
L2
Data Reg.
G7
or T2B (Timer T2B Input)
or T2A (Timer T2A Input)
and/or RDX (USART Receive)
or TDX (USART Transmit)
F6
F5
F4
F3
L1 Multi-input Wakeup and/or CKX (USART Clock)
L0 Multi-input Wakeup
Port G is an 8-bit port. Pin G0, G2–G5 are bi-directional I/O
ports. Pin G6 is always a general purpose Hi-Z input. All pins
have Schmitt Triggers on their inputs. Pin G1 serves as the
dedicated WATCHDOG output with weak pullup if
COMP2OUT (Comparator 2 Output)
COMP2+IN (Comparator 2 Positive Input)
COMP2-IN (Comparator 2 Negative Input)
COMP1OUT (Comparator 1 Output)
F2 COMP1+IN (Comparator 1 Positive Input)
F1 COMP1-IN (Comparator 1 Negative Input)
Note: For compatibility with existing software written for COP888xG devices
and with existing Mask ROM devices, a read of the Port I input pins
11
www.national.com
4.0 Pin Descriptions
5.0 Functional Description
(Continued)
The architecture of the devices are a modified Harvard architecture. With the Harvard architecture, the program memory
EPROM is separated from the data store memory (RAM).
Both EPROM and RAM have their own separate addressing
space with separate address buses. The architecture,
though based on the Harvard architecture, permits transfer
of data from EPROM to RAM.
(address xxD7) will return the same data as reading the Port F input
pins (address xx96). It is recommended new applications which will go
to production with the COPSGx7 use the Port F addresses. Note that
compatible ROM devices contains the input only Port I instead of the
bi-directional Port F.
Port D is an 8-bit output port that is preset high when RESET
goes low. The user can tie two or more D port outputs (except D2) together in order to get a higher drive.
Note: Care must be exercised with the D2 pin operation. At RESET, the external loads on this pin must ensure that the output voltages stay
above 0.7 VCC to prevent the chip from entering special modes. Also
keep the external loading on D2 to less than 1000 pF.
5.1 CPU REGISTERS
The CPU can do an 8-bit addition, subtraction, logical or shift
operation in one instruction (tC) cycle time.
There are six CPU registers:
A is the 8-bit Accumulator Register
PC is the 15-bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is an 8-bit RAM address pointer, which can be optionally
post auto incremented or decremented.
X is an 8-bit alternate RAM address pointer, which can be
optionally post auto incremented or decremented.
S is the 8-bit Segment Address Register used to extend the
lower half of the address range (00 to 7F) into 256 data segments of 128 bytes each.
SP is the 8-bit stack pointer, which points to the subroutine/
interrupt stack (in RAM). With reset the SP is initialized to
RAM address 02F Hex (devices with 64 bytes of RAM), or
initialized to RAM address 06F Hex (devices with 128 bytes
of RAM).
All the CPU registers are memory mapped with the exception of the Accumulator (A) and the Program Counter (PC).
DS100155-10
FIGURE 5. I/O Port Configurations
5.2 PROGRAM MEMORY
The program memory consists of 8192 or 32,768 bytes of
EPROM. These bytes may hold program instructions or constant data (data tables for the LAID instruction, jump vectors
for the JID instruction, and interrupt vectors for the VIS instruction). The program memory is addressed by the 15-bit
program counter (PC). All interrupts in the device vector to
program memory location 0FF Hex. The contents of the program memory read 00 Hex in the erased state. Program execution starts at location 0 after RESET.
DS100155-12
5.3 DATA MEMORY
The data memory address space includes the on-chip RAM
and data registers, the I/O registers (Configuration, Data and
Pin), the control registers, the MICROWIRE/PLUS SIO shift
register, and the various registers, and counters associated
with the timers (with the exception of the IDLE timer). Data
memory is addressed directly by the instruction or indirectly
by the B, X and SP pointers.
FIGURE 6. I/O Port Configurations — Output Mode
The data memory consists of 256 or 512 bytes of RAM. Sixteen bytes of RAM are mapped as “registers” at addresses
0F0 to 0FE Hex. These registers can be loaded immediately,
and also decremented and tested with the DRSZ (decrement
register and skip if zero) instruction. The memory pointer
registers X, SP and B are memory mapped into this space at
address locations 0FC to 0FE Hex respectively, with the
other registers (except 0FF) being available for general usage.
The instruction set permits any bit in memory to be set, reset
or tested. All I/O and registers (except A and PC) are
DS100155-11
FIGURE 7. I/O Port Configurations — Input Mode
www.national.com
12
5.0 Functional Description
extension does not take place. Alternatively, if this upper bit
equals zero, then the data segment extension register S is
used to extend the base address range (from 0000 to 007F)
from XX00 to XX7F, where XX represents the 8 bits from the
S register. Thus the 128-byte data segment extensions are
located from addresses 0100 to 017F for data segment 1,
0200 to 027F for data segment 2, etc., up to FF00 to FF7F
for data segment 255. The base address range from 0000 to
007F represents data segment 0.
(Continued)
memory mapped; therefore, I/O bits and register bits can be
directly and individually set, reset and tested. The accumulator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.
5.4 DATA MEMORY SEGMENT RAM EXTENSION
Data memory address 0FF is used as a memory mapped location for the Data Segment Address Register (S).
The data store memory is either addressed directly by a
single byte address within the instruction, or indirectly relative to the reference of the B, X, or SP pointers (each contains a single-byte address). This single-byte address allows
an addressing range of 256 locations from 00 to FF hex. The
upper bit of this single-byte address divides the data store
memory into two separate sections as outlined previously.
With the exception of the RAM register memory from address locations 00F0 to 00FF, all RAM memory is memory
mapped with the upper bit of the single-byte address being
equal to zero. This allows the upper bit of the single-byte address to determine whether or not the base address range
(from 0000 to 00FF) is extended. If this upper bit equals one
(representing address range 0080 to 00FF), then address
Figure 8 illustrates how the S register data memory extension is used in extending the lower half of the base address
range (00 to 7F hex) into 256 data segments of 128 bytes
each, with a total addressing range of 32 kbytes from XX00
to XX7F. This organization allows a total of 256 data segments of 128 bytes each with an additional upper base segment of 128 bytes. Furthermore, all addressing modes are
available for all data segments. The S register must be
changed under program control to move from one data segment (128 bytes) to another. However, the upper base segment (containing the 16 memory registers, I/O registers,
control registers, etc.) is always available regardless of the
contents of the S register, since the upper base segment
(address range 0080 to 00FF) is independent of data segment extension.
DS100155-45
FIGURE 8. RAM Organization
RAM represent the 16 data memory registers located at addresses 00F0 to 00FF of the upper base segment. No RAM
is located at the upper sixteen addresses (0070 to 007F) of
the lower base segment.
Additional RAM beyond these initial 128 bytes, however, will
always be memory mapped in groups of 128 bytes (or less)
at the data segment address extensions (XX00 to XX7F) of
the lower base segment. The additional 384 bytes of RAM in
this device are memory mapped at address locations 0100
to 017F, 0200 to 027F and 0300 to 037F hex.
The instructions that utilize the stack pointer (SP) always reference the stack as part of the base segment (Segment 0),
regardless of the contents of the S register. The S register is
not changed by these instructions. Consequently, the stack
(used with subroutine linkage and interrupts) is always located in the base segment. The stack pointer will be initialized to point at data memory location 006F as a result of reset.
The 128 bytes of RAM contained in the base segment are
split between the lower and upper base segments. The first
112 bytes of RAM are resident from address 0000 to 006F in
the lower base segment, while the remaining 16 bytes of
13
www.national.com
5.0 Functional Description
Both ECON and USER area, 9 bytes total, are outside of the
normal address range of the EPROM and can not be accessed by the executing software. This allows for the storage of non-secured information. Typical uses are for storage
of serial numbers, data codes, version numbers, copyright
information, lot numbers, etc.
The COP8 assembler defines a special ROM section type,
CONF, into which the ECON and USER data may be coded.
Both ECON and User Data are programmed automatically
by programmers that are certified by National.
The following examples illustrate the declaration of ECON
and the User information.
(Continued)
Memory address ranges 0200 to 027F and 0300 to 037F are
unavailable on the COP8SGE7, and if read, will return underfined data.
5.5 ECON (EPROM CONFIGURATION) REGISTER
The ECON register is used to configure the user selectable
clock, security, power-on reset, WATCHDOG, and HALT options. The register can be programmed and read only in
EPROM programming mode. Therefore, the register should
be programmed at the same time as the program memory.
The contents of the ECON register shipped from the factory
read 00 Hex (windowed device) or 80 Hex (OTP device).
The format of the ECON register is as follows:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
X
POR
SECURITY
CKI 2
CKI 1
WATCH
F-Port
HALT
Syntax:
[label:] .sect
.db
econ, conf
value ;1 byte,
;configures options
.db
<user information>
.endsect
; up to 8 bytes
Example: The following sets a value in the ECON register
and User Identification for a COP8SGR728M7. The ECON
bit values shown select options: Power-on enabled, Security
disabled, Crystal oscillator with on-chip bias disabled,
WATCHDOG enabled and HALT mode enabled.
.sect econ, conf
.db
0x55
;por, xtal, wd, halt
.db
'my v1.00' ;user data declaration
.endsect
DOG
Bit 7
=x
Bit 6
=1
=0
=1
Bit 5
=0
Bits 4, 3 = 0, 0
= 0, 1
= 1, 0
= 1, 1
Bit 2
=1
=0
Bit 1
Bit 0
=1
=0
=1
=0
This is for factory test. The polarity is “Don’t
Care.”
Power-on reset enabled.
Power-on reset disabled.
Security enabled. EPROM read and write
are not allowed.
Security disabled. EPROM read and write
are allowed.
External CKI option selected. G7 is available as a HALT restart and/or general purpose input. CKI is clock input.
R/C oscillator option selected. G7 is available as a HALT restart and/or general purpose input. CKI clock input. Internal R/C
components are supplied for maximum R/C
frequency.
Crystal oscillator with on-chip crystal bias
resistor disabled. G7 (CKO) is the clock
generator output to crystal/resonator.
Crystal oscillator with on-chip crystal bias
resistor enabled. G7 (CKO) is the clock
generator output to crystal/resonator.
WATCHDOG feature disabled. G1 is a general purpose I/O.
WATCHDOG feature enabled. G1 pin is
WATCHDOG output with weak pullup.
Force port I compatibility. Disable port F
outputs and pull-ups. This is intended for
compatibility with existing code and Mask
ROMMed devices only. This bit should be
programmed to 0 for all other applications.
Enable full port F capability.
HALT mode disabled.
HALT mode enabled.
Note: All programmers certified for programming this family of parts will support programming of the CONFiguration section. Please contact National or your device programmer supplier for more information.
5.7 OTP SECURITY
These devices have a security feature, when enabled, that
prevents external reading of the OTP program memory. The
security bit in the ECON register determines, whether security is enabled or disabled. If the security feature is disabled,
the contents of the internal EPROM may be read.
If the security feature is enabled, then any attempt to externally read the contents of the EPROM will result in the
value FF Hex being read from all program locations. In
addition, with the security feature enabled, the write operation to the EPROM program memory and ECON register is
inhibited. The ECON register is readable regardless of the
state of the security bit.
If security is being used, it is recommended that all other bits
in the ECON register be programmed first. Then the security
bit can be programmed.
5.8 RESET
The devices are initialized when the RESET pin is pulled low
or the On-chip Power-On Reset is enabled.
5.6 USER STORAGE SPACE IN EPROM
In addition to the ECON register, there are 8 bytes of
EPROM available for “user information”. ECON and these 8
bytes are outside of the code area and are not protected by
the security bit of the ECON register. Even when security is
set, information in the 8-byte USER area is both read and
write enabled allowing the user to read from and write into
the area at all times while still protecting the code from unauthorized access.
www.national.com
DS100155-13
FIGURE 9. Reset Logic
14
5.0 Functional Description
5.8.1 External Reset
(Continued)
The RESET input when pulled low initializes the device. The
RESET pin must be held low for a minimum of one instruction cycle to guarantee a valid reset. During Power-Up initialization, the user must ensure that the RESET pin is held low
until the device is within the specified VCC voltage. An R/C
circuit on the RESET pin with a delay 5 times (5x) greater
than the power supply rise time or 15 µs whichever is
greater, is recommended. Reset should also be wide enough
to ensure crystal start-up upon Power-Up.
The following occurs upon initialization:
Port L: TRI-STATE (High Impedance Input)
Port C: TRI-STATE (High Impedance Input)
Port G: TRI-STATE (High Impedance Input)
Port F: TRI-STATE (High Impedance Input)
Port D: HIGH
PC: CLEARED to 0000
RESET may also be used to cause an exit from the HALT
mode.
A recommended reset circuit for this device is shown in Figure 10.
PSW, CNTRL and ICNTRL registers: CLEARED
SIOR:
UNAFFECTED after RESET with power already applied
RANDOM after RESET at power-on
T2CNTRL: CLEARED
T3CNTRL: CLEARED
Accumulator, Timer 1, Timer 2 and Timer 3:
RANDOM after RESET with crystal clock option
(power already applied)
UNAFFECTED after RESET with R/C clock option
(power already applied)
RANDOM after RESET at power-on
WKEN, WKEDG: CLEARED
WKPND: RANDOM
SP (Stack Pointer):
Initialized to RAM address 06F Hex
B and X Pointers:
UNAFFECTED after RESET with power already applied
RANDOM after RESET at power-on
S Register: CLEARED
RAM:
UNAFFECTED after RESET with power already applied
RANDOM after RESET at power-on
USART:
PSR, ENU, ENUR, ENUI: Cleared except the TBMT bit
which is set to one.
COMPARATORS:
CMPSL; CLEARED
WATCHDOG (if enabled):
The device comes out of reset with both the WATCHDOG logic and the Clock Monitor detector armed, with the
WATCHDOG service window bits set and the Clock Monitor
bit set. The WATCHDOG and Clock Monitor circuits are inhibited during reset. The WATCHDOG service window bits
being initialized high default to the maximum WATCHDOG
service window of 64k tC clock cycles. The Clock Monitor bit
being initialized high will cause a Clock Monitor error following reset if the clock has not reached the minimum specified
frequency at the termination of reset. A Clock Monitor error
will cause an active low error output on pin G1. This error
output will continue until 16 tC–32 tC clock cycles following
the clock frequency reaching the minimum specified value,
at which time the G1 output will go high.
DS100155-14
RC > 5x power supply rise time or 15 µs, whichever is greater.
FIGURE 10. Reset Circuit Using External Reset
5.8.2 On-Chip Power-On Reset
The on-chip reset circuit is selected by a bit in the ECON register. When enabled, the device generates an internal reset
as VCC rises to a voltage level above 2.0V. The on-chip reset
circuitry is able to detect both fast and slow rise times on VCC
(VCC rise time between 10 ns and 50 ms).To guarantee an
on-chip power-on-reset, VCCmust start at a voltage less than
the start voltage specified in the DC characteristics. Also, if
VCC be lowered to the start voltage before powering back up
to the operating range. If this is not possible, it is recommended that external reset be used.
Under no circumstances should the RESET pin be allowed
to float. If the on-chip Power-On Reset feature is being used,
RESET pin should be connected directly to VCC. The output
of the power-on reset detector will always preset the Idle
timer to 0FFF(4096 tC). At this time, the internal reset will be
generated.
If the Power-On Reset feature is enabled, the internal reset
will not be turned off until the Idle timer underflows. The internal reset will perform the same functions as external reset.
The user is responsible for ensuring that VCC is at the minimum level for the operating frequency within the 4096 tC. After the underflow, the logic is designed such that no additional internal resets occur as long as VCC remains above
2.0V.
The contents of data registers and RAM are unknown following the on-chip reset.
15
www.national.com
5.0 Functional Description
5.9.1 Crystal Oscillator
The crystal Oscillator mode can be selected by programming
ECON Bit 4 to 1. CKI is the clock input while G7/CKO is the
clock generator output to the crystal. An on-chip bias resistor
connected between CKI and CKO can be enabled by programming ECON Bit 3 to 1 with the crystal oscillator option
selection. The value of the resistor is in the range of 0.5M to
2M (typically 1.0M). Table 2 shows the component values required for various standard crystal values. Resistor R2 is
only used when the on-chip bias resistor is disabled. Figure
13 shows the crystal oscillator connection diagram.
(Continued)
TABLE 2. Crystal Oscillator Configuration,
TA = 25˚C, VCC = 5V
R1 (kΩ)
R2 (MΩ)
C1 (pF)
C2 (pF)
CKI Freq.
(MHz)
0
1
20
20
10
0
1
25
25
4
5.6
1
100
100–156
0.455
5.9.2 External Oscillator
The External Oscillator mode can be selected by programming ECON Bit 3 to 0 and ECON Bit 4 to 0. CKI can be
driven by an external clock signal provided it meets the
specified duty cycle, rise and fall times, and input levels. G7/
CKO is available as a general purpose input G7 and/or Halt
control. Figure 14 shows the external oscillator connection
diagram.
5.9.3 R/C Oscillator
The R/C Oscillator mode can be selected by programming
ECON Bit 3 to 1 and ECON Bit 4 to 0. In R/C oscillation
mode, CKI is left floating, while G7/CKO is available as a
general purpose input G7 and/or HALT control. The R/C controlled oscillator has on-chip resistor and capacitor for maximum R/C oscillator frequency operation. The maximum frequency is 5 MHz ± 35% for VCC between 4.5V to 5.5V and
temperature range of −40˚C to +85˚C. For max frequency
operation, the CKI pin should be left floating. For lower frequencies, an external capacitor should be connected between CKI and either VCC or GND. Immunity of the R/C oscillator to external noise can be improved by connecting one
half the external capacitance to VCC and one half to GND.
PC board trace length on the CKI pin should be kept as short
as possible. Table 3 shows the oscillator frequency as a
function of external capacitance on the CKI pin. Figure 15
shows the R/C oscillator configuration.
DS100155-15
FIGURE 11. Reset Timing (Power-On Reset Enabled)
with VCC Tied to RESET
DS100155-16
FIGURE 12. Reset Circuit Using Power-On Reset
5.9 OSCILLATOR CIRCUITS
There are four clock oscillator options available: Crystal Oscillator with or without on-chip bias resistor, R/C Oscillator
with on-chip resistor and capacitor, and External Oscillator.
The oscillator feature is selected by programming the ECON
register, which is summarized in Table 1.
TABLE 3. R/C Oscillator Configuration,
−40˚C to +85˚C, VCC = 4.5V to 5.5V,
OSC Freq. Variation of ± 35%
TABLE 1. Oscillator Option
ECON4 ECON3
Oscillator Option
External
Capacitor (pF)*
R/C OSC Freq
(MHz)
Instr. Cycle
(µs)
0
0
External Oscillator
0
5
2.0
1
0
Crystal Oscillator without Bias Resistor
9
4
2.5
0
1
R/C Oscillator
52
2
5.0
1
1
Crystal Oscillator with Bias Resistor
125
1
10
6100
32 kHz
312.5
* Assumes 3-5 pF board capacitance.
www.national.com
16
5.0 Functional Description
(Continued)
Without On-Chip Bias Resistor
With On-Chip Bias Resistor
DS100155-17
DS100155-18
FIGURE 13. Crystal Oscillator
DS100155-19
FIGURE 14. External Oscillator
DS100155-21
DS100155-20
For operation at lower than maximum R/C oscillator frequency.
For operation at maximum R/C oscillator frequency.
FIGURE 15. R/C Oscillator
17
www.national.com
5.0 Functional Description
T1ENB
(Continued)
Timer T1 Interrupt Enable for T1B Input capture edge
5.10 CONTROL REGISTERS
T2CNTRL Register (Address X'00C6)
CNTRL Register (Address X'00EE)
T1C3
T1C2
T1C1
T1C0
MSEL
T2C3
IEDG
SL1
Bit 7
SL0
Bit 0
Timer T1 mode control bit
Timer T1 mode control bit
T1C0
Timer T1 Start/Stop control in timer
modes 1 and 2, T1 Underflow Interrupt
Pending Flag in timer mode 3
Selects G5 and G4 as MICROWIRE/PLUS
signals SK and SO respectively
MSEL
IEDG
T2PNDA
T2ENA
T2PNDB
T2ENB
PSW Register (Address X'00EF)
HC
C
T1PNDA
T1ENA
EXPND
EXEN
T3C3
µWPND
µWEN
T1PNDB
T3C1
T3C0
T3PNDA
T3ENA
T3PNDB
T3ENB
Bit 0
Each device contains a very versatile set of timers (T0, T1,
T2 and T3). Timer T1, T2 and T3 and associated autoreload/
capture registers power up containing random data.
Bit 0
The ICNTRL register contains the following bits:
Reserved This bit is reserved and should to zero
T0PND
L Port Interrupt Enable (Multi-Input Wakeup/
Interrupt)
Timer T0 Interrupt pending
T0EN
µWPND
Timer T0 Interrupt Enable (Bit 12 toggle)
MICROWIRE/PLUS interrupt pending
µWEN
T1PNDB
Enable MICROWIRE/PLUS interrupt
Timer T1 Interrupt Pending Flag for T1B capture edge
www.national.com
T3C2
6.0 Timers
T1ENB
Bit 7
LPEN
T2ENB
The T3CNTRL control register contains the following bits:
T3C3
Timer T3 mode control bit
T3C2
Timer T3 mode control bit
T3C1
Timer T3 mode control bit
T3C0
Timer T3 Start/Stop control in timer
modes 1 and 2, T3 Underflow Interrupt Pending Flag in timer mode 3
T3PNDA Timer T3 Interrupt Pending Flag (Autoreload
RA in mode 1, T3 Underflow in mode 2, T3A
capture edge in mode 3)
T3ENA
Timer T3 Interrupt Enable for Timer Underflow
or T3A Input capture edge
T3PNDB Timer T3 Interrupt Pending Flag for T3B capture edge
T3ENB
Timer T3 Interrupt Enable for Timer Underflow
or T3B Input capture edge
ICNTRL Register (Address X'00E8)
T0EN
T2PNDB
Timer T2 mode control bit
Timer T2 mode control bit
Timer T2 Start/Stop control in timer
modes 1 and 2, T2 Underflow Interrupt Pending Flag in timer mode 3
Timer T2 Interrupt Pending Flag (Autoreload
RA in mode 1, T2 Underflow in mode 2, T2A
capture edge in mode 3)
Timer T2 Interrupt Enable for Timer Underflow
or T2A Input capture edge
Timer T2 Interrupt Pending Flag for T2B capture edge
Timer T2 Interrupt Enable for Timer Underflow
or T2B Input capture edge
Bit 7
The PSW register contains the following select bits:
HC
Half Carry Flag
C
Carry Flag
T1PNDA Timer T1 Interrupt Pending Flag (Autoreload
RA in mode 1, T1 Underflow in Mode 2, T1A
capture edge in mode 3)
T1ENA
Timer T1 Interrupt Enable for Timer Underflow
or T1A Input capture edge
EXPND External interrupt pending
BUSY
MICROWIRE/PLUS busy shifting flag
EXEN
Enable external interrupt
GIE
Global interrupt enable (enables interrupts)
The Half-Carry flag is also affected by all the instructions that
affect the Carry flag. The SC (Set Carry) and R/C (Reset
Carry) instructions will respectively set or clear both the carry
flags. In addition to the SC and R/C instructions, ADC,
SUBC, RRC and RLC instructions affect the Carry and Half
Carry flags.
T0PND
T2ENA
GIE
Bit 0
LPEN
T2PNDA
T3CNTRL Register (Address X'00B6)
BUSY
Bit 7
Reserved
T2C0
Bit 0
T2C2
T2C1
T2C0
External interrupt edge polarity select
(0 = Rising edge, 1 = Falling edge)
Select the MICROWIRE/PLUS clock divide
by (00 = 2, 01 = 4, 1x = 8)
SL1 & SL0
T2C1
The T2CNTRL control register contains the following bits:
T2C3
Timer T2 mode control bit
The Timer1 (T1) and MICROWIRE/PLUS control register
contains the following bits:
T1C3
Timer T1 mode control bit
T1C2
T1C1
T2C2
Bit 7
6.1 TIMER T0 (IDLE TIMER)
Each device supports applications that require maintaining
real time and low power with the IDLE mode. This IDLE
mode support is furnished by the IDLE timer T0. The Timer
T0 runs continuously at the fixed rate of the instruction cycle
clock, tC. The user cannot read or write to the IDLE Timer T0,
which is a count down timer.
The Timer T0 supports the following functions:
• Exit out of the Idle Mode (See Idle Mode description)
• WATCHDOG logic (See WATCHDOG description)
• Start up delay out of the HALT mode
18
6.0 Timers
and the reload values are automatically written into the timer
when it counts down through 0, generating interrupt on each
reload. Under software control and with minimal overhead,
the PMW outputs are useful in controlling motors, triacs, the
intensity of displays, and in providing inputs for data acquisition and sine wave generators.
In this mode, the timer Tx counts down at a fixed rate of tC.
Upon every underflow the timer is alternately reloaded with
the contents of supporting registers, RxA and RxB. The very
first underflow of the timer causes the timer to reload from
the register RxA. Subsequent underflows cause the timer to
be reloaded from the registers alternately beginning with the
register RxB.
(Continued)
• Timing the width of the internal power-on-reset
The IDLE Timer T0 can generate an interrupt when the
twelfth bit toggles. This toggle is latched into the T0PND
pending flag, and will occur every 4.096 ms at the maximum
clock frequency (tC = 1 µs). A control flag T0EN allows the interrupt from the twelfth bit of Timer T0 to be enabled or disabled. Setting T0EN will enable the interrupt, while resetting
it will disable the interrupt.
6.2 TIMER T1, TIMER T2 and TIMER T3
Each device have a set of three powerful timer/counter
blocks, T1, T2 and T3. Since T1, T2, and T3 are identical, all
comments are equally applicable to any of the three timer
blocks which will be referred to as Tx.
Each timer block consists of a 16-bit timer, Tx, and two supporting 16-bit autoreload/capture registers, RxA and RxB.
Each timer block has two pins associated with it, TxA and
TxB. The pin TxA supports I/O required by the timer block,
while the pin TxB is an input to the timer block. The timer
block has three operating modes: Processor Independent
PWM mode, External Event Counter mode, and Input Capture mode.
Figure 16 shows a block diagram of the timer in PWM mode.
The underflows can be programmed to toggle the TxA output
pin. The underflows can also be programmed to generate interrupts.
Underflows from the timer are alternately latched into two
pending flags, TxPNDA and TxPNDB. The user must reset
these pending flags under software control. Two control enable flags, TxENA and TxENB, allow the interrupts from the
timer underflow to be enabled or disabled. Setting the timer
enable flag TxENA will cause an interrupt when a timer underflow causes the RxA register to be reloaded into the timer.
Setting the timer enable flag TxENB will cause an interrupt
when a timer underflow causes the RxB register to be reloaded into the timer. Resetting the timer enable flags will
disable the associated interrupts.
Either or both of the timer underflow interrupts may be enabled. This gives the user the flexibility of interrupting once
per PWM period on either the rising or falling edge of the
PWM output. Alternatively, the user may choose to interrupt
on both edges of the PWM output.
The control bits TxC3, TxC2, and TxC1 allow selection of the
different modes of operation.
6.2.1 Mode 1. Processor Independent PWM Mode
One of the timer’s operating modes is the Processor Independent PWM mode. In this mode, the timer generates a
“Processor Independent” PWM signal because once the
timer is setup, no more action is required from the CPU
which translates to less software overhead and greater
throughput. The user software services the timer block only
when the PWM parameters require updating. This capability
is provided by the fact that the timer has two separate 16-bit
reload registers. One of the reload registers contains the
“ON” timer while the other holds the “OFF” time. By contrast,
a microcontroller that has only a single reload register requires an additional software to update the reload value (alternate between the on-time/off-time).
The timer can generate the PWM output with the width and
duty cycle controlled by the values stored in the reload registers. The reload registers control the countdown values
6.2.2 Mode 2. External Event Counter Mode
This mode is quite similar to the processor independent
PWM mode described above. The main difference is that the
timer, Tx, is clocked by the input signal from the TxA pin. The
Tx timer control bits, TxC3, TxC2 and TxC1 allow the timer to
be clocked either on a positive or negative edge from the
TxA pin. Underflows from the timer are latched into the TxPNDA pending flag. Setting the TxENA control flag will cause
an interrupt when the timer underflows.
DS100155-46
FIGURE 16. Timer in PWM Mode
19
www.national.com
6.0 Timers
the external event occurs, the time of the external event is
recorded. Most microcontrollers have a latency time because they cannot determine the timer value when the external event occurs. The capture register eliminates the latency
time, thereby allowing the applications program to retrieve
the timer value stored in the capture register.
In this mode, the timer Tx is constantly running at the fixed tC
rate. The two registers, RxA and RxB, act as capture registers. Each register acts in conjunction with a pin. The register
RxA acts in conjunction with the TxA pin and the register RxB
acts in conjunction with the TxB pin.
The timer value gets copied over into the register when a
trigger event occurs on its corresponding pin. Control bits,
TxC3, TxC2 and TxC1, allow the trigger events to be specified either as a positive or a negative edge. The trigger condition for each input pin can be specified independently.
The trigger conditions can also be programmed to generate
interrupts. The occurrence of the specified trigger condition
on the TxA and TxB pins will be respectively latched into the
pending flags, TxPNDA and TxPNDB. The control flag TxENA allows the interrupt on TxA to be either enabled or disabled. Setting the TxENA flag enables interrupts to be generated when the selected trigger condition occurs on the TxA
pin. Similarly, the flag TxENB controls the interrupts from the
TxB pin.
Underflows from the timer can also be programmed to generate interrupts. Underflows are latched into the timer TxC0
pending flag (the TxC0 control bit serves as the timer underflow interrupt pending flag in the Input Capture mode). Consequently, the TxC0 control bit should be reset when entering the Input Capture mode. The timer underflow interrupt is
enabled with the TxENA control flag. When a TxA interrupt
occurs in the Input Capture mode, the user must check both
the TxPNDA and TxC0 pending flags in order to determine
whether a TxA input capture or a timer underflow (or both)
caused the interrupt.
(Continued)
In this mode the input pin TxB can be used as an independent positive edge sensitive interrupt input if the TxENB control flag is set. The occurrence of a positive edge on the TxB
input pin is latched into the TxPNDB flag.
Figure 17 shows a block diagram of the timer in External
Event Counter mode.
Note: The PWM output is not available in this mode since the TxA pin is being
used as the counter input clock.
DS100155-47
FIGURE 17. Timer in External Event Counter Mode
6.2.3 Mode 3. Input Capture Mode
Each device can precisely measure external frequencies or
time external events by placing the timer block, Tx, in the input capture mode. In this mode, the reload registers serve as
independent capture registers, capturing the contents of the
timer when an external event occurs (transition on the timer
input pin). The capture registers can be read while maintaining count, a feature that lets the user measure elapsed time
and time between events. By saving the timer value when
Figure 18 shows a block diagram of the timer T1 in Input
Capture mode. Timer T2 and T3 are identical to T1.
DS100155-48
FIGURE 18. Timer in Input Capture Mode
www.national.com
20
6.0 Timers
TxPNDA Timer Interrupt Pending Flag
TxENA
Timer Interrupt Enable Flag
1 = Timer Interrupt Enabled
(Continued)
6.3 TIMER CONTROL FLAGS
The control bits and their functions are summarized below.
TxC3
Timer mode control
TxC2
Timer mode control
TxC1
TxC0
0 = Timer Interrupt Disabled
TxPNDB Timer Interrupt Pending Flag
TxENB
Timer Interrupt Enable Flag
1 = Timer Interrupt Enabled
Timer mode control
Timer Start/Stop control in Modes 1 and 2 (Processor Independent PWM and External Event
Counter), where 1 = Start, 0 = Stop
Timer Underflow Interrupt Pending Flag in
Mode 3 (Input Capture)
0 = Timer Interrupt Disabled
The timer mode control bits (TxC3, TxC2 and TxC1) are detailed below:
1
0
1
PWM: TxA Toggle
Autoreload RA
Autoreload RB
1
0
0
PWM: No TxA
Toggle
Autoreload RA
Autoreload RB
0
0
0
External Event
Counter
Timer
Underflow
Pos. TxB Edge
Pos. TxA
Edge
0
0
1
External Event
Counter
Timer
Underflow
Pos. TxB Edge
Pos. TxA
Edge
0
1
0
Captures:
Pos. TxA Edge
Pos. TxB Edge
tC
TxA Pos. Edge
or Timer
tC
3
0
1
1
1
1
0
1
1
Description
Timer
Counts On
1
1
TxC1
Interrupt B
Source
TxC3
2
TxC2
Interrupt A
Source
Mode
TxB Pos. Edge
Underflow
Captures:
Pos. TxA
Neg. TxB
TxA Pos. Edge
Edge or Timer
Edge
TxB Neg. Edge
Underflow
Captures:
Neg. TxA
Neg. TxB
TxA Neg. Edge
Edge or Timer
Edge
TxB Neg. Edge
Underflow
Captures:
Neg. TxA
Neg. TxB
TxA Neg. Edge
Edge or Timer
Edge
TxB Neg. Edge
Underflow
21
tC
tC
tC
tC
www.national.com
On wakeup from G7 or Port L, the devices resume execution
from the HALT point. On wakeup from RESET execution will
resume from location PC=0 and all RESET conditions apply.
If a crystal or ceramic resonator may be selected as the oscillator, the Wakeup signal is not allowed to start the chip
running immediately since crystal oscillators and ceramic
resonators have a delayed start up time to reach full amplitude and frequency stability. The IDLE timer is used to generate a fixed delay to ensure that the oscillator has indeed
stabilized before allowing instruction execution. In this case,
upon detecting a valid Wakeup signal, only the oscillator circuitry is enabled. The IDLE timer is loaded with a value of
256 and is clocked with the tC instruction cycle clock. The tC
clock is derived by dividing the oscillator clock down by a factor of 9. The Schmitt trigger following the CKI inverter on the
chip ensures that the IDLE timer is clocked only when the oscillator has a sufficiently large amplitude to meet the Schmitt
trigger specifications. This Schmitt trigger is not part of the
oscillator closed loop. The start-up time-out from the IDLE
timer enables the clock signals to be routed to the rest of the
chip.
If an R/C clock option is being used, the fixed delay is introduced optionally. A control bit, CLKDLY, mapped as configuration bit G7, controls whether the delay is to be introduced
or not. The delay is included if CLKDLY is set, and excluded
if CLKDLY is reset. The CLKDLY bit is cleared on reset.
Each device has two options associated with the HALT
mode. The first option enables the HALT mode feature, while
the second option disables the HALT mode selected through
bit 0 of the ECON register. With the HALT mode enable option, the device will enter and exit the HALT mode as described above. With the HALT disable option, the device cannot be placed in the HALT mode (writing a “1” to the HALT
flag will have no effect, the HALT flag will remain “0”).
The WATCHDOG detector circuit is inhibited during the
HALT mode. However, the clock monitor circuit if enabled remains active during HALT mode in order to ensure a clock
monitor error if the device inadvertently enters the HALT
mode as a result of a runaway program or power glitch.
If the device is placed in the HALT mode, with the R/C oscillator selected, the clock input pin (CKI) is forced to a logic
high internally. With the crystal or external oscillator the CKI
pin is TRI-STATE.
It is recommended that the user not halt the device by merely
stopping the clock in external oscillator mode. If this method
is used, there is a possibility of greater than specified HALT
current.
If the user wishes to stop an external clock, it is recommended that the CPU be halted by setting the Halt flag first
and the clock be stopped only after the CPU has halted.
7.0 Power Saving Features
Today, the proliferation of battery-operated based applications has placed new demands on designers to drive power
consumption down. Battery-operated systems are not the
only type of applications demanding low power. The power
budget constraints are also imposed on those consumer/
industrial applications where well regulated and expensive
power supply costs cannot be tolerated. Such applications
rely on low cost and low power supply voltage derived directly from the “mains” by using voltage rectifier and passive
components. Low power is demanded even in automotive
applications, due to increased vehicle electronics content.
This is required to ease the burden from the car battery. Low
power 8-bit microcontrollers supply the smarts to control
battery-operated, consumer/industrial, and automotive applications.
Each device offers system designers a variety of low-power
consumption features that enable them to meet the demanding requirements of today’s increasing range of low-power
applications. These features include low voltage operation,
low current drain, and power saving features such as HALT,
IDLE, and Multi-Input wakeup (MIWU).
Each device offers the user two power save modes of operation: HALT and IDLE. In the HALT mode, all microcontroller
activities are stopped. In the IDLE mode, the on-board oscillator circuitry and timer T0 are active but all other microcontroller activities are stopped. In either mode, all on-board
RAM, registers, I/O states, and timers (with the exception of
T0) are unaltered.
Clock Monitor, if enabled, can be active in both modes.
7.1 HALT MODE
Each device can be placed in the HALT mode by writing a “1”
to the HALT flag (G7 data bit). All microcontroller activities,
including the clock and timers, are stopped. The WATCHDOG logic on the devices are disabled during the HALT
mode. However, the clock monitor circuitry, if enabled, remains active and will cause the WATCHDOG output pin
(WDOUT) to go low. If the HALT mode is used and the user
does not want to activate the WDOUT pin, the Clock Monitor
should be disabled after the devices come out of reset (resetting the Clock Monitor control bit with the first write to the
WDSVR register). In the HALT mode, the power requirements of the devices are minimal and the applied voltage
(VCC) may be decreased to Vr (Vr = 2.0V) without altering the
state of the machine.
Each device supports three different ways of exiting the
HALT mode. The first method of exiting the HALT mode is
with the Multi-Input Wakeup feature on Port L. The second
method is with a low to high transition on the CKO (G7) pin.
This method precludes the use of the crystal clock configuration (since CKO becomes a dedicated output), and so may
only be used with an R/C clock configuration. The third
method of exiting the HALT mode is by pulling the RESET
pin low.
www.national.com
22
7.0 Power Saving Features
(Continued)
DS100155-25
FIGURE 19. Wakeup from HALT
The user can enter the IDLE mode with the Timer T0 interrupt enabled. In this case, when the T0PND bit gets set, the
device will first execute the Timer T0 interrupt service routine
and then return to the instruction following the “Enter Idle
Mode” instruction.
Alternatively, the user can enter the IDLE mode with the
IDLE Timer T0 interrupt disabled. In this case, the device will
resume normal operation with the instruction immediately
following the “Enter IDLE Mode” instruction.
7.2 IDLE MODE
The device is placed in the IDLE mode by writing a “1” to the
IDLE flag (G6 data bit). In this mode, all activities, except the
associated on-board oscillator circuitry and the IDLE Timer
T0, are stopped.
As with the HALT mode, the device can be returned to normal operation with a reset, or with a Multi-Input Wakeup from
the L Port. Alternately, the microcontroller resumes normal
operation from the IDLE mode when the twelfth bit (representing 4.096 ms at internal clock frequency of 10 MHz, tC =
1 µs) of the IDLE Timer toggles.
This toggle condition of the twelfth bit of the IDLE Timer T0 is
latched into the T0PND pending flag.
The user has the option of being interrupted with a transition
on the twelfth bit of the IDLE Timer T0. The interrupt can be
enabled or disabled via the T0EN control bit. Setting the
T0EN flag enables the interrupt and vice versa.
Note: It is necessary to program two NOP instructions following both the set
HALT mode and set IDLE mode instructions. These NOP instructions
are necessary to allow clock resynchronization following the HALT or
IDLE modes.
DS100155-26
FIGURE 20. Wakeup from IDLE
23
www.national.com
7.0 Power Saving Features
to negative (high going low) for L Port bit 5, where bit 5 has
previously been enabled for an input interrupt. The program
would be as follows:
RBIT 5, WKEN
; Disable MIWU
SBIT 5, WKEDG ; Change edge polarity
RBIT 5, WKPND ; Reset pending flag
SBIT 5, WKEN
; Enable MIWU
If the L port bits have been used as outputs and then
changed to inputs with Multi-Input Wakeup/Interrupt, a safety
procedure should also be followed to avoid wakeup conditions. After the selected L port bits have been changed from
output to input but before the associated WKEN bits are enabled, the associated edge select bits in WKEDG should be
set or reset for the desired edge selects, followed by the associated WKPND bits being cleared.
This same procedure should be used following reset, since
the L port inputs are left floating as a result of reset.
(Continued)
7.3 MULTI-INPUT WAKEUP
The Multi-Input Wakeup feature is used to return (wakeup)
the device from either the HALT or IDLE modes. Alternately
Multi-Input Wakeup/Interrupt feature may also be used to
generate up to 8 edge selectable external interrupts.
Figure 21 shows the Multi-Input Wakeup logic.
The Multi-Input Wakeup feature utilizes the L Port. The user
selects which particular L port bit (or combination of L Port
bits) will cause the device to exit the HALT or IDLE modes.
The selection is done through the register WKEN. The register WKEN is an 8-bit read/write register, which contains a
control bit for every L port bit. Setting a particular WKEN bit
enables a Wakeup from the associated L port pin.
The user can select whether the trigger condition on the selected L Port pin is going to be either a positive edge (low to
high transition) or a negative edge (high to low transition).
This selection is made via the register WKEDG, which is an
8-bit control register with a bit assigned to each L Port pin.
Setting the control bit will select the trigger condition to be a
negative edge on that particular L Port pin. Resetting the bit
selects the trigger condition to be a positive edge. Changing
an edge select entails several steps in order to avoid a
Wakeup condition as a result of the edge change. First, the
associated WKEN bit should be reset, followed by the edge
select change in WKEDG. Next, the associated WKPND bit
should be cleared, followed by the associated WKEN bit being re-enabled.
An example may serve to clarify this procedure. Suppose we
wish to change the edge select from positive (low going high)
The occurrence of the selected trigger condition for MultiInput Wakeup is latched into a pending register called WKPND. The respective bits of the WKPND register will be set
on the occurrence of the selected trigger edge on the corresponding Port L pin. The user has the responsibility of clearing these pending flags. Since WKPND is a pending register
for the occurrence of selected wakeup conditions, the device
will not enter the HALT mode if any Wakeup bit is both enabled and pending. Consequently, the user must clear the
pending flags before attempting to enter the HALT mode.
WKEN and WKEDG are all read/write registers, and are
cleared at reset. WKPND register contains random value after reset.
DS100155-27
FIGURE 21. Multi-Input Wake Up Logic
www.national.com
24
Other functions of the ENUR register include saving the
ninth bit received in the data frame, enabling or disabling the
USART’s attention mode of operation and providing additional receiver/transmitter status information via RCVG and
XMTG bits. The determination of an internal or external clock
source is done by the ENUI register, as well as selecting the
number of stop bits and enabling or disabling transmit and
receive interrupts. A control flag in this register can also select the USART mode of operation: asynchronous or
synchronous.
8.0 USART
Each device contains a full-duplex software programmable
USART. The USART (Figure 22) consists of a transmit shift
register, a receive shift register and seven addressable registers, as follows: a transmit buffer register (TBUF), a receiver buffer register (RBUF), a USART control and status
register (ENU), a USART receive control and status register
(ENUR), a USART interrupt and clock source register
(ENUI), a prescaler select register (PSR) and baud (BAUD)
register. The ENU register contains flags for transmit and receive functions; this register also determines the length of
the data frame (7, 8 or 9 bits), the value of the ninth bit in
transmission, and parity selection bits. The ENUR register
flags framing, data overrun and parity errors while the USART is receiving.
DS100155-39
FIGURE 22. USART Block Diagram
25
www.national.com
8.0 USART
DOE = 1
Indicates the occurrence of a Data Overrun Error.
FE: Flags a Framing Error. Read only, cleared on read,
cleared on reset.
FE = 0
Indicates no Framing Error has been detected
since the last time the ENUR register was read.
FE = 1
Indicates the occurrence of a Framing Error.
PE: Flags a Parity Error. Read only, cleared on read, cleared
on reset.
(Continued)
8.1 USART CONTROL AND STATUS REGISTERS
The operation of the USART is programmed through three
registers: ENU, ENUR and ENUI.
8.2 DESCRIPTION OF USART REGISTER BITS
ENU-USART Control and Status Register (Address at 0BA)
PEN
PSEL1
XBIT9/
CHL1
CHL0
ERR
RBFL
TBMT
PE = 0
Indicates no Parity Error has been detected since
the last time the ENUR register was read.
PE = 1
Indicates the occurrence of a Parity Error.
SPARE: Reserved for future use. Read/Write, cleared on reset.
PSEL0
Bit 7
Bit 0
PEN: This bit enables/disables Parity (7- and 8-bit modes
only). Read/Write, cleared on reset.
PEN = 0
Parity disabled.
PEN = 1
Parity enabled.
PSEL1, PSEL0: Parity select bits. Read/Write, cleared on
reset.
PSEL1 = 0, PSEL0 = 0
Odd Parity (if Parity enabled)
PSEL1 = 0, PSEL0 = 1
Even Parity (if Parity enabled)
PSEL1 = 1, PSEL0 = 0
Mark(1) (if Parity enabled)
PSEL1 = 1, PSEL0 = 1
Space(0) (if Parity enabled)
XBIT9/PSEL0: Programs the ninth bit for transmission when
the USART is operating with nine data bits per frame. For
seven or eight data bits per frame, this bit in conjunction with
PSEL1 selects parity. Read/Write, cleared on reset.
CHL1, CHL0: These bits select the character frame format.
Parity is not included and is generated/verified by hardware.
Read/Write, cleared on reset.
CHL1 = 0, CHL0 = 0
The frame contains eight data bits.
RBIT9: Contains the ninth data bit received when the USART is operating with nine data bits per frame. Read only,
cleared on reset.
ATTN: ATTENTION Mode is enabled while this bit is set.
This bit is cleared automatically on receiving a character with
data bit nine set. Read/Write, cleared on reset.
XMTG: This bit is set to indicate that the USART is transmitting. It gets reset at the end of the last frame (end of last Stop
bit). Read only, cleared on reset.
RCVG: This bit is set high whenever a framing error occurs
and goes low when RDX goes high. Read only, cleared on
reset.
ENUI-USART Interrupt and Clock Source Register
(Address at 0BC)
STP2
CHL1 = 0, CHL0 = 1
The frame contains seven data
bits.
CHL1 = 1, CHL0 = 0
The frame contains nine data bits.
CHL1 = 1, CHL0 = 1
Loopback Mode selected. Transmitter output internally looped back
to receiver input. Nine bit framing
format is used.
ERR: This bit is a global USART error flag which gets set if
any or a combination of the errors (DOE, FE, PE) occur.
Read only; it cannot be written by software, cleared on reset.
RBFL: This bit is set when the USART has received a complete character and has copied it into the RBUF register. It is
automatically reset when software reads the character from
RBUF. Read only; it cannot be written by software, cleared
on reset.
TBMT: This bit is set when the USART transfers a byte of
data from the TBUF register into the TSFT register for transmission. It is automatically reset when software writes into
the TBUF register. Read only, bit is set to “one” on reset; it
cannot be written by software.
PE
Reserved
RBIT9
ATTN
XMTG
RCVG
(Note 14)
Bit 7
Bit 0
Note 14: Bit is reserved for future use. User must set to zero.
DOE: Flags a Data Overrun Error. Read only, cleared on
read, cleared on reset.
DOE = 0
Indicates no Data Overrun Error has been detected since the last time the ENUR register
was read.
www.national.com
SSEL XRCLK XTCLK
ERI
ETI
Bit 0
SSEL = 1
Synchronous Mode.
XRCLK: This bit selects the clock source for the receiver
section. Read/Write, cleared on reset.
XRCLK = 0
The clock source is selected through the
PSR and BAUD registers.
XRCLK = 1
Signal on CKX (L1) pin is used as the clock.
XTCLK: This bit selects the clock source for the transmitter
section. Read/Write, cleared on reset.
XTCLK = 0
The clock source is selected through the
PSR and BAUD registers.
XTCLK = 1
Signal on CKX (L1) pin is used as the clock.
(Address at 0BB)
FE
ETDX
STP2: This bit programs the number of Stop bits to be transmitted. Read/Write, cleared on reset.
STP2 = 0
One Stop bit transmitted.
STP2 = 1
Two Stop bits transmitted.
STP78: This bit is set to program the last Stop bit to be 7/8th
of a bit in length. Read/Write, cleared on reset.
ETDX: TDX (USART Transmit Pin) is the alternate function
assigned to Port L pin L2; it is selected by setting ETDX bit.
To simulate line break generation, software should reset
ETDX bit and output logic zero to TDX pin through Port L
data and configuration registers. Read/Write, cleared on reset.
SSEL: USART mode select. Read/Write, cleared on reset.
SSEL = 0
Asynchronous Mode.
ENUR-USART Receive Control and Status Register
DOE
STP78
Bit 7
ERI: This bit enables/disables interrupt from the receiver
section. Read/Write, cleared on reset.
ERI = 0
ERI = 1
26
Interrupt from the receiver is disabled.
Interrupt from the receiver is enabled.
8.0 USART
This mode is selected by setting SSEL bit in the ENUI register. The input frequency to the USART is the same as the
baud rate.
(Continued)
ETI: This bit enables/disables interrupt from the transmitter
section. Read/Write, cleared on reset.
ETI = 0
Interrupt from the transmitter is disabled.
ETI = 1
Interrupt from the transmitter is enabled.
When an external clock input is selected at the CKX pin, data
transmit and receive are performed synchronously with this
clock through TDX/RDX pins.
If data transmit and receive are selected with the CKX pin as
clock output, the device generates the synchronous clock
output at the CKX pin. The internal baud rate generator is
used to produce the synchronous clock. Data transmit and
receive are performed synchronously with this clock.
8.3 Associated I/O Pins
Data is transmitted on the TDX pin and received on the RDX
pin. TDX is the alternate function assigned to Port L pin L2;
it is selected by setting ETDX (in the ENUI register) to one.
RDX is an inherent function of Port L pin L3, requiring no
setup.
The baud rate clock for the USART can be generated onchip, or can be taken from an external source. Port L pin L1
(CKX) is the external clock I/O pin. The CKX pin can be either an input or an output, as determined by Port L Configuration and Data registers (Bit 1). As an input, it accepts a
clock signal which may be selected to drive the transmitter
and/or receiver. As an output, it presents the internal Baud
Rate Generator output.
8.5 FRAMING FORMATS
The USART supports several serial framing formats (Figure
23). The format is selected using control bits in the ENU,
ENUR and ENUI registers.
The first format (1, 1a, 1b, 1c) for data transmission (CHL0 =
1, CHL1 = 0) consists of Start bit, seven Data bits (excluding
parity) and 7/8, one or two Stop bits. In applications using
parity, the parity bit is generated and verified by hardware.
The second format (CHL0 = 0, CHL1 = 0) consists of one
Start bit, eight Data bits (excluding parity) and 7/8, one or
two Stop bits. Parity bit is generated and verified by hardware.
The third format for transmission (CHL0 = 0, CHL1 = 1) consists of one Start bit, nine Data bits and 7/8, one or two Stop
bits. This format also supports the USART “ATTENTION”
feature. When operating in this format, all eight bits of TBUF
and RBUF are used for data. The ninth data bit is transmitted
and received using two bits in the ENU and ENUR registers,
called XBIT9 and RBIT9. RBIT9 is a read only bit. Parity is
not generated or verified in this mode.
For any of the above framing formats, the last Stop bit can
be programmed to be 7/8th of a bit in length. If two Stop bits
are selected and the 7/8th bit is set (selected), the second
Stop bit will be 7/8th of a bit in length.
The parity is enabled/disabled by PEN bit located in the ENU
register. Parity is selected for 7- and 8-bit modes only. If parity is enabled (PEN = 1), the parity selection is then performed by PSEL0 and PSEL1 bits located in the ENU register.
Note that the XBIT9/PSEL0 bit located in the ENU register
serves two mutually exclusive functions. This bit programs
the ninth bit for transmission when the USART is operating
with nine data bits per frame. There is no parity selection in
this framing format. For other framing formats XBIT9 is not
needed and the bit is PSEL0 used in conjunction with PSEL1
to select parity.
The frame formats for the receiver differ from the transmitter
in the number of Stop bits required. The receiver only requires one Stop bit in a frame, regardless of the setting of the
Stop bit selection bits in the control register. Note that an implicit assumption is made for full duplex USART operation
that the framing formats are the same for the transmitter and
receiver.
8.4 USART Operation
The USART has two modes of operation: asynchronous
mode and synchronous mode.
8.4.1 ASYNCHRONOUS MODE
This mode is selected by resetting the SSEL (in the ENUI
register) bit to zero. The input frequency to the USART is 16
times the baud rate.
The TSFT and TBUF registers double-buffer data for transmission. While TSFT is shifting out the current character on
the TDX pin, the TBUF register may be loaded by software
with the next byte to be transmitted. When TSFT finishes
transmitting the current character the contents of TBUF are
transferred to the TSFT register and the Transmit Buffer
Empty Flag (TBMT in the ENU register) is set. The TBMT
flag is automatically reset by the USART when software
loads a new character into the TBUF register. There is also
the XMTG bit which is set to indicate that the USART is
transmitting. This bit gets reset at the end of the last frame
(end of last Stop bit). TBUF is a read/write register.
The RSFT and RBUF registers double-buffer data being received. The USART receiver continually monitors the signal
on the RDX pin for a low level to detect the beginning of a
Start bit. Upon sensing this low level, it waits for half a bit
time and samples again. If the RDX pin is still low, the receiver considers this to be a valid Start bit, and the remaining
bits in the character frame are each sampled a single time, at
the mid-bit position. Serial data input on the RDX pin is
shifted into the RSFT register. Upon receiving the complete
character, the contents of the RSFT register are copied into
the RBUF register and the Received Buffer Full Flag (RBFL)
is set. RBFL is automatically reset when software reads the
character from the RBUF register. RBUF is a read only register. There is also the RCVG bit which is set high when a
framing error occurs and goes low once RDX goes high.
TBMT, XMTG, RBFL and RCVG are read only bits.
8.4.2 SYNCHRONOUS MODE
In this mode data is transferred synchronously with the
clock. Data is transmitted on the rising edge and received on
the falling edge of the synchronous clock.
27
www.national.com
8.0 USART
(Continued)
DS100155-40
FIGURE 23. Framing Formats
the basic baud clock is created from the oscillator frequency
through a two-stage divider chain consisting of a 1–16 (increments of 0.5) prescaler and an 11-bit binary counter. (Figure 24). The divide factors are specified through two read/
write registers shown in Figure 25. Note that the 11-bit Baud
Rate Divisor spills over into the Prescaler Select Register
(PSR). PSR is cleared upon reset.
As shown in Table 5, a Prescaler Factor of 0 corresponds to
NO CLOCK. This condition is the USART power down mode
where the USART clock is turned off for power saving purpose. The user must also turn the USART clock off when a
different baud rate is chosen.
8.6 USART INTERRUPTS
The USART is capable of generating interrupts. Interrupts
are generated on Receive Buffer Full and Transmit Buffer
Empty. Both interrupts have individual interrupt vectors. Two
bytes of program memory space are reserved for each interrupt vector. The two vectors are located at addresses 0xEC
to 0xEF Hex in the program memory space. The interrupts
can be individually enabled or disabled using Enable Transmit Interrupt (ETI) and Enable Receive Interrupt (ERI) bits in
the ENUI register.
The interrupt from the Transmitter is set pending, and remains pending, as long as both the TBMT and ETI bits are
set. To remove this interrupt, software must either clear the
ETI bit or write to the TBUF register (thus clearing the TBMT
bit).
The interrupt from the receiver is set pending, and remains
pending, as long as both the RBFL and ERI bits are set. To
remove this interrupt, software must either clear the ERI bit
or read from the RBUF register (thus clearing the RBFL bit).
The correspondences between the 5-bit Prescaler Select
and Prescaler factors are shown in Table 5. There are many
ways to calculate the two divisor factors, but one particularly
effective method would be to achieve a 1.8432 MHz frequency coming out of the first stage. The 1.8432 MHz prescaler output is then used to drive the software programmable
baud rate counter to create a 16x clock for the following baud
rates: 110, 134.5, 150, 300, 600, 1200, 1800, 2400, 3600,
4800, 7200, 9600, 19200 and 38400 (Table 4). Other baud
rates may be created by using appropriate divisors. The 16x
clock is then divided by 16 to provide the rate for the serial
shift registers of the transmitter and receiver.
8.7 Baud Clock Generation
The clock inputs to the transmitter and receiver sections of
the USART can be individually selected to come either from
an external source at the CKX pin (port L, pin L1) or from a
source selected in the PSR and BAUD registers. Internally,
www.national.com
28
8.0 USART
(Continued)
DS100155-41
FIGURE 24. USART BAUD Clock Generation
DS100155-42
FIGURE 25. USART BAUD Clock Divisor Registers
TABLE 4. Baud Rate Divisors
(1.8432 MHz Prescaler Output)
Prescaler
Prescaler
Select
Factor
4.5
Baud
Baud Rate
01000
Rate
Divisor − 1
(N-1)
01001
5
01010
5.5
110
(110.03)
1046
134.5
(134.58)
855
150
767
300
383
600
191
1200
95
1800
63
2400
47
3600
31
4800
23
7200
15
9600
11
19200
5
38400
2
Note: The entries in Table 5 assume a prescaler output of 1.8432 MHz. In the
asynchronous mode the baud rate could be as high as 625k.
TABLE 5. Prescaler Factors
01011
6
01100
6.5
01101
7
01110
7.5
01111
8
10000
8.5
10001
9
10010
9.5
10011
10
10100
10.5
10101
11
10110
11.5
10111
12
11000
12.5
11001
13
11010
13.5
11011
14
11100
14.5
11101
15
Prescaler
11110
15.5
Select
Factor
11111
16
00000
NO CLOCK
Prescaler
00001
1
00010
1.5
00011
2
00100
2.5
00101
3
00110
3.5
00111
4
29
www.national.com
8.0 USART
cause of the finite start up time requirement of the crystal oscillator. The idle timer (T0) generates a fixed (256 tc) delay to
ensure that the oscillator has indeed stabilized before allowing the device to execute code. The user has to consider this
delay when data transfer is expected immediately after exiting the HALT mode.
(Continued)
As an example, considering Asynchronous Mode and a CKI
clock of 4.608 MHz, the prescaler factor selected is:
4.608/1.8432 = 2.5
The 2.5 entry is available in Table 5. The 1.8432 MHz prescaler output is then used with proper Baud Rate Divisor
(Table 4) to obtain different baud rates. For a baud rate of
19200 e.g., the entry in Table 4 is 5.
N − 1 = 5 (N − 1 is the value from Table 4)
N = 6 (N is the Baud Rate Divisor)
8.9 Diagnostic
Bits CHARL0 and CHARL1 in the ENU register provide a
loopback feature for diagnostic testing of the USART. When
these bits are set to one, the following occur: The receiver input pin (RDX) is internally connected to the transmitter output pin (TDX); the output of the Transmitter Shift Register is
“looped back” into the Receive Shift Register input. In this
mode, data that is transmitted is immediately received. This
feature allows the processor to verify the transmit and receive data paths of the USART.
Note that the framing format for this mode is the nine bit format; one Start bit, nine data bits, and 7/8, one or two Stop
bits. Parity is not generated or verified in this mode.
Baud Rate = 1.8432 MHz/(16 x 6) = 19200
The divide by 16 is performed because in the asynchronous
mode, the input frequency to the USART is 16 times the
baud rate. The equation to calculate baud rates is given below.
The actual Baud Rate may be found from:
BR = Fc/(16 x N x P)
Where:
BR is the Baud Rate
Fc is the CKI frequency
N is the Baud Rate Divisor (Table 4).
P is the Prescaler Divide Factor selected by the value in the
Prescaler Select Register (Table 5)
8.10 Attention Mode
The USART Receiver section supports an alternate mode of
operation, referred to as ATTENTION Mode. This mode of
operation is selected by the ATTN bit in the ENUR register.
The data format for transmission must also be selected as
having nine Data bits and either 7/8, one or two Stop bits.
The ATTENTION mode of operation is intended for use in
networking the device with other processors. Typically in
such environments the messages consists of device addresses, indicating which of several destinations should receive them, and the actual data. This Mode supports a
scheme in which addresses are flagged by having the ninth
bit of the data field set to a 1. If the ninth bit is reset to a zero
the byte is a Data byte.
While in ATTENTION mode, the USART monitors the communication flow, but ignores all characters until an address
character is received. Upon receiving an address character,
the USART signals that the character is ready by setting the
RBFL flag, which in turn interrupts the processor if USART
Receiver interrupts are enabled. The ATTN bit is also cleared
automatically at this point, so that data characters as well as
address characters are recognized. Software examines the
contents of the RBUF and responds by deciding either to accept the subsequent data stream (by leaving the ATTN bit reset) or to wait until the next address character is seen (by
setting the ATTN bit again).
Note: In the Synchronous Mode, the divisor 16 is replaced by two.
Example:
Asynchronous Mode:
Crystal Frequency = 5 MHz
Desired baud rate = 9600
Using the above equation N x P can be calculated first.
N x P = (5 x 106)/(16 x 9600) = 32.552
Now 32.552 is divided by each Prescaler Factor (Table 5) to
obtain a value closest to an integer. This factor happens to
be 6.5 (P = 6.5).
N = 32.552/6.5 = 5.008 (N = 5)
The programmed value (from Table 4) should be 4 (N − 1).
Using the above values calculated for N and P:
BR = (5 x 106)/(16 x 5 x 6.5) = 9615.384
% error = (9615.385 − 9600)/9600 x 100 = 0.16%
8.8 Effect of HALT/IDLE
The USART logic is reinitialized when either the HALT or
IDLE modes are entered. This reinitialization sets the TBMT
flag and resets all read only bits in the USART control and
status registers. Read/Write bits remain unchanged. The
Transmit Buffer (TBUF) is not affected, but the Transmit Shift
register (TSFT) bits are set to one. The receiver registers
RBUF and RSFT are not affected.
The device will exit from the HALT/IDLE modes when the
Start bit of a character is detected at the RDX (L3) pin. This
feature is obtained by using the Multi-Input Wakeup scheme
provided on the device.
Before entering the HALT or IDLE modes the user program
must select the Wakeup source to be on the RDX pin. This
selection is done by setting bit 3 of WKEN (Wakeup Enable)
register. The Wakeup trigger condition is then selected to be
high to low transition. This is done via the WKEDG register
(Bit 3 is one.)
If the device is halted and crystal oscillator is used, the
Wakeup signal will not start the chip running immediately be-
www.national.com
Operation of the USART Transmitter is not affected by selection of this Mode. The value of the ninth bit to be transmitted
is programmed by setting XBIT9 appropriately. The value of
the ninth bit received is obtained by reading RBIT9. Since
this bit is located in ENUR register where the error flags reside, a bit operation on it will reset the error flags.
30
A Comparator Select Register (CMPSL) is used to enable
the comparators, read the outputs of the comparators internally, and enable the outputs of the comparators to the pins.
Two control bits (enable and output enable) and one result
bit are associated with each comparator. The comparator result bits (CMP1RD and CMP2RD) are read only bits which
will read as zero if the associated comparator is not enabled.
The Comparator Select Register is cleared with reset, resulting in the comparators being disabled. The comparators
should also be disabled before entering either the HALT or
IDLE modes in order to save power. The configuration of the
CMPSL register is as follows:
9.0 Comparators
The device contains two differential comparators, each with
a pair of inputs (positive and negative) and an output. Ports
F1–F3 and F4–F6 are used for the comparators. The following is the Port F assignment:
F6 Comparator2 output
F5 Comparator2 positive input
F4 Comparator2 negative input
F3
F2
Comparator1 output
Comparator1 positive input
F1
Comparator1 negative input
CMPSL REGISTER (ADDRESS X’00B7)
Reserved
CMP20E
CMP2RD
CMP2EN
CMP10E
CMP1RD
CMP1EN
Reserved
Bit 7
Bit 0
The CMPSL register contains the following bits:
Reserved These bits are reserved and should be zero
CMP20E Selects pin I6 as comparator 2 output provided
that CMP2EN is set to enable the comparator
CMP2RD Comparator 2 result (this is a read only bit, which
will read as 0 if the comparator is not enabled)
CMP2EN Enable comparator 2
CMP10E Selects pin I3 as comparator 1 output provided
that CMPIEN is set to enable the comparator
CMP1RD Comparator 1 result (this is a read only bit, which
will read as 0 if the comparator is not enabled)
CMP1EN Enable comparator 1
Note that the two unused bits of CMPSL may be used as
software flags.
10.0 Interrupts
10.1 INTRODUCTION
Each device supports thirteen vectored interrupts. Interrupt
sources include Timer 0, Timer 1, Timer 2, Timer 3, Port L
Wakeup, Software Trap, MICROWIRE/PLUS, and External
Input.
All interrupts force a branch to location 00FF Hex in program
memory. The VIS instruction may be used to vector to the
appropriate service routine from location 00FF Hex.
The Software trap has the highest priority while the default
VIS has the lowest priority.
Each of the 13 maskable inputs has a fixed arbitration ranking and vector.
Figure 26 shows the Interrupt Block Diagram.
Note: For compatibility with existing code and with existing Mask ROMMed
devices the bits of the CMPSL register will take precedence over the
associated Port F configuration and data output bits.
DS100155-28
FIGURE 26. Interrupt Block Diagram
31
www.national.com
10.0 Interrupts
interrupt, and jump to the interrupt handling routine corresponding to the highest priority enabled and active interrupt.
Alternately, the user may choose to poll all interrupt pending
and enable bits to determine the source(s) of the interrupt. If
more than one interrupt is active, the user’s program must
decide which interrupt to service.
Within a specific interrupt service routine, the associated
pending bit should be cleared. This is typically done as early
as possible in the service routine in order to avoid missing
the next occurrence of the same type of interrupt event.
Thus, if the same event occurs a second time, even while the
first occurrence is still being serviced, the second occurrence will be serviced immediately upon return from the current interrupt routine.
(Continued)
10.2 MASKABLE INTERRUPTS
All interrupts other than the Software Trap are maskable.
Each maskable interrupt has an associated enable bit and
pending flag bit. The pending bit is set to 1 when the interrupt
condition occurs. The state of the interrupt enable bit, combined with the GIE bit determines whether an active pending
flag actually triggers an interrupt. All of the maskable interrupt pending and enable bits are contained in mapped control registers, and thus can be controlled by the software.
A maskable interrupt condition triggers an interrupt under the
following conditions:
1. The enable bit associated with that interrupt is set.
2. The GIE bit is set.
An interrupt service routine typically ends with an RETI instruction. This instruction sets the GIE bit back to 1, pops the
address stored on the stack, and restores that address to the
program counter. Program execution then proceeds with the
next instruction that would have been executed had there
been no interrupt. If there are any valid interrupts pending,
the highest-priority interrupt is serviced immediately upon return from the previous interrupt.
3.
The device is not processing a non-maskable interrupt.
(If a non-maskable interrupt is being serviced, a
maskable interrupt must wait until that service routine is
completed.)
An interrupt is triggered only when all of these conditions are
met at the beginning of an instruction. If different maskable
interrupts meet these conditions simultaneously, the highest
priority interrupt will be serviced first, and the other pending
interrupts must wait.
Upon Reset, all pending bits, individual enable bits, and the
GIE bit are reset to zero. Thus, a maskable interrupt condition cannot trigger an interrupt until the program enables it by
setting both the GIE bit and the individual enable bit. When
enabling an interrupt, the user should consider whether or
not a previously activated (set) pending bit should be acknowledged. If, at the time an interrupt is enabled, any previous occurrences of the interrupt should be ignored, the associated pending bit must be reset to zero prior to enabling
the interrupt. Otherwise, the interrupt may be simply enabled; if the pending bit is already set, it will immediately trigger an interrupt. A maskable interrupt is active if its associated enable and pending bits are set.
An interrupt is an asychronous event which may occur before, during, or after an instruction cycle. Any interrupt which
occurs during the execution of an instruction is not acknowledged until the start of the next normally executed instruction
is to be skipped, the skip is performed before the pending interrupt is acknowledged.
At the start of interrupt acknowledgment, the following actions occur:
1. The GIE bit is automatically reset to zero, preventing any
subsequent maskable interrupt from interrupting the current service routine. This feature prevents one maskable
interrupt from interrupting another one being serviced.
2. The address of the instruction about to be executed is
pushed onto the stack.
3. The program counter (PC) is loaded with 00FF Hex,
causing a jump to that program memory location.
The device requires seven instruction cycles to perform the
actions listed above.
If the user wishes to allow nested interrupts, the interrupts
service routine may set the GIE bit to 1 by writing to the PSW
register, and thus allow other maskable interrupts to interrupt
the current service routine. If nested interrupts are allowed,
caution must be exercised. The user must write the program
in such a way as to prevent stack overflow, loss of saved
context information, and other unwanted conditions.
The interrupt service routine stored at location 00FF Hex
should use the VIS instruction to determine the cause of the
www.national.com
10.3 VIS INSTRUCTION
The general interrupt service routine, which starts at address
00FF Hex, must be capable of handling all types of interrupts. The VIS instruction, together with an interrupt vector
table, directs the device to the specific interrupt handling routine based on the cause of the interrupt.
VIS is a single-byte instruction, typically used at the very beginning of the general interrupt service routine at address
00FF Hex, or shortly after that point, just after the code used
for context switching. The VIS instruction determines which
enabled and pending interrupt has the highest priority, and
causes an indirect jump to the address corresponding to that
interrupt source. The jump addresses (vectors) for all possible interrupts sources are stored in a vector table.
The vector table may be as long as 32 bytes (maximum of 16
vectors) and resides at the top of the 256-byte block containing the VIS instruction. However, if the VIS instruction is at
the very top of a 256-byte block (such as at 00FF Hex), the
vector table resides at the top of the next 256-byte block.
Thus, if the VIS instruction is located somewhere between
00FF and 01DF Hex (the usual case), the vector table is located between addresses 01E0 and 01FF Hex. If the VIS instruction is located between 01FF and 02DF Hex, then the
vector table is located between addresses 02E0 and 02FF
Hex, and so on.
Each vector is 15 bits long and points to the beginning of a
specific interrupt service routine somewhere in the 32 kbyte
memory space. Each vector occupies two bytes of the vector
table, with the higher-order byte at the lower address. The
vectors are arranged in order of interrupt priority. The vector
of the maskable interrupt with the lowest rank is located to
0yE0 (higher-order byte) and 0yE1 (lower-order byte). The
next priority interrupt is located at 0yE2 and 0yE3, and so
forth in increasing rank. The Software Trap has the highest
rank and its vector is always located at 0yFE and 0yFF. The
number of interrupts which can become active defines the
size of the table.
Table 6 shows the types of interrupts, the interrupt arbitration
ranking, and the locations of the corresponding vectors in
the vector table.
The vector table should be filled by the user with the memory
locations of the specific interrupt service routines. For ex32
10.0 Interrupts
gram context (A, B, X, etc.) and executing the RETI instruction, an interrupt service routine can be terminated by returning to the VIS instruction. In this case, interrupts will be
serviced in turn until no further interrupts are pending and
the default VIS routine is started. After testing the GIE bit to
ensure that execution is not erroneous, the routine should
restore the program context and execute the RETI to return
to the interrupted program.
This technique can save up to fifty instruction cycles (tc), or
more, (50µs at 10 MHz oscillator) of latency for pending interrupts with a penalty of fewer than ten instruction cycles if
no further interrupts are pending.
To ensure reliable operation, the user should always use the
VIS instruction to determine the source of an interrupt. Although it is possible to poll the pending bits to detect the
source of an interrupt, this practice is not recommended. The
use of polling allows the standard arbitration ranking to be altered, but the reliability of the interrupt system is compromised. The polling routine must individually test the enable
and pending bits of each maskable interrupt. If a Software
Trap interrupt should occur, it will be serviced last, even
though it should have the highest priority. Under certain conditions, a Software Trap could be triggered but not serviced,
resulting in an inadvertent “locking out” of all maskable interrupts by the Software Trap pending flag. Problems such as
this can be avoided by using VIS instruction.
(Continued)
ample, if the Software Trap routine is located at 0310 Hex,
then the vector location 0yFE and -0yFF should contain the
data 03 and 10 Hex, respectively. When a Software Trap interrupt occurs and the VIS instruction is executed, the program jumps to the address specified in the vector table.
The interrupt sources in the vector table are listed in order of
rank, from highest to lowest priority. If two or more enabled
and pending interrupts are detected at the same time, the
one with the highest priority is serviced first. Upon return
from the interrupt service routine, the next highest-level
pending interrupt is serviced.
If the VIS instruction is executed, but no interrupts are enabled and pending, the lowest-priority interrupt vector is
used, and a jump is made to the corresponding address in
the vector table. This is an unusual occurrence, and may be
the result of an error. It can legitimately result from a change
in the enable bits or pending flags prior to the execution of
the VIS instruction, such as executing a single cycle instruction which clears an enable flag at the same time that the
pending flag is set. It can also result, however, from inadvertent execution of the VIS command outside of the context of
an interrupt.
The default VIS interrupt vector can be useful for applications in which time critical interrupts can occur during the
servicing of another interrupt. Rather than restoring the pro-
TABLE 6. Interrupt Vector Table
Arbitration
Ranking
Source
Description
INTR Instruction
Vector Address (Note 15)
(Hi-Low Byte)
(1) Highest
Software
(2)
Reserved
0yFE–0yFF
(3)
External
G0
0yFA–0yFB
(4)
Timer T0
Underflow
0yF8–0yF9
(5)
Timer T1
T1A/Underflow
0yF6–0yF7
(6)
Timer T1
T1B
0yF4–0yF5
(7)
MICROWIRE/PLUS
BUSY Low
0yF2–0yF3
(8)
Reserved
(9)
UART
Receive
(10)
UART
Transmit
0yEC–0yED
(11)
Timer T2
T2A/Underflow
0yEA–0yEB
(12)
Timer T2
T2B
0yE8–0yE9
(13)
Timer T3
T2A/Underflow
0yE6–0yE7
(14)
Timer T3
T3B
0yE4–0yE5
0yFC–0yFD
0yF0–0yF1
0yEE–0yEF
(15)
Port L/Wakeup
Port L Edge
0yE2–0yE3
(16) Lowest
Default VIS
Reserved
0yE0–0yE1
Note 15: y is a variable which represents the VIS block. VIS and the vector table must be located in the same 256-byte block except if VIS is located at the last address of a block. In this case, the table must be in the next block.
33
www.national.com
10.0 Interrupts
mains unchanged. The new PC is therefore pointing to the
vector of the active interrupt with the highest arbitration ranking. This vector is read from program memory and placed
into the PC which is now pointed to the 1st instruction of the
service routine of the active interrupt with the highest arbitration ranking.
(Continued)
10.3.1 VIS Execution
When the VIS instruction is executed it activates the arbitration logic. The arbitration logic generates an even number
between E0 and FE (E0, E2, E4, E6 etc...) depending on
which active interrupt has the highest arbitration ranking at
the time of the 1st cycle of VIS is executed. For example, if
the software trap interrupt is active, FE is generated. If the
external interrupt is active and the software trap interrupt is
not, then FA is generated and so forth. If the only active interrupt is software trap, than E0 is generated. This number replaces the lower byte of the PC. The upper byte of the PC re-
Figure 27 illustrates the different steps performed by the VIS
instruction. Figure 28 shows a flowchart for the VIS instruction.
The non-maskable interrupt pending flag is cleared by the
RPND (Reset Non-Maskable Pending Bit) instruction (under
certain conditions) and upon RESET.
DS100155-29
FIGURE 27. VIS Operation
www.national.com
34
10.0 Interrupts
(Continued)
DS100155-30
FIGURE 28. VIS Flowchart
35
www.national.com
10.0 Interrupts
(Continued)
Programming Example: External Interrupt
WAIT:
PSW
CNTRL
RBIT
RBIT
SBIT
SBIT
SBIT
JP
.
.
.
.=0FF
VIS
=00EF
=00EE
0,PORTGC
0,PORTGD
IEDG, CNTRL
EXEN, PSW
GIE, PSW
WAIT
;
;
;
;
;
G0 pin configured Hi-Z
Ext interrupt polarity; falling edge
Enable the external interrupt
Set the GIE bit
Wait for external interrupt
; The interrupt causes a
; branch to address 0FF
; The VIS causes a branch to
;interrupt vector table
.
.
.
.=01FA
.ADDRW SERVICE
; Vector table (within 256 byte
; of VIS inst.) containing the ext
; interrupt service routine
.
.
INT_EXIT:
SERVICE:
RETI
.
.
RBIT
.
.
.
JP
www.national.com
EXPND, PSW
INT_EXIT
; Interrupt Service Routine
; Reset ext interrupt pend. bit
; Return, set the GIE bit
36
10.0 Interrupts
flag; upon return to the first Software Trap routine, the
STPND flag will have the wrong state. This will allow
maskable interrupts to be acknowledged during the servicing
of the first Software Trap. To avoid problems such as this, the
user program should contain the Software Trap routine to
perform a recovery procedure rather than a return to normal
execution.
Under normal conditions, the STPND flag is reset by a
RPND instruction in the Software Trap service routine. If a
programming error or hardware condition (brownout, power
supply glitch, etc.) sets the STPND flag without providing a
way for it to be cleared, all other interrupts will be locked out.
To alleviate this condition, the user can use extra RPND instructions in the main program and in the WATCHDOG service routine (if present). There is no harm in executing extra
RPND instructions in these parts of the program.
(Continued)
10.4 NON-MASKABLE INTERRUPT
10.4.1 Pending Flag
There is a pending flag bit associated with the non-maskable
interrupt, called STPND. This pending flag is not memorymapped and cannot be accessed directly by the software.
The pending flag is reset to zero when a device Reset occurs. When the non-maskable interrupt occurs, the associated pending bit is set to 1. The interrupt service routine
should contain an RPND instruction to reset the pending flag
to zero. The RPND instruction always resets the STPND
flag.
10.4.2 Software Trap
The Software Trap is a special kind of non-maskable interrupt which occurs when the INTR instruction (used to acknowledge interrupts) is fetched from program memory and
placed in the instruction register. This can happen in a variety of ways, usually because of an error condition. Some examples of causes are listed below.
If the program counter incorrectly points to a memory location beyond the available program memory space, the nonexistent or unused memory location returns zeroes which is
interpreted as the INTR instruction.
If the stack is popped beyond the allowed limit (address 06F
Hex), a 7FFF will be loaded into the PC, if this last location in
program memory is unprogrammed or unavailable, a Software Trap will be triggered.
A Software Trap can be triggered by a temporary hardware
condition such as a brownout or power supply glitch.
The Software Trap has the highest priority of all interrupts.
When a Software Trap occurs, the STPND bit is set. The GIE
bit is not affected and the pending bit (not accessible by the
user) is used to inhibit other interrupts and to direct the program to the ST service routine with the VIS instruction. Nothing can interrupt a Software Trap service routine except for
another Software Trap. The STPND can be reset only by the
RPND instruction or a chip Reset.
The Software Trap indicates an unusual or unknown error
condition. Generally, returning to normal execution at the
point where the Software Trap occurred cannot be done reliably. Therefore, the Software Trap service routine should
reinitialize the stack pointer and perform a recovery procedure that restarts the software at some known point, similar
to a device Reset, but not necessarily performing all the
same functions as a device Reset. The routine must also execute the RPND instruction to reset the STPND flag. Otherwise, all other interrupts will be locked out. To the extent possible, the interrupt routine should record or indicate the
context of the device so that the cause of the Software Trap
can be determined.
10.5 PORT L INTERRUPTS
Port L provides the user with an additional eight fully selectable, edge sensitive interrupts which are all vectored into the
same service subroutine.
The interrupt from Port L shares logic with the wake up circuitry. The register WKEN allows interrupts from Port L to be
individually enabled or disabled. The register WKEDG specifies the trigger condition to be either a positive or a negative
edge. Finally, the register WKPND latches in the pending
trigger conditions.
The GIE (Global Interrupt Enable) bit enables the interrupt
function.
A control flag, LPEN, functions as a global interrupt enable
for Port L interrupts. Setting the LPEN flag will enable interrupts and vice versa. A separate global pending flag is not
needed since the register WKPND is adequate.
Since Port L is also used for waking the device out of the
HALT or IDLE modes, the user can elect to exit the HALT or
IDLE modes either with or without the interrupt enabled. If he
elects to disable the interrupt, then the device will restart execution from the instruction immediately following the instruction that placed the microcontroller in the HALT or IDLE
modes. In the other case, the device will first execute the interrupt service routine and then revert to normal operation.
(See HALT MODE for clock option wakeup information.)
10.6 INTERRUPT SUMMARY
The device uses the following types of interrupts, listed below in order of priority:
1. The Software Trap non-maskable interrupt, triggered by
the INTR (00 opcode) instruction. The Software Trap is
acknowledged immediately. This interrupt service routine can be interrupted only by another Software Trap.
The Software Trap should end with two RPND instructions followed by a restart procedure.
2. Maskable interrupts, triggered by an on-chip peripheral
block or an external device connected to the device. Under ordinary conditions, a maskable interrupt will not interrupt any other interrupt routine in progress. A
maskable interrupt routine in progress can be interrupted by the non-maskable interrupt request. A
maskable interrupt routine should end with an RETI instruction or, prior to restoring context, should return to
execute the VIS instruction. This is particularly useful
when exiting long interrupt service routiness if the time
between interrupts is short. In this case the RETI instruction would only be executed when the default VIS routine is reached.
If the user wishes to return to normal execution from the
point at which the Software Trap was triggered, the user
must first execute RPND, followed by RETSK rather than
RETI or RET. This is because the return address stored on
the stack is the address of the INTR instruction that triggered
the interrupt. The program must skip that instruction in order
to proceed with the next one. Otherwise, an infinite loop of
Software Traps and returns will occur.
Programming a return to normal execution requires careful
consideration. If the Software Trap routine is interrupted by
another Software Trap, the RPND instruction in the service
routine for the second Software Trap will reset the STPND
37
www.national.com
11.2 WATCHDOG/CLOCK MONITOR OPERATION
The WATCHDOG is enabled by bit 2 of the ECON register.
When this ECON bit is 0, the WATCHDOG is enabled and
pin G1 becomes the WATCHDOG output with a weak pullup.
The WATCHDOG and Clock Monitor are disabled during reset. The device comes out of reset with the WATCHDOG
armed, the WATCHDOG Window Select bits (bits 6, 7 of the
WDSVR Register) set, and the Clock Monitor bit (bit 0 of the
WDSVR Register) enabled. Thus, a Clock Monitor error will
occur after coming out of reset, if the instruction cycle clock
frequency has not reached a minimum specified value, including the case where the oscillator fails to start.
The WDSVR register can be written to only once after reset
and the key data (bits 5 through 1 of the WDSVR Register)
must match to be a valid write. This write to the WDSVR register involves two irrevocable choices: (i) the selection of the
WATCHDOG service window (ii) enabling or disabling of the
Clock Monitor. Hence, the first write to WDSVR Register involves selecting or deselecting the Clock Monitor, select the
WATCHDOG service window and match the WATCHDOG
key data. Subsequent writes to the WDSVR register will
compare the value being written by the user to the WATCHDOG service window value and the key data (bits 7 through
1) in the WDSVR Register. Table 9 shows the sequence of
events that can occur.
The user must service the WATCHDOG at least once before
the upper limit of the service window expires. The WATCHDOG may not be serviced more than once in every lower
limit of the service window.
The WATCHDOG has an output pin associated with it. This
is the WDOUT pin, on pin 1 of the port G. WDOUT is active
low and must be externally connected to the RESET pin or to
some other external logic which handles WATCHDOG event.
The WDOUT pin has a weak pullup in the inactive state. This
pull-up is sufficient to serve as the connection to VCC for systems which use the internal Power On Reset. Upon triggering the WATCHDOG, the logic will pull the WDOUT (G1) pin
low for an additional 16 tC–32 tC cycles after the signal level
on WDOUT pin goes below the lower Schmitt trigger threshold. After this delay, the device will stop forcing the WDOUT
output low. The WATCHDOG service window will restart
when the WDOUT pin goes high.
A WATCHDOG service while the WDOUT signal is active will
be ignored. The state of the WDOUT pin is not guaranteed
on reset, but if it powers up low then the WATCHDOG will
time out and WDOUT will go high.
The Clock Monitor forces the G1 pin low upon detecting a
clock frequency error. The Clock Monitor error will continue
until the clock frequency has reached the minimum specified
value, after which the G1 output will go high following 16
tC–32 tC clock cycles. The Clock Monitor generates a continual Clock Monitor error if the oscillator fails to start, or fails
to reach the minimum specified frequency. The specification
for the Clock Monitor is as follows:
11.0 WATCHDOG/Clock Monitor
Each device contains a user selectable WATCHDOG and
clock monitor. The following section is applicable only if
WATCHDOG feature has been selected in the ECON register. The WATCHDOG is designed to detect the user program
getting stuck in infinite loops resulting in loss of program control or “runaway” programs.
The WATCHDOG logic contains two separate service windows. While the user programmable upper window selects
the WATCHDOG service time, the lower window provides
protection against an infinite program loop that contains the
WATCHDOG service instruction.
The Clock Monitor is used to detect the absence of a clock or
a very slow clock below a specified rate on the CKI pin.
The WATCHDOG consists of two independent logic blocks:
WD UPPER and WD LOWER. WD UPPER establishes the
upper limit on the service window and WD LOWER defines
the lower limit of the service window.
Servicing the WATCHDOG consists of writing a specific
value to a WATCHDOG Service Register named WDSVR
which is memory mapped in the RAM. This value is composed of three fields, consisting of a 2-bit Window Select, a
5-bit Key Data field, and the 1-bit Clock Monitor Select field.
Table 7 shows the WDSVR register.
TABLE 7. WATCHDOG Service Register (WDSVR)
Window
Select
Clock
Monitor
Key Data
X
X
0
1
1
0
0
Y
7
6
5
4
3
2
1
0
The lower limit of the service window is fixed at 256 instruction cycles. Bits 7 and 6 of the WDSVR register allow the
user to pick an upper limit of the service window.
Table 8 shows the four possible combinations of lower and
upper limits for the WATCHDOG service window. This flexibility in choosing the WATCHDOG service window prevents
any undue burden on the user software.
Bits 5, 4, 3, 2 and 1 of the WDSVR register represent the
5-bit Key Data field. The key data is fixed at 01100. Bit 0 of
the WDSVR Register is the Clock Monitor Select bit.
TABLE 8. WATCHDOG Service Window Select
WDSVR WDSVR
Bit 7
Bit 6
Clock
Service Window
Monitor
(Lower-Upper Limits)
0
0
x
2048–8k tC Cycles
0
1
x
2048–16k tC Cycles
1
0
x
2048–32k tC Cycles
1
1
x
2048–64k tC Cycles
x
x
0
Clock Monitor Disabled
x
x
1
Clock Monitor Enabled
1/tC > 10 kHz — No clock rejection.
1/tC < 10 Hz — Guaranteed clock rejection.
11.1 CLOCK MONITOR
The Clock Monitor aboard the device can be selected or deselected under program control. The Clock Monitor is guaranteed not to reject the clock if the instruction cycle clock (1/
tC) is greater or equal to 10 kHz. This equates to a clock
input rate on CKI of greater or equal to 100 kHz.
www.national.com
38
11.0 WATCHDOG/Clock Monitor
(Continued)
TABLE 9. WATCHDOG Service Actions
Key
Window
Clock
Data
Data
Monitor
Action
Match
Match
Match
Don’t Care
Mismatch
Don’t Care
Valid Service: Restart Service Window
Error: Generate WATCHDOG Output
Mismatch
Don’t Care
Don’t Care
Error: Generate WATCHDOG Output
Don’t Care
Don’t Care
Mismatch
Error: Generate WATCHDOG Output
11.3 WATCHDOG AND CLOCK MONITOR SUMMARY
•
A hardware WATCHDOG service occurs just as the device exits the IDLE mode. Consequently, the WATCHDOG should not be serviced for at least 256 instruction
cycles following IDLE, but must be serviced within the selected window to avoid a WATCHDOG error.
•
Following RESET, the initial WATCHDOG service (where
the service window and the CLOCK MONITOR enable/
disable must be selected) may be programmed anywhere within the maximum service window (65,536 instruction cycles) initialized by RESET. Note that this initial
WATCHDOG service may be programmed within the initial 256 instruction cycles without causing a WATCHDOG
error.
The following salient points regarding the WATCHDOG and
CLOCK MONITOR should be noted:
•
Both the WATCHDOG and CLOCK MONITOR detector
circuits are inhibited during RESET.
•
Following RESET, the WATCHDOG and CLOCK MONITOR are both enabled, with the WATCHDOG having the
maximum service window selected.
•
The WATCHDOG service window and CLOCK MONITOR enable/disable option can only be changed once,
during the initial WATCHDOG service following RESET.
•
The initial WATCHDOG service must match the key data
value in the WATCHDOG Service register WDSVR in order to avoid a WATCHDOG error.
•
Subsequent WATCHDOG services must match all three
data fields in WDSVR in order to avoid WATCHDOG errors.
•
The correct key data value cannot be read from the
WATCHDOG Service register WDSVR. Any attempt to
read this key data value of 01100 from WDSVR will read
as key data value of all 0’s.
•
The WATCHDOG detector circuit is inhibited during both
the HALT and IDLE modes.
•
The CLOCK MONITOR detector circuit is active during
both the HALT and IDLE modes. Consequently, the device inadvertently entering the HALT mode will be detected as a CLOCK MONITOR error (provided that the
CLOCK MONITOR enable option has been selected by
the program).
•
With the single-pin R/C oscillator option selected and the
CLKDLY bit reset, the WATCHDOG service window will
resume following HALT mode from where it left off before
entering the HALT mode.
•
With the crystal oscillator option selected, or with the
single-pin R/C oscillator option selected and the CLKDLY
bit set, the WATCHDOG service window will be set to its
selected value from WDSVR following HALT. Consequently, the WATCHDOG should not be serviced for at
least 256 instruction cycles following HALT, but must be
serviced within the selected window to avoid a WATCHDOG error.
•
•
11.4 DETECTION OF ILLEGAL CONDITIONS
The device can detect various illegal conditions resulting
from coding errors, transient noise, power supply voltage
drops, runaway programs, etc.
Reading of undefined ROM gets zeroes. The opcode for
software interrupt is 00. If the program fetches instructions
from undefined ROM, this will force a software interrupt, thus
signaling that an illegal condition has occurred.
The subroutine stack grows down for each call (jump to subroutine), interrupt, or PUSH, and grows up for each return or
POP. The stack pointer is initialized to RAM location 06F Hex
during reset. Consequently, if there are more returns than
calls, the stack pointer will point to addresses 070 and 071
Hex (which are undefined RAM). Undefined RAM from addresses 070 to 07F (Segment 0), and all other segments
(i.e., Segments 4 … etc.) is read as all 1’s, which in turn will
cause the program to return to address 7FFF Hex. It is recommended that the user either leave this location unprogrammed or place an INTR instruction (all 0’s) in this location
to generate a software interrupt signaling an illegal condition.
Thus, the chip can detect the following illegal conditions:
1.
2.
Executing from undefined ROM.
Over “POP”ing the stack by having more returns than
calls.
When the software interrupt occurs, the user can re-initialize
the stack pointer and do a recovery procedure before restarting (this recovery program is probably similar to that following reset, but might not contain the same program initialization procedures). The recovery program should reset the
software interrupt pending bit using the RPND instruction.
The IDLE timer T0 is not initialized with external RESET.
The user can sync in to the IDLE counter cycle with an
IDLE counter (T0) interrupt or by monitoring the T0PND
flag. The T0PND flag is set whenever the twelfth bit of the
IDLE counter toggles (every 4096 instruction cycles). The
user is responsible for resetting the T0PND flag.
39
www.national.com
12.1 MICROWIRE/PLUS OPERATION
Setting the BUSY bit in the PSW register causes the
MICROWIRE/PLUS to start shifting the data. It gets reset
when eight data bits have been shifted. The user may reset
the BUSY bit by software to allow less than 8 bits to shift. If
enabled, an interrupt is generated when eight data bits have
been shifted. The device may enter the MICROWIRE/PLUS
mode either as a Master or as a Slave. Figure 29 shows how
two microcontroller devices and several peripherals may be
interconnected using the MICROWIRE/PLUS arrangements.
12.0 MICROWIRE/PLUS
MICROWIRE/PLUS is a serial SPI compatible synchronous
communications interface. The MICROWIRE/PLUS capability enables the device to interface with MICROWIRE/PLUS
or SPI peripherals (i.e. A/D converters, display drivers, EEPROMs etc.) and with other microcontrollers which support
the MICROWIRE/PLUS or SPI interface. It consists of an
8-bit serial shift register (SIO) with serial data input (SI), serial data output (SO) and serial shift clock (SK). Figure 29
shows a block diagram of the MICROWIRE/PLUS logic.
The shift clock can be selected from either an internal source
or an external source. Operating the MICROWIRE/PLUS arrangement with the internal clock source is called the Master
mode of operation. Similarly, operating the MICROWIRE/
PLUS arrangement with an external shift clock is called the
Slave mode of operation.
WARNING
The SIO register should only be loaded when the SK clock is
in the idle phase. Loading the SIO register while the SK clock
is in the active phase, will result in undefined data in the SIO
register.
Setting the BUSY flag when the input SK clock is in the active phase while in the MICROWIRE/PLUS is in the slave
mode may cause the current SK clock for the SIO shift register to be narrow. For safety, the BUSY flag should only be
set when the input SK clock is in the idle phase.
The CNTRL register is used to configure and control the
MICROWIRE/PLUS mode. To use the MICROWIRE/PLUS,
the MSEL bit in the CNTRL register is set to one. In the master mode, the SK clock rate is selected by the two bits, SL0
and SL1, in the CNTRL register. Table 10 details the different
clock rates that may be selected.
12.1.1 MICROWIRE/PLUS Master Mode Operation
In the MICROWIRE/PLUS Master mode of operation the
shift clock (SK) is generated internally. The MICROWIRE
Master always initiates all data exchanges. The MSEL bit in
the CNTRL register must be set to enable the SO and SK
functions onto the G Port. The SO and SK pins must also be
selected as outputs by setting appropriate bits in the Port G
configuration register. In the slave mode, the shift clock
stops after 8 clock pulses. Table 11 summarizes the bit settings required for Master mode of operation.
TABLE 10. MICROWIRE/PLUS
Master Mode Clock Select
SL1
SL0
0
0
SK Period
2 x tC
0
1
4 x tC
1
x
8 x tC
Where tC is the instruction cycle clock
DS100155-32
FIGURE 29. MICROWIRE/PLUS Application
www.national.com
40
12.0 MICROWIRE/PLUS
The user must set the BUSY flag immediately upon entering
the Slave mode. This ensures that all data bits sent by the
Master is shifted properly. After eight clock pulses the BUSY
flag is clear, the shift clock is stopped, and the sequence
may be repeated.
(Continued)
12.1.2 MICROWIRE/PLUS Slave Mode Operation
In the MICROWIRE/PLUS Slave mode of operation the SK
clock is generated by an external source. Setting the MSEL
bit in the CNTRL register enables the SO and SK functions
onto the G Port. The SK pin must be selected as an input
and the SO pin is selected as an output pin by setting and resetting the appropriate bits in the Port G configuration register. Table 11 summarizes the settings required to enter the
Slave mode of operation.
12.1.3 Alternate SK Phase Operation and SK Idle
Polarity
The device allows either the normal SK clock or an alternate
phase SK clock to shift data in and out of the SIO register. In
both the modes the SK idle polarity can be either high or low.
The polarity is selected by bit 5 of Port G data register. In the
normal mode data is shifted in on the rising edge of the SK
clock and the data is shifted out on the falling edge of the SK
clock. In the alternate SK phase operation, data is shifted in
on the falling edge of the SK clock and shifted out on the rising edge of the SK clock. Bit 6 of Port G configuration register selects the SK edge.
TABLE 11. MICROWIRE/PLUS Mode Settings
This table assumes that the control flag MSEL is set.
G4 (SO)
G5 (SK)
G4
G5
Config. Bit
Config. Bit
Fun.
Fun.
1
1
SO
Int.
MICROWIRE/PLUS
SK
Master
Int.
MICROWIRE/PLUS
STATE
SK
Master
SO
Ext.
MICROWIRE/PLUS
SK
Slave
0
1
1
0
0
0
TRI-
Operation
TRI-
Ext.
MICROWIRE/PLUS
STATE
SK
Slave
A control flag, SKSEL, allows either the normal SK clock or
the alternate SK clock to be selected. Resetting SKSEL
causes the MICROWIRE/PLUS logic to be clocked from the
normal SK signal. Setting the SKSEL flag selects the alternate SK clock. The SKSEL is mapped into the G6 configuration bit. The SKSEL flag will power up in the reset condition,
selecting the normal SK signal.
TABLE 12. MICROWIRE/PLUS Shift Clock Polarity and Sample/Shift Phase
Port G
SK Phase
G6 (SKSEL)
Config. Bit
G5 Data
Bit
SO Clocked Out
On:
SI Sampled On:
SK Idle
Phase
Normal
0
0
SK Falling Edge
SK Rising Edge
Low
Alternate
1
0
SK Rising Edge
SK Falling Edge
Low
Alternate
0
1
SK Rising Edge
SK Falling Edge
High
Normal
1
1
SK Falling Edge
SK Rising Edge
High
DS100155-33
FIGURE 30. MICROWIRE/PLUS SPI Mode Interface Timing, Normal SK Mode, SK Idle Phase being Low
DS100155-34
FIGURE 31. MICROWIRE/PLUS SPI Mode Interface Timing, Alternate SK Mode, SK Idle Phase being Low
41
www.national.com
12.0 MICROWIRE/PLUS
(Continued)
DS100155-35
FIGURE 32. MICROWIRE/PLUS SPI Mode Interface Timing, Alternate SK Mode, SK Idle Phase being High
DS100155-31
FIGURE 33. MICROWIRE/PLUS SPI Mode Interface Timing, Normal SK Mode, SK Idle Phase being High
www.national.com
42
13.0 Memory Map
All RAM, ports and registers (except A and PC) are mapped into data memory address space.
Address
Address
Contents
Contents
S/ADD REG
S/ADD REG
On-Chip RAM bytes (112 bytes)
xxC9
MIWU Enable Register (Reg:WKEN)
Unused RAM Address Space (Reads As
All Ones)
xxCA
MIWU Pending Register (Reg:WKPND)
xxCB to xxCF
Reserved
Unused RAM Address Space (Reads
Undefined Data)
xxD0
Port L Data Register
xxD1
Port L Configuration Register
xx94
Port F data register, PORTFD
xxD2
Port L Input Pins (Read Only)
xx95
Port F configuration register, PORTFC
xxD3
Reserved for Port L
xx96
Port F input pins (read only), PORTFP
xxD4
Port G Data Register
xx97 to xxAF
Unused address space (Reads
Undefined Data)
xxD5
Port G Configuration Register
xxD6
Port G Input Pins (Read Only)
xxB0
Timer T3 Lower Byte
xxD7
xxB1
Timer T3 Upper Byte
Port I Input Pins (Read Only) (Actually
reads Port F input pins)
xxB2
Timer T3 Autoload Register T3RA Lower
Byte
xxD8
Port C Data Register
xxD9
Port C Configuration Register
Timer T3 Autoload Register T3RA Upper
Byte
xxDA
Port C Input Pins (Read Only)
Timer T3 Autoload Register T3RB Lower
Byte
xxDB
Reserved for Port C
xxDC
Port D
xxDD to xxDF
Reserved for Port D
0000 to 006F
0070 to 007F
xx80 to xx93
xxB3
xxB4
xxB5
Timer T3 Autoload Register T3RB Upper
Byte
xxE0 to xxE5
Reserved for EE Control Registers
Timer T1 Autoload Register T1RB Lower
Byte
xxB6
Timer T3 Control Register
xxE6
xxB7
Comparator Select Register
(Reg:CMPSL)
xxE7
xxB8
UART Transmit Buffer (Reg:TBUF)
Timer T1 Autoload Register T1RB Upper
Byte
xxB9
UART Receive Buffer (Reg:RBUF)
xxE8
ICNTRL Register
xxBA
UART Control and Status Register
(Reg:ENU)
xxE9
MICROWIRE/PLUS Shift Register
xxEA
Timer T1 Lower Byte
xxBB
UART Receive Control and Status
Register (Reg:ENUR)
xxEB
Timer T1 Upper Byte
xxEC
Timer T1 Autoload Register T1RA Lower
Byte
xxED
Timer T1 Autoload Register T1RA Upper
Byte
xxBC
UART Interrupt and Clock Source
Register (Reg:ENUI)
xxBD
UART Baud Register (Reg:BAUD)
xxBE
UART Prescale Select Register
(Reg:PSR)
xxEE
CNTRL Control Register
xxEF
PSW Register
xxBF
Reserved for UART
xxF0 to FB
On-Chip RAM Mapped as Registers
xxC0
Timer T2 Lower Byte
xxFC
X Register
xxC1
Timer T2 Upper Byte
xxFD
SP Register
xxC2
Timer T2 Autoload Register T2RA Lower
Byte
xxFE
B Register
xxFF
S Register
Timer T2 Autoload Register T2RA Upper
Byte
0100–017F
On-Chip 128 RAM Bytes
0200–027F
On-Chip 128 RAM Bytes (Reads as
undefined data on COP8SGE)
0300–037F
On-Chip 128 RAM Bytes (Reads as
undefined data on COP8SGE)
xxC3
xxC4
Timer T2 Autoload Register T2RB Lower
Byte
xxC5
Timer T2 Autoload Register T2RB Upper
Byte
xxC6
Timer T2 Control Register
xxC7
WATCHDOG Service Register
(Reg:WDSVR)
xxC8
MIWU Edge Select Register
(Reg:WKEDG)
Note: Reading memory locations 0070H–007FH (Segment 0) will return all
ones. Reading unused memory locations 0080H–0093H (Segment 0)
will return undefined data. Reading memory locations from other Segments (i.e., Segment 4, Segment 5, … etc.) will return undefined data.
43
www.national.com
The available addressing modes are:
14.0 Instruction Set
• Direct
• Register B or X Indirect
• Register B or X Indirect with Post-Incrementing/
Decrementing
• Immediate
• Immediate Short
• Indirect from Program Memory
The addressing modes are described below. Each description includes an example of an assembly language instruction using the described addressing mode.
Direct. The memory address is specified directly as a byte in
the instruction. In assembly language, the direct address is
written as a numerical value (or a label that has been defined
elsewhere in the program as a numerical value).
Example: Load Accumulator Memory Direct
LD A,05
14.1 INTRODUCTION
This section defines the instruction set of the COPSAx7
Family members. It contains information about the instruction set features, addressing modes and types.
14.2 INSTRUCTION FEATURES
The strength of the instruction set is based on the following
features:
• Mostly single-byte opcode instructions minimize program
size.
• One instruction cycle for the majority of single-byte instructions to minimize program execution time.
• Many single-byte, multiple function instructions such as
DRSZ.
• Three memory mapped pointers: two for register indirect
addressing, and one for the software stack.
• Sixteen memory mapped registers that allow an optimized implementation of certain instructions.
• Ability to set, reset, and test any individual bit in data
memory address space, including the memory-mapped
I/O ports and registers.
• Register-Indirect LOAD and EXCHANGE instructions
with optional automatic post-incrementing or decrementing of the register pointer. This allows for greater efficiency (both in cycle time and program code) in loading,
walking across and processing fields in data memory.
• Unique instructions to optimize program size and
throughput efficiency. Some of these instructions are
DRSZ, IFBNE, DCOR, RETSK, VIS and RRC.
Contents
Memory
Before
Contents
After
Accumulator
XX Hex
A6 Hex
Memory Location
A6 Hex
A6 Hex
0005 Hex
Register B or X Indirect. The memory address is specified
by the contents of the B Register or X register (pointer register). In assembly language, the notation [B] or [X] specifies
which register serves as the pointer.
Example: Exchange Memory with Accumulator, B Indirect
X A,[B]
14.3 ADDRESSING MODES
The instruction set offers a variety of methods for specifying
memory addresses. Each method is called an addressing
mode. These modes are classified into two categories: operand addressing modes and transfer-of-control addressing
modes. Operand addressing modes are the various methods of specifying an address for accessing (reading or writing) data. Transfer-of-control addressing modes are used in
conjunction with jump instructions to control the execution
sequence of the software program.
Reg/Data
Contents
Memory
Before
Contents
After
Accumulator
01 Hex
87 Hex
Memory Location
87 Hex
01 Hex
0005 Hex
B Pointer
05 Hex
05 Hex
Register B or X Indirect with Post-Incrementing/
Decrementing. The relevant memory address is specified
by the contents of the B Register or X register (pointer register). The pointer register is automatically incremented or
decremented after execution, allowing easy manipulation of
memory blocks with software loops. In assembly language,
the notation [B+], [B−], [X+], or [X−] specifies which register
serves as the pointer, and whether the pointer is to be incremented or decremented.
14.3.1 Operand Addressing Modes
The operand of an instruction specifies what memory location is to be affected by that instruction. Several different operand addressing modes are available, allowing memory locations to be specified in a variety of ways. An instruction
can specify an address directly by supplying the specific address, or indirectly by specifying a register pointer. The contents of the register (or in some cases, two registers) point to
the desired memory location. In the immediate mode, the
data byte to be used is contained in the instruction itself.
Example: Exchange Memory with Accumulator, B Indirect
with Post-Increment
X A,[B+]
Each addressing mode has its own advantages and disadvantages with respect to flexibility, execution speed, and program compactness. Not all modes are available with all instructions. The Load (LD) instruction offers the largest
number of addressing modes.
www.national.com
Reg/Data
Reg/Data
Contents
Memory
Before
Contents
After
Accumulator
03 Hex
62 Hex
Memory Location
62 Hex
03 Hex
0005 Hex
B Pointer
05 Hex
06 Hex
Intermediate. The data for the operation follows the instruction opcode in program memory. In assembly language, the
number sign character (#) indicates an immediate operand.
44
14.0 Instruction Set
The available transfer-of-control addressing modes are:
(Continued)
• Jump Relative
• Jump Absolute
• Jump Absolute Long
• Jump Indirect
The transfer-of-control addressing modes are described below. Each description includes an example of a Jump instruction using a particular addressing mode, and the effect
on the Program Counter bytes of executing that instruction.
Jump Relative. In this 1-byte instruction, six bits of the instruction opcode specify the distance of the jump from the
current program memory location. The distance of the jump
can range from −31 to +32. A JP+1 instruction is not allowed.
The programmer should use a NOP instead.
Example: Jump Relative
JP 0A
Example: Load Accumulator Immediate
LD A,#05
Reg/Data
Contents
Contents
Memory
Before
After
Accumulator
XX Hex
05 Hex
Immediate Short. This is a special case of an immediate instruction. In the “Load B immediate” instruction, the 4-bit immediate value in the instruction is loaded into the lower
nibble of the B register. The upper nibble of the B register is
reset to 0000 binary.
Example: Load B Register Immediate Short
LD B,#7
Reg/Data
Contents
Contents
Memory
Before
After
Reg
B Pointer
12 Hex
07 Hex
Indirect from Program Memory. This is a special case of
an indirect instruction that allows access to data tables
stored in program memory. In the “Load Accumulator Indirect” (LAID) instruction, the upper and lower bytes of the Program Counter (PCU and PCL) are used temporarily as a
pointer to program memory. For purposes of accessing program memory, the contents of the Accumulator and PCL are
exchanged. The data pointed to by the Program Counter is
loaded into the Accumulator, and simultaneously, the original
contents of PCL are restored so that the program can resume normal execution.
Example: Load Accumulator Indirect
LAID
Reg/Data
Contents
Contents
Memory
Before
After
PCU
04 Hex
04 Hex
PCL
35 Hex
36 Hex
Accumulator
1F Hex
25 Hex
Memory Location
25 Hex
25 Hex
PCU
Contents
Contents
Before
After
02 Hex
02 Hex
PCL
05 Hex
0F Hex
Jump Absolute. In this 2-byte instruction, 12 bits of the instruction opcode specify the new contents of the Program
Counter. The upper three bits of the Program Counter remain unchanged, restricting the new Program Counter address to the same 4 kbyte address space as the current instruction.
(This restriction is relevant only in devices using more than
one 4 kbyte program memory space.)
Example: Jump Absolute
JMP 0125
Reg
PCU
Contents
Contents
Before
After
0C Hex
01 Hex
PCL
77 Hex
25 Hex
Jump Absolute Long. In this 3-byte instruction, 15 bits of
the instruction opcode specify the new contents of the Program Counter.
Example: Jump Absolute Long
JMP 03625
041F Hex
14.3.2 Tranfer-of-Control Addressing Modes
Program instructions are usually executed in sequential order. However, Jump instructions can be used to change the
normal execution sequence. Several transfer-of-control addressing modes are available to specify jump addresses.
A change in program flow requires a non-incremental
change in the Program Counter contents. The Program
Counter consists of two bytes, designated the upper byte
(PCU) and lower byte (PCL). The most significant bit of PCU
is not used, leaving 15 bits to address the program memory.
Reg/
Contents
Memory
Before
Contents
After
PCU
42 Hex
36 Hex
PCL
36 Hex
25 Hex
Different addressing modes are used to specify the new address for the Program Counter. The choice of addressing
mode depends primarily on the distance of the jump. Farther
jumps sometimes require more instruction bytes in order to
completely specify the new Program Counter contents.
45
www.national.com
14.0 Instruction Set
Jump to Subroutine Long (JSRL)
Return from Subroutine (RET)
(Continued)
Jump Indirect. In this 1-byte instruction, the lower byte of
the jump address is obtained from a table stored in program
memory, with the Accumulator serving as the low order byte
of a pointer into program memory. For purposes of accessing program memory, the contents of the Accumulator are
written to PCL (temporarily). The data pointed to by the Program Counter (PCH/PCL) is loaded into PCL, while PCH remains unchanged.
Example: Jump Indirect
Return from Subroutine and Skip (RETSK)
Return from Interrupt (RETI)
Software Trap Interrupt (INTR)
Vector Interrupt Select (VIS)
14.4.3 Load and Exchange Instructions
The load and exchange instructions write byte values in registers or memory. The addressing mode determines the
source of the data.
Load (LD)
JID
Reg/
Contents
Memory
Before
Contents
After
PCU
01 Hex
01 Hex
PCL
C4 Hex
32 Hex
14.4.4 Logical Instructions
Accumulator
26 Hex
26 Hex
32 Hex
32 Hex
The logical instructions perform the operations AND, OR,
and XOR (Exclusive OR). Other logical operations can be
performed by combining these basic operations. For example, complementing is accomplished by exclusiveORing
the Accumulator with FF Hex.
Logical AND (AND)
Logical OR (OR)
Exclusive OR (XOR)
Load Accumulator Indirect (LAID)
Exchange (X)
Memory
Location
0126 Hex
The VIS instruction is a special case of the Indirect Transfer
of Control addressing mode, where the double-byte vector
associated with the interrupt is transferred from adjacent addresses in program memory into the Program Counter in order to jump to the associated interrupt service routine.
14.4.5 Accumulator Bit Manipulation Instructions
The Accumulator bit manipulation instructions allow the user
to shift the Accumulator bits and to swap its two nibbles.
Rotate Right Through Carry (RRC)
Rotate Left Through Carry (RLC)
Swap Nibbles of Accumulator (SWAP)
14.4 INSTRUCTION TYPES
The instruction set contains a wide variety of instructions.
The available instructions are listed below, organized into related groups.
Some instructions test a condition and skip the next instruction if the condition is not true. Skipped instructions are executed as no-operation (NOP) instructions.
14.4.6 Stack Control Instructions
Push Data onto Stack (PUSH)
Pop Data off of Stack (POP)
14.4.1 Arithmetic Instructions
The arithmetic instructions perform binary arithmetic such as
addition and subtraction, with or without the Carry bit.
Add (ADD)
Add with Carry (ADC)
Subtract (SUB)
Subtract with Carry (SUBC)
Increment (INC)
Decrement (DEC)
Decimal Correct (DCOR)
14.4.7 Memory Bit Manipulation Instructions
The memory bit manipulation instructions allow the user to
set and reset individual bits in memory.
Set Bit (SBIT)
Reset Bit (RBIT)
Reset Pending Bit (RPND)
14.4.8 Conditional Instructions
The conditional instruction test a condition. If the condition is
true, the next instruction is executed in the normal manner; if
the condition is false, the next instruction is skipped.
If Equal (IFEQ)
If Not Equal (IFNE)
If Greater Than (IFGT)
If Carry (IFC)
Clear Accumulator (CLR)
Set Carry (SC)
Reset Carry (RC)
14.4.2 Transfer-of-Control Instructions
The transfer-of-control instructions change the usual sequential program flow by altering the contents of the Program Counter. The Jump to Subroutine instructions save the
Program Counter contents on the stack before jumping; the
Return instructions pop the top of the stack back into the
Program Counter.
Jump Relative (JP)
If Not Carry (IFNC)
If Bit (IFBIT)
If B Pointer Not Equal (IFBNE)
And Skip if Zero (ANDSZ)
Decrement Register and Skip if Zero (DRSZ)
Jump Absolute (JMP)
Jump Absolute Long (JMPL)
Jump Indirect (JID)
Jump to Subroutine (JSR)
www.national.com
46
14.0 Instruction Set
(Continued)
Registers
14.4.9 No-Operation Instruction
C
1 Bit of PSW Register for Carry
The no-operation instruction does nothing, except to occupy
space in the program memory and time in execution.
No-Operation (NOP)
HC
1 Bit of PSW Register for Half Carry
GIE
1 Bit of PSW Register for Global Interrupt
Enable
Note: The VIS is a special case of the Indirect Transfer of Control addressing
mode, where the double byte vector associated with the interrupt is
transferred from adjacent addresses in the program memory into the
program counter (PC) in order to jump to the associated interrupt service routine.
VU
Interrupt Vector Upper Byte
VL
Interrupt Vector Lower Byte
[B]
Memory Indirectly Addressed by B Register
[X]
Memory Indirectly Addressed by X Register
MD
Direct Addressed Memory
Mem
Direct Addressed Memory or [B]
Meml
Direct Addressed Memory or [B] or
Immediate Data
Imm
8-Bit Immediate Data
Reg
Register Memory: Addresses F0 to FF
(Includes B, X and SP)
Symbols
14.5 REGISTER AND SYMBOL DEFINITION
The following abbreviations represent the nomenclature
used in the instruction description and the COP8
cross-assembler.
Registers
A
8-Bit Accumulator Register
B
8-Bit Address Register
X
8-Bit Address Register
SP
8-Bit Stack Pointer Register
15-Bit Program Counter Register
Bit
←
Bit Number (0 to 7)
PC
PU
Upper 7 Bits of PC
↔
Exchanged with
PL
Lower 8 Bits of PC
Loaded with
14.6 INSTRUCTION SET SUMMARY
A ←A + Meml
A ←A + Meml + C, C← Carry,
HC ←Half Carry
ADD
A,Meml
ADD
ADC
A,Meml
ADD with Carry
SUBC
A,Meml
Subtract with Carry
A ←A − MemI + C, C←Carry,
HC ←Half Carry
A ←A and Meml
AND
A,Meml
Logical AND
ANDSZ
A,Imm
Logical AND Immed., Skip if Zero
Skip next if (A and Imm) = 0
OR
A,Meml
Logical OR
XOR
A,Meml
Logical EXclusive OR
A ←A or Meml
A ←A xor Meml
IFEQ
MD,Imm
IF EQual
IFEQ
A,Meml
IF EQual
Compare MD and Imm, Do next if MD = Imm
Compare A and Meml, Do next if A = Meml
IFNE
A,Meml
IF Not Equal
Compare A and Meml, Do next if A ≠ Meml
IFGT
A,Meml
IF Greater Than
Compare A and Meml, Do next if A > Meml
Do next if lower 4 bits of B ≠ Imm
IFBNE
#
If B Not Equal
DRSZ
Reg
Decrement Reg., Skip if Zero
SBIT
#,Mem
Set BIT
Reg ←Reg − 1, Skip if Reg = 0
1 to bit, Mem (bit = 0 to 7 immediate)
RBIT
#,Mem
Reset BIT
0 to bit, Mem
IFBIT
#,Mem
IF BIT
If bit #, A or Mem is true do next instruction
Reset PeNDing Flag
Reset Software Interrupt Pending Flag
RPND
X
A,Mem
EXchange A with Memory
A ↔Mem
X
A,[X]
EXchange A with Memory [X]
LD
A,Meml
LoaD A with Memory
A ↔[X]
A ←Meml
LD
A,[X]
LoaD A with Memory [X]
LD
B,Imm
LoaD B with Immed.
LD
Mem,Imm
LoaD Memory Immed.
Mem ←Imm
LD
Reg,Imm
LoaD Register Memory Immed.
X
A, [B ± ]
EXchange A with Memory [B]
X
A, [X ± ]
EXchange A with Memory [X]
Reg ←Imm
A↔[B], (B ←B ± 1)
A↔[X], (X ←X ± 1)
A ←[X]
B ←Imm
47
www.national.com
14.0 Instruction Set
(Continued)
LD
A, [B ± ]
LoaD A with Memory [B]
LD
A, [X ± ]
LoaD A with Memory [X]
LD
[B ± ],Imm
LoaD Memory [B] Immed.
CLR
A
CLeaR A
INC
A
INCrement A
DEC
A
DECrement A
LAID
A←[B], (B ←B ± 1)
A←[X], (X ←X ± 1)
[B] ←Imm, (B←B ± 1)
A←0
A←A + 1
A←A − 1
A←ROM (PU,A)
Load A InDirect from ROM
DCOR
A
Decimal CORrect A
RRC
A
Rotate A Right thru C
A←BCD correction of A (follows ADC, SUBC)
C →A7→… →A0→C
RLC
A
Rotate A Left thru C
C←A7←…←A0←C, HC ←A0
SWAP
A
SWAP nibbles of A
SC
Set C
RC
Reset C
A7…A4↔A3…A0
C←1, HC ←1
C←0, HC ←0
IFC
IF C
IF C is true, do next instruction
IFNC
IF Not C
If C is not true, do next instruction
SP←SP + 1, A←[SP]
POP
A
POP the stack into A
PUSH
A
PUSH A onto the stack
VIS
JMPL
Addr.
Jump absolute Long
JMP
Addr.
Jump absolute
JP
Disp.
Jump relative short
JSRL
Addr.
Jump SubRoutine Long
JSR
Addr.
Jump SubRoutine
JID
Jump InDirect
RET
RETurn from subroutine
RETSK
RETurn and SKip
RETI
RETurn from Interrupt
INTR
Generate an Interrupt
NOP
No OPeration
www.national.com
[SP]←A, SP←SP − 1
PU ←[VU], PL ←[VL]
Vector to Interrupt Service Routine
PC ←ii (ii = 15 bits, 0 to 32k)
PC9…0 ←i (i = 12 bits)
PC ←PC + r (r is −31 to +32, except 1)
[SP] ←PL, [SP−1]←PU,SP−2, PC ←ii
[SP] ←PL, [SP−1]←PU,SP−2, PC9…0←i
PL←ROM (PU,A)
SP + 2, PL ←[SP], PU ←[SP−1]
SP + 2, PL ←[SP],PU ←[SP−1],
skip next instruction
SP + 2, PL ←[SP],PU ←[SP−1],GIE ←1
[SP] ←PL, [SP−1]←PU, SP−2, PC ←0FF
PC ←PC + 1
48
14.0 Instruction Set
Instructions Using A & C
(Continued)
14.7 INSTRUCTION EXECUTION TIME
CLRA
1/1
Most instructions are single byte (with immediate addressing
mode instructions taking two bytes).
Most single byte instructions take one cycle time to execute.
INCA
1/1
DECA
1/1
LAID
1/3
Skipped instructions require x number of cycles to be
skipped, where x equals the number of bytes in the skipped
instruction opcode.
See the BYTES and CYCLES per INSTRUCTION table for
details.
Bytes and Cycles per Instruction
The following table shows the number of bytes and cycles for
each instruction in the format of byte/cycle.
DCORA
1/1
RRCA
1/1
IFC
1/1
Arithmetic and Logic Instructions
IFNC
1/1
PUSHA
1/3
RLCA
1/1
SWAPA
1/1
SC
1/1
RC
1/1
[B]
Direct
Immed.
ADD
1/1
3/4
2/2
POPA
1/3
ADC
1/1
3/4
2/2
ANDSZ
2/2
SUBC
1/1
3/4
2/2
AND
1/1
3/4
2/2
JMPL
3/4
OR
1/1
3/4
2/2
JMP
2/3
XOR
1/1
3/4
2/2
JP
1/3
IFEQ
1/1
3/4
2/2
JSRL
3/5
IFGT
1/1
3/4
2/2
JSR
2/5
IFBNE
1/1
DRSZ
Transfer of Control Instructions
JID
1/3
1/3
VIS
1/5
SBIT
1/1
3/4
RET
1/5
RBIT
1/1
3/4
RETSK
1/5
IFBIT
1/1
3/4
RETI
1/5
RPND
1/1
INTR
1/7
NOP
1/1
Memory Transfer Instructions
Register
Direct
Immed.
Indirect
Register Indirect
Auto Incr. & Decr.
[B]
[X]
X A, (Note 16)
1/1
1/3
2/3
LD A, (Note 16)
1/1
1/3
2/3
2/2
[B+, B−]
[X+, X−]
1/2
1/3
1/2
1/3
LD B, Imm
1/1
(If B < 16)
LD B, Imm
2/2
(If B > 15)
LD Mem, Imm
2/2
3/3
LD Reg, Imm
2/3
IFEQ MD, Imm
3/3
2/2
Note 16: = > Memory location addressed by B or X or directly.
49
www.national.com
www.national.com
50
JP−18
JP−17
JP−16
JP−2
JP−1
JP−0
LD 0FF, #i
LD 0FE, #i
LD 0FD, #i
LD 0FC, #i
LD 0FB, #i
LD 0FA, #i
LD 0F9, #i
LD 0F8, #i
LD 0F7, #i
LD 0F6, #i
LD 0F5, #i
LD 0F4, #i
LD 0F3, #i
LD 0F2, #i
LD 0F1, #i
LD 0F0, #i
D
DRSZ
0FF
DRSZ
0FE
DRSZ
0FD
DRSZ
0FC
DRSZ
0FB
DRSZ
0FA
DRSZ
0F9
DRSZ
0F8
DRSZ
0F7
DRSZ
0F6
DRSZ
0F5
DRSZ
0F4
DRSZ
0F3
DRSZ
0F2
DRSZ
0F1
DRSZ
0F0
C
B
*
LD
A,[X]
DIR
LD
Md,#i
LD
A,[X−]
LD
A,[X+]
IFNE
A,[B]
NOP
*
X A,[X]
RPND
VIS
X
A,[X−]
X
A,[X+]
*
RRCA
Where,
i is the immediate data
Md is a directly addressed memory location
* is an unused opcode
The opcode 60 Hex is also the opcode for IFBIT #i,A
JP−19
JP−3
JP−24
JP−8
JP−20
JP−25
JP−9
JP−4
JP−26
JP−10
JP−21
JP−27
JP−11
JP−5
JP−28
JP−12
JP−22
JP−29
JP−13
JP−6
JP−30
JP−14
JP−23
JP−31
JP−15
JP−7
E
F
14.8 OPCODE TABLE
OR A,#i
XOR
A,#i
AND
A,#i
ADD
A,#i
IFGT
A,#i
IFEQ
A,#i
SUBC
A, #i
ADC
A,#i
9
LD
[B−],#i
LD
[B+],#i
IFNE
A,#i
*
LD
A,[B]
JSRL
LD B,#i
LD
[B],#i
LD
A,Md
JMPL X A,Md
LD
A,[B−]
LD
A,[B+]
IFEQ
Md,#i
RLCA LD A,#i
*
X
A,[B]
JID
LAID
X
A,[B−]
X
A,[B+]
SC
RC
A
RETI
RET
6
CLRA
*
*
*
5
LD
B,#0B
LD
B,#0C
LD
B,#0D
LD
B,#0E
LD
B,#0F
SBIT
7,[B]
SBIT
6,[B]
SBIT
5,[B]
SBIT
4,[B]
SBIT
3,[B]
SBIT
2,[B]
SBIT
1,[B]
SBIT
0,[B]
RBIT
7,[B]
RBIT
6,[B]
RBIT
5,[B]
RBIT
4,[B]
RBIT
3,[B]
RBIT
2,[B]
RBIT
1,[B]
RBIT
0,[B]
IFBIT PUSHA
7,[B]
IFBIT DCORA
6,[B]
LD
B,#00
LD
B,#01
LD
B,#02
LD
B,#03
LD
B,#04
LD
B,#05
LD
B,#06
LD
B,#07
LD
B,#08
LD
B,#09
IFBIT SWAPA
LD
5,[B]
B,#0A
IFBIT
4,[B]
IFBIT
3,[B]
IFBIT
2,[B]
IFBIT
1,[B]
IFBIT ANDSZ
0,[B]
A, #i
7
Upper Nibble
RETSK
POPA
DECA
INCA
IFNC
IFC
OR
A,[B]
XOR
A,[B]
AND
A,[B]
ADD
A,[B]
IFGT
A,[B]
IFEQ
A,[B]
SUBC
A,[B]
ADC
A,[B]
8
4
IFBNE 0F
IFBNE 0E
IFBNE 0D
IFBNE 0C
IFBNE 0B
IFBNE 0A
IFBNE 9
IFBNE 8
IFBNE 7
IFBNE 6
IFBNE 5
IFBNE 4
IFBNE 3
IFBNE 2
IFBNE 1
IFBNE 0
3
2
1
0
8
7
6
5
4
3
2
1
0
JMP
JP+26 JP+10 9
x900–x9FF
JMP
JP+25 JP+9
x800–x8FF
JMP
JP+24 JP+8
x700–x7FF
JMP
JP+23 JP+7
x600–x6FF
JMP
JP+22 JP+6
x500–x5FF
JMP
JP+21 JP+5
x400–x4FF
JMP
JP+20 JP+4
x300–x3FF
JMP
JP+19 JP+3
x200–x2FF
JMP
JP+18 JP+2
x100–x1FF
JMP
JP+17 INTR
x000–x0FF
JSR
JMP
JP+32 JP+16 F
xF00–xFFF xF00–xFFF
JSR
JMP
JP+31 JP+15 E
xE00–xEFF xE00–xEFF
JSR
JMP
JP+30 JP+14 D
xD00–xDFF xD00–xDFF
JSR
JMP
JP+29 JP+13 C
xC00–xCFF xC00–xCFF
JSR
JMP
JP+28 JP+12 B
xB00–xBFF xB00–xBFF
JSR
JMP
JP+27 JP+11 A
xA00–xAFF xA00–xAFF
JSR
x900–x9FF
JSR
x800–x8FF
JSR
x700–x7FF
JSR
x600–x6FF
JSR
x500–x5FF
JSR
x400–x4FF
JSR
x300–x3FF
JSR
x200–x2FF
JSR
x100–x1FF
JSR
x000–x0FF
14.0 Instruction Set
(Continued)
Lower Nibble
15.0 Development Tools Support
15.1 OVERVIEW
National is engaged with an international community of independent 3rd party vendors who provide hardware and software development tool support. Through National’s interaction and guidance, these tools cooperate to form a choice of
solutions that fits each developer’s needs.
This section provides a summary of the tool and development kits currently available. Up-to-date information, selection guides, free tools, demos, updates, and purchase information can be obtained at our web site at:
www.national.com/cop8.
•
COP8-NSDEV: Very low cost Software Development
Package for Windows. An integrated development environment for COP8, including WCOP8 IDE, COP8C (limited version), COP8-NSASM, COP8-MLSIM.
•
COP8C: Moderately priced C Cross-Compiler and Code
Development System from Byte Craft (no code limit). Includes BCLIDE (Byte Craft Limited Integrated Development Environment) for Win32, editor, optimizing C CrossCompiler, macro cross assembler, BC-Linker, and
MetaLink tools support. (DOS/SUN versions available;
Compiler is installable under WCOP8 IDE; Compatible
with DriveWay COP8).
•
EWCOP8-KS: Very Low cost ANSI C-Compiler and Embedded Workbench from IAR (Kickstart version:
COP8Sx/Fx only with 2k code limit; No FP). A fully integrated Win32 IDE, ANSI C-Compiler, macro assembler,
editor, linker, Liberian, C-Spy simulator/debugger, PLUS
MetaLink EPU/DM emulator support.
•
EWCOP8-AS: Moderately priced COP8 Assembler and
Embedded Workbench from IAR (no code limit). A fully integrated Win32 IDE, macro assembler, editor, linker, librarian, and C-Spy high-level simulator/debugger with
I/O and interrupts support. (Upgradeable with optional
C-Compiler and/or MetaLink Debugger/Emulator support).
•
EWCOP8-BL: Moderately priced ANSI C-Compiler and
Embedded Workbench from IAR (Baseline version: All
COP8 devices; 4k code limit; no FP). A fully integrated
Win32 IDE, ANSI C-Compiler, macro assembler, editor,
linker, librarian, and C-Spy high-level simulator/debugger.
(Upgradeable; CWCOP8-M MetaLink tools interface support optional).
•
EWCOP8: Full featured ANSI C-Compiler and Embedded Workbench for Windows from IAR (no code limit). A
fully integrated Win32 IDE, ANSI C-Compiler, macro assembler, editor, linker, librarian, and C-Spy high-level
simulator/debugger. (CWCOP8-M MetaLink tools interface support optional).
15.2 SUMMARY OF TOOLS
COP8 Evaluation Tools
•
COP8–NSEVAL: Free Software Evaluation package for
Windows. A fully integrated evaluation environment for
COP8, including versions of WCOP8 IDE (Integrated Development Environment), COP8-NSASM, COP8-MLSIM,
COP8C, DriveWay™ COP8, Manuals, and other COP8
information.
•
COP8–MLSIM: Free Instruction Level Simulator tool for
Windows. For testing and debugging software instructions only (No I/O or interrupt support).
•
COP8–EPU: Very Low cost COP8 Evaluation & Programming Unit. Windows based evaluation and
hardware-simulation tool, with COP8 device programmer
and erasable samples. Includes COP8-NSDEV, Driveway COP8 Demo, MetaLink Debugger, I/O cables and
power supply.
•
COP8–EVAL-HIxx: Low cost target application evaluation and development board for COP8Sx Families, from
Hilton Inc. Real-time environment with integrated A/D,
Temp Sensor, and Peripheral I/O.
•
COP8–EVAL-ICUxx: Very Low cost evaluation and design test board for COP8ACC and COP8SGx Families,
from ICU. Real-time environment with add-on A/D, D/A,
and EEPROM. Includes software routines and reference
designs.
•
Manuals, Applications Notes, Literature: Available free
from our web site at: www.national.com/cop8.
COP8 Integrated Software/Hardware Design Development Kits
EWCOP8-M: Full featured ANSI C-Compiler and Embedded Workbench for Windows from IAR (no code limit). A
fully integrated Win32 IDE, ANSI C-Compiler, macro assembler, editor, linker, librarian, C-Spy high-level
simulator/debugger, PLUS MetaLink debugger/hardware
interface (CWCOP8-M).
COP8 Productivity Enhancement Tools
•
•
WCOP8 IDE: Very Low cost IDE (Integrated Development Environment) from KKD. Supports COP8C, COP8NSASM, COP8-MLSIM, DriveWay COP8, and MetaLink
debugger under a common Windows Project Management environment. Code development, debug, and emulation tools can be launched from the project window
framework.
•
DriveWay-COP8: Low cost COP8 Peripherals Code
Generation tool from Aisys Corporation. Automatically
generates tested and documented C or Assembly source
code modules containing I/O drivers and interrupt handlers for each on-chip peripheral. Application specific
code can be inserted for customization using the integrated editor. (Compatible with COP8-NSASM, COP8C,
and WCOP8 IDE.)
•
COP8-UTILS: Free set of COP8 assembly code examples, device drivers, and utilities to speed up code development.
•
COP8-EPU: Very Low cost Evaluation & Programming
Unit. Windows based development and hardwaresimulation tool for COPSx/xG families, with COP8 device
programmer and samples. Includes COP8-NSDEV,
Driveway COP8 Demo, MetaLink Debugger, cables and
power supply.
•
COP8-DM: Moderate cost Debug Module from MetaLink.
A Windows based, real-time in-circuit emulation tool with
COP8 device programmer. Includes COP8-NSDEV,
DriveWay COP8 Demo, MetaLink Debugger, power supply, emulation cables and adapters.
COP8 Development Languages and Environments
•
COP8-NSASM: Free COP8 Assembler v5 for Win32.
Macro assembler, linker, and librarian for COP8 software
development. Supports all COP8 devices. (DOS/Win16
v4.10.2 available with limited support). (Compatible with
WCOP8 IDE, COP8C, and DriveWay COP8).
51
www.national.com
15.0 Development Tools Support
COP8-NSDEV, Driveway COP8 Demo, MetaLink Windows Debugger, and power supply. Package-specific
probes and surface mount adaptors are ordered separately.
(Continued)
• COP8-MLSIM: Free Instruction Level Simulator tool for
Windows. For testing and debugging software instructions only (No I/O or interrupt support).
COP8 Real-Time Emulation Tools
• COP8-DM: MetaLink Debug Module. A moderately
priced real-time in-circuit emulation tool, with COP8 device programmer. Includes MetaLink Debugger, power
supply, emulation cables and adapters.
• IM-COP8: MetaLink iceMASTER ® . A full featured, realtime in-circuit emulator for COP8 devices. Includes
COP8 Device Programmer Support
• MetaLink’s EPU and Debug Module include development
device programming capability for COP8 devices.
• Third-party programmers and automatic handling equipment cover needs from engineering prototype and pilot
production, to full production environments.
• Factory programming available for high-volume requirements.
15.3 TOOLS ORDERING NUMBERS FOR THE COP8SGx FAMILY DEVICES
Note: The following order numbers apply to the COP8 devices in this datasheet only.
Vendor
National
Tools
COP8-NSEVAL
Cost
Free
Notes
Web site download
COP8-NSASM
COP8-NSASM
Free
Included in EPU and DM. Web site download
COP8-MLSIM
COP8-MLSIM
Free
Included in EPU and DM. Web site download
COP8-NSDEV
COP8-NSDEV
VL
Included in EPU and DM. Order CD from website
COP8-EPU
COP8SG-EPU (-1 or -2)
VL
-1 = 110V, -2 = 220V; Included p/s, 40 pin DIP target
cable, manuals, software, 16/20/28/40 DIP OTP
programming socket; add DM target adapter or OTP
adapter (if needed)
COP8-DM
COP8SG-DM (10 MHz)
M
Included p/s, 28/40/44 pin DIP/SO/PLCC target
cables, manuals, software, 16/20/28/40 DIP/SO and
44 PLCC programming socket; add OTP adapter or
target adapter (if needed)
DM Target
Adapters
DM-COP8/20D-SO
VL
20 pin DIP to SO converter
DM-COP8/20D-16D
VL
20 pin DIP to 16 pin DIP converter
DM-COP8/20D
VL
20 pin DIP target cable
DM-COP8/28D-28CSP
L
28 pin DIP to 28 pin CSP converter
DM-COP8/44P-44Q
L
44 pin PLCC to 44 QFP converter
Development
Devices
COP8FGx7
VL
8k or 32k Eraseable or OTP devices
OTP
Programming
Adapters
COP8SA-PGMA
L
For programming 16/20/28 SOIC and 44 PLCC on the
EPU
COP8-PGMA-44QFP
L
For programming 44 QFP on any programmer
COP8-PGMA-28CSP
L
For programming 28 CSP on any programmer
COP8-PGMA-28SO
VL
For programming 16/20/28 SOIC on any programmer
IM-COP8
www.national.com
Order Number
COP8-NSEVAL
Call MetaLink
52
15.0 Development Tools Support
MetaLink COP8-EPU
(Continued)
EPU-COP8SG
VL
1 = 110V, 2 = 220V; included p/s, 40 pin DIP target
cable, manuals, software, 16/20/28/40 DIP OTP
programming socket; add DM target adapter or OTP
adapter (if needed)
COP8-DM
DM5-COP8-FGx (15
MHz) or DM4-COP8-SGx
(10 MHz), plus PS-10,
plus DM-COP8/xxx (ie.
28D)
M
Included p/s (PS-10), target cable of choice (DIP or
PLCC; i.e. DM-COP8/28D), 16/20/28/40 DIP/SO and
44 PLCC programming sockets. Add OTP adapter (if
needed) and target adapter (if needed)
DM Target
Adapters
MHW-CNVxx (xx = 33, 34
etc.)
L
DM target converters for
16DIP/20SO/28SO/44QFP/28CSP; (i.e. MHW-CNV38
for 20 pin DIP to SO package converter)
OTP
Programming
Adapters
MHW-COP8-PGMA-DS
L
For programming 16/20/28 SOIC and 44 PLCC on the
EPU
MHW-COP8-PGMA-44QFP L
For programming 44 QFP on any programmer
MHW-COP8-PGMA-28CSP L
For programming 28 CSP on any programmer
IM-COP8
IM-COP8-AD-464 (-220)
(10 MHz maximum)
H
Base unit 10 MHz; -220 = 220V; add probe card
(required) and target adapter (if needed); included
software and manuals
IM Probe Card
PC-COP8SG44PW-AD-10
M
10 MHz 44 PLCC probe card; 2.5V to 6.0V
PC-COP8SG40DW-AD-10
M
10 MHz 40 DIP probe card; 2.5V to 6.0V
MHW-SOICxx (xx = 16,
20, 28)
L
16 or 20 or 28 pin SOIC adapter for probe card
MHW-CSPxx (xx = 20,
28)
L
20 or 28 pin CSP adapter for probe card
IM Probe Target
Adapters
MHW-CONV33
ICU or
National
COP8-EVAL-ICUxx ICU-303
KKD
WCOP8-IDE
L
44 pin QFP adapter for 44 PLCC probe card
L
No power supply
COP8-EVAL-ICUSG
L
No power supply
WCOP8-IDE
VL
Included in EPU and DM
IAR
EWCOP8-xx
See summary above
L-H
Included all software and manuals
Byte
Craft
COP8C
COP8C
M
Included all software and manuals
Aisys
DriveWay COP8
DriveWay COP8
L
Included all software and manuals
Go to:
www.national.com/cop8
L-H
A wide variety world-wide
OTP Programmers
Cost: Free; VL = < $100; L = $100 - $300; M = $300 - $1k; H = $1k - $3k; VH = $3k - $5k
53
www.national.com
15.0 Development Tools Support
(Continued)
15.4 WHERE TO GET TOOLS
Tools are ordered directly from the following vendors. Please go to the vendor’s web site for current listings of distributors.
Vendor
Aisys
Home Office
Electronic Sites
U.S.A.: Santa Clara, CA
www.aisysinc.com
1-408-327-8820
info@aisysinc.com
Other Main Offices
Distributors
fax: 1-408-327-8830
Byte Craft
U.S.A.
www.bytecraft.com
1-519-888-6911
info @bytecraft.com
Distributors
fax: 1-519-746-6751
IAR
Sweden: Uppsala
www.iar.se
U.S.A.: San Francisco
+46 18 16 78 00
info@iar.se
1-415-765-5500
fax: +46 18 16 78 38
info@iar.com
fax: 1-415-765-5503
info@iarsys.co.uk
U.K.: London
info@iar.de
+44 171 924 33 34
fax: +44 171 924 53 41
Germany: Munich
+49 89 470 6022
fax: +49 89 470 956
ICU
Sweden: Polygonvaegen
www.icu.se
Switzeland: Hoehe
+46 8 630 11 20
support@icu.se
+41 34 497 28 20
fax: +46 8 630 11 70
support @icu.ch
fax: +41 34 497 28 21
KKD
Denmark:
www.kkd.dk
MetaLink
U.S.A.: Chandler, AZ
www.metaice.com
Germany: Kirchseeon
1-800-638-2423
sales @metaice.com
80-91-5696-0
fax: 1-602-926-1198
support @metaice.com
fax: 80-91-2386
National
bbs: 1-602-962-0013
islanger@metalink.de
www.metalink.de
Distributors Worldwide
U.S.A.: Santa Clara, CA
www.national.com/cop8
Europe: +49 (0) 180 530 8585
1-800-272-9959
support @nsc.com
fax: +49 (0) 180 530 8586
fax: 1-800-737-7018
europe.support @nsc.com
Distributors Worldwide
15.5 CUSTOMER SUPPORT
Complete product information and technical support is available from National’s customer response centers, and from
our on-line COP8 customer support sites.
The following companies have approved COP8 programmers in a variety of configurations. Contact your local office
or distributor. You can link to their web sites and get the latest listing of approved programmers from National’s COP8
OTP Support page at: www.national.com/cop8.
Advantech; Advin; BP Microsystems; Data I/O; Hi-Lo Systems; ICE Technology; Lloyd Research; Logical Devices;
MQP; Needhams; Phyton; SMS; Stag Programmers; System General; Tribal Microsystems; Xeltek.
www.national.com
54
Physical Dimensions
inches (millimeters) unless otherwise noted
28-Lead Hermetic Dual-In-Line Package EPROM (D)
Order Number COP8SGR728Q3
NS Package Number D28JQ
55
www.national.com
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
40-Lead Hermetic Dual-In-Line Package EPROM (D)
Order Number COP8SGR740Q3
NS Package Number D40KQ
Molded SO Wide Body Package (WM)
Order Number COP8SGx728Mx,
NS Package Number M28B
www.national.com
56
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
Molded Dual-In-Line Package (N)
Order Number COP8SGx728Nx
NS Package Number N28A
Molded Dual-In-Line Package (N)
Order Number COP8SGx740Nx
NS Package Number N40A
57
www.national.com
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
44-Lead EPROM Leaded Chip Carrier (EL)
Order Number COP8SGR744J3
NS Package Number EL44C
www.national.com
58
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
Molded Dual-In-Line Package (N)
Order Number COP8SGx744Vx
NS Package Number V44A
Plastic Quad Flat Package (VEJ)
Order Number COP8SGx744VEJx
NS Package Number VEJ44A
59
www.national.com
COP8SGx7 Family, 8-Bit CMOS OTP Microcontrollers with 8k or 32k Memory, Two Comparators
and USART
Notes
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com
www.national.com
National Semiconductor
Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80
2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.
National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: sea.support@nsc.com
National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
Anexo C
ANEXO C
PROGRAMAS EN LENGUAJE ENSAMBLADOR
COP8SGR7
99
Anexo C
PROGRAMA PRINCIPAL DEL SENSOR DE NIVEL
100
Anexo C
PROGRAMA DE LA MACRO “DISPLAY” PARA
CONTROLAR EL EXHIBIDOR DE CRISTAL LÍQUIDO
109
Programa principal del sensor de nivel de líquidos
PROGRAMA PRINCIPAL DEL SENSOR DE NIVEL DE LÍQUIDOS. (SENSOR.ASM)
; Descripcion.-PRESENTA EL NIVEL DEL LÍQUIDO EN UN TANQUE
.incld regcop8.asm
.TITLE PRUEBA 1
.CHIP 8SGR
.SECT VARIABLE,RAM
BINLO: .DSB 002 ;VARIABLE A SER CONVERTIDA
BCDLO: .DSB 003 ;RESULTADO DE CONVERSION A BCD
BCDASC: .DSB 005 ;BCD EN CODIGO ASCII
VAR1: .DSB 001 ;VARIABLE AUXILIAR
APUNTA: .DSB 001 ;APUNTADOR DE TABLA EN ROM
VAR2: .DSB 001 ;
TABRAM: .DSB 005
CONTMS: .DSB 001 ;VARIABLE PARA CONTAR CADA 4.096MS CRISTAL(4MZ) 10.24MS
CRISTAL 4 MHZ
LLENO: .DSB 005
LLENUEZ: .DSB
005
VACIO: .DSB 005
VANUEZ: .DSB 005
ADR1: .DSB 001 ;LECTURA DEL PUERTO
;****************************************************************
; REGISTROS INICIAN EN LA DIRECCION F0 Y TERMINAN EN FB
;****************************************************************
;
.SECT RAM,REG
CNTR1:
.DSB 001 ; VARIABLE PARA CONTADOR DE TIEMPO
CNTR:
.DSB 001 ; VARIABLE PARA CONTADOR DE TIEMPO
CNTR2:
.DSB 001
CNTR3:
.DSB 001
CNTR4:
.DSB 001
CNTR5:
.DSB 001
CNTR6:
.DSB 001
CNTR7:
.DSB 001
.INCLD COP8MAC.MAC
.SECT
MAIN,ROM
RESET: LD SP,#06F ;
LD 0FF,#000 ;SEGMENT EN CERO
CLR A
X A,CONTMS ;CONTMS = 000
CLR A
LD PORTFC,#000 ;TODO EL PUERTO F SON ENTRADAS
LD PORTFDS,#000
;CON ENTRADA Hi-Z.
LD PORTLC,#0FF ;TODO EL PUERTO L SON SALIDAS
DISPLAY
TDISP,TABRAM
RBIT #5,ICNTRL ;BANDERA PENDIENTE = 0
SBIT #4,ICNTRL ;HABILITACION DE INTERRUPCION
SBIT #0,PSW ;HABILITACION GLOBAL DE INTERRUPCIONES
101
Programa principal del sensor de nivel de líquidos
MAIN: LD A,CONTMS ;
IFGT A,#49
JP DOIT ;SI NO ES IGUAL EJECUTA LA SIG. INSTRUCCION
JP MAIN
DOIT: CLR A
X A,CONTMS
LD A,PORTFD
X A,ADR1
JSR DESPLI1
LD A,#0FF
IFEQ A,ADR1
JSR FULL
LD A,#000
IFEQ A,ADR1
JSR EMPTY
JP MAIN
;SE LEE EL PUERTO
;Y SE GUARDA EN ADR1
;SALTA A DESPLIEGA
TDISP: .DB
000,030
.DB
000,030
.DB
000,030
.DB
000,038
.DB
000,00c ;Display On
.DB
000,001 ;Display Clr
.DB
000,080 ;Set DDRAM
.DB
002,'E'
;1
.DB
002,'L'
;2
.DB
002,' '
;3
.DB
002,'N'
;4
.DB
002,'I'
;5
.DB
002,'V'
;6
.DB
002,'E'
;7
.DB
002,'L'
;8
.DB
002,' '
;9
.DB
002,'E'
;10
.DB
002,'S'
;11
.DB
002,' '
;12
.DB
002,'D'
;13
.DB
002,'E'
;14
.DB
002,':'
.DB
000,0C6
.DB
002,'L'
.DB
002,'I'
.DB
002,'T'
.DB
002,'R'
.DB
002,'O'
.DB
002,'S'
.DB
0ff
;15
;DIRECCION POSICIÓN 2a. LÍNEA
;terminador de tabla
.=0FF
VIS
.=01F8
.ADDRW SERT0
;VECTOR PARA T0
102
Programa principal del sensor de nivel de líquidos
.=0200 ;DIRECCION INICIAL PARA SERVICIO DE
;INTERRUPCION DE T0
SERT0:
RBIT #5,ICNTRL ;LIMPIA BANDERA = 0
PUSH A
LD A,B
PUSH A
LD A,X
PUSH A
LD A,CONTMS
INC A
X A,CONTMS
POP A
X A,X
POP A
X A,B
POP A
RETI
DESPLI1:
LD A,ADR1 ;CARGA EL DATO A SER CONVERTIDO
;PREPARACION PARA MULTIPLICACION
X A,BINLO
LD A,#D'188 ;CONSTANTE DE CONVERSION
X A,BINLO+1 ;COLOCA MULTIPLICADOR
JSR MPY88
;ACOMODAR DATOS PARA CONVERCION A ASCII
LD A,BINLO+1
X A,BINLO
LD A,BINLO+2
X A,BINLO+1
JSR BINDEC16 ;CONVERSION A ASCII
JSR NEXT2
RET
.=0250
NEXT2:
DISPLAY TABDISP2,BCDASC;
RET
TABDISP2: .DB
000,0C0 ; DIRECCION POSICION 2NDA LINEA.
.DB
001,000
;17
.DB
001,000
;18
.DB
002,'.'
;19
.DB
001,000
;28
.DB
001,000
;20
.DB
002,' '
;29
.DB
0ff ;terminador de tabla
;SUBRUTINA DE MULTIPLICACION DE 8BITS POR 8 BITS
;REFERENCIA AN-596 PG.7-33 COP8 MICROCONTROLER DATABOOK
;MULTIPLICANDO Y MULTIPLICADOR EN [0],[1]
;RESULTADO [2],[1]
MPY88: LD CNTR,#9
RC
LD B,#2
CLR A
103
Programa principal del sensor de nivel de líquidos
M88LUP: RRC A
X A,[B-]
LD A,[B]
RRC A
X A,[B-]
CLR A
IFC
LD A,[B]
RC
LD B,#2
ADC A,[B]
DRSZ CNTR
JP M88LUP
RET
;SUBRUITNA PARA CONVERTIR 16 BITS A ASC BCD.
BINDEC16:
LD CNTR,#16
RC
LD B,#2
BD1:
LD [B+],#0
IFBNE #5
JP BD1
BD2:
LD B,#0
BD3:
LD A,[B]
ADC A,[B]
X
A,[B+]
IFBNE #2
JP BD3
BD4:
LD A,[B]
ADD A,#066
ADC A,[B]
DCOR A
X
A,[B+]
IFBNE #5
JP BD4
DRSZ CNTR
JP BD2
;MODIFICACION PARA ASCII
LD A,BCDLO
AND A,#00F
OR A,#030
X
A,BCDASC+4
LD A,BCDLO
AND A,#0F0
RC
RRC A
RRC A
RRC A
RRC A
OR A,#030
X
A,BCDASC+3
104
Programa principal del sensor de nivel de líquidos
LD A,BCDLO+1
AND A,#00F
OR A,#030
X
A,BCDASC+2
LD A,BCDLO+1
AND A,#0F0
RC
RRC A
RRC A
RRC A
RRC A
OR A,#030
X
A,BCDASC+1
LD A,BCDLO+2
AND A,#00F
OR A,#030
X
A,BCDASC
RET
FULL:
JSR DISPDELAY
JSR PLELLENO
JSR DISPDELAY
JSR MENLLENUEZ
RET
DISPDELAY: LD CNTR6,#002
BUINT2: LD CNTR2,#080
BUEXT:
LD CNTR3,#0FF
BUINT: DRSZ CNTR3
JMP BUINT
DRSZ CNTR2
JMP BUEXT
DRSZ CNTR6
JMP BUINT2
RET
.=0400
PLELLENO:
DISPLAY MENLLE,LLENO
RET
MENLLE:
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
002,' '
002,' '
002,'E'
002,'L'
002,' '
002,'T'
002,'A'
002,'N'
002,'Q'
002,'U'
002,'E'
002,' '
002,'S'
000,001
000,080
;1
;2
;3
;4
;5
;6
;7
;8
;9
;10
;11
;12
;13
105
Programa principal del sensor de nivel de líquidos
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
002,'E'
;14
002,' '
;15
000,0C0
;DIRECCION POSICIÓN 2a. LÍNEA
002,'L'
002,'L'
002,'E'
002,'N'
002,'O'
002,' '
002,'P'
002,'L'
002,'E'
002,'N'
002,'A'
002,'M'
002,'E'
002,'N'
002,'T'
002,'E'
;terminador de tabla
0ff
.=0500
MENLLENUEZ:
DENUEZ:
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
DISPLAY DENUEZ,LLENUEZ
RET
.DB
000,001
.DB
000,080 ;Set DDRAM
002,'E'
;1
002,'L'
;2
002,' '
;3
002,'N'
;4
002,'I'
;5
002,'V'
;6
002,'E'
;7
002,'L'
;8
002,' '
;9
002,'E'
;10
002,'S'
;11
002,' '
;12
002,'D'
;13
002,'E'
;14
002,':'
;15
000,0C6
;DIRECCION POSICIÓN 2a. LÍNEA
002,'L'
002,'I'
002,'T'
002,'R'
002,'O'
002,'S'
002,' '
002,' '
002,' '
002,' '
0ff ;terminador de tabla
.=0600
EMPTY:
JSR DISDELAY2
106
Programa principal del sensor de nivel de líquidos
JSR PLEVACIO
JSR DISDELAY2
JSR MENVANUEZ
RET
DISDELAY2: LD CNTR7,#002
INT2:
LD CNTR4,#080
EXT:
LD CNTR5,#0FF
INT:
DRSZ CNTR5
JMP INT
DRSZ CNTR4
JMP EXT
DRSZ CNTR7
JMP INT2
RET
.=0700
DISPLAY MENVA,VACIO
RET
PLEVACIO:
MENVA:
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
000,001
000,080
;1
;2
;3
;4
;5
;6
;7
;8
;9
;10
;11
;12
;13
;14
002,' '
;15
000,0C0
;DIRECCION POSICIÓN 2a. LÍNEA
002,'V'
002,'A'
002,'C'
002,'I'
002,'O'
002,' '
002,'P'
002,'L'
002,'E'
002,'N'
002,'A'
002,'M'
002,'E'
002,'N'
002,'T'
002,'E'
;terminador de tabla
.DB
002,' '
002,' '
002,'E'
002,'L'
002,' '
002,'T'
002,'A'
002,'N'
002,'Q'
002,'U'
002,'E'
002,' '
002,'S'
002,'E'
0ff
107
Programa principal del sensor de nivel de líquidos
.=0800
MENVANUEZ: DISPLAY DTNUEZ,VANUEZ
RET
DTNUEZ:
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
.DB
000,001
000,080 ;Set DDRAM
;1
;2
;3
;4
;5
;6
;7
;8
;9
;10
;11
;12
;13
;14
002,':'
;15
000,0C6
;DIRECCION POSICIÓN 2a. LÍNEA
002,'L'
002,'I'
002,'T'
002,'R'
002,'O'
002,'S'
002,' '
002,' '
002,' '
002,' '
;terminador de tabla
.DB
002,'E'
002,'L'
002,' '
002,'N'
002,'I'
002,'V'
002,'E'
002,'L'
002,' '
002,'E'
002,'S'
002,' '
002,'D'
002,'E'
0ff
.END RESET
108
Anexo C
PROGRAMA DE LA MACRO PARA EL CONTROL DEL EXHIBIDOR DE CRISTAL LÍQUIDO.
;MACRO DISPLAY
.MACRO DISPLAY TABC,TABRAM ; TABLA DE CONTROL Y TABLA DE RAM
.MLOC LDISP
.MLOC N1
.MLOC N2
.MLOC PRAM
.MLOC COMAND
.MLOC CONST
.MLOC DELAY
.MLOC LUP
.MLOC DELAY1
.MLOC LOOP1
.MLOC DELAYB
.MLOC LOP
.MLOC DELY1
.MLOC LOP1
.MLOC FINM
.MLOC FINMAC
PORTFDS
PORTFC
PORTFD
= 094 ; DATOS DEL PUERTO F DE ESCRITURA
= 095 ; CONFIGURACION DEL PUERTO F
= 096 ; DATOS DEL PUERTO F DE LECTURA
PORTLDS
PORTLC
PORTLDE
= 0D0 ; DATOS DEL PUERTO L DE SALIDA
= 0D1 ; CONFIGURACION DEL PUERTO L
= 0D2 ; DATOS DEL PUERTO L DE ENTRADA
PORTGDD
PORTGC
PORTGD
= 0D4 ; DATOS DEL PUERTO G DE ESCRITURA
= 0D5 ; CONFIGURACION DEL PUERTO G
= 0D6 ; DATOS DEL PUERTO G DE LECTURA
PORTCDD
PORTCC
PORTCD
= 0D8 ; DATOS DEL PUERTO C DE ESCRITURA
= 0D9 ; CONFIGURACION DEL PUERTO C
= 0DA ; DATOS DEL PUERTO C DE LECTURA
PORTDD
= 0DC ; DATOS DEL PUERTO D DE ESCRITURA
ICNTRL
= 0E8
CNTRL = 0EE
PSW
= 0EF
SIOR
= 0E9
S = 0ff
LD
LD
B,#TABRAM ;B =DIRECCION VARIABLE EN RAM
A,#L(TABC) ;A =PARTE BAJA DE DIRECCION DE TDISP
LDISP:
INC A
X A,APUNTA
;APUNTADOR = TDISP+1
LD A,APUNTA
DEC A
;A = TDISP
LAID
;A = CONTENIDO DEL 1ER. BYTE DE LA TABLA
X A,VAR1 ;VAR1 = 1ER BYTE TABLA ;A=XX
;CONTRA VAR1 SE PREGUNTARA SI ES $FF,$00,$01,OTRO
LD A,#0FF ;FF = VA HA PREGUNTAR SI ES FIN DE TABLA
IFNE A,VAR1 ; ?A NO= VAR1 (FF NO= 1ER BYTE)
110
Anexo C
N1:
N2:
JP N1
;SI SON DIFERENTES SALTA A N1
JP FINMAC ;SALTA A FIN DE MACRO
CLR A
IFNE A,VAR1 ; ? VAR1=0
JP N2
JP COMAND ;SALTA A PROTOCOLO DE COMANDO DEL LCD.
LD A,#001
IFNE A,VAR1 ;? VAR1 = 01
JP CONST ;SALTA A PROTOCOLO DE CONSTANTE
PRAM:
;B ENTRA APUNTANDO AL SIGUIENTE BYTE A DESPLEGAR.
SBIT 5,PORTLDS ; RS = 1 (CONSTANTE)
LD A,[B+]
X A,PORTFDS ;ESCRIBE EN EL PUERTO F
;GENERACION DEL ENABLE 0..... A ...1
SBIT 7,PORTLDS
JSR DELAY
RBIT 7,PORTLDS
JP FINM
COMAND:
RBIT 5,PORTLDS ; RS = 0 (COMANDO)
LD A,APUNTA
LAID ;A = BYTE PAR DE LA TABLA DE CONTROL
X A,PORTFDS ;ESCRIBE EN EL PUERTO F
;GENERACION DEL ENABLE 0..... A ...1
SBIT 7,PORTLDS
JSR DELAY
RBIT 7,PORTLDS
JP FINM
CONST:
SBIT 5,PORTLDS ; RS = 1 (CONSTANTE)
LD A,APUNTA
LAID ;A = BYTE PAR DE LA TABLA DE CONTROL
X A,PORTFDS ;ESCRIBE EN EL PUERTO F
;GENERACION DEL ENABLE 0..... A ...1
SBIT 7,PORTLDS
JSR DELAY
RBIT 7,PORTLDS
JP FINM
DELAY: LD
CNTR1,#00B
LUP: JSR DELAY1
DRSZ CNTR1
JMP LUP
RET
DELAY1: LD
CNTR,#07F
LOOP1: DRSZ CNTR
JMP LOOP1
RET
;
DELAYB: LD
CNTR2,#0FF
LOP: JSR DELY1
111
Anexo C
DRSZ CNTR2
JMP LOP
RET
DELY1: LD
CNTR3,#0FF
LOP1: DRSZ CNTR3
JMP LOP1
RET
FINM:
LD A,APUNTA
INC A
JMP LDISP ;SALTA A CICLO DISPLEY
FINMAC: NOP
.ENDM
112
Anexo D
ANEXO D
FOTOGRAFÍAS DEL SISTEMA
113
Anexo D
Fotografía 1. Sistema completo del sensor de nivel con fibras ópticas.
114
Anexo D
Fotografía 2. Vista en planta del receptor óptico y el exhibidor AND491
115
Anexo D
Fotografía 3. Vista en planta del contenedor con el sensor de nivel.
116
Anexo D
Fotografía 4. Circuito electrónico del emisor óptico.
117
Anexo D
Fotografía 5. Circuito electrónico de la interfase y el receptor óptico.
118
Anexo D
Fotografía 6. Detalle de la placa con el código binario.
119