Glass Talk GSA
Transcription
Glass Talk GSA
Anaerobic Oxida.on of Methane Coupled to Metal Reduc.on in an Archean Ocean Analogue Jennifer B. Glass School of Earth and Atmospheric Sciences & School of Biology Georgia Ins<tute of Technology Coauthors: Marcus S. Bray, Benjamin C. Reed, Cecilia B. Kretz, Neha D. Sarode, Thomas J. DiChris<na, Frank J. Stewart, David A. Fowle, Sean A. Crowe GSA Session “Harnessing Omics to Advance the Geosciences” October 21, 2014 Thermodynamics of Methane Oxida.on -‐0.5 0 +0.5 Fe(III) +1.0 Eh (V) O2 NO3-‐ Mn(IV) NO2-‐ Electron acceptors SO42-‐ CO2 Organic maQer H2 CH4 Electron donors Thermodynamics of Methane Oxida.on -‐0.5 0 +0.5 Fe(III) +1.0 Eh (V) O2 NO3-‐ Mn(IV) NO2-‐ Electron acceptors SO42-‐ CO2 Aerobic heterotrophy Organic maQer H2 CH4 Electron donors Thermodynamics of Methane Oxida.on -‐0.5 0 +0.5 Fe(III) +1.0 Eh (V) O2 NO3-‐ Mn(IV) NO2-‐ Electron acceptors SO42-‐ CO2 Organic maQer H2 CH4 Aerobic methane oxida.on Electron donors Thermodynamics of Methane Oxida.on -‐0.5 0 +0.5 Fe(III) +1.0 Eh (V) O2 NO3-‐ Mn(IV) NO2-‐ Electron acceptors SO42-‐ CO2 Organic maQer H2 CH4 Anaerobic methane oxida.on (AOM) SO42-‐ NO2-‐ NO3-‐ Fe(III) Mn(IV) Electron donors Microbiology of Anaerobic Methane Oxida.on -‐0.5 0 +0.5 Fe(III) +1.0 Eh (V) O2 NO3-‐ Mn(IV) NO2-‐ Electron acceptors SO42-‐ CO2 Organic maQer H2 CH4 FISH image courtesy of Shawn McGlynn Anaerobic methane oxida.on (AOM) SO42-‐ NO2-‐ NO3-‐ Fe(III) Mn(IV) Electron donors Microbiology of Anaerobic Methane Oxida.on -‐0.5 0 +0.5 Fe(III) +1.0 Eh (V) O2 NO3-‐ Mn(IV) NO2-‐ Electron acceptors SO42-‐ CO2 Organic maQer H2 CH4 FISH image courtesy of Shawn McGlynn Anaerobic methane oxida.on (AOM) SO42-‐ NO2-‐ NO3-‐ Fe(III) Mn(IV) Electron donors Haroon et al., Nature, 2013 Microbiology of Anaerobic Methane Oxida.on -‐0.5 0 +0.5 Fe(III) Wu et al., 2012, J Bact Organic maQer H2 CH4 FISH image courtesy of Shawn McGlynn +1.0 Eh (V) O2 NO3-‐ Mn(IV) NO2-‐ Electron acceptors SO42-‐ CO2 Anaerobic methane oxida.on (AOM) SO42-‐ NO2-‐ NO3-‐ Fe(III) Mn(IV) Electron donors Haroon et al., Nature, 2013 Microbiology of Anaerobic Methane Oxida.on -‐0.5 0 +0.5 Fe(III) Wu et al., 2012, J Bact Organic maQer H2 CH4 FISH image courtesy of Shawn McGlynn +1.0 Eh (V) O2 NO3-‐ Mn(IV) NO2-‐ Electron acceptors SO42-‐ CO2 Anaerobic methane oxida.on (AOM) SO42-‐ NO2-‐ NO3-‐ Fe(III) Mn(IV) ? ? Electron donors Haroon et al., Nature, 2013 Fe/Mn-‐AOM as an important metabolism in Archean? Abundant substrates: Fe(III), Mn(III, IV) and CH4 Banded Iron Forma<ons, W. Australia Johnson et al., PNAS, 2013 AOM at Archean-‐ Proterozoic Boundary? Hinrichs et al., 2002, Geochemistry, Geophysics, Geosystems Fe/Mn-‐AOM in marine sediments Science 2009 Fe-‐AOM in lake sediments Fe-‐AOM in oil-‐contaminated aquifer and subsurface marine sediments Archean Ocean Analogue: Lake Matano, Indonesia Abundant goethite from laterite soils Crowe et al., 2008, PNAS Crowe et al., 2011, Geobiology Lake Matano water column depth profiles SO42-‐ Mn O2 CH4 Fe Crowe et al., 2011, Geobiology Enrichments from Lake Matano sediments Layer 1 0-‐5 cm Layer 2 5-‐10 cm Layer 3 10-‐15 cm Sediment core CH4 CH4 CH4 N2 Ar.ficial freshwater medium Lacking nitrate/sulfate N2 Metal substrate Fe(III): goethite (10 mM) Mn(IV): birnessite (10 mM) N2 Measured Ferrozine for Fe(II) DNA for 16S amplicon MiSeq sequencing Methane s.mulated Fe(III) reduc.on in all layers 10 90 days Fe(III) reduced (mM) Layer 1 (0-‐5 cm) 8 6 Layer 2 (5-‐10 cm) Layer 3 (10-‐15 cm) 4 2 0 CH4 N2 Methane s.mulated Mn(IV) reduc.on in surface layers Mn(IV) redcued (mM) 10 90 days 8 6 4 2 0 No shuQle CH4 No shuQle No CH4 N2 Microbial taxonomy in Fe(III) enrichments Percentage Total Sequences Depth 0% Inoculum 0-‐5 cm CH4 N2 10% 20% 30% 40% 50% 60% 70% 80% 90% Gallionellaceae Rhodocyclaceae Bacteroidales Methanobacteriaceae Rhodocyclaceae (Azospira) Geobacteriaceae 100% Microbial taxonomy in Fe(III) enrichments Percentage Total Sequences Depth 0% 20% 30% 50% 60% 70% 80% 90% 100% Gallionellaceae Rhodocyclaceae Methanobacteriaceae CH4 Geobacteriaceae Rhodocyclaceae (Azospira) N2 0% Inoculum 5-‐10 CH4 cm N2 40% Bacteroidales Inoculum 0-‐5 cm 10% 10% 20% 30% Bacteroidales 40% 50% 60% 70% Geobacteriaceae Misc. Crenarch. Group Rhodocyclaceae Rhodocyclaceae Geobacteriaceae 80% 90% 100% Microbial taxonomy in Fe(III) enrichments Percentage Total Sequences Depth 0% 30% CH4 N2 60% 70% 80% 90% 100% Geobacteriaceae Rhodocyclaceae (Azospira) 10% 20% 30% 40% 50% Bacteroidales 70% 80% 90% 100% 80% 90% 100% Rhodocyclaceae Geobacteriaceae Rhodocyclaceae 10% 60% Geobacteriaceae Misc. Crenarch. Group 0% Inoculum 50% Gallionellaceae Rhodocyclaceae N2 Inoculum 5-‐10 CH4 cm N2 40% Methanobacteriaceae CH4 0% 10-‐ 15 cm 20% Bacteroidales Inoculum 0-‐5 cm 10% 20% 30% 40% 50% Gallionellaceae Rhodocyclaceae 60% 70% Geobacteriaceae Miscellaneous Crenarchaeotal Group Rhodocyclaceae (Azospira) Geobacteriaceae Possible players in methane-‐metal interac.ons • Diverse methanogens reduce Fe(III) (Bond & Lovley, 2002) • Geobacter-‐methanogen interac<on? Geobacter metallireducens Methanosarcina barkeri Rotaru et al., 2014, AEM Comparison between Fe(III) and Mn(IV) enrichments Depth 0-‐5 cm +CH4 Percentage Total Sequences 0% Inoculum Fe(III) Mn(IV) 10% 20% 30% 40% 50% 60% 70% 90% Gallionellaceae Rhodocyclaceae Bacteroidales Methanobacteriaceae Methanobacteriaceae Misc. Cren. 80% SB-‐45 (OP9-‐JS1) Geobacteriaceae MBGB Others 100% Comparison between Fe(III) and Mn(IV) enrichments Depth 0-‐5 cm +CH4 Percentage Total Sequences 0% Inoculum Fe(III) Mn(IV) 30% 40% 50% 60% 70% Misc. Cren. 10% 90% 100% Geobacteriaceae SB-‐45 (OP9-‐JS1) 20% 80% Gallionellaceae Rhodocyclaceae Methanobacteriaceae Methanobacteriaceae Fe(III) 0% 5-‐10 cm +CH4 20% Bacteroidales Inoculum Mn(IV) 10% 30% 40% Bacteroidales Misc. Crenarch. Group SB-‐45 (OP9-‐JS1) 50% MBGB 60% 70% Others 80% 90% Gallionellaceae Rhodocyclaceae Rhodocyclaceae MBGB Others 100% Comparison between Fe(III) and Mn(IV) enrichments Depth 0-‐5 cm +CH4 Percentage Total Sequences 0% 20% 30% 40% 50% 60% 70% Methanobacteriaceae Methanobacteriaceae Fe(III) Misc. Cren. 0% 10% 90% 100% Geobacteriaceae SB-‐45 (OP9-‐JS1) 20% 80% Gallionellaceae Rhodocyclaceae Bacteroidales Inoculum Mn(IV) 10% 30% 40% 50% MBGB 60% 70% Others 80% 90% Inoculum Bacteroidales Gallionellaceae Rhodocyclaceae 5-‐10 Fe(III) Misc. Crenarch. Group Rhodocyclaceae cm +CH4 Mn(IV) SB-‐45 (OP9-‐JS1) MBGB Others Geobacteriaceae Gallionellaceae Rhodocyclaceae 10-‐15 Inoculum cm Fe(III) Miscellaneous Crenarchaeotal Group Geobacteriaceae -‐CH4 Mn(IV) Rhodocyclaceae Peptococcaceae 100% Ini.al Findings • Methane s<mulated Fe(III) reduc<on in all sediment layers of Lake Matano sediment • Methane s<mulated Mn(VI) reduc<on in surface layers of Lake Matano sediment • Miscellaneous Crenarchaeotal Group, Methanobactericeae, Geobacteriaceae and Rhodocyclaceae enriched in Fe(III) + CH4 incuba<ons vs. primarily Rhodocyclaceae in Fe(III) -‐CH4 incuba<ons • OP9 subclade SB-‐45 enriched in Mn(IV) + CH4 incuba<ons vs. Peptococcacae in Mn(IV) -‐ CH4 incuba<ons Ini.al Findings • Methane s<mulated Fe(III) reduc<on in all layers of Lake Matano sediment • Methane s<mulated Mn(VI) reduc<on in surface layers of Lake Matano sediment • Miscellaneous Crenarchaeotal Group, Methanobactericeae, Geobacteriaceae and Rhodocyclaceae enriched in Fe(III) + CH4 incuba<ons vs. primarily Rhodocyclaceae in Fe(III) -‐CH4 incuba<ons • OP9 subclade SB-‐45 enriched in Mn(IV) + CH4 incuba<ons vs. Peptococcacae in Mn(IV) -‐ CH4 incuba<ons Ini.al Findings • Methane s<mulated Fe(III) reduc<on in all layers of Lake Matano sediment • Methane s<mulated Mn(VI) reduc<on in surface layers of Lake Matano sediment • Miscellaneous Crenarchaeotal Group, Methanobactericeae, Geobacteriaceae and Rhodocyclaceae enriched in Fe(III) + CH4 incuba<ons vs. primarily Rhodocyclaceae in Fe(III) -‐ CH4 incuba<ons • OP9 subclade SB-‐45 enriched in Mn(IV) + CH4 incuba<ons vs. Peptococcacae in Mn(IV) -‐ CH4 incuba<ons Ini.al Findings • Methane s<mulated Fe(III) reduc<on in all layers of Lake Matano sediment • Methane s<mulated Mn(VI) reduc<on in surface layers of Lake Matano sediment • Miscellaneous Crenarchaeotal Group, Methanobactericeae, Geobacteriaceae and Rhodocyclaceae enriched in Fe(III) + CH4 incuba<ons vs. primarily Rhodocyclaceae in Fe(III) -‐ CH4 incuba<ons • OP9 subclade SB-‐45 enriched in Mn(IV) + CH4 incuba<ons vs. Peptococcaceae in Mn(IV) -‐ CH4 incuba<ons Next Steps 1.#Lake#Matano,## Indonesia# 2.#Bay#of#Bothnia,## Sweden# water&&&sediment& sediment& 3.#Coastal#Georgia,# USA# sediment& GEOCHEMISTRY& & Microautoradiography## (14C6biomass)& & Stable#Isotope#Probing# (13C6DNA)& Pyrosequencing# Fluorescent#in#situ## hybridizaFon## & Batch#enrichments# Soluble&Fe(III)& Fe(III)6citrate& Fe(III)6NTA& Fe(III)6EDTA#& Solid&Fe(III)& Ferrihydrite&& Lepidocrocite&& Goethite&& HemaCte&& Methane'headspace' Anaerobic' ''''''Inoculate''''most'ac5ve'' ''''''''to'' 'con5nuous'''''bioreactors' Metabolism& ConFnuous#bioreactors# (Meta)genomics# Fe(III)#reducFon## (total&and&& dissolved&Fe(II))& & FeKAOM#rates& & Phylogeny#&## SpaFal# organizaFon& MICROBIOLOGY& Methane#oxidaFon# (DI14C)& Fe(III)#reducFon## (total&and&& dissolved&Fe(II))& & Methane#oxidaFon# (DI14C)& (Meta)transcriptomics# Methane'bubbling' Anaerobic' A big thanks to…. Georgia Tech Glass Lab Marcus Bray Cecilia Kretz DiChris<na Lab Tom DiChris<na Ben Reed Stewart Lab Frank Stewart Neha Sarode University of Kansas David Fowle U Bri.sh Columbia Sean Crowe CarriAyne Jones Steven Hallam Exobiology Grant NNX14AJ87G …and you all for listening today!!