Aircraft Stability and Control Data
Transcription
Aircraft Stability and Control Data
N69-31783 NASA AIRCRAFT STABILITY AND By Gary L. April CONTROL CR-96008 DATA Teper 1969 Distribution of this report is provided in the interest of information exchange and should not be construed as endorsement by NASA of the material presented. Responsibility for the contents resides in the author or organization that prepared it. Prepared under Contract No. NAS 2-4478 by Systems Technology, Inc. Hawthorne, California for NATIONAL Ames Research Center AERONAUTICS AND SPACE ADMINISTRATION REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U.S.DEPARIMENIOF COMMERCE SPRINGFIELD, VA. 22161 FOREWORD This report was prepared under Contract Technologg_ Inc._ Hawthorne_ California and and Space Administration. The _SA project The STI project engineer The author gratefully was co±lecting_ interpreting_ wishes to acknowledge the in the preparation Gary L. acknowledges NAS2-4478 between the National monitor was Systems Aeronautics L. W. Taylor. Teper. the aid of the STI staff in and organizing the data. The author also fine work of the STI publications department of this Precedingpageblank report. iii ABSTRACT Data of interest to handling qualities investigators is presented for various current aircraft. Included are those required to obtain transfer functions for the aircraft's response to control inputs. Where possible, an analytical description of the aircraft's stability augmentor is given, and also the complete flight envelope of each aircraft is covered for its most commonconfiguration and loading. Computedtransfer functions for various flight conditions are included. _V CONTENTS Page I. INTRODUCTION ] II. A-7A 3 III. A-4D 27 F-]O6B. 49 T-38 57 F-gA 67 IV. v. VI. VII. VIII_ IX. X. XI. F-104 . 73 F-]OSB. 81 B-58 91 NAVION. 99 DC-8 Io9 APPENDIX A. AXIS APPENDIX B. TRANSFORMATION OF NON-DIMg_SIONAL DERIVATIVES TO BODY AXIS APPENDIX C. SYSTEMS_ EQUATIONS COUPLING SYMBOLS, OF MOTION_ NI]MERATORS AND DERIVATIVE TRANSFER v DEFINITIONS STABILI_£ FUNCTIONS, . . A-I AXIS B-] AND C-] SECTION I INTRGDUC The gators those purpose with data response _or required to control those is aircraft y_eneral obtain for the which contents and is b. Flight c. Nominal configuration location). d. References. e. Basic data of the and number Geometrical parameters, TR-176-I are information are the aircraft's of the aircraft's was available, the including: (weight, geometry. limits of for inertias, and the versus nondimensional altitude for longitudinal some the showing elevator lateral aircraft, given description reference augmentor and versus Mach ration. *_ese relating Included and c.g. sources. angle-of-attack the aircraft. investi- envelope. s_d by qualities presentation: gLven_ drawing Longitudinal dictated functLons complete Three-view remaining cl_rrent analytical derivatives, and longitudin_ml for the nominal configuration These data are usually given (body axe s ). For handling given. description A block diagram scheduling. 4. transfer a. Trim provide on various An also the is to data inputs. summarizes A document usable au_nentor folIowLng ]. this readily to stability of TION portion system I Mach number stability the and trimmed gains, and and altitude. derivatives* nominal lateral configu- dimensional and lateral transfer functions at various flight conditions. for body-fixed centerline axes available axis feedbacks, of the above is presented data. of the data source. as The intention has been to makethis report completely self-consistent insofar as symbols, nomenclature, definitions, etc. The system used is described in three appendices. Appendix A covers axis systems, symbols and notation, and definitions of nondimensional and dimensional stability derivatives. Appendix B gives the axis system transformations for the derivatives. Appendix C includes the aircraft equations of motion and transfer functions used herein. While complete coverage of each aircraft including only the "latest" s_d "best" data would be desirable, the major criterion used was that the data be immediately accessible to the author. This is why only isolated flight conditions are given for someaircraft, and also why, as those people more intimately familiar with each particular aircraft will recognize, the data presented may represent an early estimate in the design process and perhaps the "nominal configuration" is one which never left the drawing board. The data have been reviewed and, although not all those presented indicate unquestionable trends, those data known to be based on only early "guesstimates" or showing unreasonable trends have been deleted. As to how well the data can be expected to match the flying aircraft_ it is assumedthat those for whomthis document is intended know well the difficulties of obtaining derivatives from flight test data. Every attempt has been madeto insure reliable translation, interpretation, and transcription of the data from their source documents. The manufacturers of the aircraft described herein can not be held accou_itable for tile infomnation presented, nor would they be bolmd to concur in any conclusions with respect to their aircraft which might be derived from its use. 'lYe- 176-l 2 SECTION A-TA 3 II I c_ i NOMINAL CRUISE CONFIGURATION FLIGHT ENVELOPE Cleon Airplane 60% Fuel 40,000 W = 21,8891bs CG at 30%MGC Ix =13,635 Slug ft 2 [y = 58,966 Slug ft z I z = 67,560 Slug ft 2 Ixz =2,933 Slug ft z REFERENCE X X X X h, (ft) Body Ref. Axes 20,000 GEOMETRY X O0 .4 X . 1.2 S = 375 ft 2 X c = 10.8 ft Tronsfer functions given for these flight condlHons b = 38.7ft I) LTV Vought Aeronautics Div. Rept. No. 2-53310/5R-1981, '_,-TA Aerodynamics Data Report" 21 Moy 1965 (U) 2) LTV Vought Aeronoutics Div. Rept. No. 2-53310/5R-5121, Rev. I ,"A-7A Estimoted Flying Quollties" 20 August 1965 (C) 3) LTV Vought Aeronoutics Div. ,"Updoted LateroI-Directionol A-TA Cruise Device Configurotion BASIC DATA SOURCES Wind Tunnel Test ond est,motes u Some LoteroI-Directionol Derivotives Adjusted After Flight Test Aircraft Doto, 25 Augur 1967 PITCH AXIS GZ , X= • v (ft/sec (Ib) _ep _._ 57.3 .5 Ib rad ' _j 55s + z) A-7A i) }-_: 1- I -.25 rad/sec rad 152.2 rad i_ 5z3 ft/sec2 IROLL AXIS . rod (Ib) = 5L_ __] -L!2_iic.,_+,l rad _ .10 rad/sec YAW pi (rad/sec) I_ AXIS (rad/sec) _rp I,__-_, A-TB rR6 r --_. Cos 2.50 b P (red/sec) t -2 5 rad/se_ red _-J Sin 2.5 ° I__ F __+1 _KARI aa T.E. up (rcJd) l°t/I _e 1.5 Figtu.e 11-2. A-TA [_tabilit¥ 5 (deg) Au{_rtentation System = (red/sec) =- 14 I , ,ooof, 12 ........... Sea Level GO I0 (deg) 8 \ _ _N35,000ft i L .4 .6 .............. _f .... 2- °6 .2 M i I .8 1.0 1.2 -I0 I ,15,00Oft I Sea Level (deg) -6 " m 4 .... I -2 0 TR--] 76-I 0 .2 .4 .6 _ M .8 1.0 1.2 .8 I 15,000ft .6 eL .2 O0 .2 .4 .6 M .8 1.0 1.2 1.0 .2 .14 15,000ft .12 I CD .08 .04 .............. Sea Le!: ¸- 06 TR-176-1 \ .2 .4 .6 7 M .8 6 , I , i I i , .... i 55,000 ft / t / ' _ _"_15,000ft ,,b/l" ! / 1 Sea Level .... i ___ 0 .2 2.0 .4 .6 i M .8 1.0 1.'2 1.0 ;.2 ! i IZ 15,00Oft 1.6 CD a Sea Level (_ \ XXX\\, 35,00Oft .8 \\x. ii \ 4 ....................... (7) .: i J. ................ f_ ............ i _.J .... ..£- ! --0 ....2" I .... oo 0 o. > ._J 0 0 o Q _ o. 0 I/ I L_ 'i io o (xl Od I ! L 0 0 i 0 o. I I L 0 Q T o. e_ I ° I_ E _ -v E -V 0 __V_ o 0 0 I I ! E -v 0 .12 .08 , t , I ............... //Q 35,00Oft / CL M iI1__. I .04 15,000 ft _ , uu 0 / / -.04 -'080 .2 .12 ea Level I- .4 .6 1......... 4 M .8 1.0 1.2 T Oft .08 - Sea Leve! 15,000 _t(__, C DM I .04 i 0 -.04 ................ 0 q .4. .6 .',4 8 !0 r) .O4 I I Sea Level ', 0 Cm M -.04 \ -.08 "_' 15,000 f, \ \ \ -.12 - .. \ © ss,ooo, i -'160 TR-17,]-i I .2 i i .6 4 I1 M .8 1.0 1.2 .8 _.&.35.oo'o.t .6 CLB e "" _ ' \ _.151000ft ........ T""".. .4 .2 .............. ! [ l t 0 o .2 0 .4 .6 M .8 1.0 .2 .4 .6 M .8 1.0 1.2 J.. -.60 ......... -I ......... .......... !...... i....... 7/ -.80 CmB e Sea Level __ !___....._? ! -1.00 , e_ ,//-_ ,,_ 15,00Oft .......... _ 35,00Oft I t -1.20 1 0 .2 .4. .6 [ Cy.8 -.7 _ -.8 ............. i ......... M .8 1.0 1.2 1.0 1.2 L 1.---------E_,_ -- 1.............. -- ------ 7.................. ............ Sea Level/_ -I.0 0 I ] i l .2 .4 .6 --'- -i .... M .8 -.06 -.lot-............:f--_- ............. /Sea Level "(.D -.izl TR- 17c7-1 .......[C-;_- _--- i 13 ...... _-C__35_,QQQf 1..... I J I 0 .2 .6 .4 M .8 1.0 .12 Sea Level 35,000 15,000 Cn/_ ,10 li7_ .O8 .06 mR-17<7-1 14 ft .2 0o .2 .4 .6 M ,8 1.0 1.2 -.I C_p i Sea Level _3 35,oo;_i__ -.4 15,ooo. ..... -,5 .O6 I I I i .O4 Cnp .02 15,00Oft l 0 tSea Level -.02 -.040 ii135,000, ft .2 T ' L C._r Sea Level _'_',,,u _. O0 -- 0 I 15,00Oft 1 . .4 .6 M .8 1.0 1.2 .2 .4 .6 M .8 1.0 .2 Cnr , _/"'_ _'_ /'i ,. Sea Level "\ t -.s6--- 35,00Oft ".-,. -- ,-- 4,,.. : |I 55, O00f,\ _ "NI5'OOOft J---_....... _...........]............. t-----:, --\ <- --.... ! -.40 ................. [ M 00 .2 z .6 .8 1.0 1.2 ! ,5,ooof,p -.01 (_._.._ I See Leve_ / -.02 -.05 _QR_Q - _OL 2 (Includes Spoiler (_.... 1 Effects) .O8 I .O6 C_.8o (') .O2 - o6 TR-176-I , .2 x,_ .4 .6 17 M .8 1.0 1.2 .006 .004 011{}_ ) .002 0 - .002 i']_-1'7"_;-i 1_ .3 Cy_r .2 0 Sea Level __ i 0 .2 .O3 "-'_ .01 0o TR- 1yC-I 35,000 ft Sea Level i .2 l .4 .6 i9 ..... M .8 1.0 1.2 ! I, I ! V ! ! 0 ! b oo ! b ! ! b b _b 0 0 PO 0 0 TABLE GEOMETRICAL Note: I -q Oh I Data for body-fixed S = 375 ft 2, W = 21,889 centerline b = 38.7 ft, ib, PARAMETERS axis, FOR THE A-7A clean flexible airplane c = 10.8 ft m = 680 slugs, Ix = 13,635 slug-ft 2, II-A c.g. at 30 percent !y = 58,966 slug-ft 2, MGC !z = 67,560 FLIGHT slug-ft 2, Ixz = 2,933 slug-ft 2 CONDITION I h (ft) BO M (-) a (ft/sec) 0 (slugs/f@) I 2 3 0 0 0 0.S5 0.6 0.9 0.3 0.6 0.9 1.1 1,117 1,117 1,117 I,058 I,058 I,058 I,058 0.002378 O. OO2378 O. 002378 4 15,000 0.001496 5 15,000 O. 001496 6 15,000 O. O01496 7 15,000 O. O01496 8 35,000 9 35,000 0.6 0.9 973.3 973- 3 o. 000736 O. 000736 279 670 1,005 317 635 952 1,164 584 876 91.5 534 1,200 75.3 301 677 1,OLO 126 283 11.2 2.9 2.1 13.3 4.0 2.5 2.9 7.Y 3.8 Uo (ft/sec) 274 669 1,004 3O9 633 951 1,163 579 874 Wo (ft/seo) 54.2 33.9 36.8 72.9 44.3 41.5 58.9 76.2 58. I 6eo (deg) -7.4 -3.35 -3.8 -8.8 -3.8 -3.85 -4.95 -5.4 --a._ 0 o VTo (ft/sec) ov /2(lb/ft2) s o (aeg) 7o (deg) 0 0 0 0 0 0 0 _" 0_O9 LO0"0-6C_'0- 6L'_C_9ooo" o oCC" O- _'_-_- L'Lfr- _?_oo'o _6LOO'O-- L_'L- £0"L-- _000"o+ o9_ooo'o- C9 Looo" o- LLLOOO'O- 0C5L0"0- LL_O0"O-- 6_90"0- "_'66- _'C_- O_- _6C0"0-- C_Co'o 6£_oo'o _'o-- _C "_- _L'_- __0" O-- LO'L-L9"9 oi'_ C6LO'O- ).CCoo"o 9LCO'O 6"0 000 c_C 6 6"gL-- 969"O-- _6_o'o6o_- _'LL _OLO0"O 9L LO0"O £C LO0"O LOGO0"o L_" L-- LL'L- 99?'o- CRL0"0- £££oo" o- _o_o" o-- ?_0"0-9L'L-- 9"C_£ _9o" o._Y" o,f C9_ o_9oo" o- LOGO0" o 6CCo'o 9"0 L'L 6"0 000 c_ 000"_ L O00(_L 000 ( _ L 9 ff LC_o" o 9"0 797oo" 9oCooo" _gLO'O C'O 000 _CL _ 99_ooo" o- _96oo" o- 0"6_- _9 L??_oo" o- ULgO" o6LL" o- _6" L- O?'C9"LL o o- _C_o'o- 9L_- 96"9 9%_o'o L o- _-_" C_- oLCooo" o- 0_0" 0-- 9 o_" 9"0{- 9£ LO00" 0-- LC_O'O-- 9t[LO'O CgLO0"O 9" 9Y- OL_OOO'O-- 9"66- CL'6 _'?- T_I_ I e9 Z nZ _Z _9 X +_C"T _£Lo'o.-- _LO'O- s9 LO'O 79_0"_ 99 go" o--- _LO'O-- 6"0 9"0 _'0 0 0 0 C _ L Od O4 z _KIO I,I, ! CLI_O 0 J_ff-IDl'l, q 7 <o b- 7 Gu_Td_T _ elqTx_lj Um_TO (sTx_ GuTiz_%u_o p_xT.j-Xpoq zoj _ VZ-V ZHZ EO_ _ZAIZVAI_{Z(I_IVII0!TK!Zk_CgV__IIC/IZID_I0q E-If :EIEVg m%_C :_%oz TABLE LATERAL Note: Data are for body-fixed DIMENSIONAL I!-C DERIVATIVES centerline axes, clean FOR _ A-7A flexible airplane I -q O_ I FL!_T 1 2 3 h 0 0 0 M 0.25 0.6 0.9 4 15,000 CONDITION 5 '_ 15,000 6 7 I5,000 8 I5,000 9 35,000 35,000 0.6 0.9 i 0.3 0.6 -o.187 -0.162 -0.314 -0.574 -0.722 Y6 a -O. 00274 -0.oi 05 -0. 0085 7 -O.OO15O Y6r o.o43o 0.0769 o.o626 1.1 0.9 -0.310 -o.435 -0. 0847 -o. 145 -o.oo655 -0. OO691 -0. 0021 6 o. 0537 o.o55o O. 0792 0.0267 -29.2 -66.0 -71 .2 -14.9 -3o. 6 -2.73 -6.79 -7.31 -i .4o -3. oo 0.857 o .868 0.843 o. 859 o.599 o .563 3.75 17.6 24.1 12.5 7.96 14.2 7.27 11.2 7.27 3.09 6.55 21 I. 38 4.72 0.0307 -0. 00267 -0.00427 I O. 0347 I h) L_ -11.9 -44.8 -98.o -2. O0 -4.46 -9.75 I .18 i .15 i.38 -8.79 i ! ! Lr ! L5 a -1.38 ! I i 5.34 28.4 25.2 2.22 11.4 13.2 ! L6 r ! ! I .82 1.28 5.74 17.2 1 0.948 I i I i ! E I 3.12 10,2 !i 9 4 T Nr -o. 087o -0. -0.369 -0.905 168 -0.379 -i .54 -0.0310 -0.271 -o.116 -0.207 -0.541 -0.975 -0.169 -1.33 ! N$ r o.4o2 2.08 I .56 o. 28o -1.93 I8.61 --11 .I -1.56 i I I I t -0.112 -o .247 -o.455 i i I N' 6a -o.o799 7.37 1.64 -5.54 -8.8O i 1 t l 1.o4 0.652 I .01 -4.83 --2.54 -5.17 TABLE II-D ELEVATOR Note: Data for body-fixed centerllne LONGI_TDINAL _ANSF_ axes, clean flexible FUNCTION FACTORS FLIGHT _L ! L_ h M 2 3 0 0 0 0.29 t i 15,000 35,000 9 35,000 0.3 "0.6 0. 9 I .I 0.6 0.9 0.316 0.316 o.185 0.229 0.230 1.76 4.21 6.76 I .63 3.15 5.48 8.81 2.08 3.68 0.118 0.0620 (o o_4_) o.589 o.ok49 (0.0616) o.14o O. 071 0 (-0.o513) 0.0372 o.o75: (-0.o9oi) (1/Tp2) o.156 0.o698 o .0472 i _-_ (1/%3) 15,OO0 8 0.277 o.79o _U (!/Tu2) 15,OOO 7 0.9 o.1oo !,'Tu I h) 15,000 6 o.39_ o.o99_ i _/Te2 A_ 5 0.6 _p ; 1/Tm ) !/T81 CONDITION 0.383 sp I As 4 0.367 6DSp 8 N5 e _IE A-7A airplane I I FOR -41.6 -4L.3 o.oo716 o.o_43 o. 0422 0.506 1.o9 I .97 2.02 o.516 0.933 11.6 5.63 6.96 9.13 11 5.70 6.61 186 8.5 12O 190 2_ (I .22) (0.369) o. 627 0.854 (0.899) 0.929 o.753 1.30 (2.28) (0.587) 0.89o 1.24 (i .23) 0.466 o.719 -i® -318 -23.8 -99.6 -209 -22O -43.2 -99._ 126 187 58.9 121 191 2_ 110 -0.o_44 o. o5 67 0.0990 0.0386 (o.o918) (0.o53o) o.o_9_ 24.5 99.8 209 221 43.6 99.7 -5.43 -30.6 _8.4 -45. I -0.0214 0.0122 O. 0728 -0.00823 0-731 1.79 3.19 5-75 8,3_ 5! .i 129 (0.14-11) o .665 (i. o3) -29.o --18.8 .2 -8.18 -0. oo316 109 -20.2 O. 0202 1'7'7 i i Aw 1/Twl w NB e 51.7 .-o.11o I (w (1/T_2) 0.%: (I/Tw 3) o.1o9 29.6 £ /'l'nl -o. 0624 o.239 0.0210 165 (-o.oo6o3) (0.0773) 318 (-0.0o939) (--0.0! 31 ) -o .o553 178 o.419 0.0219 0 .o_31 O.Oh12 -0.o154 0.0173 11 .8 20.0 22.2 7.64 13.2 -_.92 -I I.o -18.7 --21 . 2 -7.22 -12.5 -23.8 -99.6 -209 --220 -43.2 -99.4 0.00956 o.o719 -o. O949 15.6 29.3 5.41 -5 -57 -14.3 -23.3 -29.0 -165 -318 -0.oo998 -0.oo2_ -O.00117 o. Ol 20 0.0729 6.33 15.6 25.3 5.55 -5.73 -14.3 -23.3 -5.o8 o. oo225 N6 e 6.21 I/'i_2 1I%,3 Aa z I/Tazl I/Taz 2 CG I/Taz3 /Taz_ -o. 0506 -0.00417 -o. Oh 97 -o.OO139 -o.OO17o -0. OO25O O.'O445 o.o_25 ---0.0136 o.0197 20.0 22.2 7.69 13.2 -21.3 -7.28 -12. 5 --O.OO4O5 -0.00147 O. OO627 11.8 -I 1 .o --18.7 I TABLE II-E AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE A-TA Note:Datafor body-fixed centerline axes,cleanflexibleairplane FLIGHT CC_DITION I 2 3 4 5 6 h 0 0 0 15,000 15,000 15,0OO M O.25 O.6 0.9 0.3 0.6 O.9 I C_ I 8 35,000 O.6 9 _O00 O.9 0.0214 0.0102 0.0319 0.0191 0.0462 o.o411 0.018o I/T R I.62 4.46 9.79 0.968 2.71 6.17 7.15 1.28 2.92 _a O. 237 0.202 0.218 o.231 o.156 0.179 o.189 o.114 0.128 _d I.81 2.91 4.68 1.65 2.29 3.66 5.o3 I .81 2,58 Ap 5._ 28.4 2_.2 3.79 17.6 2_.I 12.5 7.96 14.2 -o.oo113 -o. 0232 I/T s A 7 15,0OO I.I -o. o219 I/Tpl -0.0o23_ 0.C_35 O.O_L9 -0.oo_7 . -0.00144 -o.oo137 -o.0o718 -43.00241 _a _p 0.217 0.217 O. 222 0.191 o.173 o.176 0.173 0.122 0.124 % I.49 3.05 4.91 I .27 2.34 3.87 5.33 I .62 2.64 5.42 28.5 25.2 3.81 17.7 24.1 12.6 8.0* 14.3 O.210 0.217 0.222 0.183 O. 173 o.177 o.175 0.119 0.124 I.51 3.05 4.91 1.29 2.34 3.87 5.32 I .62 2.6_ 0.402 2.08 I.56 0.280 1.37 1.6_ I.O_ 0.652 1.01 0.596 I .12 1.13 O.445 0.777 o.9_4 0.581 0.420 0.593 0.0852 0.287 0.597 o.i&6 0.151 o._6 0.638 o.o198 0.193 2.35 2.29 3.26 2.18 2.13 2.78 3.98 -0.O0857 -0.00150 -0.0O655 -0.0o691 hD N5 a % Ar I/Tr I :' Nr 5a _r _r -0.0O274 % 11% I (o.885) (_IB) -0.o_05 3.26 7.76 _a (0.667) 11%2 (_) -O. 627 -233 63.1 78.2 -0.766 -7.06 -8.61 (o.9_3) 2.29 (o.@8) 5.92 I/T_3 I/Tay I (_ay 2) i/T_Z2(_y2) CG _&y (1/Tay 3) ( 1/T_y4) -0._4 0.0896 6.37 -0.810 1.76 (0.726) 2.21 (o._71) -1.63 5.77 -o.245 -0.00216 IO.7 --0.113 23.2 86.8 --0.477 -4.16 -6.58 -2.51 -i .16 (0.798) 1.32 -0.596 -0.146 -i .84 (o._61) 3.12 -2.66 (3.65) (1o.7) -391 o. 0673 7.10 --o.29_ .99 188 2.03 -0.00267 2.45 --0.OO427 0.793 (o.872) 0.422 (io.6) -147 -0.545 -I -0.o37_ .56 o.29o (0.801) -7.93 o.961 (2.Zm) (3.79) 0.897 O.O_99 -0.113 (-6.63) 9.31 3.92 1.3o TABLE RUDDER Note: Data ]ATERAL for body-fixed TRANSFER eenterline II-F FUNCI'ION FACTORS axes, clean FLIGHT FOR flexible THE A-7A airplane CONDITION . 0 0 15,000 35,000 35,000 0.9 1.1 0.6 0.9 0.9 0.3 o.o462 0.0411 0.0i80 0.04:9 o.0435 0.0214 0.0102 o.o319 0.0191 I/T R i.62 _ .46 9.75 0.968 2.71 6.17 7.15 1.28 2.92 _d o. 237 O. 202 o .218 O. 231 o.156 o.175 o. 189 0.114 0.128 2°9i 4.6,% I .65 2.29 3.66 5.o3 I .81 2.58 7.27 3.09 6.55 2.22 Ap ---0. 0224 I/_1 11.4. 13.2 18.2 -0,00242 -0.00117 -0.0237 ©.00352 2.33 4.31 6.63 5.56 3.16 4.39 -4.45 -6.33 -4.55 -3.44 -4.38 I .45 6.89 I0.8 7.03 2.75 6.21 2.!!_ 4.3.5 6.64 5.53 3.27 4.4.3 -6.57 -4.76 -3.79 -4.61 -5.54 --8.80 -4.83 -2.54 -5.11 2.68 1/Tp2 -3,38 1/Tp3 1.84 Aq) /%1 5.35 8.31 -5.31 -7.88 10.9 12.8 8.29 7.27 -2.79 11.2 -0.00147 -o.oo141 -0.00723 -0.00243 2.78 5.37 1/%2 -_.11 -5.53 -8.18 Ar -I .93 -8.61 -11 .I I/Trl I .13 4.33 9°87 0.553 2.35 6.12 7.31 0.578 2.64 _r o.538 0.475 O. 674 0o41_ o.473 o.535 o.79o 0.440 0.526 % I .02 o.6_z 0.502 1.17 0.735 0.514-I o.381 I .12 o,585 % O. O430 0.0769 0.0626 0.03c7 0.0937 0.0550 0.0192 0.0267 o.o347 0.000578 O. 00271 2.70 6.17 7.11 113 170 272 NS_r N5 r 15,ooo 0.6 .81 r 15,000 0.25 /Ts A 0 -<).0624 -0.oo199 I/T_2 I .73 4.45 9.76 I/%3 54.7 12o 186 12.0 51.5 62.9 -O.123 -0.0165 -0.00502 i/% i.87 -2. O0 2.60 4-.43 _. 0.00_266 9.57 -3. _8 -4.68 -I .56 -0.O603 -©.00616 1.14 63.6 9._ 314.1 -0.10_ O. 0227 I .27 97 -7.84 --I .96 5 °92 9.77 2.45 2.69 -3.69 -o. 00654 22.4 O. 000648 6.16 7.06 -5.78 -8.91 I .32 -0.0021 2.94 '110 160 15.6 30.4. -0.0436 -0.0107 I.36 2.97 --2.28 -3.81 4.3o 6.80 1o.5 2._1 4.3o L TR-i 52.3 -0.0178 (i-1 26 6 SECTION A-4D 27 Ill Figo_re !Ii- ] A-4D ! I FLIGHT NOMINAL CRUISE CONFIGURATION Cleon Airplane ENVELOPE 60,000 W = 17,578 Ibs CG at25%MGC Ix = 8090 slug- ft z I y = 25,900 Iz = 29,200 slu9- ft z sluo-ft z Ixz = 1:500 stug-ft 2 Body Ref. Axes 40,OOO h(ft) 20,000 REFERENCE / GEOMETRY S = 260 ft 2 c = 10.8 ft SL 1.0 0.2 b = ?_7.5ft X REFERENCES I) Abzug, M.J. and R.L. Faith, Aerodynamic Data for Model A4D-I _OperotiormlFliqht Trainer, Douglas Aircraft Co. Report ES-26104, November I, 1955 2) _Johnston,D.E. and D.H.Weir, Study of Pilot-Vehicle'Controller Integrotion for A Minimum Complexity AFCS, Systems Technology, Inc. Technical Report No. 127-1, July 1964 BASIC DATA SOURCES Wind Tunnel Test Envelope for model A-4D-I Transfer functions given for these flight condition ROLL PITCH ! I az ,_x=?) .-.j I _ep P ..__+t< A-4D A-4D _ap t ['0 FilterPass Low + Kp" Gain in deg/deg/sec,scheduied for indicated air speed _" I K_ , Koz • Scheduled for indicated airspeed YAW L (_rp Note: n System used on the A4D-2N Control stick steering mode model only. shown Kr : Gain in deg/deg/sec, for Figure r A-4D r_ iii-2. A-4D _ Stability Augmentation System scheduled indicated air speed 14 12 ao I0 (deg) 8 \\35,000 6 ft \\ \ 4 2 0 0 T_-I 7!]-1 .2 .4 .6 M _.50 .8 1.0 .8 CL .6 \ 55,000 ft " .4 Sea .2 Le ...... 0 0 .2 .4 .6 .8 1.0 M i 35,000 .06 ft / \ \ .04 O0 ft .02 00 •2 .4 .6 M TR-17g-I 31 .8 1.0 5 CLcl 4 _ All Altitudes 5 2 0 .2 .4 .6 .8 1.0 M 1.4 1.2 / 1.0 All Altitudes / 0.8 ] 0 .2 .4 .6 M Tl_-176-1 32 .8 1.0 q o. f \ / O O O to j 0 co c0 i/ I ,4--. m O 0 O , r_h 4 i I ! i i ! Q 00 @ ,_- ea O (D l (D oa _. I _0 oo I ! O m i ¢.2 t_l I I E E_ -1.0 All Altitudes -I.2 -I.4 -I.6 -1.8 - 2.0 V -2.2 0 Z .2 .8 .6 M Cmq All ! _- 17_- I 34 Altitudes I.O It-- 0 0 0 0 Q o LO 0 o. o. _i ._.u_ 0 0 C 0 0 0 o---_ co \\ 0 0 \ ro C_ \ ----C_ 0 -- ro L r_ ;0,1 0_1 0,1 0 0 0 0 ,_, cO ----- '_ o 0 _ I E _. _. I I i rj _L I E_ o. / o. O O o. O O cO I OO ¢.D o__ i L _,,.0 O,I O,1 O O _" I ¢.D ! O OO --_ o O "_I I O _7 _0 D-- _7 --.9 Sea Level c_ -I.0 ....... (r+,) -I.I 15,0( .............. ft -12 0 .2 .4 M .6 .8 0 1.0 I Sea Level .m._. r_ j 15,000 ft _ " fl.mil.l_. 35,000 -.2 - -.3 0 .2 .4 .6 .8 1.0 M .4 5,000 ft .3 _/5,000 .2 ft Sea Level ---- .I 00 .2 .6 .4 M TR- ; 7__-L Y( .8 1.0 -.2 All Altitudes -.3 -.4 0 .2 .3 .4 .5 .6 M .06 Cnp .0, / Seo Level/ ! / / t .02 / / 15,000 / / _J / 55,000 0 ft f .2 .4 .6 M _-17_-i 38 .8 1.0 .2 15,000 ft _._ Sea Level _- C_. r (-)., Cn r 0o .2 z 0 .2 .4 5,ooo - M M _ .6 .8 1.0 .6 ,8 1.0 %3 Sea Level 15,000 ft ¢ -._ 35,000 -.5 TR-176-I 39 ft o. q L r_ o I \ 00 co m \ i i o 0 i - I .J o 0 _I 0 _D 0 0 _ I' I I if) J i _0 1 ii IJ ._I i o J I i I1) oo 0 ! i, 0J Od co 0 0 O_ I I i i B 0 o i I _ aJ I" q I 0 q 0 0 0 q o. q o q q 0 I ! O 0 D 0 v DI CY8 r .2 L All Altitudes .I Cn8 r 0 .2 .4 M .6 .8 1.0 0 .2 .4 M .6 .8 1.0 -.06 ........ i ' ............................................... -.12 I .06 I .04 seoLeve, y_ ,5,ooo,,_+"_,++-35,ooo,, l .02 0 TR-176-] •2 .4 4] I M .6 .8 1.0 0 0 {'6? {'@ £'£{ 0 0 0 ?"g9 9"9 9 "9{ (oas/as) °M 9q? (oas/_s) °n ?'A 9"LL £Ad 9_o t sg6 9L? og6 9"9 07"0 0£'0 6"9 6"0 9_L 9{9 ££9 _7{t @6 9£9 t_9d 9_o L 9{£ooo'o 9{£ooo'o 967L00"0 {'{L6 {'{L6 9_o L 6"0 9"0 o't ooo'd{ ooo'gL 6"_ ooo'_{ 9 k Lo{ 967L00"0 967t00"o 95o L 95o L ooo'dt 9 d (_ap) % £{s og6 s{6 6"0 (_ap) oz 96qtoo'o 9_o L 9£{soo'o (oas/%j) °SA 9£{soo'o ILLL LLLL oJ 9"0 _'o gg"o _'o (-) O00'gL O00'dL 0 0 (a_) _ L _ { _OI$1CAIOO $H0!_£ 8%fl_UT_ 0£0_ --: zx! _8%j-_nTs 00_98 = zI _8%J-gnIS 006_8 %J 9"Or = X I _8%j-gnTS O_L_9 = xI 7 = o _%g _'£8 = q _8%J 098 = S <o b- :a%o£ C¢[-V _{Z HOg T_Z,I,ZKrV_IVcl_IVOI_Z2MOZO V-Ill Z_[V_ 7 TABT__ LONGiTUDiI_AL Note: Data are for body-fixed DiY_SIONAL centerline IiI-B DERIVATIVES axes, clean FOR THE flexible A-4D air!o lane. ! FLIGHT C OE_DIT!OI[ ! i 2 3 4 5 6 7 8 h c o 15, ooo _F_ ooo 15_ ooo 15, ooo 35, ooo 35, ooo x 0.2 0.85 0.4 0.6 0.9 1.o 0.6 0.9 0.052 0.0422 -0.0303 --0.0251 -0.00938 -0.0615 -0. --19.723 --15.289 Xw 0.0687 -O.0215 Xu -0.00934 -0.0298 XSe 7.6i2 Zw -0.899 0.000877 --33.942 6.068 -2.23 -0.535 7.396 -0. 922 -I ._78 _ 1343 -i .892 0.0227 --0.O212 0.000806 -0.02_2 6.288 --3.8_:3 -0.3874 -0. 677 I Zu --0. 0765 -0.0982 -O. 0704 Z_ e --42.08 --188.28 I --22.273 Mw --0.0228 -0.0502 I M@ -0. 000763 -0. 0533 --0.1174 -0. 0487 --O. 05 25 -0. 0869 --56.68 --103.23 -94.606 --23.037 -_'3. 149 -0.0131 -0.0204 -0.0379 -0.1072 --0.00908 --0.01739 --0. 00131 -0. 000476 --O. 000555 --0. 000902 -0. 000683 -0. 000270 -0. 000423 Xq --I. 151 --2.936 --0.670 --I .071 Mu 0.00232 0.00340 0.00253 0.00162 M_e -13.728 --63.987 -7.400 -19.256 --i .93 k -0.00906 --33.809 --2.455 0.00263 -7! .773 --0. LS4 -0.876 0.001824 -$.096 -0.00412 I I --14.084 TABLE LATERAL Note: Data are for DIHZFSiONAL body-fixed IIi-C DERIVATIVES centerline axes_ FOR clean THE A-4D flexible airplane. I O_ I FLIGHT I 2 3 h 0 0 M 0.4 o.85 0.4 --O.2484 --0.5755 Ysa -0. 00582 %r 15,000 4 15,000 CONDITION 5 6 7 8 15,000 15,000 35,000 35,000 0.6 o.9 1.o o.6 o.9 -0. 1476 -0. 228 -0.3628 -0.358 --0.1 034 --0. 1596 -0. 00807 --0.00188 --0.0038 -0. 0055 6 O. 00207 -0. 000819 -0. 002763 O. 044 O. 0898 O. 02561 O. 03958 O. 0549 O. 049 O. 01791 O. 02487 L5 --29.71 --I18. I --17.52 --35.95 -82.086 -82.02 --17.557 -£0.7 6 --I.813 --3.844 --I.111 --I.566 --2.503 --2.708 --0.761 --1.167 0.8731 I .776 0.613 0.812 I .208 1.113 0.475 0.6227 17.2 6£.359 8.99 21.203 39.282 44.89 8.1704 16.85 8.217 37.214 k.309 10.398 22.103 22.943 4.1675 8.717 13. 203 67. 279 6.706 16. 629 £2.527 39.85 6.352 17.31 Yv ! T L8 a ! LS r Hr -0.029 0.02953 -O.0348 -0.02173 0.01647 -0.0260 -0.02513 i --0.00539 -O.5761 -1.4 -0.3432 -0.5144 -0.899 -0.88 -0.2468 -0.3893 5.484 0.538 1.769 17.43 3.212 0.5703 1.399 -26.642 -3.280 -7.78 -16.36 -16.562 -3.16 I T N8 a 1.4875 N' 8m -6.1953 -6.744 TABLEIII-D ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FORTHEA-4D Note: Data are for body-fixed centerline axes, clean flexible FLIGHT I h M o.4 2 airplane. CONDITION 4 5 6 7 8 35,000 35,000 0 15,000 15,000 15,000 15,000 0.85 o.4 o.6 o.9 1.0 o.6 o.9 _sp 0.352 0.435 O. 2838 0.301 0.3435 O. 233 0.214 0.2478 _sp 3.39 7.348 2.445 3.718 6.232 IO. 857 2.358 3.951 A _p( I/Tpl ) O. 0735 o.195 0.682 o.086 a_o(I/Tp2) O. 1035 0.08615 o.11o5 0.0747 --13.726 -63.98 -7.4 -19.456 I/Tel 0.0141 0.0319 0.00353 0.0112 1/Te2 0.8234 2.079 0.489 0.76 -34.074 6.076 Ae N_)e Au 7.628 I/Tu I 66.931 (-0.o6835) (0.02574) o.0859 (-0.oso) (0t1101) (0,1019) O. 0822 (0.0563) -33.805 -33.771 -8.096 -I 4.083 O. 1284 -0.o0o615 1.362 1.572 0.3591 7.4o8 -19.776 -15.32 6.293 -3.878 80.193 99.8 --2O.49 --13.172 115.28 -160.9 (2.615)i 0.725 0.638 (G.98) 0.49 0.8554 (0.3383) (3.813) 0.4926 (3.733) 2.824 0.3595 (1.337) --56.68 --103.23 -94.606 --23.034 -43.149 218.67 313.69 357.77 203.34 286.42 0.0835 0.4915 (0,01471) -0.0238 0.249 --12.608 0.0926 0.02184 o. 6259 N_e {u(I/Tu2) 0.584 _u(I/Tu3) 0.8481 Aw --42.08 --188.28 I/Tw I 149.77 325.77 _w(I/Tw2) 0.0614 O. 2653 _4_(I/Tw 3) O.O761 O. 0602 0.0771 0.o538 0.0546 (0.1'127) 0.0965 o.o516 Ah 42.565 188.o4 22.946 57.02 162.98 94.496 23.728 42.898 -0.01842 -22.274 139.54 0.8042 5e 1/Thl -0.0172 0.00122 0.0299 --0.02081 o.oo436 o .o5o 0.1270 11.623 27.426 8.454 13.376 21 .62 24.916 0.01593 _e 1/Th2 I/_ 3 -IO.415 -24..502 -188.28 Aaz -4 2.08 I/Taz I --0.0085 -0.00025 I/Taz2 0.00962 0.0301 I/Taz3 11.668 27.412 I/Taz 4 --10.471 TR-176-I -24.484 -I 2.282 8.58o6 13.782 -19.671 -22.453 -8.048 -12.892 -56.68 --I03.23 --94.606 -23.037 -43.149 --0.0228 -0.00404 -0.000431 -0.000214 -...0.0181 -.0.00227 --7.712 --22.274 0.00835 0.05043 8.56 13.405 21.597 --7.84 --12.321 --19.645 0.00187 45 o.127 24.903 -22.437 -0.0oo296 8.7174 -8.203 0.01805 13.762 --12.868 TABLE AILERON Note: Data for lATERAL bod_-fixed _ANSFER III-E FUNCTION centerline axes, FACTORS clean FLIGHT FOR flexible 2 3 h 0 0 15,0OO 15,000 15,000 M 0.4 0.85 0.4 0.6 0.9 0.00508 o.oo599 o.oo698 I.O152 I.5346 2.48 4 5 I/T s 0.00914 0.00568 I/T R 1.744 3.81 _d 0.112 O. 1207 o.0949 O.0885 o.0966 _od 3.999 _. 293 3.058 4.342 6.618 Ap 17.199 64.36 8.988 21.2<)3 39.282 "-0.00572 -O. 0OO233 -0.01182 -0.003 A-_D airplane. CONDITION 1 I/Tpl _KE -0.00041 6 7 8 15,000 35,000 35,000 I.0 0.6 o.9 0.00726 0.00_32 o.0067 o.7o13 1.137 O. 0676 0.065 6.392 2.996 4.4o3 44.89 8.17 16.89 2.772 0.09125 -0.000211 -0.0085 -0.00185 NIDsa O. 0977 0.0923 O. 1015 0.0968 0.O717 0.0669 8.845 2.779 4.442 8.914 6.787 2.742 4.553 17.321 64.398 9.073 21.308 39.495 44.91 8.299 16.921 _(p O. 1149 O. 121 0.0991 O. 0924 O. 1021 0.0968 0.O70 0.067 % 3.985 8.843 2.798 4.439 8.891 6.789 2.76 4.55 1.4875 5.484 0.5376 i.769 17.4_ 3.212 0.5703 I .39 0.9029 4.364 0.4868 0.873 2.601 3.054 0.3965 0.739 O. 1024 0.0571 0.0185 o. 0847 o. 0946 -O. 0646 0.O17 0.0695 3.694 I .521 2.523 4.073 3.519 i_p 0.1149 0.121 % 3.986 Acp I/T r N_Sa 3.767 _r 2.655 --6.OO582-0.00807 -0.001883 -0.0o38 -0.0o556 0.oo207 -0.o00819 -O.OO276 % -0.1615 185a 4.475 I/TGI(_) (o.9834) -0.723 -0.0447 -0.2036 (0.974) -0.369 (0.5504) 1.704 2.537 2.2264 (0.4294) 1.368 629.29 -456 134.99 3048.0 -1396.8 -838.16 197.67 --7.665 -0.7967 --2.413 --5.294 2.193 -O.4781 --2.42 -2.178 1/T#2(a_) 3.287 4. 156 f I/T#3 19.189 Aay --2.66 I/Tay1(_e_r2) (0.7012) i/%2(4,y2) (1.923) -0"0505 CG _y4(I/Tay4) TR-176-1 3.049 -0.1975 o.3891 (-0.8875) -0.0468 4.248 0.6872 (2.2183) 2.54 2.266 0.4622 1.651 (-16.43) 0.0215 (1.869) (-32.14) 0.0324 0.00935 (-2.903) (17.62_) 8.743 (4.149) (33.046) 23.294 9.772 _6 -o.1843 0.3626 -o.9o3 (3.712) TABLE RUDDER Note: Data IATERAL for body-flxed III-F TRANSFER FUNCTION centerline axes, FLIGHT I 2 3 4 h 0 0 15,0(90 15,000 M 0.4 0.85 0.4 o.6 o.o0968 FACTORS FOR THE A-4D clean flexible airplane. CONDITION 5 15,000 o.9 o.oo5o8 0.00595 o.oo658 6 15,00([) 7 8 35,000 35,000 1.0 o.6 o.9 O. 00726 0.00432 O. 0067 2.772 0.7013 1.137 O. 0676 0.065 2.996 4.403 8.717 I/T s 0.00914 I/TR I .744 3.81 I .0152 I .5346 2._,8 _d o.112 O. 1207 0.o949 0.0885 O. o966 0.09123 3.955 8.293 3.058 4.342 6.618 6.392 37.21t_ _.309 10.398 22. 103 22.944 4.167 -0 .ooo236 -O.0119 --O.003 -0.OOO412 -0.000212 [-0.00851 4.375 2.552 3.208 4.359 4.534 2.587 3.743 -3.207 --4.196 --4.2rF9 -2.664 --3.79 A Ap 8.217 -0.00186 1/ p1 -O.00576 1/_ 2 3.o_ I/TP3 --3.O29 i 7.7o8 3o86 -3.997 37.028 4.376 --2.6 3.795 9.936 21-9 22.83 3.678 8.379 2.642 3._ 4.378 4.539 2.729 3.797 1/T 2 -3.211 -3.98 -2.902 -3.33 -4.227 -4.293 -2.936 Ar -6.199 -26.642 --3 •28 -7.78 --I6.362 --I6.562 -3.159 I/_r 1.54s_ 3.815 0.615 1.348 2.t_95 2.786 0.393 0.930 _r 0.3075 0.363 0.308 0.272 o.1783 o. 1828 o.2o7 0.20 o.7 38 0._63 1.032 0.718 0.578 I .128 0.850 o. 4 o.09 0.Iz_96 0.0396 o.o9_9 _r % 0.00133 N_Sr I/% I -0.0209 -0.o067 -0.0OO321_ 1.537 2.485 0.049 0oQ179 0.000941 -0.0175 -3.90 -_744 0.0249 -0.00939 --0.00945 i/% 2 1.7532 3.812 I/T133 156.02 300.91 A_y 20.1 89.33 I/_ayI -0.o219 -0.00154 1/Ta,y. 2 llTar 1.0312 153.O 10.835 5.14 10.957 -4.49 -9.526 TR-176-1 --3._19 1.145 303.67 342.14 210.29 289.01 _.134 52.296 51.83 10.499 21.78_ -o 86 -0.00224 -0.0326 1.54 2.489 2.752 0.717 5.73 8.618 9,46_ 3.733 -7.7 --8.63 CG llTa 0.711 212.32 -0.o39 -0.o147 1.760 2.76 --3.411 -0.0141 1.150 -4.9 SECTION F- Io6B Precedingpageblank 49 IV i Figure iV- I i F -106B FLIGHT ENVELOPE 60,000 NOMINAL CRUISE CONFIGURATION Cleon Airplane W = 29,776 CG at 50.5% h(ft) /_ 4o,0oo MGC //.. // j ; × / Ix = 18,634 slug-ft 2 "_ _j'7 o [y 177,858slug'ft2( Zz 191,236 slug-ft t ( Ixz 5,539slug "ftz Body Ref. Axes 2%0oo _q v., X/ ) REFERENCE GEOMETRY S = 695 ft 2 c = 23.755 b = 58.15 ft f -__.m X M Maximum A/B thrust Military Thrust Transfer functionsgiven for these conditions REFERENCES : Weyel, A.E., A.H.Terp, C.A.Lunder, Description of F-106B Aircraft to Be Used as a Variable Stability Trainer, Service Engineering Div., Kc_:llYel_:_Ji:_ilbiL::NE:y_;m_cs,DeC'convl_o_, A Compilation of F-106 Data From Various Convair Reports Contained in Letter, 14 May 1963_ I F-106 I YAW PITCH O_ ! 8 F-106 F-_36 $ s+l T_s.I SCHEDULED SCHEDULED GAIN and TIME GAINS CONSTANTS .2O .6 -.5 (J (I) ".4 :_ -.3 Ke \ "0 _-.2 \ .5 .16 /Kp .08 .12 ! \ .04 v 0 "0 0 .2 .4 .6 .8 1.0 0 PreSsure Rotio,ow/Po .2 .4 .6 .8 1.0 Pressure Ratio,/_H/Po 0 200 400 600 Dynamic Pressure, qc, Ibs/ft2 Figure IV-2. _-_06 -- Stability Augmentatiom System 800 I V-A G_OME'IRICAL PARAMETERS _ _ F-IO6B I r-J --j I Note: F-J Data are s=695, I for bo_-f_l b=38.1_, e_terlLt_ axe,, e=2_._, eoc_itlocatio=: _= 17._ , _=-3._ FLIG_ , CORDITION 2* 20,000 (--) 0.755 (rtl,,_) p (slug,/rO) 1,037 o.00126? 7_ 20,000 0.759 1,037 0.OO1267 10 20,000 0.799 1,o}7 o.001267 l_ss _3,000 (s1,_s) !,090 Ix (s1_ -ft2) _0,0(0) 991 870 Iy (a1_-rt2) 195,196 1_,..._00 Iz (slug "I_2) 219,262 198,707 187,119 Ixz (slug-ft 2) 4947.1 18,74 _, 331o.9 6o19.4 xCU/C 0.29 O.305 0.26 % 4.42 _.O_ 3.88 (aeg) • o (eel) eo (eel) 0 4._ Uo (_l,ec) wo (_l,,c) 60.6 0.4 1,116 o.00e_77 _3.2 99.3 29,500 28,000 19,8o9 177,6_9 _3,49o 8,5. 0.2 39e 39_ w (_) S.L. 0 0 791.9 19,800 1_,_1 9,"r"_' o._o9 29,776 9e4.7 18,6_ 18.0 78_ 212 99.4 93.1 condition 73 1,037 0.00126? 108.6 29,776 92_,.7 18,6_ S,L. 1,116 0.002377 0.9 1.4 1,057 o.001267 o. 001267 1,4DO 1,199 591 z_3 1,3_'a 29,776 964.7 18, 6_ 177, 1 91,2_6 8'38 2.0 0.000987 I,_9 949 o.00o587 1,9}6 1,100 29,776 18,634 1 8, 6_A 18,634 18,6_ 18,6_ 177,858 177,858 177,898 177,858 177,898 1 91,2_6 191,2_6 191,2_6 191,2_6 191,2_6 964.7 9,939 5,5)9 9,9_9 0._ 0._ O._05 O._O5 0._05 2.0 0 2.7 9.4 0 0 0 1.2 0 11.0 2.0 2.7 1,0(0, _6 933 9.4 868 80 I_0,000 29,776 964.7 9,9_ 4O6 1.4 29,776 964.7 9,939 11 .O 40,000 12 1,037 0.ooo987 871 1 91,2_6 _o 20,000 933 1'r/,858 0 O.9 _0,000 100_._ 191,2)6 9,9_ 0._ 20,000 0.9 177,898 4.9 3.88 del_ 257.2 4.9 78_ 0.4 414 18.0 0 4.O_ *Opt:_ 1,116 0.002577 20,000 11 82 1.2 1,490 29,776 964.7 29,776 _4.7 9,9_9 0._05 9,9_9 O._X_5 2.70 I .2 0 0 • 2.7 1.2 I _9"_" [6" t9L_ "0- _%9o'ot" L_ 6_'_- _'L- _<L"6- _" 06"_- 8¢'_- L- _'0- g L_O'O81"1 _'O- _9_'o- _tt'O- _o_o'o- 6"gL 6L'_ OG'L 0"9L 90_'o _-%- Z._- _" L_'L LO'_ _'L _9"_ 09"L 69"_" _,O'_- _'_- _" 9LL- 6"8L- e69oo'o 8ato'o 18_o'o lt_'o- b_L'O- ._ L- tO'_O oleo"o (_'o _'o- ELL'O- o'_ "_'L _'i 6"0 000'0_ 000'0_ ooo_o_ O00'Ot r _L LL gL_'OL9_O"o- 8 L'_ o_6oo'o l_- I_L'O- _9"_ L'_G- 9L'9- _L'O- 8_0"o- _'_ G'og- L_9"o- L_'_'- "_'_L- 60"_- LO'L- _0"9- _9" _" _0_'0- _l'_- 89"E" _._- _.I_'o- 66L'O- tG'O- _6_'o- _l_'o- _'OIL'E L_O'O- L81O'O- _L'O- ls_o" O- O'_L- lo_o'oLO'_ _9"_ _'6L- _'6L /_5"_ 1_'9 _'E 6_'E 9_'_ _L'_ 9%'_ L_;'_ 6_'L- _L'_- %0"L- _._- b_'L- 9"L_- _'_L_- _'6L- _'_- 0"03- _0"0 8010"0 08_0"0 _'_'_rO"0 _980"0 _6_o.o OOL'O 9_o'o l_'_'O- 9_t'O- 6g,_'O- 6_'0- G_'O _I'o _l'o 000'0_ O00rOg ooo ¢o_ a,z_ SUOTO,.oa,zuoo _6_0"0 6990" o 80 _'o 118'o- _/t.O 6"0 O00'Og tgg'o-6"0 60 t'O-" _'0 "I'S 000'0_ EOI.T.I(IEO0 _OYI_ _'0 .,I.Cj _°_L- L" L9- I._- _OL- L'LL LL- L'6_- _L'L- L'LL L_'6 9o"I L6 ° L _Tg"L 8_'L O_'_- 69't- oL'%- _9"9" _I._L'OL- 1_o'o _0"0 E'o -'I'S 66Lo'o _x Lo_ •o- ,< OL p_puTou T oT%'s'8"[@o.,_,'_ oTo,.'sq-8 : _o_ &-AI _IEW I I E-_ _tL'O 09"_ L9_'o :--d.g'OtO_- t_'o ¢6o-o _.'_ t_" t L6 t-o9'_- 9_'o g_- t 6_g'o 6tL-ot'9L- 6LE'O Lt'_ _/._'0 6_Y"O- _o._ L_'_- (o_6-0) (o_m'o) (_-o_o-o) (_" t) (_-o) (6_- t) oc_o'o :.._/.._ 6_'o _f,O'o9_t- iLgo'o _-_ _]'o ¢_o-o6_t- _;"9 _6"_Lt'_ tgo'O9"_ t._'_ LO'_6t'_ _Lt'O0"6_ 6_'L _9"_•_ 6:.0"0_._ _ig _'g _-otO'O Lt L _0"_ 900"o6_0"0 _'_ _o'oL_'o 9_'g _'o_o-o O/'t t_g'OgOt'O Ot_'O 9_'t 9_" t _9"_- _'0 _o-_ 69_'o 6_"_" 9o_'o t_-t _" _ L_t'o g6"t t L'_'O _h'_" 0 L_"L L_g'o _'6- ELt'O _'_'_ _'9_- _OL'O %t'_ _'9_" _3't'O %c_. 9 9"9_- _t'O _'_ o'_- t6 t'O L_'_ L" tL- _9_'o _6"_ 90L- _t'o 6_" t _"6 t- _-_- Z_t'o 6c3"9 f, O00"O- _t'o _E'g _00"0- t6 t'o LG'¢ b_DO'O_'LL- ose'o 96-_ tOO'Ogot- _t'O _-t "_LO'O_'6t- c_+_a •o _0"_ 900"01"6_- $6_'0 _" t L'_IO" O_'_L- 6Gt'O tO'_ '_'L 900*0* _'o _._ _o'<:] _oo'o- 8_ L'O oo'a %/.9"o o_o*o _'0 tO'i_ 60"g _o'o _gt'O b_'_ g6_'o 69 t'o ELL'O LOL'O _ooo'ot'9__Lo'o L_'_ 9L'_ _oo-o_'t 9LL'6_ G'O_ 0_0_0_ o'_ EL LOO'O_'9_c_6o-o _'_ L6-t OLO'O L'_ 9LL*6_ _'_ 000_0_ _'t tL _,LO" 0 _ L L'O 99"9 %_" t tlo'o9_t- _.'_ LLg'o t6_'o_L(z_9"o) i(LL9"O) (,_ t'O) (_9" t) _-_ _L _'L- ,'9_9 tL'O _L"_ 6_._ OLO'O Ot _C]" t 6aL'oLOL g'Ot _e'_- L'_6g L°O _t'g _.t LO0"O _'t 9AA_6_ _'0_ 000_'0_ _'L _'_ _9" L- _'_ 9AL_6_ _'0_ O00rOtT 6'0 6 9LL_6_ _'C_ 6"0 Zo'9 _._'o9Lt (L_l_o'o) (L6"a) L'gt 6"L9 (6eL'o) _L'_ (_-o) 9tt'o- T_O'0 OOl'o 60 t'o L uoTsT_oo itg_'o) CLo'o) (_9"_) 9"tt Lg- t- 0_'0 t 6_16"0 t_'_- O'tt 9LL"6_ _'0_ 000_0_ _-o (trY'o-) (og6"o) (t_-o) (o_-a) (6:=6"0) 6"%L (_6_.o) (_.o) Ct6"_) 9o_'o 69" t- 0"_ 9LL_6_ _'0_ •q.S 6"0 8L'Lg.g_- (oe_'o) L_" _'_ _'_t- _¢-o _'_ _'_- (--_.t'O _Ot'O 69"_ _'0 L_'o_- _'0_ OLL'O _'_ t_-_-o "_'oc_LL- (le_'o-) (gg6"o) (6 re'o) (6 t'g) 6"gL (e_-o-) (_6.o) (_6;..o) 9"0_ _._ _'06610"0 L_'O (6L" t) 6"g9 (°_):=_/t ( _). I _(_) _ff_ (oo) %iz_ °_v L" t96_)'o LL_"OOOL'0 O'%t 9_'_ tgS"O" 9_6o'o OLL'O _'8 C_'O _'0 66- t 9 LL'o to'L- L6"t gL9" o _0"9- •_g_ • o _$'t L6_'O 60"_- °'zv "%/.z _L'O t9"_ _'_L- _L'O _'_ _" t9- _L t'o ¢_-g t-g'_- _b v "%/kb _L'L" ALS"O l_" L 9"_t- 6"_ 9ALr6_ _'0_ "q'S _'o 60 L'O i.9 • t_'O 9_'ol_- 9g L'O t9"_ oLgoo'oo'_l8L t-o _'_ b_9"_ to-o- O'_'t OOC_c_a c_.O_ .q-! _'0 O00rg8 9_ O00cOE _A'O t/t'o tOt'O _._ _,_goo • OL"t9- Ot_OO'OL'_'_- GLt'o L_'_ 6t'_ 99 to'o- iOt*O l_'g 09"t o/to'o- _0"_ 000'0_ _'0_ O00rOi _L'o 0oo'_ 6_ ooo_o_ LCS _T_ _c_/t _dv _/d _/t e,'r,/L OD q Capu%_%IV 9 _q_i_ _0 L-_ DISY_ _0_ g_D_T_DY,_" _OI_D_ _._Sk_f_ q_%'I _O_'IIV 7 D-AI _I_D_ 7 TABLE RUDDER IATERAL TRANSFER IV-D FUNCTION FACTORS FOR FS I£bt 5 BASIC F-I 06B C_n_ _tion 6 I I MBch No., Altitude, CG --4 Oh I Weight q, h _ 20,000 29 20,000 35,0oo _,000 -O.017O 1.60 59 11 .I -o.oo914 -0.00286 -0.002T5 (i._) (i.72) (I.79) (0.0736) (0.0693) 6.86 (o.o7oi) 9.32 10.9 2.76 9.oi 2.12 4.79 9.22 9.97 0.129 o.116 0.099 o.o7_ 0.162 0.255 O. 162 2.08 6.17 2.97 -0.049 1.88 -2.64 o.o_7 -0.00111 I/TGr I I/TOr9 Aa r I/Tar I ((Oar)I ay/Sr 1/Tar2(_a r) I (CG) I/Targ(ea r) 2 I/Tar_(_ar) 2 A_ r ay/Sr I/T_'rl (cockpit) I/T_r 2 (a_r I )I/T_r5 £_rl)I/T_r4 -0.000727 0.0039 -o.ooo53o 2.11 2.95 89.9 89.8 81 .I 27.9 o.o061_ 31.6 [9+.2 1.96 I/T_r 2 0.0402 1.59 -9-3O 9.9e 6.40 o.o646 -8.81 0.00696 2.00 0.00679 2.44 -9._I -5..49 4.16 4.29 16.6 o.00670 -6.09 29.9 0.00699 -5.96 19.5 11 .I -0.006 -0.015 -0._I -0.782 I .85 1.97 -0.001 °0.002 -2.54 0.569 -2.09 o.8e9 5.07 -o.oo9 5.19 9._5 9.1o -9.40 -9.98 .4.9_ 1 9.9 11 .0 -0.406 -0.808 -i.7.4 0.Sa3 i.99 0.4_-2 -I. 63 2.18 2.02 0.5.59 -0.792 -6.1 6 o.43o 9.97 0.680 I -74 (0. 0.21.4 o.419 o.2_ (o._62) 0.028 0.0438 0.02.5 2.4-8 -0.259 -0.053 0.690 2.07 41.9 6.57 (I .02) (o._) (1.21) -(o.2.49) .4.71 -0.300 0.402 90..4 19.6 -0.067 2.05 -2.4.2 9.25 11.8 -o.o61 -6.36 (9._) (2.99) (3.08) -5.38 (2.17) (0.890) (o.73o) (0.66_) 9.26 (o.9_9) -0.086 0.780 6o.o 0.067 -o.oo4 9.08 100 9.92 0.90_ 6 1.88 5.60 -o.i95 0._28 -5..47 9.99 7.29 -9.9+ 9.I_ _.I_ 9.19 -9.45 -3.61 3.37 9.10 -3.28 -I .44 -2.90 -I .49 -I .91 2.00 o.739 4.28 I .43 2.71 0.19 ° 0.674 o.99_ .7_6 o.43o o.58e 0.902 0..4_ •610 0.38_ 0.059 -0.0O9 I .89 97.8 o.o_9 -0.021 I .07 0.0_.4 -o.oo5 4._6 13o 105 o.o09 -0.004 _ 1.98 18,4 o.0o9 -0.010 2.7.4 219 36.6 16.2 34.1 12.2 18.2 -0.004 -0.01 0 -o.o_ -0.012 -O.Oli -o.o12 6.89 1.89 1.08 -9.92 -2.4-4 67 .2 -0. 999 -1.1 _89) 5.29 -O.O(X)9 -9.29 2.81 1 .85 .4.18 -0.0OI I._4- -2.4.9 1.99 7.91 -0.0009 -I .69 6.09 -o.431 A_r o.159 -2.12 -0.909 (9.28 0.224 1.9_ -o.427 (2.71) -o.oo9 .4._ -2.75 rr (I/Trr) o.oiol 2.00 -2.68 (0.975) 0.01 0 1.97 -2.55 (o.365) I,ioo 0.001 4.59 Ar r (0.349) (2._) 29,776 _9 1.0_ -2.98 _r(1 I_) 29,776 I _952 1.84 (I.81) (0.0582) -o._36 30.9 5.05 (i44) (o._9) I/Trrl -o.0o6 29,776 -o.o00 (o._) (I .67) 951 29,776 223 2.0 _o,ooo 14o,ooo 3o.9 3o.9 o. 678 I/_m(;_) I/T_r I (a_pr) 30.9 29,776 1,199 20,000 0.080 2.&7 9.51 30.0 o.9 20,000 30-5 12 1 .4 o.o_ 2.01 7.06 0.9 20,000 30.5 29,776 I..4 0.1 69 2.42 0.178 0.9 S.L. 29,776 109 0.59e A_r A_r -0.0164 29,776 297 2.54 0.175 ) 30.9 30.5 2.62 0.16_ $/5r _/Sr 25,500 0.4 20,000 2.19 So i/_m S .L. 2.o9 2.37 I/Tprs(_Pr r/Sr 20,000 -0.01 66 _b I/Tpr2(_Pr) k_q kJq S.L. 3_ I/T R P/Sr _.5 0.4 0.2 o. 755 20,000 26 ib/ft _ I/Ts 2_iat 0._5 0.795 M 11 I0 7 i -5.65 5.1 7 .4.99 2.4.9 16.9 -o.oo_ -0.01 0 -16.1 (9.81) (0.709) 2.88 8.03 -0.091 2.69 0.844 -8.19 -9 •89 5.99 3.39 4.29 -9.97 6.16 7.89 -0.012 -21 .5 8.69 I .99 2.74 -.4-99 -5.69 9.0_ o.78_ -0.010 9.99 2.52 -0.012 1.99 2.90 -91.o -_.4 10.9 8.94 BECTION _-38 Preceding pageblank _7 V _-3 I c_ ! NOMINAL CRUISE Clean Ix 60,000 at 23%MGC = 1438 slug-ft 2 Iz = 26,779slug "ft2 T.y = 25,874 slug-ft2 [xz = 0 (assumed) I 40,000 Ref. Axes Body h(ft) / 20,000 REFERENCE co ENVELOPE Airplane W = 90001bs CG FLIGHT CONFIGURATION / / GEOMETRY I S = 170 ft 2 i I c = 7.73 ft b = 25.25 SL I 0.2 ft Augmented Power ---REFERENCES I) T-38 Report BASIC X Dynamic Stability, NAI 58-704,April DATA SOURCES Wind Tunnel Tests Norair 1959 Military Power (J85-GE-5) Lateral transfer functions given for these flight candltlon= PITCH __ _e T-38 8" Io.__ _ IO.Ss+,! I -° I YAW 8rp SCHEDULED 8r GAINS 1.8 1,4 1.6 o {D Kr 1.2 1.0 \ .8 Y C .6 (.D KSo .2 0 0 2_ 6 4 8 Impact Figure Tk- _76-i V-2. T-38 -- I0 Pressure Stability 59 12 14 16 qc ,I bs/ft2 Augmentation System 18 20xlO0 OL_L 9LOL t_LL 0 <0 0 = zxI _g%J-_nI_ 000_9[ = Zl # %J-BriTs 000_0{ OVA _{_ %_ "_'o = £I #s_nI_ O'LL{ # %@-_nIs 009#9 - m ¢_ql O00_OL = xI = 7 <o b- uolg_u_ljuoo _sTu_o Cs_x_ OUTl_Ogu_o $_-,T,,_HZ _0£ T_,V,T, ZNV_V£ V-A [_I_VZ p_xT_-£poq qVOIH,T, ZNO,_O _o$ _%_6 :_%o_ 7 TABLE Note: Data LATERAL NONDT}_SIONAL are body for fixed V-B STABILITY centerline DERIVATIVES axes, cruise FOR THE T-38 configuration I FLIGHT CONDITION -4 Gh I 2 3 4 5 7 h (ft) 0 M (--) o.6 o.8 1.0 O.L 1.0 o.8 1.0 i .25 67o 893 1117 4O6 1017 774 968 1210 --I.27 -i .35 -i .26 VT o cy 6 ( f$/sec ) -o.715 0 25,000 25,000 -i .35 50,000 -I .26 50,000 -1.41 40,000 --1.20 o 0 0 0 o.155 o.172 O. 103 o.16o C_6 -o. o57 -O. 063 -0. o85 -0. 097 -o.o86 -o.o86 -o. o8o -o. 052 C_p -0.320 -0.330 --O.275 -0. 270 -0.365 -0.335 -0.390 -0.295 CY$ a CY$ r 0 0.132 o. 183 Oh o.126 0.097 C_ r o. 080 o. 095 0.110 o.155 o.115 0.140 o.135 o.13o C_6 a O. 037 o. o3o o. o069 O. 040 0.026 o.o53 0.032 o.o19 o.o16 o.o_8 0.012 0.017 o.o15 O. 021 o.o16 0.oio3 o. 262 o.315 o.332 o. 24o 0.335 O. 286 o.340 o.31o o. o76 o.o78 0.084 o. 085 0.078 o. o52 O. 070 O. 076 --0.340 -o.49O C_6 r Cn_ Cnr, Cnsa Cn5 r -0.470 o.o13 -0. 092 -0.435 o.o143 -0.092 -0.490 0.0126 -o. o63 -o.38o -o.5oo O. 0069 0.0126 0.0149 0.0137 -0. Io3 -0.o86 -o. io6 -0. o86 -o.53 0.0149 -o. 060 TABLE V-C LATERAL DIMenSIONAL DERIVATIVES FOR THE T-38 _9 I Note: Data -4 O_ are for body-fixed centerline axes, cruise configuration I FLIGHT 1 2 3 4 h (ft) 0 0 0 25,000 M (-) o.6 o.8 1.o o.4 -O.311 -0.737 --0.98 -O.151 0 0 0 O 0.0675 0.1 o.o75 -29.69 -58.29 Yv Y8 a Ysr o_ rO L ! P L ! r ! %a L ! 6r I Nr -3.14 -4.5 6 7 8 50,000 50,000 40,000 o.8 1.o 1.25 --0.0982 -O.137 -0.232 0 0 O 0.0391 o.o143 0.0122 o.o188 -8.491 --46.24 -9.293 -13.46 -21 •73 -0.727 -2.435 -0.588 --0.8544 -].286 o.191 5 25,000 _.o -0.4 0 1.8 0.4]7 0.767 0.246 0.296 0.567 27.75 9.987 3.5o3 13.98 5.727 5. 383 7.941 8. 334 16.65 17.37 1.489 8.065 2.269 2.691 4.305 17.65 37.71 62.18 2.72 23.31 4.0 7.402 16.77 o. o965 0.132 O. 178 0.296 0.0673 o.o198 0.0429 -0.597 -0.736 o.876 1.712 -6.2 -11.01 0.785 1.242 19.27 ! N$ a -4.3]6 -123.03 CONDITION -1.037 2.36 -11.8 -0.1185 -0.423 0.0782 o.877 -1. ] 67 -5.984 o.0118 -0.O86 0.2084 --1.482 -0.142 o. 298 -1.872 -0.30 0.806 -3.245 TABLE AILERON Note: IATERAL Data for TRANSFER V-D FUNCTION body-fixed FACTORS FOR axes, cruise centerline FLIGHT h 0 0 0 M o.6 0.8 1.0 A N_ i/T R 3.Ol97 4.145 4.185 o. 6o5 (d 0.121 0.133 o.146 _d 4.251 6.2 7-97 Ap 19" 273 I/Tpl -0.00091 -o.oo14 0.oo141 27.75 10.0 -0.0005 -o.ooo3 configuration 8 5 25,000 0.4 o.oo25 1.0 0.8 50,000 1.0 40,000 I •25 -o. 00594 -o.oo31 2.275 o.548 o.8o3 1 •236 0.102 0.t 0.0527 0.0585 0.0705 I.98 4.94 2.187 2.847 4.151 13.98 5.727 5.383 7.941 i-0.00082 -0.00362 -o.o018 -o.o13 3.50 -0.012 o.ooo16 50,000 -0.0043 -o.ooo554 _p 0.108 0.12 0.127 0.0852 0.085 0.0473 0.052 0.0675 % 4.382 6.473 9.628 1.703 5.137 2.081 2.856 4.365 5-745 5.4 7.96 Am 19.29 !27.78 N_a I/T% (_) (o.Io8) (o.12) 1/%p2(_cp) (4.381)(6.471 r 25,000 I/Ts T-38 CONDITION 4 2 THE I0.01 3.515 14.0 (0.127) (0.0829) (o.o853) (0.047) (0.0522) (0.068) ) (9-617) (1.719) (5.135) (2.086) (2.856) (4.361) Ar 0.876 1.712 2.36 0.782 0.877 0.2084 O. 298 o.8o6 I/Tr 4. 439 5.4o5 4.80 o.535 I .52 0.484 o. 638 1 •401 _r 0.267 0.423 0.47 0.192 0.405 0.0827 0.129 0.143 car 2. 127 2.113 1.523 4.345 2.95 3.19 2. 765 1.884 A_ --0.511 0.446 -O.511 N5 a I/TPl (_#) -0. 167 -1 •323 -2.255 -0.0832 -o. o353 7.439 5. 334 (0.706) --0.0843 -0.0074 -0.64 (o.58) -0.21 -0.o66 (0.283) t8.624 O. 289 N5 a 1/Tl_2(_ p) 6.926 (0.287) 1/T_ 3 TR-176-I 63 4.90 I .795 TABLE RUDDER Note Data &re LATERAL for TRANSFER body-fixed V-E FUNCTION centerline FLI_IT I h 0 M O.6 2 0.8 3 FACTORS axes, FOR cruise _HE T-38 configuration. CONDITION 4 5 0 25,000 29,000 I .O 0.4 I .0 -O.013 O.0OO16 6 50,000 0.8 -0.OO594 7 50,000 1.0 8 40,000 1.29 -0.0043 I/Ts 0.0025 -0.OO14 I/TR 3.O197 I_.145 4.185 0.605 2.275 0.9/48 0.803 1.236 O.121 0.133 O.146 0.102 0.1 0.527 0.585 o.o7o5 4.251 6.2 7.97 I .98 4.94 2.187 2.847 4.151 16.65 17.37 1.49 8.065 2.27 2.691 4.305 -o.0oo92 -o.ooo5 -0.0003 -0.O119 -0.00082 -0.00361 --O.OO18 -0.000583 -2.07 -o. 797 -4.522 -2.o6 --3.311 --I.454 --I.395 (O.O081) 8.33 Ap 0.00141 -o.oo31 N_Sr I/Tpl I/Tp2 (_p) I/Tp3 ((Op) 8.215 AS N_r I/T$I (_) I IITrl r ( I/Tr2) a_ (I/Tr3) % 1 .I0 4.79 16.5 17.245 --2.11 --0.827 -4.557 2.15 i.09 -6.2 Ar r N5 r 2.1.94 3.o -I 1.01 4.114 I .905 3.341 I .423 I .408 i.31 7.91 2.14 2.59 4.237 -3.372 -1.526 -1.443 !(-O.O103) 1.42 (0.608) -2.293 4.79 I .994 --II .8 --I.167 3.390 -9.984 1.451 -1.482 -1.872 (0.605) -3.245 4.196 O.561 2.252 0.519 0.78 -0.0_71 0.206 (0.0302) 0.674 O.14 0.373 O.11 O.196 (O.193) 0.309 (0.367) 0.465 0.833 0.456 0.502 0.346 (1.23) 0.067 0.0998 0.o748 o.o191 0.0391 0.0143 0.0122 0.188 -o.ooo63 --o. ooi 6 -0.0034 -O.OLO7 --0.0052 -0.oo41 2.994 4.075 2.302 0.558 0.810 1.23 117.48 64.64 178.02 39.77 11.08 11.88 22.72 -o.oo561 -0.o14 -0.0063 -o.00398 -0.00212 -0.0372 N_Sr 1/TI31 I/%2 II/T03 Aay I/Tay I NS_r I/Tay 2 CG I/Tay 3 I/Ta_% TR-176-1 94.93 113.63 4.2o5 161.56 45.24 89.16 83.53 -0.0057 -0.0018 -0.00447 3.89 3.799 4.223 -3.027 -6.248 -9.098 2.882 7.327 10.416 0.65.5 72.21 7.852 -0.0496 o. 683 -2.525 2.736 64 159.0 2.322 0.565 0.813 1.226 -5-987 -2.536 -3.709 -4.732 2.66 3.90 6.529 5.096 SECTION F-SA 6_ VI I Figure Vl-] I F-5A (_ONFIGURATIONS GAR-8I - GAR-8 on wing tips Centerline Tank 150gal.tanks 40,000 at W.S.85 h(ft) 7501b. stores at W.S. 114.5 50gaL tip tanks T-A - as I with 50% 11" - 20001b I000 7501b X X 20,000 w fuel centerllne store Ib stores at W.S. 85 0 stores at W.S.I14.5 w_ 0 ° • .5 w w M IJO 50 gal. tip tanks REFERENCE GEOMETRY X Longitudinal data given at these flight conditions,see Table E .5a for conflguratlon,_ ,and 7'e S = 170 ft = b • 25.25ft c • 7.75 ft REFERENCE I) Jex,H.R. and J.Nakagawa,Typical F-SA J=_oon_tudinolAergdynomk_ Data and Transfer Functions for 14 Conditions, Systems Technology, Inc., Technical Memorandum No. 239-4, March 1964 BASIC DATA SOURCES Wind tunnel tests with corrections made per flight test. 1.5 I ._= F -5A I YAW PITCH 8 F-5A o5---2% °'5s*' SCHEDULED SCHEDULED GAINS I L__ GAIN K8 = 0.2 deg/deg/sec 1.8 K_ = 1.35 deg/deg/sec I00 1.4 Q_ 1.6 o. 1.2 .c_ ._o 1.0 u .c_ .o ,o \ \ n_ \ O.8 KI 2O 0.6 p- e- £ \ 0.4 0 I- 0.2 -_ 2O 40 Impoct Pressure, 60 q'c, Ibs/ft2 80 Figure Vi-2. IO0 I 00 2 4 6 8 I0 Impact Pressure, F-SA -- Stabilit_ Au_memtation System 12 qc, Ibs/fte 14 16 18 20 x I00 ! I _%BLE _q-A _ICAL Rote : S - 170 Data tt 2, b - 25.2_ are for body-fixed _, c - 7.73 stability t%, PAn ZrOR _BE F-_A _o " 0.5 axes. FLI_IE 1 ConfiKurat1_ns 0Aa-8 k0,000 h (_t) 2 G_-8 _O,0_0 5 gAa-8 0 M 0.87_ 1.25 0.875 70 (_eg) 0 0 o a,- :./w 1.0 1.0 1.0 3.2 1.0 0.8 _o, (Ibl_ 2) w (zbs) x@.g./8 70 85O 1210 98o 210 _28 1150 1o, o00 511 6eo(_g) -I. 15 5O,0CO ix (_zot) 10,000 10,0GO 0.22 12.o O. _c' O. _'_ 2 5 GAR-8 + DL_ Bz_Xe gAa-8 F_ps + Slate 20,000 1 ._ -6o 0.5 0 o.2o_ 0.286 1_-5o 15_I0 10,000 30,000 12.0 _'Dl_ 20,000 )0,000 0.8 _0,000 12.0 1.0 30,000 12.0 TT E_pty I-A 0.875 I-A 13 II Fuel 50_ 12 II Fuel 50_ 0 0 0 0 0 0 0.875 0.875 0.70 0.70 0.50 0.50 0 0 0 0 0 0 0 0 1.0 1.0 0.5 1.0 _.0 1.0 4.0 1.0 2.0 9.0 2.8 1.2 2.8 2.8 7.0 2.2 8.0 12 228 61.9 122 19,000 O. _'_ --4.28 51,000 12.0 -60 980 980 1,130 1,1_0 720 725 570 570 12,000 I_,000 I_,000 17,000 17,000 910 282 17,000 0.1k --6.26 _,600 11._ 521 I_,000 14,000 0.12 0.1._ .05 _55 590 --0._-5 Bz_ke 12 1.0 21 -1.80 11 o 10,000 0.2 1o I-A I + Flaps 0 12 0 CCRDITI_ --2.5'7 P,,6oo 11.2 0.52 57,900 11.2 0.17 57_ -I .55 _, 700 1o.5 --2.62 57,100 11.6 0.15 _55 --I.13 57,900 11._ 0.15 _ 0.15 526 -_.62 57,900 11. b, --2.86 _4,400 11.5 0.I_" 528 -5.77 _,_00 11._ "R.,TST.Is "o_'0 oC_- O00_-- 0_" L-- O_'t-0 0 8"9-- g'9-- Ot "0- Ot "O- oL9"o- 989 "o_o'o 068OO "0 OgCe" _" L0 O_LL-- ooo_ =. _-_-- "_g"t- 0 OL "0- o_9"o_6_oo'o L'6Ot "O- L'o- 6_g"0- gkg"O-- _00" 0 9gtLooo'o 0 0 o_o'o o o 0 Q_O'O o o o _9_ "o 9o_'o L_Zg'O _8"o 0 _'CS o C-g 98"_- _9"_- o'8 _'_ o'L ggr.o'o L_(O "0 LL_O'O /Z'O _g_'o _g'O 0 og'o o . 0 o_'o o Ii ii _t _L Lg_'oGLGooo"o 0 0 0 0_0"0 0_0"0 _o'o 0 0 O_'L L_", _05"0 g_L'O 8Sg'O o_'o _'g _'0 oL'o C'g C'g Lg "8'-- 98 "9- g'g 0 V-I eL 8"_ o Y-I L-- gg° _g'O 8"L L6LO'O 8iZO'O 8_'o _Lo'o 6Lo'o o o CL8"O X%c_ OL /,Z o_'o 8_'g g_'o- 0_" !.- gLLO'O gg_'O 86"o _6"o _o'o _Go'o o o 000'0_ t 8 _o_'o o _d_Ix I v-I o 9_'o 0 o9- 000 tog o GLS"O 0 + g-h'VO 0"_ 8"0 o+_-t 8-h'vO 8-h'VO (we=It) _o _o'_ _'z 8_-g o (w,_/_) _o g-g g_'_ L_O "o _t "o o _-_. ooo'o_ wco o on'o _o" _ o_ (_,=I_) _ 6_'o oL'o-- g-_ 0_O'0 000 '0_ 6 gt_L"0 _t 8"o _@I _'o 0St "0 o9- 0 0 "_- og_o "o _09 "0 _t 0"6 _0"0 gL8"o gL_ "o _'C 0 _6"L (_.q_)._b _.9_'o- ..(_,=/_) 0 0 o _o .(_'=/0_o _o6ooo'o o _9_o'o 9"O- _'g 9tl" _.9_tO0"O _6LO'O- O_L"0 g'_ _o'o o OCO'O o 0 _'C 8"8 oL'o o 0 ga "o- o o 0 o 0 o _g_'o 9'6"0 _L'O 0 0 og'og'g OOt "0 _9_o'o 9L6"0 _" _._- g+_LtOO'O 0 _9°8 C _t_O'O _LL "o o_o'o- L'O- G69LO0"O pe%oea.zoo,,, SaAI:%'_AT,IOG. GG',-" I .(v,=ll) _)'_b _'o_- LQgO0"O _LL "0 6_'L-- 6- L_ ° [- _8_oo'o ,zo,; aA.llg, oo_ OOL"0-- o_'_ og'oL69 "_'o o%= T L'6- g'_'L • O- 0 C_'L- o %u'nooo_ _R_. 6 "9- Coo"o- L_8"O _o'o 8"9-- 9_'_-- R_'O- 96_ "o _-g 0t0"0- 0 8"9- OOOc_- _O'L-- GOO'O- 0_90"0 0 9_'L-- o]:_,s'_le _I)om O- t8%'C,- gL'_ gL'_ LL'9- 0 O g'6- o_ t oAt(t- O_'t- 0_0"0 o" _- L-- g_too'o o 6_"L-- g" _L- L'o- o o oLa'O- L'6- gO" 0 _£_'o 00_'0_ OG6- oo_t +_)_"_- %g" t- 9t "0 8"L- o _ _:_ _'i8"C .(_,_/:) _o w_o t (_) %q (_,_) %0 6Lso'o (Io 0(_ "0 "IO o (_) oz _/8"o ooo'o_ Oh (_,_I_) _o w (_) q 8-1_vo 9 NOLLI G_OD _OIq_ I \D [.._ _H V_-_I _}_ _ 8SAI&VAI_G XV_OIB/_HI(INO_ E-IA T_II(II%_O._Oq I _-3 I TABLE Oh VI-C I LONGITUDINAL Note : Data are for body-fi_ed stability axes, quasi-steady aeroelastic corrections DI)_SIGNAL D_IVATIVES FOR Configurations GAR-8 h (ft) 40,000 M Xw o -O •01 R6 -0.01 O9 -o.oo589 zw (llsec) -0.754 -I .05 (11se_) -0.124 o.118 X_ O (11sec) -I19 %e (ftlsee21r_a) (11sec-ft) _& (11ft) M_ Note: The transfer equations of (®_)z_ functions Appendix given C with (_)_ 93 Table additional E.gc) are based corrections + Uo_(z_-z@%) - KazZ_ : (_--_)Z__ the above for Inertial (First (DC_aln)_ -o.oo838 Bending subscript % _,000 _ I-A 0 0 0.70 0.90 0.90 0.873 O.87D 0.875 o.7o 0.ooo_8 0.oi17 0.0e22 0.0e76 0.0178 o.o167 0.00128 o.o14-4 -o.o_o9 -o.oi 82 -o.o919 -I -1.0_ -0.828 -O.Olge -2.2_ -I .74 -o.0975 -o.71_ -0.0696 -_e9 -I 81 -78.6 -9.91 -0.0910 -2_6 value + quasi-steady corrections -0.119 -99.1 -O._'P9 -97.7 -0.00061 -0.0408 -0.C_93 -0.0174 -o._ooa -o.m 7_ -o.oi 69 -0.00(X)891 -0.000109: -0.000114 -0.0OO019 -0.0000199 -0.000o176 -0.000o176 -0._88 -0.888 -i ._8 -_ .99 -o.979 -o.969 -o.667 -o.66e o.ooo_ -O.0109 -o.eo_99 -26.1 -99.8 0.00589 0.000166 -62.1 -91.9 the corrected _3 -O.O000_a7 follows: R _ rigld-body aeroelastic -0. _7 -0.0822 -_79 .61 -O.00892 -14. 9 • (first Fuel 0.8 -o.o9o9 O.O(X)626 II _1_ 0 -I .86 _9 Fuel 0 -o.o_Yo -o._72 90% 0 -1.10 -o.o138 I-A O -0.0362 =_I IBm Empty El @_ +TT _t_ -0.521 0 and as II -0.0198 0 derlvatives I0 -o._,91 -26.9 o.o001 + 9 I-A Dive Brake -o.o_oI -o.197 -0.276 coefficient)13 where (_S_)R (PC_n)z_ on msde 30,000 -o.o3oi -3.16 -63.2 -73. i O.286 o.c964 -0.00099 O.OOOO757 O.20_ -o.296 -1.08 -I .9_ 0 -o.9o8 o.oo_47 -O.0001_I -e4.e in -o.o993 -o.oi87 8 + Flaps 0 -24.1 -439 -599 -0.001 -14.3 _e (11sec2/r,_) o.4oI -0.289 -o.9_o -O.O00_6e (llsec-ft) I -o.o6o9 -0.0909 .2.22 0.000149 -0.429 (I18eo) 0.(_o09 -0.045Z -o.c_2? -0.0000599 GAR-8 COIDITION ? I 1.40 0.0101 -IT_ -0.00399 6 +Slats 20,000 .879 1.25 -0.00805 (I/eee) GAR-8 + Dive Brake C_R-8 40,000 O . 875 9 3 CAR-8 F-gA included. FLIGW_ 2 THE coefficient) R Ka z : -- 0.000162 red/ft/sec 2 o.oooe66 -_I .O o.ooo_7 -17.0 o.ooo_77 -16.7 TABLE LONGiTUDL-_AL Note : Data for are for Inertial 0ody-fixed TRANSFER stability VI-D FUNCTIONS a_es; FOR corrections THE F-SA have been made Bending FLIGHT CONDITION I I 2 5 4 5 6 7 8 9 I0 11 12 !3 14 Oh I h (ft) 40,000 o.875 _z/7o (de_) Wt. 1.25 1.olo I 0,0OO CG A 0 40,000 M 1.olo 0.22 0.22 0.22 5.65 _sp 0.266 0.121 O. 325 (-0.O721) O.0856 (-0.05465 0.257 (o.io_) 0.0_7 (I/Tp2) 0.0761 (0.0750) -80.4 ACe -14.6 I/_eeI 0.0995 -2_.0 O.0461 o.oo778 I/T%2 0.703 0.885 Aue 0.970 2.26 3 • 3O -6.15 5e I/Tuel 0.580 I/Tue2 586 1/Tw e I aWe _w e _ 03 (I/T_e2) (I/Tve3) 0.0673 0.0809 121 Abe O.0O309 J_e 0.602 0.286 1.0/0 11.4 0.128 -68.3 0.0457 I. 81 20,000 0.8 1.0/0 1 9,000 0.22 30,000 1.0/0 1 7,000 0.1 4 0.875 0.5/-60 1 4,000 0.12 0 0 0 0 0 0 0 • 875 o.819 0.70 0.70 0.50 0.5o 12,000 0.15 0.15 0._5 O._5 8.05 7._9 4.95 5.5O 5. _6 0.215 0.26_ 0.285 0.262 0.243 0.223 0.126 o.o6o_ o.115 0.0852 o.118 o.197 o.157 o.129 0.1o6 0._32 0.I 88 0.I 82 0.197 0.147 O.O555 (-0.053O) (-0.0964) 0.1o8 0.142 o.155 (0.1165 (o.1285 0.0170 0.0225 0.0159 0.484 O. 379 -9.91 1-47 O.810 -0.O269 -I .95 0.512 0.280 0.478 -294 100 98.6 -610 -474 -24.1 273 -26.9 0.O571 O. 474 -17,450 I. 03 _ -64.0 -67.0 -_.6 I/_3 -18o 168 I _I (-o.o563) (o.o622) 180 o.o117 0.0969 0.233 610 0.0432 -8.25 -12.o -19.6 8.72 12.4 21.7 54.0 a' 0 I/T_' el (°_el I/T_'_2 (;'zel Cpi ot o -_2.2 -17.3 -17.o O.0534 0.O516 o. 0202 o.o_8 0.01 6_ 0.0;_ I. 58 2.04 1.6o 1.46 O. 991 O. 724 -_._8 -4.06 2.79 2.42 -2.19 -9.74 2.91 4.68 -68.6 2.0/0 17,000 4.81 0.286 -14.6 I .O/0 17,000 o.15 2.82 0.270 14,000 o.17 2.1 4 -5.31 3.78 4..olo 1.0/0 14,0OO 0.05 1.43 -5.16 _.olo 1.0/O 1 4,000 -71.4 -14.1 9.55 -52.6 -I 57 -i 54 210 29. 5 (-0.03585 (0.105) 238 0.0680 0.199 0.159 -26.9 62. I 0.145 0.139 24.1 26.9 -0.0718 -0. 357 -79.5 146 0.04_2 O.161 79.5 0.0108 -186 -515 -438 1 51 0.0501 0.666 93.4 O.O661 145 -246 -244 (-O.00410) (0.0576) 438 0.0355 lO5 129 o._-_ -0.1 _ o.9_2 -4.210 ! "_! -_ .4_ 0.969 -288 o.5o9 51 3 O.O5O5 o.oo3o9 12.8 0.o476 120 355 -18.8 1 9.6 346 0 o o.oI_ 0.0117 0.o432 0.0499 15.0 0.0559 27.1 0.101 22.7 0.0720 -5.59 3.81 -4.50 4.95 -8.04 8.56 -11.0 1 2.0 1 5.9 95.6 0.116 O.O82O o.116 o.165 o.1_ 0.111 o.I 57 24.6 O.01_D -15.5 -12._ 17.o 13._ 26_ -99.7 I_5 244 101 0.025_ -11.9 12.8 124. 0.0110 -9.05 9.75 9_.6 99.7 c.o_ 8o -7.98 8.67 95.2 55.6 84.8 o o o (o.o538) o o 0 0 O 0 0.01o8 (0.984) 0.0555 O.O5O5 0.01 80 0.02_4. 0.O110 o.o18o 9-7o 8.6o 0.0613 o.o_68 -o.o536 4.76 4.25 8.05 0.0871 0.O509 0.0276 1_.5 0.0381 255 96.5 1 3.8 -o.o714 11 9 -14.3 -I 01 lO_ 0.0585 I/_'_I I/The2 NsZ 4.72 O 0 •204 525 -I 21 Awe N_e 0.22 5.84 ) 0 10,OOO 2.29 _p NI _ 0.5/-60 I 0,000 %p a_p (I/Tpl _T e I •40 1.0/0 I 0,000 I 0,000 20,000 0.875 20.6 0.0379 22.5 0.0618 18.1 0.0781 17.2 0.0699 SECTION VII F-I04 Preceding pageblank 75 i Figure ch Vii- ] F-104 I FLIGHT CONDITIONS I 2 3 Takeoff Start Cruise End Cruise h(ft) Sea Level M .273 W(Ib) 24,000 23,510 .046 .040 xcslc Tlp External Tanks Pylon Loterol 196 : s ft = C = 9.53ft REFERENCES Unpubllsh_Dota 1.9 1.36 14,960 15,000 15,000 .18 .18 Sea Level .18 Cleon Clean On On Clean Clean Cleon -3o -3o .3 ° 0 ° 0° 0° GEOMETRY b = 21.9ft 30,000 1.0 Clean dofo not ovoiloble REFERENCE l Note: 30,000 On 15° Trailing Edge .84 VMAx 5 VMAX Sea Level On -15 ° Leading E_e Flaps 30,000 4 .3 ° IS ° PITCH " 8 r _ep F-104 ROLL" F-104 L _s __. _'s+l -- YAW" I r F-104 TS+I Figure T_:- 176-1 VIi-2. F- i<)l_ -- Stability 7> Augmentation System TABLE VII-A GEOMETRICALAND Note: Data INERTIAL are for body-fixed S = 196.1 ft 2 , PARAMETERS stability c = 9.53 ft axes , b = 21.9 ft FLIGHT ] FOR THE F-I04 CONDITION 2 START CRUISE 3 END CRUISE Vmax 5 Vmax SEA LEVEL Sea Level 30,000 30, O00 30,000 Sea Level M (-) 0.273 o.84 1.0 1.9 I .36 a (ft/seo) 1117 995 995 995 1117 TAKEOFF h (St) (slugs/ft 3) 0.00238 VT° (ft/sec) 3o5 _= _v2/2(ib/ft 2) w (ib) m (slugs) ly (slug-ft 2) Xo.g./_ ]]0.5 o.0oo889 O .000889 0.00238 836 995 1892 1519 31o 44O 159o 2740 15,ooo 15,ooo 24,000 23, 31o 746 724.5 65,000 O .O46 O. 000889 4 14,960 465 466 64,500 56, 65O 56, 65o O.040 0.18 o.18 0.18 466 56,650 19.6 4.0 2.0 1.4 1.1 7o (_eg) IO 0 O o 0 e o (deg) 29.6 4.0 2.0 1.4 1.1 so (deg) TR-176-1 76 TABLE LONGITUDINAL Note: Data are for NONDIMLmNSIONAL body-fixed VII-B DERIVATIVES stability FLIGHT I h (ft) 0 2 FOR THE F-104 axes. CONDITION 3 4 5 30,000 30,000 30,000 0 M (-) o.237 0.84 I.0 1.9 I .36 CL 1. 125 o.342 O.1375 o.o383 O. 0278 CD O. 185 o.o365 O. 04 0.041 0.045 4.44 4-.97 5.10 2.92 4.18 CL(_ eL& 0 0 C_ 0 0 O. 6925 CL6e CD_ CD M I 0.762 1 .O15 I. 071 0 0.1094 0.0255 0 o.o38 0 0 o.8035 0 O o.040 O. 042 0.045 0 0 0 CD6e Cm_ --I.496 -I .319 -I. 564 -i.255 -I .8o Cmc_ --3•44 -3.90 -4.99 -3 •04 -2.oo5 0 0 0 0 0 Cm M Cmct TR-176-I -5.615 --8.O3 --8.6O 77 --4.59 -6.825 TABLEVII-C LONGITUDINAL DIMENSIONAL DERIVATIVES FORTHEF-IO4 Note: Data are for body-fixed stability axes. FLIGHT 2 I TAKEOFF (ft) M(-) Xu (I/sec) xw (I/see) XB e [(ft/sec2)/rad] Zu (I/see) z_ (-) Zw (I/see) ZBe [(ft/sec2)/rad] Sea Level CONDITION 3 START CRUISE END CRUISE 30,000 30,000 1.0 4 Vmax 30,000 o. 273 0.84 -0.0352 -0.O106 -0.0224 -0. 0573 o. IO7 O. 0234 O. 0209 0.0136 o 0 -o.214 -o. 0688 0 -o.o513 0 o o -0.504 -0.959 --22. I -85.3 -199 0 O --0.0005 6 -0.000239 -0.o156 -0.0142 -o. 0228 -0.440 0 1.9 0 -O. 0271 0 -1.05 -464 o 5 Vmax SEA LEVEL Sea Level I.36 -0.115 O. 0211 0 --0. 0422 0 --3.21 -927 0 Mu (I/see-ft) M_ (11ft) Mw (11sec-ft) Mq (11sec) -0. 279 -O.412 -o.598 -0. 607 -I. 94 MBe (I/sec2) --4.67 -17.8 -30.8 -57.2 --140 _-176-1 78 -o. o00349 -0.000212 -0. 000375 -0.0348 -O. 107 TABLE E_ATOR Note: Data are for LONGITUDINAL VII-D TRANSFER hod ,-fixed stability FUNCTION FACTORS Altitude, CG M (--) h (ft) (_ o) Weight, _sp Along _sp _p (I/Tpl) N_e Vmax O.273 O.84 1.0 1.9 1.36 30,000 30,000 Sea Level Sea Level 24,000 30,000 18 4.0 23,310 14,960 SEA LEVEL 18 18 15,0(0) I0,000 0.220 o.2o6 O.161 O. 197 0. 126 2.21 3.48 4.83 8.16 o.o932 0. 102 0.277 (0.0o959) (o.008o8) O. 140 o.o01 O.O4O2 (o.o4w) (o.1o7) -17.8 -30.7 -57. I 13.0 -14o I/Te I o.133 0.01_ 0. 0237 o .o_78 o.115 I/Te 2 o.269 0.432 o.812 O. 767 2.51 -2.37 I/Tu I -0.0391 I/Tu2 6.17 -22. I Aw I/Tw I _w (1/Tw2) a_ ( 1/T1_3 ) _.7 -2.00 -4.19 2.26 I .11 -113 -85.7 -85.3 -199 175 1.55 -6.29 -19.6 3.61 24.8 --62.2 -_3.2 -_6_ -927 23_ 231 o.o966 O. 102 0.275 (0.00967) (0.00833) o.147 0.O914 0.0_07 (0.0476) (O.107) 21.8 199 89.3 46_ o.o971 IITI_ i 0.0185 0.00816 II_2 5.21 9.03 11.7 13.9 -8.41 -1o.7 -12.9 -_.76 TR-176-1 5 Vm_ TAKEOFF END CRUISE -_.66 Ae 4 START CRUISE 4.6 W (ib) CONDITION 3 2 I No., THE F-I04 axes FLIGHT Mach FOR 79 o. o217 927 0.115 29.2 --22.7 SECTION VIII F-IOSB Precedingpageblank 81 05o(3 poqsllqndun $:10N3_13-13_i IJ.g'll = 0 #_6"_£ = q zl_, gg£ - S AUI3N039 30N3_333_ suo//lPUOO $$$qi lo o/qDIIDAD lou olop IOJ_qo7 • 0 o9_ 0 0 o9t_ eSp3 ENJH!oJJ. o oOZ o o oOZ ,6p3 _Jp¢_l UOOlO UOOlO UOelO "lcNSOg,l_-_ "lO60gt,-Z UOOlO UOelO UOOlO "1o60g9-1 80£" 80£" eO£" g6;_" g6Z" OL£'g£ 000'0£ 0L£';£ 0£_'1t_ O£Z'lt_ I';_ O00'Ote ItP;_" leael oos xVHA qoooJddv JeMOd g t, 6" O00'G£ 6" O00'g£ "lD6099-1 UOl.(d 5UlM eUllJO;UOO sdOl.l squo£ oJ cO IOUJO;X':l o/so x 19_" IO^Ol ooS (ql)M" IN ($_) q j;oeNo.L £ ,Z ,I SNOIklQNO0 8goI--I L-IlIA _Y_ CHglld r_ I _0 p-I E-_ PITCH • 8 -_(_ _ep Se_- F- 05 i T I K_} = Scheduled of impact function pressure qc Kp = Scheduled function of impact pressure qc ROLL' F-105 YAW' P / _rp ay 8r F-105 .... 4, Ks 1.15s+l K_,, Kpr = Fixed gains Ka = Scheduled function of impact pressure Pigmre T_- 17(;- 1 VIII-2. qc F-I05- gtabilit:F 83 Aug_nent_tion System TABLE GEOMETRICAL Note: AND INERTIAL Inertia data are for S = 385 ft 2, b = 34.9 VIII-A PARAMETERS principal ft, C = 2 TAKEOFF h (ft) Sea Level M (-) o.261 a 1117 (ft/sec) o (slugs/ft3) VTo (ft/sec) 0v2/2(lb/ft 2) w (ib) O. 00237 35, O00 F-105B 11.D ft CONDITION 4 3 END CRUISE C LEAN 35,0OO 5 POWER APPROACH CLEAN CLEAN Sea 40,000 Level Vmax 0.9 0.9 O.241 2.1 973.3 973.3 1117 968.5 0.00237 o. ooo587 O. 00o738 o .000738 291 875 875 269 2030 IO0 283 283 86 1210 30,000 35,37O 1098 932 1098 Io, 300 1 2_ 600 I0_ 300 41,230 m (slugs) START CRUISE THE axes. FLIGHT I FOR 41 _23o 128o 128o 8 _700 8 _700 35,37o Ix (slug-ft 2) ly (slug-ft 2) 140,000 140,000 14o, 00o 140 _000 140,000 I z (slug-ft 2) 185,000 185,000 181 ,ooo 177,000 181 _000 Ixz (slug-ft Xc.g./_ 2) 0 0 o 0 0 O. 295 O. 295 o. 3o8 o. 3o8 o, 308 7.4 7.2 7.0 5.2 3.5 (deg) 10.0 0 0 eo (deg) 17.4 7.2 7.0 7o TR-176-I 84 -5.0 0.2 0 3.5 TABLEVIII-B DI_[F_ _,LJlJAL DERIVATIVES j LONGITUDINAl, Note: Data are for _- body-fixed stability 1 TAKEOFF (ft) M (-) Se& Level 0.261 Xu (I/sec) -0.029 Xw (1/sec) 0.0793 XSe Zu [ (ft/sec2)/rad]! (]/see) -0.1585! Zw Z8 e Mu (I/sec) [ (ft/sec2)/rad] (I/sec-ft) o 35,000 35,000 Sea 0.9 -0.00565 O. 00693 o.o264 -0.01386 0 -o.0263 o.o86 0 -0.05 27 Level o.241 0.9 -0. oo582 o -0.1719 5 40,000 2.1 -0.00751 0.0132 0 -0.0265 o 0 o --0.311 -0.4 -O .466 -0.406 --17.3 -65 •19 -75.97 -I 9.88 L] 35.9 -0. 0000101 -0. oooo 198 -0. 0000119 0 Mw ( 1/sec-ft) -0.00575 Mq (1/see) TR-176-I 4 3 START CRUISE -_0.000259 -0.000117 (I/sec 2) CONDITION POWER APPROACH CLEAN Mg- (I/ft) M6e F-IOSB END CRUISE CLEAN 0 0 (-) 2 ThE axes. FLIGHT h FOR ,- -0. 345 --2.60 --o.oo819 -o .485 -12.o3 85 O -0. 00011 7 -O. 000259 -O. OO4 68 -o .485 --12.03 -0. 003£4 -0.59o -0.0oooo5 -0. O1 25 2 -0.319 -0.303 -2.7o3 -21.0 35 TABLEVIII-C LATERALDIMENSIONAL DERIVATIVES FORTHEF-IO5B Note: Data are for body-fixed stability axes, lateral avaiJ able for flight conditions I and 2. FLIGHT CONDITION 4 3 END CRUISE CLEAN POWER APPROACH 35,000 Sea CLEAN I/sec) [(_/seo)/r_d] Y_r [(I/sec)/r&d] I/sec 2 ) I/see) L_ (I/see) 2) L_ (I/see L_ -0.00173 0.0234 --_1.1 -2.8 I .709 40,000 2.1 -0.1878 -0.213 -0.0021 O. 0241 -21 .5 -i. 185 i .251 -0. 00221 O. 0837 -I 39.8 -3.14 i .966 IO.71 3.72 26.5 (I/sec 2) 14.37 2.86 12.97 I/see 2 ) 12.39 4.38 18.81 I/see) _ (I/see) N ' (I/see 2) 6a (I/seo 2) _r TR-176-I -0. 1497 Level o.241 0.9 Yv( 0.324 O. 0729 O. 1341 -0.382 --0.242 --0.386 -i. 08 6 -0.277 -I. 339 -4.71 -0.975 -I .989 86 data not TABLEVIII-D ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FORTHEF-IOSB Note: Data are for body-fixed stability axes. FLIGHT I TAKEOFF Mach No., M (--) Altitude CG (¢ Weight, START CRUISE 4 3 END CRUISE CLEAN POWER APPROACH CLEAN 0.241 5 Vmax CLEAN 2.1 o.9 o.9 35,000 35,000 29.5 29.5 3o.8 30.2 3o.8 41,230 41,230 35,37o 30,000 35,370 _sp o.281 o.1819 0.253 0.398 0.0893 _sp 1.338 2.71 2.o8 0.998 5.o6 {p 0.0297 0.1295 o.o631 O.1016 o.1869 0.1247 0.0223 0.0429 O. 1342 0.0201 --2.60 -I 2.03 --I2.02 -2.70 --21.0 0.1026 O.OO6] 0.00891 0,200 O.355 o.433 -o.452 --2.002 h (ft _) W 0.261 2 CONDITION (ib) Sea Level Sea Level 40,000 Along A9 1/Te 1 1/Te 2 -1.367 N_e 0.0742 0.335 --1.708 1/Tu1 1 .o18 0.438 1.511 1.266 1/T, 2 -17.0 -696 -55.8 --15.02 -65.2 -76.0 -19.88 -17.27 0.00827 0.508 --1.792 2.94 -65.2 -135.9 44.2 162 -139 36.9 o. 0372 0. 129 0.0642 o.1258 o.1838 O. 1287 0.0225 0.044 o.1435 0.0204 17.28 65.2 76.0 19.88 135.9 I/Th I O. 01292 O. 004 66 O. 00439 0.01094 0.00737 I/Th 2 -3.37 -7.29 -7.48 --3.49 I/Th 3 3.80 7.88 8.07 3.89 1/Tw 1 315 _e TR-176-I 87 -12.49 12.8 TABLEVIII-F AILERONLATERAL TRANSFER FUNCTION FACTORS FORTHEF-IOSB Note: Data are for body-fixed stability axes; lateral data not available for flight conditions I and 2. FLIGHT C OND ITION 4 3 END CRUISE CLEAN MachNo., M (--) Altitude, ca _o h (ft) W 0.241 o.9 Sea 35,000 (_ _) Weight, POWER APPROACH CLEAN 30.8 (ib) 35,370 7.0 (deg) l/ms -0.00870 Level 5 Vmax CLEAN 2.1 40,000 3o.2 3o.8 30,000 35,370 5.2 3.5 o.ooo676 0.00631 I/T R 2.13 1.382 2.95 _a 0.184 O. 0545 o. 1531 _d 3.29 2.13 4.16 Ap 10.71 3.72 26.5 Alat 0 l/Tpl O.OLO3 0 N_a _p r o. 0635 0.101 0.0744 2.87 1. 674 3.44 --1.339 Ar -i.o86 -0. 277 1/Trl --I.524 -1.503 -I .3 N5 a (r o.465 0.564 o.6o0 _r I .398 1.718 1.686 -0.00174 --622 1/T#1 --0. 00210 -0.00221 O. 1427 0.1379 _a 1/T#2 ([_) I/T_ 3 (_) TR-176-I (-o.0573) (0.276) i.655 -133.7 88 0.658 6oi TABLE RUDDER lATERAL Note: Data data TRANSFER are not VIII-F FUNCTION for body-fixed available for FACTORS No., Altitude_ M (--) 4 POWER APPROACH h (ft) o.9 30.8 Weight, _o (lb) W 5 Vmax CLEAN 0.241 2.1 Level 30.2 30,000 35,370 lateral 1 and CLEAN Sea 35,000 F-IOSB CONDITION 3 END CRUISE CLEAN THE stability axes; flight conditions FLIGHT Mach FOR 40,000 30.8 35,370 7.0 5.2 3.5 I/Ts --O.OO87O 0.000676 o.oo631 I/T R 2.13 1.382 2.45 _d 0.184 0.0545 o.1531 _d 3.29 2.13 4.16 % 14.37 2.86 12.97 O.01 O3 0 (deg) Alat P Nf_) r 1/%1 0 1/%2 -I. 109 -I. 82 -I .499 1/%3 I .014 I. 63 I.738 -0.975 -1.989 Ar 1/Trl --4.71 1.848 I.4 63 2.31 _r _r 4r TR-176-1 1/T_1 0.1028 -0.246 0.1601 0.259 O. 838 0.342 0.0233 0.0241 0.00538 -0.0395 0.00369 1.371 2.36 -0.0103 1/% 2 1.927 1/% 3 203 140.6 89 37O 2. ""4 ?RECED_F_G PAG! SECTION B-58 Precedingpageblank 91 IX NQI" _L_AED Figure IX- ] B-58 I I NOMINAL CRUISE FLIGHT CONFIGURATION CONDITIONS See Table 1T-A 50,000 X 40,000 h(ft) X 30,000 20,000 I0,000 <D REFERENCE 0 GEOMETRY _" 0 ,4 .8 M 1.2 1.6 2.0 S = 1542 ft = b • 56.8 ft c • 36.2 ft REFERENCES I) Bright, B.E., EIIIngton,J.D.,"Applicotlon Selfodoptlve Stobillty Concept Augmentation to the B-58 Thesis, Air Force Institute of Technology, GGC/E E/64-5, System", Gen. Dyn. Fort Worth, 3) Jones, L.S. ,"U.S. Bombers BI-B70" Unknown Directional System'.' 2) Anon. ,NB-58 Flight Control SOURCE of the Limit-Cycle Lateral May 1964 FZE- Aero Publishing Inc., 1962 4-049, Nov. 1962 ROLL PITCH I 8 I B-58 ) YAW L_ / ay NOTE : K s , K4, K5, KT, Ke...Gains Scheduled for Moch- Number K 2 , K 3 , K 6 , K 9 , Kjo...Goins Scheduled for Altitude (Air doto computer r ___L not shown) The Augmentotion System is of 1962 os documented vintoge for this oirplone Figure is known to hove undergone in GD. Convair Report IX-2. -- B-58 FZE 4-052, Stability severol modificotions. The Dec. 196=?, being the Iotest Augmentation System system shown ovoiloble doto {{'0 {{'0 0{'0 0 0L9'90_' O00_6_OCL O00_690_L O00_?O_L 000 c06 L O00_OgL 000 _4?0 _ t 6L_- 000_690_L 699_ 99L¢ O00'OgL O00_06L O00_OgL 000 _06 L_L Lg_L 9LOL 9LOL ( S %$-gnIS ) zxI _L e69'619 gg9_ °z (s_p) 0{0_07 _97 0o6 96{ o 090 'o66 ?_{'6{{ 099'99{ {9{'{9{ L9{ L o{s'697' L o/'©Ox 9S'O 969' LLg'6_OLL'90_'L _9_ "0 0 OL_'LO_'L 6L_' 669*1 _ 0 s_L CO L 067_90_L 9_ "0 (_%j-_uIS) oko'o{? Zl ( g %J-gnIS ) £I ( _q.a-_=-Es ) xz O00_06L (SqT) S_L oh g9LL gggO00 "0 6L6 699000"0 L99 9{6L 9L?ooo'o 494000"0 kk{¢oo'o LL{eoo'o 996 466 996 996 LLLL LLLL LLLL ¢'t 96'0 0"¢ t6"O t6"O t6"O ¢{'0 000'0_ 000'0{ 00_'_ 000'0_ o o o { _ L L 9 6 _ MOI$1QZO0 (_/S_T_) LL{¢oo'o o (o_s/%#) (-) (_) q SHO!ff£ %J LL'9{ = o :%j sg"9g = ct :e%j S?g'L <o b- = S : o%oz 96-_ Z}KZ HO£ _ZmZIgV_V£ V-XI Z_I_V_ _IVOIKZZNOZ© TABLE LATERAL Not e : NONDIMENSIONAL Data are for body-fixed IX-B STABILITY stability DERIVATIVES axes_ cruise FOR THE B-58 configuration. I .-a FLIGHT CONDITION o_ I I 2 3 h (ft) 0 0 0 40_ 000 M (-) o.32 o.91 o.91 0.91 2.o 0.98 i.2 357.3 1016 1016 880.9 1936.2 975 1161.7 -0.7665 -0. 6275 -0.732 VTo (ft/sec) Cy_ -0. 6395 -0. 6375 -0. 674 4 5 44,200 6 30,000 7 40,000 -0.801 CYSa O. 1511 0.08655 0.0890 O. 1790 0.0187 O. 1862 O. 1791 Cyst O. 0929 O. 0527 O. 05725 0. 0954 O. 0232 O. 68075 0. 0545 kO k_ C_ -0. 1584 -O.0551 -0.0851 -0. 1345 -0.03942 -0. 1096 -0.1158 C_p -0. 1936 -0. 1585 -0. 1576 -0.2173 -0.2317 -0.2107 -0.2238 C_r C_$ a 0.04479 -0.1112 0.08568 0.08553 O. 1102 0.07207 -0.04043 -0.03892 -0. 1041 -0.01782 0.09543 -0.0729 O. 1071 -0.0010 C_6 r 0.001927 0.00729 0.007395 0.01227 0.003115 0.01328 0.0078 CuB O. 1014 O. 1242 0.0624 O. 1029 0.03207 0.0788 O. 1117 Cnp -0. 1143 -0.01082 -0.02935 -0.06118 0.01241 -0.03713 -0.04215 Cnr -0.2494 -0.2449 -0.2312 -0.2868 -0.2132 -0.2611 -0.2823 Cn6 a -0. 0405 -0. 03318 -0. 03317 -0. 0664 -0. 02038 -0. 0725 -0. 09275 Cn6 r -0. 06415 -0. 03561 -0. O35 63 --0.O633 -0.01382 -0. 053O -0. 03255 TABLE LATERAL Note: I Data for body-fixed DIMENSIONAL stability -4 O_ I IX-C DERIVATIVES axes, cruise FLIGHT H (-) 0.32 --0.09 _e YSa Y * _r ! Lr 0 40,000 0.91 0.91 o.91 6 44,200 3O,OOO 2.o -o.o962 o.98 -0.105 7 40,000 1.2 -0.09 o.o153 o.oo287 O. 0267 0.0201 0.0131 0.0382 o.o229 0.00814 o.oo356 o.o116 0.00613 -5.828 -16.875 -23.14 --7.575 -8.394 -i i. 163 -0.736 -0.63 -0.469 -I. 424 -i. 238 -0.381 0.221 0.724 o. 6o3 0.212 --3.516 0.395 I1858 I_ -o.o654 5 o. o356 -13.19 -11.194 ! LSr configuration. o. 0578 ! L5 a --0.27 B-58 0.0212 LO O_ L_ 0 -0.426 THE CONDITION 4 (ft) FOR 2.108 13.71 --5.597 o.214 -3.965 o. 278 -7.538 -11.08 -0.524 O. 251 -0.953 0.748 1.71 0.789 0.608 1.313 3.818 1.946 1.895 2.317 3.202 -O.OO473 -O.0388 --O.0293 -0.02 N_ --0.0141 -0.0631 --0.I05 N_ -0.222 -0.76 -0.459 -o.159 -0.198 --0.231 -0.198 -4.021 -2.865 -0.909 -1.413 --2.29 -2.654 --3.986 -2.589 -1.o69 -0.884 -1.614 -0.932 N{a 0.157 f NSr -0.669 _ TABLE IX-D AILERON Note: IATERAL TRANSFER FUNCTION FACTORS Data are for body-fixed FOR THE B-58 stability axes, cruise configuration FLI(_IT CONDITION h (ft) M (-) Np 5a 2 3 4 9 6 7 0 o 0 40,00O 44,200 30,000 40,000 0.32 0.91 O.91 0.91 2.0 0.98 1.2 I/Ts 0.o58 0.00426 0.0334 0.026 0.0134 0.029 0.017 I/TR 0.698 1.927 1.75 0.556 0.802 0.889 0.687 _a 0.009 o.144 0.044 0.0O86 0.0772 o.oi65 0.0296 _d i.403 3.796 2.126 I .42 I.40 I-98 I.81 Ap -3.516 --11.194 -9.597 -3.965 -7.938 -o.953 0 0 -13.19 0 I/Tp 1 _p Ar r i 1/T R 0 0.132 0.192 O.0784 0.085 0.096 0. I04 1.274 3.151 I •786 2.217 2.398 5.89 0.197 -1.148 -4.021 -2.865 1.881 1.498 --0.213 --0.249 --0.909 1.002 -I.413 -2.29 0.983 1.082 --0.174 -O.331 -2. 654 0.934 N5 a (r 0.678 -0.420 -0.295 1.677 1.o21 0.897 0.845 o.481 0.797 0.602 0.0212 0.0978 0.0356 o.o193 0.00287 0.0267 O. 0202 -O.018_ -0.073 I/T81 (_8) 0.1624 -0.0838 -O.0941 I/T#2 (_B) 2.1616 1.198 0.798 -O.191 --O.0171 _a I/T#3 -9.008 0.226 0.695 0.467 70.64 81.472 60.03 493.37 7.994 98.73 36.17 13.46 9.99 26.063 23.42 1/Tay 1 (_ay2) 0.12 -0.210 -0.183 0.15 -0.02 -O.161 -0.036 i/T_2 (_2) I.OO9 o.948 0.993 0.69 O.35 I .839 CG _ay3 ( I/TaY3) a_y 3 ( I/Tay 4 ) TR-176-1 --0.127 1.733 (-3.3) (4.7_) (-3._) (4.896) 97 -o.892 (-6.618) 0.89 (6.883) 86.19 0.920 (-2.255) (2.927) 131.87 0.458 (-2.8) (3.097) TABLE IX-E RUDDER lATERAL TRANSFER FUNCTION FACTORS FOR _{E B-58 Note: Data for body-fixed stability axes, cruise configuration FLIGHT CONDITION h (ft) 3 4 5 6 7 0 0 0 40,000 44,200 30,000 40,000 O.91 O.91 O.91 _.o o.98 1.2 I/Ts 0.058 0.00426 0.0334 0.026 o.o134 0.09 o.o17 I/TR 0.698 1.527 1.79 0.556 0.8O2 0.885 0.687 _d 0.009 o.144 0.044 0.0086 O.0772 O.0165 o.o_96 I.hO3 3.796 2.126 I .42 1.40 1.58 1.81 0.399 2.108 I .711 O. 789 0.608 I.313 o.748 I/TPl 0 0 0 0 O 0 0 I/Tp2 --2.969 --4.554 I/Tp3 2.713 4.065 9.365 -O. 669 -3.986 0.964 _r -3.247 -3.433 -3.319 2.818 3.181 3.329 3.204 -2.589 -I •069 -0.884 I.607 I .615 0.786 -0.326 0.167 -0.O561 -0.317 _r 0.665 0.436 0.636 0.534 % O.0131 O.0382 0.0229 O.00814 Ar r 2 0.32 M (-) A I I/Tr -5.859 --2.959 N5 r I/T01 -0.0149 -0.00689 -0.00709 I/T_2 0.946 I.482 I .337 -0.008 N_ r I/T_3' Aay I/Ts.j1 (_aY2) 51.355 150.05 113.43 4.669 38.813 23.266 -0.0966 -0.O122 -O.O167 0.431 131.44 -1.614 -0.932 I.o 0.88 -0.2_26 -o.255 0.362 0.553 o.518 0.00355 0.O116 0.00613 -0 .o0171 -0.0043 -0 .O0445 0.693 o.574 o.9oi -0.1o 0.793 248.84 7.173 6.886 -0.0229 -0.0032 139-37 152.06 11.303 7.126 -0.0135 -0.0131 ........................ I/Troy2 (a_y2) CG _ay3 (I/TaY3) °_y 3 (1/T&y 4) TR-176-1 0.446 1.46 (--1.486) (-9.179) (I.828) (5-915) 1.243 (-4.926) (5-398) 98 0.394 (--2.492) (2.662) 0.748 (-4.597) (4.788) 0.649 0.537 (--3.394) (--3.14) (3.62) (3.338) flFDTION X NAVION 99 Figure X-I NAVION I NOMINAL FLIGHT CONDITION oh I h(ft) = 0 ; M = .158 W = 2750 ; VTo = 176 ft/sec Ibs CG at 29.5 % MAC Tx = 1048 slug ft 2 Ty = 3000 slug ft 2 Tz = 3530 slug ft z Ixz = 0 REFERENCE 0 S = 184 ft z c = 5.7 ft b = 33.4 ft GEOMETRY TABLE X-A GEOMETRICAL FOR Note: S PARAMETERS THE Data stability TABLE NAVION for axes, X-B TABLE LQN,GIT_INAL DERIVATIVES NONDIMEN_IONAL FOR THE NAVION Note: are lATERAL NONDIMENSIONAL DERIVATIVES FOR THE level flight Data stability _8o (ft 2) for Data axes 33.4 c (ft) w (ib) 2,750 (ft) 85.4 M (--) 29.5 2) I,o48 (-_lug-_ 2) 3,000 (slugs) e.g. (_ MAC) Tz (sl_-_ 2) _z h 3,930 0 stability I h (ft) 0 0.198 M (-) o. 158 CL 0.41 VTo 176 CD O. 05 c_o CL= 4.44 Cy6 (ft/sec) (deg) -0.564 CL& 0 CYSa CLM 0 CYSr CLSe 0._5 C_ -o .o74 CDc_ 0.330 C_p -0.410 CDM O C_r O. 1o7 CDSe O C$5 a O. 1342 C_5 r O. 0118 Cn_ o.o7oI Cr_ -o.o575 Cnr -0.125 Cn5 a -0.00346 Cn5 r -0.0717 0 0 O. 197 0 (ft) M a 1 h for FLIGHT CONDITION CONDITION 5.7 are axes FLIGHT ( sl_-_ STABILITY NAVION body-fixed b (ft) m X-C O. 158 (ft/see) P (slugs/ft 1117 3) 0.002378 VTo (ft/see) 176 -4=VTo2/2 ( 36.8 ib/ft 2) cLo (deg) 0.6 7o (deg) 0 TR-176-1 - .36 M o -9.96 Cmq i01 TABLE TABLE X-D LATERAL LONGITUDINAL DIMENSIONAL DERIVATIVES FOR TI-IEN&VION FLT. Xw FLT. O.03607 -0.O45] XSe 0 Zw --2.0244 Zu -0.3 697 Zse DIMENSIONAL DERIVATIVES FOR THE NAVION COND. Xu YSa y* 5r r,f;. --8.402 2.193 -28.17 --<). 04997 Lsi M_ --O.005 ]65 L_ r Mq --2.0767 MSe COND. -0. 2543 Yv Mw M_ X-E 28.984 2.548 4. 495 0 -O. 3498 --II. 1892 g -0.7605 N -O.2218 ' 5a -4.597 TR-176-1 102 TAB I _E' X-[ _' TAB[,E E ] _VA TO I_ 1,0 t'qt_I TUD IN A ]iJ AILERON j [ NC2ION r TRANSI,'I,:]_ ]_ U1ACTORS ]!'OR ']'H_J NAVION FLT. o. dgP'{ "'sp 3. (;083 A RUDDER FLT. 1/% o.oo87(; I/TR 8. h3b 1/T S o. 008'( 6 1/T R 8.435 A 0.204 _d o. 204 ._ O.2137 ._ 2.385 md Ap 28.984 % O.0'.)231 1/T_b 1.9164 Au 2.385 2.548 0 11Tpl N_a --1.0161 COND. VLT. O. 0801 I/THI FACTORS NAVION COND. <p --II .0114 X-H libTEI{AI, T]{ANS],']:]I { FUNCTION L;'ORTHE A Ao N 0 LAI_'h",[lA.l_,'_{ANSFER FUNCTION FACTORS FOB TLI]!] NAVION (]ON]). < sp TAB],E X-G 1/Tpl N_.P,r 0 _p o. P33 6 c%o 2.136 -6.991 1/Tp2 3. 6064 IITp 3 u Nb e I/Tul 2.401 I/Tu2 Aw _. F r N_)a ]/Tr 1 --1. 253 (1.98h I/mr 3 _e O. 086u _% o. 25 63 Ah fl 1/Thl 28. 171 --I0. I08 8. 639 <r 0.1335 N_',r O. 5345 N w rw I/T r 1.543 I/Tr2 1/% 2218 -280.39 --;'8. 171 -4. 997 A r Ar 54.071 0.0707 Af{ N_Ba A_ 0.2218 1/T_ 1 0.2285 I/T_2 77.78 1/Tpl -0.0366 I/%_ 8.795 1/T[_ 3 65.352 A_ 12.489 N_ e 1/Th2 I/Th3 Aaz O. 01 65 13. 122 1/Tay 1 -o.o591 --28.171 1/Tay 2 8.335 a Z NB e I/Tazl 0 I/Taz2 --10.108 #x:0 I/Taz3 0.0165 CG i/Taz4 13.122 TR-176-1 CG 1/% 3 I/Tay 4 103 --3.0074 3.894 p_EcED_NGPAGE BLANK 8F_TION DC-8 Precedingpageblank _o5 XI NOT FILMED, P-3 I Figure XI-] I DC-8 FLIGRT Flight CONDITIONS Approach Condition h(ft) 0.219 W(Ibs) [x (slug-ft Iy (slug-ft Iz 190,000 2) 3.09 z) 2.94x10 5.58 =) 3:5,000 0.88 250,000 250,000 3.11xlO 3.77x 3.77x e IO s 10 6 2.94x106 3.56x106 3.56x10 s x I0 s 5.88x106 7.13 x IO s 7.13 x 106 53.7 x I03 z -64.5x10 0.15 s 45x105 0.15 Axes Stability 0.15 GEOMETRY S = 2600 ft 2 b = 142.3 ft REFERENCES 0.84 190,000 0.15 REFERENCE :55,000 0.443 s 28x10 Xce IE c = 23 x I0 s 15,000 VNE t (slug "ftz) Ixz (slug-ft Cruise Holdh_g ft : Unpublished Dota /9 TABLE GEOMETRICAL Note : Data are S = 2600 for ft 2 AND INERTIAL body-fixed , b = 142.3 XI-A PARAMETERS stability ft , c = 23 ,j • M (-) a o (s1_gs/ft 3) VTo (ft/seo) = oV2/2 (ib/ft 2) w (Zb) Yo = 0 deg CONDITION 3 0 15,000 33,000 0.218 0.443 0.84 1o58 o. 002378 0.001496 468.2 243.5 71.02 163.97 190,000 m (slugs) , CRUISE 1117 (ft/sec) ft DC-8 HOLD ING APPROACH h (ft) THE axes FLIGHT ] FOR 190,000 59oo 5900 982 0.000795 4 VNE 33,000 0.88 982 o. 000795 824.2 863.46 270.0 296.36 230,000 7t43 230,000 7143 Ix (slug-ft 2) 3,090,000 3,110,000 3,770,000 3,770,000 ly (slug-ft 2) 2,940,000 2,91,0,000 3,560,000 3,560,000 I z (slug-ft 2) 5,580,000 5,880,000 7,130,000 %,130,000 Ixz (slug-ft XCG/C 2) 28,000 -64,5 O0 o.15 o.15 o o 45,000 o.15 o 53,700 0.15 @O (deg) Uo (ft/sec) 243.5 468.2 Wo (ft/sec) 0 0 0 0 35 0 0 0 _F (deg) TR-176-I 107 824.2 0 863.46 TABLEXI-B LONGITUDINAL NONDIMENSIONAL DERIVATIVES FORTHEDC-8 Note: Data are for body-fixed stability FLIGHT axes. CONDITION 4 2 h 0 15,000 33_ 000 33,000 M 0.21$ 0.443 0.840 0.S8 CL 0.98 0.42 0.308 0.279 CD O. 1095 0.0224 0.0188 0.0276 c:4 _ 4.81 4.8762 6.7442 6.8989 0 0 0 0.02 0.048 0 CL_ e O. 328 0.328 o. 352 o. 358 0.487 0.212 0.2719 0.4862 CD_ CD M O. 0202 0.00208 o. lOO5 o. 3(;'.) 3 CLg CLM 0 0 CD6e -0.97] -1.2 0 2 Cm_ --1.478 -1.5013 -2 .ol 7 -2.413 Cm_ -3.84 --4.10 --6.62 -6.83 -o. 006 -0.02 -0.17 -0.50 Cm m Cmq -o.ool 17 --o .97t 2 -14.6 -_5.2 TABLE LATERAL Note: NONDIMENSIONAL Data are for XI-C STABILITY body-fixed FLIGHT h (ft) 0 1D,O00 DERIVATIVES stability FOR THE DC-8 axes CONDITION 33,000 33,000 M (-) o.218 0.443 0.84 0.88 VTo 243.5 468.2 824.2 863.46 (ft/sec) -0.87268 -O. 6532 0 -O.7277 -0.7449 O CY_ a CY_r 0.18651 C_p -O.15815 C_p --O.385 C_r 0.248 C_6 a -0.08595 C_$ r 0.02189 cR_ o. 1633 Cnp -0.0873 Cnr -O.196 Cn6 a -O.O106 Cn_ r -0.08337 TR-176-1 o.18651 o.18651 O. 18651 -0.137D2 -0.16732 -0.17362 -o.4]6 -O.516 -o .538 0.132 0.147 -0.o83o8 -0.07965 0.146 -0 .o79o7 o.o]9195 0.021086 0.02166 0.12319 O. 15471 O. 16044 -0.0307 -0.0107 -0.00587 -0.161 -0.190 -0.199 -0.00354 -0.003701 -0.003999 -0.08337 -0.O8337 -O.O8337 109 TABLE LONGITUDINAL Note: Data are XI-D DIMENSIONAL for body-fixed DERIVATIVES stability M (-) % (i/seo) xw (I/sec) 33,000 33,000 0.218 o.443 o.84 o .88 O. 000D99 o. 000733 -0. 000595 -o. -0.o2891 -o. oo7o7 -o.o145 -0.0471 -o.o291 -o. oo714 -o. Ol Ii -0.04 o.o629 000084(5 0.0321 0 -0.1 Zu -0. ,_)06 -o.1329 0 (-) Z6 e [(ft/sec2)/rad] 0.0043 0 -o. 25 o6 ( I/sec) CONDITION 19,000 ZU ....(]/sec) Zw DC-$ 0 x6e [(ft/sec2)/rad] (I/sec) THE axes FLIGHT h (ft) FOR 329 o -0.75g -lO.19 0 0 0622 -0.073[3 0 -o .806 0622 0 0 -o .845 -38.6 -34.6 -23.'7 oP59 -0.0735 0 -0.6277 -o. 63 -o. 000063 -0. 000786 -o. oo254 -0.0000077 -0. o00003 -o. ooo 78 6 -0. 00254 M@ (I/ft) -0. -o. 00072 -o .o0o51 -0. 00052 £w (I/sec-ft) -o. 0o8 7 -o. o107 -0.0111 ---0.01 14q(I/see) -0.7924 -o. 991 -0.924 -I. 008 Iv]u .... (I/sec-ft) -o. % (i/_oo-ft) 0000077 O01 u(_ -3.24 M8e (I/see2) TT- 1 7.'-1 {'1 1 10 -4.59 39 TABLE IATEI_&L Note: Data are for DIMK_SIONAL XI-E DERIVATIVES body-fixed stability FOR h (ft) M (-) Yv (I/see) DC-8 axes FLIGHT 1 THE 2 • 0 15,000 0.218 0.443 -0.1113 -0.1008 CONDITION 3 33,000 33,000 0.84 0.88 -0.0868 -0. o931 YS_ [(11sec)Irad] 0 0 0 o YS_ [(11sec)Irad] o. 0238 o. 0288 0.0222 0.0233 L_ (1/see 2) ½ (l/sec) L_ -i. 328 -2.71 -4.41 -5.02 -o. 951 -I. 232 -i. 181 -I. 29 O. 397 O. 334 O. 609 (I/see) L5 A (I/sec 2) -0. 726 -1.62 -2.11 0.346 -2.3 0.1813 o. 392 0.549 o.612 0.757 I .301 2.14 2.43 -0. 124 -0. o346 -0.0204 -0.01715 -o. 26> -0.257 -0.228 --o.25 N_ (i/_ee _) -o. -0.01875 -0.065 2 -0.0788 N_ (1/_ec2) -0. 389 -o.864 -0.o1164 -1. L6# N# (I/sec 2) (1/see 2) N5 (l/_eo) N_ (I/sec) O TR-176-I 0532 111 277 TABLE Note : ELEVATOR LONGITUDINAL Data for are TRANSFER body-fixed XI-F FUNCTION stability FACTORS _}IE DC-8 FOR axes FLIGHT CONDITION 4 2 Mach No., M (-) Altitude, h 0.218 0.443 0 (ft) 15,O00 15 Weight W (ib) 190, OO0 _sp 0.522 O .434 msp 1.619 2.40 0.O606 o.o31o O.1635 O. 0877 A0 --l. 358 -3.22 I/TOl o. o6o5 0.01 354 l/T82 o.535 O. 075 (I/Tpl) % N8 _e (I/Tp2) --0.641 A m u l/Tu l 0.88 33,000 33,000 15 15 230,000 2.50,000 15 190,000 ZSlong 0.8h o. 342 0.325 3.59 o. 241 O. 0243 (--0.0708) (o.zo8) -4 .>7 -5. I O. 01436 O. 0493 O. 7,9',; o. 76 --O.1489 I . O0 I .08 I.279 o.816 o .449 -35.3 -72.7 -#{79 279 -,'3.7 -34. G5. o 110.2 O. 13{3, N8 e 1/Tu2 -/o.19 A W 33.0 I/Tw 1 G -38.6 -o. o361, w (I/%2) o.o781 o .o37 ov (I/%3) o.1798 o. 0947 N5 e O.ODl l < ,% (O.U3_7) (1 15.5 A_ 10.19 25.7 34. d 38.6 1/T]4_ 1 -3.75 -5.95 -8.24 -8.63 1/m 2 --0. 00182 0.O107 o.o_31 _ .83 1/__ 3 -I0.19 Aaz 1/Taz -0. I I/maz2 1/Taz 3 O O0002G 7.29 9.P9 -23.7 -3_4.4 0 -3.75 -5.95 -O. O0182 O i oo .9 o -8.24 --0. 000026 0.010'7' o.o531 7.29 9.59 1oo.9 CG 1/maz4 TR-176-1 4.83 112 ) TABLE XI-G AILERON LATERAL TR_,iSFER FUNCTION FACTORS Data are for body-fixed stability axes Note : FLIGHT Mach No., (-) Altitude, h CG (_ Weight, (ft) _) W 0.218 0.443 0 I5,000 15 15 FOR 'I_{EDC-8 CONDITION 3 4 o.84 0.88 33,000 33,000 15 15 190,000 190,000 230,000 230,000 1/T s -0.013 O. 00649 O. 00404 O. 00447 1/T R 1.121 I .329 1 .254 I .356 {a o. Io96 O. 1061 O. 0793 O. O855 _d o .996 1.197 1.495 I.589 (ib) Alat Ap 1/Tpl Np $a (p A_ A r N5 a 0 0 -2.3o --2.11 0 0 0.223 o. 1554 O. 1072 O. 1094 0.943 I .166 1.515 1.620 -1.52 -0.726 --2.11 -2.3o O. 223 o. 1554 o. 1072 o. 1o94 0.943 t .166 i .515 1.620 -0.0532 -o.o1875 -o. 065 2 -o. 0788 I.644 I. 757 1.589 (r -O. 656 -o. 727 _r I .242 2.23 I.323 I .259 O. 0532 O. 01875 o. 0652 -0. 0788 1/T 1 1/T72 -0.392 -1.036 -2.75 0.203 0.291 1/TB3 TR-175-I .62 O. 998 1/Trl r -1 -0.725 113 -O. 345 -0. 704 0.404 TABLE RUDDER Note : Data are LATERAL for TRANSFER body-fixed XI-H FUNCTION stability FACTORS FOR THE DC-8 axes. FLIGHT CONDITION 4 2 Mach No., M (-) Altitude, h (ft) (¢ Weight, 0.218 0 15,000 15 15 W 0.88 33,000 33,000 15 15 190,000 190,000 230,000 230,000 I/ms -o.o13 0.00649 o. 00404 O. 00447 I/T R I .121 1.329 i.254 1 .356 o. 0793 O. 0855 1.197 I .495 1 .D89 0.392 0.545 0.612 o 0 [d o.Io96 COd o.996 Ap I/Tpl NP r 0.84 (lb) Alat I/Tp2 I/T> 3 A_ q) 0.443 I I/Tqpl N_r I/Tep2 0.1061 0.1813 0 0 1. 028 i.85 2.43 2.57 -2.13 -2.56 -3.oi -5.15 o.1813 0.392 o.545 0,612 1.o28 I.85 2.43 2.57 -2.13 -2.56 -3.oi -3.15 -o. 389 --0.864 --1 . 165 I A r I .124 1.335 I.276 1.377 _r -o. 0743 -O.O451 --0.0619 -0.0475 _r o. 339 0.330 o. 323 0.323 0.0238 o. 0288 0.0222 1/mpl -O.O559 -o, o14 7) --0.00726 1/T 2 1,141 1.297 1.217 1/Tp3 16.47 3o .2 52.6 Aay 5.79 13.hS 18.33 I/Tr I r N5 r P N6 r Cd TR-176-1 -1.277 1/may 1 -O.819 I/may 2 -4).I 077 1/may 3 ( _ay) ( O. 994 ) l/may (1.078) -O. 0347 i .535 --1.157 i.147 114 -0 .ot883 1 .122 --1 .418 1 ,723 0.0233 -0.00637 1.323 f r pp. 0 20. I -o .Ol 7146 I .231 -1.494 I .819 APPENDIX A AXIS SYSTEm, SYMBOLS, AND DERIVATIVE DEFINITIONS I. .a_:T.8 IB_r_TEI_B _XB,U,P f v, --_/_ ............ "_, _--Inerticll Ref. YB,Ys,v,q ZB,W,r g XB, YB, ZB - The Body-Axis System consists of right-handed, orthogonal axes whose origin is fixed at the nominal aircraft center of gravity. It's orientation remains fixed with respect to the aircraft, the XB and ZB axes being in the plane of symmetry. The exact alignment of XB axis is arbitrary, herein it is taken along the body centerline reference. XS, YS, ZS - The Stability-Axis System is that particular body-axis system for which the Xs_axis is coincident with the projection of the total steady-state velocity vector (VTo) on the aircraft's plane of symmetry. It's orientation remains fixed with respect to the aircraft. A-I 2. SYMBOLS Speed a of Lateral at the sound in ft/sec air acceleration along the Y-Body Axis center of gravity (positive out right ft/sec 2 acceleration parallel to Axis at a distance i x and ft/sec 2 wing) ! ay Lateral Y-Body c.g., az I a z the _ = _ + ix_- iz_ Normal at the acceleration along the c.g. (positive down) Normal acceleration Axis the i z from at c.g._ parallel a distance i x from Z-Body to the Axis ft/sec 2 Z-Body ft/sec 2 the a z, = a z - lx_ ft b Reference wing C Reference chord CG Center D Aerodynamic force (drag) velocity vector (positive g Acceleration h Altitude Ix, ly, Iz Moments of inertia referred to body axis slug-ft 2 Ixz Product of referred to body axis slug-ft 2 jcD The imaginary portion variable s = _±j_ ix Distance along c.g. (positive the X-Body forward) Iz Distance along c.g. (positive the Z-BodyAxis down) L Rolling moment about the X-axis due aerodynamic torques (positive right span ft of gravity due to along aft) the total lbs ft/sec 2 gravity ft inertia _own) A-2 of the rad/sec complex Axis from the ft from the ft to wing ft-lb L Aerodynamic force (lift) perpendicular to the total velocity vector in the aircraft's plane of symmetry (positive up) ibs m Mass M Mach M Pitching moment about the Y-axis due to aerodynamic torques (positive nose up) ft- ib MAC Mean aerodynamic ft MGC Mean geometric N Aerodynamic slugs number Axis chord ft chord normal force bu___t positive along the Z-Body ibs up N Yawing moment about Z-axis due torques (positive nose right) P Roll rate, angular velocity (positive right wing down) q Pitch rate_ angular (positive nose up) to about velocity aerodynamic ft-lbs X-axis rad/sec about Y-axis rad/sec 2 Dynamic pressure, ]/2 ibs/ft 2 p VTo r Yaw rate_ (positive rRG Yaw s Laplace S Reference T.E. Trailing u Linear X-axis perturbed (positive U o Linear X-axis steady-state velocity (positive forward) v Linear perturbed velocity (positive out right wing) along VT o Total linear steady-state (positive forward) velocity rate angular velocity nose right) gyro about Z-axis signal operator, wing _+ rad/sec rad/sec jw rad/sec ft 2 area edge velocity forward) A-3 along the along the ft/sec the Y-axis ft/sec ft/sec ft/sec perturbed (positive velocity do_m) along ft/sec w Linear Z_-axis the W Weight Wo Linear Z-axis X AeroCy_;lamic force (positive forward) along t!_c X-axis ibs Y Aerody_lamic force out right wing) along Y-axis _]0s zj Perpendicular line (positive due to thrust) Z Aerodynamic lbs steady-st_/Le velocity (positive dovm) alonf{ the (positive distance from c.g. to for nose up pitching force along Z-axis thrust moment (positive ;l't/sec ft ibs down) Pert_irbed _o angle Steady-state Sideslip rad of attack (trim) angle rad angle flight path deg 7o Steady-state 8a Aileron control surface deflection, (includes spoiler effects, etc.), for positive rolling moment) _e angle Elevator surface deflection from (positive for nose down pitching for aft surface) Trim (leg of attack elevator tad (positive trim_ moment deflection rad deg F Rudder left A deflection yawing Denominator of Damping ratio particularized e Pitch angle, level flight, Ipositive moment (negative airframe for transfer of linear second by the subscript fq dt for positive A-4 straight nose rad nose N)] up function order and mode rad _o IncJ.ination [positive Mass Special of gives density thrust line negative of air The real portion s = _± j_ of with X-axis deg (--) Z force] slugs/ft3 the complex rad/sec variable Roll angle, (cos @o _P dt -sin e o _r in straight and level flight, (positive right wing down) dt) rad Undamped natural frequency of a second mode, particularized by subscript order rad/sec Subscript a Aileron d Dutch e Elevator P Phugoid r Rudder R Roll s Spiral sp Short roll subsidence period A-5 3, NONDIMENSIONAL a) DERIVATIVE Longitudinal Body N _-_ CN = CX = X _ S : _CN/_ DEFINITIONS Axis , positive up ' positive aft IV[ c_ CM - Sc 2VT o CN_ - c bc_/_ c CNs : _c_/_s cxa 8Cx/_ 2VT o b) : CMq CxM : _Cx/_M cxs 8cx/_s = Longitudinal Stability - c Axis CL - L _ qS' positive up CD - D _ qS' positive aft Ci_ = _CL/_ CI_ - 2VT o C Pitching _Cn/_ CLM = _CL/_M derivatives Cr_ _C_/_ identical CDc : _CD/a_ those CI_ : _CD/_M CD5 = _CD/_5 : _cM/_q A-6 moment are to for body axis c) Lateral Body and Stability Thoughphysically Axis and numerically different_* see Appendix B, the samesymbols are used for body axis and stability axis lateral rolling and yawing momentderivatives. The sideforce derivatives (Cy, etc.) are physically and numerically the same in both axis systems. Whenthe rolling or yawing momentderivatives are given in this report the axis system is specified. Whenusing the following all quantities should be for the sameaxis system. Cy - Y L Cl _s - _Sb N Cn - {Sb _Cn/_ _ Cy_ = _Cy/_ CI_ = _CI/_ Cn_ = Cy_ = _Cy/_ CIp - 2vb ° Cnp _ 2vb ° Clr - Cnr - Cl8 = cn_ = *The exception is the zero 2VTo _Cl/_r b _Cx/_ trim A-7 angle of attack 2VTo _c_/_r b 8Cn/8_ condition. 4. DIMENSIONAL The STABILITY same symbols derivatives. quantities a) DERIVATIVE Care are are used should be DEFINITIONS for body- exercised and so stability-axis that a consistent dimensional set of used. Longitudinal Body Axis X{_ = Xu + mu cos_o Xu - pSUo (- _M m Xw _ 0SU2mO I- CX_ CXM I/sec - CX + _Wo CX_ 2U o ) - 2 U_o Wo (Cx _ -2 M CXM) I/sec ' ]/sec oSVT2o ft X_e = Z_ - Su Zu - OSUo m M - _ Zw - p -CNc_ - _ _oo Z_ : _ CX_ e - Tu sec'-rad I/sec s:i.n[ o CNM _ CN + p2_ Uo 4m VTo C N 4. _ = - _n CNM ] / S (-:_C ]/sec CN& 0SV_ o ZSe CN _ uo[ wo I M )] 2m - o ft CN6 e rb see' r:Ad Zjm sec-ft k-8 Nil - - OScU° 21y I_ Cram + Cm I 2Iy Cmo_ + _ sec-ft - 2U----o (Cm 1 + _ CraM) sec-ft pSc2 Uo _ = _zy V_o C_ I_ : UoM w ]/sec 2 = UoM_ ]/sec sec-ft pS C2VTo ]/sec Mq - 41y Cmq oS CV2o I/sec 2 M6e - 21y Cm_e ]/sec b) Lateral Body Axis Yv : (oSVTo/2m)Cy Y_ = VToY v Y_ ]/sec _ ft/sec 2 ft/sec 2 : (pSV_omm)%5 Ys_ : (0SV_o/2m)% % ft/sec 2 Y6_ I/sec : (pSVTo/2m)dy6r _B : (_SV_ob/2_x)C_ _ Lr ]/sec 2 = (pSVTob2/4Z_)Clp ]/sec = ]/sec (oSVTob2/41x)Clr A-9 2 _5_ = (oSV_ob/21_)Clb I/sec 2 _r I/sec 2 = (oSV$ob/21xlCl_r l/sec Y_a = (oSV_o/2m)CYS_ _ = (oSV$ob/2I_IC_ _ I/sec 2 Np = (oSV_ob2/_I z)c_.P I/sec Nr I/sec N_ = (oSVTob2/41z)Cn r l/sec 2 -- (pSV$ob/2Zz)C_ _ F] N_ I/sec 2 = (_SV_ob/21_)c_ _ I/sec 2 I/sec ]/see Lt_r = (L_ r + IxzNSr/Ix)G /sec 2 ],t_ : (L_ a + lxzNSa/Ix)@ ]/sec 2 N' : (N@ ]/sec 2 + IxzL_/Iz)G I/see N_ : (N r + IxzLr/Iz)G _!_' " r : (N_r _q : (_ _ IxzLSr/Iz) ]/sec ]/sec 2 G + I_z_/z_)_ ]/sec 2 1 G I Ixlz A-tO I --4 ©_ I ./_ Xe, Uo CN J U o = VToCOS a o Wo = VToSln _o Cx _a_o_ Ys---Ye Zs,Wo Zs I ON = CL cos ao+ CD sin _o (C_)B : C16 cos CX = CD cos _o- CL sin Go (c_;) B = CIp cos£ao - (Clr+ = C1 r ces!_e - (C_ r = C16 cos a o- Cn_ sin a e ao+ CI_ sin a e CN_ = CL_c°s _o-CLsln ao + CD_Sln ao+ CD cos ao (Clr) CN& = CL_ cos _o (c_)_ CNM = CLM cos Go CN8 = Ci6 cos Go+ CX_ = CD_ cos _o'CD CXM = CDM cos _o- CL M sin <_o CX 8 = CD5 cos _o- C_ sin _o Cram , Cm_ -t_NCHANGED Cm, Cm_ , Cm_ , Cmq + , B _o" C_ sin ab Cnp)Sln -Clp)sin ae c_ _o+ Cnr sin2ao _e cos &o" Cn F sin2_o r sinlAe CDM sin _o (end) B = Cn_ cos CD5 sin _o (c_)B = Cnp cos2_o - (Cn r-clp)sin _e cos &o'CI (Cnr) = Cnr coS2ao + o_ cos _o = Cn6 cos sin o_-CL_ sin _o-CL cos _o B (c_)_ Cy_, CYSr , CYsa ao+ - (Clr+ CI_ C_p)sin sin t_CHANDEP a e + Cip sin_%e ] .L y APPENDIX EQUATIONS I • OF AND MOTION, COUPLING C TRANSFER FUNCTIONS, NUmeRATORS Longitudinal a. E quat i on s s-X_ -X w -4 (1-Z_)s-Z --(M_s b. I) q. = -se }_ = --w cos cos ej u -Uos+g sin 80 w - @ * Mw) @o az = sw- Uoq a z' -- az ixS2@ Transfer w Wos+g s2- + u sin eo + (g sin eo)e + MqS (U o cos XSe = Z6e M6 e e o + w o sin eo)e Functions @ N_e 5e A Denominator, A = As 4 + Bs 3 + Cs 2 + Ds + E A -B = --(Mq + Xu)(I c = MqZ w- -- Z_) - Mc_ + Xu[(Mq)(1 -- XW_ + WO[M_Z u Zw - Mc_ -- Z_) + _(I C-I + Z w + M_] -- Z_)] + g_ sin @O t D ---x_(Mz_-_.h) -M_y=+MqK_z_ +g[%z_+M_(I-z,_oos0o+Wo(ti>_ -t_Iz_) + g(%-%x_)_inOo E --g(MwZ _ - M_Z_)oos eo+ g(M_IXw - %X_)_i_Oo 2) 5 _umerator s N_ Ao --z_ B8 = Aes 2 + Bes + Ce + M_(1 - z_) = XS[M_Z_+ Mu(1 - Z_.)]+ Zs(Mw-I%X _) % -"x8(_vz_i-M_zw) + z_,(M_x_-_)+ N_ Au = X5(I Bu = -XS[Mq(I = -MS[Zw+ XI_(I - ZQ)] _,%( zj,_- x_, u) Aus 3 + Bu s2 + CuS + Du - Z.) w - ZQ) + Zw + M_] + ZsX w - Wo[ZsM _ + _o(I - ZQ)] Cu--x_(M_z.-vh)z_(g% oos0o+Mqx_)+ _%[_- (_ oo_eo)(1-z,)] + Wo(ZwM_-_) + _x_% _i._o Du : g(ZwM5 - MwZs)c°s N_ Aw= = 00 + g(XsMw - Ms_psin Aw s3 + Bw s2 + CwS _o + Dw Z6 Bw = -%(Mq+ x_)+ Uo_ + x_z_ Cw = X_(ZsM Dw " g(ZJ_ q - UoMs) - %Z_)cos + Wo(ZsM 0o + u - MsZ _) gMsX* C-2 sin - gM 5 sin 0 o- XsMug 00 + Xg(M_Uo sin 0o - Z_Mq) N_ = A_s 3 + B6s 2 + C_s + D_ A_ = - cos eoAw + sin 0oAu = - COS @OBW + sin @OBU + (U O cos e O + W O sin 0o)A @ O_ = - cos @OOw + sin eoC u + (U O cos @o sin 0o)B @ D_ = - cos @oDw + sin eoD u + (U O cos e O + W O sin eo)C @ + No .t _f'= _a[?+B_'zS3 +c4__+_ab+E ' &z To 2. Ba_ = Bw - ixB e - UoA 0 Ca_ = Cw - ixC e - UoB 0 + g Da_ = Dw - UoC e + Ea_ : + obtain az, g sin let g sin sin @oAe 0oB e 0oC 8 ix = O. Lateral a. Equations Wos + g cos s- Yv - VT o 0o Uos-g sin - _o _ 8o] E- IF Y5 a Y5 r = L5 a L5 r ! ! --I_ -._ v --L S(S--%) VTo _ : _p_ + _r s-N r sv + Uor _ --WoP- iNsa ,N5 r g(cos ! S DO ay + iXlat S ] COS tan r 8 0 ! ! -._ : r S c-3 sr -- izS p 8o)C_ b. Transfer Functions ___= N_a _a r Alat ; N_r _r - 4 I) a = Denominator, etc. Alat 2 Ala t = as + bs 3 + cs + ds + e I ! b = -(y_+ L_+ Nr) Uo WoL _ o ---N_ + L_(Y_ + _) - N_L_+ Y_ VT o U o d _ --(_VT o VT o _) + Yv(_9_r_) _ (_ cos0° + VT o Wo VT o e = 2) -_g VT o [(I%N_- 8 (5 a or N_I$) 5r) cos e o- (N_- L_) sin 0o] Numerators = _s 3 + _s 2 + c_s + D_ A_ : Y_ + N_]- N___Uo + __w° L_' B_ ---Y_[_" VT o VT o , c_ -- Y_(_'_-_r) + L_--g co__o+ (%_ - %_) VT o Wo + -VTo D6 = , , , , (NgL r -- LgNr) -_g (N_L r -- L_Nr) VT o cos , g + N_ V_T 0 o + -_g VT o c-4 o sin Uo VT o 0o (N_I,_ -- N_I_) sin 0o N_ sin O o) [__ • N_5 = Ap s3 + Bp s2 + Cps + Dp ! Ap = L5 - LS(Nr , ,+ = . Cp = Dp - Yv) ,, + NSLr , , , Y_(LrN _ -- L_N'r) , + L_YvN' r -- NsYvLr UO + (L_N_ + Crs + Dr -- N_L_) VT ° VT o N_ Ar = = Ar s3 + Br s2 N_ * T ! ! T Wo Cr Y_(I,_N_- N_%)- L_YvN _ + N_YvL _ +- = Dr VTo VTo N_ A¢ : Ap + A r tan 6) o Be : Bp + Br tan 8o C¢ : Cp + C r tan 8o = Acs 2 + Bcs c-5 + C , , (LsN_ -- N_L_) • N_ ay VToA_ + iXlatAr + UoAr izAp B'ay = VToB_ C_ = VToC _ + UoB r -- WoB p - g cos QoA¢ + iXlatC r - izCp V T D_ o g cos 0oB ¢ + iXlatD r - izD p D ! obtain ay, -WoAp + UoC r - UoD r- To = A'ays4 + B_ s3 + C_ys2 + D_s + E'ay let WoD p- Ixlat + iXlatBr WoC p - g cos - eoC ¢ = i z = O. c-6 IzBp