vampire edl
Transcription
vampire edl
Tunnel FET or Ferroelectric FET to achieve a sub-60mV/decade switch Adrian M. Ionescu, Kathy Boucart Ecole Polytechnique Fédérale Lausanne Switzerland http://nanolab.epfl.ch/ Outline • Power challenge in nanoelectronics • Principles for small swing switches • Tunnel FETs – – – – Principle State-of-the-art: experiments and simulations Challenges and technology boosters Sensitivity to technology parameters • Negative capacitance FETs – Principle – Progress in the field • Conclusions 2 The power challenge • Power per chip continues increasing. • Leakage power dominates in advanced technology nodes. • VT scaling saturated by 60mV/dec physical limit. • Voltage scaling slowed (90nm:1.2V, 45nm: 1V, 22nm: 0.8V) Not really achieved T. Sakurai, IEICE Trans. Electron., Vol.E87-C, April 2004, pp. 429-436. 3 Drain Current, I DS (A/µ m) Power challenge due to kT/q=60mV/dec limit at RT -3 10 Lower t VV T -5 10 Incompressible 60mV/dec swing @RT -7 10 -9 10 Reducing threshold voltage by 60mV increases the leakage current (power) by ~10 times Source: Intel Corporation Ioff -11 10 0.0 0.3 0.6 0.9 Gate Voltage, VGS (V) − Vt Id (Vg = 0) = Id (Vg = Vt)e Vs See also: C. Hu @ INC 2009, UCLA. 4 Why 60mV/dec limit? • carrier injection by lowering the barrier • subthreshold current is a diffusion current Ion Ioff dVg Cdep Css kT SS = = ln 10 (1 + + ) d (log10 I d ) q Cox Cox kT → ln 10 = 60mV / decade @ RT q R. Van Overstraeten,G.J. Declerck, P.A. Muls, IEEE Transactions on Electron Devices, Volume 22, pp. 282–288, May 1975. 5 Power challenge: rescue strategies • new softwarehardware techniques from system to circuit level dedicated to power savings • the identification of novel power aware or energy efficient device architectures: small swing switches 6 Parallelism to the rescue CMOS has a fundamental lower limit in energy per operation due to subthreshold leakage Edynamic + Eleakage = αLdCVdd2 + LdIoffVddtdelay Parallelism (multi-core) is a key technique to improve system performance under a power budget Source: T.J. King, UC Berkeley. 7 Strategy for digital switches • Goal Vdd=0.2V Leakage power reduced by 100 • How? – Channel engineering to reduce the Vdd-Vt (Ge, III-V, graphene, etc). – Nanowire and nanotube FETs for improved electrostatic (subthreshold leakage) control. – Operate circuits at low (cryogenic) temperatures. – Reduce the threshold voltage by achieving a small swing switch: novel devices. 8 55nm CMOS to beat Numbers to beat: Ionn/Ionp = 780/400 µA/µm Ioff = 3nA/µm Ion/Ioff = 2.6 x 105 @ 1.2V NEC @ VLSI 2006 9 Nanowires to the rescue • NW MOSFET: better electrostatic control, lower Ioff • L~0.35µm, NW diameter ~30nm • Ion/Ioff <106, S ~ 62–75 mV/dec and low DIBL (20mV/V) • Ioff savings compared to bulk CMOS is ~10 times • Current per NW: ~1µ µA arrays needed! W. W. Fang et al, IEEE Electron Device Letts., Vol. 28, March 2007. 10 The quasi-ideal switch ID (log) Ion Ioff • Quasi-ideal binary switch, what matters: Quasi-ideal: SS ~ 0 Ioff ~ 0 VT~0, VDD 0 VG - 2 stable states (off, on) - Ion: as high as possible - Ioff: as low as possible - Ion/Ioff > 105 - abrupt swing (mV/decade) - very fast (<ns) A quasi-ideal nanoelectronic switch has ZERO standby power and offers all wanted on current. It should be very fast. 11 ID (log) Sub-kT/q subthreshold slope switch to the rescue ideal Ion MOSFET Switch: SS~60mV/dec @ RT Ioff Small Swing Switch VG • MOSFET is a vampire switch at nanoscale • New Small Swing Switch = New physics • SSS: low standby power switch 12 Principles for SS < 60mV/decade ∂Vg ∂Vg ∂ψ S Cs kT S= = = (1 + ) ln 10 ∂ (log I d ) ∂ψ S ∂ (log I D ) Cins q { 1424 3 m n m less than 1 n less than (kT/q)ln10 • NEM relay or FET • positive feedback gate material (Fe-FET) • Other ideas? • Tunnel FETs • Impact Ionization • Other ideas? 13 Tunnel FETs 14 Tunnel FET: principle (1) G OFF-state ON-state S D • Vd = positive n+ i p+ • Vg = 0 • no current • gated pin junction • reversed biased, BTBT flows 1.5 p+ 0.5 -0.5 i n+ -1.5 -2.5 Energy [eV] Energy [eV] 1.5 • Vd = positive • Vg = positive • barrier thin, current flows p+ 0.5 e- -0.5 i n+ -1.5 -2.5 0 0.1 0.2 Location [um] 0 0.1 0.2 Location [um] 15 Tunnel FET: principle (2) • Barrier control: key for Tunnel FET operation All-silicon DG Tunnel FET • gate dielectric (thickness, permittivity) • silicon film thickness (UTB, NW) • bandgap • fringing fields (gate alignment to the junction) 16 Tunnel FET: principle (3) B I = AVeff ξ ⋅ exp(− ) ξ VGS2 S= 2VGS + BKane E g3 / 2 / D S VGS →0 S = (d log I d / dVgs ) −1 1 dVeff ξ + B d ξ −1 = ln10( + 2 ) Veff dVgs ξ dVgs • S is gate bias dependent: lower@ lower VGS • BKane depends on effective mass • D depends on tox, L, Vds, dopings →0 Point swing < 60mV/dec / ln10 = 26mV/dec @ RT What about average swing? 17 First experimental demonstration: 40mV/dec in CNT Tunnel FETs • dissipative quantum transport simulations of CNT FETs using the non-equilibrium Green’s function (NEGF) formalism. M. Lundstrom On-current: ~1µA/tube J. Appenzeller, J. Knoch, Phys. Rev. Lett. 93, (2004). 18 UC Berkeley: experimental 53mV/dec silicon Tunnel FETs • Ion=12µ µA/µ µm, Ioff=5.4nA/µ µm • S small in a very limited range • large drain-to-gate leakage • Ion/Ioff less than for MOSFET IEEE EDL 2007, UC Berkeley. 19 MIT staggered heterojunction Tunnel FETs • Tunneling Field-Effect Transistors using Strained Silicon/StrainedGermanium Type-II staggered heterojunctions O. M. Nayfeh et al, IEEE EDL, Vol. 29, Sept. 2008 20 Heterojunction Tunnel FETs: staggered versus broken band line-up • High on state performance predicted • minimal S value in the case of staggered band line-up staggered broken J. Knoch, Proc. 2009 Internat. Symp. VLSI-TSA, 45 (2009). 21 Stanford: Experimental Ion=300µA/µm in Ge Tunnel FET DG TFET with strained Ge heterostructure channel: • high drive currents (Ion~300uA/um) for Vd=3V • But the low SS~50mV/dec, due to small bandgap of sGe and DG electrostatics and Ioff are for Vd=0.5V. T. Krishnamohan et al, IEDM 2008. 22 IMEC’s Ge/SiGe-source vertical Tunnel FET • Smaller bandgap improved tunneling but Ioff high A. Verhulst, Node workshop, Zurich, 2009. 23 LETI’s experimental Tunnel FETs GeOI versus SOI Tunnel FETs F. Mayer et al, IEDM 2008. 24 IBM bottom-up NW Tunnel FETs VLS grown Si NWs tunnel FETs with different gate stacks (SiO2 and HfO2); the use of a high-k gate dielectric markedly improves the TFET performance in terms of average slope and on-current. Ion~0.3uA/um, Ion/Ioff ~105 K. Moselund et al, ESSDERC 2009. 25 20nm Tunnel FET versus CMOS Q. Zhang, A. Seabaugh, DRC 2008. • Solution: heterostructure transistor • What about all-silicon Tunnel FET? 26 Simulation: all-Si Double Gate Tunnel FET with high-k dielectric Vg gate Vd Vs insulator n+ Si i Si p+ Si insulator gate K. Boucart and A.M. Ionescu, IEEE TED 2007. 27 Sub-1V all-silicon Tunnel FET • Additive technology boosters Ion~1mA/µ µm Ion/Ioff > 1010 Drain current (A/µm) A) Single gate SOI, L=100nm, 3nm SiO2 B) stress = 4 GPa at source junction C) high-K gate dielectric D) double gate E) oxide aligned to i-region F) L=30nm -3 10 -5 10 -7 10 -9 10 -11 10 -13 10 -15 10 -17 10 -19 10 0.0 VD=1V A B C D E F 0.2 0.4 0.6 0.8 1.0 Gate voltage (V) K. Boucart, W. Riess, A.M. Ionescu, ESSDERC 2009. 28 1V all-silicon asymmetrically strained Tunnel FET Boosters A+B+C+D • • • • Avg SS ~ 50mV/dec Point SS ~15mV/dec VD=VG=1V Very low VTD VTG reduced from 1.5 V -> 0.5 V K. Boucart, A.M. Ionescu, IEEE EDL, April 2009. 29 Silicon Tunnel FET: energy performance comparison Energy (J) • For high-performance applications requiring Ion > 100uA/um, TFET has a larger average subthreshold slope S value and hence would consume more energy than a MOSFET: Savg very important. • TFET seems better in energy efficiency for applications <1GHz. • TFET variability should be addressed. H. Kam, T.-J. King-Liu, E. Alon, M. Horowitz, IEDM 2008. 30 Energy and performance: Tunnel FETs versus FinFET & PD SOI D.J. Frank, IBM, Node Workshop, Zurich, 2009. 31 Negative capacitance FET 32 Negative capacitance FET (NC-FET) • step-up voltage transformer that could amplify the gate voltage, thus leading to values of S lower than 60mV/dec possible in ferroelectric gate-stack FET (Sallahudin & Datta) Possible to find such insulator and stabilize it? 33 Ferroelectric gate stack NC-FET • Simulation with ferroelectric in the negative capacitance region; the subthreshold swing improves significantly, which unexpected from a typical high-k dielectric. S. Salahuddin, S. Datta, IEDM 2008. 34 Organic ferroelectric gate stack FET 200 -10 10 13mV/dec -Source Current,-Is [A] -9 10 -11 10 -12 10 -13 10 60 mV /de c -8 10 160 120 60mV/dec limit 80 40 -14 10 SS(mV/dec) -15 10 0.75 Subthreshold Swing, SS (mV/dec) • 40nm PVDF / 10nm SiO2 gate stack FET shows atypically low SS @ low currents. • Due to stabilized negative capacitance? More experimental proof needed. Artifact of leakage? -7 10 1.00 1.25 1.50 Gate Voltage, Vg [V] 1.75 G. Salvatore, A.M. Ionescu, IEDM 2008. 35 PVDF gate stack on SOI MOSFET 36 Unique SS(T) in PVDF Fe-FET 500 450 400 temperature: 25°C, step=5°C 350 5 300 250 65°C 200 -1 -0.8 -0.6 -0.4 -0.2 0 Gate voltage, Vg (V) G. Salvatore et al, ESSDERC 2009. 0.2 ∂Vg ∂ (log I d ) = ∂Vg ∂ψ S = ∂ψ S ∂ (log10 I D ) { 14243 m = (1 + Subthreshold Swing, SS [mV/dec] Subthreshold swing, dVg/dlog(Id)SS (mV/decade) • In Fe-FETs subthreshold swing appears to decrease with T, in contrast with traditional MOSFET SS = n Cs k T ) B ln 10 CoxC Ferro q Cox + C Ferro Cs (T) = Cs C ox (T) = C ox C Ferro = 1 1 α (T − T0 ) d 320 2 Y=4628-26T+0.039T 300 Smin? 280 260 240 300 320 340 Temperature, T [°K] 360 37 Conclusions Main challenges ly l a nt d e im trate r pe ns x E mo Tunnel FET e d (non-hysteretic) • improve Ion • tunnel junction engineering • implementation on silicon platforms r tr he l fu nta s ed rime e N pe Fe-FET x f e oo (hysteretic?) pr • experimental proof of concept • identification of most suited gate stack materials • Full theory to be developed 38 Acknowledgements • • • • • • • Kathy Boucart, Nanolab (Tunnel FET) Giovanni Salvatore, Nanolab (Fe-FET) Donato Acquaviva, Nanolab (MEM Diode) Daniel Grogg, Nanolab (Movable body FET) Didier Bouvet, Nanolab (Si processing) Dimitrios Tsamados, Nanolab (SG-FET) Staff of CMI-EPFL 39