国内のナノテクノロジーの現状と将来

Transcription

国内のナノテクノロジーの現状と将来
国内のナノテクノロジーの現状と将来
Hidetoshi Kotera
1Micro
engineering department, Postgraduate school of Engineering,
Kyoto University
Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, JAPAN
NEDO(New Energy and Industrial Technology Development Organization)
1
2
2
History of MEMS
1824
1910
1939
1947
1955
1958
1559
1960
1967
1970
1972
1977
1978
1978
1982
1985
1985
1988
1988
1992
1992
1993
1993
1996
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Discovery of silicon (Berzelius)
First patent on the MOS transistor concept
First PN junction (Schottky)
Fabrication of the first bipolar transistor (Shockley)
Evidence of piezoresistive effect in Si and Ge (Smith)
First integrated circuit (Oscillator)
R. Feynman Famous Talk : ‘There is plenty of room at the bottom’
Fabrication of the first piezoresistive sensor –pressure- (Kulite) –accel. in 1970
First Surface Micro-machining process (H. Nathanson) : resonant gate transistor
Silicon-glass bonding
National Semiconductor : Commercialize a Pressure Sensor
IBM – HP : Micro-machined Ink Jet Nozzle
Silicon Bulk Micromachining : K. Bean
Structure obtained by Micromoulding (LIGA)
Famous Review paper « Silicon as a Mechanical material » (K. Petersen)
Assembly of silicon wafers (Si/Si fusion bonding) : Lasky, et al.
IC-compatible surface micromachining -> Polysilicon comb structures
Electrostatic micromotor (UC -Berkeley BSAC)
1st MEMS conference (1st Transducers conference was held in 1987)
First MUMPS process (MCNC) (with support of DARPA). Now owned by Memscap
SCREAM Process (Cornell)
Analog Devices : Commercialize Multi-axis Accelerometer integrating electronics
Texas Instrument : Commercialize the Digital Mirror Display (DMD)
DRIE (Bosch Process)
3
MEMSの定義:Micro
Eelctro-Mechanical Systems
First MEMS Concept is The Resonant Gate Transistor in 1967
4
references
[H.C. Nathanson, et al., The Resonant Gate Transistor, IEEE Trans. Electron Devices, March 1967, vol. 14, no. 3, pp 117-133.]
5
references
http://www-bsac.eecs.berkeley.edu/project/list_projects_by_director.php?PersonID=703
Bulk Micromachining
▲ Liquid etching; etch rate differences in different crystal directions
<111> etch rate is slowest, <100> and <110> fastest
Its rate is more than 400 times
Commonly; anisotropic etches in silicon include KOH, TMAH (Tetramethil
Ammonium Hydroxide) and EDP ( Ethlene Diamine Pyrocatecol)
▲Isotropic silicon etches
<111>
<100>
<100>
* HF, nitric and acetic
54.7 acids
* XeF2BrF3 ( gas phase
Silicon Substrate
6
<111>
54.7
<100>
<100>
Silicon Substrate
7
references
http://www.mizuho-ir.co.jp/science/microcad/
Surface Micromachining
Thin film technology + sacrificial layer
sacrificial layer
substrate
Photo resists
Deposit structural layer
UV + DV + Etching
Etching ( wet chemical or
dry plasma etching)
8
9
JAPAN’s the 3rd Science and Technology
Basic Plan & MEMS position (FY2006-2010)
3 Policies
6 Goals
4+4 Priority Areas of R&D
25 Primary Strategic
Areas of
Technology set by METI
Create
Human Wisdom
Quantum Jump in
Knowledge
Discovery & Creation
Life Sciences
Semiconductors
IT
Health Care
Breakthroughs
in Advanced S&T
Environmental Sciences
MEMS
Sustainable
Development
Nanotechnology/Materials
Innovator Japan
Manufacturing Technology
“MONOZUKURI”
Maximize
National Potential
Energy
Nation’s Good Health
over Lifetime
Protect Nation’s
Health & Security
•Focus Areas
・3D Microstructure formation
・High-speed thick film processing
・Technology fusion with Nano-Bio
•Applying MEMS technology to
heighten the value added in
Automobile, IT and
Consumer Electronics industries
Social Infrastructure
The World’s
Safest Nation
Frontier
10
10
MEMS/μTASの応用分野
11
11
Japan’s R&D Promotion Scheme
JSPS
JST
12
Scenario for Dissemination 1/2
Shows the paths through which R&D outcomes go out into the world
as well as relevant measures involved
FY Year
13
13
13/25
MEMS Industrialization Strategy & Scenario
1.36TrillionYen, ‘10
(Domestic Market)
Others
Ecology
The evolution of MEMS enables us to solve
various kind of social needs
Medical
Evolution of MEMS
Home
2nd Stage:
Automobile
Multifunction devices
-Miniaturization
-High performance
-High reliability
IT
Eco
Energy
Security
Information
Technology
Medical Care
Automobile
430billion Yen, ‘02
1st Stage:
Evolution of MEMS
by Three Dimensional Fabrication Technology
Combined with Nano-related Functions
Now
e
Pr
e
ur
at
m
Single-function MEMS devices:
Pressure Sensor, Accelerometer,
Scanner, Inkjet Head
Bulk-micro machining, Surface micromachining
2005
2010
2015
MEMS devices being developed
by utilizing micromachining
and semiconductor process
2020
14
MEMS Market Size
Technology Development for MEMS Industry Expansion
Governmental Projects
contributes to the building up
competitive advantage of
manufacturing industry
through technology development.
Ex
ion
s
n
pa
The next Generation
MEMS :(Fine MEMS)
S In
M
E
of M
d
MEMS Industry
Manufactures of
Precision Machinery,
Sensors, Equipment.
Technology
Development
Micromachine
MicromachineTechnology
Technology
Project
(1991-2000)
Project (1991-2000)
(Budget:
(Budget:¥21.3
¥21.3billion/10years)
billion/10years)
・MEMS manufactures
・Semiconductor manufactures
・Startups
ry
ust
Leaping forward
to the nest step
Fine
FineMEMS
MEMSProject
Project
( (Integrated
MEMS
Technology
Integrated MEMS Technology) )
(2006-2008)
(2006-2008)
(Budget:
¥1.1
(Budget: ¥1.1billion
billioninin2006)
2006)
MEMS
Foundry Business
Foundry Service Firms
Process Infrastructure
Development
MEMS
MEMSProject
Project
(2003-2005)
(2003-2005)
(¥4.3
(¥4.3billion/3years)
billion/3years)
MEMS
Simulation Software & Database
Software Venders
Simulation Software &
Database Development
MEMS-ONE
MEMS-ONEProject
Project
(2004-2006)
(2004-2006)
(¥1.5
(¥1.5billion/3years)
billion/3years)
15
Technical Concept of MemsONE
CAD
Interface for
commercial software
High end
simulator
Knowledge
DB
knowledge
Designer
system and
modeling tools
Knowledge of
professional
engineer
Design
Knowledge for simulation,
MEMS design and fabrication
process
Material
Stress
(Linear & non-linear)
Thermal and thermal stress
Electro-magnetic field
Radio-frequency field
Phenomena and
function
Material
DB
Experimental
data
Material properties
Mask design
Process designer
Micro fabrication
Tribology analysis
Nano-inprint
(Thermal and photo)
Inverse simulator for mask
Mask layouter
Wet and dry etching
16
17
17
fine MEMS Project 2006-2008
18
18
18/25
http://www.mmc.or.jp/e/
3-1 MEMS産業・技術ロードマップ
BEANS
Bio Electro-mechanical Autonomous Nano Systems
ナノ・バイオと電気機械を融合、自律分散で機能するデバイス・システム
産業高度化 技術の発展と市場の拡大
2兆4,000億
(2015年)
第3世代:BEANS
-
・MicroとNano-Bioとの融合
・自律分散システムのキーデバイス
グリーンデバイス: 環境・エネルギー
ホワイトデバイス: 健康・医療
ブルーデバイス: 快適生活空間
1兆1,700億円
(2010年)
第2世代
・MEMS/ナノテク機能の複合技術
ファインMEMS
4,400億円
(2005年)
-新たなライフスタイル創出
・MEMS/半導体の一体形成技術
多機能デバイスの創出
(高機能・小型化・信頼性)・MEMS/MEMSの高集積化技術
第1世代
現状
黎
明
単機能デバイス-既存部品の置き換え
(既存部品の小型化の進展)
期
・3次元マイクロ加工を中心に
日本発MEMSがインハウス、
ファンドリーの両輪で発展
19 19
2005
2010
2015
2020
2025
20
20
21
references
http://www.analog.com/jp/cat/0,2878,764,00.html
22
22
http://plusd.itmedia.co.jp/lifestyle/articles/0409/03/news054_2.html
http://www.ti.com/sc/docs/products/dlp/index.htm
references
http://www.dlp.com/about_dlp/about_dlp_images_pixels_micro.asp
23
24
24
25
25
RF-MEMS
GPS:1GHz
800MHz
/1.5GHz
10GHz30GHz
100MHz(VHF)800MHz(UHF)
2.45GHz
50MHz
100m
3x105
3x106
1m
Wavelength
1cm
1mm
3x107
3x108
3x109
3x1010
Frequency (Hz)
Microwave
10μm
3x1011
3x1012
light
26
27
28
28
Components for RF communication
Packaging
1)To protect against environmental influences, such as
variouse forms of air contaminations and moisture.
Propagating the signal
to the desired destination
2)To withstand handling as the devices are integrated
with other systems
3)For EM coupling
Source &
Destination
Signal sensing
antenna
Signal
generation
switch
filtering
Frequency
translation
Resonator
Amplification
Select and derive the
signals from mixed one,
Mixer
RF
IF
(Radio frequency)
(Intermidiate frequency)
LO
Selector
switch
Phase
shifter
Attenuator
Filter
Example of phased-array antenna channel
(Local Oscilator)
Mixing the signals for Digital
signal processing
29
3030
Fabrication process of the X-bar type actuator
31
Fabricated X-bar actuator
Fabricated X-bar actuator
800μm in length, 200μm in width,
3.4μm in thickness
(Pt:100nm,PZT:2.5μm,Cr:0.8μm)
32
Composite Right/Left-Handed Metamaterial and Metastructure
for designing the reconfigurable Millimeter wave antenna (M3-project)
Definition: Metamatrial and Metastructure are artificial structures that
can be designed to exhibit specific electromagnetic properties not
commonly found in nature.
The Russian physicist Veselago presented about theory of
metamaterials with simultaneously negative permittivity (ε) and
permeability (μ) in 1967, which are commonly referred to as lefthanded materials. ( V.Veselago,” The electrodynamics of substances with simultaneously
negative values of ε and μ”, Soviet Physics Uspekhi, Vol.10,No.4,pp.509-514,1967)
Lai, A.; Itoh, T.; Caloz, C.,”Composite right/lefthanded transmission line metamaterials”,IEEE
Microwave magazine,Vol.5,Issue 3.2004
pp. 34- 50
A. Sanada, C. Caloz, and T. Itoh, “Planar
distributed structures
with negative refractive properties,” IEEE Trans.
Microwave Theory
33
Tech., vol. 52, pp. 1252–1263, Apr. 2004.
34
Phased array antenna type 1
Horn-array type Millimeter wave antenna
35
Adaptive Optics system
Adaptive optics is used for correction of disturbed wave front.
This technology has been developed in astronomy.
Turbulence
Control system
Incident Wavefront
Wavefront generator
Wavefront sensor
Reflected wavefront
36
眼底検査
眼底の検査
診断
眼科だけでなく
内科などの他診療科に
とって基本&重要
網膜はく離,緑内障
糖尿病,動脈硬化
眼球は生体の中でもとりわけ
透明度の高い伝播媒質
しかし
検査光は眼球内部で歪み,
波面収差を持つ
眼底画像(走査型レーザー検眼鏡で撮影)
Daniel X. Hammerら撮影
補償光学装置で波面収差を
取り除くことが必要
37
Structure of Piezoelectric Deformable
Mirror
PZT
Si
Principle & structure
Boston MEMS
Electrostatic Actuator
Piezoelectric thin film
Î +10V ,>1KHz, Simple structure
38
Structure
Cross-section
Plane
•
Unimorph actuator array is composed of
PZT films (2μm) and Si(20 μm)
•
19 segmented ring electrode on PZT film
•
Al reflective layer on SiO2 in SOI
39
作製プロセス
40
Photographs of mirror
41
42
43
波面補償光学装置
①眼底からの反射光を
波面センサーによって測定
レーザー
眼球
ビーム
スプリッター
形状可変ミラー
カメラ
波面センサー
制御装置
②波面収差を打ち消すように
光路中に置いた形状可変
ミラーを変形させる
③反射光は波面収差を
補正される
システム図
44
Measuring Cell-Cell Communication and
Regeneration of tissue
45
Pancreas β cell ( insulin secretion)
46
Bio Simulator
http://www.sim-bio.org/
47
Pancreas β cell ( insulin secretion): Type 2
Diabetes
High
High glucose
glucose
Normal
Normal glucose
glucose
Membrane
potential
Channel protein
actuation
IKATP
IKR
ICaL
Ionic reaction
inside the cell
ADP
Ca2+
Ionic reaction in
mitochondrial
Ca2+
4848
NADH
Measuring Cell-Cell Communication and
Regeneration of tissue
Structure of
Pancreas
Islet
Islet
Bonner-Weir S, Insulin Secretion, 1989
Q: How the cell response for the Glucose stimulation?
49
50
51
Clinical Application of Regenerative Medicine
- Islet Transplantation -
52
Micro/Nano devices for measuring the cell-cell
communication and regenerate islet
islet
islet
Physical stimuli
Chemical stimuli
molecule・space・time
reaction
reaction
aorta
aorta
pancrea
s
9th day
psuedo-islet
Micro flow
heart
heart
pancreas
Make clear the
phenomenon
11th day
Sensing the molecules
and/or protein
Monitoring
Micro flow and flow control・
Alignment of cells(1D,2D,3D)
53
On site monitoring the protein
and/or molecules
(1) Evaluating single cells
Features
Multiple objectives・
・Singular objectives
Uncertain Stimulus・
Qualitative
・Secured Stimulus
・Quantitative
(2) Evaluating multiple cells
Features
Undirected cell‐cell communication ・
・ Directed cell‐cell communication
Unspecific objectives to stimulate・
No real‐time evaluation ・
Qualitative ・
・Specific objectives to stimulate
・Real‐time evaluation
・Quantitative
54
55
Insert the chemical stimulus
by Micro electroporation
Hold the cell at micro hole (~2µmf) insert the
chemical signal by electropolation
*Measuring electric signal
conventional
Micro-TAS
1) a = 10 µm → E = 105 V/m
(1000V/cm)
2)Keep the cell membrane?
1) Low voltage 1-6V
2) Electrode + micro hole
+ micro channel
3) Holding mechanizm
56
Cell U937:
Cell suspension :RPMI medium
buffer solution :RPMI medium +10 mM YO-PRO-1
Puls signal
1V
5msec
57
58
59 59
60
61
6262
63
64
65
Pancreas β cell ( insulin secretion)
66
Responsive reaction
6767
Mimicked Tissue Micro-environment
Localization and control
mechanism of secreting direction
1. Apply localized stimuli
Stimulate through
“Pseudo-arterial capillary”
2. Measure intracellular response
4D imaging (x,y,z and time)
68
Fabrication
Multi-Directional UV Lithography.
・ Complex micro channel from
Single photo mask
・ No mask alignment process
69
Fabrication
70
Positioning of single cell
Trap single cell by aspiration through micro channel.
71
72
73
74
75
Insulin GFP is introduce and imaged in β cell
Insulin-eGFP / MIN6 cell
76
77
78
ACKNOWLEDGEMENTS
Kyoto Univ.
Post Graduate School of Engineering
Associate Prof. Isaku Kanno
Assistant Prof. Takaaki Suzuki
Dr. Atsuhito Okonogi
Dr. Kyohei Terao
Dr. Masataka Ohoka
Dr. Keiko Kohno
Medical School
Prof. Akinobu Noma; Department of
Physiology and Biophysics, MD.
Associate Prof.; Nobuaki Sarai MD.
Assistant Prof. Satoshi Matsuoka; MD.
Assistant Prof. Takeshi Miura , MD
Prof. Tetsuya Matsuda, MD
Associate Prof. Amano
Associate Prof. Takashi Tada
Assistant Prof. Teru Okitsu; MD
Prof. Masao Washizu; Univ. of Tokyo
Associate Prof. Hidehiro Oana, Assistant Prof. Gel Murato,Dr. Osamu Kurosawa
Prof. Hiroyuki Fujita, Associate Prof. Shoji Takeuchi
Prof. Gen Hashiguchi(Kagawa Univ.), Lecturer Dr. Ryuji Yokokawa (Rits)
This paper is supported in part by grant-in-aid
1) Kyoto City Collaboration of Regional Entities for the Advancement of Technological Excellence
of JST
2) Ministry of Education, Culture, Sports, Science and Technology
Leading Project for Biosimulation
3) Japan Science and Technology Agency CREST
79
Development of bio/nano hybrid platform technology towards regenerative medicine
4) Education on Complex Functional Mechanical Systems (COE program)