国内のナノテクノロジーの現状と将来
Transcription
国内のナノテクノロジーの現状と将来
国内のナノテクノロジーの現状と将来 Hidetoshi Kotera 1Micro engineering department, Postgraduate school of Engineering, Kyoto University Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, JAPAN NEDO(New Energy and Industrial Technology Development Organization) 1 2 2 History of MEMS 1824 1910 1939 1947 1955 1958 1559 1960 1967 1970 1972 1977 1978 1978 1982 1985 1985 1988 1988 1992 1992 1993 1993 1996 : : : : : : : : : : : : : : : : : : : : : : : : Discovery of silicon (Berzelius) First patent on the MOS transistor concept First PN junction (Schottky) Fabrication of the first bipolar transistor (Shockley) Evidence of piezoresistive effect in Si and Ge (Smith) First integrated circuit (Oscillator) R. Feynman Famous Talk : ‘There is plenty of room at the bottom’ Fabrication of the first piezoresistive sensor –pressure- (Kulite) –accel. in 1970 First Surface Micro-machining process (H. Nathanson) : resonant gate transistor Silicon-glass bonding National Semiconductor : Commercialize a Pressure Sensor IBM – HP : Micro-machined Ink Jet Nozzle Silicon Bulk Micromachining : K. Bean Structure obtained by Micromoulding (LIGA) Famous Review paper « Silicon as a Mechanical material » (K. Petersen) Assembly of silicon wafers (Si/Si fusion bonding) : Lasky, et al. IC-compatible surface micromachining -> Polysilicon comb structures Electrostatic micromotor (UC -Berkeley BSAC) 1st MEMS conference (1st Transducers conference was held in 1987) First MUMPS process (MCNC) (with support of DARPA). Now owned by Memscap SCREAM Process (Cornell) Analog Devices : Commercialize Multi-axis Accelerometer integrating electronics Texas Instrument : Commercialize the Digital Mirror Display (DMD) DRIE (Bosch Process) 3 MEMSの定義:Micro Eelctro-Mechanical Systems First MEMS Concept is The Resonant Gate Transistor in 1967 4 references [H.C. Nathanson, et al., The Resonant Gate Transistor, IEEE Trans. Electron Devices, March 1967, vol. 14, no. 3, pp 117-133.] 5 references http://www-bsac.eecs.berkeley.edu/project/list_projects_by_director.php?PersonID=703 Bulk Micromachining ▲ Liquid etching; etch rate differences in different crystal directions <111> etch rate is slowest, <100> and <110> fastest Its rate is more than 400 times Commonly; anisotropic etches in silicon include KOH, TMAH (Tetramethil Ammonium Hydroxide) and EDP ( Ethlene Diamine Pyrocatecol) ▲Isotropic silicon etches <111> <100> <100> * HF, nitric and acetic 54.7 acids * XeF2BrF3 ( gas phase Silicon Substrate 6 <111> 54.7 <100> <100> Silicon Substrate 7 references http://www.mizuho-ir.co.jp/science/microcad/ Surface Micromachining Thin film technology + sacrificial layer sacrificial layer substrate Photo resists Deposit structural layer UV + DV + Etching Etching ( wet chemical or dry plasma etching) 8 9 JAPAN’s the 3rd Science and Technology Basic Plan & MEMS position (FY2006-2010) 3 Policies 6 Goals 4+4 Priority Areas of R&D 25 Primary Strategic Areas of Technology set by METI Create Human Wisdom Quantum Jump in Knowledge Discovery & Creation Life Sciences Semiconductors IT Health Care Breakthroughs in Advanced S&T Environmental Sciences MEMS Sustainable Development Nanotechnology/Materials Innovator Japan Manufacturing Technology “MONOZUKURI” Maximize National Potential Energy Nation’s Good Health over Lifetime Protect Nation’s Health & Security •Focus Areas ・3D Microstructure formation ・High-speed thick film processing ・Technology fusion with Nano-Bio •Applying MEMS technology to heighten the value added in Automobile, IT and Consumer Electronics industries Social Infrastructure The World’s Safest Nation Frontier 10 10 MEMS/μTASの応用分野 11 11 Japan’s R&D Promotion Scheme JSPS JST 12 Scenario for Dissemination 1/2 Shows the paths through which R&D outcomes go out into the world as well as relevant measures involved FY Year 13 13 13/25 MEMS Industrialization Strategy & Scenario 1.36TrillionYen, ‘10 (Domestic Market) Others Ecology The evolution of MEMS enables us to solve various kind of social needs Medical Evolution of MEMS Home 2nd Stage: Automobile Multifunction devices -Miniaturization -High performance -High reliability IT Eco Energy Security Information Technology Medical Care Automobile 430billion Yen, ‘02 1st Stage: Evolution of MEMS by Three Dimensional Fabrication Technology Combined with Nano-related Functions Now e Pr e ur at m Single-function MEMS devices: Pressure Sensor, Accelerometer, Scanner, Inkjet Head Bulk-micro machining, Surface micromachining 2005 2010 2015 MEMS devices being developed by utilizing micromachining and semiconductor process 2020 14 MEMS Market Size Technology Development for MEMS Industry Expansion Governmental Projects contributes to the building up competitive advantage of manufacturing industry through technology development. Ex ion s n pa The next Generation MEMS :(Fine MEMS) S In M E of M d MEMS Industry Manufactures of Precision Machinery, Sensors, Equipment. Technology Development Micromachine MicromachineTechnology Technology Project (1991-2000) Project (1991-2000) (Budget: (Budget:¥21.3 ¥21.3billion/10years) billion/10years) ・MEMS manufactures ・Semiconductor manufactures ・Startups ry ust Leaping forward to the nest step Fine FineMEMS MEMSProject Project ( (Integrated MEMS Technology Integrated MEMS Technology) ) (2006-2008) (2006-2008) (Budget: ¥1.1 (Budget: ¥1.1billion billioninin2006) 2006) MEMS Foundry Business Foundry Service Firms Process Infrastructure Development MEMS MEMSProject Project (2003-2005) (2003-2005) (¥4.3 (¥4.3billion/3years) billion/3years) MEMS Simulation Software & Database Software Venders Simulation Software & Database Development MEMS-ONE MEMS-ONEProject Project (2004-2006) (2004-2006) (¥1.5 (¥1.5billion/3years) billion/3years) 15 Technical Concept of MemsONE CAD Interface for commercial software High end simulator Knowledge DB knowledge Designer system and modeling tools Knowledge of professional engineer Design Knowledge for simulation, MEMS design and fabrication process Material Stress (Linear & non-linear) Thermal and thermal stress Electro-magnetic field Radio-frequency field Phenomena and function Material DB Experimental data Material properties Mask design Process designer Micro fabrication Tribology analysis Nano-inprint (Thermal and photo) Inverse simulator for mask Mask layouter Wet and dry etching 16 17 17 fine MEMS Project 2006-2008 18 18 18/25 http://www.mmc.or.jp/e/ 3-1 MEMS産業・技術ロードマップ BEANS Bio Electro-mechanical Autonomous Nano Systems ナノ・バイオと電気機械を融合、自律分散で機能するデバイス・システム 産業高度化 技術の発展と市場の拡大 2兆4,000億 (2015年) 第3世代:BEANS - ・MicroとNano-Bioとの融合 ・自律分散システムのキーデバイス グリーンデバイス: 環境・エネルギー ホワイトデバイス: 健康・医療 ブルーデバイス: 快適生活空間 1兆1,700億円 (2010年) 第2世代 ・MEMS/ナノテク機能の複合技術 ファインMEMS 4,400億円 (2005年) -新たなライフスタイル創出 ・MEMS/半導体の一体形成技術 多機能デバイスの創出 (高機能・小型化・信頼性)・MEMS/MEMSの高集積化技術 第1世代 現状 黎 明 単機能デバイス-既存部品の置き換え (既存部品の小型化の進展) 期 ・3次元マイクロ加工を中心に 日本発MEMSがインハウス、 ファンドリーの両輪で発展 19 19 2005 2010 2015 2020 2025 20 20 21 references http://www.analog.com/jp/cat/0,2878,764,00.html 22 22 http://plusd.itmedia.co.jp/lifestyle/articles/0409/03/news054_2.html http://www.ti.com/sc/docs/products/dlp/index.htm references http://www.dlp.com/about_dlp/about_dlp_images_pixels_micro.asp 23 24 24 25 25 RF-MEMS GPS:1GHz 800MHz /1.5GHz 10GHz30GHz 100MHz(VHF)800MHz(UHF) 2.45GHz 50MHz 100m 3x105 3x106 1m Wavelength 1cm 1mm 3x107 3x108 3x109 3x1010 Frequency (Hz) Microwave 10μm 3x1011 3x1012 light 26 27 28 28 Components for RF communication Packaging 1)To protect against environmental influences, such as variouse forms of air contaminations and moisture. Propagating the signal to the desired destination 2)To withstand handling as the devices are integrated with other systems 3)For EM coupling Source & Destination Signal sensing antenna Signal generation switch filtering Frequency translation Resonator Amplification Select and derive the signals from mixed one, Mixer RF IF (Radio frequency) (Intermidiate frequency) LO Selector switch Phase shifter Attenuator Filter Example of phased-array antenna channel (Local Oscilator) Mixing the signals for Digital signal processing 29 3030 Fabrication process of the X-bar type actuator 31 Fabricated X-bar actuator Fabricated X-bar actuator 800μm in length, 200μm in width, 3.4μm in thickness (Pt:100nm,PZT:2.5μm,Cr:0.8μm) 32 Composite Right/Left-Handed Metamaterial and Metastructure for designing the reconfigurable Millimeter wave antenna (M3-project) Definition: Metamatrial and Metastructure are artificial structures that can be designed to exhibit specific electromagnetic properties not commonly found in nature. The Russian physicist Veselago presented about theory of metamaterials with simultaneously negative permittivity (ε) and permeability (μ) in 1967, which are commonly referred to as lefthanded materials. ( V.Veselago,” The electrodynamics of substances with simultaneously negative values of ε and μ”, Soviet Physics Uspekhi, Vol.10,No.4,pp.509-514,1967) Lai, A.; Itoh, T.; Caloz, C.,”Composite right/lefthanded transmission line metamaterials”,IEEE Microwave magazine,Vol.5,Issue 3.2004 pp. 34- 50 A. Sanada, C. Caloz, and T. Itoh, “Planar distributed structures with negative refractive properties,” IEEE Trans. Microwave Theory 33 Tech., vol. 52, pp. 1252–1263, Apr. 2004. 34 Phased array antenna type 1 Horn-array type Millimeter wave antenna 35 Adaptive Optics system Adaptive optics is used for correction of disturbed wave front. This technology has been developed in astronomy. Turbulence Control system Incident Wavefront Wavefront generator Wavefront sensor Reflected wavefront 36 眼底検査 眼底の検査 診断 眼科だけでなく 内科などの他診療科に とって基本&重要 網膜はく離,緑内障 糖尿病,動脈硬化 眼球は生体の中でもとりわけ 透明度の高い伝播媒質 しかし 検査光は眼球内部で歪み, 波面収差を持つ 眼底画像(走査型レーザー検眼鏡で撮影) Daniel X. Hammerら撮影 補償光学装置で波面収差を 取り除くことが必要 37 Structure of Piezoelectric Deformable Mirror PZT Si Principle & structure Boston MEMS Electrostatic Actuator Piezoelectric thin film Î +10V ,>1KHz, Simple structure 38 Structure Cross-section Plane • Unimorph actuator array is composed of PZT films (2μm) and Si(20 μm) • 19 segmented ring electrode on PZT film • Al reflective layer on SiO2 in SOI 39 作製プロセス 40 Photographs of mirror 41 42 43 波面補償光学装置 ①眼底からの反射光を 波面センサーによって測定 レーザー 眼球 ビーム スプリッター 形状可変ミラー カメラ 波面センサー 制御装置 ②波面収差を打ち消すように 光路中に置いた形状可変 ミラーを変形させる ③反射光は波面収差を 補正される システム図 44 Measuring Cell-Cell Communication and Regeneration of tissue 45 Pancreas β cell ( insulin secretion) 46 Bio Simulator http://www.sim-bio.org/ 47 Pancreas β cell ( insulin secretion): Type 2 Diabetes High High glucose glucose Normal Normal glucose glucose Membrane potential Channel protein actuation IKATP IKR ICaL Ionic reaction inside the cell ADP Ca2+ Ionic reaction in mitochondrial Ca2+ 4848 NADH Measuring Cell-Cell Communication and Regeneration of tissue Structure of Pancreas Islet Islet Bonner-Weir S, Insulin Secretion, 1989 Q: How the cell response for the Glucose stimulation? 49 50 51 Clinical Application of Regenerative Medicine - Islet Transplantation - 52 Micro/Nano devices for measuring the cell-cell communication and regenerate islet islet islet Physical stimuli Chemical stimuli molecule・space・time reaction reaction aorta aorta pancrea s 9th day psuedo-islet Micro flow heart heart pancreas Make clear the phenomenon 11th day Sensing the molecules and/or protein Monitoring Micro flow and flow control・ Alignment of cells(1D,2D,3D) 53 On site monitoring the protein and/or molecules (1) Evaluating single cells Features Multiple objectives・ ・Singular objectives Uncertain Stimulus・ Qualitative ・Secured Stimulus ・Quantitative (2) Evaluating multiple cells Features Undirected cell‐cell communication ・ ・ Directed cell‐cell communication Unspecific objectives to stimulate・ No real‐time evaluation ・ Qualitative ・ ・Specific objectives to stimulate ・Real‐time evaluation ・Quantitative 54 55 Insert the chemical stimulus by Micro electroporation Hold the cell at micro hole (~2µmf) insert the chemical signal by electropolation *Measuring electric signal conventional Micro-TAS 1) a = 10 µm → E = 105 V/m (1000V/cm) 2)Keep the cell membrane? 1) Low voltage 1-6V 2) Electrode + micro hole + micro channel 3) Holding mechanizm 56 Cell U937: Cell suspension :RPMI medium buffer solution :RPMI medium +10 mM YO-PRO-1 Puls signal 1V 5msec 57 58 59 59 60 61 6262 63 64 65 Pancreas β cell ( insulin secretion) 66 Responsive reaction 6767 Mimicked Tissue Micro-environment Localization and control mechanism of secreting direction 1. Apply localized stimuli Stimulate through “Pseudo-arterial capillary” 2. Measure intracellular response 4D imaging (x,y,z and time) 68 Fabrication Multi-Directional UV Lithography. ・ Complex micro channel from Single photo mask ・ No mask alignment process 69 Fabrication 70 Positioning of single cell Trap single cell by aspiration through micro channel. 71 72 73 74 75 Insulin GFP is introduce and imaged in β cell Insulin-eGFP / MIN6 cell 76 77 78 ACKNOWLEDGEMENTS Kyoto Univ. Post Graduate School of Engineering Associate Prof. Isaku Kanno Assistant Prof. Takaaki Suzuki Dr. Atsuhito Okonogi Dr. Kyohei Terao Dr. Masataka Ohoka Dr. Keiko Kohno Medical School Prof. Akinobu Noma; Department of Physiology and Biophysics, MD. Associate Prof.; Nobuaki Sarai MD. Assistant Prof. Satoshi Matsuoka; MD. Assistant Prof. Takeshi Miura , MD Prof. Tetsuya Matsuda, MD Associate Prof. Amano Associate Prof. Takashi Tada Assistant Prof. Teru Okitsu; MD Prof. Masao Washizu; Univ. of Tokyo Associate Prof. Hidehiro Oana, Assistant Prof. Gel Murato,Dr. Osamu Kurosawa Prof. Hiroyuki Fujita, Associate Prof. Shoji Takeuchi Prof. Gen Hashiguchi(Kagawa Univ.), Lecturer Dr. Ryuji Yokokawa (Rits) This paper is supported in part by grant-in-aid 1) Kyoto City Collaboration of Regional Entities for the Advancement of Technological Excellence of JST 2) Ministry of Education, Culture, Sports, Science and Technology Leading Project for Biosimulation 3) Japan Science and Technology Agency CREST 79 Development of bio/nano hybrid platform technology towards regenerative medicine 4) Education on Complex Functional Mechanical Systems (COE program)