RUDOLF LUDWIG KARL VIRCHOW (1821

Transcription

RUDOLF LUDWIG KARL VIRCHOW (1821
RUDOLF LUDWIG KARL
VIRCHOW (1821-1902)
omnis cellula e cellula
(Balkwill and Mantovani. Inflammation and Cancer:
back to Virchow. Lancet 2001)
B
TAM, INFLAMMATION AND CANCER
[3 H] TdR uptake (cpm x 10-3 )
30
IN
InVITRO
Vitro
and in vivo
20
10
Co n tro l
(Scarpino et al Am J Path 2000)
mF S6 + TA M
0
0
24
48
hours
72
(Mantovani A., 1978;
Acero et al 1984)
Giavazzi R.et al.Cancer Research
50:4771 (1990)
(Biswas and
(Bottazzi et al Science 1983)
(Mantovani et al Immunol Today 1982)
Mantovani, Nature
Immunol 2010)
The evidence that links cancer and inflammation
•
•
•
•
•
•
Inflammatory disease increases the risk of cancer (e.g. thyroid,
bladder, cervical, ovarian, prostate, oesophageal, gastric, intestinal)
Non-steroidal inflammatory drugs protect against some cancers (e.g.
colon and breast)
Inflammatory leucocytes, cytokines and chemokines are present in all
(?) experimental and human cancers from the earliest stages
Inflammatory pathways are downstream of oncogenic mutations (e.g.
ras, myc, RET/PTC)
Targeting cytokines, chemokines, key transcription factors of
inflammation and inflammatory cells, decreases incidence and spread
of cancer (e.g. TNF-α , IL-1β , NF-κ B, Stats)
Adoptive transfer of inflammatory cells, or over-expression of
inflammatory cytokines, promotes tumour development
(Balkwill and Mantovani, Lancet 2001; Balkwill, Charles and Mantovani Cancer Cell 2005;
Mantovani, Allavena, Sica and Balkwill, Nature, 2008 )
eg RET/PTC
An inflammatory
microenvironment
(Mantovani, Sica, Allavena,
Balkwill Nature 2008)
(Mantovani Nature 2009; an integration to
Douglas Hanahan and Robert A. Weinberg Cell, 2000)
PATHWAYS LEADING TO CCL2 (MCP-1)
FIBROBLAST
TUMORS
JEgene1
TDCF2
MCP-1 / CCL2
SMCDF3
SMOOTH MUSCLE CELLS
M olecular or biological description:
1) Rollins et al PNAS 85, 3738, 1988
2) Bottazzi et al Science 220, 210, 1983
3) Valente et al Am. J. Path 117, 409, 1984
M olecular identification:
1) Rollins et al PNAS 85, 3738, 1988
2) Yoshimura et al J. Exp. M ed. 169, 1449, 1989
3) M atsushima et al J. Exp. M ed. 169, 1485, 1989
4) Van Damme...Bertini et al EJI 19, 2367, 1989
5) Bottazzi et al Int J Cancer 45,795, 1990
6) Zachariae et al J. Exp. M ed. 171, 2177, 1990
Chemokine
IL-8
GCP-2
NAP-2
ENA-78
GROα
GROβ
GROγ
IP-10
Mig
I-TAC
SDF-1α/β
BCA-1
BRAK
MCP-1
MCP-4
MCP-3
MCP-2
MIP-1β
MIP-1αS
MIP-1αP
RANTES
MPIF-1
HCC-1
HCC-2
HCC-4
Eotaxin
Eotaxin-2
Eotaxin-3
TARC
MDC
MIP-3α
ELC
SLC
I-309
TECK
CTACK
PARC
Lymphotactin
SCM-1β
Fractalkine
CXCL8
CXCL6
CXCL7
CXCL5
CXCL1
CXCL2
CXCL3
CXCL10
CXCL9
CXCL11
CXCL12
CXCL13
CXCL16
CXCL14
CCL2
CCL13
CCL7
CCL8
CCL4
CCL3
CCL3LI
CCL5
CCL23
CCL14
CCL15
CCL16
CCL11
CCL24
CCL26
CCL17
CCL22
CCL20
CCL19
CCL21
CCL1
CCL25
CCL27
CCL18
XCL1
XCL2
CX3CL1
Receptor
CXCR1
Main targets
Neutrophil
CXCR2
B cell
CXCR3
CXCR4
CXCR5
CXCR6
Unknown
Immature
mDC
Mature
CCR2
Monocyte
CCR5
Eosinophil
CCR1
CCR3
CCR4
CCR6
Basophil
Naive
Memory
Th1
Th2
Treg
T cell
CCR7
CCR8
CCR9
CCR10
Unknown
XCR1
pDC
NK cell
CX3CR1
Inflammatory (RED), homeostatic (GREEN), mixed (YELLOW)
(Mantovani, Bonecchi ,Locati Nature Rev Immunol 2006)
(Mantovani , Allavena, Locati and Bonecchi Cytokine Growth Factor Rev 2010)
Brain
(ALL leukemia)
Skin
(cutaneous
lymphoma )
Intestine
(melanoma)
HPC niches
(CLL,AML
leukemia)
Lymph nodes
(breast, stomach,
melanoma)
Liver
(colon,
pancreas)
Bone
(breast, prostate)
Lung
breast)
Nerves, ganglia
(pancreas)
(Mantovani , Allavena, Locati and Bonecchi Cytok Growth Factor Rev 2009)
The “darc side” of the chemokine system
Atypical
chemokine
receptors
CXCR7
No conventional
signaling
(CTX, Ca, MAPK, …)
(Mantovani, Bonecchi and Locati,
Nature Rev Immunol 2006; CGFR 2010)
Signaling
chemokine
receptors
Signaling
(CTX, Ca, MAPK, …)
Chemokine decoy receptor D6
Binding
Trafficking
CCL2
CCL3L1
CCL4
CCL5
CCL7
CCL8
CCL11
CCL13
CCL14
CCL17
CCL22
degradation
Expression
Placenta
Function
Sk in lymphatic vessels
(Mantovani, Bonecchi and Locati,Nature Rev Immunol 2006; CGFR 2010; Graham et al Trends Immunol 2006; EJI 2009)
D6 is expressed in human Kaposi’s sarcoma
lesions
A
D6
LANA 1
(HHV8)
(Nebuloni, Vago et al unpublished)
Reduced in vivo growth of D6/KS IMM
transfectants
mock/KS-IMM
D6/KS-IMM
(Savino et al Unpublished)
M2-like
The yin-yang of macrophage polarization
M2
M1
M2-like
PTX3
- intracellular pathogens
- tissue damage
- tumor resistance
- parasite encapsulation
- tissue remodeling
- tumor promotion
- immunoregulation
Integrated from Biswas and Mantovani Nature Immunol 2010, Sica and Mantovani J Clin Invest 2012
Macrophage plasticity and polarization in pathology: in vivo veritas
Sica A and Mantovani A. J.Clin.Invest. 2012
Annual Review Issue - January 2013
INFLAMMATION, WOUND REPAIR
& FIBROSIS
Guest Editors:
Eric S. White & Alberto R. Mantovani
Articles already available online at
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1096-9896/accepted
MACROPHAGE ORCHESTRATION OF METABOLISM
(Cairo et al Trends Immunol 2011; Biswas and Mantovani, Cell Metabolism 2012, in press)
IFN-β
Hypoxia
M1
LPS
IFN-γ
TLR4
IFN-α/βR
IFN-γR
HIF-1α
NOS2
NFp65
p50κB
TNFα, IL-12,
CXCL1,-2,-3,-4,-5,-8,-9,-10
CCL2,-3,-4,-5,-11,-17,
SOCS3
NFp50
κBp50
c-Maf
Il-10
IRF-3
IRF-5
IL-12, IL-23
IFN-β
STAT
3
IL-1Ra, IL-4Rα
ARG1, ARG2,
NOS2
IRF4
JMJD3
STAT
1
STAT
6
CXCL9,-10,11
NOS2
CCL5, SOCS3
KLF4 ARG1, Mrc1,
IL-1Ra,, SOCS1,
ARG1, KLF4
PPARγ,
Fizz1, PPARγ
PPARγ
FABP4
HIF-2α
c-Myc
ARG1
IL-4Rα
(Sica and Mantovani, J Clin Inv,
2012)
IL-10
M2-like
IL-4
γC IL-4Rα
IL-13Rα1
IL-4/IL-13
M2
Postulated interactions between
immune and cancer cells at various
stages of carcinogenesis and
progression
Interplay between tumourassociated macrophages and
cancer cells in established tumours
Mantovani A et al, Lancet 2008
SMOULDERING AND POLARIZED MACROPHAGE-DRIVEN
INFLAMMATION IN ESTABLISHED NEOPLASIA
Proliferation
survival
Angiogenesis,
lymphangiogenesis,
Matrix and remodeling
Invasion
metastasis
M-CSF, VEGF, PlGF, CCL2, CCL3
CXCL12
Recruitment/survival
TNFlow
CXCR4
IL-6, IL-1
TAM / M2
Mø/MDSC
(IL-12low ; IL-10high ;
ManR, GalR,
SRhigh)
Tumor proliferation,
survival, progression
Growth factors (EGF)
Adaptive immunity
(Anergy, suppression,
Th2 skewing)
Tumor
cell
Response to
hormones
Resistance to
chemotherapy
(rev. in Balkwill and Mantovani Lancet 2001; Mantovani et al Trends Immunol 2002; Balkwill, Charles and Mantovani Cancer Cell 2005)
Aspirin and cancer protection – Recent literature
Lancet, 2012
Lancet, 2012
Lancet, 2012
Targeting cancer-related inflammation
TRABECTEDIN (ET-743, Yondelis) PharmaMar,
Spain
1- Natural product derived from a marine tunicate
2 - Binds the
minor groove of DNA, interacts
with NFY of the
Anti-inflammatory
properties
3- Effective anti-tumor agent in vivo (phase II and III)
anti-tumor agent Trabectedin
in soft tissue sarcomas, ovarian cancer, and breast
4- In 2008 approved by EMEA for 2nd line therapy of Soft Tissue Sarcoma,
in 2009 for 2nd line therapy of ovarian cancer in combination with
Pegylated Liposomal Doxorubicin
5- Clinical activity characterized by delayed, prolonged responses
TRABECTEDIN
(Germano et al Cancer Res 2005; 2010; Cancer
Cell, 2013, in press; D’Incalci Mol Cancer Ther
2010)
Trabectedin is selectively cytotoxic for Monocytes
and reduces some inflammatory cytokines
* IC 50 on tumor cells
Monocytes
-
2.5
PMNs
-
5
2.5
T cells
5
-
2.5
5
Trabectedin nM
Cleaved-Caspase 8
*
Cleaved-Caspase 9
Cyt C
Actin
Trabectedin nM
CCL2
IL-6
Ang2
VEGF
500
TNF
30
*
*
20
400
400
*
250
*
**
10
Ctrl
1.2
2.5
5
0
**
2.5
5
20
100
**
0
0
Ctrl
*
200
200
**
0
40
300
Ctrl
2.5
5
0
Ctrl
2.5
5
Ctrl
2.5
5
Allavena et al Cancer Res, 2005, 2010; Germano et al Cancer Cell, 2013, in press
Tumor-associated macrophages but not T cells are decreased after
Trabectedin
MN/MCAI
25
*
Macrophages PMNs
T cells
70
**
60
Treated
60
50
50
40
40
30
30
*
20
20
10
10
0
Untreated
*
Macrophages PMNs
0
T cells
Untreated
Macrophages PMNs
T cells
Treated
num of CD3+ cells for field n u m o f C D 6 8+ ce lls f o r fie ld
% of CD45+ cells
% of cells / CD45+
70
50
0
ID8
LLC
% of CD45+ cells
**
75
250
MCA-induced fibrosarcoma
70
200
CD68
**
150
100
% of CD45+ cells
60
50
40
50
0
100
30
20
CD3
10
0
Macrophages PMNs
***
T cells
Germano et al, Cancer Cell 2013 in press)
80
Untreated
Treated
***
60
40
20
0
Untreated Treated
Role of macrophage depletion in the anti-tumor activity of Trabectedin
MN/MCA1 WT
Untreated
Treated
4000
3000
**
2000
1000
Tumor Weight (mg)
5000
15
20
25
30
Untreated
Treated
3000
2000
**
1000
15
40
30
20
10
20
25
30
35
Trabectedin -
+
-
+
-
Time post inocolum (days)
Time post inocolum (days)
Untreated
Macrophages
Trabectedin
Macrophages &
Trabectedin
50
0
0
10
35
MN/MCA1 Res
pre vivo post vivo
60
4000
0
10
MN/MCA1 WT
pre vivo post vivo
MN/MCAI Res
5000
3000
Tumor Weight (mg)
Tumor Weight (mg)
6000
MN/MCA1 WT
6000
Resistance to Trabectedin
% of PI positive cells
A
B
MN/MCA1 RES
2000
Untreated
Trabectedin
MDSC
MDSC &
Trabectedin
1000
0
15
20
25
Time post
Days
inocolum (days)
Germano et al, Cancer Cell 2013 in press)
+
-
+
Tumor macrophages and vessels are reduced in treated STS patients
PRE
POST
PRE
POST
Correlation with clinical response
p = 0,07
CD31 vessels
(PRE: biopsy before surgery;
CD163 macrophages
POST: tumor sample at surgery, after therapy)
Blood
monocytes
•
•
•
•
TARGETING TAM IS A KEY COMPONENT OF THE
ANTITUMOR ACTIVITY OF TRABECTEDIN
Trabectedin is preferentially toxic for cells of the
monocyte-macrophage lineage. In these cells it
activates a TRAIL-R dependent extrinsic pathway of
apoptosis,
TAM depletion is sufficient for the anti-tumor activity
of Trabectedin (resistant lines; macrophage rescue)
First evidence that targeting tumor-promoting TAM
is involved in the anti-tumor activity of a clinically
approved agent (sarcomas; ovarian carcinoma)
This finding provides proof of principle for TAM
targeting in human cancer treatment and has
implications for combination therapy and design
(Germano et al, Cancer Cell 2013 in press)
STRATEGIES TO COUNTERACT THE “MALA EDUCACION” OF TAM
RE-EDUCATION
ELIMINATION
-IFNg (eg Allavena
et al Int J Cancer 1994),
TLR
-Blocking recruitment
and survival
(eg anti-CCL2, Qian et
Nature 2011; CSF-1R)
-CD40 agonist mab
(Beatty et al Science 2011)
- Elimination (eg Trabectedin,
EMEA- approved for clinical use
Clinical evidence of activity
Cancer Cell 2013, in press)
eg RET/PTC
An inflammatory
microenvironment
(Mantovani, Sica, Allavena,
Balkwill Nature 2008)
(Mantovani Nature 2009; an integration to
Douglas Hanahan and Robert A. Weinberg Cell, 2000)
The six
Emerging
The
Hallmarks
six Hallmarks
Hallmarks
of Cancer
of of
Cancer
(plus
Cancer
one)
An inflammatory
microenvironment
Hanahan and Weinberg Cell 2000
Hanahan and Weinberg Cell 2011
Mantovani A. Nature 2009
Acknowledgments
Istituto Clinico
HUMANITAS
Giovanni Germano
Cristina Belgiovine
Samantha Pesce
Manuela Liguori
Achille Anselmo
Nadia Polentarutti
Fabio Pasqualini
Alberto Mantovani
Istituto Mario Negri
Roberta Frapolli
Eugenio Erba
Massimo Zucchetti
Maurizio D’Incalci
Istituto Tumori Milano
Paolo Casali
Roberta Sanfilippo
Silvana Pilotti
Andrea Anichini
PharmaMar
Carlos Galmarini
Nadia Badri
www.ici2013.org

Similar documents

HYPOXIA AND ITS IMPACT ON THE IMMUNE SYSTEM

HYPOXIA AND ITS IMPACT ON THE IMMUNE SYSTEM - Progressive cartilage destruction, bone erosion

More information