RUDOLF LUDWIG KARL VIRCHOW (1821
Transcription
RUDOLF LUDWIG KARL VIRCHOW (1821
RUDOLF LUDWIG KARL VIRCHOW (1821-1902) omnis cellula e cellula (Balkwill and Mantovani. Inflammation and Cancer: back to Virchow. Lancet 2001) B TAM, INFLAMMATION AND CANCER [3 H] TdR uptake (cpm x 10-3 ) 30 IN InVITRO Vitro and in vivo 20 10 Co n tro l (Scarpino et al Am J Path 2000) mF S6 + TA M 0 0 24 48 hours 72 (Mantovani A., 1978; Acero et al 1984) Giavazzi R.et al.Cancer Research 50:4771 (1990) (Biswas and (Bottazzi et al Science 1983) (Mantovani et al Immunol Today 1982) Mantovani, Nature Immunol 2010) The evidence that links cancer and inflammation • • • • • • Inflammatory disease increases the risk of cancer (e.g. thyroid, bladder, cervical, ovarian, prostate, oesophageal, gastric, intestinal) Non-steroidal inflammatory drugs protect against some cancers (e.g. colon and breast) Inflammatory leucocytes, cytokines and chemokines are present in all (?) experimental and human cancers from the earliest stages Inflammatory pathways are downstream of oncogenic mutations (e.g. ras, myc, RET/PTC) Targeting cytokines, chemokines, key transcription factors of inflammation and inflammatory cells, decreases incidence and spread of cancer (e.g. TNF-α , IL-1β , NF-κ B, Stats) Adoptive transfer of inflammatory cells, or over-expression of inflammatory cytokines, promotes tumour development (Balkwill and Mantovani, Lancet 2001; Balkwill, Charles and Mantovani Cancer Cell 2005; Mantovani, Allavena, Sica and Balkwill, Nature, 2008 ) eg RET/PTC An inflammatory microenvironment (Mantovani, Sica, Allavena, Balkwill Nature 2008) (Mantovani Nature 2009; an integration to Douglas Hanahan and Robert A. Weinberg Cell, 2000) PATHWAYS LEADING TO CCL2 (MCP-1) FIBROBLAST TUMORS JEgene1 TDCF2 MCP-1 / CCL2 SMCDF3 SMOOTH MUSCLE CELLS M olecular or biological description: 1) Rollins et al PNAS 85, 3738, 1988 2) Bottazzi et al Science 220, 210, 1983 3) Valente et al Am. J. Path 117, 409, 1984 M olecular identification: 1) Rollins et al PNAS 85, 3738, 1988 2) Yoshimura et al J. Exp. M ed. 169, 1449, 1989 3) M atsushima et al J. Exp. M ed. 169, 1485, 1989 4) Van Damme...Bertini et al EJI 19, 2367, 1989 5) Bottazzi et al Int J Cancer 45,795, 1990 6) Zachariae et al J. Exp. M ed. 171, 2177, 1990 Chemokine IL-8 GCP-2 NAP-2 ENA-78 GROα GROβ GROγ IP-10 Mig I-TAC SDF-1α/β BCA-1 BRAK MCP-1 MCP-4 MCP-3 MCP-2 MIP-1β MIP-1αS MIP-1αP RANTES MPIF-1 HCC-1 HCC-2 HCC-4 Eotaxin Eotaxin-2 Eotaxin-3 TARC MDC MIP-3α ELC SLC I-309 TECK CTACK PARC Lymphotactin SCM-1β Fractalkine CXCL8 CXCL6 CXCL7 CXCL5 CXCL1 CXCL2 CXCL3 CXCL10 CXCL9 CXCL11 CXCL12 CXCL13 CXCL16 CXCL14 CCL2 CCL13 CCL7 CCL8 CCL4 CCL3 CCL3LI CCL5 CCL23 CCL14 CCL15 CCL16 CCL11 CCL24 CCL26 CCL17 CCL22 CCL20 CCL19 CCL21 CCL1 CCL25 CCL27 CCL18 XCL1 XCL2 CX3CL1 Receptor CXCR1 Main targets Neutrophil CXCR2 B cell CXCR3 CXCR4 CXCR5 CXCR6 Unknown Immature mDC Mature CCR2 Monocyte CCR5 Eosinophil CCR1 CCR3 CCR4 CCR6 Basophil Naive Memory Th1 Th2 Treg T cell CCR7 CCR8 CCR9 CCR10 Unknown XCR1 pDC NK cell CX3CR1 Inflammatory (RED), homeostatic (GREEN), mixed (YELLOW) (Mantovani, Bonecchi ,Locati Nature Rev Immunol 2006) (Mantovani , Allavena, Locati and Bonecchi Cytokine Growth Factor Rev 2010) Brain (ALL leukemia) Skin (cutaneous lymphoma ) Intestine (melanoma) HPC niches (CLL,AML leukemia) Lymph nodes (breast, stomach, melanoma) Liver (colon, pancreas) Bone (breast, prostate) Lung breast) Nerves, ganglia (pancreas) (Mantovani , Allavena, Locati and Bonecchi Cytok Growth Factor Rev 2009) The “darc side” of the chemokine system Atypical chemokine receptors CXCR7 No conventional signaling (CTX, Ca, MAPK, …) (Mantovani, Bonecchi and Locati, Nature Rev Immunol 2006; CGFR 2010) Signaling chemokine receptors Signaling (CTX, Ca, MAPK, …) Chemokine decoy receptor D6 Binding Trafficking CCL2 CCL3L1 CCL4 CCL5 CCL7 CCL8 CCL11 CCL13 CCL14 CCL17 CCL22 degradation Expression Placenta Function Sk in lymphatic vessels (Mantovani, Bonecchi and Locati,Nature Rev Immunol 2006; CGFR 2010; Graham et al Trends Immunol 2006; EJI 2009) D6 is expressed in human Kaposi’s sarcoma lesions A D6 LANA 1 (HHV8) (Nebuloni, Vago et al unpublished) Reduced in vivo growth of D6/KS IMM transfectants mock/KS-IMM D6/KS-IMM (Savino et al Unpublished) M2-like The yin-yang of macrophage polarization M2 M1 M2-like PTX3 - intracellular pathogens - tissue damage - tumor resistance - parasite encapsulation - tissue remodeling - tumor promotion - immunoregulation Integrated from Biswas and Mantovani Nature Immunol 2010, Sica and Mantovani J Clin Invest 2012 Macrophage plasticity and polarization in pathology: in vivo veritas Sica A and Mantovani A. J.Clin.Invest. 2012 Annual Review Issue - January 2013 INFLAMMATION, WOUND REPAIR & FIBROSIS Guest Editors: Eric S. White & Alberto R. Mantovani Articles already available online at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1096-9896/accepted MACROPHAGE ORCHESTRATION OF METABOLISM (Cairo et al Trends Immunol 2011; Biswas and Mantovani, Cell Metabolism 2012, in press) IFN-β Hypoxia M1 LPS IFN-γ TLR4 IFN-α/βR IFN-γR HIF-1α NOS2 NFp65 p50κB TNFα, IL-12, CXCL1,-2,-3,-4,-5,-8,-9,-10 CCL2,-3,-4,-5,-11,-17, SOCS3 NFp50 κBp50 c-Maf Il-10 IRF-3 IRF-5 IL-12, IL-23 IFN-β STAT 3 IL-1Ra, IL-4Rα ARG1, ARG2, NOS2 IRF4 JMJD3 STAT 1 STAT 6 CXCL9,-10,11 NOS2 CCL5, SOCS3 KLF4 ARG1, Mrc1, IL-1Ra,, SOCS1, ARG1, KLF4 PPARγ, Fizz1, PPARγ PPARγ FABP4 HIF-2α c-Myc ARG1 IL-4Rα (Sica and Mantovani, J Clin Inv, 2012) IL-10 M2-like IL-4 γC IL-4Rα IL-13Rα1 IL-4/IL-13 M2 Postulated interactions between immune and cancer cells at various stages of carcinogenesis and progression Interplay between tumourassociated macrophages and cancer cells in established tumours Mantovani A et al, Lancet 2008 SMOULDERING AND POLARIZED MACROPHAGE-DRIVEN INFLAMMATION IN ESTABLISHED NEOPLASIA Proliferation survival Angiogenesis, lymphangiogenesis, Matrix and remodeling Invasion metastasis M-CSF, VEGF, PlGF, CCL2, CCL3 CXCL12 Recruitment/survival TNFlow CXCR4 IL-6, IL-1 TAM / M2 Mø/MDSC (IL-12low ; IL-10high ; ManR, GalR, SRhigh) Tumor proliferation, survival, progression Growth factors (EGF) Adaptive immunity (Anergy, suppression, Th2 skewing) Tumor cell Response to hormones Resistance to chemotherapy (rev. in Balkwill and Mantovani Lancet 2001; Mantovani et al Trends Immunol 2002; Balkwill, Charles and Mantovani Cancer Cell 2005) Aspirin and cancer protection – Recent literature Lancet, 2012 Lancet, 2012 Lancet, 2012 Targeting cancer-related inflammation TRABECTEDIN (ET-743, Yondelis) PharmaMar, Spain 1- Natural product derived from a marine tunicate 2 - Binds the minor groove of DNA, interacts with NFY of the Anti-inflammatory properties 3- Effective anti-tumor agent in vivo (phase II and III) anti-tumor agent Trabectedin in soft tissue sarcomas, ovarian cancer, and breast 4- In 2008 approved by EMEA for 2nd line therapy of Soft Tissue Sarcoma, in 2009 for 2nd line therapy of ovarian cancer in combination with Pegylated Liposomal Doxorubicin 5- Clinical activity characterized by delayed, prolonged responses TRABECTEDIN (Germano et al Cancer Res 2005; 2010; Cancer Cell, 2013, in press; D’Incalci Mol Cancer Ther 2010) Trabectedin is selectively cytotoxic for Monocytes and reduces some inflammatory cytokines * IC 50 on tumor cells Monocytes - 2.5 PMNs - 5 2.5 T cells 5 - 2.5 5 Trabectedin nM Cleaved-Caspase 8 * Cleaved-Caspase 9 Cyt C Actin Trabectedin nM CCL2 IL-6 Ang2 VEGF 500 TNF 30 * * 20 400 400 * 250 * ** 10 Ctrl 1.2 2.5 5 0 ** 2.5 5 20 100 ** 0 0 Ctrl * 200 200 ** 0 40 300 Ctrl 2.5 5 0 Ctrl 2.5 5 Ctrl 2.5 5 Allavena et al Cancer Res, 2005, 2010; Germano et al Cancer Cell, 2013, in press Tumor-associated macrophages but not T cells are decreased after Trabectedin MN/MCAI 25 * Macrophages PMNs T cells 70 ** 60 Treated 60 50 50 40 40 30 30 * 20 20 10 10 0 Untreated * Macrophages PMNs 0 T cells Untreated Macrophages PMNs T cells Treated num of CD3+ cells for field n u m o f C D 6 8+ ce lls f o r fie ld % of CD45+ cells % of cells / CD45+ 70 50 0 ID8 LLC % of CD45+ cells ** 75 250 MCA-induced fibrosarcoma 70 200 CD68 ** 150 100 % of CD45+ cells 60 50 40 50 0 100 30 20 CD3 10 0 Macrophages PMNs *** T cells Germano et al, Cancer Cell 2013 in press) 80 Untreated Treated *** 60 40 20 0 Untreated Treated Role of macrophage depletion in the anti-tumor activity of Trabectedin MN/MCA1 WT Untreated Treated 4000 3000 ** 2000 1000 Tumor Weight (mg) 5000 15 20 25 30 Untreated Treated 3000 2000 ** 1000 15 40 30 20 10 20 25 30 35 Trabectedin - + - + - Time post inocolum (days) Time post inocolum (days) Untreated Macrophages Trabectedin Macrophages & Trabectedin 50 0 0 10 35 MN/MCA1 Res pre vivo post vivo 60 4000 0 10 MN/MCA1 WT pre vivo post vivo MN/MCAI Res 5000 3000 Tumor Weight (mg) Tumor Weight (mg) 6000 MN/MCA1 WT 6000 Resistance to Trabectedin % of PI positive cells A B MN/MCA1 RES 2000 Untreated Trabectedin MDSC MDSC & Trabectedin 1000 0 15 20 25 Time post Days inocolum (days) Germano et al, Cancer Cell 2013 in press) + - + Tumor macrophages and vessels are reduced in treated STS patients PRE POST PRE POST Correlation with clinical response p = 0,07 CD31 vessels (PRE: biopsy before surgery; CD163 macrophages POST: tumor sample at surgery, after therapy) Blood monocytes • • • • TARGETING TAM IS A KEY COMPONENT OF THE ANTITUMOR ACTIVITY OF TRABECTEDIN Trabectedin is preferentially toxic for cells of the monocyte-macrophage lineage. In these cells it activates a TRAIL-R dependent extrinsic pathway of apoptosis, TAM depletion is sufficient for the anti-tumor activity of Trabectedin (resistant lines; macrophage rescue) First evidence that targeting tumor-promoting TAM is involved in the anti-tumor activity of a clinically approved agent (sarcomas; ovarian carcinoma) This finding provides proof of principle for TAM targeting in human cancer treatment and has implications for combination therapy and design (Germano et al, Cancer Cell 2013 in press) STRATEGIES TO COUNTERACT THE “MALA EDUCACION” OF TAM RE-EDUCATION ELIMINATION -IFNg (eg Allavena et al Int J Cancer 1994), TLR -Blocking recruitment and survival (eg anti-CCL2, Qian et Nature 2011; CSF-1R) -CD40 agonist mab (Beatty et al Science 2011) - Elimination (eg Trabectedin, EMEA- approved for clinical use Clinical evidence of activity Cancer Cell 2013, in press) eg RET/PTC An inflammatory microenvironment (Mantovani, Sica, Allavena, Balkwill Nature 2008) (Mantovani Nature 2009; an integration to Douglas Hanahan and Robert A. Weinberg Cell, 2000) The six Emerging The Hallmarks six Hallmarks Hallmarks of Cancer of of Cancer (plus Cancer one) An inflammatory microenvironment Hanahan and Weinberg Cell 2000 Hanahan and Weinberg Cell 2011 Mantovani A. Nature 2009 Acknowledgments Istituto Clinico HUMANITAS Giovanni Germano Cristina Belgiovine Samantha Pesce Manuela Liguori Achille Anselmo Nadia Polentarutti Fabio Pasqualini Alberto Mantovani Istituto Mario Negri Roberta Frapolli Eugenio Erba Massimo Zucchetti Maurizio D’Incalci Istituto Tumori Milano Paolo Casali Roberta Sanfilippo Silvana Pilotti Andrea Anichini PharmaMar Carlos Galmarini Nadia Badri www.ici2013.org
Similar documents
HYPOXIA AND ITS IMPACT ON THE IMMUNE SYSTEM
- Progressive cartilage destruction, bone erosion
More information