1990
Transcription
1990
EconomicGeology Vol. 85, 1990, pp. 1604-1628 Geomorphologic EnvironmentandAge of SupergeneEnrichment of the Cuajone,Quellaveco,andToquepalaPorphyry Copper Deposits, SoutheasternPeru ALAN H. CLARK, Departmentof GeologicalSciences, Queen'sUniversity,Kingston,Ontario,CanadaK7L 3N6 RICHARD M. TOSDAL, U.S. GeologicalSurvey,345 MiddlefieldRoad,Mail Stop901, MenloPark,California94025 EDWARD FARRAR, Departmentof GeologicalSciences, Queen'sUniversity,Kingston,Ontario,CanadaK7L 3N6 AND ARMANDO PLAZOLLES V. SouthernPeru CopperCorporation,Casilla 303, Tacna,Peru* Abstract Copperoregradesof theCuajone,Quellaveco, andToquepala porphyryCu(-Mo)deposits, situatedat 3,000 to 4,000 m a.s.1.on the Pacificslopeof the CordilleraOccidentalof south- ernmostPeru (lats17ø02'-17ø15 ' S), havebeenmarkedlyincreased by supergene sulfide enrichment. Followingthe emplacement of the hypogene mineralization in the earlyEocene (52-57 Ma) asthe terminalstagein the development of the ToquepalaGroupcontinental volcano-plutonic terrane,thisAndeantransect wasgradually reducedby erosionin a semiarid climateto a low altitudetopography; unroofingof the deposits hadtakenplaceby the midOligocene. Theinitiationofcordilleran upliftatca.25 to 26 Ma,accompanied by theepisodic eruptionof felsicash-flow tuffsat theoceanward frontof thevolcanic arc,ledto morerapid erosionandtheconversion of themid-Tertiarylandscape intothesubplanar Altosde Camilaca surface. Thisregionallyextensive pediplainconstitutes the majorlandformcomponent of the presentprecordillerasurrounding the porphyrycenters;its finalconfiguration wasattained at ca. 18 to 19 Ma. Ash-flowtuff eruptionwaswidespread andfrequentat thistime. Supergene enrichmentbeganin the late Oligoceneduringthe progressive loweringof topography andcontinuedthroughthe moreabruptwater-tabledepression resultingfrom the latestOligoceneto early Mioceneuplift. However,the distributionof chalcocite,sensu lato, in the three porphyrydepositsand the local postmineralization landformsandvolcanic historiesdifferedsignificantly duringthe latter interval.At Toquepalaand,to a lesserextent, Quellaveco,the landformregimesweredominatedby openvalleysandignimbriteblanketing was short-lived,whereasthe exposedCuajonedepositwasboth the site of aggressive early Miocenevalleyincisionandthe depositionof anunusuallythick,in part welded,ash-flowtuff at 22.8 ñ 0.7 Ma. As a result, the enrichmentblanketat Cuajoneremainedrelativelythin andwasevenpartiallyerodedin the early Miocene,whereasthe blanketsat Quellavecoand Toquepalawere thickened. Continuedstrongupliftin the mid-Miocene (ca.8-15 Ma) generated the arrayof apron andterracepedimentsof the MultiplePedimentstagewhichdominates the lowercordilleran slopesand,in the mineralizedareas,led to the deepening of existingvalleysandthe devel- opmentof newfluvialchannels. Ignimbrite eruptionpersisted throughout theMiocene.Again, localregimes of erosionandvolcanism provedinimicalto supergene activityat Cuajone,but enrichmentcontinuedat Quellavecoand, particularly,Toquepala,where there is no record of laterMioceneash-flow accumulation. Upliftin thisperiodwasapparently alsomostextensive in thevicinityof theToquepala deposit,whichexperienced theformation of a deepchalcocite blanket,while the extantenrichmentzoneat Quellavecowasthickened. The development of enrichedassemblages containing"massive"chalcocitehad clearly terminatedby 13.1 ___ 0.4 Ma at Cuajoneandby 9.5 ___ 0.5 Ma at Quellaveco;the timingof laterenrichment atToquepala islessconstrained, but a mid-Miocene ageisprobable.Supergene * Presentaddress:MMagaGrenet316, Umacollo,Arequipa,Peru. 1604 CUAJONE,QUELLAVECO,AND TOQUEPALA DEPOSITS,SEPERU 1605 upgradingof the three Peruviandepositswascontemporaneous with that of coppermineralizationin northernmostand northernChile, asat Chuquicamata andLa Escondida,and in the Copiap6miningdistrict,in all of whichareasa late Oligoceneto mid-Mioceneagehas been inferredfor supergenealteration.This major and regionallydevelopedmetallogenic episodetookplaceduringandbetweentwo majorperiodsof cordilleranuplift, undersemiarid climaticconditions. The terminationof intenseenrichmentalongthis2,000-kmstretchof the Cordillera Occidental in the late Miocene wasa direct result of marked climatic desiccation, whichnot onlyreducedthe overallsupergene activitybut focusedfluvialerosion,leadingto the incisionof steep-walled canyonslessfavorablefor supergene alterationthanthe earlier subplanarlandforms. Introduction work of Segerstrom(1963), definedempiricalcorrelationsbetweenepisodesof supergeneenrichment of regionallyexment in the later Tertiary have contributedto the of copperandsilveranda sequence developmentof high coppergradesin manyof the tensivesubplanarerosionallandforms,the agesof Cretaceous andPaleogene porphyrycopperdeposits which were delimited by K-Ar geochronologyof in the central Andes of Peru and Chile, as in other overlyingignimbrite flows.FollowingHollingworth in thisdeserticarea,close comparable mineralized regions. However, the (1964), the erosionsurfaces weatheringof thesemajordeposits hasreceivedlittle to the southern limit of the Atacama Desert, were concertedstudyfromtheperspective of regionaland interpretedaspedimentsor, whereregionallyextenlocal geomorphology, despitethe widely accepted sive,pediplains,whichwere inferredto haveformed to episodes of abruptepeirogenic importanceof landforms in the development of su- rapidlyin response flankof the presentCordillera pergeneprofiles.This paper addresses the physio- upliftof the oceanward graphicenvironmentandageof supergenealteration Principal.Two distinctperiodsof metal enrichment in the Eocene porphyry Cu(-Mo) subprovinceof were recognized,eachascribedto a specificepisode It wasassumed thatsupersouthernmost Peru(Fig. 1), with particularreference of landformdevelopment. to the Cuajone(17ø02' S-70ø42' W) andToquepala genesulfideformationwasmostactiveduringthe pe(17ø15' S-70ø3T W) mines of the SouthernPeru CopperCorporation(SPCC)andthe nearbyQuellavecoprospect(17ø06' S-70ø37' w) of Mineroper6. Each depositis situatedat elevationsbetween 3,000 and 4,000 m a.s.1.on the Pacificslopesof the CorSUPERGENE oxidation and attendant sulfide enrich- dilleraOccidental.The mineralizedareanowexperiencesan arid climate(Meigs, 1953; InstitutoNacionalde Planificaci6n,1965) andisborderedto the BOLIVIA southwest by the hyperaridPeruvianCoastalDesert, the northern extension of the Chilean Atacama Desert (di Castri and Hajek, 1976). However, it has been widelyinferredongeomorphologic andothergrounds (e.g.,Mortimer,1969, 1973) that semiaridconditions prevailedin thisregionuntil the onsetof drasticcli- CHUQUICAMATA© • / matedesiccation in thelateMiocene(e.g.,Alpersand Brimhall, 1988). ßLA ES(•ONDIDA ß25 ø / The time scaleof Berggrenet al. (1985) is used here, although the term mid-Miocene rather than middleMioceneis employedinformallyfor intervals significantly transgressing the boundaries of the latter time-stratigraphicunit, and mid-Oligoceneis usedto .. ß EL SALVADOR COPlAP6 DISTRICT •;. / ./! , ARGENTINA referbroadlyto the middlepartof thatepoch. Previousresearchon supergeneenrichmentin the Andean deposits Detailedinvestigations (Clarket al., 1967a,b; Sillitoe et al., 1968; Mortimer, 1969, 1973; Sillitoe, 1969) of Mesozoicto Paleogenevein systems in the broaderCopiap6miningdistrictofnorth-central Chile (ca.lat 26ø-29øS;Fig. 1),buildingonthepioneering :1 / :,.•i• i • 7øøw o 200 500 k ' * -- km 85ø FIG. 1. ' Map showingthe Cuajone,Quellaveco,andToquepala porphyry copper depositsin southen•Peru, and other mineralized areas cited in the text. 1606 CLARK,TOSDAL,FARRAR, AND PLAZOLLES riods of relative tectonicquiescenceand reduced and Toquepala deposits subsequentto hypogene erosionalrate interveningbetween the incisionsof mineralization and to correlate those histories with the associated erosionsurfaces. The earlierepisode the distributionof supergeneore mineralsat eachsite. ofenrichment wasfoundtobeasoldasearlyEocene, K-Ar dating of felsicash-flowtuff unitspermitsthe whereas thelaterenrichment periodwaslessprecisely delimitationof the agesof landformswhich underlie assigned to the late Oligoceneandearly (or middle) or truncate them in the mine areas. The occurrence Miocene interval. The prevalenceof an arid or semi~ andnatureof supergenemineralshavereceivedonly arid climatein thisregionthroughoutthe Paleogene reconnaissance study(Horlicket al., 1981; Satchwell, is implied both by the nature of the dominantland- 1983; Clark, in prep.). Both "massive"and "sooty" formsandbythewidespread occurrence ofevaporites supergenesulfideassemblages occurin the three dein the continentalsupracrustal cover.All significant posits.As Sillitoe and Clark (1969) have shown,the sulfideenrichmentoccurredpriorto the middleand initial stages,or lower limits, of enrichmentzonesare lateMiocene(•12.9-9.8 Ma; agesrecalculated with characterizedby the developmentof powderyaggrethe decayconstants of SteigerandJ•iger,1977) de- gatesof coppersulfides,whereasmore extensiverevelopmentof the very extensiveAtacamapediplain, placementof hypogenemineralsresultsin coarser whichwidely truncatedpreexistingsupergenepro- grained, sectile massesof the supergenesulfides. files.Renewedtectonicuplift, andinferredclimatic• Sooty assemblages are, however, also developedin desiccation duringthe latestMioceneto Pliocenein- the early stagesof oxidativeconversionof chalcocite terval(ca.9-2 Ma), wasaccompanied by the termi- anddjurleiteto moresulfurrich coppersulfides(e.g., nationof pedimentation andthe restrictionof major anilite; Clark and Sillitoe, 1971). At Cuajone and erosion to the channels of the main exorheic rivers Quellaveco,the singleenrichmentblankets,or chal(Mortimer,1973). Only limitedoxidationandsuper- cocitezones,aredefinedlargelyonthe basisofmegaficialsulfideenrichmentof theveinsystems occurred scopicmineralogicalrelationshipsand copper ore at thistime (Segerstrom,1963; Sillitoeet al., 1968). grades.At Toquepala,at leasttwo spatiallyseparated Supergeneprocessesare all but inactive under the enrichmentzoneshavelongbeenrecognized(Richard hyperaridclimaticconditionsnow prevailingin the and Courtright, 1958), but the irregulardistribution Chileannortechicobelowca.3,000 m a.s.1.(di Castri of supergenechalcocite(sensulato) hasnot been inand Hajek, 1976; UNESCO, 1980). vestigatedin detail.Regardless of thesedeficiencies, In the E1Salvadorporphyrycopperdeposit(Fig. we considerthat the enrichedzonesin eachdeposit 1), the intensesupergene enrichmentof the upper are sufficientlydelimitedto permit their broadcorEocenestockworkmineralization maynothavebeen relation with stagesin local landformevolution. contemporaneouswith that which affected the vein systemsof the nearbyCopiap6district.On the basis of K-Ar datingof supergenealunite,Gustafson and Hunt (1975) concluded that supergene upgradingat E1 Salvadorbeganat ca. 37 Ma, within 5 Ma of the emplacementof the hypogeneores.Mortimer et al. (1977), however, have shownthat oxidationand enrichmentof the ca. 29-Ma Chuquicamata porphyry deposit,located450 km to the north(lat 22o19'-20' S; Fig. 1), and the concomitantformationof the contiguousEx6tica(MinaS6r)chrysocolla mineralization, occurredin the late Oligoceneto earlyMioceneand wasthusessentiallycoevalwith the later enrichment in theCopiap6district.Alperset al. (1984)andAlpers andBrimhall(1988) morerecentlypresentedmiddle MioceneK-Ar datesfor supergenealuniteassociated with the intense sulfide enrichment at the La Escon- didaporphyryprospectat 24o16' S (Fig. 1). It was concludedthat supergenesulfideenrichmentat La Escondidaoccurredin the mid-Tertiary, and prior to the lateMiocene,asin the Coplap6andChuquicamata districts. Methodologyof the presentstudy Our aimsin the presentresearchwere to establish the geologic-geomorphologic evolutionof the areas immediatelysurroundingthe Cuajone,Quellaveco, It shouldbe emphasizedthat our methodologydiffers radicallyfrom that employedby Gustafsonand Hunt (1975) andAlperset al. (1984) andAlpersand Brimhall (1988) in their analysesof the age and formationalconditionsof supergeneenrichmentzones at E1SalvadorandLa Escondida,Chile, respectively. This is in part becausecareful searchhassofar failed to revealthe occurrenceof supergenealunitesuitable for K-Ar dating. More critically, the undoubtedly complexgeomorphologic evolutionof the mineralized areas during the Neogene would introduce unacceptableuncertaintiesto the massbalancecalculations centralto the modeldevelopedby Alpersand Brimhall at La Escondida,where a muchsimplersequence of landformeventsattendedthe supergeneprocesses. The physiographicdevelopmentof the precordillera of southernmostPeru has played a key role in promotingandrestrictingthe enrichmentof theporphyry copper depositsand is thus critical to our analysis. Our interpretationsof the interrelationsof supergenemineralzonesandgeomorphology arebasedon the standardsupergeneprofile first definedin detail by Emmons(1917): a land surfacegeneticallyassociatedwith alterationis underlainsuccessively by a leached(lixiviated)zone, an oxidizedzone, a zone of supergenesulfideenrichment,and the protore. The transitionfromoxideto sulfideassemblages isassumed CUAJONE, QUELLA VECO,ANDTOQUEPALA DEPOSITS, SEPERU 1607 to correspondapproximatelyto the water tableextant A simplifiedchronologyof mid- to late Tertiary at the time of alteration.Becausepyrite-poorhypo- geologicandgeomorphologic eventsin southernmost gene mineralassemblages are not developedin the Peru is providedin Table 1, basedlargely on Tosdal upper partsof the three depositsunder discussion, et al. (1981, 1984). In outline, four major physiothe broad configurationsof the upper and lower graphicterrainsconstitutethe present-daytopograboundaries of the sulfide enrichment zones are in- phy (Fig. 2a): (1) the Cordillerade la Costa,a disferred essentially to reflectthoseof the superjacent continuousbelt of mountainsattainingelevationsof landforms (cf. Ambrus, 1977; Gullbert and Park, 1986, p. 800-802). ca. 1,000 to 1,800 m a.s.1.;(2) the LlanurasCostaneras,a slopingfacetedterrain risingnortheastward from ca. 350 m a.s.1. at the inner foot of the coastal Geologyand Geomorphology mountainsto ca. 3,000 m a.s.1.;(3) the precordillera (informalterm), a subplanarca. 4,000-m benchwith Selectedfeaturesof the present-daytopographic a steepsouthwesterninterfacewith the Llanuras;and relationships, thepost-Eocene geologic units,andthe (4) the mainCordilleraOccidental,which at thislatin part glamajorNeogenelandformdomains oftheareaof study itude is dominatedby stratovolcanoes, areoutlinedin Figure2a-c. The regionincorporates ciated, and reachinga maximumelevationof 5,815 a transectof the PeruvianCoastalDesert,itselfpart m a.s.1.at VolcftnTutupaca(Fig. 2a). of the AtacamaDesert,andconforms physiographi- The porphyrycopperdepositsunderconsideration callyto thebasinandrangeor mountain andpiedmont were emplacedin the early Eocene (52-57 Ma, Esdesertsof, e.g., CookeandWarren (1973). The land- trada, 1975; McBride, 1977; Zweng, 1984; Beckinsale scapeis dominatedby an assemblage of steepmoun- et al., 1985; Clark et al., 1990) asthe terminalstage tain slopes,rock-cutalluviatedpedimentsor pedi- in the developmentof an Upper Cretaceousto Paplains,andalluvialplains,traversed by widelyspaced leogenesubaerialvolcano-plutonic arccomprising the exorheicriver systems,the RiosMoqueguaand Lo- Toquepala Group and a segmentof the Peruvian cumbaandtheir majortributaries,fedby snowmelt Coastalbatholith (Bellido, 1979; Beckinsaleet al., in the high cordillera. 1985).The geologyoftheToquepaladeposithasbeen of Southernmost Peru D Post- mid-Miocene ] I huntacala Formation Huaylillas Formation D Moquegua Formation !D Pre- Oligocene rocks Valley-and-Terrace Terrain Multiple-Pediment Terrain (PL= Pampa Lagunas Pediment) Altos deCamilaca Surface '•,•'D -Basement- FIG. 2. The study area on the Pacific slope of the Cordillera Occidental,southernPeru. a. The majorphysiographic unitsand locationsof the Cuajoneand Toquepalaminesand the Quellaveco prospect.b. Simplifiedgeologicmapof area(afterBellidoandLanda,1965;modifiedby Tosdalet al., 1981). c. Geomorphologic map,showingdistributionof Tertiarylandformdomains(simplifiedafter Tosdalet al., 1984). Abbreviations: C -- Cuajone,Q -- Quellaveco, T = Toquepala. 1608 CLARK,TOSDAL,FARRAR,AND PLAZOLLES TAI•LE1. CenozoicGeologicandPhysiographic Evolutionof the PacificSlopeof the CordilleraOccidentalof Southernmost Peru (after Bellido, 1979; Tosdalet al., 1981, 1984; Clark et al., 1990). Geologicevents Major geomorphologic events Pliocene Developmentof large andesitic-daciticstratovolcanoes of Barroso Group (-•5.3 Ma) Capillune Formation sedimentationand minor volcanism Valley andTerrace stage:continued episodicuplift, with incisionof steep-walledvalleysin precordilleraand upper Llanuras Costaneras(ca. 8.5 Ma to present) Miocene "SenccaFormation" ignimbrite eruption (ca. 6.5 ___ 0.3 Ma) "Maure Formation" sedimentationin basinsof high cordillera Multiple Pediment stage:renewed, episodicuplift, causing developmentof apronandterrace pedimentsin LlanurasCostaneras (9-15 Ma) andof broad,open valleysin evolvingprecordillera Final configurationof Altos de Camilacasurface(ca. 18-19 Ma) Chuntacala Formation felsic volcanism and associated clastic sedimentation(14.2 ___ 0.4-8.9 ___ 0.6 Ma) Eruption of youngestignimbriteassignedto HuaylillasFormation (18.6 _ 0.3-18.3 _ 0.3 Ma) Emplacementof major early ignimbritesof Huaylillas Formation (-•22.8 ___ 0.7 Ma) Oligocene Eruptionof ignimbriteflows(-•29 - 0.2 Ma) anddepositionof conglomeratichorizonsin uppermostMoqueguaFormation Accumulationof MoqueguaFormationfine clasticsand evaporites (? _•45-50 Ma) Initiation of stronguplift andrapid erosion,tilting and modifying mid-Tertiary landscape Development of subdued,lowaltitudelandscapethroughslow erosion of Paleocene-Eocene Eocene arc Hypogenemineralization:Toquepala,ca. 57 Ma; Quellaveco,ca. 56 Ma; Cuajone, ca. 52 Ma PMeoeene Final stagesof subaerialToquepalaGroupvolcanism(to ca. 59 Ma) Intrusionof granitoidplutons(ca. 58.7-65.5 Ma) describedby Richardand Courtright (1958), Zweng (1984), and Zweng and Clark (1984, and in prep.), the Cuajonedepositby Lacy (1958), Manrique and Plazolles (1975), and Satchwell (1983), and the Quellavecodepositby Estrada(1975), Kihien (1975), Guerrero and Candiotti (1979), Torpoco(1979), and Zimmermanand Kihien (1983). Followinghypogenehydrothermalactivity,a prolonged mid-Tertiary period of erosionensued,with the gradualreductionof the arc terrain to a topography of subduedrelief which, in the vicinityof the deposits,maynot haveexceeded500 to 1,000 m a.s.1. (Table1). The predominantlycontinentalclasticstrata of the Oligoceneto earliestMioceneMoqueguaFormation (Barfa, 1961; Bellido and Landa, 1965; Bellido, 1979; andMaroccoand Noblet, 1990) constitute the aggradational faciesof this erosionalsystem(Fig. 2b). Beginningin the late Oligoceneand continuing into the early Miocene,a succession of moreabrupt uplift episodesresultedin the developmentof a regionallyextensive,generallysubplanar,largely degradationallandscape,now preservedin the precordillera (Fig. 3a) and at the summitsof the Cordillera de la Costa(Fig. 2a andc). Relationships in the area upstreamfrom the town of Moqueguaillustratethat significantrapid degradationof the precordillerahad takenplaceprior to 25 Ma, generatingconglomerate horizonsin the uppermostMoqueguaFormationto the southwest. The erosional surface attained its final form immediatelyprior to 18 Ma and is referred to asthe Altosde Camilacasurface(Tosdalet al., 1984; Table 1). A clear backscarpis preservedonly locally for this landform in the immediate study area (e.g., Fig. 3d), but an extensivetopographicstep defines muchof the upper limit of the surfacein the Desierto de Clemesl north of the Rio Moquegua (Fig. 2); in the area of the ore deposits,the Altos de Camilaca surfacehas, in part, the form of a pediment dome (Mabbutt, 1955; Cooke and Warren, 1973, p. 196). During the middle and earliestlate Miocene (ca. 15-8 Ma), the Altos de Camilacasurfacewas itself uplifted, variablytilted and eroded,with the formation of a succession of apronand terracepediments (nomenclature of CookeandWarren,1973),assigned to the Multiple Pedimentstage(Figs.2c, 3b and c; Table 1). Broadopen valleysdevelopedat this time acrossthe precordillera to the northeast.The later Miocene uplift of the southernPeruviantransectof the Cordillera Occidentalwasprobablygreaterthan that which occurred at this time in other transects of the continentalmargin(Tosdalet al., 1984) andpresumablyrepresentsthe topographicresponseto unusuallyabrupt crustalthickening.Pedimentationin the Cordillera Occidental, at this asat other latitudes, ceasedin the late Miocene, contemporaneous with inferred climatic desiccationat lower topographic levels.Sincethat time, steep-walledvalleysandcanyonshave been incisedinto the Pacificslopeof the mountainsas a result of continued episodicuplift CUAIONE,QUELLA VECO,ANDTOQUEPALA DEPOSITS, SEPERU 1609 b c d FIG. 3. Landformsof the Cuajone-Quellaveco-Toquepala district. a. Characteristiclandscapeof the precordillera:dissectedarea of the lower Miocene Altos de Camilacasurface,near Larampahuane (10 km north-northeastof Toquepala).View looking east-southeast. Accordantsummits(ca. 4,1004,200 m a.s.l.)representremnantsof the pediplain,whereasthe southwest-dipping slopesare defined by the surfacesof flow units of the Upper Cretaceousor PaleoceneSerie Alta Voltanits. b. Thinly alluviatedPampaLagunasapronpediment (11-14 Ma), the dominantlocal landformof the middle to late Miocene Multiple Pediment stagein the upper LlanurasCostaneras;Pampais some20 km westsouthwestof Toquepala.Steepslopesin backgroundrepresentthe back scarpof the pedimentand the lower slopesof the precordillera.The valleys(QuebradaCuculein foreground)dissectingthe pediment formedmainlyin the PlioceneValley andTerrace stage.c. View to the southwestfrom Cerro Botifiaca, at the southwestmarginof the precordillera,acrossthe LlanurasCostanerasand toward the Cordillera de la Costa.Cerro Bafil,the mesaat right, is undedainby sedimentsof the Upper MoqueguaFormation and cappedby a 25.3 q-0.8-Ma tuff. The courseof the Rio Tumilaca(left) is flankedby upper Miocene terrace pedimentsof the later Multiple Pedimentstage.Another tuff, correlativewith that overlying the Cuajonedeposit(Tosdalet al., 1981), is interbeddedwith the MoquequaFormationand underlies the apronpedimenton the distant(left) skyline.d. View to the northeastacrossthe upper valley of Rio Asana,northeastof Quellaveco,in the inner precordillera.Major morainesare drapedacrossthe dissected Altosde Camilacasurface.CerroCondoriquifia (5,085 m), onthe skyline,isprobablyundedain by the Upper CretaceousToquepalaGroup Voltanits, andthusconstitutesthe localback scarp,albeit subsequentlyglaciated,of the pediplain. duringthe still activeValley and Terracestageof initial late Oligocenephasesof rapid uplift. Several landformdevelopment(Table 1), causingconsider- tuffs are intercalated in the coarse elastic sediments abledegradation of the earlierplanateor gentlyin- of the uppermostMoqueguaFormation(Fig. 3c;Belcisedlandforms(Figs.2c and 3). lido, 1979; Tosdalet al., 1981). Subsequently, felsic In the early Neogene, the mineralizedarea was pyroelasticeruptionsaccompaniedthe development situated,asit is today,at the oceanwardfront of the of both the Altos de Camilaca surface and the landvolcanicare in the precordillera.The eruptionof formsof the MultiplePedimentstage,resultingin the rhyodacitic ash-flow tuffsapparently beganlocallyat mantlingof wide areasof the precordilleranslopeof ca. 29 Ma. (R. J. Langridge,pers. commun.,1989), the CordilleraOccidental(Tosdalet al., 1981, 1984). but becamemoreintenseat 25 to 26 Ma duringthe The widespreadtuffscontemporary with incisionof 1610 CLARK,TOSDAL,FARRAR, AND PLAZOLLES the Altosde Camilacasurfaceare assigned to the relief, with numerousinselbergsstandingup to 30 to HuaylillasFormation.In contrast,tuffsthat are predominantly restrictedto valleyswereeruptedduring the Multiple Pedimentstageand are groupedasthe ChuntacalaFormation(Tosdalet al., 1981, 1984). Thisdistinction,firstrecognizedat Cuajoneby ManriqueandPlazolles(1975), is criticalto the interpre- 60 m abovethe plain, and interspersedwith gravelfilled depressions,the remnants of paleodrainage channels.The altitudeof thisold surfacein the vicinity of the mines rangesfrom 3,500 to 4,000 m a.s.1.To the northeast, it constitutes the foundation for the youngstratovolcanoes, the flanksof whichextendto within 10 km of the deposits.To the southwest,a the accumulation of even thin ignimbriteshasbeen shortdistancefrom the mines,an abrupt decreasein shownelsewhere to disruptground-water systems and altitudemarksthe erosionalbackscarpandthe upper of the PampaLagunasapronpediment,the terminatesupergeneactivitybeneathsubjacentsur- extensions faces(e.g.,Sillitoeet al., 1968), definitionof the time- oldestof the middleMioceneerosionsurfaces(Figs. spacerelationshipsof the pyroclasticunits and the 2c and 3b). Thus, the porphyrycopperdepositsare associated landforms isclearlyofpotentialimportance intersectedby erosionallandformsof differentorigins in the prediction of the extent of local enrichment whichextendbackin time to the Paleogene-Neogene horizons.In the studyarea,the basaltuff overlying boundary(ca.23-24 Ma). Moreover,it is evidentthat theerodedCuajonedepositisunusually thick(_<180 the Cuajoneand Quellavecodeposits,and probably m) andincludesa majorweldedzonecontaining es- alsotheToquepalaarea,wereblanketedfor sometime sentiallyundevitrifiedshards.Similarlythe upper by Mioceneignimbritesheets. tation of the landform evolution of the area. Because Miocenetuffoverlyingthe Quellaveco depositin the Local GeomorphologicSettings Rio AsanaValley exhibitsrelicsof flattenedshards, and Enrichment Zones suggestiveof originalwelding.In general,mosttuffs of the HuaylillasFormationshowonlyweakdevitri- Cuajonedeposit ficationand hydrothermalalteration.Those of the The Cuajonedepositoccursonthe south(left) flank Chuntacala Formationareextensively devitrifiedbut of the 500-m-deepcanyonof the R•o Torata (Fig. 4) are otherwiseunaltered.We conclude,therefore,that and more extensivelyin its tributary, the Quebrada the ash-flowtuffsemplacedin the vicinityof the ore Chuntacala,the westerlycourseof which transected depositspossessed low permeabilitiesandwere thus the centralpart of the mineralizedzone (Manrique likely to act asaquicludes. andPlazolles,1975). Lacy(1958) firstdrewattention Duringthe Pliocene,a localtransition fromignim- to the inversionof fluvialrelief whichtookplacedurbriteeruptionto predominantly andesitic-dacitic vol- ing the recentgeologichistoryof the area;thus,the canismculminatedin the developmentof the stra- presentinterfiuvebetween the steep-walledTorata tovolcanoes of the BarrosoGroup (Table 1). Radical and ChuntacalaValleysis essentiallycoaxialwith a coolingof the climate in the Pleistoceneled to the paleovalleywith gently dipping margins,partially formationof alpineglaciersandto the development preservedthroughinfillingby volcanicflows. of extensivemoraines,which are well preserved The subplanar(Fig. 5a) northernand southerninnortheastof Cuajoneand Quellaveco(Fig. 3d) but terfiuvesof theTorata-Chuntacala valleysystem,lying not in the immediatevicinityof the deposits. at ca. 3,800 to 4,200 m a.s.1.anddippingat ca. 4ø to Around the three depositsunder discussion, the the west-southwest, are largelydefinedby the upper precordilleranlandscape(Figs.2a and 3a) is domi- surfaces of ash-flowtuffsof the HuaylillasFormation, natedbya high,southwest-sloping plain,representingwhichlocallycomprises up to 280 m of predominantly both the degradational portionof the Altosde Cam- rhyodaciticash-flowtuffswith minorconglomerates ilacasurface and,overwideareas,thegentlydipping and agglomerates(Manrique and Plazolles,1975). surfaces of ignimbriteflowsbroadlycoevalwith that In the immediate Cuajone mine area, the basal landform.The plainhasbeenvariablydissected by memberof the HuaylillasFormationisa thickwelded west- to southwest-trending valley systems.Some tuff (Fig. 5b; the "trachyte" of Manriqueand Plavalleysoriginallypossessed broadshallowcrosssec- zolles,1975, p.), 22.8 +__ 0.7 Ma in age (Tosdalet al., tions and representedthe uppermostextensionsof 1981). The tuff overliesan irregular,southwesterly the middle and upper Miocene pediments,which inclinedtopographywith localrelief up to 120 m (ca. constitute much of the Llanuras Costaneras at lower 3,580-3,700 m a.s.1.).This flow is also coeval with altitudes.Theywere subsequently extensively mod- an unweldedtuff intercalatedin the uppermostMoified duringthe ValleyandTerracestage,whereas queguaFormation(Fig. 3c) 30 km to the southwest othervalleyswere initiatedduringthe latter stage, (Tosdalet al., 1981). Ash-flowtuffs,therefore,probanddisplaysimpleV-shaped profiles.Priorto mining, ablycoveredmuchor all of the Cuajoneareaat this the porphyrycopperdeposits were exposedin com- time. We considerthe undulatingerosionaltopogpositepolystagevalleys. The Altos de Camilaca surface of the immediate areaischaracterized bya significant degreeofprimary raphybeneaththe HuaylillasFormationto represent an early stage in the developmentof the Altos de Camilaca surface. CUAJONE, QUELLA VECO,ANDTOQUEPALA DEPOSITS, SEPERU 588,000 8e.ooo 1611 E N FIG.4. Simplifiedpreminingphysiographic mapof the Cuajoneminearea.Contourintervalis33.3 m. Shadedarea,coveringmuchof the interfiuves betweentheCocotea(southof maparea),Chuntacala, and Torata valleys,indicatesapproximateextent of subplanarO!igoceneand Miocenelandscape,a confiation of Huayli!!as Formationash-flowtopsandthe erosional Altosde Camilacasurface.Areaof Figure 6, centeredover the Cuajonemine, is outlined. thattheseunits In QuebradaCocotea,the activedrainagesystem well (pers.commun.,1986)concluded Formation, withtherhyolitic immediatelyto the southof QuebradaChuntacala arepartoftheHuaylillas probablyrepresenting its localbasal (Fig. 4), the basaltuff attainsa maximumthickness of conglomerate postdating thebasaltuff. 180 m, displaysa completeweldedtuff profile (Tos- memberandtheagglomerate isin partunderlainby thinmudflows dal, 1978), andisunderlainby a ca. 100-m-thickcon- The agglomerate glomerate(Manrique and Plazolles,1975). These that containclastsidenticalto partsof the tuff. The conglomerate, the lower contactof whichhas featuresstronglysuggestthat a significantvalley existedin that area early in the evolutionof the Altos been intersected at elevations of ca. 3,565 to 3,670 de Camfiacasurface.Consolidation of thismajorash- m (Fig. 6), probablyaccumulated in a valleyof modflowtuffwouldprobablyhavedisplacedthe mainlocal erate depth in the pre-HuaylfilasFormationtopogdrainageto the southandnorth, in the latter caseto raphy, perhapscontinuouswith the palcovalleyunderlyingthe presentQuebradaCocotea.The grayagthe presentpositionof QuebradaChuntacala. Detailedmappingof the Cuajoneopenpit in recent glomeratefilled in a relativelydeep and probably years(Satchwell,1983; F. B. Stevenson,writ. com- moresteep-walledchannel,the floorof whichlay at mun., 1983) hasoutlinedseveralpostorestratigraphic elevations of ca. 3,475 and 3,430 m in the east and units (Figs.5c and 6) not clearlyidentifiedon the westquadrants, respectively,of the presentopenpit preminesurface.Theseincludea rhyoliteclastcon- (Fig. 6). Thus, significantvalley development,apglomerate,exposedat the easternextremity of the proximatelyparallelto the more recent Quebrada mineralizedzone,anda younger"gray agglomerate" Chuntacala,is inferred to have occurred in the im(a local informal term), exposedin the western and mediatevicinityof the Cuajoneorebodyprior to and of eastern sectorsof the pit. Manrique and Plazolles alsoat somelater stageduringthe localdeposition the youngest local (1975, fig. 2) mappedthe westernarea of the latter the HuaylillasFormation.Because unit aspart of the ChuntacalaFormation.Satchwell ash-flow member of the formation is 18.6 _ 0.3 Ma (1983) originallyinterpretedboth unitsto be older (recalculatedfrom date reported by Tosdalet al., episodes probably thanthe basalignimbriteof the HuaylillasFormation 1981), the laterof theseerosional andassigned thema lateOligoceneage.Subsequently, tookplaceat ca. 19 to 21 Ma. The grayagglomerate by conglomerate, thereby L. J. France(pers.commun.,1984) andP. C. $atch- is overlainunconformably 1612 CLARK, TOSDAL, FARRAR, AND PLAZOLLES a d c FIG. 5. LandformsandNeogeneunitsin Cuajoneminearea.a. View to the northwestfrom vicinity ofCerro Vifia Biancatowardthe Cuajoneminearea(seedumps).The west-southwest-sloping subplanar ridgesare largely definedby the tuffs of the lower MioceneHuayli!!asFormation,but are locally degradational andrepresentthe Altosde Camilacasurface.The thickestdevelopmentof earlyHuay!fllas Formationtuffsis exposedon the far (north)slopesof QuebradaCocotea,the majorvalleyin the middle distance.b. South wall of the Cuajone open pit, June 1980 (note selectedbench elevations).Basal, 22.8 + 0.7-Ma, ashflow of the Huayli!!asFormationoverliesan irregul.arunconformity(dashedline) incisedinto the Que!!avecoquartz porphyry of the ToquepalaGroup. The leachedcappingextends from ca. 3,800 to ca. 3,495 m, overlyingthe tapered southernlimit of the enrichmentblanket. Lower part of the pit is in primary or "transitional,"i.e., weakly enriched,ore (seetext). c. Easternquadrant of the Cuajone open pit, lookingeast-northeast, June 1983. Premine courseof QuebradaChuntacala is clearly shown.Ridge on the right is underlainby Huayli!!asFormationashflow (22.8 _+0.7 Ma) and thatontheleftby ashflowsandagglomerates ofthemiddleand!ateMiocene Chuntacala Formation (--•13.1 + 0.4 Ma). Trough-shapedbody of gray agglomerate,herein assignedto the mid-Huayli!!as Formation,fills in the steep-walledalluvialchannel(dashed),incisedinto enrichedores.The exposed baseof the agglomerateis at ca. 3,475 m.d. View to the west-southwest down QuebradaChuntacala to upper levels of the Cuajone mine. Skyline is dominatedby slopingignimbritesof the Huayli!!as Formation.The ridge separatingthe ChuntacalaandTorata(right)valleysis underlainby the Chuntacala Formationandcorresponds to the courseof an openmid-Miocenevalley.Axesof earlier lower Miocene valleyslay along,or to the southof, the areaof the openpit. suggestingthat east-westvalleyswere incisedhere (Tosdalet al., 1981), this valley was filled in by a more than oncein the later HuaylillasFormationin- thick (max 485 m) succession of ash-flowtuffs, agterval. glomerates,and laharsof the ChuntacalaFormation. With thetransitionto the MultiplePedimentstage after about18 Ma, uplift andrenewederosionled to the development of a broadopenvalley,the axisof which lay 600 to 800 m to the north of the earlier channelor channels.Beginningat 13.1 + 0.4 Ma The tuffs now underlie the interfiuve between the Torata and ChuntacalaValleys(Figs.5d and 6). This palcovalleywasprobablycoevalwith the regionally extensive middle Miocene (11.5-14.1 Ma) Pampa Lagunasapronpediment(Tosdalet al., 1984), which CUAJONE, QUELLAVECO,AND TOQUEPALA DEPOSITS, SEPERU 1613 541,200 E t • • ! .......... I ............. • .............................. FIG.6. Simplified mapdelineating themajorpostmineralizati.on geologic unitsin theCuajonemine area, includingthe HuaylillasFormation (<22.8 _ 0.7 Ma) and ChuntacalaFormation(<13.1 _ 0.4 Ma) volcanicson the southand north marginsof the open pit, respectively.The approximatelocations of the rhyolitic conglomerateand gray agglomerateare shown(after Satchwell,1983). Line A-B correspondsto the sectionin Figure 7. definesmuch of the upper parts of the Llanuras approximateboundariesof the supergenezones. Costanerasto the southwestof the Cuajone mine Cuajonewasoriginallya 470-million-metric-tonde(Fig. 2c). posit, with an averagegrade of 1 percent Cu, and Intraformation unconformities within the Chuncontainingca. 75 millionmetrictonsof enrichedsultacalaFormation (Manrique and Plazolles,1975) in- fide ores(avggrade> 1.5% Cu). The sulfideenrichdicatethatthe mineareaexperienced episodicmiddle ment,dominatedby chalcocitesensustricto,wasapandlate Mioceneuplift, presumablyduringthe suc- parently confinedto a single blanketlike horizon, cessivedevelopments,to the southwest,of the Cerro some20 m in averagethickness, whichdippedgently de lasChulpas,PampaSitana,andCerroSagolloter- to the west, and in the north-south cross section, race pediments(Tosdalet al., 1984), each of which showeda gentletroughingin itscentralportions(Fig. recordsa discretestagein the middleand late Mio- 7). To the south,the enrichmentzonethinnedmarkcene uplift of the Cordillera Occidental.However, edly toward the limit of the mineralizedzone (Fig. erosionat that time apparentlydid not unroof the 5b). Partiallyoxidizedoreswith remnantsupergene orebody.Thereafter(probablypost-6.5Ma), renewed chalcocitewere locallyintersectedby the (premine) uplift duringthe Valley and Terracestageinitiated floor of Quebrada Chuntacala,and beneath the the development of theextantvalleyof theQuebrada northerninterfiuve,wereclearlyexposedonthe floor Chuntacalaandthe deepercanyonof the R;oTorata of the palcovalleyat the baseof the ChuntacalaFor(Fig. 4). This involvedthe erosionof muchof the local mation;oxidized remnantsof chalcocitepersistto Huaylillasand ChuntacalaFormationsvolcaniccover within a few metersof this erosionsurface.Moreover, and, eventually,renewedincisioninto the orebody alongthe axisof the Chuntacala Valley. A crosssection(Fig. 7) illustratesthe preminetopographyin the immediateCuajonemine area,the broaddistributionof postoregeologicunits,andthe it is evidentthat in the easternarea of the pit ores containingboth coherent (massive)and powdery (sooty)chalcociteoccurredwithin a few metersof the unconformity(palcovalleysidesandbottom)underlyingthe grayagglomerate. It isnotknownif chal- 1614 CLARK,TOSDAL,FARRAR,AND PLAZOLLES A B SW NE • CHUNTAC 37oo -.. [] Leached zone _• - • Su•erge• sulfide zone - Ou,ro, Oxide zone 0 ' x 200 ; ' / 3•oo m FIG. 7. Schematicsouthwest-northeast crosssectionthroughthe Cuajonedepositshowingpremine topography,the approximatelimit of ore-gradeCu mineralization,the major supergenezones,and the dispositionof Neogenevolcanic-sedimentary units.The smalloutlier of volcanicrockscloseto the pit axisis mappedby Manrique and Plazo!!es(1975) asthe ChuntacalaFormation,but we concurwith Satchwe]!(1983) in assigning it to the HuaylillasFormation(grayagglomerate).Note that there are otherminordiscrepancies betweenthe two descriptions of the postoregeology.Simplifiedandmodified from Manrique and P!azo!les(1975). cocite occurred immediatelybeneath the rhyolitic conglomerate. On the southernbenchesof the open pit, the taperedextremityof the enrichmentzonelay approximately150 m belowan irregularunconformity, representingan earlystagein the evolutionof the Altos de Camilacasurface(at ca. 3,500-3,640 m a.s.l.), and here it is overlainby the major ash-flow tuff of the lower HuaylillasFormation(Fig. 5b). By the early 1980s,muchof the mainenrichmentzone had been mined out, and the lower part of the open pit lay in "transitional"ore (Satchwell,1983), characterizedby largelysuperficialcoatings of sootychalcooitcon hypogenesulfides.The supergeneassemblagecomprises(Clark, in prep.) varyingproportions ofdjurleite,roxbyite((Cu, Fe)l.SaS,Clark, 1972; (Cu, Fe)].74-1.82 S, Mumme et el., 1988), and anilite. The grade of the underlying primary ore averages0.8 percentCu (Satchwell,1983). the lower part of the leachedzone formedthrough oxidationof sulfide-enriched (chalcocitic)ores,once continuous with the extant enrichment zone. It is, therefore,inferredthat sulfideenrichmentmayhave originallyoccurredashigh asthe 3,550-m level, i.e., within 20 to 100 m of the latestOligoceneor earliest Mioceneerosionaltopography,and that subsequent lowering of the water table causeda significant downwardpenetrationof oxidationandleaching.The transitionalore (seeabove)showsfeaturescharacteristicof interfacesbetweensupergenesulfideandprimary ore zones(seeAlpereand Brimhall, 1989) but probably representsa moderate redistributionof copperin responseto the fall in the water table. The observedrelationshipsat Cuajoneare in permissiveagreementwith a modelin whichsulfideenrichmenttookplacebeneatha subplanartopography ancestral to the Altos de Camilaca surface. If the The sulfide-enriched zonepasses upwardintothe leachedcappingdevelopedthroughdegradationof oxidezone(Fig. 7), whichhasan averagethickness previously enrichedsulfideores,thenthe upperzones of 15 m andanaveragegradeof 1.3 percentCu. The of the depositmay bear a recordof a relativelyprooxidezone is considerably thicker (to 40 m) in the longedperiodof supergene alterationbeneatha subnorthernpart of the deposit,i.e., in the area which duedlandscape undergoing gradualdissection; hence, liesbeneaththe gentlyinclinedsouthernsideof the supergeneactivitymay havebegunsignificantly bevalley which formsthe depositionalsurfacefor the forethe endof the Oligocene.In anycase,enrichment Chuntacala Formation. The oxide ores are dominated probablyceasedat 22.8 _ 0.7 Ma wheneruptionof by malachiteandchrysocolla, butremnants of super- the basal(or near-basal)tuff of the HuaylillasForgenesulfidesare widespread.The oxidezoneitselfis mationmantiedthe deposit.The thick leachedzone overlainby a hematite-bearing leachedzone (0.1- underlyingthat unit, and exposedon the southwall 0.2% Cu), with a maximum(preserved)thicknessof of the openpit (Fig. 5b), probablydevelopedlargely 120 m. The mineralogicand textural relationships prior to that volcanicepisode. (Stevenson,1972; Horlick et el., 1981; Satchwell, Subsequently,but before 18.6 _ 0.3 Ma (see 1983) suggestthat the entire oxidezone and at least above),further oxidationand leachingof the super- CUAJONE, QUELLA VECO,AND TOQUEPALA DEPOSITS, SEPERU % % % ASANA \ i outerlimit -78,000 N D - Holocene alluvium Neogene volcanlcs andsediments D pre- Neogene FIG. 8. Geologicsketchmapof the Quellavecoprospectarea (simplifiedandmodifiedafterEstrada,1975) showingdistribution ofpostmineralization Neogenevolcanicandsedimentary unitsof the Huayli!las,Chuntacala,and "Seneca"Formations.The outline of thephyllic-argillic alterationapproximately corresponds to the limit of ore-grademineralization.The northwest-southeast line (C-D) indicateslocationof the crosssectionin Figure12 andthe southeast part of the crosssectionin Figure 11. 1615 overliesthe orebody,andis now in contactwith ores originallymoderatelyrich in chalcocite.Satchwell (1983) ascribesthe "troughing"of the leachedzone andthelocaldevelopment of extensive supergene kaolinitc to weatheringbeneaththisvalley.However, the steepconfiguration of the valley,andthe probability that it wasrapidlyfilled in by the agglomerate, suggeststhat supergeneprocesseswould not have beenveryeffectiveat thisstageand,moreover,would haveagainbeen terminatedon the onsetof eruption of the Chuntacala Formation at 13.1 _ 0.4 Ma. It remainspossiblethatthe troughingof the enrichment blanket(Fig. 7), and/orthe developmentof the transitionalenrichedores,may reflect valley incisionin mid-HuaylillasFormationtimes,but it is moreprobablethat they were controlledby the undulatingnature of the earliest Miocene landforms ancestral to the Altos de Camilaca surface. Supergeneoxidationwas probablyrenewedfollowingthe erosionof the ChutacalaFormationstrata duringthe Valley andTerracestage,but it is consideredunlikelythatsignificant enrichmenthasoccurred since the middle Miocene. Quellavecodeposit Copperorereserves at the Quellaveco prospect (Fig. 1) are variouslyreportedas200 millionmetric tonsat 0.95 percentCu (Hollister,1974) or 405 million metrictonsat 0.8 percentCu (Estrada,1975). The Quellavecoorebodyisexposedonbothflanksof the deep westerlytrendingvalley of the Rio Asana gene chalcociteores may have resultedfrom their andiselongatedin a northwesterly direction(Fig.8). exposure duringtheerosionof the deepvalleysystem The broadphysiographic relationships' (Fig. 9) are occupiedby the gray agglomerate,which directly- similarto thoseat Cuajone.The AsanaValley is in- ,•.oo..s4,..o. ooE 4•,o, ,•,...o, FIG.9. Simplified physiographic mapof theQuellaveco prospect area(of.Fig. 4). Notethecourses of the RiosAsanaand CharaqueValleysand the interveningunnamedquebrada.The shadedarea indicatesthe approximate extentof the subplanar Oligo-Miocene landscape, but the smoothlower (southwesterly) part of the interfiuvebetweenthe Asanaandunnamed valleysis definedby gently dippingflowsof the "SenecaFormation"(seeFig. 10b).The areaof Figure8 is outlined. 1616 CLARK,TOSDAL,FARRAR, AND PLAZOLLES b cisedinto a modifiedAltosde Camilacasurface,representedhere (Fig. 10a)by a gentlyrollinghighplain ca. 3,800 to 4,100 m a.s.1.;the valley floor at the Quellavecocampis 3,500 to 3,600 m. Discontinuous remnantsof Huaylillas and ChuntacalaFormation ignimbritesoccuron higherinterfiuves.Onesuchashflow tuff, exposedca. 7 km to the southwest of the deposit,has yielded a K-Ar age of 18.4 ñ 0.6 Ma (Tosdalet al., 1981), similarto that of the younger of the datedHuaylillasFormationflowsat Cuajone. On the southeastedge of the AsanaValley, a small erosionalremnantof a 13.1 ñ 0.7-Ma ignimbriteassignedto the ChuntacalaFormation (Tosdalet al., 1981) ispreservedin a swaleonthe AltosdeCamilaca surface.To the northwestof the deposit,a similar middleMioceneageof 12.5 ñ 0.6 Ma is reportedfor a thick sequenceof alternatingash-flowtuffsandlaharswhich is exposedin the valley of the Rio Charaque, a right bank tributary of the Rio Asana(Fig. 8). The tuff sequenceis lithologicallysimilarto the Chuntacala Formation-type section at Cuajone. However,the uppermostpreservedtuff in the CharaqueValley hasan ageof 6.5 ñ 0.6 Ma anddisplays violetquartzphenocrysts consideredcharacteristic of the Pliocene ash flows of the Seneca Formation in the region (Tosdal, 1978; Tosdal et al., 1981). This assignmentis, however,probablyincorrect(R. J. Langridge,pers.commun.,1989). The interfiuvesbetween the valleys of the Rio Charaqueand R.ioAsanahave quasiplanartopsand dip gently to the west-southwest (Figs.9 and 10b). The lower slopesin bothvalleysare underlainby volcanicrocksof the Upper Cretaceous-Paleocene ToquepalaGroup and intrudedby broadlycoevalplutons(Bellido, 1979). The smoothinterfiuvebetween the AsanaandCharaqueValleysisthe slightlyeroded depositional surfaceof an ash-flowtuff that is tentatively correlatedeither with the SenecaFormationin the CharaqueValley, or with an underlyingflow of the upper part of the ChuntacalaFormation.Other tuffs assignedto the ChuntacalaFormationare exposedon the northernslopesof the upperAsanaValley at an approximateelevationof 3,750 to 3,775 m a.s.1.Thus,the Quellavecodepositwasburiedat differenttimesby volcanicrocksof the middleandupper FIG. 10. Landformsand Neogene units in the Quellaveco Miocene Chuntacala and uppermost Miocene and prospectarea. a. View to east-southeast from the slopesof Cerro PlioceneSeneca Formations.Undoubtedlythe deposit Charaquetowardthe areaof the Quellavecoprospect(notedrill was also at one time coveredby the HuaylillasForaccessroadson S slopeof the AsanaValley). Unnamedquebrada visiblein middledistance.The skylineis modifiedAltosde Camilacasurfacecappedlocallyby flowsof the HuaylillasandChun- mation. A conspicuous featureof therightbankoftheAsana Valleyfor a considerable distanceupstreamfromthe ValleyandQuellavecomineralizedarea.West-southwest-dippingQuellaveco deposit(Fig. 10c)isa thick,white-weathinterfiuve is cappedby a tuff tentatively assignedto the upper Miocene-PlioceneSenecaFormation, underlain by flows of the ering, unweldedash-flowtuff underlainby a disconmiddle MioceneChuntacalaFormation.c. View northeastup the tinuous fluvial conglomerate,together constituting Rio AsanaValley from the southernexposuresof Quellavecode- the Quellaveco brecciasandconglomerates of Estrada posit. White tuff (9.5 ___ 0.5 Ma) of the uppermostChuntacala (1975). The flowis 9.5 ñ 0.5 Ma (Tosdalet al., 1981) Formationis evidentalongthe north bankof the valley,where it andlacksthe violetquartzeyesof the upperunit in lies on a rock cut terrace incised into the Chuntacala Formation and underlyingToquepalaGroup. Smoothsurfacesin distance the CharaqueValley.The tuff cannotbe tracedalong are morainesoverlyingthe Altosde Camilacasurface. the northern slopesof the AsanaValley to the west tacala Formations. b. View to the northwest across the Rio Asana CUAJONE, QUELLA VECO,AND TOQUEPALA DEPOSITS, SEPERU 1617 erosionin the area of the presentCharaqueValley and in the approximate positionof the presentRio Asana,where these valleysare narrower and with steeperslopes thantheearliersystems; (6) deposition of fluvialconglomerates andthe 9.5 _+0.5-Ma ignimvalley incisedinto the older rocksto a level closeto brite, whichwasassigned to the uppermostChuntathe Paleogene-Neogene unconformity.Similarstrati- ealaFormation(Tosdalet al., 1981); (7) eruptionof graphicand geomorphologic relationships probably the upper Miocene and PlioeeneSenecaFormation occuron the southslopeof the presentAsanaValley, ignimbrites,now preservedonlyaboveca. 3,800 m but the tuff andthe underlyingbenchare lessexten- a.s.l.;and (8) incisionof the presentdeepcanyonof sivelypreserved.Moreover,the erosionalsurfaceun- the Rio Asana,the valley of the Rio Charaque,and derlyingthe conglomerate andyoungtuff liesca. 75 the interveningquebradas. The age of the faulting m higher on the southside of the valley, probably episodealongthe axisof the Rio Asanacannotbe resultingfrompost-9.5-Mafaultingalongthe present preciselydefined,but it probablycoincidedwith eiAsanaValley (Estrada,1974). ther stages(6) or (7) above.The approximaterelaOn the basisof the aboverelationships, the follow- tionshipsof the abovefeaturesare illustratedin the ing sequenceof Neogeneeventsin the area is pro- sketchcrosssectionof Figure 11, alongthe northposed:(1) finalstagesin the developmentof the Altos westerlytrendingaxisof the Quellaveeoorebody(el. de Camilacasurfaceat ca. 19 to 25 Ma; (2) eruption Figs.8, 9, and 12). Stage(3) is correlatedwith the of the youngerHuaylillasFormationignimbritesat developmentof the PampaLagunaspedimentin the andstage(5) with the Cerro Saabout 18.4 Ma; (3) incisionof a broadopenvalley, LlanurasCostaneras the axisof whichprobablycoincidedapproximately gollo pediment,respectivelythe earliestand latest with the presentinterfluvebetween the Asanaand episodesin the Multiple Pedimentstage(Tosdalet deepening of the Asana CharaqueValleys;(4) depositionof a thicksuccession al., 1984).The post-9.5-Ma of Chuntacala Formationignimbritesandlahars,be- and other valleysoccurredduring the subsequent ginningat ca. 13.1 _+0.7 Ma andfillingin the palco- Valley andTerrace stage. Estrada(1974, 1975) hasshownthat a singlesuvalley andlocallyspillingover its southernrim onto the Altosde Camilacasurface;(5) focusingof fluvial pergenesulfideenrichmentblanketis developedat of the deposit.Upstream,a topographic benchincised into volcanicflowsand intrusionsof the Toquepala Group and the overlyingChuntacalaFormationvolcanics(above)locallytakesthe placeof the whitetuff, and we concludethat the latter was depositedin a NW SE 4100 Baseof Chuntacala Fro. Aolxoximate 0o 's•tio• ofAltos deCam•aca surface I Se•cca Fm.'(?6.5Ma) 12.5 Ma'" _....•e .......... ..__,. • •, •, •, •, I •'ø•• t./'/' / 13.1*Ma ,,? 3900 , o.c, ' ' ,oo •3500 fo ma.s.t R• LEGEND • • ........ AolxoxJ•ate Limitof Quelaveco Deposit To•)ogr.•y of volcanic flow •,•_• Oosiltons Exlx)•ed (R) and projected (L) 0.5 ---- ? -' Tentativeextrapolation of flow -""'"f.,. / •ferredOosltion of I:)aleosurface Fault ! 0 I km FIG. 11. Schematicnorthwest-southeast crosssectionalongaxisof the Quellavecoorebody,illustrating interrelationships of presenttopography,Neogeneignimbriteflows(someundated),inferred paleolandforms, andthe Que!lavecoenrichmentzone.The sectionis approximately orthogonalto the extantriver valleys.The lastepisodeof faultingalongthe axisof the Asanavalley is assumedto have occurredafter eruptionof the 9.5 ___ 0.5-Ma ignimbrite.Verticalscaleis exaggerated. 1618 CLARK,TOSDAL,FARRAR,AND PLAZOLLES -3coo c D (SE) --3300 SUPERGENE [] Alluvium --3300 -- I [] Neogene volcanice [] 'Quellaveco con91omerale' [] pre-Neogene rocks ZONES [] Leached (and oxidized) zone .r•]moderately-to-strongly enriched zone 0 2oo 4oo [] weakly-enriched zone m •m....I. FIG. 12. Crosssection(lookingnortheast)of the Quellavecosupergenezones,after Estrada(1974; sect. 13). Note the different distributionof postoresedimentaryand volcanicunits on the southand north flanksof the AsanaValley. The volcanicsare undifferentiated,but in this sectionthey probably comprisemainly the 9.5 _+0.5-Ma white tuff (seeFig. 10c) of the upper ChuntacalaFormation.Note the intersectionof the enrichmentzone by the erosionsurface(valleybench)underlyingthe fluvial conglomerateand the displacementof the supergeneprofileby the easterlytrendingfault. Quellaveco,as at Cuajone (Fig. 12). Two zonesare humedAltosde Camilacasurface(Fig. 11), which is greaterrelativedepththanat Cuadistinguished: an upper zone of moderateto strong at a significantly enrichmentoverlyinga lowergradezone,presumably jone (seeabove).A verticalseparationof thisextent representinga downwardtransitionto unalteredhypogeneores.The chalcocite-bearing zone is significantlythicker (50-60 m) andmoreirregularthan at Cuajone.It attainsdepthsof œ50to 300 m belowthe presentsurfaceand hasa gentletroughlikeform in verticalcrosssection,crudelyreflectingthe configuration of the AsanaValley slopes(Estrada,1975). The enrichedzoneis generallyoverlainby a leached and/oroxidizedzone,extendingfromsurfaceto maximum depthsof 80 m. An east-west-trending fault closeto the presentaxisof the AsanaValley offsets the northern part of the enrichmentblanket downwardabout75 m (Fig. 12; Estrada,1975). Restoration of this offsetwould enhancethe subparallelrelationshipof the presentvalley and the troughin the enrichmentblanket(Fig. 12). The enrichedzone at Quellavecois truncatedby the lower slopesof the presentAsanaValley. On the north flank of the valley, the unconformitybeneath the 9.5 + 0.5-Ma ignimbriteandthe underlyingconglomerateintersectsthe sulfideenrichmentzone as well asthe overlyingleached-oxidized zone(Figs.19. and 13); oxidizedremnantsof chalcociteoccurwithin 50 cm of this old valley floor. Similarrelationships areapparentbetweenthe enrichmentblanketandthe vestigiallypreservedoutliersof tuff on the southern slopesof the valley(Fig. 12; seeEstrada,1974, 1975). The relationships betweensupergeneenrichment FIG. 13. View to the north-northeastacrossthe AsanaValley and the older topographicallyhigher landformsare incisedinto oxidized and enriched Que!!avecomineralization. lessclear.The highestexposures of the enrichedzone, White cliffson the far slopeof tributary quebradaare outcrops of 9.5 ___ 0.5-Ma tuff, which immediatelyoverliesa ca. 8-m-thick at its southernextremity,lie at altitudesof ca. 3,750 conglomerate.Lower slopesare in the ore zone, with remnants m a.s.l.approximatelyœ50m below the horizontally of supergenechalcocitepersistingto within 50 cm of the unconextrapolatedposition(ca. 4,000 m a.s.l.) of the ex- formity. CUAJONE, QUELLA VECO, ANDTOQUEPALA DEPOSITS, SEPERU between land surface and water table would not be unusual in a mountainous semiarid environment. For example,in physiographically similarsettingsin the Copiap0districtof Chile (Fig. 1), enrichmentassemblagesare intenselydevelopedat depthsof ca. 200 to 300 m belowthe presentsurfacein the Chafiarcillo silverveins(Whitehead,1919), andsupergenechalcociteis abundantat depthsin excessof 275 m in the Dulcineade Llamposcoppermine, at a level approximatelycoincidingwith the preminewater table (Sillitoe et al., 1968; Sillitoe, 1969). Similarly, the leachedzoneoverlyingthe enrichmentblanketat the La Escondida porphyrydeposit(Fig. 1) locallyattains depthsof 400 m belowsurface(Brimhallet al., 1985; Ojeda, 1986; AlpersandBrimhall,1989). It is therefore possiblethat enrichmentat Quellavecocould 1619 Neogenetuffsin the immediateminearea.However, anearlyMioceneK-Ar ageof 18.3 Ma hasbeendetermined(Tosdalet al., 1981)for a tuffwhichcapsa 40-m-thicksuccession of tuffsandconglomerates of theUpperMoquegua Formation some20 kmsouthsoutheast ofToquepala. Thistuffislithologically and chronologically similarto the 18.4 +_0.6-Ma ignimbrite in the Quellavecoarea,some15 km northof Toquepala (seeabove).Othertuffsof the Huaylillas FormationnearCuajoneandalsosome50 km to the south near the Peru-Chile border have similar K-Ar agesof 18.6 ___ 0.6 and18.4 ___ 0.5 Ma, respectively (seeabove;Bel16nand Lef&vre,1976). The widespreadoccurrence of tuffsof similaragethroughout theregionrendersit likelythattheToquepala deposit wascoveredby tuffsat thattimein the earlyMiocene. TheToquepala porphyrycopperdepositoriginally croppedoutin a southerly trendingvalley,Quebrada prior to its mantlingby the 18.4-Ma flow. The openvalleyinferredto havesubsequently de- Toquepala,andits shorttributary,QuebradaHuanvelopedat Quellavecowould (Figs.11 and 12) have canani,which were eroded to depthsof ca. 300 m been incisedto within 75 to 100 m of the preserved into an erosion surface with a local mean altitude of enrichmentzone. If hydrologicconditionshad been ca. 3,600 m a.s.1.andwith a gentlesouth-southwestsuitablefor supergene alteration,it ishighlyprobable erly slope(Figs.14 and 15a). As at Cuajoneand thislandscape nearToquepalahadsigthat enrichmentwouldhavetakenplaceat that time, Quellaveco, ocperhapsinvolving upgradingand deepeningof an nificantprimaryreliefbut, fromthe widespread earlier formed blanket.The troughlikeform of the currenceof accordant,in part planatesummits(Fig. to the Altosde Camilaca surenrichedzone may broadly reflect this valley. En- 15a),it maybe assigned richment would again have been interrupted and face(Tosdalet al., 1984). Immediatelyto the southto ca. probablyterminatedby depositionof the thickChun- westof Toquepala,the surfaceslopesteepens have occurred beneath the lower Miocene surface tacalaFormationsuccession, beginningat ca. 13.1 Ma. Our model, therefore, involves two or more superimposedenrichmentphasesresulting,not in the development of verticallyseparateblanketsbut in the thickeningand upgradingof a singlezone (see for example,Locke, 1926; Brimhall et al., 1985; Alpers and Brimhall,1989). The apparentlygreaterdevelopment(and/orpreservation) of enrichedsulfideores at Quellavecothan at Cuajone may be in part the result of a lessintenseregimeof localvalley incision into the Altosde Camilacasurfaceduringthe early Mioceneover the intervalrepresentedby the Huaylillas Formation.Althoughwe infer that enrichment at Quellavecowasmoreprotractedthanat Cuajone-possiblyextendingfrom the later Oligoceneto the middle Miocene--it had similarlyterminatedbefore the closeof the Multiple Pedimentstageprior to 9.5 7o (Fig.15b)beforefallingabruptlyto analtitudeof ca. 2,600 m a.s.1.at the northeasternmarginof the PampaLagunaspediment(Fig. 2). This landform configuration postdates all significant localmovement on the major west-northwest-trending Incapuquio fault (WilsonandGarcia,1962), whichtraverses the lowerprecordilleran slope(BellidoandLanda,1965; Tosdal,1978). A comparably steepinclinationto the Altosde Camilacasurfaceis observedelsewhereonly at the marginof an apparentMiocenecalderasome 30 km southeastof Toquepala.A similar volcanic eventmayhaveoccurrednorthor northeastof the mine, althoughno circular structureis visible on Landsatimagesin thatarea,perhapsdueto burialby youngervolcanics. Prior to mining,QuebradaToquepalapossessed a composite,goblet-shaped profile which, by analogy Ma. Oxidation, but little sulfide enrichment, accom- with othervalleyprofilesin thisregion,suggests that paniedthe more recent stagesin the deepeningof the gentlydippingupperslopesprobablydeveloped the AsanaValley.The majorfaultalongthe valleyhas during the Multiple Pedimentstage,and the more notfocusedsignificant sulfideenrichmentor oxidation steeplyincisedlowerslopesduringthe ensuingValley of the ores. Toquepaladeposit Of the three porphyrycenters,the Toquepaladepositdisplays the mostextensive recordof sulfideenrichment(Richardand Courtright,1958; Anderson, 1982), but paradoxically,this cannotbe precisely constrained in time due to the absence of datable and Terrace stage. Supergenesulfide enrichmentin the Toquepala depositextendsovera muchgreaterverticalinterval thanat Cuajoneor Quellaveco;secondary chalcocite after chalcopyriteand bornite occurred between 3,525 and at least ca. 3,100 m a.s.1.(Richardand Courtright, 1958; Southern Peru Copper Corp., unpub.repts.).Much of the enrichedore hasbeen 1620 CLARK,TOSDAL,FARRAR,AND PLAZOLLES 1982). The mostextensiveenrichmentzone,andthe only one systematically delimitedon the basisof ore grade by mine personnel(Fig. 17), has a broadly planar,but locallyirregular, upper surfacewhich is subhorizontalin east-westprojectionbut whichfalls from an altitude of ca. 3,350 m at the northern limit of the depositto ca. 3,250 m at the southernlimit (a horizontal distanceof ca. 700 m). In contrast,the lower boundaryof the enrichmentzone is very indented, with deep roots resultingin enrichedore thicknesses in excessof 150 m. Althoughlocallysuch downwardextensionsof chalcocitedevelopmentlie beneaththe valleyaxis,in generalthere is no correlationbetweenenrichmentblanketconfiguration and/ or thicknessand the preminevalley form. A local b FIG. 14. Preminephysiography of the Toquepalaminearea. QuebradaToquepalaand its tributariesare incisedinto a south- southwest-dipping planatelandformassignedto the Altos de Camilaca surface. mined,but its originaldistributionmay be defined approximately.Remnantsof zonesaffectedby enrichmentarevisible(Fig.16a)in theopenpit because of the associated supergene argillicalteration,which givesriseto a pale,bluish-graycolorationon broken rock surfaces and,in the upperlevels,throughthe FIG. 15. Landformsin the Toquepalamine area. a. View to the northeastfrom Cerro Toquepala,acrossthe easternhalf of the Toquepalaopen pit (June1982). In the distance,Cerro Condoriquifiastandsabovethe southwest-sloping, planate,rock-cut, landform--the Altosde Camilacasurface.Upper coursesof the QuebradasToquepala(center)and Huacanani(right) incisethe pediplain.b. View to the east-southeast from BarrioAzul (5 km southwestof the Toquepalaopen pit), along the southwestern margin of the precoralii!era.The southwest-dipping landform representsa tilted andstronglydissectedremnantof the Altosde Camilacasurface,developedhere in the Upper CretaceousToquepalaGroupvolcanics andPaleocenegranitoidintrusions. The developmentof reddish-brownhematite,an oxidation flat-toppedmesarisingabovethe surfacein the middlegroundis productof chalcocite-pyrite associations (Anderson, a remnantof the Huayli!!asFormation(Be!!idoandLanda,1969). CUA]OHE,QUELLA VECO,AND TOQUEPALA DEPOSITS, SEPERU 1621 a 3400 SECTION 34 32O0 3 FIG. 17. Schematicwest to east crosssectionsthrough the lower main enrichmentblanket of the Toquepalamine, showing itsrelationsto the premineconfiguration of QuebradaToquepala. The sectionstraversethe southern(J), central (P), and northern (U) parts of the deposit.The central break in the enrichmentin the northernpart of the depositdelimitsthe postoreandessentially barren daciteagglomeratebrecciapipe. The enrichmentblanket shownis asdelimited by premine drilling on the basisof copper grades(+0.45%: after unpub.data,SouthernPeru CopperCorp.). controlof the depth of enrichmentby postorefaults is apparentin someparts of the deposit.This does not, however,explainwhy the mainenrichmentzone wasboth thicker (Fig. 17) and of higher meangrade in the western quadrantof the depositthan in the easternpart in manyeast-westsections.In the absence of evidencefor major north-strikingfaults through the deposit,this asymmetricaldistributionof enrichment maybe inferredto reflect primary-gradevariations,or the preservationof thick impermeablerhyolites(SerieAlta) of the premineralization Toquepala Group over the easternpart of the orebody(Richard and Courtright, 1958), which could have inhibited copperleachingandenrichment. At the northern and southernlimits of the open pit, the main enrichmentzonewaslocallyseparated from the lower slopesof QuebradaToquepalaby less FIG. 16. Distribution of enriched zones on west and northwest than 20 m (Fig. 17), andits formationthereforecerwallsof the Toquepalaopenpit. a. Stronglyforeshortened view tainly predatedat leastthe later stagesof valley inlookingwestfromthe 3,145-mlevel (June1975). Dark (in part shadowed)benchesin foregroundare in transitionalore, with cision.The overallsoutherlydip (ca. 8o-9 ø) of its erraticdistributionof powdery(sooty)chalcociteon hypogene assemblages. In higherlevels,the sulfide-enrichedzonesare whitish,due to the developmentof supergenekaolinRe,andthe oxidizedandleachedzonesare darker.The lower (main)enriched zone immediatelyoverliesthe transitionalore and is essentially continuous aroundthe westwall of the pit. The overlyingolder enrichedzonesare lessregularin form.Selectedbenchelevations strQnglyoxidized,extendsto the marginof the pit andto within 50 m of the dissectedAltosde Camilacasurface,here partially mantiedby dumps.The lower three visiblebenchesare mainly in transitionalore. Selectedbenchelevationsare shown.c. Oblique view of the westwall of the openpit, lookingsouthwestfrom the areshown(m.a.s.1.). b. Northwest quadrant oftheopenpit (August 3,280-mbench(June1982),ComparewithFigure17a--enriched 1975), showing(areasdelimitedby white lines)the main lower ores(pale)are nowexposedquasicontinuously fromthe shallowest enrichedzone and the irregular,discontinuous, distributionof levels (top-right) to the upper boundaryof the hypogeneore theupperenrichedzones(viewisessentially contiguous withthat (lower 4-5 benches).The oxidizedzone on the upper benches in 17a).The highestdevelopment of chalcocite (attop-right),now correspondsto dark areas.Bottom level at 3,085 m a.s.i. 1622 CLARK,TOSDAL,FARRAR,AND PLAZOLLES upper surface,broadlyparallelingthat of the upper precordilleranslopein the southernpart of the mine area(Fig.15b),impliesa controlby a subplanar southdippingtopography.Whereasthe upper and central parts of this enrichmentzone were dominatedby cocite zone to the Altos de Camilaca surface indicates that enrichmentbeganprior to the final stagesin the development of that landform, i.e., in the earliest Mioceneor before.Althoughno tuffscropout in the mine area,the widespreadpreservationof ca. 18-Ma massivecoherent chalcocite,its lower sectionand lat- ash-flowtuffsthroughoutthe regionrendersit proberal peripheriesdisplayextensivedevelopmentof able that the depositwas then buried, resultingin sootysupergenesulfides,givingrise to transitional interruptionof the supergeneprocess.Moreover,an ore, as at Cuajone.The lowermostenrichedoresare earlier episodeof coveringby tuff maybe recorded mineralogically similarto thoseat Cuajone,compris- by the occurrenceof a 23.3 ___ 0.8-Ma tuff (Tosdalet ing blackto midnight-bluepowderycoatingsof djur- al., 1981) in the MoqueguaFormationsome25 km to the westof, andbroadlydownslopefrom,Toqueleite,roxbyite,andanilite(Clark,in prep.). The originallarge-scaledistributionof chalcocite- pala.It cannotbe confirmedwhetheranytuffsof the emplaced bearingoresin the shallower levelsof the openpit is ChuntacalaFormationwere subsequently now difficultto reconstruct,largelybecauseroutine in the area. mineralogicobservations have not been carried out The higher altitude early enrichment,at least in duringmining,while, to the authors'knowledge,no part, clearlypredatedthe initialincisionof Quebrada suchstudies weremadein theinitialdrillingprogram. Toquepala.Indeed, the subplanarupper surfaceof It is evidentthat suchhigheraltitudeandpresumably the lower (main)supergenesulfidezone,anditsclose olderenrichmentwasalsofocusedin the western(or approachto the preminevalleybottom,impliesthat northwestern)quadrantof the deposit.Anderson it was similarlygenerated,largely or entirely, prior (1982,fig.12.15)identified suchasinglezonedipping to local valley development.However, the available fairly steeplyto the south.However,observationof datado not permit usreliably to assignan ageto the thedistribution ofrelictchalcocite andsupergene ka- importantuplift episodewhichwe infer immediately olinite on the western and northwestern benches of precededthe mainenrichmentperiod.Three possible the pit hasrevealedextremelyirregularandvarying modelsmayexplainthe interrelationsof enrichment patternsasthe pit wallswere displacedto the west andlandformdevelopmentat Toquepala.In the first from1975 to 1982. Whereasin 1975 to 1978 (Fig. model, all enrichment would be ascribed to weath16a,b), two, apparentlyseparate,supergene sulfide eringbeneaththe evolvingAltosde Camilacasurface in the late Oligoceneand early Miocene,the supergeneactivitybeingeventuallyterminatedby eruption visible(Fig. 16c) on mostbenchesbetweenthe 3,280- of the 18.3- to 18.4-Ma HuaylillasFormationignimand 3,490-m benchesand were locallyapparently brite. Accordingto thismodel,the majorupliftwhich continuous with the lower main enrichment zone. precededthe main enrichmentwouldbe assignedto However, as pointed out by Anderson(1982), ores the latest stagesin the generationof the surface.In immediatelyoverlyingthe lowerenrichmentzoneare the secondmodel, the early upper chalcocitezones characterized by extensivedevelopmentof jarosite are inferredto haveformedduringthe finalstagesin afterhypogenechalcopyrite. The highestsurviving the developmentof the Altos de Camilacasurface, enrichmentobservedduringthe periodof study,at whereasthe deep zone may have developedin rethe 3,535-m level, lies only 40 to 75 m below the sponseto rapid uplift, tilting, andwater tabledescent accordantsummitsassignedto the Altosde Camilaca causedby localcalderaformation,presumablyin the surfaceadjacentto the northwestmarginof the pit earlyMiocene(at 18.3 Ma ?).Thismodelmustremain hypotheticalin the absenceof evidencefor a caldera (Figs.15a and 16b). We concurwithRichardandCourtright(1958) and to the north of Toquepala.However, becauseashAnderson(1982) thatthe unusuallythickenrichment floweruptionwouldnormallybe intimatelyassociated in theToquepala deposit resulted fromperiodicuplift with crustalflexure in a calderasetting (Smith and andthatthe spatialisolation of thelower(main)zone Bailey,1968), the periodimmediatelyfollowingsuch probablyrecordsan episodeof uplift of a sufficient an event would probablybe unpropitiousfor supermagnitudeto have depressedthe local water table gene activity. The third model would correlatethe belowthelevelpreviously affected bysupergene sul- early enrichmentwith the Altosde Camilacasurface fideformation. Theirregularenrichment zonesabove and the later with the earlier part of the Multiple ca. 3,330 m mayreflecteither two or moreperiods Pedimentstageandprobablyspecificallywith the inof alteration separated by significant uplifteventsor termediatestagesin the developmentof the Pampa a singleprotractedperiodof enrichmentaccompa- Lagunasapronpediment,for whichthe tilted surface zoneswere evident,centeredat ca. 3,330- and 3,440m elevations, in 1982 remnants of chalcocite were nyinga relativelyslowdepression of the watertable. As notedpreviously,no firm temporalconstraints maybe placedon the supergene sulfideenrichment at Toquepala. The proximityof the uppermost chal- southof the mineconstitutes the originalbackscarp. The lower main enrichment would thus have devel- opedfollowingerosionof the 18,3 ___ 0.6-Ma ignimbrite and probably at ca. 13 Ma (see Tosdalet al., CUAJONE, QUELLAVECO,AND TOQUEPALA DEPOSITS, SEPERU 1623 the early Miocene;and(2) the localfrequencyofemplacementandpersistenceof Miocenetuffs.Bothparameterswere themselvesstronglyinfluencedby the local regime of fluvial channeldevelopment. In passingfrom Cuajone to Toquepala,there was evidently a progressivediminution in the intensity (i.e., extent and frequencyand/orrapidity) of valley developmentacrossthe evolvingsubplanarprecorcene. dilleran landscapeduring the earliestMiocene and a Whereas we consider it clear that enrichment of concomitantdecreasein blanketingby tuff flows.At the Toquepaladeposithadbegunpriorto the Multiple Cuajone,we infer that the supergenesulfideenrichPedimentstage,very probablyin the latestOligocene mentblanketis largelyrelict fromthe late Oligocene 1984, fig. 5). In this model,the considerableextent of the lower chalcocitezone would reflect (1) the stronguplift andresultingdownwarddisplacement of the water table which characterizedthe Multiple Pedimentstage(Tosdalet al., 1984); (2) the absence, or rapid removalby erosion,of the ChuntacalaFormationin the immediatearea;and(3) the lack of deep incisionof QuebradaToquepalauntil the later Mio- to earliest Miocene, we cannot decide between the and was formed in association with the evolution of abovemodelsfor the age of the later, more intense enrichmentstage.Nevertheless,we prefer the third modelin whichchalcocitedevelopment persisted into the middle Miocene (ca. 11-18 Ma; see above). the subduedlandscapeancestralto the Altosde Camilaca surface. At that time, gradual erosion and depression of the water tablepermittedthe progressivedownwardextensionof chalcocitedevelopment Synthesis enriched horizons. Since then, the local conditions The abovediscussion of the Tertiary geomorphologic contextof supergeneprocesses in the area surroundingthe Cuajone,Quellaveco,and Toquepala mines demonstratesboth the potential of this approachin the elucidationof the controlson the economicallycritical enrichmentand the uncertainties inherent in the unravelingof complexcordilleran landformdevelopment. The ore deposits were emplaced in the early Eocene(Clark et al., 1990) at shallowdepths(equivalent to confiningpressuresof ca. 100-150 bars; Zweng, 1984) but, given the considerablethickness of subaerialvolcanicstrataconstitutingthe Toquepala Group, at a significantelevation(>2,000 m a.s.1.). Followingtheir unroofingin the Eoceneand Oligocene during a prolongedperiod of comparativetectonic quiescence,all three porphyry centersexperienceda historyof episodicuplift andmantlingby tuffs during the initial stagesin the developmentof the present-dayCordillerraOccidentalat thislatitude.It is evident that supergeneactivity was most intense duringconversionof a regionallyextensiveerosional surfaceof low altitudeandrelief into the faceted,polyphase,and mountainouslandscapeof the present precordillera. Despite the lacunae in our knowledge of local Neogene geologicevents, a comparisonof the enrichmenthistoriesof thesethree depositsprovidesa basisfor an understandingof the factorswhich influence supergeneprocesses.In particular, the progressiveincreasein the extent of chalcocitemineralization,fromthe modestblanketat Cuajonethrough the thickerenrichedzone at Quellavecoto the multiple blanketsat Toquepala,can be linked with differencesin erosionalhistoryandthe extent of burial beneathNeogenepyroclasticrocks.It is apparentthat the criticalparametersaffectingthe formationand/ or preservationof enrichmentzonesin thesedeposits were (1) the locationandrate of valleyincisionduring havebeenlargelyunfavorablefor supergeneactivity, due almostentirely to the presenceof extensivetuffs on top of the deposit.Valley incisionacrossthe tuffs and subjacentorebodyand potentiallyfavorablewater table lowering were of insufficientdurationfor anysignificantenrichment,becausethe valleyswere quicklyfilledby successive tuffsandotherpyroclastic rocks of the Huaylillas and ChuntacalaFormations. It is clear in any casethat all significantsupergene activitypredatedconsolidation of the basal(13.1-Ma) ashflowof the ChuntacalaFormation.Thus,the major episodicuplift associated with the MultiplePediment stage failed to generate important enrichment at Cuajone,althoughit is possiblethat somedevelopment of the sootychalcociteof the transitionalores may have persistedinto this period. Only minor oxidationmaybe assigned to the later Mioceneandsub- and the encroachment of the leached zone over earlier sequentinterval. The 80-m-thick enrichmentblanket in the Quellavecodepositformedprior to the 9.5 ___ 0.5-Ma tuff of the ChuntacalaFormationwhich directly overlies oxidized chalcociteores. The markedly troughlike form of the enrichedzonesuggests that it developed, at least in part, beneath an extensiveopen valley which we infer to have been in existence in the mid- Miocene, between 18.4 and 13.1 Ma. However, we stronglyfavora modelin whichsuchenrichmentduring the Multiple Pedimentstagewas superimposed upon an earlier supergeneprofile which wasgenerated beneath the Altos de Camilaca surface in the earliestMioceneor latestOligocene,probablycoeval with the enrichment at Cuajone. Thus, despitethe complexsuccession of Mioceneerosionalandvolcanic eventsrepresentedin the Quellavecodistrict,the episodesof valleyincisionwere, in aggregate,favorable for the deepeningof the main chalcocitezone, and the blanketingby the HuaylillasandChuntacalaFormationtuffs was insufficientlyprotractedto impede seriouslythe supergeneactivity. 1624 CLARK, TOSDAL,FARRAR,AND PLAZOLLES In our opinion,the considerable verticalextentand apparentlypolystagenatureof the Toquepalaenrichment is a direct reflectionof the ephemeralnatureof Miocene ignimbritecover in the mine area and of unusuallystronguplift and tilting, probably in the mid-Miocene.The dispositionof the highestaltitude residual chalcocitezones showsclearly that they formed beneath the Altos de Camilaca surface or its late Oligoceneantecedents.A brief interruptionof supergeneactivityat ca. 18.3 Ma probablyoccurred in responseto burialbeneathtuffs.The deepestmain enrichmentzonewasgeneratedfollowinga significant episodeof uplift and oceanwardtilting of the precordillerain the Toquepalatransect.Thiseventcannot be dated,but we favor an origin duringthe earlier part of the Multiple Pediment stage,i.e., at ca. 13 Ma, rather than prior to the probableemplacement of the 18.3-Ma flow. Thus, developmentof massive chalcociteores may have persistedsomewhatlater thanat Quellavecoandit isimplicitthatnosignificant burial by the ChuntacalaFormationignimbritestook place. It is evident that both physiographicand climatic conditionswere broadlyfavorablefor supergeneactivityin the late Oligoceneto middleMioceneinterval in southernPeru.Economicallyimportantenrichment certainlyoccurredin the early Miocene (ca. 23-18 Ma) but had ceasedby the earliestlate Miocene.The correspondence between the uppermostpreserved zonesof supergenechalcociteandthe Altosde Camilacasurfacestronglyimpliesthat enrichmentbegan as early as approximately25 to 30 Ma, probably shortlyfollowingexhumationof the deposits.Subsequently,whereasclimaticconditionsfavorablefor enrichment clearly persisted into, and perhaps throughout,the middleMioceneMultiple Pediment stage,the extentof new enrichmentandpreservation of extant supergenezoneswas entirely dependent upon the local configurationof valley development and the presenceor absenceof Miocene tuffs over the deposits.Thus, the aggressivedevelopmentof cordilleranreliefin the Miocenecausedtheupgrading of an earlierformedchalcociteblanketat Quellaveco and generatednew enrichmentzonesat Toquepala, but led to oxidationanderosionof supergeneprofiles at Cuajone. RegionalCorrelations Supergene enrichment has upgraded numerous smallcoppervein systems exposedon the Pacificslope of the Cordillera Occidental elsewhere in southern- most Peru. The Norviii mine, 13 km southeastof To- quepala(V•trgas,1975), workedoresin which chalcocite,after chalcopyrite,hadbeen oxidizedto malachiteandchrysocolla(Clark, unpub.data).The depositcropsout on the southwesterly tilted segment of the Altosde Camilacasurface(seeFig. 15b), and the supergene enrichmentwaspresumably relatedto an earlystagein the developmentof that landform. In the smallLluta (Cercana)Cu(-Ag, Pb) district (V•trgas,1975), situated120 km southof Toquepala, veins were exploited in which massivesupergene chalcocitewas extensivelyconvertedto malachite. The enrichedveinscrop out on a rock-cutbenchof the QuebradaLluta. This bench is interpreted as a restrictedterracepediment,anditselevationstrongly suggeststhat it is equivalentin age to the Multiple Pedimentstageof the Toquepala-Cuajone area.Thus, enrichmenthere is at least middle Miocenein age andmay havebegundevelopmentin the early Miocene. Elsewhere in southern Peru, 110 km west-north- west of Cuajone,the large Cerro Verde-SantaRosa porphyry copper center (16ø32' S), broadly coeval with the depositsunder discussion(Estrada,1975), displays anextensive supergene profile(Kihien,1975; Mineroper6,unpub.data).Miningoperationsby Mineroper• in the Cerro Verde sectorhavebeenbased on high-gradeoxidizedores,dominatedby brochantite, which overlie a zoneof sulfideenrichmentup to 300 m in thickness,attaininga depthof 465 m below the 2,903-m-a.s.1. summit of Cerro Verde. In the ad- jacent SantaRosasector,1.5 km to the southeast,a muchthinner (30-50 m), but laterallyextensive,subhorizontal enrichment zone lies ca. 50 m beneath an interconnected series of small intermontane basins. The surroundingsummitsare accordantand,in many cases,areflattopped.They aretentativelyinterpreted as the remnants of the landform which controlled the enrichmentprocess,the "Caldera surface"of ]enks (1948). Both the accordantsummitsand the intermontanebasinsareconsideredto representpediments thatareasyet undated.However,onthebasisof longdistance correlationsof landforms, we tentatively suggest that the oldersummitsurfaceis equivalentin age to the Altos de Camilacasurface,whereasthe basinfloors,representingthe upperextensions of the very extensivealluviatedpediplainwhichconstitutes the PampasCostaneras(Pampade La ]oya) ca. 15 to 20 km southwest of the minearea,areprobablycoeval with the Multiple Pediment stage.If this model is correct, the enrichment of the Cerro Verde-Santa Rosadepositwould be inferred to be, at leastin its earlier stages,of late Oligoceneor earliestMiocene age. The great depthsattainedby the enrichment processbeneath Cerro Verde itself may reflect the permeabilityof the brecciabodieswhich host the mineralization in this area and may record a protractedhistoryof supergeneactivityextendinginto the Multiple Pedimentstage. The age and physiographicsettingof supergene enrichmentin northernChile are remarkablysimilar to thoseestablished in southernPeru. Supergeneenrichment of the Chuquicamataporphyry systemin CUAJONE,QUELLAVECO,AND TOQUEPALADEPOSITS,SEPERU 1625 northern Chile (Fig. 1) occurredin the interval 16.5 mentsandopenvalleys.That both supergeneactivity terminatedin this to 26 Ma (Mortimeret al., 1977)beneatha regionally andpedimentationhaveessentially developedplanatelandscape broadlycorrelativewith regionhaslongbeen ascribedto the onsetin the later the Altos de Camilaca surface. To the south, the Mioceneof anaridandevenhyperaridclimaticregime youngerof the two enrichmentepisodesrecognized (e.g., Mortimer, 1969; Mortimer and Sari•, 1975; in the Copiap6 district (e.g., Sillitoe et al., 1968; Mortimer et al., 1977), itself a productof the northMortimer, 1973), thoughnot preciselydelimited,had ward propagationof a coldlittoral current.Thisaspect terminatedprior to the developmentof the Atacama of the later historyof the Andeshasbeen analyzed pediplain,before 12.9 Ma (Clark et al., 1967a; Sillitoe in detailby AlpersandBrimhall(1988), who identify et al., 1968). Thisepisodefolloweda lateEocene(39- the essential causative factors to be the establishment to 43-Ma) episodeof copper mineralization(Farrar et al., 1970; Clark et al., 1976). A late Oligoceneand early Miocene age for enrichment in that area of northernChile maythereforebe inferred. The attendant regional erosionallandform, the Sierra Checo of the circum-Antarcticcurrent and the subsequent formation of the Antarctic ice cap at 13 to 15 Ma. They alsoemphasizethe key importanceof the cli- del Cobre surface(Mortimer, 1973), thusprobably zones in what is now the Atacama Desert. In this con- matic desiccation and resultant decrease in erosion ratesin the preservationof earlier formed supergene formed at the same time as the Altos de Camilaca text, it shouldbe emphasizedthat economicallysigsurfacein the studyarea.Finally,AlpersandBrimhall nificantenrichmenthasalsoaffectedthe very young (1988) report early and middleMioceneK-Ar ages Rio Blanco-Disputada (_•7.4 Ma; Warnaarset al., for supergene alunitewithinthe unusually extensive 1985) andE1Teniente(HowellandMolloy,1960; and high-grade chalcocite blanket and associated _•4.7Ma; Clarket al., 1983) depositsof centralChile, leachedcappingoftheLaEscondida porphyrydeposit whichhaveexperienced a pluvialcold-temperate, or (Fig. 1). evenperiglacial,climatethroughoutmuchof their It is thereforeapparentthat the late Oligoceneto brief exposurehistory. early Miocene interval proved favorablefor intense Althoughthere is someevidencethat major ensupergeneupgradingof copperdepositsalonga ca. richmentmayhavelocallypersistedto a slightlylater 2,000-kmstretchof the Pacificslopeof the evolving period in southernPeru than in northern Chile, the CordilleraOccidental(-Principal),fromsouthernPeru availableage constraintsare insufficientto define a to north-central Chile. The essential simultaneous significant northerlychangein the time of enrichment enrichmentdefinesa discretemetallogenicepisode, cessation.Instead,in comparingthe two broadtranor perhapstwo closelyspacedepisodes,of great im- sects,we would emphasizethe greater extent, both portance, directly correlatedwith major pulsesof absoluteandrelative,of the late Oligoceneto middle uplift of the cordillerain the latestOligocene(ca. Mioceneuplift eventsin southernPeru.Thus,whereas 18-25 Ma) andearlymiddleMiocene(ca.12-16 Ma). muchof northernChile hadalreadyachievedconsidIn thiscontext,the ca.37-Ma ageof supergenealunite erablealtitudesby theEocene(e.g.,Mortimer,1973), in the E1Salvadordepositrecordedby Gustafsonand southernPeru lay closeto sealevel until the late OliHunt (1975) is anomalous. For thisdepositthe geo- gocene(Tosdalet al., 1984). Thereafter, uplift and morphologyonlyconstrains enrichmentto havepre- crustalthickeningwere far more abrupt in this area datedthe local formationof the Atacamapediplain, thanfartherto the south.This wouldfavordeep enprior to 12.9 Ma. Lackingany evidenceto the con- richmentof the ore deposits.However, the region trary, we canonlyconcludethat climaticandlandform surrounding the Cuajone,Quellaveco,andToquepala conditionsat E1Salvadorwere suitablefor majoren- porphyry centersexperiencedmore intensevolcanic richmentin the earlyOligocene,althoughno regional activityduringthe late OligoceneandearlyMiocene erosionalsurfaceor enrichmentepisodeof this age interval than did geomorphologicallycomparable hasbeenrecognizedin the region(Mortimer,1973). areasin northern Chile. The closelyspacederuption of thicktuffsat thiscriticaljuncturein southernPeru Conclusions musthaveplayeda key role in limiting the extentof Supergene enrichment processesin the central enrichmentin the depositsunder studyand particuAndescontextachievedtheirmaximum development larly in the caseof Cuajone.In contrast,there is no in the late Oligoceneand early to middleMiocene, evidencefor localvolcanism in the areasurrounding stimulated by anoptimalconjunction ofepisodic uplift La Escondida,Chile, during the early and middle oftheCordillera Occidental anda prevailing semiarid Miocene, thus permitting essentiallyuninterrupted climate.The moderateprecipitation(perhapsex- developmentof an enrichmentblanket both considceeding10 cm/annum)inferredfor this periodnot erably thicker and of higher grade than thosepreonlypermittedsignificantcirculationof meteoricwa- servedin southernPeru. Volcanismof late Oligocene ter throughthe upper partsof the exposedore de- and early Miocene age (ca. 25-15 Ma) affectedwide positsbut favoredthe formationof subplanarpedi- areasof northernChile, extendingfromthe Peruvian 16 2 6 CLARK,TOSDAL,FARRAR,AND PLAZOLLES borderto at leastlatitude26ø S (e.g.,Zentilli, 1974; Andersondisplayedconsiderable patiencein the typCoiraet al., 1982). However,the scatteredgeochro- ing of the penultimateandfinalmanuscripts. nologicdata suggestthat major mid-Tertiarytuffs Revisionof the manuscript wasconsiderably aided were erupted lessfrequentlysouthof ca. 21ø S in by the detailed,sympathetic, andconstructive reviews northern and north-central Chile where the Paleocene of two Economic Geologyreviewers. to mid-Oligoceneporphyrycopperdepositsoccur, This paper is a contributionto the Queen'sUnithan in northernmost Chile and southernmost Peru versity Central Andean Metallogenetic Project (Mortimer et al., 1974; Tosdalet al., 1981; Lahsen, (CAMP). REFERENCES 1982).In particular,ignimbrites of thisageareprobablylessextensivelydevelopedon the lower altitude Alpers, C. N., and Brimhall, G. H., 1988, Middle Miocene climatic changein the AtacamaDesert, northern Chile: Evidence from slopesof the cordillera.The lack of significantensupergene mineralization at La Escondida:Geol. Soc. America richment in some porphyry depositsin northern Bull., v. 100, p. 1640-1656. Chile, e.g., at E1Abra (lat 21ø55'S), thusmustreflect -1989, Paleohydrologic evolutionandgeochemical dynamics the pyrite-poornatureof the outcroppingores(Amof cumulativesupergenemetal enrichmentat La Escondida, rus, 1977) rather thanunfavorablephysiography or AtacamaDesert, northernChile: ECON.GEOL.,v. 84, p. 229254. burial beneathupper Oligoceneand lower Miocene Alpers, C. N., Brimhall, G. H., Cunningham,A. B., and Burns, ash flows. P. J., 1984, Massbalanceandtimingofsupergeneenrichment In conclusion, we proposethat the approachfolat La Escondida,Antofagastaprovince,Chile labs.I:Geol. Soc. lowedin the presentstudy,involvingthe clarification AmericaAbstractswith Programs,v. 16, p. 428. of the geomorphologic evolutionof mineralizeddis- Ambrus,J., 1977, Geologyof the E1Abra porphyrycopperdetricts, holdsconsiderablepromisein the prediction posit, Chile: ECON.GEOL.,v. 72, p. 1062-1085. of the extentof supergeneenrichmentin cordilleran Anderson,J. A., 1982, Characteristicsof leachedcappingand techniquesof appraisal,in Titley, S. R., ed., Advancesin the environments,as was early envisagedby those pigeologyof porphyrycopperdeposits, southwest NorthAmerica: oneersof modernAndeanlandformstudy,Kenneth Tucson, Univ. Arizona Press,p. 245-287. Segerstromand StanleyHollingworth. Acknowledgments Thisprojectwasundertakenwith the full logistical cooperation of the SouthernPeruCopperCorporation (SPCC),who alsogavepermissionfor the publication of this paper. Our studieswere initiatedthroughthe goodofficesand encouragementof the late Frank W. Archibald, former SPCC president. Field studies benefitedgreatlyfrom the supportof G. ChuckPreble, then general managerof the SPCC Toquepala area operations,and from the adviceand unstinting assistance of chief geologistFrank B. Stevenson,and of chiefmine geologists JorgeManrique(Toquepala) andNobertoSocolitchandPaulSatchwell(Cuajone). Studiesin the Quellaveco area were carried out in part throughthe kind cooperationof Tom•sGuerrero, then project head for Mineroper6, Alfredo Kihien, and GermanG•rate. We greatlyappreciatedthe opportunityto read a preprint of the paperby Charles AlpersandGeorgeBrimhallon the enrichmentof the La Escondidadeposit.The seniorauthorprofitedimmeasurably from the insightsandhardwork of Cedric Mortimer, Richard Sillitoe, and Ronald Cooke at an earlier stagein the landformdevelopmentof the central Andes. Field studiesand laboratoryresearchat Queen's Universitywere fundedby operatinggrantsfromthe NaturalSciencesandEngineeringResearchCouncil of Canada to A.H.C. and E.F. The illustrations were Bar6a,V., 1961, Reconocimiento geo16gico--zonade Tacnay Moquegua: Cong. Nac. Geologia Soc. Geol. Per6, 2nd, Anales pt. 1, v. 36, p. 35-59. Beckinsale, R. D., S•nchez-Fernandez, A. W., Brook,M., Cobbing, E. J., Taylor, W. P., and Moore, N. D., 1985, Rb-Sr whole-rock isochronand K-Ar agedeterminationsfor the Coastalbatholith of Peru, in Pitcher,W. S., Atherton,M.P., Cobbing,E. J., and Beckinsale, R. D., eds.,Magmatismat a plateedge:The Peruvian Andes:Glasgow,Blackie, p. 177-202. Bellido, E., 1979, Geolog[adel cuadr•ngulode Moquegua(hoja: 35-u): Lima, Per6, Inst. Geol. Minero Metal., 78 p. Bellido,E., andLanda,C., 1965, Mapageo16gico del cuadr•ngulo de Moquegua(1:100,000): Lima, Per6, Comm.Carta Geol. Nac. Bel16n,M., andLef•vre, C., 1976, Donn•esg•ochronom•triques surle volcanismeandindansle suddu P•rou: Acad.Sci. [Paris] ComptesRendus,v. 283, p. 1-4. Berggren,W. A., Kent, D. W., Flynn, N. J., andVan Couvering, J. A., 1985, Cenozoicgeochronology: Geol. Soc.AmericaBull., v. 96, p. 1407-1418. Brimhall, G. H, Alpers, C. N., and Cunningham,A. C., 1985, Analysisofsupergeneore-formingprocesses andground-water solutetransportusingmassbalanceprinciples:ECON.GEOL., v. 80, p. 1227. Clark, A. H., 1972, A naturaloccurrenceof hexagonalCul.83S, El Teniente,Chile:Nature:Phys.Sci.,v. 238, no. 86, p. 123124. Clark, A. H., and Sillitoe,R. H., 1971, Supergeneanilite from mina Estrella (Salado),Atacama,Chile: NeuesJahrb.Mineralogie Monatsh., 1971, no. 11, p. 515-523. Clark, A. H., Cooke, R. U., Mortimer, C., and Sillitoe, R. H., 1967a, Relationships betweensupergenemineralalterationand geomorphology,southernAtacamaDesert, Chile--an interim report: Inst. Mining Metallurgy Trans., v. 76, sec.B, p. B89B96. Clark, A. H., Mayer, A. E. S., Mortimer, C., Sillitoe,R. H., Cooke, R. U., and Snelling,N.J., 1967b, Implicationsof the isotopic agesof ignimbrite flows,southernAtacamaDesert, Chile: Nature, v. 215, p. 723-724. preparedby TrentHutchinson, ElaRusak,andPirjetta Clark, A. H., Farrar, E., Caelles,J. C., Haynes,S. J., Lortie, R. B., McBride, S. L., Quirt, G. S., Robertson, R. C. R., and Atva. SheilaMcPherson,Larke Zarichny,andLinda CUAJONE, QUELLA VECO, ANDTOQUEPALA DEPOSITS, SEPERU volcanism relationships in twoAndranbasinsof southern Peru: Zentilli,M., 1976, Longitudinalvariationsin the metallogenetic evolutionof the centralAndes:A progressreport:Geol. Assoc. Canada Spec. Paper 14, p. 23-56. Clark, A. H., Farrar, E., Camus,F., and Quirt, G. S., 1983, K-Ar 1627 Geol. Rundschau,v. 79, p. 111-120. McBride,S.L., 1977,A K-ArStudyof theCordilleraReal,Bolivia, anditsregionalsetting:Unpub.Ph.D.thesis,Kingston, Queen's Univ., 230 p. agedatafor the El Tenienteporphyrycopperdeposit,central Meigs,P., 1953,Worlddistribution of aridandsemi-arid homoChile: ECON.GEOL.,v. 78, p. 1003-1006. climates,in Reviewsof researchon arid zonehydrology:Paris, Clark, A. H., Farrar, E., Kontak, D. J., Langridge, R. J., Arenas, M. J.,France,L. J.,McBride,S. L., Woodman,P. L., Wasteneys, UNESCO, Arid Zone Programme,v. 1, p. 203-210. evolutionof the H. A., Sandeman,H. A., and Archibald, D. A., 1990, Geologic Mortimer, C., 1969, The geomorphological andgeochronologic constraints onthe metallogenetic evolution southernAtacamaDesert, Chile: Unpub. Ph.D. thesis,Univ. London, 283 p. of the Andes of southeasternPeru: ECON.GEOL.,v. 85, p. 15201583. Coira, B., Davidson,J., Mpodozis,C., andRamos,V., 1982, Tectonicandmagmaticevolutionof the Andesof northernArgentina and Chile: Earth-Sci.Rev., v. 18, p. 302-332. Cooke,R. U., andWarren, A., 1973, Geomorphology in deserts: Berkeley,Univ. CaliforniaPress,393 p. di Castri, E., and Hajek, E. R., 1976, Bioclimatoglade Chile: Santiago,Chile, Univ. Cat61ica,128 p. Emmons,W. H., 1917, The enrichment of ore deposits:U.S. Geol. SurveyBull. 625, 530 p. Estrada,F., 1974, Geologicalcross-sections (1:4000) through Quellavecodeposit:Lima,Per6, Minero-Per6,unpub.rept. -1975, Geologlade Quellaveco:Soc.Geol. Per6 Bol., v. 46, p. 65-86. -- 1973, The Cenozoichistoryof the southernAtacamaDesert, Chile: Geol. Soc.Jour.London,v. 129, p. 505-526. Mortimer,C., andSari•,N., 1975, Cenozoicstudiesin northernmost Chile: Geol. Rundschau,v. 64, p. 395-420. Mortimer, C., Farrar, E., and Saric,N., 1974, K-Ar agesfrom Tertiarylavasofthenorthernmost ChileanAndes: Geol.Rundschau,v. 63, p. 484-489. Mortimer, C., Munchmeyer,F. C., andUrqueta,D. I., 1977, Em- placement of theEx6ticaorebody, Chile:Inst.MiningMetair lurgy Trans.,v. 86, sec.B, p. B121-B127. Mumme, W. G.,Sparrow, G.J.,andWalker,G.S.,1988,Roxbyite, a newcoppersulphide mineralfromtheOlympicDamdeposit, RoxbyDowns,SouthAustralia: Mineralog.Mag.,v. 52, p. 323336. Farrar,E., Clark,A. H., Haynes,S. J., Quirt, G. S., Conn,H., and Zentilli, M., 1970, K-Ar evidence for the post-Paleozoicmigrationof graniteintrusionfociin the Andesof northernChile: Ojeda,J.M., 1986,Escondida porphyry copperdeposit, II Regi6n, Chile:Exploration drillingandcurrentgeological interpretation: MiningLatinAmerica/Minerla Latinoamericana Conf.,Santiago, Earth Planet. Sci. Letters, v. 9, p. 17-28. Guerrero, T., and Candiotti, H., 1979, Ocurrenclade monzonita Richard,K., andCourtright,H. W., 1958,GeologyofToquepala, porfir•ticay zonamientoalteraci6n-mineralizaci6n en el stock de granodiorita-Quellaveco--yacimiento de cobreQuellaveco: Soc.Geol. Per6 Bol., v. 63, p. 69-79. Guilbert, J. M., and Park, C. F., Jr., 1986, The geologyof ore deposits:New York, W. H. FreemanandCo., 985 p. Gustarson,L. B., and Hunt, J.P., 1975, The porphyry copper depositat El Salvador,Chile: ECON.GEOL.,v. 70, p. 857-912. Hollingworth,S. E., 1964, Dating the uplift of the Andesof northernChile: Nature, v. 201, p. 17-20. Hollister,V. F., 1974, Regionalcharacteristics of porphyrycopper depositsof SouthAmerica:Soc.MiningEngineersAIME Trans., v. 255, p. 45-53. Horlick, J. M., Cooper,W. C., and Clark, A. H., 1981, Aspects of the mineralogyand hydrometallurgyof chrysocolla,with specialreferenceto the Cuajone, Peru, ores:Internat. Jour. Mineral Processing,v. 8, p. 49-59. Howell, F. M., and Molloy, J. S., 1960, Geologyof the Braden orebody,Chile, SouthAmerica:ECON.GEOL.,v. 55, p. 863905. Instituto Nacional de Planificaci6n,1965, Projecto de Irigaci6n Chile, Nov. 17-19, 1986, Proc., p. 299-318. Peru: Mining Eng., v. 10, p. 262-266. Satchwell,P. C., 1983, Geologlade la minaCuajone:Soc.Geol. Per6 Bol., v. 72, p. 127-146. Segerstrom, K., 1963,Matureland of northernChileanditsrelationshipto ore deposits: Geol.Soc.AmericaBull.,v. 74, p. 513-518. Sillitoe,R. H., 1969, Studiesof the controlsand mineralogyof the supergene alterationof copperdeposits, northernChile: Unpub.Ph.D. thesis,Univ. London,498 p. Sillitoe,R. H., and Clark, A. H., 1969, Copper-and copper-iron sulfidesasthe initialproductsofsupergeneoxidation,Copiap6 miningdistrict,northernChile: Am. Mineralogist,v. 54, p. 1684-1710. Sillitoe,R. H., Mortimer,C., andClark,A. H., 1968, A chronology of landformevolutionandsupergene mineralalteration,southern AtacamaDesert, Chile: Inst. Mining MetallurgyTrans.,v. 77, sec. B, p. B166-B169. Smith,R. L., andBailey,R. A., 1968, Resurgentcauldrons: Geol. Soc. America Mem. 116, p. 613-662. Steiger,R. H., and J•iger,E., 1977, Subcommission on geochroen Moquegua:Lima,RepfblicaPer6, Inst.Nac. Planificaci6n, nology:Conventionon the useof decayconstants in geo-and 110p. cosmochronology:Earth Planet. Sci. Letters, v. 36, p. 359Jenks,W. F., 1948, Geologlade la Hoja de Arequipa:Inst. Geo362. logicoPer6 BoI., v. 9. Stevenson, F. B., 1972, Summaryreport:Geologyand mineralKihien, A., 1975, Alteraci6n y su relaci6n con la mineralizaci6n ization, Cuajoneporphyry copper deposit,Moquegua,Peru: en el p6rfido de cobrede Cerro Verde: Soc.Geol. Per6 BoI., Cuajone,Peru,SouthernPeruCopperCorp.,unpub.int. rept., v. 46, p. 103-126. Lacy,W. C., 1958, Porphyrycopperdeposit,Cuajone,Peru:Am. Inst. MiningMetall. PetroleumEngineersTrans.,v. 11, p. 104107. Lahsen,A., 1982, Upper Cenozoicvolcanismand tectonismin the Andes of northern Chile: Earth-Sci. Rev., v. 18, p. 285302. 56 p. Torpoco,C., 1979,Petrografla, alteraciones y mineralizaci6n del yacimientode Quellaveco--Moquegua: Soc.Geol.Per6 BoI., v. 63, p. 117-134. Tosdal,R. M., 1978, The timing of the geomorphicandtectonic evolutionof the southernmost PeruvianAndes:Unpub. M.Sc. thesis,Kingston, Queen's Univ., 136 p. Locke, A., 1926, Leachedoutcropsas a guide to copper ores: Tosdal,R. M., Farrar, E., and Clark, A. H., 1981, K-Ar geochroBaltimore,Williams Wilkins Co., 166 p. nologyof the late Cenozoicvolcanicrocksof the Cordillera Mabbutt,J.A., 1955, Pedimentlandformsin Little Namaqualand, Occidental, southernmostPeru: Jour. VolcanologyGeotherm. SouthAfrica:GeographicalJour.,v. 121, p. 77-83. Research,v. 10, p. 157-173. Manrique,J., andPlazolles,A., 1975, Geologlade Cuajone:Soc. Tosdal,R. M., Clark, A. H., andFarrar, E., 1984, CenozoicpolyGeol. Per6 Bol., v. 46, p. 137-150. Marocco,R., and Noblet, C., 1990, Sedimentation,tectonismand phaselandscape andtectonicevolutionof the CordilleraOc- 1628 CLARK,TOSDAL,FARRAR, AND PLAZOLLES cidental, southernmostPeru: Geol. Soc. America Bull., v. 95, p. 1318-1332. UNESCO, 1980, Desertification in the regionof Coquimbo,Chile, in Mabbutt, J. A., and Floret, C., eds., Case studieson deser- tiffcation:London,UNESCONat. Resources Ser. 18, p. 52114. Vargas,R., 1975, Geologlaminera del Departamentode Tacna: Soc.Geol. Per6 Bol., v. 46, p. 187-204. Warnaars, F. W., Holmgren, C., and Sergio Barassi,F., 1985, Porphyrycopperandtourmalinebre½cias of LosBronces--Rio Blanco,Chile: ECON.GEOL.,v. 80, p. 1544-1565. Whitehead, W. L., 1919, The veins of Chafiarcillo, Chile: ECON. GEOL., v. 14, p. 1-45. Zentilli, M., 1974, Geologicalevolutionand metallogeneticrelationshipsin the Andes of northern Chile between 26 ø and 29ø south:Unpub. Ph.D. thesis,Kingston,Ontario, Queen's Univ., 446 p. Zimmerman,J.-L., and Kihien, A., 1983, D•termination par la m•thode K/Ar de l'•ge des intrusionset des min•ralisations associ•esdansle porphyrecuprif•re de Quellaveco(sudoeste du P•rou): MineraliumDeposita,v. 18, p. 207-213. Zweng, P. L., 1984, Evolution of the Toquepalaporphyry Cu (-Mo) deposit,Peru:Unpub.M.Sc.thesis,Kingston,Queen's Univ., 131 p. Zweng,P. L., andClark, A. H., 1984, Impact of majortourmaline Wilson, J. J., and Garcia,W., 1962, Geologlade los cuadr•tngulos brecciaformationon the evolutionof the ToquepalaCu-(Mo) de Pachlay Palca (hojas36-v y 36-x): Lima, Peru, Com. Carta porphyry, Peru labs.]:Geol. Soc.America Abstractswith ProGeol. Nac., v. II, no. 4, 82 p. grams, v. 16, p. 706.