a(A,T)+ - IMP-CUSTIPEN workshop on
Transcription
a(A,T)+ - IMP-CUSTIPEN workshop on
Special section on mass measurements 1. Meng Wang, Mass measurements for short-lived nuclei at CSReLanzhou 2. 3. Rui-Jiu Chen, A simulation of the isochronous mass spectrometry Chao-Yi Fu, Improvement of ToF detector and applications in Double ToF experiment 4. Xing Xu, Direct Mass Measurements of Neutron-rich 86Kr Projectile Fragments and the Persistence of Neutron Magic Number N = 32 in Sc Isotopes Yuan-Ming Xing, Mass measurements of 112Sn Fragments at CSReIMP Qi Zeng, Half-life measurement of 94mRu44+ at HIRFL-CSR 5. 6. 7. Xin-Liang Yan, Schottky mass measurements of 152Sm projectile fragments at ESR Mass Measurements for Short-lived Nuclei at CSRe-Lanzhou Meng Wang Institute of Modern Physics, CAS CSRe mass measurement collaboration H. S. Xu, Y. H. Zhang, M. Wang, R. J. Chen, X. C.Chen, C. Y. Fu, B. S. Gao, P. Shuai, M.Z. Sun, X. L.Tu, Y.M. Xing, X. Xu, X. L. Yan, Q. Zeng, X. H. Zhou, Y. J. Yuan, J. W. Xia, J. C. Yang, Z. G. Hu, X. W. Ma, R. S. Mao, B. Mei, G. Q. Xiao, H. W. Zhao, T. C. Zhao, W. L. Zhan (IMP-CAS, Lanzhou, China) Yu.A. Litvinov, S.Typel (GSI, Darmstadt, Germany) K. Blaum (MPIK, Heidelberg, Germany) Y. Sun (Shanghai Jiao Tong University, Shanghai, China) Baohua SUN (Beihang University) H. Schatz, B. A. Brown (MSU, USA) G. Audi (CSNSM-IN2P3-CNRS, Orsay, France) T. Yamaguchi (Saitama University, Saitama, Japan) T. Uesaka, Y. Yamaguchi (RIKEN, Saitama, Japan) Outline • • • • Motivation and background Method and technical improvements Results and discussions Summary Motivation: why do we measure nuclear masses? Mass → binding energy → interaction = N× +Z× - binding energy Nuclear physics Nuclear astrophysics Atomic physics Atomic energy Fundamental symmetries Metrology … Background: current status of mass measurements predicted ~7000 discovered ~3200 mass known ~2400 Background: worldwide activities JYFL MSL GANIL JGU JINR GSI TRIUMP CIAE RIKEN IAEA CERN MSU ORNL LBL IMP Main institutions of nuclear research Facilities for direct mass measurements ANL BNL FSU Background: HIRFL-CSR research facility Research aims: establish the IMS technique; measure nuclear masses; study the associated physics CSRe RIBLL1 RIBLL2 RIBs at tens of AMeV RIBs at hundreds of AMeV CSRm 1000 AMeV (H.I.), 2.8 GeV (p) Method and technical improvements Procedure of mass measurements SSC SFC DT CSRe CSRm TOF detector Principle T=L/v Bρ=m/q βγc m q ( ) 2 v m q ( ) v 2 T T Principle : isochronous mass spectrometry T=L/v Bρ=m/q βγc L 1 ( B ) 2 L t ( B ) T L v 1 1 p ( 2 2) T L v t p First mass measurement at CSRe M. Wang et al., Int. J. Mod. Phys. E, Vol. 18, No. 2 (2009) 352-358 Correction for drift of the magnetic fields arXiv:1407.3459 Resolving power ps m m( FWHM ) 250,000 Principle of double-TOF IMS 614.698 614.697 614.696 614.695 614.694 v T 2 2 1 T t v 614.693 614.692 -0.15 -0.1 -0.05 -1E-16 0.05 0.1 0.15 Double-TOF IMS Two ToF detectors: ds=18 m Charge & Frequency Resolved IMS 34Ar & 51Co close m/q Charge & Frequency Resolved IMS Charge & Frequency Resolved IMS PL B 735 (2014) 327 Results and discussions Overview of experimental results Beams: 78Kr, 58Ni, 86Kr, 112Sn, 58Ni, 36Ar X. L. Tu et al., PRL 106, 112501 (2011) Y. H. Zhang et al., PRL 109, 102501 (2012) X. L. Yan et al. ApJ 766, L8 (2013) P. Shuai et al., PL B 735,327 (2014) H. S. Xu et al., IJMS 349, 162 (2013) Precision 10-6~10-7 (20-200 keV) Double TOF Improved precision Measured first time Nuclear masses in astrophysics X-ray burst Companion star Neutron star R. Giacconi 2002 Nobel Mass values of short-lived nuclei are important input parameters to study rp-process Results from CSRe: (1) waiting point 64Ge Waiting point at 64Ge in the Type I X-ray burst ? 65As Sp(65As) >-250 keV (AME2003) Reaction path Light curve Element abundance Results from CSRe: (1) waiting point 64Ge Abundance of burst ashes Light curve of Type I x-ray burst X.L. Tu et al., PRL 106, 112501 (2011) 2s 1s Sp(65As) = 90 85 keV 89%–90% of the reaction flow passes through 64Ge via proton capture indicating that: 64Ge is not a significant rp-process waiting point. Results from CSRe: (2) Ca-Sc cycle Precision mass of 45Cr Net work calculations The predicted Ca-Sc cycle in x-ray burst may not exist Results from CSRe: (3) test IMME in pf shell Proton Degenerate if no charge-dependent Interaction, and nH corrected for. Charge-dependent effects (A,T,Jp) - 3/2 - 1/2 + 1/2 + 3/2 Neutron M(A,T,Tz)=a(A,T)+b(A,T)Tz+c(A,T)Tz2 Any charge-dependent effects are two body interactions and can be regarded as a perturbation. Results from CSRe: (3) test IMME in pf shell M(A,T,T3)=a(A,T)+b(A,T)T3+c(A,T)T32 + d(A,T)T33 Mass measurements of 41Ti, 45Cr, 49Fe, and 53Ni at CSRe d coefficients increase gradually up to A=53 for which d is 3.5s deviated from zero. Cannot be explained by existing theories PRL 109, 102501 (2012) Results from CSRe: (4) test INC The obtained results point to the necessity to include INC interactions in the calculations of fp-shell nuclei. Rui-Jiu Chen, A simulation of the isochronous mass spectrometry Chao-Yi Fu, Improvement of ToF detector and applications in Double ToF experiment Xing Xu, Direct Mass Measurements of Neutron-rich 86Kr Projectile Fragments Yuan-Ming Xing, Mass measurements of 112Sn Fragments at CSRe-IMP Qi Zeng, Half-life measurement of 94mRu44+ at HIRFL-CSR Xin-Liang Yan, Schottky mass measurements of 152Sm projectile fragments at ESR Thank you for your attention!