Zilog Z80-CTC - 1979 - Smithsonian
Transcription
Zilog Z80-CTC - 1979 - Smithsonian
PRODUCT EVA LUATION OF TH E ZILOG Z80-C TC 12 ' - PRODUCT EVALUATION 12<> OF THE ZILOG Z80-CTC M~ A,J~ CLL}·JG:.A0 June 12, 1979 I Prepared by INTEGRATED CIRCUIT ENGINEERING CORPORATION 6710 EAST CAMELBACK ROAD SUITE 211 SCOTTSDALE, ARIZO NA 85251 1037 9- K I SUMMARY The purpose of t his anal ysi s is to gain fi r st - hand knowledge on physical and el ectri cal structuring of thi s circ uit. This permits i dent i fica tion of the strong and weak features of th i s device and is olat ion of areas requiring in-depth analysis. In th is way, a basis will be pro vi ded for predicting circuit reliability an d establis'ling a background for future analysis. The ZSO-Co un t er Ti mer Ci rc uit (CTC) prov ides count i ng and ti mi ng fu nc ti ons fo r mic rocomputers based on the Z80-CPU. The four independent channel s are programmable to operate as either a co unte r or a timer. Th is ci rcuit requires a single 5-volt supply and a single-phase 5-volt cloc k. The Z80-CTC util izes N-channel sil icon-gate depletion- l oad r-1OS techn ology and is packaged in a 28-pin DIP. A priority interru pt st r ucture t ha t is dedicated to the Z80-CPU provides for automatic i nterru pt vector ing without external logic. I I I I U 0 0 I o TABLE OF CONTENTS PAGE SUMf·tARY LIST OF FIGURES iii LIST OF TAB LES v INTRODUCTION 1 SECTIO N SECTIO N II EXTERNAL PACKAGE ANAL YSI S 2 INTERNAL PACKAGE ANALYSIS 8 SECTI ON I Ir - PROCESSING AND ELECTRICAL CHARACTERISTI CS 16 SECTION IV CI RCUIT AND LOGI C ANAL YSI S 18 SECTI ON V SPECIFICATION REVIEW 48 SECT IO N VI CONC LUS IONS 50 SeCTI ON V!) - RECOMMENDA TIONS 51 APPEND IX - ZILOG Z80-CTC DATA SHEETS 52 ii I LIST OF FIGURES PAGE I I i FI GURE 1- 1. ZI LOG Z80-CTC PACKAGE PHOTOGRAPHS 3 FIGURE 1-2. ZI LOG ZBo-eTC X-RAY PHOTOGRAPHS 5 FIGURE 2- 1. ZI LO G ZSO-CTC FIGURE 2-2. ZILOG ZSO-CTC DIE CAVITY AREA 11 FI GU RE 2-3. ZI LOG Z80-CTC SAW AND 8REAK DIE SEPARATION 11 FI GURE 2-4. ZILOG ZSO- CTC VOID UNDER DIE OF SAMPLE 2K 12 FI GUR E 2-5. ZILOG ZSO-CTC WIRE GOND 12 FI GURE 2- 6. ZILOG ZSO-CTC METAL STEP COVERAGE 15 FI GUR E 4-1. ZI LOG ZBO-CTC DIE PARTITIONING 19 FI GURE 4-2 . ZIL OG Z80-e TC INTERRUPT ENAGLE OUTPUT ~mOLE DIE PHOTO GRAPH 9 (1E O) AND TYPE 0 FLIP FLOP 21 FIGURE 4-3 . ZILOG Z80-CTC MACHINE CYCLE ONE (Mf) INMPUT. 22 FIG URE 4- 4. ZIL OG Z80-CTC READ CYCLE STATUS (RD) INPUT WITH READ CYC LE CIRCUITRY 24 FIGUR E 4- 5A. ZIlOG Z80-CTC WRITE CYCLE CIRCUITRY 25 FI GURE 4- 5B. ZIl OG Z80-CTC I'JRITE CYCLE CIRCUITRY 26 FIGURE 4-6. 29 ZIlOG ZBO - CTC BIDRECTIONAL DATA BUS (06) FIGURE 4-7A. lI lO G ZSO- CTC RETURN FROM INTERRUPT INSTRUCTI ON DECODE 30 FIGUR E 4-7B. ZIl OG Z80-CTC RETURN FROM INTERRUPT INSTRUCTION DECODE 31 iii I I I lIST OF FIGURES (CONTO) PAGE FI GURE 4-S . ZIOlOG-CTC lE I INPUT AND INT, lEO OUTPUTS WITH PRIORITY INTERRUPT. FIGURE 4-9. ZIlOG ZSO-CTC READ/\1RITE CIRC UITRY 34 (CHANNEL 0). FI GU RE 4-10A. ZIlOG ZBO-CTC CHA NNEL CONTROL REG ISTER 35 (CHANNEL 0). FIGURE 4-10B. ZIlOG ZSO-CTC CHAN NEL CONTROL REGI STER 36 (C HA NNEL 0). I I I I FIGURE 4-11 ZIlOG ZSO-CTC EXTERNAL CLOCK/TI MER TRIGGER (C lK/TGR ~) INP UT. 38 FIGURE 4- 12. ZllOG ZSO-CTC PRE SCALER CEll (B IT 6) FIGUR E 4-13. ZIlOG ZBO-CTC TIt~E 42 ZI lOG ZSO-CTC CHANNEL COUNTER/T IMER CO NTROL. FIGURE 4- 16 . 44 ZIlOG ZSO-C TC ZERO COUNT/T IMEOUT (lC/TO 1) AND CHANNEL INTERRUPT. I 41 l ILOG ZBO -CTC PRESCALE R AND DOWN COUNTER CONF IGURAT ION. FIGURE 4-15. 40 CONSTANT REG ISTER AND DOW N COU NTER CEll (BIT 6). FIGURE 4- 14. 32 iv 46 ~ LIST OF TAB LE S ~ PAGE I TABLE 1-I. ZILOG ZSO-CTC PACKAGE SPECIF ICATI ONS 4 TABLE 1-2. GAS ANALYSIS OF THE Z80-CTC SAMP LE 2K 7 TABLE 2-1. ZI LOG ZSO-CTC DIE SPEC IFI CAT IONS 10 TABLE 3-1. PO STU LAT ED PROCESS SEQUENCE FO R THE ZI LO G Z80-eTC. 17 I o 8 I v I I I I INTRODUCTI ON To ev al ua t e the Zi log Z80 Co unt er-Timer-Ci r cuit (CTC) a total of four part s were used. senta tive . Two of these part s were receiv ed f r om a Zilog re pre The se were engi neering samples and were not used for any el ectri cal t est i ng. The remainin g two devic es were ordered f rom a local dis tr ibutor and re ceived within two weeks . Thes e MOS devi ces were recei ved inserted in conduct ive foam and boxed f or static discharge protect ion. I The eng i neering samples received from t he Zil og representative had no package markings. I o I The devices rec eived from the lo cal distr ibutor were marked with the Zi log logo, part number (ZaO-e TC), dat e code (7714). and l ot co ntrol number (08201). The devi ces .Jere packaged in 28 -pin cerami c dual-in- 1ine packages ha vi ng st andard operat ing ran ges of 5V + 5% and O· C to 70°C. The ce ramic packa ge and st andard operating ran ge were the only opt i ons available at the time the dev ices we r e ordered . The two devices purcha sed fr om a local distributor were used for the I o I I physical anal ysis including X- ray. leak tests, gas ana lysis, package examinati on, internal visual and SEM in spect ion. The remain ing mec hanic al sampl es were used only for circ uit t ra cing . o C I 8 8 o I SECT ION I - EX TERNAL PACKAGE ANALYSIS 1. 1 - Vi sual The Z80-CTCs were packaged in 28-pin ceramic DIP s wi t h Kovar gold- pla t ed lids whic h I,ere soldered on to provide a hermetic seal. plated leads were side brazed to the package. Kovar gol d Physical measurement s I,ere tak en and compared with the package outl i ne in the dat a sheet. All meas ure ment s were within the tolera nc es stated. Tabl e 1-1 is a comprehens ive l isting of the external phy si cal measurement s. o Photographs of t he Zilog Z80-CTC package (s ample 2K ) are provided in Fi gure 1-1. 1. 2 - X-Ray Samp le 2K was X- r ayed, and the results are shown in Figure 1-2. u One edge of the die is unsupported, with no eutect ic ma terial vi sible . the wi re bond i ng operation t akes pl ace above th e unsup ported edge of the s i licon, then microcracks can result. to red as a reli ability problem. This haza rd should be moni The X-ray shows that the other three edges are adequately supported and have no exces sive bui ld-up of the eutect ic materi al. 2 If '~ · llI·.!£HP:; I 10 :w JO ~ZllOG I I lIo-crc nlHB201 ""lllMtTl't!" 10 30 20 :1111\11111 111 1 I I I 10 THS 1 \1· 111\ 1 I I 10 THS Mil LlMETE RS 10 •• 20 30 ..... .e . II 1 1 I \1 ·1 I I II I I I 1 10THS FIGUR E 1·1 . ZILOG Z80·CTC PACKAGE PHOTOGRAPHS. 3 r\1111 1 I I I I TABLE 1-1 ZIlOG Z80-C TC PAC KAGE SPECIfI CATIONS I 0 0 I I PAC KAGE DIMENSIONS: L: 1. 4" PACKA GE MATERI AL : Dark Cerami c LID OIMENSIONS: l : 0. 5" LID MATERIAL : Kovar Gold-Plated SEAL! NG METHOD: So l dered LEAD SPACI NG: 0.59" x 0. 08 " LEAD MATERIAL : Kovar Gold-Plated LEAD oIf1ENS IONS : L: 0.13" 1-1: 0.59" l, : 0.5" Side Brazed LEAD FRAME 11A TER IAL I N BONDI NG AREA: Go 1d-Pl ated 4 TH: 0.01" W: 0. 016" TH: 0.01" LEAD ATTACHME NT METHOD: m TH: 0.082" ' SHdVI:I~OJ.OHd S I AVI:I 'X :lJ.:JiJ8Z 901lZ 'Z' L 31:1n9 1~ I I I I In the lead frame area, there are virtual ly no voi ds or any spacing problem with le ad i nterconnect. 1.3 - Leak Test and Gas Analysis Leak t ests were performed on sample 2K per MI L-STD-883B , Method 1014. 2, I I I Conditions B and C. Dur ing both f ine and gross leak tests , the part exhibited a l eak rate of less t han 1 x 10- 8 atm cc/sec., the test limit. Gas analysi s was done on sample 2K per MIL-STD-8838 Met hod 1018. 1. The results of t hese t ests are shown in Table 1-2. The moisture cont ent wa s 0.09%, which is judged to be a safe level. The wat er vapor shoul d be no greater than 0.5%, and ideal ly less than 0.1 %. Gas analy sis results would imply that these circuits wer e sea l ed i n a dry nitrogen atmosphere. I I I 6 I I I TABLE 1-2 GAS ANALYSIS OF THE ZSO -CTC SAMPLE 2K Ii I CONSTITUENT 8 ARGON (Ar) 0.44 HYD RO GE N (H2) 0.57 CONCENTRATI ON (%VO L/ VOL) 98.9 NITROGEN (N2) I WATER VAPOR (H20) 0. 09 8 I i 7 SECTION II - IN TERNAL PACKAGE ANA LYSIS The lid of the Zil og Z80-CTC (sample 2K) was mechanical ly removed and I I I I the die cavity in spected according to the procedures pre scribed in HIL-STO-8838, Method 2010.3, Te st Condition B. This is not a compari son to MIL-STD 's but this MIL-STD provides a deta i led inspecti on proce dure. Fi gure 2- 1 i s a whole di e photograph of the Z80-CTC. A view of t he assembled die in the cavity is seen in the SE'" pho to graph of the cavity area in Figure 2- 2. the cav ity. There i s a good fit bet ween the circuit di e and Since the bondi ng pad l ayout on the die necessitates the use of a bondi ng wire 140 mil s l ong, this shoul d be an area of concer n. I Long bonding wi r es can sag and eventu all y cause a clearan ce problem between the bondi ng wire and the di e. occur under shock conditions . Thi s would be most likely to As seen in Figu re 2-2, the wires are forward bon ded, which does produce better clearance . Workmanshi p in the assembly ar ea is good. 2.1 - Die Separation and Mounting I The Zi log Z80-CTC die was separated from adj ac en t die by the saw and break me th od as shown in in Figure 2-3 . SEM in spection of sampl e l K disclosed no chi ps or cracks along the edge of t he die, nor crac ks extending inward toward any acti ve ci rcuit element. A vo id und er the die of sample 2K i s shown in Fi gure 2-4. This is the same sample that wa s X- rayed and detenii i ned to be un sa fe. Since there is a bondi ng pad above the unsup ported silicon, the reliabili ty haza rd of microcracks does exist. Furt her observation in the S[I~ reve aled no evi dence of flaking, ba l l i ng or excessive build-up of the eutecti c material. 8 Die 6 'HdVHD010Hd 310 310HM ;J13-0BZ D01IZ ' ~-l 3HnDl;j XZ8 I I I I I I TABLE 2-1 ZILOG Z80-CTC DIE SP ECIFICATIONS Cav Hy Si ze: 250 mil s x 250 mil s Die Si ze: 90 mils x 135 mils Area: 12,150 sq. mil s Thick nes s : Approx . 15 mi 1s Saw and Break Di e Separation Technique: Di e At tach Method: AuSi Eutect ic Ultrason i c Wedge Bonding Wire Bondi ng Me thod: Wir e Bondi ng ,·tat eri al : 1. 2 mil Al um i num Wi re Long es t Span: 140 mil s 4.3 mils x 4.3 mils Minimum Bondi ng Pad Size: Hi nimum Bondi ng Pad 14indow : 4. 0 mil s x 4.0 mil s Mi ni mum Bond i ng Pad Spacing: 3. 0 mils Min imum Spac ing Pad to Scribe: 4.0 mil s Minimum Spac ing Pad t o Nearest Metal Line: 1.3 mi ls Mini mum Co ntact Size: 0. 3 mils dia. Minimum Di ffus ion Spacing: 0.25 mils Mini mum Diff usi on \4 idth: 0.3 mi l s Minimum Me tal Line Width: 0.25 mils Mi nimum t4et a 1 Li ne Spac i ng: 0.4 mils Mi nimum Polys ili con Width : 0.25 mils Minimum Pol ys ilicon Spac ing: 0. 3 mil s W: 0. 3 mils Minimum Gate Size: L: 0.25 mils Bond Strength Test 28 Wi res Average: 4.42 grams High: 5 grams Low: 3.5 grams Di e Shear Test : Di d not shear at 2500 grams 10 Std. Dev: 0.44 grams I I B o o I I I BOX 55' FIGURE 2-2. ZILOG zaO·CTC DIE CAVITY AREA. I I 15X 46 ' u FIGURE 2·3. ZILOG zaO-CTC SAW AND BREAK DIE SEPARATION. 11 Zl ' ONOS 31:11M :ll:l-QSZ !)01IZ 'S'l 3 I:1n!)l~ . 55 X009 I I I I I 11 I I she ar test i ng was performed on sample 1K. The die did not shear at 2500 grams . 2.2 - Interconnection The Zi'og ZSO-CTC was interconnected by ultrasoni c wedge bonding. ty pical wedge bond is seen in Figure 2-5. I I u was al um in um wire 1.2 mils in diameter. the SEM and found to be adequat e. used on th is device. A The interconnection material All bonds were inspected in The forward bonding technique was Forward bonding provides good clearance between th e wire and the circuit die. Bond strength tests were done on sample 1K. The majo rity of fail ures were wi re breaks at the neck down point; that i s , the point at which t he cross sect i on of the wi re is reduced due to the bonding process. The average pull strength was 4. 42 grams. The lowest pull strength was 3. 5 grams, wel l above the MIL- STD-SS3B Method 201 1. 2 mi nimum req uireme nt of 2 grams for 1. 2 mil wire. 2.3 - Examination of the Die Su rface Exami nation of the d ie surface was done on both sample 1K and 2K, first with the gl ass i vati on intact and then with gla ss i vatio n removed . bot h steps no anomalies were found. All spaci ngs and l ine wi dt hs 13 At I I I appeared t o be adequate for high yields and reliab i l i t y concerns. An SEM photograph of metallization step cov er age is shown in Figu r e 2-6 . The step coverage wa s good and all contact holes we re compl etely covered wi th metalliza t i on. I 14 SL "3Dlf1l3AOJ d31S 11113111 J.lJil8Z !)011Z "g"t; 3 11nDI~ I •59 • xon I I I I I I I SECTION I f I - PROCESS ING The Zilog zaO-CTC was fabricated wi th an N-channel sil icon-gate depletion-load MOS proce ss using local ox id ati on to isolate adjacent diffusi on s. Tab le 3-1 presents the postulated processing sequence. I D o I 16 M I I I 9 TABLE 3-1 POSTULATED PROCESS SEQUENCE FOR THE ZI LOG Z80-eTC STARTI NG MATERIAL: STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP STEP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 HIGH RESISTIVITY P-TYPE SUBSTRATE GROW THIN OXIDE DEPOSIT NITR IDE APPL Y PHOTORESIST AND PATTERN (FOR FIELD OXIDATION) ETCH NITRIDE ION IMPLA NT BORON (FIELD DOPING) GROW FIELD OXIDE STRIP NJTR IDE AND UNDERLYING OXIDE GROW THIN OXIDE LAYER APP LY PHOTORESIST AND PATTERN (FOR DEPLET10N LOADS) JON n\ PLANT APP LY PHOTORESIST AND PATTERN (FOR BUR [ED CONTACTS) ETCH OX IDE FOR CONTACTS DEPOSIT POL Y APPLY ~IO TORESIST AND PATTERN (GATES AND INTERCONNECTS) ETCH POLY AND EXPOSED GATE OXIDE 01 rF USE r~+ (PHOSPHORO US) TO FORM THE SOURCE AND ORAIN REGIONS DEPOSIT INTERMEDIATE OXIDE APPLY PHOTORESIST AND PATTERN (F OR 11ETAL CONTACTS) ETCH INTERMEDIATE OXIDE DEPO SIT ALUMINUM APPL Y PHOTORESIST AND PATTERN (FOR INTERCONNECT ETC . ) ETCH ALU MINUM DEPOSIT GLASSIVATlON APPL Y PHOTORE SIST AND PATTERN (FOR BO NDIN G PAD OPEN INGS) ETCH GLASS IVATION 17 I MASK 1 MASK 2 MASK 3 MASK 4 MASK 5 r1ASK 6 '-\AS K 7 I I o o I SECTION IV - CIRCUIT AND LOGIC ANALYSIS .1 - Di e Part it ioning The Z80 Counter-Timer-Circuit (CTC) is di vided into four independent prog ra mmab le channels that provide counting and ti ming fun ct io ns for t he ZBO-CPU. chi p. Figure 4-1 shows the channels acro ss the middle of the The layout is general l y very compact with little was ted space. The bidi recti anal data bus is at the top, and the inte rna l data bus runs vert i cal ly through the interrupt vector reg ist er, interrupt co ntrol log ic and the cou nter/ t i mer channel s. Data bus latches are the internal data bus at the bottom of the ch ip. at the end of The four cloc k/ trigger inputs are at the right edge with associ ated control ci rcuit ry. The three zero count /timeout outputs are alon g th e l eft side with t he channel interrupt logic. Read/Write cont r ol sur round s the RD input. The remaini ng interr upt and control line s enter the chip alon g the bot tom edge. Two channel select lines enter at the l ower right corner and are de coded in each channel. VSS (ground) enters the chip at the upper left corner . There are a few ground c ros sunders , bu t none that are co nnec ted t o out put driver circuits . With a total VSS metal width of 3.5 mils, th e averag e curren t density is about 35 mA/mil. Vee enters the chip fr om the upper right cor ner wi t h a wide metal run exte ndi ng down the right side. The unbuffer ed c loc~ enters the chip from the middle of the bottom edge and is distribut ed along both sides of the chi p. 18 · ~NINOIJ.IJ.H\t d 6l 31(] :lJ.:>-08Z ~OlIZ ' ,L-v 3 I:1n~I~ 10".1NOO 10".1 NO:1 :1i:1 r~------------~/'----------------~ 31al1N3 \ u n" " UNI / ~----------.-------~---------------~ ino \ iNI n <I ~... o'" I r- I • ~~ I __________________________ " ,________________________ ~J sne 111110 no;> 4 . 2 - Read/I,rite (IT, Ml , IORQ, and RD Input s) . The ci rcuit ry illustrated in Figures 4-2 through 4-5 i s part of the in t e r nal ca ntr a l l ogic block shown in Figure I th e ZSO- CTC product specification . (crc Block Diagram) of This logic controls th e tran sfer of da ta and co ntr ol words between the ZSO -CP U and the CTC. Fi gu r e 4-2 ill us trates a type-D flip-fl o p th at is used th roughout the crc circuitry. The st ate of the Data (D) input is t r ansferred t o the out puts (Q and ~I on the rising edge of the Cl oc k The Reset (RI i nput makes Q "low" and Q " high". (el in put s ignal . A log i c block wi ll be used to represent t his circ uit in the remai ni ng sch emat ics. In some fl i p f lops the conn ec ti ons to the inverter form ed by t ransist ors I and 2 are reversed, thus chang i ng the D input to a D input. In ot her fl ip- flops the C input is comp l e mented by reversing the two latches of the f1 i pflop. input . Dat a i s then tran s ferred on t he f alli ng edge of the Cloc k (el A schematic of a complex gate i s sho wn formed by t rans isto rs 7 thro ugh 11. Figure 4-3 ill ustrates the use of this fl i p- f l op ( Ff l) in the Machine Cycle 1 (MIl i np ut. The MI s ignal originate s in the ZBO -CP U and indica te s that the c urrent machlne cycle is an op code fe tell cyc l e . g The NOR gate lat c h and output driver compose d of tra ns i s tors 6 through 17 insure that t r ans itions of ~1I will occur vh1en Cloc k i s "lo w." full y synchroni zes MID to the rising edge of Cl oC k. 20 I FFI - I I I o a FFl A a C A I )o-t- 0 a D' c Ii 13 A FIGUR E 4·2. ZILOG ZBO·CTC INTERRUPT ENABLE OUTPUT {lEO) AND TYPE D FLIP FLOP. I 21 I I I I I I I I 8 o u 9 Ml Rl Ml ,4 Ml ' J a D , 22 1)-- MID -:: FF I a <I>-iC SYMBOL DEFINITIONS TH E FOL LOW ING SYM BO LS AR E USED TH ROUGHOUT -I'.J . ., -I~ . RESET EN H ANC EMENT MODE TRANS ISTOR DEPLETI ON MODE TRANS ISTOR <l> nJU-U M"NPUTP: ~~ M l~~ MID • l R 9 . Vec ~ , 21 VSS {G ROUNDI ~I I FIGURE 4·3. ZI LOG ZBO·CTC MACHINE CYCLE ONE IM11INPUT. 22 Figure 4-4 i l l ustrates t he circuitry used in t ran sferr i ng data from the eTC to t he CPU. I I The four input NOR gate formed by t rans i stors 8 through 12 det ect s a CPU re ad cycle. The RE AD REG si gnal is "l ow" whenever th e CPU r eads the curr ent contents of the Down Counter. Anot her eTC to CPU data transfer occurs dur ing the int er rupt acknowl edg e cycl e. The NOR gate composed of transistors 72 th r ough 76 (Ph ot ographed in Fi gure 4-5A) detects Ml and IOR Q "l ow" whe n the r e is a I I I I I CTC int err upt active and Interrupt Enable In (jEl) is "low" . Transistors 15 t hrough 20 enable the data bus outp ut driver s during a read cyc l e or an i nt err upt acknowledge cyc l e. The four i nput NOR gate composed of transistors 77 t hro ugh 81 detects a poss ib l e i nt errup t acknoViledge cycle Vlhen Ml i s "l oVl" Vihil e !ORQ and RD are "high". FF2 synchroni zes this signal to the l ead i ng edge of Cl ock . VECTOR pl aces the interrupt vector onto the in t ernal data bus . READ The vector is read by the CPU only when OUT is ac t i ve . Fig ures 4-5A and 4-5B illustrates the circuitry co ntro lli ng dat a transfers to the eTC either f rom the CPU during a Vlrite cycle or program memory duri ng a return I from int err upt cycle. 23 I I I w RD RD 6 IN TER RUPT ACKNOWLEDG E J iORO I l~ I M"16 MlD 0 "»--77 I D 1!1..'iOAO 80 <I> 00' READ REG J r- 78 RO M 1 D--r----.. Ml - I~: rl~'" ,~ I ~ Q I FF2 C Q 22 READ VECTOR I 21 ~ R RESET FIGURE 4-4. ZILOG ZBO-CTC READ CYCLE STATUS (RO) INPUT WITH READ CYCL E CIRCUITRY . 24 I I I I I iOAQ a D FFll ot> 0 C R o C~03 23 24 MI D AIL 2S 26 CE lORa27 D 2B D FF 13 FF 12 ,~ <l> ----I C C Q R RESET ~ 1,02 WR ITE REG 1 R ESET ls3 fETCH 0 0 Ro M 1D ) - - STROB E 35 --II, L -_ _ ~ 36 WRITE REG IU"' I 4> l 100 )o~---"l)-97 I 52 ENAB LE DB I 99 l CE,IORO CE FF11 Q l OR a - - ( ~ iN reTCH WR ITE REG l [ s--L ~ ~ ST ROBE DB EN ABL E DB l FIGURE 4·5A. ZILOG Z80-C TC WRITE CYCL E CIRCUITRY . 25 J DB I I I <1> RD, J1.Jl.Jlr MI l FF30 I ~ F ETCH ~ lN ~ STROBED~ I -" "-n~ RD I or ADJ D F F3 _ <1> C 2 M1D o~~ ':F4_ <1> Q Q C R R , RE SET I D l I 7 RESET FIGUR E 4·58. ZI LOG ZSO·CTC WRITE CYCLE CIRCUITRY. 26 FETCH 0 I I Th e comb inati on of FFll and th e 5 input NOR gate (tr an sistors 23 through 28 ) detect the begi nning of a write cycle. The outp ut of the NOR gate is "high" only until the next ri sing edge of Clock fo ll owi ng a fai ll i ng ed ge of lOR Q. Data is tr ansferred to the CTC reg isters in two steps. Data is transferred to the CTC regi sters in two steps. I Fi rst, external data is sa mpled by STROBE DB and transferred to the internal data bus by IN. The n FF 13 (photographed in Fi gure 4-7A) del ays one ful l clock cycle and WRI TE RE G tr an sfers interna l data to the I I I I I I I I I register l atches. During a return from interrupt cycl e t he eTC must decode t he RET ! ins tru ct ion. FF 3 and tw o NOR ga tes (Transi stors 1 throug h 6) detect the beg inn ing of an op code fet ch cycle. FF4 delays this signal by one half clock time and generates the internal FETCH sign al. through 43 for m a la t ch that acc omplishes the two step data in pu t function desc r ibed ea rl i er . The ENIIBLE DB Sign al for ces a l og ic "one " on t he inter nal data bus wheneve r it is not bei ng used for any data t ransfer functio n. Transi st ors 54 th rough 64 detect al l dat a bus transfers whi l e the l atch composed of t r ansi stors 82 thr oug h 93 (pho tographed in Fi gur e 4-7A) ex tends the ENIIBLE DB sig nal by one half clock ti me at Lhe end of a wr ite cycle. 27 I Trans i st ors 33 I 4. 3 I I Bi d i rectional Data Bus (D7 through DO) Bit si x of t he Z80-CTC data bus buffer is illustrated in Fi gure 4-6. Tran s i s tors 1 through 14 form an output driver for the inte rn al data bit D6. The driver circ ui t is enabled on ly when da ta is tra ns f erred from the CTC to the CPLI. I I a high im pedance state. Otherwise, OUT is "high" and the d r i ver is in Data to be transferred to the CTC is first sampled by transmission gate 19 when C: ock is "low". When Cl ock is "high", data is latched by transistors 22 through 26. Transmission gate 27 samp l es the latched data and transistors 29 th rough 31 dri ve the internal data bus durin g write or fetch cycle s . f or ce s t he in t ernal data bus to a "higl" used for data t r ansfer s . Transistor 32 s tate when it i s not being Transist ors 33 through 37 (photog r aphed in Fi gure 4-3) provide a latch for the data bus du r ing the two step data I o I I tran s fers described in the previous section. 4.4 - In t erru pt Servicing (lE I Input, I NT and l EO Outpu t s ). The circu it ry il l ustr ated i n Figure 4-7B decode s the RCTr instruction us ed to re set CTC interrupts. The output of FF5 go es "hi gh" a ft er the fi r st byte of any two byte instruction; that is , op codes CB I6, DDI6, ED16 Or FDI6' If the op code is ED16 , t hen FF6 cha nges state and ED goes "low". I This enabl es t he c ircuit r y that deco des the 4D16 op code (Transistors 48 through 57 ). s ign a l wi ll go "hi gh " after the rising edge of the wil l go "l ow" after the falling edge of FETCH. I I 28 RD The RE T! input (jN=O) and I D E I I o ... 06 m I tI <I> .J ~ OUT~r. 23 6 J1 F'P"I Lnb :" " 1... 1 - - I ~ r~' 11' FIGURE 4·6. Z ILOG z ao-CTC BIDIRECTIONAL DATA BUS (06). I 29 -- c=:l .. w o FIGURE 4·7A. ZllOG ZSo-CTC RETURN FROM INTERRUPT INSTRUCTION DECODE. -- I I g 00 1 __ r-~~ I I 04 8 01 2 ~~--~ )c>-----, 03 3 46 Q 05 9 FF5 Q R .. r-' ~ Q ~145 o ~ 1 FF 6 Eo'6 FETCH--i C Q R IS9 RE SET L.: 56 I I ~ 58 I 60 04 52 05 53 50 07 5 ' Eo )c>--- RETI 5S " 4°,6 T2 T3 TO T1 T2 ,3 T4 ~ FETCH JL---.JL L FF5Q r ED IL R ET I ~ FIGURE 4-7B. ZILOG Z80-CTC RETURN FROM INTERRUPT INSTRUCTION DECODE. I 31 Interrupt En able In (lEI) and !n ': errupt Enable Out (lEO) form a system I I daisy chain for interru pts in which the device closest to the CPU ha s the hi ghes t pr iority. Within the CTC, interrupt prio r ity is dete rmined by chann el num ber wit h chan i1 ~ l zero havi ng highe st priority. When lEI is "hi gh", no other interrupting devices of higher prior ity in the daisy chain are being servic ed by the CPU. The eTC i nter rupt ci rcuitry is shown in Figure 4-8. I 1, 2, and 3) has four outputs ind icating the channel status to the priority inte rrupt system. CTC . I I I Each channe l (CH0, lEI si gnals form the da i sy chai n wi t hin the Secti on 4.10 de scri bes the chan nel interrupt logic. When a channel down counter reaches zero , th e CPU receive s an Interru pt Request (I NT = 0) from one or more of the channels and send s an Int errupt Acknowl edge signal (MI + IORQ = 0). The int err upt pendi ng (I P) signa l inhibit s acknowledgement of l owe r priority int errupts. The highest pri ority int er rupt reque stor (the one with IE l = 0) places I its in te rru pt vector on the data bu s (ACK = I, READ VECTOR 0) and sets it s inte rrupt -u nder service latch (IUS = 1). The ZBO-CPU executes a t wo byte RETI (RETurn from In t errupt) ins truction at the end of an interrupt se rv ice routine. I o Thi s i nstruction is decoded by the CTC and is used to reset the interrupt-u nder-servi ce l atch. The normal daisy chain operation can be llsed to detect a pending i nterru pt (JP=I). instruct ion is decoded (EO fihen the first byte (EOI6) of a two byt e = 0), the daisy Cha in is modified by inhib it ing all pe ndi ng interrupts so that the device pres ent ly under service is the only one wi t h lEI = 1 and lEO = O. 32 - liB) - c=J lET ~ AC K¢ rCH<ji ~ lE I 13 ~" . -I"»~~ ~ 1l ~ _ ~ J'.x,. / IP<l> ~ 73 lE n ~ ~C Kl CHI ~ R E ADV ECT~ 74 IP l ~L IU Sl .~26 25 27 28 r: E~ IEI2 - INT 2 ACK2 ACK CH2 ~ E~ I IP2 - ~ IUS2 Ml w w E~ 1 iEi3 ~ 66 R EAD VE CTOR ~ 76 U- - AC K 3 CH 3 REA D V ECTOR 69 INT3 L IP3 IUS3 50 ~ WR ITE 51 - D6 V ECTOR i<J ~1t - .. '" H EA D VECTOR 30 47 48 T 46 ' - '49 ~ - 1 ~iH 34 132 ~i- ~ 1L;' ~ AC K ," DO , l ED~ IORO 24 J .,L I(JS," ~ - 72 - ~ '36 "~ l,35 FIGURE 4·8. ZI LOG Z80·CTC lEI I NPUT AND INT, lEO OUTPUTS WITH PRI ORI TY INTE RRUP T , ~ ,.r- Dl , 71 l r, ~ D2 I I [f the ne xt byte i s 4D16, th e interrupt-under-service latch i s reset (I US = 0) . 4. 5 - Channel Sel ec t (CSI and CS O In puts ) The se inpu ts se l ect one of four CTC channel s for \; ri ting the i channel co ntrol reg ist er (CC R) or time consta nt registe r (TC R) and read i ng the down coun t er (DC). The chan nel read/wri te ci rcuitry of Figure 4-9 is part of th e channel control logic bl ock of Fi gu r e 2 (Channel Block Di agram) in the ZSO-CTC spec ificati on. Channe l zero yenera tes WRITE VECTOR whi ch loads an interrupt vect or when 00= 0. I READ REG and WR ITE RE G are generated by the Rea d/ Writ e circuitry discussed in Sect i on 4. 2. of clock by FFl 9. READ DC i s sy nchroni zed to the ri s in g edge I{R ITE TC i s enab led by FF7 if, in t he previous write to chan nel zero, DO • D2 = 1. 4.6 - Cha nnel Contr ol Regis t er I Each of the fo ur chann el control registers co nditions f or a CTC ch ann el . (CCR) sel ect operati ng modes and CSO and CSI are used t o fO ml a two bit binary add ress to sel ect one of th e chan nel s. CCR bit s 0 and 2 are assoc iat ed with t he ch ann el READ/ WRITE circuitry and are di scussed in the previous sect ion . and D3 throu gh D7. l atches on each bit. Figures 4- 10A and 4- 10B i llustrat e CCR bi t s Dl Bi t s 04 th rough 07 are stored conditi ons and have INTENA (bit 7 ) is in it i alized by rese t so that no CTC channel can interrupt afte r RE SET. I 34 Bit 1 (Reset Chann el ) res ets FF8 I READ REG CS1 WRITE RE G , .,: 0 eso I o ' ' ' 'f:: CSO~ 4r-E>~ CS1~ _ __ _ __ _ j' J3 FF1~a <l> C ::t- a 1 WRITE RE G I R EAD DC 142 10 WR I TE CCR WRITER EG~ DO D 10 a F F7 C a r ------------ -- - --- ---, 33 I RESET I 34 31 35 I 36 WAITE V ECTOR I I CHAN N EL </> ON L Y I ~- - -------- -- -- - - ----- ~ FIGURE 4-9. ZILOG Z80-C TC REAOIWRITE CIRCUITRY (CHANNEL </> 1. u 35 9, I "( ¢ 1 3NNlfH:» Il3.LSI~31l lOIl..lNO:J 13NNlf H:J J.I.:>-OSZ ~O'IZ ·VOl -lI 3Iln~l~ I M I WRITE eCR I I I B y O;-Jt~ I FFB D1 WR ITE eGR' WRITE TC' 5~ 4 3 e --! WR ITE CC R D D Q R A NGE L STOP' RESET MO DE WRI T E CCR WRI TE CC R 9 ~ INTERN A L 03 --! WRITE eGA oo~~ l 11 32 MODE WRI T E eeA 16 M ODE EXTERNA L 15 WRI TE CAR ~ r-----~Gn'~------_, WA ITE eCA WRI TE eeA --h D4-I,-t~ 1 20 D7 SLOP E RE SET 22 INTE NA FIGURE 4·10B. ZI LOG ZaO·CTC CHANNEL CONTROL REGISTER (CHANNEL ¢ I. I RANGE 26 R 37 MOD E whic h dis cont inues the counter operation. t ime const ant is loaded. If bi t 3 Counting is resumed when a Bit 3 controls the timer mode trigger sou rce. 0, the timer begins operation on the ri sing edge of Clock . If bit 3 = 1 the ex tern al trigger (CLK/TRG) is valid for start i ng the timer operat i on following the rising edge of Clock. Note tha t bits 1 and 3 are not stored co nditions. I I I G 4.7 - Cha nnel Trigger (CLK/TRG 3 through CLK/TRG 0 Inputs ) . The Exte rnal Clock/Timer Trigger input for chan nel zero is illustrated in Fi gure 4- 11 . The active edge of this input is dete rmined by SLOPE (!lit 4) from the ch annel control register. In the count er mode, every active edg e on t his in put decrements the down counter. active edge i nitia tes the ti ming function. I In the ti mer mode, an FF9 l atches the tr igger in put asynchronous ly, then FFIO synchronizes TRG t o t he ri s ing edge of Clock. The l atch form ed by tra nsistors 6 through 17 resets FF9. Note th at when STOP is "high", FF 9 is res et; th us trigger inp uts are not recog nized when the cou nter is disabled. 38 I I I I n 0rn00 I o FF 9_ TA G ' ~ CO 22 FF10_ <!> C O R -= <!> STOP ----L-- SLOPE; 1 TAGl LSLJ I FF 9C ~~= FF9 0 ~L-_ _ _ ffiG ~ FF9A ~ FIGURE 4 -11 . ZILOG Z80-CTC EXTERNAL CLOCK/TI MER TRIGGER (CLKfTGR ¢ ) INPUT. 39 TA G I o 4.8 - Chan nel Prescaler, Time Constant Register and Down Counter I In t he t imer mode, the prescaler is an 8-bit counter which can be progralTl11ed by bit 5 of the channel control register t o divide the system cl ock by either 16 or 256. prescal er . Figure 4-12 i l lustrates bi t 6 of the When START TIMER is "high" the prescaler is rese t. Transi stors 10 t hrough 19 fo rm a latch that changes state on the rising i I I I I i ed ge of Clock depending on a toggle input (T or~) and the feedback l ine from Q or Q. Figure 4-14 illustrates how the 8 bits of the prescal er ar e connected. PF16 and PF256 are the prescaler outputs used in the channel counter control descri bed in t he next section. Bit 6 of the time constant register and down counter are illustrated in Figure 4-13 . prescal er. The down counter stage operates in the same manner as the WR I TE TC loads the time constant register latch formed by t ran si st ors 37 through 41 . LOAD DC transfers the time constant to the down counter whi l e READ DC transfers the contents of the down counter to the internal data bus. Transistor 55 is part of a zero detect gate. ZERO is an input to the channel interrupt ci rcui try (S ect ion 4.1 0). The 8 down counter stages are connected in the same manner as the prescal er (Figure 4-14) . I I 40 I I I r=- - --- - PRESCA --L~-;;';6- I T~ - - - - - -1 1 1 1 0 1 I 1 I I I - ST AR T T IMER 1 1 I 0 , I ~~ L__ _____ ___ _ _ _ _ _ --I 23 B --t ]'"IT PRESCA L ER BIT 6 a Q I I I I FIGURE 4-12. ZILOG Z80-CTC PRESCALER CELL (BIT 6). 41 I - NTE R - - - - - - - - - OWN COU ;,- ~ 6 ," '-'''"''- ", I " OC ClK L/CT DC C lK -----,II '" . 1 1 r".' " 0 0:I BIT 6 ~ READ DC r ~'24 ~~1 39 T 37 DOW N COU NTE R BIT 6 Q 40 Q H FIGURE 4-13 . ZILOG zso·eTC TI ME CONSTANT REGISTER AND DOWN COUN T ER CELL (BI T 61 . 42 o D61 : 1 - - _ r::=I T T ____ CJ T <i> T 2 3 PRE SCA LER OUTPUTS ONLY ." w IT 4 hJ rr 5 hJ }>---rr 6 r-u riT 7 FIGUR E 4·14. ZI LOG Z80·CTC PRESCA LER AND DOWN COUNTER CONFIGURATION. c::J I 4. 9 - Chan ne l Counter Control In the counter mode (Bit 6 = j ) the down counter is dec remented by each tr i gge ri ng edge of the external Clock input. t he c i r c uit ry that I gene,· ~t es Figure 4- 15 il lu s trates the Clock and load signal s for the presca 1er and the down counte ;, The counter mode i s enabled by a NOR ga te and an inverter (Transistors 69 through 73) . TR G becomes the down counter cl ock (DC ClK) through 2 NOR gates and a non-inverting driver' (tra nsi stors 74 through 85 ). I I I In both the counter and the timer mode the down co unt er is loaded when it rea ches a zero count or whe n the ch annel stops counting or timing. Transistors 86 through 90 gener ate the load DC si gnal whenever STOP or T01 = 1. (Tra nsi s to rs 80 through 90 are photographed in Figure 4-16). The timer mod e (Bit 6 = 0) is inhibited by a reset cond it ion on FF4 when mode I = 1 (See Figure 4-10 channel control regi ster bit 3). Wh en the timer mode i s selected the output of the presca ler clocks the down o counte r. bit ( Tr a ns is to rs 53 through 65). If START TIM[R is enabled by FF14 I then the output of FF15 co ntrols DC ClK (t ransi stors 48 throu gh 79 are One prescal er output (PF16 or PF256) is sel ected by the RANGE photographed i n Figure 4-10). D An inverting buffer (not photographed) for the sys tem cl ock driv es the pres c aler c l ock. I 44 I I I I ¢ e J i INTERNA L S ) - - (1) D 0 FF14 I (PAESCA L ER CLOCKI C T RG STOP' START TIMER R 0 EXTERNAL PF 16 B I PF256 77 ):, ID O~~ .---IJ5 ~DCCLK i FF15 RAN GE <l> c START T IMER 0 86 STOP TO 1 ~ 88 89 90 87 I I I I o FIGURE 4-1 5. llLOG lBO-CTC CHANNEL COUNTERITIMER CONTROL. I 45 LOAD DC i o 4.10 - Channel Inte rr up t (ZC/ T02 through ZC/TOO Inputs) o The channel generates a pos sib le interrupt request sequence every time the down counte r reaches a zero count condition . Figure 4-16 ill ustrates the inte rrupt control circu itry for channel one. set when th e down counter reaches zero. I I I FFl6 is FF17 delays the zero count signa 1 and resets FF 16 when C1oc k equals "0". Tran 5 i stars 1 through 12 fo rm a two stage invert ing driv er for the ZC / TOI output (Pi n 8). The Q output of FFl7 al so is an inp ut to the cha nnel interrupt circuitry tha t im pl ements the Z80 system of nested pri ority interrupts. Tra nsi st ars 19 through 25 latch the zero count condition if the channel interr upt is enabled (INTENA - 0) and there is not already an interrupt under service (IUS1 - 0) . INTI goes "high" and generates an Interrupt Request (INT - 0) that is "wire-ORed" to the CPU !tIT input. To ensure that t he daisy chai n enab le l ines are stable during an interr upt ack nowledge cycle, trans istor s 31 thro ugh 38 latch the I I ~ interrupt condition only when MI is "hig h". IPl becomes "high" and is used to inhibit lower priority int errupts as discussed in Sect i on 4.4. i s used in the Read/Write circuitry to enable reading of the interrupt vector duri ng an interru pt acknowledge cycle. to the interrupt vector regist er. The signal is also an input The t wo inp ut NOR gate composed of transistors 55 thro ug h 57 is used to reset the interr upt I I I AC K1 input and set the interrupt-under-servi ce latch (FF18). IE[2 is 46 I u I f I. L ~ TO 1 Z ER 0 --==1----1 o a iEi1 DC elK II\lTI INTAC K )0 I 1[6 ], '( ,J w 1~~2 '" i US1 ZC/TO ~l ~ ~-1 1 r ACKl CH I IEI2 ~ ,~ ,,, I I 1 , I I s ",., 61 o 63 62 r- 01 IUS1 FF 18 FETCH ~ c i5 R RE SE T CH A NN E L INTERR UPT I CH l ~-- ---- - - - - ---- - - - - --------------- - -- --- - ----- I J FIGURE 4-16. ZILOG ZSo-CTC ZERO COU NT/T IMEOUT (ZC /TO 1) AND CHANNEL INTERRUPT. 47 I G generated by transi stors 42 th rough 50 as part of the inter nal i nt errupt daisy cha in . FFl8 is reset at the end of a retu rn from interrupt instruction i f there are no higher priority i nterrupt s (IE Il = I). Refer to Secti on 4.4 for a discussion of how the channel i nterru pt si gn als are used in eTC interrupt servicing. I I g M I 48 I I I I I I o SE CTION V - SPE CI FICATION REVIEW The in format i on and comments in this secti on ar e based on a Zil og Product Specifi cat i on dated Apr i l 1978 included i n the Ap pe ndix of this report. The Z80-CTC Features li st sh ould include the ti mer resol ut ion and max imum delay tim es . circuit s. These are useful poi nts of comparison among t imer The resolution is 8 microseconds (presca l er < 16) an d the maximum delay is 32 milliseconds (prescal er -I 256 ). The bl oc k di ag r ams i n Fi gures 1 and 2 shou l d separate the i ntern al dat a bus from t he con t rol 1 i nes to sho\; more dearly the fu nct ion of eac h control line. Timi ng Waveforms on pages 3 and 4 show bus t i ming rel ati on shi ps for eac h of the CPU cycles . Expla nat i on for the return f rom i nterrupt cycle i s correct but not clea r ly wr itten. The Programming sec ti on details the channel operation in both the t imer and counter modes. The timer resolution and max imum del ay t ime can be calcul at ed from the formula given under Bit 6 ; O. 49 A.C . character istics are shown both for the Z80-eTC (page 6) desc ribed in thi s report and the faster ZSOA-CTC (page 7). I I I I The maximum cl ock fre quency for the ZSO-CTC is 2.5 MHz while the ZSOA-CTC is 4MHz. An A.C. Timing Diag r am is on page S. Abso lut e Maximum Ratings are listed for the commercial temperature range of O°C to 70°C. The rat i ng for the voltage on any pin wit h respect to ground of -O.3V to +7V i s specifi ed to insure that the input junctions do no t bec ome forward bia sed (- O.3V) or t he input vol ta ge is not great er t han the punch-through voltage or fie l d t hreshold volt ages (+7V) whi ch may damage the device. The power dis si pat ion ra ti ng of O. SW is sl i ghtly greater than the maximum oper ating power dissi patio n [ lee (VCC + 5% VCC)] of O.64W. Power di ssipati on of O. SW i s adequately conservative for a ceramic package at 70 °C amb ient. o The DC charact er is t ics i nclude Darlington Driv e Current (IO HD) of -1. 5 mA at VO H = VE XT = 1.5V. This is the source current ava il abl e to dr ive the base of high current transi stors in the Darl ing ton confi gurat ion. ~ I Capacit ance is measured at IMHz separately for the clock, input pin s and output pi ns. Pac kage capacitance has a signi fi cant effect. 50 I SECT ION VI - CONC LUS IONS Th e Z80 - CTC , as we ll as the Z80 PIO and SIO are not gener al pu rpos e de v i ces. The contr ol signal s are unique to t he Z80 - CPU, and the ad di ti on a l c irc uit r y requ i red for the interface would not j ustify us i ng the CTC in othe r mi crocomputer systems. Moreover, t he CTC re l ies on the Z80 -C PU RE TI op codes for interrupt processing. The maximum t imer delay of 32 ms. is a li mitation comp ared t o com peti t iv e t i mer circuits. The da i sy chain in t err upt structure imp l emented in t he part lim its the abil i t y to prog ram the interrupt priority, b ut has the advanta ge of re d uc ing softwa re requirement s. • The bus t imi ng spe cif icati ons are critic al whe n de s ignin g a syst em wit h many peri phera ls and large memory. Buffers are al most always required to driv e the address and data bus. Delay times mus t be revised and in s ome c ase s th e system clock speed lIlay have to be red uc ed . I 51 SECTIO N VII - RECOMMENDAT IONS f a progran~able count er and t i mer f unction is needed in a ZSO-CPU microprocessor system, t he ZSO-CTC wil l be the most favo r able choice , I o since other timer circ ui ts (su ch as t he Intel 82 53 Co unt er/Ti mer ) are not direct ly compati ble wi th t he Z80 con t r ol si gnal s. The ti me required for te sting the Z80-CTC shoul d not be excessive, s ince the four channel s can be tested concurre ntly. I I I A ga te l evel descri pt i on of the part is required t o estimate the faul t cover age of pro pos ed test seq uences. Workmanship exh ib i ted in the sampl es exami ned in th is report was good. However , tr adi t io nal mi litary part testing must be cont i nued to catch reocc urring probl ems such as package lid sea l leaks , loos e wire bond s and intennetal l ic format ion. Lo ng bonding wi res and voids i n the die attach area are potentia l reI ia bil it y ha zard s encountered in this o examination (Secti on I I ). Chip temperatures and metal curre nt dens it i es shoul d be re-evaluated u for any vers i ons of this pa rt specified for higher t emperatu re amb ients. 52 Z80® -CTC Z80A-CTC o o I o ProductSpecUfication APRIL 1978 Zilog The Zilog Z80 product lin e is a co mplete se t o f mlc ro compute r compone nts, develo pment systems and su ppo rt soflware. The Z80 microcom puter co mponent set includes all of th e circuits necessary to build high-p erfo rmance microco mpute r systems with virtually no o th er logic and 3 minimum numbe r o Fl ow cost standard memoI)' elements. • Selectable positive or negaLive trigger may initiate tJLnt.'!r o peration. • Three channels h ave ze ro co unt/li meout ontputs ca pable of driving Darlin gton transistors. • Da isy ch ajn p riority in te rrupt logic include d to p rovid e for automa tic in terrup t vec torin g wHh out ex tern al logic . • AU In puts and outpu ts full y TT L co mpati ble. • Outpu ts directly compat ible wit h Z80-SIO. The Z80-Cou lller Timer Circuit (CTC) is a prog rammable , fou r channel device that provides counting and timin g func tions for Ihe Z80-CPU. The Z8 0-CPU configures the ZSO-eTC's four indepen deo t channel s to o pe rate under v::ui ous rn o de~ and condition s as re quired . eTe Architecture St ructure I I • • • • • A block diagra m o f th e Z80-C'TC is shown in fi gure I . The in tern al struc tu re o f th e Z80-CTC consists of a Z80 ·CPU bus inte rface , intern aJ contr ol lngic , four counter ch ann els, and in terrupt control logic. Each channel has an int e rrupt vect or for automa tic interrupt vec torin g, and interrupt prio rity is dete nnined b y channel n u mber with chann el 0 having the highest pri o rit y. N-Channel Silico n Gate Depletion Load Technology 28 Pin DIP Single 5 volt supply Single ph.,e 5 yoll d ock Four inde pe nd e n t program mable 8-bit co unte r/ J6-bit tuner channel s Th e channel logic is compose d 0[2 registers, 2 co unters and contr ol lOgic as shown in figure 2. The regi ste rs includ e an 8 -blt t ime const an t regisre"r and an 8-bit chann el co nt rol regis te r. The cou nters inclu de :m 8-bit reada ble down coumer and an 8 -bi l prescaler. The presc. le r may be programmed to divide the system clock by eit he r 16 o r 25 6. Features • Each channel may be selected to o pera te in either a co unter mode or timer m ode . • Pro~r3mmable interrupts on coun t ~r or tim er s tates. I I u • A time constant registe r autom atically rel oa d s th e dow n cou n ter a t l eTO a nd the cyd e is repeated . • Readable d own co unter in dic:J les n um be r o f Co unts-ta -go un til ze ro . • Selec table 16 o r 2 56 clock prcscaler for each time t ch annel . +SV c....() '''·T[ RNAL CO(\ TROL LOGIC 'I' 11J / OUA • CONTkOl {·PU A BUS 110 IV / lI:. RO CO U:.iTrTl \lEOUT 0 <'" I-lANNE L I,jI r LOCK/TRIC<;t:R Q ~ ~'"''' INT [ RN U BUS 6 I lit J ~ ~ F( ffi"fffiOL LOCIC ZE RO COlI!'ITr'TlM1:.0U T "2 ,II,,"N": {" LOC K./T R IGGER 1 . , INTERR UPT CONTRO L LINES I t LOC K[TRIGGER, 7 N'"RRLWr - ZERO COUNT/TIMEOu r I [j FIGUR E 1 CTC BLOCK DIAGRAM 53 -, ~/ t:1f .... ~NF.l 1 CLOCK/TRIGGER 3 / Channel Counter and Register Description I I count o f ze rO. At any time, th e CPU ca n read th e number o f counts- ta-go un til a z.e ro COlilE. This coud ~ r is de· cremen ted by th e prescale r in tim er mode and CLK/ TRI G in counter mode. Time Constant Register - 8 bi ts , loaded by the CPU to in itialize an d re- Iuad Down Counte r at a count of ze ro. Channel Control Register - 8 bilS , loaded by th e CPU to select lhe mod e and conditions (If chan nel opera tion. Prescaler - 8 bit counte r, divides system clock by 16 or 256 for decreme ntin g Down Cou nter. It is used in tim er Down COUllter - 8 bi ts, loaded by Ihe Time Cons tant Re giste r under p rogram control an d automatically at a mode only. ClIANN EL / / CONTROL I I AND LOG IC (8 BITS) ~y Q TIME CONSTANT REG ISTER (X HITS) REGISTER V ~/ INTERN"L BUS / 'I' / PRESCAL ER (X BITS) <"'-7 Zf RO.Ca UNT/TIMEOUT DOWf'toI CO UI\TER (I'! 8lTS) 7 / (X Tl RN A L n orK:TIML:.R TRI GC L:.R FIGUR E 2 CHANNE L BLOCK DIAGRAM Z80-CTC Pin Description I 0, CPU D~~~ ~ '" OJ (t4 " " " " " ., " '" ''' "" " 1 "" e TC CONtll.OL r /lOM CPU CS I Ml lBO CTC Cll( '11" , " CllI:IT RGl ~ " """ ) ~,~~::;' Cl KI HIGJ -" CON 'lIOl '" ~~ 11'(1 " " " CLK/TRGI Chann el I Ex tern,1 Clock or Tim e r T rigger (I nput) CLK/TRG 2 Chann el 2 Ex .elO.1 Clock or Time r Tri gge r (lnp ul) CLK/TRG3 Channel 3 Ex tern al Clock o r Timer Trigge r (l n put) ZC!TOo Cha nn el 0 Zeru COUll t or Ti meout (o u tput , aclive high ) if(StT iOilo OAIS Y { Cha nnel 0 Extern.1 Cloc k or Time r Tr igger (ln pu t) ZC I1 02 ;;0 IH flR RUPT CLK/TRGO 2Cfre, " DC 0, mIT'G 'l •-sv G>O 54 o I Z80·CTC Pin Description (continued) ZCiTOI ZC/ T0 2 RD Ch <lnnei ~ Zero Coum or Timeou t lEI Interrup t Enab le In (inpu l , , clive high) lEO Inte rrup l Enable Oul (o utp ul, ac tive hi gh). 11:. 12nd lEO fO lm a da isy cha in conn ec llon fo r prio rity int c: rrup t co nt rol ac ti ve iow) (OU lpU L, ac tive hi gh) I I I 8 I Rea d Cycle Slalus from the Z80-CPU (In put, Channel i Zero Coun t Or Ti meou l (o u tpu t, ~di ve hi gh) CSI - CS0 Channel SelecL(in put , acti ve high). These fo rm 3 2·bit binary add ress of the channel to be accesse d . D7 -D0 Z80-CPU Dala Bus (bidi rectional, Lristate) CE Chip Enah le (inp ut , acti ve low) <l> System Cloc k (i nput) MI Machine Cycle One Signal from Z80-CPU (i nput , lK tlve low) IORQ Input/ Outp UI Request from Z80-CPU (i npul , active luw) Interru pt Req ues t (O Ul plH , ope n drain , INT active low) RESET sto ps all channel, from coun lin g and resets chann el in te rr upt enab le bits in all control registers . DU l"I ng ["cse t Ume ZC/T0'll-2 and tNT go to the Inac tive sta tes , lEO re neels the state o f IEf , :md the data bus output drive rs go to the high impedan ce state (in put , active low) RESET Timing Waveforms CTC WRITE CYCLE IlIu s t r ~ted here is the IIm mp. for loadi ng a chann el cont rol WOl d, (i me cOllS'anl and inte rrupt vecto r. No wa it st<ltes are allowed for wmmg to the CTC other than th e aut omat icall y Inserted (T w *) . SlIIce (he t i C does not recei ve a specifjc write signal, It in te rn ally genera tes it s own fro m !h e lack of an RD slgnll. cS0- 1 ,,,; " ,. Cl! X '"'" '" " L cl-I ",,'. n .. OORESS X \ / "' X OA l A CTC REA D CYCLE I rn ustra ted h~re 1S the timing fo r readi ng a channe l's Down Counter when in Cuun ter Mode. The value read ont o the data bus reJleClS the numbe r o r eXICrIl ,l1 cl oc k's rising odges pri or 10 the rising eqge of cycle (12)' No W'llt stotes are allowed fo r read ing the e TC o ther [ha n the ::Iu to m.lically inse rt ed (Tw' ). ~u " ,. tS o. I ct 10irn '" X \ X / \ / Cl-l" "' .... ;l "OORESS '" GO DATA INTERRUPT ACKNOWLEDGE CYCLE Some ti me aft er an in ter ru pt is req ueste d by (he CTC, the CPU wJII send OUI a ll in lcrru pt ack nowledge 1M I ' nd JORQ) . Dur mg Ih is tim e Ihe HHcrrupt logic of thc eTC will determ ine the highest priority channt'l which IS req uesting an interr upt. To insure (hJt the da isy Chatll enab le li nes stab iJi L.e. chan nels are mhiblted fro m ch::lnging the ir in terrupt re quest slat us when is 'clive If tho CTC Inle rru pt Enable In put (IE I) is active . tl\cn fhe highes t priority in terrupl in g channel phlces thl! CO nl ents of ils in tcrru pt vecto r legis(er on to th e Data Bus wh en (ORQ goes aclive . Add itional wait cycles are allowed. '" m ~ / / \ ." \:======= '" =========_____ J DArA 55 ( veCTOR > I Timing Waveforms (continued) RETURN FROM INTERRUPT CYCLE o I I I If <I ZSO per ipile ral device has no ill!c rrupt pendi ng and is n(l t unde r service , II, cn its. lEO = tEl. lr it has an interrupt ,, " " -, ,, T, ' 4 TJ " " under se rvice (Le . il has :lJI1!l1d y in terr up ted and receive d an interr upt acknuwledge) lhen its lEO is al ways low, inltjbit mg lower p; ion ty chips fr um inter rupt ing. If it has:1 n inter rupt pe nding whidt has not yet bee n ac kno wledged , l EO will he low uiliess an "£ 0 " IS de coded as lhe flrS l byte of a two byte up eotic . In thie; >':Jse, lEO WIU go high until the nex t a pcade by re i~ d ~ c \.)dl'd, whc reup<.>11 It wi ll :lga in go low. If the second byte vf lhe upcQik was a " 4 0 " then the apcad e was an RETI in~ l(u c lju n . Afte l an " EO" opc(}de is decud ed, on iy the peripheral device whi ch h,n inle rrU plcd and is cu rrently un der se rvice will have its l E1 1llgh "od lIS lEO low. This devi ce is th e high· est priont y device 111 the daisy chain wh ich has rece ived an inter rupt ack nt)wled ge. Al l o tl!er pe rlp he raJ s have lEI =lEO . If rll.e nex t opcode byte decoded is " 4D", ti llS peripheral device will reset Its "interrupt undt.: r se rvice" co ndi ti ou. Wail cyd<s are allowed 10 Ihe cycl es. Mi \ I ;m ~ 1 I \ "--------.I ~ 0 0 -°7 -------,----------- _______ .J '" --------------~I lEO m I I o I DAISY C!-IAIN lNTERRUPT SERVICING UJUSHJ led :11 rigill IS J tY Plcal llested in te rrupl sequ ence In the eTC In th is sequence channel 2 inl2 rru pts ;Hld IS gr~l!1ted service. Wh ile th is ch ann el is being se rvi.ce-d , high er priol ity ch::mncl I interrupts and is gr:lj~ ted service . The service l ou line ro r the highe r prio rity channel is completed and a RET] instUJ CTJ On is execu ted t o indicate to the chunnd th:U it:) routine is complete, A t this time th e service rou tine or lowe r priori ly cha nnel '1 is completed. whlch ma y occur 1 CHA ./\If! I HOUt~ T S ~ I(I l A/j I PI1lRRU~1 AIID IS AL ItNOWI (OGf U UNOtR SER\·ICf SEII.\'I('( R.i5P1 'U f O IEO~ IU Ita~1II eH A N~ H II~ lf ~"U~n311~ f"[ NDSSE AVI CUIC SEII VI CE CO'>1Pl ( I E , '> SteO NI) ·AI TI IN S 1~UcrII)N 'lO ~ I I I{O ~ 01 C"". 'lttl S[III/ I(( flft llM{ O ~, I ISS U(Q ON r OMPI( I'O N 0' <H ANN t~ l stl;~l.{i flIlUII .... E ere CO UNTING AND TIMING I In the count er mo de Ihe risi ng or faili ng edge of th e eLK inp ut c aIJS~S ihe co unte r to be de..: remc nte d. The edge is detec telJ tOllilly aSYilchlOtlOilsly and must have a nli ntmU m ClK ptllse wid th. However,th e Counlei is sy nchronous with cP there l"cH e 3 se tup tiltle InUS.: be [11(' £ whe n it is d esh~d La have the Cfl lln ter decremen ted by th e next rising edge of <fl . ", reiTO hi lhe timer mode lhe presca ler ma y be enabled by a rising falli ng edge on the TRG input. As in the co un ter mode, th e edge IS detec ted lo ud ly asy nch ro nously and must have a mi ni mum TRG pul se Wld! h. Howeve r, wh ell tim ing IS 10 start with re spec t to ' he Jl ext ris ing edge of (~\ a setu p rim e mus t be me t. TIle prescatc r CO li nts rising edges of (1), Or ~ ! INTE RNAL COU N TER ZE 11 0 cm:rn -----"I \ ~--~ \'-_______ -ILSL.JLSL.....JL "G INTERNAL TIM ER 56 ~ \ / STAAT 1 1M ",' . I I CTC Programming SELECTING AN OPERATING MODE No time constan t WIll follow th e channel cont rol word . One ti me cons tant must be wr ilte n (Q the chan nel 10 initia te ope ra lion. Bi l 2 = I The time constant for th e Down Count er WIll be the ne xt word wr illen to th e selec ted chan nel. If a lime consta nt is loaded whi le <I ch<l nnel is countin£,. (he present co un t will be co mpleted before the new lim e cons tant is loaded ml o the Down Counte r. When selecll ng <l channc!'$ opera ling mode, bit 0 is set to I to Il idicale this word IS lobe sto red III th e cha nnel control regis ter. '" " ,,, '--v---' 1'11'1' I I I IlJl 2 =\l I"" . ,,' "," '" '" u_ '. '" '--v---' ,II!,' ! ' ' ' " M '~~<l ' ' ' ' \ Bit I = Bit 7 = 0 BII 7 = 1 Channel int err upts disabled. ~ Channel conti nu es co unl ing. Stop ope ra ti on. If 8it 2 = I cllJ nneJ will res ume operati on alier 10ad JO g a time constan t, oth erwise a new contl ol word mU ~ 1 be loaded . Bit I = I Channel Illte rrupts ena bled to occ ur every time Do wn Cou nter reaches a count of ze ro . Sett ing Bit 7 does not le t a precedi ng count o f ze rO ca use an int e rru p l. Bit 6 = 0 Bit 6 = I LOADI NG A TIME CONSTANT Tllner Mo de - Dow n co un te r is cl ocked by .he prescalt' r. The perI od o f the coun fe r is: Ie • P • Te tc = sys tem dock pe riod P = preseale of 16 o r 256 Te = 8 bi t bi nary progra mm ab le time constant (1 56 on ax) An 8-bit time constan ! is loaded m to the Time Co nstan t registe r foll owtll g <l chann el cont lul wo rd wit h btl 2 se t. All ze rOS in dicate a ti me constant of 256. ,.. Counter Mt)l1e - Dow n Coun ter is cl ocked 1(' 7 bv c xtern ll d .)c k. The prescalcr is no t use d. Bit 5 = 0 Bil 5 = I Bil4 = 0 Tjmer ModI." Only- Sys te m dock cf> by 16 ill pre sc aler. IS ". oc. ", ", "~ .. , '" u, ". t( : '" '" ''". divided LOADIl'>G AN INTER RUPT VECTOR Tim er ~Iodc Onl y- System clock <I> is di vid ed by 256 In prese, ler. The Z80·CPU req uires thdt an 8-bit mterr upt vector be supplied by th e IIlterr uptin g channel. Th(' CPU for ms the ad dress for rhe Inlerru p t se rvice rC'lUl ine of the cha nnel using this veCfQ r. During an interrupt ackn o\.I.'Iedge cycle th e vector is placed on Ihe Z80 Data Bus by the h ighes l pri orit y channel reques nng se rvice ll t tha t ti me. The desired in te n upr vec tof is loaded into th e e TC by wnting int o chann el 1/1 wirll a zero in D0. D7 ~D3 cont Jin the sto red rn terru pt vector , D2 and D I are not us.ed in loa din g th e vecto r. When t he e TC res ponds to an lJuermpt ac knowledge, th ese tw o bilS con t:u n th e binary code o f th e highes t pri orit y r.: ll annel wlw,;it re quested th e intenu pt an d D~ conta ins a ze ro since lhe add ress of the internrp t se rvice routI ne start s at an even bYle. Channel f/J is the- high es l priorit y ~ h onncl. Time r Mode - nega tIve edge trigge r starts timer Ope(:)lIon. ~l ode - nega tive edge dec lements Co untel Ihe do\\ n CQUO[t!r. lli t4 =1 Tilne r Mudc - positive edge trigger Sia l t 50 timer OpcFHion. Co unler Mode - posi tive edge decre meOlS th ~ J OW" culln ler. B,; 3=0 Time, t\ lo de Only - Ti me r begill s operati on on the rising edge o t' T2 of the ma chin e cycle foUowing th e one th at toads th e time com.tam Bit J = I Timer Mode Only - External tl'iggcr is val id for st:HT ing t imer opcr:Jtit"lIl after risi ng edge f T~ 01 tile Ulllchme' cycle fo ll owing t he ne Ih3t loads the lime co nstan t. The Pre· sC~ller is decl emenh:t1 2 clock cycles later if tht- setu p lim\! IS met , ot herwise 3 cloc k cycles. '" -, 57 ". '. '" 0<. '" " " ", ": '. Z80-CTC A.C. Characteristics TA = 0° C to 70° C , Vee Signal Sym bol I <l> I =- 1-5 V ± 5%, unless o{ herwis e noted Min Pa rameter 400 170 170 'c Clock Peri od 'W N>HI Clock Pulse WId th , Clock High tw(tI->LJ Cloc k Pul se Widt h, C lock Low 'r. It C loc k Ri se and Fait Ti mes IH Any H o ld T ime for Speci f ied Setup Time Max Unit 11 1 2000 2000 30 n, n, ns Comments "' 0 ns 160 '" 0 Control Signal Se lup Time to Rising Edge 01 q:. During Read t Srf) (CS) CS, C E o etc or Wr ite Cycle 480 Data O utput Delay from Rising Edge of RD Duo ng R ead tOR(O) ns 12J Cy c le I Do - D7 I lEI o o iORO Da ta OUtput Del a y from Fall ing Edge o f IOR O During IN T A Cycle 340 os tFIO) Deley to F loatmg 8us (Output Buff er D isable Ti me) 230 ns ts{lEIl l EI Setup Time [0 Falling Edge o f l ORO Du ring I NTA tOH UOI lEO Oelay Ti me fro m RI smg Edg e 01 IE I tO l( jQ ) l E O Delay Time from F al lmg Edge of lEI I DM OO) lEO De lay f rom Failing Edge o f M1 IInterrupt Occurring JUSt Prior to Mll ts lpll A) I ORO Setup T im e to R ising Edge of 4> os 200 DI.~ rin g i Read or Ml Setup Ti me to Ri Sing Edge of $ D Ur ing lNTA or MI tS<P( 1\'11I M1 220 190 300 '" ns n, 250 nS 210 ns 240 n, (3) [3 J (3 J Cycle RD iNT tS<!, {RD) A D Setup Time to RI Sing Edge of <1> Dunng Read or M1 Cy cl e ~ DCK U T ) ! NT Delay l ime fro m RI smg Edge o f ClK/T RG t D ;", (IT) I NT Dulay T im e from RISing Edge of <.P tC(CK) Clock Per iod I f. tf Cl OCk and Trlggp.r R ise and Fa ll T imes tS(CK) Cloc k Setup Time to Rising Edge of 4, for I mmediate Count t SfTR l Trrgg er Setup Time to RIsing Edge of $ f or Enabl i ng of ClK ITRGO_3 2tC(CI») + 200 tc i ll») t 200 2t c l ~' - Counter Mode T imer Mod e Counter M ode 50 210 210 Co u nle r Mode T uner Mod e Prescale r on Fo ll owing R isi ng Edge of $ tW(C TH ) 200 C lock and T r igger High Pu lse W idt h Counter and Tim er M odes lC/ TDO _ 2 Notes: 200 'W IC T LI Clock and Trigger l ow Pu lse Width l DH (ZCl le/TO Delay T ime from RISing Edge of <P, Ze /TO High 190 Counter and Tim er Modes tDlilel ZC /T O Del ay T im e from Fa il ing Edge o f 4'. lC/TD low 190 Coun ter and Timer Modes te - Counter and Timer Modes tw t tf)H ) I tw'_r.l1U + Ir -t tt (21 I ncrease d elay by 10 osec for each 50 r>F increa se In loadin g. 200 pF m ax im um f or dara lines and 100 p F tot co nlro ilines. [31 I nerCllse del ay b y 2 nsec for each 10 pF in crease in loading, 100 p F ma x imum {4 J 'R'E'S'tf" m ust be a{:twe for a minimum of 3 cloc k cy cles . [ 1\ OUTPUT LOAD CIRCUIT TE5T POI NT ~~~~RO~:;.}" o---------L-~ 1 rh K1C~l I - o J2 J Write Cycle I o t DI(O) Cycle lEO I I ns Dal a Setup T ime to R ising Edge of <b Durmg Write Cycle Of Ml 60 IS <p W ) Vcc Rl ~ 2 ' K~1 CR, CR 2 CF!: 4 IN 914 OR EQUIV A L EN T CL~ 500 fON AlLPINS CR, C, _ 250,A C R4 - 58 I Z80A-CTC A.C. Characteristics TA = 0° C to 70° C, Vcc -=- +5 V ± 5%, unl ess otherwise not ed , Signal I Symbol <I> tc 'w l(l>i-II Clock Period 'w1'~Ll Clock Pul se W idth , Clock L ow Ir• CS, CE, etc I I I Parameter tt Cl ock Pul se Wid th , Clock High M,. Unit 250 105 105 [1 1 2000 2000 30 "' n, Cloc k Rise and Fal l Times Any H o ld T i m e f or Specified Setu p Tim e tS¢. (CS) Co n't ro l Signal Setup Time to RISing Edge o f or Wri t e Cy cle tOR (D) Data Output Delay from Falling Edge of RD During Read Cyc l e 15",101 Data Se tu p Tim e to Rising Edge of It'! DU ri ng Write o r Ml ($ 60 During Read 380 50 Da ta Out p ut Delay from Fal ling Edge of IOR G Du rmg Delay t o F loat ing Bus (OUtput Bu ffer Disable T im e) t S(IEI) lE I Set up Ti me to Failing Edge of IOR O During I N T A , lEI tDH(IO) I'E O Del ay Time from Rising Edge of lEI t O LUO) lE O Del ay Tim e from Falling Edge o f lEI t OM(IO) lE O Del ay from Falling Edge of Ml (In terr upt Occu rring just Prior to "' 110 "' "' 160 130 190 "' "' t S$( IA I IOAO 140 M1 ) IOAO Setup Time to Rliing Edge o f Wri te Cycle 11 5 Du ring Read o r ¢ tS<t>(Ml ) Ml Set up T im e to "' RISing Edge o f Du ring I N T A or M l 90 n, RISing Edg e of <1 ' Dur ing Reed Or Ml 11 5 "< (1) 121 12 1 13 1 13 1 13 1 "' " Ml n; 160 Cyc le ., "' "' I N T A Cycle tFIO) n, "' C ycle t ol ( O ) Comments n, 0 'H 00 - 0 7 lEO I Min Cyc le tStf:>(RD) R5 RD Setup Time to Cy cle . ~ -, INT tDCK( I T) INT Delay T im e from RISing Edge of elK/T AG lOIl.I IT ) tN T Del ay T ime from RiSing Edg e o f ¢ tC (C K I Cloc k Period (1 J (2) (3) [4) T imer Mode 50 Ir • If Clock a nd Tngger Ri se and Fa ll Times C!ock Setup Time t S(TR ) T r igger Set u p Time to R ising Ed ge 01 ¢> f OI enabl ing of Presca ler on Fo llOWi ng Rising Edge of ¢> tW(CTH ) C lock and T rigg er High Pu lse Width tw(CTLl Clock and T r igger Low Pulse Width tOH (ZC) ZC /T O Del ay Time from RiSing Edge of (I), ZC / TO High 190 Counter and T im er M odes t DL(ZC ) Z C/ T O Delay T im e fromFalhng Edge of <1> . ZC /T Q L ow 190 Coumer and Ti m er Modes 10 R ISIng Edge 01 <I> for Im m ed iate Co unt I I 21 0 210 Counter Mode 200 Cou nter and Ti mer Modes 200 Coum er and Ti m er Modes Timer M od e t C':: tw (ci)H) + tw(¢Ll -+ t r + tf · Inc rease delay by 10 nsee fo r each 50 pF Inc rease in l oading, 200 pF max imum f or da ta lines and 10 0 pF for contr o l lines. In crease delay by 2 nsec fo r each 10 pF Increase 10 l oad in g, 100 p F max imum RE St: T must be active f or a minimu m of 3 clock cycl es. OU TPUT LO AD CIRCUI T Vee TEST POINT fR OM OU TPU T l.!NOER TEST Co unt er Mode Coun t er Mode 2 tC(<1» Notes : + 140 tC (t::» + 140 'SiCK } CLKITR GO_ 3 ZC / TOO_ 2 2 1C( II' ) 0-------1 R1 eR , f' 25 0 j.l A ~2 I KH CR CR I - CR 4 2 I N9 14 OR eOUIV ALE Nl C L ~ SO pF ON Al l ?INS CR, CR, 59 A.C. Timing Diagram u CLOCK Tlmmg meaSUfe m e ntS are made at the followl n9 voltage$, unless o spec I fl1,d "0" Vee - .6V .45 V OUTPUT 20 V .8 V IN PU T 2 .0V .8 V FLOAT "V ±O.5V ~~:~~2~n~rvvv '" t w(1)L)..... I I o therw~ $e "1 " __ I--.tc - - t r ..... -4- .... tS(I>( CS )-~ \ CE -tf tH le S) _ 1 ~---- - _ts,j,(ROI \I--'DRID)~ RO / - - 15" ,(0).,.- --- - - tFI O), tHRtO) 0 0-°7 -tol( O} ....... I I '\ IOR O / -tS</'l (M 1) \ M1 I ___ 'D_MIIOI~ '/ . lEI ___ o 's~IIR)I - - .- EI O -~ t s (1 EII \ t o L {lO ) ~ ---P- ~---- \~ \ ilI'r 1 --+----' c ICKII-+----~. 1 - ts(CKI - _ /' \ COUN TER MODEl elK! --. t OH( ZCI - l~ tw (cT~)---=! 1 I tw ICTH )_ \ 1-'wICTHI- 1 TI MER MODE) ZC/ TO O_ 2 tOCKtlTI - J 1\ -~I 'wlcTLlI~ -1'sITR' ~ TRG O_3 o j- - tDH{IO ) 60 - t ol /2el l- f ~ o Absolute Maximum Ratings T~1I1peralti l e S IOf:JSC T e , IIp.!"I Jltl(C I\ II ~' V,)i! Jg.: {)II R C!{I\' d 0" (' 10 70" C -(,5" (' to t I ~ O" (' Un de r Llw. IJ IlI \V d h "Commenl StrcsscsJbov(' t h o~ lislt' d unde r" Absolu te Maximum Ra t ing" IllJy <':JU)C permanent d ama ge 10 the JevI..:e Tll l\ (\ Til (;[(lunJ O}lW P, )Wel 1)1»111 .11 11 )11 ~l(t"~~ r ~llI l g o nl y ~IIJ I IHh:t Wlidl \l per ~ Wll1 0 1 J th~ llcvl ~<: - U J V \.1+7 V JI Ih <:'s c Of ,IllY Oilier c()ndlll0n " bove th ose lll(hlJlCU III Ih e \'pCfJI Il)IlJI ,Cc'[ 1ll1l:> ui' lh: ~ $pe~' lIi ~ a IH)n I~ llOlllll p ll.: d FX:po <; lIre I,) Jhsulllie Ill~Xlmlim ralllig HlIli.ii!I(llh lor C), iCllued pe llod, mJY 31'1 e~ 1 Je' ll. e rc hJb dllY nc. Characteristics 1 A .::: 0" C to 70 G (" V'-l = S V Z80-CTC ._. Parameter Symbol ~ I ! )'}I ulllc~, (\l hcrW I ~C ~pCL; I\I.'J ... Min M" -0 .3 .45 U nit Te st C or'K:l. l lon V VI Le Clock Inpu t Low V oltage V IH C Cloc k Input Higll Vo ltage [ 11 V IL Input Lo w Voltage - 0 .3 0 .8 V V ,H InpUT Hi gh Volta ge 2.0 Vee V VOL Output Lo w Vo ltag e 04 V IOL = 2 rnA V OH Ou tput High Voltage V IOH :::: - 250 iJA l ee Power Supply Current 120 mA Tc - 400 m ec III Input Leakag e Current 10 "A VIN '" 0 to VCC ILOH TII ·State Ou t put Lea kage Curren t in Floa t 10 "A VOU T = 2 .4 to Vce I L OL Tri·Stat e Output Lea kage Current in F loat -10 VO UT '" O.4 V IOHD Da r lmgton Drive Curre nt "A mA Vee - .6 Vce + .3 2 .• - 1.5 V V eXT - 1.5V R eX T =- 390 11 Z80A-CTC Sy mbol VIL C .. ... Parameter Cl ock Inpu t Low Vo (tiilQe VIHC Clock Inpu t Hlgll Vo ltage [ 1 ) V ,L Inp ut Low Voltage -0 .3 0 .8 V V ,H loout High Voltage 2.0 Vee V VOL Output Low Vol tage o. V VOH Ou t put High Voltage l ee Power Supply Cu rre ", 120 rnA TC - 250 nsee ' ll Input Leakage Curr e nt 10 "A VIN =- OtoVCC ' LOH T rl -State OUtput Lea kag e Current in Float 10 "A VOUT = 2 .4 to VCC ' LO L Tr l-St ate Ou tput Leakag e Cu rrent In Floa t Darli ngton Dr ive Curren t "A rn A V OUT ::: O.4 V 'OH O Min Mox Unit Test Con dition ~ I I -0 .3 .45 Vee -6 Vee + .3 V V V 2 .4 -10 -1 .5 - --_. IO L z 2 rnA IOH :::: -2 50 pA VeX T = 1.5V R EX T ; 390<1 Capacitance TA=2 S' C,f= I MHz Sy mbol Parame ler Max. Un il Test Condition C." Clock Ca paci tance 20 pF Unmeasured Pins CIN In put Capacnance 5 pF Returned 10 Grou nd COUT Output C:Jpa cil:Jllce pr 10 - 61 - I Package Configuration Package Outline .". " o, ~ ~ '" "'..,, I '"0,n, ~ (.l~ TR <;;. lCIJ(.\ 1 tUtlTMG , C l ~I ' "G1 Z8QA -CT C ~ CllOl CltJT ~(l 3 ", li>h-r:. ,lo TE,.... aU oo. n iNi ' N' {NA.II Lii I~ I I " l:'~ ~ ~l -0 '"""" " " "" ~ [J "." ZSO- GTC zcm't 5ti~n''') . _\ 'l:.1O <korrnm> 1 600 I ~ ___ _ ._ (-LOlli.! . -~mmmrm11 l II . ,.'~ , 'nll "'" J . ,I\ ~" ~, 0-.. .. .. I -I ~""" O I"" ~N Sl ONS ~OA I I 1J7 89 R , d~ r \ '.111 l. « lh CilV. MO Q}045 n L _~H 2':'\ 51,,{) T WX 9I G J 6Ut)6 ;1 065 17 H Y!\lIk l' , "')9 l\'nlll1 ~r"1~1 Um '" TLL 2lr3?S l 1166 Hunll~ \Jk, 'IL ~5 gU5 '1" 1 L 2'~ 5 ~)7 8iClO nu . 810 716 2 !~1 Th\. AOO 9?1 17.'14 1I,1hnJtk ill,,;Z!!"'I.' IJm lI d! "'t t-.l!l RuJ" i.,II1 t. Jllkld:.d<,. I l DJ (l9 rLL :JO~ <17 I 9!~ {l I .. rmtnrn.J ~1 c, U , TV. X 1~ J J, ~l') 9,6 9: : 0 Luke LIl~ n .... I)rl~ e Orl.ll\d 0. I 1. :n !'i09 n .L J 1)~ AS,' ~!' 2i.l ~y ~If ~ WI.< I k .. IIt ' IIl '" U·'W \I JI, I"rc R. O uJ nut!~n :loll . "1 ,-\ t' lflO 3 'rLL (r1 7 :n !l2(JU 1\..111110/; ~ I .) ~l Irl'r:ic) ("I UIIl11. J3!i5 A, mh(tI "'1I LJrl ve 1'1\ 1(1 1 34 \1 t.;jIJO H..tJI[tlol. rk lIe..:lrDni \ : 0$ I fo nl S rk~ l I ~ "II (h n~ f... R~ Je l d ll', N( ':1"09 'JlL 9)9 m :x !I .n-4~5 51 11 92~ 11735 'L L5 1 6 :'1l~ 5 l'W X 11 2 89$ ~·,n 7 'I"\'oX l('O ~~ U(J 18) TW:\ T!U 86 2 lH} 1.:1 31 r'"- \. NJ l'i' (lIS "j :'.1 M 9 :' 052 1/I'I n l l ~ C "f .kI0f1 " l du~III ,ll PJI K HL 215 3S.s'300 TVo\ 51 (jt;. ~' li! O l t L 'J IJ8l'! :S 4 ? ~ ~ m x ) 10 7496620 Sumlll, l Ii.l U ql~rll l f~ ~ llvnln :!-oI~fJ 1'\1. 5 1 ~~ J·:!1l 4 1 TWX 9 10 874 2031 weSYE AN ~\ ..rIl nMr k. Ll et lIO Il IC< .-\\IX • k~ tf lm , q 8000 We ltl O: l1 ! IoU ' l on, IX 71 063 T LL 7)] 7S lCIIOO n ... x 9) 0 88)2711 S IIJ \I,'nc'~ M ""un." ~ ol,~ 1 4 9~ ' H ~nn S' .:l ~ 0 1 ~3 "' nJh~l m. 11 l 51A. 131 5 7l'S TWX 6IuJ. .!1 325 1 'i:"::!05 Tll 714 1> }4 9t>uu TWX 9Il159) ]) ! .. V \\ tJIJI\'IIutoJ (Il ! 095 t J, ll hhJ 5 lr~e! !'o ll .r)rv.. CA 'ilJ 765 '-' 1 ' 14 61J I:11 TWX ~L O S!!I 38 1 I lillhl '! \I,' :,. ,· n[l<: J.I~ 1 ~ 9rlb 5-4 0 13~ 2 9 1 0~9'S I SIl3 \ f\J, ~p H 3 ~! 73 n .L ]{ V \'. (:'UhJ::f[')loJ (0 33 11 '0\. l~rll Um- ~ Pl,>e nh . AZ 8.(111"1 nl tr nl 1'? 71·H I\VX ')]0 95 ) r~3ti ~ ! ~;ll\1.lIC ';IT"'l~_ '''\ 5608 t. l h A " ' 11 It' SOll l h ~~ ,\ ltle, \\'.11. TLJ. ~1.16 (,081 08 1l, 1 'J IOu I lX 31·965 2 In(('[1f; ." k IIt-C (I UI1I ~S \V,'l tern IU10Sle\\.I.'l Dr :'t' 977 ~C I II 'J ''''' ~m.e 1.I-lC 1!6 MJL r'H~ll n0 to~ v S u pny\ ,I]',_ C ,\ !)-4Qbt:. fJ 1 .. 08 n 7 110(, 0 HI. J0I573dl I1 1 r wx 9 !O J B 9 H2 10 Uj,N"III1~1 ' 11 . .\1 '\ 55435 ,r l (,I~ E. S ~ 9ff5~ t'\ X 9'1I.d763187 71 LOG SA LES OfFlCLS EASTE R N RE GION MI DA TL ANTI C RE GI O N MIDWESTE RN RE G ION SOUTHWESiERN REGION ZVOit, I nc. 76 lreble Cove Road No llille t1c:'l, J'o..IA 018 6 2 Zil o!!' , In c I) () , Bu ..; 92 Zll o~ , T E L 61 7 6672179 TWX 71 0 34 7 6660 lLL 2013859 15 8 Zll og. Inc . 1701 WooMleld Place SuJte4 17 Sch au mourt: , LL 60 195 Be rgenfIeld, NJ 0 76 25 l\\ X 7 109919771 10460 Dub b Road, Cup erti no, C.Hornia 950 14 03· 0031· 02 CAN A DA U4 1' lK 5 (.:0 A " ~nut 1: \l ernl Jr ~ t' l~ cllun ,n SUI: n} vJk, C" TI L 4 1447612 iO n 'vX 9 10262 1 186 , .."lile Soulh J rOIlIL~ S I"I ' t l)ld I nUIHlru\ P ~ r~ f' Jlo AII '~CA ~J~ 4040 :SUJfC II~'~ \.' Wlll!S Blvd S.lrl DI<'.£O, CA Q1' 1H TLL 714 279 51£'\) 71>1H 3 9 00!l T W X 91033';15 15 HJlllll Jrk Utl IlOlll, ' 2J 1 S0ui hCu rl ,< \\ ~q AUI I. \\1 5) 2 14 c.. . I 111111'- Lk , It V 1V ~.J,1J4rtOtJ ( 0. In (ernl3 lk I:: le; lI",n ,r !hn n ar ~ \\' !! JIIl~/lLm..l CAN A DA 564 ' "" mel S Il ~o::l Mu rrU la!, Uud x''- , 1802 L ( M !leIW! A' ~I'I. C S'!n !J TI:.L T\\X 'lJi'Jf) ~I O 067 ~"T! l - - - - fA /fl l OI I Sso lhbb lll ] ]4 0 ~ .l3 J l~O IIJ]JmJ rk t k . ~ 33 11\ :\ I1] c1 • R R, V W~llh('II:H~ ("" IIIP~ I\ Y 19"t ·!i Sou rll M."I\"''1l I n,I.'\I, vod , CO ;!:ullli fn ]Ji" :[) 1 ~,P2 H :lilOll rk LleLirm ' \C~ 1'1 L 2[4 2.H '-'I o ~,cn AHnl't Uk. G!<1 ve V II I~~e, 11 60076 rU. 3 \ 2 4 37 !i HWI T\ \ > 910 223 )t4 5 l L L 3 \1 3 23 96 71'1 J 100 · A 11h1 u'1f\Jl T" rra,,' AustIL l. TX 1~ ~S 1'\.tII"IJt~ 1- 1 ~' I" !n l<") !'i.lo r In du' Hul ~:.r" ' l d Jlrl:n ~w n \'.11 .') PA 19006 r CL iii. S8!; It V []eclln m.,: ' MOUNTAIN ~Jrd I:. ,,"c'Nle 0 10.. 7 ~ 14 5 III 918 8158458 1"\\,X 910 ~A '" 2290 r"l~u , I'olell I,me \ Jall::rs. T;;. ,S 2J) I I S' u \'f e \l 91,1 Slr~~! I!.lIlfl.lu, NY 1<1:11,11 H J.l\IJ I,I ' 1.. ~JI:~lr llmC~ 4846 S MIDWESTERN fl :ll lrnJr~ Li l:'C lrO IIl ':S ~ 16 M ~m SjrtN 'ILL ~1:\ IIA'I J4SI TWA 9 11., 4'i C' ~2 2J 18:-5 JH,"I"' Jj - (,k n.jJl ~ . R~l '-:{: \\! - - I{, V W"JlhClt ,·ld C u 692 J :!h ll 1 ~ n1"~'\u Rv,ld 4 : ( ht',l nll l I, )nr. \'i ~'h'''lfl l. III ''';'' ! \ 1\0559 J\..- , " ( TII IC S~ S H '" IN .AIlCN T"F,$[S 10.... 1 KLnl Wt;oo d, J.l1 .t'f~1I8 Hl6J(; 5 3\9) OO T\:'X 810 2i J 8179 tJ Jllm.!. [ k. L.lt\. 1/01l 1C ~ 0" 10 ,~O n"P J{M J:::1~ll".. n(;' 4860 Sou l}1 Df' m vll 696 9 Wvrl h lll j,:IU 'l (;~J(',u k o ~d \\ourlhilid un. ulr UI,r 85 Tl.:L 61 4 846 1 ~ 1 \\ II,hn ,· I lnIH.HIIL' I L II r"u ll>ulI A ",:/lII[' t!;!lfmlUft'l-lI) :1217 lI ~ ,'lffl ll"-\ \liI"t~IC Il~..-lI olllc ~ TIl " 1\ 0 11 1 0.,5 9 Tt l lOl '9~ ~,i.U'J I cr I t ~U!11 ~ rk I l e' truT1'~' K,dl nuli< I·_ lc-..'tro ll " I H.. Hm~l\: 25 54 S l ~ l! Slr t~1 - 1.1<111 .Mllt""! .. ZILOG US DISTR IBUTORS - - - \\ Ihlure ikdlU llI~' C251 """ 00' U __ 1 \IO'U ( ~ • EASTERN .,IOO l ',.[ ~" ----1 ~ .. tla·! ~1 r~ I TIc L 3 12 88 5 8080 T\\ X9 10 29 1 1064 Zilog 62 Inc . l19 8::! Skj P;l.l k Circle $ uJte C Irvln t' , CA 9271 4 TL L 7 14 549 289 1 T " X 9 10 5952803 Telepho ne : (408) 446·4666 E U RO PEAN HOOTS Zilog (UK) Lt d N\(:~ ho h()n HOll$e Maidenh eld , l-J erkshi re EIl'l!land ( 06~t:) 36 1:ll!2 r 3 TWX 8 4 ~ 609 n -.'L TWX: 91O·338· 7 6c I f' n nted in U.S.A. C o py rllll'lt Ii) 1977 by l.Jloq. IIlc:.