Nanowire Sensing Systems - Nano-Tera
Transcription
Nanowire Sensing Systems - Nano-Tera
05.02.2016 Nanowire Sensing Systems for Biomedical Applications Prof. Dr. Sven Ingebrandt University of Applied Sciences Kaiserslautern – Campus Zweibrücken, Germany Prosense Winter School @ EPFL Lausanne, 04.02.2016 www.hs-kl.de Ingebrandt | Kaiserslautern | 02. February 2016 | 1 Outline Introduction to the University of Applied Sciences Kaiserslautern Motivation Silicon nanowire (SiNW) detection principles Top-down fabrication of SiNW sensors Electronic readout principles for SiNW sensors Electrochemical characterization Bioassays with SiNW sensors : 1. 2. 3. 4. 5. DNA immobilization and hybridization detection Ca2+ ions – peptide interaction Immunoassays Detection of cellular signals Impedimetric detection of cellular adhesion Possible future assays with SiNW sensors Summary Ingebrandt | Kaiserslautern | 02. February 2016 | 2 1 05.02.2016 Introduction to the University of Applied Sciences Kaiserslautern Ingebrandt | Kaiserslautern | 02. February 2016 | 3 Introduction to the UASK: Zweibrücken Area: 70.64 km2 Population: 34,109 City of roses and horses Ingebrandt | Kaiserslautern | 02. February 2016 | 4 2 05.02.2016 Introduction to the UASK Spread over three cities Kaiserslautern, Pirmasens, and Zweibrücken 5 faculties, 23 courses, 6000 students, ~168 professors Campus Kaiserslautern Applied engineering sciences Construction and design Campus Pirmasens Applied logistics- and polymersciences Campus Zweibrücken Economics Informatics and Microsystemtechnology Ingebrandt | Kaiserslautern | 02. February 2016 | 5 Introduction to the UASK: Study in Zweibrücken Speciality: Large clean room (300 sqm) for education and research Student courses / Summer schools Ingebrandt | Kaiserslautern | 02. February 2016 | 6 3 05.02.2016 Introduction to the UASK: Nanoimprint Lithography Installed in cleanroom of FHKL DFG-‘Large equipment proposal: Obducat Eitre 6“ Nanoimprint-Lithography Ingebrandt | Kaiserslautern | 02. February 2016 | 7 Introduction to the UASK: Schottky Field Emission SEM Zeiss Gemini Supra with high Resolution EDX Ingebrandt | Kaiserslautern | 02. February 2016 | 8 4 05.02.2016 Introduction to the UASK: Raman/AFM spectrometer for TERS Horiba LabRAM system combined with AFM for high resolution Raman spectroscopy Ingebrandt | Kaiserslautern | 02. February 2016 | 9 Biomedical Signalling Research Group (AG Ingebrandt) – December 2016 Ingebrandt | Kaiserslautern | 02. February 2016 | 10 5 05.02.2016 Motivation Ingebrandt | Kaiserslautern | 02. February 2016 | 11 Bioelectronics = Biology + Electronics + Ingebrandt | Kaiserslautern | 02. February 2016 | 12 6 05.02.2016 Activities of the research group Biomedical Signalling Ingebrandt | Kaiserslautern | 02. February 2016 | 13 Motivation: Biosensors and applications Applications Ideal properties: • Food analysis • High sensitivity • Drug development • High selectivity • Criminal investigation • Cost effective devices • Medical diagnosis • Real-time detection • Fast response time • Test of donated organs http://www.minimed.com • Point-of-care usage, … Ingebrandt | Kaiserslautern | 02. February 2016 | 14 7 05.02.2016 common source Field-Effect Transistor common source gate 200 µm 20 µm drain Ingebrandt | Kaiserslautern | 02. February 2016 | 15 Fabrication of ISFET chips to interface individual cells Former FET generation IMM, Mainz MPIP Mainz FZJ Jülich • • New FET generation UASK Zweibrücken ISFET sensors were fabricated having almost flat topography except for transistor gate openings. Cytotoxic T cells: Important role in the immune system by migrating throughout the whole body, recognizing, and then eliminating specific pathogens. J. K. Y. Law, et al., Human T cells monitored by impedance spectrometry using field-effect transistor arrays: A novel tool for single-cell adhesion and migration studies, Biosensors and Bioelectronics, 67, (2015) 170-176. Ingebrandt | Kaiserslautern | 02. February 2016 | 16 8 05.02.2016 Electronic Cell-substrate Adhesion studies with Human T-killer cells 2.00 Normalised Transfer Function (H) 1.75 5 min 10 min 15 min 20 min 25 min 30 min 1.50 1.25 1.00 0.75 0.50 10k 100k 1M Frequency (Hz) Adhesion Adhesion • • Transfer function was changed over time (30 min) • The attachment and detachment can be observed clearly A significant difference in transfer function between cell-covered and cell-free gate depending on type of doping molecules J. K. Y. Law, et al., Human T cells monitored by impedance spectrometry using field-effect transistor arrays: A novel tool for single-cell adhesion and migration studies, Biosensors and Bioelectronics, 67, (2015) 170-176. Ingebrandt | Kaiserslautern | 02. February 2016 | 17 Individual migrating-activated T cells monitored by field-effect transistors Transfer function (H) 3.00 2.75 2.50 2.25 Chip 1 (Ch 13) 2.00 0 500 1000 1500 2000 2500 3000 3500 4000 Time (s) Adhesion and activation studies of primary human T-killer cells (cooperation with M. Hoth – University Saarland – Homburg) Ingebrandt | Kaiserslautern | 02. February 2016 | 18 9 05.02.2016 Detection of signalling molecules involved in cancer signalling Specific binding reaction on nanowires Stern, E.; Vacic, A.; Li, C.; Ishikawa, F.N.; Zhou, C.W.; Reed, M.A.; Fahmy, T.M. A nanoelectronic enzyme-linked immunosorbent assay for detection of proteins in physiological solutions. Small 2010, 6, 232–238. Ingebrandt | Kaiserslautern | 02. February 2016 | 19 Comparison of ISFET dimensions Burj Kalifa 828 m Does Size Matter? Statue of Liberty 46 m + 17 m socket Giraffe 6m 2400x5 µm2 200x10 µm2 Y. Ishige, et al., Biosens H.J. Park et al., FEBS Bioelectron 24,1096, (2009). Letters 583, 157 (2009). 8x4 µm2 ISFET design (© AG Ingebrandt, 2015) for individual cell interfacing Beluga sturgeon 1.4 m Three french baguettes 0.8 m – small diameter 0.08x4 µm2 0.005x1 µm2 Y. Cui et al., Nano SiNW-FET design (© AG Ingebrandt, 2015) Letters 3, 149 (2003). for biosensing Ingebrandt | Kaiserslautern | 02. February 2016 | 20 10 05.02.2016 Motivation: ISFET-based biosensors – General principle • Label – free and real-time detection • Direct electronic readout signal • Possibility of a miniaturization 𝑉𝑇𝐻 = 𝐸𝑟𝑒𝑓 − 𝛹𝑠 + 𝜒𝑠𝑜𝑙 − Transfer characteristics 𝛹𝑆𝑖 𝑄𝑜𝑥 − 𝑄𝑠𝑠 𝑄𝐵 − − + 2𝛷𝐹 𝑞 𝐶𝑜𝑥 𝐶𝑜𝑥 Ingebrandt | Kaiserslautern | 02. February 2016 | 21 Motivation: Silicon nanowire biosensor Advantages • Ultrahigh surface-to-volume ratio • Dimensions of the biomolecules are comparable to that of the nanowires • Strong influence of the surface effects to the electronic properties High sensitivity • Possibility to create dense arrays Requirements • Wires in the 10 nm range with good carrier mobilities • Low density of trap states at the interfaces (high subthreshold swing) • High transconductance • Stability and reliability of the output signal • Processability of the sensors Ingebrandt | Kaiserslautern | 02. February 2016 | 22 11 05.02.2016 Biomolecules binding to silicon nanowires The Debye screening problem – Fundamental Limitation of the typically-used potentiometric approach ** * When potentiometric sensing is done, almost no sensitivity towards biomolecules charges is left. DC method works good for smaller molecules and for short DNA strands. * W. Huang, A. K. Diallo, J. L. Dailey, K. Besara, and H. E. Katz, Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules, J. Mater. Chem. C, 2015, 3, 6445-6470. ** E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors, Nano Lett., 2007, 7, 3405–3409. Ingebrandt | Kaiserslautern | 02. February 2016 | 23 AC – Transfer Function Impedance Spectroscopy – Impedimetric detection Detection principle: Sensor is brought into working point by setting VDS and VGS just like in timedependent DC mode. Additionally a small sinusoidal test voltage Vstim is applied to the reference electrode. This is scanned over frequency. The system nanowire plus its first amplifier stage is acting like a frequency low pass. The spectrum can be described by a transfer function (mathematical representation of the electrical circuit). In the spectrum the impedance of the biomolecular layer is hidden. This technique can be applied by lock-in amplifier which is boosting the signal-to-noise ration tremendously. Transfer Function: Vstim ( j ) Vstim H ( j ) Vout ( j ) Vstim ( j ) Vout ( j ) Ingebrandt | Kaiserslautern | 02. February 2016 | 24 12 05.02.2016 Detection principles: Impedimetric measurements ISFET as impedimetric biosensor – Transistor-Transfer Function (TTF) Vstim() Transfer Function: H ( ) Vout ( ) Vstim ( ) Vout() Low cutoff frequency 1 Rmem (Cmem Cox ) RmemCox 2 RmemCmem High cutoff frequency Schasfoort RBM et al., (1989) Sensor Actuator, 18, 119 Kharitonov, AB et al., (2000), Sens. Actuator B-Chem., 70, 222 Antonisse, MMG et al., (2000), Anal. Chem., 72, 343 Ingebrandt | Kaiserslautern | 02. February 2016 | 25 Experimental setup • Characterization of the FET devices • Measurement of the frequency-dependent transfer functions • Recording of the timedependent data Advantages: • Measurement of the impedance spectra up to 50 MHz • Time-dependent readout at several different frequencies, simultaneously. A. Susloparova, et al., Electrical Cell-substrate Impedance Sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level, Lab on a Chip, (2015), 15, 668-679. Ingebrandt | Kaiserslautern | 02. February 2016 | 26 13 05.02.2016 Bio-sensing applications: Electronic DNA-chip with micro-ISFETs • Novel, lock-in based signal transduction concept • Reliable recording • Fast sampling Frequency (Hz) S. Ingebrandt, Y. Han, F. Nakamura, A. Poghossian , M.J. Schöning, and A. Offenhäusser. Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors, Biosensors and Bioelectronics, 2007, 22, 2834–2840. Ingebrandt | Kaiserslautern | 02. February 2016 | 27 Top-down fabrication of SiNW arrays Ingebrandt | Kaiserslautern | 02. February 2016 | 28 14 05.02.2016 Dr. X.-T. Vu, R. Stockmann Fabrication process of Si-NW arrays First trial: Electron beam lithography Project start in 2006 At project start: Si nanowire by e-beam lithography and RIE (in cleanroom of IBN-2) - Electron Beam Writer Leica EBPG 5000 Plus - High resolution (down to 5nm) - Maskless patterning Bad surface quality Strong hysteresis Slow process Ingebrandt | Kaiserslautern | 02. February 2016 | 29 Fabrication process of Si-NW arrays Silicon nanowire device concept: Reed group (Yale) Top-down approach Biomolecular sensing demonstrated [Source: Stern er al, Nature, February 2007] Wet etching process with tetra methyl ammonium hydroxide (TMAH) Ingebrandt | Kaiserslautern | 02. February 2016 | 30 15 05.02.2016 Dr. X.-T. Vu, R. Stockmann Wafer-scale fabrication of SiNW arrays SiO2 Si X.T.Vu et al, Physica Status Solidi, 206 (2009) 426 X.T. Vu et al, Sensors and Actuators – B Chemical, 144 (2010) 354 Buried oxide (BOX) Ingebrandt | Kaiserslautern | 02. February 2016 | 31 Dr. X.-T. Vu, R. Stockmann Chip designs 4×4 Arrays 6 wires parallel Length: 3mm Width: 100, 200, 500, 1000nm (mask design) pitch: 200mm X.T.Vu et al, Physica Status Solidi, 206 (2009) 426 X.T. Vu et al, Sensors and Actuators – B Chemical, 144 (2010) 354 28×2 Arrays Single wires Length: 10mm, 20mm, 40mm Width: 200, 400nm (mask design) pitch: 50mm or 10mm Integration with micro-fluidics 16×16, 32×32 and 128×128 arrays X.T. Vu, et al.,Phys. Status Solidi A-Appl. Mat., 207, 4, (2010) 850-857. Ingebrandt | Kaiserslautern | 02. February 2016 | 32 16 05.02.2016 Dr. X.-T. Vu, R. Stockmann Fabrication process of Si-NW arrays Fabrication of larger Si-NW FET arrays Two designs: 16×16 with 100 µm pitch (256 channels) 32×32 with 50 µm pitch (1024 channels) Ingebrandt | Kaiserslautern | 02. February 2016 | 33 Dr. X.-T. Vu, R. Stockmann Fabrication process of Si-NW arrays: SiNW devices • Wafer-scale, reproducible process Base: 120 nm • Size of SiNW can be as small as 60 nm at the bottom (in current process) • High quality of the gate oxide and smooth surfaces • High quality of the passivation layer – stable operation in electrolyte solution Top: 67 nm Length: 40000 nm Ingebrandt | Kaiserslautern | 02. February 2016 | 34 17 05.02.2016 Dr. X.-T. Vu, R. Stockmann Fabrication process of Si-NW arrays: Wafer-scale processing 28x2 arrays 4 inch wafer 128x128 arrays Ingebrandt | Kaiserslautern | 02. February 2016 | 35 32-channel SiNW sensor chip design 32 single NW FET devices with dip-chip configuration. NW dimensions: 250nm(width) by 12µm (length), 60nm height Si(doped contact lines) Metallic contact lines 8 sets of 4 NWs separated by 250µm 7mm 1 set of 4 NWs Source 5µm 10mm Ingebrandt | Kaiserslautern | 02. February 2016 | 36 18 05.02.2016 Residual resist Common Source Individual Drains Process flow for SiNW fabrication 1µm Ingebrandt | Kaiserslautern | 02. February 2016 | 37 Fabricated SiNW devices A 200 µm D C 5 µm 100 µm B 6.79 K X 5.00 kV 200 nm 174.5 K X 5.00 kV Ingebrandt | Kaiserslautern | 02. February 2016 | 38 19 05.02.2016 Portable amplifier for the FET arrays • Simultaneous measurement of all 16 channels • Precise temperature control • Amplifier stages with 1x, 10x, 30x, 100x • Differential readout with reference channel • Measurement of the transfer function by a 16x lock-in circuit • Portable system with USB-interface to PC • Custom-made software (Delphi 5.0) 250 kW • Sampling rate 1 Hz (up to 10 kHz per channel with external USB-DAC card) Ingebrandt | Kaiserslautern | 02. February 2016 | 39 Dr. X.-T. Vu Fabrication process of Si-NW arrays: Chip packaging • Wire – bonding • Contact isolated: Medical epoxy, PDMS • Can be used directly or integrated with micro-fluidics Ingebrandt | Kaiserslautern | 02. February 2016 | 40 20 05.02.2016 T. C. Nguyen, Dr. X.-T. Vu NEW 32-channel readout system design • • • Here is the design for one channel, different channels are currently addressed by switching The system is flexible for different ranges of drain-source currents Suitable for both characterization and impedimetric measurement of FET devices T. C. Nguyen et al., Physica Status Solidi (a), 210, 5, 870–876 (2013). Ingebrandt | Kaiserslautern | 02. February 2016 | 41 T. C. Nguyen, Dr. X.-T. Vu NEW amplifier system LabVIEW programming State machine programming: Program is divided into different states Easier to read Easier to manage Easier to scale Stand-alone application: no LabVIEW development tool is needed Headstage setup T. C. Nguyen et al., Physica Status Solidi (a), 210, 5, 870–876 (2013). Ingebrandt | Kaiserslautern | 02. February 2016 | 42 21 05.02.2016 T. C. Nguyen, Dr. X.-T. Vu NEW amplifier system 32 channel system for SiNW recordings DC and AC capability Ingebrandt | Kaiserslautern | 02. February 2016 | 43 Electrochemical characterization Ingebrandt | Kaiserslautern | 02. February 2016 | 44 22 05.02.2016 Electrical characterization setup • Understanding the SiNW electrical transport properties • Finding of a stable configuration for biosensor experiments Back - gate characteristics: IDS(VBG) Front gate in air: Front gate with electrolyte (floating potential or applied voltage) Front - gate characteristics: IDS(VFG) Back gate floating Back gate with applied voltage Ingebrandt | Kaiserslautern | 02. February 2016 | 45 Dr. X.-T. Vu Electrical characteristics Implanted CL Non-implanted CL Back-gate control p-type only p- and n-type (in dry and wet unstable operation unstable operation Front-gate control p-type only n-type only (in wet environment) stable operation stable operation environment) • Front-gate configuration was identified for optimum biosensing experiments • In any case, an electrochemical reference electrode is needed for the front gate contact to keep the system stable and the readout signal reliable Ingebrandt | Kaiserslautern | 02. February 2016 | 46 23 05.02.2016 Dr. X.-T. Vu Electrical characteristics Front-gate transfer characteristics: IDS(VGS) 𝑆= 𝑘𝑏 𝑇 𝐶𝐷 ln(1 + ) 𝑞 𝐶𝑜𝑥 • P- enhancement and long-channel transistor • VTH = - 0.8 V at pH 7 • gm, max (at VDS=-2V): 0.5 µS to 10 µS • Ion/Ioff =105-106 • S = 80 - 110 mV/decade, size dependent Ingebrandt | Kaiserslautern | 02. February 2016 | 47 Dr. X.-T. Vu Electrochemical characterization pH sensitivity: Two possible operation modes Saturation region Sub-threshold region X.T. Vu, et al.,Phys. Status Solidi A-Appl. Mat., 206, 3, (2009) 426-434. pH sensitivity : 42 mV / pH and does not depend on size and operation mode Ingebrandt | Kaiserslautern | 02. February 2016 | 48 24 05.02.2016 Bioassays Assay 1: DNA detection Ingebrandt | Kaiserslautern | 02. February 2016 | 49 Dr. X.-T. Vu Assay 1: DNA immobilization and hybridization I II 150 mV III SiNW Immobilization: ΔVG up to 150 mV Hybridization: ΔVG up to 40 mV 40 mV ISFET Immobilization: Hybridization: ΔVG = 1-10 mV ΔVG = 1-4 mV Han et al. 2006 SiNW sensor is much more sensitive than our microscale ISFETs Ingebrandt | Kaiserslautern | 02. February 2016 | 50 25 05.02.2016 Dr. R. GhoshMoulick, Dr. X.-T. Vu Assay 1: Covalent attachment of DNA probes Protocol (a)*: • Silanization with 3-aminopropyltriethoxysilane • Usage of succinic anhydride as cross linker • Covalent attachment of amino-functionalized DNA Protocol (b)**: • Silanization with 3-glycidoxypropyltrimethoxysilane • Direct, covalent attachment of amino-functionalized DNA and of proteins * Han et al., 2006; Ingebrandt and Offenhäusser, 2006. **Ghosh-Moulick et al., 2009. Ingebrandt | Kaiserslautern | 02. February 2016 | 51 M. Schwartz, Dr. X.-T. Vu Assay 1: Surface modification - silanization Gas phase silanization Homogenous monolayers Encapsulated material not damaged Contact angle measurement Quantify wettability Qualify silanization: Did silanization work? Is layer homogeneous? Ingebrandt | Kaiserslautern | 02. February 2016 | 52 26 05.02.2016 M. Schwartz, Dr. X.-T. Vu Assay 1: DNA microspotting & electrical readout Site-specific spotting of different capture molecules Differential read-out possible Defined distances to 200 µm avoid cross-contaminations reference electrode electrode holder Source Nanowire Drain Ingebrandt | Kaiserslautern | 02. February 2016 | 53 M. Schwartz, Dr. X.-T. Vu Assay 1: Surface modification steps - overview 3-Glycidoxypropyltrimethoxysilane (GPTES) No cross-linker due to covalent binding Creation of monolayers Ingebrandt | Kaiserslautern | 02. February 2016 | 54 27 05.02.2016 M. Schwartz, Dr. X.-T. Vu Assay 1: DNA detection – dc readout Results unpublished Applied concentrations: 1 µM capture DNA 0.5 µM cDNA 1 µM cDNA ~ 200 mV ~ 35 mV ~ 50 mV ~ 75 mV VTH shifted to the right due to binding of negatively charged DNA molecules Ingebrandt | Kaiserslautern | 02. February 2016 | 55 M. Schwartz, Dr. X.-T. Vu Assay 1: DNA detection – dc readout Why are smaller wires more sensitive? Two effects of ‘conductivity change’ Miriam Schwartz, et al., DNA detection with top-down fabricated silicon nanowire transistor arrays in linear operation regime, physica status solidi (a), (2016) accepted Ingebrandt | Kaiserslautern | 02. February 2016 | 56 28 05.02.2016 Assay 1: DNA detection – ac readout Exemplary measurement 0.5 µM cDNA GPTES capture DNA block 1 µM cDNA Ingebrandt | Kaiserslautern | 02. February 2016 | 57 Bioassays Assay 2: Ca2+ ions – peptide interaction Ingebrandt | Kaiserslautern | 02. February 2016 | 58 29 05.02.2016 M. Hitzbleck, Dr. X.-T. Vu Assay 2: Ca2+ ions – peptide interaction M. Hitzbleck et al. Submitted to Langmuir M. Hitzbleck et al., Physica Status Solidi (a), 210, 5, 1030–1037 (2013). Ingebrandt | Kaiserslautern | 02. February 2016 | 59 Bioassays Assay 3: Immunoassays Ingebrandt | Kaiserslautern | 02. February 2016 | 60 30 05.02.2016 Assay 3: Antibody-antigen detection by SiNW (Human CNTF*) CNTF is known to alter the self – renewal process of neuronal stem cells and the progenitor cell division and differentiation It is used in the therapy and gene-therapy of retinal ganglion cell damage or loss CNTF seems to have a protective role in multiple sclerosis mouse model regarding demyelinisation and plays a role in the pathogenesis of other neurodegenerative diseases CNTF is a good model system for the future measurements of other neurotropic factors such as BDNF, GDNF, FGF and NGF CNFT is usually detected by an elaborated ELISA method Sensitivity of the ELISA method is 30pg/mL at a dynamic range of 30 pg/mL - 3000 pg/mL *CNTF: Ciliary neurotrophic factor Ingebrandt | Kaiserslautern | 02. February 2016 | 61 Brain-Derived Neutrophic Factor (BDNF) Polypeptide (27 kDA) IP = 9.01 Stimulates neuronal development, growth, survival, function in CNS & PNS Influences neuronal network communication A test system with a lower limit of detection than ELISA is needed! B. K. Pedersen, Exp. Physiol. 94 (2009) 1153-1160. Ingebrandt | Kaiserslautern | 02. February 2016 | 62 31 05.02.2016 M. Schwartz, Dr. X.-T. Vu Assay 3: Antibody-antigen – dc readout Results unpublished 1 µg/ml capture antibody Block with 1 % BSA 5 pg/ml BDNF 10 pg/ml BDNF 50 pg/ml BDNF 1 pg/ml BDNF 0.001 x PBS ~ 50 mV ~ 90 mV ~ 110 mV ~ 120 mV ~ 130 mV VTH shifted to the left Ingebrandt | Kaiserslautern | 02. February 2016 | 63 SiNW FET - dc-readout of BDNF 1.) 2.) 3.) 4.) – 7.) Exemplary DC measurement Stepwise recordings 1.) GPTES 2.) capture ab 3.) block 4.) 1 pg/mL BDNF 5.) 6 pg/mL BDNF 6.) 16 pg/mL BDNF 7.) 66 pg/mL BDNF n = 11 Ingebrandt | Kaiserslautern | 02. February 2016 | 64 32 05.02.2016 SiNW FET - AC-detection of BDNF 1.) 2.) 4.) – 7.) 3.) Exemplary AC measurement Stepwise recordings 1.) GPTES 2.) capture ab 3.) block 4.) 1 pg/mL BDNF 5.) 6 pg/mL BDNF 6.) 16 pg/mL BDNF 7.) 66 pg/mL BDNF n = 11 Ingebrandt | Kaiserslautern | 02. February 2016 | 65 Comparison of the silicon nanowire data with the golden standard ELISA test Collected results from all tests… SiNW DC recordings SiNW AC recordings 10 0.88 0.78 0.58 0.48 0.1 0.38 AC signal (µS) 1 SiNW data 0.28 0.18 0.01 1 10 100 BDNF concentration (pg/ml) 1000 1 2 1 10 100 1000 0.1 Optical density 20 0.68 Optical density DC signal (mV) 10 ELISA data 0.2 ELISA kit ELISA kit 0.02 0.01 BDNF concentration (pg/ml) In our trials the silicon nanowire platform is about 20-fold lower in limit of detection than the golden standard! Ingebrandt | Kaiserslautern | 02. February 2016 | 66 33 05.02.2016 Dipti Rani Problem of non uniform surface modification while micro spotting 1 µM 500 nM Typical microspotting result – nonideal surface coating of DNA Structures to examine the local variation of SiNW signals Ingebrandt | Kaiserslautern | 02. February 2016 | 67 Electrical Characterization of SiNWs -8 2.0x10 Drain source current(A) 0.0 -8 -2.0x10 -8 -4.0x10 -8 -6.0x10 -8 -8.0x10 -7 -1.0x10 -7 -1.2x10 -7 -1.4x10 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 Gate source voltage(V) 0.40 Negative threshold Voltage(Vth) 0.35 32-channel SiNW chip on carrier 0.0 Drain current / A Drain current / A 0.0 -500.0n -1.0µ Vg=0V Vg=-0.5V Vg=-1V Vg=-1.5V Vg=-2V -1.5µ -2.0 -1.5 -1.0 -0.5 Drain Source bias / V -2.0µ - 0.5 -3.0µ - 1.0 -4.0µ -5.0µ - 1.5 0.25 0.20 0.15 0.10 0.05 -6.0µ -7.0µ 0.0 Vds = 0 -1.0µ 0.30 - 2.0 0.00 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 Gate voltage at Ag-AgCl reference / V SiNW act as long-channel ISFET devices 0 5 10 15 20 25 30 Channel Number Vth variation of different channels on a single chip Average Vth=-0.315 ± 0.023 V Ingebrandt | Kaiserslautern | 02. February 2016 | 68 34 05.02.2016 Biosensing with SiNW-FET devices 0.0 pH5 pH6 pH7 pH8 pH9 -20.0n -40.0n -60.0n -80.0n -100.0n -120.0n -140.0n -1.0 -0.8 -0.6 -0.4 -0.2 0.0 Gate voltage at Ag-AgCl reference / V Threshold Voltage change / Vth Drain source current / A pH sensing with SiNW-FET array Average Vth = 43 +/- 3 mV.pH -1 0.15 0.10 0.05 0.00 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 pH value of buffer solution Effect of silanization: 600.0m Vds = 100 mV Threshold voltage / V Drain current / A 0.0 -20.0n -40.0n -60.0n -80.0n -100.0n -1.0 -0.8 -0.6 -0.4 -0.2 0.0 Gate voltage at Ag-AgCl reference / V Silicon nanowire Silicon nanowire functionalized with GPTES 500.0m 400.0m 300.0m 200.0m 100.0m 0.0 0 5 10 15 20 25 30 -th Si nanowire ISFETs on chip Ingebrandt | Kaiserslautern | 02. February 2016 | 69 PSA aptamer & binding mechanism Some NW sets functionalized with receptors (PSA aptamer) and others with control using microspotting technique. PSA binding with aptamers 0.0 -8 -2.0x10 -8 Drain source current(A) -4.0x10 -8 -6.0x10 -8 -8.0x10 -7 -1.0x10 -7 GPTES Aptamer Ethanolamine PSA 30nM -1.2x10 -7 -1.4x10 -7 -1.6x10 -7 -1.8x10 -7 -2.0x10 -7 -2.2x10 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 Gate source voltage(V) Ingebrandt | Kaiserslautern | 02. February 2016 | 70 35 05.02.2016 Fluidic encapsulation of SiNW chips Contact pads 32-channel SiNW-FET chip (size 7x10 mm2) 32 SiNW sensors Fluidic cell (made from PDMS) Ingebrandt | Kaiserslautern | 02. February 2016 | 71 Bioassays Assay 4: Detection of cellular signals Ingebrandt | Kaiserslautern | 02. February 2016 | 72 36 05.02.2016 Dr. X.-T. Vu Assay 4: Recording of extracellular action potentials Primary cardiac myocytes (E18) and HL-1 cells were cultured on NW-FETs arrays Once a confluent layer is formed cells are spontaneously beating. Rat cardiac myocytes at 5 DIV Signals can be site-selectively recorded by the NW-FET array. Ingebrandt | Kaiserslautern | 02. February 2016 | 73 Dr. J. F. Eschermann, Dr. X.-T. Vu Assay 4: Recording of extracellular action potentials 16-channel recording of action potentials HL1 - cell line Signals show a similar shape as compared to ISFETs Signal-to-noise ratio is improved compared to ISFETs J. F. Eschermann et al., Applied Physics Letters, 95, 083703 (2009) Ingebrandt | Kaiserslautern | 02. February 2016 | 74 37 05.02.2016 Dr. X.-T. Vu Assay 4: Recording of extracellular action potentials Results unpublished Primary cardiac myocyte culture!!! Each of the 16-channels is responding High signal-to-noise ratio : 5 – 10 due to the strong coupling between the cells and the SiNWs Ingebrandt | Kaiserslautern | 02. February 2016 | 75 Bioassays Assay 5: Impedimetric detection of cellular adhesion Ingebrandt | Kaiserslautern | 02. February 2016 | 76 38 05.02.2016 Dr. X.-T. Vu Assay 5: Impedimetric detection of cellular adhesion Vstim 1Hz – 1MHz IDS Ingebrandt | Kaiserslautern | 02. February 2016 | 77 Dr. X.-T. Vu Assay 5: Impedimetric detection of cellular adhesion Results unpublished HEK cell-SiNW coupling: Detailed SEM analysis Ingebrandt | Kaiserslautern | 02. February 2016 | 78 39 05.02.2016 Dr. X.-T. Vu Assay 5: Impedimetric detection of cellular adhesion Results unpublished Ingebrandt | Kaiserslautern | 02. February 2016 | 79 Future directions Ingebrandt | Kaiserslautern | 02. February 2016 | 80 40 05.02.2016 D. Rani, Dr. X.-T. Vu New research projects related to SiNW sensing Developing a NW-based sensor platform for detection of PCa in parallel with fluorescence techniques Fluorescent dye Analyte Receptor Linker Ingebrandt | Kaiserslautern | 02. February 2016 | 81 D. Rani, Dr. X.-T. Vu New research projects related to SiNW sensing Si NW FET Fabrication on Sapphire substrate for combined optical and electrical sensing Dip Chip: 32 single NW devices on 7*7mm 2 chip. NW dimensions- 1µm(length)*0.1µm(width). Common source configuration. Si NWs Drain Sapphire substrate Ingebrandt | Kaiserslautern | 02. February 2016 | 82 41 05.02.2016 Case study: AC – For sensing beyond Debye Limit Detection principle: The detection of charged biomolecules in a potentiometric readout is generally limited by the Debye screening of charges caused by charge screening from counter ions. At elevated frequency levels (> 10 MHz) the principles are working in a dielectric spectroscopy range, and the sensing is overcoming the limit of 1-2 nm [1, 2]. This is the fact for all frequency domain principles described above. [1] S. Ingebrandt, Sensing beyond the limit, Nature Nanotech. 10, 734 (2015) [2] C. Laborde et al., Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays, Nature Nanotech. 10, 791–795 (2015). Ingebrandt | Kaiserslautern | 02. February 2016 | 83 Biomolecules binding to silicon nanowires What do we learn from the combination of DC and AC? DC signals: Detection of charge change and change of local ionic environment on surface Electronic signals: Specific biomolecule binding – concentration of analyte. Binding of biomolecules to the nanowire surface. AC signals: Detection of capacitance change – information about density of molecule layer and about orientation pH reference to cancel out side effects. Specific binding reaction on nanowires Stern, E.; Vacic, A.; Li, C.; Ishikawa, F.N.; Zhou, C.W.; Reed, M.A.; Fahmy, T.M. A nanoelectronic enzyme-linked immunosorbent assay for detection of proteins in physiological solutions. Small 2010, 6, 232–238. Ingebrandt | Kaiserslautern | 02. February 2016 | 84 42 05.02.2016 Outlook – Multiplexed biosensing Ingebrandt | Kaiserslautern | 02. February 2016 | 85 Summary Si nanowire arrays are fabricated in a wafer-scale process. They can be highly integrated (up to 128x128 arrays) and the process is CMOS compatible Robust chips with reliable operation in liquid DNA and biomolecular detection experiments were successful Extracellular recordings are possible Outlook Work out LODs for different assays (DNA hybridization, protein, immune) Model to explain the results Coupling with cells (mast cells, cardiac myocytes, tumor cell lines, neuronal cells) Ingebrandt | Kaiserslautern | 02. February 2016 | 86 43 05.02.2016 Acknowledgements FH Kaiserslautern All members of AGBM and technical staff of FHKL Financial support: BMBF: ‘Nanowire Sensors’ ‘Cancer Cell Chip’ ‘Multiparametric Sensing’ DAAD: PPP exchange grant – Germany/Hong Kong Cooperation partners FH Kaiserslautern Profs. Karl-Herbert Schäfer, Monika Saumer, Cornelia Keck Research Center Jülich Prof Dr. A. Offenhäusser JL University Giessen Prof. Dr. Martin Eickhoff TU Kaiserslautern Prof. Dr. Ing. Andreas König University des Saarlands - Homburg Prof. Dr. Markus Hoth University of Applied Sciences Aachen Prof. Dr. Ing. Michael J. Schöning Universiteit Hasselt, Belgium Prof. Dr. Patrick Wagner The Chinese University Hong Kong Prof. Dr. John A. Rudd Prof. Dr. Chi-Kong Yeung Italian Institute of Technology - Genua Dr. Axel Blau EU-ITN Marie Curie: Prosense Industry: ‘Alternative Biosensor Principles’ Internal fh-funding: - Nanotox - Nanoimprint-Lithography Ingebrandt | Kaiserslautern | 02. February 2016 | 87 University of Applied Sciences Kaiserslautern https://www.hs-kl.de/forschung/forschungsschwerpunkte/integrierte-miniaturisierte-systeme-ims/arbeitsgruppen/ Ingebrandt | Kaiserslautern | 02. February 2016 | 88 44