Three‐body forces in ma2er and nuclei
Transcription
Three‐body forces in ma2er and nuclei
Three‐body forces in ma2er and nuclei Thomas Papenbrock and G. Baardsen, A. Ekström, C. Forssen, R. J. Furnstahl, S. Gandolfi, G. Hagen, C. Horowitz, M. Hjorth‐Jensen, G. R. Jansen, R. Machleidt, S. More, W. Nazarewicz, J. Sarich, K. Wendt, S. M. Wild Three‐body forces from ma2er to nuclei ECT* Trento, May 5‐9, 2014 Research partly funded by the US Department of Energy "Three‐body force status and needs" Status: Some results based on chiral NN interacUon (N3LO, E&M) + chiral 3NF • Strong regulator/scheme dependence of chiral 3NF • 3NF (a NNLO correcUon) pivotal for basic nuclear structure (magicity of 48Ca, drip line in oxygen…) • Poor saturaUon of nuclear maber with chiral interacUons Needs: • Consistently opUmized (order by order) chiral interacUon model • Chiral interacUon model with acceptable saturaUon properUes • ExploraUon of chiral interacUon model at NNLO (NNLOopt etc) Coupled‐cluster, Green’s funcUon, in‐medium SRG methods … Wave‐funcUon based methods do not scale well with increasing mass number A. Increase in compuUng power (Moore’s law) is not commensurate with the scaling of this problem. • Number of single‐parUcle states: N = (const ×R λ)3 for cutoff λ and radius R ~ A1/3. • Hamiltonian has dimension: D = (N choose A) ≈ (const3 × A λ3 choose A) ExtrapolaUons (address const), RG (address λ), importance truncaUons (address D), alleviate but do not solve the scaling problem. • Reducing λ very useful (λ ≥ kF) Induced a‐body forces non‐negligible at cutoffs Induced 3NF (4NF) non‐negligible for • Significant components in wave funcUon have size κ ~ D‐1/2 Coupled-cluster method (in CCSD approximation) [Recent review: Hagen, TP, Hjorth-Jensen, Dean, arXiv:1312.7872] Ansatz: Scales gently (polynomial) with increasing problem size o2u4 . TruncaUon is the only approximaUon. Size extensive (error scales with A) Most efficient for doubly magic nuclei CorrelaUons are exponen&ated 1p‐1h and 2p‐2h excitaUons. Part of np‐nh excitaUons included! Coupled cluster equaUons AlternaDve view: CCSD generates similarity transformed Hamiltonian with no 1p‐1h and no 2p‐2h excitaDons. Frame work of nuclear coupled cluster Based on a reference state (closed subshell in j‐coupled formulaUon) Normal‐ordered Hamiltonian w.r.t. reference Decouples reference state (and its 2p‐2h excitaUons) from remaining Hilbert space CCSD: effecUve two‐body Hamiltonian, CCSDT: effecUve three‐body Hamiltonian Imaginary Ume‐evoluUon of CCSD technically similar to SRG evoluUon toward non‐HermiUan Hamiltonian Gamow basis for descripUon of weakly bound and unbound nuclei PracUcal soluUon of center‐of‐mass problem for intrinsic Hamiltonian Excited states (and neighboring nuclei) from equaUons of moUon approach Permits user to employ “bare” interacUons from chiral EFT Gamow shell model for open quantum systems Review: Michel et al., J. Phys. G 36, 013101 (2009) ComputaUonal tool: coupled‐cluster method [Coester (1958); Coester & Kümmel (1960); Kümmel, Lührmann & Zabolitzky (1978); Bishop (1991); (… many others …); Hagen, TP, Dean, & Hjorth‐Jensen arXiv:1312.7872] 6 Is 54Ca a magic nucleus? Ni 40Ca in our bones ? Ca Magic nuclei determine the structure of enUre regions of the nuclear chart Ca: Huck et al, PRC (1985); Ti: R. Janssens et al, PLB (2002); Cr: Prisciandaro et al, PRC (2001) Calcium isotopes from chiral interactions [Hagen, Hjorth‐Jensen, Jansen, Machleidt, TP, Phys. Rev. Leb. 109, 032502 (2012).] In‐medium effecUve 3NF: kF=0.95 fm‐1, cE=0.735, cD=‐0.2 [Holt, Kaiser, Weise 2009; Hebeler and Schwenk 2010] Sn(52Ca) = 5.98MeV (Gallant et al PRL 2012) Sn(54Ca) = 3.84MeV (Wienholtz Nature 2013) Shell structure of 52,54Ca Hagen, Hjorth‐Jensen, Jansen, Machleidt, TP, Phys. Rev. Leb. 109, 032502 (2012) Indicators of shell closure: • SeparaUon energy • 2+ excited state • 4+/2+ raUo RIKEN Experiment ★ suggest that 54Ca has a “so•” (sub‐)shell closure similar to that of 52Ca Measurement at RIKEN [Steppenbeck et al., J. Phys. G 2013; Nature 502, 207 (2013);] confirms our prediction. 48Ca 2+ CC 3.58 Exp 3.83 52Ca 54Ca 4+ 4+/2+ 2+ 4+ 4+/2+ 2+ 4+ 4+/2+ 4.20 1.17 2.19 3.95 1.80 1.89 4.46 2.36 4.50 1.17 2.56 ? ? ? ? ? Spectra and shell evolution in Calcium isotopes RIKEN 1. Our predicUon for excited 5/2‐ and ½‐ states in 53Ca seen at RIKEN 2. Inversion of 9/2+ and 5/2+ states in neutron rich calcium isotopes 3. Harmonic oscillator gives the naïve shell model order ConUnuum coupling crucial for level ordering Chiral interacUon NNLOopt [Ekström et al., Phys. Rev. Leb. 110, 192502 (2013)] Kept fixed Adjusted parameters Weinberg; van Kolck; Epelbaum, Glöckle & Meiβner; Entem & Machleidt; Krebs; … OpUmizaUon of NN potenUal to phase shi•s; χ2 from data Weights for contacts scale as Q3; for pion‐nucleon couplings from Nijmegen analysis Pion nucleon couplings determined from fits to peripheral d, f, g parUal waves (NNLO contacts do not contribute for L≥2) Phase shi•s of NNLOopt Oxygen isotopes (NN only) Drip line in oxygen from NN alone (Oxygen isotopes not included in opUmizaUon) Calcium isotopes (NN only) Doubly magic 48Ca from NN alone Nucleonic maber • Use plane‐wave basis with generalized boundary condiUons (Bloch waves) • Basis respects momentum conservaUon • CCD (no singles) for closed‐shell references • Three‐nucleon forces much simpler to implement than in shell‐model basis • Shell effects dominate finite‐size correcUons Related studies with chiral interacUons: Soma & Bozek (2008); Epelbaum, Krebs, Lee, & Meissner (2009); Hebeler & Schwenk (2010); Hebeler, Bogner, Furnstahl, Nogga, & Schwenk (2011); Holt, Kaiser, & Weise (2012); Carbone, Polls, & Rios (2013); Gezerlis, Tews, Epelbaum, Gandolfi, Hebeler, Nogga, & Schwenk (2013); … MiUgate shell oscillaUons “Twist averaged” boundary condiUons: average over all possible phases of Bloch waves. Exactly removes finite size effects for free Fermi gas. [Gros, Z. Phys. B 86, 359 (1992); Lin, Zong, and Ceperley, Phys. Rev. E 64, 016702 (2001)] Discrete momenta are Nuclear maber (NN only) SCGF = Self‐consistent Green’s funcUon at T=5 MeV [A. Carbone, A. Polls, and A. Rios, Phys. Rev. C 88, 044302 (2013)]. Neutron maber is perturbaUve (NN only) Nuclear maber less perturbaUve (NN only) Overbinding and saturaUon at too high densiUes Three nucleon force Local form of 3NF [NavraUl, Few Body Syst. 41, 117 (2007)], i.e. cutoff is in the momentum transfer based on [Epelbaum et al., Phys. Rev. C 66, 064001 (2002)]. Fit to A=3,4 binding energies and triton half life (Gazit, NavraUl, & Quaglioni) cD=0.389, cE=0.39 Inclusion of three‐nucleon forces 3NFs in momentum space sUll require considerable computer Ume but less human Ume Normal‐ordered (w.r.t. HF vacuum) Hamiltonian Normal‐ordered 1‐body interacUon (contains informaUon about NN force and 3NF) Normal‐ordered 2‐body interacUon (contains informaUon of 3NF) “Residual” 3NF (enters leading triples correcUon) Nucleonic matter with NNLOopt and 3NFs [Hagen et al., PRC 89 014319 (2013)] • 3NFs with different regulators and cutoffs act repulsively in neutron maber • N2LOopt + 3NFs do not reproduce saturaUon density and binding energy of nuclear maber • Strong dependence on regulator and cutoff in nuclear maber Where actually does the cutoff cut off? For NNLOopt no combination of cD, cE simultaneously satisfies light nuclei and nuclear matter 5% error bands for saturaUon kf , E/N and binding energy of 3H VariaUon of cD and cE not sufficient to simultaneously bind light nuclei and nuclear maber Coupled-cluster effective interactions for the shell model [G. R. Jansen, J. Engel, G. Hagen, P. NavraUl, A. Signoracci, arXiv:1402.2563 (2014).] • Start from chiral NN(N3LOEM) + 3NF(N2LO) interacUons • Solve for A+1 and A+2 using CC. Project A+1 and A+2 CC wave funcUons onto the s‐d model space using Lee‐Suzuki similarity transformaUon. .. . p Q 3/2 f7/2 P d3/2 s1/2 d5/2 Q p1/2 p3/2 s1/2 • Diagonalize the effecUve Hamiltonian in the valence space. Comparison between coupled‐cluster effecUve interacUon (CCEI) and “exact” coupled‐cluster calculaUon with inclusion of perturbaUve triples (Λ‐CCSD(T)). Coupled-cluster effective interactions for the shell model: Oxygen isotopes Coupled-cluster effective interactions for the shell model: Carbon isotopes Convergence in finite oscillator spaces CalculaUons are performed in finite oscillator spaces. How can one reliably extrapolate to infinity? What is the equivalent of Lüscher’s formula for the harmonic oscillator basis [Lüscher, Comm. Math. Phys. 104, 177 (1986)] ? Convergence in momentum space (UV) and in posiUon space (IR) needed [Stetcu et al., PLB (2007); Hagen et al., PRC (2010); Jurgenson et al., PRC (2011); Coon et al., PRC (2012)] p Nucleus x Phase space covered by oscillator basis with (N, b) Nucleus needs to “fit” into basis: • Nuclear radius R < L • cutoff of interacUon Λ < ΛUV Hard wall at L2 is in the spirit of EFT ground wave funcUons in posiUon space (π/L2)2 is the lowest eigenvalue of the operator p2. Fourier transforms differ only at large momentum The difference between the HO basis and a box of size L2 can not be resolved at low momentum. IR correcUons to bound‐state energies Simple view: A node in the wave funcUon at r=L2 requires αE = – exp(–2kEL2). This yields a (kineUc) energy correcUon Model‐independent approach based on S‐matrix theory Final results [Furnstahl, Hagen, TP, Phys. Rev. C 86, 031301 (2012); More, Ekström, Furnstahl, Hagen, TP, Phys. Rev. C 87, 044326 (2013); Furnstahl, More, TP, Phys. Rev. C 89, 044301 (2014)] ANC2 Binding momentum only observables enter Energy extrapolaUon explains findings by [Coon et al, Phys. Rev. C 86, 054002 (2012)] CorrecUons due to finite Hilbert spaces • UV pracUcally converged (because λ < ΛUV) • IR convergence is slower due to exponenUal decay of wave funcUon • Dirichlet boundary condiUon at x=L in posiUon space, k∞ from energy fit Summary • Coupled cluster method efficient tool for many nuclei of interest • OpUmizaUon of chiral interacUon NNLOopt • acceptable χ2 ≈ 1 per degree of freedom for lab energies < 125 MeV • NN interacUons alone reproduce some essenUal features in isotopes of oxygen and calcium • Nucleonic maber in momentum space with NNLOopt • Finite size correcUons under control • Neutron maber is perturbaUve – nuclear maber somewhat less • VariaUon of cD and cE not sufficient to fit light nuclei and maber • 3NF with local regulator not without problems (large triples correcUon) • Infrared extrapolaUons based on well‐understood box size L2