A r - Near East University
Transcription
A r - Near East University
DETERMINATION OF THE REACTIONS OF A FIXED ENDED DOUBLE ARCH BY AN ANALYTICAL METHOD A Master Thesis m Civil Engineering Department Near East University By Mohamed Atwan December, 1997 / f1111,11W~Jt1w1111111 NEU Approval of the Graduate School of Natural and Applied Sciences ~.y-----, P~ Dr. Omit HASSAN Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Master - of Science. Chairman of the Department We certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science in Civil Engineering. Asst. OKAY ~ad Supervisor Examining Committee in Charge: Asst. Prof. Dr. Fuad OKAY:~···ifl/~ Assoc. Prof. Dr. Huseyin GOK<;EKUS.... .. ·· .... "JJ"fAA·}J_······················· . .. Prof. Dr. Burhanettin ALTAN (Committee Chairman).-r"l/·?/ ···············..... III DETERMINATION OF THE REACTIONS OF A FIXED ENDED DOUBLE ARCH BY AN ANALYTICAL METHOD ATWAN, Mohamed Faculty of Engineering Department of Civil Engineering, M.S. Thesis Supervisor: Asst ._ Prof. Dr. Fuad Okay 7 4 pages, December 1997 ABSTRACT The support reactions at the fixed ends of a space structure consisting of four, equally spaced, quarter circular arches are investigated; the structure is loaded by a single force perpendicular to the base of the structure. 18 equations for the 18 unknowns are obtained by Castigliano's theorem. A model problem is numerically solved with the help of the software Excel by Microsoft. Key words : Castigliano' s theorem, strain energy, matrix equations, superposition, reciprocal theorem. IV ANKESTRE MESNETLi <;iFT KEMER PROBLEMiNiN ANALiTiK METODLA cozuvu ATWAN, Mohamed Muhendislik Fakultesi Insaat Muhendisligi Bolumii, Yuksek Lisans Tezi Tez Yoneticisi: Yard. D09. Dr. Fuad OKAY 74 Sayfa, Arahk 1997 OZET Bu cahsmada dort ceyrek cembersel kemerin esit olarak yerlestirilmesi ile elde edilen bir uzay tasiyici sistemin ankastre mesnetlerindeki tepkiler incelenmistir, Yapi kemerlerin birine, yapmm zeminine dik olarak etkiyen tekil bir kuvvetle yukludur. Problemin 18 bilinmiyeni icin gereken denklemler Castigliano teoremi ile elde edilmistir, Omek bir problem Microsoft firmasinca tiretilmis olan Excel isimli bir program yardimi ile ntimerik olarak cozulrnustur. Anahtar Kelimeleri: Castigliano Teoremi, Sekil Degistirme Enerjisi, Matris Denklemleri, Karsilik Teoremi, superpozisyon. V ACKNOWLEDGEMENTS The author is deeply indebted to the chairman of civil engmeenng department Assoc. Prof. Dr. Huseyin Gokcekus who is the founder and the nurturer of the department at Near East University. Dr. Gokcekus has provided excellent motivation and continuous support for this study. His support did not diminish even while he was busy organizing an international conference on water problems in the Mediterranean countries. I am also fully thanking my supervisor Assb. Prof. Dr. Fuad Okay, for building and creating my deep gratitude, and for his support, remarkable suggestions and comments through this study, as well. Finally, the encouragement and financial support provided by my family is highly appreciated. VI TABLE OF CONTENTS Page ABSTRACT ---------------------------- OZET _ -------------------------- -------------------------------------------------------------- ACKNOWLEDGEMENTS LIST OF FIGURES ---------------------------------------------- --------------------------------------------------------- III IV V VII CHAPTER I : INTRODUCTION CHAPTER II: DEFINITION OF THE PROBLEM ----------------------- CHAPTER III : CONSTRUCTING THE INTEGRATIONS CHAPTER IV: OBTAINING THE EQUATIONS AND SOLUTION -- 57 CHAPTER V : CONCLUSION RE FE REN CES ---------------------------------------- 1 6 ----------- 17 ---------------------------------------- ---------------------------------------------------------------- 73 74 VII LIST OF FIGURES Page Figure 1: Two arches coinciding each other perpendicularly 4 Figure 2: The reactions and the internal forces in leg A ------------------ 8 Figure 3: The reactions and the internal forces in leg B ----------------- 11 Figure 4: The reactions and the internal forces in leg C ----------------- 12 Figure 5: The reactions and the internal forces in leg D before the load P ----------------------------------------------- 14 Figure 6: The reactions and the internal forces in leg D after the load P ------------------------------------------------ 15 I. INTRODUCTION In this study, the forces and the moments of a main frame of a dome where an external concentrated load is applied normal to it, are analyzed by Castigliano' s theorem. The main frame is chosen as two arches coinciding each other perpendicularly. Domes are frequently used as roofs over large circular floor areas for assembly halls, gymnasiums, field houses, mosques; and other buildings. They are very strong structures, since they are shells, and they are constructed of selfsupporting reinforced concrete shells. A dome exerts outward thrusts continuously around its perimeter. These are resisted by a tension ring. The dome and the tension ring are usually supported on columns spaced around the perimeter and braced to provide lateral stability for the structure. Also, a dome is an integral or self-contained unit. Its perimeter may be supported directly by the foundation, which carries the vertical and horizontal thrusts of the ribs. The simplest form of dome would be 2 generated by revolving a solid arch about a vertical axis through its center. The spaces between ribs may be spanned by purlins to support the roof deck [l]. Any plane-curved bar or rib, properly supported at its ends and so loaded that it acts primarily in direct compression, may be called an arch. It is assumed that the plane of curvature of the rib is also a plane of symmetry for each cross section and that external forces applied to the arch act only in this plane. Under such conditions, deformation will also take place in the plane of symmetry, and the problem of analysis becomes a two-dimensional one. If the cross sections of the rib are unsymmetrical with respect to the plane of curvature or if loads are applied normal to this plane, there will be twisting of the loaded rib, and under such conditions it is not properly considered to be an arch [2]. A ribbed arch is one of a series of arches providing structural support for the roof deck which spans the areas between arches and is continuous from one end of the roofed area to the other. In contrast to rigid frames, arches are so proportioned that the stresses produced by the loads are primarily compressive and the shears and flexural stresses are relatively small. Flexural stresses must be considered, however, in the design of the arch section, splices, and supports. A reinforced concrete roof arch, of constant dimensions in the longitudinal direction of a building , may be connected to heavy footings at the ends of the transverse span by means of dowels so that the arch itself maybe 3 considered to have two fixed supports .In the analysis of such an arch, only a typical slice of a unit width in the longitudinal direction needs to be considered [3]. In this study the problem of two arches coinciding each other perpendicularly, which are shown in figure 1, is solved by the help of Castigliano's theorem. Since the problem is a space (three dimensional) problem, each fixed support brings six unknown reactions. There are four fixed supports in our structure, thus we have twenty four unknown reactions correspondingly. Any six of them can be obtained from the equations of equilibrium conditions. We choose these six unknowns to be the six reactions in one leg. The remaining 18 unknowns are obtained by the deformation conditions at the other three legs. The displacement o J at a coordinate j of a structural that behaves linear or nonlinear due to the effect of external applied loads and of temperature variation, shrinkage, or other environmental causes can be obtained from 0. J = oU * ( 1.1) oF1 where U* is the complementary energy expressed in terms of the forces F. [ 4]. J 4 ri~ure 1. I WO orcnes coincioir1~ eocn otner rer~enoirnlorlt 5 In the special case when the structure is linear elastic and the deformations are caused by external forces only, the complementary energy U* is equal to the strain energy U by using the conservation of energy, and equation (1.1) becomes <5. = oU 1 oF.J (1.2) This equation known as Castigliano's theorem. It must be remembered that its use is limited to the calculation of displacement in linear elastic structures caused by applied loads [ 4]. In our problem the loads are kept such small that the deformation will be linear elastic. 6 II. DEFINITION OF THE PROBLEM As it is shown in figure 1, all the forces and the moments are taken into consideration in analyzing the dome. It is known that, a dome is an integral or self-contained unit. Thus, the analysis will be focused on two arches coinciding each other perpendicularly, which they are represented by four legs, and each leg has a fixed support at its end. In the analysis of such an arch, only a typical slice of a unit width in the longitudinal direction needs to be considered. A. Equilibrium of the structure From the equations of equilibrium conditions, six equations will be obtained at any leg. In our problem leg D is chosen as follows: A +B X D X +C +D =0 X X X -A - B - C X X X (2.1) 7 = Ay + By + Cy + Dy 0 (2.2) Dy=-Ay-By-Cy (2.3) Having the moment at joint D will result in'. :Z:A,(=0 MDx + M Ax+ MBx +MCx -Az r+Cz r = 0 M Dx = -M Ax - M Bx - M Cx +A z r- C r (2.4) z IMy=O M~ +MAy +MBy +MC); +Azr+Bz 2r+Czr-Pu=O M I>;; =-M Ay -M By -M Cy -A r-2B z z --cz r+Pu (2.5) M +M +M +M +A r-C r-A r-B '2r-C r=O Dz Az Bz Cz x x y y y M =-M -M -M -Ar+Cr+Ar+2Br+Cr Dz Az Bz Cz x x y y y (26) · 8 /,: /<..,/' /? // fi~ure L. 1ne reactions ono tne internal forces in le~ A. 9 B. Internal Forces in Arches Now, four legs will be analyzed separately at any section or in other words at any angle 8, where 8 ranges from O to rc/2. M, , T and Me will be found, where M, is the radial moment, T is moment of twisting and Me is the angular moment, acting on an arbitrary cross-section. From figure 2, which shows leg A, Me ,T and M, will be found as follows: Taking the moment about z-axis at the section M sin r e + T cos e + M Az +A x r (1 - cos 8) = 0 (2.7) And taking the moment about y-axis at the same section -Mr cos 8 + Tsin 8 + M Ay - Axr sin 8 = 0 (2.8) Similarly, having the moment about x-axis at the same section M8+MA X +A rsinB-A y Z r(l-cosB)=O (2.9) Equation (2.9), will result in: M e =-M Ax -A y rsinB+A r(l-cosB) z (2.10) And Equation (2. 7), will result in: Mr sine= -TcosBM -TcosB- r M Az - Axr(l- M Az - Axr(l- = -------=-==-------- sm e . cos e') cos e') (2.11) 10 Substituting T = -M Mr in equation (2.8), will result in: cosB- M Az Ay sine+ A r(I-cosB) (2.12) · X Substituting the value of T in (2.11 ), will result in: Mr = - M Az sin e+ M Ay cos e- AX r sin e (2.13) Here, the same steps will be followed in leg B, which shown in figure 3 as follows: z: M y: -M() + MB x: - M cos() + T sin () + MB + B r sin () = 0 r . X y r sinB+TcosB+MB z -B y r(l-cosB)=O - B r sin 8 + B r(I- y X Z cos())= 0 which will result in: M8 = MBy -B X rsinB+ B r(l-cosB) (2.14) Z T = - MB cos B - MB sin B - B r(l - cos B) Z M r = -MB Z (2.15) y X sinB+ MB X cosB+ By rsinB (2.16) The same procedure will be done in leg C, which shown in figure 4 as follows: z y Mr cos O - Z'sin B + Mey - Cxrsine X M B +M Cx + C r sin B + C r(l - cos B) y z = 0 = 0 11 ~i~ure 1 1ne reactions ono tne internal fore es in le~ b. 12 (z ri~ure t 1ne reoclion) rm~ lne internal form in le~ (. 13 which will result in: = - MC X Me - C r sine - C r(l - cose) y Z r(I-cosB) (2.18) cosB- MC Z sinB+ CX rsinB (2.19) T= MC sine-MC y M r = -MC y Z cose-c (2.17) X For leg D, two cases will be analyzed, because of the load P, which is applied normal to it at a distance u, from its edge. When 8 ranges between O and a, as shown in figure 5, following the I- same steps as before, it will result in: z M r sin B + T cos ·B + MD z + D y r(I - cos B) X M cos B - T sin B + MD r X =0 + D y r sin B = 0 y which results in: M BI = -M Dy+ D xrsine+ D2r(I-cosB) (2.20) where M BI is the angular moment ranging from O to a. T M = -MD r z = -MD cosB+ MD sine+ D r(I-cosB) X y (2.21) sinB+ MD X cosB-D y rsinB (2.22) I Z 14 ~i~ure ~. lne readions ano lne internal forces in le~ ~ oefore lne loao ~. 15 fi~~re 0. 1ne reoc\ion~ ono tne in\ernol !me~ in le~ ~ ol\er \ne looa ~. 16 II- When e ranges between a and rc/2, which shown in figure 6, 'allowing the same steps will result in: z Mr sine+ TcosB+ MDz + Dyr(l- cos e') =0 TsinB + M Dx + DYrsinB = 0 x Mr cosB- y M82 + MDy -DxrsinB-D2r(l-cosB)+ P[r(l-cosB)-u] which results in: M82 = -MDy + DxrsinB+ D2r(l-cosB)- where MB2 the is angular T= -MD Z cosB+ MDX sinB+Dy r(l-cosB) M r = -MD Z sinB+ MD cosB-D X Now, the equations of y Me , Mr be used in the next chapter. rsinB P[r(l- cosB)- u] moment ranging (2.23) from a to rc/2. (2.24) (2.25) and T are obtained for each leg, and they will I/ III. CONSTRUCTING THE INTEGRATIONS As it is explained in the first chapter, Castigliano's theorem will be used for solving this problem, and it is known that, the deflection 5 . is found as: J oU (3.1) 8 j = oF · } And it is known that, the strain energy U is equal to: U=- 1 2 i 3 I =1 M2 -' Eli (3.2) dx. z The effect of normal forces and shear forces are small enough that we can easily neglect them. By applying equation (3 .1 ), andequation (3 .2) the deflection in each leg will be found as: (3.3) where M. l is the moment corresponding moment of inertia. on an arbitrary axis, and I. l is the 18 Some of the integrals which will be used in the following equations: . f Sin () COS() d () = ~ f c os O f s i ri P d() 2 () 2 tr I 2 f ao cos2 =sin() = - c o e O ()d() 0 tr I 2 f sin2 () ae 0 =~+sin 2 =~-sin 2 2() 4 2() 4 - tr 4 - = tr 4 where sin O = 0 sin rc/2 = 1 cos O = 1 cos rc/2 = 0 Since the distance traveled 's' is a circular arc, it is obvious that s = r e' and ds = r de By using equation (3 .3 ), the deflection in leg A will be found in terms of one of the six reactions. And from equations (2.10), (2.12) and (2.13) we will get: 19 oM e oA x oT oA X - 0 - r(l - cosB) oM ___ r_= -rsinB oA X Applying each term in equation (3.3) will result in: f M A EI e e oM oA e ds = 0 (3.4a) X f _I_ or A GJ oA ds X 1r I = f 2 [-MA Z cosB- MA sine+ A r(l- cosB)] y X r(l-cosB)rdB GJ 0 (3.4b) f M _r oM __ r ds A EI r oA X e- A = n I 2 [ - MA sin B + MA cos Z y f 0 Elr X r sine] . (-rsmB) r dB 20 M 2 = _r_[M EI Az 4 r A rtr] tr-~+ (3.4c) x 4 2 From equations (2.10), (2.12) and (2.13) we will get oM () oA y oT oA y oM ----'-r_ oA = -rsin() - 0 = 0 y Applying each term in equation (3.3) will result in: Me oM e f -A Ele ds oAY 1r/2[-MA = -A f x rsinB+A y r2 EI () =-[M Ax f _!_ oT A GJ oA y ds = 0 Mr oMr A EI ~ds=O r z (-rsinB)rdB Elg 0 f r(l-cosB)] y +A r it --A Y 4 r -] z 2 (3.5a) (3.5b) (3.5c) 21 From equations (2.10), (2.12) and (2.13) we will get oM ---=()::....-= oA z oT oA r(l-cosB) = O z dMr = 0 oA z Applying each term in equation (3.3) will result in: MB oM() J- ds A Eie 0A2 1r!2[-MA = J X -A O Jr Ax () f _I_ oT (1--)-A 2 ds=O A GJ 0A2 A rsinB+A r(l-cosB)J Z r(l- cosB)rdB EI() r2 =-[M EI f y M oM EI oAz _r __ rds=O r r 31r -+A r(--2)] Y 2 z 4 (3.6a) (3.6.b) (3.6c) 22 Equations (2.13), (2.13) and (2.13) will give oM e oM Ax oT oM - - 1 = 0 Ax oM r oM Ax = 0 Applying each term in equation (3.3) will result in: Jr/ 2 [-MA.x -A rsinB+ A r(l-cose)] y z - I O r2 EI =-[M o EI(} ff -+A Ax 2r f_I._ oT ds=O AGJ oM Ax M ff +A (1--)] Y z 2 ~n~e (3. 7a) (3.7b) oM f-r r ds=O AE!r oM Ax (3.7c) 23 From equations (2.10), (2.12) and (2.13) we will get oM fJ oM = 0 Ay ----o T oM fJ . = - Sln Ay oM ___ .:.._r_ oM Ay = C O S fJ Applying each term in equation (3.3) will result in: M !JM __f}___ f} ds A Elf} !JM Ay f =0 (3.8a) f _I__ I} T ds A GJ !JM Ay 1r/2 [-MA = f z 0 r2 MA GJ 2r =-[--z f A M _r +M oM cosfJ-M A sinfJ+A r(l-cosfJ)] y x ( - sin fJ )rd f} GJ 7r --~] Ay 4r A (3.8b) 2 r ds =. oMAy 1r / 2 [-M Az sinfJ +MA = f 0 y Elr cosfJ- Axr sinfJ] (cosfJ) rd O 24 -M 2 - _r_ A Az + M ..!!__~ 2r Ay 4r 2 ] - EI [ r (3.8c) From equations (2.10), (2.12) and (2.13) we will get oM B = 0 oM A z oT ----= - cosB oM A z oM __ .,..:.r_ = - sin B oM Az Applying each term in equation (3.3) will result in: M() oM () oM ds= 0 () Az f EI A f I_ oT (3.9a) ds A GJoMAy ;rr/2 [-MAzcosB-MA f = GJ 2 GJ M f-r (-cosB)rdB lY 0 r =-[M sinB+Axr(l-cosB)] M Ay ff ff -+--+A Az 4r oM (--1)] x 4 2r (3.9b) r ds AEir oM Az ff sin e' + MA cost) - A r sin BJ I 2 [ - MA = f z r2 =-[M EI r x y 0 ( - sin e' )rd() Eir ff M Ay ----+A Az 4r 2r ff -] x 4 (3.9c) 25 Similarly, The same steps will be followed to find the deflection in leg B. From equations (2.14), (2.15) and (2.16) we will get oM [_ oB X oT oB = 0 = o X oM e dB = -rsinB X Applying each term in equation (3.3) will result in: f M oM _r __ rds=O B EI r ss X (3.10a) (3.10b) ,r I 2 [MB = f 0 y - B rsinB+ B r(l- cosB)] 2 x (-rsinB)rdB EIB (3.10c) 26 From equations (2.14), (2.15) and (2.16) we will get oM oB [. r sin e y --oT oB = = -r(l - cosB) y e dM oB = o y Applying each term in equation (3.3) will result in: J B M oM _r __ r ds EI r ssy st I 2 [ - MB sinB + MB cosB + B r sinB] z x y (rsinB) rdB 0 E!r = J r2 =-[-M EI Tr M Bx -+--+B Bz 4 r f _I__ oT 2 rst -] (3 .11 a) Y 4 ds BGJ oBY ,r/2 [-M BzcosB-M J = y 0 r2 =-[M GJ J M r(l-cosB)] BxsinB-B (-r{l-cosB})rdB GJ Tr M Bx (1--)+--+B Bz 4 2 Y 31r 4 r(--2)] (3.llb) oM __f}___~s=O B Elg oBY (3.1 l c) 27 From equations (2.14), (2.15) and (2.16) we will get oM __ r =0 oB z 8T = 0 oB z oM oB_e = r(I - cosB) z Applying each term in equation (3 .3) will result in: f M oM _r --LJs=O EI oB B r z f __!_~S= (3.12a) 0 (3.12b) B GJ 0B2 M8;oM8 f - ds B Eie oBz 1r I 2 [ MB - B r sin B + B r(l - cos B)] = f y X 0 r2 =-[M EI (} Z r(l- cosB)rdB EJB 1r (--1)-B By 2 31r r -+B x 2 z r(--2)] 4 From equations (2.14), (2.15) and (2.16) we will get oM r oM Bx = COS (3 oT = - sin (3 oM Bx oM (3 oM Bx = 0 (3.12c) 28 Applying each term in equation (3.3) will result in: f M oM et , oM Bx _r_ B 1r = = r ds I 2 [ -M Bz sin 6 + M Bx cos6 + B r sin 6] f y ( cos 6) rd 6 0 st , 2 -M B r Bz M ff y EI [ 2r + Bx 4r + 2] r f _I__ oT ds c: B GJ oMBx ffl2 [-MB = f (3.13a) cosB-MB z X GJ 0 r2 M Bz =-[--+M GJ 2r sinB-B r(l-cosB)] y ( - sin B) ff By -+-] Bx 4r 2 M oM _f}_ e ds B EIB oMBx f =0 rde (3.13b) (3.13c) From equations (2.14 ), (2.15) and (2.16) we will get oM r = 0 oM By oT = 0 = 1 oM By oM e oM By Applying each term in equation (3.3) will result in: M f-r oM rds=O B Elr oMBy (3.14a) 29 f I_ oT ds=O B GJoMBy f- (3'.14b) M0 oM0 ds B Eie oMBy tr/2 = I [MB -B y rsinO+B r(l-cosO)] z X 0 r2 =-[M EI () (l)rd e EIO tr --B By 2r x tr +B (--1)] (3.14c) z 2 From equations (2.14), (2.15) and (2.16) we will get oM r oM = - sin B Bz oT oM = -Cose Bz oMe oM = 0 Bz Applying each term in equation (3.3) will result in: f B = M _r st; oM r ds oM Bz tr I 2 [ - MB sin O + MB cos e + B r sin OJ f z x y (-sinO)rdO 0 Elr r2 =-[M EI r tr M Bx -----B Bz 4r 2r tr -] (3.15a) Y 4 f I_ oT ds B GJ IJM Bz tr/2 [-MB2cos0-MBxsin0-B = f 0 GJ r(l-cosO)] y (""'"cosO)rdO 30 (3. l 5b) M f _fl B EI() oM () ds =0 (3.15c) oM Bz By following the same steps, the same thing will be done for finding the deflection in leg C. From equations (2.17), (2.18) and (2.19) we will get oM r oC - . - r sm {) X oT = - r (1 oC - COS {)) X oM () = oC O X Applying each term in equation (3.3), will result in: f M oM ___!_ __I__cJs C EI r scX ,r/2 [-M0 cosB-MCz-sinB+C rsinBJ y x (rsinB) rdB 0 Elr = f > 31 = 2 -M r Cy EI [ 2 - M Cz r J _!_~s rst Jr 4 + Cx 4] (3.16a) c GJ ocx ;r/2 [MC sinB-MC2cosB-Cxr(l-cosB)] = y J 0 r [-r(l- cosB)]rdB GJ 2 -M. Cy =-[ GJ 2 M oM +M J _f}_ __ o ds c EI8 ocx 1r (1--)+C Cz 4 3:r r(--2)] x 4 (3.16b) =0 (3.16c) From equations (2.17), (2.18) and (2.19) we will get oM t: = 0 oCY _!I_= 0 oCY oM ----'8~= - r sine !JC y Applying each term in equation (3.3) will result in: M oM J _r ---1:,Js = 0 C EI r !JCy J (3.17a) _!_~s=O (3.17b) C GJ oCY M8oM8 J---ds C EIB oCY :rr/2 (-MC = f 0 X -C y rsin8-C EIB Z r(l-cos8)] (-rsinB)rdB 32 r2 =-[M EI o rst +C -+C Cx Y 4 r -] (3.17c) z 2 From equations (2.17), (2.18) and (2.19) we will get oM =0 __ r oC z or oC =0 z oM B = -r(l - cosB) ac2 Applying each term in equation (3.3) will result in: I Mr oMr C EI oC ds r z =O (3.18a) (3.18b) MB oM8 f---ds c E18 ac2 1r = I 2 [ - MC - C r sin B - C r(l - cos B)] X y Z f 0 EIB {-r(l-cosB)}rdB (3.18c) 33 From equations (2.17), (2.18) and (2.19) we will get oM r = 0 = 0 oM Cx !} T oM cx dM B = - 1 oM Cx Applying each term in equation (3.3) will result in f M oM _r r ds = 0 C Elr oMCx f __!_ oT C GJ oM Cx (3.19a) (3. l 9b) ds=O MB oM8 f - ds C EIB oMCx ,r/2 = f -C [-MC 0 r2 =-[M EI (} r(l-cosB)] rsinB-C y x z (-l)rdB EIB Jr -+C Cx 2r Jr Y +C (--1)] z 2 (3.19c) ) 34 From equations (2.17), (2.18) and (2.19) we will get oM r = -cos() = sin () oM Cy oT oM Cy oM () su Cy = 0 Applying each term in equation (3.3) will result in: f C M _r oM r et; oMCy ds Jr / 2 [ - MC cos() - M Cz sin () + Cx r sin fJ] · y (-cosfJ)rd() O EI r. = f (3.20a) f _I_ o T ds C GJ oMCy = 1r/2 f [MC sinfJ-MC y 0 r2 =-[M GJ x ( sin fJ) rd() GJ 1r MCz -----] Cy 4r 2r M oM _§_ () ds C EI() oMCy f r(l-cosfJ)] cosfJ-C z =0 Cx 2 (3.20b) (3.20c) 35 From equations (2.17), (2.18) and (2.19) we will get oM r oM Cz or - - sine = _ cos e oMCz _oM__..:::..e_ oM Cz = o Applying each term in equation (3.3) will result in: f M _r oM r ds C Elr oMCz 1r I 2 [ - = f MC cos B - MC sin B + C r sin BJ z y x (-sinB)rdB Elr 0 2 M r Cy =-[--+M EI 2r r tr --C CZ 4r tr x 4 -] (3.21a) f _I_ t3 T ds C GJ oMCz tr / 2 [MC sin B - M CZ cos B - Cx r( 1 - cos B)] y (-cosB)rdB GJ 0 = f (3.21b) (3.21c) 36 From leg D four equations are obtained as explained in the second chapter, and they are as follows: M· r = - MD Z sin () + MD X cos() . T = -MD D r sin () y cos()+ MD sin()+ D r(I- cos e') Z y X . y + DX rsin()+ DZ r(l- M()I = -MD cos e') M ()2 = M ()I - P[ r - r cos () - u] From figure (2.4) and figure (2.5) we will integrate M r and T from O to rc/2, but for M Bl it will be integrated from O to a, and for M ()2 it will be integrated from a to rc/2. Substituting the values of D ,D ,D ,MD X y Z X ,MD y and MD Z in the previous equations, we will have: M r = -( MA Z - MB .,... MC - A r + C r + A r + 2rB + C r) sin e' Z Z XX y y y +(-M Ax -M Bx -MCx + A2r-C2r)cosB - ( -A T=-(MA Z y (3.22) - B - C )r sin e' y y -MB Z -MC Z -A r+C r+A XX y r+2rB y +C y r)cosB + ( - M Ax - M Bx - M Cx + A2r - C 2r) sin e' + ( - A - B - C )r(l - cos B) y M (}J. =-{-M Ay y y -M -M By Cy -A z r-2rB z -Cr+Ai)+(-A z +(P-A -B -C )r(l-ca;{}) z z z (3.23) X -B -C )rsinB X X (3.24) 37 Me2 = MBl - P[ r - r cos e - u] (3.25) We know from leg D, that f Me oMe ---ds= D EI e where f O EI e o• o• a Mei oMBl 1rl2 Me2 0Me2 ds+ f o• a -- EI e (3.26) ds o• means that, leg D will be differentiated with respect to the unknown reaction •. From equation (3.25), it is given that: Me2 = MBl -P[r-rcose-u] and Thus, we have f Me oMe --ds= D EI e o• n/2 Mel oMBl f O ---dsEI e o• n/2 P[r-rcose-u] f O EI e oMBl o• ds (3.27) =a-b ) 38 I - The equations in leg D containing the unknown reactions of leg A. From equation (3 .22), we will have oM __ r oA = rsinB X f M oM _r __ r ds EI D rr/2 = f r oA X [-MD 2 sinB+ MD cosB-D rsinB] x 0 (rsinB)rdB y ". r2 =-[-M EI r tr M Dx -+---D Dz 4 2 rst -] (3.28a) Y 4 From equation (3.23) it is found that: --oT = rcosB oA X f _I_ oT ds D GJ oAx rr/2 = J 0 [-MD2cosB+MDxsinB+D r(l-cosB)] y (rcos8) rde GJ (3.28b) 39 From equation (3.24), we will get dv! __§J._ds ,r/2 flr-rcosB-u] f EI a at 8 X ,r I 2 flr-rcosB-u](-rsmfJ)rdB f = EI a _ -Pr - 2 cos a Eie e r [r--cosa-u] 2 (b) M8 oM8 f---ds=a-b DE!(} iJAX r2 =-[M EI (} Dy -D rtr --D x 4 r r -+Pcosa(r--cosa-u)] z 2 2 It is found from equation (3.22) that: iJM __ r =0 iJA y (3.28c) 40 f Mr oMr D EI oA ds y r =0 (3.29a) From equation (3.23), we will get oT --=-r oA y f _I__ oT ds D GJ oAY ;r/2[-MD cosB+MD Z = f X y r(l-cosB)] GJ 0 r2 =-[M GJ sinB+D Dz -M Dx -D (-r)rdB Jr r(--1)] y 2 (3.28b) From equation (3.24), it is found that: oM191 --=0 oA y Me oMBI f ds D Elf) oAY =0 (3.29c) From equation (3.22),we will get oM __ r =rcose oA z M oM _r __ rds D EI r oA z =f = 1r I 2 [ - M Dz sin fJ + M Dx cos fJ - D r sin B] f y (rcosfJ) rdB EI . 0 r ) 41 2 -M r [ Dz M tt EI 2 + Dx 4- r D r] y 2 (3.30a) Similarly, from equation (3.23) it is found that: oT -=rsm oA z . O = f oT _!'__ ds D GJ oAz ,r/2 [-MD = f sinB+D r(l-cosB)] cosB+MD z x 0 (r sinB)rdB y GJ 2 -M = L: [ GJ ,r + D !::_] Dz + M Dx 4 2 (3.30b) Y 2 From equation (3 .24), we will get oM _ _.:;.B_l = r cose oA z n: I 2 = f 0 ,r I 2 = f 0 r2 =-[-M EI r Tr +D -+D r(l--)] Dy x 2 z 4 e ,r I 2 P[r-rcosB-u] f a = EI8 (a) d M BI oA ds z 2 ,rfl P[ r - r cosB - u] ( B) dt) rcos r a EIB r2 p = -[r(lEIB . sma)-r{- ,r 4 a sin2a -(-+--)}-u(l-sma)] 2 4 . (b) 42 M6oM f -D EI e e ~ds=a-b z 2 = _r EI [- M e + D !_ + D r(l - ~) - P {r(l - sin a) - z z 4 Dy -+--sin2a)} -u(l-sma. 2 4 1r (a -r{-4 (3.30c) )} ] From equation (3.22), we will have oM __ r_ =-cose =: M =f-r =. =: D TC = oM rds I 2 [ - M Dz sine+ M Dx cos e - D r sin e'] f Y (-cos&)rde Elr 0 (3.31a) From equation (3.23), it is found that: or . e ---=-sin oMAx f = D T ds oT GJ oMA X tr/2 I = [-M 0 2 M Dz =-[--M r GJ 2r Dz cosB+ M Dx sine+ Dyr(l- cosB)](-sin&)rde GJ 1C ---] Dx 4r D Y 2 (3.31 b) 43 Similarly, from equation (3.24) it is found that: _oMBl ___.c.___ =0 =: M f (} oM Bl ds D EI(} oM Ax =0 (3.31c) From equation (3.22), we will get oM __ r_=O =; M oM f-r rds=O (3.32a) D Eir oM Ay And, from equation (3.23) it is given that: oT =O oMAy _I_ f oT ds=O D GJoMAy (3.32b) Similarly, from equation (3.24) it is found that: oM(}l --=1 =; tr/2 f O M(}l oM(}l -- EI(} oM Ay ds 44 ,r; 2 [ - MDy + D r sin B + D r(l - cosB)] f X Z (l) rdB 0 r EIB 2 tr =-[-M El -+D Dy 2r o ,r/2 P[r-rcosB-u] f El a e tr x +D (--1)] (a) z 2 oM Bl ds oM A y J Jr 2 P[ r - r cos B - u] (1) rd o a Elg r2 P ;r Elg 2 = -[(- u ;r . - a)-(1-sma)- -(- r 2 -a)] (b) M oM g g ds=a-b= D Elg oMAy f r2 ;r = -[-M EI ;r -+D Dy 2r o +D (--1) x z 2 (3.32c) - P { ( ;r - a) - (1- sin a) - ~ ( ;r - a)}] 2 r 2 It is found from equation (3.22) that: oM __ -«; f r_ M _r =sine oM r ds D Elr oMAz ;r I 2 [ - MD sin B + MD cos B - D = f 0 z x Elr · y r r sin BJ ( sin B) rd B 45 r2 =-[-M EI ;rr M Dx -+---D Dz 4r 2r r ;rr -] (3.33a) Y 4 Similarly from equation (3.23),we will get oT cos() ---= oM Az f _!_ o T ds GJ oM Az D [-MDzcosB+MDxsinB+D ;rr/2 f = GJ 0 r2 =-[-M ;rr M Dx -+--+D Dz 4r 2r GJ r(l-cosB)] y (c o s e") rd() ;rr (1--)] Y 4 (3.33b) And from equation (3.24), it is found that: oMf)l --=0 =: Me .~ oM e fD Elf) oM Az ds= 0 (3.33c) II. The equations in leg D containing the unknown reactions of leg B. From equation (3.22), we will get oM __ r =0 oB X f Mr D EI r s», oB ds X = 0 (3.34a) 46 Similarly, from equation (3.23), it is found that: oT = oB O X f __!_ oT ds= 0 (3.34b) D GJ oBx And from equation (3 .24 ), we will get oM __ B_I oB sin B X MBI oMBI tr/2 f -- £18 0 r2 =--[M EI () = -r Dy -D ds oBx rst --D x 4 r r -+Pcosa(r--cosa-u)] z2 (3.34c) 2 From equation (3.22), we will have oM __ r oB y su M f-r D = -r sine' E! __ r ds r asy ) 47 M 2 Tr _ _k+D =-r-[M EI Dz 4 r 2 (3.35a) r1r] Y 4 And from equation (3.23), we will get --oT = -r(cosB+ oB 1) y f I__ o T ds D GJ oBY r2 =-[M GJ 1r (-+1)-M Dz 4 3 --D Dx 2 rst ~] y 4 (3.35b) Similarly, from equation (3.24), it is found that: oMB1=0 oB y M oM I __fl __ e ds = o (3.35c) DEie oBY From equation (3.22), we will have oM __ r =0 oB z I Mr D EI r =. oB ds z = 0 (3.36a) And from equation (3.23), it is found that: oT oB z =O ) 48 (3.36b) Similarly, from equation (3.24), it is found that: oM __ B_l oB z = r(l + cosB) ,r I 2 Mel oMBI J - EI8 0B2 0 ,r 3r (-+l)+D -+D Dy 2 x 2 r2 =-[-M EI ds e rtt z 4 -· ] (a) ,r I 2 P[r- rcosB-u] oMB1 J ssz E18 a r2P = -[r{(- EI8 ds ,r . - a)+ (1-sma)}2 . ,r a sin2a r{(l-sma) + (- - {- +--} )} 4 2 4 -u{(,r -a)+(l-sina)}] 2 M8oM8 J---ds=a-b nEie oBz 2 r =-[-M EI () ;r 3r rr: ;r (-+l)+D -+D --P{r{(--a)+(l-sma)} Dy 2 x 2 z 4 2 . -r{(l-sma) ;r +(-4 oM r_ = -cos() oMBx f D M _r oM =. =; r ds . a sin 2a ;r . {-+--} )}-u{(- -a)+ (1-sma)}}] 2 4 2 From equation (3.22), we will get __ (b) (3.36c) 49 (3.37a) From equation (3.23), we will get t3 T . B ---= dM -sin Bx f _!_ »r D GJoM Bx ds r2 M Dz tr Dy ---] =-[--M GJ 2r Dx 4r 2 (3.37b) Similarly, from equation (3.24) will be found oMBl --=O oMBx M f __fl__ dM B ds = 0 D EJB oMBx (3.37c) And, equation (3.22) will result in: oM ---'r_ =0 oMBy M f .u: oM r ds=O D E!r oMBy (3.38a) Similarly, equation (3.23) will give oT =O oMBy I__!_ oT D GJ oMBy ds=O (3.38b) 50 From equation (3 .24 ), we will find that: cJMBI = --=-=- 1 cJMBy tr I 2 M BI cJ M BI f - 0 ds EIB cJM By r2 ;rr = -EI-[-MDY-2r ;rr +Dx +Dz(2- I)] (a) B ;rr/2 J P[r-rcosB-u] ds a EIB r2 P ;rr Ef 8 2 = -[(- f cJMBI M cJM By . - a)-(1-sma)- cJM _§_ e ds =a- u ;rr -(-r 2 a)] (b) b D EIB cJM By r2 = -EI-[ - M Dy ;rr ;rr ;rr -2r + D x +Dz ( 2 - l) - p { ( 2 - a) (} (3.38c) -(1- sin a)- ~(;rr - a)} J r 2 From equation (3.22), we will get cJM _ __;r_ =sin(} cJMBz f M _r oM r ds D Elr oMBz (3.39a) ) 51 Similarly, equation (3.23) will result in: oT --=cosB oMBz f T oT ds D GJ oMBz_ r2 =-[-M GJ Tr M Dx -+--+D Dz 4r 2r Tr (1--)J Y 4 (3.39b) And, equation (3.24) will give oM81 --=0 oMBz f M __j}__ oM B ds = 0 D EIB oMBz (3.39c) III. The equations in leg D containing the unknown reactions of leg C. From equation (3.22), we will get oM __ r =-rsinB oCX f M _r D EI r su __ r scX ds (3.40a) ) 52 And, equation (3.23) will result in: oT -- = -rcosB oC X I .I_ oT D GJ ocx r2 =-[M GJ ds Tr MDx -----D Dz 4 2 y r(l--)] Tr (3.40b) 4 Similarly, equation (3.24) will give oM --=6-=--=1 -r sin oC B X MB oM6 ---ds I D EIB oCX r2 = --[M EI Dy o -D sr r r - -D -+ Pcosa(r- -cosax 4 z 2 2 u)] (3.40c) From equation (3.22), we will get oM __ r =0 oC y f M oM _r __ rds=O D EI r oC y (3.41a) And, equation (3.23) will give oT --=-r oC y I .I_ oT ds D GJ oCY ) 53 r2 = -GJ [ M Dz - ff M Dx - Dyr( 2 - I)] (3.41b) Similarly, equation (3.24) will result in: oMB1 -~=O oC y M oM _§__ __ eds= 0 D EI() oCY f (3.41c) From equation (3 .22), we will get oM = -rcosB __ r oC z f M _r D EI r ot« __ r scz ds r2 MD ff r =-[--2-M -+D -] EI 2 Dx 4 Y 2 r (3.42a) And, equation (3.23) will result in: ar -- oC . =-rs1n 8 z f __!_ oT ds D GJ ac2 r2 MDz =-G-J[-2--M ff Dx 4-Dy r 2] (3.42b) Similarly, equation (3.24) will give oM ---=-8-=-= 1 r cos B oC z ) Y.D.U FEN BiLiMLERi ENSTiTUSU TEZ SINA VI TUTANAK FORMU Gonderen: .. .Insaat Mflhendisligi. Gonderilen: Enstitu Mudurlugu .. EABD Baskanhgi Enstitu Anabilim Dahrmz YUKSEK LiSANS/8 ! I I · 1tA Programi ogrencisi ......... Mohamed ATW AN tez cahsmalanm sonuclandmnis ve kurulan juri onunde tezini savunmustur. Smav tutanagi asagidadir. 29/12/1997 Tarih Enstitu Anabilim Dali Baskam SINAV TUTANAGI: Jurimiz 29/12/1997 Tarihinde toplanmis, yukanda adi ogrencinin gecen 'Determination of the Reactions of a Fixed Ended Double Arch by an Analytical Method' konulu tezi incelenmis ve yapilan sozlu smav sonunda OYBiRLidi,g l J VJ ile asagidaki karan almistir. ~Ba~anh D Basansiz D Diizeltme (Yuksek Lisans 3 ay/Doktora 6 ay) Tez Smavi Jurisi Unvam, Adi Soyadi Baskan Prof. Dr. Burhanettin ALTAN Tez Damsrnam Dye Imza Asst. Prof. Dr. Fuad OKAY Assoc. Prof. Dr. Hiiseyin GOK<;EKU~ Dye Dye Uzatma alan veya basansiz olan ogrenciler icin juri raporu eklenmelidir. Juri raporunu tum juri uyeleri ve/veya yalmzca juri baskam irnzalamahdir. Gonderen: FBE Gonderilen: OiDB Yukarida adi gecen ogrenci Smav Tutanaginda belirtildigi iizere mezun olmaya HAK KAZANMI~TIR/Kl~.aSi.rlAIAAIISf.flR. Geregini rica ederim. ~----; Tarih Enstitii Muduru 54 r2 =-[-M EI Dy e +D r ;rr -+D r(l--)x 2 z 4 (3 .42c) P{r(l-sina)-r(;rr -{a+ 4 2 sin2a})-u(l-sina)}] 4 From equation (3.22), we will get t3M ---Cr_ = - cos e t3MCx M f _r t3M r ds D Elr t3MCx r2 M Dz =-[---M EI 2r ;rr -+-] Dx 4r r Dy 2 (3.43a) And, equation (3.23) will result in: . B t3T --=-sm t3MCx f _!_ t3T ds D GJ t3MCx = 2 M D Dz ;rr Y -G-J [-2-r- - M Dx -4r - -2-] r (3.43b) Similarly, equation (3.24) will give t3 M BI ---"--=- = 0 t3M Cx M t3M _f}_ B ds= 0 D EIB t3MCx f (3.43c) 55 From equation (3 .22), we will get oM -----'r-=0 oMCy M oM f-r rds=O EI oMC D r .y (3.44a) And, equation (3 .23) will result in: oT =O =; f .I_ oT ds=O (3.44b) D GJ oMCy Similarly, equation (3.24) will give oMBI -~=I =; MB oM8 f ds D EI8 oMCy r2 ff = -EI-[-M . ff DY-2r +Dx +Dz(2-l) () (3.44c) - P { ( ff - a) - (1 - sin a) - ~ ( ff 2 r - 2 From equation (3.22), we will get oM --'-roMCz f M _r D n, = sin B oM r ds oMCz a)}] 56 r2 =-[-M EI r Jr M Dx -+---D Dz 4r 2r Jr -] (3.45a) Y 4 And, equation (3.23) will result in: oT --=cose oMCz f __!_ oT ds D GJ oMCz r2 Jr M Dx = -G-J[-M Dz -4r =t:: Jr Dy(l-4)] (3.45b) Finally, equation (3.24) will give oMB1 --=0 oMCz (3.45c) Thus, all the equations in leg D, containing the unknown reactions of the other three legs, are obtained. 57 IV. OBTAINING THE EQUATIONS AND SOLUTION It is known from Castigliano 's theorem and from the fact that deformations at fixed ends should be zero that: M oM T oT f _r __ r ds+ f --ds+ A EI r o • A GJ o • Mr oMr f ---ds+ D EI r o • Me oMe f ---ds+ A EI e o • T oT f --ds+ D GJ o • Me oMe f ---ds=O D EI e o • (4.1) where 8• refers to the 6 unknowns of leg A. And it is worthy to mention that, equation ( 4.1) is also applicable for leg B and C. By using equation ( 4.1) for leg A, B and C, 18 equations will be obtained. And we arrive that: sr M oM T f _r __ r ds+ f ---ds+ A Eir oAX A GJ oAX Mr oMr +f ---ds+f D ". oAX T at ---ds+f D GJ oAX Me oMe f ---ds A Eie oAX Me oMe ---ds=O D Eie oAX (4.2) 58 Substituting the value of each term, will give us: r2 1r M Ay EI [MAz 4--2-+ r 31r r2 + A r(--2)]+0+-[-M x 4 EI r2 +-[-M GJ tt MDx -+---D Dz 4 2 r 1r r-] y 4 (4.3) Jr MDx -+--+D Dz 4 r2 1r M Ay GJ[M A/4-l)--2- rn Ax 4]+ 2 y Jr r(l--)] 4 1r r r -D r- -D -+ Pcosa(r- -cosa - u)] y x 4 z2 2 r2 +--[MD EI(} Substituting the values of =0 Dx ,DY ,D2 ,MDx ,M Dy and MDz m equation (4.3), it can be written as follows: M 1r/2 - 1 1r/2 +-]+M Az GJ EI 1 1 1 [ ---J Ay - 2GJ- 2EI - EI n [ r r 1r/2 Jr- 2 1r/4 +A [r(-'-+--+-)]+M x EI GJ EI11 r M r -r +A [-]+B Y GJ Jr/4 1r/4 [-+-]+ Bz EI GJ u Jr/4 m4 [-+-]+C Cz EI GJ x r 1r/4 EI 1r;A 1r/4 -+-)] GJ EI [r( - r 1r/4 [r(--Y EI r (} 1r/4+1 -r 10 )]+C [-0 ]+ J y J 1 1 1 1 1 M [ -(-+-)]+M [ -(-+-)] Ax 2 EI GJ Bx 2 EI r r 1 1 1 r/2 r/2 + Mc) - 2 ( EI + GJ)] + Az [ EI + GJ r r -l r/2 n2 r/2 CZ[- EI - GJ- iI ]+MBy[EI r (} 3r.i2 +B [ -]+B z EI (} rm4 [-Jx EI (} u (} 1 GJ r/2 EI ] + (} -1 ]+MCy[EI ] (} P[-u+r,2-cosa(r-rcosa,2-u)] EI (} To simplify this equation, some techniques are used as follows: (4.4) 59 h It is supposed that: b = /3, where h and b are the length and the width of a cross sectional area of the leg respectively. So, the moment of inertia I e, and the radial moment Ir, can be written as follows [5]. (4.4a) (4.4b) Also, for the same cross sectional area, it is known that, the torsional constants J is given by the following formula [ 4]. J = bh 3 1 h h4 [ - - 0.21- (1- -) ] 3 b 12b4 3 1 h J = bh [- -0.21-(13 b J=/3 2 h4 12 -)]12b4 12 4 I() [_!.-0.21/J(l-.[!__)]12 3 12 1 /3 4 Let y =12/32 [--0.21/J (1--)] 3 12 so J = r I() ( 4.4c) (4.4d) (4.4e) (4.4t) (4.4g) And, modulus of rigidity is given by: G= E 2(1 + v) (4.4h) where, Eis the modulus of elasticity, and vis poison ratio [5]. Substituting these values in equation ( 4.4), it will give the first equation. 60 A [r{',z-/2 +2(n--2)(l+v) x /12 r +n-}]+A [-2r(l+v)] 4 r Y + A [-r- + r(l + v) _ ~] + M [-__!_ {-1- + 2(1 + v)}] z 2 p2 r 2 Ax 2 p2 r +M Ay [-(l+v) __ 1__ 1]+M [2(n-/2-l)(l+v) r Az r 2/12 +~] 2/J2 +B (n-]+B [r{ -n- _ 2(n-/4+1)(1+ v)}]+B [-3r] X 4 Y r Z 2 4/J2 +M [-_!_{_1_+2(1+v)}]+M [-l]+M [~+n-(l+v)] 2 /J2 y By Bz 4/J2 2y +C [r{ -n- _ n-(1+ v) + n-}]+C [-2r(l+ v)] X 4/J2 2y 4 Y r Bx +C [--=!.:_ _ r(l + v) _ ~] + M [ _ _!_ {-1- + 2(1 + v)}] z 2/12 r 2 Cx 2 /J2 r 1r + MC [ -1] + MC [-2+ Y z 4/J n-(1 + v) ] 2y -1 1 2 + cosa - - cos a] 2 2 = Pr[- (4.5) Following the same steps, the remaining equations will be obtained as in the same way. A [-2r(l + v)] + A (n- + rn-(l + v)] + A [-r _ 2r(l + v)] + X r Y4 r z2 r M [l+2(l+v)]+M r Ax +M [2(1 + v)] + M Bx r [-2(l+v)]+B Az r [2r(l+n-/2)(1+v)] y r [-2(1 + v)] + C [2r(l + v)] + C (n-(1 + v)] Bz r X r y r +C [2r(l + v)] + M [2(1 + v)] + M [-2(1 + v)] z r Cx r Cz r =0 (4.6) 61 r(l + v) A [ -+r x 2JJ2 r [-1-+ 2 Ax 2 r ;r x 2 ;r [--2X 4/3 +B [r(l+-)]+MB Z 4. Ay 3r(l+ v)] r y 2/J2 ;r(l + v) 2y ;r-2 ) [l] 2y 4132 ( z 4 JJ2 (1 + v)] +B [-r ]+ B [~- Az 2/J2 M r y 2 [l-1r _ _!!__1r(l+v)]+M +r;r(l+v)]+M 2y +M 2r(l + v)] + A [ -+r rat -- r] + A [-r -- [1]+ ]+MB Y [-1- + (1 + v)] + C [ __ r__ r(l + v) _ _c] + C [ _ 2r(l + v)] Bz 2132 r x 2132 r 2 Y r +C [-r;r + r;r _ r;r(l + v)] + M z 4132 4 1 +Mc [-2+ z 2/J 2y (1 + v) r A [-=!.__(l+v)]+A x 2/J2 r +M Cx a ]=Pr[-+ [ -;r _ ;r(l + v)] + M [l] 2y Cy 4132 sin2a 2 . -smacosa] (4.7) 4 [l+2(1+v)]+A Y r [l-1r _ _!!__1r(l+v)] z 2 4/J2 2r [~ {2 +-1-+ 2(1 + v)}]+ M [---=!_- (1 + v)] + Ax 4r p2 y Az 2r/J2 ry B [-l-+3(l+v)]+M y 2p2 r [~{-l-+2(1+v)}]+M Bx 4r /32 r [---=!__(l+v)] Bz 2r/32 +C [-1- + (1 + v)] + C [ 2(1 + v)] + C [ ;r {-1- + 2(1 + v)}]+ x 2132 M r Y r z 4 /32 [~ {-1-+ 2(1 + v)}]+ M [---=!_- (1 + v)] Cx 4r p2 y Cz 2r /32 ry r =0 rr (4.S) 62 A [-(l+v) x y +M Az [ __ l__ 2/32 (1 + v) ry +C [-l)+C X Z l)+A [l]+M (,z-(I+v)+_1r_+~] z Ay 2ry 4rf32 2r 1 ---]+B 2r /32 [l)+MC x [-l]+B Tr [-+l]+M z 2 Tr [-] By 2r (4.9) [~]=P[sina-acosa] )l 2r 1r 2(1r/2- 1)(1 + v) - 2(1 + v) 1 (1 + v) A [-2+ ]+A [ ] + A [-2+ ] x 2/3 r Y r z 2/J r - 1 (1 + v) - 1 (1 + v) 1r(l + v) 1r + MAx [--2 ] + MA [--2 + ] + M Az [ + --2] 2r/J ry Y 2rf3 ry 2rf3 rr -Tr +B [-y 4/32 +M 2(1r/4+1)(1+v) r [ --+Tr Bz 4rf32 - 1 C [-- z 2/32 ]+M -1 [--Bx 2rf32 1r(l + v)] C [ - Tr + -2ry x 4/32 (1 + v) r ]+M -1 [--Cx 2r/J2 (l+v) rr ( 4.10) 1r(l + v)] C - 2(1 + v) + [ )+ 2y y r (1 + v) rr ]+M r1r [-]+B x2 [ Tr 1r(l + v) --+ Cz 4r/32 r1r A [-]+A x4 -r [-]+MA z2 y rat C [-]+C x4 -r [-]+MC z2 1 [-l)=Pr[--+cosa--cos Y 2 [-l]+B ] z [-2r]+MB 1 2 2 2ry y ]=0 [-2]+ ( 4.11) a] 63 A [ -nr _ 2r(n-/4 + 1)(1 + v)] + A [2r(n-/2 + 1)(1 + v)] + x 4/32 r Y r [--=c_- 3r(l + v)] + M A r z 2/J2 M [-1- + 3(1 + v)] + Ax 2/32 r [---n- _ 2(n-/4 + 1)(1 + v)] + B [-rn-_ + _3r_n-_;_(l_+_v--'-)] Az 4/32 2/32 r +M [ -+1 Bx /32 4(1+v)] r y + M [ -n-Bz 2/32 r n-(l+v)] r + C [ _!!!_ + 2r(n-/4 + 1)(1 + v)] + C [2r(n-/2 + 1)(1 + v)] + x 4/32 r Y r C [-r- + 3r(l + v)] + M [-1- + 3(1 + v)] z 2/32 r Cx 2/32 r +M [ -n- _ 2(n-/4 + 1)(1 + v)] = O r Cz 4/32 - 3r A [-]+A x2 -3r +C [-]+C x 2 nn[r(-+l)]+MA [-+l]+B z 4 Y2 nn[r(-+l)]+MC [-+1]= z 4 · Y2 +(1- sin a)} -r{(l- M 3rn[-2r]+B [-]+MB [n-] x z2 y nrtt nPu(-+l)-P-+P[r{(--a) 2 4 2 r [2(1 + v)] + A [ -n- _ n-(l + v)] + Y r z 4 /32 2r [-=-!._ _ (1 + v)] [~ + n-(l + v)] + M Ax 4r/J2 2ry Az 2r/J2 +B [-1-+ 4(l+v)]+M y /32 r ry [~+n-(l+v)]+M Bx 2r/J2 ry [2] Bz r/J2 +C [-1- + (1 + v)] + C [ 2(1 + v)] + C [ ~ + n-(1 + v)] x 2/J2 r y r z 4/J2 2r +M (4.13) sin a)+ (n- - {a+ sin2a} )} - u{(n- - a)+ (1- sin a)} J 4 2 4 2 --2__ _ (1 + v)] + A A [ x 2 /J2 (4.12) [-=-!.__- (1 + v)] = 0 [~ + n-(1 + v)] + M Cx 4r/J2 2ry Cz 2r/J2 ry (4.14) 64 7r 7r A [-l]+A [l]+MA [-]+B [-2]+B [1r]+MB [-]+C [-1] x z y 2r x z y r x +C [1] + MC [ ~] z Y 2r = ( 4.15) P[sina - a cosa] A [_!:__+1r(l+v)]+A [-2(1+v)]+A [-1-+(l+v)]+ x 4/32 2y Y r Y 2/32 r M [--=.!____(l+v)]+M [~+1r(l+v)]+B Ax 2r/J2 rr Az 4r/J2 2ry +M [2]+M Bx r/J2 [~+1r(l+v)]+C Bz 2r/J2 rr [-1r _1r(l+v)] y 2/32 r [-1r _1r(l+v)]+ x 4/32 2y ( 4.16) C [-2(1 + v)] + C [ --2_ _ (1 + v)] + M [--=.!___ _ (1 + v)] y r z 2/32 y Cx 2r/J2 rr +M [-"- + 1r(l + v)] Cz 4r/J2 2ry =0 A [-r1r +r1r _r1r(l+v)]+A [2r(l+v)]+A [~-~-r(l+v)] x 4/32 4 2r y r z 2/32 2 +M [-1-+(l+v)]+M Ax 2/32 y [-l]+M Ay r [-1r _1r(l+v)]+ Az 4/32 2y M [ 1 (l+v) B [ -r1r] + + B [ - rtt + 2r(1r/4+l)(l+v)] + B [-3r] + +--] x 4 y 4/32 r z 2 Bx 2 /32 r +M [-l]+M By [ -1r _1r(l+v)]+C [ r1r +r1r +2r(1r-2)(1+v)] Bz 4/J2 2y x 2/32 4 r r +C [ 2r(l+ v)] + C [ ---+ y r z 2/32 M [--2__ (l+v) ~2~ _l]+M r r(l+ v)] + M r 2 [ -+1 Cx 2/32 (l+ v)] + [ -1r + 2(1-1r/2)(1+v)] Q2~ = Pr[- -1 + cosa - -1 cos2 a] 2 r 2 r r ( 4.17) 65 A [-2r(l + v)] + A (;r(l + v)] + A [-2r(l + v)] + M [2(1+ v)] X r y r z r Ax r [-2(1 + v)] + B [2r(l + Jr/2)(1+ v)] + M +M r Az y [-2(1+v)]+C M Bz r r Bx ( 4.18) [2r(l+v)]+C (Jr +r;r(l+v)]+ x y y 4 y y C [~+2r(l+v)]+M [l+2(1+v)]+M r z 2 [2(1+ v)] + Cx [-2(1+v)]=O y r Cz A [- _r__ r(l + v) _~]+A [ 2r(l + v)] + A [- r;r + r;r _ r;r(l + v)] x 2/32 r 2 y r z 4/32 4 2r [~+;r(l+v)]+M +M Ax 4/32 [l]+M 2r, Ay Bx 4/32 C [~+r(;r-2)+r;r(l+v)]+M +M 1 (1 + v) y [-=!_ _ (1 + v) ] + A A x 2/32 r [-Jr-+ M Ax 4r/J2 Bx 4r/J2 +M r ( 4.19) [~+2r(l+v)]+ Y 2 r [1] 2y 4/32 Cy [ 2 ( 1 + v)] + A [ - ;r _ ;r(1 + v) ] + y r z 4/32 2r [-=-!_- (1 + v)] + B ;r(l + v)] + M Az 2r/J2 ;r(l+v)] + M 2ry z 2 ry [ ----1 Bz 2r/J2 +C [1 + 2(1+ v)] + C [ ;r - 1 + ~ y By a sin2a . ] = Pr[-+---smacosa] 2 4 2ry [ --+Jr +M [1] 2y [;r-l+~+;r(l+v)]+M Cx 2 2y [--Cz 2/32 [-r] x 2 [~+;r(l+v)]+M z [--l __ (l+v)]~C [-r--~+r(l+v)]+C Bz 2 /32 r: x 2/32 2 r z 4p2 r 2/32 [r(l+;r/4)]+M +B [-r-+3r(l+v)]+B Y 2/32 r +M [--l __ (l+v)]+B Az 4/32 [-1- + 3(1 + v)] y 2/32 (l+v)] + C [ -+-1 ry x 2/32 + ;r(l + v)] 2r [-=-!_- (1+ v)] = 0 [~ +~ + ;r(l + v)] + M Cx 2r 4r/J2 2ry Cz 2r/J2 ,ry r (l+v)] r (4.20) 66 ff A [-l]+A [l]+MA [-]+B x z Y 2r +C [---2_-l_(l+v)]+C x 2/32 y 1 (1 + v) +MC [--2] z 2r/J rr A [~+ff(l+v)]+A X 4/32 2y M [~Ax 2r/32 x [l]+M z = [ --+ff Bz 4r/J2 ( 4.21) [-1-+(l+v)]+ r Y Z (1+ v)]+ M [-ff-+ ry Az 4r/J2 r 2/32 ff(l+ v)]+ 2ry [~-(l+v)] rr Bx 2r/32 ff(l + v)] C [ -ff + -+ 2ry x 2/32 2(1- ff/2)(1+ v)] + y [--=!_ _ (1 + v)] + M [-1 __ Cy 2r/J2 ff [-] Y 2r [-ff-+~+ff(l+v)] Cy 4r/J2 2r 2ry [-2(1+v)]+A C [-2(1 + v)] + C y r z 2/32 +M ff [-+l]+MB z 2 . P[sma- acosa] B [-ff _2(ff/4+l)(l+v)]+M Y 4/32 r +M [-l]+B y [~ _ (1 + v)] Cx 2r/J2 rr (1+ v)]+ M [~+ r~ Cz 2r/J2 ff(l+ v)] rr (4.22) =0 According to Maxwell's reciprocal theorem, in a linear elastic structure, the displacements at coordinate i due to a unit force at coordinate j is equal to the displacement at j due to a unit force acting at i , which is given by the equation where fu is the displacement at i due to a unit force at j, and ~ds the displacement at j due to a unit force at i . 67 The displacements in this equation are the flexibility coefficients. For a structure in which m coordinates are indicated, the flexibility coefficients, when arranged in a matrix of the order m x m, give the flexibility matrix of the structure. This matrix must be symmetrical, by virtue of the previous equation [4]. So, from the 18 equations which are obtained, a symmetrical matrix of the order l 8x 18 is arranged analytically in a general form. For solving these equations numerically, some numerical values must be given. And in our case we choose P = 10.0 KN. R = m. 10;0 a= 60 u 0 = r(l = -Tr 3 - cos a)= 5.0 m. 0. 3 fJ = 2 .0 V= Then equation ( 4.4f) becomes: r = 22 .n After applying these values to the equations, it can easily be solved as: [A] [x] = [CJ where [ A] is a symmetrical matrix of the order l 8x 18, which shows the elements of the equations as shown in the next page. 68 {O co ..•... N co N 0 0 I ..•... co ..•... 0 0 0 0 -.::t" 0 0 0 0 0 0 0 co .•.... 0 N I 0 I .•.... O'l 0 I 0 I I {O co ..•... 0 co N N 0 0 0 0 .•.... 0 0 N {O N co N I I N 0 0 I I I 0 co ,..._ .•.... 0 LO 0 ,..._ . 0 0 CO ..•... 0 ,..._ 0 co ..•... {O LO co ..•... 0 0 co 0 I ,..._ 0 0 0 I 0 0 co ..•... 0 0 0 I co co ,..._ .•.... ,..._ LO co ..•... 0 C"') 0 0 {O LO {O O'l N LO I N 0 0 ,..._ co .•.... co {O 0 I 0 0 I I co ..•... N 0 0 0 ,..._ co co .•.... .•.... 0 0 N 0 I 0 O'l O'l 0 0 N LO 0 LO ,..._ co .•.... O'l 0 co ..•... N co ..•... LO ,..._ N N co -.::t" 0 .•.... ,..._ .•.... 0 O'l N 0 N N co I I N ..•... ..•... I I N co co {O I {O co N 0 ..•... I I 0 N co ..•... ,..._ .•.... 0 0 0 0 ~ N 0 0 0 0 I 0 {O co ..•... LO ..•... I ,..._ 0 0 -.::t" I co N 0 LO ..•... 0 0 N -.::t" O'l N 0 I 0 0 ,..._ ,..._ .•.... O'l 0 -.::t"_ {O O'l NI LO I LO N 0 0 0 0 0 0 ..•... I I N I LO 0 0 0 O'l 0 ..•... C"') I {O N 0 .•.... I N 0 I 0I co ..•... 0 0 0 I 0 I co co ..•... ..•... co ..•... N co 0 N co ..•... C"') 0 I ,..._ LO co LO 0 0 0 I co .•.... 0 I I co {O I N -.::t" ..•... 0 NI 0 ,..._ 0 0 0 LO LO s::t" 0 I O'l N 0 0 I -.::t"_ 0 O'l 0 ..•... I 0 I co ,..._ ..•... C"') I N co .•.... 0I N co ..•... ..•... I 0 0 0 I {O O'l N°" I I -.::t" LO LO co ,..._· N -.::t" O'l N°" LO 0 I 0 0 ~ ,..._ LO .•.... {O O'l N 0 0 co N 0 co ..•... 0 0 0 0 0 0 L() .•.... 0 co ,..._ ..•... 0 0 LO ,..._ ,..._ ..•... O'l C\i {O O'l N O'l N 0 0 LO 0 LO co ,-..: .•.... ,..._ 0 0 -.::t" LO 0 co ,..._ O'l co N 0 N -.::t" {O 0 0 0 .•.... I I O'l N 0 I 0 0 {O co .•.... N 0 0 I 0 I N co co ..•... 0 I 0 I 0 co ..•... 0 ..•... I 0 0 I .•.... I 0 O'l 0 N 0 0 I 0 N {O co .•.... 0 co N 0 0 N N co {O I co ..•... O'l N 0 0 0 {O .•.... I 0 0 I co N N co ..•... 0 0 I 0 0 0 N I I co ..•... 0 .•.... s::t" 0 0 0 LO 0 0 0 co .•.... 0 I N N 0 0 ,..._ 0 NI 0 .•.... ,..._ 0 ,..._ LO co .•.... 0 -.::t" co .•.... 0 0 I -.::t"_ 0 NI I O'l N 0 co 0 0 0 ,..._ 0 {O 0 N ,..._ 0 C\i N O'l C"') I 0 0 0 N I 0 0 I 0 N 0 I 0 .•.... 0 I 0 0 LO 0 I L() 0 0 .•.... co .•.... 0 LO I N co 0 ,..._ 0 0 LO {O 0 N 0 co .•.... {O co .•.... 0 ,..._ 0 ,..._ 0 co ..•... ..•... ,..._ I ,..._ {O 0 I C"') I O'l 0 0 N 0 0 N -.::t"_ I 0 I 0 0 0 C"') N 0 0 I 0 co ,..._ ..•... co .•.... N 0 0 .•.... ,..._ co ..•... LO 0 0 N co 0 N 0 I LO co .•.... O'l N LO 0 co ..•... ..•... LO co .•.... 0 N ,..._ O'l 0 co .•.... I 0 ,..._ N I {O O'l {O N LO .•.... 0 I 0 co .•.... LO 0 0 0 0 0 0 N co ..,... 0 0 N N {O co N 0 .•.... I N co co ..•... {O 0 I I ..•... I I {O co N 0 69 And [x] is a matrix of the order 18xl which shows the unknowns as: = AX X = Ay 2 X 1 X3 = AZ x4 = M Ax XS= M Ay x6 = X =B X X 7 8 9 MAz =B X y =B z xlO = MBx xll = MBy xl2 xl3 = M Bz = ex xl4 = Cy XIS= CZ xl6 = MCx xl7 = MCy xl8 = MCz 70 Also [c] is a matrix of the order 18xl which gives the constants as: c1 = -12.5 c2 = 0.0 c3 = 30.709 c4 = 0.0 cs = 3.424 c6 = 0.0 c7 = -12.5 's = 0.0 = 64.952 Cl0 = 0.0 C9 cl 1 = 3.424 cl2 cl5 = 0.0 = -12.5 = 0.0 = 30.709 cl6 = 0.0 cl 7 = 3.424 cl3 cl4 cl8 = 0.0 71 Then, by the help of a computer program (Microsoft Excel), the matrix is solved, and the results are found as: A A A X y z = 0.886596 = 0.42503 = 0.47057 M Ax = -0.98242 M Ay = 3.577007 M Az = -4.57213 B =1.816587 B = -0.00959 X y B = 1.606615 z M Bx = 0.125205 M By = 5.564286 M Bz = -0.04756 C = 0.895539 X C = -0.41242 y C = 0.441539 z M Cx = 1.034371 MCy = 3.6332 M Cz = 4.572547 where the forces are given by KN, and the moments are given by KN.m. 72 By substituting the results in the equations, which obtained from statics in the second chapter, the forces and the moments ofleg D can be found as: D X = -3.59869 D = -0.00302 y D z = 7.481275 MDX =0.113159 M Dy = -4.02789 M Dz = 0.071212 Now, all the forces and the moments of the two arches are found, and the problem is solved. 73 V. CONCLUSION In this study, 18 equations by 18 unknowns are obtained for analyzing a dome problem, by using Castigliano' s theorem. These equations are constructed analytically in a very general way, that can be solved by applying any external concentrated load normal to the dome. And it is worthy to note that all terms that contributed the deformation are taken into consideration. By applying the principle of superposition, this problem can be solved for different external loads [2]. This can be done not only for concentrated loads, but also for distributed loads as well. This procedure can be performed by applying the loads as frequent as it is desired. Thus a satisfactory analysis can be obtained from engineering point of view. 74 REFERENCES 1. WHITNEY CLARK HUNTINGTON., "Building Construction," THIRD EDITION, JOHN WILEY & SONS, INC, 1963 2. S.P.Timoshenko & D.H.Young.,"THEORY of STRUCTURES," SECOND EDITION, McGraw-Hill, Inc, 1965 3. C.K. Wang.," INTERMEDIATE STRUCTURAL ANALYSIS," International Edition, McGraw-Hill, 1983 4. A. GHALI ,A.M. NEVILE.,"Structural Analysis," Second Edition, CHAPMAN AND HALL 5. Beer & JOHNSTON.,"Mechanics of Materials," Second Edition, McGraw- Hill, Singapore, 1992