pdf - Drexel University
Transcription
pdf - Drexel University
Insights into molecular taphonomy and the evolution of sauropod posture garnered from Late Cretaceous fossils A Thesis Submitted to the Faculty of Drexel University by Paul V. Ullmann in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2015 © Copyright 2015 Paul V. Ullmann. All Rights Reserved. ii Dedication For the more than 100 people that helped me excavate bones, jacket bones, package bones, lift bones, move bones, prepare bones, fix bones, photograph bones, measure bones, 3D scan bones, molecularly sample bones, section bones, and analyze bones iii Acknowledgements No one earns a degree on their own. I could never have reached this milestone without the gracious assistance of countless advisors, collaborators, staff, friends, and my family. I would first like to express gratitude to Drexel University, the College of Arts and Sciences, the Department of Biology, the Department of Biodiversity, Earth, and Environmental Science, and all other Drexel staff who have provided me an exciting graduate career. I am privileged to have attended Drexel during a momentous ascension in public stature and am grateful to have taken part in the establishment and organization of a Drexel Paleontology Collection. I hope that through my efforts in the Dread project (as we like to call it) I have contributed in a small way to making Drexel a household name both in the U.S. and across the globe. Much of my research would not have been possible without financial support from a National Science Foundation Graduate Research Fellowship (DGE Award #1002809) and a Jurassic Foundation Grant. I thank these institutions for helping me to expand my training and to include field research in my dissertation. It’s difficult to put my gratitude to my advisor, Dr. Kenneth Lacovara, into words. I owe you so much, from your excitement to fit meeting me into your busy schedule in the spring of 2008, to your trust that I could handle researching your then newly arrived sauropod even though all of my experience was with T. rex and ornithischians, and to your efforts in preparing me for a long and successful career in research. Thank you for believing in my potential from the start, letting me take part in the growth of your lab, and study a one-of-a-kind skeleton that makes everyone else studying sauropods jealous. I am especially grateful to the members of my dissertation committee for their guidance, training, access to their laboratories and supplies, and overall support: Dr. Matthew Bonnan, Dr. Jerry Harris, Dr. Aleister Saunders, Dr. Daniel Marenda, and Dr. Amy Grunden. I am honored to have learned from each of you and hope I will become as helpful an advisor as each of you have been to me. Dr. Bonnan , I particularly want to thank you for your patience in training me in the ways of morphometrics. I cannot say thank you enough to Drs. David Grandstaff and Matt Lamanna for the training and guidance each of them have provided over the last four years. Though neither of you were on my committee, please know I am grateful for your taking me under wing. Your patient advisement and goodwill have not gone unnoticed, and I look forward to continuing to collaborate with each of you. I have enjoyed adventures in the field, lab, and the “real world” (whatever that is) with a wonderful group of labmates during my time at Drexel. I thank each of you, current and former graduate members of the Paleolab, for your friendship and support: Lucio Ibircu, Jason Schein, Victoria Egerton, Elena Schroeder, Zack Boles, Kristyn Voegele, Anna Jaworski, Rebecca Hoffman, and Ashley Adams. I have made friendships with many of you that will last long beyond my tenure at Drexel. I extend a special thank you to Elena Schroeder for contributing a modern alligator tissue bullet to my IHC analyses in Chapter 3, and to Zack Boles and Kristyn Voegele for inhaling gallons of windblown sand and plaster dust with me in the South Dakota badlands. iv Chapters 2 and 3 of this dissertation would not have been possible without the support of the Standing Rock Sioux Tribe and Concordia College. I am indebted to the Standing Rock Tribal Council and Paleontology Committee for their gracious support, especially Bob Demery, Henry Harrison, Allen Shaw, and Adrienne Swallow. Dr. Nellermoe, thank you for offering me the opportunity to study such a fascinating bonebed, and thank you Allen Shaw for helping to make our multi-institutional collaboration a reality. Together, we have healed old wounds to form an enjoyable and productive partnership that I hope will continue for years to come. I thank the Concordia College Biology Department for lending excavation equipment for our dig in 2012 and for administrative support during my stays in Moorhead. Many thanks also go to all the volunteers who assisted in excavating fossils under the burning sun: Gerald Voegele, Laura Eider, David Momjian, Dale Malinzak, Christine Martin, and Derek Jamerson. I owe particular gratitude to Gerald Voegele and Jim Steinke for assistance in arranging shipment of fossils on loan to Drexel. As noted in my dedication, I owe gratitude to innumerable volunteers and fossil preparators for assistance in moving, preparing, and positioning bones so I could study them, including preparators at the Academy of Natural Sciences and the Carnegie Museum of Natural History. In particular, I thank Jason Poole, Emma Fowler, Nate Schiff, Suraj Pandya, Aja Carter, George Keighton, Atika Mehmood, Athena Patel, Anthony Papaccio, Kate Keen, Joshua Yan, and David Schloss for your assistance in these endeavors. I am honored to have each of you as friends. I owe additional gratitude to Suraj Pandya and Joshua Yan. Suraj, thank you for helping to keep my actualistic experiment running when I could not be there to do so, lending your microscope camera, and for your efforts in photographing fossil soft tissues. Joshua, thank you for withstanding countless hours of tedious REE calculations in Excel; none of what I present in Chapter 3 would have been possible without you. I also am extremely thankful to Dr. Mary Schweitzer for graciously letting me research in her laboratory at North Carolina State University. You and your lab group, especially Wenxia Zheng, Tim Cleland, Liz Johnson, and Alison Moyer, have welcomed members of our Drexel lab with open doors and I appreciate the guidance, training, and encouragement each of you have provided during my stays in your lab. On a similar note, I am grateful to Drs. Gomaa Omar and Richard Ash for assistance in running XRD and LA-ICPMS analyses, respectively. Kristyn, I know you did not want to get singled out, but I have to. You’ve stayed by my side through thick and thin the whole way. Thank you for putting up with my forgetfulness, tiredness, and having to take time away from being spent with you, even as I write this now. I would never have kept my sanity through all of this without your loving support. Finally, I cannot have reached this goal without the undying support of my family. I owe so much of my success to the work ethic you have each taught me. Grandpa Victor, though I can’t see it I know you are smiling to see me finally reach this goal. Mom, thank you for your encouragement, never letting me give up, and helping me learn how to rise to challenges I didn’t anticipate along the way. Dad, thank you for the confidence you’ve placed in me and for your enthusiastic support along this seemingly never-ending journey. Each of you has sacrificed so much to help me reach this moment; I hope seeing me finally cross the finish line is as gratifying for you as it is for me. v Table of Contents LIST OF TABLES ............................................................................................................ xii LIST OF FIGURES ...........................................................................................................xv ABSTRACT .................................................................................................................... xxx CHAPTER 1: MOLECULAR TAPHONOMY: DECIPHERING INTERACTIONS BETWEEN BIOMOLECULES AND SEDIMENTARY ENVIRONMENTS THAT LEAD TO BIOMOLECULAR PRESERVATION .............................................................1 1.1 Abstract ....................................................................................................................1 1.2 Introduction ..............................................................................................................2 1.3 Significance..............................................................................................................4 1.4 History of thought ....................................................................................................5 1.4.1 Decay ..............................................................................................................5 1.4.2 Mineralization of soft tissues ..........................................................................7 1.4.3 Bone structure and mutual protection ..........................................................11 1.4.4 Amino acid analysis and racemization .........................................................12 1.5 Diagenetic alterations.............................................................................................14 1.5.1 Alterations to biomolecules...........................................................................14 1.5.2 Alterations to biominerals.............................................................................18 1.6 Favorable molecular attributes ...............................................................................23 1.7 Relative survival of biomolecules ..........................................................................27 1.7.1 DNA...............................................................................................................27 1.7.2 Lipids.............................................................................................................28 1.7.3 Carbohydrates...............................................................................................29 vi 1.7.4 Proteins .........................................................................................................30 1.8 Analytical methods ................................................................................................35 1.9 Correlating factors .................................................................................................40 1.9.1 Geologic variables ........................................................................................43 1.9.2 Environmental variables ...............................................................................44 1.9.3 Taphonomic variables ...................................................................................45 1.10 Connections between bone biomolecule preservation and REE geochemistry ...47 1.11 Connections between bone biomolecule preservation and stable isotopes ..........49 1.12 Hypothesized molecular preservation mechanisms .............................................52 1.13 Next steps .............................................................................................................55 1.14 Conclusion ...........................................................................................................57 CHAPTER 2: SOFT TISSUE PRESERVATION AND DEPOSITIONAL ENVIRONMENTS OF THE BASAL HELL CREEK FORMATION AT THE STANDING ROCK HADROSAUR SITE, CORSON COUNTY, SOUTH DAKOTA...69 2.1 Abstract ..................................................................................................................69 2.2 Introduction ............................................................................................................70 2.3 Geologic setting .....................................................................................................72 2.4 Sedimentology and stratigraphy ............................................................................74 2.5 Methods..................................................................................................................77 2.6 Faunal and floral summary ....................................................................................82 2.7 Age profile .............................................................................................................85 2.8 Taphonomy ............................................................................................................86 2.8.1 Skeletal representation..................................................................................86 2.8.2 Spatial distribution and orientation of elements ...........................................87 vii 2.8.3 Voorhies groups ............................................................................................89 2.8.4 Hydraulic equivalency ..................................................................................90 2.8.5 Weathering ....................................................................................................90 2.8.6 Abrasion ........................................................................................................91 2.8.7 Breakage and fracturing ...............................................................................92 2.8.8 Tooth marks ..................................................................................................94 2.8.9 Trample marks ..............................................................................................95 2.8.10 Pathologies .................................................................................................95 2.8.11 Diagenesis ...................................................................................................97 2.8.12 Soft tissue preservation ...............................................................................98 2.8.13 Palynology ................................................................................................101 2.9 Discussion ............................................................................................................103 2.9.1 Depositional setting of the assemblage.......................................................103 2.9.2 Assemblage accumulation scenario ............................................................106 2.9.3 Diagenetic facilitation of soft tissue preservation ......................................110 2.10 Conclusions ........................................................................................................113 CHAPTER 3: CORRELATING FOSSIL BONE RARE EARTH ELEMENT PROFILES TO PRESERVATION OF ORIGINAL SOFT TISSUES AND BIOMOLECULES ......134 3.1 Abstract ................................................................................................................134 3.2 Introduction ..........................................................................................................135 3.3 Geologic setting ...................................................................................................138 3.4 Methods................................................................................................................139 3.4.1 Samples .......................................................................................................139 3.4.2 Sample preparation .....................................................................................140 viii 3.4.3 LA-ICPMS analyses ....................................................................................141 3.4.4 Biomolecular analyses ................................................................................142 3.4.5 Tissue embedding procedure ......................................................................142 3.4.6 Sectioning and immunofluorescence...........................................................143 3.5 Results ..................................................................................................................145 3.5.1 Overall REE composition ...........................................................................145 3.5.2 Intra-bone REE depth profiles ....................................................................147 3.5.3 NASC-normalized REE patterns .................................................................150 3.5.4 (La/Yb)N vs. (La/Sm)N ratio patterns ...........................................................152 3.5.5 REE anomalies ............................................................................................153 3.5.6 Immunofluorescence ...................................................................................155 3.6 Discussion ............................................................................................................156 3.6.1 Geochemical taphonomy of SRHS ..............................................................156 3.6.2 REE correlations with soft tissue and collagen preservation at SRHS ......162 3.6.3 The use of REE data as a proxy for biomolecular preservation .................164 3.7 Conclusion ...........................................................................................................167 CHAPTER 4: ACTUALISTIC TESTING OF THE INFLUENCE OF GROUNDWATER CHEMISTRY ON DEGRADATION OF COLLAGEN I IN BONE .............................184 4.1 Abstract ................................................................................................................184 4.2 Introduction ..........................................................................................................185 4.3 Methods................................................................................................................187 4.3.1 Materials .....................................................................................................187 4.3.2 Trial apparatus ...........................................................................................188 4.3.3 Solutions and trials .....................................................................................189 ix 4.3.4 Histology .....................................................................................................192 4.3.5 Protein extraction .......................................................................................193 4.3.6 ELISA ..........................................................................................................195 4.3.7 Immunofluorescence ...................................................................................196 4.4 Results ..................................................................................................................196 4.4.1 General observations ..................................................................................196 4.4.2 Histology .....................................................................................................197 4.4.3 ELISA ..........................................................................................................200 4.4.4 Immunofluorescence ...................................................................................202 4.5 Discussion ............................................................................................................203 4.6 Conclusion ...........................................................................................................207 CHAPTER 5: APPENDICULAR OSTEOLOGY OF DREADNOUGHTUS SCHRANI, A GIANT TITANOSAUR (SAUROPODA, TITANOSAURIA) FROM THE LATE CRETACEOUS OF PATAGONIA, ARGENTINA........................................................221 5.1 Abstract ................................................................................................................221 5.2 Introduction ..........................................................................................................222 5.3 Systematic paleontology ......................................................................................224 5.4 Description ...........................................................................................................225 5.4.1 Pectoral girdle ............................................................................................226 5.4.2 Forelimb ......................................................................................................231 5.4.3 Pelvic girdle ................................................................................................236 5.4.4 Hind limb ....................................................................................................242 5.5 Discussion ............................................................................................................251 5.5.1 Phylogenetic position of Dreadnoughtus schrani .......................................251 x 5.5.2 Wide-gauge specializations at extreme body size .......................................253 5.6 Conclusion ...........................................................................................................255 CHAPTER 6: CHARACTERIZING THE EVOLUTION OF WIDE-GAUGE FEATURES IN STYLOPODIAL LIMB ELEMENTS OF TITANOSAURIFORM SAUROPODS VIA GEOMETRIC MORPHOMETRICS ..............................................279 6.1 Abstract ................................................................................................................279 6.2 Introduction ..........................................................................................................280 6.3 Methods................................................................................................................282 6.3.1 Dataset construction ...................................................................................282 6.3.2 Statistical methods ......................................................................................284 6.4 Results ..................................................................................................................286 6.4.1 Humerus ......................................................................................................286 6.4.2 Femur ..........................................................................................................291 6.5 Discussion ............................................................................................................294 6.5.1 Osteology of wide-gauge posture................................................................294 6.5.2 Functional morphology inferences .............................................................295 6.6 Conclusions ..........................................................................................................303 CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS...........................................324 LIST OF REFERENCES .................................................................................................329 APPENDIX A: REE AND TRACE ELEMENT CONCENTRATIONS BY TRANSECT ..........................................................................................................................................373 APPENDIX B: REE AND TRACE ELEMENT CONCENTRATIONS FOR FIBULA SRHS-DU-231 SPOT ANALYSES ................................................................................482 APPENDIX C: SUPPLEMENTAL ANALYSES OF TITANOSAURIFORM MORPHOMETRICS DATASET ....................................................................................484 C.1 Humerus ..............................................................................................................484 xi C.1.1 Nontitanosaurs v. Titanosaurs (NT v. T)....................................................484 C.1.1.1 Relative warps analysis .....................................................................484 C.1.1.2 Canonical variates analysis ...............................................................484 C.1.2 Nontitanosauriforms v. Basal Titanosauriforms v. Titanosaurs (N v. TF v. T) .......................................................................................................485 C.1.2.1 Relative warps analysis .....................................................................485 C.1.2.2 Canonical variates analysis ...............................................................486 C.1.3 Nontitanosauriforms v. Titanosauriforms+UpTree (N v. TF+UpTree) .....486 C.1.3.1 Relative warps analysis .....................................................................486 C.1.3.2 Canonical variates analysis ...............................................................487 C.2 Femur ..................................................................................................................488 C.2.1 Nontitanosaurs v. Titanosaurs (NT v. T)....................................................488 C.2.1.1 Relative warps analysis .....................................................................488 C.2.1.2 Canonical variates analysis ...............................................................489 C.2.2 Nontitanosauriforms v. Basal Titanosauriforms v. Titanosaurs (N v. TF v. T) .......................................................................................................489 C.2.2.1 Relative warps analysis .....................................................................489 C.2.2.2 Canonical variates analysis ...............................................................490 C.2.3 Nontitanosauriforms v. Titanosauriforms+UpTree (N v. TF+UpTree) .....491 C.2.3.1 Relative warps analysis .....................................................................491 C.2.3.2 Canonical variates analysis ...............................................................491 C.3 Stylopodial length comparisons ..........................................................................492 VITA ................................................................................................................................519 xii List of Tables Table 1.1 Lithologic, diagenetic, geochemical, ecological, and environmental factors agreed to aid preservation of bone into the fossil record. References are intended to provide examples, not an exhaustive list. ..........................................................................58 Table 1.2 Geologic, environmental, and taphonomic factors hypothesized to correlate to soft tissue and/or biomolecular preservation. References are intended to provide examples, not an exhaustive list.........................................................................................59 Table 2.1 Additional faunal material recovered from the Standing Rock Hadrosaur Site. Abbreviation: indet, indeterminate. .................................................................................116 Table 2.2 Survival of skeletal elements of Edmontosaurus annectens at the Standing Rock Hadrosaur Site, predicted from MNI versus actual. Abbreviations: MNI, minimum number of individuals; NA, not applicable. .....................................................................117 Table 3.1 Average whole-bone trace element compositions for nine SRHS fossils. Iron (Fe) is presented in weight percent (wt. %), all other elements are in parts per million (ppm). Absence of (Ce/Ce*)N, (Ce/Ce**)N, and (La/La*)N anomalies occurs at zero. 170 Table 3.2 Summary of attributes of the nine fossil bones analyzed for REE composition. Abbreviation: DMD, double medium diffusion sensu Kohn (2008). *Uranium suggests flow in the marrow cavity of these specimens but REE do not. ......................................171 Table 4.1 Summary of bone attributes after completion of the experiment. Histological Index scores follow the ranking system of Hedges and Millard (1995). Abbreviations: ELISA, enzyme-linked immunosorbant assay; IF, immunofluorescence. ......................209 Table 5.1 Appendicular skeletal completeness of the Dreadnoughtus schrani holotype (MPM PV 1156) versus other large sauropods. Mirrored Appendicular Counts and Mirrored Appendicular Completeness values calculated following Lacovara et al. (2014). ..........................................................................................................................................257 Table 5.2 Phylogenetic synapomorphies in the appendicular skeletons of sauropod dinosaurs from previous cladistic analyses. Any report where a character was attributed to a node not conforming to the consensus are noted by an asterisk (*) or cross (†) in the Alternative Node(s) column. The clade names Titanosauroidea and Titanosauridae are now in disuse due to invalidity of the namesake genus Titanosaurus (Wilson and Upchurch, 2003). Italicized characters are present in Dreadnoughtus. ...........................259 Table 6.1 Kruskal-Wallis and Mann-Whitney U test results on sauropod stylopodial bone lengths. α =0.05 for Kruskal-Wallis tests, shown in first row. α = 0.005 for MannWhitney U tests with Bonferroni correction, shown in all subsequent rows. xiii Abbreviations: P, “Prosauropods”; D, Diplodocids; C, Camarasaurus; TF, Titanosauriforms; T, Titanosaurs .....................................................................................305 Table 6.2 Significance of relative warps for sauropodomorph humeri and femora, with dataset divided into five groups. Only the first ten relative warps are listed. The uniform component was included in the analysis. Abbreviations: No., relative warp number; SV, singular values (eigenvalues of traditional PCA); %, percentage of variance accounted for by that relative warp. Cum %, cumulative percentage of variance accounted for. Bolded relative warps account for at least 80% of the shape variation. .......................................306 Table 6.3 Anderson's χ² test results, which determine the number of statistically significant relative warps by identifying distinct eigenvalues. ........................................307 Table 6.4 Significance differences, as discerned by Kruskal-Wallis and Mann-Whitney U tests, on relative warps identified as significant by Anderson’s χ2 test, with dataset divided into five groups. p values are significant at α = 0.05 for Kruskal-Wallis tests. Taxon group abbreviations as in Table 6.1. Other abbreviations: KW, Kruskal-Wallis; RW, relative warp. Post hoc Bonferroni significance identifiers via Mann-Whitney U tests: †, significant difference between P and D; ‡, between P and C; ◊, between P and TF; θ , between P and T; , between D and C; , between D and TF; , between D and T; , between C and TF; , between C and T; , between TF and T. Group abbreviations as in Table 6.1 ......................................................................................................................308 Table 6.5 Significant shape variables identified by canonical variates analysis of sauropodomorph humeri and femora. Abbreviations: CV, canonical variate axis. .........309 Table 6.6 Multivariate regression of relative warp scores on maximum sauropodomorph humeral and femoral length using Goodall's F test*........................................................310 Table A.1 REE and trace element concentrations by transect ........................................374 Table B.1 REE and trace element concentrations for fibula SRHS-DU-231 spot analyses ..........................................................................................................................................483 Table C.1 Humeri used in this study. Abbreviations: L, left; R, right. Max. length (mm) denotes maximum proximodistal length of the specimen. Known juvenile specimens are indicated as such. .............................................................................................................494 Table C.2 Femora used in this study. Abbreviations: L, left; R, right. Max. length (mm) denotes maximum proximodistal length of the specimen. Known juvenile specimens are indicated as such. .............................................................................................................496 Table C.3 MANOVA scores for partial warps and uniform components of the humerus and femur, with dataset divided into five groups. α = 0.05. Bolded p values indicate multivariate significance for Pillai's Trace, Wilk's Lambda, and Hotelling-Lawley's Trace. Abbreviations: P, “Prosauropods”; D, Diplodocids; C, Camarasaurus; TF, Titanosauriforms; T, Titanosaurs. Post hoc Bonferroni significance identifiers: †, xiv significant difference between P and D; ‡, between P and C; ◊, between P and TF; θ , between P and T; , between D and C; , between D and TF; , between D and T; , between C and TF; , between C and T; , between TF and T. The single comparisons for each element found significant by Pillai, Wilks, and Hotelling-Lawley but not by post hoc pairwise Mann Whitney U tests are identified as false positives. .............................498 Table C.4 MANOVA scores for partial warps and uniform components of the humerus, with dataset divided in three additional manners. α = 0.05. Bolded p values indicate multivariate significance for Pillai's Trace, Wilk's Lambda, and Hotelling-Lawley's Trace. Abbreviations: N, Nontitanosauriforms; NT, Nontitanosaurs; TF, Titanosauriforms; TF+up, all specimens of Titanosauriformes; T, Titanosaurs. Post hoc Bonferroni significance identifiers: †, significant difference between N and TF; ‡, between N and T; ◊, between TF and T ...........................................................................499 Table C.5 MANOVA scores for partial warps and uniform components of the femur, with dataset divided in three additional manners. α = 0.05. Bolded p values indicate multivariate significance for Pillai's Trace, Wilk's Lambda, and Hotelling-Lawley's Trace. Abbreviations: N, Nontitanosauriforms; NT, Nontitanosaurs; TF, Titanosauriforms; TF+up, all specimens of Titanosauriformes; T, Titanosaurs. Post hoc Bonferroni significance identifiers: †, significant difference between N and TF; ‡, between N and T; ◊, between TF and T. The single comparison for femora found significant by Pillai, Wilks, and Hotelling-Lawley but not by post hoc pairwise Mann Whitney U tests is identified as a false positive ..............................................................500 Table C.6 Significant shape variables identified by canonical variates analysis of sauropodomorph humeri and femora, with dataset divided in three additional manners. Abbreviations: CV, canonical variate axis; N, Nontitanosauriforms; NT, Nontitanosaurs; TF, Titanosauriforms; TF+up, all specimens of Titanosauriformes; T, Titanosaurs. ......501 Table C.7 Kruskal-Wallis and Mann-Whitney U test results on stylopodial lengths, with dataset divided in three additional manners. α = 0.05 for Kruskal-Wallis tests. Bonferroni correction for Mann-Whitney U tests of NvTFvT makes α = 0.0167 for those reanalyses. α = 0.05 (no Bonferroni correction needed) for Mann-Whitney U tests simply contrasting NTvT and NvTF+up. Abbreviations: N, Nontitanosauriforms; NT, Nontitanosaurs; TF, Titanosauriforms; TF+up, all specimens of Titanosauriformes; T, Titanosaurs. N/A: Kruskal-Wallis results were not significant when comparing Nontitanosaurs to Titanosaurs, so no Mann-Whitney U tests were conducted for either element ...............502 xv List of Figures Figure 1.1 Examples of pliable soft tissues recovered from ancient vertebrate fossils. (A) Osteoid-like parallel arrangement of proteinaceous fibers following demineralization of a Tyrannosaurus rex bone fragment. (B) Network of interconnected, flexible, transparent vessels isolated by demineralization of a Tyrannosaurus rex bone fragment. (C) An osteocyte isolated from demineralization products of a Cretaceous turtle shell fragment. (D) An isolated vessel from a Tyrannosaurus rex bone fragment, including structures morphologically consistent with endothelial cell nuclei (arrows). Each of these structures displays morphologic consistency with modern analogs. Figures (A) and (B) modified from Schweitzer et al. (2007b), (C) modified from Cadena and Schweitzer (2012), and (D) modified from Schweitzer et al. (2005b).....................................................................61 Figure 1.2 An excellent example of the utility of molecular paleontology analyses. Schweitzer et al. (2009) used sequences of the protein collagen I from fossil extracts to independently test phylogenetic hypotheses developed solely from morphologic data. Fossil collagen I peptide sequences place non-avian dinosaurs between extant crocodilians and birds, in agreement with traditional conclusions based on skeletal morphology. From Schweitzer et al. (2009). .....................................................................62 Figure 1.3 The process and results of autolithification and authigenic mineralization. (A) Diagrammatic representation of bacteria progressively consuming muscle fibers, coalescing metal ions, and leaving behind mineralized tissue. From Martill, 1988. (B) Example of authigenically mineralized muscle fibers in a Santana Formation fish. Field is shown at 12,000x. Modified from Martill (1988). (C) Example of autholithified bacteria creating a pseudomorph of tissue in a fossil fish eye from the Las Hoyas Lagerstӓtte, Spain. Note the comparatively larger and clearly rounded bacterial structures compared to the finer and smoother texture developed in authigenic mineralization (B). Modified from Gupta et al. (2008). ............................................................................................................63 Figure 1.4 Common diagenetic alterations suffered by biomolecules. (A) Hydrolytic fragmentation. (B) Conversion of one molecular compound (serine) into another (alanine) by loss of a hydroxyl group. (C) Deamination. (D) Conversion of one amino acid into another (glycine) via loss of functional groups and subsequent replacement with a hydrogen ion. (E) Racemization of a biomolecular compound from left to right isomeric structure. From Schweitzer (2004). ...................................................................................64 Figure 1.5 Diagrammatic representation of non-avian dinosaur collagen I peptide sequences from Asara et al. (2007) and Schweitzer et al. (2009) mapped onto a model of a human collagen fibril (Sweeney et al., 2008). One D period is shown. All dinosaur peptides mapped to interior monomers 2–4 and crucial cell-interaction sites, such as the integrin binding site and the MMP1 cleavage site. This suggests a link between biological function and peptide preservation potential .......................................................................65 xvi Figure 1.6 Effect of enclosure of biomolecules within biomineral matrix. Intercrystalline proteins, such as collagen I, are clearly vulnerable to hydrolysis or leaching from the bone, whereas intracrystalline proteins (e.g., osteocalcin) may remain comparatively protected within fluid inclusions or along crystal cleavage planes. Redrawn after Sykes et al. (1995, fig. 4)..................................................................................................................66 Figure 1.7 Theoretical relationship of rare earth element (REE) concentration to depth into a fossil bone, from Trueman et al. (2008a). By this theory, bones with a steep decline in concentration with depth into the cortex (such as the specimen represented by the lower left curve with an exponent α value of -0.005) should offer the best potential for biomolecular preservation. Such a steep gradient would reflect minimal interactions with groundwater and therefore rapid equilibration of the bone with its diagenetic environment. Further, minimal postmortem uptake of REE by the middle and inner cortex would suggest minimal alteration of these regions. This would signify that interior cortex of the sample might be an appropriate candidate for biomolecular analyses ....................67 Figure 1.8 “Microbial masonry”: autolithified bacteria infilling the surficial opening of a vascular canal in a fossil Thescelosaurus bone (Dinosauria: Ornithopoda), from Peterson et al. (2010). These authors propose that rapid autolithification of bacteria within exterior vascular and nerve canals could prevent microbial invasion and exploitation of the inner cortex and medullary region of bones, thus protecting biomolecules and soft tissues in inner bone regions. .............................................................................................................68 Figure 2.1 Attributes of the Standing Rock Hadrosaur Site fossil assemblage. (A) Age profile. (B) Vertebral region abundances. (C) Vertebral component abundances. (D) Pes series abundances. (E) Temporal-palatal series abundances. (F) Bone weathering stages. (G) Bone abrasion stages. (H) Bone fracture types. ........................................................118 Figure 2.2 Population and biostratinomic attributes of the Standing Rock Hadrosaur Site assemblage. (A) Frequency of specimen size classes, using three centimeter bins. (B) Distribution of skeletal regions and series. (C) Relative frequency of elements according to Voorhies (1969) transportation groups. White columns display the frequency of bones in a single complete skeleton of Edmontosaurus annectens, whereas black columns display the frequencies of bones excavated from the quarry. (D) Plunges of elongate specimens from the 2012 quarry, the only year plunge data were collected. (E) Plunge directions of elongate specimens from the 2012 quarry. Light gray arrow denotes the mean (14.9°), dark gray arcs outside the compass mark range of one standard deviation from the mean. (F). Orientation of skeletal elements for the entire excavation. (G) Orientation of skeletal elements for solely the 2012 quarry. Rose diagrams presented as arithmetic plots with 10° bins. .........................................................................................119 Figure 2.3 Quarry map from the summer excavation of 2012 at the Standing Rock Hadrosaur Site, divided into bones (A) and ossified tendons and teeth (B). Bones outlined in gray in (A) are the 12 from which samples were collected for molecular analyses. SRHS-DU- specimen numbers for all bones are provided in (A). In (B), black lines are partial ossified tendons whereas black spots denote small ossified tendon fragments for xvii which orientation data was not gathered. Gray stars in (B) denote isolated teeth (mostly Edmontosaurus, only a few theropod teeth included). Dashed black line denotes erosional edge of hillside. Dotted gray line denotes furthest extent of excavation into the hillside at the end of the field season. Crosshair symbols denote the vertices of square meter grids that are defined by the letter and number axes at the edge of the map. ...........................120 Figure 2.4 Breakage in Edmontosaurus annectens bones from the Standing Rock Hadrosaur Site. (A) Example spiral break through the ramus of a quadrate (CC-MN2923). (B) Example concentric fracture pattern on the medial aspect of the proximal end of a left ulna (CC-MN-48). Numbered units of scale bar in (A) are centimeters. Scale bar for (B) equals 10 cm. .......................................................................................................122 Figure 2.5 Theropod bite marks and teeth from the Standing Rock Hadrosaur Site. (A) Example bite marks (four subparallel tooth scores, arrows) on a metatarsal III (CC-MN1893). (B) Example shed theropod tooth recovered from the bonebed (CC-MN-P39). Numbered units of scale bar in (A) are centimeters. Scale bar for (B) equals 1 cm........123 Figure 2.6 Examples of paleopathologies in Standing Rock Hadrosaur Site Edmontosaurus annectens bones. (A) Osteochondrosis expressed as a localized arcuate lesion (arrow) on the articular face of a distal caudal centrum (CC-MN-3519). (B) Osteochondrosis-like lesion that sagittally bisects a distal caudal centrum, seen here as a dorsoventrally oriented groove on the articular face (arrows; CC-MN-3115). (C) Two fused caudal vertebrae (CC-MN-2897 and -2898). (D) Oblate raised lesion (arrow) on the dorsal surface of a pedal ungual (CC-MN-2565). Scale bars all equal 5 cm...................124 Figure 2.7 X ray diffractograms of Standing Rock Hadrosaur Site fossils, encasing sediment, and concretions within the bonebed mudstone. All diffraction spectra except for that of cancellous bone have been vertically shifted to allow visual comparison between samples. All biologic samples were identified as fluorapatite. Sediment was identified to comprise illite, muscovite, anorthite, albite, and quartz. The concretion from within the bonebed was identified as goethite. The white sandstone overlying the bonebed (data not shown; unit 6 of Colson et al., 2004) was identified to comprise of quartz, anorthite, microcline, muscovite, and vermiculite. ..............................................125 Figure 2.8 Demineralization products of encasing sedimentary matrix and fossil fragments from the Standing Rock Hadrosaur Site. (A) Magnified view of sedimentary matrix, including a small pocket of amber and abundant, small, black, organic inclusions. (B) A fragment of femur cortex after one week of decalcification, showing numerous parallel vascular canals beginning to emerge. (C) Osteocyte with elongate filipodia recovered from a fragment of weathered “float” cortical bone. (D) Size comparison of an osteocyte (upper left) and vessel fragment recovered from a fragment of weathered “float” cortical bone. Same specimen as in (C). (E) Osteocyte with elongate filipodia recovered from a fragment of ossified tendon. (F) Straight, cylindrical vessel fragment (right) and pieces of fibrous matrix (lower left) recovered from a fragment of ossified tendon. Same specimen as in (E). (G) Vessel fragment with dark, spherical, iron-rich intravascular inclusions recovered from metatarsal SRHS-DU-274. (H) Abundant fossil xviii osteocytes embedded in fibrous bone matrix recovered from metatarsal SRHS-DU-274. (I) Osteocyte with elongate filipodia recovered from fibula SRHS-DU-231. (J) Compositional heterogeneity evident between a fossil osteocyte (center) and fibrous matrix encasing it. Same specimen as in (I). (K) Straight, cylindrical vessel fragment recovered from same fibula specimen as in (I) and (J). (L) Magnification of fibrous matrix recovered from manual phalanx SRHS-DU-89. (M) Complex, branching vessel network recovered from metatarsal SRHS-DU-306. (N) Osteocyte with elongate filipodia recovered from caudal centrum SRHS-DU-220. (O) Example quartz (lower right) and silt-rich matrix (upper left) grains remaining after demineralization of sedimentary matrix. (P) Dark, parallel-aligned, tubular structures recovered following demineralization of an Edmontosaurus tooth. Scale bars are labeled in each figure. .....126 Figure 2.9 Representative soft tissues recovered from Standing Rock Hadrosaur Site Edmontosaurus annectens bones. All images except (A) collected by SEM. (A-B) An extensive vessel network recovered from metatarsal SRHS-DU-306 exhibiting bright orange color typical of many, but not all, recovered vessels. (C) A bi-layer sheet of fibrous matrix exhibiting abundant, perpendicularly oriented cross-struts (doubleheaded white arrow). At right, an osteocyte with long filipodia is partially covered by the matrix sheet. (D) Two osteocytes exhibiting long filipodia (arrows). (E) Magnified view of the surface of left osteocyte in (D), exhibiting shallow, linear grooves crisscrossing across the cell surface (arrows). (F) An exemplar vessel fragment displaying hollow, cylindrical form. Units of the scale bar in (A) are millimeters. Scale bar in (B) equals 1 mm. Scale bars in (C) and (D) equal 10 μm. Scale bar in (E) equals 2 μm. Scale bar in (F) equals are 100 μm. ............................................................................................................................128 Figure 2.10 (A) SEM image of a large fragment of fibrous matrix with numerous osteocytes attached to it (black arrows) from metatarsal SRHS-DU-306. Insets provide closer views of two osteocytes to allow better visualization of cell structure and filipodia. (B) Elemental composition of an osteocyte from (A) determined by EDX, from the region outlined in dashes. (C) Elemental weight and atomic percent composition corresponding to the spectrum in (B). Scale bar in large-scale micrograph in (A) equals 50 μm. Scale bars in insets of (A) each equal 10 μm. ...........................................................................130 Figure 2.11 (A) SEM image of a branching vessel fragment from Edmontosaurus annectens fibula SRHS-DU-231. Inset provides a closer view of the porous, amorphous vessel surface. (B) Elemental weight and atomic percent composition corresponding to the spectrum in (C). (C) Elemental composition of the vessel surface from (A) determined by EDX, from the entire region shown in the inset of (A). Scale bar in largescale micrograph in (A) equals 100 μm. Scale bar in inset of (A) equals 10 μm. ...........131 Figure 2.12 Energy-dispersive x-ray elemental maps across an osteocyte attached to amorphous fibrous matrix (in background of SEM image at left), from an Edmontosaurus annectens metatarsal (SRHS-DU-306) from the Standing Rock Hadrosaur Site. Bright white reflects a strong signal. Composition of both tissues is primarily dominated by iron and oxygen. Scale bar in SEM image at left equals 10 μm. ............................................132 xix Figure 2.13 Comparison of palynomorph assemblages from the Standing Rock Hadrosaur Site (A) and MRF-03 (B), another Hell Creek Formation site where the “mummified” Edmontosaurus “Dakota” was recovered. Data for SRHS from Colson et al. (2004) and for MRF-03 from Vajda et al. (2013). ......................................................133 Figure 3.1 Intra-bone REE concentration gradients of La (red) and Yb (green) for SRHS bones. (A) Metatarsal SRHS-DU-2. (B) Manual phalanx SRHS-DU-89. (C) Femur SRHS-DU-94. (D) Femur SRHS-DU-126. (E) Metatarsal SRHS-DU-192. (F) Femur SRHS-DU-273. (G) Pedal phalanx SRHS-DU-278. (H) Metatarsal SRHS-DU-306. Profiles in (B) cross the entire diameter of manual phalanx SRHS-DU-89. Yellow-shaded area in (G) denotes a goethite coating over the surface of pedal phalanx SRHS-DU-278. Laser tracks denoted by the red line in each bone cross section. Scale bars equal 1 mm.172 Figure 3.2 Intra-bone concentration gradients of La (red), Yb (green), and U (blue) for fibula SRHS-DU-231. Profiles cross the entire diameter of the bone. Laser track denoted by the red line in the bone cross section. Yb and U concentrations have been multiplied by 10 for ease of visualization. High-porosity trabecular tissue regions are highlighted in gray. Scale bar equals 1 mm. ...........................................................................................174 Figure 3.3 Three-point moving averages of La concentrations in the outermost cortex of each analyzed fossil. (A) Profiles across the outermost five millimeters of each bone. (B) Enlarged view of only the external-most two millimeters of each bone, highlighting raised concentrations in Haversian/osteonal tissue in metatarsal SRHS-DU-2. ..............175 Figure 3.4 (A) NASC-normalized REE distribution patterns from the outermost 250 μm of each bone. (B-D) Ternary diagrams of NASC-normalized REE in SRHS bones. (B) Average composition for each entire bone. (C) REE compositions divided into data from each individual laser transect (usually ~ 5 mm of data each). Composition data for transects that included the outer bone edge are denoted by dark diamonds; all other transect data are indicated by gray circles. Note pattern for transects including the external bone margin to be relatively enriched in LaN. (D) Transect data from (C) classified by specimen. The 2σ circle represents two standard deviations based on ± 5% relative standard deviation. ..............................................................................................176 Figure 3.5 Intra-bone NASC-normalized REE distribution patterns. Patterns recorded from the outermost cortex are indicated by black lines, those from deepest within each bone by dotted light gray lines (usually within more porous trabecular bone of the marrow cavity), and all other analyses in between by solid dark gray lines. Specimens as indicated. Note the different ratio scales for each specimen. ..........................................177 Figure 3.6 Summary of spot analyses around the circumference of fibula SRHS-DU-231. (A) Location of LA-ICPMS spot analyses on the thick section. Green circles denote analytical spots from the quarry-up side of the bone, blue circles denote spots from the quarry-down side, the red circle (spot a10a) denotes an analysis of an iron-rich precipitate infilling a Haversian canal, and the orange spot denotes a spot recording composition of the cortex slightly interior to the outer cortical edge. Red line crossing the diameter of the xx bone cross section is the course of the laser transect presented in Figure 2. (B) NASCnormalized REE distribution patterns for each spot shown in (A). Pattern colorations correspond to spot designations in (A). ...........................................................................179 Figure 3.7 (A) Comparison of whole-bone averages of (La/Yb)N and (La/Sm)N ratios of SRHS fossils to ratios from various environmental waters and sedimentary particulates. Literature data for environmental samples as follows: river waters (green field; Hoyle et al., 1984; Goldstein and Jacobsen, 1988; Elderfield et al., 1990); suspended river loads (dull pink field; Goldstein and Jacobsen, 1988); alkali saline groundwaters (bright pink field; Johannesson et al., 1999); lakes (purple field; Johannesson and Lyons, 1995); estuaries (yellow field; Elderfield et al., 1990); coastal waters (light blue field; Hoyle et al., 1984; Elderfield and Sholkovitz, 1987; Elderfield et al., 1990); seawater (dark blue field; Elderfield et al., 1982; De Baar et al., 1983; German et al., 1991; Piepgras and Jacobsen, 1992; Sholkovitz et al., 1994; German et al., 1995; Zhang and Nozaki, 1996); sea floor particles (gray field; Sholkovitz et al., 1994); marine pore fluids (orange field; Elderfield and Sholkovitz, 1987; Haley et al., 2004; Kim et al., 2011). (B) REE compositions of individual laser transects expressed as NASC-normalized (La/Yb)N and (La/Sm)N ratios. Transects including the external bone edge are denoted by black symbols whereas all other (internal) transects are represented by gray symbols. Inset displays depth-related trends for individual specimens. ..................................................180 Figure 3.8 Intra-bone patterns of (Ce/Ce*)N, (Ce/Ce**)N, (La/La*)N, and Y/Ho anomalies in SRHS bones. Following Herwartz et al. (2013b), (Ce/Ce*)N values were calculated using La and Pr concentrations (CeN/(0.5*LaN + 0.5*PrN)), (Ce/Ce**)N values were calculated from the trend of Nd and Pr concentrations (CeN/(2*PrN – NdN)), and (La/La*)N anomalies were calculated using Pr and Nd concentrations (LaN/(3*PrN – 2*NdN)). (Ce/Ce**)N anomalies avoid issues arising from La anomalies that could produce apparent (Ce/Ce*)N anomalies when in fact they are not present. Specimens as indicated. Note the different ratio scales for each specimen. ..........................................181 Figure 3.9 Cerium anomaly (Ce/Ce*) values plotted against uranium concentrations for SRHS bones. Dashed black line represents the general data trend, not a strict regression. No Ce/Ce* anomaly is at a value of 0.0...........................................................................182 Figure 3.10 In situ localization of collagen I in demineralized cortical fragments of Edmontosaurus annectens (fibula SRHS-DU-231; A–H) and modern Alligator (I–L) by immunofluorescence. (A–D) Edmontosaurus demineralization products incubated with antibodies against chicken collagen I; (A) and (C) show FITC images of two sections and (B) and (D) present corresponding FITC and brightfield overlay images for (A) and (C) (for visualization of section edge and tissue fragments within embedding resin). All remaining images (E–L) are FITC images. (E) Secondary only control section that was not exposed to primary antibodies, to control for non-specific binding of secondary antibodies. (F) Section exposed to anti-chicken collagen I antibodies that were first inhibited with chicken collagen (prior to incubation). (G) Section digested with collagenase for one hour prior to exposure to anti-collagen I antibodies. (H) Section digested with collagenase for six hours prior to exposure to anti-collagen I antibodies. (I) xxi Modern Alligator tissue section incubated with anti-chicken collagen I antibodies. (J) Secondary only Alligator control section that was not exposed to primary antibodies. (K) Alligator section exposed to anti-chicken collagen I antibodies that were first inhibited with chicken collagen. (L) Alligator section digested with collagenase for one hour prior to exposure to anti-collagen antibodies. All section images were taken at 40X and 200 ms integration. ......................................................................................................................183 Figure 4.1 Experimental apparatus. General template of this design derives from that of Daniel and Chin (2010, fig. 1). ........................................................................................210 Figure 4.2 Initial setup of the experiment, prior to wrapping the bone/sediment incubation chambers and feeder solution bottles with aluminum foil (to simulate darkness of burial). Peristaltic pumps (middle, on top of box) fed simulated groundwater solutions from storage bottles at left to separate incubation chambers at right. Effluent solutions were collected in the beakers beneath each incubation chamber. ....................................211 Figure 4.3 Chicken femora from each actualistic trial after completion of the experiment. Proximal ends are at top. Note sand adhered by an iron-oxide cement to the epiphyseal ends of the femur from the iron trial (arrows). Scale bar equals 5 cm. ...........................212 Figure 4.4 Histology of the femur from the water control trial after completion of the experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed with crossed polars. External cortex edge is at upper left, marrow cavity is at lower right. External and internal cortex are semitransparent but the middle cortex could not be ground to correct thickness; this region remains too thick and as a result appears opaque (dark brown) in transmitted light (A). This region appears a dark golden color under crossed polars (B). (C) Higher magnification of the cortex viewed by transmitted light, showing that Haversian canals remain open. Note that some osteocyte lacunae are vacant (appear white) within the internal cortex (arrows). (D) Representative osteon in which some lacunae retain dark brown osteocytes while others are now empty (arrows). Inset displays well preserved osteocytes which retain long, dark, intact filipodia (arrow). Scale bars for (A) and (B) equal 200 μm. Scale bar for (C) equals 100 μm. Scale bar for (D) equals 50 μm. Scale bar for inset in (D) equals 100 μm. .................................................213 Figure 4.5 Histology of the femur from the calcium carbonate trial after completion of the experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed with crossed polars. External cortex edge is at right, marrow cavity is at left. Multiple Haversian canals are infilled by a brown mineral precipitate (arrows). (C) Tanbrown, cryptocrystalline mineral precipitate lining the wall of a void in the marrow cavity. (D) Same as (C) viewed in crossed polarized light. Small patches of the mineral precipitate exhibit high order interference colors (arrows). (E) Representative infilled Haversian canal (arrow) at higher magnification. Infilling mineral in this canal ranges from semi-translucent to tan-brown in color. (F) Representative well preserved osteocytes which retain long, dark, intact filipodia (arrows). Scale bars for (A) and (B) equal 200 μm. Scale bars for (C) and (D) equal 100 μm. Scale bars for (E) and (F) equal 50 μm. .214 xxii Figure 4.6 Histology of the femur from the phosphate trial after completion of the experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed with crossed polars. External cortex edge is at upper right, marrow cavity is at lower left. Excellent preservation of the mineralized tissue structure is evident under polarized light by retention of Maltese crosses for most osteons (arrows; see text section 4.3.2 for description/discussion of these birefringence interference patterns). (C) Higher magnification of the external and middle cortex viewed by transmitted light, showing negligible alteration of the tissues and predominantly open Haversian canals. Only rarely are Haversian canals partially infilled by a brown mineral precipitate (arrows). (D) Representative well preserved osteocytes which retain long, dark, intact filipodia (arrows). Scale bars for (A) and (B) equal 200 μm. Scale bar for (C) equals 100 μm. Scale bar for (D) equals 50 μm. .......................................................................................216 Figure 4.7 Histology of the femur from the iron trial after completion of the experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed with crossed polars. External cortex edge is at top, marrow cavity is at bottom. (C) Orange-brown, mineral precipitate cementing sand grains together within a void in the marrow cavity. (D) Same as (C) viewed in crossed polarized light. Quartz sand grains exhibit moderate order interference colors ranging from blue to green, pink, orange, and yellow. (E) An iron-rich precipitate (gold-brown color) cementing sand grains (arrows) together and lining a strut of bone (white, gray, and black linear feature) within the marrow cavity. (F) High magnification of the middle cortex demonstrating universally vacant osteocyte lacunae (clearly visible examples are noted by arrows). Scale bars for (A) and (B) equal 100 μm. Scale bars for (C–E) equal 200 μm. Scale bar for (F) equals 50 μm. ................217 Figure 4.8 Representative ELISA testing bone HCl and GuHCl extracts from each actualistic trial against antibodies to chicken collagen I. The presented absorbance readings were taken at 405 nm at 2.5 hrs. Bone extracts were plated at 0.1 μg/well. Extraction blanks testing laboratory reagents are presented at right as ‘Blank HCl’ and ‘Blank GuHCl’; no absorbance for these samples confirms that no contaminants are present in laboratory buffers. Dark bars to the right of the white bars represent secondary only controls in which no primary antibodies were added. These readings are essentially undetectable, confirming no spurious binding of secondary antibodies to the plate. ......219 Figure 4.9 In situ immunofluorescence of collagen I in demineralized cortical fragments of chicken femora from each trial. (A–D) Water control trial. (E–H) Calcium carbonate trial. (I–L) Phosphate trial. (M–P) Iron trial. The first column (A, E, I, M) shows chicken femur demineralization products incubated with antibodies against chicken collagen I. The second column (B, F, J, N) shows secondary only control sections that were not exposed to primary antibodies, to control for non-specific binding of secondary antibodies. The third column (C, G, K, O) shows sections exposed to anti-chicken collagen I antibodies that were first inhibited with chicken collagen (prior to incubation). The fourth column (D, H, L, P) shows sections digested with collagenase for one hour prior to exposure to anti-collagen I antibodies. All images are taken in FITC channel. All section images were taken at 40X and 50 ms integration. ...............................................220 xxiii Figure 5.1 (A) Reconstruction of Dreadnoughtus schrani. Preserved elements shown in white. Scale bar is 1 m. (B) Locality map of discovery site of Dreadnoughtus (star) along Rio La Leona in Santa Cruz Province, Argentina. Figures modified, with permission, from Lacovara et al. (2014). ............................................................................................262 Figure 5.2 Left scapula of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) lateral view; (B) ventral view; (C) medial view; (D) dorsal view; (E) proximal view (medial toward the top of the page); (F) distal view (lateral toward the top of the page). Abbreviations: ac, acromion process; gl, glenoid; obr, oblique ridge; scb, scapular blade; scf, supracoracoideus fossa. Scale bar equals 20 cm. ......................................................263 Figure 5.3 Left coracoid of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) lateral view; (B) medial view; (C) ventral view (lateral toward the top of the page). (D) Close up, caudomedial view through the coracoid foramen. Abbreviations: cf, coracoid foramen; gl, glenoid. Scale bar equals 10 cm. ..................................................264 Figure 5.4 Left and right sternal plates of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) dorsal view; (B) ventral view. Abbreviation: cvr, cranioventral ridge. Scale bar equals 20 cm. ....................................................................................................265 Figure 5.5 Left humerus of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view; (F) distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: cuf, cuboid fossa; dpc, deltopectoral crest; hd, humeral head; rac, radial condyle; ulc, ulnar condyle. Scale bar equals 20 cm. ....................................................................................266 Figure 5.6 Left ulna of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view; (F) distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: clp, craniolateral process; cmp, craniomedial process; ol, olecranon; raa, radial articulation; scar, positive relief muscle scar. Scale bar equals 20 cm. ..............................................267 Figure 5.7 Left radius of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view (cranial toward the top of the page); (F) distal view (cranial toward the bottom of the page). Abbreviations: ior, interosseous ridge; ula, ulnar articular facet. Scale bar equals 20 cm................................................................................................................................268 Figure 5.8 Pelvic girdle of the holotype of Dreadnoughtus schrani (MPM PV 1156) in left lateral view. Right ilium has been mirrored for the image. Scale bar equals 20 cm. ..........................................................................................................................................269 Figure 5.9 Left ilium of the paratype of Dreadnoughtus schrani (MPM PV 3546) in (A) cranial view; (B) lateral view. (C) Right ilium of holotype (MPM PV 1156) in dorsal view (cranial toward the left side of the page). Abbreviations: acet, acetabulum; isped, ischiadic peduncle; poap, postacetabular process; pped, pubic peduncle; prap, xxiv preacetabular process; sr, sacral rib; vlp, ventrolateral process. Scale bars each are 20 cm.....................................................................................................................................270 Figure 5.10 (A) Pubes of the holotype of Dreadnoughtus schrani (MPM PV 1156) in caudoventral view. (B) Right pubis in lateral view; (C) distal view (cranial toward the top of the page). Abbreviations: acet, acetabulum; ilped, iliac peduncle; isped, ischiadic peduncle; of, obturator foramen. Scale bar equals 20 cm for (A) and (B) and 10 cm for (C). ...................................................................................................................................271 Figure 5.11 Left ischium of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) medial view; (B) lateral view. (C) Distal view of ischiadic blade (dorsal toward the top of the page). (D) Proximal view of iliac peduncle (caudal toward the top of the page). Abbreviations: acet, acetabulum; ilped, iliac peduncle; ist, ischiadic tuberosity; pped, pubic peduncle. Scale bars equal 20 cm for (A) and (B) and 10 cm for (C) and (D). .....272 Figure 5.12 Left femur of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view; (F) distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: fic, fibular condyle; ft, fourth trochanter; gtr, greater trochanter; hd, head; lb, lateral bulge; tic, tibial condyle. Scale bar equals 20 cm. ......................................................................273 Figure 5.13 Right tibia of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view (lateral toward the top of the page); (F) distal view (lateral toward the bottom of the page). Abbreviations: aspa, articular surface for the ascending process of the astragalus; cc, cnemial crest; cvp, caudoventral process. Scale bar equals 20 cm. ...........................274 Figure 5.14 Left fibula of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view (medial toward the top of the page); (F) distal view (medial toward the bottom of the page). Abbreviations: cmr, craniomedial ridge; lt, lateral tuberosity. Scale bar equals 20 cm. ...................................................................................................................275 Figure 5.15 Left astragalus of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) proximal view (medial toward the right side of the page); (C) lateral view; (D) caudal view; (E) distal view (medial toward the left side of the page); (F) medial view. Abbreviations: asp, ascending process; caf, caudal fossa; das, distal articular surface; fia, fibular articulation; tia, tibial articulation. Scale bar equals 10 cm. .............................................................................................................. 276 Figure 5.16 Right metatarsals I (A–F) and II (G–L) of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) and (G), cranial view; (B) and (H), medial view; (C) and (I), caudal view; (D) and (J), lateral view; (E) and (K), proximal view; (F) and (L), distal view. In (E–F) and (K–L), cranial is toward the top of the page. Scale bar equals 10 cm. ......................................................................................................................... 277 xxv Figure 5.17 Right pedal digit I ungual of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) lateral view; (B) medial view; (C) dorsal view; (D) proximal view. Abbreviation: flt, flexor tubercle. Scale bar equals 10 cm. .............................................278 Figure 6.1 Landmarks from Bonnan (2004, 2007) used in thin plate splines analyses of sauropodomorph humeri and femora. (A) Right humerus in cranial view. (B) Right femur in caudal view. Landmarks for humerus: 1, medial border of proximal humerus; 2, medial border of humeral head; 3, lateral border of humeral head; 4, proximolateral corner of the deltopectoral crest; 5, peak of distal deltopectoral crest; 6 and 11, lateral and medial locations that encompass the minimum midshaft width, respectively; 7, lateral border of lateral distal condyle; 8, medial border of lateral distal condyle; 9, lateral border of medial distal condyle; 10, medial border of medial distal condyle. Landmarks for femur: 1, proximolateral peak of greater trochanter; 2, lateral border of femoral head; 3, medial border of femoral head; 4, peak of fourth trochanter; 5 and 8, medial and lateral locations that encompass the minimum midshaft width, respectively; 6, medial border of distal humerus; 7, lateral border of distal humerus; 9, lateral-most peak of lateral bulge. .......311 Figure 6.2 Thin plate splines plots of relative warp scores for sauropodomorph humeri (A) and femora (B). RW1 is plotted against RW2. (C–D) Reference forms for center of each plot, at the (0,0) position of the solid black circle crosshairs. .................................312 Figure 6.3 Mean sauropodomorph humeral (top row) and femoral (bottom row) morphologies of each taxonomic division utilized in TPS analyses. Sample sizes for humeri (N): “Prosauropods” = 15, Diplodocids = 25, Camarasaurus = 12, Basal Titanosauriforms = 11, Titanosaurs = 26. Sample sizes for femora (N): “Prosauropods” = 18, Diplodocids = 16, Camarasaurus = 7, Basal Titanosauriforms = 9, Titanosaurs = 23. ..........................................................................................................................................313 Figure 6.4 Canonical variates analyses (CVA) of sauropodomorph humeri (A–B) and femora (C). Only axes identified as significant (possessing distinct eigenvalues) are shown. (A) Plot of CV1-CV2 for humeri. (B) Plot of CV1-CV3 for humeri. (C) Plot of CV1-CV2 for femora. Symbols as noted in legend. Larger symbols of each group represent the mean scores for each taxonomic division...................................................314 Figure 6.5 Regression of maximum shape change component, RW1, on log-transformed maximum bone length for sauropodomorph (A) humeri and (B) femora. Symbols: “Prosauropods” (solid circles), Diplodocids (open triangles), Camarasaurus (solid squares), Basal Titanosauriforms (open circles), and Titanosaurs (asterisks). The consensus reference form, occurring along the line at an RW1 score of zero, is presented at left in each plot. Deformation grids at right reflect shape variation characterizing strongly positive and negative scorings along RW1. Dark positively sloping lines are linear regression models fit to the data, with r² values of 0.23 for humeri and 0.08 for femora. Numbers on reference form identify landmarks as listed in Figure 6.1. ............315 Figure 6.6 Mean-to-mean transformations displaying sauropodomorph stylopodial shape changes associated with the transition from Non-titanosaurs to Titanosaurs (see xxvi explanation of dataset divisions in Methods), displayed in three different manners: thin plate spline grids (A) and (D), vector plots (B) and (E), and simple overlay of group means (C) and (F). Humeri are shown in (A–C) and femora in (D–F). Transformations are from consensus of all Non-titanosaur specimens to consensus of all Titanosaur specimens. In (C) and (F) overlays, mean forms for Titanosaurs are shown in black over top of the mean forms for Non-titanosaurs in gray. .........................................................317 Figure 6.7 Effect of reorientation of the humeral head and mediolateral broadening of the humerus on moment arm length for sauropod forelimb abductor musculature. The M. deltoideus scapularis is shown as an exemplar. (A) General sauropod condition in which the humeral head faces dorsally (as noted by the arrow) and the humerus is somewhat slender. (B) Condition encountered in some derived titanosaurians (e.g., Opisthocoelicaudia) wherein the humeral head has become dorsomedially directed (note reorientation of the arrow) and the humerus has become mediolaterally broad, causing the moment arm for the M. deltoideus scapularis to become lengthened. Black circle in (A) and (B) denotes glenoid joint center. Black line in (A) and (B) denotes the moment arm for the M. deltoideus scapularis. (C) Comparison of moment arm lengths from (A) (top) and (B) (bottom), demonstrating a longer moment arm given the forelimb construction presented in (B). (A) and (B) depict cranial view. ...........................................................318 Figure 6.8 Hypothesized relationship between a cranial shift in center of mass (COM), mediolateral narrowing of the humerus, and neck and cranial trunk posture in sauropod dinosaurs. (A) If a sauropod possesses mediolaterally broad humeri, the center of mass likely is positioned nearer to the pelvic girdle and the neck and cranial trunk will be held more closely to horizontal. (B) If a sauropod possesses mediolaterally slender humeri, the center of mass likely is positioned more cranially in the trunk and the neck and cranial trunk will slightly ascend. These relationships are built upon a demonstration by Henderson (2006) that slenderness of stylopodial limb elements appears to correlate with proximity to the center of mass. Mediolateral humeral narrowing shortens moment arm lengths for proximal forelimb musculature, as shown by decreasing length of the solid black lines in the lower figures. The M. subscapularis (a forelimb adductor) and M. deltoideus clavicularis (a forelimb abductor) are shown as exemplars. Black circles denote glenoid joint center. Dashed black lines trace the line of action of each muscle. Solid black lines denote muscle moment arms. Abbreviations: sbs., subscapularis; delt. c., deltoideus clavicularis. Upper figures depict lateral view, lower figures depict cranial view. Skeletal reconstruction in (A) modified from Lacovara et al. (2014). Skeletal reconstruction in (B) modified from an original by Scott Hartman from http://www.skeletaldrawing.com/sauropods-and-kin/. ....................................................319 Figure 6.9 Effect of proximal migration of the sauropod deltopectoral crest on moment arm length for the M. pectoralis, a primary forelimb adductor. (A) General sauropod condition in which the peak of the deltopectoral crest lies at nearly one-third the proximodistal length of the humerus. (B) More proximal expression of the deltopectoral crest, as in brachiosaurids and (as evidenced by this analysis) some titanosaurians (e.g., Panamericansaurus, Paralititan), reorients the M. pectoralis more mediolaterally, thereby shortening its moment arm about the glenoid. Black circle in (A) and (B) denotes xxvii glenoid joint center. Black line in (A) and (B) denotes the moment arm for the M. pectoralis. (C) Comparison of moment arm lengths from (A) (top) and (B) (bottom), demonstrating a longer moment arm given the forelimb construction presented in (A). (A) and (B) depict cranial view .......................................................................................321 Figure 6.10 Effect of mediolateral femoral broadening on sauropod proximal hindlimb musculature. The M. iliofemoralis and M. ischiotrochantericus are shown as exemplars. (A) General sauropod condition with a somewhat slender femur. (B) Condition encountered in wide-gauge titanosauriforms wherein the femur has become mediolaterally broad, causing the moment arms for the M. iliofemoralis and M. ischiotrochantericus to become slightly lengthened. Black circle in (A) and (B) denotes glenoid joint center. Black lines in (A) and (B) denote muscle moment arms. (C) Comparison of moment arm lengths for each muscle from (A) (top) and (B) (bottom), demonstrating slightly longer moment arms given the hindlimb construction presented in (B). (A) and (B) depict caudal view. Abbreviations: ilfem. = iliofemoralis; istr. = ischiotrochantericus. (A) and (B) depict caudal view. .....................................................322 Figure 6.11 Demonstration of how mediolateral femoral broadening and medial migration of the fourth trochanter maintain the insertion site of the M. adductor femoris at the same position relative to the body midline in sauropods. (A) General sauropod condition in which the femur is somewhat slender and the fourth trochanter is situated slightly on the caudal face. (B) Wide-gauge titanosauriform condition in which the femur is comparatively mediolaterally broadened and the fourth trochanter is caudomedially positioned on the shaft. Any potential lateral shift to the insertion site of the M. adductor femoris is negated by medial migration of the fourth trochanter, maintaining the insertion site at the same position relative to the body midline. Transect lengths from body midline (dashed line) to the M. adductor femoris insertion (solid black lines) are equal in both scenarios, as shown in (C). (A) and (B) depict caudal view. ...........................................323 Figure C.1 (A–D) Thin plate splines plots of partial warp scores for humeri, with dataset divided into five groups. Only partial warps identified as significant via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A) Uniform X v. Uniform Y. (B) X1 v. Y1. (C) X2 v. Y2. (D) X4 v. Y4. (E) Reference form for center of each plot, at the (0,0) position of the crosshairs. ........................................503 Figure C.2 (A–D) Thin plate splines plots of partial warp scores for humeri, with dataset divided into five groups. Only partial warps identified as significant via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A) X5 v. Y5. (B) X6 v. Y6. (C) X7 v. Y7. (D) X8 v. Y8. (E) Reference form for center of each plot, at the (0,0) position of the crosshairs. .....................................................................504 Figure C.3 (A–F) Thin plate splines plots of partial warp scores for femora, with dataset divided into five groups. Only partial warps identified as significant via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A) Uniform X v. Uniform Y. (B) X2 v. Y2. (C) X3 v. Y3. (D) X4 v. Y4. (E) X5 v. Y5. (F) xxviii X6 v. Y6. (G) Reference form for center of each plot, at the (0,0) position of the crosshairs. ........................................................................................................................505 Figure C.4. Variation in CV scores by taxonomic divisions for humeri (A–C) and femora (D–E). Only canonical variate axes identified as significant (possessing distinct eigenvalues) are shown. CV1 (A), CV2 (B), and CV3 (C) for humeri. CV1 (D) and CV2 (E) for femora. Symbols as noted in legend. ..................................................................506 Figure C.5 Progressive transformation of means for humeri (top row) and femora (bottom row) from average of all Nontitanosauriforms to Basal Titanosauriforms to Titanosaurs. See Methods in main text for definition of taxon divisions. Progressions are intended to reflect relative shape differences between taxa divisions and are not intended to imply a direct evolutionary lineage (for example, Basal Titanosauriform mean includes brachiosaurid specimens (terminal taxa in titanosauriform phylogeny) which are not part of a direct evolutionary progression from ancestral sauropodomorphs to titanosaurians). ..........................................................................................................................................507 Figure C.6 (A–F) Thin plate splines plots of partial warp scores for humeri, with dataset divided in three additional manners. Only partial warps identified as significant via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A), (C), and (E), Uniform X v. Uniform Y. (B), (D), and (F), X2 v. Y2. (G) Reference form for center of each plot, at the (0,0) position of the crosshairs. Symbols as indicated by legends. .......................................................................................................508 Figure C.7 (A–F) Thin plate splines plots of partial warp scores for humeri, with dataset divided in three additional manners. Only partial warps identified as significant via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A), (C), and (E), X4 v. Y4. (B), (D), and (F), X5 v. Y5. (G) Reference form for center of each plot, at the (0,0) position of the crosshairs. Symbols as indicated by legends. ............................................................................................................................509 Figure C.8 (A–F) Thin plate splines plots of partial warp scores for humeri, with dataset divided in three additional manners. Only partial warps identified as significant via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A), (C), and (E), X6 v. Y6. (B), (D), and (F), X8 v. Y8. (G) Reference form for center of each plot, at the (0,0) position of the crosshairs. Symbols as indicated by legends. ............................................................................................................................510 Figure C.9 (A) Thin plate splines plot of partial warp scores for humeri, with dataset divided as indicated in legend. Only partial warps identified as significant via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. X1 v. Y1 is shown. (B) Reference form for center of the plot, at the (0,0) position of the crosshairs. ................................................................................................511 Figure C.10 (A–C) Thin plate splines plots of relative warp scores for humeri, with dataset divided in three additional manners as noted in the legends. RW1 plotted against xxix RW2 in all figures. See Methods in main text for definition of taxon divisions. (D) Reference form for center of each plot, at the (0,0) position of the solid black circle crosshairs..........................................................................................................................512 Figure C.11 Canonical variates analyses (CVA) of sauropodomorph humeri with dataset divided in three additional manners. Only axes identified as significant (possessing distinct eigenvalues) are shown. Plots of CV1-CV2 for humeri with dataset divided into (A) Nontitanosaurs v. Titanosaurs, (B) Nontitanosauriforms v. Basal Titanosauriforms v. Titanosaurs, and (C) Nontitanosauriforms v. Titanosauriforms+UpTree. See Methods in main text for definition of taxon divisions. Symbols as noted in legends. Larger symbols of each group represent the mean scores for each taxonomic division. ..........................513 Figure C.12 (A–F) Thin plate splines plots of partial warp scores for femora, with dataset divided in three additional manners. Only partial warps identified as significant via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A), (C), and (E), Uniform X v. Uniform Y. (B), (D), and (F), X2 v. Y2. (G) Reference form for center of each plot, at the (0,0) position of the crosshairs. Symbols as indicated by legends. ........................................................................................................514 Figure C.13 (A–C) Thin plate splines plots of partial warp scores for femora, with dataset divided in three additional manners. Only partial warps identified as significant via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A–C) X3 v. Y3. (D) Reference form for center of each plot, at the (0,0) position of the crosshairs. Symbols as indicated by legends. ..........................................515 Figure C.14 (A–D) Thin plate splines plots of partial warp scores for femora, with dataset divided in two additional manners. Only partial warps identified as significant via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A–B) X4 v. Y4, with symbols as indicated by legends. (C–D) X6 v. Y6, with symbols as indicated by legends. (E) Reference form for center of each plot, at the (0,0) position of the crosshairs. ...............................................................................................516 Figure C.15 (A–C) Thin plate splines plots of relative warp scores for femora, with dataset divided in three additional manners as noted in each legend. RW1 plotted against RW2 in all figures. Symbols as indicated in the legends. (D) Reference form for center of each plot, at the (0,0) position of the solid black circle crosshairs. .................................517 Figure C.16 Canonical variates analyses (CVA) of sauropodomorph femora with dataset divided in three additional manners. Only axes identified as significant (possessing distinct eigenvalues) are shown. Plots of CV1-CV2 for femora with dataset divided into (A) Nontitanosaurs v. Titanosaurs, (B) Nontitanosauriforms v. Basal Titanosauriforms v. Titanosaurs, and (C) Nontitanosauriforms v. Titanosauriforms+UpTree. See Methods in main text for definition of taxon divisions. Symbols as noted in legends. Larger symbols of each group represent the mean scores for each taxonomic division............................518 xxx Abstract Insights into molecular taphonomy and the evolution of sauropod posture garnered from Late Cretaceous fossils Paul V. Ullmann Kenneth J. Lacovara, Ph.D The dichotomy of this dissertation results from my fascination with taphonomy and an opportunity I received to study Dreadnoughtus schrani, a giant, new sauropod. I begin by compiling the most comprehensive literature review to date on molecular paleontology. This synthesis reveals the plethora of factors contributing to and controlling survival of biomolecules in the fossil record. However, sedimentologic, geochemical, and environmental controls on molecular preservation remain poorly understood. To examine these factors, I studied a case study site, the Standing Rock Hadrosaur Site (SRHS), and performed actualistic experiments simulating fossilization in the laboratory. My experiments tested the effect of simulated, metal-enriched groundwaters on biomolecular decay. Immunoassay results following three months of simulated burial confirm that early-diagenetic permineralization can inhibit protracted microbial attack and that acidic conditions degrade soft tissues more rapidly than they dissolve bone mineral. Taphonomic analyses of SRHS indicate the bonebed represents a mass death assemblage formed by rapid burial in a shallow floodplain lake. Demineralization of SRHS bone fragments yields abundant soft tissue structures morphologically consistent with modern analogs. Concretions aided stabilization of these tissues by cementing regions of the encasing sediment. Immunofluorescence indicates survival of endogenous collagen I in tissues from one of these bones. Rare earth element (REE) composition of SRHS bones strongly supports brief diffusion and retention of primarily early-diagenetic REE xxxi signatures. This constitutes the first confirmation that retention of early diagenetic REE signatures may correlate with biomolecular preservation. In the final two chapters of this dissertation, I examine titanosaurian sauropod anatomy and evolution. Comparisons of Dreadnoughtus with related taxa reveal that only a single feature, an accessory process on the iliac preacetabulum, is unique to the largest titanosauriforms. This implies that the appendicular expression of wide-gauge posture is not influenced by body size. Morphometric analyses reveal evolution of wide-gauge posture to be characterized by humeral narrowing, femoral broadening, medial deflection of the humeral head, and proximal migration of the deltopectoral crest and fourth trochanter. These shifts signify a minimization of muscle contraction to generate forelimb excursion and an increase in mechanical advantage for hind limb abductor and adductor muscles in titanosauriforms. 1 CHAPTER 1: MOLECULAR TAPHONOMY: DECIPHERING INTERACTIONS BETWEEN BIOMOLECULES AND SEDIMENTARY ENVIRONMENTS THAT LEAD TO BIOMOLECULAR PRESERVATION 1.1 Abstract Recent discoveries of geologically ancient endogenous biomolecules are revolutionizing our view of fossilization processes. Traditional explanations of soft tissue preservation by mineral replacement are inadequate for some specimens. Pioneering actualistic experiments and high-resolution chemical and immunological assays are beginning to provide the first clues as to how such labile components may persist in ancient fossils. Yet much remains to be discerned, such as which depositional environments best favor remarkable preservation, how and in what ways taphonomic history influences the chances of biomolecular recovery, the ranges of chemical reaction pathways that can stabilize tissues and molecules, and the temporal window over which these processes must operate. Researchers in the nascent field of molecular taphonomy seek to answer these intriguing questions. Here, I provide a review of current knowledge in this field. Hydrolysis, oxidation, and microbial attack are the primary agents of decay among an abundant suite of contributors. Molecular mapping of collagen peptides recovered from Cretaceous-age dinosaur remains suggests that structurally internal, nonpolar, non-acidic, hydrophobic, functionally significant residues have the highest preservation potential. Preservation potential is also increased by association with a mineral matrix, complex three-dimensional structure, and abundance of cross-linking. Lipids have the highest 2 preservation potential (such as in kerogen and fossil fuels), whereas DNA has low preservation potential. Thus far, the only agreed-on proxies for molecular retention are excellent morphologic preservation, minimal weathering, and fossilization in a cold and/or dry environment. Retention of endogenous geochemical signatures in biominerals should correspond to specimens retaining biomolecules, though no one has yet drawn direct comparisons between preservation of both types of signals. It also remains unknown if autolithification or authigenic mineralization preclude biomolecular preservation. Sedimentological, geochemical, environmental, and diagenetic factors presumed to contribute to molecular retention need clarification. Understanding of molecular preservation mechanisms will not advance until these factors are discerned. 1.2 Introduction Traces of endogenous biomolecules (e.g., collagen I and keratin) and pliable soft tissues (e.g., fibrous matrix, blood vessels; Figure 1.1) have recently been discovered in fossils of dinosaurs and other extinct vertebrates (e.g., Embery et al., 2000, 2003; Schweitzer et al., 2005b, 2007b, 2009, 2013; Manning et al., 2009; Edwards et al., 2011; Lindgren et al., 2011; Cadena and Schweitzer, 2012, 2014; Glass et al., 2012, 2013; Schroeder, 2013). Peptide fragments have even been recovered from Cretaceous sauropod eggshell (Schweitzer et al., 2005a). These discoveries require that paleontologists dismiss the long-held presumption that organic matter always decays or is replaced by mineral precipitation (e.g., Martin, 1999; Trueman et al., 2003). Numerous studies document preservation of soft tissues by hypothesized 3 inorganic or organic “replacement” mechanisms (e.g., Berner, 1968; Bergstrom, 1990; Kellner, 1996; Briggs et al., 1997, 2000; Dal Sasso and Signore, 1998; Briggs, 2003; Martin et al., 2004; Butterfield et al., 2007; Carpenter, 2007). These investigations examined fossils from a variety of organisms, ages, and depositional settings ranging from Cambrian Konservat-Lagerstӓtten to so-called “mummies” of Cretaceous dinosaurs. However, no fossilization mechanism outlined in any of these reports would allow for, let alone explain, preservation of still-pliable soft tissues retaining portions of their original molecular compositions. To date, only a few a potential mechanisms have been proposed to account for such preservation, despite a long-standing call for research in this field (originally by Eglinton and Logan, 1991). This gap in the literature most likely reflects our as yet preliminary knowledge of involved factors. To advance the field, it is now imperative to understand mechanisms for such extraordinary preservation. Although Eglinton and Logan (1991, p. 320) originally defined molecular taphonomy as “the molecular aspects of fossilization processes,” this definition is too vague in modern context. Advancements in analytical technologies (e.g., mass spectrometry) offer new means of studying each step of the preservation process, from autolytic decay to geochemical reactions. Therefore, for increased clarity, molecular taphonomy is herein defined as the study of biostratinomic processes, diagenetic alterations, biogeochemical reactions, and environmental–geochemical conditions that facilitate or preclude preservation of endogenous biomolecules. Included subtopics comprise necrolysis, molecular condensation reactions, mineralization processes, microbial interactions, and trace element exchange between tissues and groundwater. All of these processes have been extensively researched regarding preservation potential of 4 various biomineralized tissues (e.g., Behrensmeyer et al., 1992; Martin, 1999), but each yet needs exploration pertaining to biomolecular preservation. Indeed, clarification of molecular stabilization pathways is a primary goal of molecular taphonomy. Here, I provide a review of current knowledge on molecular preservation processes that may serve as a foundation for ensuing research. I provide summaries of; 1) fossilization mechanisms thought to preserve soft tissues and their constituent biomolecules, and; 2) taphonomic processes, environmental/geological settings, geochemical regimes, and molecular attributes identified to correlate with biomolecular preservation. 1.3 Significance Ancient molecular discoveries have important implications. Besides defying longheld assumptions about the preservation of endogenous organics, biomolecules record crucial information about evolutionary pathways and relationships. For instance, Schweitzer et al. (2009) used non-avian dinosaur collagen I amino acid sequences to infer phylogenetic relationships. Their analyses placed the recovered dinosaurian material between modern crocodilians and birds and provided an independent validation of phylogenies based solely on skeletal morphology (Figure 1.2). Organ et al. (2008) also performed phylogenetic analyses to determine affinity of protein sequences from an American mastodon and confirmed its placement amongst modern Elephantinae. Thus, the importance of molecular discoveries is that they can be used to both discern systematic relationships and independently test molecular clocks and relationships 5 estimated from morphology alone. Protein sequences can also be used to track the emergence of molecular novelties in the fossil record and estimate rates of molecular evolution (Schweitzer, 2003, 2011; Asara et al., 2007; Peterson et al., 2007; Schweitzer et al., 2007b). Further, biomolecular information may ultimately provide an invaluable source of information about the physiology, appearance, and paleoecology of an extinct taxon, allowing us to better understand adaptive responses to climate change (Schweitzer et al., 2008, 2014b; Schweitzer, 2011). Molecular sequences can also be used to discern historical trends in population genetics (e.g., Orlando et al., 2002) or the phylogenetic position of indeterminate fossil material to the family or genus level (e.g., Buckley et al., 2011). Regarding molecular taphonomy specifically, as Collins et al. (2000, p. 1139) state, “the future success of ancient biomolecule research largely depends on our understanding the interaction between these materials and their environment throughout diagenesis”. On a broader scale, heightened understanding of molecular stabilization pathways holds the potential to inform the construction of biomaterials and may contribute to novel treatments for human diseases (Schweitzer et al., 2014b and references therein). 1.4 History of thought 1.4.1 Decay Upon death, cellular necrosis and lysosome enzyme-driven autolysis begin to decompose the soft tissues of an organism (Child, 1995; Majno and Joris, 1995). If burial 6 does not occur soon after death, the majority of soft tissues (e.g., skin, muscle, organs) will most likely be broken down by microbial decomposers or consumed by scavengers (Allison, 1990; Eglinton and Logan, 1991). Only in rare circumstances may mineralization of soft tissues begin to take place before burial (e.g., a fish carcass descending into supersaline bottom waters where bacterial mats may protect it, concentrate metal ions, and facilitate mineralization; Martill, 1988). Once buried, microbes from within encasing sediments infiltrate remaining tissues and can create distinct chemical microenvironments in various portions of the decaying organism (Trueman et al., 2003; McNamara et al., 2009). The suite of microbial (mainly bacterial) decomposers will be governed by environmental and soil factors such as temperature, pH, vertical nutrient distribution, and moisture (Nealson, 1997; Eglinton and Logan, 1991; Child, 1995). Tissue composition and anatomy will exert control over aerobic/anaerobic and acidic/basic conditions within regions of the carcass, and microbial attack will be constrained by this ensemble of chemical microenvironments (Allison, 1988; Child, 1995; Zhu et al., 2005; McNamara et al., 2009). Historical hypotheses suggest that protection from microbial attack should be vital for soft tissue and molecular preservation (e.g., Hedges, 2002; Trueman and Martill, 2002). Yet, due to cessation of biological maintenance processes (Bada et al., 1999; Nielsen-Marsh, 2002), DNA, proteins, lipids, and carbohydrates will all naturally degrade on their own following death, even in anoxic conditions (Allison, 1988). Intriguingly, some reports suggest that microbial decomposition of some volatile tissues may actually aid preservation of other organic remains within a carcass by creating geochemical gradients that force mineral precipitation (Briggs, 2003; Lingham-Soliar and Glab, 2010). 7 Historical taphonomic hypotheses suggest that endogenous soft tissues are too volatile to preserve through geologic time. Laboratory studies of biomolecules in solution have estimated preservational limits of ~100,000 years for DNA and a few million years for proteins (e.g., Lindahl and Nyberg, 1972; Nielsen-Marsh, 2002; Allentoft et al., 2012). Under this context, recovery of biomolecular remains from pre-Pleistocene fossils has received much scrutiny. It must be considered, however, that preservation timelines from aqueous solution studies are based on isolated biomolecules not associated with a stabilizing mineral matrix, a fact that severely limits their comparative value (Geigl, 2002; San Antonio et al., 2011). Therefore, focusing on theoretical decay rates or “limits of preservation” (e.g., Nielsen-Marsh, 2002; Allentoft et al., 2012) is unproductive. Historical thought almost exclusively invokes mineralization to explain long-term preservation of soft tissues. Reported examples of mineral “replacement” of soft tissue structures are numerous, such as replication of amphibian organs and tissue linings (McNamara et al., 2009) and mineralization of skin outlines of hadrosaurid dinosaurs (Carpenter, 2007). Review of presumed mineral-replication mechanisms is useful for comparison against other mechanisms (reviewed later in Section 1.12) that could instead preserve original organic matter. 1.4.2 Mineralization of soft tissues Invading microbes release extracellular enzymes that act as ligands to liberate, capture, and metabolize organic nutrients (e.g., amino acid monomers or elements such as P, S, Zn, C, Ca, etc.; Farrimond and Eglinton, 1990; Ehrlich, 1996; Bergmann et al., 2010; Gadd, 2010). In aerobic conditions, microbes can use O2 as an electron donor to 8 oxidize organic molecules, thereby liberating metal ions and respiring CO2 (Martill, 1988; Allison, 1990; Chin et al., 2003). Build up of CO2 and organic decay products (e.g., H2S) alters pH values within the confined spaces of a carcass (Brett and Baird, 1986; Hammes and Verstraete, 2002; Briggs, 2003; Zhu et al., 2005). This in turn favors precipitation of certain minerals over others (e.g., as pH drops, apatite precipitation will be favored over calcite; Sagemann et al., 1999; Briggs, 2003). Meanwhile, release of metal ions creates steep pore-fluid geochemical gradients that reach equilibration by mineral precipitation (Briggs, 2003). Primary cations released from labile tissues may also contribute to chemical control over which mineral precipitates (Prevot and Lucas, 1990; Bergmann et al., 2010). According to historical hypotheses, soft tissue “replacement” can then proceed by either authigenic mineralization or autolithification (Figure 1.3), depending on the microbial genera (e.g., Geobacter, Escherichia, Bacillus, Solibacter, Rhodococcus, Pseudomonas, Aeromonas, Stenotrophomonas, Xanthomonas; Child et al., 1993; Child, 1995; Asara et al., 2007; Gadd, 2010; Muller et al., 2011), groundwater salinity (Briggs, 2003), the metal ions released from organic molecules, and those present in the groundwater system (Toporski et al., 2002). Autolithification involves bacteria accumulating metal ions on or in their cell walls/periplasmic space or cytoplasm (Liebig, 2001; Ennever et al., 1974; Hirschler et al., 1990; Hammes and Verstraete, 2002). Anionic carboxyl and phosphoryl groups of bacterial cell walls and exopolysaccharides can facilitate electrostatic absorption of metallic cations (Dunn et al., 1997; Farmer, 1999; Toporski et al., 2002), most commonly by passive means (Hirschler et al., 1990; Konhauser, 1998). Anions can also bind to cell wall cations (e.g. NH3+) or bridging 9 cations such as Mg2+ (Dunn et al., 1997). In this manner, many workers have proposed that bacteria can act as nucleation sites that concentrate ions for rapid mineral precipitation (Wilby et al., 1996; Briggs et al., 1997; Dunn et al., 1997; Farmer, 1999; Zhu et al., 2005; Gadd, 2010). As the bacteria consume organic tissues, they can occupy the sites originally held by the soft tissues and mineralize in place. Thus, as they become individually lithified, they are thought to reproduce the form of the tissue being consumed (Briggs, 2003), forming a mineralized pseudomorph of the soft tissue anatomy of the carcass (e.g., primate fur in Franzen, 1990; fish eyes in Gupta et al., 2008; Figure 1.3A,C). Alternatively, bacteria forming a biofilm could autolithify to become an encrusted coating or outline that mimics soft tissue structures and might limit further decay (e.g., leaves in Dunn et al., 1997). Some researchers propose that mineralized biofilms can be distinguished from mineralized soft tissues by identification of 1–5 μmsize microspherules, or so- called bacterial pseudomorphs (distinguishable from authigenically precipitated microspherules which are smaller, generally < 1 µm; Briggs and Kear, 1993; Konhauser, 1998; Dunn et al., 1997; Zhu et al., 2005). In principle, authigenic mineralization is thought to only involve lithification of the tissue being consumed (Briggs, 2003). Researchers propose that in this process, microbial mats that coat the surfaces of decomposing tissues create “enclosed” chemical microenvironments that limit scavenging and carcass flotation (Wilby et al., 1996; Briggs, 2003). Elements from the decaying tissues and surrounding soils and pore fluids become concentrated beneath the microbial mat and geochemical gradients force mineral replacement of the degrading tissue (Farmer, 1999; Briggs, 2003; Babcock et al., 2006). This type of mineralization has been modeled in actualistic experiments (e.g. Briggs and 10 Kear, 1993; Sagemann et al., 1999; Martin et al., 2004) and is thought to account for numerous Lagerstӓtten. Examples include Libros Formation frog nerves, organs, and collagen fibers (McNamara et al., 2009), and Santana Formation dinosaur muscle fibers (Kellner, 1996) and fish muscle fibers and organ linings (Martill, 1988, 1990; e.g., Figure 1.3B). Portions of the skin envelope of an Edmontosaurus may also have been preserved by authigenesis (Manning et al., 2009). The mineral species precipitated depends on tissue composition (e.g., nervous tissues likely mineralize to calcium carbonate due to their abundant calcium-binding enzymes; McNamara et al., 2009), pH, elemental geochemistry of pore waters, entombing sediment composition, water salinity, and the availability of various electron acceptors (Berner, 1968; Allison, 1990; Briggs, 2003; Zhu et al., 2005; McNamara et al., 2009). Apatite, silica, calcite, pyrite, gypsum, aragonite, siderite, and clay minerals (e.g., illite) are the most common precipitates (Briggs et al., 1997; Briggs, 2003; Zhu et al., 2005; McNamara et al., 2009). Authigenesis can occur quickly (within as little as two weeks; Briggs and Kear, 1993), thereby preserving soft tissue anatomy in surprising detail. Strikingly, no investigation has yet tested whether authigenic mineralization or autolithification preclude biomolecular preservation (Schweitzer, 2011). McNamara et al. (2006, 2009) proposed retention of organic elemental signatures within mineralized soft tissues, which they termed “organic preservation”, but presented no direct evidence for biomolecular characterization. Direct testing of exquisitely mineralized labile tissues, such as those presented by McNamara et al. (2009), is needed for evaluation of the linkage between mineralization and potential retention of molecular character. 11 1.4.3 Bone structure and mutual protection Numerous authors describe how the interweaving of collagen I and biogenic hydroxyapatite in bone provides “mutually protective” benefits (Tuross et al., 1989; Curry, 1990; Ambler and Daniel, 1991; Muyzer et al., 1992; Child, 1995; Briggs, 1999; Collins and Gernaey, 2001; Collins et al., 2002; Trueman and Martill, 2002; Zazzo et al., 2004; Gupta et al., 2007; Lindgren et al., 2011). The network of bioapatite has minute intercrystalline spaces, only a few micrometers in width (Francillon-Vieillot et al., 1990; Trueman and Martill, 2002). In fresh bone, these intercrystalline gaps are large enough to allow water molecules to diffuse into collagen but are too small to allow passage of larger molecules, such as bacterial proteases (Trueman and Martill, 2002). Limited intercrystalline spacings of bioapatite therefore restrict mobility of exogenous microbes and their extracellular enzymes, which is thought to protect primary proteins from metabolization (Trueman and Martill, 2002). Encasement of collagen in hydroxyapatite matrix may also restrict molecular swelling during autolysis (Lingham-Soliar and Wesley-Smith, 2008; Zylberberg and Laurin, 2011), which would limit its potential degradation by elevating the activation energy of hydrolysis (Collins et al., 2000). Concurrently, collagen serves as a protective barrier against chemical dissolution of bioapatite because it passivates hydroxyapatite crystal surfaces, limiting their chemical reactivity (Collins et al., 2002). Presence of collagen has also been demonstrated to limit trace element diffusion rates (Kohn and Moses, 2013), meaning that collagen retention retards elemental alteration of bioapatite. This is the nature of mutual protection. Mutual protection considerations clearly imply that the long-term fates of collagen and bioapatite are shared (Collins et al., 2002). This conclusion is significant because 12 both components can provide valuable data; bioapatite can retain original geochemical signatures reflecting the diet, habitat choice, and burial environment of an organism (Rogers et al., 2007 and references therein) and proteins can be useful for molecular systematics and paleobiology (e.g., Tuross et al., 1989; Curry, 1990; Schweitzer et al., 2009). 1.4.4 Amino acid analysis and racemization Biological left handed (L) amino acids slowly convert to right handed (D) isomer forms with time (Bada and Helfman, 1975). The rate of racemization is influenced by environmental temperature, water availability, amino acid structure, the size and polarity of adjacent amino acids within the peptide, and presence/absence of microbial racemase enzymes (Bada and Helfman, 1975; Wehmiller and Belknap, 1976; Bada, 1985; Child et al., 1993; Van Duin and Collins, 1998; Collins et al., 2009). Given enough time, the D/L ratio of a sample should theoretically increase from zero to equilibration around 0.5 (a ratio of approximately 1:1) (Bada, 1985). Molecular structures dictate that aspartic acid racemizes the fastest, followed by alanine, glutamic acid, and leucine (Bada, 1985; Sykes et al., 1995). Concordance of amino acid results to this sequence of decreasing D/L ratios (the overall “extent of racemization”) has been suggested as a criterion for authenticating ancient age of molecular results and as a means of screening samples to find those most favorable for DNA retention (e.g., Poinar et al., 1996; Austin et al., 1997; Bada et al., 1999; Hofreiter et al., 2001). The utility of this assay is limited because it can only provide negative and often indirect evidence. One important problem is that a low D/L ratio could just as easily 13 reflect retention of ancient biomolecular material as it could recent contamination. Second, high racemization, though it might suggest ancient age, cannot differentiate between ancient endogenous amino acids and ones introduced during early diagenesis; the origin of amino acids cannot be constrained with confidence by this assay. Compositional analyses are therefore essential to run in tandem to identify if the proportions of amino acids in a fossil remain consistent with those in modern analogs (Gurley et al., 1991; Bada et al., 1999). This may be found even following significant loss of amino acids (e.g., Dobberstein et al., 2009; Buckley et al., 2011). Although secondary amino acids are thought to commonly be introduced into fossils during diagenesis, endogenous amino acids may also be protected and stable over geologic timescales. For example, humic acids may encapsulate and shield biomolecular compounds from enzymatic attack (Westbroek et al., 1979; Zang et al., 2000). Collins et al. (2009) identified that the racemization of most bone amino acids is dependent on denaturing of collagen I. In fact, the triple helical quaternary structure of collagen I sterically inhibits racemization so strongly (except at more relatively exposed telopeptides; Child et al., 1993) that collagen must degrade substantially before it can begin to form the necessary succinimide intermediate (Van Duin and Collins, 1998; Collins et al., 1999, 2009). Encasement within chemically hyporeactive hydroxyapatite may additionally deter racemization due to limited porosity and permeability of the mineral matrix (Collins et al., 2003). Furthermore, Collins et al. (2009) found no correlation between the extent of racemization and ability to successfully amplify DNA from fossils, casting strong doubt on the validity of racemization dating and the utility of the assay as a criterion for authenticity. Theoretical temporal limits for DNA retrieval 14 (Poinar et al., 1996) outlined by early authors from aqueous solution studies were not based on amino acids in association with a mineral matrix and are no longer substantiated (Collins et al., 2009). To summarize, as Collins et al. (2009) conclude, racemization is not a useful screening technique, and more rigorous, direct testing of biomolecular presence and structure, such as those outlined in Section 1.7, should be performed instead or in addition. 1.5 Diagenetic alterations 1.5.1 Alterations to biomolecules To identify molecular remnants in fossils, one must first recognize how they can degrade and be altered. The most common types of diagenetic molecular alterations are hydrolysis, oxidation, loss due to decay or microbial attack, exchange between endogenous and exogenous sources, conversions due to decay and/or recombination of molecules, and condensation reactions (Figure 1.4). Yet, it is important to remember that variability predominates (Tuross, 2002). Hydrolytic fragmentation may represent the most common modification of biomolecules during diagenesis (Child, 1995). This process shortens molecular chain lengths (e.g., Figure 1.4A) and may free individual amino acids or fatty acids, making them more consumable for microbes (Eglinton and Logan, 1991; Collins and Gernaey, 2001). Fragmentation of peptides increases the number of exposed molecular termini (Tuross, 2002), which increases the solubility of biomolecules (Tuross et al., 1989; Curry, 1990). Hydrolysis can occur due to impregnation of groundwater or as a consequence of 15 bacterial proteases (Trueman and Martill, 2002). If it occurs by inorganic means, it can increase vulnerability to microbial attack (Collins and Gernaey, 2001). Additionally, hydrolysis can generate hydrogen cations, facilitating biomineral dissolution through development of acidic conditions (Trueman et al., 2004). Oxidation of molecular components is also common (Ambler and Daniel, 1991). Oxidative deamination (e.g., Figure 1.4C) and decarboxylation can cleave peptide bonds of proteins, permanently disassociating them (Berner, 1968; Tuross, 2002; Lindgren et al., 2011) or converting original amino acids into different amino acids (e.g., carboxyglutamine to glutamine; Muyzer et al., 1992). Certain oxidative products may still reflect their parent biomolecules with a limited degree of specificity. For instance, the functional group methyl indole, a component of aromatic amino acids, indicates the presence of degraded protein (Gupta et al., 2007). Some compounds are more vulnerable to oxidation than others, such as the S enantiomer amino acids cysteine and methionine (Ambler and Daniel, 1991). In general, four additional common alterations may occur to molecular components: loss due to decay or attack, exchange with exogenous compounds, conversion due to decay or recombination, or condensation into agglutinations. Leaching by groundwater (Grupe, 1995; Schweitzer et al., 1997a) and microbial attack (Eglinton and Logan, 1991; Hedges, 2002; Schweitzer, 2003) are two primary processes resulting in loss of biomolecules and/or their components (e.g., Figure 1.4B). However, many other mechanisms of loss also take place. Lipids can become hydrocarbons by losing functional groups via dehydration, hydrogenation, or decarboxylation (Farrimond and Eglinton, 1990). DNA commonly degrades through depurination, depyrimidation, 16 deamination, and hydrolytic cleavage of its sugar-phosphate bonds (Collins et al., 2002; Schweitzer, 2003, 2004). Certain amino acids (serine, threonine, glutamine) can also be lost through ester formation (Tuross, 2002). The above processes often result in preferential loss of entire molecules (due to differential stability/durability) or individual functional groups. For example, aspartic acid and the amino acids threonine, glutamine, serine, proline, and hydroxyproline are more commonly lost from collagen than are alanine, glycine, and leucine (DeNiro and Weiner, 1988; Glimcher et al., 1990; Grupe, 1995; Tuross, 2002). Such preferential loss patterns may reflect loss of inherently less stable structures (e.g., hydroxyproline; Ambler and Daniel, 1991) and/or microbial exploitation of molecular components with greater nutrient value (e.g., aspartic acid with four carbon atoms versus glycine with only two; Grupe, 1995). Exchange of molecular components can lead to structural conversions (e.g., Figure 1.4D,E) or it can simply obfuscate original biomolecular identity. Side-chain functional groups of amino acids may be exchanged between endogenous proteins and microbial products or soil organic matter (e.g., methylation, glycosylation; Schweitzer, 2004). Labile elements, such as chlorine and sodium, are often lost in fossil organics (Pate et al., 1989; Schweitzer et al., 2005a) and are commonly replaced by other elements, thereby facilitating permineralization. If no elemental exchange occurs, then volatile loss will concentrate metals in the remaining residues, which can potentially inhibit microbial attack and stimulate mineralization (Edwards et al., 2011). Isotopes may also be exchanged between biomolecules and surrounding pore waters (DeNiro and Weiner, 1988). In collagen, for example, this usually results in increased δ13C/δ15N ratios 17 due to nitrogen loss and concurrent carbon addition (Tuross, 2002). Conversion of molecular components may be more common than is recognized because it is difficult to diagnose. For example, diagenetic conversion of the nitrogenous bases of DNA: such conversions can provide apparently legitimate sequence data that are covertly overprinted by degradative alterations (Collins et al., 2002; Schweitzer, 2003, 2004). Thankfully, some conversions are more easily identified. For instance, one amino acid can be converted into another by oxidative cleavage of peptide bonds, aromatization of carbon rings, deamidation, or dehydroxylation (Eglinton and Logan, 1991). These processes commonly increase the abundance in fossils of the simplest amino acid, glycine (Endo et al., 1995; Grupe, 1995). Such conversions to simpler molecules are rampant during diagenesis. Numerous workers support condensation reactions as diagenetic stabilization mechanisms. Whether by direct polymerization, Amadori rearrangements, or Maillard reaction sequences, polycondensation can generate highly insoluble aggregations of molecular material referred to as geopolymers, agglutinations, humic acid-like melanoidins, or advanced glycation endproducts (Curry, 1987, 1990; Farrimond and Eglinton, 1990; Bada et al., 1999; Fogel and Tuross, 1999; Tuross, 2002; Schweitzer, 2003; Gupta et al., 2008). At the core of many geopolymers likely lies degraded biomolecular debris, shielded by hydrophobic fatty acids (Cody et al., 2011) or other molecular components. Agglutinations can incorporate molecular fragments from both endogenous and exogenous sources (e.g., from microbes or soil organic matter) and are held together by numerous cross-links (Schweitzer et al., 2005a). Although these bonds make the aggregations practically inert and insoluble, they also hamper sequencing 18 efforts (Schweitzer, 2004). Fortunately, cleaving reagents can separate condensation products to make them more accessible (Poinar et al., 1998). For example, treatment with N- phenacylthiazolium bromide allowed improved sequencing of DNA from a 20 Ka ground sloth coprolite by breaking cross-links formed by Maillard reactions (Poinar et al., 1998). 1.5.2 Alterations to biominerals Because many biomolecules are components of biomineralized tissues, their fate is tied to that of the biomineral. For this reason, it is also essential to understand ways in which biominerals can be altered through diagenesis. As expected, diagenetic alterations to biominerals are as varied as those affecting biomolecules. The most common of these include elemental exchange, permineralization, recrystallization, uptake of rare earth elements, and isotopic exchange. Exchange of major, minor, and trace elements is an alteration that occurs to all fossils during at least some phase of their history (Hedges, 2002; Goodwin et al., 2007; Trueman, 2007). Major element exchange is constrained by groundwater chemistry, microbial activity, tissue chemistry, and lithology (Pate et al., 1989); it is especially enhanced when tissue chemistry and lithology significantly differ (Bergmann et al., 2010). For example, bones preserved in limestone are surrounded by calcium and will be more prone to loss of phosphate, whereas bones preserved in siliceous terrestrial sediments will display higher calcium loss and greater phosphate retention (Goodwin et al., 2007; Bergmann et al., 2010). Such elemental exchange can take place at both macroand micro-scales. For example, Goodwin et al. (2007) observed apparent exchange of 19 calcium and phosphorous for iron and magnesium in areas surrounding Haversian canals in certain dinosaur bones. A common result of ionic exchange for bone bioapatite is conversion to fluorapatite (via exchange of F- for OH-; Kohn et al., 1999; Trueman, 1999). Such alteration can be identified by microprobe analysis, energy dispersive x-ray spectroscopy (EDX), or by increased density over that of modern analogs (Schweitzer et al., 1997a; Trueman, 1999). Histological integrity can remain unaffected by fluorapatite conversion (Prevot and Lucas, 1990; Elorza et al., 1999), so the influence of this alteration on molecular preservation is yet to be determined. Intriguingly, chemical analyses of Quaternary fossils suggest that significant fractions of proteins can remain even after moderate histological modification (Hedges and Millard, 1995). Permineralization, which is also common and sometimes considered integral to preservation (Trueman et al., 2008b), is not ubiquitous. Arguments have been made both in support of microbially-mediated permineralization aiding biomolecular retention (Daniel and Chin, 2010) and for avoidance of permineralization to be essential for such preservation (Schweitzer et al., 1997a). This relationship requires further examination. In the case of bone, recrystallization is historically considered a universal alteration because of thermodynamic instability of bioapatite crystals in buried, waterlogged conditions (Hedges and Millard, 1995; Hedges, 2002). However, unaltered bioapatite crystals have been identified in archaeological-age bone (Schoeninger et al., 1989) and Cretaceous sauropod bones (Dumont et al., 2011), showing that occurrence and rate of recrystallization are variable. Hubert et al. (1996) suggest that Ostwald ripening, in which new large crystallites grow at the expense of original smaller ones 20 (Trueman et al., 2004), may not be the exclusive means by which recrystallization takes place. They suggest that if it occurs quickly enough, recrystallization may spare original bioapatite crystal cores by utilizing them as seed crystals for mineral growth. When recrystallization does occur, the following effects are seen: 1) crystal size increases (Tuross et al., 1989; Hedges and Millard, 1995; Trueman et al., 2004); 2) crystals contain fewer defects (e.g., anionic vacancies; Cazalbou et al., 2004) and less strain (Hedges and Millard, 1995); 3) bone microporosity decreases in exchange for macroporosity (pores <40Å in exchange for >100Å; Hedges and Millard, 1995; Goodwin et al., 2007), and; 4) crystal c-axes may become randomly oriented (Schweitzer et al., 1997a; see Hubert et al. 1996 for an exception). The Ca/P ratio of recrystallized bone will likely remain unaltered because the mineral portion is still apatite (Hedges and Millard, 1995; Schweitzer et al., 1997a). However, recrystallization can be identified by heightened x-ray diffraction (XRD) peaks of low cumulative width in comparison to peaks for modern bone (because the mineral has developed a more pure form; Schoeninger et al., 1989). The incorporation of rare earth elements (REEs) is another diagenetic process affecting biominerals. For example, substitution of REEs for Ca2+ is ubiquitous in fossil bioapatite (Trueman, 2007). REE incorporation generally is more extensive towards the exterior surface of specimens due to greater exposure to pore fluids (Williams et al., 1997; Trueman, 2007), which facilitates additional uptake by surface adsorption (Trueman et al., 2011). Permeating, advective fluid flow through tissue porosity can distribute dissolved ions throughout an entire skeletal specimen (Hinz and Kohn, 2010). Microbes can also enhance bioapatite recrystallization and heteroionic substitution of REEs into bioapatite (Grupe and Piepenbrink, 1989). Which REEs are incorporated 21 depends on concentrations in pore fluids and original tissue structure and chemistry (e.g. Gueriau et al., 2014). Incorporation of REEs has traditionally been viewed as an early diagenetic process because of high concentrations in Holocene and Pleistocene fossils (e.g., Trueman, 1999). However, recent investigations demonstrate that REEs can, under certain circumstances, be incorporated throughout the entire burial history of a fossil (Kocsis et al., 2010; Tütken et al., 2011; Herwartz et al., 2011, 2013b). Prolonged uptake may lead to late diagenetic overprinting of original geochemical signatures (e.g., marine overprinting of terrestrial REE patterns can occur rapidly; Tütken et al., 2008). In bone, uptake of REEs predominantly occurs following the loss of collagen (Trueman et al., 2004); therefore, bones that retain more collagen should theoretically present lower REE concentrations (Trueman et al., 2008a; see Section 1.9 for further discussion). Conversely, because REE concentrations in live bone are low (Trueman, 2007), it is taken as a rule that the more REEs encountered in bioapatite, the more it has been diagenetically altered (Trueman et al., 2004). A side-effect of REE incorporation is that insertion of trivalent REE (REE3+) ions for divalent calcium (Ca2+) necessitates a charge balance by insertion of another cation in an adjacent mineral lattice site (Reynard et al., 1999; Kohn and Moses, 2013). As a result, many bone phosphorous (P5+) and calcium (Ca2+) lattice sites will be replaced by commonly available cations such as silicon (Si4+) and sodium (Na+), respectively (Reynard et al., 1999). Such integration of additional major elements might also facilitate secondary crystal nucleation and permineralization. Extensive alteration by paired substitutions may cause mismatch of specimens from predictions of simple latticestrain theory fractionation models (Kohn and Moses, 2013). This may provide an efficient means to identify specimens with complex diagenetic histories wherein certain 22 cations may have rate-limited REE diffusion. Isotopic exchange with surrounding pore fluids is another common alteration to biominerals. Exchange can occur during recrystallization, or isotopes from exogenous sources can be adsorbed onto crystal surfaces (Zazzo et al., 2004). For bone, exchange of oxygen isotopes can occur to both carbonate and phosphate (Fricke, 2007). Endogenous δ13C may be changed due to incorporation of carbon dioxide into exposed crystal lattice sites following microbial hydrolysis of collagen (Zazzo et al., 2004). Iacumin et al. (1996) suggested that alteration of endogenous oxygen isotopes can be identified by checking for deviation from a linear relationship between the δ18O in bone mineral phosphate and carbonate. More recent evaluations of this test seem to support its utility in identifying altered specimens (Martin et al., 2008); however, this test cannot be applied if the taxon under study did not originally possess a linear correlation between δ18O in bioapatite phosphate and carbonate (e.g., fishes; Kolodny et al., 1996). Lastly, microbial attack can increase potential inorganic alteration of biominerals and biomolecules. For instance, microbial enzyme catalysis can enhance biomineral dissolution, postmortem elemental uptake by tissues, ionic and isotopic exchange with groundwater, and biomineral recrystallization (Grupe and Piepenbrink, 1989; Zazzo et al., 2004; Tütken et al., 2008; Gadd, 2010; Kohn and Moses, 2013). Microbial oxidation or reduction of biomolecular ions can also stimulate molecular conversions and condensations (Gadd, 2010). For these reasons, microbial attack is traditionally regarded as invariably detrimental to fossilization. However, recent, counterintuitive evidence that microbially-induced precipitation can enhance tissue stabilization through rapid permineralization (Daniel and Chin, 2010) suggests that much is still to be discerned 23 about fossilization processes, especially regarding molecular preservation. It may even be possible that microbially-enhanced rapid recrystallization could entrap endogenous molecules before they are consumed or degraded (Hedges, 2002).Further, autolithification of bacteria within external vascular canals, or “microbial masonry,” may limit elemental alteration of biominerals by hindering percolation of groundwater through the tissue (Peterson et al., 2010; see Section 1.11 for further discussion). 1.6 Favorable molecular attributes It has taken decades to reach a consensus on structural attributes that increase preservation potential of a biomolecule. Many of these conclusions derive from studies of collagen I, a bias resulting from its abundance in vertebrate bone and a focus by many researchers on the fossilization of bone. High abundance of collagen I in bone is presumably a key factor to why this particular protein has been identified in fossils; if more of a biomolecule is originally present, preservation potential should be accordingly higher (Ambler and Daniel, 1991). Unlike osteocalcin, osteonectin, or sialoproteins, collagen I is not acidic; this makes it comparatively less soluble in water (Grupe, 1995; Briggs, 1999). Moreover, San Antonio et al. (2011) found by sequencing of fossil extracts that few acidic residues of collagen are preserved, suggesting that acidic amino acids are more vulnerable to early diagenetic proteolysis. Close association with a mineral matrix also provides protective benefits for collagen I and other biomolecules, as discussed above in Section 1.3.3 (Schweitzer et al., 2008; San Antonio et al., 2011; Schweitzer, 2011). A composition comprising a large 24 percentage (~60%) of the most thermostable amino acids (alanine, glycine, and proline) also contributes to the persistence of collagen through time (Wang et al., 2012). The tightly wound and multi-level structure of collagen I results in high stability and multiple impediments to degradation (Perumal et al., 2008; San Antonio et al., 2011; Zylberberg and Laurin, 2011; Wang et al., 2012). Collagen is virtually insoluble in water (Schweitzer et al., 1997a, 2008; Collins et al., 2002; Orgel et al., 2006) and highly resistant to racemization (Van Duin and Collins, 1998) because of its tight helical polymerization with abundant inter-molecular and inter-microfibrillar cross-links and hydrogen bonds. Parallel alignment of monomers 1–5 leaves exterior monomers 1 and 5 more vulnerable but protects interior monomers 2–4 (for example, portions of monomer 5 would have to be proteolyzed before monomer 4 could be accessed; Perumal et al., 2008). Moreover, close, parallel, quasi-hexagonal packing of microfibrils within fibers protects those portions in the middle of the packing arrangement (Orgel et al., 2006). San Antonio et al. (2011) found that there is a definitive, nonrandom pattern to preservation of collagen I. Mapping non-avian dinosaur collagen peptides onto molecular models of collagen I (cf. Sweeney et al., 2008) revealed that the structurally and functionally most significant sequences were identified from fossil extracts, whereas less crucial sequences were lost. In particular, critical amino acid sequences involved in fibril remodeling during life (representing portions of the cell interaction domain; Sweeney et al., 2008) were preferentially preserved over other portions of the collagen I molecule. Eleven peptide sequences mapped to seven regions of the molecule (Figure 1.8): five of the 11 mapped to hydrophobic regions; three mapped to the Integrin binding site (a location where important ligand signaling molecules attach during life); and one mapped 25 to the MMP1 binding site (a location important in cleaving of the molecule during fibril remodeling). This remarkable correspondence, between functional motifs in structure of the molecule and preservation, suggests that biological function is a potentially underappreciated factor. From these results, San Antonio et al. (2011) suggested that more relatively interior, nonpolar, and hydrophobic residues will be more likely to survive while hydrophilic and charged residues have low preservation potential. Hydrophobicity limits potential for hydrolysis (Briggs et al., 2000; Schweitzer, 2004, 2011; San Antonio et al., 2011). Nonpolar functional groups are presumably less prone to solubilization or microbial attack (San Antonio et al., 2011). Aromaticity may also incur stability over geologic timescales (e.g., porphyrins; Kolesnikov and Egorov, 1977), though aromatic amino acids (e.g., tryptophan, tyrosine) are more vulnerable to radiation and oxidation (Ambler and Daniel, 1991). Hydroxyamino acids (e.g., threonine, serine, hydroxyproline) have been found to be more susceptible to hydrolysis (Ambler and Daniel, 1991) than are hydrophobic acids (e.g., valine and leucine; Bada et al., 1999). Intriguingly, McNamara et al. (2009) note that initial loss of labile amino acids leads to an increased proportion of hydroxyproline within collagen. This is significant because it causes collagen fibrils to gain an increasingly negative charge and therefore heightened potential for electrostatic adsorption of metal cations. Electrostatic adsorption could then facilitate mineralization (McNamara et al., 2009). Hence, counterintuitively, partial degradation may increase the preservation potential of remaining collagen. To summarize, researchers analyzing collagen I in fossils have suggested that low solubility, nonpolarity, hydrophobicity, lack of acidity, abundant intermolecular crosslinking, complex three-dimensional structure, association with a mineral matrix, and 26 important biological function are key factors aiding its preservation. These traits might serve as a guide to identifying other biomolecules amenable to persisting through geologic time. Indeed, numerous authors agree that biomolecules comprising structural tissues should possess the greatest preservation potential due to their tight and complex molecular packing and abundance of cross-links (Eglinton and Logan, 1991; Briggs et al., 2000; Collins and Gernaey, 2001; Schweitzer et al., 2008, 2013; Zylberberg and Laurin, 2011). Study of feather melanins confirms that cross-linking increases durability of tissues (Zhang et al., 2010), and cross-links can also occlude reactive sites (Butterfield, 1990). Although charge might be viewed as detrimental because it allows for electrostatic removal, negatively charged DNA has been shown to adsorb to sand grains and become inert to DNAse digestion (Romanowski et al., 1991). Polymers comprised of a diverse set of monomers (e.g., melanin) or with diverse link types (e.g., lignin) may require many different enzymes or microbial species to break them down. Therefore, such macromolecules likely have high preservation potential (Butterfield, 1990). Additional attributes contributing to long-term stability of biomolecules include: 1) the inclusion of hydrogen bonds (Eglinton and Logan, 1991; Van Duin and Collins, 1998); 2) full saturation of molecular structure (e.g. sporopollenin; Butterfield, 1990; Chin et al., 2003); 3) a polyaromatic framework (e.g. lignin; Butterfield, 1990); 4) complex third-order structures (molecular folding patterns; Eglinton and Logan, 1991), and; 5) sclerotization/biomineralization (Butterfield, 1990; Briggs, 1999; Zhu et al., 2005). Apart from molecular attributes, the porosities and densities of biominerals and the thicknesses of tissues are thought to influence the preservation potential of biological 27 tissues and their constituent biomolecules. In general, dense, low-porosity biominerals (Goodwin et al., 2007) and thick tissues (Briggs, 1999) are more recalcitrant. 1.7 Relative survival of biomolecules Lipids have the highest preservation potential, followed by structural carbohydrates, then proteins, and lastly nucleic acids (Briggs et al., 2000). Original molecular remnants are commonly preserved in the fossil record, albeit in degraded form. 1.7.1 DNA DNA may be the most informative biomolecule, but unfortunately it is highly vulnerable to hydrolysis, oxidation, and photooxidation (Austin et al., 1997; Briggs, 1999; Hofreiter et al., 2001; Poinar and Pӓӓbo, 2001; Schweitzer, 2003, 2011). Thus, it is thought that one can expect to encounter traces of original DNA only in specimens also yielding traces of other biomolecules (Poinar and Pӓӓbo, 2001). Furthermore, DNA analyses require polymerase chain reaction (PCR) amplification to isolate enough material for characterization. If contaminant DNA is present in the sample, be it from microbial or human or other origin, it will also be amplified, complicating sequencing analyses (Austin et al., 1997; Schweitzer, 2003, 2004). Also, high abundance of cytosine and tyrosine can facilitate oxidative modification of residues to hydantoins that block DNA polymerases and thus hamper PCR (Hofreiter et al., 2001). Degradation of nucleic acids releases phosphate that may assist permineralization or phosphatization of tissues by authigenic mineralization (Martill, 1988). DNA has a slightly negative overall charge 28 and therefore an affinity for absorption to hydroxyapatite crystals (Collins et al., 2002; Schweitzer, 2004). This property has been shown to stabilize DNA against thermal decay (Allentoft et al., 2012). Thermostability is also likely increased by greater structural complexity as circular-structured mitochondrial DNA degrades at less than half the rate of straight-stranded nuclear DNA (Allentoft et al., 2012). Cold conditions have thus far yielded the oldest supported recoveries of endogenous eukaryotic DNA, with the oldest being from ~700 Ka ice cores (Willerslev et al., 2007) and permafrost (Orlando et al., 2013). 1.7.2 Lipids Many lipids are hydrophobic and aliphatic (fully saturated and therefore nearly insoluble), and thus lipids are the most commonly preserved type of biomolecule in the fossil record (e.g., suberans, resin polyditerpenoids, etc.; Eglinton and Logan, 1991; Briggs et al., 2000; De Leeuw et al., 1991). Individual saturated fatty acids enjoy similarly high preservation potential (Chin et al., 2003) despite being more readily metabolized by microbes than hydrocarbons (Eglinton and Logan, 1991). Longer lipids (>20 carbons) are expected to have relatively greater preservation potential than shorter lipids because they are less soluble and therefore less easily exploited by microbes (Eglinton and Logan, 1991). For example, through Py-GCMS of Oligocene leaves, Briggs (1999) identified that the aliphatic lipid cutan is encountered in greater concentrations and in a less degraded form than short carbon chain cutin. Lipids are highly conserved across taxa, generally yielding limited physiologic or phylogenetic information (Schweitzer, 2004). Furthermore, lipids can easily lose side-chain functional groups to become 29 degraded hydrocarbons (Farrimond and Eglinton, 1990; Briggs, 1999). When this occurs, the resultant product may retain structural specificity to its parent molecule. For example, 5α(H)-cholestane constitutes the degraded hydrocarbon form of cholesterol (Farrimond and Eglinton, 1990). These degraded compounds are therefore used as biomarkers. Lipid biomarkers are dominant components of kerogen (biomolecular debris including breakdown products and condensation aggregates; Farrimond and Eglinton, 1990; Eglinton and Logan, 1991). Perhaps the greatest utilities of fossil lipids are: 1) as an initial test of biomolecular preservation, and; 2) for the detection of the earliest life forms on Earth, or beyond (Eigenbrode, 2008). As an example, preservation of DNA would be unexpected if biomolecules with presumably greater preservation potential, such as lipids, were not also encountered in the same specimen (Poinar and Pӓӓbo, 2001). 1.7.3 Carbohydrates Mono- and polysaccharide carbohydrates are generally water soluble and comprised of weak bonds (Schweitzer, 2004). Polysaccharides have higher preservation potential because they are more often insoluble (Eglinton and Logan, 1991; Briggs, 1999). In particular, complex structural polysaccharides (e.g., insect chitins and plant lignins), cellulose, algaenins, and sporellins are especially insoluble because they contain abundant cross-links (Briggs, 1999; Schweitzer, 2004; Bierstedt et al., 1998; Stankiewicz et al., 1998). However, they remain weaker in structural form than lipids (e.g. cellulose is structurally weaker than the plant cuticle lipids cutan and cutin; Dunn et al., 1997). Polymers may experience preferential preservation over monomers because they must first be broken down into monomers to be utilized by microbes (Butterfield, 1990). 30 Biological condensation between structural polysaccharides and proteins or between multiple polysaccharides (to form macromolecular complexes, such as cellulose and lignin in the lignocellulose of fruit and seed walls) greatly increases the preservation potential of both molecules (Butterfield, 1990; Briggs, 1999). As an example, the extracellular matrix glycosaminoglycan (“mucopolysaccharide”) carbohydrates hyaluronan and chondroitan sulphate have been identified from extracts of a Cretaceous dinosaur (Embery et al., 2003). These compounds may owe their resilience to the ability of associated extracellular matrix sialoproteins to induce mineralization (Embery et al., 2003). Certain functional groups can be used to identify remains unique to particular polysaccharides (Boyce et al., 2002), such as phenols likely deriving from lignins (Gupta et al., 2007). The oldest identified traces of chitin come from the Oligocene Enspel Lagerstӓtte of Germany (Stankiewicz et al., 1998). Allison (1988) and Stankiewicz et al. (1998) demonstrated that this polysaccharide decays more quickly in saltwater than freshwater. 1.7.4 Proteins Proteins have received special attention in molecular paleontological studies due to their universal high abundance in organisms and utility in phylogenetic, physiological, and ecological analyses (Schweitzer, 2003). Among vertebrate proteins, collagen I has received the most attention. This is due to its incorporation into bone, its sheer abundance, and its inferred high preservation potential as reviewed above (Section 1.5). Many non-collagenous proteins (NCPs), despite their relatively minor abundance (e.g. < 3% of bone tissue by dry weight; Schoeninger et al., 1989), have been identified in 31 ancient vertebrate fossils. These include osteocalcin, keratin, ovalbumin, albumin, alpha2-HS-glycoprotein (α2HSG), immunoglobulin G, elastin, laminin, melanin, cystatin, hemoglobin, histones, phosphoendopeptidase (PHEX), actin, and tubulin. Osteocalcin is the most abundant NCP in bone (~10–20% of NCPs; Collins et al., 2002; Smith et al., 2005). It bonds strongly to hydroxyapatite due to its abundance of acidic and negatively charged aspartic and carboxyglutamine amino acids (Eglinton and Logan, 1991; Child, 1995; Smith et al., 2005). Encasement within hydroxyapatite crystals provides intracrystalline proteins, like osteocalcin (see Figure 1.6), heightened protection from hydrolysis and therefore increased preservation potential (Glimcher et al., 1990; Muyzer et al., 1992; Sykes et al., 1995; Schweitzer, 2003). The middle peptide sequence of osteocalcin is often best represented in fossils due to strong binding of its γcarboxyglutamic acid (Gla)-rich central peptide to bone hydroxyapatite (Collins et al., 2000). The N-terminal epitope has been identified as less stable than the C-terminal epitope, likely due to inclusion of a hydrophobic sequence within the C-terminal peptide (Collins et al., 2000). Osteocalcin uniquely includes the amino acid Gla, so Gla can be used to identify it in fossil extracts (Muyzer et al., 1992). Immunofluorescence and high performance liquid chromatography (HPLC) have successfully been used to identify traces of osteocalcin in fossils as old as 125 Ma (Huq et al., 1985; Ulrich et al., 1987; Ajie et al., 1992; Muyzer et al., 1992; Embery et al., 2000; Schweitzer et al., 2002; Humpula et al., 2007). Further, a complete sequence for this protein has been identified from bone of a 55–60 Ka bison preserved in permafrost (Nielsen-Marsh et al., 2002). However, retention of intracrystalline proteins clearly necessitates retention of minimally altered or unaltered biomineral (Tuross et al., 1989; Collins et al., 2002). Examination of 32 archaeological bone demonstrates this relationship; osteocalcin is not detected if bone experiences extensive histologic alteration or recrystallization (Collins et al., 2000; Smith et al., 2005). Keratin is a highly ordered and durable polymer that in laboratory experiments has been demonstrated to be more resistant to microbial and physical degradation than collagen (Lingham-Soliar and Glab, 2010). This is likely due to inclusion of abundant nonpolar amino acids and cross-links in keratin (Schweitzer, 2011). Keratin has high preservation potential due to its association with bone, incorporation within durable integumentary structures, complex polymer structure, and the presence of hydrophobic residues in its central helix (Schweitzer et al., 1999a). Furthermore, β keratin is rich in cystine moieties with stabilizing disulfide cross-linking bonds (Edwards et al., 2011). Such structure also makes β keratin highly resistant to common microbial proteases (e.g., trypsin). This means that it must be degraded by hydrolysis or disulfide bridge reduction to be exploited by microbes (Schweitzer et al., 1999b). Accordingly, traces of keratin have been identified in multiple fossils of Eocene age (Edwards et al., 2011) and older (see Schweitzer [2011] for an in depth review of Mesozoic examples). Presence and endogeneity of both β- and α-keratin in ancient fossils are supported by many lines of evidence, including: 1) antibody binding in enzyme-linked immunosorbant assays (ELISAs) and immunohistochemical assays (Schweitzer et al., 1999a, 1999b); 2) absorption of keratin-unique amide I–III bands in Fourier transform infrared spectroscopy (FTIR; e.g. Manning et al., 2009; Edwards et al., 2011), and; 3) mapping of amide compounds to fossil skin via attenuated total reflection (ATR)-FTIR (Edwards et al., 2011). 33 Melanins are also thought to have high preservation potential due to their large, heavily cross-linked, and highly insoluble twisted-pleated-sheet structure (Schweitzer, 2011; Carney et al., 2012; Glass et al., 2012; Moyer et al., 2014). Melanic functional groups (e.g., carboxylic acid and ketone groups) have been localized to fossil cephalopod ink (Glass et al., 2012, 2013), putative melanosomes in fossil fish eyes (Lindgren et al., 2012), and select fossil feathers (Barden et al., 2011) via pyrolysis gas chromatographymass spectrometry (PyGCMS), x-ray photoelectron spectroscopy (XPS), and FTIR. Alkaline hydrogen peroxide oxidation is perhaps the most reliable method developed to date to identify melanin in fossils (Glass et al., 2012). In this assay, eumelanin is broken down into characteristic markers that can signal its presence in a sample (its monomeric precursors 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid; Glass et al., 2012). Comparisons of fossil specimens that have and have not experienced thermal maturation demonstrate that eumelanin remains stable until the onset of the so- called “oil window” (≥ 435°C), at which point it begins to decay into aliphatic compounds (Glass et al., 2013). The use of high resolution chemical techniques is key to resolving ongoing debates about the identity of putative melanosomes in fossils (e.g., Vinther et al., 2008, 2010; Clarke et al., 2010; Li et al., 2010, 2012, 2014; Zhang et al., 2010; Carney et al., 2012; Lindgren et al., 2012; McNamara et al., 2013; Moyer et al., 2014; Barden et al., 2015). Wogelius et al. (2011, p. 2) propose that metal zoning patterns, or “melaninchelate derived control on trace metal distribution,” may be retained in such structures as some of the chelated ions (e.g. Co2+, Cu2+) are non-biodegradable biocides. In two recent studies, Barden et al. (2015) and Wogelius et al. (2011) identified elevated concentrations 34 of organically bound melanin-chelate metals (Cu2+, Zn2+) within purported melanosomes but not within the surrounding matrix. Though this suggests an organic nature to the structures, co-localization of elemental chemistry to such structures does not alone rule out diagenetic explanations. For instance, it is also possible that bacteria could absorb these metals from solution during autolithification. High-resolution chemical assays, such as PyGCMS, alkaline hydrogen peroxide oxidation, and time of flight-secondary ion mass spectrometry (TOF-SIMS), afford more effective means of discerning the identities of these structures because one can directly test for the presence of organic compounds unique to bacteria. To date, however, the utility of PyGCMS and FTIR have been hampered by a dearth of comparative data derived from modern bacteria (Barden et al., 2015). Traces of many other proteins have also been identified in archaeological specimens and fossils from the Quaternary, including the serum proteins albumin (Prager et al., 1980; Tuross, 1989; Montgelard, 1992; Collins et al., 2002; Wadsworth and Buckley, 2014), α2HSG (Wadsworth and Buckley, 2014), and immunoglobulin G (Torres et al., 2002), the shell matrix protein dermatopontin (Sarashina et al., 2008), and the blood protein hemoglobin (Collins et al., 2002; Schweitzer et al., 2002). Hemoglobin is thought to have moderate preservation potential because it is bacteriostatic (i.e., it inhibits bacterial growth or reproduction) (Parish et al., 2001). This property may account for discovery of traces of hemoglobin from an Eocene blood-engorged mosquito (Greenwalt et al., 2013) and Cretaceous dinosaur bone (Schweitzer et al., 1997b). Bulk extractions from Cretaceous dinosaur bones have also yielded traces of the protease inhibitor cystatin (Embery et al., 2003), and demineralization of Cretaceous dinosaur cortical bone has 35 isolated vessels yielding traces of the vascular-lining proteins elastin (Schweitzer et al., 2009, 2014a) and laminin (Schweitzer et al., 2009) and osteocytes presenting antibody binding against tubulin, PHEX, histones (Schweitzer et al., 2013), and actin (Schweitzer et al., 2013, 2014a). The storage protein ovalbumin has also been identified in Cretaceous sauropod eggshells (Schweitzer et al., 2005a). Biomolecules that bind to collagen I (e.g., collagen V, fibronectin; Sweeney et al., 2008) or interact with it (e.g., lumican, biglycan, chondroadherin; Wadsworth and Buckley, 2014) may also possess heightened preservation potential. Non-mineralized collagen in dermal layers is an example of a biomolecule with low preservation potential as it lacks association with a mineral matrix, has few cross-links, retains intramolecular water, and has numerous hydrophilic residues (Schweitzer, 2011). 1.8 Analytical methods Numerous techniques have been used to study fossil soft tissues and many also support the endogeneity of discoveries. Criteria for acceptance of endogeneity of molecular discoveries were described in detail by Schweitzer (2011). A comprehensive review of analytical methods potentially useful in molecular paleontology was provided by Schweitzer et al. (2008). In general, molecular assays are performed to determine two things: the presence of non-mineral organic matter present in a specimen, and, if it is present, what is the nature of that material. Discerning whether non-mineral organics remain in a fossil generally requires 36 removal of the mineral portion of specimens. However, XRD of powdered or cut samples should always be employed first to clarify the overall mineralogical composition of specimens for study (e.g., Manning et al., 2009). The Rietveld method (Rietveld, 1969) can be applied to XRD data to allow quantitative approximation of the abundance of constituent minerals (e.g., Piga et al., 2011). Histologic examination should also be performed (when possible) as a preliminary qualitative survey of the extent of micromorphologic alteration that a specimen has endured (Turner-Walker and Jans, 2008). For example, when studying bone, significant development of bacterial or fungal microscopical focal destructions would indicate significant degradation by microbes (Jans et al., 2004; Jans, 2008), which would imply poor biomolecular recovery potential. Electron diffraction pattern analysis can also be employed when studying bone to test for survival of c-axis-aligned hydroxyapatite crystals (e.g. Schweitzer et al., 1997a). Soft tissue remains can be isolated from fossil bone by demineralization with a weak acid (e.g., ethylenediaminetetraacetic acid, EDTA) or a dilute strong acid (e.g., hydrochloric acid, HCl) for a period of days to weeks. Cleland et al. (2012) identified that EDTA, the most commonly used demineralizing agent, may actually not be the best choice for bone. Instead, they note that dilute HCl produces less smearing of extracts upon electrophoresis. The three-dimensional structure of fossil demineralization products may be visualized by many techniques depending on the end goal. Commonly employed techniques include: 1) transmitted light microscopy (e.g., Schweitzer et al., 2005b, 2007b); 2) scanning electron microscopy (SEM; e.g., Pawlicki et al., 1966; Cadena and Schweitzer, 2012; Armitage and Anderson, 2013); 3) environmental SEM (ESEM; e.g., Manning et al., 2009); 4) field-emission SEM (FESEM; e.g., Schweitzer et al., 2009); 5) 37 transmission electron microscopy (TEM; e.g., Schweitzer et al., 2007a), and; 6) atomic force microscopy (AFM; e.g., Avci et al., 2005). Intriguing new assays for characterizing fossil soft tissues include micro-x-ray fluorescence (μXRF), electron energy loss spectroscopy, micro-x-ray absorption near edge structure (μXANES), and micro-XRD (μXRD). These techniques make it now possible to create submicron-scale elemental maps of isolated tissues, determine the coordination chemistry of their comprising elements, and discern the mineralogy of microcrystalline coatings or structures on or within fossil tissues (Schweitzer et al., 2014a). Structural and elemental characterization of samples can be discerned by numerous techniques. The density layout of extracts can be determined by addition of back-scattered electron analyses to SEM (e.g., Manning et al., 2009). EDX or XRF (e.g., Pawlicki and Nowogrodzka-Zagorska, 1998; Peterson et al., 2010) can also be performed in tandem with SEM to determine elemental composition at chosen points or to generate elemental maps (e.g. Orr et al., 1998). Electron or infrared microprobes can also be used to identify elemental compositions at selected points (e.g. Manning et al., 2009). Chemical staining with dyes (e.g., toluidine blue) is a valuable technique allowing one to demonstrate similar absorption or lack thereof by fossil and modern extracts (Pawlicki, 1995; Lindgren et al., 2011; Zylberberg and Laurin, 2011; Schweitzer et al., 2013). Identification of the molecular character of fossil organics often requires careful chemical extraction followed by high resolution spectroscopy, mass spectrometry, or immunoassays (Schweitzer et al., 2008). Biomolecular remains can effectively be extracted and purified by incubation in HCl, guanidine-HCl, EDTA, or ammonium bicarbonate (Cleland et al., 2012). Polyacrylamide gel electrophoresis with silver- and/or 38 dye-staining is an effective technique to approximate the molecular weight of extracts and to concentrate them for further analyses (Fogel and Tuross, 1999; Schweitzer et al., 2009). Amino acid analysis, though not a definitive identification tool (as discussed above in Section 1.3.4), allows discrimination of the relative abundances of amino acids in an extract (e.g., Lindgren et al., 2011). ELISA and immunoblot provide excellent specificity of identification as they exploit antigen-antibody interactions (Curry, 1987; Schweitzer et al., 2008). In these techniques, antibody binding signifies the presence of molecular material with epitopes of the same structure as those for which the antibodies were created (De Jong et al., 1974; Westbroek et al., 1979; Endo et al., 1995; Schweitzer et al., 2009, 2013). Conversely, fossil extracts can be used as antigens to produce antibodies that, if checked for cross-reactivity with extracts from modern taxa, can provide a rough approximation of phylogenetic affiliation of a fossil (e.g., Montgelard, 1992; Schweitzer et al., 2002). Bond types and their relative abundances in a sample may be characterized by performing FTIR (e.g., Manning et al., 2009) or HPLC (e.g., Gurley et al., 1991). Further, the suite of molecular functional groups comprising a sample can be elucidated by performing Py-GCMS (e.g., Gupta et al., 2008) or TOF- SIMS (e.g., Schweitzer et al., 2007a). Many forms of mass spectrometry can be performed to gather sequence data, the ultimate target for many molecular applications. However, traditional Edman sequencing is unsuccessful for fossils because: 1) it requires concentrations of protein normally greater than those garnered from fossils; 2) it can produce misleading chimeric sequences by PCR jumping (in which the polymerase enzyme jumps from degraded template to degraded template, producing chimeric sequences; DeSalle et al., 1993), and; 3) 39 polymerase enzymes used in this technique can be blocked by lesions (Nielsen-Marsh et al., 2002; Humpula et al., 2007) or inhibited by breakdown products such as fulvic acids (Tuross, 1994). Because chemical techniques are often of higher sensitivity and specificity than sequencing assays, specimens may present positive results for molecular retention yet yield no sequence data (Schweitzer, 2011). Useful techniques to improve sequence gains include affinity purification or immunoprecipitation during sample preparation, use of multiple fragmentation methods (e.g., collision-induced dissociation, CID), and use of de novo sequencing algorithms (Schweitzer et al., 2014b). Interpretations of mass spectra derived from fossils must always consider inherent constraints. First, many preserved molecular fragments may remain unrecognized as current databases do not include sequences from many extant organisms (Schweitzer et al., 2013, 2014b). Second, sequences from modern reference organisms may be derived beyond recognition compared to their ancient counterparts (Humpula et al., 2007). Third, we do not yet know how to determine likely types of modifications when searching for database matches, nor what additional types of decay alterations may be possible (e.g., still-unrecognized molecular conversions). Fourth, preservational microenvironments may lead to concentration differences between samples (i.e., samples from one extract may yield results while those from a second replication may not; Schweitzer et al., 2009). Fifth, preservation processes may cause molecules to fragment in atypical manners or inhibit digestion or ionization for mass spectrometric analyses (Schweitzer et al., 2014b). Finally, contamination will invariably complicate interpretation of spectra (Bern et al., 2009). 40 Spatial localization of molecular components is a feature that can aid in identification and possibly provide independent support of endogeneity (Edwards et al., 2011; Wogelius et al., 2011). Synchrotron rapid scanning (SRS)-XRF can produce detailed elemental maps across large flat specimens or thin sections (Janssens et al., 1999; Edwards et al., 2011, 2013; Bergmann et al., 2010, 2012; Field et al., 2013; Manning et al., 2013). In combination with XANES or extended x-ray absorption fine structure, it is possible to identify and map the coordination chemistry (valence state) of sulfur, copper and other cations to determine if they are bound in inorganic minerals or in organometallic compounds (e.g. Bergmann et al., 2010; Edwards et al., 2011; Wogelius et al., 2011). Molecular bond types can be mapped across regions of flat specimens or thin sections to approximate probable molecular composition via infrared spectroscopy mapping (e.g., Lindgren et al., 2011), synchrotron micro-FTIR mapping (e.g., Lebon et al., 2011), or ATR-FTIR (e.g., Edwards et al., 2011). Further, performing in situ immunofluorescence allows one to localize peptide fragments presenting epitope binding with chosen antibodies (Schweitzer et al., 2007a, 2009, 2013). Recent advances in TOFSIMS now even allow mapping of mass spectra at submicron scale (Toporski et al. 2002; Lindgren et al. 2012). Now, for the first time, it is possible to spatially correlate mass spectra to pinpoint locations of fossil soft tissues. 1.9 Correlating factors Processes that play important roles in preservation of organics are generally well understood. For instance, extensive pre-burial weathering will degrade bone and limit its 41 potential for fossilization (Behrensmeyer, 1978). Numerous lithological, diagenetic, geochemical, ecological, and environmental factors are known to favor long-term preservation of tissues, including bone (Table 1.1). Though it is often presumed that fossil age is of utmost importance, Hagelberg et al. (1991) found that burial history, not age, is the overriding control on both tissue preservation and biomolecular retention. However, taphonomic and diagenetic factors specifically favoring the preservation of pliable soft tissues and biomolecules remain mostly unknown (Manning et al., 2009; Schweitzer et al., 2009). Processes traditionally viewed as essential, such as permineralization (Trueman et al., 2008b), clearly do not always occur and could potentially signify considerable alteration rather than stabilization (Schweitzer et al., 1997a). Thus far, only one agent has been identified as having a likely role in nearly every case of biomolecular preservation: iron. Iron is nearly universally discovered in association with pliable soft tissue discoveries, regardless of specimen age or depositional environment (Pawlicki, 1995; Pawlicki and Nowogrodzka-Zagorska, 1998; Schweitzer and Horner, 1999; Schweitzer et al., 2007b, 2014a; Greenwalt et al., 2013). Via μXRD and μXANES, Schweitzer et al. (2014a) found that iron is commonly present in Cretaceous dinosaur vessels as nanocrystalline goethite and/or a disordered biogenic iron oxyhydroxide (Schweitzer et al., 2014a). It remains unclear if the abundance of iron in fossil soft tissues is a function of: 1) preferential degradation and loss of more labile/volatile elements (suggested by Greenwalt et al., 2013); 2) postmortem concentration and binding around soft tissues (suggested by Schweitzer et al. 2007b, 2014a); 3) incorporation from exogenous pore fluids and sedimentary sources, or; 4) some combination of these processes. Recent 42 investigations of certain Cretaceous specimens, however, identify a lack of iron in entombing sediments, suggesting that organics pertaining to the organism itself may, at least in some cases, be a more likely source (Schweitzer et al., 2014a). Regardless of its source, near-universal presence of iron strongly suggests it plays an important role in molecular preservation reactions, though it is unlikely to be the only important metal involved (Manning et al., 2009; Schweitzer et al., 2010, 2014a; Schweitzer, 2011). Iron inhibits autolytic enzymes and hence minimizes tissue decay (Ferris et al., 1988). It also may indirectly aid preservation of soft tissues by binding with oxygen to prevent oxidation (Schweitzer et al., 2014a). Moreover, iron oxidation can catalyze the production of free radicals that, in turn, initiate chain reactions of peroxidation and protein condensation that may effectively fix tissues in a manner similar to formaldehyde fixation (see Section 1.11 below) (Schweitzer et al., 2014a). Iron enrichment may initially suppress ionization for some samples when attempting mass spectrometry (Schweitzer et al., 2013) or create mineralized coatings that can prevent impregnation of histochemical dyes (Pawlicki, 1995). However, pretreatment with iron chelators, such as pyridoxal isonicotinoyl hydrazone, can effectively curtail these problems (Schweitzer et al., 2013, 2014a). Strengthening of antibody binding signals after iron chelation suggests that iron may also aid preservation by blocking active enzyme binding sites (Schweitzer et al., 2013). Numerous hypotheses on sedimentological, diagenetic, and geochemical factors contributing to molecular preservation have been proposed. Yet, most remain untested inferences. A thorough literature review yields a list of geologic, environmental, and taphonomic factors possibly correlating to molecular preservation (Table 1.2). 43 1.9.1 Geologic variables Disparate reasoning has been used to infer that both porous and nonporous sediments could favor molecular preservation. Porous sediments (e.g., sandstones) have been deemed favorable because they allow drainage of autolytic enzymes away from a carcass (Schweitzer et al., 2007a). Also, porous sediments tend to minimize fracturing of fossils due to their limited compaction potential (due to larger grain sizes that cannot compact closely without deforming; Peterson et al., 2010). This can limit infiltration of diagenetic pore fluids and microbial decomposers. The significance of this potentiality has been criticized because porous sediments also allow greater exposure to flowing groundwater, which could enhance chemical dissolution and facilitate microbial attack (Hedges, 2002). Accordingly, some suggest that nonporous and well-compacted sediments may be more favorable because their low permeability better hinders mobility of microbial decomposers and diagenetic fluids (Eglinton and Logan, 1991; Muyzer et al., 1992; Peterson et al., 2010; Herwartz et al., 2011). High compaction may also impose thermodynamic stability on biomolecules by steric hindrance/locking (Geigl, 2002). Furthermore, compaction may induce molecular condensation reactions by forced proximity (Eglinton and Logan, 1991). Early and/or rapid cementation reduces permeability in both porous and nonporous sediments (Herwartz et al., 2011). Rapid cementation is identifiable in petrographic thin section by high “minus-cement porosity,” “floating” grains within cement, and uncompressed, short grain contacts (Hubert et al., 1996). Overall, it appears that porous and nonporous sediments may each offer beneficial conditions under certain circumstances. 44 An abundance of dissolved metal cations inhibits autolytic decay of bacteria (Leduc et al., 1982). Mineralogical composition of sediments also likely plays an as-yet unidentified role in molecular preservation. For example, the presence of clays is inferred to be beneficial because grains with high surface areas and chemical reactivity may adsorb and inactivate autolytic and/or microbial enzymes (see Section 1.11 for further discussion of clays) (Butterfield, 1990; Schweitzer, 2004). Finally, deep burial has been proposed to favor molecular preservation because it may isolate a carcass beneath biologically active sediment zones (Schweitzer, 2004; Asara et al., 2007). 1.9.2 Environmental variables Environmental settings conducive to molecular preservation (other than special traps such as tar pits, e.g., Stankiewicz et al., 1998) have yet to be explored in detail. Dry settings, such as caves, eolian dunes, and entrapment in amber, offer high molecular potential owing to limited autolysis and hydrolysis (Baird and Rowley, 1990; Eglinton and Logan, 1991; Hagelberg et al., 1991; Grupe, 1995; Bada et al., 1999; Briggs et al., 2000; Collins and Gernaey, 2001; Hofreiter et al., 2001; Schweitzer, 2003; LinghamSoliar and Glab, 2010; Edwards et al., 2011). Dry conditions also facilitate desiccation, a process that stabilizes soft tissues (Poinar and Pӓӓbo, 2001; Lingham-Soliar and Glab, 2010). Cold settings are equally as promising thanks to hindrance of microbial activity (Eglinton and Logan, 1991; Hagelberg et al., 1991; Briggs et al., 2000; Collins and Gernaey, 2001; Hofreiter et al., 2001; Poinar and Pӓӓbo, 2001; Schweitzer, 2004). Furthermore, cold allows minimal disassociation of molecular structure (Perumal et al., 2008) and therefore limits racemization potential (Van Duin and Collins, 1998). For these 45 reasons, cold and dry permafrost has yielded the oldest genome yet recovered (Orlando et al., 2013). Reducing environments are also hypothesized to be favorable because of their ability to restrict oxidation through chelation of metal ions (Eglinton and Logan, 1991). Preservation of fossils within environments of similar chemistry to their composition (e.g., a bone preserved in carbonate- and phosphate-rich chalk) likely will facilitate rapid chemical equilibration with groundwater, thereby limiting degradative reactions (Williams et al., 1997; Lindgren et al., 2011). For bone, favorable alkaline conditions can be produced, even within an acidic setting, if a large accumulation of bones is present to buffer the local pH (Haynes et al., 2002). 1.9.3 Taphonomic variables Taphonomic processes that limit fossilization potential likely also control the potential for biomolecular survival. Two processes that would likely diminish molecular preservation potential are pre-burial weathering (Trueman et al., 2004; Fernandez-Jalvo et al., 2010) and long-distance transport (Eglinton and Logan, 1991). However, the relationships of most taphonomic and diagenetic variables to molecular preservation remain unresolved. The only certain correlation yet identified is that excellent morphologic and histologic preservation yields the best potential for molecular results (Eglinton and Logan, 1991; Hagelberg et al., 1991; Schweitzer et al., 1997a, 2008; Hedges, 2002; Schweitzer, 2004, 2011; Zazzo et al., 2004; Goodwin et al., 2007; TurnerWalker and Jans, 2008). Such a synergistic relationship does not always hold true, however, because chemical alteration could still have taken place (Schoeninger et al., 1989; Dutta et al., 2010) and degraded specimens may still yield positive results (Hedges 46 and Millard, 1995). Nonetheless, visually “well-preserved” specimens generally offer the greatest potential. This correlation has been logically extended as a predictive tool. Hence, some have suggested that specimens lacking permineralization or recrystallization may offer the best potential for molecular preservation because lack of these processes signifies minimal diagenetic alteration (Schweitzer et al., 1997a; Lindgren et al., 2011). Conversely, rapid permineralization and recrystallization quickly stabilize biominerals with the diagenetic environment, so some have suggested that specimens presenting evidence for these swift alterations could still yield molecular results (Schoeninger et al., 1989; Grupe, 1995; Hedges and Millard, 1995; Elorza et al., 1999; Goodwin et al., 2007; Trueman et al., 2008a; Kocsis et al., 2010). Additionally, it may be possible that as bioapatite recrystallizes, it could potentially enhance protection of intracrystalline biomolecules (e.g., osteocalcin; Sykes et al., 1995) and effectively encapsulate peptide fragments of intercrystalline proteins such as collagen (Tütken and Vennemann, 2011). Early and rapid authigenic mineralization or mineral precipitation over tissues may also facilitate molecular stabilization by encasing organics before they can be substantially degraded (Schweitzer, 2003, 2004; Schweitzer et al., 2007b; Peterson et al., 2010; Edwards et al., 2011). Rapid, single-event incorporation of REEs into biominerals is suggestive of the least possible interactions with diagenetic pore fluids (Trueman et al., 2008a). As a result, specimens presenting a pattern of REE concentrations reflective of this manner of incorporation likely offer the best molecular potential (Trueman et al., 2008a). Lastly, because fracturing facilitates invasion by microbial decomposers and pore fluids, Peterson et al. (2010) suggested that minimal fracturing is essential for molecular 47 survival. To summarize, the only factors currently known to be useful screening tools to assess molecular potential are excellent morphologic and histologic preservation, minimal preburial weathering and transport, and preservation in inferred cold and/or dry environments (Table 1.2). However, exceptions to these correlations exist. For example, specimens examined by Schoeninger et al. (1989), Briggs et al. (2000), and Goodwin et al. (2007) retain excellent morphologic and histologic integrity but also present substantial chemical alteration. Further investigation into taphonomic correlates to molecular preservation is clearly needed, as many have already observed (Tuross et al., 1989; Briggs, 1999; Schweitzer, 2004; Trueman et al., 2004; Schweitzer et al., 2007a; Turner-Walker and Jans, 2008). In essence, what is needed is a molecular extension of the taphonomic modes of Behrensmeyer et al. (1992). Systematic study of specimens from different depositional environments is needed to identify favorable environmental conditions and flesh out the suite of variables influencing molecular preservation (Turner-Walker and Jans, 2008). Only then can generalizations be drawn as to the most promising settings for long-term molecular preservation. 1.10 Connections between bone biomolecule preservation and REE geochemistry Retention of original geochemical signals is expected to be linked with molecular preservation because preservation of endogenous signals, be they geochemical or biomolecular, necessitates minimal alteration of original tissue. Diagenesis affects both 48 inorganic and organic components of tissues, and it is plausible that alterations to each component may be correlated to one another. One such diagenetic process important to those studying bone is uptake of REEs. Correlation of REE analyses with molecular results could clarify diagenetic regimes favoring preservation of biomolecules (Trueman et al., 2008a). This tentatively hypothesized association does not rely on an assumption of solely early diagenetic incorporation of REEs. This is because if biomolecular material remains, then the history of the specimen certainly was adequately conducive for such fragile material to persist, no matter the extent of alteration of bone by REE uptake. Preliminary investigations suggest relatively unaltered, early- diagenetic REE signals may be encountered in enamel (because of its larger crystal sizes and lower porosity; Herwartz et al., 2011; Kohn and Moses, 2013) and bones displaying rapid “single diffusion” incorporation mechanics (Kocsis et al., 2010). Spatial heterogeneity of REE concentrations within a specimen is important because it provides a detailed record of diagenetic history (Trueman et al., 2008a; Koenig et al., 2009; Suarez et al., 2010; Herwartz et al., 2013b). REE signatures can vary both with depth into bones (Trueman et al., 2008a; Koenig et al., 2009) and around their circumference (Suarez et al., 2010). Importantly, variation with depth into a specimen (from the outermost cortex inward, e.g., Figure 1.7) reflects differences in extent of pore water interactions, meaning it may be an indirect indicator of rate of recrystallization (Trueman et al., 2008a, 2011; Koenig et al., 2009). When abundant REEs are present in the outermost cortex (or concentrated around Haversian canals) but few REEs are incorporated into interior bone (or laminae distant to Haversian canals), it signifies that a 49 bone has had relatively minor and brief interaction with diagenetic pore fluids (Trueman et al., 2008a). Because it is interaction with pore fluids that causes recrystallization, it follows that brief fluid interactions also suggest rapid hydroxyapatite recrystallization (Trueman et al., 2008a; Koenig et al., 2009). Such a potential connection between REE patterns and recrystallization rate is important because rapid recrystallization would mean rapid equilibration of a bone with its diagenetic environment (Trueman et al., 2008a). Necessity of quick equilibration for molecular preservation is considered crucial because extensive interaction with diagenetic pore fluids would enhance potential for degradation of biomolecules (Tuross et al., 1989; Trueman et al., 2008a). Minimal diagenetic alteration is therefore concluded to be vital for preservation of both bone apatite and biomolecules. Though the relationship between REE profiles and biomolecular retention is unlikely to be as simple as discussed above (and indeed might vary considerably on a specimen by specimen basis), this has yet to be discerned. When taken as a whole, available evidence suggests that REE profiles may be powerfully predictive tools in combination with additional taphonomic information about the history of fossils (e.g., weathering, abrasion, encasing sediment lithology; Trueman, 2013). Regarding future work, Trueman (2013) suggested that models fit to REE-depth profiles may be used as taphonomic characters to compare and contrast diagenetic histories of fossils from separate localities. I agree that this is a promising topic for exploration and add that this exercise would advance development of molecular preservation proxies. 1.11 Connections between bone biomolecule preservation and stable isotopes 50 Stable isotope ratios of 18O/16O and 13C/12C in fossil bone reflect the preferred diet and habitat through the lifetime of an animal (Koch, 1998; Fricke, 2007). Preburial weathering and recrystallization may, in some cases, only slightly impact the variance of bone collagen or hydroxyapatite isotope ratios (Weiner et al., 1976; Koch et al., 2000). In contrast, microbial attack can lead to substantially diminished oxygen isotope ratios (Fernandez-Jalvo et al., 2010) due either to exogenous contamination, biased protein loss, or isotopic exchange (Koch et al., 2000). Also, extensive diagenetic permineralization may bias bulk sample readings to reflect those of diagenetic fluids instead of those pertaining to the bioapatite (Kohn et al., 1999; Tütken et al., 2008). Such diagenetic overprinting is especially problematic in highly saline or extreme pH environments (Tütken et al., 2008). Consequently, limited diagenetic alteration is considered essential in stable isotope analyses (Tuross et al., 1988; Stanton Thomas and Carlson, 2004), just as it is in paleomolecular analyses. Multiple reports support retention of original, biogenic, stable-isotope ratios in minimally altered fossil material (Koch, 1998; Kohn et al., 1999; Stanton Thomas and Carlson, 2004; Fricke et al., 2008; Tütken et al., 2008). Enamel is the least altered biomineralized tissue because it contains few organics and has a dense crystalline structure (Stanton Thomas and Carlson, 2004; Zazzo et al., 2004).The minimal organics of enamel offer little nutritional value to microbes, and its limited vascularity limits permeation of diagenetic fluids (Stanton Thomas and Carlson, 2004). The dense crystallinity and durability of enamel confers it high preservation potential (Martin, 1999). Experimental studies show that when bone and/or dentine are also present, 51 microbial decomposers will not attack enamel (perhaps because of its comparatively nominal organics; Zazzo et al., 2004). Common minimal alteration of enamel through diagenesis suggests that it may also experience minimal long-term REE incorporation, thereby retaining early diagenetic REE signals (though this has yet to be tested; Kocsis et al., 2010). These considerations imply that biomolecules will have a higher chance of preservation in tooth enamel. However, the minimal original concentrations of biomolecules in enamel may preclude molecular study at this time. The same concepts discussed above for enamel also apply to bone. More densely crystalline regions of bone likely enjoy similar prohibition of microbial attack and should be more likely to retain original biomolecules and isotopic signatures. Although cancellous bone may be more rapidly “fossilized” in experiments, it also experiences more extensive microbial interactions and diagenetic recrystallization (Daniel and Chin, 2010). The impacts of this on geochemical signal and molecular retention (though yet to be determined) are likely not favorable. Compact bone of the cortex is more densely crystalline (Francillon-Vieillot et al., 1990) and therefore should be less likely to undergo pervasive microbial attack. Hence, collagen, NCPs, and DNA should be more relatively protected by bioapatite in the cortex (Hagelberg et al., 1991). Additionally, as discussed in Section 1.3.3, the presence of collagen protects bioapatite crystal surfaces and therefore can prevent original bone crystals from becoming chemically reactive (Collins et al., 2002). Thus, both bioapatite and bone proteins may enjoy heightened protection within cortical tissue, concurrently favoring molecular and geochemical preservation. This has been hypothesized previously (Hedges, 2002; Zazzo et al., 2004; Goodwin et al., 2007). 52 1.12 Hypothesized molecular preservation mechanisms Two molecular reactions have been proposed to account for preservation of ancient biomolecules: a natural fixation process (Schweitzer et al., 2007b, 2014a) and ternary complexation (Edwards et al., 2011). Schweitzer et al. (2007b, 2014a) hypothesized that iron-catalyzed free radical reactions may mediate tissue fixation, creating stability that may last through geologic time. During life, iron is bound into biominerals produced by the protein ferritin because it works as an antioxidant (Schweitzer et al., 2014a and references therein). Any errantly released iron ions can induce DNA-amino acid cross-linking (e.g., covalent tyrosinethymine cross-links; Altman et al., 1995). Schweitzer et al. (2007b, 2014a) posited that cessation of ferritin iron binding by death allows soluble Fe(II) ions freed by autolysis from decaying iron-containing biomolecules (e.g., hemoglobin and myoglobin), in the presence of oxygen, to induce Fenton reactions that generate unstable free oxy radicals (e.g., OH•). These free radicals can directly stabilize soft tissues by inducing protein condensation reactions and peroxidation of membrane lipids (Schweitzer et al., 2014a). Free radicals can also indirectly aid molecular preservation by inhibiting microbial growth (simply by their presence) and inducing solution hypoxia through oxidation, forming insoluble Fe(III) nanoparticles. Cross-linking of protein remnants could incorporate intracellular biomolecules as well as membrane constituents; this process could thus account for antibody binding against the transmembrane protein PHEX in dinosaur osteocytes (Schweitzer et al., 2013). Generated polymers would be highly stable 53 and could plausibly protect endogenous molecular components against degradation. Schweitzer et al. (2013) added that rapid, early diagenetic recrystallization may concurrently encase condensation products to further protect them. To test this hypothesis, Schweitzer et al. (2014a) performed an actualistic experiment incubating ostrich blood vessels in red blood cell lysate (solubilized hemoglobin, simulating postmortem erythrocyte lysis) under oxic and hypoxic conditions. The treatment lead to rapid precipitation of a heme-oxygen complex that enhanced soft tissue stability and biomolecular recovery compared to control trials lacking hemoglobin incubation. These results supported the conclusion that iron catalyzes chemical reactions resulting in natural fixation. Edwards et al. (2011) suggested a similar mechanism to explain the preservation of amide compounds in fossil reptile skin residues: ternary complexation of dissolved metal cations, protein-derived compounds, and silicate crystal surfaces. As in the mechanism proposed by Schweitzer et al. (2007b, 2014a), polymerization stabilizes the molecular material. However, Edwards et al. (2011) suggested that binding also occurs with crystal surfaces and free metal cations in solution (not just between molecular components). These authors favored the importance of metal cation chelation and mineral cation exchange over molecular cross-linking. They cited a favorable mixture of metal species, minerals, and molecular functional groups in their specimen as evidence suggestive of ternary complexation. Three macro-scale diagenetic processes have also been hypothesized to stabilize or protect biomolecules during early diagenesis: 1) inactivation of microbial enzymes by clays (Butterfield, 1990); 2) bacterially-mediated permineralization (Carpenter, 2005; 54 Daniel and Chin, 2010), and; 3) rapid permineralization of exterior pores by bacterial autolithification (Peterson et al., 2010). Based on studies of the Cambrian Burgess Shale, Butterfield (1990) cited clay adsorption to biomolecules as a possible stabilizing factor. Clays have slightly negative crystallite surface charges and high cation exchange capacities due to their large surface areas (Butterfield, 1990 and references therein). As Butterfield (1990) noted, biomolecules electrostatically adsorb onto, or permanently bind with, the surfaces of clays (e.g., Guimaraes et al., 2007). This can have two effects. If, for instance, a microbial protease enzyme binds to clay, then its activity is almost entirely inhibited (Butterfield, 1990 and references therein). Conversely, if an endogenous biomolecule binds to clays, then portions of it are physically shielded from degradation (Butterfield, 1990 and references therein; Guimaraes et al., 2007). Daniel and Chin (2010) induced rapid, bacterially-mediated permineralization (specifically infilling of bone porosity) that could effectively protect biomolecules from decomposing agents. For bone, minor dissolution of hydroxyapatite likely would be necessary to mobilize phosphate for recrystallization and infilling of pore space. Their experiment demonstrated that inorganic, chemically-driven mineral precipitation is an ineffective process unlikely to greatly aid preservation of bone. Rather, their experiment elucidated the counterintuitive importance of bacteria in rapidly stabilizing bone. They concluded that rapid, bacterially-mediated permineralization can fill void spaces to prevent protracted groundwater interactions and microbial attack. Peterson et al. (2010) suggested that bacterially-mediated permineralization is spatially controlled and potentially restricted by the preservation state of a bone when it 55 was buried. Their paleomolecular analyses showed that bones fractured prior to burial do not retain pliable soft tissues, but unfractured specimens do. This, they explained, likely results from unfractured bones having few points of entry for bacteria (only a few vascular canals exit to the surface of bones to allow penetration to deeper within bone). This point was corroborated by an independent, actualistic study by Fernandez-Jalvo et al. (2010), which showed that bacterial attack is greatest at the outer surface of bone and rapidly diminishes inward. Peterson et al. (2010) also found that rapid autolithification of bacteria in external pores can block deeper vascular canal entrances, thereby preventing exogenous bacteria from penetrating to the interior of bones after early diagenesis (Figure 1.8). Biomolecules in the inner cortex and cancellous matrix could thus be protected from microbial attack. They termed this process “microbial masonry” and emphasized that histologic structuring of vascular canals is a key control on postmortem microbial attack. 1.13 Next steps Molecular taphonomy is a field of key importance that is yet in its early days. This field holds promise for groundbreaking discoveries and identification of critical answers to pressing questions concerning the depth of information that can be obtained from the fossil record. Though more than 25 years have passed since early treatises of this field (e.g., Curry, 1987), an integrated, interdisciplinary approach remains necessary. Interdisciplinary taphonomic research is open to researchers from a wide range of backgrounds and is needed on many fronts. Depositional environment, and taphonomic, geochemical, and diagenetic controls 56 on molecular preservation remain topics of critical importance. Water chemistry, pH, and salinity constrain nearly all involved (biomolecule-preserving) processes, including: 1) composition and activity of the microbial decomposer flora; 2) which minerals may inorganically precipitate; 3) racemization rates, and; 4) potential elemental and isotopic exchange. However, the full range of environmental conditions and diagenetic chemistries in which molecular retention can be found remains to be ascertained. Because preservation fidelity is so variable, even within a single specimen, it is likely that numerous additional factors influencing molecular preservation are yet to be discovered (Manning et al., 2009; Schweitzer et al., 2009, 2010). Clarification of environmental and taphonomic correlates to molecular preservation represents a crucial next step in the future of molecular taphonomy. Only once these have been identified can the bounds on potential fossilization mechanisms be delineated and investigations begin into how they proceed through actualistic experimentation. Linkage between geochemical and molecular preservation is another important topic for future study. No study of molecular preservation has yet documented retention of endogenous (or early diagenetic) geochemical signatures from the same specimen. Neither has any study of REEs or stable isotopes documented endogenous molecular results. Excellent preservation of both primary geochemical signals and endogenous biomolecules could be favored by the same conditions, so this connection is ripe for evaluation. In particular, it is conceivable that geochemical assays may facilitate elucidation of molecular fossilization mechanisms and serve as screening methods prior to paleomolecular investigations (suggested by Koenig et al., 2009). 57 1.14 Conclusion Molecular taphonomy is an important field in need of continued exploration. The primary goal of molecular taphonomists will be to elucidate preservation mechanisms, but the first step will be to identify a common suite (if one truly exists) of environmental, geochemical, and diagenetic conditions correlating with molecular retention. With such knowledge in hand, characterization of fossilization pathways that can lead to this exceptional preservation mode can be pursued. Answers to the mystery of molecular preservation can advance the field of paleontology by: 1) helping predict favorable conditions for preservation of biomolecules; 2) helping better explain the completeness of the fossil record; 3) aiding in the clarification of fossilization processes, and; 4) assisting in making new discoveries, not only of new specimens and species, but of exquisitely preserved fossils retaining soft tissues. Knowledge of the biomolecular compositions of extinct taxa can provide unparalleled comprehension of their phylogenetic, anatomical, behavioral, and ecological characters. Understanding mechanisms for preservation of pliable soft tissues and endogenous biomolecules will not only account for their presence in ancient fossils, but will also enrich our perception of the organisms from which they derive. 58 Table 1.1 Lithologic, diagenetic, geochemical, ecological, and environmental factors agreed to aid preservation of bone into the fossil record. References are intended to provide examples, not an exhaustive list. Factor Explanation Rapid burial less time for decomposition Episodic sedimentation better chance of burial Alkaline soils & basic/neutral pH waters acidity dissolves and enhances hydrolysis Low energy settings less degradative processes Waterlogged sites creates anoxia High productivity environments Presence of calcite more biomass to potentially preserve can stabilize apatite Anoxia limits scavenging and microbial activity Adsorption of metal ions Phosphate-rich soils blocks off organics from further decay limits dissolution and promotes phosphatization Presence of toxic metal ions limits microbial attack Rapid permineralization stabilizes bone with encasing sediments Low organic content elicits less microbial attack, e.g. enamel Cancellous bone preserves faster? high porosity facilitates bacterial permineralization? Reference(s) Manning et al., 2009; Martin, 1999; Schweitzer, 2003, 2004; Eglinton and Logan, 1991; Seilacher, 1990; Poinar and Pӓӓbo, 2001; Allison, 1988; Zhu et al., 2005; Brett, 1995 Briggs, 2003 Retallack, 1984; Suarez et al., 2007; Tuross et al., 1989; Schweitzer, 2004; Child, 1995; Briggs, 1999; Haynes et al., 2002 Briggs et al., 1997; White et al., 1998 Hedges, 2002; Briggs et al., 2000; Hagelberg et al., 1991 Briggs, 2003; Martin, 1999 Schweitzer et al., 2007a Briggs, 2003; Martin, 1999; Tuross et al., 1989; Schweitzer, 2004; Seilacher, 1990; Brett, 1995; Huq et al., 1985 Briggs, 2003; Liebig, 2001 Child, 1995 Child, 1995; Muller et al., 2011 Trueman et al., 2008a; Daniel and Chin, 2010 Zazzo et al., 2004; Fricke et al., 2008; Kohn et al., 1999 Daniel and Chin, 2010 59 Table 1.2 Geologic, environmental, and taphonomic factors hypothesized to correlate to soft tissue and/or biomolecular preservation. References are intended to provide examples, not an exhaustive list. Factor GEOLOGIC Explanation Reference(s) Porous sediments allows drainage of decay enzymes and fluids? Schweitzer et al., 2007a Well compacted sediments limits microbial mobility and oxidation and facilitates reactions? Eglinton and Logan, 1991; Muyzer et al., 1992; Schweitzer and Horner, 1999 Mudstones better Sandstones better more compaction and less water flow limit microbial activity? less compaction and fracturing, so less microbial infiltration? Peterson et al., 2010 Schweitzer et al., 2007a Early/rapid cementation limits diagenetic pore fluid and microbial mobility? Herwartz et al., 2011; Hubert et al., 1996; Boyce et al., 2002 Presence of clays can adsorb enzymes and limit water infiltration and reactions? Schweitzer, 2004; Zhu et al., 2005 Deep burial limits microbial activity? Asara et al., 2007; Schweitzer, 2004 limits autolysis & hydrolysis and facilitates desiccation Briggs et al., 2000; Schweitzer, 2003; Grupe, 1995; Collins and Gernaey, 2001; LinghamSoliar and Glab, 2010; Eglinton and Logan, 1991; Edwards et al., 2011; Poinar and Pӓӓbo, 2001; Hagelberg et al., 1991; Hofreiter et al., 2001; Baird and Rowley, 1990 ENVIRONMENTAL Dry environments 60 Factor Cool environments Reducing environments better Chemically stable settings TAPHONOMIC Explanation limits disassociation and microbial activity chelation of metal ions limits oxidation damage? stable environments limit reactions? Reference(s) Briggs et al., 2000; Perumal et al., 2008; Collins and Gernaey, 2001; Schweitzer, 2004; Eglinton and Logan, 1991; Poinar and Pӓӓbo, 2001; Hagelberg et al., 1991; Hofreiter et al., 2001; Wadsworth and Buckley, 2014 Eglinton and Logan, 1991 Williams et al., 1997; Lindgren et al., 2011 Minimal preburial weathering limits degradation of proteins Trueman et al., 2004; Fernandez-Jalvo et al., 2010 Minimal preburial transport limits exposure to reactants and decomposers Eglinton and Logan, 1991 synergistic relationship to molecular preservation Hedges, 2002; Zazzo et al., 2004; Goodwin et al., 2007; Schweitzer et al., 1997a, 2008; Schweitzer, 2004; Eglinton and Logan, 1991; Turner-Walker and Jans, 2008; Hagelberg et al., 1991 Excellent morphologic & histologic preservation Lack of permineralization signifies minimal interaction and recrystallization with water Schweitzer et al., 1997a Rapid permineralization or recrystallization can stabilize bioapatite with unaltered crystal cores? Goodwin et al., 2007; Hubert et al., 1996; Elorza et al., 1999; Hedges and Millard, 1995; Schoeninger et al., 1989; Kocsis et al., 2010; Trueman et al., 2008a; Grupe, 1995 Rapid single incorporation of REE least water interactions/alterations? limits microbial invasion, recrystallization, and elemental alteration? Minimal fracturing required Trueman et al., 2008a Peterson et al., 2010; Herwartz et al., 2013 61 Figure 1.1 Examples of pliable soft tissues recovered from ancient vertebrate fossils. (A) Osteoid-like parallel arrangement of proteinaceous fibers following demineralization of a Tyrannosaurus rex bone fragment. (B) Network of interconnected, flexible, transparent vessels isolated by demineralization of a Tyrannosaurus rex bone fragment. (C) An osteocyte isolated from demineralization products of a Cretaceous turtle shell fragment. (D) An isolated vessel from a Tyrannosaurus rex bone fragment, including structures morphologically consistent with endothelial cell nuclei (arrows). Each of these structures displays morphologic consistency with modern analogs. Figures (A) and (B) modified from Schweitzer et al. (2007b), (C) modified from Cadena and Schweitzer (2012), and (D) modified from Schweitzer et al. (2005b). 62 Figure 1.2 An excellent example of the utility of molecular paleontology analyses. Schweitzer et al. (2009) used sequences of the protein collagen I from fossil extracts to independently test phylogenetic hypotheses developed solely from morphologic data. Fossil collagen I peptide sequences place non-avian dinosaurs between extant crocodilians and birds, in agreement with traditional conclusions based on skeletal morphology. From Schweitzer et al. (2009). 63 Figure 1.3 The process and results of autolithification and authigenic mineralization. (A) Diagrammatic representation of bacteria progressively consuming muscle fibers, coalescing metal ions, and leaving behind mineralized tissue. From Martill, 1988. (B) Example of authigenically mineralized muscle fibers in a Santana Formation fish. Field is shown at 12,000x. Modified from Martill (1988). (C) Example of autholithified bacteria creating a pseudomorph of tissue in a fossil fish eye from the Las Hoyas Lagerstӓtte, Spain. Note the comparatively larger and clearly rounded bacterial structures compared to the finer and smoother texture developed in authigenic mineralization (B). Modified from Gupta et al. (2008). 64 Figure 1.4 Common diagenetic alterations suffered by biomolecules. (A) Hydrolytic fragmentation. (B) Conversion of one molecular compound (serine) into another (alanine) by loss of a hydroxyl group. (C) Deamination. (D) Conversion of one amino acid into another (glycine) via loss of functional groups and subsequent replacement with a hydrogen ion. (E) Racemization of a biomolecular compound from left to right isomeric structure. From Schweitzer (2004). 65 Figure 1.5 Diagrammatic representation of non-avian dinosaur collagen I peptide sequences from Asara et al. (2007) and Schweitzer et al. (2009) mapped onto a model of a human collagen fibril (Sweeney et al., 2008). One D period is shown. All dinosaur peptides mapped to interior monomers 2–4 and crucial cell-interaction sites, such as the integrin binding site and the MMP1 cleavage site. This suggests a link between biological function and peptide preservation potential. 66 Figure 1.6 Effect of enclosure of biomolecules within biomineral matrix. Intercrystalline proteins, such as collagen I, are clearly vulnerable to hydrolysis or leaching from the bone, whereas intracrystalline proteins (e.g., osteocalcin) may remain comparatively protected within fluid inclusions or along crystal cleavage planes. Redrawn after Sykes et al. (1995, fig. 4). 67 Figure 1.7 Theoretical relationship of rare earth element (REE) concentration to depth into a fossil bone, from Trueman et al. (2008a). By this theory, bones with a steep decline in concentration with depth into the cortex (such as the specimen represented by the lower left curve with an exponent α value of -0.005) should offer the best potential for biomolecular preservation. Such a steep gradient would reflect minimal interactions with groundwater and therefore rapid equilibration of the bone with its diagenetic environment. Further, minimal postmortem uptake of REE by the middle and inner cortex would suggest minimal alteration of these regions. This would signify that interior cortex of the sample might be an appropriate candidate for biomolecular analyses. 68 Figure 1.8 “Microbial masonry”: autolithified bacteria infilling the surficial opening of a vascular canal in a fossil Thescelosaurus bone (Dinosauria: Ornithopoda), from Peterson et al. (2010). These authors propose that rapid autolithification of bacteria within exterior vascular and nerve canals could prevent microbial invasion and exploitation of the inner cortex and medullary region of bones, thus protecting biomolecules and soft tissues in inner bone regions. 69 CHAPTER 2: SOFT TISSUE PRESERVATION AND DEPOSITIONAL ENVIRONMENTS OF THE BASAL HELL CREEK FORMATION AT THE STANDING ROCK HADROSAUR SITE, CORSON COUNTY, SOUTH DAKOTA 2.1 Abstract Taphonomic analyses of the Standing Rock Hadrosaur Site have yielded important insight into both environmental settings recorded by basal strata of the Maastrichtian Hell Creek Formation and early diagenetic conditions facilitating preservation of soft tissue structures into the fossil record. To date, over 4,700 bones of the hadrosaurid dinosaur Edmontosaurus annectens have been collected from this bonebed, and demineralization of cortical and cancellous samples from ten bones have yielded pliable soft tissue structures consistent in morphology with osteocytes, blood vessels, and fibrous bone matrix. I also document the first recovery of osteocytes and vessels from a fossil vertebra and ossified tendons. Representation of every skeletal element, horizontality of most bones, and rarity of bone weathering and abrasion suggest brief preburial exposure and transport with minimal sorting bias. However, near-universal disarticulation and disassociation, localized orientation of bones, and infrequent preburial breakage indicate moderate flow energy during deposition. Additional fauna, though rare, are indicative of a near-shore fluvial setting, and palynofloral analyses signify deposition in a small, shallow, coastal-plain pond surrounded by a cypress-dominated marsh. Cumulatively, results support the conclusion that a herd of primarily subadult and adult E. annectens died in a nearby fluvial setting in a mass mortality event and, following brief decay and scavenging by theropods, their bones were deposited in a shallow, 70 coastal-plain pond by a flooding event. Evidence indicates that oxygenated flood waters and/or groundwater oxidized initially sideritic concretions to goethite, facilitating rapid local cementation of portions of the sediment that likely aided stabilization of soft tissues by shielding them from prolonged exposure to pore fluids. My findings corroborate previous propositions that iron-rich environments and rapid burial facilitate soft-tissue preservation. 2.2 Introduction The Standing Rock Hadrosaur Site (SRHS) is located in north-central South Dakota, approximately 15 miles south of Morristown, within the Standing Rock Sioux Reservation. At this locality, the upper Fox Hills and lower Hell Creek formations are exposed in a broad, 30 meter-tall cut bank along the Grand River. Bones can be found protruding from the hillside approximately half-way up the bluff for nearly its entire 500 m length, approximately 5 m above the sharp, planar Fox Hills-Hell Creek contact (Colson et al., 2004). A normal fault at the northwest end of the bluff offsets the strata by roughly 4–5 m, but since its depiction by Colson et al. (2004), a large slump has obscured visibility of the fault and likely buried the western-most exposure of the bonebed. The bone-bearing unit fades out into a shallow, grassy slope at the southeast end of the bluff. Colson et al. (2004) used a distinct suite of palynomorphs to date the SRHS to the Maastrichtian, in accordance with previous workers who assigned a Maastrichtian age to the Fox Hills-Hell Creek formational contact (e.g., Cobban and Reeside, 1952; Hicks et al., 2002). Unlike exposures further west in Montana, the Fox Hills-Hell Creek contact is 71 generally conformable throughout central North and South Dakota (Waage, 1968; Frye, 1969; Murphy et al., 2002) where sedimentation was likely more consistent. Excavation at the site began upon its discovery in 1993 by a collaboration between private land owners, Concordia College, and Minnesota State UniversityMoorhead. Concordia continued annual summer excavations through 2003, collecting a total of more than 4,000 bones. The site was hence initially named the Concordia Hadrosaur Site, and was published with this name in a stratigraphic report (Colson et al., 2004). However, later investigations of land ownership boundaries found that two of the three excavations performed by Concordia crews actually took place on land owned by the Standing Rock Sioux Reservation. Accordingly, fossils collected in these first 11 years are now split between collections of the Biology Department of Concordia College in Moorhead, Minnesota, and the Paleontology Department at the headquarters of the Standing Rock Sioux Reservation in Fort Yates, North Dakota. After a 6 year hiatus, in 2010 the Standing Rock Paleontology Department (SRPD) reinitiated annual summer excavations at the eastern end of the bluff. Via an invitation by lead Concordia project researcher Dr. Ron Nellermoe, Drexel University joined the suite of programs investigating the bonebed and I led a collaborative expedition between Drexel, Concordia, and the Standing Rock Reservation to the site in the summer of 2012. Because all excavations since 2010 (including our collaborative dig in 2012) have been pioneered by the SRPD and Standing Rock reservation staff, we have renamed the bonebed the Standing Rock Hadrosaur Site in honor of their ardent support. Here I report a detailed taphonomic account of the SRHS bonebed. Because demineralization assays documented preservation of soft tissue structures within these 72 fossils, I sought to identify geologic, taphonomic, environmental, and geochemical factors likely contributing to soft tissue preservation. 2.3 Geologic setting On a broad scale, the Pierre Shale, Fox Hills Formation, and Hell Creek Formation record a regressive sequence of shallow-marine to near-shore fluviodeltaic deposits along the western shore of the Western Interior Cretaceous Seaway (WIS) (Waage, 1968; Frye, 1969; Moore, 1976; Murphy et al., 2002; Colson et al., 2004). The Fox Hills represents near-shore sedimentation transitional between the marine WIS shales of the Pierre Shale and the fluviodeltaic sediments of the Hell Creek Formation (Moore, 1976). In the Dakotas, the uppermost beds are referred to as the Colgate facies of the Iron Lightning Member, comprising 5–15 m of very fine, white to light gray sandstones containing common, broad lenses with abundant carbonaceous plant matter and abundant Ophiomorpha burrows (Waage, 1968; Murphy et al., 2002). These beds specifically record subtidal, beach, and foreshore environments (Murphy et al., 2002). At SRHS, as noted by Colson et al. (2004), the abundance of clearly visible, large-scale foresets and low-angle planar-tabular beds perforated by numerous Ophiomorpha burrows indicates fairly rapid deposition at this coastal margin, both in subtidal and supratidal settings. In an early study, Waage (1968) characterized the lower Hell Creek sequence as a southeastward prograding delta. This classic portrayal has been scrutinized by more recent investigations that highlight significant sedimentologic variability among basal Hell Creek strata reflective of estuarine, supratidal marsh, floodplain, lagoon, and 73 brackish-water inlet depositional settings (Murphy et al., 2002). Paleosols indicate typical Hell Creek environments including tropical woodlands, subhumid and seasonally dry floodplains, and coniferous swamps (Retallack, 1997). One commonality across central North and South Dakota is that the most basal Hell Creek beds are often shales containing abundant coal seams or lignified plant matter (Frye, 1969; Murphy et al., 2002). This is also true of the SRHS bluff, where the initial beds of the Hell Creek Formation are lignitic shales (Colson et al., 2004). These widespread, basal, lignitic shales represent a rare exception to discontinuity of beds in the Hell Creek (Moore, 1976) and they record expansive coastal swamps and marshes (Kroeger, 2002). At SRHS, these basal beds represent the Little Beaver Creek Member of the Hell Creek Formation (Colson et al., 2004), following the lithostratigraphic nomenclature of Frye (1969). Dinosaur bonebeds are not uncommon through the Hell Creek Formation, including in the basal part of the formation. This is especially true of the unit in the central Dakotas, where bonebeds tend to be found most commonly in the lowermost portions of the formation (Russell and Manabe, 2002). Other bonebeds known from these low units include a monodominant assemblage of Edmontosaurus at the Mason Dinosaur Quarry near Faith, South Dakota (Christians, 1992), a diverse assemblage including small maniraptorans, pachycephalosaurians, and Thescelosaurus called The Sandy Site near Buffalo, South Dakota (Bartlett, 1999), and a hadrosaur-dominated bonebed called the Stumpf Site near Mandan, North Dakota (Hoganson et al., 1994). Edmontosaurus in particular appears to have commonly fallen victim to mass mortality events as it is frequently recorded in large bonebeds in the Hell Creek and correlative strata throughout 74 western North America (Christians, 1992; Derstler, 1995; Jacobsen and Ryan, 1999; Chadwick et al., 2006; Bell, 2007; Gangloff and Fiorillo, 2010). 2.4 Sedimentology and Stratigraphy A detailed stratigraphic summary of the bluff was presented by Colson et al. (2004). Therefore, I will here only briefly review and supplement the sedimentology and stratigraphy of the bonebed horizon and beds directly underlying and overlying it. Directly underlying the bonebed horizon at SRHS is a variable-thickness lignitic shale containing 20–40% organic fragments (units 5b and 5c-lower of Colson et al., 2004). This unit exhibits friable parting texture and thins toward the southeast end of the bluff. Abundant, minute gypsum or anhydrite crystals have formed along shale fractures through diagenesis. Modern pedogenic alterations are evident in some locations in this unit, namely small (< 10 cm²), locally-constrained slickensides. Also dispersed within this unit are several thin, laterally discontinuous lenses of a light gray, sandy siltstone containing indeterminate bivalve casts and small, tabular, calcareous cone-in-cone concretions. Though the origin of cone-in-cone concretions is still debated, they are generally agreed to form in carbonaceous, brackish-water shale deposits by growth of fibrous calcite during early diagenesis (Franks, 1969). Based on the inclusion of bivalve casts and cone-in-cone concretions, I suggest these lenses record deposition in shallow, ephemeral estuaries or tidal inlets. Colson et al. (2004) originally characterized the bonebed horizon (their unit 5cmiddle) as a purple peaty shale representative of a coastal swamp setting. Their “purple” 75 descriptor alludes to the wealth of partially coalified organic matter in the bonebed horizon. This mudstone averages about 30 cm in thickness. The base of this unit exhibits a gradational contact with the underlying gray, friable mudstone described above (units 5b and 5c-lower of Colson et al., 2004). Lithologically, the basal portion of the bonebed is generally grayer in color and more fissile than the upper extent of the bonebed, which commonly presents a yellow-stained, more massive, clayey character. Matrix sediments occasionally present mottling, with discrete, thin, locally-restricted pockets of very fine sand rarely encountered. Amorphous goethite concretions (as determined by x-ray diffraction) are abundant throughout the entire bed, but especially in the upper half of the mudstone. These range from the size of a small marble to over 10 cm in some cases and exhibit yellow-orange or blue-black coloration, even within the same concretion. Organic remains of plants are also profuse throughout the bonebed mudstone, including abundant small inclusions of amber. Although most organics are unidentifiable fragments that have undergone the initial stages of coalification (see Palynology section, below), a few small twigs of cypress and redwood trees and numerous Metasequoia cones have been recovered (see Faunal and Floral Summary below). Partial lignified logs are also present and are generally encountered directly underneath or between bones in the bottom of the assemblage. Conspicuously absent are indicators of pedogenesis, namely root traces and cutans, or altered, clay-rich joint surfaces (Retallack, 1988). Though the unit does display abundant clay slickensides, these are spatially confined to small (generally < 10 cm²) regions. Furthermore, it also contains abundant partially open fractures with incipient formation of minute, needle-shaped gypsum or anydrite crystals. I attribute these features to recent pedogenic processes occurring along the modern hillside rather than ancient 76 pedogenesis, primarily due to the common crystallization of gypsum/anhydrite as a late diagenetic/pedogenic evaporite (Retallack, 1988). Overlying the bonebed mudstone in the eastern half of the bluff is a white, very fine grained, heterolithic sandstone (unit 6 of Colson et al., 2004) with rare, faint trough cross bedding and a basal lag including abundant heavily oxidized bone fragments, ossified tendon fragments, and small (< 2 cm) mud rip-up clasts. This broad, lens-shaped unit exhibits a sharp, erosive contact into the underlying bonebed-containing mudstone that includes flute casts in some areas. Its erosive depth increases toward the east. Toward its eastern exposure, the basal lag of the sandstone includes abundant small bones and partial bones as well as mud rip-up clasts, tendon fragments, and teeth. To date, the most abundant skeletal elements in this eastern basal lag are teeth, caudal and cervical vertebrae, and cervical ribs; limb bones and dorsal vertebrae are rare. Some of these elements are incomplete or display signs of fragmentation and/or abrasion. Increasing bed thickness and the presence of more numerous, larger bones toward the eastern end of the bluff suggest the channel thalweg passed within, or at least closer to, this area. Cumulatively, sedimentary composition, bedforms, and taphonomic findings are consistent with the interpretation that this overlying sandstone represents a channel deposit recording fluvial erosion and reworking of skeletal elements from the bonebed proper. In the western half of the bluff, the bone-bearing mudstone is overlain by typical fluvial deposits of the Hell Creek, including interlaminated floodplain siltstones, discontinuous sandstone lenses, and variegated mudstones (units 7, 8, and 9 of Colson et al., 2004). Bed contacts tend to be sharp and generally planar, and lateral discontinuity of 77 beds is common. Sandstone lenses comprise well-sorted, very fine to medium sand and commonly exhibit planar tabular and ripple cross bedding (visible by iron staining and, in some spots, by very thin mud/organic matter drapes (perhaps indicating tidal influence)) and basal lags including 0.5–3 cm clay rip-up clasts. Organic remains are rare in the sandstones, but remain fairly common throughout siltstones and shaly mudstones (~10– 40%; Colson et al., 2004); they are particularly concentrated in some thin beds. 2.5 Methods Traditional taphonomic methods were employed (Rogers et al., 2007), comprising analyses of bone spatial distributions, orientations, surface modifications, ontogenetic characterization, and histological examination. Preburial weathering was categorized in the 0–3 simplified ranks of Behrensmeyer (1978), following other bonebed studies (e.g., Ryan et al., 2001; Gangloff and Fiorillo, 2010), in which 0 represents no weathering and 3 represents extensive, deep cracking and flaking of exterior bone. Abrasion was similarly categorized using the 0–3 simplified ranks of Fiorillo (1988), following Ryan et al. (2001), where 0 represents no abrasion and 3 represents severe rounding of epiphyses and processes. Element fractures were categorized as spiral, longitudinal, transverse/compressional, or unfractured following Ryan et al. (2001). I separately discuss methods for determination of an age profile for SRHS Edmontosaurus bones, analyses of Voorhies transportation groups, x-ray diffraction, and soft tissue assays below. 78 An age profile of Edmontosaurus annectens individuals from SRHS was calculated using the body size classes of Horner et al. (2000). These age classes are based on known femoral lengths and corresponding body lengths for Maiasaura peeblesorum, a hadrosaurine of similar adult body size and proportions to Edmontosaurus (Gangloff and Fiorillo, 2010). By assuming an average adult femur length for Maiasaura of 110 cm (Horner, 1994), Horner et al. (2000) consider “adults” as individuals with femora at least 1 m in length (90.9% of the average adult size, 110 cm), “subadults” as individuals with femora 68–100 cm in length (61.8–90.9% of average adult size), “late juveniles” as individuals with femora 50–68 cm in length (45.5–61.8% of average adult size), and “early juveniles” as individuals with femora 12–18 cm in length (10.9–16.4% of average adult size). I follow Gangloff and Fiorillo (2010) who expanded this classification scheme in two manners. First, Gangloff and Fiorillo (2010) calculated corresponding body size cutoffs for additional, large appendicular and cranial elements (quadrate, dentary, tibia, metatarsal III, ulna, humerus, ilium, and scapula), making the scheme more comprehensive and applicable for analyzing disarticulated individuals. Second, Gangloff and Fiorillo (2010) added a “late early juvenile” age class to account for individuals between the maximum size of “early juveniles” (16.4% mean adult size) and minimize size of “late juveniles” (45.5% mean adult size) in the Horner et al. (2000) classification scheme. Mean adult bone lengths for Edmontosaurus annectens were calculated by summing and averaging E. annectens bone lengths provided in Gangloff and Fiorillo (2010, supp. data 3) with the largest such element from SRHS, which frequently were longer than the five museum specimens considered by Gangloff and Fiorillo (2010). 79 Bones were classified according to Voorhies (1969) groups I and II to examine potential effects of hydraulic sorting on the SRHS assemblage. Group III was not considered because Voorhies (1969) originally based this group on the fused skulls of mammals. Nonavian dinosaurs, however, do not typically exhibit cranial fusion beyond the braincase (Gates, 2005). Therefore, cranial elements (including those of the lower jaw) were assigned to group II following Gates (2005) and Lauters et al. (2007). Additional modifications to the original Voorhies (1969) groups followed Gates (2005), comprising inclusion of metapodials, phalanges, and hemal arches in group I and carpals, all stylopodial and zeugopodial limb bones, and all pelvic and pectoral bones in group II. Because no fused sacra have been recovered from SRHS, unfused sacrals were included in group I. Following Gangloff and Fiorillo (2010), vertebral centra ≥ 85% complete were included as “complete” vertebrae and only rib fragments ≥ 10 cm in length were considered as “complete” ribs for counting purposes. These changes account for the differing bone sizes and shapes in hadrosaurids compared to those of sheep and coyotes in the original analysis of Voorhies (1969). X-ray diffraction (XRD) was performed to characterize the mineralogy of fossil specimens, entombing sedimentary matrix, and concretions within the host matrix. Roughly 1–2 mg samples were powdered (for 10 minutes) to less than 10 μm in SPEX tungsten carbide Mixer-Mills (model #8000). Analyses were then performed on a Phillips X'Pert diffractometer (#DY1738) at the University of Pennsylvania, using Cu Kα radiation (λ = 1.54178Å) and operating at 45 kV and 40 mA. Diffraction patterns were measured from 5–75 °2θ with a step size of 0.017 °2θ and a time of 1.3 seconds per step 80 (= 0.77 degrees per minute). Phillips proprietary software HighScore Plus v. 3.0e was used to interpret resulting diffraction traces. All excavation in the 2012 quarry was conducted while wearing nitrile gloves to limit contamination for ensuing soft tissue analyses (see below). Samples of cortical bone were collected via a sterile technique immediately following discovery and exposure of bones in the field (Schweitzer et al., 2008). This involved hammering a dedicated, autoclaved chisel into bone shafts to extract small fragments of cortex. Limb bones were targeted for most samples following the hypothesis that solid, durable, midshaft-cortical bone would best protect soft tissues against decay (Hagelberg et al., 1991; Hedges, 2002; Zazzo et al., 2004; Goodwin et al., 2007). Collected samples were wrapped in autoclaved aluminum foil and stored in autoclaved canning jars over silicagel desiccant beads until analysis in the laboratory. A concretion from within the host sediment and associated sediment samples from adjacent to each bone were also collected in the same manner. A fragment of moderately weathered (lightened by solar UV radiation) “float” cortical bone that had tumbled part way down the hillside was also collected and tested. In total 13 bone samples were collected, ten of which have thus far been tested: two femora (SRHSDU-125 and -273), three metatarsals (SRHS-DU-192, -274, -306), two phalanges (SRHSDU-89 and -278), a fibula (SRHS-DU-231), a caudal centrum (SRHS-DU-220), and a fragment of “float” cortex. A fragment of ossified tendon from the middle of the quarry, another found as “float”, and a tooth from the middle of the quarry were also sterilely collected and tested. Fossil samples thus encompassed the full range of highly porous and permeable cancellous bone (phalanges SRHS-DU-89 and -278) to solid, low porosity, cortex (femora SRHS-DU-125 and -273) and enamel (tooth). 81 Demineralization of fossil samples with 0.5 M disodium ethylenediaminetetraacetic acid (EDTA) pH 8 was carried out to test for the preservation of soft tissues. EDTA chelates calcium ions from bone, leaving behind iron oxides and any soft tissue remains that do not possess divalent cations (Schweitzer et al., 2005b). Demineralization was conducted in a paleomolecular-dedicated fume hood for a period of 1–4 weeks, with daily solution exchanges (following the protocol of Schweitzer et al., 2005b, 2007b, 2009). For standard transmitted light microscopy, demineralization products were transferred to glass slides with sterile glass pipettes, then covered with sterile cover slips. Optical microscopy was conducted on a Leica DM750 microscope and images were collected with either a Leica ICC50 HD or an AmScope digital camera. For field-emission scanning electron microscopy-energy dispersive x-ray (FESEM-EDX) analyses, solid bone and sediment samples were adhered to aluminum stubs with Sticky Tabs double-sided carbon tape (Canemco, Quebec, Canada). Fossil demineralization products were thoroughly rinsed with double-distilled water, then allowed to air dry onto pure silicon chips overnight in a dedicated laminar flow hood before being adhered to aluminum stubs with Sticky Tabs. Imaging of uncoated samples was conducted on a Zeiss Supra 50VP FESEM at either three or 15 kV (depending on sample weakness and desired contrast), a working distance of 11–28 mm, and magnification ranging up to 7000X. Semi-quantitative elemental maps and spot analyses were collected as a standardless assay (for 5 min per spot or map) via a coupled Oxford model 7430 INCAx microanalyzer. Because histologic integrity is thought to represent a rough proxy for biomolecular preservation (Schweitzer et al., 2008), I cut a thin section from the fibula 82 examined for soft tissue preservation (SRHS-DU-231) to test its degree of microstructural preservation. To maintain close proximity between histologic and softtissue sampling sites, I transversely cut the fibula midshaft only a few centimeters away from the soft-tissue sample site. Thin section preparation methods generally followed those outlined for fossil bone by Chinsamy and Raath (1992), including embedding in Silmar 41 epoxy resin (US Composites, West Palm Beach, FL) followed by cutting, grinding, and polishing to a final thickness that optimized optical contrast. Histologic terminology follows that of Francillon-Vieillot et al. (1990). Bone microstructure integrity was ranked according to the Histologic Index of Hedges and Millard (1995). 2.6 Faunal and floral summary SRHS is a monodominant bonebed of the hadrosaurid Edmontosaurus (Colson et al., 2004). All non-microfossil bones thus far recovered from the assemblage belong to this taxon. Colson et al. (2004) could not successfully identify which species of Edmontosaurus is entombed, but recent advances in our morphological understanding of these taxa (notably by Prieto Marquez (2008) and Campione and Evans (2011)) now allow for this question to be addressed. Though the remains are almost entirely disarticulated, anatomy of individual bones can be used to differentiate E. annectens from E. regalis (Prieto Marquez, 2008). In particular, Prieto Marquez (2008) identifies postcranial differences between the two species in features of the coracoid, humerus, ilium, pubis, ischium, and third metatarsal. In comparison to E. regalis, E. annectens has a relatively longer, “hook-like” ventral process of the coracoid (Prieto Marquez, 2008, 83 character 218), a wider angle formed by the cranial margin of the distal deltopectoral crest with the proximalmost humeral shaft (ch. 231), a dorsoventrally shorter central blade of the ilium (relative to the craniocaudal distance between the pubic peduncle and caudodorsal prominence of the ischial peduncle; ch. 246), a longer prepubic process of the pubis (ch. 274), a proximodistally shorter pubic peduncle of the ischium (ch. 280), and proportionately longer and narrower third metatarsals (ch. 294). Bones from SRHS exhibit character states matching those presented by Prieto Marquez (2008) for E. annectens for four of these six features (chs. 218, 231, 246, and 294), indicating a confident identification for the SRHS hadrosaur as E. annectens. SRHS pubes and ischia exhibit morphologies that score for multiple states for characters 274 and 280 of Prieto Marquez (2008), not allowing definitive identification: SRHS ischia exhibit pubic peduncles that are either short (state 2 for ch. 280, as for E. annectens) or as long as wide (state 1 for ch. 280, as for E. regalis), and SRHS pubes exhibit both very long (state 2 for ch. 274, as for E. annectens) and moderate-length (state 1 for ch. 274, as for E. regalis) prepubic processes. I refrain from assigning these variable morphologies to ontogenetic or intraspecific investigation and instead suggest such variation is an avenue for further research. An additional morphological difference between E. annectens and E. regalis is described by Campione and Evans (2011), who note that the nasal in E. annectens shows relatively weak excavation in the caudodorsal corner of the narial vestibule in comparison to E. regalis. Nasals from SRHS show weak excavation at this location, again consistent with E. annectens. 84 Additional fauna are represented primarily by microfossils and are collectively indicative of a fluvial to coastal environment, consistent with stratigraphic interpretations of the depositional setting (Table 2.1). Though no bones of any dinosaur other than E. annectens have been found in the bonebed proper, teeth of at least one troodontid (N = 2) and dromaeosaurid (N = 86) theropod have been recovered. Mammals are well represented by abundant multituberculate remains (N = 58, comprising 57 teeth and one partial dentary) and single teeth of a metatherian, eutherian, and indeterminate therian. The most abundant microfossils in the bonebed are referable to the gar Lepisosteus occidentalis, and comprise scales, teeth, and vertebrae. Additional vertebrate remains include two partial crocodilian scutes, teeth of the crocodilians Brachychampsa montana and Borealosuchus sternbergi, two Myledaphus bipartitus (ray) teeth, shell fragments of Compsemys sp., a partial costal and shell fragments of an indeterminate trionychid turtle, five trunk vertebrae of the amiid fish Kindleia fragosa, and two teeth of the semi-aquatic choristodere Champsosaurus sp. Invertebrates are represented solely by steinkerns of the snail Campeloma sp. (N = 3) and an indeterminate unionid clam (N = 2). Redwood cones referable to Metasequoia sp. are the most abundant remains of vegetation (N = 20), and two Metasequoia leaf imprints and a single Taxodium occidentalis (cypress) leaf imprint have also been discovered. In short, no exclusively marine taxa have been identified; rather, fresh and brackish-water inhabitants abound, including gar and amiid fish, crocodilians, turtles, Myledaphus, Campeloma, unionids, and cypress trees. Of the 4,702 dinosaurian bones (other than teeth) thus far discovered at SRHS, all are attributable to E. annectens. The minimum number of E. annectens individuals represented (MNI, as counted by the abundance of left versus right elements following 85 Badgley, 1986) is 44, based on left digit IV metatarsals. Given the remarkably long outcrop of the bonebed, there are clearly thousands of bones still buried and the real number of individuals interred in the assemblage is assuredly much higher. 2.7 Age Profile Age estimates for SRHS bones were calculated by converting measured bone lengths to percentages of adult means for E. annectens (see Methods, above). Overall, SRHS bones ranged from 21.6% to 115.3% of adult mean lengths, including numerous elements (quadrates, femora, tibiae, third metatarsals) more than 10% longer than those of “adult” specimens considered by Gangloff and Fiorillo (2010). These percentages correspond to an age range of “late early juvenile” to “adult”. Cranial elements exhibit the greatest range, 21.6%–115.3% of adult means, and third metatarsals exhibit by far the narrowest range (77.6%–114.4%) and highest average (93.6% adult mean size) of all elements considered. Tibiae and radii exhibit moderately narrow ranges, 49.3%–110.5%, compared to the remainder of limb elements. The majority of bone dimensions correspond to ranges for “subadult” individuals, followed secondly by “adult” individuals (Figure 2.1A). No bones pertaining to “early juveniles” or hatchlings have been found. Neurocentral suture closure is a characteristic ontogenetic feature of extant crocodilians (Brochu, 1996) and has been used to characterize ontogenetic stage of fossils of other archosaurs, including nonavian dinosaurs (e.g., Gangloff and Fiorillo, 2010). Of a sample of 539 vertebrae, 397 (74%) exhibit neurocentral closure. A total of 466 caudal vertebrae are included in this sample, of which 375 (81%) exhibit suture closure. Nearly 86 all distal caudal vertebrae (194/199, 97.5%) exhibit neurocentral closure, as do the majority of proximal caudal vertebrae (25/30, 83%). Most proximal caudal vertebrae (23/29, 79%) also exhibit fusion of transverse processes. A single distal caudal vertebra exhibits closure of one half of the neural arch whereas the other half remains open, and a single proximal caudal vertebra exhibits fusion of one transverse process but not the other. Closure frequency progressively decreases cranially through the vertebral column, with only 45% of dorsal vertebrae (13/29) and 23% of cervical vertebrae (9/39) exhibiting closure. An additional two axes and three sacral vertebrae included in this sample do not exhibit closure. Cumulatively, patterns of SRHS vertebral fusion generally conform to the caudal-to-cranial closure pattern known for extant crocodilians during ontogeny (Brochu, 1996) and corroborate the abundance of relatively “mature” subadults and adults in the assemblage as inferred above from linear bone measurements. 2.8 Taphonomy 2.8.1 Skeletal representation Every bone comprising the skeleton of an Edmontosaurus has been collected from the site except for scleral ossicles. This exception likely owes to the difficulty of identifying these small, non-descript elements. Sizes of non-microfossil material from SRHS range from ossified tendon fragments and teeth less than 2 cm in greatest dimension to two 127 cm long femora (mean specimen length = 17.8 cm). Fossil sizes are clearly skewed toward smaller lengths (Figure 2.2A), reflecting the great abundance of ossified tendon fragments and isolated teeth in the assemblage. Most maxillae retain all 87 or the majority of their teeth, but not a single dentary has been recovered with even a partially intact tooth battery. No preference of preservation of left or right elements is observed: a survey of 2,058 bones provided a count of 1,034 left and 1,019 right elements. As at the Liscomb Edmontosaurus bonebed in Alaska (Gangloff and Fiorillo, 2010), vertebrae are the most common elements and pedal bones are more common than those of the manus (Figure 2.2B; Table 2.2). Postcranial elements show greater survival than cranial elements, though certain cranial elements (e.g., quadrates, jugals, maxillae) exhibit survival rates on par with other regions of the skeleton. Metatarsals (81.1%) and metacarpals (70.7%) exhibit the greatest survival percentages. Despite the fact that nearly 1,100 caudal vertebrae have been collected, this is less than half the number (40.8%) that would be predicted from 44 individuals (2,640). Eighty-six percent of vertebrae collected are caudals, while only 5% are dorsals (Figure 2.1B); it is likely that these numbers partially reflect the greater number of caudal vertebrae in a single individual. Only seven sacral centra have been recovered, none of which are fused with other centra. Vertebral components exhibit nearly equal abundances among centra (23%), neural arches (27%), neural spines (20%), and chevrons (28%), with only unfused proximal caudal transverse processes being rare (2%; Figure 2.1C). 2.8.2 Spatial distribution and orientation of elements All Edmontosaurus bones from SRHS are disarticulated and disassociated except for four partially fused braincases. Numerous braincase elements were also found disarticulated, however, even of the same size as the elements contributing to the four 88 partially fused braincases. This indicates that: 1) cranial bone fusion did not occur until late in ontogeny; 2) fusion did not occur at a particular somatic age for this hadrosaur, and; 3) skulls were exposed long enough to allow tough soft tissues binding cranial elements to decompose. Quarry maps compiled from each field season, such as that for 2012 (Figure 2.3A), demonstrate the prolific abundance and dense packing of bones throughout nearly the entire studied exposure. Only minor local clustering of bones can be identified in some regions. Elemental abundances ranged from 24–43 bones/m², with an average of 34 bones/m² over a representative ~ 9 m² area excavated in the summer of 2012. Four summers of excavation in another 27 m² area along the bluff yielded 23–116 bones/m² with an average of 56 bones/m². Stacking of bones is common, with up to six bones being observed to overlie one another on certain occasions. However, the largest limb bones (femora and tibiae) do not tend to stack over one another. A slight normal grading pattern is seen in the field, with smaller bones (e.g., unfused vertebral neural arches, hemal arches) being encountered more frequently in the upper portions of the mudstone. Ossified tendon fragments and isolated teeth also appear to conform to a slightly graded distribution within the bed. In map view, tendon fragments and teeth appear randomly distributed, with only minor evidence of clustering of teeth in some areas (Figure 2.3B). The vast majority of bones are encountered at nearly horizontal orientations within the single horizon (Figure 2.2D). No bone plunges greater than 30° were recorded among 59 long bones (e.g., limb elements, ribs, dentaries, neural spines) recovered from a representative ~ 9 m² area of the bonebed excavated in the summer of 2012. Moreover, 68% of bones from this representative excavation exhibit plunge ≤ 10°. A Rayleigh test 89 rejects the null hypothesis of a uniform distribution of bone plunge directions (Z = 0.38, p < 0.001), though they present a wide standard deviation range (Figure 2.2E). No patterns are evident among all measured bone strikes (N = 4,385) from the site to date (Figure 2.2F). A second rose diagram (Figure 2.2G) was constructed to investigate whether closer inspection over a smaller area of the quarry would still yield a random/uniform pattern of bone orientations. This analysis summarized bone strikes over a ~ 9 m² area excavated in the summer of 2012. At this smaller scale, there is a clear bimodal pattern to bone strikes, comprising a northeast-southwest trend and a nearly eastwest trend. Evidently, currents acted heterogeneously over the vast bonebed, with small areas experiencing either stronger flow or sustained flow for longer periods of time. 2.8.3 Voorhies groups The SRHS assemblage is dominated by Voorhies group I elements, especially vertebrae, phalanges, and metapodials (Figure 2.2C). This is evident in a group I:II ratio of 3:1 (in other words, 75% of preserved bones can be classified as group I elements, 25% as group II elements). Overrepresentation and underrepresentation are each evident for select bones of each group. Of group I elements, vertebrae, metapodials, and phalanges are moderately overrepresented whereas hemal arches are clearly underrepresented (3.9% observed vs 12.5% expected). Of group II elements, limb bones are modestly overrepresented whereas cranial elements are underrepresented. Ribs (7% observed vs 9% expected), carpals (0.1% vs 0.5%), and girdle elements (1.6% vs 1.5%) nearly exhibit expected frequencies. 90 2.8.4 Hydraulic equivalency As previously discussed, SRHS specimens range in size from 2–127 cm in greatest length, with an average size of 18 cm. Whereas only 41% of specimens are < 10 cm long, the majority (70%) are < 20 cm long. The majority of larger bones (25 of the remaining 30%) are 20–50 cm long. When these dimensions are compared to sizes of hydraulically equivalent quartz grains using the equivalency chart of Behrensmeyer (1975, p. 496), the vast majority of SRHS bones are hydraulically equivalent to quartz grains of > 2 mm in diameter, or granule to pebble size gravel. In sharp contrast, grain sizes of the bonebed matrix are dominated by clay and silt with sparse very-fine to fine sand. This considerable discrepancy between bone hydraulic equivalents and encasing sediment grain sizes suggests that flow competency was inadequate to accomplish long distance, sustained transport of the bones, implying that the assemblage is autochthonous to the site of burial and that the depositional setting was one of low energy. 2.8.5 Weathering A representative sample of 1,806 bones in Concordia College collections and excavated in the summer of 2012 were surveyed for preservation state attributes, including preburial weathering, abrasion, fracture patterns, and biogenic alterations such as bite marks and pathologies. These bones were categorized into the four weathering stages employed by Ryan et al. (2001) (Figure 2.1F). The vast majority of specimens (96%, N = 1,738) are unweathered (Stage 0), while only 0.1% (N = 1) of bones present significant preburial weathering features (Stage 3), including deep longitudinal cracking and loss of surficial bone. An equally small proportion of bones (0.1%, N = 1) presents 91 moderate weathering (Stage 2), primarily in the form of deep, longitudinally oriented cracks. Roughly 4% of bones (N = 66) display shallow cracking of surface bone indicative of short-term, subaerial exposure (Stage 1). When encountered, moderate and significant preburial weathering are commonly localized to portions of specimens rather than over the entire surfaces of bones. This localization of weathering suggests partial burial of the respective bones for a period of months to years. Such rarity of substantial weathering contrasts with weathering profiles of modern and fossil attritional assemblages (e.g., Potts, 1986; Fiorillo, 1988, 1991a), which generally display a less severely skewed character, with more bones presenting slight to moderate weathering. This difference clearly signifies rapid burial of SRHS bones. 2.8.6 Abrasion Teeth were excluded from the dataset analyzed for postmortem modifications because they can withstand substantial transport and decay, yet display no clear indications of abrasion (Argast et al., 1987). Of the 1,806 bones studied, none displayed stage 3 abrasion, and only four (0.2%) showed moderate rounding of broken and unbroken ends (stage 2; Figure 2.1G). A minority of bones, roughly 8% (N = 148), exhibit evidence of slight rounding (stage 1). Most bones (92%, N = 1,654) exhibit no signs of abrasion. This profile is remarkably similar to that of bone weathering at SRHS (compare Figures 2.1F and G), yet comparison of these datasets identifies that signs of postmortem weathering and abrasion are infrequently correlated to the same specimens: only 8% of bones with observable abrasion or weathering display both types of modification. Rarity of significant weathering is suggestive of minimal transport of most 92 specimens, though it must be noted that this correlation is not so clear cut. For example, fresh bone is known to show striking resistance to abrasion (Behrensmeyer, 1990), meaning that bones might be transported a considerable distance before displaying signs of rounding or surface polishing. However, inclusion in the assemblage of a few bones displaying moderate abrasion demonstrates with certainty that allochthonous material transported in from more landward locations comprises a small contribution to the SRHS bonebed. 2.8.7 Breakage and fracturing Nearly two-thirds (62%, N = 688) of the 1,806 bones in the collections dataset are complete, though I feel this statistic is heavily biased and does not adequately reflect the nature of the assemblage in the field. The incompleteness of many specimens is likely attributable to loss during excavation or difficulty of collection given the extremely dense nature of the assemblage, forcing us to divide certain bones in order to collect others. Many incomplete elements show freshly broken edges along transverse fractures, supporting this inference. Complete bones include elements of all sizes, from minute manual phalanges and distal caudals through ilia and femora. The vast majority of incomplete bones are cranial elements, vertebrae, and ribs. Appendicular elements are almost always complete; the only exceptions are fragmented and sometimes spiral-broken, thin margins of some scapulae and ischial blades (Figure 2.1H). Preburial fractures are encountered in only 12.6% of bones (N = 218), most of which are spiral breaks of narrow vertebral processes and cranial element extensions and blades (e.g., Figure 2.4A). However, many intricate 93 cranial elements with thin processes and blades, such as pterygoids and jugals, also remain fully intact. Unfractured bones comprise nearly one-quarter of specimens (21%). Most unfractured bones are small elements comprised of dense, homogenous internal bone structure, namely phalanges, vertebral centra, and small metacarpals. This pattern for dense, homogenous tissue structure to resist diagenetic fracturing is also seen in larger limb bones, in which condyles frequently remain unfractured while shafts can display substantial compression artifacts (transverse and longitudinal breaks). In fact, nearly every element that is fractured displays evidence of compression or crushing-induced fracturing in the form of transverse and/or longitudinal breaks. It is not uncommon to find bones crushed into one another (examples include crossing limb bone shafts and vertebral centra crushed together). Evidence of such cases (N = 27) is seen in the form of stepped, concentric, crescentic fractures (e.g., Figure 2.4B). The general abundance of transverse and longitudinal fracturing is sensible given the fine-grained host lithology of the bonebed: as noted by Ryan et al. (2001), bones preserved in fine-grained mudstones and siltstones tend to more frequently display evidence of sediment compaction (in the form of compressional fracturing) than bones preserved in coarser-grained sandstones. A general pattern was found during excavation that bones closer to the hillside tend to display a greater degree of shattering than bones covered by greater amounts of protective overburden further back in the hillside. This may be attributable to nascent slumping of the edge of the hill downslope (noted at some locations along the butte) as well as shallowly penetrating freeze-thaw swelling cycles due to the strong seasonal fluctuations that occur in the Dakota badlands region. 94 2.8.8 Tooth marks Putative or definitive tooth marks on SRHS bones are encountered on 100 (5.5%) of the 1,806 bones surveyed. This proportion is slightly greater than in many dinosaur bonebed assemblages (0–4%; Fiorillo, 1991b). Bite marks are almost universally isolated or parallel shallow scores forming V-shaped grooves along bone surfaces (Figure 2.5A). Only a few putative tooth impact pits were identified amongst the representative bone dataset, and no indications of gnawing were encountered. In contrast to the Liscomb Edmontosaurus bonebed in Alaska (Gangloff and Fiorillo, 2010), the majority (52%) of bite marks occur on appendicular elements, almost all of which are on limb bones rather than girdle elements. Only 31% of tooth scores are on axial elements (ribs, chevrons, vertebrae, and gastralia), while the remaining 17% are on cranial elements (primarily dentaries and quadrates). Shed or broken theropod teeth (N = 89), ranging from 0.6–5.8 cm in apicobasal crown height, were commonly scattered amongst bones in the host horizon as well as at the base of the sandstone unit overlying the bonebed assemblage. These teeth are of typical dromaeosaurid character (Currie et al., 1990), exhibiting strong lateral compression, modest recurvature, and small, rounded serrations along the carinae that are slightly larger along the caudal carina (Figure 2.5B). Because no theropod bones have yet been recovered from the bonebed horizon, the overlying or underlying strata, nor the immediate vicinity, I assign these teeth to an as-yet indeterminate dromaeosaurid. The shallow and narrow forms of most tooth scores on the hadrosaurid bones are consistent with marks one would expect formed by these teeth. I therefore consider it probable that many of the theropod teeth encountered in the assemblage were shed or lost during 95 scavenging of the Edmontosaurus carcasses, either at the site of deposition or at a slightly upstream location where the carcasses were likely decomposing (see Discussion for more on the interpreted burial scenario). 2.8.9 Trample marks Trample marks are discernible as faint, closely-spaced parallel lines across the surface of a bone created by scratching of coarse sediment grains or other bones across the surface during trampling by animals (Behrensmeyer et al., 1986). Putative trampling lines are rare among SRHS bones, being found on only 32 specimens (1.8% of the 1,806 bones surveyed). Most are on the shafts of elongate bones, especially ribs and limb elements. These marks are generally present in single, small patches on bone surfaces rather than over large areas or in multiple areas. This pattern of confined localization and a general scarcity of coarse sediment grains (i.e., sand) in the host horizon suggest these marks were more likely formed by scraping of bones against one another during transport or by trampling-induced churning of bones rather than by abrasion of sediment grains against bones during trampling. 2.8.10 Pathologies A total of 45 bones, 2.5% of the 1,806 surveyed, show evidence of pathologies. All but eight of these pertain to axial elements, and most of these pertain to caudal vertebrae, as was also true for Edmontosaurus at the Liscomb bonebed (Gangloff and Fiorillo, 2010). Common axial pathologies include isolated lesions (N = 6) and healing of fractures or breaks in neural spines (N = 11), transverse processes (N = 2), hemal arches 96 (N = 2), and rib shafts and heads (N = 1 each). Osteochondrosis, a developmental abnormality caused by incomplete differentiation of cartilage from bone (Rothschild and Tanke, 2006), was also observed. Though normally seen at articular ends of limb elements (Rothschild and Tanke, 2006), Gangloff and Fiorillo (2010) identified that Edmontosaurus vertebrae, especially caudals, also commonly display evidence of osteochondrosis on the articular faces of their centra. This same pathology is also found to be common among caudal vertebrae at SRHS (N = 9), especially distal caudal vertebrae (seven of the nine occurrences). This pathology is expressed by depressed grooves in centra faces (e.g., Figure 2.6A). Five caudal centra also exhibit craniocaudally oriented grooves across the entire centrum length and dorsoventrally along the sagittal plane in cranial and caudal view (Figure 2.6B). The cause of these pathologies remains unclear, but I tentatively propose these represent cases of craniocaudally split centra captured in the process of rehealing. Two cases of fusion of caudal centra are also present in Concordia collections (Figure 2.6C), presumably reflecting tumor growth or healing of impact-related trauma. No pathologies were encountered in cranial elements. Six appendicular pathologies have been identified: a lesion on the dorsal surface of a pedal ungual (Figure 2.6D), pitting on two pedal phalanges, a lesion encircling the midshaft of a large limb element (specimen is currently incomplete, but the shaft cross section shape is most consistent with a tibia), a lesion on the lateral face of a manual phalanx, and a broken and healed pubic blade. Most lesions are evident as growths with finely pitted, amorphous bone texture. 97 2.8.11 Diagenesis Energy-dispersive x-ray (EDX) analyses of cortical bone identified it to be comprised of calcium, phosphorous, and oxygen. XRD confirmed that all ossified specimens, namely cortical bone, cancellous bone, a tooth, and ossified tendon, are comprised of fluorapatite (Figure 2.7). Hydroxyapatite was also found as a close match to the fossil bone XRD spectra, and chlorapatite was found as close match to the tooth diffractogram, but in each case, peak residuals were smaller when the spectra were matched against fluorapatite. Nearly every bone is unpermineralized. One exception is a femur collected in 2012, which exhibits a thin coating of quartz (as determined by SEMEDX) over portions of medullary cavity trabeculae. Under SEM, the quartz coatings exhibit a nodular surface and fine, radial growth patterns in cross section, signifying brief precipitation from supersaturated diagenetic fluids. Partial or complete permineralization with pyrite is exceedingly rare (N = 6), but pyritic concretions adhered onto bone surfaces are encountered at a slightly higher frequency (N = 28, 0.01% of total). Five of these pyritic concretions also permeate portions of interior bone, creating local zones of permineralization. Incipient pyrite “disease” is beginning to degrade some of these specimens, in which the pyrite concretions are friable and crumble when touched. Many limb bone epiphyses and porous edges of vertebral centra and processes are partially encased in yellow goethite concretions or are permeated by an unconsolidated, bright red-orange powder. XRD analyses failed to provide spectra for this material, signifying it is amorphous in nature, and EDX identified it as being comprised of iron and oxygen. Thus, both amorphous iron oxides and goethite commonly are concentrated around bones. Given that amorphous iron oxide tends to concentrate not only around 98 bones but precisely around the more porous regions where biogenic fluids, such as blood, could most easily leach out of the bone, an intriguing avenue for future research would be to test if organically bound iron in the form of haeme is present in this material. 2.8.12 Soft tissue preservation Demineralization yielded abundant structures morphologically consistent with vertebrate osteocytes, blood vessels, and fibrous bone matrix (Figure 2.8). These structures were even recovered from a fragment of moderately weathered “float” cortical bone (Figures 2.8C–D). Numerous osteocytes and few vessel fragments were also isolated from ossified tendon samples, representing the first recovery of these structures from such tissue. Soft tissue structures were absent in all sediment samples, which instead yielded rounded to angular sand grains of varying composition, small lignite fragments, amber inclusions, and dark, granular, fine-grained fragments of silty matrix (Figures 2.8A,N). Certain bones (such as metatarsal SRHS-DU-306 and femur SRHS-DU-273) yielded more numerous soft tissue structures than others (such as phalanx SRHS-DU-278 and metatarsal SRHS-DU-274), but there is no clear correlation between bone type and soft tissue recovery. However, cortical bone yielded far more vessel fragments than cancellous bone. This may be due to the greater protective mineral encasement of vessels in cortical bone. In both bone and tendon samples, osteocytes are recognizable as oblate, rounded structures frequently with long, branching extensions emanating in all directions (Figures 99 2.8C,E,I–J). These extensions are morphologically consistent with filipodia of modern bone cells. Filipodia of some osteocytes exceed 20 μm in length (Figures 2.8C,I). No vessels were recovered from phalanx SRHS-DU-278, and only a single vessel fragment was recovered from phalanx SRHS-DU-89. Osteocytes vary between stellate and flattened-oblate morphologies as defined by Cadena and Schweitzer (2012), and typically exhibit light yellow-tan to dark brown color (Figures 2.8E,I). Some osteocytes, however, are nearly translucent and lack filipodia (Figure 2.8H). SEM of osteocytes found that many present fine, linear grooves crisscrossing the surface of the main body of the osteocyte (Figure 2.9E). Similar grooves have previously been noted on fossil osteocytes from the dinosaur Tarbosaurus by Pawlicki (1995; Pawlicki and Nowogrodzka-Zagorska, 1998), who suggested they are impressions of collagen fibrils. Tendon and cortical and cancellous bone yielded small fragments of fibrous tissue consistent with collagenous bone matrix (Figures 2.8F,H,J,L). Matrix fragments normally appear translucent, though samples from phalanx SRHS-DU-278 exhibit a yellowish hue likely due to iron staining. These tissues appear as rough, porous, fibrous masses, and osteocytes are occasionally seen embedded within and attached to matrix fragments (Figures 2.8H,J). This is especially clear under SEM (Figures 2.9C–D, 2.10A). SEM analyses also found that some fragments of fibrous matrix exhibit a bi-layer structure comprising two primary fibrillar sheets interconnected by abundant cross-struts (Figure 2.9C). Compositional heterogeneity between osteocytes and fibrous matrix is clearly evident in some samples, such as fibula SRHS-DU-231, in which fibrous matrix remains translucent, whereas osteocytes are dark orange-brown in color (Figure 2.8J). 100 Vessel fragments are plentiful in some samples (Figure 2.8B), and some remain slightly pliable (flexible). These structures are uniformly cylindrical in form and hollow (Figures 2.8F,K, 2.9F), and many exhibit intricate branching patterns. Metatarsal SRHSDU-306 preserves intricate, interconnecting vessel networks (Figures 2.8M, 2.9A–B). All vessels, including pliable vessels, exhibit yellow to orange or brown coloration. A few vessel fragments are rigid and appear nearly black in coloration, suggesting they may be iron oxide casts of vessel canals rather than partially preserved original vessels. Some vessels contain abundant red-brown, spherical microstructures that exhibit a narrow range in diameter from 5–15 μm (Figure 2.8G). Similar intravascular microstructures previously identified in dinosaur vessels (Pawlicki, 1995; Schweitzer and Horner, 1999; Schweitzer et al., 2005b) have been attributed to condensation of erythrocyte degradation products that induces precipitation of nanocrystalline goethite (Schweitzer et al., 2014a). Demineralization of a tooth, carried out for an additional 3 weeks due to the high crystallinity of enamel, yielded dark brown networks of cylindrical structures (Figures 2.8O–P). The cylindrical structures comprising many of these networks are frequently parallel to one another, and occasionally thin, short, cylindrical struts can be seen interconnecting the long, main tubular structures (Figure 2.8O). EDX was not conducted on these products due to time constraints. I hypothesize these structures may be ironoxide casts of longitudinal dentine tubules, similar to those described by Bocherens et al. (1994). Dentine tubules in hadrosaur teeth have been identified to primarily run parallel to one another in a longitudinal (root to apex) direction (Erickson et al., 2012) and, though I am not aware of any published estimates of their diameter in dinosaur teeth, they 101 appear in published figures to have diameters of roughly 1–2 μm (for reference, modern human dentine tubules are also 1–2 μm in diameter; Gunji and Kobayashi, 1983). EDX spot analyses (Figures 2.10 and 2.11) and mapping (Figure 2.12) of soft tissue demineralization products identifies their compositions as primarily comprising iron and oxygen. This is true of all tissue types: osteocytes, fibrous matrix, and vessels. Carbon, silicon, and phosphorous were identified as additional minor components of vessels and osteocytes, and aluminum was also identified as a minor constituent of the elemental inventory of osteocytes. Because iron encasement may physically shield tissues from impregnation by histochemical dyes (Pawlicki, 1995), cause ion suppression when attempting mass spectrometry, and potentially block active enzymatic binding sites of proteins (Schweitzer et al., 2013), pretreatment with iron chelators (e.g., pyridoxal isonicotinoyl hydrazone) might likely be needed before attempting immunological assays or mass spectrometry (Schweitzer et al., 2013, 2014a) on these tissues. 2.8.13 Palynology The palynoflora of the bonebed horizon was originally presented by Colson et al. (2004, table 3; Figure 2.13A herein). Those authors also noted a high but variable proportion of organic material within the bonebed unit (30–60% organic matter) and a noteworthy abundance of “coalified logs” (Colson et al., 2004, table 1) immediately beneath the dense accumulation of bones. Their petrographic examination of the kerogenous assemblage identified abundant, partially coalified plant matter, including vitrinite (thermally altered/coalified wood), telinite (coalified wood retaining recognizable cell structures), and inertinite (specifically micrinite, fossil charcoal from 102 ancient fires) (ASTM, 2011; ICCP, 1998, 2001). Macrofloral remains comprise an abundance of Metasequoia sp. (redwood) cones (N = 20), two fragments of coalified Metasequoia sp. branches, and a coalified fragment of a Taxodium occidentalis (cypress) branch. Gymnosperm (46%) and angiosperm (43%) pollen dominate the palynomorph assemblage, with fern spores comprising nearly the entire remaining faunal composition (~11%). Based on general morphology, it is likely that indeterminate monolete and trilete type fern spores listed by Colson et al. (2004) are referable to Cyathidites and Laevigatosporites, respectively. Spores of bryophytes, or lycopsid club mosses, are extremely rare, and no algal spores or marine dinoflagellates were recovered. The cypress pollen Taxodiaceaepollenites is by far the most common overall and is also by far the most common gymnosperm palynomorph. Angiosperm palynomorphs are dominated by Tricolpopollenites, which is generally attributed to the wild rhubarb Gunnera (Vajda et al., 2013). The index forms Aquilapollenites, Wodehouseia spinata, and Cranwellia rumseyensis (nearly indistinguishable from Striatellipollis striatellus; Nichols, 2002) signify a late Maastrichtian age for the bonebed horizon. Many of the same palynomorphs were found by Vajda et al. (2013) at the site of a “mummified” Edmontosaurus annectens (MRF-03), also from the basal Hell Creek Formation, in southwestern North Dakota (Figure 2.13B). Palynomorphs represented at both sites include the fern spores Gleicheniidites, Cyathidites, and Laevigatosporites, the gymnosperm palynomorphs Pinuspollenites (pine) and Taxodiaceaepollenites (cypress), and the angiosperm palynomorphs Aquilapollenites (wild columbine), Cranwellia/Striatellipollis (mistletoe), Tricolpites (wild rhubarb Gunnera), and 103 Triporopollenites (birch). However, palynofloral composition at SRHS differs from the MRF-03 site presented by Vajda et al. (2013) in that SRHS lacks algal spores and marine dinoflagellates and includes proportionately more angiosperm pollen and fewer fern spores than at MRF-03. Bryophytes are also less common at SRHS than at MRF-03. 2.9 Discussion 2.9.1 Depositional setting of the assemblage Strata underlying the bonebed record a regressive sequence of near-shore sedimentation, as evidenced by an abundance of mature, cross-stratified foreshore sandstones in the Fox Hills Formation, perforated by abundant Ophiomorpha shrimp burrows (Colson et al., 2004), overlain by dark, organic-rich mudstones deposited in supratidal coastal plain marshes (see Stratigraphy section, above). Strata overlying the bonebed reflect deposition in typical Hell Creek fluvial channels and floodplains (Colson et al., 2004; this paper). The precise microenvironment represented by the bone-bearing mudstone is difficult to interpret. Colson et al. (2004) originally characterized this bed as being deposited in a “coastal swamp.” However, there are multiple problems with this interpretation. Foremost among these is a high ratio of sediment to organics within the horizon. Deposition in temporally long-lived paludal marshes, in contrast, is dominated by organic debris in the form of peat, which later becomes coalified (Staub and Cohen, 1979; McCabe, 1984). Though lignifed logs are common in the basal portion of the bed, there is no distinct coal horizon. A second problem is that salt marshes tend to be acidic 104 environments in which bone is expected to have low preservation potential (Behrensmeyer et al., 1992). Finally, although cypress pollen is indeed common in this horizon, one cannot be certain that this abundance equates with an autochthonous pollen record; indeed, it may reflect just the opposite (see below). Sedimentologic features of the bonebed mudstone and non-dinosaurian fauna preserved within the assemblage only provide vague indications of the depositional environment. As two facies examples, no root traces are encountered in the bed and no channel sandstones underlie the assemblage, demonstrating lack of development of an extensive marsh (Kroeger, 2002) and indicating deposition did not occur within an abandoned channel, respectively. The majority of fish, turtle, crocodilian, and invertebrate remains collected are referable to taxa inhabiting fluvial channels and their immediate overbank settings, yet the sedimentology of the bed clearly does not reflect attributes typical of fluvial channels. This contradiction demonstrates that at least short distance transport occurred. Palynoflora of the bonebed horizon provide an illuminating record of the local environment, recording a warm and humid subtropical forest comprised primarily of cypress trees, wild rhubarb, and an understory of various ferns and herbaceous angiosperms. The local canopy also included a small component of pine and birch trees occasionally playing host to the epiphyte mistletoe Cranwellia/Striatellipollis. This floral assemblage includes a greater proportion of cypress and birch trees and a lesser proportion of ferns than another basal Hell Creek Formation site in southwestern North Dakota (MRF-03; Vajda et al., 2013), which may be a product of differing depositional microenvironments surrounded by differing vegetation. According to Kroeger (2002), 105 floodplain ponds and lakes capture a record of the surrounding regional vegetation, whereas floodplain and oxbow marshes better record the floral composition of the immediate local environment. At SRHS, the most common palynomorphs are the small forms Taxodiaceaepollenites (46%) and Tricolpopollenites (24%); large palynomorphs, such as Wodehouseia spinata and Lycopodium spores, are exceedingly rare (each < 1%) (Colson et al., 2004, table 3). Taxodiaceaepollenites and Tricolpopollenites, as well as Triporopollenites (another common SRHS palynomorph), have been found most commonly in flood-basin lake/pond deposits in the Hell Creek Formation (Kroeger, 2002), suggesting the SRHS bone-bearing mudstone records such a small, coastal plain pond. Corroborating evidence for this interpretation includes an abundance of palynomorphs from diverse, tall, canopy trees, including those deriving from cypress, birch, beech, alder, and pine trees. Palynomorphs from taller plants have a greater likelihood of long distance dispersal and hence would be more likely to accumulate in standing bodies of water (Kroeger, 2002). In addition, the most common fern spore, Cyathidites, has been attributed to tree ferns; spores of ground-dwelling ferns are slightly less abundant. In combination, rarity of spores from salt-tolerant tree ferns (5%) and abundance of palynomorphs from freshwater cypress (46%) strongly suggest the depositional setting was a paludal marsh rather than a vegetated intertidal flat (cf. Wilhite and Toliver, 1990; Gomez et al., 2002). The assemblage of palynomorphs at SRHS is thus attributable to a coastal plain pond/lake within a cypress-dominated marsh. This interpretation is supported by other facies attributes of small, near-shore lake deposits observed in the bonebed horizon, such 106 as: 1) a lack of root traces that would be characteristic of an extensive, established salt marsh (Kroeger, 2002); 2) an abundance of highly fragmented plant remains; 3) rare invertebrate fossils, and; (4) random, minor mottling of the matrix, including discrete, thin pockets of very fine sand (Reineck and Singh, 1980; Kroeger, 2002). By contrast, a considerably greater abundance of bryophytes and ground-dwelling fern spores at MRF03 indicate that site may record a comparatively more terrestrial, lowland, fluvial marsh environment (sensu Kroeger, 2002). 2.9.2 Assemblage accumulation scenario The SRHS represents a mass mortality assemblage that can be characterized as a biogenic, intrinsic assemblage following the classification scheme of Rogers and Kidwell (2007). Evidence supporting this inference includes its monospecific nature concerning large vertebrates, scarcity of weathering and other indications of attritional accumulation, and general depositional setting (Rogers and Kidwell, 2007). Though I agree with Colson et al. (2004) that larger individuals comprise the majority of the bonebed age profile, I do not agree that this is viable evidence of attritional accumulation. As reviewed by Eberth et al. (2007), young juveniles would also be expected to comprise a significant fraction of an attritional age profile. The cause of mortality remains unknown, but certain possibilities can plausibly be eliminated. No indications of drought (e.g., caliche [pedogenic carbonate] horizons or nodules, red/oxidized paleosols; Rogers, 1990) are encountered within the bonebed mudstone or surrounding strata. Although a lack of young juveniles may be consistent with miring (Sander, 1992), disarticulation, horizontal orientation of most bones, lack of 107 overrepresentation of bones from the ventral and caudal regions of the body, and absence of contorted strata eliminate miring as the cause of mass mortality (Rogers and Kidwell, 2007). Pathologies are rare and consistently portray breakage and healing rather than any prevalent disease, suggesting a fatal pathogen is either unlikely or left no osteological signifiers. Eberth (1998 pers. communication cited in Johnson et al., 2002) proposed storm surges as another killing agent along shores of the inland seaway, but the absence of marine invertebrates and dinoflagellates in the palynomorph assemblage argue against a storm surge as the cause of death for these hadrosaurids. Death by drowning during a flood or while fording a river (e.g., Wood et al., 1988) are each plausible explanations, though no conclusive evidence is available to discern the likelihood of either scenario. A lack of clear overrepresentation of Voorhies group II elements and underrepresentation of group I elements identifies minimal, if any, winnowing by preburial fluvial processes, suggesting the assemblage is virtually autochthonous (i.e., the animals died in this location rather than somewhere upstream). This suggestion is also substantiated by: (1) a definitive abundance of group I bones (Figure 2.2C) that would be easily removed by fluvial currents (Behrensmeyer, 1975); (2) generally modest departures of observed bone frequencies from those expected in a skeleton for both group I and II elements (5.4% and 2.5% differences on average, respectively, between observed and expected frequencies; Figure 2.2C); (3) scarce degradation of fossil palynomorphs, which suggests minimal transport (Kroeger, 2002) of sediments now comprising the bonebed horizon, and; (4) lack of hydraulic equivalency between bones and their encasing sediments. 108 However, variation in the patterns of over- and underrepresentation amongst bones of group I and II suggest slight spatial mixing may have occurred during deposition or burial, meaning that a parautochthonous origin cannot be ruled out. Moreover, nearly universal disarticulation and disassociation of skeletal elements unequivocally demonstrate physical disruption of decaying carcasses (rather than death by obrution). I infer disruption was caused by low energy currents due to the fine size of clastics of the bone-bearing stratum and rarity of abrasion. Decomposition was prolonged enough to allow complete disarticulation upon exposure to currents but brief enough to evade even moderate weathering. Alternatively, bone weathering may have been inhibited by subaqueous decomposition (i.e., within the pond or marsh; Rogers, 1990) due to factors such as minimal temperature and humidity fluctuations (Behrensmeyer, 1978). Though the location of death is difficult to constrain, the uniform paucity of bone weathering constrains the location of decomposition to be autochthonous or minimally parautochthonous with respect to the site of burial (in agreement with Colson et al., 2004). This conclusion is corroborated by an absence of definitive evidence of longdistance transport of the remains. However, downstream transport of floating carcasses from a distant upstream locality (followed by decay in the pond/marsh) cannot conclusively be ruled out. I consider this scenario less parsimonious because no channel deposits underlie the bonebed horizon and there is no evidence for their erosive removal, meaning that carcasses moved en masse downstream would also have had to breach the channel and traverse part of the floodplain to accumulate in the coastal plain marsh. Although possible (e.g., Turnbull and Martill, 1988), as Rogers (1990) discussed, transportation of large carcasses across a forested floodplain would require a significant 109 flood event; but there is no conclusive evidence of such a major flooding event in this portion of the stratigraphic succession at SRHS. Moreover, sedimentology of the bonebed horizon is inconsistent with a channel-proximal crevasse splay deposit (e.g., normal grading is too poorly developed; Reineck and Singh, 1980). A general lack of pattern to the orientation of bones is also inconsistent with a crevasse splay event, in which unidirectional currents would be anticipated to orient bones. Concerning burial, occurrence of all bones in a single bed with slight normal grading signifies waning flow competency during a single depositional event (Behrensmeyer, 1988). Given the typical fluvial nature of the Hell Creek Formation deposits directly overlying the bonebed mudstone (Colson et al., 2004), I posit this event was a flood. In contrast to interpretations by Colson et al. (2004), I find the generally fine grain size of the entombing and directly overlying matrix (within the bonebed horizon) to be consistent with deposition of suspended sediment in a distal floodplain setting (such as the coastal plain marsh envisaged for SRHS). In addition, the lesser volume of organic matter in the upper portion of this mudstone is more consistent with rapid deposition than continued, gradual accumulation of sediments. Thus, I conclude the following scenario from sedimentologic, stratigraphic, taphonomic, and palynologic data: a herd of primarily subadult and adult Edmontosaurus annectens perished in a sudden mass mortality event near a paludal pond near the WIKS shoreline. Their carcasses underwent decomposition for a moderate time period (either above the water line or within the shallow pond) in which nearly all soft tissues were lost but bones were not subjected to decay from subaerial weathering. Dromaeosaurid theropods scavenged some of the remains before a moderate-energy fluvial flood 110 remobilized and disarticulated any remaining articulated elements, creating full disassociation of the skeletons. Burial was accomplished by fine clastic influx from the flood, in which distal floodwaters spread out in the lake and lost flow competency, creating the normally graded deposit of suspension-load silt and clay now entombing the remains. 2.9.3 Diagenetic facilitation of soft tissue preservation Preservation of original soft tissues in geologically ancient bone was once thought impossible (e.g., Lindahl and Nyberg, 1972; Nielsen-Marsh, 2002), but recent investigations have found such remarkable preservation to be quite common (Schweitzer et al., 2005b, 2007b, 2009, 2013; Peterson et al., 2010; Cadena and Schweitzer, 2012, 2014; Cleland, 2012; Armitage and Anderson, 2013). Because SRHS bones exhibit excellent morphologic preservation and lack permineralization, I hypothesized they would be ideal candidates to retain endogenous soft tissues like those garnered in the above references. Excellent morphologic and histologic preservation frequently (though not universally) correlate with biomolecular preservation (Eglinton and Logan, 1991; Hagelberg et al., 1991; Hedges, 2002; Schweitzer, 2004; Turner-Walker and Jans, 2008), and lack of permineralization has been suggested to signify excellent candidates for molecular analyses because such specimens must have experienced minimal interactions with permeating pore fluids (Schweitzer et al., 1997a). For SRHS bones, distinctly low trace element concentrations of both cortical and cancellous bone further support limited and brief diagenetic interactions with pore fluids (Ullmann et al., 2014), which has also been hypothesized to favor biomolecular preservation (Trueman et al., 2008a). 111 Ultimately, decalcification with EDTA supported my hypothesis that soft tissues should be preserved: bones from SRHS yielded numerous structures morphologically consistent with vertebrate osteocytes, blood vessels, and fibrous bone matrix. Numerous environmental, geologic, and taphonomic factors likely contributed to preservation of these structures at SRHS. First, rapid burial by a flooding event could have facilitated stabilization of organics by promoting anaerobic conditions (Allison, 1988), thereby limiting decomposition (e.g., Eglinton and Logan, 1991; Poinar and Paabo, 2001; Schweitzer, 2004; Manning et al., 2009). Second, reducing, waterlogged conditions may have created anoxia that can minimize scavenging and microbial activity (Tuross et al., 1989; Briggs et al., 2000; Hedges, 2002; Briggs, 2003; Schweitzer, 2004). Shallow floodplain lakes, such as that envisaged at SRHS, are also generally neutral to slightly alkaline in pH (Retallack, 1988), which should favor stability of endogenous tissues more so than acidic environments (Tuross et al., 1989; Schweitzer, 2004). Third, the finegrained matrix hosting the bonebed may have facilitated soft tissue preservation simply by its composition and structure: clays undergo significant compaction, which has been hypothesized to limit microbial mobility and potential for oxidation (Eglinton and Logan, 1991; Muyzer et al., 1992; Peterson et al., 2010). Moreover, clays in the host matrix could adsorb and inactivate microbial enzymes (Butterfield, 1990). Finally, these bones have experienced an ideal taphonomic history, namely minimal transport and weathering. These factors have each been proposed to limit biomolecular degradation due to, respectively, limited protein degradation (Trueman et al., 2004; Fernandez-Jalvo et al., 2010) and limited exposure to reactants and decomposers (Eglinton and Logan, 1991). 112 EDX results (Figures 2.10B, 2.11B) suggest that compositional heterogeneity among preserved tissues (as reflected in differential coloration between some of these structures, as in Figure 2.8J) primarily reflect differences in the degree of incorporation of iron. Iron was clearly abundant at SRHS, as evidenced by EDX analyses of soft tissues as well as the abundance of goethite concretions and amorphous iron oxides within the encasing sediments. Recent investigations of the effects of iron on soft tissue stabilization identify that iron plays a fundamental role in making reactive tissues stable and inert by: 1) passivating epitopes of comprising biomolecules (Briggs, 2003; Cleland, 2012); 2) inhibiting autolysis (Liebig, 2001), and/or; 3) producing free oxy radicals that induce natural fixation (Schweitzer et al., 2014a). It is likely that the great abundance of iron at SRHS facilitated stabilization of bone soft tissues in one or all of these manners. The abundance of amorphous iron oxide and goethite (FeOOH) concretions in the bonebed mudstone owes to oxidation, and one might find it difficult to constrain the timing of oxidation because ancient floodwaters that promoted burial and modern meteoric water percolating through the sediments are equally plausible oxidative agents. However, goethite never occurs as a primary concretion (Rowe et al., 2001); rather, it forms by oxidation of siderite (FeCO3) on exposure to molecular oxygen (Senkayi et al., 1986; Rowe et al., 2001; Loope et al., 2012). In the transformation, any manganese substituting for Fe2+ is released and recrystallizes on the exterior of the concretion as a dark, thin film of todorokite ([Ca,K,Na,Mg,Ba,Mn][Mn,Mg,Al]6O12•3H2O; Senkayi et al., 1986). SRHS concretions commonly exhibit such thin, dark blue to brown coatings, consistent with their original mineralogy being sideritic. Because siderite often forms as nodules (Morad, 1998) in reducing, organic-rich, standing-water environments such as 113 coastal plain ponds like that inferred at SRHS (Morad, 1998; Russell et al., 2001; Loope et al., 2012), it is reasonable to conclude that the concretions formed during initial diagenesis. In the absence of abundant sulfide in pond/marsh environments, bicarbonate released by dysaerobic-anaerobic decomposition (bacterial oxidation) of organic matter combines with dissolved ferrous iron to form siderite nodules in the shallow burial zone (cm to dm below the water table; Coleman, 1993). Siderite nodules often nucleate around organics, such as microbial concentrations (Coleman, 1993) or entire animals (e.g., the Mazon Creek Lagerstӓtte; Allison, 1988). At SRHS, bones appear to commonly serve as condensation nuclei for the concretions, especially porous limb bone epiphyses and vertebral edges, perhaps because these areas represent primary sources of iron via outflow of iron-rich blood during decay. This is important because modeling experiments show that siderite concretions grow rapidly (Chan et al., 2007), likely entirely during early diagenesis (Loope et al., 2012). Rapid, early cementation around porous regions of bones and of portions of the surrounding sediment would decrease microbial mobility and flow of diagenetic pore fluids (Hubert et al., 1996; Boyce et al., 2002), raising preservation potential for soft tissues. In this manner, partial cementation of the host matrix at SRHS took place prior to oxidation, partly shielding soft tissues from its harmful effects. 2.10 Conclusions Based on my cumulative findings, I conclude that the SRHS bone-bearing mudstone records a mass mortality event that took place either autochthonous or 114 parautochthonous to the site of burial. Sedimentation following a period of high-standing water levels buried the hadrosaurid remains in a shallow pond within a cypress-rich marsh encircled by lush subtropical forest. This environmental setting is entirely consistent with previous considerations of basal Hell Creek strata, and more importantly offers a detailed record of low-lying floodplain microenvironments recorded in such beds in the central Dakotas. The specific taphonomic history of these specimens was amenable to soft tissue preservation. This is clearly evident given the abundance of osteocytes, fibrous matrix, and vessels recovered upon demineralization of fossil cortical bone, cancellous bone, and ossified tendon. Although decomposition was sufficiently prolonged and intense to allow complete disarticulation and disassociation of the carcasses, bones evaded prolonged subaerial exposure and transport. Rapid burial in a reducing, dysoxic, iron-rich but sulfate-poor diagenetic setting both limited decay of soft tissues and facilitated cementation of portions of the entombing sedimentary matrix through growth of sideritic concretions. It is the growth of these presumably early diagenetic siderite concretions that may, perhaps, have been the most crucial step. It is plausible that, by decreasing permeability of the sedimentary matrix, concretion formation limited flow of pore fluids and mobility of microbial decomposers. In addition, growth of siderite over bone surfaces appears to have efficiently stabilized bones with the diagenetic environment and shielded many of them from prolonged interaction with pore fluids (by inhibiting percolation of groundwater through the pore spaces of the bones). Hence, in agreement with Schweitzer et al. (2014a), I find it plausible that other fossils preserved by rapid burial in iron-rich sediments are potentially excellent 115 candidates for retention of pliable soft tissues and biomolecules. Documentation of soft tissue and biomolecular preservation in fossils must always be accompanied by detailed analyses of the sedimentologic and taphonomic context of the remains; without this crucial information, one can never understand how the fossil under study has entered, let alone persisted in the fossil record. 116 Table 2.1 Additional faunal material recovered from the Standing Rock Hadrosaur Site. Abbreviation: indet, indeterminate. Taxon Lepisosteus occidentalis Dromaeosauridae indet. Multituberculata indet. Metasequoia sp. Brachychampsa montana Borealosuchus sternbergi Kindleia fragosa Trionychidae indet. Compsemys victa Campeloma sp. Myledaphus bipartitus Troodon formosus Unionidae indet. Crocodilia indet. Champsosaurus sp. Taxodium occidentalis Metatheria indet. Eutheria indet. Theria indet. Group/common name Gar Dromaeosaurid Multituberculate Redwood tree Alligator Crocodile Amiid fish Turtle Turtle Snail Ray Troodontid Unionid clam Crocodilian Champsosaur Cypress tree Advanced mammal Advanced mammal Advanced mammal Element(s) Count Scales, teeth, vertebrae 197 Teeth 89 Teeth, partial dentary 58 Leaf imprints, cones 22 Teeth 20 Teeth 6 Trunk vertebrae 5 Costal, carapace fragments 3 Carapace fragments 3 Steinkerns 3 Teeth 2 Teeth 2 Steinkerns 2 Scute fragments 2 Teeth 2 Leaf imprint 1 Molar tooth (talonid portion) 1 Lower molar tooth 1 Premolar tooth 1 117 Table 2.2 Survival of skeletal elements of Edmontosaurus annectens at the Standing Rock Hadrosaur Site, predicted from MNI versus actual. Abbreviations: MNI, minimum number of individuals; NA, not applicable. MNI for Number Original Predicted this Found Number Number % Survival element SKULL1 44 NA 505 82 3608 14.0 Quadrate 44 28 54 2 88 61.4 Jugal 44 28 50 2 88 56.8 Postorbital 44 16 27 2 88 30.7 Exoccipital 44 6 11 2 88 12.5 Parietal 44 5 5 1 44 11.4 Frontal 44 18 38 2 88 43.2 Basisphenoid 44 7 7 1 44 15.9 Maxilla 44 22 45 2 88 51.1 MANDIBLE 44 24 104 13 572 18.2 Dentary 44 15 38 2 88 43.2 VERTEBRAL COLUMN2 44 NA 1270 94 4136 30.7 3 Caudals 44 NA 1078 60 2640 40.8 Dorsals 44 NA 59 183 792 7.4 APPENDICULAR SKELETON 44 44 1809 100 4400 41.1 Scapulae 44 4 28 2 88 31.8 Radii 44 18 42 2 88 47.7 Tibiae 44 5 33 2 88 37.5 Metatarsals 44 44 214 6 264 81.1 Metacarpals 44 40 249 8 352 70.7 Phalanges 44 40 899 70 3080 29.2 1 Maximum number of primary and accessory cranial elements excluding teeth. 2 Count of complete vertebrae plus centra. 3 Midpoint in range cited by Horner et al. (2004). Element MNI 118 Figure 2.1 Attributes of the Standing Rock Hadrosaur Site fossil assemblage. (A) Age profile. (B) Vertebral region abundances. (C) Vertebral component abundances. (D) Pes series abundances. (E) Temporal-palatal series abundances. (F) Bone weathering stages. (G) Bone abrasion stages. (H) Bone fracture types. 119 Figure 2.2 Population and biostratinomic attributes of the Standing Rock Hadrosaur Site assemblage. (A) Frequency of specimen size classes, using three centimeter bins. (B) Distribution of skeletal regions and series. (C) Relative frequency of elements according to Voorhies (1969) transportation groups. White columns display the frequency of bones in a single complete skeleton of Edmontosaurus annectens, whereas black columns display the frequencies of bones excavated from the quarry. (D) Plunges of elongate specimens from the 2012 quarry, the only year plunge data were collected. (E) Plunge directions of elongate specimens from the 2012 quarry. Light gray arrow denotes the mean (14.9°), dark gray arcs outside the compass mark range of one standard deviation from the mean. (F). Orientation of skeletal elements for the entire excavation. (G) Orientation of skeletal elements for solely the 2012 quarry. Rose diagrams presented as arithmetic plots with 10° bins. 120 121 Figure 2.3 Quarry map from the summer excavation of 2012 at the Standing Rock Hadrosaur Site, divided into bones (A) and ossified tendons and teeth (B). Bones outlined in gray in (A) are the 12 from which samples were collected for soft tissue analyses. SRHS-DU specimen numbers for all bones are provided in (A). In (B), black lines are partial ossified tendons whereas black spots denote small ossified tendon fragments for which orientation data were not gathered. Gray stars in (B) denote isolated teeth (mostly Edmontosaurus, only a few theropod teeth included). Dashed black line denotes erosional edge of hillside. Dotted gray line denotes furthest extent of excavation into the hillside at the end of the field season. Crosshair symbols denote the vertices of square meter grids that are defined by the letter and number axes at the edge of the map. 122 Figure 2.4 Breakage in Edmontosaurus annectens bones from the Standing Rock Hadrosaur Site. (A) Example spiral break through the ramus of a quadrate (CC-MN2923). (B) Example concentric fracture pattern on the medial aspect of the proximal end of a left ulna (CC-MN-48). Numbered units of scale bar in (A) are centimeters. Scale bar for (B) equals 10 cm. 123 Figure 2.5 Theropod bite marks and teeth from the Standing Rock Hadrosaur Site. (A) Example bite marks (four subparallel tooth scores, arrows) on a metatarsal III (CC-MN1893). (B) Example shed theropod tooth recovered from the bonebed (CC-MN-P39). Numbered units of scale bar in (A) are centimeters. Scale bar for (B) equals 1 cm. 124 Figure 2.6 Examples of paleopathologies in Standing Rock Hadrosaur Site Edmontosaurus annectens bones. (A) Osteochondrosis expressed as a localized arcuate lesion (arrow) on the articular face of a distal caudal centrum (CC-MN-3519). (B) Osteochondrosis-like lesion that sagittally bisects a distal caudal centrum, seen here as a dorsoventrally oriented groove on the articular face (arrows; CC-MN-3115). (C) Two fused caudal vertebrae (CC-MN-2897 and -2898). (D) Oblate raised lesion (arrow) on the dorsal surface of a pedal ungual (CC-MN-2565). Scale bars all equal 5 cm. 125 Figure 2.7 X ray diffractograms of Standing Rock Hadrosaur Site fossils, encasing sediment, and concretions within the bonebed mudstone. All diffraction spectra except for that of cancellous bone have been vertically shifted to allow visual comparison between samples. All biologic samples were identified as fluorapatite. Sediment was identified to comprise illite, muscovite, anorthite, albite, and quartz. The concretion from within the bonebed was identified as goethite. The white sandstone overlying the bonebed (data not shown; unit 6 of Colson et al., 2004) was identified to comprise of quartz, anorthite, microcline, muscovite, and vermiculite. 126 Figure 2.8 Demineralization products of encasing sedimentary matrix and fossil fragments from the Standing Rock Hadrosaur Site. (A) Magnified view of sedimentary matrix, including a small pocket of amber and abundant, small, black, organic inclusions. (B) A fragment of femur cortex after one week of decalcification, showing numerous parallel vascular canals beginning to emerge. (C) Osteocyte with elongate filipodia recovered from a fragment of weathered “float” cortical bone. (D) Size comparison of an osteocyte (upper left) and vessel fragment recovered from a fragment of weathered “float” cortical bone. Same specimen as in (C). (E) Osteocyte with elongate filipodia recovered from a fragment of ossified tendon. (F) Straight, cylindrical vessel fragment (right) and pieces of fibrous matrix (lower left) recovered from a fragment of ossified tendon. Same specimen as in (E). (G) Vessel fragment with dark, spherical, iron-rich intravascular inclusions recovered from metatarsal SRHS-DU-274. (H) Abundant fossil osteocytes embedded in fibrous bone matrix recovered from metatarsal SRHS-DU-274. (I) Osteocyte with elongate filipodia recovered from fibula SRHS-DU-231. (J) Compositional heterogeneity evident between a fossil osteocyte (center) and fibrous matrix encasing it. Same specimen as in (I). (K) Straight, cylindrical vessel fragment recovered from same fibula specimen as in (I) and (J). (L) Magnification of fibrous matrix recovered from manual phalanx SRHS-DU-89. (M) Complex, branching vessel network recovered from metatarsal SRHS-DU-306. (N) Osteocyte with elongate filipodia recovered from caudal centrum SRHS-DU-220. (O) Example quartz (lower right) and silt-rich matrix (upper left) grains remaining after demineralization of sedimentary matrix. (P) Dark, parallel-aligned, tubular structures recovered following 127 Figure 2.8 (continued) demineralization of an Edmontosaurus tooth. Scale bars are labeled in each figure. 128 Figure 2.9 Representative soft tissues recovered from Standing Rock Hadrosaur Site Edmontosaurus annectens bones. All images except (A) collected by SEM. (A–B) An extensive vessel network recovered from metatarsal SRHS-DU-306 exhibiting bright orange color typical of many, but not all, recovered vessels. (C) A bi-layer sheet of fibrous matrix exhibiting abundant, perpendicularly oriented cross-struts (doubleheaded white arrow). At right, an osteocyte with long filipodia is partially covered by the matrix sheet. (D) Two osteocytes exhibiting long filipodia (arrows). (E) Magnified view of the surface of left osteocyte in (D), exhibiting shallow, linear grooves crisscrossing across the cell surface (arrows). (F) An exemplar vessel fragment displaying hollow, cylindrical form. Units of the scale bar in (A) are millimeters. Scale bar in (B) equals 1 mm. Scale 129 Figure 2.9 (continued) bars in (C) and (D) equal 10 μm. Scale bar in (E) equals 2 μm. Scale bar in (F) equals are 100 μm. 130 Figure 2.10 (A) SEM image of a large fragment of fibrous matrix with numerous osteocytes attached to it (black arrows) from metatarsal SRHS-DU-306. Insets provide closer views of two osteocytes to allow better visualization of cell structure and filipodia. (B) Elemental composition of an osteocyte from (A) determined by EDX, from the region outlined in dashes. (C) Elemental weight and atomic percent composition corresponding to the spectrum in (B). Scale bar in large-scale micrograph in (A) equals 50 μm. Scale bars in insets of (A) each equal 10 μm. 131 Figure 2.11 (A) SEM image of a branching vessel fragment from Edmontosaurus annectens fibula SRHS-DU-231. Inset provides a closer view of the porous, amorphous vessel surface. (B) Elemental weight and atomic percent composition corresponding to the spectrum in (C). (C) Elemental composition of the vessel surface from (A) determined by EDX, from the entire region shown in the inset of (A). Scale bar in largescale micrograph in (A) equals 100 μm. Scale bar in inset of (A) equals 10 μm. 132 Figure 2.12 Energy-dispersive x-ray elemental maps across an osteocyte attached to amorphous fibrous matrix (in background of SEM image at left), from an Edmontosaurus annectens metatarsal (SRHS-DU-306) from the Standing Rock Hadrosaur Site. Bright white reflects a strong signal. Composition of both tissues is primarily dominated by iron and oxygen. Scale bar in SEM image at left equals 10 μm. 133 Figure 2.13 Comparison of palynomorph assemblages from the Standing Rock Hadrosaur Site (A) and MRF-03 (B), another Hell Creek Formation site where the “mummified” Edmontosaurus “Dakota” was recovered. Data for SRHS from Colson et al. (2004) and for MRF-03 from Vajda et al. (2013). 134 CHAPTER 3: CORRELATING FOSSIL BONE RARE EARTH ELEMENT PROFILES TO PRESERVATION OF ORIGINAL SOFT TISSUES AND BIOMOLECULES 3.1 Abstract Based on a proposed link between trace element composition and rate of bone hydroxyapatite recrystallization, Trueman et al. (2008a, Comptes Rendus Palevol) hypothesized that rare earth element (REE) profiles could be used as a proxy for preservation potential of endogenous soft tissues and their constituent biomolecules. I directly evaluated this hypothesis by documenting intra-bone REE patterns and conducting immunoassays for collagen I in an Edmontosaurus annectens fibula from the Standing Rock Hadrosaur Site (SRHS) in the Cretaceous Hell Creek Formation of Corson County, South Dakota. As presented in Chapter 2, this fibula and eight additional bones from this site yielded soft tissue structures upon demineralization that were morphologically consistent with osteocytes, blood vessels, and fibrous matrix. LAICPMS analyses reveal that SRHS bones appear to preserve, at least in part, early diagenetic trace element signatures. Evidence substantiating this interpretation includes remarkably low REE concentrations, steep declines in LREE concentrations with increasing cortical depth, and low concentrations of MREE and elements with moderate and low diffusivities through the middle cortex. These attributes imply that the duration of trace element diffusion was brief. Thus, limited interaction with pore waters in late diagenesis both minimized degradation of soft tissues and mitigated overprinting of early diagenetic REE profiles. According to the hypothesis advanced by Trueman et al. 135 (2008a), SRHS bones would be favorable candidates for biomolecular preservation. Immunofluorescence tests on one bone, fibula SRHS-DU-231, confirm preservation of the protein collagen I. I therefore provide the first confirmation of the prediction advanced by Trueman et al. (2008a): a positive correlation between biomolecular preservation and retention of early diagenetic REE signatures. 3.2 Introduction Diagenetic uptake of REE is ubiquitous in fossil bone (Trueman, 2007) and relevant to biomolecular preservation because the relative concentrations of REE reflect the extent of diagenetic pore fluid interactions a bone has experienced (Trueman, 1999; Trueman et al., 2008a, 2011; Suarez et al., 2010; Kocsis et al., 2010; Herwartz et al., 2013b). Because permeating, flowing groundwaters are the primary delivery mechanism of REE to bone, it is inferred that the higher the concentrations of REE encountered in a specimen the more prolonged were pore fluid interactions (Trueman, 2007; Trueman et al., 2008a, 2011; Hinz and Kohn, 2010; Kocsis et al., 2010). As a result, it has been proposed that the best preservation of original organics in bones will be in those exhibiting the lowest REE concentrations (Trueman et al., 2004, 2008a). Another variable of key importance is spatial heterogeneity of REE within a fossil specimen; this is because the spatial distribution of provides a detailed record of diagenetic alteration (Trueman et al., 2008a; Koenig et al., 2009; Rogers et al., 2010; Suarez et al., 2010; Herwartz et al., 2013b), no matter how brief, long, simple, or complex it may have been. If REE profiles were correlated with molecular recovery or 136 lack thereof, they could help shed light on geochemical conditions favoring biomolecular preservation (Trueman et al., 2008a). Crucially, this hypothesis is not stringent on unaltered preservation of initial, early diagenetic REE profiles. Even if initial REE profiles were changed through geologic time, the resultant (end) profiles would still reflect the total diagenetic history of the bone. Though they might no longer accurately reflect the original preservation environment (at least in many cases/specimens, e.g., Tütken et al., 2008; Kocsis et al., 2010), REE composition patterns and profiles will still characterize the complexity of interactions with groundwaters over the duration of burial (e.g., Tütken et al., 2008, 2011; Kowal-Linka et al., 2014). REE profiles thus constitute a useful record of the diagenetic regime(s) controlling initial bone fossilization and longterm stability. Despite decades of separate research on the preservation of endogenous geochemical signatures (e.g., Pate et al., 1989; Barrick and Showers, 1994; Samoilov and Benjamini, 1996; Lee-Thorp and Sponheimer, 2003; Goodwin et al., 2007; Arppe et al., 2009; Eagle et al., 2011) and soft tissues comprising original biomolecules (e.g., Pawlicki et al., 1995; Pawlicki and Nowogrodzka-Zagorska, 1998; Avci et al., 2005; Schweitzer et al., 2005, 2007a, 2009, 2013; Lindgren et al., 2011; Schroeder, 2013), no study has directly linked these fields by examining the exact same fossil specimen. As a result, it remains unknown how, or if, retention of original isotopic and/or trace element signatures relates to retention of endogenous soft tissues and/or molecules in biomineralized tissues (Trueman et al., 2008a). In theory, retention of endogenous isotopic signatures or early diagenetic REE profiles should be positively correlated with biomolecular preservation because each (presumably) necessitates minimal degradation and chemical alteration of 137 bone through diagenesis (cf., for example, Schweitzer (2011) and Trueman and Martill (2002)). Degradation of bone crystallites due to inorganic or microbial enzyme-driven dissolution would expose the proteinaceous matrix, leaving it vulnerable to hydrolysis, oxidation, and other destructive forces. Conversely, decay of the fibrous protein matrix would expose otherwise passivated bone crystallite surfaces to geochemical gradients in permeating pore fluids. This codependency for survival forms the basis of the historical “mutual protection” theory of bone fossilization (e.g., Tuross et al., 1989; Curry, 1990; Ambler and Daniel, 1991; Child, 1995; Collins et al., 2002; Trueman and Martill, 2002). A rarely considered corollary of “mutual protection” is that if one encounters excellent preservation of the crystal portion of a bone (i.e., retention of histological microanatomy and relatively unaltered, endogenous isotopic or early diagenetic trace element signatures), it can plausibly be expected that the bone may also yield traces of its original biomolecular composition. Trueman et al. (2008a) were the first to propose this extension of “mutual protection” theory, suggesting that REE concentration vs. depth profiles could be used as a proxy for biomolecular preservation in fossil bones. In particular, they predicted that bones presenting low overall REE concentrations and steeply declining REE concentrations with cortical depth are the best candidates to retain endogenous biomolecules (because they signify the least interaction with pore waters). If support were found for this correlation, molecular paleontologists would gain a useful, relatively quick proxy to screen a suite of fossils prior to biochemical analyses (i.e., protein extraction, mass spectrometry, etc.). In this Chapter, I test the hypothesis advanced by Trueman et al. (2008a) by evaluating intra-bone REE patterns and preservation of the primary bone protein collagen 138 I from the exact same bone (a hadrosaur fibula, SRHS-DU-231, studied in Chapter 2). Further, I examine REE patterns in the six of the eight additional bones that yielded pliable soft tissues in Chapter 2, as well as two additional SRHS bones. Future protein extractions and immunoassays will examine collagen I preservation in the full suite of 13 bones for which molecularly clean samples have been collected from the site (see Chapter 2, section 2.4). 3.3 Geologic setting Bones for this study were collected from the Standing Rock Hadrosaur Site (SRHS) in Corson County, South Dakota. As discussed by Colson et al. (2004) and in Chapter 2 of this dissertation, SRHS is a vast bonebed of disarticulated juvenile to adult Edmontosaurus annectens near the base of the Maastrichtian Hell Creek Formation. The bonebed, comprising a 30 cm thick, silty, sandy, organic-rich mudstone, crops out for roughly 500 meters along the face of a cut bank bluff carved by the Grand River. Strata exposed in the bluff comprise shallow marine (Fox Hills Formation) to nearshore fluviodeltaic (Hell Creek Formation) sediments deposited along the western shore of the Western Interior Cretaceous Seaway (Colson et al., 2004; Chapter 2 of this dissertation and references therein). Specifically, Fox Hills deposits exposed in the lower half of the bluff record subtidal, beach, and lagoonal shoreface environments, and basal Hell Creek strata in the upper half of the bluff record expansive coastal and paludal marshes, fluvial channels, floodplains, and ephemeral floodplain ponds (Colson et al., 2004). Based on the monospecific character of the assemblage, paucity of weathering and abrasion, the 139 palynoflora of the bone-bearing horizon, and evidence that abundant goethite concretions within the bonebed unit were initially sideritic, I interpreted the assemblage to have formed as a result of a mass mortality event at or near the site of burial, and that bones were buried by distal flood-derived sediments in a shallow coastal plain pond within a paludal marsh (see Chapter 2, section 2.8.2). 3.4 Methods 3.4.1 Samples Nine SRHS Edmontosaurus annectens limb bones previously selected for analysis of soft tissue preservation (see Chapter 2, section 2.4) were chosen for examination of trace element composition. This assemblage includes a manual phalanx (SRHS-DU-89), three femora (SRHS-DU-94, -126, -273), a fibula (SRHS-DU-231), three metatarsals (SRHS-DU-2, -192, -306), and a pedal phalanx (SRHS-DU-278). These elements were chosen in my initial study (Chapter 2) to encompass as wide a range as possible of burial depth and cortical thickness, and to include a variety of element types that would comprise varying degrees of cortical porosity. In this regard, specimens range from highly porous phalanges comprised primarily of trabecular bone to femora with centimeters of solid, dense cortex. I chose this suite of samples in order to examine the influences of cortical thickness and porosity/permeability on: 1) soft tissue preservation (Chapter 2), and; 2) biomolecular preservation and REE composition and spatial distribution (this chapter). 140 All nine specimens are well-preserved, exhibiting no weathering or abrasion, and all seven of these that were analyzed in Chapter 2 yielded pliable soft tissues morphologically consistent with vertebrate osteocytes and fibrous proteinaceous matrix upon demineralization of cortical bone fragments with 0.5 M ethylenediaminetetraacetic acid (EDTA) pH 8.0 (Chapter 2, fig. 2.8). Fragments of tubular structures morphologically consistent with blood vessels were also collected from many of the specimens (Chapter 2, fig. 2.8). In this chapter, I further examine these bones by two means. First, I immunologically test biomolecular extracts from one of these bones, fibula SRHS-DU-231, for preservation of the primary bone protein collagen I. Second, the rare earth element geochemistry of each specimen was identified in order to see how, or if, their REE compositions correlate with the preservation of soft tissues documented in Chapter 2. In combination, these analyses afford the first direct test of the hypothesis that REE composition correlates to and can be used as a proxy for endogenous biomolecular preservation (Trueman et al., 2008a). 3.4.2 Sample preparation Thick sections (~3 mm) were cut from bone midshafts using a Lortone LS18 slab saw. Sections were initially rinsed with distilled water then washed in an acetone bath by gentle rocking for a few minutes to remove cutting oils. Sections were then allowed to dry in a laminar flow fume hood for 48 hours. Fragments of thick sections comprising the entire cortical thickness were placed directly in the laser ablation chamber for elemental analyses. 141 3.4.3 LA-ICPMS analyses Spatial heterogeneity of REE and other pertinent trace elements was examined by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Analyses were conducted using a New Wave UP-213(213 nm wavelength) Nd:YAG laser coupled to a Finnigan Element2 ICPMS at the University of Maryland. Specific isotopes measured were: 45Sc, 55Mn, 57Fe, 88Sr, 89Y, 137Ba, 139La, 140Ce, 141Pr, 143Nd, 147Sm, 153Eu, 157 Gd, 159Tb, 163Dy, 165Ho, 167Er, 169Tm, 173Yb, 175Lu, 232Th, and 238U. Iron is reported in weight percent (wt.%); all other concentrations are reported in parts per million (ppm). The laser system was operated at 2–3 J/cm2and a pulse rate of 10 Hz for transect analyses. Transect data were collected using a laser diameter of 40 μm (except for SRHSDU-192 which was analyzed with a laser diameter of 30 μm) moving at a scan speed of 50 μm/s. Thus, individual readings along each transect are spaced roughly 35 μm apart. Total transect lengths ranged from 1.2–4.3 cm. Background collection was performed prior to each reading for 20 s. Averaged background readings were subtracted from measured intensities to calculate fossil elemental concentrations. Spot analyses around the circumference of fibula SRHS-DU-231 were performed at a pulse rate of 7 Hz with a laser diameter of 40 μm for 40–50 s/spot, penetrating to a final depth of roughly 30 μm. NIST 610 glass was used as an external standard and 43Ca was measured as an internal standard to enable quantification of elemental concentrations. Reproducibility, taken as percent relative standard deviation (%RSD) for all REE in the NIST 610 glass standard, averaged <5% and remained below 10% for each element in all runs except for a few REE in one run. For comparison to fossil bones from other sites in the literature, REE concentrations were normalized using the North American Shale Composite (NASC) 142 using values from Gromet et al. (1984) and, for praseodymium (Pr), holmium (Ho), and thulium (Tm), from Haskin et al. (1968) (subscript N denotes shale-normalized values or ratios). 3.4.4 Biomolecular analyses Fossil analyses were performed in a dedicated ancient laboratory at North Carolina State University (NCSU). Modern control immunoassays were performed in a separate NCSU laboratory. Cortical bone from an extant archosaur, the American alligator (Alligator mississippiensis), served as a modern control. Inhibition and collagenase digestion assays were performed as specificity controls; these assays, respectively, control for non-specific paratopes in the polyclonal primary antibodies and non-specific binding of the primary antibodies to molecules other than the target protein (collagen I). 3.4.5 Tissue embedding procedure I followed the fossil embedding and immunofluorescence procedures of Schweitzer et al. (2007a, 2009) for my analyses. A step-by-step guide to these protocols is provided by Zheng and Schweitzer (2012). A roughly cubic centimeter-size cortical fragment of fibula SRHS-DU-231 was decalcified with freshly prepared 0.5 M disodium ethylenediaminetetraacetic acid (EDTA) pH 8.0 in a six well plate. EDTA was exchanged daily for two weeks, then a sterile glass pipette was used to collect soft, freed demineralization products into 1.5 ml centrifuge tubes. Collected samples were washed 10 times with EpureTM water (a few 143 seconds each), transferred to fresh 15 ml tubes, and fixed with 4 ml of 10% neutral buffer formalin pH 7.2 for one hour. Samples were briefly washed twice with EpureTM water, then twice with 1X phosphate buffered saline (PBS), transferred to a new 15 ml tube, and dehydrated twice in 70% ethanol (30 min. each). Resin impregnation involved incubation (for one hour) in a 2:1 solution of 70% ethanol and LR WhiteTM (Electron Microscopy Services) followed by two incubations (one hour each) in pure LR WhiteTM. A micropipette and a sharpened wooden dowel were then used to transfer demineralization products into 0.95 ml gelatin capsules (size 00, 8.81 mm diameter). Final embedding was accomplished by filling capsules with pure LR WhiteTM and polymerizing at 60°C for 48 hours. Procedures for control alligator bone matched those above (also performed in a separate laboratory) with the following exception. Demineralization of modern cortical bone yielded an intact mass of extracellular matrix; a small fragment of this mass, to comprise my eventual sample for embedding, was extracted and minced with a sterile scalpel on a sterilized lab plate. Sterilized tweezers were then used to transfer minced tissue fragments into a 1.5 ml centrifuge tube for initial washing. 3.4.6 Sectioning and immunofluorescence 220–230 nm sections were cut (using separate diamond knives for modern and ancient tissues) with a Leica EM UC6 ultramicrotome. Eight sections were added per well of a six well Teflon printed slide (Electron Microscopy Services). Slides were initially dried for 3–4.5 hours on a slide warmer, then continued drying overnight at 45°C to adhere tissue sections to the slide. 144 The volume of each solution added in all of the following incubations was 100 μl/well. Antigen retrieval was initiated by incubation with 25 μg/ml proteinase K (Roche) in 1X PBS at 37°C for 15 minutes. Following two 10 minute washes with PBS pH 7.4, antigen retrieval was continued by three 10 minute incubations in 0.5 M EDTA pH 8.0. After another two washes as above, autofluorescence was quenched by two incubations in 1 mg/ml NaBH4. After another two washes as above, slides were placed in a humidity chamber for all remaining incubations. First, sections were incubated for two hours in 4% normal goat serum in PBS pH 7.4 to inhibit non-specific antibody binding. Selected wells were then incubated (overnight at 4°C in a humidity chamber) with polyclonal rabbit anti-chicken collagen I antibodies (Millipore AB752P) diluted 1:40 in a primary dilution buffer (PDB = 0.1% bovine serum albumin/0.1% cold fish skin gelatin/0.5% Triton X100/0.05% sodium azide/0.01 M PBS pH 7.3), chicken collagen-inhibited (at ~6 mg/ml in PDB, prepared in modern laboratory) antibodies (same as above), or in PBS pH 7.4 (for wells to serve as secondary-only controls). Following two washes each with PBS pH 7.4/0.5% Tween 20 (PBS-T) then PBS pH 7.4 (all 10 minutes each), all wells were incubated for two hours at room temperature with biotinylated goat anti-rabbit IgG H+L antibodies (Vector) diluted 1:333 in a secondary dilution buffer (SDB = 0.01 M PBS pH 7.2/0.05% Tween 20). After two washes each as above, wells were incubated for one hour in a humidity chamber in the dark in fluorescein avidin D (FITC) diluted 1:1000 in SDB. After two final washes each as above, slides were mounted with 5 μl/well of VectaShield H-1000 mounting medium. Cover slips were then applied and slides were stored in the dark until imaging. Sections were imaged at 40X later the same day or the following day using a Zeiss Axioskop 2 145 Plus microscope with a connected Zeiss Axiocam MRC5 camera. Various exposure times were attempted spanning 50–200 ms, but only 200 ms images are presented here. Digestion assays were performed for select wells by incubation in 1 mg/ml collagenase A (Roche) in Dulbecco’s PBS prior to antigen retrieval with proteinase K. Digestions were performed at 37°C in a humidity chamber for either one hour (with changes each 20 minutes), three hours (with changes each hour, then each 20 minutes for the final hour), or six hours (with changes each hour, then each 20 minutes for the final hour). Digestion was not continued longer than six hours to avoid potential non-specific degradation of collagen by trace contaminant proteases in the collagenase A solution as prepared by Roche (clostripain, a trypsin-like activity, and a neutral protease; Roche Applied Science, 2012). After digestion, slides were washed twice (for 10 minutes) in PBS pH 7.4. Antigen retrieval then proceeded with proteinase K as described above. 3.5 Results 3.5.1 Overall REE composition SRHS bones exhibit low concentrations of REE, Y, and U in comparison to most other Mesozoic bones reported in the literature (see below). This is evident in overall average trace element composition and in depth profiles for individual elements. All SRHS bones, regardless of variations in degree of overall porosity and cortical thickness, average ∑REE < 600 ppm (Table 3.1). By comparison, Triassic reptile bones collected from shallow marine sediments of Poland exhibit ∑REE averaging 2700–3800 ppm (Kowal-Linka et al., 2014), and dinosaur bones from the Cretaceous Two Medicine, 146 Judith River, Dinosaur Park, and Cedar Mountain formations of western North America are reported to exhibit ∑REE ranging from 1100 ppm to greater than 25000 ppm (averages of 1136 ppm (Trueman, 1999), 7557 ppm (Rogers et al. 2010), 4020 ppm (Rogers et al., 2010), 1544 ppm (Trueman, 1999), and ranging up to > 25000 ppm (Suarez et al., 2007)]. A positive relationship is evident between tissue porosity/permeability and elemental concentrations: elements with greater overall porosity (SRHS-DU-2, -89, and 278) exhibit almost universally greater trace element concentrations. This is reflected in average ∑REE being higher in these elements (Table 3.1), as well as flatter profiles with higher concentrations in the internal cortex and trabeculae (e.g., Figure 1B,G). Pedal phalanx SRHS-DU-278 does not display as markedly high concentrations as manual phalanx SRHS-DU-89, despite similarly high overall porosity; this may owe to the laser transect analyzing an area directly underlying a dense iron concretion coating (see Discussion). Uranium (U) concentrations in SRHS bones range from 2–18ppm, considerably less than the average values of 222 ppm and 49 ppm reported from vertebrate microfossils collected from similar lithologies in fluvial deposits of the Judith River and Two Medicine formations, respectively (Rogers et al., 2010). Uranium concentrations average ~0.3–5 ppm in middle cortices but are somewhat more elevated in the middle cortex of elements with greater porosity (e.g., concentrations ~4–30 ppm in manual phalanx SRHS-DU-89; Appendix A). Strontium (Sr) and barium (Ba) concentrations are the highest of all recorded elements, with concentrations one to two orders of magnitude higher than all REE (Sr 147 and Ba bone averages ranging from ~2500–3700 ppm and ~1500–2150 ppm, respectively; Table 3.1). Average scandium (Sc) concentrations are high (range 2.8–26.5 ppm) and exhibit a strong positive correlation with overall bone porosity, alike many other elements. 3.5.2 Intra-bone REE depth profiles All SRHS bones exhibit steeply declining REE concentrations with increasing cortical depth, especially for LREE. Specifically, all La concentrations (except for weathered metatarsal SRHS-DU-2) are < 800 ppm at the outer cortex edge and decrease to < 200 ppm by two millimeters into the cortex (Figures 1B–H, 2, and 3), generally encompassing a decrease of roughly two orders of magnitude. Again, this pattern holds regardless of cortical porosity or the thickness of dense cortical bone. Such low concentrations at the external cortex margin are more akin to those of a Pleistocene bone measured by Trueman et al. (2011; outer cortex edge La concentration ~300 ppm) than most Mesozoic dinosaur bones collected from similar fluvial-influenced environments in the literature; the latter commonly exhibit cortex-edge La concentrations exceeding 900 ppm (e.g., three bone fragments from the Judith River Formation with external La concentrations ca. 1500 ppm and another from the Maevarano Formation at ~2500 ppm [Koenig et al., 2009]; an Apatosaurus femur from the Morrison Formation with external La concentration ~800 ppm that maintains concentrations > 400 ppm at five millimeters of cortical depth [Herwartz et al., 2011]; a bone from the Judith River Formation with external La concentrations ~1500–2500 ppm that remain above 400 ppm at two millimeters of cortical depth [Trueman et al., 2011]). 148 Only three bones (femora SRHS-DU-94 and -273 and fibula SRHS-DU-231) exhibit obvious kinks in La profiles across the external cortex that are thought to reflect double medium diffusion along Haversian canals as well as advective diffusion across the cortex (Kohn, 2008), though exponential modeling would be necessary to fully explore this potentiality. Femur SRHS-DU-94 is perhaps the best example, exhibiting a markedly steep La profile that suddenly shallows in slope at a cortical depth ~1.75 mm (Figure 1C). Some bones, most notably SRHS-DU-2, exhibit locally enriched REE concentrations in osteonal tissue surrounding Haversian canals (Figure 3B), providing supporting evidence for diffusive uptake through these systems. Most bone La profiles exhibit relatively minimal to modest deviations from best fit lines in the external cortex, but metatarsal SRHS-DU-2 clearly differs with a high degree of variation (Figure 3A). The three bones with the next highest deviations in La concentration profiles in the outer cortex are metatarsal SRHS-DU-306, femur SRHSDU-126, and manual phalanx SRHS-DU-89. Overall cortical porosity or thickness does not appear to correlate with deviation from best fit lines in La profiles. Three bones (manual phalanx SRHS-DU-89, femur SRHS-DU-94, and metatarsal SRHS-DU-306) exhibit REE profiles that show hints of fluid flow through the medullary cavity that served as a secondary diffusion front. This is reflected by slightly elevated REE concentrations in the innermost cortex and internal trabeculae relative to the middle cortex (Figure 1B,C,H). Three U profiles that exhibit slight rises in concentrations in the innermost cortex and internal trabeculae suggest that another three bones (femur SRHSDU-126, fibula SRHS-DU-231, and pedal phalanx SRHS-DU-278) also experienced minor fluid flow through the medullary cavity (an example U profile for fibula SRHS- 149 DU-231 is presented in Figure 2). That U displays such patterns but REE do not in some bones may owe to differing elemental supplies or the chemistry of pore fluids changing with time (see Discussion). Counterintuitively, occurrences of secondary diffusion from the medullary cavity do not appear to correlate strongly with overall tissue porosity. MREE exhibit concentration profiles generally intermediate in slope between those of LREE and HREE. HREE profiles, for which Yb is presented in my figures as a representative, are universally significantly flatter than LREE profiles. Ytterbium concentrations commonly remain quite low in the middle and internal cortex (0.5–2 ppm or lower; Figures 1 and 2), and frequently encroach on or fall below detection limit (Appendix A). However, bones exhibiting evidence of a secondary diffusion front from within the medullary cavity (e.g., SRHS-DU-306) exhibit slightly higher concentrations in the middle cortex (~1–5 ppm; Appendix A). Alike Yb, lutetium (Lu) often encroaches on or drops below lower detection limit in middle and internal cortices (Appendix A). Yet, unlike Yb, Lu concentrations exhibit a strong correlation with overall bone porosity; highly porous phalanges (SRHS-DU-89 and -278) exhibit far higher Lu concentrations throughout the entire cortex. Despite this, all but one Lu profile remain flatter than Yb profiles, with cortical concentrations within the lower range of values reported from other Mesozoic dinosaur bones by Herwartz et al. (2011). Only one bone (metatarsal SRHSDU-306) exhibits distinct secondary diffusion of Lu from within the marrow cavity. Uranium depth profiles generally display greater deviations from best fit lines than most REE profiles and exhibit shallow declines with increasing cortical depth in a manner similar to Yb in these bones (e.g., Figure 2). For every analyzed bone, Sr and Ba exhibit high concentration depth profiles that are essentially flat (data not shown). 150 3.5.3 NASC-normalized REE patterns Spider diagrams of NASC-normalized REE concentrations from the external 250 μm of bone cortices display remarkable consistency (Figure 4A). Shale-normalized concentrations range from values comparable to NASC to roughly 30 times NASC values. Patterns for all but one bone, manual phalanx SRHS-DU-89, are characterized by relative LREE enrichment and HREE depletion relative to MREE. Only manual phalanx SRHS-DU-89 exhibits a distinctly different pattern with relative enrichment in MREE (most notably terbium [Tb]) and HREE in the outermost cortex. Fibula SRHS-DU-231 exhibits a slight depletion in cerium (Ce), and five bones (SRHS-DU-2, -94, -231, -278, and -306) exhibit slight enrichment in europium (Eu) in the outermost cortex. Though a ternary plot of NdN-GdN-YbN (Figure 4B) suggests modest variation in bone composition (i.e., variation exceeds two standard deviations), this depicts whole-bone averages that incorporate varying amounts of dense cortex and porous trabecular bone. One cannot reasonably expect to see similar patterns in such an all-encompassing comparison. To better reveal intra-bone REE patterns with respect to NASC, I have plotted the composition of individual bone transects in additional LaN-GdN-YbN ternary plots (Figure 4C–D) and spider diagrams (Figure 5). These figures demonstrate that bones frequently become relatively LREE and MREE depleted with increasing cortical depth, shifting from relatively LREE enriched at the outer cortex edge to HREE enriched in the inner cortex. Three bones (SRHS-DU-2, -94, -231) display relatively even shifts towards greater enrichment in both MREE and HREE (Figure 4D). Only one bone (SRHS-DU273), which also has the lowest concentrations, exhibits a shift toward considerable 151 MREE enrichment with cortical depth (Figure 4D). Transects including the external cortex edge are either flat or exhibit modest LREE enrichment. Internal cortex transects are almost always depleted relative to NASC values, with the most porous bones being the only exceptions (phalanges SRHS-DU-89 and -278). Many transects exhibit local peaks at Eu or gadolinium (Gd; e.g., internal transects of SRHS-DU-273). However, behavior of Gd in ICPMS has been noted to be erratic due to isobaric interference effects (e.g., Kemp and Trueman, 2003), so peaks for this element are likely artifacts. Internal cortex transects of metatarsal SRHS-DU-306 and femur SRHS-DU-94 are REE enriched relative to middle cortex transects in these bones, clearly indicating secondary diffusion from within marrow cavities. Spot analyses were conducted around the perimeter of the fibula section (SRHSDU-231) in order to test for circumferential variation in REE composition (e.g., Suarez et al., 2010). Both spot analyses (Figure 6, Appendix B) and a spider diagram of transects cutting across the section (Figure 5) illustrate lower concentrations on the quarry down side of the bone. Spot analyses (Figure 6B) also highlight proportionally less MREE on the quarry down side (also see Appendix B), and the spider diagram (Figure 5) suggests a negative Ce anomaly on the quarry-up side external transect (c03a). However, this apparent anomaly is artificial due to Ce concentrations being so high in this transect that they frequently were not detected (n.d. in Appendix A), causing the transect average to artificially be underestimated by overweighting of lower concentrations deeper within the c03a transect. Spot analyses clearly demonstrate relative LREE depletion and strong HREE enrichment in an iron rich precipitate relative to bone (spot a10a in Figure 6). This precipitate was likely originally siderite but is now oxidized to goethite (see Chapter 2, 152 section 2.8.3). Spots on the quarry down side are very similar in composition to those on the quarry up side; the only noteworthy difference is relatively greater La enrichment on the quarry down side. Spot a08a on the quarry down side exhibits far lower shalenormalized concentrations than all other spots, even others on the same side of the bone. Because this spot is comparatively depleted in LREE and MREE, a commonly depthdependent pattern evident in bone spider diagrams (Figure 5), I suspect that a minute piece of the external edge may have flaked away and that data for this spot reflects the composition of bone somewhat interior to the true cortical edge. 3.5.4 (La/Yb)N vs. (La/Sm)N ratio patterns SRHS bones have a consistent composition distinct from published values for environmental water samples, pore fluids, dissolved loads, and sedimentary particulates (Figure 7A). Average SRHS bone compositions are characterized by (La/Sm)N values > 2.0 and (La/Yb)N values slightly less than 1.0, generally reflecting enrichment in LREE and HREE (but not MREE) relative to environmental samples. Only pedal phalanx SRHS-DU-278 possesses a (La/Yb)N value exceeding 1.0, perhaps owing to an iron-rich concretion coating over the analyzed area diminishing diffusion of Yb and other HREE with low diffusivities (see Discussion). Bone (La/Yb)N values are generally most similar in range to those of river, lake, and estuary waters (Elderfield et al., 1990; Johannesson and Lyons, 1995) and alkali saline groundwaters (Johannesson et al., 1999). When REE ratios are plotted for individual transects a consistent pattern emerges of decreasing (La/Yb)N and increasing (La/Sm)N with increasing cortical depth (Figure 7B). Femur SRHS-DU-273 is the only bone to deviate from this pattern. It exhibits a 153 decrease in both (La/Yb)N and (La/Sm)N with increasing depth. Nearly all external transects exhibit (La/Yb)N ratios > 1.0 whereas all middle and internal cortex transects have ratios ≤ 1.0. All transect (La/Sm)N ratios range between 1.0–7.0. 3.5.5 REE anomalies (Ce/Ce*)N, (La/La*)N, and La-corrected (Ce/Ce**)N anomalies are usually absent at the outer cortex edge (Figure 8). All three of these anomalies fluctuate between positive and negative values in the same specimens, with (Ce/Ce**)N and (La/La*)N values varying in some specimens by three orders of magnitude. As noted by Herwartz et al. (2013b), presence of both positive and negative anomalies in the same specimens casts doubt on the utility of Ce anomalies as paleo-redox indicators. SRHS-DU-2 (an exposed and sun-bleached metatarsal), SRHS-DU-231 (a fibula with a longitudinal strut bisecting the medullary cavity), and SRHS-DU-273 (specimen with the lowest concentrations) exhibit the greatest fluctuations in anomaly values. Values for all three anomalies display a surprisingly consistent absence in the external three millimeters of pedal phalanx SRHS-DU-278, perhaps due to shielding effects of a goethite coating over the bone surface. Iron-rich minerals are known to effectively scavenge REE (Koeppenkastrop and De Carlo, 1993), so it is thus not surprising that far greater REE concentrations are encountered in the goethite coating than in the underlying bone or in any other bone (Figure 8). (Ce/Ce*)N anomalies generally remain absent across bone profiles, fluctuating positively and negatively by roughly an order of magnitude or less in the majority of specimens analyzed (exceptions are SRHS-DU-2, -94, and -273 which exhibit variation 154 by roughly two orders of magnitude). Two bones (SRHS-DU-2 and -273) and one bone (SRHS-DU-192), respectively, develop slightly negative (Ce/Ce*)N anomalies in the internal and middle cortex. When (Ce/Ce*)N anomalies are averaged for entire bones (Table 3.1), they display a weak negative relationship with U concentrations (Figure 9), which Metzger et al. (2004) suggest to reflect simultaneous uptake of Ce and U. Because (Ce/Ce*)N anomalies are in part based on La concentrations, La anomalies can bias (Ce/Ce*)N values. The calculation of (Ce/Ce**)N anomalies removes this problem by instead inferring expected Ce concentrations from praseodymium (Pr) and neodymium (Nd) concentrations (Herwartz et al., 2013b). (Ce/Ce**)N anomalies commonly become slightly positive through the middle and internal cortex (Figure 8), though fluctuations are considerable. (La/La*)N anomalies fluctuate considerably but show no clear trend in most bones. One clear exception is metatarsal SRHS-DU-192, which displays a smoothly increasing (positive) (La/La*)N anomaly with depth (Figure 8). Herwartz et al. (2013b), who saw similar patterns in some of their specimens, claim that such trends are common in aquatic settings due to tetrad effects. Both Ce/Ce** and La/La* anomalies are often negative (seen as data gaps in log plots of Figure 8) due to significantly greater Nd than Pr concentrations. Ytterbium/holmium (Y/Ho) ratios remain near chondritic (26; Pack et al., 2007) across most bone profiles with most displaying variation of roughly one order of magnitude but no strong trends with cortical depth (Figure 8). A few bones (e.g., SRHSDU-2, -192, -231) exhibit slightly positive Y/Ho anomalies in the middle cortex, perhaps suggestive of tetrad effects (Herwartz et al., 2013b). These positive Y/Ho anomalies 155 cannot be attributed to precipitation of secondary apatite (Herwartz et al., 2013b) because all specimens remain unpermineralized; they may instead owe to dissolutionreprecipitation during recrystallization of bone hydroxyapatite to fluorapatite (as identified by x-ray diffraction; see Chapter 2, section 2.7.11). 3.5.6 Immunofluorescence Successful binding of antibodies raised against chicken collagen to Alligator collagen has been found previously (Schroeder, 2013), confirming the highly conserved nature of archosaurian collagen I. Further, successful binding with an archosaur (alligator) more distantly related to chicken than Edmontosaurus signifies that the avian antibodies used are an appropriate choice for detection of collagen in nonavian dinosaurs. In situ immunofluorescence of demineralized cortical bone of fibula SRHS-DU231 revealed positive reactivity to polyclonal anti-chicken collagen I antibodies (Figure 10A–D). Though immunoreactivity was not as strong as in modern controls (i.e., fainter fluorescence, cf. Figure A and I), fluorescence was clearly isolated to tissue sections and above the levels of secondary only controls. Secondary only and inhibition specificity controls exhibited no and extremely reduced binding, respectively (Figure 10E,F,J,K). Digestion specificity controls (with collagenase prior to antibody exposure) for fossil sections initially did not affect signal intensity or resulted in increased signal intensity (one hour digestion, Figure 10G). This result has been seen previously (Schweitzer et al., 2008; Schroeder, 2013) and attributed to enzymatic digestion not having been performed long enough to adequately break apart insoluble protein aggregates (e.g., Ramos-Vara and Beissenherz, 2000). In contrast, increasing the duration of digestion to six hours 156 produced dramatically reduced binding, confirming the fossil antigens are structurally consistent with collagen (i.e., have abundant X-Gly bonds that are rare in other proteins; Harper and Kang, 1970). Binding in modern Alligator control sections was expressed across the entire section (Figure 10I) whereas binding in fossil sections was frequently stronger at or near the periphery of demineralized tissue fragments (Figure 10A–D). 3.6 Discussion 3.6.1 Geochemical taphonomy of SRHS Consistently low REE concentrations and smooth, “simple diffusion” (sensu Trueman et al., 2008a) profiles with cortical depth suggest a common diagenetic history for the SRHS assemblage relating to the depositional history of the site. More specifically, modest variance in bone composition (Figures 4A–B and 7B, Table 3.1) suggests either minimal reworking of bones or extensive late diagenetic overprinting. The latter appears unlikely given the low average concentrations (Table 3.1, Appendix A) and lack of evidence for leaching or secondary REE incorporation phases (Figure 1). Preservation of seasonal δ18O cycles in enamel of Edmontosaurus maxillary teeth from SRHS (Stanton Thomas and Carlson, 2004) further signifies a lack of extensive late diagenetic overprinting. Moreover, the rarity of postmortem weathering and abrasion and confinement of bones to a single horizon indicates minimal reworking (Chapter 2). Since all available trace element and taphonomic evidence argues against attritional accumulation of bones, the conclusion that the SRHS assemblage represents a mass mortality event (drawn in Chapter 2) is upheld. 157 Lack of MREE enrichment causes most bones to lack distinct W-shape profiles indicative of strongly-acting tetrad effects or extensive secondary apatite precipitation (Herwartz et al., 2013b). However, a few bones (SRHS-DU-273, -192, -94, and -126) display potential evidence of modest tetrad effects in the form of W-shape NASC normalized patterns in the internal cortex (i.e., MREE enrichment in the internal cortex; Figure 5). These examples of MREE enrichment in interior bone do not appear to correlate with tissue porosity, overall concentration level, or evidence of secondary diffusion from within the marrow cavity. All bones are entombed in the same lithology with only small-scale textural heterogeneities, so differences in host rock permeability (Herwartz et al., 2013a; Kowal-Linka and Jochum, 2015) are also unlikely to explain MREE enrichment. Rather, three of four bones with middle/internal cortex MREE enrichment exhibit evidence of double medium diffusion through Haversian canals (Table 3.2). Though this may explain elevated MREE concentrations deeper within the bones, one would also expect elevated LREE concentrations due to their high diffusivities (Kohn and Moses, 2013). That LREE concentrations are not elevated in middle cortices implies that LREE may have preferentially been incorporated into external cortices, so that their availability in pore fluids that reached middle cortices was reduced. This could be accomplished by a propagating recrystallization front during early diagenesis (Kohn and Moses, 2013). Slight positive (Ce/Ce**)N anomalies in the middle and internal cortex of many SRHS bones (Figure 8) may also reflect localized tetrad effects (Herwartz et al., 2013b), but I suggest it is more likely that these primarily derive from a diagenetic phase of oxidation. Substantial evidence supports diagenetic oxidation, namely; 1) common high 158 Sc concentrations (likely owing to oxidation-induced precipitation of microscopic, Scscavenging, Fe-oxide minerals on Haversian canal walls and in voids in the bone; Williams and Potts, 1988; Williams et al., 1997); 2) abundance of highly oxidized bone fragments at the base of a channel sandstone immediately overlying the assemblage (see Chapter 2, section 2.3), and; 3) abundant goethite concretions within the bonebed horizon that commonly bear thin, blue todorokite coatings indicating oxidative expulsion of manganese from originally sideritic concretions (Chapter 2 and references therein). Though oxidation has clearly taken place, two lines of evidence characterize the initial diagenetic setting as reducing. First, siderite (FeCO3) concretions commonly form in organic-rich mudstones deposited in shallow-water coastal plain settings such as paludal marshes and floodplain ponds (Curtis and Coleman, 1986; Morad, 1998). In these environments, bacterial decomposition of organics produces dissolved bicarbonate (HCO3-) that can cause carbonate supersaturation and therefore mineral precipitation (Coleman, 1993). Second, SRHS bones possess little U, suggesting that they did not fossilize in oxidizing soils during early diagenesis (Metzger et al., 2004). The predominately fine grain size of the host matrix (rather than a coarse grained, welldrained composition) matches this inference. The argillaceous matrix hosting the bonebed may also account for, due to limited permeability, the overall low REE concentrations of bones and lack of more complex REE concentration-depth profiles (Herwartz et al., 2011, 2013a; Kowal-Linka et al., 2014; Kowal-Linka and Jochum, 2015). Low bone REE concentrations also may be products of early diagenetic removal of REE by growth of abundant siderite concretions within the bonebed. Fe/Mn-rich 159 precipitates are known to efficiently scavenge REE and other trace elements from surrounding pore fluids (e.g., Koeppenkastrop and De Carlo, 1993), which would reduce trace element availability to bones. Pedal phalanx SRHS-DU-278 provides an example of this effect, in which a low porosity concretion coating appears to have absorbed considerable amounts of REE and limited REE uptake by the underlying bone (e.g., Yb concentrations greater than an order of magnitude higher in the concretion coating than in underlying bone; Appendix A, Figure 1G). This “shielding” effect may have worked in a manner similar to that of dense enamel limiting REE uptake by more internal dentine (Hinz and Kohn, 2010). The pattern seen in all but one SRHS bone of decreasing (La/Yb)N and increasing (La/Sm)N with cortical depth has been interpreted many ways in the literature. For example, Reynard et al. (1999) assigned such patterns to represent “substitutionrecrystallization” REE incorporation mechanics, whereas Trueman et al. (2006) interpreted such specimens (their ‘group 4’) to reflect long-term REE scavenging by adsorption. Most recently, Herwartz et al. (2013b) reconsidered (La/Yb)N–(La/Sm)N patterns in light of new laser-ablation derived data and concluded that all previous interpretations based on solution ICPMS analyses (e.g., Reynard et al., 1999; Trueman et al., 2006) were biased by bulk sample averaging effects. Herwartz et al. (2013b) (and Trueman et al., 2011) offer a compelling argument that such ratio trends reflect “normal intra-bone fractionation” driven by decreasing partition coefficients with increasing atomic radii for REE; because the order of closest fit of REE ionic radii to the Ca2+ lattice site in bone hydroxyapatite is Sm3+ > La3+ > Yb3+, fractionation (based on ionic radius) will occur during uptake, causing preferential earlier uptake of Sm and La by the external 160 cortex because of their better fit. This “normal” fractionation would thus simultaneously depress (La/Yb)N values and raise (La/Sm)N values in the internal cortex relative to the external cortex. This model fits data from SRHS bones, especially considering that minimal pore fluid flow would enhance fractionation effects during uptake (Trueman et al., 2011). Femur SRHS-DU-273, which shifts toward lower (La/Sm)N values with depth, exhibits a “recrystallization/late diagenetic alteration” pattern according to Reynard et al. (1999) and Trueman et al. (2006). But since those authors used bulk samples and solution ICPMS, I instead follow the interpretation of in situ LA-ICPMS data by Herwartz et al. (2013b). Herwartz et al. (2013b) suggest that this direction of shift may be due to relative MREE enrichment from surrounding pore waters perhaps becoming MREE enriched from dissolved organic matter, reduction of Fe oxides, or leaching from MREE-rich minerals. Expression of this (La/Yb)N–(La/Sm)N pattern in only one analyzed bone suggests that MREE became locally enriched in small regions of the bonebed, possibly in areas with greater accumulation of plant debris and dissolved organic matter. Taken together, normal intra-bone fractionation trends (sensu Herwartz et al., 2013b) in the (La/Yb)N vs. (La/Sm)N plot (Figure 7A), low concentrations of MREE and elements with moderate (e.g., U) and low diffusivities (e.g., Yb) in middle cortices (Figures 1 and 2, Appendix A), and flatter profiles for U than REE (Appendix A), despite similar diffusivities for these elements in bone (Kohn and Moses, 2013), suggest that pore fluid replenishment was not active through the majority of diagenesis and that, instead, pore fluids changed in chemistry with time. Were fluid replenishment sustained for even a modest length of time, one would expect; 1) higher concentrations of MREE 161 and elements with low diffusivities in the middle cortex due to preferential uptake of LREE in the external cortex (Trueman et al., 2011; Kohn and Moses, 2013), and; 2) that elements with similar diffusivities would develop similar shaped depth profiles. The differing profile shapes between U and REE in SRHS bones suggest that REE availability to interior bone dwindled with time while that of U remained relatively high. Kohn and Moses (2013) attributed similar patterns to less effective uptake of U by bone mineral, maintaining higher U concentrations in soil waters for a longer duration of time. Because this model also fits data for SRHS specimens, I follow their interpretation. According to Herwartz et al. (2011, p. 92), such exceptions to long-term REE uptake are rare and likely only occur “where special taphonomic and physicochemical conditions either inhibited or especially promoted transport of REE in the diagenetic fluid.” SRHS bones appear to comprise only a third known exception; Herwartz et al. (2011) suggested two Cretaceous bones analyzed by Koenig et al. (2009) are two other exceptions. Alike the bones analyzed by Koenig et al. (2009), SRHS bones appear to have experienced a “limited REE supply over burial time” (Herwartz et al., 2011, p. 92), likely owing to two factors discussed above: 1) a low permeability, fine grain host matrix, and; 2) early diagenetic removal of REE by concretion growth. To summarize, cumulative REE data indicate a simple diagenetic history for SRHS bones that involved a brief period of primary trace element uptake compared to many other similarly aged fossils. Despite a lack of permineralization, pore fluid replenishment appears to have been impeded following early diagenesis, perhaps due to low permeability of the fine grain host matrix. In addition, removal of a significant fraction of REE by early diagenetic growth of siderite concretions in the bonebed horizon 162 appears to have further limited bone REE uptake and, in cases where concretions grew on bone surfaces, shielded regions of bones against chemical alteration. 3.6.2 REE correlations with soft tissue and collagen preservation at SRHS Immunofluorescence positively identified endogenous collagen I in demineralization products of fibula SRHS-DU-231 (Figure 10A–D). Antibodies are most likely binding to semi-translucent/white fragments of tissue morphologically consistent with bone fibrous matrix that are visible by optical microscopy (Chapter 2, fig. 2.8). Though immunofluorescence still needs to be performed on the additional eight specimens tested in Chapter 2, that all nine bones yielded identical, abundant, pliable fibrous matrix upon demineralization suggests immunofluorescence would also positively identify collagen I in those specimens. Many burial history and diagenetic factors controlling the REE composition of SRHS bones likely also contributed to their preservation of soft tissues and collagen. First, rapid burial by flooding events (see Chapter 2, section 2.8.2) yielded consistent trace element composition among bones and minimized soft tissue degradation by aerial exposure (e.g., UV radiation and weathering; Behrensmeyer, 1978; Trueman et al., 2004; Fernandez-Jalvo et al., 2010). Indeed, rapid burial is widely considered essential for soft tissue preservation in the fossil record (e.g., Allison, 1988; Eglinton and Logan, 1991; Martin, 1999; Schweitzer, 2003, 2004, 2011; Zhu et al., 2005; Manning et al., 2009). Second, burial in a chemically stable, low energy environment (a small paludal pond; see Chapter 2, section 2.8.1) restricted the development of varied, complex REE compositions and minimized degradative processes acting on the bones and their soft 163 tissues (e.g., abrasion, chemical reactions; Fiorillo, 1988; Williams et al., 1997). Third, burial in a terrestrial reducing environment stimulated the precipitation of REEscavenging siderite concretions (e.g., Koeppenkastrop and De Carlo, 1993; Coleman, 1993) that limited REE uptake by bone and shielded regions of some bones against chemical alteration. Chelation of metal ions in reducing conditions may also have minimized oxidative damage to collagen and other biomolecules (Eglinton and Logan, 1991). Fourth, the argillaceous host matrix that limited pore fluid replenishment and therefore REE uptake also limited potential hydrolysis of biomolecules and minimized the influx of microbial decomposers (e.g., Eglinton and Logan, 1991; Muyzer et al., 1992; Peterson et al., 2010). Abundant clay in the host matrix may also have mitigated degradation of soft tissues by adsorbing and thereby inactivating microbial enzymes (Butterfield, 1990; Schweitzer, 2004; Zhu et al., 2005). Additionally, waterlogged conditions combined with low permeability of the host matrix may have produced local zones of anoxia that could have further limited microbial activity and oxidation of biomolecules (e.g., Huq et al., 1985; Tuross et al., 1989; Martin, 1999; Briggs et al., 2000; Hedges, 2002; Briggs, 2003; Schweitzer, 2004). Tissue density and porosity appear to influence both REE uptake and the recovery of soft tissues from SRHS bones. Phalanges (SRHS-DU-89 and -278) with thin cortex and highly porous, cancellous internal structure display higher REE concentrations and relatively flatter REE profiles, and yielded abundant osteocytes but only minute amounts of fibrous matrix fragments (and few vessels) upon demineralization (Chapter 2, section 2.7.12). Evidence from previous studies characterizing the trace element chemistry of fossil bone (e.g., Hagelberg et al., 1991; Goodwin et al., 2007; Daniel and Chin, 2010; 164 Anné et al., 2014) indicate that highly porous tissues facilitate pore fluid flow and therefore recrystallization, elemental exchange and adsorption, hydrolysis, and microbial attack. Considering the greater trace element uptake (and hence greater alteration) and minimal yield of fibrous matrix from phalanges SRHS-DU-89 and -278, I infer that the probability of recovering collagen from such porous bones may be lower (but not zero; e.g., Schweitzer et al., 1997a). However, considering the wealth of osteocytes recovered from these specimens, high porosity bones may still offer high potential for recovery of biomolecules preserved in osteocytes (e.g., actin, tubulin, histones). 3.6.3 The use of REE data as a proxy for biomolecular preservation Trueman et al.’s (2008a) hypothesis of a link between REE concentration-depth profiles and biomolecular recovery potential was based upon an inference of primary REE uptake during the process of recrystallization in early diagenesis. The same pore fluid interactions that cause recrystallization and lead to REE uptake will also affect the biomolecular components of bone through hydrolysis, solubilization, and mobilization of autolytic enzymes and microbial decomposers. Trueman et al. (2008a) proposed that if pore fluid interactions were brief, and hydrated conditions facilitate (or may indeed be required for) recrystallization, then bones briefly exposed to groundwater must have recrystallized rapidly. As they discussed, rapid recrystallization would be an efficient means of quickly stabilizing a bone with its early diagenetic environment. However, there is an inherent difficulty in drawing such inferences from fossil bones because we are only left with the end composition of the mineral phase(s). Though REE uptake may primarily take place during recrystallization as Trueman et al. (2008a) suggested, protracted uptake 165 over geologic timescales of burial will alter and obscure original depth profiles so that they: 1) provide biased fossilization rate estimates from approximated diffusivities (Kohn and Moses, 2013), and; 2) yield erroneous Lu-Hf ages (Kocsis et al., 2010; Herwartz et al, 2011, 2013a). Evidence amassed from fossils of varying ages and environments (e.g., Kocsis et al., 2010; Herwartz et al., 2011, 2013a) and the proficiency of bone as a trace element sink (Kohn and Moses, 2013) suggest that all pre-Quaternary fossils continue to uptake minor amounts of REE and other trace elements throughout their entire burial history (potentially > 50% of total end concentrations gained through late diagenesis; Kocsis et al., 2010). Thus, it is unlikely that even bones with as low of concentrations and simple depth profiles as the specimens from SRHS would allow accurate characterization of the duration of early diagenetic recrystallization in an absolute sense. What can be discerned from REE taphonomy with confidence, however, is the overall relative extent of diagenetic alteration of a bone. Crucially, this is also what governs the decay/degradation of bone soft tissues and their constituent biomolecules. In short, “simple diffusion” profiles (sensu Trueman et al., 2008a) may yield erroneous Lu-Hf ages (e.g., Kocsis et al., 2010; Herwartz et al., 2011, 2013a) but they still denote simple long-term diagenetic histories that are logically more favorable for biomolecular retention. Although debate continues over the precise mechanics of REE uptake (e.g., Trueman et al., 2006, 2011; Kocsis et al., 2010; Herwartz et al., 2011, 2013a, 2013b; Kohn and Moses, 2013), that issue is of little importance to the question of whether or not REE composition is a viable proxy for biomolecular recovery potential. Whether “simple diffusion” profiles (such as found in most SRHS bones) result from high REE uptake in 166 early diagenesis followed by closed system behavior or from continual minor uptake of additional REE over geological timescales (e.g., Kocsis et al., 2010) is vitally important when attempting to constrain the geochemistry of the original depositional environment, but biomolecular recovery potential depends on the entire diagenetic history of a specimen, not just the initial geochemical regime to which it was exposed. Therefore, what matters most are: 1) the overall level of trace element concentrations (high vs. low), and; 2) the general character of REE profiles. Theoretically, specimens that incorporated REE solely in early diagenesis and then became closed systems would logically be excellent candidates to retain biomolecules (due to long-term stable conditions). However, a mounting body of evidence suggests that such specimens rarely exist (Kocsis et al., 2010; Herwartz et al., 2011, 2013a). Specimens which display evidence of trace element leaching (e.g., Kocsis et al., 2010, fig. 2B), secondary incorporation phases (e.g., Kocsis et al., 2010, fig. 2C), or yet more complex diagenetic histories involving multiple exposures to groundwaters of varying compositions (e.g., Kocsis et al., 2010, fig. 2E–F; Herwartz et al., 2013b, fig. 9G), would be expected to have lower likelihood of biomolecular recovery as any of these processes would reflect re-exposure to new pore fluids later in diagenesis that could actively degrade soft tissues. Even if REE are continually incorporated through late diagenesis, models suggests that this occurs at very minor levels (likely < 0.2 ppm/Ma; Kocsis et al., 2010) and constitutes a slow, relatively inconsequential process rather than a rapid, strong geochemical shift that would be more apt to degrade soft tissues. Although evidence found in this study supports the hypothesis advanced by Trueman et al. (2008a), the relationship between REE profiles and biomolecular retention 167 is unlikely to always be so straightforward. Tissue type, structure, and location of biomolecules within tissues are also key variables that must be considered (Eglinton and Logan, 1991; Briggs et al., 2000; Collins and Gernaey, 2001; Zylberberg and Laurin, 2011; Schweitzer et al., 2013). Also, though an inverse relationship was identified between REE concentrations and recovery of fossil bone fibrous matrix (cf. Tütken et al., 2008), osteocytes do not appear as affected by trace element uptake. Hence, REE profiles may better reflect the recovery potential for extracellular matrix structural proteins than for intracellular proteins. 3.7 Conclusion Minimal variation in REE composition and concentration-depth profile patterns supports a lack of complex hydrologic regimes through diagenesis and a brief period of trace element uptake at SRHS. Three factors appear to have mitigated REE uptake by these fossils: 1) a well-compacted, low porosity, fine-grained host matrix that limited pore fluid replenishment; 2) rapid burial in a chemically stable, reducing, subaqueous environment, and; 3) scavenging of trace elements by early diagenetic growth of siderite concretions. Common growth of siderite concretions over bone surfaces may have provided an additional shielding effect against further trace element uptake. Although bones remain unpermineralized and, therefore, open systems, trace element evidence does not support extensive chemical alteration. Thus, according to Trueman et al. (2008a), these bones would represent ideal targets for biomolecular analyses. Immunofluorescence confirms the preservation of endogenous collagen I in one 168 specimen, thereby providing the first evidence in support of Trueman et al.’s (2008a) proposal of a link between REE composition and biomolecular recovery potential. In agreement with Anné et al. (2014), data gathered here show that tissue porosity clearly governs effective diffusion through bone; greater porosity and permeability facilitate enhanced trace element uptake and thus greater alteration. Because demineralization of high-porosity tissues yielded a lesser abundance and variety of soft tissues than was recovered from dense cortical bone (Chapter 2), I infer that the relative preservation potential of at least some structural biopolymers (e.g., collagen I) is lower in cancellous bone tissue. Despite higher trace element concentrations, recovery of numerous osteocytes by demineralization of trabecular tissues suggests that fossil cancellous bone may still be a viable source of biomolecules comprising osteocytes. The relationship between REE profiles and biomolecular recovery potential remains far from clear. Extensive alteration by processes such as leaching or secondary incorporation phases likely decrease biomolecular preservation potential, but the specimens analyzed herein do not exhibit such REE patterns and therefore shed no light on these expectations. Though protracted, late-diagenetic uptake of REE will provide erroneous Lu-Hf age estimates for fossil bones, it is unlikely to affect the utility of REE profiles as a biomolecular preservation proxy. Available evidence suggests that REE profiles may be predictive proxies for biomolecular recovery when considered alongside a framework of traditional taphonomic and sedimentologic context. However, further testing is needed to confirm whether or not the correlations identified herein between REE composition and soft tissue preservation also hold true for biomolecular retention in fossil bone. With a current sample size of only one, evidence supports the hypothesis 169 advanced by Trueman et al. (2008a). However, we do not yet know the extent of interplay between chemical alteration and biomolecular recovery potential. To fully test to what degree chemical alteration diminishes the preservation potential of biomolecules, trace element analyses must be conducted in tandem with quantitative immunoassays (e.g., enzyme linked immunosorbant assays) and/or mass spectrometry on a suite of fossils covering the spectrum of tissue porosity/permeability. SRHS-DU-# Element Sc 2 Metatarsal 7.23 89 Manual 26.5 Phalanx 94 Femur 4.05 126 Femur 4.17 192 Metatarsal 6.78 231 Fibula 5.08 273 Femur 2.81 278 Pedal 20.9 Phalanx 306 Metatarsal 9.32 0.243 1.68 3615 77.3 1897 1934 1759 1701 2129 1849 1538 22.7 23.5 23.7 42.6 7.44 82.1 3352 3481 2900 3697 2583 3642 0.300 0.352 0.027 0.311 0.041 0.468 1.34 1.52 1.19 1.36 1.23 1.63 Y Ba 67.0 1753 249 1639 Mn Fe Sr 0.301 1.40 3379 0.301 1.65 3370 42.7 16.4 13.2 16.3 27.4 4.67 65.6 La 58.7 142 Pr 14.4 24.3 84.9 8.31 25.8 3.38 25.2 2.53 28.0 2.15 34.5 5.42 7.57 0.663 109 11.4 Ce 132 239 Sm 8.42 13.6 25.7 5.03 10.3 1.75 7.76 1.44 6.79 1.17 16.8 2.86 1.87 0.333 32.7 5.46 Nd 44.7 80.8 Gd 9.24 17.9 Tb 1.24 2.97 Dy 7.69 20.6 1.59 6.01 0.868 6.27 0.585 2.79 0.308 2.02 0.478 2.24 0.277 1.96 0.380 1.92 0.224 1.66 0.945 4.18 0.510 3.50 0.175 0.840 0.072 0.542 1.76 7.44 0.988 6.71 Eu 2.46 4.13 Er Tm 4.78 0.607 16.9 2.43 1.47 4.85 0.692 4.47 0.699 0.174 0.038 0.032 0.044 0.033 0.018 0.086 Yb Lu Th 4.32 0.596 0.059 15.2 2.49 0.064 0.485 1.51 0.215 1.36 0.225 0.478 1.60 0.217 1.40 0.235 0.424 1.42 0.207 1.52 0.266 0.830 2.65 0.359 2.31 0.387 0.134 0.475 0.073 0.487 0.092 1.60 5.01 0.654 4.23 0.692 Ho 1.66 5.15 7.52 2.98 3.25 4.22 4.45 2.01 9.61 193 67 59 62 103 18 253 0.05 -0.19 0.02 0.05 -0.34 -0.03 -0.08 0.09 -0.19 0.05 0.42 -0.32 0.14 -0.03 0.07 0.00 0.07 0.64 0.06 0.30 0.09 52.5 46.8 49.2 55.9 51.4 55.8 51.3 U ƩREE Ce/Ce* Ce/Ce** La/La* Y/Ho 4.72 291 0.07 -0.02 -0.15 40.4 17.4 587 -0.06 0.12 0.37 48.3 Table 3.1 Average whole-bone trace element compositions for nine SRHS fossils. Iron (Fe) is presented in weight percent (wt. %), all other elements are in parts per million (ppm). Absence of (Ce/Ce*)N, (Ce/Ce**)N, and (La/La*)N anomalies occurs at zero. 170 171 Table 3.2 Summary of attributes of the nine fossil bones analyzed for REE composition. Abbreviation: DMD, double medium diffusion sensu Kohn (2008). *Uranium suggests flow in the marrow cavity of these specimens but REE do not. Clear DMD kink SRHS-DU-# for La? 2 89 94 126 192 231 273 278 306 No No Yes No No Yes Yes No No Relative noise in outer cortex for La High Moderate Low Moderate Low Low Low Low Moderate REE suggest flow in marrow cavity? No Yes Yes No* No No* No No* Yes Relative concentration levels Relative porosity overall Moderate High Low Low Low Low Low (very) Low Low Moderate High Low Low Low Low Low High Low 172 Figure 3.1 Intra-bone REE concentration gradients of La (red) and Yb (green) for SRHS bones. (A) Metatarsal SRHS-DU-2. (B) Manual phalanx SRHS-DU-89. (C) Femur 173 Figure 3.1 (continued) SRHS-DU-94. (D) Femur SRHS-DU-126. (E) Metatarsal SRHSDU-192. (F) Femur SRHS-DU-273. (G) Pedal phalanx SRHS-DU-278. (H) Metatarsal SRHS-DU-306. Profiles in (B) cross the entire diameter of manual phalanx SRHS-DU89. Yellow-shaded area in (G) denotes a goethite coating over the surface of pedal phalanx SRHS-DU-278. Laser tracks denoted by the red line in each bone cross section. Scale bars equal 1 mm. 174 Figure 3.2 Intra-bone concentration gradients of La (red), Yb (green), and U (blue) for fibula SRHS-DU-231. Profiles cross the entire diameter of the bone. Laser track denoted by the red line in the bone cross section. Yb and U concentrations have been multiplied by 10 for ease of visualization. High-porosity trabecular tissue regions are highlighted in gray. Scale bar equals 1 mm. 175 Figure 3.3 Three-point moving averages of La concentrations in the outermost cortex of each analyzed fossil. (A) Profiles across the outermost five millimeters of each bone. (B) Enlarged view of only the external-most two millimeters of each bone, highlighting raised concentrations in Haversian/osteonal tissue in metatarsal SRHS-DU-2. 176 Figure 3.4 (A) NASC-normalized REE distribution patterns from the outermost 250 μm of each bone. (B-D) Ternary diagrams of NASC-normalized REE in SRHS bones. (B) Average composition for each entire bone. (C) REE compositions divided into data from each individual laser transect (usually ~ 5 mm of data each). Composition data for transects that included the outer bone edge are denoted by dark diamonds; all other transect data are indicated by gray circles. Note pattern for transects including the external bone margin to be relatively enriched in LaN. (D) Transect data from (C) classified by specimen. The 2σ circle represents two standard deviations based on ± 5% relative standard deviation. 177 178 Figure 3.5 Intra-bone NASC-normalized REE distribution patterns. Patterns recorded from the outermost cortex are indicated by black lines, those from deepest within each bone by dotted light gray lines (usually within more porous trabecular bone of the marrow cavity), and all other analyses in between by solid dark gray lines. Specimens as indicated. Note the different ratio scales for each specimen. 179 Figure 3.6 Summary of spot analyses around the circumference of fibula SRHS-DU-231. (A) Location of LA-ICPMS spot analyses on the thick section. Green circles denote analytical spots from the quarry-up side of the bone, blue circles denote spots from the quarry-down side, the red circle (spot a10a) denotes an analysis of an iron-rich precipitate infilling a Haversian canal, and the orange spot denotes a spot recording composition of the cortex slightly interior to the outer cortical edge. Red line crossing the diameter of the bone cross section is the course of the laser transect presented in Figure 2. (B) NASCnormalized REE distribution patterns for each spot shown in (A). Pattern colorations correspond to spot designations in (A). 180 Figure 3.7 (A) Comparison of whole-bone averages of (La/Yb)N and (La/Sm)N ratios of SRHS fossils to ratios from various environmental waters and sedimentary particulates. Literature data for environmental samples as follows: river waters (green field; Hoyle et al., 1984; Goldstein and Jacobsen, 1988; Elderfield et al., 1990); suspended river loads (dull pink field; Goldstein and Jacobsen, 1988); alkali saline groundwaters (bright pink field; Johannesson et al., 1999); lakes (purple field; Johannesson and Lyons, 1995); estuaries (yellow field; Elderfield et al., 1990); coastal waters (light blue field; Hoyle et al., 1984; Elderfield and Sholkovitz, 1987; Elderfield et al., 1990); seawater (dark blue field; Elderfield et al., 1982; De Baar et al., 1983; German et al., 1991; Piepgras and Jacobsen, 1992; Sholkovitz et al., 1994; German et al., 1995; Zhang and Nozaki, 1996); sea floor particles (gray field; Sholkovitz et al., 1994); marine pore fluids (orange field; Elderfield and Sholkovitz, 1987; Haley et al., 2004; Kim et al., 2011). (B) REE compositions of individual laser transects expressed as NASC-normalized (La/Yb)N and (La/Sm)N ratios. Transects including the external bone edge are denoted by black symbols whereas all other (internal) transects are represented by gray symbols. Inset displays depth-related trends for individual specimens. 181 Figure 3.8 Intra-bone patterns of (Ce/Ce*)N, (Ce/Ce**)N, (La/La*)N, and Y/Ho anomalies in SRHS bones. Following Herwartz et al. (2013b), (Ce/Ce*)N values were calculated using La and Pr concentrations (CeN/(0.5*LaN + 0.5*PrN)), (Ce/Ce**)N values were calculated from the trend of Nd and Pr concentrations (CeN/(2*PrN – NdN)), and (La/La*)N anomalies were calculated using Pr and Nd concentrations (LaN/(3*PrN – 2*NdN)). (Ce/Ce**)N anomalies avoid issues arising from La anomalies that could produce apparent (Ce/Ce*)N anomalies when in fact they are not present. Specimens as indicated. Note the different ratio scales for each specimen. 182 Figure 3.9 Cerium anomaly (Ce/Ce*) values plotted against uranium concentrations for SRHS bones. Dashed black line represents the general data trend, not a strict regression. No Ce/Ce* anomaly is at a value of 0.0. 183 Figure 3.10 In situ localization of collagen I in demineralized cortical fragments of Edmontosaurus annectens (fibula SRHS-DU-231; A–H) and modern Alligator (I–L) by immunofluorescence. (A–D) Edmontosaurus demineralization products incubated with antibodies against chicken collagen I; (A) and (C) show FITC images of two sections and (B) and (D) present corresponding FITC and brightfield overlay images for (A) and (C) (for visualization of section edge and tissue fragments within embedding resin). All remaining images (E–L) are FITC images. (E) Secondary only control section that was not exposed to primary antibodies, to control for non-specific binding of secondary antibodies. (F) Section exposed to anti-chicken collagen I antibodies that were first inhibited with chicken collagen (prior to incubation). (G) Section digested with collagenase for one hour prior to exposure to anti-collagen I antibodies. (H) Section digested with collagenase for six hours prior to exposure to anti-collagen I antibodies. (I) Modern Alligator tissue section incubated with anti-chicken collagen I antibodies. (J) Secondary only Alligator control section that was not exposed to primary antibodies. (K) Alligator section exposed to anti-chicken collagen I antibodies that were first inhibited with chicken collagen. (L) Alligator section digested with collagenase for one hour prior to exposure to anti-collagen antibodies. All section images were taken at 40X and 200 ms integration. 184 CHAPTER 4: ACTUALISTIC TESTING OF THE INFLUENCE OF GROUNDWATER CHEMISTRY ON DEGRADATION OF COLLAGEN I IN BONE 4.1 Abstract Though recent reports have heightened our understanding of biomolecular stabilization reactions in early diagenesis, little remains known about how groundwater chemistry can aid or hinder preservation of bone biomolecules through geologic time. To examine this topic, I conducted actualistic experiments employing varied fluid compositions simulating a suite of groundwaters. Chicken (Gallus gallus) femora were placed in a matrix of natural river sand. To simulate groundwater flow, deionized water or solutions supersaturated with calcium carbonate or enriched in phosphate or iron were percolated through separate trials for a period of three months. Afterward, degradation of the bones was examined via thin sectioning and histologic study as well as immunofluorescence and enzyme-linked immunosorbent assays against collagen I, the primary bone structural protein. Results demonstrate that early diagenetic permineralization may hamper long-term microbial attack, and hence increase the potential for a bone to retain biomolecules through late diagenesis. High acidity appears to degrade soft tissues more rapidly than it dissolves bone mineral. Cementation of sediment over bone surfaces may preferentially become expressed over more porous regions of bone tissue, perhaps due to greater release of decay compounds from such regions. Future variations of this actualistic taphonomy experiment employing varying solution metal concentrations, bacterial floras, pH values, host sediments, and testing 185 bones primarily comprising different tissue types (i.e. dense cortex versus porous cancellous bone) could provide further important insights into how early diagenetic environments control the initial decay of bone biomolecules. 4.2 Introduction As discussed in Chapter 1, discovery of endogenous biomolecules in ancient fossils is becoming increasingly common (e.g., Muyzer et al., 1992; Embery et al., 2000, 2003; Schweitzer et al., 2005a, 2007a, 2009, 2013; Cappellini et al., 2011; Lindgren et al., 2011; Glass et al., 2012, 2013). These discoveries challenge long held presumptions about the nature of fossilization processes and provide intriguing avenues for; 1) identifying anatomically indeterminate fossil remains (e.g., Buckley et al., 2009, 2011); 2) testing of phylogenetic hypotheses independent of skeletal morphology (e.g., Asara et al., 2007; Organ et al., 2008; Schweitzer et al., 2009); 3) calibrating of molecular clocks for cladistic analyses (Schweitzer, 2003); 4) tracking the genetic and phylogeographic history of species populations (e.g., Paabo et al., 2004; Rogaev et al., 2006), and; 5) examining trajectories of molecular evolution and organismal physiology (Schweitzer, 2003). Advancement of our understanding of molecular preservation mechanisms is critical for developing methods for discerning sample endogeneity and so that paleontologists may account for such seemingly remarkable discoveries. In particular, a better understanding must be reached of precise molecular reaction pathways that may 186 take place during early diagenesis to facilitate long term stabilization of biomolecules (e.g., Schweitzer et al., 2014a). Groundwater composition, flow rate, pH, and temporal fluctuations in these variables mediate diagenetic alteration of bone after it is buried in sedimentary environments (Martin, 1999). One fruitful means of exploring how these variables influence molecular decay is to model fossil formation in the laboratory through actualistic taphonomy (Kowalewski and Labarbera, 2004). Experimental recreation of decay and fossilization pathways allow one to control and reduce the number of independent variables and evaluate physicochemical processes in a manner not achievable by direct study of ancient fossils. For example, actualistic studies have advanced our understanding of how microbes may mediate permineralization of bone (Carpenter, 2005; Daniel and Chin, 2010), how fluvial currents winnow mass death assemblages of skeletons (e.g., Varricchio et al., 2005) or impart directionality patterns to fossil assemblages (e.g., Voorhies, 1969), and how subaerial weathering can progressively degrade bone (Behrensmeyer, 1978). In this chapter, I present results of an actualistic experiment conducted to explore the influence of groundwater chemistry on biomolecular decay. As in Carpenter (2005) and Daniel and Chin (2010), bones were placed within a sedimentary matrix and exposed to simulated groundwater of varying composition for a period of three months. Simulations included calcium carbonate supersaturation, enrichment in phosphate, and enrichment in iron. These choices were made with the intent of modeling fossilization within a diverse suite of environments, so that the results could inform paleontologists working with vertebrates from diverse environments. The findings build upon those of 187 Carpenter (2005) and Daniel and Chin (2010), extend conclusions of these type of experiments down to the molecular level, and provide a basic foundation for further actualistic testing. 4.3 Methods 4.3.1 Materials All expendable materials used in construction of the trial apparatuses were purchased new, including silicone tubing (VWR), silicone (Lowes), cellophane (Rakuten), faucet aerators (Lowes), steel wool (Lowes), aluminum foil (Fisher), disposable lab spatulas (Fisher), polyethylene screw top caps from 50 ml centrifuge tubes (VWR), 60 ml syringes (VWR), and calcium carbonate (Sigma-12010), phosphoric acid (Sigma-466123), and iron III chloride (Sigma-157740) salts (Sigma). Glassware were washed with bleach and 95% ethanol, then autoclaved prior to use. ShoutTM (used for degreasing) and organic chicken (Gallus gallus) thighs were purchased from local vendors (Walmart and Shoprite Groceries, respectively). Femora (with the periostea still attached) were extracted from the chicken thighs with disposable sterile scalpels and degreased in a 10% ShoutTM solution by rocking in separate 600 ml Erlenmeyer flasks for 48 hours (with changes every 16 hours; following method of Schroeder, 2013). After degreasing, bones were rinsed in deionized water and stored at 4°C overnight. Natural river sand was collected from the north side of a cutbank exposure along the Mullica River in southern New Jersey (39°44’02.83” N, 74°42’40.33” W) to serve as a permeable sedimentary matrix. The Mullica was chosen due to ease of accessibility, high maturity of the sand in its banks, and the limited human development along this 188 river. Sand was collected from just above, at, and beneath the water level and forced through a 1 mm sieve (Zoro Tools) to remove any organic particulates and as an effort to homogenize the collected sand sample for use in the trials. Because bones buried in natural environments are exposed to bacteria and other microbes in the sediment, no effort was made to sterilize the sand (i.e. no treatment with sodium azide or bleach). Compositionally, the collected sand is > 99% medium to fine grained quartz. Texturally, the sand is well sorted with subrounded to angular grains. Lithic grains (< 1%) which derive from weathering of igneous and metamorphic rocks are most commonly fine sand size and subrounded. These grains are primarily black in color, but yellow, tan, dark gray, and reddish-brown grains are also found. Some lithic grains appear to be isolated hornblende crystals from igneous/metamorphic rocks. 4.3.2 Trial apparatus The trial apparatus employed here was based on that of Daniel and Chin (2010; which was based on that of Carpenter, 2005) and is summarized in Figure 4.1. Nitrile gloves were worn during the construction of each identical apparatus. 60 ml syringes (with plungers removed) were utilized as sterile incubation chambers for the experiment. To ensure sand would not pass through the base of the syringes, a small tuft of autoclavesterilized steel wool was placed in the bottom of each syringe, then covered by an autoclaved faucet aerator (fine steel mesh). Roughly 10 ml of sand was then added to each syringe, a femur was placed in each with the distal end directed down, and sand was packed around and over top of each femur with a disposable, sterile lab spatula. A small tuft of steel wool was then placed over the sand (to disperse solution drips, ensuring that 189 bones would remain buried, i.e. dripping solutions would not excavate a depression in the sand down to the bone). Lids for incubator chambers were prepared by drilling a 7 mm hole (with an autoclave-sterilized drill bit) in the center of polyethylene screw top lids from 50 ml centrifuge tubes, then attaching a lid to each syringe with clear 100% silicone. Incubation chambers were suspended upright from ring stands via ring clamps. 600 ml beakers were placed under each syringe to collect effluent solution; waste solution was dumped on average every 48 hours. Prepared “groundwater” solutions (in 1 L jars) were placed beside the trial apparatuses and fed via quarter inch silicone tubing through a peristaltic pump and into assigned incubation chambers (Figures 4.1 and 4.2). 100% silicone was then used to form airtight seals of silicone tubes into the lids of incubation chambers. To limit influx of airborne contaminants, cellophane was taped over the top of each solution feeder jar and each gap between syringes and effluent beakers. Aluminum foil was wrapped around each incubation chamber and around each solution feeder jar to simulate the darkness of burial. 4.3.3 Solutions and trials “Groundwater” solutions were simulated to either be enriched with calcium carbonate (CaCO3), phosphoric acid (H3PO4), or iron chloride (FeCl3). Aqueous solutions of these metals were made by solubilization of pure salts. FeCl3 was specifically chosen so that, once it was dissolved, chlorine anions (Cl-) would immediately bind with trace sodium or potassium in the water and precipitate out as NaCl or KCl salts, thereby removing Cl- as a “contaminating” ion from the solution prior to its use in the trial. H3PO4 was also specifically chosen so that once it was dissolved excess hydrogen cations 190 (H+) would either be lost as hydrogen gas or bind with dissolved oxygen (O2) to form new water molecules, thereby removing excess H+ as a “contaminating” ion from the solution prior to its use in the trial. CaCO3 salt Calcium carbonate was chosen because; 1) calcium is a primary component of bone hydroxyapatite (Francillon-Vieillot et al., 1990) and an essential metal nutrient sought by microbial decomposers (Ehrlich, 1996; Gadd, 2010); 2) calcite is a common cementing mineral in clastic sedimentary environments (Boggs, 2003; Grupe and Piepenbrink, 1989), and; 3) this compound has been successfully modeled in a similar experiment (Daniel and Chin, 2010), allowing me to attempt to replicate their trial. A supersaturated solution was prepared by dissolving 2 g of CaCO3 per 1 L of 0°C deionized water (salt dissolved into solution as the water melted) titrated to pH 6.5 with 1 N hydrochloric acid (HCl). Freezing of the water and titration to acidic pH were necessary to enhance calcium carbonate solubilization (because CaCO3 solubility increases with decreasing temperature and pH; Coto et al., 2012). Prepared solution was filtered (via disposable 0.22 μm screw top filters, Corning) to remove any remaining undissolved CaCO3, yielding a final concentration of ~ 0.67 g/L. This is nearly twice normal saturation levels (0.3 g/L at pH 6.5; Daniel and Chin, 2010). Iron chloride was chosen because iron is a common product of hemoglobin and myoglobin degradation that is hypothesized to catalyze free radical reactions that stabilize soft tissues and biomolecules during early diagenesis (Schweitzer et al., 2007b, 2014a; Bertazzo et al., 2015). A 10 mM FeCl3 solution was prepared following the protocol of Ferris et al. (1988). This involved dissolving 1.62 g of FeCl3 in 1 L of water 191 in a laminar flow fume hood at room temperature, then filtering the solution (0.22 μm) to remove any undissolved FeCl3. Finally, phosphoric acid was chosen because phosphate; 1) is the second primary component of bone hydroxyapatite (Francillon-Vieillot et al., 1990); 2) is another essential metal nutrient sought by microbial decomposers (Hirschler et al., 1990; Prevot and Lucas, 1990; Ehrlich, 1996; Gadd, 2010), and; 3) commonly contributes to "replication" minerals (e.g., in the process of phosphatization; Martill, 1988, 1990; Kellner, 1996; Briggs et al., 1997; Briggs, 2003; Zhu et al., 2005). Since no previous attempts at modeling a groundwater enriched with phosphate in the literature could be found, twice maximum reported natural abundance was taken as a conservative starting point. Sheldon (1981) reports that the concentration of phosphorous in natural pore waters can reach as high as 9 mg/L, so a solution was prepared at 18 mg/L. 9 mg/L would equate to a concentration at 0.29 mM, so I prepared a solution at twice this concentration, 58 mM. As there are 31 g of phosphorous in one mole of phosphoric acid (H3PO4), 56 mg of phosphoric acid salt is needed to make 1 L of a 58 mM solution. This solution was hence prepared by dissolving 56 mg phosphoric acid salt per 1 L of deionized water. Since this would make an unnaturally acidic solution, the pH was raised back to 7 by adding a few drops of 6 N sodium hydroxide (Aqua Solutions NC9933635). The final solution was not filtered because no undissolved salts remained (because the phosphate concentration was still far below saturation level). Fresh solutions were prepared every 3–4 days and continually fed to incubation chambers by two used, three-channel peristaltic pumps (Pharmacia model P-3, Ebay) which were calibrated to matching flow rates of 1 L/day (= 0.7 ml/min) (Figure 4.2). This 192 rate matches that used by Daniel and Chin (201) as an average groundwater flow rate in natural environments. In their experiment this rate equated to a flow velocity of 0.24 m/day (calculated by dividing solution volume per unit time by cross sectional area of the apparatus). Because of the smaller diameter of my apparatus compared to theirs, 1 L/day equates to a flow velocity of ~1.63 m/day in my experiment. This value still falls well within natural bounds (0.025–15 m/day as cited by Daniel and Chin [2010] and references therein). After completion of the three-month experiment, contents of the incubation chambers were removed and the bones photographed. I then described their general state of decay and, with separate, sterile, disposable scalpels, divided the shaft of each femur into three sections for; 1) histologic embedding; 2) grinding and protein extraction, and; 3) demineralization and immunofluorescence. This splicing revealed that light-colored degradation products of medullary tissue remained within the shaft of each femur. These tissues were manually removed prior to further examinations. Pliable, partly decomposed periostea were immediately removed from diaphyseal segments using separate, sterile disposable scalpels. Finalized bone samples designated for histology and protein extraction were stored at -20°C until further use. Those designated for immunofluorescence were demineralized in freshly prepared 0.5 M ethylenediaminetetraacetic acid (EDTA) pH 8.0 (0.22 μm filtered) in new, autoclavesterilized 20 ml glass scintillation vials for two weeks (with EDTA changed daily). 4.3.4 Histology 193 Traditional methods for fossil bone embedding and sectioning were followed (Chinsamy and Raath, 1992). This first involved impregnation of designated diaphysis segments with Silmar 41TM resin (US Composites) in a vacuum chamber for 7 minutes at 23 in Hg pressure. Embedded bone segments were allowed to polymerize (1.007 volumes of methyl ethyl ketone peroxide as catalyst) overnight at 4°C, then at room temperature for another 24 hours. A precision wafer saw (Buehler IsoMet 1000) was used to cut 1.5 mm thick transverse sections of each respective diaphysis sample. Because bone tissues displayed slightly pliable character at this stage, both faces of the thick sections were briefly treated with Paleobond Penetrant Stabilizer (Pb002) and allowed to dry overnight. One face of each section was ground and polished with successively finer sandpapers (320 and 600 grits on a Buehler EcoMet 4000 Grinder/Polisher), then adhered to a frosted glass slide with two ton Clear WeldTM epoxy and allowed to dry at room temperature overnight. Mounted sections were then ground and polished as above to a final thickness of ~100 μm. Slides were optically examined via transmitted and polarized light sources with a Zeiss Axioskop 40 petrographic polarizing microscope; images were collected from 10–50X via an attached Zeiss Axiocam MRC5 camera and associated Axiovision software. 4.3.5 Protein extraction As in Chapter 3, biomolecular assays testing the extent of retention of collagen I were performed in triplicate at North Carolina State University (NCSU). I followed the sequential demineralization-based immunoprecipitation extraction protocol of Schroeter (2013) for this study. Aliquots of 2 g of cortical bone were ground 194 to fine powder (< 1 mm grain size) in nitric acid and baking-sterilized (520°C) mortar and pestles. Separately, aliquots of sediment (again 2 g each) were also ground to serve as negative controls. After adding resulting bone or sediment powders to separate 10 ml spin columns (Pierce) and leaving one additional spin column per column of bone powder empty to serve as a buffer control, columns were placed in 50 ml centrifuge tubes (Fisher) and demineralized overnight on a rocker with 10 ml of 0.6 M hydrochloric acid (HCl). Columns were centrifuged (1,000 rcf) the following day to collect an ‘HCl extract’. Demineralization was then continued with 10 ml of 4 M guanidine hydrochloride (GuHCl) in 0.05 M Tris pH 7.4, again incubating (this time at 65°C) overnight on a rocker. Columns were then centrifuged the following day to collect a ‘GuHCl extract’. Supernatant extracts were stored at 4°C until protein precipitation, which began with centrifugation (8,000 rcf, 10 min) to pelletize any remaining undissolved solids. Resulting (protein-containing) supernatants were then decanted into new 50 ml tubes (one for each HCl extract and two for each GuHCl extract) for immunoprecipitation. Precipitation was performed overnight with rocking (at -20°C) with 2.5 ml of 100% trichloracetic acid for each HCl extract or 25 ml of 100% ethanol for each GuHCl extract. Precipitated HCl extracts were finalized the following day by three repetitions of 20 minute centrifugation (8,500 rpm), decanting of waste supernatant, and washing with 5 ml of 100% acetone. Precipitated GuHCl extracts were finalized by three repetitions of 10 minute centrifugation, decanting of waste supernatant, and washing with 5 ml of 90% ethanol. After final centrifugation and decanting of waste supernatants, all tubes were inverted over paper towels in a laminar flow hood to dry overnight (at room temperature). Finalized extract tubes were then sealed and stored at -80°C until analysis. 195 4.3.6 ELISA I followed the ELISA protocol of Zheng and Schweitzer (2012) (also see Schweitzer et al., 2009, 2007a). Extracts were resuspended in 1X phosphate buffered saline (PBS) to form 1 mg/ml stocks. For the buffer control, 1 ml of PBS was added to the extract tube and immediately collected, as no pellet was visible. Serial dilutions were then performed to form 1 μg/ml stocks for ELISA. Bone sample solutions and 1X PBS (for group blanks) were plated at 100 μl/well (= 0.1 μg/well of sample) on an Immulon 2HB U-bottom microtiter plate (Thermo Scientific) and allowed to incubate for 4 hrs at room temperature (RT). An additional row was left empty as a plate blank to test for any laboratory contaminants. Plated solutions were discarded, and non-specific binding was then inhibited with 200 μl/well of blocking buffer (5% bovine serum albumin in 1X PBS with 2% Thimersol and Tween 20) for 4 hrs at RT. After discarding blocking buffer, selected wells were incubated overnight at 4°C with rabbit anti-chicken collagen I antibodies (US Biological C7510-13B) diluted 1:400 in blocking buffer. Wells designated as group blank received only blocking buffer. Solutions were again discarded, then the plate was washed 10–15 times with ELISA wash buffer (10% PBS in Epure water with 0.1% Tween 20). Wells were then incubated for 2 hrs at RT at 100 μl/well with alkaline phosphatase conjugated goat anti-rabbit IgG H+L secondary antibodies (Invitrogen) diluted 1:1000 in blocking buffer. Solutions were discarded, plate washed as above, and wells were incubated at 100 μl/well with substrate (9.8% diethanolamine, 0.5 mM MgCl2 + 1 tablet of p-Nitrophenylphosphate [Sigma N-9389]). Absorbance was read every 10–30 min at 405 nm with a Molecular Devices THERMOmax microplate reader. 196 4.3.7 Immunofluorescence Demineralized bone tissues were embedded, sectioned, and analyzed following the same procedures described in detail in Chapter 3 sections 3.3.5 and 3.3.6, which were based on protocols of Schweitzer et al. (2007a, 2009) and Zheng and Schweitzer (2012). As a brief review, this involved mincing of demineralized tissues with a sterile razor on a sterilized lab plate, fixation with 10% neutral buffer formalin, sequential dehydrations in 70% ethanol and a 2:1 solution of 70% ethanol/LR WhiteTM, and embedding in pure LR WhiteTM resin (Electron Microscopy Services). 200 nm sections were treated with 25 μg/ml proteinase K (Roche) and 0.5 M EDTA pH 8.0 to retrieve antigens. Sections were then incubated with polyclonal rabbit anti-chicken collagen I antibodies (Millipore AB752P) at 1:40 dilution (in primary dilution buffer; see Chapter 3), biotinylated goat anti-rabbit IgG H+L antibodies (Vector) diluted 1:333 (in secondary dilution buffer; see Chapter 3), then fluorescein avidin D (FITC) diluted 1:1000 (in secondary dilution buffer). Sections were imaged at 40X and 50 ms exposure using a Zeiss Axioskop 2 Plus microscope with a connected Zeiss Axiocam MRC5 camera. Digestion (with collagenase A, Roche) and inhibition assays were also conducted following the same procedures detailed in Chapter 3 section 3.3.6, except that only one hour digestions were conducted here. 4.4 Results 4.4.1 General observations 197 The iron trial bone/sediment incubation chamber gained a dark orange coloration within the first two weeks that was maintained for the remainder of the three-month experiment. In the third month, the tip of the syringe for this trial frequently became blocked by iron oxide precipitation, preventing the flow of waste solution from the incubation chamber. When this occurred, an ethanol and autoclave-sterilized straight dissection pick was twisted within the syringe top to reestablish fluid flow by breaking up clots of precipitated mineral. This was never necessary for the other three trials. After completion of the trials bones and sediment were emptied from the incubation chambers and manually separated with separate, sterile, disposable scalpels. Contrary to expectations based on the results of Daniel and Chin (2010), minimal sand was cemented to the exterior of the femur in the calcium carbonate trial. Bones from the water control, calcium carbonate, and phosphate trials remained hard to the touch and similar in color to when the experiment was begun (Figure 4.3). In sharp contrast, the femur from the iron trial was soft, pliable, and darkened in color. Yellow and orangestained sand was cemented over much of this bone, especially over remnants of articular cartilage on the epiphyseal ends (Figure 4.3, arrows). 4.4.2 Histology Histological integrity is generally well preserved in bones of all four trials. All four femora can be assigned a Histologic Index of 5 (“unaltered”) according to the scale of Hedges and Millard (1995; Table 4.1), with osteons and osteocyte lacunae still clearly visible in every specimen. No bone sections exhibited definitive evidence of microbial attack (e.g., Wedl tunneling, microscopic focal destructions; Jans, 2008). 198 All four femora retain excellent preservation of original crystalline structure as evidenced by retention of alternating dark and light bands (e.g., Figures 4.4B, 4.7B) and osteon Maltese crosses (e.g., Figure 4.6B) under polarized light (Hubert et al., 1996; Jans et al., 2002). Maltese crosses are birefringence patterns that form as a product of hydroxyapatite crystal orientation; crystals that are aligned with their c axes parallel to the viewfinder block the passage of polarized light and appear dark. Crystals oriented in any other manner will allow the passage of light and appear bright. In an osteon in fresh bone, alternating layers of collagen fibrils and hydroxyapatite form an interference pattern that creates a cross of birefringence under polarized light (Hubert et al., 1996). Retention of these crosses in osteons of all trials indicates the mineral structure of the tissues has not been significantly altered. Inexplicably, it was exceedingly difficult to grind/polish the water control femur section to even thickness even within the scale of a single cortical wall. As a result, whereas the internal cortex and outer cortical edge reached optimal thickness much of the middle cortex remains thicker than desired and consequently appears dark tan-brown under transmitted light (Figure 4.4A) and dark gold under polarized light (Figure 4.4B). This partially obscures visualization of the fine structural details of the middle cortex; yet, osteons are still clearly visible, as are osteocytes within some lamellae around osteons (Figure 4.4A,C). Haversian canals remain open (Figure 4.4C). Osteocytes are present in some regions throughout the cortex and are dark red-brown in color as in the calcium carbonate trial. However, osteocytes are locally absent from lacunae in small regions of internal cortex (open lacunae seen as bright, simple ovoid entities; Figure 4.4D). When osteocytes remain they commonly retain visible filopodia (e.g., Figure 199 4.4D, inset), though they are not as frequently encountered as in the femur from the calcium carbonate trial. A cryptocrystalline mineral precipitate frequently infills Haversian canals and partially infills medullary cavity voids in the femur from the calcium carbonate trial (Figure 4.5A–E), occasionally cementing sand grains to walls within the internal medullary cavity. In transmitted light, such infills are visible as semi-translucent, gray to dark tan mineral deposits (e.g., Figure 4.5C,E). Under polarized light, mineral linings generally appear golden brown and locally include patches exhibiting bright, high-order interference colors (small regions of pastel colors; Figure 4.5D). These characteristics identify the mineral precipitate to be calcite, as expected from the CaCO3-supersaturated solution used in this trial. Osteocytes remain within lacunae, are dark red-brown in color, and consistently retain filopodial extensions from the central cellular body (Figure 4.5F). The femur from the phosphate trial appears essentially unaltered in all respects (Figure 4.6A–B). Haversian canals frequently remain open (Figure 4.6C), crystal orientations are preserved (i.e. Maltese crosses are very common under crossed polars; Figure 4.6B), and osteocytes remain present throughout the entire section. As in the calcium carbonate trial, osteocytes appear dark red-brown in color and retain readily visible, long filopodia (Figure 4.6D). Mineral infillings and linings, though rare, appear similar to those in the calcium carbonate trial in that they are tan to brown in color (e.g., Figure 4.6C) and occasionally exhibit faint high order interference colors under polarized light. It is not clear if these infillings should also be assigned to calcite as there is no apparent source of calcium other than the bone, and the bone does not appear to exhibit any signs of dissolution. Nonetheless, based on optical similarity, I tentatively assign 200 them to the mineral calcite because it is a very common cementing mineral in fluvial sediments (Boggs, 2003). The femur from the iron trial exhibits the greatest alteration of the four trials (Figure 4.7A–B). A dark orange-brown mineral precipitate, presumably an iron oxide mineral such as goethite, frequently lines and partially infills voids in the medullary cavity (Figure 4.7C–E). Subrounded sand grains are commonly cemented together by this mineral in the medullary cavity (e.g., Figure 4.7C–D). The sand grains commonly display a wide range of moderate order interference colors (yellow, blue, pink, purple) under cross-polarized light (e.g., Figure 4.7D,E), consistent with a quartz composition. In contrast to all other trials, osteocyte lacunae are almost universally empty (Figure 4.7F). Osteocyte lacunae also appear proportionally larger and elongated relative to the thickness of osteonal lamellae in this femur than those from the other trials. 4.4.3 ELISA Collagen I was positively identified in all GuHCl extracts and most HCl extracts (absorbance at least twice background signal from plate blank; Schroeder, 2013, and references therein). Results demonstrate that almost all collagen I appears to be collected in the GuHCl extracts rather than the HCl extracts (Figure 4.8). In two of three replicates GuHCl extracts of the calcium carbonate trial reached saturation (3.0) more rapidly than did GuHCl extracts from the deionized water control. In a third replicate, GuHCl extracts of the water control reached saturation first. Saturation was normally reached in less than 1.5 hrs. That both calcium carbonate and water control trials reached saturation so rapidly reflects negligible decay of collagen I in these trials. GuHCl extracts from the phosphate 201 trials achieved modestly lower absorbances (~1.5–2.7) in 1.5 hrs than either the water control or the calcium carbonate trial. Iron trial GuHCl extracts exhibit significantly lower absorbance than GuHCl extracts from any other trials, generally displaying absorbance around 0.7–1.8 in 1.5 hrs. However, iron trial HCl extracts yielded greater absorbance readings than HCl extracts of all other trials, though this is still only an absorbance of 0.1–0.3 in 1.5 hrs. This pattern indicates initial demineralization in the HCl extraction more readily and rapidly freed collagen from the iron trial bone than from bones from other trials. Buffer blanks yielded no significant absorbance (Figure 4.8), indicating no contaminants were present in the blocking buffer. Secondary only control wells also yielded negligible absorbance readings (Figure 4.8), confirming no spurious binding of secondary antibodies to the plate. The fact that collagen I accounts for ~90% of the organic component of bone (Schmidt-Schultz and Schultz, 2004) permits a rough approximation of the amount of collagen remaining in each trial’s extract. By this statistic, ~90 ng of the 100 ng of extract plated per well should be collagen I. Using the highest 150 min absorbance as reference (calcium carbonate GuHCl absorbance in third replicate, ~3.2), percentage calculations indicate that GuHCl absorbance values of 2.8–3.0, 1.5–2.7, and 0.7–1.8 reflect retention of 79–84 ng, 42–76 ng, and 20–51 ng collagen per 100 ng of extract respectively for the water control, phosphate, and iron trials (compared to an assumed 90 ng collagen/100 ng extract for the calcium carbonate trial). These findings suggest that approximately twice as much collagen has been lost to decay in the iron trial than in the water control and calcium carbonate trials. 202 4.4.4 Immunofluorescence Collagen I was positively detected in all four femora (Figure 4.9, first column). In agreement with ELISA results (see Table 4.1), fluorescent signal intensity was greatest for the femur from the water control (Figure 4.9A), of moderate intensity for the femur from the phosphate trial (Figure 4.9I), and weakest for the femur from the iron trial (Figure 4.9M). The femur from the calcium carbonate trial exhibited a fluorescent signal (Figure 4.9E) intermediate in intensity between that of the femora from the water control and phosphate trials. Binding is expressed throughout entire tissue sections for all four femora, consistent with collagen I comprising the majority of structural protein in bone; only rarely do a few osteonal lamellae exhibit brighter fluorescence than other regions of tissue. “Secondary only” controls, in which anti-collagen antibodies were not added, present no fluorescence for all trials (Figure 4.9, second column). This affirms a lack of non-specific binding by secondary antibodies. Inhibition controls, in which primary antibodies were inhibited by incubation with purified chicken collagen prior to incubation with sample tissues, also exhibit no fluorescence (Figure 4.9, third column). This confirms high specificity of the primary antibodies towards binding only to avian collagen I. Digestion controls, in which tissue sections were degraded by incubation for one hour with the enzyme collagenase, present dramatically reduced fluorescence in comparison to non-digested sections (Figure 4.9, fourth column). Such drastic reduction in signal supports the presence of a protein structurally consistent with collagen I (i.e. contains abundant Pro-X-Gly amino acid sequences that are rare in other proteins; Harper and Kang, 1970; Roche Applied Science, 2012). 203 4.5 Discussion Immunofluorescence and ELISA results (for GuHCl extracts) generally agree about the relative extent of decay of collagen I among the four trials. The order from least to most decay was: water control ≈ calcium carbonate, phosphate, iron (Table 4.1). Because all other variables were held constant among the trials (i.e., temperature, darkness, flow rate, taxonomic identity, tissue type, and unaltered, natural bacterial flora), reduction in immunoassay signals resulted from exposure to differing solutions. These solutions primarily differed in two aspects: the metal ion of enrichment and pH. The pH values of the solutions were directly chosen to be near neutral for the calcium carbonate trial (pH = 6.5) and phosphate trial (pH = 7) to simulate natural conditions. However, pH was not adjusted for the solution in the iron trial. The pH of that solution was solely determined by the addition of iron chloride to water, and this made it very acidic (pH = 2.2). This solution has been successfully used to promote rapid iron oxide precipitation to aid fossilization of bacteria (Ferris et al., 1988) and leaves (Dunn et al., 1997). However, a pH of 2.2 is presumably too acidic for modeling of an environment that would be likely to preserve bone. Bacteria, leaves, and bones will generally become fossilized in drastically dissimilar environments with contrasting hydrologic and geochemical regimes (Behrensmeyer et al., 1992; Martin, 1999). Whereas plant matter will commonly be preserved in acidic, dysaerobic, environments such as swamps and marshes, bones will normally dissolve under such conditions (Behrensmeyer et al., 1992; Child, 1995). In contrast, bones have higher preservation potential in organic-poor, near-neutral to slightly 204 alkaline pH soils and sediments (Retallack, 1984, 1997; Behrensmeyer et al., 1992). Thus, my iron trial modeled an environment that would not be conducive to bone preservation. Therefore, the considerable decay of collagen in the femur from this trial is an expected result. That the femur from the iron trial was the only bone to provide a greater collagen yield from the initial HCl extraction (Figure 4.8) logically concurs with the softer character of the bone post-experiment and attests to the relatively greater decomposition yielded by this trial. Rapid cementation (Boyce et al., 2002; Schweitzer, 2003, 2004) and exposure to iron (Schweitzer et al., 2007b, 2014a) have each been proposed to promote stabilization of biomolecules during early diagenesis. Intriguingly, despite clear indications of a loss of mineral for the femur in the iron trial (e.g., it was soft and pliable to the touch), rapid precipitation of an iron cement occurred over much of the bone (Figure 4.3). Greater development of iron cement over the epiphyseal ends may owe to a greater emission of iron-rich hemoglobin decay products from these more porous tissue regions (cf. Schweitzer et al., 2014a). Expression of iron cements chiefly over epiphyses echoes the condition of Cretaceous dinosaur bones from the Standing Rock Hadrosaur Site that I analyzed in Chapters 2 and 3. This similarity warrants further investigation, specifically into the conditions promoting early diagenetic precipitation of iron cements and concretions and how such precipitates may influence long-term preservation of biomolecules. Remarkably little decay is evident in the femur from the water control trial, and why this is the case is difficult to explain. ELISA absorbance readings for GuHCl extracts from this bone still reached saturation within 1.5 hr, despite hydrated, oxic 205 conditions and a lack of forced mineralization by metal supersaturation in this trial. Plausible explanations for why such little decay occurred in this trial could be that bacterial populations were low and/or that the trial was not run long enough for extensive microbial attack to take place. Previous actualistic experiments suggest that three months should be more than enough time to yield significant changes; either decay, mineralization, or a combination of these processes (e.g., Berner, 1968; Allison, 1988; Ferris et al., 1988; Briggs and Kear, 1993; Dunn et al., 1997; Sagemann et al., 1999; Martin et al., 2004; Carpenter, 2005; Daniel and Chin, 2010; Moyer et al., 2014; Schweitzer et al., 2014a). Absence of microbial focal destructions and Wedl tunneling in the thin section for the water control (and in the other trials; Figures 4.4–4.7) suggests that microbial attack was minimal. However, empty osteocyte lacunae within confined regions of the inner cortex of the femur from the water control (Figure 4.4C,D) indicate that microbial attack did indeed take place. This decay cannot be attributed to acidity of the solution because, as in the phosphate trial, it was neutral in pH. Therefore, microbes appear to primarily have been attacking the soft tissue components of the bones rather than the mineral phase. Absence of phosphate mineral precipitation in the phosphate trial indicates a concentration of twice the maximum known natural abundance was not high enough to induce inorganic nor bacterially-mediated phosphate precipitation (neither active nor passive). That inorganic precipitation did not occur is unsurprising because the solution was well below the saturation point. However, it is somewhat surprising that bacteriallymediated precipitation did not occur. This could be due to; 1) not a high enough 206 concentration of phosphate provided in the trial’s solution; 2) not enough phosphate being dissolved into solution from the bone because the pH was not acidic enough; 3) too few bacteria around the bone to promote production of a visible amount of mineral precipitation, or; 4) a combination of these factors. Options one and two above are certainly plausible, but the ubiquity of bacteria in modern environments makes option three above unlikely. A potential additional argument, that the bacteria present were incapable of inducing mineral precipitation, can be discounted because the hydrous exopolysaccharides secreted by and encasing bacteria are highly negatively charged (by anionic carboxyl and phosphoryl groups; Farmer, 1999) and therefore commonly bind metallic cations (which promotes mineral nucleation; Hirschler et al., 1990; Konhauser, 1998; Farmer, 1999; Liebig, 2001; Toporski et al., 2002). Since loss of collagen is evident from ELISA and immunofluorescence results (Figures 4.8 and 4.9I) and the modeled solution was neutral in pH, microbial enzymes (either endogenous/autolytic or exogenic, or both) were likely the primary agents of decay. Oxidation and hydrolysis (Child, 1995; Trueman and Martill, 2002) were also likely contributors to decay, but strong ELISA and immunofluorescence signals for collagen in the femur from the water control trial suggest that these agents were not acting strongly over the duration of the experiment. Rapid permineralization clearly aided biomolecular stabilization in the calcium carbonate trial. The most convincing evidence supporting this conclusion is that, in two of three replicates, ELISA absorbance readings for GuHCl extracts reached saturation even more rapidly than those of the water control trial. Although histologic examination found permineralization to have been incomplete (Figure 4.5), this did not seem to be a 207 limiting factor. It thus appears that even partial permineralization may help protect bone collagen. According to ELISA and immunofluorescence results (Figures 4.8 and 4.9), two of the three trials which did not produce extensive permineralization, namely the iron and phosphate trials, exhibited greater loss of collagen. In total, these findings support the conclusion that bacterially mediated permineralization may aid stabilization of bone soft tissues and their constituent biomolecules in addition to the mineral component of bone. 4.6 Conclusion Carpenter (2005) and Daniel and Chin (2010), who conducted similar experiments, suggested that bacterially mediated permineralization can rapidly equilibrate a buried bone with its surrounding geochemical setting and thereby increase its changes of long-term survival in the fossil record. The results of the experiment presented here support this conclusion and further suggest that such microbiallyfacilitated stabilization of bone extends down to the molecular level. By providing the right conditions, incipient permineralization can be modeled within a laboratory environment within a timeframe of a few months. As Hubert et al. (1996) suggested, complete or partial permineralization, whether achieved by inorganic or bacteriallymediated means, may hinder microbial mobility and thereby protect a portion of bone soft tissues and biomolecules from microbial attack through protracted diagenesis. Acidic conditions are detrimental to bone preservation (Behrensmeyer et al., 1992), and it appears that acidity degrades soft tissue components more rapidly than it dissolves bone hydroxyapatite. Iron enrichment in groundwater may facilitate siderite or iron oxide 208 precipitation, and early diagenetic growth of iron-rich mineral cements, linings, and concretions play a complex and underappreciated role in biomolecular preservation. Growth of iron-rich cements may commonly first occur over more porous regions of bone such as limb bone epiphyses, perhaps due to greater discharge of iron-rich, bloodderived hemoglobin breakdown products from such tissue regions. Further actualistic testing is crucial to advancing our understanding of biomolecular preservation mechanisms (Schweitzer et al., 2014a). Critical variables in need of further investigation include conditions promoting rapid, early diagenetic mineral precipitation, the significance of bacterial flora composition, and the role of iron in biomolecular stabilization. 209 Table 4.1 Summary of bone attributes after completion of the experiment. Histological Index scores follow the ranking system of Hedges and Millard (1995). Abbreviations: ELISA, enzyme-linked immunosorbant assay; IF, immunofluorescence. Trial H2O (control) Histological Index after trial duration 5 CaCO3 5 PO4 Fe 5 5 Histologic alterations Some osteocytes lost to decay in internal cortex Common calcite infilling of Haversian canals, linings in medullary cavity Rare mineral infillings/linings Common iron oxide infillings and linings, nearly all osteocytes lost to decay Relative ELISA signal High High High High Relative IF signal Moderate Moderate Low Low 210 Figure 4.1 Experimental apparatus. General template of this design derives from that of Daniel and Chin (2010, fig. 1). 211 Figure 4.2 Initial setup of the experiment, prior to wrapping the bone/sediment incubation chambers and feeder solution bottles with aluminum foil (to simulate darkness of burial). Peristaltic pumps (middle, on top of box) fed simulated groundwater solutions from storage bottles at left to separate incubation chambers at right. Effluent solutions were collected in the beakers beneath each incubation chamber. 212 Figure 4.3 Chicken femora from each actualistic trial after completion of the experiment. Proximal ends are at top. Note sand adhered by an iron-oxide cement to the epiphyseal ends of the femur from the iron trial (arrows). Scale bar equals 5 cm. 213 Figure 4.4 Histology of the femur from the water control trial after completion of the experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed with crossed polars. External cortex edge is at upper left, marrow cavity is at lower right. External and internal cortex are semitransparent but the middle cortex could not be ground to correct thickness; this region remains too thick and as a result appears opaque (dark brown) in transmitted light (A). This region appears a dark golden color under crossed polars (B). (C) Higher magnification of the cortex viewed by transmitted light, showing that Haversian canals remain open. Note that some osteocyte lacunae are vacant (appear white) within the internal cortex (arrows). (D) Representative osteon in which some lacunae retain dark brown osteocytes while others are now empty (arrows). Inset displays well preserved osteocytes which retain long, dark, intact filipodia (arrow). Scale bars for (A) and (B) equal 200 μm. Scale bar for (C) equals 100 μm. Scale bar for (D) equals 50 μm. Scale bar for inset in (D) equals 100 μm. 214 Figure 4.5 Histology of the femur from the calcium carbonate trial after completion of the experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed with crossed polars. External cortex edge is at right, marrow cavity is at left. Multiple Haversian canals are infilled by a brown mineral precipitate (arrows). (C) Tanbrown, cryptocrystalline mineral precipitate lining the wall of a void in the marrow cavity. (D) Same as (C) viewed in crossed polarized light. Small patches of the mineral precipitate exhibit high order interference colors (arrows). (E) Representative infilled Haversian canal (arrow) at higher magnification. Infilling mineral in this canal ranges from semi-translucent to tan-brown in color. (F) Representative well preserved osteocytes 215 Figure 4.5 (continued) which retain long, dark, intact filipodia (arrows). Scale bars for (A) and (B) equal 200 μm. Scale bars for (C) and (D) equal 100 μm. Scale bars for (E) and (F) equal 50 μm. 216 Figure 4.6 Histology of the femur from the phosphate trial after completion of the experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed with crossed polars. External cortex edge is at upper right, marrow cavity is at lower left. Excellent preservation of the mineralized tissue structure is evident under polarized light by retention of Maltese crosses for most osteons (arrows; see text section 4.3.2 for description/discussion of these birefringence interference patterns). (C) Higher magnification of the external and middle cortex viewed by transmitted light, showing negligible alteration of the tissues and predominantly open Haversian canals. Only rarely are Haversian canals partially infilled by a brown mineral precipitate (arrows). (D) Representative well preserved osteocytes which retain long, dark, intact filipodia (arrows). Scale bars for (A) and (B) equal 200 μm. Scale bar for (C) equals 100 μm. Scale bar for (D) equals 50 μm. 217 Figure 4.7 Histology of the femur from the iron trial after completion of the experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed with crossed polars. External cortex edge is at top, marrow cavity is at bottom. (C) Orange-brown, mineral precipitate cementing sand grains together within a void in the marrow cavity. (D) Same as (C) viewed in crossed polarized light. Quartz sand grains exhibit moderate order interference colors ranging from blue to green, pink, orange, and yellow. (E) An iron-rich precipitate (gold-brown color) cementing sand grains (arrows) together and lining a strut of bone (white, gray, and black linear feature) within the marrow cavity. (F) High magnification of the middle cortex demonstrating universally vacant osteocyte 218 Figure 4.7 (continued) lacunae (clearly visible examples are noted by arrows). Scale bars for (A) and (B) equal 100 μm. Scale bars for (C–E) equal 200 μm. Scale bar for (F) equals 50 μm. 219 Figure 4.8 Representative ELISA testing bone HCl and GuHCl extracts from each actualistic trial against antibodies to chicken collagen I. The presented absorbance readings were taken at 405 nm at 2.5 hrs. Bone extracts were plated at 0.1 μg/well. Extraction blanks testing laboratory reagents are presented at right as ‘Blank HCl’ and ‘Blank GuHCl’; no absorbance for these samples confirms that no contaminants are present in laboratory buffers. Dark bars to the right of the white bars represent secondary only controls in which no primary antibodies were added. These readings are essentially undetectable, confirming no spurious binding of secondary antibodies to the plate. 220 Figure 4.9 In situ immunofluorescence of collagen I in demineralized cortical fragments of chicken femora from each trial. (A–D) Water control trial. (E–H) Calcium carbonate trial. (I–L) Phosphate trial. (M–P) Iron trial. The first column (A, E, I, M) shows chicken femur demineralization products incubated with antibodies against chicken collagen I. The second column (B, F, J, N) shows secondary only control sections that were not exposed to primary antibodies, to control for non-specific binding of secondary antibodies. The third column (C, G, K, O) shows sections exposed to anti-chicken collagen I antibodies that were first inhibited with chicken collagen (prior to incubation). The fourth column (D, H, L, P) shows sections digested with collagenase for one hour prior to exposure to anti-collagen I antibodies. All images are taken in FITC channel. All section images were taken at 40X and 50 ms integration. 221 CHAPTER 5: APPENDICULAR OSTEOLOGY OF DREADNOUGHTUS SCHRANI, A GIANT TITANOSAURIAN (SAUROPODA, TITANOSAURIA) FROM THE LATE CRETACEOUS OF PATAGONIA, ARGENTINA 5.1 Abstract The postcranial anatomies of giant titanosaurians remain poorly known because of a combination of preservational and collection biases. Dreadnoughtus schrani, a recently described, large titanosaur from the Campanian–Maastrichtian Cerro Fortaleza Formation of Santa Cruz Province, Argentina, offers the first opportunity for detailed study of appendicular anatomy of a truly giant titanosaurian. The entire appendicular skeleton is represented except the manus and portions of the pes. Comparisons with related titanosauriforms identify three definitive appendicular autapomorphies of Dreadnoughtus schrani: (1) a cranioventrally-caudodorsally oriented ridge across the medial surface of the cranial end of the scapular blade; (2) a distinct concavity on the caudomedial surface of the proximal radius, and; (3) the distal end of the radius is subrectangular with subequal craniocaudal and mediolateral dimensions. Appendicular similarities between Dreadnoughtus and other titanosauriforms encompass a wide taxonomic range, from Giraffatitan to saltasaurines, and a wide range of body sizes, from Argentinosaurus to Magyarosaurus. Only a single feature is shared exclusively by Dreadnoughtus and at least one other enormous titanosauriform: an accessory ventrolateral process on the preacetabular lobe of the ilium. This process appears to have arisen in response to greater stress applied by hind limb adductor musculature in these giant terrestrial vertebrates. 222 Continued investigation of titanosaurian anatomy, myology, and biomechanics is needed to gain greater understanding of the functional nature of wide-gauge posture. 5.2 Introduction Sauropod dinosaurs are the largest terrestrial vertebrates ever to roam this planet. Their diversity and extended temporal range of over 140 million years speak to their collective success as dominant megaherbivores in Jurassic and Cretaceous ecosystems. Titanosaurian sauropods in particular became the dominant herbivorous dinosaurs in Gondwanan landmasses during the Cretaceous (Upchurch et al., 2004). Despite their well-documented diversity, knowledge of titanosaurian appendicular anatomy remains largely based on highly derived but smaller representatives, including Neuquensaurus (Otero, 2010), Opisthocoelicaudia (Borsuk-Bialynicka, 1977), and Rapetosaurus (Curry Rogers, 2009). Large titanosaurians suffer from not only preservation biases (considering the amount of sediment needed to bury such massive organisms; Lacovara et al., 2014), but also are widely perceived to have suffered historically from collection biases. The largest currently known taxa are based on limited material, including few appendicular bones. For example, appendicular elements of known specimens of Argentinosaurus huinculensis comprise only a fibula and a questionably referred femoral shaft (Bonaparte and Coria, 1993). Appendicular elements in the holotype of Paralititan stromeri include only partial scapulae, a complete right and incomplete left humerus, and the distal end of a single metacarpal (Smith et al., 2001). The holotype of Puertasaurus reuili (Novas et 223 al., 2005) includes no appendicular material. A recent report by Fowler and Sullivan (2012) suggests that Alamosaurus sanjuanensis may have reached nearly the size of Argentinosaurus, but the only appendicular element of this giant individual referred to the taxon is a distal half of a femur. Appendicular elements of the holotype of the previously most complete large titanosaurian, Futalognkosaurus dukei, include only both ilia and the right pubis and ischium (no limb elements; Calvo et al., 2007b). The holotype skeleton of Dreadnoughtus schrani, discovered in 2005 in southern Patagonia (Lacovara et al., 2014), is far more complete than any of the aforementioned giants. The holotype of Dreadnoughtus comprises the most complete appendicular skeleton of any titanosaurian estimated to weigh more than 30 metric tons, and comprises the most complete appendicular skeleton of any sauropod estimated to weigh more than 51 metric tons (Table 5.1). Dreadnoughtus thus provides a rare view of the limb and girdle anatomy of a large titanosaurian, which is crucial to advance understanding of wide-gauge anatomy and locomotion at extreme body size. Though most of the appendicular portion of the holotype skeleton was found disarticulated and adjacent to a disarticulated, smaller, second individual (the paratype), elements could be confidently assigned to each individual based on close association, quarry location, size, and overlap in representation. Preserved appendicular elements of the holotype of Dreadnoughtus include both sternal plates, the left coracoid, scapula, humerus, ulna, and radius, a complete pelvis, the left femur, both tibiae, left fibula and astragalus, right metatarsals I and II, and the ungual of right pedal digit I. The paratype includes a complete pelvis and left femur. Thus, nearly the entire appendicular skeleton is represented. Here I expand on 224 the description of Dreadnoughtus by Lacovara et al. (2014) and offer additional comparisons of its appendicular elements with those of other titanosauriforms. Institutional Abbreviations—MACN, Museo Argentina de Ciencias Naturales, Buenos Aires, Argentina; MCS, Museo de Cinco Saltos, Río Negro Province, Argentina; MPCA, Museo Provincial “Carlos Ameghino,” Cipolletti, Argentina; MPM, Museo Padre Molina, Rio Gallegos, Argentina. 5.3 Systematic paleontology SAUROPODA Marsh, 1878 NEOSAUROPODA Bonaparte, 1986 TITANOSAURIA Bonaparte and Coria, 1993 DREADNOUGHTUS SCHRANI Lacovara, Lamanna, Ibiricu, Poole, Schroeter, Ullmann, Voegele, Boles, Carter, Fowler, Egerton, Moyer, Coughenour, Schein, Harris, Martínez, and Novas, 2014 (Figures 5.1–5.17) Holotype—MPM PV 1156, a partial skeleton including a fragment of maxilla, a caudal cervical vertebra (~ 9th), seven dorsal vertebrae, partial sacrum, a nearly complete caudal series, both sternal plates, left coracoid, scapula, humerus, ulna, and radius, complete pelvis, left femur, both tibiae, left fibula and astragalus, right metatarsals I and II, and right pedal digit I ungual. 225 Paratype—MPM PV 3546, a partial skeleton including a partial cranial cervical (~ 4th), six proximal caudal vertebrae, both ilia, ischia, and pubes, and left femur. Ontogenetic Age—Histologic analyses of the humerus and femur of the holotype (Schroeter et al., 2011; Lacovara et al., 2014) showed that the holotype was not fully grown, at most having achieved Histologic Ontogenetic Stage 9 of the 14-stage sequence proposed by Klein and Sander (2008) at its time of death. Age and Distribution—MPM PV 1156 and MPM PV 3546 were discovered in a convoluted, mixed lithesome of the Cerro Fortaleza Formation (interpreted as a crevasse splay horizon), from an outcrop in the northern Rio La Leona Valley between Lago Argentino and Lago Viedma, Santa Cruz Province, southern Argentina (Lacovara et al., 2014; Figure 5.1B). These outcrops were previously referred to as the Pari Aike Formation (e.g., Novas et al., 2005). However, by performing stratigraphic correlations, Egerton (2011) identified that the two formations are geologically distinct, with the Cerro Fortaleza overlying (and hence younger than) the Pari Aike. Based on the ages of underlying and overlying strata, the Cerro Fortaleza is middle/late Campanian to early Maastrichtian in age. These sediments were interpreted as primarily meandering streamfloodplain mudstones with intermittent channel sandstones (Egerton, 2011). 5.4 Description When corresponding elements from both sides of either the holotype or paratype are preserved (e.g., right and left tibiae), descriptions are based on the most complete and/or least taphonomically distorted element. Comprehensive measurements for each 226 element of both MPM PV 1156 and MPM PV 3546 are provided in Lacovara et al. (2014:supplementary table 1). 5.4.1 Pectoral girdle Scapula—The left scapula (Figure 5.2) is the largest yet discovered for any titanosaurian, measuring 1.74 m in length. It is not co-ossifed to the coracoid, supporting histological evidence (Schroeter et al., 2011; Lacovara et al., 2014) that this individual had yet to reach full adult size at the time of its death (Ikejiri, 2004; Ikejiri et al., 2005; Schwarz et al., 2007b). I describe the scapula and coracoid in their anatomical positions (as described for sauropods by Schwarz et al., 2007a), in which proximal is considered toward the glenoid and distal toward the caudodorsal end of the blade. The scapula is craniocaudally concave medially with a broad proximal end and narrow distal blade. The glenoid border is mediolaterally wide, beveled medially, and, in lateral view, shorter than the coracoid articular surface. The acromion comprises a large, broad, round process that protrudes dorsally from the dorsal portion of the proximal scapula. The acromial ridge is pronounced, running nearly parallel to the coracoid articular edge of the scapula in lateral view. It divides a craniocaudally narrow, shallowly concave distal region from a broad, deeply concave proximal region. In lateral view, the glenoid and coracoid articular surfaces meet at an obtuse angle of approximately 148°. A single tubercle with muscle scar texturing projects caudoventromedially from the proximal scapula distal to the glenoid lip. Another sizable muscle scar tubercle rises off the medial face of the scapular blade base near its dorsal margin. This muscle scar marks the inferred origination of the M. subscapularis (= scapular branch only of M. 227 subcoracoscapularis of Borsuk-Bialynicka, 1977). Distal to this muscle scar, an oblique ridge runs caudodorsally from the ventral to the dorsal border. The ridge appears to be natural rather than taphonomic because no cracking or fracturing surrounds it, the lateral side of the scapular blade in this region exhibits no physical disruption, and subtle muscle scar texturing can be seen along the caudoventral aspect of the ridge. The scapular blade is D-shaped in proximal cross-section with a convex lateral face and concave medial face, but flattens to a rectangular cross-section at its distal end. The blade expands craniocaudally only minimally at its distal end. Comparisons—The scapula of Dreadnoughtus is clearly titanosaurian in character, lacking significant craniocaudal expansion of the distal blade (as seen in Camarasaurus and rebbachisaurids; Apesteguía et al., 2010). Additionally, the broad, round acromial process is similar to those seen in nearly all macronarians. Lack of a dorsomedial prominence along the scapular distal blade contrasts with the conditions in Aeolosaurus (Powell, 2003), Lirainosaurus (Díez Díaz et al., 2013), Saltasaurus (Powell, 2003), and Neuquensaurus (Otero, 2010). Dreadnoughtus shares with numerous titanosaurians (e.g., Paralititan [Smith et al., 2001], Aeolosaurus [Powell, 2003], Lirainosaurus [Díez Díaz et al., 2013], Saltasaurus [Powell, 2003], Neuquensaurus [Otero, 2010]) a sizable muscle-scar tubercle rising medially near the base of the scapular blade, a feature notably less developed in the diplodocoid Suuwassea (Harris, 2007) and basal titanosauriform Angolatitan (Mateus et al., 2011). Prominence of the deltoid ridge on the acromion (to the degree that a concave area is formed distal to it) is also seen in Elaltitan (Mannion and Otero, 2012). Although Dreadnoughtus and Lirainosaurus each possess a ridge on the medial scapula, in the latter taxon the ridge runs adjacent and 228 parallel to the ventral margin (Díez Díaz et al., 2013). Hence, the oblique medial ridge is an autapomorphy of Dreadnoughtus, likely related to origination of a pectoral muscle. The absence of a second caudoventromedial tubercle differs from the conditions seen in Sauroposeidon (D'Emic and Foreman, 2012), Alamosaurus (D'Emic et al., 2011), and Neuquensaurus (pers. obs. by M. D'Emic and J. Wilson, as cited in D'Emic et al., 2011). The presence of a single, large tubercle in this position has been noted in most, if not all, basal titanosauriforms (e.g., Chubutisaurus [Carballido et al., 2011], Wintonotitan [Hocknull et al., 2009], Ligabuesaurus [Bonaparte et al., 2006], Angolatitan [Mateus et al., 2011], Daxiatitan [You et al., 2008], and Euhelopus [Wilson and Upchurch, 2009]) and a few titanosaurians (Mendozasaurus [pers. obs. by M. D'Emic and J. Wilson, as cited in D'Emic et al., 2011], Elaltitan [Mannion and Otero, 2012], Paralititan [Smith et al., 2001], Yongjinglong [Li et al., 2014]). This tubercle marks an origination of the M. triceps longus in crocodilians (Meers, 2003). Though Li et al. (2014) extended this term to a nonavian dinosaur, the homology of this assignment is in need of more detailed examination. Coracoid—The left coracoid (Figure 5.3) lacks its caudoventral glenoid corner but is clearly quadrangular in shape. The cranioventral margin is rectangular (sensu Wilson, 2002) and a robust, laterally placed infraglenoid lip (sensu Wilson, 2002) extends ventrally from the main coracoid body. When viewed dorsally, the cranial half of the coracoid bends craniomedially. The coracoid foramen is deeply inset into the coracoid body in lateral view, is craniocaudally elongate, and runs cranioventrolaterally to caudodorsomedially through the coracoid body. This foramen perforates the scapulocoracoid articular surface in medial view, but not in lateral view because of its 229 oblique course through the bone. The dorsal margin of the coracoid is comparatively thin relative to the cranial margin and the remainder of the bone. The glenoid surface widens transversely to more than twice the width of the cranial portion of the coracoid. The scapular articular surface broadens ventrally and, if it were completely preserved, would be roughly triangular in outline. The medial surface of the coracoid is broadly concave craniocaudally and dorsoventrally while the lateral surface is, overall, broadly convex craniocaudally and dorsoventrally. A vertically oriented muscle-scar ridge, inferred as the origin of the M. biceps brachii (Borsuk-Bialynicka, 1977), adorns the craniodorsal portion of the lateral face. Comparisons—The position of the coracoid foramen migrates cranially through the coracoid through titanosaurian ontogeny: it bisects the scapulocoracoid articulation in juvenile and “subadult” specimens of Camarasaurus (Ikejiri, 2004; Wilhite, 2005), an unnamed/unattributed brachiosaurid (Carballido et al., 2012a; Schwarz et al., 2007b), and Yongjinglong (Li et al., 2014), while in fully “adult” specimens the foramen never bisects the articulation (Ikejiri et al., 2005; Wilhite, 2005). The foramen in the coracoid of Dreadnoughtus appears intermediate in position, thus agreeing with other evidence that the holotypic individual was not fully grown. Lirainosaurus (Company et al., 2009; Díez Díaz et al., 2013) possesses a similar transverse widening of the glenoid surface to more than twice the width of the cranial blade portion of the coracoid seen in Dreadnoughtus. A pronounced scar (inferred to be for M. biceps brachii) is also well developed in Rapetosaurus (Curry Rogers, 2009); thus, prominence of this muscle scar no longer is an autapomorphy of Rapetosaurus. Three features of the coracoid of Dreadnoughtus are also encountered in saltasaurids: deep inset 230 of the coracoid foramen in lateral view (Curry Rogers, 2005), having a rectangular cranioventral margin, and presence of a robust infraglenoid lip (Wilson, 2002). Sternal Plate—Both sternal plates are preserved (Figure 5.4). The right plate is nearly complete but has been taphonomically distorted by compression against abutting elements in the quarry. Distortions include fracturing and double layering of cortical bone, depressions, adhesion of fragments of other bones to its surface, and compressioninduced ridges and valleys along its surface. Its preserved form, measuring 113 cm in length, nevertheless is consistent with the left plate. The better preserved left sternal plate is a flat, thin, semilunar element. Its greatest craniocaudal length is 72% the length of the humerus. A cranioventral ridge runs parallel to the lateral margin near the cranial corner of the ventral face, thereby modestly thickening this corner of the plate. The long, dorsoventrally thin, straight articular surface for the contralateral sternal plate gives the bone only modestly semilunar shape. The caudal end of the plate is round in dorsal view. Comparisons—The cranioventral ridge on the sternal plate of Dreadnoughtus is a characteristic titanosaurian synapomorphy (Sanz et al., 1999), as is the semilunar shape of the bone (Salgado et al., 1997a). The long, straight, dorsoventrally thin articular surface for the contralateral sternal plate and round caudal blade of Dreadnoughtus are similar to the morphologies in many titanosaurians (e.g., Mendozasaurus [González Riga, 2003], Petrobrasaurus [Filippi et al., 2011b], Aeolosaurus [Salgado et al., 1997b], Alamosaurus [Gilmore, 1946], Maxakalisaurus [Kellner et al., 2006]). The articular surface for the contralateral sternal is markedly longer than those seen in Malawisaurus (Jacobs et al., 1993; Gomani, 2005), Alamosaurus (Gilmore, 1946), Qingxiusaurus (Mo 231 et al., 2008), and Narambuenatitan (Filippi et al., 2011a), which gives the sternal plate a less semilunar shape than the greatly arcuate sternal plates of those taxa. The sternal plates of Dreadnoughtus are comparatively shorter relative to the humerus than in saltasaurids (sternal plate length:humeral length ratio is 0.72 in Dreadnoughtus while in saltasaurids this ratio is > 0.75; Upchurch, 1998). 5.4.2 Forelimb Humerus—The left humerus (Figure 5.5) is 1.6 m long and has a transversely expanded morphology, especially at the midshaft. It is considered robust by the Robustness Index (RI) of Wilson and Upchurch (2003: RI = average of proximal, midshaft, and distal breadths divided by element length), with an RI of 0.333, using the categories proposed by Carballido et al. (2012b: RI > 0.33 considered robust).The humeral head is dorsally convex (both craniocaudally and mediolaterally) and craniocaudally narrow, and rises distinctly above the proximal end of the deltopectoral crest. In proximal view, the proximal end appears cranially concave; as in most titanosaurians, this end is transversely expanded to more than twice the minimum mediolateral midshaft breath (74 versus 32 cm, respectively). The proximolateral corner of the humerus lacks any noteworthy expansion. A significant fracture has caudally offset the proximolateral corner and much of the deltopectoral crest, creating an unnatural ridge and pocket along the caudal face of the distal deltopectoral crest. The deltopectoral crest is relatively prominent and twists medially along the cranial face of the shaft. It is narrow and extends distally to about one-third the length of the element. The distal end of the deltopectoral crest projects cranially into a distinct 232 knob. A prominent lateral bulge projects along the distolateral edge of the crest, a feature interpreted in Jainosaurus (and, ostensibly, other sauropods) as an attachment site for forelimb adductor muscles by Wilson et al. (2011). The distal end of the humerus is transversely expanded to a lesser extent than the proximal end, reaching a breadth of 54 cm. The distal condyles remain undivided and are subequal in dimensions with semi-triangular shapes in distal view. Pronounced supracondylar ridges ascend along the caudal face of the shaft. These ridges bound a proximodistally long but narrow cuboid fossa. Comparisons—The humerus of Dreadnoughtus is clearly titanosaurian, possessing a prominent and medially twisted deltopectoral crest, greater proximal than distal expansion, and pronounced supracondylar ridges on the caudal face (Sanz et al., 1999). However, Dreadnoughtus lacks two features attributed to saltasaurids: expansion at the proximolateral corner (Upchurch, 1998; Upchurch et al., 2004) and division of the distal condyles (Wilson, 2002). The humeral head is comparatively less medially displaced relative to the long axis of the shaft in caudal view than for most titanosaurians (taxa with a similar condition include Isisaurus [Jain and Bandyopadhyay, 1999], Qingxiusaurus [Mo et al., 2008], and Rapetosaurus [Curry Rogers, 2009]). Similarly, the medial displacement of the deltopectoral crest is less than those of Opisthocoelicaudia (Borsuk-Bialynicka, 1977) and Mendozasaurus (González Riga, 2003). The narrowness and relatively short proximodistal length of the deltopectoral crest of Dreadnoughtus is a common feature among titanosaurians (e.g., Rinconsaurus [Calvo and González Riga, 2003], Rapetosaurus [Curry Rogers, 2009], Malawisaurus [Gomani, 2005]), though Narambuenatitan (Filippi et al., 2011a) and some saltasaurids (e.g., Neuquensaurus 233 [Otero, 2010] and Opisthocoelicaudia [Borsuk-Bialynicka, 1977]) possess distally elongate crests. Development of the distal deltopectoral crest into a notable knob is common among basal titanosauriforms (e.g., Ligabuesaurus; Bonaparte et al., 2006), many basal titanosaurians, and some lithostrotians (e.g., Paralititan [Smith et al., 2001], Gondwanatitan [Kellner and de Azevedo, 1999], Jainosaurus [Wilson et al., 2009], Lirainosaurus [Díez Díaz et al., 2013], Aeolosaurus [Powell, 2003]). The condition present in all of these taxa, including Dreadnoughtus, however, is not as proportionally well developed as the massive distal deltopectoral crests of saltasaurids (Wilson, 2002). Dreadnoughtus shares with Jainosaurus (Wilson et al., 2011), Alamosaurus (Gilmore, 1946), Qingxiusaurus (Mo et al., 2008), and Saltasaurus (Powell, 2003) a prominent lateral bulge along the distolateral edge of the deltopectoral crest. Ulna—The left ulna (Figure 5.6) is gracile (midshaft width < 25% of bone length; Curry Rogers, 2005) and has a prominent olecranon projecting above the main articular surface. The proximal ulna is triradiate with a significantly more robust craniomedial than craniolateral process, though both are about the same length. The craniomedial process has a concave humeral articular surface; the craniolateral process slopes ventrally away from the olecranon in lateral view. The straight shaft is triangular in cross-section because of a longitudinal ridge descending caudodistally from the olecranon. A deep pocket lies medial to this olecranon ridge along the proximal portion of the shaft. This pocket is so well developed that a portion of it is obscured in caudal view by the ascending olecranon ridge. This feature may not be entirely artificial; its depth may be partly a function of crushing of the olecranon ridge into the fossa beside it, but when viewed proximally, a fossa was clearly well developed in this location regardless of any 234 potential crushing. The proximal portion of the ascending olecranon ridge curves slightly medially. A sizable, positive-relief muscle scar is located about one-quarter of the way down the shaft along the medial side of the cranial face. Also, a low-relief, longitudinal ridge defines the medial edge of the radial articular facet in cranial view. The distally flat ulnar condyle is transversely expanded, narrow craniocaudally, and shallowly concave cranially. Comparisons—Dreadnoughtus, Diamantinasaurus (Hocknull et al., 2009), and Aeolosaurus (Garcia and Salgado, 2011) each possess more robust craniomedial than craniolateral proximal ulnar processes. The concave proximal articular surface of the craniomedial process in Dreadnoughtus is shared with saltasaurids (Upchurch, 1998), Venenosaurus (Tidwell et al., 2001), Aeolosaurus (Salgado and Coria, 1993; Garcia and Salgado, 2011), Elaltitan (Mannion and Otero, 2012), and Diamantinasaurus (Hocknull et al., 2009). The depression medial to the descending olecranon ridge that is deep in Dreadnoughtus is normally shallow in titanosaurians (e.g., Rapetosaurus [Curry Rogers, 2009], Saltasaurus [Powell, 2003], Lirainosaurus [Company et al., 2009; Díez Díaz et al., 2013]). Expression of this pocket as a distinct cavity in the proximal ulna in proximal view is only shared between Dreadnoughtus and Elaltitan (Mannion and Otero, 2012). Clear presence of a raised muscle scar on the cranial face of the ulnar shaft is shared by Dreadnoughtus, Aeolosaurus (Garcia and Salgado, 2011), and Neuquensaurus (Otero, 2010). Numerous titanosaurians, including Dreadnoughtus, Neuquensaurus (Otero, 2010), Isisaurus (Jain and Bandyopadhyay, 1999), Jainosaurus (Wilson et al., 2009), Narambuenatitan (Filippi et al., 2011a), and Aegyptosaurus (Stromer, 1932) each possess a low, longitudinal ridge along the cranial ulna denoting the medial limit of the 235 articulation of the radius. Transverse expansion of the distal ulna otherwise is seen only in opisthocoelicaudiines and Pitekunsaurus (Filippi and Garrido, 2008) (though modestly developed in Aeolosaurus; Garcia and Salgado, 2011) and contrasts with the conditions in most other titanosaurians (e.g., Rapetosaurus [Curry Rogers, 2009], Elaltitan [Mannion and Otero, 2012], Neuquensaurus [Otero, 2010]). Radius—The left radius (Figure 5.7) is gracile by the definition of Curry Rogers (2005): its greatest midshaft width is only 15% of the maximum length of the element. The proximal articular facet is shallowly concave. A sizable cavity on the caudomedial aspect of the proximal radius is discernible in proximal view. The shaft appears medially convex in caudal view and displays a characteristic titanosaurian interosseous ridge (sensu Curry Rogers, 2009) running diagonally down the caudal diaphyseal face from the caudal proximal condyle to the caudolateral corner of the distal radius. The distal radius lacks any remarkable transverse expansion; rather, it is nearly square in distal view with a shallow cavity along its caudal face for articulation with the distal ulna. The distal condyle is beveled proximolaterally at about 20°. Comparisons—The wide, caudomedial cavity on the proximal radius of Dreadnoughtus is absent in the radii of most other titanosaurians (e.g., Neuquensaurus [Otero, 2010], Uberabatitan [Salgado and Carvalho, 2008], Opisthocoelicaudia [BorsukBialynicka, 1977]). This feature is present as only a shallow depression in Rapetosaurus (Curry Rogers, 2009) and Jainosaurus (Wilson et al., 2011). Deep development of this fossa is therefore autapomorphic for Dreadnoughtus. Medial bowing of the radial shaft is also seen in Jainosaurus (Wilson et al., 2011), Elaltitan (Mannion and Otero, 2012), and Aeolosaurus (Garcia and Salgado, 2011). A similar lack of transverse expansion of the 236 distal radius is also found in Rapetosaurus (Curry Rogers, 2009), Elaltitan (Mannion and Otero, 2012), and Venenosaurus (Tidwell et al., 2001), but is unlike the conditions in other titanosaurians (e.g., Tapuisaurus [Zaher et al., 2011], Neuquensaurus [Otero, 2010], Alamosaurus [Gilmore, 1946]). Subequal distal dimensions and square shape contrast with the ovoid distal radii of Rapetosaurus (Curry Rogers, 2009), Neuquensaurus (Otero, 2010), and Saltasaurus (Powell, 2003) and may constitute a reversal to the ancestral sauropod state (Wilson and Sereno, 1998). Hence, this feature is proposed as an autapomorphy for Dreadnoughtus. Proximolateral beveling of the distal condyle has been proposed as a lithostrotian feature (Curry Rogers, 2005). 5.4.3 Pelvic girdle Ilium—Both ilia of the holotype are preserved, though only the supraacetabular region and pubic and ischiadic peduncles are preserved of the left element (Figures 5.8– 5.9). Although the dorsal margin of the supraacetabular portion of the right ilium is distorted to face medially, this element is far more complete than its left counterpart. The right ilium bears a long preacetabular lobe that flares craniolaterally approximately 40° from the sacral axis. Doubling of the lateral width of the incompletely preserved sacrum and doubling of the extent of lateral flaring of the right preacetabular lobe indicates that, in life, the cranial tips of the lobes would have been separated by approximately 2.3 m. A rounded, mediolaterally narrow process arises from the ventrolateral edge of the preacetabular lobe near its cranial margin. The craniocaudal position of the highest point of the preacetabular lobe is difficult to determine because of medial crushing of the caudodorsal preacetabular margin and much of the 237 supraacetabular region, but in the paratype the highest point lies cranial to the pubic peduncle, giving the ilium a craniodorsal-caudoventral “tilt” in lateral view. The postacetabular lobe is subrectangular in lateral view and projects slightly caudolaterally from the sacral axis. The pubic peduncle is complete except for its craniodistolateral corner. It projects perpendicular to the sacral axis and is proportionally much longer than the ischiadic peduncle. In distal view, the pubic peduncle is narrow with its long axis (estimated length 34 cm) oriented mediolaterally. The ischiadic peduncle has been fractured and offset medially by compression, though it is not otherwise deformed. It is short, mediolaterally expanded like the pubic peduncle, and fully separate from the postacetabular lobe. The articular ends of both peduncles are rugose where they would have been covered by cartilage in life. Comparisons—Dreadnoughtus, Alamosaurus (Gilmore, 1946), and Giraffatitan (D’Emic, 2012) are the only titanosauriforms that possess accessory processes on the ventrolateral margins of their iliac preacetabular lobes, situated caudal to the craniolateral tip of the lobe. Although D’Emic (2012) noted the presence of a similar process in saltasaurines, in those taxa it is the cranial edge of the preacetabular process that thickens and expands laterally (Powell, 1992; also see fig. 7 of Otero, 2010). Moderate (~ 40°) craniolateral projection of the preacetabular lobe from the sacral axis in Dreadnoughtus is most like Trigonosaurus (~ 35°; Campos et al., 2005), but much less than in Epachthosaurus (~ 55°; Martínez et al., 2004), Opisthocoelicaudia (~ 60°; BorsukBialynicka, 1977), Saltasaurus (~ 60°; Powell, 2003), Neuquensaurus (~ 65°; Otero, 2010), or Isisaurus (~ 90°; Jain and Bandyopadhyay, 1999). Furthermore, the preacetabular lobes of Dreadnoughtus are not as horizontally turned as in saltasaurids, 238 Isisaurus (Jain and Bandyopadhyay, 1999), or Trigonosaurus (Campos et al., 2005). The craniodorsal to caudoventral tilt of the ilia in Dreadnoughtus is also seen in many lithostrotians (e.g., Rinconsaurus [Calvo and González Riga, 2003], Diamantinasaurus [Hocknull et al., 2009]). Retained separation of the ischiadic peduncle from the postacetabular lobe in Dreadnoughtus contrasts with the condition in saltasaurines (e.g., Rocasaurus; Salgado and Azpilicueta, 2000). Pubis—The right pubis of the holotype (Figure 5.10) is nearly complete, lacking only its acetabular surface and ischiadic articular surface. Despite some compactionrelated distortion, the complete left pubis of the holotype displays well the proximal morphology of the peduncles and acetabulum. The pubis of Dreadnoughtus is a robust element that has expanded proximal and distal blades. The distal end twists craniomedially approximately 90° relative to the proximal end, thereby forming a nearly co-planar articulation with the cranial blade of the contralateral pubis. The left pubis contributes minimally to the cranioventral portion of the acetabulum; the acetabular border is distinctly shorter than the puboischiadic articular surface. The iliac peduncle is robust (due in part to dorsoventral lithostatic compression) and has a subrectangular, flat proximal articular surface of roughly equal area to the adjacent acetabular surface. The obturator foramen is directed cranioventrally and lies dorsal to the midpoint of the ischiadic articular surface. The puboischiadic contact is mediolaterally wide and flares laterally in an arc from the main body of the pubis. This surface is short relative to the length of the pubis. A longitudinal ridge runs along the ventrolateral aspect of the shaft. In medial view, the interpubic articular surface twists medially from the ischiadic peduncle to form a sigmoidal ridge. The distal pubic blade 239 tapers medially from its lateral margin. The medial portion of the distal pubic blade is dorsoventrally thick. In contrast to the tapering pubes of the holotype, the distal blades of the pubes of the paratype are sub-rectangular in dorsoventral profile. When the right pubis of the paratype is viewed ventrally, however, the edge where cartilage rugosities arise does taper slightly medially, suggesting that the overall form of the distal end of the blade of this specimen may be partly altered by dorsoventral compression and torsion. Comparisons—The twisted overall form of the pubis of Dreadnoughtus is similar to that of Saltasaurus (Powell, 2003). Other titanosaurians (e.g., Elaltitan [Mannion and Otero, 2012], Neuquensaurus [Otero, 2010], Epachthosaurus [Martínez et al., 2004], Paludititan [Csiki et al., 2010]) display less angular differences between the proximal and distal ends. As in many titanosaurians (e.g., Saltasaurus [Powell, 2003], Aeolosaurus [Garcia and Salgado, 2011], Elaltitan [Mannion and Otero, 2012], Tangvayosaurus [Allain et al., 1999], Rocasaurus [Salgado and Azpilicueta, 2000]), the contribution of the pubis of Dreadnoughtus to the acetabulum is shorter than the puboischiadic articular surface. The robust, subrectangular, proximally flat iliac peduncle is similar in form to those of Petrobrasaurus (Filippi et al., 2011b) and Sonidosaurus (Xu et al., 2006), but not quite as robust as those of Narambuenatitan (Filippi et al., 2011a) or Huabeisaurus (Pang and Cheng, 2000). Possession of a longitudinal ridge along the ventrolateral pubic shaft is also seen in Uberabatitan (Salgado and Carvalho, 2008) and Saltasaurus (Powell, 2003), though in those taxa this feature is more developed. The moderately developed form of this ridge in Dreadnoughtus compares more favorably with the conditions seen in Futalognkosaurus (Calvo et al., 2007b) and Aeolosaurus (Salgado and Coria, 1993; 240 Garcia and Salgado, 2011). Additionally, Dreadnoughtus shares with Muyelensaurus (Calvo et al., 2007a) dorsoventral thickening of the distal pubic blade. Of all titanosauriforms, only Opisthocoelicaudia (Borsuk-Bialynicka, 1977) possesses a similarly pronounced medial tapering of the distal pubic blade. This condition contrasts with those of most titanosaurians (e.g., Elaltitan [Mannion and Otero, 2012], Petrobrasaurus [Filippi et al., 2011b], Narambuenatitan [Filippi et al., 2011a]), where, as in the paratype of Dreadnoughtus, the distal blade is rectangular or subcircular in dorsoventral profile. Although the fact that the paratype individual is smaller than the holotype might suggest that medial tapering of the distal pubis could develop ontogenetically in this taxon, it remains uncertain if this may instead be explained by sexual dimorphism, individual variation, or taphonomic distortion. Ischium—Both ischia of the holotype are preserved. The right ischium has been taphonomically compressed into nearly a single plane, while the left ischium (Figure 5.11) remains mostly undeformed. The left ischium is shorter than the pubis, having an ischium:pubis length ratio of only 0.8. The articular surface for the contralateral ischium extends to the ventral end of the pubic articular surface. The pubic articular surface is mediolaterally wide and arches laterally in cranial view such that it forms a lateral bowl over the main body of the ischium. This surface is longer than the distance from its most dorsal point to the end of the iliac peduncle. The iliac peduncle is craniocaudally narrow and broadly convex in caudal view. Roughly one-fourth of the acetabular margin is encompassed by this peduncle and the proximal shaft of the ischium. A rough tuberosity for the inferred origin of the M. flexor tibialis (Borsuk-Bialynicka, 1977) is present near the caudal margin of 241 the lateral surface across from the distal end of the pubic articular surface. The caudal blade is twisted roughly orthogonal to the main body of the ischium such that it would articulate in a horizontally co-planar manner with the distal blade of the contralateral ischium. The caudal blade is short (less than twice the length of its pubic articular surface) and laminar, expanded only slightly beyond the main body of the ischium, and it angles caudoventrally away from the pubic articular surface by roughly 20° in lateral view. This low angle may be influenced by lithostatic compression in the craniocaudal direction, especially considering that this angle for the right ischium of the paratype is about 40°. No emargination is present distal to the pubic articulation. Comparisons—The ischia of Dreadnoughtus possess four clear titanosaurian synapomorphies: (1) they are shorter than the pubes (Salgado et al., 1997a); (2) a short and laminar caudal blade (Sanz et al., 1999); (3) the caudal blade is less than twice the length of the pubic articular surface (Calvo et al., 2007b), and; (4) the caudal blade has no emargination distal to the pubic articulation (Wilson, 2002). Dreadnoughtus shares with Aeolosaurus strong mediolateral widening of the pubic articular surface (Garcia and Salgado, 2011, fig. 4G). Extension of the contralateral ischiadic articular surface to the ventral end of the pubic articular surface is only otherwise seen in saltasaurids (Upchurch, 1998). Andesaurus (Calvo and Bonaparte, 1991), Alamosaurus (Salgado et al., 1997a), Venenosaurus (Tidwell et al., 2001), Sonidosaurus (Xu et al., 2006), Isisaurus (Jain and Bandyopadhyay, 1999), Aragosaurus (Sanz et al., 1987), and Tangvayosaurus (Allain et al., 1999) also possess a contralateral articular surface that is longer than the distance from its most dorsal point to the end of the iliac peduncle. This morphology contrasts with those of Aeolosaurus (Salgado and Coria, 1993; Powell, 2003; 242 Garcia and Salgado, 2011), Futalognkosaurus (Calvo et al., 2007b), and saltasaurines. The craniocaudally narrow iliac peduncle of Dreadnoughtus starkly contrasts with the craniocaudal expansion seen in the ischia of Alamosaurus (D'Emic et al., 2011). The main body of the ischium of Dreadnoughtus is proportionally narrower than in some titanosaurians (e.g., Alamosaurus [Salgado et al., 1997a; D'Emic et al., 2011], Diamantinasaurus [Hocknull et al., 2009], Rocasaurus [Salgado and Azpilicueta, 2000], Paludititan [Csiki et al., 2010]) but is like the narrow forms of Andesaurus (Calvo and Bonaparte, 1991), Gondwanatitan (Kellner and de Azevedo, 1999), Malawisaurus (Gomani, 2005), Tangvayosaurus (Allain et al., 1999), and Futalognkosaurus (Calvo et al., 2007b). Dreadnoughtus and a small suite of titanosaurians (Neuquensaurus [Otero, 2010], Rapetosaurus [Curry Rogers, 2009], Alamosaurus [Gilmore, 1922], and Opisthocoelicaudia [Borsuk-Bialynicka, 1977]) share development of a sizable lateral tuberosity for the inferred origin of the M. flexor tibialis. The degree of expansion of the distal ischiadic blade in Dreadnoughtus contrasts with both the wide blades of Diamantinasaurus (Hocknull et al., 2009) and Aeolosaurus (Salgado and Coria, 1993) and the narrow blade of Antarctosaurus wichmannianus (Powell, 2003), but is similar in moderate expansion to the distal ischia of Maxakalisaurus (Kellner et al., 2006), Sonidosaurus (Xu et al., 2006), Andesaurus (Calvo and Bonaparte, 1991), and many other titanosaurians. 5.4.4 Hind limb Femur—The left femur of the holotype (Figure 5.12) of Dreadnoughtus is nearly 2 m long and is among the largest sauropod femora yet described, shorter only than that 243 of “Antarctosaurus” giganteus (Mazzetta et al., 2004). The shaft is elliptical with a transverse long axis. The femoral head is convex and rises farther dorsally than the greater trochanter. The greater trochanter is reduced to a low, narrow rise. A prominent lateral bulge protrudes from the femoral shaft and the proximal one-third of the femur angles medially. A thin, proximodistal crest extends from the lateral bulge to the greater trochanter. The low, rounded fourth trochanter is located just above midshaft and runs along the caudomedial edge of the shaft. The distal condyles are not beveled dorsomedially and do not expand onto the cranial face of the shaft. They are nearly equal in breadth (13 and 14 cm for the fibular and tibial condyles, respectively) and angle craniolaterally to caudomedially 50–60° from the craniocaudal axis. Were this morphology accepted at face value, such a high, medially inclined angle could plausibly be an autapomorphy of Dreadnoughtus. However, lithostatic compaction has somewhat flattened the middle and distal portions of the shaft, so the exact extent to which this feature is a product of distortion is unclear. Moreover, no logical biomechanical interpretation can be advanced for such canted distal condyles, so attributing this appearance to lithostatically induced distortion may be preferable (following Wilson et al., 2011). Comparisons—Subequal distal condyles suggests Dreadnoughtus is a lithostrotian (Upchurch et al., 2004), and lack of expansion of the distal condyles onto the cranial side of the shaft excludes it from Saltasaurinae (Wilson, 2002). The femoral head is not as proximomedially directed as those of many titanosaurians (e.g., Rinconsaurus [Calvo and González Riga, 2003], Malawisaurus [Gomani, 2005], Jainosaurus [Wilson et al., 2011], Petrobrasaurus [Filippi et al., 2011b], Lirainosaurus [Díez Díaz et al., 244 2013]). The fourth trochanter is relatively more prominent than in most advanced lithostrotians in which this feature is nearly absent (e.g., Epachthosaurus [Martínez et al., 2004], Diamantinasaurus [Hocknull et al., 2009], Lirainosaurus [Sanz et al., 1999]). Dreadnoughtus lacks the dorsomedial beveling of the distal condyles that appears characteristic of saltasaurids (Wilson, 2002). Tibia—The right tibia (Figure 5.13) is expanded much farther craniocaudally than transversely at both the proximal and distal ends. This character is partially accentuated by mediolateral taphonomic compression. With an RI of 0.28, this element is considered gracile using the metric of Wilson and Upchurch (2003) and categories of Salgado et al. (2014: RI > 0.3 considered robust). A large, lateral bulge forms the cranial portion of the proximal tibial articular surface. The cnemial crest originates near the midpoint of the medial face in proximal view. It twists cranially and terminates in a craniolaterally oriented apex in front of the middle of the shaft in cranial view. The crest extends cranioventrally to a point below the ventral margin of the lateral bulge. The proximal articular surface is broadly concave for articulation with the tibial condyle of the femur. Like the proximal and distal ends, the midshaft is craniocaudally expanded (20 cm wide craniocaudally, 13 cm mediolaterally). The distal condyles are narrow and subequal in dimensions. Their long axes are directed roughly 30° laterally relative to the proximal end. As with the femur, this may be a result of taphonomic compression-induced rotation. The distal articular surface is slightly convex craniocaudally. The left tibia has undergone extensive lithostatic compaction and is missing the caudal corner of its proximal end. Comparisons—The substantial craniocaudal elongation yet moderate transverse expansion of the ends of the tibiae of Dreadnoughtus compares favorably with the tibial 245 proportions of Aegyptosaurus (Stromer, 1932), Tangvayosaurus (Allain et al., 1999), and Huabeisaurus (Pang and Cheng, 2000), but contrasts with taxa such as Neuquensaurus (Otero, 2010), Saltasaurus (Powell, 2003), Jainosaurus (Wilson et al., 2011), and Diamantinasaurus (Hocknull et al., 2009), which possess relatively transversely expanded ends of the tibia. Origination of the cnemial crest near the midpoint of the medial face is also seen in Diamantinasaurus (Hocknull et al., 2009), but in most other titanosauriforms (e.g., Mendozasaurus [González Riga, 2003], Petrobrasaurus [Filippi et al., 2011b], Malawisaurus [Gomani, 2005], Jainosaurus [Wilson et al., 2011]) it originates from the cranial aspect of the proximal end. The lateral proximal bulge of the tibia of Dreadnoughtus is larger than that in Atsinganosaurus (Garcia et al., 2010) and is similar to, though perhaps not as pronounced as, those of Uberabatitan (Salgado and Carvalho, 2008), Diamantinasaurus (Hocknull et al., 2009), Antarctosaurus wichmannianus (Powell, 2003), and Gobititan (You et al., 2003). A similar cranioventral sloping of the cnemial crest to that of Dreadnoughtus, to beneath the lateral bulge, is also seen in Lirainosaurus (Díez Díaz et al., 2013), Neuquensaurus (Otero, 2010), Epachthosaurus (Martínez et al., 2004), Diamantinasaurus (Hocknull et al., 2009), and Gobititan (You et al., 2003). Jainosaurus (Wilson et al., 2011: fig. 7F) has a similar craniocaudal expansion of the midshaft as Dreadnoughtus, and Aegyptosaurus (Stromer, 1932), Diamantinasaurus (Hocknull et al., 2009), and Laplatasaurus (Huene, 1929) display similarly narrow and subequal distal condyles. The tibiae of Dreadnoughtus and Ruyangosaurus (Lü et al., 2009) each have a roughly 30° lateral turn of the distal condyles with respect to the shaft, in contrast to some lithostrotians, such as Jainosaurus 246 (Wilson et al., 2011) and Antarctosaurus wichmannianus (Powell, 2003). However, as above, this feature may have a lithostatic influence in at least Dreadnoughtus. Fibula—The left fibula (Figure 5.14) is robust, but narrow mediolaterally. The subrectangular proximal articular surface is beveled medially. A pronounced, thin, craniomedial ridge runs longitudinally down the proximal one-third of the shaft from the proximal articular surface. The fibular shaft displays a sigmoid curvature in lateral view. Specifically, the shaft bows distinctly below the lateral tuberosity, then part way down the shaft turns back to a more purely proximodistal orientation, resulting in the caudal end lying farther caudally than the long axis of the proximal half of the fibular shaft. When viewed laterally, the lateral tuberosity angles from the cranial edge proximally to the caudal edge distally, enhancing the sigmoid appearance of the fibular shaft. The large, ovoid lateral tuberosity projects from the lateral face just above the midshaft, giving the fibula a bent appearance in cranial view. A deep cavity occupies the medial portion of the distal shaft for articulation with the distal tibia. The flat distal articular surface is round in distal view. Comparisons—The overall robustness and bent form (in lateral view) of the fibula of Dreadnoughtus is remarkably similar to those of Aeolosaurus (Salgado et al., 1997b), Neuquensaurus (Otero, 2010), Saltasaurus (Powell, 2003), and Uberabatitan (Salgado and Carvalho, 2008). The sigmoid shape of the fibular shaft is similar to, but better expressed than, those of Uberabatitan (Salgado and Carvalho, 2008), Opisthocoelicaudia (Borsuk-Bialynicka, 1977), and Saltasaurus (Powell, 2003). This feature is also seen in Aeolosaurus (Salgado et al., 1997b: fig. 5) and, purportedly, a specimen of Neuquensaurus (MCS-5/26; Salgado et al., 2005). A similarly deep caudodistal pocket 247 for articulation with the tibia is seen in Gobititan (You et al., 2003), Antarctosaurus wichmannianus (Huene, 1929), and the saltasaurines Saltasaurus (Powell, 2003) and Neuquensaurus (Otero, 2010). Also, many titanosaurians have similar, thin craniomedial ridges along their proximal fibulae (e.g., Uberabatitan [Salgado and Carvalho, 2008], Malawisaurus [Gomani, 2005], Jainosaurus [Wilson et al., 2011]). Astragalus—The left astragalus (Figure 5.15) is nearly complete except for the proximal portion of the ascending process and proximocaudal-most tip. It is a proximodistally short element that is triangular in proximal view with a mostly flat proximal articular surface and a convex distal surface. The astragalus tapers medially in cranial view. The astragalus is not pyramidal in form due to a low, laterally-placed ascending process. A thin lip of bone extends laterally from the ascending process and articulates with the medial pocket of the distal fibula. The fibular articular facet, ventral to this lip, is the only portion of the astragalus not covered in thick bumps and rugosities. The caudal fossa is undivided. Comparisons—The low, simple astragalus of Dreadnoughtus is similar to those of Camarasaurus (as figured in Wilson and Sereno, 1998) and Elaltitan (Mannion and Otero, 2012), but clearly contrasts with the tall, pyramidal forms encountered in saltasaurids (Wilson, 2002), Diamantinasaurus (Hocknull et al., 2009), Aeolosaurus (Salgado et al., 1997b), Antarctosaurus wichmannianus (Powell, 2003), and Amargatitanis (Apesteguía, 2007). However, Elaltitan does not possess the thin, laterally projecting lip at the proximal edge of the astragalus (Mannion and Otero, 2012) seen in Dreadnoughtus. An ascending process that is only a low rise is similar to the morphologies of the processes in Epachthosaurus (Martínez et al., 2004) and Gobititan 248 (You et al., 2003) but unlike the enlarged, elevated processes in most other titanosaurians (e.g., Uberabatitan [Salgado and Carvalho, 2008], Opisthocoelicaudia [BorsukBialynicka, 1977], Neuquensaurus [Otero, 2010], Diamantinasaurus [Hocknull et al., 2009]). Lack of division of the caudal fossa is a reversal now shared by Dreadnoughtus, Diamantinasaurus (Hocknull et al., 2009), and saltasaurids (Wilson, 2002). Metatarsal I—Right metatarsal I (Figure 5.16A–F) is short and robust with transversely expanded proximal and distal ends. The proximal expansion is greater than that of the distal end, and the proximal articular surface slopes ventromedially. In proximal view, the articular surface has a slightly sigmoidal lateral edge and a convex medial outline, and narrows to a point craniolaterally. A longitudinal ridge runs down the proximal half of the lateral face, delineating the caudal margin of the broad articular facet for metatarsal II. The distal condyles are subequal in size and separated caudally by a shallow flexor indentation. The distal articular surface is broadly convex craniocaudally. Comparisons—Metatarsal I of Dreadnoughtus is similar in morphology to those of Aeolosaurus (Salgado et al., 1997b), Laplatasaurus (Huene, 1929), Neuquensaurus (Otero, 2010), Alamosaurus (D'Emic et al., 2011), Venenosaurus (Tidwell et al., 2001), and Rapetosaurus (Curry Rogers, 2009). As in these taxa, the shaft is proportionately robust (i.e., mediolateral proximal breadth:minimum midshaft breadth in cranial view is 0.81 for Dreadnoughtus, ~ 0.93 for Alamosaurus [D’Emic et al., 2011], ~ 0.81 for Epachthosaurus [Martinez et al., 2004], and ~ 0.82 for Venenosaurus [Tidwell et al., 2001]). It is less proximally bulky than in Agustinia (Bonaparte, 1999) and less distally expanded than the metatarsals I of Gobititan (You et al., 2003) and Venenosaurus (Tidwell et al., 2001). The convex medial outline of the proximal end, sigmoidal lateral 249 edge, and narrow craniolateral point of the bone in Dreadnoughtus are shared with Rapetosaurus (Curry Rogers, 2009), Laplatasaurus (Huene, 1929), Epachthosaurus (Martínez et al., 2004), and Venenosaurus (Tidwell et al., 2001), but unlike the more ovoid to circular proximal articular surfaces of Agustinia (Bonaparte, 1999), Neuquensaurus (Otero, 2010), and Alamosaurus (D'Emic et al., 2011). Rapetosaurus (Curry Rogers, 2009), Aeolosaurus (Salgado et al., 1997b), and Neuquensaurus (Otero, 2010) each also have a proximodistal ridge along the proximal portion of the lateral face. Multiple titanosauriforms, now including Dreadnoughtus, Rapetosaurus (Curry Rogers, 2009), Laplatasaurus (Huene, 1929), and Gobititan (You et al., 2003), have a shallow flexor indentation on the caudal face of metatarsal I. In tandem with a convex distal end of this metatarsal, this morphology is thought to indicate possible phalangeal motion in titanosaurians (Bonnan, 2005; Curry Rogers, 2009). Metatarsal II—Right metatarsal II (Figure 5.16G–L) has nearly the same form as metatarsal I but is slightly longer and proportionately narrower at midshaft. As with metatarsal I, a distinct proximal tubercle is present at the caudolateral corner of the proximal end, but unlike in the former, it does not lead ventrally to a longitudinal ridge. Instead, this tubercle forms the caudal extent of a nearly straight lateral edge in proximal view. Also as in metatarsal I, the proximal articular surface slopes ventromedially, the distal condyles are subequal in size, and the caudodistal margin has a shallow flexor indentation. Comparisons—Metatarsal II of Dreadnoughtus appears proportionately broader at midshaft than those of Rapetosaurus (Curry Rogers, 2009), Aeolosaurus (Powell, 2003), Alamosaurus (Gilmore, 1946), and Gobititan (You et al., 2003). In this respect, the shape 250 of this element in Dreadnoughtus is more like those of Epachthosaurus (Martínez et al., 2004), Agustinia (Bonaparte, 1999), and Venenosaurus (Tidwell et al., 2001). The straight lateral edge is similar to those of the second metatarsals of Aeolosaurus (Powell, 2003), Rapetosaurus (Curry Rogers, 2009), and Laplatasaurus (Huene, 1929), but unlike some other titanosaurians (e.g., Neuquensaurus [Otero, 2010], Epachthosaurus [Martínez et al., 2004]). Pedal Digit I Ungual—Pedal ungual I (Figure 5.17) of Dreadnoughtus is narrow and sickle-shaped. Although its distal tip is missing, the tapering slope of the dorsal and ventral edges indicates that the claw would be slightly longer than metatarsal I. This condition was subjectively named “robust” by Wilson and Sereno (1998), who also noted that this condition is present in all sauropods. The ungual has a laterally beveled proximal articular facet that, in articulation with its non-ungual phalanx, resulted in the claw being deflected laterally relative to the long axis of digit I. The proximoplantar surface bears a sizeable flexor projection. In dorsal view, the right face of the claw is straighter than the left; in distal view, the right side is also flatter than the noticeably convex left side. This combination of features identifies this as a right element: the lateral face is flat where it abutted the ungual of pedal digit II, and the medial face lacks this flattening because it did not abut another ungual. In proximal view, the tall, ovoid phalangeal articular facet is laterally compressed. Numerous, deep, anastomosing channels cover the entire claw (except the proximal articular surface), suggestive of a thick keratinous sheath. Comparisons—The overall appearance of right pedal ungual I of Dreadnoughtus is essentially indistinguishable from the same element in other titanosaurians for which it is known (Opisthocoelicaudia [Borsuk-Bialynicka, 1977], Malawisaurus [Gomani, 251 2005], Rapetosaurus [Curry Rogers, 2009], Gobititan [You et al., 2003], Paludititan [Csiki et al., 2010], and Epachthosaurus [Martínez et al., 2004]). Among titanosaurians, only Opisthocoelicaudia (Borsuk-Bialynicka, 1977) has a similarly large flexor tubercle. 5.5 Discussion 5.5.1 Phylogenetic position of Dreadnoughtus schrani Comparisons garnered from this study highlight the utility of the appendicular skeleton as a framework for classification within Titanosauria. Dreadnoughtus clearly is a titanosaurian because it has a pronounced and medially deflected deltopectoral crest (Sanz et al., 1999), a prominent olecranon, semilunar sternal plates (Wilson, 2002), and ischia that are shorter than the pubes (Salgado et al., 1997a). Moreover, Dreadnoughtus possesses all other appendicular titanosaurian (e.g., Salgado et al., 1997a; Wilson, 2002; Upchurch et al., 2004) and lithostrotian (Curry Rogers, 2005; Zaher et al., 2011) synapomorphies identified by previous workers (Table 5.2) except two proposed by Curry Rogers (2005) for Lithostrotia: midshaft width of the ulna is less than one-quarter the proximodistal length of the bone and the proximal radius is not expanded to at least one-third the length of the element (this ratio for Dreadnoughtus is 0.29). Given the instability of titanosaurian phylogenetic relationships in recent investigations (e.g., Salgado et al., 1997a; Wilson, 2002; Upchurch et al., 2004; Curry Rogers, 2005; Zaher et al., 2011), it is possible that future analyses might cause a revision in the taxonomic position of Dreadnoughtus. If Dreadnoughtus were to be recovered as a basal lithostrotian, these two features would be autapomorphic reversals. Regardless, I note that 252 although a cladistic analysis (presented in our original description; Lacovara et al., 2014) found Dreadnoughtus to be a basal titanosaurian just outside of Lithostrotia, Dreadnoughtus possesses abundant lithostrotian features in its appendicular skeleton (italicized in Table 5.2), such as a proportionately broad distal tibia (Zaher et al, 2011), proximolateral beveling of the distal radius, subequal distal femoral condyles (Curry Rogers, 2005), and a nearly horizontal and laterally projected preacetabular lobe of the ilium (Salgado et al., 1997a). Additionally, Dreadnoughtus uniquely shares three appendicular similarities with the lithostrotian Aeolosaurus: (1) clear presence of a raised muscle scar on the cranial face of the ulnar shaft (Garcia and Salgado, 2011); (2) strong mediolateral widening of the pubic articular surface of the ischium (Garcia and Salgado, 2011, fig. 4G), and; (3) Dreadnoughtus and a specimen of Aeolosaurus sp. (MPCA 27100; Salgado et al., 1997b) each have a distinct caudal rotation of the fibular shaft, giving the element a strongly sigmoidal appearance in lateral view. Dreadnoughtus also shares exclusively with Aeolosaurus and Gondwanatitan (monophyletic clade comprising these latter two taxa termed Aeolosaurini by Franco-Rosas et al., 2004) two features of the caudal vertebrae: proximal caudals with neural arches on the cranial border of the centrum, and middle caudal prezygapophyses that are greater than 50% the length of the centrum (Ibiricu, 2010). I therefore suggest that future cladistic analyses should include either or both Aeolosaurus or Gondwanatitan in addition to Dreadnoughtus to test whether inclusion of all of these taxa in a single analysis would recover Dreadnoughtus as a lithostrotian with close relations to Aeolosaurini. Additionally, the appendicular skeleton of Dreadnoughtus exhibits a few features historically viewed as characteristic of saltasaurids (e.g., coracoid with an infraglenoid lip 253 [Wilson, 2002], concave proximal surface of the craniomedial proximal process of the ulna [Upchurch, 1998], caudal fossa of the astragalus undivided [Wilson, 2002]), demonstrating either convergence of Dreadnoughtus with saltasaurids or that these features characterize a broader suite of titanosaurians. In sum, appendicular features support a derived-basal titanosaurian to basal lithostrotian affinity for Dreadnoughtus, concordant with our original phylogenetic analysis (Lacovara et al., 2014), though future phylogenetic analyses with broader taxon sampling (i.e., inclusion of aeolosaurines and rinconsaurians) are necessary to evaluate whether or not this taxon should be placed in a more derived position relative to our original determination. 5.5.2 Wide-gauge specializations at extreme body size Appendicular specializations might be expected as necessary to reach body sizes as extreme as those of the largest titanosaurians. However, comparisons presented herein highlight a striking consistency in form for the appendicular skeletons across titanosauriforms of a wide range of body sizes. Numerous anatomical features are shared between the large Dreadnoughtus and small titanosauriform taxa. Examples include a high degree of torsion between the proximal and distal ends of the pubis (also in the small taxon Saltasaurus; Powell, 2003), projection of the cnemial crest from the medial aspect of the proximal tibia (also in the small taxon Diamantinasaurus; Hocknull et al., 2009), and expression of a thin craniomedial ridge on the proximal fibula (also in small taxon Magyarosaurus; Huene, 1932). Additionally, many features shared among titanosauriforms of all sizes pertain to muscle originations and insertions, such as distal development of the deltopectoral crest into a distinct knob (related to inferred insertion of 254 the M. pectoralis, and perhaps also the M. supracoracoideus [cf. Meers, 2003]), caudolateral expansion of the distal deltopectoral crest (for the inferred insertion of the M. scapulohumeralis anterior), and raised bulges on the medial aspect of the scapular blade (inferred origination of the M. subscapularis) and lateral face of the ischium (inferred origination of the M. flexor tibialis) (Borsuk-Bialynicka, 1977; Dilkes, 1999; Carrano and Hutchinson, 2002; Langer et al., 2007). Commonality of such features among related animals, regardless of body size, suggests these features are instead attributable to common ancestry (i.e., are synapomorphies of either Titanosauria, Lithostrotia, or a more inclusive sub-clade). In contrast, only a single feature currently pertains to only the largest of titanosauriform taxa: possession of an accessory process on the ventrolateral edge of the preacetabular lobe caudal to its craniolateral corner. This feature is shared only by Dreadnoughtus, Giraffatitan, and Alamosaurus. Fibrous, ridged surface texture on this process in the holotype and paratype of Dreadnoughtus diagnose this feature as a probable site of muscle/tendon attachment. Myological comparisons with taxa phylogenetically bracketing non-avian dinosaurs (basal reptiles and avian dinosaurs; Witmer, 1995) indicate that this is a probable site of origination of part 2 and possibly also part 1 of the M. puboischiofemoralis internus (Borsuk-Bialynicka, 1977; Carrano and Hutchinson, 2002). Development of this muscle scar into a distinct, osseous process may have been a response to greater stress applied by this hind limb adductor in the largest titanosauriforms. Although limb abduction and adduction are commonly assumed to be negligible during simple walking on an even, level surface (e.g., Henderson, 2006; Sellers et al., 2013), an unexpectedly high degree of hind limb adduction occurs during 255 the mid-swing to late-stance phases in modern elephants (Ren et al., 2008). That hind limb adduction during locomotion is greater than presumed in large narrow-gauge terrestrial vertebrates raises the expectation that this would also apply to wide-gauge terrestrial vertebrates. This is especially true given that wide-gauge posture would cause greater bending stresses on limb bone shafts (Wilson and Carrano, 1999), which could be averted in certain circumstances by enhanced hind limb adduction or abductive/adductive control of the hind limbs. Additionally, hind limb adduction would be a critical component of dynamic stability when traversing uneven or compositionally heterogeneous terrain. I therefore propose that enhanced capability for limb adduction may be necessary to maintain stability and limit bending stresses during locomotion for large terrestrial vertebrates. 5.6 Conclusion Dreadnoughtus schrani is the most complete giant titanosaurian yet discovered. The large (nearly 60 metric ton; Lacovara et al., 2014) holotypic individual, MPM PV 1156, possesses a combination of robust and gracile limb elements. Appendicular features, namely lack of fusion of the scapula and coracoid and the relative placement of the coracoid foramen, support a “subadult” age for this specimen. Hence, despite its enormous size, the holotype individual does not represent a full-size adult. A plethora of appendicular features are similar among titanosauriforms of all body sizes, but only one feature seems to characterize multiple of the largest taxa. This feature, possession of a ventrolateral process on the preacetabular lobe of the ilium, may have arisen in response 256 to greater stress applied by hind limb adductor musculature in the largest titanosauriforms. I suggest, following Mannion and Upchurch (2010), that this may reflect a need for strong adductive capability during standing on or walking over uneven ground. Further investigations into the osteological basis of wide-gauge posture (in both basal and derived titanosauriforms), synchronous myological alterations, and biomechanical characterization of wide-gauge locomotion are needed. Recent examinations of titanosauriform trackways (González Riga, 2011; Vila et al., 2013) and myology (Otero and Vizcaino, 2008; Ibiricu et al., 2014) provide an excellent foundation for future investigations. Only through continued exploration of these fields can we reach a better understanding of the locomotion of these enigmatic giants. Taxon Specimen Clade Estimated Total Number of Mirrored Mirrored Appendicular Body Mass Number of Appendicular Appendicular Appendicular Body Mass Source Completeness* (kg) Elements Elements Count Completeness* Argentinosaurus huinculensis PVPH-1 Titanosauria 90000 13 1 1.6% 2 3.1% Benson et al. 2014 “Antarctosaurus” giganteus MLP 26-316 Titanosauria 69000 6 4 6.3% 6 9.4% Mazzetta et al. 2004 MPM PV 1156 Titanosauria 59291 115 21 32.8% 32 50.0% Lacovara et al. 2014 Dreadnoughtus schrani Paralititan stromeri CGM 81119 Titanosauria 59000 20 12 18.8% 20 31.3% Burness et al. 2001 Brachiosaurus altithorax FMNH P 25107 Brachiosauridae 56255 ~29 5 5.8% 8 9.3% Benson et al. 2014 Turiasaurus riodevensis CPT 1195-1261 Eusauropoda 50923 ~111 38 39.6% 70 72.9% Benson et al. 2014 Diplodocus "Seismosaurus" hallorum NMMNH P-3690 Diplodocidae 49276 ~47 6 7.3% 8 9.8% Seebacher 2001 Elaltitan lilloi PVL 4628 Titanosauria 42798 16 11 17.2% 20 31.3% Benson et al. 2014 Apatosaurus louisae CM 3018 Diplodocidae 41269 176 42 51.2% 70 85.4% Benson et al. 2014 Futalognkosaurus dukei MUCPv-323 Titanosauria 38139 39 4 6.3% 6 9.4% Benson et al. 2014 Alamosaurus sanjuanensis USNM 15560 Titanosauria †35164 72 14 21.9% 24 37.5% Benson et al. 2014 Giraffititan brancai HMN SII Brachiosauridae 34003 ~93 27 31.4% 42 48.8% Benson et al. 2014 Opisthocoelicaudia skarzynskii ZPAL MgD-I/48 Titanosauria 25418 ~123 ~52 81.3% ~64 100.0% Benson et al. 2014 Diamantinasaurus matildae AODF 603 Titanosauria 23077 31 19^ 29.7% 32^ 50.0% Benson et al. 2014 Ligabuesaurus leanzai MCF-PHV-233 Titanosauriformes 20435 ~27 17 22.4% 32 42.1% Benson et al. 2014 Camarasaurus grandis YPM 1901 Macronaria 18175 ~53 23 26.7% 42 48.8% Benson et al. 2014 Mamenchisaurus hochuanensis IVPP holotype Eusauropoda 18170 156 26 26.5% 44 44.9% Seebacher 2001 Omeisaurus tianfunensis ZDM T5701 Eusauropoda 15757 124 30 30.6% 52 53.1% Benson et al. 2014 Petrobrasaurus puestohernandezi MAU-Pv-PH-449 Titanosauria 14884 ~38 13 20.3% 18 28.1% Benson et al. 2014 Diplodocus carnegii CM 84 Diplodocidae 13801 78 9 11.0% 14 17.1% Benson et al. 2014 Barosaurus lentus AMNH 6341 Diplodocidae 13164 90 19 23.2% 30 36.6% Benson et al. 2014 Epachthosaurus sciuttoi UNPSJB-PV 920 Titanosauria 12980 142 62 96.9% 64 100.0% Benson et al. 2014 Dicraeosaurus hansemanni HMN m Dicraeosauridae 12800 113 7 8.5% 14 17.1% Gunga et al. 1999 Camarasaurus lewisi BYU 9047 Macronaria 11652 125 14 16.3% 26 30.2% Seebacher 2001 Limaysaurus tessonei MUCPv-205 Rebbachisauridae 11595 ~144 27 32.9% 34 41.5% Benson et al. 2014 Amargasaurus cazaui MACN-N 15 Dicraeosauridae 10737 ~71 12 14.6% 24 29.3% Benson et al. 2014 Shunosaurus lii ZDM T5402 Eusauropoda 6671 223 77 77.0% 86 86.0% Benson et al. 2014 Atacamatitan chilensis SGO-PV-961 Titanosauria 4349 ~10 3 4.7% 6 9.4% Benson et al. 2014 Rapetosaurus krausei FMNH PR 2209 Titanosauria 1646 ~110 38 59.4% 52 81.3% Benson et al. 2014 Argyrosaurus superbus MLP 77-V-29-1 Titanosauria 8 8 12.5% 16 25.0% Overosaurus paradasorum MAU-Pv-CO-439 Titanosauria 62 2 3.1% 2 3.1% Puertasaurus reuili MPM 10002 Titanosauria 4 0 0.0% 0 0.0% Ruyangosaurus giganteus 41HIII-0002 Titanosauriformes 6 2 2.6% 4 5.3% *Calculations were based on a count of 64 appendicular elements in a complete skeleton of a titanosaurian, 76 in basal titanosauriforms, 86 in brachiosaurids and early macronarians, 82 in diplodocoids (diplodocids, dicraeosaurids, rebbachisaurids), 96 in basal eusauropods, 98 in Mamenchisaurus, and 100 in Shunosaurus. ^Four manual phalanges and a manual ungual were not included in these counts for Diamantinasaurus because all definitive titanosaurians lack these elements. ~Estimated because exact list of elements was not provided in original report(s). Table 5.1 Appendicular skeletal completeness of the Dreadnoughtus schrani holotype (MPM PV 1156) versus other large sauropods. Mirrored Appendicular Counts and Mirrored Appendicular Completeness values calculated following Lacovara et al. (2014). 257 †Mass estimate for Alamosaurus based on referred specimen TMM 41541. Note: for titanosaurians, if the number of dorsal vertebrae for a taxon exceeded the expectation of 10 (e.g., Opisthocoelicaudia, Rapetosaurus ) or if the number of pedal phalanges for a taxon exceeded the expectation of 12 (e.g., Opisthocoelicaudia, Epachthosaurus), then the taxon was deemed "complete" in the counts. 258 REFERENCE(S) Salgado et al., 1997a; Calvo and Gonzalez Riga, 2003; Gallina and Apesteguia, 2010* Crescentic sternal plates Wilson, 2002 Sternal plates have an anteroventral ridge Sanz et al., 1999 Humerus has developed posterior supracondylar ridges Sanz et al., 1999* Prominent and medially twisted deltopectoral crest on humerus Sanz et al., 1999* Ulna with prominent olecranon (a reversal) Wilson and Sereno, 1998; Wilson, 2002; Calvo et al. 2007b* Radius proximal width divided by shaft length is at least 0.33 Upchurch, 1998*; Upchurch et al., 2004† No ossified carpals Wilson and Sereno, 1998; Upchurch, 1998* Metacarpals without distal phalangeal articular facets Calvo and Gonzalez Riga, 2003; Calvo et al., 2007b Ilium anterolaterally expanded Sanz et al., 1999* Pubis longer than ischium (ischium:pubis length ratio <0.9) (a reversal) Salgado et al., 1997a; Wilson and Sereno, 1998; Calvo and Gonzalez Riga, 2003; Bonaparte et al., 2006*; Calvo et al., 2007b Titanosauria (Bonaparte and Coria 1993) = unranked Coracoid quadrangular in shape CLADE (ORIGINATING AUTHOR) = RANK *Titanosauroidea *Titanosauridae *Titanosauroidea, †Somphospondyli *Saltasauridae *Titanosauroidea *Titanosauroidea *Titanosauridae *Titanosauroidea ALTERNATIVE NODE(S) Table 5.2 Phylogenetic synapomorphies in the appendicular skeletons of sauropod dinosaurs from previous cladistic analyses. Any report where a character was attributed to a node not conforming to the consensus are noted by an asterisk (*) or cross (†) in the Alternative Node(s) column. The clade names Titanosauroidea and Titanosauridae are now in disuse due to invalidity of the namesake genus Titanosaurus (Wilson and Upchurch, 2003). Italicized characters are present in Dreadnoughtus. 259 Coracoid with infraglenoid lip Coracoid foramen deeply inset into coracoid body in lateral view Sternal plate length is at least 75% humerus length Humerus deltopectoral crest expanded distally No manual phalanges Preacetabular lobe ilium nearly horizontal and outwardly projected Femur distal condyles are subequal in breadth Saltasauridae (Powell 1992) = family Dorsal coracoid margin at or above the proximal scapular expansion’s dorsal margin (a reversal) Coracoid with rectangular anteroventral margin Proximal end of metacarpal IV is anteroposteriorly elongate, so oval No ungual on manual digit I Robust proximal end of radius Distal end of radius is beveled proximolaterally Ischiatic process of ischium is short and laminar lschial blade platelike, no emargination distal to pubic peduncle Distal tibia expanded transversely to 2x midshaft breadth Lithostrotia (Upchurch et al. 2004) = unranked Acromial edge of scapula lacks expansion Stout ulna Ischium posterior process < 2x length of the pubis articulation CLADE (ORIGINATING AUTHOR) = RANK Wilson, 2002; Curry Rogers, 2005 Wilson, 2002 Curry Rogers, 2005 Upchurch, 1998 Wilson, 2002 Upchurch, 1998 Curry Rogers, 2005 Wilson, 2002; Curry Rogers, 2005 Curry Rogers, 2005 Wilson, 2002*; Curry Rogers, 2005 Curry Rogers, 2005 Salgado et al., 1997a Salgado et al., 1997a; Wilson, 2002* Salgado et al., 1997a Curry Rogers, 2005 Bonaparte et al., 2006*; Calvo et al., 2007b Sanz et al., 1999 Wilson, 2002 Wilson, 2002 REFERENCE(S) *Opisthocoelicaudiinae *Saltasauridae ALTERNATIVE NODE(S) *Titanosauridae 260 Humerus with prominent rounded process at the junction of its proximal and lateral surfaces Humerus distal condyles divided (a reversal) A concave area on the dorsal surface of the craniomedial proximal process of the ulna Metacarpal I is longer than metacarpals II and III Symphysis between the Ischia extends to the ventral end of the pubic articular surface Reduced 4th trochanter Femur midshaft transverse diameter at least 185% anteroposterior diameter Femur distal condyles beveled dorsomedially Cnemial crest of tibia curves anteriorly Astragalar posterior fossa undivided (a reversal) Astragalus pyramidal Opisthocoelicaudiinae (McIntosh 1990) = subfamily Scapula base D-shaped Saltasaurinae (Powell 1992) = subfamily Femoral distal condyles exposed on anterior face of femoral shaft CLADE (ORIGINATING AUTHOR) = RANK Wilson, 2002 Wilson, 2002 Wilson, 2002 Curry Rogers, 2005 Wilson, 2002 Wilson, 2002 Sanz et al., 1999 Wilson, 2002 Upchurch, 1998 Upchurch, 1998 Wilson, 2002 Upchurch, 1998 Upchurch et al., 2004 REFERENCE(S) ALTERNATIVE NODE(S) 261 262 Figure 5.1 (A) Reconstruction of Dreadnoughtus schrani. Preserved elements shown in white. Scale bar is 1 m. (B) Locality map of discovery site of Dreadnoughtus (star) along Rio La Leona in Santa Cruz Province, Argentina. Figures modified from Lacovara et al. (2014). 263 Figure 5.2 Left scapula of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) lateral view; (B) ventral view; (C) medial view; (D) dorsal view; (E) proximal view (medial toward the top of the page); (F) distal view (lateral toward the top of the page). Abbreviations: ac, acromion process; gl, glenoid; obr, oblique ridge; scb, scapular blade; scf, supracoracoideus fossa. Scale bar equals 20 cm. 264 Figure 5.3 Left coracoid of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) lateral view; (B) medial view; (C) ventral view (lateral toward the top of the page). (D) Close up, caudomedial view through the coracoid foramen. Abbreviations: cf, coracoid foramen; gl, glenoid. Scale bar equals 10 cm. 265 Figure 5.4 Left and right sternal plates of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) dorsal view; (B) ventral view. Abbreviation: cvr, cranioventral ridge. Scale bar equals 20 cm. 266 Figure 5.5 Left humerus of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view; (F) distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: cuf, cuboid fossa; dpc, deltopectoral crest; hd, humeral head; rac, radial condyle; ulc, ulnar condyle. Scale bar equals 20 cm. 267 Figure 5.6 Left ulna of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view; (F) distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: clp, craniolateral process; cmp, craniomedial process; ol, olecranon; raa, radial articulation; scar, positive relief muscle scar. Scale bar equals 20 cm. 268 Figure 5.7 Left radius of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view (cranial toward the top of the page); (F) distal view (cranial toward the bottom of the page). Abbreviations: ior, interosseous ridge; ula, ulnar articular facet. Scale bar equals 20 cm. 269 Figure 5.8 Pelvic girdle of the holotype of Dreadnoughtus schrani (MPM PV 1156) in left lateral view. Right ilium has been mirrored for the image. Scale bar equals 20 cm. 270 Figure 5.9 Left ilium of the paratype of Dreadnoughtus schrani (MPM PV 3546) in (A) cranial view; (B) lateral view. (C) Right ilium of holotype (MPM PV 1156) in dorsal view (cranial toward the left side of the page). Abbreviations: acet, acetabulum; isped, ischiadic peduncle; poap, postacetabular process; pped, pubic peduncle; prap, preacetabular process; sr, sacral rib; vlp, ventrolateral process. Scale bars each are 20 cm. 271 Figure 5.10 (A) Pubes of the holotype of Dreadnoughtus schrani (MPM PV 1156) in caudoventral view. (B) Right pubis in lateral view; (C) distal view (cranial toward the top of the page). Abbreviations: acet, acetabulum; ilped, iliac peduncle; isped, ischiadic peduncle; of, obturator foramen. Scale bar equals 20 cm for (A) and (B) and 10 cm for (C). 272 Figure 5.11 Left ischium of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) medial view; (B) lateral view. (C) Distal view of ischiadic blade (dorsal toward the top of the page). (D) Proximal view of iliac peduncle (caudal toward the top of the page). Abbreviations: acet, acetabulum; ilped, iliac peduncle; ist, ischiadic tuberosity; pped, pubic peduncle. Scale bars equal 20 cm for (A) and (B) and 10 cm for (C) and (D). 273 Figure 5.12 Left femur of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view; (F) distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: fic, fibular condyle; ft, fourth trochanter; gtr, greater trochanter; hd, head; lb, lateral bulge; tic, tibial condyle. Scale bar equals 20 cm. 274 Figure 5.13 Right tibia of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view (lateral toward the top of the page); (F) distal view (lateral toward the bottom of the page). Abbreviations: aspa, articular surface for the ascending process of the astragalus; cc, cnemial crest; cvp, caudoventral process. Scale bar equals 20 cm. 275 Figure 5.14 Left fibula of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view (medial toward the top of the page); (F) distal view (medial toward the bottom of the page). Abbreviations: cmr, craniomedial ridge; lt, lateral tuberosity. Scale bar equals 20 cm. 276 Figure 5.15 Left astragalus of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) cranial view; (B) proximal view (medial toward the right side of the page); (C) lateral view; (D) caudal view; (E) distal view (medial toward the left side of the page); (F) medial view. Abbreviations: asp, ascending process; caf, caudal fossa; das, distal articular surface; fia, fibular articulation; tia, tibial articulation. Scale bar equals 10 cm. 277 Figure 5.16 Right metatarsals I (A–F) and II (G–L) of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) and (G), cranial view; (B) and (H), medial view; (C) and (I), caudal view; (D) and (J), lateral view; (E) and (K), proximal view; (F) and (L), distal view. In (E–F) and (K–L), cranial is toward the top of the page. Scale bar equals 10 cm. 278 Figure 5.17 Right pedal digit I ungual of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A) lateral view; (B) medial view; (C) dorsal view; (D) proximal view. Abbreviation: flt, flexor tubercle. Scale bar equals 10 cm. 279 CHAPTER 6: CHARACTERIZING THE EVOLUTION OF WIDE-GAUGE FEATURES IN STYLOPODIAL LIMB ELEMENTS OF TITANOSAURIFORM SAUROPODS VIA GEOMETRIC MORPHOMETRICS 6.1 Abstract Wide-gauge posture of titanosauriform sauropods remains an enigmatic peculiarity among terrestrial vertebrates. Here, two-dimensional geometric morphometrics and thin plate splines analyses were used to quantitatively analyze shape differences among sauropodomorph humeri and femora to identify how these elements may differ according to body gauge. Results demonstrate that titanosauriforms generally possess proportionately gracile humeri in comparison to other sauropods, with relatively more medially oriented humeral heads and proximally located deltopectoral crests. Myological repercussions of these features demonstrate a relative sacrificing of muscular torque for forelimb abduction/adduction in exchange for minimization of necessary muscle contraction to generate the same degree of limb excursion. Regarding femora, titanosauriforms possess significantly broader femora mediolaterally than other sauropods, with comparatively proximomedially placed fourth trochanters. Canonical variates results also identify a trend for titanosauriform femora to present distal condyles that are more frequently perpendicular to the long axis of the shaft or beveled medially. All of these femoral shape characteristics are expressed to the greatest degree by titanosaurians. Myologically, mediolateral femoral broadening increases relative mechanical advantages for hind limb abductor and adductor musculature. This supports previous hypotheses that suggested titanosauriforms were capable of a greater degree of hind limb abduction and adduction. This capability may have been necessary to maintain 280 dynamic stability during wide-gauge locomotion over uneven terrain. Overall, my results corroborate previous qualitative assessments of wide-gauge attributes, afford new insights into statistically significant but obscure shape patterns, and add new clarity to aspects of the functional morphology of wide-gauge posture. 6.2 Introduction Titanosauriform sauropods were a diverse group of Jurassic–Cretaceous herbivores, including both the largest terrestrial vertebrates that have ever existed (e.g., Argentinosaurus Bonaparte and Coria, 1993; Dreadnoughtus Lacovara et al., 2014) and clear examples of insular dwarfism (e.g., Magyarosaurus von Huene, 1932; Lirainosaurus Sanz et al., 1999). Despite their great range in body size, all titanosauriforms shared a suite of appendicular specializations that collectively resulted in what has been termed wide-gauge posture in which the upright limbs were held away from the body midline (Wilson and Carrano, 1999). No modern analogs exist to aid understanding of locomotion with this unique posture. Large modern terrestrial mammals, such as the rhinoceros and the African elephant Loxodonta africana, are narrow-gauge, with their vertical limbs held close to the body midline. Previous reports provide excellent qualitative descriptions of appendicular anatomy associated with narrow- and wide-gauge stances but have yet to study such anatomy in a quantitatively rigorous manner. Examples of osteological features thought to be associated with widegauge posture include laterally flared iliac preacetabula, development of a lateral bulge on the proximal femur, widening of the sacrum, reduction of the pollex claw, 281 craniocaudally elongate proximal tibiae, and shortening of the ischium relative to the pubis (Wilson and Carrano, 1999; Carrano, 2005). Saltasaurid titanosaurians in particular display extreme wide-gauge posture in that their distal femoral condyles are beveled medially, obligating the femora to articulate in a laterally-bowed posture (Wilson and Carrano, 1999). For these reasons, Wilson and Carrano (1999) posited that titanosauriforms were the sauropods responsible for forming wide-gauge trackways. Previous considerations of sauropodomorph stylopodial limb element morphology by two-dimensional geometric morphometrics (Bonnan, 2004, 2007) demonstrated that this technique can efficiently resolve shape differences among taxa and according to body size. A major advantage of morphometric techniques is that one can discuss shape differences among specimens in terms of statistical significance rather than in subjective, qualitative terms. These techniques allow powerful analyses of shape variation among a dataset, providing a robust means to statistically analyze shape differences of appendicular bones between titanosauriform sauropods and other sauropodomorphs. Here, I test the hypothesis that titanosauriform humeri and femora shapes were significantly different both from those of other sauropods and from sauropodomorphs generally. Geometric morphometrics was used to explore shape differences among sauropodomorph humeri and femora in an effort to statistically define the wide-gauge features of these elements. Further, these changes were related to muscular lines of action and relative moment arm lengths to gain understanding of; 1) the biomechanical nature of titanosauriform wide-gauge locomotion, and; 2) how these dinosaurs may have moved differently from their narrow-gauge counterparts. 282 6.3 Methods 6.3.1 Dataset construction The humerus and femur were chosen for analyses for multiple reasons, as previously outlined by Bonnan (2004, 2007). First, these stylopodial elements are the largest and most functionally significant limb elements, as evidenced by processes and scars (e.g., the deltopectoral crest) for primary limb protractor and retractor musculature. Second, the well-developed muscle attachment structures of these elements provide distinct landmarks on humeri and femora ideal for geometric morphometrics. Third, the robust nature of these elements affords them high preservation potential (e.g., resistance against weathering and lithostatic-induced distortions), which results in a reasonably high sample size for analyses. Furthermore, these elements are easily identified and often impressive in size for sauropods, so humeri and femora may be more prevalent in museum collections owing to collection biases. Lastly, the anatomies of humeri and femora can be translated more readily into a two-dimensional plane than is possible for other limb elements (e.g., tibiae, radii). The sauropodomorph dataset compiled by Bonnan (2004, 2007) was supplemented by inclusion of non-sauropod sauropodomorphs (hereafter, referred to as “Prosauropods”), titanosaurian sauropods, and additional basal titanosauriforms. The original dataset included 47 humeri and 29 femora, which were photographed for inclusion during museum visitations. “Prosauropod” specimens were also observed directly and photographed by Dr. Matthew Bonnan, but published photographs were used for titanosaurs and basal titanosauriforms other than Brachiosaurus and Giraffatitan. 283 Overall, this increased the total sample size of sauropodomorph humeri from 47 to 89 and femora from 29 to 73 (for a complete listing of specimen numbers and lengths, refer to Appendix C). The number of included specimens definitively attributable to juvenile individuals is low (six humeri, four femora), and analyses were performed to check for any potential ontogenetic signals in my results. Only complete humeri and femora were included so that every landmark could be placed with confidence for each specimen. Sample sizes were not uniform, but at least seven specimens were included of each subgroup: humeri: “Prosauropods” N=15, Diplodocids N=25, Camarasaurus N=12, Basal Titanosauriforms (including brachiosaurs) N=11, Titanosaurs N=26; femora: “Prosauropods” N=18, Diplodocids N=16, Camarasaurus N=7, Basal Titanosauriforms N=9, Titanosaurs N=23. Camarasaurus was separated out as its own group owing to its high sample size and unique phylogenetic position within this dataset as the only included basal macronarian. I used the same 11 landmarks for humeri and 9 for femora chosen by Bonnan (2004, 2007; Figure 6.1) to facilitate direct comparison of my results with those of Bonnan (2004, 2007). In order to thoroughly test for changes in bone shape through sauropod evolution, the dataset was divided in four different manners for analysis. The first analysis used all five groups as listed above: “Prosauropods”, Diplodocids, Camarasaurus, Basal Titanosauriforms, and Titanosaurs. A second analysis combined all four nontitanosaurian subgroups as "Nontitanosaurs" to allow direct comparison of Titanosaurs against all other sauropodomorphs. A third analysis compared Titanosaurs against Basal Titanosauriforms and "Nontitanosauriforms", a grouping of the “Prosauropods”, Diplodocids, and Camarasaurus. The final dataset division again combined 284 “Prosauropods”, Diplodocids, and Camarasaurus as "Nontitanosauriforms" and compared them to a single grouping of all taxa included in Titanosauriformes, termed herein "Titanosauriforms + Up Tree" (= Basal Titanosauriforms + Titanosaurs). Division of the dataset in this way necessitated repetitive analyses but allowed for exhaustive and detailed investigation of shape change trends. Specifically, this facilitated approximation of phylogenetic position of shape change events and tracking of their occurrences through sauropod evolution. For brevity and to avoid confusion, only the finest division of the dataset into five sauropodomorph groups is summarized below; results for the other dataset divisions are provided elsewhere (Appendix C). 6.3.2 Statistical methods Allometry of sauropodomorph humeri and femora were tested by regression of first relative warp scores against log10-transformed element lengths, as in Bonnan (2007). Regression was not performed on midshaft cortical areas because this variable is based on midshaft circumferences, which are frequently not reported in new taxon descriptions and hence could not be gathered or approximated for most titanosaurian and basal titanosauriform taxa added to the dataset. Maximum lengths were gathered by direct measurement of specimens in the original construction of this dataset (Bonnan 2004, 2007), and were gathered from the literature (or estimated to the nearest centimeter from figure scale bars when not reported) for titanosaurians and basal titanosauriforms. Element lengths were tested against normality by a Shapiro-Wilk's test, and significant differences in length amongst dataset groups were identified by Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests, following Bonnan (2004). Additional 285 element measurements (e.g., deltopectoral crest length, craniocaudal breadth at midshaft, etc.) were gathered by Bonnan (2004, 2007) for many sauropod specimens, but these are frequently unreported in titanosaurian descriptions, precluding traditional linear morphometric analyses at this time. For thin plate splines (TPS) analysis, Bonnan (2004, 2007) photographed humeri in cranial view and femora in caudal view at a standardized camera distance of 1.85 m. “Prosauropod” specimens that have now been added to the dataset were photographed in the same manner, but literature-collected figures clearly could not be standardized to any additional extent. TPS analyses were used to calculate group consensus forms, document shape variation patterns, and evaluate evolutionary trajectories in element form. These analyses were performed in the TPS Suite of freeware programs provided by Rohlf (2005). Landmarks were first digitized using tpsDig2, then tpsSmall was used prior to statistical analyses to check for sample variation below that which could hinder statistical power. This program calculates the mean variation of Procrustes distances from the consensus form, and a high correlation between these values implies low variance. The tpsSmall analysis found a correlation > 0.99 for the total sample, verifying that sample variation is sufficiently low to allow TPS analyses and powerful statistical testing. Partial and relative warp analyses were carried out in tpsRelw and the statistical package R (R Development Core Team, 2010). For partial warp scores, multivariate analysis of variance (MANOVA) tests were performed in R to identify any significant differences among the taxon groupings. Significant differences among groups in relative warp scores were identified in R through nonparametric Kruskal-Wallis tests followed by pairwise Mann-Whitney U 286 comparisons. Anderson's χ², a test statistic that identifies the number of significant relative warps, was implemented in the freeware Integrated Morphometrics Package (IMP; Sheets, 2003). Deformation grids for visualization of implied transformations were created with tpsSplin (Rohlf, 2005). Two tests for allometry were conducted. First, multiple regression of partial warp scores against log10-transformed maximum lengths was performed in tpsRegr (Rohlf, 2005). Second, specimen scores on the first relative warp were regressed against log10-transformed bone lengths and a linear model was fit to these data. Each test provides different benefits: multiple regression in tpsRegr provides measures of significance (e.g., Goodall's F) and the percentage of total shape variation accounted for by the independent variable (known as the coefficient of determination, R²; see Monteiro, 1999), while R allows for greater graphing capabilities. A canonical variates analysis (CVA) was also conducted in an attempt to identify shape variables that can best distinguish sauropodomorph humeri and femora. CVA, also referred to as discriminant function analysis, performs a principal components analysis (PCA) with a priori-assigned specimen identities to separate groups as best as possible according to shape. In doing so, the analysis discovers a shape variable or variables (if there are any) that significantly define and differentiate between the chosen groups. 6.4 Results 6.4.1 Humerus Sauropodomorph humeral lengths do not conform to a normal distribution (Shapiro-Wilk's p = 0.022). Kruskal-Wallis and subsequent pairwise Mann-Whitney U 287 tests demonstrate that Basal Titanosauriforms have significantly longer humeri and “Prosauropods” significantly shorter humeri than all other groups (Table 6.1). These results clearly correspond to postural and body size differences, respectively, among sauropodomorphs (see section 6.4). MANOVA of partial warp scores identified both uniform components and numerous partial warps as displaying significant variation among the taxa divisions. Post hoc pairwise Mann-Whitney U tests (with Bonferroni correction) identify abundant significant differences (Table C.3), clearly demonstrating that significant variation exists among sauropodomorph humeri in multiple regards (Figures C.1 and C.2). Relative warps analysis identified 18 relative warps (RW1–RW18), the first five of which account for more than 80% of total humeral shape variation (Table 6.2). Only RW1 is identified as statistically significant by an Anderson's χ2 test, accounting for 34% of total shape variability (Table 6.3). Kruskal-Wallis tests on RW1 scores identified abundant significant differences between taxa groups (Table 6.4). Proximodistal placement of the deltopectoral crest (landmark 5) varies in both shape variables accounting for the most variation among specimens, RW1 and RW2: in a biplot of these two axes, specimens with distally placed crests plot negatively along RW1 and positively along RW2 in the upper left morphospace quadrant while those with proximally located crests plot positively on RW1 and negatively along RW2 in the lower right quadrant (Figure 6.2A). In this plot, RW2 reflects distally and medially located deltopectoral crest peaks with rounded, proximally raised heads (positively) or proximally placed deltopectoral crests, flattened and medially oriented humeral heads, and broader overall form (negatively). As previously found by Bonnan (2004), 288 Camarasaurus and Diplodocid humeri overlap in RW1-RW2 morphospace (Figure 6.2A), suggesting very similar forms in these disparate taxa. Diplodocids span the greatest negative to positive range of any group on both RW1 and RW2 axes, demonstrating that these sauropods present considerable morphological variation. Although “Prosauropods” almost exclusively occupy the upper left quadrant (Figure 6.2A), multiple specimens of three of the four sauropod groups considered (Diplodocids, Basal Titanosauriforms, and Titanosaurs) plot within the lower right quadrant reflecting proximally placed deltopectoral crests. Interestingly, no Camarasaurus specimens plot in the lower right quadrant; rather, many Camarasaurus (and Diplodocid) specimens plot in the lower left quadrant, which includes components of distal (RW1) and proximal (RW2) deltopectoral crest displacement. This reflects a high degree of variability in proximodistal placement of the crest in these two neosauropod groups. Relative warp 1 presents the greatest variation among the taxa, with Basal Titanosauriforms and Titanosaurs each significantly differing from “Prosauropods”, Diplodocids, and Camarasaurus (Table 6.4). Basal Titanosauriforms and Titanosaurs generally overlap in positive RW1 scores, representing mediolateral slenderness and proximally located deltopectoral crests. Only a single titanosaurian specimen (MLP-CS 1050, Neuquensaurus; Otero, 2010) plots negatively along RW1, reflecting the relative mediolateral expansion of the ends relative to the shaft for this specimen. Unexpectedly, among Sauropoda, Camarasaurus specimens appear to present the greatest average medial displacement of the deltopectoral crest. Visual comparison of group mean forms (Figure 6.3) portrays this contrast well, wherein landmark 5 for Camarasaurus specimens is medially displaced from a chord connecting landmarks 4 and 289 6 (the proximomedial humeral extremity and medial position of minimum midshaft constriction, respectively). However, this difference cannot be claimed significant because RW3 was not identified to be significant by the Anderson’s χ2 test (Table 6.3). A CVA was conducted to determine shape variables that can best differentiate groups of sauropodomorph humeri. This analysis identified three statistically significant shape variables, CV1, CV2, and CV3 (Table 6.5), and correctly placed 73 of 89 humeri (82%) in their respective taxonomic groups. Four Diplodocid specimens were incorrectly identified as Camarasaurus, six Camarasaurus specimens were incorrectly identified as Diplodocid, one Basal Titanosauriform and one Titanosaur specimen each were incorrectly identified as Diplodocid, and four Basal Titanosauriform specimens were incorrectly identified as Titanosaurian. Shape variable CV1 is remarkably similar to RW1 found via relative warps analysis. Like RW1, CV1 includes a component of dorsomedial orientation of the humeral head (landmarks 2 and 3), overall medial (positive) or lateral (negative) shear, and proximal (positive) or distal (negative) placement of the deltopectoral crest. “Prosauropods” plot exclusively negatively along CV1 and Diplodocid and Camarasaurus specimens generally overlap in CV1-CV2 morphospace (Figure 6.4A). All Basal Titanosauriforms plot around zero or with positive CV1 values (Figure C.4A). Shape variable CV2 characterizes only a lateral (positive) or medial (negative) deflection of the humeral head. Interestingly, macronarian sauropods plot as a fairly continuous progression in CV1-CV2 morphospace, with increasingly positive values for both CVs as one progresses from Camarasaurus to Basal Titanosauriforms to Titanosaurs (Figure 6.4A). “Prosauropod” specimens span a large positive–negative range along CV2, while Camarasaurus specimens plot exclusively with zero or negative 290 CV2 scores (Figure C.4B). Positive CV3 scores reflect medial shear of the shaft, while negative scores reflect lateral shear (Figure 6.4B). All groups span negative to positive scores for CV3 except Basal Titanosauriforms, which plot exclusively with greatly negative values (Figure 6.4B, Figure C.4C). Overall, these CVA results characterize long term macronarian evolution as involving increasing medial turning of the humeral head and proximal migration of the deltopectoral crest. To test for allometric scaling, Bonnan (2007) visualized shape change with increasing element size by plotting RW1 scores against log10-transformed proximodistal bone length. That analysis identified an allometric scaling pattern among neosauropod humeri, with smaller, juvenile specimens tending to share a proportionately broad morphology. This identification of allometry among sauropodomorph humeri was reevaluated in the current analysis through expansion of the dataset to include titanosaurians and basal titanosauriforms other than brachiosaurids. In the current analysis, multiple regression of partial warp scores against log-transformed bone length found that only 9.47% of the total shape variation can be accounted for by size (Table 6.6). Linear regression of RW1 scores against lengths for the expanded dataset identifies a significant allometric signal for the shape of sauropodomorph humeri (Goodall’s F = 9.1533, p = 0.000, Table 6.6; Figure 6.5A). A linear model fit to the data (for ease of visualization) highlights considerable variation about this pattern (r² = 0.23, Figure 6.5A). In general, with increasing length, sauropodomorph humeri tend towards more proportionately narrow forms with more proximally positioned deltopectoral crests (Figure 6.5A). Although one might expect that basal titanosauriform humeri, in particular those of brachiosaurids, contribute to this pattern, numerous titanosaurian humeri also 291 plot with highly positive RW1 scores for their lengths (in comparison to other sauropodomorphs). Not surprisingly, “Prosauropod” humeri also contribute to this pattern by generally plotting with negative RW1 scores, reflecting overall broad forms, at small bone sizes (Figure 6.5A). 6.4.2 Femur As with the humeri, sauropodomorph femoral lengths do not conform to a normal distribution (Shapiro-Wilk's p = 0.0002). Kruskal-Wallis and pairwise Mann-Whitney U tests demonstrate that “Prosauropods” have significantly shorter femora than all other groups, and Basal Titanosauriforms have significantly longer femora than Diplodocids and Titanosaurs (Table 6.1). Though Basal Titanosauriform humeri were found to be significantly longer than those of Camarasaurus (see above), Basal Titanosauriform femora are not (p = 0.056). MANOVA of partial warp scores identifies multiple partial warps and Uniform X as presenting significant variation among the groups (Table C.3). Hence, as with the humeri, considerable shape variation exists among sauropodomorph femora (Figure C.3). Relative warps analysis of the femora dataset identified a total of 14 relative warps (RW1–RW14). As for the humeri, the first five relative warps account for more than 80% of total shape variation (Table 6.2). An Anderson's χ2 test identified the first two relative warps as statistically significant, with RW1 accounting for 39% of total shape variation and RW2 accounting for 22% (Table 6.3). Relative warp 1 presents the greatest number of significant differences among the taxa, separating out Titanosaurs as differing from “Prosauropods,” Diplodocids, and 292 Camarasaurus (Table 6.4). All but three Titanosaur femora plot negatively along RW1, reflecting their mediolaterally wide shafts with comparatively more proximally placed fourth trochanters, distally placed minimum midshaft constrictions, and more dorsally directed femoral heads (Figure 6.2B). Diplodocid and Camarasaurus specimens span a wide range of positive and negative RW1 scores, reflecting high degrees of generic and individual variation, respectively. Most “Prosauropod” femora present positive RW1 scores, reflecting more medially directed femoral heads and narrow forms overall with fourth trochanters more distally and caudally placed. Relative warp 2 scores significantly differ only between “Prosauropods” and Diplodocids (Table 6.4). On RW2, most Diplodocids plot negatively with mediolaterally narrow femora with proportionately long shafts and proximal fourth trochanters that are well-separated from the point of minimum midshaft constriction (Figure 6.2B). “Prosauropod” specimens present considerable variation along RW2 with a slightly positive average, reflecting the opposite morphology. A CVA of the femoral dataset identified two statistically significant shape variables, CV1 and CV2, that effectively discriminate taxonomic groupings (Table 6.5). A total of 53 of 73 femora (73%) were correctly placed in their respective groups. The majority of incorrect placements involved Basal Titanosauriform specimens being incorrectly assigned to other groups (N=8), or specimens from other groups being assigned to the Basal Titanosauriform group (N=8). Positive shape component CV1 scores reflect a medially facing femoral head, a fourth trochanter adjacent to the minimum midshaft, and a proportionately elongate distal end. Negative CV1 scores reflect a dorsally directed and wider femoral head, more proximally located fourth 293 trochanter, and a relatively short distal end. “Prosauropod” femora are easily separated from those of the sauropod groups, plotting exclusively with positive CV1 scores (Figure 6.4C). In contrast, all four sauropod groups generally overlap one another with predominantly negative CV1 scores (Figures 6.4C and Appendix C Figure C.4D), demonstrating relatively dorsally directed femoral heads in these obligate quadrupeds. Component CV2 characterizes a mediolaterally narrow (positively) or broad (negatively) femur, and with increasingly negative scores includes slight development of the lateral bulge, rotation of the distal condyles to perpendicular to the shaft, and a medially positioned fourth trochanter. This axis better differentiates sauropod groups, with Diplodocids plotting at zero or with positive scores whereas all but one Titanosaur specimen plot negatively (Appendix C Figure C.4E). The range of values for Camarasaurus and Basal Titanosauriform specimens almost perfectly overlaps in CV1CV2 shape space (Figure 6.4C). In general, these results characterize titanosauriform evolution as involving increasing mediolateral broadening of the femur, development of the lateral bulge, medial shifting of the fourth trochanter to the posteromedial edge of the shaft rather than on its caudal face, and rotation of the distal condyles (from initially beveled laterally) to become perpendicular to the shaft long axis. These trends should be viewed as tentative because the absolute difference in CV2 scores is minute and individual group score distributions for Camarasaurus, Basal Titanosauriforms, and Titanosaurs each overlap. Multiple regression of partial warp scores against log-transformed, proximodistal femur length was performed to evaluate if sauropodomorph femora display allometric scaling. This regression found only 14.44% of variation in femoral shape to be 294 attributable to size (Table 6.6). However, as was the case for humeri, regression of RW1 scores against element length (Figure 6.5B) identifies a significant allometric signal for the shape of sauropodomorph femora (Goodall’s F = 12.0457, p = 0.000, Table 6.6). A linear model fit signifies even greater variation about this pattern (r2 = 0.08) than was encountered for the humeral dataset. With increasing length, sauropodomorph femora generally exhibit proportionately broader forms with more medially positioned fourth trochanters (Figure 6.5B). Titanosaurian femora contribute greatly to this pattern by plotting with highly negative RW1 scores at long bone lengths (Figure 6.5B). Thus, both humeri and femora of sauropodomorphs present allometric scaling signals when considered at a broad phylogenetic level. 6.5 Discussion 6.5.1 Osteology of wide-gauge posture The results support the hypothesis that the shapes of titanosauriform humeri and femora are significantly different from those of other sauropodomorphs. Relative warps analyses and CVAs demonstrate that titanosauriform sauropods, in comparison to “Prosauropods” and other sauropods, possessed: 1) more medially oriented humeral heads; 2) proportionately more slender humeri mediolaterally (especially true for brachiosaurids and other basal titanosauriforms); 3) more proximally and medially located deltopectoral crests; 4) mediolaterally broader femora; 5) femora with fourth trochanters positioned along the caudomedial edge rather than on the caudal face, and; 6) distal femoral condyles that are, on average, perpendicular to the long axis of the shaft or 295 medially beveled rather than laterally beveled (Figures 6.2, 6.6, and Appendix C Figure C.5). Taxonomic re-division of the dataset to further explore timing of appearance of these appendicular changes confirms that they were already developed in basal titanosauriforms and are not exclusive to titanosaurians (Appendix C). Even features generally thought to characterize brachiosaurids, such as slender overall humeral form and considerable proximal migration of the deltopectoral crest, are clearly also encountered in some titanosaurians (e.g., slender humeri of Muyelensaurus and Paralititan) and other basal titanosauriforms (e.g., proximally placed deltopectoral crests in Angolatitan and Fukuititan), respectively. Accordingly, humeral breadth and position of the deltopectoral crest may better reflect posture than phylogenetic affinities (see section 6.5.2 below). Myological reconstructions of dinosaurs (e.g., Dilkes, 1999; Carrano and Hutchinson, 2002), including of sauropodomorphs (e.g., Borsuk-Bialynicka, 1977; Langer et al., 2007; Otero and Vizcaino, 2008), permit inference of soft tissue repercussions of the bone shape changes attributed to titanosauriforms, listed above. Accordingly, significant changes in musculature and limb function for titanosauriforms relative to other sauropodomorphs that would be associated with each evolutionary shape-change trend can be highlighted. 6.5.2 Functional morphology inferences Analyses indicated a trend for dorsomedial rather than dorsal protrusion of the humeral head in titanosauriforms, which would shift the forelimb laterally as a whole. Although mediolateral gauge of the hind limbs appears to correlate strongly with the 296 craniocaudal position of the center of mass (e.g., Henderson, 2006), the relationship does not appear to be so straightforward for the forelimbs. For example, brachiosaurids have been presumed to have more cranially positioned centers of mass (Henderson, 2006), but they do not exhibit narrow-gauge forelimbs that would best support the body by minimizing bending moments on the humeri (Wilson and Carrano, 1999). Rather, brachiosaurids exhibit moderate separation between the forelimbs (Henderson, 2006), which is manifested in modest mediolateral separation between manus prints in Jurassic wide-gauge trackways (Day et al., 2002). As a result, dorsomedial protrusion of the humeral head in titanosauriforms may suggest a modest broadening of the forelimbs, but does not appear to provide concrete evidence as to the craniocaudal position of the center of mass of a taxon. Regardless of the position of the center of mass, laterally shifting the axis of the forelimbs provided a wider-gauge, and presumably a more statically-stable forelimb stance. However, this shift may have also allowed greater torsional stresses and bending moments to act on the humeral shaft. As Wilson and Carrano (1999) noted, titanosauriforms possessed an adaptation to counterbalance these stresses and maintain sufficient safety factors: significant mediolateral broadening of the shaft (see below). Concerning musculature, humeral head reorientation would primarily affect proximal muscles. In particular, moment arms would have been shortened for certain proximal forelimb adductors (e.g., M. scapulohumeralis posterior and M. subscapularis) and lengthened for forelimb abductors (M. deltoideus scapularis and clavicularis) (Figure 6.7). As a result, it is inferred that greater torque could be produced by forelimb abductors while a greater degree of forelimb adduction could be achieved. These trends 297 suggest enhanced abilities to maintain stability during locomotion for titanosauriforms in comparison to other sauropods with narrower-gauge forelimbs. That titanosauriforms typically have proportionately slender humeri in comparison to other sauropods may be a product of two changes. First, mediolateral expansion of the midshaft: increased humeral midshaft eccentricity relative to basal macronarians (e.g., Camarasaurus) is clearly evident in some titanosaurians (e.g., Dreadnoughtus, Paralititan), causing the proximal and distal ends to appear relatively less developed. This condition, which has been more frequently discussed for the femur, may have developed as a means to counter increased mediolateral bending forces on the midshaft under wide-gauge posture (e.g., Wilson and Carrano, 1999; Wilson, 2002; Carrano, 2005). Hence, it is likely that titanosaurians with extreme wide-gauge stances, such as saltasaurids, would present the greatest humeral midshaft eccentricity. Further investigation is needed to confirm this trend. The second change affecting mediolateral humeral width is (in some titanosauriforms) an absolute decrease in proportions of the proximal and distal breadths relative to humeral length. Though some titanosaurians have humeri that present relatively broad ends, such as in Opisthocoelicaudia (proximal breadth equals 56% of humeral length), brachiosaurids and other titanosaurians clearly do not. For example, proximal breadth is only 25% and 33% of humeral length in Muyelensaurus (MRS-Pv70) and Petrobrasaurus (MAU-Pv-PH-449/36), respectively. Taxa with such markedly slender humeri would possess shorter moment arms for both forelimb adductors (M. scapulohumeralis posterior and M. subscapularis) and abductors (M. scapulohumeralis anterior and M. deltoideus scapularis and clavicularis), providing these muscles with 298 decreased mechanical advantages for mediolateral forelimb movements (Figure 6.8). Intriguingly, the opposite trend is encountered for the hind limb, where greater emphasis appears to be placed on limb abduction/adduction potential (see below). Because mediolateral reduction of the humerus would narrow stance gauge and imply a center of mass position in relative proximity to the forelimbs (according to Henderson, 2006), titanosaurians with notably slender humeri may likely have possessed more cranially positioned centers of mass (Figure 6.8). This inference is supported by observations that handprints in wide-gauge trackways are proportionately larger than in narrow-gauge trackways (Lockley et al., 1994), indicating that a greater proportion of body mass was supported by the forelimbs in wide-gauge sauropods (Henderson, 2006). Frequently, as exemplified by brachiosaurids (Henderson, 2006), such a shift is suggested to involve relative shortening of the tail and elevation of the neck and cranial trunk into a more inclined posture; therefore, titanosaurians with slender humeri may have had similarly inclined postures. Nonetheless, neck posture in sauropods is a highly debated subject (e.g., Taylor et al., 2009; Christian and Dzemski, 2011; Preuschoft and Klein, 2013), and continued exploration of cervical series morphology in relation to axial posture is essential to resolving the debate over sauropod neck orientation. Migration of the deltopectoral crest proximally and medially in sauropods, especially brachiosaurids and (as evidenced by this analysis) many titanosaurians (e.g., Panamericansaurus, Paralititan), strongly suggests muscular torque was diminished, whereas the range of motion proximally was increased in these animals (cf., Bonnan, 2007). In particular, strong proximomedial displacement of the deltopectoral crest yields shorter muscle moment arms for humeral retraction (M. scapulohumeralis anterior) and 299 the primary forelimb abductors (M. deltoideus scapularis and clavicularis) and adductor (M. pectoralis). Perhaps the most significant of these effects is shortening of the moment arm for the M. pectoralis (Figure 6.9). Although a more proximal insertion of the M. pectoralis would require less muscular contraction to yield the same adductive angular excursion of the forelimb, the same moment (= rotational force) would be necessary to generate a given motion. Therefore, the M. pectoralis would have had to exert a greater linear force along its line of action to generate the same rotational force (to produce the limb motion) that would have been produced if the muscle inserted more distally on the humerus. This fact is further compounded by the unknown variable of muscle cross sectional area, leaving any conclusion as to what affect (if any) deltopectoral crest repositioning may have had on energy expenditure intractable. Mediolateral broadening of the femur in titanosauriforms may have arisen to support great body mass, as in other graviportal vertebrates (Carrano, 2005). As for the humerus, this “columnar” condition afforded sauropods a means to minimize increased bending moments and torsional stresses on the femoral shaft (Wilson and Carrano, 1999; Carrano, 2005). Femora are particularly mediolaterally broad in wide-gauge titanosauriforms, presumably in response to increased bending stresses due to distinctly laterally-held hind limbs (Wilson and Carrano, 1999). When considered in a musculoskeletal context, mediolateral broadening of the femur would have most significantly affected proximal musculature. For example, the lines of action of the M. iliofemoralis (a hind limb abductor), M. puboischiofemoralis internus part 2 (a hind limb adductor), and M. ischiotrochantericus (a hind limb long axis rotator and partial femoral retractor) would each have been lengthened and reoriented more mediolaterally (Figure 300 6.10). This, in turn, slightly lengthened moment arms for each of these muscles, yielding overall greater torque for hind limb abduction (by the M. iliofemoralis and M. ischiotrochantericus) and adduction (by the M. puboischiofemoralis internus part 2). Similar effects also occur with two muscles inserting more distally: mediolateral femoral broadening increases the adductive moment arm of M. puboischiofemoralis internus part 1 and all three branches of the Mm. puboischiofemoralis externus, providing each of these adductors with greater torque production capability. A possible explanation for these abduction/adduction differences between titanosauriforms and other sauropods may lie in their differing gauge stance, wherein greater hind limb abductive and adductive capability may have been necessary to maintain stability during wide-gauge locomotion over uneven terrain. Such a conclusion has been previously advanced by Mannion and Upchurch (2010), who found supporting evidence in the common occurrence of widegauge trackways and titanosaur body fossils in fluvio-lacustrine deposits, which suggests these sauropods may have preferred inland environments that can present a wider range of topographic variability than most coastal carbonate platforms. Positioning of the fourth trochanter along the caudomedial diaphysis in titanosauriforms may have had several functional repercussions. First, this shift would maintain the retractive capability of the M. caudofemoralis longus by keeping the line of action of this muscle in a primarily craniocaudal orientation. Second, this shift would shorten the M. adductor femoris (a hind limb adductor). Neither moment arm length nor orientation for this muscle would be significantly altered, however, when this trend is considered in combination with mediolateral broadening of the femur: any apparent medial shift of the inferred M. adductor femoris insertion (just lateral to the fourth 301 trochanter on the caudal shaft face; Otero and Vizcaino, 2008) is offset by mediolateral broadening of the bone. These two trends appear to maintain the insertion site of the M. adductor femoris at the same relative distance away from the body midline (Figure 6.11). Finally, titanosauriform femora often present distal condyles that are perpendicular to the long axis of the shaft or are medially beveled. In contrast, “Prosauropod” femora generally display laterally beveled distal condyles, signifying an inward cant to the bone in vivo so that the distal hind limbs meet near the body midline under the animal in narrow-gauge posture (the ancestral condition). Perpendicular or “flat” distal condyles in basal titanosauriforms and many titanosaurians signify a vertical femoral posture, providing a moderate wide-gauge stance (e.g., Giraffatitan in Henderson, 2006). Medial beveling, as seen in saltasaurids (the most derived titanosaurians; Wilson, 2002), signifies an extreme wide-gauge condition in which the femora descend away from the body midline. This pattern has been qualitatively identified by previous authors (e.g., Wilson, 2002) and is supported statistically by my analyses. To summarize, shape trends identified herein suggest that titanosauriforms possessed, relative to other sauropodomorphs; 1) an increased range of forelimb adduction; 2) slightly increased mechanical advantage for forelimb abductor musculature, and; 3) distinctly increased mechanical advantages for hind limb abductor and adductor musculature. These differences aid minimization of bending stresses on stylopodial limb shafts and allow for greater control of transverse movements of the center of mass. The latter may have provided titanosauriforms greater static and dynamic stability than narrow-gauge sauropods; that is, greater ability to return to a stable, normal locomotion 302 pattern following a disturbance (Alexander, 2002). To explore this idea in greater detail, consider the stability of a tricycle and, by analogy, narrow-gauge stance in sauropods as similar to a narrow tricycle and wide-gauge stance as similar to a wide tricycle. Although quadrupedal, it is supposed that sauropods, like elephants, would likely have maintained a statically stable equilibrium throughout their stride by keeping three feet in contact with the ground at all times, hence forming dynamic “stability triangles” during locomotion (Henderson, 2006). While moving, the dynamic stability of a tricycle, or ability to avoid toppling over while turning, depends on two variables: the height of its center of mass from the ground and the width of its wheelbase. The dynamic stability of a tricycle can be increased by two potential changes: either lowering the center of mass or widening the wheel base so as to provide a greater area of support encompassed by its wheels (its polygon of support). By analogy, if the height of the center of mass above the ground is assumed to be approximately equal on average among narrow- and wide-gauge sauropods (an assumption based on the appendicular proportions and body size ranges of taxa of each gauge; e.g., Mazzetta et al., 2004; Carrano, 2005; Sander et al., 2011), then dynamic stability can instead be increased by increasing gauge width. A wider sauropod, just like a wider tricycle, will have a greater resistance to falling over during a turn or while traversing rough or steep terrain. Specifically, wide-gauge posture endows titanosauriforms with greater dynamic stability by providing larger area “stability triangles” (Henderson, 2006) during locomotion, which also offer a larger margin of stability (the center of mass can be kept further from the edges of the stability triangle, meaning the animal is safely staying within its stable limits; Alexander, 2002). 303 It must be noted that a locomotion-related selective advantage is not the only possible explanation for gauge differences. In fact, whether wide-gauge posture arose in titanosauriforms as a directional evolutionary trend or merely as a means to maintain stability given an adaptively widened torso remains unknown. Importantly, however, the interpretations of dynamic stability discussed above are not contingent on the evolutionary origin of wide-gauge posture, but rather characterize the functional nature of wide-gauge posture. The stability of wide-gauge stance is an inherent biomechanical character that, at the least, was not deleterious because Titanosauria clearly became a diverse and long-lived clade. 6.6 Conclusions Geometric morphometric analyses of sauropodomorph humeri and femora have yielded statistical confirmation of previously hypothesized anatomical differences associated with body gauge and support the hypothesis that titanosauriform humerus and femur shape were significantly different than those of other sauropodomorphs. Moreover, these analyses have identified additional anatomical features that (with statistical significance) characterize wide-gauge posture, such as a relatively proximally placed deltopectoral crest and medially positioned fourth trochanter. Correlation of these osteological shifts with soft tissues and their geometries provides new understanding of the musculature of titanosauriforms and the biomechanical nature of wide-gauge locomotion. For example, concurrent mediolateral broadening of femora and medial shifting of the fourth trochanter appear to maintain the insertion site of the M. 304 caudofemoralis at the same relative distance away from the body midline, maintaining the retractive capability of this muscle. General trends identified herein that differentiate titanosauriforms from other sauropodomorphs are a possibly increased range of forelimb protraction and adduction, slightly increased mechanical advantage for forelimb abduction, and distinctly increased mechanical advantages for hind limb abduction and adduction. These changes are inferred to have allowed for greater control of transverse movements of the center of mass, a character that supports the proposition by Mannion and Upchurch (2010) that some titanosauriforms may have been adapted to relatively topographically uneven, inland, fluvio-lacustrine settings. Wide-gauge posture afforded titanosauriforms greater static stability, dynamic stability, and a larger margin of stability during locomotion by providing wider “stability triangles” between foot contacts with the ground. Additionally, association between proportionately slender stylopodial elements and proximity to the center of body mass suggests that titanosaurians with gracile humeri possessed more cranially placed centers of mass and likely more cranially-ascending axial columns. Insights such as these permit better understanding of the evolutionary progression leading to extreme wide-gauge posture in saltasaurids and how wide-gauge posture functioned during locomotion. 305 Table 6.1 Kruskal-Wallis and Mann-Whitney U test results on sauropod stylopodial bone lengths. α = 0.05 for Kruskal-Wallis tests, shown in first row. α = 0.005 for MannWhitney U tests with Bonferroni correction, shown in all subsequent rows. Abbreviations: P, “Prosauropods”; D, Diplodocids; C, Camarasaurus; TF, Titanosauriforms; T, Titanosaurs. HUMERUS Test Kruskal-Wallis P/D P/C P/TF P/T D/C D/TF D/T C/TF C/T TF/T p 0.000 0.000 0.000 0.000 0.000 0.987 0.000 0.327 0.002 0.499 0.003 FEMUR Test Kruskal-Wallis P/D P/C P/TF P/T D/C D/TF D/T C/TF C/T TF/T p 0.000 0.000 0.001 0.000 0.000 0.535 0.036 0.284 0.056 1.000 0.012 306 Table 6.2 Significance of relative warps for sauropodomorph humeri and femora, with dataset divided into five groups. Only the first ten relative warps are listed. The uniform component was included in the analysis. Abbreviations: No., relative warp number; SV, singular values (eigenvalues of traditional PCA); %, percentage of variance accounted for by that relative warp. Cum %, cumulative percentage of variance accounted for. Bolded relative warps account for at least 80% of the shape variation. No. 1 2 3 4 5 6 7 8 9 10 HUMERUS SV % 0.53883 34.47% 0.35365 14.85% 0.32485 12.53% 0.29205 10.13% 0.26065 8.07% 0.19782 4.65% 0.18361 4.00% 0.16688 3.31% 0.12165 1.76% 0.11111 1.47% Cum % No. 34.47% 1 49.33% 2 61.86% 3 71.98% 4 80.05% 5 84.70% 6 88.70% 7 92.01% 8 93.76% 9 95.23% 10 FEMUR SV % 0.49334 39.09% 0.36651 21.57% 0.26938 11.66% 0.21693 7.56% 0.17927 5.16% 0.16860 4.57% 0.14820 3.53% 0.12217 2.40% 0.08980 1.30% 0.08117 1.06% Cum % 39.09% 60.66% 72.32% 79.88% 85.04% 89.60% 93.13% 95.53% 96.82% 97.88% 307 Table 6.3 Anderson's χ² test results, which determine the number of statistically significant relative warps by identifying distinct eigenvalues. Element Humerus Femur Number of RWs extracted 18 14 Anderson's χ² p 15.0933* 6.2360, 6.6200 <0.05 <0.05 RWs with distinct eigenvalues RW 1 (34%) RW 1 (39%), RW 2 (22%) *Only the χ² value for comparison of RW1 to RW2 is shown as no other comparisons yielded significant results. Distinct relative warps are considered "biologically" significant. Percentage of the total shape variation accounted for by significant relative warps are shown in parentheses. 308 Table 6.4 Significance differences, as discerned by Kruskal-Wallis and Mann-Whitney U tests, on relative warps identified as significant by Anderson’s χ2 test, with dataset divided into five groups. p values are significant at α = 0.05 for Kruskal-Wallis tests. Taxon group abbreviations as in Table 6.1. Other abbreviations: KW, Kruskal-Wallis; RW, relative warp. Post hoc Bonferroni significance identifiers via Mann-Whitney tests , significant difference between P and D; , between P and C; ◊, between P and F; , between P and ; , between D and C; , between D and F; , between D and ; , between C and F; , between C and ; , between TF and T. Group abbreviations as in Table 6.1. HUMERUS FEMUR Significant Significant RW KW p RW KW p Differences Differences 1 0.000 ◊,θ,∩,□,≡,∫ 1 0.000 θ,□,∫ 2 0.029 † 309 Table 6.5 Significant shape variables identified by canonical variates analysis of sauropodomorph humeri and femora. Abbreviations: CV, canonical variate axis. Element CVs with distinct eigenvalues Humerus CV1 CV2 CV3 Femur CV1 CV2 p 0.000 0.000 0.008 0.000 0.000 310 Table 6.6 Multivariate regression of relative warp scores on maximum sauropodomorph humeral and femoral length using Goodall's F test*. Variable Humerus Maximum Length Femur Maximum Length n 89 73 r² 0.6459 0.5237 Goodall's F 9.1533 12.0457 df p 18, 1566 0.0000 14, 994 0.0000 R² 9.47% 14.44% *Length measurements were log10 transformed prior to analyses. r² values are derived from multiple regression of all partial warps on maximum element length. R², the coefficient of determination, represents the percentage of shape change explained by the variable. 311 Figure 6.1 Landmarks from Bonnan (2004, 2007) used in thin plate splines analyses of sauropodomorph humeri and femora. (A) Right humerus in cranial view. (B) Right femur in caudal view. Landmarks for humerus: 1, medial border of proximal humerus; 2, medial border of humeral head; 3, lateral border of humeral head; 4, proximolateral corner of the deltopectoral crest; 5, peak of distal deltopectoral crest; 6 and 11, lateral and medial locations that encompass the minimum midshaft width, respectively; 7, lateral border of lateral distal condyle; 8, medial border of lateral distal condyle; 9, lateral border of medial distal condyle; 10, medial border of medial distal condyle. Landmarks for femur: 1, proximolateral peak of greater trochanter; 2, lateral border of femoral head; 3, medial border of femoral head; 4, peak of fourth trochanter; 5 and 8, medial and lateral locations that encompass the minimum midshaft width, respectively; 6, medial border of distal humerus; 7, lateral border of distal humerus; 9, lateral-most peak of lateral bulge. 312 Figure 6.2 Thin plate splines plots of relative warp scores for sauropodomorph humeri (A) and femora (B). RW1 is plotted against RW2. (C–D) Reference forms for center of each plot, at the (0,0) position of the solid black circle crosshairs. 313 Figure 6.3 Mean sauropodomorph humeral (top row) and femoral (bottom row) morphologies of each taxonomic division utilized in TPS analyses. Sample sizes for humeri (N): “Prosauropods” = 15, Diplodocids = 25, Camarasaurus = 12, Basal Titanosauriforms = 11, Titanosaurs = 26. Sample sizes for femora (N): “Prosauropods” = 18, Diplodocids = 16, Camarasaurus = 7, Basal Titanosauriforms = 9, Titanosaurs = 23. 314 Figure 6.4 Canonical variates analyses (CVA) of sauropodomorph humeri (A–B) and femora (C). Only axes identified as significant (possessing distinct eigenvalues) are shown. (A) Plot of CV1-CV2 for humeri. (B) Plot of CV1-CV3 for humeri. (C) Plot of CV1-CV2 for femora. Symbols as noted in legend. Larger symbols of each group represent the mean scores for each taxonomic division. 315 Figure 6.5 Regression of maximum shape change component, RW1, on log-transformed maximum bone length for sauropodomorph (A) humeri and (B) femora. Symbols: “Prosauropods” (solid circles), Diplodocids (open triangles), Camarasaurus (solid squares), Basal Titanosauriforms (open circles), and Titanosaurs (asterisks). The consensus reference form, occurring along the line at an RW1 score of zero, is presented at left in each plot. Deformation grids at right reflect shape variation characterizing 316 Figure 6.5 (continued) strongly positive and negative scorings along RW1. Dark positively sloping lines are linear regression models fit to the data, with r² values of 0.23 for humeri and 0.08 for femora. Numbers on reference form identify landmarks as listed in Figure 6.1. 317 Figure 6.6 Mean-to-mean transformations displaying sauropodomorph stylopodial shape changes associated with the transition from Non-titanosaurs to Titanosaurs (see explanation of dataset divisions in Methods), displayed in three different manners: thin plate spline grids (A) and (D), vector plots (B) and (E), and simple overlay of group means (C) and (F). Humeri are shown in (A–C) and femora in (D–F). Transformations are from consensus of all Non-titanosaur specimens to consensus of all Titanosaur specimens. In (C) and (F) overlays, mean forms for Titanosaurs are shown in black over top of the mean forms for Non-titanosaurs in gray. 318 Figure 6.7 Effect of reorientation of the humeral head and mediolateral broadening of the humerus on moment arm length for sauropod forelimb abductor musculature. The M. deltoideus scapularis is shown as an exemplar. (A) General sauropod condition in which the humeral head faces dorsally (as noted by the arrow) and the humerus is somewhat slender. (B) Condition encountered in some derived titanosaurians (e.g., Opisthocoelicaudia) wherein the humeral head has become dorsomedially directed (note reorientation of the arrow) and the humerus has become mediolaterally broad, causing the moment arm for the M. deltoideus scapularis to become lengthened. Black circle in (A) and (B) denotes glenoid joint center. Black line in (A) and (B) denotes the moment arm for the M. deltoideus scapularis. (C) Comparison of moment arm lengths from (A) (top) and (B) (bottom), demonstrating a longer moment arm given the forelimb construction presented in (B). (A) and (B) depict cranial view. 319 Figure 6.8 Hypothesized relationship between a cranial shift in center of mass (COM), mediolateral narrowing of the humerus, and neck and cranial trunk posture in sauropod dinosaurs. (A) If a sauropod possesses mediolaterally broad humeri, the center of mass likely is positioned nearer to the pelvic girdle and the neck and cranial trunk will be held more closely to horizontal. (B) If a sauropod possesses mediolaterally slender humeri, the center of mass likely is positioned more cranially in the trunk and the neck and cranial trunk will slightly ascend. These relationships are built upon a demonstration by Henderson (2006) that slenderness of stylopodial limb elements appears to correlate with proximity to the center of mass. Mediolateral humeral narrowing shortens moment arm lengths for proximal forelimb musculature, as shown by decreasing length of the solid 320 Figure 6.8 (continued) black lines in the lower figures. The M. subscapularis (a forelimb adductor) and M. deltoideus clavicularis (a forelimb abductor) are shown as exemplars. Black circles denote glenoid joint center. Dashed black lines trace the line of action of each muscle. Solid black lines denote muscle moment arms. Abbreviations: sbs., subscapularis; delt. c., deltoideus clavicularis. Upper figures depict lateral view, lower figures depict cranial view. Skeletal reconstruction in (A) modified from Lacovara et al. (2014). Skeletal reconstruction in (B) modified from an original by Scott Hartman from http://www.skeletaldrawing.com/sauropods-and-kin/. 321 Figure 6.9 Effect of proximal migration of the sauropod deltopectoral crest on moment arm length for the M. pectoralis, a primary forelimb adductor. (A) General sauropod condition in which the peak of the deltopectoral crest lies at nearly one-third the proximodistal length of the humerus. (B) More proximal expression of the deltopectoral crest, as in brachiosaurids and (as evidenced by this analysis) some titanosaurians (e.g., Panamericansaurus, Paralititan), reorients the M. pectoralis more mediolaterally, thereby shortening its moment arm about the glenoid. Black circle in (A) and (B) denotes glenoid joint center. Black line in (A) and (B) denotes the moment arm for the M. pectoralis. (C) Comparison of moment arm lengths from (A) (top) and (B) (bottom), demonstrating a longer moment arm given the forelimb construction presented in (A). (A) and (B) depict cranial view. 322 Figure 6.10 Effect of mediolateral femoral broadening on sauropod proximal hind limb musculature. The M. iliofemoralis and M. ischiotrochantericus are shown as exemplars. (A) General sauropod condition with a somewhat slender femur. (B) Condition encountered in wide-gauge titanosauriforms wherein the femur has become mediolaterally broad, causing the moment arms for the M. iliofemoralis and M. ischiotrochantericus to become slightly lengthened. Black circle in (A) and (B) denotes glenoid joint center. Black lines in (A) and (B) denote muscle moment arms. (C) Comparison of moment arm lengths for each muscle from (A) (top) and (B) (bottom), demonstrating slightly longer moment arms given the hind limb construction presented in (B). (A) and (B) depict caudal view. Abbreviations: ilfem. = iliofemoralis; istr. = ischiotrochantericus. (A) and (B) depict caudal view. 323 Figure 6.11 Demonstration of how mediolateral femoral broadening and medial migration of the fourth trochanter maintain the insertion site of the M. adductor femoris at the same position relative to the body midline in sauropods. (A) General sauropod condition in which the femur is somewhat slender and the fourth trochanter is situated slightly on the caudal face. (B) Wide-gauge titanosauriform condition in which the femur is comparatively mediolaterally broadened and the fourth trochanter is caudomedially positioned on the shaft. Any potential lateral shift to the insertion site of the M. adductor femoris is negated by medial migration of the fourth trochanter, maintaining the insertion site at the same position relative to the body midline. Transect lengths from body midline (dashed line) to the M. adductor femoris insertion (solid black lines) are equal in both scenarios, as shown in (C). (A) and (B) depict caudal view. 324 CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS In this dissertation I have examined geologic and geochemical correlates to molecular preservation, as well as titanosauriform anatomy and evolution. Chapter 1 constitutes a thorough review of literature relevant to the field of molecular paleontology that hopefully, once published as a review article, will serve as a valuable resource for students and researchers entering this fascinating, emerging field. One point emphasized in this review is that the role of authigenic mineralization of tissues, with respect to biomolecular retention, remains unclear. Testing this question in the future will require running a protein extraction on a sample of mineralized tissue (such as those reported by Martill (1988, 1990), Kellner (1996), and McNamara et al. (2009)). Also, though numerous hypotheses have been advanced to explain survival of biomolecules through geologic time, understanding of chemical reaction pathways facilitating early-diagenetic stabilization of molecules remains poor. Current hypotheses suggest that condensation of molecular decay products driven by free radicals (Schweitzer et al., 2014a) and binding with minerals (Edwards et al., 2011) may swiftly render endogenous components inert and insoluble, so that they may persist over geologic timescales. Research into molecular preservation pathways is needed to facilitate explanation and evaluation of such remarkable discoveries. Chapters 2, 3, and 4 explore environmental-geochemical settings and taphonomic scenarios that may lead to and serve as proxies for molecular preservation in fossilized bone. Geological, environmental, and geochemical conditions favoring molecular survival remain enigmatic (Chapter 1). To advance understanding of this subject, rare 325 earth element (REE) and biomolecular analyses were performed (Chapter 3) on the same fossils examined for soft tissue preservation in Chapter 2. Results of these analyses confirm that REE composition of fossil bone may serve as a useful proxy for potential molecular recovery (as hypothesized by Trueman et al., 2008a). As found in Chapter 3, fossil bones with low trace element concentrations and “simple diffusion” concentration gradients with cortical depth (sensu Trueman et al., 2008a) are (as they inferred) viable reservoirs of ancient soft tissues and biomolecules. REE analyses can thus provide a valuable, inexpensive test prior to time-intensive and costly molecular assays. Views in REE taphonomy have been changing dramatically over the last decade. In 2009, many researchers held the presumption that the REE composition of fossil bone reflects that of the early diagenetic environment (Trueman et al., 1999, 2006; Metzger et al., 2004; Suarez et al., 2007). A shift in view has developed over the last five years due to mounting evidence that fossil bone commonly acts as an open system over its entire duration of burial (e.g., Kocsis et al., 2010; Herwartz et al., 2011, 2013a). The case study site analyzed in Chapters 2 and 3 (the Standing Rock Hadrosaur Site in Corson County, South Dakota) appears to represent only a third possible exception to long-term open system behavior by fossil bone (Chapter 3). This unexpected finding demonstrates that exceptions to the new paradigm exist. Moreover, because these bones yielded soft tissues (Chapter 2) and endogenous collagen I (Chapter 3), early mitigation of open system behavior may indeed protect endogenous molecules and early diagenetic REE signals. As soft tissues were also recovered from fossil ossified tendons and a vertebral centrum (Chapter 2), these tissues also constitute viable targets for future paleomolecular analyses. 326 Results from Chapters 2, 3, and 4 also demonstrate that iron-rich concretions formed concurrently with fossilization during early diagenesis may chemically shield bone tissues from protracted microbial attack and pore fluid exposure. As concluded in Chapter 2, and in agreement with suggestions in prior literature (e.g., Schweitzer et al., 2007b), rapid burial in an iron-rich environment appears to facilitate soft tissue preservation. Further, iron-rich, reducing, terrestrial settings such as floodplains, paludal marshes, and small ponds may induce growth of siderite concretions that can hinder microbial and groundwater mobility by partial cementation of entombing sediments and coating of fossil surfaces (Chapter 2). Such mineralized concretion coatings may serve as physical barriers shielding underlying tissues from groundwater and microbes, thus allowing underlying tissues to escape significant alteration (Chapter 3). Fossil bones from this case study site (Chapter 2) and actualistic experiments (Chapter 4) indicate that ironmineral cements may first form over more porous regions of tissue, perhaps due to greater release of iron-rich hemoglobin decay products from these tissue regions. Should permineralization take place, either by inorganic or microbially-mediated means, the hindrance it creates to pore fluid flow and microbial mobility may also protect bone soft tissues and biomolecules from decay (Chapter 4). Fruitful subjects for exploration in future actualistic experiments include the influences of soil bacterial flora composition, sediment mineralogy, sediment texture, groundwater pH, tissue structure, and soil temperature on biomolecular decay. Insights gained from actualistic experiments hold the potential to answer questions about tissue and molecular decay that cannot be answered by study of end-product fossils. 327 Chapters 5 and 6 examine the anatomy and evolutionary history of titanosaurian sauropod dinosaurs. Anatomical comparison of the appendicular skeletons of Dreadnoughtus schrani and other titanosauriforms (Chapter 5) reveals that extreme large body size does not appear to require or induce anatomical specializations to the limbs or girdles (e.g., reorientation of processes, proportionally greater development of muscle attachment sites). Rather, most wide-gauge characteristics are expressed among titanosauriforms across a wide range of body sizes. Only possession of an accessory ventrolateral process on the preacetabular lobe of the ilium appears to correlate with extreme body size. This unique feature may reflect greater application of stress on the preacetabulum by hind limb adductor musculature in the largest titanosauriforms. Yet, comparisons are needed across a broader phylogenetic scope to fully characterize the relationship between large body size and functional anatomy. From a broader perspective, Chapter 5 provides correlations of appendicular character states to taxon body size; these data may be useful in ongoing cladistic analyses and studies on the evolution of gigantism in non-avian dinosaurs. Morphometrics analyses reveal that the evolution of wide-gauge posture is characterized by mediolateral narrowing of the humerus, medial reorientation of the humeral head, mediolateral broadening of the femur, and proximal migration of the deltopectoral crest and fourth trochanter (Chapter 6). Many of these features were hypothesized to characterize wide-gauge posture by Wilson and Carrano (1999). Hence, morphometric analyses provide independent, statistical corroboration of their inferences. In particular, proximal migration of the deltopectoral crest and fourth trochanter (major muscle attachment sites) represent a tradeoff of mechanical advantage in exchange for 328 reduction of muscle contraction for a given limb excursion. These shifts may reflect an optimization of muscle energy expenditure per given action, though the unknown material properties and volumes of dinosaur muscles preclude practical testing of this inference. As a whole, shape changes among sauropodomorph femora (Chapter 6) suggest that wide-gauge titanosauriforms were capable of a greater degree of hind limb abduction and adduction than their narrow-gauge counterparts. This implies that widegauge posture may have provided titanosauriforms with greater dynamic stability during locomotion; however, extant phylogenetic bracket-constrained musculoskeletal modeling would be necessary to examine that topic. Incorporation of additional elements and 3D data in future morphometric analyses offers the potential to advance our understanding of: 1) the functional morphology of titanosauriform wide-gauge posture, and; 2) biomechanical constraints on functional anatomy and locomotion at extreme body size. 329 List of References Ajie, H. O., I. R. Kaplan, P. V. Hauschka, D. Kirner, P. J. Slota, and R. E. Taylor. 1992. Radiocarbon dating of bone osteocalcin: isolating and characterizing a noncollagenous protein. Radiocarbon 34: 296–305. Alexander, R. M. 2002. Stability and maneuverability of terrestrial vertebrates. Integrative and Comparative Biology 42: 158–164. Allain, R., P. Taquet, B. Battail, J. Dejax, P. Richir, M. Véran, F. Limon-Duparcmeur, R. Vacant, O. Mateus, P. Sayarath, B. Khenthavong, and S. Phouyavong. 1999. Un nouveau genre de dinosaur sauropode de la formation des Grès supérieurs (Aptien-Albien) du Laos. Comptes Rendus de l’Académie des Sciences, Series IIA, Earth and Planetary Sciences 329: 609–616. Allentoft, M. E., M. Collins, D. Harker, J. Haile, C. L. Oskam, M. L. Hale, P. F. Campos, J. A. Samaniego, M. T. P. Gilbert, E. Willerslev, G. Zhang, R. P. Scofield, R. N. Holdaway, and M. Bunce. 2012. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society B 279: 4724–4733. Allison, P. A. 1988. The role of anoxia in the decay and mineralization of proteinaceous macro-fossils. Paleobiology 14: 139–154. Allison, P. A. 1990. Decay processes, p. 213–216 in Briggs, D. E. G., and P. R. Crowther (eds.), Paleobiology: a synthesis. Blackwell Scientific Publications, Oxford. Altman, S. A., T. H. Zastawny, L. Randers-Eichhorn, M. A. Cacciuttolo, S. A. Akman, M. Dizdaroglu, and G. Rao. 1995. Formation of DNA-protein cross-links in cultured mammalian cells upon treatment with iron ions. Free Radical Biology and Medicine 19: 897–902. Ambler, R. P., and M. Daniel. 1991. Proteins and molecular paleontology. Philosophical Transactions of the Royal Society of London B 333: 381–389. American Society for Testing and Materials (ASTM), 2011, p. 464–469 in D2799-11 Standard test method for microscopical determination of the maceral composition of coal. ASTM International, West Conshohocken. Anné, J., N. P. Edwards, R. A. Wogelius, A. R. Tumarkin-Deratzian, W. I. Sellers, A. van Veelen, U. Bergmann, D. Sokaras, R. Alonso-Mori, K. Ignatyev, V. M. Egerton, and P. L. Manning. 2014. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates. Journal of the Royal Society Interface 11: 20140277. 330 Apesteguía, S. 2007. The sauropod diversity of the La Amarga Formation (Barremian), Neuquén (Argentina). Gondwana Research 12: 533–546. Apesteguía, S., P. A. Gallina, and A. Haluza. 2010. Not just a pretty face: anatomical peculiarities in the postcranium of rebbachisaurids (Sauropoda: Diplodocoidea). Historical Biology 22: 165–174. Argast, S., J. O. Farlow, R. M. Gabet, and D. L. Brinkman. 1987. Transport-induced abrasion of fossil reptilian teeth: implications for the existence of Tertiary dinosaurs in the Hell Creek Formation, Montana. Geology 15: 927–930. Armitage, M. H., and K. L. Anderson. 2013. Soft sheets of fibrillar bone from a fossil of the supraorbital horn of the dinosaur Triceratops horridus. Acta Histochemica 115: 603–608. Asara, J. M., M. H. Schweitzer, L. M. Freimark, M. Phillips, and L. C. Cantley. 2007. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316: 280–285. Austin, J. J., A. B. Smith, and R. H. Thomas. 1997. Palaeontology in a molecular world: the search for authentic ancient DNA. Trends in Ecology & Evolution 12: 303– 306. Avci, R., M. H. Schweitzer, R. D. Boyd, J. L. Wittmeyer, F. T. Arce, and J. O. Calvo. 2005. Preservation of bone collagen from the Late Cretaceous period studied by immunological techniques and atomic force microscopy. Langmuir 21: 3584– 3590. Babcock, L. E., S. A. Leslie, D. H. Elliot, A. L. Stigall, L. A. Ford, and D. E. G. Briggs. 2006. The "preservation paradox": microbes as a key to exceptional fossil preservation in the Kirkpatrick Basalt (Jurassic), Antarctica. The Sedimentary Record 4: 4–8. Bada, J. L. 1985. Amino acid racemization dating of fossil bones. Annual Reviews in Earth and Planetary Science 13: 241–268. Bada, J. L., and P. Helfman. 1975. Amino acid racemization dating of fossil bones. World Archaeology 7: 160–173. Bada, J. L., X. S. Wang, and H. Hamilton. 1999. Preservation of key biomolecules in the fossil record: current knowledge and future challenges. Philosophical Transactions of the Royal Society of London B 354: 77–87. Badgley, C. 1986. Counting individuals in mammalian fossil assemblages from fluvial environments. PALAIOS 1: 328–338. 331 Baird, R. F., and M. J. Rowley. 1990. Preservation of avian collagen in Australian Quaternary cave deposits. Palaeontology 33: 447–451. Barden, H. E., R. A. Wogelius, D. Li, P. Manning, N. P. Edwards, and B. E. Van Dongen. 2011. Morphological and geochemical evidence of eumelanin preservation in the feathers of the Early Cretaceous bird, Gansus yumenensis. PLoS ONE 6: e25494. Barden, H. E., U. Bergmann, N. P. Edwards, V. M. Egerton, P. L. Manning, S. Perry, A. van Veelen, R. A. Wogelius, and B. E. van Dongen. 2015. Bacteria or melanosomes? A geochemical analysis of micro-bodies on a tadpole from the Oligocene Enspel Formation of Germany. Paleobiodiversity and Palaeoenvironments 95: 33–45. Bartlett, J. 1999. Taphonomy and characteristics of a diverse Maastrichtian assemblage: The Sandy Site, Hell Creek Formation, South Dakota. Journal of Vertebrate Paleontology 19 (Supp 3): 31A. Behrensmeyer, A. K. 1975. The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin of the Museum of Comparative Zoology 146: 473–578. Behrensmeyer, A. K. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology 4: 150–162. Behrensmeyer, A. K. 1988. Vertebrate preservation in fluvial channels. Palaeogeography, Palaeoclimatology, Palaeoecology 63: 183–199. Behrensmeyer, A. K. 1990. Transport/hydrodynamics of bones, p. 232–235 in Briggs, D. E. G., and P. R. Crowther (eds.), Palaeobiology: a synthesis. Blackwell Scientific Publications, Oxford. Behrensmeyer, A. K., K. D. Gordon, and G. T. Yanagi. 1986. Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319: 768–771. Behrensmeyer, A. K., R. W. Hook, C. E. Badgley, J. A. Boy, R. E. Chapman, P. Dodson, R. A. Gastaldo, R. W. Graham, L. D. Martin, P. E. Olsen, R. A. Spicer, R. E. Taggart, and M. V. H. Wilson. 1992. Paleoenvironmental contexts and taphonomic modes, p. 15–136 in Behrensmeyer, A. K., J. D. Damuth, W. A. DiMichele, R. Potts, H.-D. Sues, and S. L. Wing (eds.), Evolutionary paleoecology of terrestrial plants and animals. Chicago University Press, Chicago. Bell, P. 2007. The Danek Bonebed: an unusual dinosaur assemblage from the Horseshoe Canyon Formation, Edmonton, Alberta. Journal of Vertebrate Paleontology 27 (Supp 3): 46A. 332 Benson, R. B. J., N. E. Campione, M. T. Carrano, P. D. Mannion, C. Sullivan, P. Upchurch, and D. C. Evans. 2014. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLOS Biology 12: e1001853. Bergmann, U., R. W. Morton, P. L. Manning, W. I. Sellers, S. Farrar, K. G. Huntley, R. A. Wogelius, and P. Larson. 2010. Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proceedings of the National Academy of Sciences 107: 9060–9065. Bergmann, U., P. L. Manning, and R. A. Wogelius. 2012. Chemical mapping of paleontological and archeological artifacts with synchrotron x-rays. Annual Review of Analytical Chemistry 5: 361–389. Bergstrom, J. 1990. Hunsruck Slate, p. 277–279 in Briggs, D. E. G., and P. R. Crowther (eds.), Paleobiology: a synthesis. Blackwell Scientific Publications, Oxford. Bern, M., B. S. Phinney, and D. Goldberg. 2009. Reanalysis of Tyrannosaurus rex mass spectra. Journal of Proteome Research 8: 4328–4332. Berner, R. A. 1968. Calcium carbonate concretions formed by the decomposition of organic matter. Science 159: 195–197. Bertazzo, S., S. C. R. Maidment, C. Kallepitis, S. Fearn, M. M. Stevens, and H. Xie. 2015. Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nature Communications 6: 7352. Bierstedt, A., B. A. Stankiewicz, D. E. G. Briggs, and R. P. Evershed. 1998. Quantitative and qualitative analysis of chitin in fossil arthropods using a combination of colorimetric assay and pyrolysis-gas chromatography-mass spectrometry. The Analyst 123: 139–145. Bocherens, H., D. B. Brinkman, Y. Dauphin, and A. Mariotti. 1994. Microstructural and geochemical investigations on Late Cretaceous archosaur teeth from Alberta, Canada. Canadian Journal of Earth Sciences 31: 783–792. Boggs, S., Jr. 2003. Petrology of sedimentary rocks. The Blackburn Press, Caldwell. Bonaparte, J. F. 1986. Les dinosaures (Carnosaures, Allosauridés, Sauropodes, Cétiosauridés) du Jurassique moyen de Cerro Cóndor (Chubut, Argentina). Annales de Paléontologie 72: 325–386. Bonaparte, J. F. 1999. An armoured sauropod from the Aptian of northern Patagonia, Argentina. Proceedings of the Second Gondwanan Dinosaur Symposium 15: 1– 12. 333 Bonaparte, J. F., and R. A. Coría. 1993. Un nuevo y gigantesco saurópodo titanosaurio de la Formación Río Limay (Albiano–Cenomaniano) de la provincia del Neuquén, Argentina. Ameghiniana 30: 271–282. Bonaparte, J. F., B. J. González Riga, and S. Apesteguía. 2006. Ligabuesaurus leanzai gen. et sp. nov. (Dinosauria, Sauropoda), a new titanosaur from the Lohan Cura Formation (Aptian, Lower Cretaceous) of Neuquén, Patagonia, Argentina. Cretaceous Research 27: 364–376. Bonnan, M. F. 2004. Morphometric analysis of humerus and femur shape in Morrison sauropods: implications for functional morphology and paleobiology. Paleobiology 30: 444–470. Bonnan, M. F. 2005. Pes anatomy in sauropod dinosaurs: implications for functional morphology, evolution, and phylogeny, p. 346–380 in Tidwell, V., and K. Carpenter (eds.), Thunder-lizards: the sauropodomorph dinosaurs. Indiana University Press, Bloomington. Bonnan, M. F. 2007. Linear and geometric morphometric analysis of long bone scaling patterns in Jurassic Neosauropod dinosaurs: their functional and paleobiological implications. The Anatomical Record 290: 1089–1111. Borsuk-Bialynicka, M. 1977. A new camarasaurid sauropod Opisthocoelicaudia skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia. Palaeontologia Polonica 37: 5–78. Boyce, C. K., G. D. Cody, M. Feser, C. Jacobsen, A. H. Knoll, and S. Wirick. 2002. Organic chemical differentiation within fossil plant cell walls detected with x-ray spectromicroscopy. Geology 30: 1039–1042. Brett, C. E. 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. PALAIOS 10: 597–616. Brett, C. E., and G. C. Baird. 1986. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. PALAIOS 1: 207– 227. Briggs, D. E. G. 1999. Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philosophical Transactions of the Royal Society of London B 354: 7–17. Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of softbodied fossils. Annual Reviews in Earth and Planetary Science 31: 275–301. Briggs, D. E. G., and A. J. Kear. 1993. Fossilization of soft tissue in the laboratory. Science 259: 1439–1442. 334 Briggs, D. E. G., P. R. Wilby, B. P. Pérez-Moreno, J. L. Sanz, and M. Fregenal-Martínez. 1997. The mineralization of dinosaur soft tissue in the Lower Cretaceous of Las Hoyas, Spain. Journal of the Geological Society 154: 587. Briggs, D. E. G., R. P. Evershed, and M. J. Lockheart. 2000. The biomolecular paleontology of continental fossils. Paleobiology 26: 169–193. Brochu, C. A. 1996. Closure of neurocentral sutures during crocodilian ontogeny: implications for maturity assessment in fossil archosaurs. Journal of Vertebrate Paleontology 16: 49–62. Buckley, M., M. J. Collins, J. Thomas-Oates, and J. C. Wilson. 2009. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 23: 3843–3854. Buckley, M., N. Larkin, and M. Collins. 2011. Mammoth and Mastodon collagen sequences; survival and utility. Geochimica et Cosmochimica Acta 75: 2007– 2016. Burness, G. P., J. Diamond, and T. Flannery. 2001. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proceedings of the National Academy of Sciences 98: 14518–14523. Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16: 272–286. Butterfield, N. J., U. Balthasar, and L. A. Wilson. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology 50: 537–543. Cadena, E. A., and M. H. Schweitzer. 2012. Variation in osteocytes morphology vs bone type in turtle shell and their exceptional preservation from the Jurassic to the present. Bone 51: 614–620. Cadena, E. A., and M. H. Schweitzer. 2014. A pelomedusoid turtle from the PaleoceneEocene of Colombia exhibiting preservation of blood vessels and osteocytes. Journal of Herpetology 48: 461–465. Calvo, J. O., and J. F. Bonaparte. 1991. Andesaurus delgadoi gen et sp. nov. (SaurischiaSauropoda), dinosaurio Titanosauridae de la Formación Río Limay (AlbianoCenomaniano), Neuquén, Argentina. Ameghiniana 28: 303–310. Calvo, J. O., and B. J. González Riga. 2003. Rinconsaurus caudamirus gen. et sp. nov., a new titanosaurid (Dinosauria, Sauropoda) from the Late Cretaceous of Patagonia, Argentina. Revista Geológica de Chile 30: 333–353. 335 Calvo, J. O., B. J. González-Riga, and J. D. Porfiri. 2007a. A new titanosaur sauropod from the Late Cretaceous of Neuquén, Patagonia, Argentina. Arquivos de Museo Nacional, Rio de Janeiro 65: 485–504. Calvo, J. O., J. D. Porfiri, B. J. González-Riga, and A. W. A. Kellner. 2007b. A new Cretaceous terrestrial ecosystem from Gondwana with the description of a new sauropod dinosaur. Anais de Academia Brasileira de Ciências 79: 529–541. Campione, N. E., and D. C. Evans. 2011. Cranial growth and variation in edmontosaurs (Dinosauria: Hadrosauridae): implications for latest Cretaceous megaherbivore diversity in North America. PLoS ONE 6: e25186. Campos, D., A. W. A. Kellner, R. J. Bertini, and R. M. Santucci. 2005. On a titanosaurid (Dinosauria, Sauropoda) vertebral column from the Bauru Group, Late Cretaceous of Brazil. Arquivos de Museo Nacional, Rio de Janeiro 63: 565–593. Cappelini, E., L. J. Jensen, D. Szklarczyk, A. Ginolhac, R. A. R. da Fonseca, T. W. Stafford Jr., S. R. Holen, M. J. Collins, L. Orlando, E. Willerslev, M. T. P. Gilbert, and J. V. Olsen. 2011. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins. Journal of Proteome Research 11: 917–926. Carballido, J. L., D. Pol, I. Cerda, and L. Salgado. 2011. The osteology of Chubutisaurus insignis del Corro, 1975 (Dinosauria: Neosauropoda) from the 'middle' Cretaceous of central Patagonia, Argentina. Journal of Vertebrate Paleontology 31: 93–110. Carballido, J. L., J. S. Marpmann, D. Schwarz-Wings, and B. Pabst. 2012a. New information on a juvenile sauropod specimen from the Morrison Formation and the reassessment of its systematic position. Palaeontology 55: 567–582. Carballido, J. L., L. Salgado, D. Pol, J. I. Canudo, and A. Garrido. 2012b. A new basal rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the Neuquén Basin; evolution and biogeography of the group. Historical Biology 24: 631–654. Carney, R. M., J. Vinther, M. D. Shawkey, L. D'Alba, and J. Ackermann. 2012. New evidence on the colour and nature of the isolated Archaeopteryx feather. Nature Communications 3: 1642. Carpenter, K. 2005. Experimental investigation of the role of bacteria in bone fossilization. Neues Jahrbuch für Geologie und Palӓontologie Monatshefte 2005: 83–94. 336 Carpenter, K. 2007. How to make a fossil: part 2 – dinosaur mummies and other soft tissue. The Journal of Paleontological Science JPS.C.07.0002: 1–23. Carrano, M. T. 2005. The evolution of sauropod locomotion: morphological diversity of a secondarily quadrupedal radiation, p. 229–251 in Curry Rogers, K. A., and J. A. Wilson (eds.), The sauropods: evolution and paleobiology. University of California Press, Berkeley. Carrano, M. T., and J. R. Hutchinson. 2002. Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda). Journal of Morphology 253: 207– 228. Cazalbou, S., D. Eichert, C. Drouet, C. Combes, and C. Rey. 2004. Mineralisations biologiques a base de phosphate de calcium. Comptes Rendus Palevol 3: 563– 572. Chadwick, A., L. Spencer, and L. Turner. 2006. Preliminary depositional model for an Upper Cretaceous Edmontosaurus bonebed. Journal of Vertebrate Paleontology 26 (Supp 3): 49A. Chan, M. A., J. Ormo, A. J. Park, M. Stich, V. Souza-Egipsy, and G. Komatsu. 2007. Models of iron oxide concretion formation: field, numerical, and laboratory comparisons. Geofluids 7: 1–13. Child, A. M. 1995. Microbial taphonomy of archaeological bone. Studies in Conservation 40: 19–30. Child, A. M., R. D. Gillard, and A. M. Pollard. 1993. Microbially-induced promotion of amino acid racemization in bone: isolation of the microorganisms and the detection of their enzymes. Journal of Archaeological Science 20: 159–168. Chin, K., D. A. Eberth, M. H. Schweitzer, T. A. Rando, W. J. Sloboda, and J. R. Horner. 2003. Remarkable preservation of undigested muscle tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. PALAIOS 18: 286– 294. Chinsamy, A., and M. A. Raath. 1992. Preparation of fossil bone for histological examination. Palaeontologia Africana 29: 39–44. Christian, A., and G. Dzemski. 2011. Neck posture in sauropods, p. 251–262 in Klein, N., K. Remes, C. T. Gee, and M. Sander (eds.), Biology of the sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington. Christians, J. P. 1992. Taphonomy and sedimentology of the Mason Dinosaur Quarry, Hell Creek Formation (Upper Cretaceous), South Dakota. M.S. thesis, University of Wisconsin, Madison, 91 pp. 337 Clarke, J. A., D. T. Ksepka, R. Salas-Gismondi, A. J. Altamirano, M. D. Shawkey, L. D'Alba, J. Vinther, T. J. DeVries, and P. Baby. 2010. Fossil evidence for evolution of the shape and color of penguin feathers. Science 330: 954–957. Cleland, T. P. 2012. Mode of preservation and characterization of soft tissues and molecules in exceptionally preserved fossils. Ph.D. dissertation, North Carolina State University, Raleigh, 177 pp. Cleland, T. P., K. K. Voegele, and M. H. Schweitzer. 2012. Empirical evaluation of methodology related to the extraction of bone proteins. PLoS ONE 7: e31443. Cobban, W. A., and J. B. Reeside, Jr. 1952. Correlation of the Cretaceous formations of the Western Interior of the United States. Bulletin of the Geological Society of America 63: 1011–1044. Cody, G. D., N. S. Gupta, D. E. G. Briggs, A. L. D. Kilcoyne, R. Summons, F. Kenig, R. E. Plotnick, and A. C. Scott. 2011. Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology 39: 255–258. Coleman, M. L. 1993. Microbial processes: controls on the shape and composition of carbonate concretions. Marine Geology 113: 127–140. Collins, M. J., and A. M. Gernaey. 2001. Proteins, p. 245–247 in Briggs, D. E. G., and P. R. Crowther (eds.), Palaeobiology II. Blackwell Scientific Publications, Oxford. Collins, M. J., E. R. Waite, and A. C. T. van Duin. 1999. Predicting protein decomposition: the case of aspartic-acid racemization kinetics. Philosophical Transactions of the Royal Society of London B 354: 51–64. Collins, M. J., A. M. Gernaey, C. M. Nielsen-Marsh, C. Vermeer, and P. Westbroek. 2000. Slow rates of degradation of osteocalcin: green light for fossil bone protein? Geology 28: 1139–1142. Collins, M. J., C. M. Nielsen-Marsh, J. Hiller, C. I. Smith, J. P. Roberts, R. V. Prigodich, T. J. Wess, J. Csapo, A. R. Millard, and G. Turner-Walker. 2002. The survival of organic matter in bone: a review. Archaeometry 44: 383–394. Collins, M. J., D. Walton, G. B. Curry, M. S. Riley, T. N. Von Wallmenich, N. M. Savage, G. Muyzer, and P. Westbroek. 2003. Long-term trends in the survival of immunological epitopes entombed in fossil brachiopod skeletons. Organic Geochemistry 34: 89–96. 338 Collins, M. J., K. E. H. Penkman, N. Rohland, B. Shapiro, R. C. Dobberstein, S. RitzTimme, and M. Hofreiter. 2009. Is amino acid racemization a useful tool for screening for ancient DNA in bone? Proceedings of the Royal Society B 276: 2971–2977. Colson, M. C., R. O. Colson, and R. Nellermoe. 2004. Stratigraphy and depositional environments of the upper Fox Hills and lower Hell Creek Formations at the Concordia Hadrosaur Site in northwestern South Dakota. Rocky Mountain Geology 39: 93–111. Company, J., X. Pereda-Suberbiola, and J. I. Ruiz-Omeñaca. 2009. Nuevos restos fósiles del dinosaurio Lirainosaurus (Sauropoda, Titanosauria) en el Cretácico Superior (Campaniano-Maastrichtiano) de la Península Ibérica. Ameghiniana 46: 391–405. Coto, B., C. Martos, J. L. Peña, R. Rodríguez, and G. Pastor. 2012. Effects in the solubility of CaCO3: experimental study and model description. Fluid Phase Equilibria 324: 1–7. Csiki, Z., V. Codrea, C. Jipa-Murzea, and C.-N. Pascal Godefroit. 2010. A partial titanosaur (Sauropoda, Dinosauria) skeleton from the Maastrichtian of Nălaţ-Vad, Haţeg Basin, Romania. Neus Jahrbuch für Geologie und Paläontologie, Abhandlungen 258: 297–324. Currie, P. J., J. K. Rigby, Jr., and R. E. Sloan. 1990. Theropod teeth from the Judith River Formation of southern Alberta, Canada, p. 107–125 in Carpenter, K., and P. J. Currie (eds.), Dinosaur systematics: perspectives and approaches. Cambridge University Press, Cambridge. Curry, G. B. 1987. Molecular palaeontology: new life for old molecules. Trends in Ecology & Evolution 2: 161–165. Curry, G. B. 1990. Molecular palaeontology, p. 95–100 in Briggs, D. E. G., and P. R. Crowther (eds.), Paleobiology: a synthesis. Blackwell Scientific Publications, Oxford. Curry Rogers, K. 2005. Titanosauria: a phylogenetic overview, p. 50–103 in Curry Rogers, K., and J. A. Wilson (eds.), The sauropods: evolution and paleobiology. University of California Press, Berkeley. Curry Rogers, K. 2009. The postcranial osteology of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology 29: 1046–1086. 339 Curtis, C. D., and M. L. Coleman. 1986. Controls on the precipitation of early diagenetic calcite, dolomite and siderite concretions in complex depositional sequences. Society of Economic Paleontologists and Mineralogists, Roles of Organic Matter in Sediment Diagenesis SP38. D'Emic, M. D. 2012. The early evolution of titanosauriform sauropod dinosaurs. Zoological Journal of the Linnean Society 166: 624–671. D'Emic, M. D., and B. Z. Foreman. 2012. The beginning of the sauropod dinosaur hiatus in North America: insights from the Lower Cretaceous Cloverly Formation of Wyoming. Journal of Vertebrate Paleontology 32: 883–902. D'Emic, M. D., J. A. Wilson, and T. E. Williamson. 2011. A sauropod dinosaur pes from the latest Cretaceous of North America and the validity of Alamosaurus sanjuanensis (Sauropoda, Titanosauria). Journal of Vertebrate Paleontology 31: 1072–1079. Dal Sasso, C., and M. Signore. 1998. Exceptional soft-tissue preservation in a theropod dinosaur from Italy. Nature 392: 383–387. Daniel, J. C., and K. Chin. 2010. The role of bacterially mediated precipitation in the permineralization of bone. PALAIOS 25: 507–516. Day, J. J., P. Upchurch, D. B. Norman, A. S. Gale, and H. P. Powell. 2002. Sauropod trackways, evolution, and behavior. Science 296: 1659. De Baar, H. J. W., M. P. Bacon, and P. G. Brewer. 1983. Rare-earth distributions with a positive Ce anomaly in the Western North Atlantic Ocean. Nature 301: 324–327. De Jong, E. W., P. Westbroek, J. F. Westbroek, and J. W. Bruning. 1974. Preservation of antigenic properties of macromolecules over 70 Myr. Nature 252: 63–64. De Leeuw, J. W., and C. Largeau. 1993. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation, p. 23–72 in Engel, M. H., and S. A. Macko (eds.), Organic geochemistry. Plenum Press, New York. De Leeuw, J. W., P. F. Van Bergen, B. G. K. Van Aarssen, J.-P. L. A. Gatellier, J. S. Sinninghe Damste, and M. E. Collinson. 1991. Resistant biomacromolecules as major contributors to kerogen. Philosophical Transactions of the Royal Society of London B 333: 329–337. DeNiro, M. J., and S. Weiner. 1988. Chemical, enzymatic and spectroscopic characterization of "collagen" and other organic fractions from prehistoric bones. Geochimica et Cosmochimica Acta 52: 2197–2206. 340 DeSalle, R., M. Barcia, and C. Wray. 1993. PCR jumping in clones of 30-million-yearold DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia 49: 906–909. Derstler, K. 1995. The Dragon's Grave – an Edmontosaurus bonebed containing theropod eggshells and juveniles, Lance Formation (Uppermost Cretaceous), Niobrara County, Wyoming. Journal of Vertebrate Paleontology 15 (Supp 3); 26A. Díez Díaz, V., X. Pereda Superbiola, and J. L. Sanz. 2013. Appendicular skeleton and dermal armour of the Late Cretaceous titanosaur Lirainosaurus astibia (Dinosauria: Sauropoda) from Spain. Palaeontologia Electronica 16: 19A. Dilkes, D. W. 1999. Appendicular myology of the hadrosaurian dinosaur Maiasaura peeblesorum from the Late Cretaceous (Campanian) of Montana. Transactions of the Royal Society of Edinburgh, Earth Sciences 90: 87–125. Dobberstein, R. C., M. J. Collins, O. E. Craig, G. Taylor, K. E. H. Penkman, and S. RitzTimme. 2009. Archaeological collagen: why worry about collagen diagenesis? Archaeological and Anthropological Science 1: 31–42. Doberenz, A. R., and R. Lund. 1966. Evidence for collagen in a fossil of the Lower Jurassic. Nature 212: 1502–1503. Dumont, M., A. Kostka, P. M. Sander, A. Borbely, and A. Kaysser-Pyzalla. 2011. Size and size distribution of apatite crystals in sauropod fossil bones. Palaeogeography, Palaeoclimatology, Palaeoecology 310: 108–116. Dunn, K. A., R. J. C. McLean, G. R. Upchurch, and R. L. Folk. 1997. Enhancement of leaf fossilization potential by bacterial biofilms. Geology 25: 1119–1122. Dutta, S., C. Hartkopf-Froder, U. Mann, H. Wilkes, R. Brocke, and N. Bertram. 2009. Macromolecular composition of Palaeozoic scolecodonts: insights into the molecular taphonomy of zoomorphs. Lethaia 43: 334–343. Eberth, D. A., R. R. Rogers, and A. R. Fiorillo. 2007. A practical approach to the study of bonebeds, p. 265–332 in Rogers, R. R., D. A. Eberth, and A. R. Fiorillo (eds.), Bonebeds: genesis, analysis, and paleobiological significance. University of Chicago Press, Chicago. Edwards, N. P., H. E. Barden, B. E. Van Dongen, P. L. Manning, P. L. Larson, U. Bergmann, W. I. Sellers, and R. A. Wogelius. 2011. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin. Proceedings of the Royal Society B 278: 3209–3218. 341 Edwards, N. P., R. A. Wogelius, U. Bergmann, P. Larson, W. I. Sellers, and P. L. Manning. 2013. Mapping prehistoric ghosts in the synchrotron. Applied Physics A 111: 147–155. Egerton, V. M. 2011. The geology, paleontology and paleoecology of the Cerro Fortaleza Formation, Patagonia (Argentina). Ph.D. dissertation, Drexel University, Philadelphia, 275 pp. Eglinton, G., and G. A. Logan. 1991. Molecular preservation. Philosophical Transactions of the Royal Society of London B 333: 315–328. Ehrlich, H. L. 1996. How microbes influence mineral growth and dissolution. Chemical Geology 132: 5–9. Eigenbrode, J. L. 2008. Fossil lipids for life-detection: a case study from the early Earth record. Space Science Reviews 135: 161–185. Elderfield, H., and M. J. Greaves. 1982. The rare earth elements in seawater. Nature 296: 214–219. Elderfield, H., and E. R. Sholkovitz. 1987. Rare earth elements in the pore waters of reducing nearshore sediments. Earth and Planetary Science Letters 82: 280–288. Elderfield, H., R. Upstill-Goddard, and E. R. Sholkovitz. 1990. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta 54: 971–991. Elorza, J., H. Astibia, X. Murelaga, and X. Pereda-Suberbiola. 1999. Francolite as a diagenetic mineral in dinosaur and other Upper Cretaceous reptile bones (Lano, Iberian Peninsula): microstructural, petrological and geochemical features. Cretaceous Research 20: 169–187. Embery, G., A. C. Milner, R. J. Waddington, R. C. Hall, M. S. Langley, and A. M. Milan. 2000. The isolation and detection of non-collagenous proteins from the compact bone of the dinosaur Iguanodon. Connective Tissue Research 41: 249–259. Embery, G., A. C. Milner, R. J. Waddington, R. C. Hall, M. S. Langley, and A. M. Milan. 2003. Identification of proteinaceous material in the bone of the dinosaur Iguanodon. Connective Tissue Research 44 (Supp 1): 41–46. Endo, K., D. Walton, R. A. Reyment, and G. B. Curry. 1995. Fossil intra-crystalline biomolecules of brachiopod shells: diagenesis and preserved geo-biological information. Organic Geochemistry 23: 661–673. Ennever, J., J. J. Vogel, and J. L. Streckfuss. 1974. Calcification by Escherischia coli. Journal of Bacteriology 119: 1061–1062. 342 Erickson, G. M., B. A. Krick, M. Hamilton, G. R. Bourne, M. A. Norell, E. Lilleodden, and W. G. Sawyer. 2012. Complex dental structure and wear biomechanics in hadrosaurid dinosaurs. Science 338: 98–100. Farmer, J. 1999. Taphonomic modes in microbial fossilization, p. 94–102 in Farmer, J., M. L. Fogel, J. Lawrence, M. I. Lester, and G. J. Olsen (eds.), Size limits of very small organisms: proceedings of a workshop. National Academy Press, Washington. Farrimond, P., and G. Eglinton. 1990. The record of organic components and the nature of source rocks, p. 217–222 in Briggs, D. E. G., and P. R. Crowther (eds.), Paleobiology: a synthesis. Blackwell Scientific Publications, Oxford. Fernandez-Jalvo, Y., P. Andrews, D. Pesquero, C. Smith, D. Marin-Monfort, B. Sanchez, E. M. Geigel, and A. Alonso. 2010. Early bone diagenesis in temperate environments part I: surface features and histology. Palaeogeography, Palaeoclimatology, Palaeoecology 288: 62–81. Ferris, F. G., W. S. Fyfe, and T. J. Beveridge. 1988. Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16: 149– 152. Field, D. J., L. D'Alba, J. Vinther, S. M. Webb, W. Gearty, and M. D. Shawkey. 2013. Melanin concentration gradients in modern and fossil feathers. PLoS ONE 8: e59451. Filippi, L. S., and A. C. Garrido. 2008. Pitekunsaurus macayai gen. et sp. nov., nuevo titanosaurio (Saurischia, Sauropoda) del Cretácico Superior de la Cuenca Neuquina, Argentina. Ameghiniana 45: 575–590. Filippi, L. S., R. A. García, and A. C. Garrido. 2011a. A new titanosaur sauropod dinosaur from the Upper Cretaceous of north Patagonia, Argentina. Acta Palaeontologica Polonica 56: 505–520. Filippi, L. S., J. I. Canudo, J. L. Salgado, A. C. Garrido, R. A. García, I. Cerda, and A. Otero. 2011b. A new sauropod titanosaur from the Plottier Formation (Upper Cretaceous) of Patagonia (Argentina). Geological Acta 9: 1–12. Fiorillo, A. R. 1988. Taphonomy of Hazard Homestead Quarry (Ogallala Group), Hitchcock County, Nebraska. University of Wyoming Contributions to Geology 26: 57–97. Fiorillo, A. R. 1991a. Taphonomy and depositional setting of Careless Creek Quarry (Judith River Formation), Wheatland County, Montana, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology 81: 281–311. 343 Fiorillo, A. R. 1991b. Prey bone utilization by predatory dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology 88: 157–166. Fogel, M. L., and N. Tuross. 1999. Transformation of plant biochemicals to geological macromolecules during early diagenesis. Oecologia 120: 336–346. Fowler, D. W., and R. M. Sullivan. 2012. The first giant titanosaurian sauropod from the Upper Cretaceous of North America. Acta Palaeontologica Polonica 56: 685–690. Francillon-Vieillot, H., V. de Buffrénil, J. Castanet, J. Géraudie, F. J. Meunier, J. Y. Sire, L. Zylberberg, and A. de Ricqlès. 1990. Microstructure and mineralization of vertebrate skeletal tissues, p. 471–547 in Carter, J.G. (ed.), Skeletal biomineralization: patterns, processes and evolutionary trends. Van Nostrand Reinhold, New York. Franco-Rosas, A. C., L. Salgado, C. F. Rosas, and I. Carvalho. 2004. Nuevos materiales de titanosaurios (Sauropoda) en el Cretácico Superior de Mato Grosso, Brasil. Revista Brasileira de Paleontologia 7: 329–336. Franks, P. C. 1969. Nature, origin, and significance of cone-in-cone structures in the Kiowa Formation (Early Cretaceous), north-central Kansas. Journal of Sedimentary Research 39: 1438–1454. Franzen, J. L. 1990. Grube Messel, p. 289–293 in Briggs, D. E. G., and P. R. Crowther (eds.), Palaeobiology: a synthesis. Blackwell Scientific Publications, Oxford. Fricke, H. 2007. Stable isotope geochemistry of bonebed fossils: reconstructing paleoenvironments, paleoecology, and paleobiology, p. 437–490 in Rogers, R. R., D. A. Eberth, and A. R. Fiorillo (eds.), Bonebeds: genesis, analysis, and paleobiological significance. University of Chicago Press, Chicago. Fricke, H. C., R. R. Rogers, R. Backlund, C. N. Dwyer, and S. Echt. 2008. Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta. Investigating climates, environments and biology using stable isotopes 266: 13–27. Frye, C. I. 1969. Stratigraphy of the Hell Creek Formation in North Dakota. North Dakota Geological Survey Bulletin 54: 1–65. Gadd, G. M. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156: 609–643. Gallina, P. A., and S. Apesteguía. 2011. Cranial anatomy and phylogenetic position of the titanosaurian sauropod Bonitasaura salgadoi. Acta Palaeontologica Polonica 56: 45–60. 344 Gangloff, R. A., and A. R. Fiorillo. 2010. Taphonomy and paleoecology of a bonebed from the Prince Creek Formation, north slope, Alaska. PALAIOS 25: 299–317. Garcia, G., S. Amico, F. Fournier, E. Thouand, and X. Valentin. 2010. A new titanosaur genus (Dinosauria, Sauropoda) from the Late Cretaceous of southern France and its paleobiogeographic implications. Bulletin de la Société Géologique de France 181: 269–277. García, R. A., and L. Salgado. 2011. The titanosaur sauropods from the Allen Formation (late Campanian–early Maastrichtian) of Salitral Moreno (Patagonia, Río Negro, Argentina). Acta Palaeontologica Polonica 58: 269–284. Gates, T. A. 2005. The Late Jurassic Cleveland-Lloyd Dinosaur Quarry as a droughtinduced assemblage. PALAIOS 20: 363–375. Geigl, E. 2002. On the circumstances surrounding the preservation and analysis of very old DNA. Archaeometry 44: 337–342. German, C. R., B. P. Holliday, and H. Elderfield. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta 55: 3553–3558. German, C. R., T. Masuzawa, M. J. Greaves, H. Elderfield, and J. M. Edmond. 1995. Dissolved rare earth elements in the Southern Ocean: cerium oxidation and the influence of hydrography. Geochimica et Cosmochimica Acta 59: 1551–1558. Gilmore, C. W. 1922. A new sauropod dinosaur from the Ojo Alamo Formation of New Mexico. Smithsonian Miscellaneous Collections 72: 1–9. Gilmore, C. W. 1946. Reptilian fauna of the North Horn Formation of central Utah. United States Department of the Interior Geological Survey 210-C: 29–53. Glass, K., S. Ito, P. R. Wilby, T. Sota, A. Nakamura, C. Russell Bowers, J. Vinther, S. Dutta, R. Summons, D. E. G. Briggs, K. Wakamatsu, and J. D. Simon. 2012. Direct chemical evidence for eumelanin pigment from the Jurassic period. Proceedings of the National Academy of Sciences 109: 10218–10223. Glass, K., S. Ito, P. R. Wilby, T. Sota, A. Nakamura, C. Russell Bowers, K. E. Miller, S. Dutta, R. Summons, D. E. G. Briggs, K. Wakamatsu, and J. D. Simon. 2013. Impact of diagenesis and maturation on the survival of eumelanin in the fossil record. Organic Geochemistry 64: 29–37. Glimcher, M. J., L. Cohen-Solal, D. Kossiva, and A. de Ricqlès. 1990. Biochemical analyses of fossil enamel and dentin. Paleobiology 16: 219–232. 345 Goldstein, S. J., and S. B. Jacobsen. 1988. Rare earth elements in river waters. Earth and Planetary Science Letters 89: 35–47. Gomani, E. M. 2005. Sauropod dinosaurs from the Early Cretaceous of Malawi, Africa. Palaeontologia Electronica 8: 27A. Gomez, B., C. Martín-Closas, G. Barale, N. Solé de Porta, F. Thévenard, and G. Guignard. 2002. Frenelopsis (Coniferales: Cheirolepidiaceae) and related male organ genera from the Lower Cretaceous of Spain. Palaeontology 45: 997–1036. González Riga, B. J. 2003. A new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Mendoza Province, Argentina. Ameghiniana 40: 155–172. González Riga, B. J. 2011. Speeds and stance of titanosaur sauropods: analysis of Titanopodus tracks from the Late Cretaceous of Mendoza, Argentina. Anais da Academia Brasileira de Ciências 83: 279–290. Goodwin, M. B., P. G. Grant, G. Bench, and P. A. Holroyd. 2007. Elemental composition and diagenetic alteration of dinosaur bone: distinguishing micron-scale spatial and compositional heterogeneity using PIXE. Palaeogeography, Palaeoclimatology, Palaeoecology 253: 458–476. Greenwalt, D. E., Y. S. Goreva, S. M. Siljestrom, T. Rose, and R. E. Harbach. 2013. Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. Proceedings of the National Academy of Sciences 110: 18496–18500. Gromet, L. P., R. F. Dymek, L. A. Haskin, and R. L. Korotev. 1984. The "North American shale composite": its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta 48: 2469–2482. Grupe, G. 1995. Preservation of collagen in bone from dry, sandy soil. Journal of Archaeological Science 22: 193–199. Grupe, G., and H. Piepenbrink. 1989. Impact of microbial activity on trace element concentrations in excavated bones. Applied Geochemistry 4: 293–298. Gueriau, P., C. Mocuta, D. B. Dutheil, S. X. Cohen, D. Thiaudiere, S. Charbonnier, G. Clement, and L. Bertrand. 2014. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils. PLoS ONE 9: e86946. Guimaraes, A. F., V. S. T. Ciminelli, and W. L. Vasconcelos. 2007. Surface modification of synthetic clay aimed at biomolecule adsorption: synthesis and characterization. Materials Research 10: 37–41. 346 Gunga, H.-C., K. Kirsch, J. Rittweger, L. Röcker, A. Clarke, J. Albertz, A. Wiedemann, S. Mokry, T. Suthau, A. Wehr, W.-D. Heinrich, and H.-P. Schultze. 1999. Body size and body volume distribution in two sauropods from the Upper Jurassic of Tendaguru (Tanzania). Mitteilungen aus dem Museum für Naturkunde der Humboldt-Universitӓt Berlin, Geowissenschaftliche Reihe 2: 91–102. Gunji, T., and S. Kobayashi. 1983. Distribution and organization of odontoblast processes in human dentin. Archivum Histologicum Japonicum 46: 213–219. Gupta, N. S., D. E. G. Briggs, M. E. Collinson, R. P. Evershed, R. Michels, and R. D. Pancost. 2007. Molecular preservation of plant and insect cuticles from the Oligocene Enspel Formation, Germany: evidence against derivation of aliphatic polymer from sediment. Organic Geochemistry 38: 404–418. Gupta, N. S., O. Cambra-Moo, D. E. G. Briggs, G. D. Love, M. A. Fregenal-Martinez, and R. E. Summons. 2008. Molecular taphonomy of macrofossils from the Cretaceous Las Hoyas Formation, Spain. Cretaceous Research 29: 1–8. Gurley, L. R., J. G. Valdez, W. D. Spall, B. F. Smith, and D. D. Gillette. 1991. Proteins in fossil bone of the dinosaur, Seismosaurus. Journal of Protein Chemistry 10: 75– 90. Hagelberg, E., L. S. Bell, T. Allen, A. Boyde, S. J. Jones, and J. B. Clegg. 1991. Analysis of ancient bone DNA: techniques and applications. Philosophical Transactions of the Royal Society of London B 333: 399–407. Haley, B. A., G. P. Klinkhammer, and J. McManus. 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta 68: 1265–1279. Hammes, F., and W. Verstraete. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Re/Views in Environmental Science and Bio/Technology 1: 3–7. Harper, E., and A. H. Kang. 1970. Studies on the specificity of bacterial collagenase. Biochemical and Biophysical Research Communications 41: 482–487. Harris, J. 2007. The appendicular skeleton of Suuwassea emilieae (Sauropoda: Flagellicaudata) from the Upper Jurassic Morrison Formation of Montana (USA). Geobios 40: 501–522. Haskin, L. A., M. A. Haskin, F. A. Frey, and T. R. Wildeman. 1968. Relative and absolute terrestrial abundances of the rare earths, p. 889–912 in Ahrens, L. H. (ed.), Origin and distribution of the elements. Pergamon, Oxford. 347 Haynes, S., J. B. Searle, A. Bretman, and K. M. Dobney. 2002. Bone preservation and ancient DNA: the application of screening methods for predicting DNA survival. Journal of Archaeological Science 29: 585–592. Hedges, R. E. M. 2002. Bone diagenesis: an overview of processes. Archaeometry 44: 319–328. Hedges, R. E. M., and A. R. Millard. 1995. Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science 22: 201–209. Henderson, D. M. 2006. Burly gaits: centers of mass, stability, and the trackways of sauropod dinosaurs. Journal of Vertebrate Paleontology 26: 907–921. Herwartz, D., T. Tütken, C. Munker, K. P. Jochum, B. Stoll, and P. M. Sander. 2011. Timescales and mechanisms of REE and Hf uptake in fossil bones. Geochimica et Cosmochimica Acta 75: 82–105. Herwartz, D., C. Munker, T. Tütken, J. E. Hoffmann, A. Wittke, and B. Barbier. 2013a. Lu-Hf isotope systematics of fossil biogenic apatite and their effects on geochronology. Geochimica et Cosmochimica Acta 101: 328–343. Herwartz, D., T. Tütken, K. P. Jochum, and P. M. Sander. 2013b. Rare earth element systematics of fossil bone revealed by LA-ICPMS analysis. Geochimica et Cosmochimica Acta 103: 161–183. Hinz, E. A., and M. J. Kohn. 2010. The effect of tissue structure and soil chemistry on trace element uptake in fossils. Geochimica et Cosmochimica Acta 74: 3213– 3231. Hirschler, A., J. Lucas, and J.-C. Hubert. 1990. Apatite genesis: a biologically induced or biologically controlled mineral formation process? Geomicrobiology Journal 7: 47–57. Hocknull, S. A., M. A. White, T. R. Tischler, A. G. Cook, N. D. Calleja, T. Sloan, and D. A. Elliott. 2009. New mid-Cretaceous (latest Albian) dinosaurs from Winton, Queensland, Australia. PLoS ONE 4: e6190. Hofreiter, M., D. Serre, H. N. Poinar, M. Kuch, and S. Pӓӓbo. 2001. Ancient DNA. Nature Reviews 2: 353–359. Hoganson, J. W., J. M. Campbell, and E. C. Murphy. 1994. Stratigraphy and paleontology of the Cretaceous Hell Creek Formation, Stumpf Site, Morton County, North Dakota. North Dakota Academy of Science Proceedings 48: 95. 348 Horner, J. R. 1994. Comparative taphonomy of some dinosaur and extant bird colonial nesting grounds, p. 116–123 in Carpenter, K., K. F. Hirsch, and J. R. Horner (eds.), Dinosaur eggs and babies. Cambridge University Press, Cambridge. Horner, J. R., A. de Ricqlès, and K. Padian. 2000. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an ontogenetic series of skeletal elements. Journal of Vertebrate Paleontology 20: 115–129. Hoyle, J., H. Elderfield, A. Gledhill, and M. Greaves. 1984. The behaviour of the rare earth elements during mixing of river and sea waters. Geochimica et Cosmochimica Acta 48: 143–149. Hubert, J. F., P. T. Panish, D. J. Chure, and K. S. Prostak. 1996. Chemistry, microstructure, petrology, and diagenetic model of Jurassic dinosaur bones, Dinosaur National Monument, Utah. Journal of Sedimentary Research 66: 531– 547. Huene, F. von. 1929. Los saurisquios y ornitisquios del Cretacéo Argentino. Anales del Museo de la Plata III: 1–196. Huene, F. von. 1932. Die fossile reptil-ordnung Saurischia, ihre Entwicklung und Geschichte. Monographien zur Geologie und Palaeontologie, Serie 1 4: 1–361. Humpula, J. F., P. H. Ostrom, H. Gandhi, J. R. Strahler, A. K. Walker, T. W. Stafford Jr., J. J. Smith, M. R. Voorhies, R. G. Corner, and P. C. Andrews. 2007. Investigation of the protein osteocalcin of Camelops hesternus: sequence, structure and phylogenetic implications. Geochimica et Cosmochimica Acta 71: 5956–5967. Huq, N. L., S. M. Rambaud, L.-C. Teh, A. D. Davies, B. McCulloch, M. M. Trotter, and G. E. Chapman. 1985. Immunochemical detection and characterisation of osteocalcin from moa bone. Biochemical and Biophysical Research Communications 129: 714–720. Iacumin, P., H. Bocherens, A. Mariotti, and A. Longinelli. 1996. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters 142: 1–6. Ibiricu, L. M. 2010. Evolution of the caudal vertebral series in macronarian sauropod dinosaurs: morphofunctional and phylogenetic implications. Ph.D. dissertation, Drexel University, Philadelphia, 343 pp. Ibiricu, L. M., M. C. Lamanna, and K. J. Lacovara. 2014. The influence of caudofemoral musculature on the titanosaurian (Saurischia: Sauropoda) tail skeleton: morphological and phylogenetic implications. Historical Biology 26: 454–471. 349 Ikejiri, T. 2004. Anatomy of Camarasaurus lentus (Dinosauria: Sauropoda) from the Morrison Formation (Late Jurassic), Thermopolis, central Wyoming, with determination and interpretation of ontogenetic, sexual dimorphic, and individual variation in the genus. M.S. thesis, Fort Hays State University, Hays, 339 pp. Ikejiri, T., V. Tidwell, and D. L. Trexler. 2005. New adult specimens of Camarasaurus lentus highlight ontogenetic variation within the species, p. 154–179 in Tidwell, V., and K. Carpenter (eds.), Thunder-lizards: the sauropodomorph dinosaurs. Indiana University Press, Bloomington. International Committee for Coal and Organic Petrology (ICCP). 1998. The new vitrinite classification. Fuel 77: 349–358. International Committee for Coal and Organic Petrology (ICCP). 2001. The new inertinite classification. Fuel 80: 459–471. Jacobs, L. L., D. A. Winkler, W. R. Downs, and E. M. Gomani. 1993. New material of an Early Cretaceous titanosaurid sauropod dinosaur from Malawi. Palaeontology 36: 523–534. Jacobsen, A. R., and M. J. Ryan. 1999. Taphonomic aspects of theropod tooth-marked bones from an Edmontosaurus bone bed (Lower Maastrichtian), Alberta, Canada. Journal of Vertebrate Paleontology 19 (Supp 3): 55A. Jain, S. L., and S. Bandyopadhyay. 1997. New titanosaurid (Dinosauria: Sauropoda) from the Late Cretaceous of central India. Journal of Vertebrate Paleontology 17: 114– 136. Jans, M. M. E. 2008. Microbial bioerosion of bone – a review, p. 397–413 in Wisshak, M., and L. Tapanila (eds.), Current developments in bioerosion. Springer-Verlag, Berlin. Jans, M. M. E., H. Kars, C. M. Nielsen-Marsh, C. I. Smith, A. G. Nord, P. Arthur, and N. Earl. 2002. In situ preservation of archaeological bone: a histological study within a multidisciplinary approach. Archaeometry 44: 343–352. Jans, M. M. E., C. M. Nielsen-Marsh, C. I. Smith, M. J. Collins, and H. Kars. 2004. Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science 31: 87–95. Janssens, K., L. Vincze, B. Vekemans, C. T. Williams, M. Radtke, M. Haller, and A. Knochel. 1999. The non-destructive determination of REE in fossilized bone using synchrotron radiation induced K-line X-ray microfluorescence analysis. Journal of Analytical Chemistry 363: 413–420. 350 Johannesson, K. H., and W. B. Lyons. 1995. Rare-earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada. Chemical Geology 119: 209–223. Johannesson, K. H., I. M. Farnham, C. Guo, and K. J. Stetzenbach. 1999. Rare earth element fractionation and concentration variations along a groundwater flow path within a shallow, basin-fill aquifer, southern Nevada, USA. Geochimica et Cosmochimica Acta 63: 2697–2708. Kaye, T. G., G. Gaugler, and Z. Sawlowicz. 2008. Dinosaurian soft tissues interpreted as bacterial biofilms. PLoS ONE 3: e2808. Kellner, A. W. A. 1996. Fossilized theropod soft tissue. Nature 379: 32. Kellner, A. W. A., and A. K. de Azevedo. 1999. A new sauropod dinosaur (Titanosauria) from the Late Cretaceous of Brazil. Proceedings of the Second Gondwanan Dinosaur Symposium 15: 111–142. Kellner, A. W. A., D. Campos, S. A. K. de Azevedo, M. N. F. Trotta, D. D. R. Henriques, M. N. T. Craik, and H. Silva. 2006. On a new titanosaur sauropod from the Bauru Group, Late Cretaceous of Brazil. Boletim do Museu Nacional (Nova Série), Geologia 74: 1–31. Kemp, R. A., and C. N. Trueman. 2003. Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the paleoenvironment. Sedimentary Geology 155: 109–127. Kim, J.-H., M. E. Torres, B. A. Haley, M. Kastner, J. W. Pohlman, M. Riedel, and Y.-J. Lee. 2011. The effect of diagenesis and fluid migration on rare earth element distribution in fluids of the northern Cascadia accretionary margin. Chemical Geology 291: 152–165. Klein, N., and M. Sander. 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34: 247–263. Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Reviews in Earth and Planetary Science 26: 573–613. Koch, P. L., A. K. Behrensmeyer, A. W. Stoti, N. Tuross, R. P. Evershed, M. L. Fogel. 2000. The effects of weathering on the stable isotope composition of bones. Ancient Biomolecules 3: 117–134. Kocsis, L., C. N. Trueman, and M. R. Palmer. 2010. Protracted diagenetic alteration of REE contents in fossil bioapatites: direct evidence from Lu-Hf isotope systematics. Geochimica et Cosmochimica Acta 74: 6077–6092. 351 Koenig, A. E., R. R. Rogers, and C. N. Trueman. 2009. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones. Geology 37: 511–514. Koeppenkastrop, D., and E. H. De Carlo. 1993. Uptake of rare earth elements from solution by metal oxides. Environmental Science and Technology 27: 1796–1802. Kohn, M. J. 2008. Models of diffusion-limited uptake of trace elements in fossils and rates of fossilization. Geochimica et Cosmochimica Acta 72: 3758–3770. Kohn, M. J., and R. J. Moses. 2013. Trace element diffusivities in bone rule out simple diffusive uptake during fossilization but explain in vivo uptake and release. Proceedings of the National Academy of Sciences 110: 419–424. Kohn, M. J., M. J. Schoeninger, and W. W. Barker. 1999. Altered states: effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63: 2737–2747. Kolesnikov, M. P., and I. A. Egorov. 1977. Porphyrins and phycobilins in Precambrian rocks. Origins of Life 8: 383–390. Kolodny, Y., B. Luz, M. Sander, and W. A. Clemens. 1996. Dinosaur bones: fossils or pseudomorphs? The pitfalls fo physiology reconstruction from apatitic fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 126: 161–171. Konhauser, K. O. 1998. Diversity of bacterial iron mineralization. Earth-Science Reviews 43: 91–121. Kowal-Linka, M., and K. P. Jochum. 2015. Variability of trace element uptake in marine reptile bones from three Triassic sites (S Poland): influence of diagenetic processes on the host rock and significance of the applied methodology. Chemical Geology 397: 1–13. Kowal-Linka, M., K. P. Jochum, and D. Surmik. 2014. LA-ICP-MS analysis of rare earth elements in marine reptile bones from the Middle Triassic bonebed (Upper Silesia, S Poland): impact of long-lasting diagenesis, and factors controlling the uptake. Chemical Geology 363: 213–228. Kowalewski, M., and M. Labarbera. 2004. Actualistic taphonomy: death, decay, and disintegration in contemporary settings. PALAIOS 19: 423–427. Kroeger, T. J. 2002. Palynology of the Hell Creek Formation (Upper Cretaceous, Maastrichtian) in northwestern South Dakota: effects of paleoenvironment on the composition of palynomorph assemblages. Geological Society of America Special Paper 361: 457–472. 352 Lacovara, K. J., M. C. Lamanna, L. M. Ibiricu, J. C. Poole, E. R. Schroeter, P. V. Ullmann, K. K. Voegele, Z. M. Boles, A. M. Carter, E. K. Fowler, V. M. Egerton, A. E. Moyer, C. L. Coughenour, J. P. Schein, J. D. Harris, R. D. Martínez, and F. E. Novas. 2014. A gigantic, exceptionally complete titanosaurian sauropod dinosaur from southern Patagonia, Argentina. Scientific Reports 4: 6196. Langer, M. C., M. A. G. Franҫa, and S. Gabriel. 2007. The pectoral girdle and forelimb anatomy of the stem-sauropodomorph Saturnalia tupiniquim (Upper Triassic, Brazil). Special Papers in Palaeontology 77: 113–137. Lauters, P., Y. L. Bolotsky, J. V. Itterbeeck, and P. Godefroit. 2008. Taphonomy and age profile of a latest Cretaceous dinosaur bone bed in far eastern Russia. PALAIOS 23: 153–162. Lebon, M., K. Muller, J.-J. Bahain, F. Frohlich, C. Falgueres, L. Bertrand, C. Sandt, and I. Reiche. 2011. Imaging fossil bone alterations at the microscale by SR-FTIR microspectroscopy. Journal of Analytical and Atomic Spectrometry 26: 922–929. Leduc, M., R. Kasra, and J. van Heijenoort. 1982. Induction and control of the autolytic system of Escherichia coli. Journal of Bacteriology 152: 26–34. Li, L., D. Li, H. You, and P. Dodson. 2014. A new titanosaurian sauropod from the Hekou Group (Lower Cretaceous) of the Lanzhou-Minhe Basin, Gansu Province, China. PLoS ONE 9: e85979. Li, Q., K.-Q. Gao, J. Vinther, M. D. Shawkey, J. A. Clarke, L. D'Alba, Q. Meng, D. E. G. Briggs, and R. O. Prum. 2010. Plumage color pattern of an extinct dinosaur. Science 327: 1369–1372. Li, Q., K.-Q. Gao, Q. Meng, J. A. Clarke, M. D. Shawkey, L. D'Alba, R. Pei, M. Ellison, M. A. Norell, and J. Vinther. 2012. Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335: 1215–1219. Li, Q., J. A. Clarke, K.-Q. Gao, C.-F. Zhou, Q. Meng, D. Li, L. D'Alba, and M. D. Shawkey. 2014. Melanosome evolution indicates a key physiological shift within feathered dinosaurs. Nature 507: 350–353. Liebig, K. 2001. Bacteria, p. 253–256 in Briggs, D. E. G., and P. R. Crowther (eds.), Palaeobiology II. Blackwell Scientific Publications, Oxford. Lindahl, T., and B. Nyberg. 1972. Rate of chain breakage at apurinic sites in doublestranded deoxyribonucleic acid. Biochemistry 11: 3618–3623. Lindgren, J., P. Uvdal, A. Engdahl, A. H. Lee, C. Alwmark, K. Bergquist, E. Nilsson, P. Ekstrom, M. Rasmussen, D. A. Douglas, M. J. Polycn, and L. L. Jacobs. 2011. Microspectroscopic evidence of Cretaceous bone proteins. PLoS ONE 6: e19445. 353 Lindgren, J., P. Uvdal, P. Sjovall, D. E. Nilsson, A. Engdahl, B. P. Schultz, and V. Thiel. 2012. Molecular preservation of the pigment melanin in fossil melanosomes. Nature Communications 3: 824–830. Lingham-Soliar, T. 2008. A unique cross section through the skin of the dinosaur Psittacosaurus from China showing a complex fibre architecture. Proceedings of the Royal Society B 275: 775–780. Lingham-Soliar, T., and J. Glab. 2010. Dehydration: a mechanism for the preservation of fine detail in fossilised soft tissue of ancient terrestrial animals. Palaeogeography, Palaeoclimatology, Palaeoecology 291: 481–487. Lingham-Soliar, T., and G. Plodowski. 2010. The integument of Psittacosaurus from Liaoning Province, China: taphonomy, epidermal patterns and color of a ceratopsian dinosaur. Naturwissenschaften 97: 479–486. Lingham-Soliar, T., and J. Wesley-Smith. 2008. First investigation of the collagen Dband ultrastructure in fossilized vertebrate integument. Proceedings of the Royal Society B 275: 2207–2212. Lockley, M. G., C. Meyer, A. P. Hunt, and S. G. Lucas. 1994. The distribution of sauropod tracks and trackmakers. Gaia 10: 233–248. Loope, D. B., R. M. Kettler, K. A. Weber, N. L. Hinrichs, and D. T. Burgess. 2012. Rinded iron-oxide concretions: hallmarks of altered siderite masses of both early and late diagenetic origin. Sedimentology 59: 1769–1781. Lü, J., L. Xu, S. Jia, X. Zhang, J. Zhang, L. Yang, H. You, and Q. Ji. 2009. A new gigantic sauropod dinosaur from the Cretaceous of Ruyang, Henan, China. Geological Bulletin of China 28: 1–10. Majno, G., and I. Joris. 1995. Apoptosis, oncosis, and necrosis: an overview of cell death. American Journal of Pathology 146: 3–15. Manning, P. L., P. M. Morris, A. McMahon, E. Jones, A. Gize, J. H. S. Macquaker, G. Wolff, A. Thompson, J. Marshall, K. G. Taylor, T. Lyson, S. Gaskell, O. Reamtong, W. I. Sellers, B. E. Van Dongen, M. Buckley, and R. A. Wogelius. 2009. Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA). Proceedings of the Royal Society B 276: 3429–3437. 354 Manning, P. L., N. P. Edwards, R. A. Wogelius, U. Bergmann, H. E. Barden, P. L. Larson, D. Schwarz-Wings, V. M. Egerton, D. Sokaras, R. A. Mori, and W. I. Sellers. 2013. Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird. Journal of Analytical and Atomic Spectrometry 28: 1024–1030. Mannion, P. D., and A. Otero. 2012. A reappraisal of the Late Cretaeous Argentinean sauropod dinosaur Argyrosaurus superbus, with a description of a new titanosaur genus. Journal of Vertebrate Paleontology 32: 614–638. Mannion, P. D., and P. Upchurch. 2010. A quantitative analysis of environmental associations in sauropod dinosaurs. Paleobiology 36: 253–282. Marsh, O. C. 1878. Principal characters of American Jurassic dinosaurs. Part I. American Journal of Science, Series 3 16: 411–416. Martill, D. M. 1988. Preservation of fish in the Cretaceous Santana Formation of Brazil. Paleontology 32: 1–18. Martill, D. M. 1990. Macromolecular resolution of fossilized muscle tissue from an elopomorph fish. Nature 346: 171–172. Martin, C., I. Bentaleb, R. Kaandorp, P. Iacumin, and K. Chatri. 2008. Intra-tooth study of modern rhinoceros enamel δ18O: Is the difference between phosphate and carbonate δ18O a sound diagenetic test? Palaeogeography, Palaeoclimatology, Palaeoecology 266: 183–189. Martin, D., D. E. G. Briggs, and R. J. Parkes. 2004. Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft-bodied fossils. Journal of the Geological Society, London 161: 735–738. Martin, R. E. 1999. Taphonomy: a process approach. Cambridge University Press, New York. Martínez, R. D., O. Giménez, J. Rodríguez, M. Luna, and M. Lamanna. 2004. An articulated specimen of the basal titanosaurian (Dinosauria: Sauropoda) Epachthosaurus sciuttoi from the early Late Cretaceous Bajo Barreal Formation of Chubut Province, Argentina. Journal of Vertebrate Paleontology 24: 107–120. Mateus, O., L. L. Jacobs, A. S. Schulp, M. J. Polcyn, T. S. Tavares, A. Buta Neto, M. L. Morais, and M. T. Antunes. 2011. Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola. Anais de Academia Brasileira de Ciências 83: 221–233. 355 Mazzetta, G. V., P. Christiansen, and R. A. Fariña. 2004. Giants and bizarres: body size of some southern South American Cretaceous dinosaurs. Historical Biology 16: 1–13. McCabe, P. J. 1984. Depositional environments of coal and coal-bearing strata. Special Publications of the International Association of Sedimentologists 7: 13–42. McIntosh, J. S. 1990. Sauropoda, p. 345–401 in Weishampel, D. B., H. Osmólska, and P. Dodson (eds.), The Dinosauria. University of California Press, Berkeley. McNamara, M. E., P. J. Orr, and S. L. Kearns. 2006. High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians. Geology 34: 641–644. McNamara, M. E., P. J. Orr, S. L. Kearns, L. Alcala, P. Anadon, and E. Penalver Mollar. 2009. Soft-tissue preservation in Miocence frogs from Libros, Spain: insights into the genesis of decay microenvironments. PALAIOS 24: 104–117. McNamara, M. E., D. E. G. Briggs, P. J. Orr, D. J. Field, and Z. Wang. 2013. Experimental maturation of feathers: implications for reconstructions of fossil feather colour. Biology Letters 9: 1–6. Meers, M. B. 2003. Crocodylian forelimb musculature and its relevance to Archosauria. Anatomical Record Part A 274: 891–916. Metzger, C. A., D. O. Terry Jr., and D. E. Grandstaff. 2004. Effect of paleosol formation on rare earth element signatures in fossil bone. Geology 32: 497–500. Mo, J.-Y., C.-L. Huang, Z.-R. Zhao, W. Wang, and X. Xu. 2008. A new titanosaur (Dinosauria: Sauropoda) from the Late Cretaceous of Guangxi, China. Vertebrata PalAsiatica 46: 147–156. Monteiro, L. R. 1999. Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Systematic Biology 48: 192– 199. Montgelard, C. 1992. Albumin preservation in fossil bones and systematics of Malpaisomys insularis (Muridae, Rodentia), an extinct rodent of the Canary Islands. Historical Biology 6: 293–302. Moore, W. L. 1976. The stratigraphy and environments of deposition of the Cretaceous Hell Creek Formation (reconnaissance) and the Paleocene Ludlow Formation (detailed), southwestern North Dakota. North Dakota Geological Survey Report of Investigation No. 56: 1–40. 356 Morad, S. 1998. Carbonate cementation in sandstones: distribution patterns and geochemical evolution. Special Publications of the International Association of Sedimentologists 26: 1–26. Moyer, A. E., W. Zheng, E. A. Johnson, M. Lamanna, D. Li, K. J. Lacovara, and M. H. Schweitzer. 2014. Melanosomes or microbes: testing an alternative hypothesis for the origin of microbodies in fossil feathers. Scientific Reports 4: e4233. Muller, K., C. Chadefaux, N. Thomas, and I. Reiche. 2011. Microbial attack of archaeological bones versus high concentrations of heavy metals in the burial environment. A case study of animal bones from a mediaeval copper workshop in Paris. Palaeogeography, Palaeoclimatology, Palaeoecology 310: 39–51. Murphy, E. C., J. W. Hoganson, and K. R. Johnson. 2002. Lithostratigraphy of the Hell Creek Formation in North Dakota. Geological Society of America Special Paper 361: 9–34. Muyzer, G., P. Sandberg, M. H. J. Knapen, C. Vermeer, M. Collins, and P. Westbroek. 1992. Preservation of the bone protein osteocalcin in dinosaurs. Geology 20: 871– 874. Nealson, K. H. 1997. Sediment bacteria: who's there, what are they doing, and what's new? Annual Reviews in Earth and Planetary Science 25: 403–434. Nichols, D. J. 2002. Palynology and palynostratigraphy of the Hell Creek Formation in North Dakota: a microfossil record of plants at the end of Cretaceous time. Geological Society of America Special Paper 361: 393–456. Nielsen-Marsh, C. M. 2002. Biomolecules in fossil remains. The Biochemist: 12–14. Nielsen-Marsh, C. M., P. H. Ostrom, H. Gandhi, B. Shapiro, A. Cooper, P. V. Hauschka, and M. J. Collins. 2002. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka. Geology 30: 1099–1102. Novas, F. E., L. Salgado, J. Calvo, and F. Agnolin. 2005. Giant titanosaur (Dinosauria, Sauropoda) from the Late Cretaceous of Patagonia. Revista del Museo Argentino de Ciencias Naturales 7: 37–41. Organ, C. L., M. H. Schweitzer, W. Zheng, L. M. Freimark, L. C. Cantley, and J. M. Asara. 2008. Molecular phylogenetics of Mastodon and Tyrannosaurus rex. Science 320: 499. Orgel, J., T. C. Irving, A. Miller, and T. J. Wess. 2006. Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences 103: 9001– 9005. 357 Orlando, L., D. Bonjean, H. Bocherens, A. Thenot, A. Argant, M. Otte, and C. Hӓnni. 2002. Ancient DNA and the population genetics of cave bears (Ursus spelaeus) through space and time. Molecular Biology and Evolution 19: 1920–1933. Orlando, L., A. Ginolhac, G. Zhang, D. Froese, A. Abrechtsen, M. Stiller, M. Schubert, E. Cappelini, B. Petersen, I. Moltke, P. L. F. Johnson, M. Fumagalli, J. T. Vilstrup, M. Raghavan, T. Korneliussen, A.-S. Malaspinas, J. Vogt, D. Szklarczyk, C. D. Kelstrup, J. Vinther, A. Dolocan, J. Stenderup, A. M. V. Velazquez, J. Cahill, M. Rasmussen, X. Wang, J. Min, G. D. Zazula, A. SeguinOrlando, C. Mortensen, K. Magnussen, J. F. Thompson, J. Weinstock, K. Gregersen, K. H. Røed, V. Eisenmann, C. J. Rubin, D. C. Miller, D. F. Antczak, M. F. Bertelsen, S. Brunak, K. A. S. Al-Rasheid, O. Ryder, L. Andersson, J. Mundy, A. Krogh, M. T. P. Gilbert, K. Kjær, T. Sicheritz-Ponten, L. J. Jensen, J. V. Olsen, M. Hofreiter, R. Nielsen, B. Shapiro, J. Wang, and E. Willerslev. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499: 74–81. Orr, P. J., D. E. G. Briggs, and S. L. Kearns. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science 281: 1173–1175. Otero, A. 2010. The appendicular skeleton of Neuquensaurus, a Late Cretaceous saltasaurine sauropod from Patagonia, Argentina. Acta Palaeontologica Polonica 55: 399–426. Otero, A., and S. F. Vizcaino. 2008. Hindlimb musculature and function of Neuquensaurus australis (Sauropoda: Titanosauria). Ameghiniana 45: 333–348. Pӓӓbo, S., H. N. Poinar, D. Serre, V. Jaenicke-Despres, J. Hebler, N. Rohland, M. Kuch, J. Krause, L. Vigilant, and M. Hofreiter. 2004. Genetic analyses from ancient DNA. Annual Reviews in Genetics 38: 645–679. Pack, A., S. S. Russell, J. M. G. Shelley, and M. van Zuilen. 2007. Geo- and cosmochemistry of the twin elements yttrium and holmium. Geochimica et Cosmochimica Acta 71: 4592–4608. Pang, Q., and Z. Cheng. 2000. A new family of sauropod dinosaur from the Upper Cretaceous of Tianzhen, Shanxi Province, China. Acta Geologica Sinica 74: 117– 125. Parish, C. A., H. Jiang, Y. Tokiwa, N. Berova, K. Nakanishi, D. McCabe, W. Zuckerman, M. M. Xia, and J. E. Gabay. 2001. Broad-spectrum antimicrobial activity of hemoglobin. Bioorganic and Medicinal Chemistry 9: 377–382. Pate, F. D., J. T. Hutton, and K. Norrish. 1989. Ionic exchange between soil solution and bone: toward a predictive model. Applied Geochemistry 4: 303–316. 358 Pawlicki, R. 1995. Histochemical demonstration of DNA in osteocytes from dinosaur bones. Folia Histochemica et Cytobiologica 33: 183–186. Pawlicki, R., and M. Nowogrodzka-Zagorska. 1998. Blood vessels and red blood cells preserved in dinosaur bones. Annals of Anatomy 180: 73–77. Pawlicki, R., A. Korbel, and H. Kubiak. 1966. Cells, collagen fibrils and vessels in dinosaur bone. Nature 211: 655–657. Perumal, S., O. Antipova, and J. Orgel. 2008. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proceedings of the National Academy of Sciences 105: 2824–2829. Peterson, J. E., M. E. Lenczewski, and R. P. Scherer. 2010. Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs. PLoS ONE 5: e13334. Peterson, K. J., R. E. Summons, and P. C. J. Donoghue. 2007. Molecular palaeobiology. Palaeontology 50: 775–809. Piepgras, D. J., and S. B. Jacobsen. 1992. The behavior of rare earth elements in seawater: precise determination of variations in the North Pacific water column. Geochimica et Cosmochimica Acta 56: 1851–1862. Piga, G., A. Santos-Cubedo, A. Brunetti, M. Piccinini, A. Malgosa, E. Napolitano, and S. Enzo. 2011. A multi-technique approach by XRD, XRF, FT-IR to characterize the diagenesis of dinosaur bones from Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 310: 92–107. Poinar, H. N., and S. Pӓӓbo. 2001. DNA, p. 241–245 in Briggs, D. E. G., and P. R. Crowther (eds.), Palaeobiology II. Blackwell Scientific Publications, Oxford. Poinar, H. N., M. Hoss, J. L. Bada, and S. Pӓӓbo. 1996. Amino acid racemization and the preservation of ancient DNA. Science 272: 864–866. Poinar, H. N., M. Hofreiter, W. G. Spaulding, P. S. Martin, B. A. Stankiewicz, H. Bland, R. P. Evershed, G. Possnert, and S. Pӓӓbo. 1998. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281: 402–405. Potts, R. 1986. Temporal span of bone accumulations at Olduvai Gorge and implications for early hominid foraging behavior. Paleobiology 12: 25–31. Powell, J. E. 1992. Osteologia de Saltasaurus loricatus (Sauropoda - Titanosauridae) del Cretácico Superior del noroeste Argentino, p. 165–230 in Sanz, J. L., and A. D. Buscalioni (eds.), Los dinosaurios y su entorno biotico: actas del segundo curso de paleontologia en Cuenca. Institutio "Juan de Valdes", Cuenca, Argentina. 359 Powell, J. E. 2003. Revision of South American titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Records of the Queen Victoria Museum 111: 1–173. Prager, E. M., A. C. Wilson, J. M. Lowenstein, and V. M. Sarich. 1980. Mammoth albumin. Science 209: 287–289. Preuschoft, H., and N. Klein. 2013. Torsion and bending in the neck and tail of sauropod dinosaurs and the function of cervical ribs: insights from functional morphology and biomechanics. PLoS ONE 8: e78574. Prevot, L., and J. Lucas. 1990. Phosphate, p. 256–257 in Briggs, D. E. G., and P. R. Crowther (eds.), Paleobiology: a synthesis. Blackwell Scientific Publications, Oxford. Prieto-Marquez, A. 2008. Phylogeny and historical biogeography of hadrosaurid dinosaurs. Ph.D. dissertation, Florida State University, Tallahassee, 936 pp. R Development Core Team. 2010. R: a language and environment for statistical computing. 2.12.0 ed. Vienna, Austria: R Foundation for Statistical Computing. Ramos-Vara, J. A., and M. E. Beissenherz. 2000. Optimization of immunohistochemical methods using two different antigen retrieval methods on formalin-fixed, paraffinembedded tissues: experience with 63 markers. Journal of Veterinary Diagnostic Investigation 12: 307–311. Reineck, H.-E., and I. B. Singh. 1980. Depositional sedimentary environments. SpringerVerlag, Berlin, 439 pp. Ren, L., C. E. Miller, R. Lair, and J. R. Hutchinson. 2008. Integration of biomechanical compliance, leverage, and power in elephant limbs. Proceedings of the National Academy of Sciences USA 107: 7078–7082. Retallack, G. J. 1984. Completeness of the rock and fossil record: some estimates using fossil soils. Paleobiology 10: 59–78. Retallack, G. J. 1988. Field recognition of paleosols. Geological Society of America Special Paper 216: 1–20. Retallack, G. J. 1997. Dinosaurs and dirt, p. 345–359 in Wolberg, D. L., E. Stump, and G. D. Rosenberg (eds.), Dinofest International Proceedings. Academy of Natural Sciences, Philadelphia. 360 Reynard, B., C. Lecuyer, and P. Grandjean. 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology 155: 233–241. Rietveld, H. M. 1969. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2: 65–71. Roche Applied Science. 2012. Instructions for use, REF 10103578001: https://pim-eservices.roche.com/LifeScience/Document/4bd132eb-06ee-e31198a1-00215a9b0ba8. Rogaev, E. I., Y. K. Moliaka, B. A. Malyarchuk, F. A. Kondrashov, M. V. Derenko, I. Chumakov, and A. P. Grigorenko. 2006. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius. PLoS Biology 4: e73. Rogers, R. R. 1990. Taphonomy of three dinosaur bone beds in the Upper Cretaceous Two Medicine Formation of northwestern Montana: evidence for drought-related mortality. PALAIOS 5: 394–413. Rogers, R. R., and S. M. Kidwell. 2007. A conceptual framework for the genesis and analysis of vertebrate skeletal concentrations, p. 1–64 in Rogers, R. R., D. A. Eberth, and A. R. Fiorillo (eds.), Bonebeds: genesis, analysis, and paleobiological significance. University of Chicago Press, Chicago. Rogers, R. R., D. A. Eberth, and A. R. Fiorillo. 2007. Bonebeds: genesis, analysis, and paleobiological significance. University of Chicago Press, Chicago. Rogers, R. R., H. C. Fricke, V. Addona, R. R. Canavan, C. N. Dwyer, C. L. Harwood, A. E. Koenig, R. Murray, J. T. Thole, and J. Williams. 2010. Using laser ablationinductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the Upper Cretaceous Two Medicine and Judith River Formations of Montana. PALAIOS 25: 183–195. Rohlf, F. J. 2005. Thin-plate splines (TPS) software family: TPSDIG, TPSRELW, TPSREGR, TPSSMALL, TPSUTIL. SUNY, Stony Brook University. Romanowski, G., M. G. Lorenz, and W. Wackernagel. 1991. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Applied and Enviromental Microbiology 57: 1057–1061. Rothschild, B., and D. H. Tanke. 2006. Osteochondrosis in Late Cretaceous Hadrosauria: a manifestation of ontologic failure, p. 171–183 in Carpenter, K. (ed.), Horns and beaks: ceratopsian and ornithopod dinosaurs. Indiana University Press, Bloomington. 361 Rowe, T., E. F. McBride, and P. C. Sereno. 2001. Dinosaur with a heart of stone. Science 291: 783a. Russell, D. A., and M. Manabe. 2002. Synopsis of the Hell Creek (uppermost Cretaceous) dinosaur assemblage. Geological Society of America Special Paper 361: 169–176. Russell, D. A., P. E. Fisher, R. E. Barrick, and M. K. Stoskopf. 2001. Response to: dinosaur with a heart of stone. Science 291: 783a–784a. Ryan, M. J., A. P. Russell, D. A. Eberth, and P. J. Currie. 2001. The Taphonomy of a Centrosaurus (Ornithischia: Certopsidae) bone bed from the Dinosaur Park Formation (Upper Campanian), Alberta, Canada, with comments on cranial ontogeny. PALAIOS 16: 482–506. Sagemann, J., S. J. Bale, D. E. G. Briggs, and R. J. Parkes. 1999. Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach. Geochimica et Cosmochimica Acta 63: 1083–1095. Salgado, L., and C. Azpilicueta. 2000. Un nuevo saltasaurino (Sauropoda, Titanosauridae) de la provincia de Río Negro (Formación Allen, Cretácico Superior), Patagonia, Argentina. Ameghiniana 37: 259–264. Salgado, L., and I. Carvalho. 2008. Uberabatitan ribeiroi, a new titanosaur from the Marília Formation (Bauru Group, Upper Cretaceous), Minas Gerais, Brazil. Paleontology 51: 881–901. Salgado, L., and R. A. Coría. 1993. El genero Aeolosaurus (Sauropoda, Titanosauridae) en la Formacion Allen (Campaniano–Maastrichtiano) de la Provincia de Rio Negro, Argentina. Ameghiniana 30: 119–128. Salgado, L., R. A. Coría, and J. O. Calvo. 1997a. Evolution of titanosaurid sauropods I: phylogenetic analysis based on the postcranial evidence. Ameghiniana 34: 3–32. Salgado, L., R. A. Coría, and J. O. Calvo. 1997b. Presencia del genero Aeolosaurus (Sauropoda, Titanosauridae) en la Formacion Los Alamitos, Cretácico Superior de la Provincia de Rio Negro, Argentina. Revista Geociências 2: 44–49. Salgado, L., S. Apesteguía, and S. E. Heredia. 2005. A new specimen of Neuquensaurus australis, a Late Cretaceous saltasaurine titanosaur from North Patagonia. Journal of Vertebrate Paleontology 25: 623–634. Salgado, L., P. A. Gallina, and A. P. Carabajal. 2014. Redescription of Bonatitan reigi (Sauropoda: Titanosauria), from the Campanian-Maastricthian of the Río Negro Province (Argentina). Historical Biology 27: 525–548. 362 San Antonio, J. D., M. H. Schweitzer, S. T. Jensen, R. Kalluri, M. Buckley, J. Orgel. 2011. Dinosaur peptides suggest mechanisms of protein survival. PLoS ONE 6: e20381. Sander, P. M. 1992. The Norian Plateosaurus bonebeds of central Europe and their taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology 93: 255–299. Sander, P. M., A. Christian, M. Clauss, R. Fechner, C. T. Gee, E.-M. Griebeler, H.-C. Gunga, J. Hummel, H. Mallison, S. F. Perry, H. Preuschoft, O. W. M. Rauhut, K. Remes, T. Tutken, O. Wings, and U. Witzel. 2011. Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews 86: 117–155. Sanz, J. L., A. D. Buscalioni, M.-L. Casanovas, and J.-V. Santafé. 1987. Dinosaurios del Cretácico Inferior de Galve (Teruel, España), p. 45–64 in Sanz, J. L. (ed.), Geología y Paleontología (Arcosaurios) de los Yacimientos Cretacicos de Galve (Teruel) y Tremp (Lerida). Museo Nacional de Ciencias Naturales, Madrid, Spain. Sanz, J. L., J. E. Powell, J. Le Loeuff, R. Martínez, and X. Pereda Suberbiola. 1999. Sauropod remains from the upper Cretaceous of Laño (northcentral Spain), titanosaur phylogenetic relationships. Estudios del Museo de Ciencias Naturales de Álava 14: 235–255. Sarashina, I., Y. Kunitomo, M. Iijima, S. Chiba, and K. Endo. 2008. Preservation of the shell matrix protein dermatopontin in 1500 year old land snail fossils from the Bonin islands. Organic Geochemistry 39: 1742–1746. Schmidt-Schultz, T. H., and M. Schultz. 2004. Bone protects proteins over thousands of years: extraction, analysis, and interpretation of extracellular matrix proteins in archaeological skeletal remains. American Journal of Physical Anthropology 128: 30–39. Schoeninger, M. J., K. M. Moore, M. L. Murray, and J. D. Kingston. 1989. Detection of bone preservation in archaeological and fossil samples. Applied Geochemistry 4: 281–292. Schroeter, E. A. R. 2013. The morphology, histology, and molecular preservation of an exceptionally complete titanosaur from southernmost Patagonia. PhD dissertation, Drexel University, Philadelphia, 274 pp. Schroeter, E. A. R., Z. M. Boles, and K. J. Lacovara. 2011. The histology of a massive titanosaur from Argentina and implications for maximum size. Society of Vertebrate Paleontology Programs and Abstracts 2011: 189. Schwarz, D., F. Eberhard, and C. A. Meyer. 2007a. Novel reconstruction of the orientation of the pectoral girdle in sauropods. Anatomical Record 290: 32–47. 363 Schwarz, D., T. Ikejiri, B. H. Breithaupt, P. M. Sander, and N. Klein. 2007b. A nearly complete skeleton of an early juvenile diplodocid (Dinosauria: Sauropoda) from the Lower Morrison Formation (Late Jurassic) of north central Wyoming and its implications for early ontogeny and pneumaticity in sauropods. Historical Biology 19: 225–253. Schweitzer, M. H. 2003. The future of molecular paleontology. Palaeontologia Electronica 5(2). Schweitzer, M. H. 2004. Molecular paleontology: some current advances and problems. Annales de Paléontologie 90: 81–102. Schweitzer, M. H. 2011. Soft tissue preservation in terrestrial Mesozoic vertebrates. Annual Reviews in Earth and Planetary Science 39: 187–216. Schweitzer, M. H., and J. R. Horner. 1999. Intravascular microstructures in trabecular bone tissues of Tyrannosaurus rex. Annales de Paleontologie 85: 179–192. Schweitzer, M. H., C. Johnson, T. G. Zocco, J. R. Horner, and J. R. Starkey. 1997a. Preservation of biomolecules in cancellous bone of Tyrannosaurus rex. Journal of Vertebrate Paleontology 17: 349–359. Schweitzer, M. H., M. Marshall, K. Carron, D. S. Bohle, S. C. Busse, E. V. Arnold, D. Barnard, J. R. Horner, and J. R. Starkey. 1997b. Heme compounds in dinosaur trabecular bone. Proceedings of the National Academy of Sciences 94: 6291– 6296. Schweitzer, M. H., J. A. Watt, R. Avci, C. A. Forster, D. W. Krause, L. Knapp, R. R. Rogers, I. Beech, and M. Marshall. 1999a. Keratin immunoreactivity in the Late Cretaceous bird Rahonavis ostromi. Journal of Vertebrate Paleontology 19: 712– 722. Schweitzer, M. H., J. A. Watt, R. Avci, L. Knapp, L. Chiappe, M. Norell, and M. Marshall. 1999b. Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous alvarezsaurid, Shuvuuia deserti. Journal of Experimental Zoology 285: 146–157. Schweitzer, M. H., C. L. Hill, J. M. Asara, W. S. Lane, and S. H. Pincus. 2002. Identification of immunoreactive material in mammoth fossils. Journal of Molecular Evolution 55: 696–705. Schweitzer, M. H., L. Chiappe, A. C. Garrido, J. M. Lowenstein, and S. H. Pincus. 2005a. Molecular preservation in Late Cretaceous sauropod dinosaur eggshells. Proceedings of the Royal Society B 272: 775–784. 364 Schweitzer, M. H., J. L. Wittmeyer, J. R. Horner, and J. K. Toporski. 2005b. Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science 307: 1952–1955. Schweitzer, M. H., Z. Suo, R. Avci, J. M. Asara, M. A. Allen, F. T. Arce, and J. R. Horner. 2007a. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science 316: 277–280. Schweitzer, M. H., J. L. Wittmeyer, and J. R. Horner. 2007b. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present. Proceedings of the Royal Society B 274: 183–197. Schweitzer, M. H., R. Avci, T. Collier, and M. B. Goodwin. 2008. Microscopic, chemical and molecular methods for examining fossil preservation. Comptes Rendus Palevol 7: 159–184. Schweitzer, M. H., W. Zheng, C. L. Organ, R. Avci, Z. Suo, L. M. Freimark, V. S. Lebleu, M. B. Duncan, M. G. V. Heiden, J. M. Neveu, W. S. Lane, J. S. Cottrell, J. R. Horner, L. C. Cantley, R. Kalluri, and J. M. Asara. 2009. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324: 626–631. Schweitzer, M. H., T. P. Cleland, W. Zheng, and J. San Antonio. 2010. Molecular mechanisms for the preservation of soft tissues and original biomolecules in fossils. Journal of Vertebrate Paleontology 30 (Supp 3): 160A–161A. Schweitzer, M. H., W. Zheng, T. P. Cleland, and M. Bern. 2013. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone 52: 414–423. Schweitzer, M. H., W. Zheng, T. P. Cleland, M. B. Goodwin, E. Boatman, E. Theil, M. A. Marcus, and S. C. Fakra. 2014a. A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proceedings of the Royal Society B 281: 1–10. Schweitzer, M. H., E. R. Schroeter, and M. B. Goshe. 2014b. Protein molecular data from ancient (>1 million years old) fossil material: pitfalls, possibilities, and grand challenges. Analytical Chemistry 86: 6731–6740. Seebacher, F. 2001. A new method to calculate allometric length-mass relationships of dinosaurs. Journal of Vertebrate Paleontology 21: 51–60. Sellers, W. I., L. Margetts, R. A. Coría, and P. L. Manning. 2013. March of the titans: the locomotor capabilities of sauropod dinosaurs. PLoS ONE 8: e78733. 365 Senkayi, A. L., J. B. Dixon, and L. R. Hossner. 1986. Todorokite, goethite, and hematite: alteration products of siderite in east Texas lignite overburden. Soil Science 142: 36–42. Sheets, H. D. 2003. IMP-Integrated Morphometric Package. Department of Physics, Canisius College, Buffalo, New York. http://www3.canisius.edu/~sheets/morphsoft.html. Sheldon, R. P. 1981. Ancient marine phosphates. Annual Reviews in Earth and Planetary Science 9: 251–284. Sholkovitz, E. R., W. M. Landing, and B. L. Lewis. 1994. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta 58: 1567–1579. Smith, C. I., O. E. Craig, R. V. Prigodich, C. M. Nielsen-Marsh, M. M. E. Jans, C. Vermeer, and M. J. Collins. 2005. Diagenesis and survival of osteocalcin in archaeological bone. Journal of Archaeological Science 32: 105–113. Smith, J. B., M. C. Lamanna, K. J. Lacovara, P. Dodson, J. R. Smith, J. C. Poole, R. Giegengack, and Y. Attia. 2001. A giant sauropod dinosaur from an upper Cretaceous mangrove deposit in Egypt. Science 292: 1704–1706. Stankiewicz, B. A., D. E. G. Briggs, R. P. Evershed, R. F. Miller, and A. Bierstedt. 1998. The fate of chitin in Quaternary and Tertiary strata, p. 211–224 in Stankiewicz, B. A., and P. F. van Bergen (eds.), Nitrogen-containing macromolecules in the bioand geosphere. American Chemical Society Symposium Series, Washington. Stanton Thomas, K. J., and S. J. Carlson. 2004. Microscale δ18O and δ13C isotopic analysis of an ontogenetic series of the hadrosaurid dinosaur Edmontosaurus: implications for physiology and ecology. Palaeogeography, Palaeoclimatology, Palaeoecology 206: 257–287. Staub, J. R., and A. D. Cohen. 1979. The Snuggedy Swamp of South Carolina: a backbarrier estuarine coal-forming environment. Journal of Sedimentary Petrology 49: 133–144. Stromer, E. 1932. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens II: Wirbeltierreste der Baharîje-Stufe (unterstes Cenoman): 11 Sauropoda. Abhandlungen der Bayerischen Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Abteilung, Neue Folge10: 1–21. Suarez, C. A., M. B. Suarez, D. O. Terry Jr., and D. E. Grandstaff. 2007. Rare earth element geochemistry and taphonomy of the Early Cretaceous Crystal Geyser Dinosaur Quarry, east-central Utah. PALAIOS 22: 500–512. 366 Suarez, C. A., G. L. Macpherson, L. A. Gonzalez, and D. E. Grandstaff. 2010. Heterogeneous rare earth element (REE) patterns and concentrations in a fossil bone: implications for the use of REE in vertebrate taphonomy and fossilization history. Geochimica et Cosmochimica Acta 74: 2970–2988. Sweeney, S. M., J. P. Orgel, A. Fertala, J. D. McAuliffe, K. R. Turner, G. A. Di Lullo, S. Chen, O. Antipova, S. Perumal, L. Ala-Kokko, A. Forlino, W. A. Cabral, A. M. Barnes, J. C. Marini, and J. D. San Antonio. 2008. Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. Journal of Biological Chemistry 283: 21187–21197. Sykes, G. A., M. J. Collins, and D. I. Walton. 1995. The significance of a geochemically isolated intracrystalline organic fraction within biominerals. Organic Geochemistry 23: 1059–1065. Taylor, M. P., M. J. Wedel, and D. Naish. 2009. Head and neck posture in sauropod dinosaurs inferred from extant animals. Acta Palaeontologica Polonica 54: 213– 220. Tidwell, V., K. Carpenter, and S. Meyer. 2001. New titanosauriform (Sauropoda) from the Poison Strip Member of the Cedar Mountain Formation (Lowe Cretaceous), Utah, p. 139–165 in Tanke, D., and K. Carpenter (eds.), Mesozoic vertebrate life. Indiana University Press, Bloomington. Toporski, J. K. W., A. Steele, F. Westall, R. Avci, D. M. Martill, and D. S. McKay. 2002. Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochimica et Cosmochimica Acta 66: 1773–1791. Torres, J. M., C. Borja, and E. G. Olivares. 2002. Immunoglobulin G in 1.6 million-yearold fossil bones from Venta Micena (Granada, Spain). Journal of Archaeological Science 29: 167–175. Trueman, C. N. 1999. Rare earth element geochemistry and taphonomy of terrestrial vertebrate assemblages. PALAIOS 14: 555–568. Trueman, C. N. 2007. Trace element geochemistry of bonebeds, p. 397–435 in Rogers, R. R., D. A. Eberth, and A. R. Fiorillo (eds.), Bonebeds: genesis, analysis, and paleobiological significance. University of Chicago Press, Chicago. Trueman, C. N. 2013. Chemical taphonomy of biomineralized tissues. Palaeontology 56: 475–486. Trueman, C. N., and M. J. Benton. 1997. A geochemical method to trace the taphonomic history of reworked bones in sedimentary settings. Geology 25: 263–266. 367 Trueman, C. N., and D. M. Martill. 2002. The long-term survival of bone: the role of bioerosion. Archaeometry 44: 371–382. Trueman, C. N., M. J. Benton, and M. R. Palmer. 2003. Geochemical taphonomy of shallow marine vertebrate assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 197: 151–169. Trueman, C. N., A. K. Behrensmeyer, N. Tuross, and S. Weiner. 2004. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science 31: 721–739. Trueman, C. N., A. K. Behrensmeyer, R. Potts, and N. Tuross. 2006. High-resolution records of location and stratigraphic provenance from the rare earth element composition of fossil bones. Geochimica et Cosmochimica Acta 70: 4343–4355. Trueman, C. N., M. R. Palmer, J. Field, K. Privat, N. Ludgate, V. Chavagnac, D. A. Eberth, R. Cifelli, and R. R. Rogers. 2008a. Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. Comptes Rendus Palevol 7: 145–158. Trueman, C. N., K. Privat, and J. Field. 2008b. Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeography, Palaeoclimatology, Palaeoecology 266: 160–167. Trueman, C. N., L. Kocsis, M. R. Palmer, and C. Dewdney. 2011. Fractionation of rare earth elements within bone mineral: a natural cation exchange system. Palaeogeography, Palaeoclimatology, Palaeoecology 310: 124–132. Turnbull, W. D., and D. M. Martill. 1988. Taphonomy and preservation of a monospecific titanothere assemblage from the Washakie Formation (Late Eocene), southern Wyoming. An ecological accident in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 63: 91–105. Turner-Walker, G., and M. Jans. 2008. Reconstructing taphonomic histories using histological analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 266: 227–235. Tuross, N. 1989. Albumin preservation in the Taima-taima mastodon skeleton. Applied Geochemistry 4: 255–259. Tuross, N. 1994. The biochemistry of ancient DNA in bone. Experientia 50: 530–535. Tuross, N. 2002. Alterations in fossil collagen. Archaeometry 44: 427–434. 368 Tuross, N., M. L. Fogel, and P. E. Hare. 1988. Variability in the preservation of the isotopic composition of collagen from fossil bone. Geochimica et Cosmochimica Acta 52: 929–935. Tuross, N., A. K. Behrensmeyer, E. D. Eanes, L. W. Fisher, and P. E. Hare. 1989. Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones. Applied Geochemistry 4: 261–270. Tütken, T., and T. W. Vennemann. 2011. Fossil bones and teeth: preservation or alteration of biogenic compositions? Palaeogeography, Palaeoclimatology, Palaeoecology 310: 1–8. Tütken, T., T. W. Vennemann, and H. Pfretzschner. 2008. Early diagenesis of bone and tooth apatite in fluvial and marine settings: constraints from combined oxygen isotope, nitrogen and REE analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 266: 254–268. Tütken, T., T. W. Vennemann, and H. Pfretzschner. 2011. Nd and Sr isotope compositions in modern and fossil bones – proxies for vertebrate provenance and taphonomy. Geochimica et Cosmochimica Acta 75: 5951–5970. Ullmann, P. V., D. E. Grandstaff, R. D. Ash, and K. J. Lacovara. 2014. Rapid and brief trace element uptake by bone at the Standing Rock Edmontosaurus bonebed, Hell Creek Formation, Corson County, SD: an exception to long-term rare earth element uptake. Geological Society of America Abstracts with Programs 46: 221. Ulrich, M. M. W., W. R. K. Perizonius, C. F. Spoor, P. Sandberg, and C. Vermeer. 1987. Extraction of osteocalcin from fossil bones and teeth. Biochemical and Biophysical Research Communications 149: 712–719. Upchurch, P. 1998. The phylogenetic relationships of sauropod dinosaurs. Zoological Journal of the Linnean Society 124: 43–103. Upchurch, P., P. M. Barrett, and P. Dodson. 2004. Sauropoda, p. 259–322 in Weishampel, D. B., P. Dodson, and H. Osmólska (eds.), The Dinosauria, second edition. University of California Press, Berkeley. Vajda, V., T. R. Lyson, A. Bercovici, J. H. Doman, and D. A. Pearson. 2013. A snapshot into the terrestrial ecosystem of an exceptionally well-preserved dinosaur (Hadrosauridae) from the Upper Cretaceous of North Dakota, USA. Cretaceous Research 46: 114–122. Van Duin, A. C. T., and M. J. Collins. 1998. The effects of conformational constraints on aspartic acid racemization. Organic Geochemistry 29: 1227–1232. 369 Varricchio, D. J., F. J. Jackson, B. Scherzeer, and J. Shelton. 2005. Don't have a cow, man! It's only actualistic taphonomy on the Yellowstone River of Montana. Journal of Vertebrate Paleontology 25 (Supp 3): 126A. Vila, B., O. Oms, À. Galobart, K. T. Bates, V. M. Egerton, and P. L. Manning. 2013. Dynamic similarity in titanosaur sauropods: ichnological evidence from the Fumanya Dinosaur Tracksite (Southern Pyrenees). PLoS ONE 8: e57408. Vinther, J., D. E. G. Briggs, R. O. Prum, and V. Saranathan. 2008. The colour of fossil feathers. Biology Letters 4: 522–525. Vinther, J., D. E. G. Briggs, J. A. Clarke, G. Mayr, and R. O. Prum. 2010. Structural coloration in a fossil feather. Biology Letters 6: 128–131. Voorhies, M. R. 1969. Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Contributions to Geology Special Paper 1: 1–69. Waage, K. M. 1967. Cretaceous transitional environments and faunas in central South Dakota, p. 237–266 in A symposium on paleoenvironments of the Cretaceous seaway in the Western Interior: Geological Society of America Rocky Mountain Section 20th Annual Meeting. Colorado School of Mines, Golden. Wadsworth, C., and M. Buckley. 2014. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Communications in Mass Spectrometry 28: 605–615. Wang, S.-Y., E. Cappellini, and H.-Y. Zhang. 2012. Why collagens best survived in fossils? Clues from amino acid thermal stability. Biochemical and Biophysical Research Communications 422: 5–7. Wehmiller, J. F., and D. F. Belknap. 1976. Alternative kinetic models for the interpretation of amino acids enantiomeric ratios in Pleistocene mollusks: examples from California, Washington, and Florida. Quaternary Research 9: 330– 348. Weiner, S., H. A. Lowenstam, and L. Hood. 1976. Characteriation of 80-million-year-old mollusk shell proteins. Proceedings of the National Academy of Sciences USA 73: 2541–2545. Weiner, S., W. Traub, and H. Elster. 1989. The molecular structure of bone and its relation to diagenesis. Applied Geochemistry 4: 231–232. 370 Westbroek, P., P. H. Van Der Meide, J. S. Van Der Wey-Kloppers, R. J. Van Der Sluis, J. W. De Leeuw, and E. W. De Jong. 1979. Fossil macromolecules from cephalopod shells: characterization, immunological response and diagenesis. Paleobiology 5: 151–167. Wilby, P. R., D. E. G. Briggs, P. Bernier, and C. Gaillard. 1996. Role of microbial mats in the fossilization of soft tissues. Geology 24: 787–790. Wilhite, D. R. 2005. Variation in the appendicular skeleton of North American sauropod dinosaurs: taxonomic implications, p. 268–301 in Tidwell, V., and K. Carpenter (eds.), Thunder-lizards: the sauropodomorph dinosaurs. Indiana University Press, Bloomington. Wilhite, L. P., and J. R. Toliver. 1990. Baldcypress-pondcypress, p. 563–572 in Sivics of North America Volume I, Conifers. Agriculture Handbook 654. USDA Forest Service, Washington. Willerslev, E., E. Cappellini, W. Boomsma, R. Nielsen, M. B. Hebsgaard, T. B. Brand, M. Hofreiter, M. Bunce, H. N. Poinar, D. Dahl-Jensen, S. Johnsen, J. P. Steffensen, O. Bennike, J.-L. Schwenninger, R. Nathan, S. Armitage, C.-J. de Hoog, V. Alfimov, M. Christl, J. Beer, R. Muscheler, J. Barker, M. Sharp, K. E. H. Penkman, J. Haile, P. Taberlet, M. T. P. Gilbert, A. Casoli, E. Campani, and M. J. Collins. 2007. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317: 111–113. Williams, C. T., and P. J. Potts. 1988. Element distribution maps in fossil bones. Archaeometry 30: 237–247. Williams, C. T., P. Henderson, C. A. Marlow, and T. I. Molleson. 1997. The environment of deposition indicated by the distribution of rare earth elements in fossil bones from Olduvai Gorge, Tanzania. Applied Geochemistry 12: 537–547. Wilson, J. A. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136: 217–276. Wilson, J. A., and M. T. Carrano. 1999. Titanosaurs and the origin of "wide-gauge" trackways: a biomechanical and systematic perspective on sauropod locomotion. Paleobiology 25: 252–267. Wilson, J. A., and P. C. Sereno. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology Memoir 5: 1–71. Wilson, J. A., and P. Upchurch. 2003. A revision of Titanosaurus Lydekker (Dinosauria Sauropoda), the first dinosaur with a 'Gondwanan' distribution. Journal of Systematic Paleontology 1: 125–160. 371 Wilson, J. A., and P. Upchurch. 2009. Redescription and reassessment of the phylogenetic affinities of Euhelopus zdanskyi (Dinosauria: Sauropoda) from the Early Cretaceous of China. Journal of Systematic Palaeontology 7: 199–239. Wilson, J. A., M. D. D'Emic, K. A. Curry Rogers, D. M. Mohabey, and S. Sen. 2009. Reassessment of the sauropod dinosaur Jainosaurus (="Antarctosaurus") septentrionalis from the Upper Cretaceous of India. Contributions from the Museum of Paleontology, University of Michigan 32: 17–40. Wilson, J. A., P. M. Barrett, and M. T. Carrano. 2011. An associated partial skeleton of Jainosaurus cf. septentrionalis (Dinosauria: Sauropoda) from the Late Cretaceous of Chhota Simla, central India. Palaeontology 54: 981–998. Witmer, L. M. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils, p. 19–33 in Thomason, J. (ed.), Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge. Wogelius, R. A., P. L. Manning, H. E. Barden, N. P. Edwards, S. M. Webb, W. I. Sellers, K. G. Taylor, P. L. Larson, P. Dodson, H. You, L. Da-qing, and U. Bergmann. 2011. Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333: 1622–1626. Wood, J. M., R. G. Thomas, and J. Visser. 1988. Fluvial processes and vertebrate taphonomy: the Upper Cretaceous Judith River Formation, south-central Dinosaur Provincial Park, Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 66: 127–143. Xu, X., X. Zhang, Q. Tan, X. Zhao, and L. Tan. 2006. A new titanosaurian sauropod from Late Cretaceous of Nei Mongol, China. Acta Geologica Sinica 80: 20–26. You, H., F. Tang, and Z. Luo. 2003. A new basal titanosaur (Dinosauria: Sauropoda) from the Early Cretaceous of China. Acta Geologica Sinica (English Edition) 77: 424–429. You, H., D. Li, L. Zhou, and Q. Ji. 2008. Daxiatitan binglingi: a giant sauropod dinosaur from the Early Cretaceous of China. Gansu Geology 17: 1–10. Zaher, H., D. Pol, A. B. Carvalho, P. M. Nascimento, C. Riccomini, P. Larson, R. JuarezValieri, R. Pires-Domingues, N. J. da Silva, Jr., and D. Campos D. 2011. A complete skull of an Early Cretaceous sauropod and the evolution of advanced titanosaurians. PLoS ONE 6: e16663. Zang, X., J. D. H. van Heemst, K. J. Dria, and P. G. Hatcher. 2000. Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Organic Geochemistry 31: 679–695. 372 Zazzo, A., C. Lecuyer, and A. Mariotti. 2004. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochimica et Cosmochimica Acta 68: 1–12. Zhang, F., S. L. Kearns, P. J. Orr, M. J. Benton, Z. Zhou, D. Johnson, X. Xu, and X. Wang. 2010. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463: 1075–1078. Zhang, J., and Y. Nozaki. 1996. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean. Geochimica et Cosmochimica Acta 60: 4631–4644. Zheng, W., and M. H. Schweitzer. 2012. Chemical analyses of fossil bone, p. 153–172 in Bell, L. S. (ed.), Forensic microscopy for skeletal tissues: methods and protocols. Humana Press, New York. Zhu, M., L. E. Babcock, and M. Steiner. 2005. Fossilization modes in the Chengjiang Lagerstatte (Cambrian of China): testing the roles of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeography, Palaeoclimatology, Palaeoecology 220: 31–46. Zylberberg, L., and M. Laurin. 2011. Analysis of fossil bone organic matrix by transmission electron microscopy. Comptes Rendus Palevol 10: 357–366. 373 APPENDIX A: REE AND TRACE ELEMENT CONCENTRATIONS BY TRANSECT Appendix A contains all rare earth element (REE: La – Lu) and other trace element (Sc, Mn, Fe, Sr, Y, Ba, Th, U) concentrations recorded for each Standing Rock Hadrosaur Site bone examined. Concentrations are presented in parts per million (ppm) for all elements except iron (Fe), which is presented in weight percent. For visual representation of all transect data please refer to Figures 3.1–3.3 and Figure 3.8 of this dissertation. Two transects were performed on metatarsal SRHS-DU-192 to check for reproducibility of results; these are labeled Transect 1 and Transect 2. All readings after 16.00 mm along Transect 2 of metatarsal SRHS-DU-192 were collected along a concentric laser track rather than continuing radially from the bone center; as such, these data examine the consistency of trace element concentrations across the external cortex surface (a horizontal line denotes this boundary in the table below). All readings from the first 1.50 mm of pedal phalanx SRHS-DU-278 document trace element concentrations in a goethite coating on the external surface of the bone (a horizontal line again denotes this boundary in the table below). Absence of (Ce/Ce*)N, (Ce/Ce**)N, and (La/La*)N anomalies occurs at 1.00. Abbreviations: bd, below detection; nd, not detected due to sensor overload. mm from bone rim 0.00 0.03 0.07 0.10 0.14 0.17 0.21 0.24 0.28 0.31 0.35 0.38 0.41 0.45 0.48 0.52 0.55 0.59 0.62 0.66 0.69 0.73 0.76 0.79 0.83 0.86 0.90 0.93 0.97 1.00 1.04 1.07 1.11 1.14 1.17 1.21 1.24 1.28 1.31 1.35 1.38 1.42 1.45 1.49 1.52 1.55 1.59 1.62 1.66 1.69 1.73 1.76 1.80 1.83 Sc 53.73 44.39 26.20 41.33 22.63 18.20 37.16 34.46 15.59 34.48 19.69 12.23 28.20 28.53 31.35 27.01 15.04 9.02 37.10 38.17 12.44 30.35 30.10 17.21 38.24 29.65 19.69 14.00 22.09 25.83 22.79 25.67 54.40 36.03 23.25 17.71 26.82 10.94 9.33 27.64 29.25 20.42 26.24 5.55 12.03 8.17 8.43 23.71 22.14 27.48 17.79 16.40 33.49 14.87 SRHS-DU-2 Metatarsal Mn 0.29 0.29 0.28 0.35 0.08 0.31 0.14 0.22 0.20 0.31 0.25 0.71 0.30 1.02 0.80 0.80 0.87 0.28 0.67 0.97 0.21 0.48 0.18 0.20 0.43 0.41 0.11 0.22 0.24 0.14 0.31 0.24 0.96 0.32 0.32 0.16 0.21 0.13 0.24 0.35 0.41 0.24 0.37 0.07 1.45 0.14 0.07 0.11 0.12 0.26 0.11 0.10 0.21 0.30 Fe 3.13 2.73 1.75 1.45 0.77 1.23 1.67 1.42 1.58 2.04 1.09 1.47 0.41 2.23 1.71 1.35 0.85 1.14 3.11 2.01 1.80 1.44 1.62 0.91 2.65 3.12 0.90 0.89 1.95 2.14 1.85 1.08 4.01 1.81 2.06 8.37 0.99 0.63 1.24 2.71 1.39 0.91 1.85 0.40 2.53 0.88 0.51 2.78 1.46 1.13 1.44 0.92 1.59 1.32 Sr 6036.69 3663.63 3352.54 3812.84 4669.74 3594.45 4060.46 3036.71 2905.15 4623.29 3181.69 4330.90 1660.37 4405.84 2475.80 3684.90 3468.29 984.23 3412.84 5661.59 2108.61 7206.13 3338.37 2464.38 4445.94 3066.99 3197.46 1046.88 4987.31 3795.29 3786.40 6277.89 6120.23 6430.89 5320.07 1242.91 2897.12 2190.95 3371.15 4708.39 4129.36 4449.96 2936.13 1917.00 4757.89 1253.24 2764.78 2959.39 2943.31 5911.26 2712.01 1634.19 5095.74 2012.59 Y 683.65 287.52 388.71 653.43 223.20 415.43 546.37 417.06 208.52 445.26 268.06 221.75 222.83 704.46 489.18 389.59 271.45 250.11 449.34 524.59 240.86 509.38 397.45 226.79 639.35 585.29 229.92 246.57 279.92 304.59 351.00 458.59 651.19 514.56 298.09 296.49 377.24 222.49 253.12 404.13 367.84 288.65 394.20 121.61 390.30 186.34 128.84 360.86 616.10 471.16 367.44 145.83 388.06 319.50 Ba 2661.49 1454.91 1753.02 1548.48 1047.37 775.96 1354.40 2990.54 1299.57 1116.30 1228.79 2340.56 1309.99 3052.91 2837.16 1899.00 957.45 810.99 1815.45 2903.87 1539.92 2774.25 803.09 2326.88 2759.10 2914.14 1376.20 1443.24 2565.69 1291.94 2485.68 1553.71 3433.63 4594.75 1722.13 2002.13 1683.71 1266.26 1627.61 2662.69 2808.58 2347.57 3112.85 762.44 2631.21 1004.03 829.67 1039.29 2599.67 1838.48 1920.19 658.74 1415.79 1364.91 La 1370.57 500.21 895.77 1398.43 506.54 917.30 572.29 671.91 242.77 636.96 547.88 634.82 598.83 888.20 604.53 857.34 340.48 319.02 674.98 905.42 334.78 885.35 511.37 440.06 875.32 693.69 414.10 454.08 578.18 389.44 845.81 522.65 797.22 855.80 510.36 352.35 365.85 233.75 325.15 547.31 449.01 422.51 342.40 130.51 305.87 104.32 171.97 316.37 309.72 512.30 358.21 134.57 332.40 303.50 Ce 2955.19 1796.47 1215.44 nd 893.28 1945.61 nd 3175.83 1184.00 1029.23 786.48 nd 1278.54 nd 1144.56 1730.60 956.16 815.32 nd 1693.55 922.66 1312.03 956.38 1202.15 3321.00 3664.98 803.24 1351.84 2143.26 1583.90 nd 2010.29 2250.40 nd nd 1235.78 1463.59 634.22 818.59 2121.86 1086.06 1158.70 749.98 386.89 588.85 561.60 486.30 1082.84 1339.60 1493.40 907.35 525.81 1064.39 1001.83 Pr 192.18 188.17 198.29 261.53 167.30 278.02 199.85 218.66 181.64 117.99 94.43 169.16 84.80 219.78 113.98 217.37 73.70 71.19 217.19 242.28 171.89 230.18 108.11 134.81 263.66 629.29 45.89 80.85 135.73 173.79 172.07 135.61 167.97 177.89 129.38 97.38 163.13 80.23 52.36 125.24 80.31 96.38 105.48 21.25 109.25 36.00 47.08 90.26 79.86 46.09 91.14 48.34 131.96 129.72 Nd 679.92 528.49 711.62 937.72 471.52 641.13 482.83 530.28 334.33 501.20 390.19 299.80 263.63 804.70 592.40 520.39 372.95 232.26 730.63 1030.10 179.61 793.11 319.02 328.69 817.74 838.86 326.42 264.06 648.41 445.38 716.25 533.82 680.00 568.69 297.81 211.10 400.45 170.76 161.98 321.23 463.92 380.29 309.32 75.29 218.76 137.80 119.92 286.96 210.48 335.81 360.99 131.38 375.40 191.48 Sm 149.82 104.09 171.42 99.10 120.58 78.82 143.61 85.72 47.70 103.47 80.69 49.74 64.98 110.24 104.76 92.78 54.03 34.17 86.30 173.92 45.79 112.26 92.09 49.37 253.57 184.27 46.93 114.16 77.65 49.54 55.09 105.51 115.68 134.51 56.59 48.39 126.54 50.61 33.78 106.78 67.97 31.42 75.39 8.58 45.61 23.03 21.67 81.02 43.77 90.64 47.14 24.54 89.72 59.83 Eu 56.92 31.91 33.91 39.94 28.31 41.45 28.39 40.99 22.01 29.05 15.78 15.85 18.06 33.98 14.11 14.54 15.44 14.42 31.86 55.29 15.07 37.03 29.61 25.96 32.65 30.94 13.10 8.92 29.90 38.72 28.02 29.22 45.64 30.72 30.18 18.07 13.92 7.18 8.22 14.80 14.70 20.35 14.84 5.39 14.51 2.96 7.81 17.48 19.00 10.37 22.10 5.45 10.78 17.98 Gd 108.10 93.92 112.79 114.88 60.35 90.18 113.08 107.01 52.24 118.14 45.21 72.43 79.67 121.97 61.99 83.08 27.12 48.68 65.25 239.54 69.51 96.66 73.51 62.25 230.96 116.85 46.01 58.18 80.90 114.22 74.82 54.75 106.31 94.98 105.67 51.77 43.66 39.97 48.89 75.15 53.28 49.75 56.05 20.65 31.50 40.86 21.23 30.51 54.84 52.87 83.23 43.95 92.99 40.57 Tb 16.68 12.04 14.34 15.15 11.56 10.46 21.85 12.42 6.29 14.61 6.35 7.29 5.75 13.34 8.74 8.33 7.47 6.43 14.26 24.87 5.53 14.86 10.36 5.41 18.17 21.10 6.33 4.31 15.18 10.23 5.75 8.55 21.33 13.65 17.02 7.44 7.78 3.98 6.08 9.37 10.59 13.41 7.06 1.93 6.33 4.53 4.73 5.15 6.03 10.95 3.56 2.39 6.65 8.15 Dy 85.53 90.00 79.20 78.98 58.51 95.44 81.69 64.57 45.83 54.59 52.29 59.37 28.09 61.09 80.69 56.19 35.44 17.58 108.96 88.36 42.94 53.92 39.09 27.94 65.23 83.29 42.67 61.41 57.11 58.31 44.78 51.67 88.56 63.31 79.81 35.92 33.38 21.60 29.36 63.13 45.72 45.29 63.68 20.98 55.41 26.86 22.90 41.91 105.17 42.50 75.19 30.75 66.48 47.53 Ho 13.18 14.70 14.02 20.49 9.47 21.43 14.25 14.22 9.29 8.11 10.42 5.95 10.88 19.28 13.18 13.76 6.46 7.01 6.77 15.20 5.61 18.34 9.73 10.34 11.90 14.89 8.82 7.09 8.12 14.82 7.35 17.58 19.03 20.28 9.83 6.49 8.31 6.05 4.61 10.47 21.15 6.06 9.94 2.61 10.26 4.59 4.67 11.93 11.64 8.00 13.77 5.74 10.73 7.15 Er 56.51 49.29 58.22 62.82 33.70 29.37 24.85 33.83 11.09 23.20 18.87 22.20 15.38 41.64 34.21 43.51 22.88 11.13 25.94 45.75 13.19 30.25 29.30 15.77 38.12 51.31 14.11 24.02 33.19 33.89 39.03 27.21 51.36 16.97 43.23 26.23 22.50 11.09 16.08 23.05 12.87 7.62 23.25 6.57 21.17 7.50 12.54 34.97 42.24 43.14 34.73 11.22 37.76 20.59 Tm 9.03 6.89 2.72 5.13 4.01 3.37 4.09 7.56 3.04 3.29 0.87 2.92 1.29 9.03 2.88 4.37 2.85 2.32 3.09 7.62 1.24 8.43 2.68 2.21 7.22 3.69 2.10 3.64 1.93 1.12 2.41 1.64 4.94 2.75 4.79 3.17 2.23 0.80 0.91 0.61 4.02 3.03 1.47 1.15 2.44 1.50 1.60 2.13 4.16 3.44 3.44 1.58 4.67 2.88 Yb 53.22 23.23 34.80 45.55 19.27 16.02 39.52 10.86 25.53 40.21 18.75 16.82 16.99 27.59 17.63 22.50 11.02 8.51 37.82 27.97 15.20 28.63 10.44 11.06 50.52 34.00 10.52 25.47 13.53 25.91 32.51 34.62 50.41 13.12 15.27 12.26 9.93 9.80 16.83 22.90 9.48 16.86 18.13 7.07 20.58 3.82 8.31 17.37 13.56 37.61 14.47 10.41 46.47 12.83 Lu 3.58 4.49 4.68 4.57 2.71 2.91 3.59 2.22 3.52 3.01 3.25 1.91 2.06 2.87 3.43 2.04 0.84 1.13 2.50 3.39 1.24 4.16 2.44 0.89 5.17 2.06 1.91 3.47 1.23 0.94 2.15 2.36 3.67 3.75 4.17 1.86 2.03 2.32 1.22 4.86 3.10 3.07 1.65 1.09 4.08 1.53 1.79 5.00 5.86 2.19 2.39 2.16 3.90 4.08 Table A.1 REE and trace element concentrations by transect. Th 2.46 1.81 3.78 2.83 1.21 5.24 1.46 0.56 0.21 0.98 0.87 0.44 0.31 bd 1.22 0.98 0.25 bd 0.48 1.94 bd 0.26 0.41 0.17 0.43 bd 0.16 bd bd 0.24 bd 0.20 bd bd 0.53 0.28 0.34 0.13 bd bd bd 2.34 bd bd bd bd bd bd bd bd bd 0.10 bd bd U ƩREE 32.31 5750 37.40 3444 54.09 3547 43.95 3084 7.98 2387 18.34 4172 24.52 1730 36.17 4976 5.62 2169 14.43 2683 11.23 2071 25.26 1358 13.12 2469 20.16 2354 41.92 2797 15.08 3667 12.12 1927 9.51 1589 27.54 2006 36.21 4553 14.80 1824 37.65 3625 15.83 2194 7.73 2317 26.84 5991 34.93 6369 8.64 1782 7.85 2462 13.34 3824 23.42 2940 13.66 2026 14.93 3535 18.95 4403 25.89 1996 12.55 1304 14.99 2108 8.42 2663 7.13 1272 6.22 1524 14.35 3447 9.35 2322 8.93 2255 14.52 1779 8.31 690 14.98 1435 4.90 957 5.12 933 20.53 2024 27.80 2246 18.91 2689 15.23 2018 11.64 978 27.97 2274 22.74 1848 Ce/Ce* 0.30 0.35 -0.32 -0.60 -0.29 -0.10 0.76 0.93 0.15 -0.13 -0.20 -0.26 0.28 -0.36 0.01 -0.06 0.41 0.27 -0.24 -0.15 -0.15 -0.32 -0.05 0.15 0.62 0.08 0.26 0.63 0.80 0.38 0.10 0.77 0.44 0.04 0.59 0.57 0.35 0.08 0.44 0.90 0.32 0.35 -0.08 0.68 -0.25 1.13 0.27 0.50 1.00 1.01 0.18 0.51 0.17 0.15 Ce/Ce** 1.86 0.95 0.75 0.49 0.53 0.62 1.16 1.32 0.53 1.33 1.22 0.49 1.62 0.69 2.37 0.72 2.84 1.28 0.66 1.07 0.37 0.67 0.91 0.81 1.35 0.43 -40.84 1.87 3.00 0.86 1.55 2.03 1.91 1.08 1.19 1.09 0.82 0.68 1.67 1.59 4.79 1.65 0.73 2.20 0.45 2.06 0.97 1.31 1.60 -38.04 1.37 1.06 0.81 0.58 La/La* Y/Ho 0.89 51.9 -0.51 19.6 0.23 27.7 0.46 31.9 -0.44 23.6 -0.50 19.4 -0.55 38.4 -0.51 29.3 -0.82 22.4 1.49 54.9 1.39 25.7 -0.52 37.3 0.49 20.5 0.16 36.5 455.15 37.1 -0.38 28.3 13.29 42.0 0.02 35.7 -0.26 66.3 0.73 34.5 -0.79 43.0 -0.04 27.8 -0.07 40.8 -0.48 21.9 -0.30 53.7 -0.87 39.3 -3.08 26.1 0.28 34.8 3.41 34.5 -0.63 20.6 1.08 47.8 0.34 26.1 0.81 34.2 0.06 25.4 -0.40 30.3 -0.47 45.7 -0.64 45.4 -0.58 36.8 0.30 54.9 -0.27 38.6 -5.29 17.4 0.54 47.6 -0.37 39.6 0.63 46.6 -0.61 38.0 -0.07 40.6 -0.39 27.6 -0.24 30.2 -0.33 52.9 -3.35 58.9 0.39 26.7 -0.51 25.4 -0.53 36.2 -0.72 44.7 374 mm from bone rim 1.87 1.90 1.93 1.97 2.00 2.04 2.07 2.11 2.14 2.18 2.21 2.25 2.28 2.31 2.35 2.38 2.42 2.45 2.49 2.52 2.56 2.59 2.63 2.66 2.69 2.73 2.76 2.80 2.83 2.87 2.90 2.94 2.97 3.01 3.04 3.07 3.11 3.14 3.18 3.21 3.25 3.28 3.32 3.35 3.39 3.42 3.46 3.49 3.52 3.56 3.59 3.63 3.66 3.70 Sc 32.02 31.70 12.27 15.03 38.91 14.11 16.37 21.77 25.23 12.59 41.42 20.00 18.87 15.88 8.71 9.90 29.86 13.21 34.01 12.32 14.13 20.20 15.72 7.83 21.46 11.69 27.69 13.92 29.52 20.48 12.61 13.96 12.86 18.68 12.87 14.39 17.72 16.82 23.97 15.78 35.08 14.09 17.67 22.63 18.19 17.14 16.11 17.89 18.28 4.56 19.31 21.55 14.03 16.17 Mn 0.10 0.12 0.10 0.09 0.30 0.12 0.68 0.91 0.39 0.21 0.29 0.16 0.20 0.32 0.21 0.75 0.30 0.23 0.50 0.29 0.30 1.34 0.25 0.28 0.35 0.30 0.17 0.38 0.19 0.19 0.08 0.21 0.40 0.33 0.15 0.15 0.23 0.26 0.31 0.20 0.19 0.15 0.85 0.28 0.22 0.24 0.15 0.31 0.28 0.30 0.29 0.39 0.45 0.17 Fe 0.78 1.29 1.24 1.16 2.18 1.11 1.89 1.62 1.23 0.72 1.64 0.95 1.56 2.16 0.55 3.17 1.61 1.98 2.99 1.09 0.83 2.21 1.89 2.86 3.23 1.07 1.56 0.86 1.44 1.40 2.41 1.49 1.09 1.33 0.99 1.39 1.22 1.60 1.07 1.34 1.65 1.87 1.06 1.39 2.46 0.94 1.22 2.32 2.04 0.91 1.07 1.56 1.05 1.63 SRHS-DU-2 Metatarsal (continued) Sr 2431.38 4799.87 1835.34 3107.55 7197.67 2503.05 3620.29 3926.26 4313.73 2019.73 4250.50 1771.73 3905.64 4731.35 3109.69 2164.87 3306.16 2281.69 5102.75 2243.51 3390.80 3424.72 3974.42 2782.64 2539.27 4274.18 2848.26 3905.18 5351.59 2316.01 3982.45 6590.37 6374.23 3577.77 2252.24 5817.37 3796.02 4625.57 2966.53 2260.62 3113.99 2021.05 3386.30 2319.26 2064.18 2150.26 5359.66 3679.17 2969.33 4367.89 2699.40 2498.09 4436.72 3294.51 Y 308.92 574.06 151.26 236.65 557.49 485.70 331.72 386.83 602.38 172.40 326.12 271.05 283.67 543.89 143.37 190.68 210.62 272.03 461.32 108.36 152.20 328.84 220.11 209.22 221.99 258.67 241.92 271.85 270.95 148.72 94.23 186.35 277.19 148.66 142.40 201.48 272.44 172.52 205.75 263.37 236.17 201.59 166.60 213.68 164.02 154.92 130.60 223.62 189.31 109.51 141.29 170.72 212.69 200.35 Ba 1072.10 2475.62 1139.87 882.29 1843.39 1158.70 3384.18 2317.51 3596.56 571.16 2931.40 1067.22 1682.05 1792.95 800.12 1170.27 1274.93 1034.65 1652.12 2571.86 1724.62 1416.64 1560.96 2608.24 1734.73 1114.65 1242.98 1473.31 1107.51 1347.86 1007.33 851.92 1692.12 1831.75 1089.46 763.78 903.93 976.54 2288.14 1223.64 2884.13 1127.09 1194.86 1447.20 2276.99 1906.81 nd 888.70 1616.54 972.71 1561.24 1774.39 1291.65 1516.29 La 150.96 535.05 196.97 163.85 406.72 182.09 251.11 327.11 310.56 123.31 282.54 153.10 252.56 279.06 164.72 153.82 184.09 92.96 244.51 74.53 92.28 194.34 143.06 109.35 94.95 131.82 110.19 105.80 202.45 103.30 99.71 137.50 212.84 135.51 72.44 113.88 150.12 241.65 207.05 120.75 96.42 96.30 110.79 114.13 98.36 90.22 74.57 125.11 93.63 67.94 93.67 91.50 110.83 98.20 Ce 227.86 931.74 448.30 434.13 995.99 647.61 345.86 712.98 1178.91 266.29 843.95 367.48 847.66 1105.77 242.46 217.73 580.56 404.97 400.67 133.09 200.13 399.73 231.95 312.83 391.41 nd 262.28 461.09 481.00 275.75 174.30 205.52 500.40 202.10 145.32 223.17 210.34 298.94 312.14 222.59 233.60 112.93 160.24 204.93 274.67 172.25 118.02 178.16 184.51 115.75 245.30 189.07 85.93 281.18 Pr 42.23 53.52 54.46 61.41 53.34 65.32 40.29 100.93 68.30 35.44 44.61 71.15 36.33 60.13 32.72 29.04 32.24 33.88 50.92 34.11 21.86 30.08 19.29 22.32 26.08 31.68 41.91 37.65 25.92 31.90 23.21 27.39 42.77 24.99 14.48 17.74 28.68 38.76 42.17 10.43 35.99 14.79 50.76 11.36 7.99 12.76 15.33 17.27 16.98 14.79 12.88 14.43 17.45 27.05 Nd 129.22 413.39 97.39 152.54 272.52 161.52 232.31 257.63 377.66 113.40 233.74 150.13 183.81 170.20 75.40 156.55 71.83 96.19 185.48 143.00 111.80 151.46 93.67 75.02 123.04 160.14 98.72 82.40 97.62 79.13 46.06 90.40 107.53 70.79 71.44 69.89 122.68 96.00 78.41 52.84 103.46 48.20 84.98 42.88 66.77 60.48 27.38 108.66 61.82 43.48 42.96 43.34 77.29 64.98 Sm 22.41 61.68 27.31 29.13 41.67 31.69 29.08 49.66 29.16 34.77 37.95 19.85 46.50 20.70 12.31 18.09 31.38 25.69 24.36 8.26 16.34 38.54 15.44 18.44 20.47 9.53 10.59 21.53 39.11 21.52 16.71 16.86 28.18 16.73 10.10 17.68 24.57 20.65 27.57 29.89 14.61 21.72 11.35 7.93 6.97 3.62 20.58 5.01 8.03 9.14 21.04 1.72 10.32 13.00 Eu 11.07 14.63 7.42 12.35 17.00 10.71 7.57 14.92 13.63 5.65 17.49 8.13 6.99 7.00 2.01 7.07 2.36 4.63 5.23 3.97 7.64 5.15 6.63 4.31 7.52 3.43 8.27 4.52 10.28 2.70 4.08 10.13 12.71 7.96 1.52 3.10 6.85 3.62 11.05 3.36 7.33 0.54 5.45 2.98 4.19 2.18 2.47 3.02 4.83 3.53 5.17 3.13 10.55 3.91 Gd 47.08 31.76 36.98 21.80 52.49 29.10 43.71 45.78 98.52 16.57 52.08 30.05 66.12 58.38 15.33 23.02 41.00 45.30 30.65 17.79 32.01 16.74 38.92 22.07 24.50 18.64 14.48 16.83 11.92 40.46 14.32 18.33 16.06 13.65 5.91 25.98 29.24 20.22 22.49 14.60 21.46 23.04 13.28 17.45 10.21 21.34 10.72 19.63 17.68 6.37 24.34 28.93 26.27 10.58 Tb 4.72 8.43 5.37 4.65 6.67 9.12 7.09 8.27 11.47 2.00 11.05 3.83 3.57 7.03 3.56 3.20 6.48 2.73 5.34 2.34 3.43 3.03 2.87 4.59 5.10 3.15 2.25 4.07 6.35 4.02 4.81 6.19 3.05 2.80 3.22 2.96 3.73 3.25 4.07 3.53 4.03 5.13 2.41 2.81 2.47 1.71 2.10 3.85 4.98 0.77 2.71 1.43 3.17 1.28 Dy 26.15 51.46 25.61 26.33 47.19 21.88 28.86 50.51 62.28 11.28 44.97 42.46 50.26 39.80 26.87 23.46 28.91 18.51 15.05 15.08 20.93 37.04 22.27 18.70 39.35 15.56 28.50 28.96 36.39 34.48 13.04 30.60 15.80 14.74 8.25 16.28 33.73 8.27 28.70 29.61 19.91 14.79 28.35 20.00 24.30 12.22 24.38 32.57 25.08 21.96 14.70 19.19 15.86 39.59 Ho 7.08 8.53 6.38 5.12 7.11 9.48 12.76 10.82 15.12 3.37 9.98 6.90 9.73 12.08 2.81 5.84 8.44 8.91 6.23 3.35 3.03 5.89 6.07 4.16 4.62 5.46 4.30 5.66 6.72 3.21 2.62 4.25 7.02 4.33 2.17 4.58 4.61 5.56 6.59 4.24 8.16 3.67 6.24 3.79 3.75 4.56 4.59 5.39 5.04 1.40 9.61 3.94 5.67 8.82 Er 20.21 63.21 8.21 23.44 43.87 27.10 38.76 23.05 15.34 9.89 18.64 8.54 29.36 14.99 8.24 12.37 16.51 31.10 20.16 6.95 9.55 12.40 15.09 10.78 25.14 11.03 11.15 7.92 18.00 13.22 9.34 19.71 23.48 8.80 10.63 15.51 12.93 9.97 9.67 15.73 15.39 10.48 11.94 11.48 11.93 9.56 6.49 21.14 8.45 9.62 11.07 21.02 17.38 28.53 Tm 1.09 3.32 0.89 2.15 2.71 1.12 2.87 2.32 6.65 0.96 0.28 2.88 1.85 2.35 0.63 2.88 1.48 4.10 2.77 0.56 1.65 1.95 1.50 2.80 1.81 1.95 1.68 1.22 2.78 1.84 0.71 3.20 1.87 1.90 0.80 2.69 2.40 3.14 4.45 2.98 2.50 0.41 2.32 1.80 0.39 0.20 1.72 bd 4.12 0.44 0.87 1.98 0.94 1.48 bd 45.28 3.63 11.95 39.44 16.57 21.63 24.43 38.43 5.90 35.29 11.32 12.96 19.86 9.36 8.82 21.88 26.87 21.86 9.21 20.26 16.43 23.09 7.15 12.68 9.29 14.77 21.01 6.81 7.50 5.09 14.37 24.58 15.56 11.27 15.41 18.36 18.01 9.60 11.72 15.30 10.10 20.57 16.58 7.29 19.01 11.47 10.49 18.20 10.02 5.33 7.26 17.27 9.06 Yb Lu 0.40 5.35 0.82 2.39 1.51 3.77 1.23 2.22 0.41 1.31 2.57 1.60 2.06 3.61 0.57 1.37 1.99 1.30 1.77 0.63 1.84 2.99 1.96 0.26 4.04 2.17 1.07 1.36 2.48 2.28 1.46 2.38 2.08 1.59 1.79 0.93 1.33 1.31 2.62 1.66 0.31 2.07 1.72 1.76 1.33 1.84 1.39 2.23 1.53 0.83 1.70 1.54 0.78 2.75 bd bd bd bd bd bd bd 0.85 0.31 bd 0.24 bd 0.45 bd 0.11 bd 0.25 bd bd bd bd bd bd bd 0.22 0.18 bd bd bd bd bd bd bd 0.13 bd 0.28 bd bd bd bd bd bd bd bd bd bd 0.13 0.48 bd bd bd bd bd bd Th U ƩREE 12.93 690 24.28 2227 19.79 920 11.78 951 24.56 1988 15.15 1217 26.33 1063 55.74 1631 33.43 2226 5.33 630 28.93 1635 18.92 877 19.98 1550 8.90 1801 3.65 597 7.31 663 11.24 1029 6.62 797 19.16 1015 9.23 453 9.05 543 3.50 916 9.67 622 8.45 613 14.66 781 11.79 404 7.10 610 6.48 800 20.17 948 8.94 621 8.17 415 18.19 587 26.05 998 14.15 521 9.11 359 13.05 530 13.88 650 14.35 769 14.62 767 6.74 524 21.79 578 11.67 364 8.00 510 10.90 460 12.74 521 9.21 412 5.89 321 19.42 533 20.54 455 8.42 306 9.53 491 8.96 428 14.90 400 14.54 590 Ce/Ce* -0.33 0.17 0.02 0.00 0.51 0.37 -0.21 -0.08 0.90 -0.06 0.72 -0.21 1.00 1.00 -0.23 -0.24 0.74 0.67 -0.16 -0.41 0.05 0.19 -0.01 0.48 0.85 0.19 -0.11 0.69 0.47 0.12 -0.15 -0.22 0.22 -0.19 0.05 0.13 -0.25 -0.29 -0.22 0.28 -0.09 -0.32 -0.52 0.20 0.97 0.14 -0.18 -0.14 0.07 -0.14 0.58 0.19 -0.55 0.28 Ce/Ce** 0.57 -9.08 0.66 0.65 4.20 0.91 3.01 0.66 5.04 0.83 4.58 0.44 5.11 1.84 0.66 1.99 1.57 1.20 0.98 0.58 2.07 2.87 2.37 1.61 2.78 2.25 0.56 1.06 2.40 0.80 0.62 0.85 1.09 0.81 2.06 1.72 1.13 0.71 0.60 4.68 0.66 0.85 0.25 2.34 -9.97 2.53 0.61 6.57 1.35 0.80 2.17 1.37 0.81 0.94 La/La* Y/Ho -0.27 43.6 -2.75 67.3 -0.53 23.7 -0.57 46.2 34.87 78.4 -0.55 51.3 -5.88 26.0 -0.46 35.7 -7.13 39.8 -0.23 51.2 -76.73 32.7 -0.69 39.3 20.50 29.1 -0.14 45.0 -0.23 51.1 -13.38 32.7 -0.15 24.9 -0.49 30.5 0.36 74.0 -0.05 32.3 20.34 50.2 16.07 55.9 8.39 36.3 0.17 50.3 2.31 48.1 11.42 47.4 -0.59 56.3 -0.59 48.0 1.40 40.3 -0.48 46.3 -0.41 36.0 0.16 43.9 -0.18 39.5 0.01 34.3 7.24 65.6 1.24 44.0 1.49 59.1 0.01 31.0 -0.35 31.2 35.85 62.2 -0.49 28.9 0.48 54.9 -0.73 26.7 2.10 56.4 -2.72 43.8 5.76 34.0 -0.37 28.4 -3.93 41.5 0.56 37.6 -0.11 78.3 0.72 14.7 0.27 43.3 2.62 37.5 -0.43 22.7 375 mm from bone rim 3.73 3.77 3.80 3.84 3.87 3.90 3.94 3.97 4.01 4.04 4.08 4.11 4.15 4.18 4.22 4.25 4.28 4.32 4.35 4.39 4.42 4.46 4.49 4.53 4.56 4.60 4.63 4.66 4.70 4.73 4.77 4.80 4.84 4.87 4.87 4.91 4.94 4.98 5.01 5.04 5.08 5.11 5.15 5.18 5.22 5.25 5.29 5.32 5.36 5.39 5.42 5.46 5.49 5.53 Sc 6.16 22.35 16.65 9.40 17.09 17.52 7.08 15.16 13.77 17.23 10.76 7.14 20.40 3.59 19.88 17.13 10.60 12.68 16.34 12.78 8.55 11.18 13.90 12.56 13.45 15.45 17.55 15.81 16.88 15.84 5.41 10.76 9.97 11.26 13.48 12.94 12.87 13.04 12.74 17.69 16.29 15.05 14.18 10.15 14.46 12.53 13.56 14.88 12.63 9.61 10.65 11.33 10.75 9.79 Mn 0.10 0.11 0.18 0.09 0.23 0.14 0.43 0.30 0.17 0.19 0.17 0.17 0.13 0.08 0.16 0.30 0.07 0.18 0.21 0.27 0.39 0.22 0.40 0.21 0.17 0.18 0.52 0.25 0.20 0.11 0.11 0.15 0.50 0.19 0.22 0.12 0.18 0.13 0.25 0.26 0.18 0.17 0.22 0.25 0.42 0.27 0.23 0.29 0.26 0.44 0.70 0.35 0.30 0.24 Fe 0.51 0.70 1.87 1.44 1.33 0.77 1.17 1.70 2.73 1.13 2.25 1.28 1.52 0.40 5.86 1.04 0.56 0.68 1.48 1.07 0.94 1.24 1.50 1.57 1.50 1.21 1.30 1.52 1.09 1.37 0.71 0.96 1.33 1.12 0.77 0.93 1.29 1.02 1.66 1.45 1.09 1.06 1.56 1.15 2.16 2.57 1.34 1.32 1.51 1.40 1.42 1.28 1.60 2.10 SRHS-DU-2 Metatarsal (continued) Sr 1867.52 3521.49 6219.24 4718.72 5292.01 3793.87 3320.83 4430.52 6058.91 1980.42 1980.94 2575.12 3210.66 1769.55 3579.54 2460.46 3709.46 2058.41 5802.07 3923.90 3244.32 4751.57 4131.73 2180.50 2740.07 2262.07 5602.13 4217.44 4085.05 2897.99 3082.09 13175.07 4392.97 2584.13 3331.56 3097.04 2799.22 2655.16 3106.43 3242.30 2823.29 3409.51 4294.02 2978.50 5474.14 2906.52 2979.56 4749.65 3820.53 2748.95 3388.78 2429.37 3216.84 2322.75 Y 158.14 134.56 208.28 175.17 288.07 124.76 104.52 215.70 188.15 185.05 120.82 112.15 119.41 112.71 204.77 116.47 71.62 88.28 126.13 177.55 118.11 105.96 102.30 136.91 146.11 97.83 148.38 224.57 135.66 86.36 69.18 70.78 105.94 80.09 100.13 102.19 117.31 87.49 121.64 155.46 108.61 115.91 111.43 87.30 116.73 99.96 97.97 133.88 118.28 95.31 84.20 72.18 88.17 72.94 Ba 798.67 1162.02 1353.53 1342.00 1766.16 918.26 824.94 1397.21 2040.54 1714.43 1574.30 1443.73 1149.51 1185.91 1945.86 1750.91 1135.33 1053.50 3667.24 1404.58 1336.44 1450.51 2130.41 1890.01 2543.16 1522.64 2115.84 1769.34 3146.30 1270.90 nd 2447.67 4421.12 3020.32 1104.11 1158.12 1772.69 1656.75 1652.61 1962.00 1694.03 1819.45 3024.76 1792.67 1669.36 4760.92 2016.99 2011.09 1630.03 1628.40 1713.64 2420.54 2751.54 2053.43 La 45.17 60.83 91.53 77.84 68.50 28.04 54.73 111.37 79.31 79.29 59.02 43.70 50.41 45.58 57.31 57.60 29.15 37.18 79.71 107.72 27.78 52.61 56.09 74.76 57.07 50.47 55.38 61.74 46.80 26.19 18.08 23.51 39.98 43.31 33.26 36.86 29.89 26.96 29.10 44.31 27.33 31.13 29.34 27.26 25.76 29.44 29.97 26.13 33.58 21.62 20.79 17.94 28.99 18.18 Ce 148.28 143.44 265.85 125.07 197.52 65.08 83.95 196.93 157.30 128.83 168.62 170.73 89.34 66.80 181.10 99.56 35.70 52.48 87.15 88.43 181.68 64.55 70.36 119.92 57.79 62.96 63.33 50.49 54.63 70.84 96.25 52.90 55.77 40.37 51.13 40.10 44.78 26.08 48.40 66.70 30.73 36.27 51.82 65.28 48.18 29.10 32.14 35.50 31.87 23.02 24.77 22.86 33.62 37.70 Pr 9.58 11.20 14.39 8.94 16.66 7.28 13.07 10.06 20.26 22.79 14.32 5.97 17.93 15.24 15.01 8.66 6.65 5.57 8.79 7.69 5.34 4.71 8.62 2.52 5.42 4.19 11.30 5.46 3.18 8.83 2.94 2.81 5.08 3.72 6.13 4.21 5.51 3.55 4.29 6.51 3.63 3.21 5.14 3.14 3.07 2.85 2.76 3.64 3.47 2.40 2.19 2.27 2.86 1.99 Nd 38.84 39.29 50.95 69.82 114.38 25.85 41.63 53.10 26.13 29.39 18.96 10.40 39.43 22.11 19.98 29.14 9.40 10.44 32.83 13.59 17.71 27.38 19.68 19.06 21.01 16.74 24.37 19.41 20.04 16.18 5.02 5.10 17.97 16.84 17.16 15.58 13.91 8.69 12.72 21.41 11.79 10.39 12.95 12.13 13.00 10.92 9.39 12.54 10.36 8.57 8.83 6.82 11.93 8.80 Sm 3.18 16.28 19.59 1.94 5.27 bd 7.36 6.37 2.23 bd 1.74 1.38 3.78 2.52 4.35 7.96 1.25 2.50 bd 7.00 bd bd 8.60 bd bd 3.65 11.27 16.96 bd 1.61 bd 1.22 bd bd 2.95 4.06 4.27 2.20 2.60 3.03 1.51 1.65 3.26 2.19 2.54 2.88 3.66 2.57 0.34 1.95 1.29 3.83 2.39 1.54 Eu 2.23 3.42 2.94 0.58 3.97 2.12 3.54 5.11 2.02 0.59 1.58 2.09 3.41 1.52 3.93 1.43 1.51 bd 1.31 bd 2.13 1.98 1.94 0.53 2.17 1.65 1.35 1.27 0.55 0.97 2.17 0.73 bd 0.87 0.97 0.84 1.07 0.58 0.68 1.71 0.63 0.99 2.07 1.10 0.98 1.73 0.46 0.99 0.52 0.42 0.39 0.16 0.96 0.66 Gd 7.25 9.53 7.13 13.34 15.47 8.26 11.50 16.63 4.33 5.71 8.55 2.68 14.82 7.41 10.65 6.20 2.42 2.42 2.07 13.67 5.17 1.55 14.70 12.05 3.48 8.92 22.06 12.41 9.04 6.31 7.07 3.57 4.49 4.21 4.63 6.43 6.28 4.32 4.47 9.29 7.40 4.20 5.69 3.34 48.18 4.71 6.59 3.97 3.06 2.73 4.32 6.44 3.91 2.81 Tb 2.13 3.27 3.18 3.22 2.18 1.17 2.43 1.50 1.59 2.08 2.90 0.98 3.36 1.04 3.35 0.94 0.74 1.48 0.78 1.38 1.26 0.19 1.27 0.41 1.92 0.43 1.59 2.00 1.97 0.38 1.43 0.58 0.18 0.51 0.83 1.11 1.26 0.88 1.58 2.01 1.14 1.01 0.81 0.86 1.12 0.87 0.65 0.87 0.61 0.99 0.37 0.55 0.63 0.39 Dy 9.68 8.60 22.35 19.69 22.85 2.03 20.50 19.41 28.03 17.91 10.95 4.67 12.75 13.38 10.49 18.35 7.23 7.84 11.59 14.58 13.64 12.65 10.33 16.08 6.93 15.81 14.07 13.24 10.68 14.80 10.44 6.48 14.82 13.89 8.64 9.60 10.77 6.34 8.76 12.37 7.25 7.11 11.14 8.41 8.21 6.31 5.57 6.71 7.65 5.49 7.46 8.27 6.77 4.66 Ho 2.15 3.69 9.67 2.32 2.83 1.34 3.16 3.30 7.51 4.92 2.72 1.82 1.12 2.27 1.55 3.80 1.19 0.74 1.82 2.78 1.90 2.94 2.30 3.58 1.28 2.61 3.49 1.51 3.98 1.35 2.02 1.02 2.58 2.59 2.05 2.24 3.50 2.14 3.16 3.36 2.53 1.42 2.78 1.78 2.09 2.38 1.68 2.03 2.03 1.97 1.74 1.44 2.04 1.06 Er 6.70 13.71 16.75 8.21 13.91 7.43 10.06 14.55 12.99 3.09 6.45 8.76 11.97 3.99 11.49 15.91 2.64 6.61 10.38 14.74 19.62 7.79 9.05 7.42 5.69 11.54 8.30 16.74 8.78 4.27 6.35 7.73 9.74 8.37 9.46 7.06 8.99 6.22 9.76 14.35 7.94 8.14 7.82 8.31 8.61 6.40 8.52 10.84 10.02 5.87 6.00 3.60 5.03 4.29 Tm 1.09 1.29 4.47 1.77 2.40 0.96 2.01 1.21 0.76 2.68 0.59 0.63 1.72 2.16 2.24 1.63 0.57 0.43 0.99 2.12 0.40 0.93 3.18 1.20 0.61 1.66 0.51 0.72 1.47 0.18 0.69 0.13 1.40 0.82 1.11 1.18 1.38 0.82 1.45 1.77 0.76 0.75 1.20 1.28 0.83 1.06 0.87 1.26 1.11 1.21 0.83 0.62 1.00 0.68 Yb 0.73 2.26 13.66 9.52 7.37 10.84 9.23 11.86 7.83 12.32 6.11 2.90 14.55 7.94 10.65 6.65 6.12 4.38 27.52 11.39 7.42 3.44 6.00 12.29 13.84 15.30 14.15 11.83 6.47 4.52 5.89 3.42 2.15 16.14 9.05 6.75 7.44 7.10 9.08 10.83 7.37 8.72 5.56 8.31 6.34 8.94 4.90 8.47 7.24 6.22 5.24 5.72 6.67 3.69 Lu 0.54 0.62 1.24 2.23 1.68 1.79 1.12 2.70 1.71 1.74 0.67 0.53 0.72 0.96 0.83 1.41 0.80 0.32 0.83 1.48 1.35 1.46 3.54 0.22 0.91 0.69 2.00 1.34 0.94 1.03 1.53 0.93 0.98 1.83 1.23 1.15 1.26 0.73 0.95 1.05 1.38 1.13 1.24 0.77 0.97 1.10 1.08 1.26 1.27 1.27 0.85 1.04 1.08 0.78 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.17 bd bd bd bd bd bd bd bd bd bd bd bd bd 0.06 bd 0.03 0.05 bd bd bd bd bd bd bd bd 0.03 0.04 bd 0.05 0.02 0.08 0.03 0.09 Th U ƩREE 3.56 278 12.03 317 9.05 524 15.26 344 18.86 475 2.43 162 6.70 264 19.57 454 8.29 352 13.50 311 12.81 303 15.52 257 5.70 265 4.57 193 7.50 333 3.42 259 2.80 105 5.07 132 7.16 266 8.83 287 4.12 285 11.03 182 8.32 216 3.18 270 5.74 178 6.44 197 8.33 233 8.02 215 7.01 169 5.16 157 2.39 160 4.21 110 4.51 155 5.84 153 10.95 149 8.51 137 6.49 140 5.30 97 5.68 137 7.29 199 4.59 111 4.78 116 5.89 141 3.51 144 5.06 170 3.91 109 6.38 108 8.38 117 5.24 113 6.04 84 4.63 85 4.54 82 7.40 108 4.51 87 Ce/Ce* 0.67 0.28 0.67 0.03 0.37 0.07 -0.26 0.22 -0.08 -0.29 0.36 1.37 -0.31 -0.41 0.45 0.01 -0.40 -0.17 -0.29 -0.40 2.47 -0.15 -0.27 0.32 -0.31 -0.12 -0.41 -0.43 -0.14 0.08 2.03 0.43 -0.13 -0.35 -0.17 -0.30 -0.19 -0.41 -0.02 -0.11 -0.31 -0.23 -0.03 0.54 0.19 -0.33 -0.27 -0.18 -0.37 -0.31 -0.21 -0.21 -0.22 0.35 Ce/Ce** 2.21 1.54 2.23 -6.60 67.83 1.08 0.70 4.86 0.56 0.41 0.86 2.26 0.43 0.33 0.88 1.32 0.40 0.76 1.27 0.91 3.87 5.01 0.72 -31.08 1.43 2.10 0.48 1.12 11.17 0.65 2.57 1.51 1.33 1.84 0.83 1.21 0.76 0.67 1.17 1.15 0.94 1.26 0.94 2.79 2.38 1.35 1.36 1.15 0.95 1.17 1.60 1.05 1.75 3.09 La/La* Y/Ho 0.81 73.4 0.41 36.4 0.69 21.5 -2.47 75.4 -2.09 101.8 0.03 92.9 -0.09 33.1 -63.59 65.4 -0.56 25.0 -0.61 37.6 -0.53 44.5 -0.07 61.6 -0.59 106.4 -0.65 49.8 -0.57 132.0 0.59 30.6 -0.49 60.0 -0.12 118.9 1.72 69.3 0.80 63.8 0.22 62.1 -9.06 36.0 -0.02 44.4 -6.53 38.3 2.49 114.0 3.41 37.4 -0.29 42.5 2.02 149.0 -6.88 34.1 -0.61 64.1 -0.22 34.3 0.09 69.5 1.08 41.1 6.53 31.0 0.00 48.9 1.57 45.5 -0.11 33.6 0.21 40.8 0.33 38.5 0.56 46.3 0.69 42.9 1.18 81.7 -0.06 40.1 1.87 49.1 2.78 55.8 2.33 42.0 1.66 58.2 0.80 66.0 0.92 58.2 1.44 48.4 2.57 48.5 0.58 50.1 3.36 43.3 4.14 69.0 376 mm from bone rim 5.56 5.60 5.63 5.67 5.70 5.74 5.77 5.80 5.84 5.87 5.91 5.94 5.98 6.01 6.05 6.08 6.12 6.15 6.18 6.22 6.25 6.29 6.32 6.36 6.39 6.43 6.46 6.50 6.53 6.56 6.60 6.63 6.67 6.70 6.74 6.77 6.81 6.84 6.88 6.91 6.94 6.98 7.01 7.05 7.08 7.12 7.15 7.19 7.22 7.26 7.29 7.32 7.36 7.39 Sc 14.19 10.78 7.51 8.09 11.48 10.93 12.23 14.64 15.06 16.43 11.93 12.37 11.56 14.91 10.17 8.14 6.72 9.74 5.06 9.29 6.71 10.29 8.41 6.18 9.35 10.56 8.89 6.30 8.25 5.66 8.06 9.66 7.77 8.01 8.15 8.49 3.70 7.18 5.78 6.02 6.66 6.32 7.06 8.34 7.24 9.20 8.56 7.21 11.27 9.69 12.24 6.63 8.36 7.09 Mn 0.29 0.23 0.38 0.34 0.24 0.21 0.19 0.29 0.26 0.27 0.17 0.25 0.23 0.18 0.17 0.28 0.18 0.25 0.15 0.27 0.21 0.33 0.15 0.15 0.23 0.18 0.20 0.16 0.20 0.18 0.39 0.34 0.32 0.32 0.37 0.59 0.22 0.84 0.50 0.65 0.21 0.24 0.49 0.32 0.33 0.25 0.23 0.21 0.23 0.20 0.18 0.21 0.26 0.29 Fe 1.49 1.21 0.90 1.34 1.35 bd 0.80 2.00 1.52 1.74 1.01 1.44 1.70 1.11 1.44 2.64 1.69 1.48 1.34 1.42 1.12 1.18 0.93 0.90 1.23 1.47 1.33 0.81 1.51 1.15 1.82 1.61 1.92 0.95 1.50 2.38 0.96 1.52 1.34 1.86 1.02 0.99 1.06 1.17 1.29 1.72 1.71 1.57 1.20 1.52 1.66 1.41 1.53 1.22 SRHS-DU-2 Metatarsal (continued) Sr 3922.13 3181.03 2507.91 3436.50 3749.18 2992.89 2216.64 4501.09 5006.21 3864.73 2949.30 3374.09 3256.88 4757.77 3402.24 3437.76 2473.81 2965.51 2720.24 3719.81 3808.92 3697.75 2047.31 2921.56 3958.44 3231.53 3088.23 2942.07 2561.73 2653.01 3135.82 3346.75 3287.38 4133.03 2838.89 3988.82 3569.84 3433.53 3205.59 2584.33 3989.76 3361.76 2547.14 3867.24 2500.90 6055.14 2396.09 3157.95 3570.87 2522.81 3105.46 2742.99 3688.44 3391.37 Y 92.65 82.04 59.85 78.67 86.34 92.04 68.02 123.18 100.41 106.13 67.32 83.22 70.05 83.40 69.82 61.38 55.07 55.97 45.66 48.25 57.02 66.89 41.19 42.27 69.48 61.07 56.09 50.40 47.91 53.89 64.31 50.60 52.85 51.51 53.56 54.81 48.97 50.94 42.98 48.48 57.32 49.90 32.83 49.18 33.03 73.68 36.40 43.60 58.31 57.87 53.00 43.58 46.58 37.97 Ba 1537.86 1625.03 1464.68 1167.90 2202.69 1283.60 1273.94 1653.01 1991.03 1825.19 956.41 1129.73 1137.64 2025.89 1031.03 1788.38 1070.54 2149.02 1638.91 1712.56 1347.12 1848.68 1372.35 1322.98 1991.26 1372.63 1844.13 989.46 949.07 1275.48 3227.80 1846.47 nd nd 3133.00 1931.53 1702.94 2052.32 1609.47 1334.71 2029.06 1887.09 1404.00 2097.69 1271.60 2349.08 nd 1440.37 1359.07 1180.61 1248.53 1426.16 1178.85 1463.50 La 25.38 22.40 15.80 26.51 19.13 18.89 18.12 28.85 31.32 22.82 19.78 21.55 17.31 19.11 12.36 12.54 9.91 15.30 13.44 15.12 11.07 16.59 7.72 10.99 19.56 9.00 10.68 11.31 11.52 11.46 14.23 9.25 10.03 10.85 13.38 12.36 11.68 10.19 8.13 11.38 10.91 6.88 4.80 8.34 5.97 11.43 5.68 10.44 7.94 9.44 6.17 8.09 7.65 7.22 Ce 39.37 28.64 38.28 26.03 96.44 20.20 22.08 31.92 33.63 40.47 29.50 72.37 21.04 22.09 14.48 13.42 15.35 16.57 16.75 13.69 12.18 19.10 6.10 11.83 16.58 9.80 14.46 9.12 7.55 11.02 21.08 7.94 11.65 11.49 17.06 10.47 11.78 12.45 9.81 12.33 11.83 9.38 4.18 7.96 6.44 13.62 9.56 9.59 6.67 8.81 6.00 11.75 7.86 6.97 Pr 4.42 1.66 1.83 3.19 3.42 1.20 2.39 3.51 3.26 1.79 1.63 2.19 1.52 1.81 1.23 1.35 0.99 1.13 0.98 1.36 2.53 1.44 0.56 1.29 1.33 1.42 1.31 0.83 1.15 1.19 1.78 0.76 1.08 1.24 1.05 1.29 2.30 0.82 0.81 0.86 0.74 0.60 0.57 0.22 0.45 0.90 0.66 0.39 0.47 0.48 0.31 0.43 0.57 0.57 Nd 8.63 9.83 6.00 6.90 21.98 6.55 8.16 15.11 9.44 10.64 12.11 4.52 4.96 3.27 5.74 3.37 4.17 3.07 2.56 4.40 3.48 6.24 1.51 2.28 6.96 4.56 3.56 2.68 2.08 3.14 4.42 4.59 2.31 1.07 6.09 3.35 2.25 1.76 2.97 6.67 5.09 2.16 0.60 2.34 1.89 1.09 1.04 0.68 2.06 1.14 1.11 2.27 2.47 bd Sm 2.92 1.23 0.96 0.80 1.79 1.97 3.57 1.11 1.84 2.95 1.32 bd 1.99 2.36 1.10 0.21 bd 0.46 0.16 0.22 0.73 1.88 1.37 0.59 1.10 0.78 1.60 0.86 0.23 0.23 0.89 0.22 0.28 0.43 1.97 0.47 0.22 1.95 0.51 1.67 1.41 0.40 bd bd 0.17 0.66 0.21 0.27 bd 0.78 bd 0.27 0.79 0.22 Eu 1.17 0.59 0.22 1.13 0.77 0.30 0.80 0.45 0.37 0.69 0.56 0.47 0.40 0.35 0.41 0.19 0.67 0.42 0.19 0.60 0.11 0.19 0.34 0.06 0.53 0.24 0.16 0.19 0.07 0.14 0.44 0.13 0.42 0.13 0.42 0.14 0.14 0.15 0.08 bd 0.28 0.06 0.11 0.28 0.05 0.20 0.19 0.16 0.08 0.18 0.16 0.33 0.12 0.07 Gd 5.41 3.14 1.89 2.10 3.02 3.38 3.79 3.28 3.31 5.48 3.64 1.27 1.30 2.71 1.08 1.05 1.46 2.27 0.80 1.51 1.97 2.46 1.34 1.54 2.59 1.54 2.10 0.85 1.12 1.39 4.35 1.30 1.64 2.75 2.21 1.63 1.33 2.08 0.75 1.31 1.62 2.95 0.89 1.54 2.23 2.26 1.23 0.81 bd 0.77 0.53 1.61 0.97 0.87 Tb 0.57 0.47 0.71 0.60 0.54 0.52 0.70 1.05 0.65 0.62 0.53 1.04 0.59 0.74 0.20 0.33 0.28 0.22 0.21 0.36 0.37 0.52 0.51 0.25 0.34 0.43 0.25 0.18 0.19 0.22 0.38 0.36 0.56 0.25 0.50 0.39 0.29 0.31 0.09 0.08 0.53 0.19 0.21 0.22 0.04 0.47 0.17 0.16 0.42 0.21 0.10 0.13 0.16 0.16 Dy 5.92 5.33 6.82 5.40 4.31 6.86 5.86 7.31 12.54 3.78 5.21 3.86 3.03 8.14 3.45 2.46 3.48 3.44 2.65 3.92 2.98 4.51 2.74 3.96 3.49 3.14 4.12 3.42 3.29 4.43 2.56 1.17 2.41 2.69 2.98 1.59 1.85 2.74 2.33 1.93 3.85 4.05 0.79 2.56 1.01 3.64 1.21 2.50 2.12 1.70 1.04 2.89 1.72 1.92 Ho 2.53 1.48 1.70 1.76 1.84 1.92 1.50 2.22 2.10 2.36 1.33 1.55 1.15 1.61 1.06 1.18 0.85 1.47 0.64 1.51 1.00 1.01 1.07 0.96 1.32 0.88 1.19 0.52 0.93 1.02 1.28 0.58 1.00 0.80 0.88 0.57 0.98 0.96 0.58 0.88 1.10 0.99 0.63 1.05 0.40 0.91 0.78 0.79 1.36 1.06 0.61 1.18 0.38 0.51 Er 7.00 6.22 6.08 5.50 7.83 3.76 6.26 11.13 7.76 6.91 4.18 4.23 2.79 5.39 4.50 4.38 3.13 3.53 2.22 4.76 2.88 4.61 4.21 5.16 5.34 3.71 3.95 3.63 2.76 2.24 5.14 1.98 3.81 1.59 5.79 3.37 4.17 4.54 2.42 2.64 5.71 3.80 1.53 2.31 1.47 3.99 3.97 3.47 2.03 3.82 2.55 3.88 1.67 2.46 Tm 1.63 0.73 0.77 1.10 0.64 0.51 1.19 1.78 0.74 1.50 0.70 0.50 0.61 0.54 0.85 0.46 0.30 0.74 0.22 0.48 0.50 0.54 0.55 0.56 0.55 0.39 0.52 0.32 0.42 0.40 1.42 0.48 0.80 0.34 0.61 0.49 0.59 0.20 0.17 0.61 0.65 0.55 0.27 0.64 0.20 0.60 0.36 0.63 0.44 0.52 0.43 0.59 0.45 0.46 Yb 11.08 5.50 4.37 5.23 6.08 6.69 6.43 5.95 8.35 4.81 6.09 6.69 3.94 8.52 3.85 3.72 3.50 2.90 3.85 4.31 2.80 7.42 3.18 2.74 4.77 5.10 2.61 4.06 2.71 3.30 6.81 2.46 3.89 3.61 6.10 2.64 2.68 5.79 2.85 3.74 4.44 5.04 2.54 3.94 0.85 7.82 2.49 3.45 2.89 3.69 2.26 3.43 2.08 3.26 Lu 1.48 1.03 0.70 0.47 0.84 1.03 1.13 1.69 1.21 0.96 0.97 0.92 0.97 1.50 0.59 0.59 0.66 0.44 0.64 0.47 0.60 0.99 0.40 0.77 0.53 0.56 0.71 0.38 0.38 0.60 1.31 0.59 0.63 0.57 0.61 0.54 0.46 0.62 0.26 0.64 0.81 0.43 0.37 0.68 0.33 0.96 0.61 0.59 0.87 0.85 0.58 0.80 0.63 0.31 bd bd 0.05 bd 0.02 bd bd 0.04 bd 0.03 0.03 0.08 bd bd bd bd bd bd bd bd 0.04 bd bd bd 0.02 bd 0.03 0.02 0.02 bd bd bd 0.03 0.02 bd bd 0.09 0.03 0.02 bd bd bd bd bd 0.02 bd bd bd bd bd bd bd bd bd Th U ƩREE 10.29 118 4.91 88 6.27 86 7.23 87 4.41 169 3.85 74 5.06 82 10.65 115 8.42 117 12.57 106 7.58 88 6.53 121 4.54 62 5.19 78 6.65 51 4.55 45 3.05 45 4.38 52 2.52 45 5.18 53 2.38 43 4.14 67 2.67 32 5.90 43 3.20 65 4.53 42 2.90 47 4.15 38 5.61 34 2.62 41 3.30 66 2.89 32 4.77 40 2.69 38 4.75 60 2.49 39 4.28 41 1.55 45 2.37 32 3.94 45 3.75 49 3.07 37 2.02 17 7.02 32 1.76 21 9.59 49 2.45 28 8.62 34 4.70 27 6.68 33 5.26 22 7.38 38 5.16 28 4.90 25 Ce/Ce* -0.14 -0.08 0.55 -0.38 1.76 -0.20 -0.25 -0.30 -0.29 0.26 0.05 1.24 -0.16 -0.21 -0.21 -0.30 0.04 -0.22 -0.10 -0.38 -0.46 -0.20 -0.43 -0.31 -0.38 -0.37 -0.15 -0.42 -0.56 -0.36 -0.07 -0.39 -0.24 -0.32 -0.09 -0.44 -0.47 -0.13 -0.19 -0.22 -0.20 -0.06 -0.45 -0.20 -0.22 -0.15 0.08 -0.25 -0.37 -0.27 -0.24 0.12 -0.26 -0.31 Ce/Ce** 0.73 7.00 2.35 0.70 22.72 4.68 1.08 1.42 1.05 9.45 -15.31 2.78 1.54 0.98 2.14 0.92 2.36 1.43 1.63 1.12 0.35 2.11 1.07 0.73 3.04 0.76 1.08 1.21 0.53 0.89 1.09 4.79 0.93 0.63 5.85 0.77 0.35 1.31 1.54 -7.39 76.28 1.90 0.51 -4.18 2.13 1.09 1.11 1.92 2.22 1.66 2.40 6.68 2.19 1.46 La/La* Y/Ho -0.22 36.7 -9.24 55.6 0.98 35.2 0.21 44.6 -3.01 46.8 -28.25 48.0 0.87 45.4 3.04 55.4 0.84 47.9 -8.49 45.0 -3.41 50.5 0.38 53.6 1.58 60.7 0.37 51.9 7.41 66.0 0.52 52.2 3.56 65.1 1.41 38.1 1.35 71.2 1.49 32.0 -0.50 56.8 4.95 66.1 1.46 38.6 0.09 43.9 -148.83 52.6 0.39 69.7 0.46 47.2 2.01 97.6 0.31 51.5 0.67 52.8 0.29 50.4 -7.41 86.9 0.34 52.8 -0.11 64.3 -10.43 61.0 0.62 96.5 -0.47 50.2 0.80 53.3 1.93 73.9 -3.30 54.9 -4.92 52.0 2.10 50.7 -0.11 51.9 -4.14 46.7 4.71 83.0 0.41 81.1 0.04 46.7 2.36 55.3 7.54 43.0 2.08 54.7 4.51 86.4 -145.35 37.0 5.90 122.4 2.27 75.0 377 mm from bone rim 7.43 7.46 7.50 7.53 7.57 7.60 7.64 7.67 7.70 7.74 7.77 7.81 7.84 7.88 7.91 7.95 7.98 8.02 8.05 8.08 8.12 8.15 8.19 8.22 8.26 8.29 8.33 8.36 8.40 8.43 8.46 8.50 8.53 8.57 8.60 8.64 8.67 8.71 8.74 8.78 8.81 8.84 8.88 8.91 8.95 8.98 9.02 9.05 9.09 9.12 9.16 9.19 9.22 9.26 Sc 7.63 5.78 8.01 5.34 8.94 7.93 9.06 8.19 6.95 7.41 6.71 7.16 6.72 8.96 8.38 9.24 5.35 7.64 6.30 9.24 8.83 9.38 7.08 6.18 6.51 6.99 9.19 6.03 9.51 7.73 4.63 7.23 5.55 4.86 4.22 4.37 3.69 4.19 3.10 2.73 2.63 2.99 2.45 4.60 5.03 6.26 5.65 6.31 4.97 4.50 7.38 9.14 6.08 5.66 Mn 0.40 0.36 0.35 0.30 0.41 0.35 0.21 0.32 0.18 0.21 0.21 0.26 0.28 0.19 0.31 0.26 0.25 0.18 0.28 0.17 0.16 0.36 0.16 0.16 0.13 0.21 0.25 0.27 0.37 0.75 0.40 0.48 0.39 0.31 0.23 0.27 0.23 0.19 0.19 0.20 0.30 0.22 0.16 0.17 0.18 0.20 0.20 0.18 0.13 0.13 0.22 0.24 0.27 0.18 Fe 1.59 1.66 1.30 1.07 2.20 bd 1.20 1.47 1.21 0.96 1.28 1.38 1.20 1.30 1.66 1.36 1.30 1.07 1.50 1.04 0.98 1.24 1.05 1.24 0.78 1.35 1.29 1.14 1.44 1.63 1.71 1.48 1.02 1.76 1.37 1.44 1.39 1.43 1.22 1.63 1.28 1.28 0.93 1.30 1.75 1.60 2.50 1.78 1.17 1.13 1.17 1.47 1.82 1.65 SRHS-DU-2 Metatarsal (continued) Sr 3100.41 3715.19 4178.45 4439.15 4096.81 3749.16 3603.38 3484.69 2434.87 3255.62 2351.93 3341.20 2851.03 3145.54 4722.87 3924.65 3307.36 2944.25 3771.75 2888.43 3310.97 2706.94 3585.30 3998.93 2200.96 3438.60 3177.23 2816.66 4409.65 4420.90 3660.63 2700.02 3678.87 3155.62 3290.74 3369.42 3018.38 2974.06 4378.60 4898.68 2302.41 3372.53 2244.72 3574.68 4671.72 5664.01 3944.38 8949.28 1726.28 3185.34 3394.30 3905.02 4206.97 4180.59 Y 37.02 34.73 45.14 36.62 40.14 44.31 32.19 38.49 29.74 30.92 30.88 42.58 34.38 42.49 37.90 37.32 31.49 34.64 27.17 41.88 35.63 33.48 32.16 32.98 23.68 35.34 32.58 28.81 38.03 32.16 22.36 23.39 24.79 20.85 22.68 22.57 19.37 16.64 21.96 14.56 9.94 12.29 11.25 16.16 15.98 21.62 16.96 22.03 10.54 12.54 22.46 25.01 21.60 18.41 Ba 1262.92 1087.64 2195.61 1878.17 1867.78 1585.29 1760.95 1971.19 1739.46 1518.84 1255.78 1816.74 1461.19 1456.17 1786.07 1673.51 1316.18 1378.48 1008.15 1505.16 954.75 1238.45 1596.52 1446.96 1436.58 1384.66 1616.75 1432.49 2809.42 3503.75 1552.41 2103.38 1851.88 1418.61 1493.72 1900.94 1441.25 1595.32 1656.39 1386.49 986.78 1258.96 1065.66 nd nd nd nd nd 1693.76 1797.49 1263.39 1742.38 2270.44 1746.71 La 4.53 5.43 7.89 7.74 7.21 7.26 5.87 8.59 6.41 5.67 5.51 5.89 4.38 6.71 6.07 4.73 3.48 4.66 4.86 7.47 3.83 3.86 4.81 4.18 3.08 2.56 4.15 3.28 3.64 5.55 7.98 6.87 12.32 5.39 4.30 7.88 2.54 3.21 1.82 2.29 1.25 1.81 1.50 1.73 1.70 3.41 2.05 2.00 1.49 1.98 3.63 2.98 2.06 1.83 Ce 4.52 5.21 8.63 9.32 7.35 6.01 11.40 9.70 4.88 4.11 3.63 5.07 6.18 3.40 3.35 3.39 3.03 2.96 3.02 2.73 4.06 5.41 2.96 2.91 3.36 3.60 3.91 4.63 2.78 3.30 13.70 8.56 16.65 5.52 7.15 9.49 5.14 4.01 2.03 2.83 1.49 1.53 1.13 3.43 1.97 1.69 1.15 1.42 1.35 1.29 1.33 1.72 1.59 1.46 Pr 0.43 0.51 0.71 1.02 0.54 0.41 0.29 0.38 0.69 0.24 0.62 0.48 0.14 0.32 0.39 0.11 0.47 0.32 0.29 0.58 0.16 0.20 0.18 0.26 0.21 0.08 0.11 0.04 0.14 0.62 3.77 2.70 0.60 0.77 0.73 0.58 0.55 0.20 0.41 0.23 0.06 0.19 0.03 0.12 0.12 0.69 0.06 0.28 0.03 0.06 0.12 0.07 0.08 bd Nd 1.55 3.38 3.11 1.55 1.81 0.80 2.73 1.40 1.04 1.57 2.12 1.72 1.50 0.68 0.90 1.55 0.22 0.82 0.63 1.29 0.74 1.15 0.62 1.08 1.03 bd 1.83 0.95 1.63 2.28 2.68 2.46 3.47 3.45 2.04 1.11 0.70 0.23 0.85 0.21 0.34 0.89 0.56 0.22 bd 0.86 0.52 0.19 0.32 0.80 1.26 0.38 0.45 0.24 Sm 0.19 0.27 bd 0.19 bd 0.77 0.41 0.72 0.63 0.21 0.78 0.26 0.40 0.83 bd 0.27 0.27 0.25 bd 0.62 bd 0.27 bd bd bd bd bd bd 0.49 bd 0.50 0.74 0.44 0.20 1.23 bd 0.42 bd bd bd bd 0.27 0.23 0.54 bd bd 0.21 bd bd bd bd bd bd bd bd 0.33 0.35 0.17 0.28 0.23 0.18 0.36 0.13 0.13 0.18 0.16 0.24 bd 0.08 0.08 0.16 0.15 0.08 bd 0.07 bd bd 0.63 bd 0.17 0.11 bd bd bd 0.07 0.30 0.20 0.36 0.06 0.08 0.19 bd 0.08 bd bd 0.16 bd 0.08 0.08 0.05 0.13 bd 0.06 0.12 bd bd bd 0.27 Eu Gd 1.10 1.60 0.69 1.83 1.54 0.95 0.40 2.61 1.44 1.24 bd 0.76 0.20 0.81 1.07 bd bd 1.21 bd 3.38 bd 0.54 bd 0.51 0.24 0.81 3.26 1.69 0.96 1.16 0.73 1.21 3.45 0.58 0.80 1.05 0.42 0.28 0.25 0.26 0.61 bd 0.22 bd 1.61 0.17 0.82 0.24 0.58 0.38 0.16 0.46 0.27 0.30 Tb 0.09 0.13 0.06 0.18 0.26 0.11 0.17 0.03 0.15 0.05 0.09 0.21 0.07 0.03 0.22 0.09 0.19 0.15 0.06 0.18 0.11 0.03 0.12 0.03 0.26 0.07 0.04 0.27 0.23 0.05 0.18 0.15 0.18 0.12 0.05 0.03 0.05 bd 0.12 0.12 0.02 0.06 bd 0.03 bd 0.02 0.17 0.03 0.05 0.07 0.08 0.03 bd bd Dy 1.44 2.22 0.67 2.61 3.16 2.13 1.58 1.39 1.21 1.32 1.22 1.62 1.93 2.51 1.43 2.06 1.31 0.95 1.23 1.05 0.43 1.60 1.08 1.26 0.36 1.33 0.89 0.83 0.95 3.21 0.83 0.83 0.84 1.71 0.59 0.64 1.02 0.41 0.12 0.50 0.59 0.91 0.44 0.39 0.92 0.50 0.50 0.35 0.09 1.11 0.65 0.56 1.31 0.58 Ho 0.76 0.75 0.87 0.47 0.86 0.72 0.57 0.58 0.38 0.48 0.49 0.62 0.31 0.89 0.52 0.48 0.75 0.50 0.49 0.64 0.32 0.43 0.39 0.53 0.51 0.50 0.53 0.45 0.53 0.57 0.42 0.24 0.74 0.47 0.27 0.61 0.18 0.38 0.15 0.22 0.20 0.16 0.22 0.29 0.23 0.25 0.25 0.17 0.14 0.21 0.42 0.20 0.16 bd Er 2.17 2.43 2.59 2.85 2.96 3.14 2.59 2.29 2.09 2.77 2.06 2.05 3.17 4.06 2.14 1.41 1.86 2.47 3.37 2.80 1.41 1.46 0.79 1.38 2.35 1.02 0.97 1.51 2.59 1.86 2.09 1.56 1.39 0.83 0.86 1.55 1.57 0.45 0.81 0.55 0.65 1.42 0.12 0.85 1.59 0.91 0.99 0.77 0.72 1.32 1.24 0.24 1.15 1.28 Tm 0.38 0.50 0.75 0.51 0.71 0.46 0.23 0.47 0.36 0.22 0.36 0.39 0.14 0.50 0.37 0.31 0.78 0.28 0.44 0.32 0.18 0.16 0.46 0.27 0.57 0.38 0.55 0.20 0.73 0.22 0.17 0.08 0.35 0.34 0.28 0.24 0.32 0.46 0.12 0.24 0.12 0.12 0.18 0.03 0.25 0.14 0.29 0.22 0.20 0.24 0.35 0.21 0.19 0.17 Yb 2.22 3.97 1.80 5.35 5.02 4.03 3.15 3.54 1.61 2.50 2.46 3.98 1.54 3.84 3.22 1.68 1.90 2.41 2.14 3.71 3.59 2.51 1.22 2.19 2.07 4.25 2.06 1.40 3.78 1.64 2.42 2.07 1.38 0.96 0.71 1.49 0.44 1.99 2.51 0.55 0.43 0.94 0.32 0.94 1.72 1.93 0.73 1.02 0.82 2.02 2.12 1.47 2.67 2.12 Lu 0.38 1.00 0.80 0.45 0.75 0.73 0.26 0.74 0.29 0.48 0.40 0.46 0.33 0.49 0.48 0.41 0.65 0.38 0.45 0.59 0.28 0.60 0.48 0.30 0.57 0.35 0.75 0.36 0.87 0.65 0.31 0.22 0.42 0.33 0.23 0.17 0.49 0.32 0.36 0.17 0.34 0.31 0.17 0.27 0.24 0.37 0.27 0.25 0.12 0.24 0.28 0.32 0.07 0.58 bd bd bd bd bd bd bd 0.05 bd bd 0.04 bd bd bd bd bd bd bd bd bd bd bd 0.02 bd bd bd bd bd bd bd bd bd 0.02 bd bd bd bd bd bd bd 0.02 0.08 bd bd bd 0.02 bd bd bd bd 0.03 bd bd bd Th U ƩREE 2.54 20 3.76 28 3.77 29 3.25 34 3.61 32 5.97 28 4.11 30 3.12 33 3.55 21 2.35 21 2.33 20 4.04 24 3.17 21 4.66 25 2.82 20 4.72 17 6.25 15 2.93 18 3.15 17 7.64 25 2.61 15 6.67 18 3.19 13 2.56 16 2.84 15 2.73 15 5.01 19 2.47 16 8.68 19 4.26 21 2.24 36 2.87 28 1.74 42 1.39 21 1.49 19 1.17 25 1.45 14 1.18 12 1.59 10 2.55 8 0.67 6 1.49 9 0.73 5 1.12 9 1.82 10 1.74 11 3.18 8 3.01 7 2.25 6 2.86 10 3.17 12 2.51 9 3.90 10 3.03 9 Ce/Ce* -0.32 -0.35 -0.24 -0.26 -0.27 -0.37 0.51 -0.10 -0.50 -0.42 -0.57 -0.39 0.17 -0.60 -0.59 -0.39 -0.47 -0.53 -0.53 -0.74 -0.15 0.09 -0.50 -0.48 -0.20 0.17 -0.20 0.25 -0.38 -0.62 -0.44 -0.54 0.06 -0.39 -0.07 -0.13 0.02 -0.07 -0.45 -0.17 -0.06 -0.45 -0.35 0.46 -0.15 -0.74 -0.53 -0.57 -0.21 -0.45 -0.70 -0.51 -0.37 -0.43 Ce/Ce** 1.30 16.87 1.99 0.69 1.57 1.19 -6.82 3.20 0.53 16.39 0.69 1.27 -5.09 0.92 0.76 -1.85 0.41 0.87 0.89 0.41 4.47 9.59 1.94 1.62 3.05 -1.68 -1.46 -2.86 -1.76 0.67 0.24 0.22 10.01 1.22 0.96 1.35 0.68 1.38 0.42 0.86 8.47 1.39 -1.38 2.39 2.90 0.18 -4.64 0.33 -4.35 -1.27 -1.30 8.68 6.86 0.83 La/La* Y/Ho 1.93 48.5 -4.19 46.4 5.24 51.8 -0.09 77.9 2.22 46.5 1.35 61.9 -3.16 56.9 5.49 66.4 0.11 79.0 -8.91 64.5 1.20 62.6 2.26 68.5 -3.58 110.1 2.07 47.7 1.37 72.8 -3.18 77.6 -0.31 42.0 1.43 68.8 1.39 55.4 0.89 65.7 16.68 110.9 -16.13 77.6 5.70 82.4 5.51 61.9 15.43 46.9 -2.11 71.1 -2.43 61.5 -2.97 64.4 -2.79 71.7 1.58 56.9 -0.79 53.7 -0.74 98.7 -16.30 33.6 3.46 44.0 0.07 84.2 0.84 37.1 -0.48 108.6 0.69 44.2 -0.37 142.4 0.05 66.2 -19.11 50.2 5.92 75.9 -2.67 51.4 0.96 55.4 8.98 69.6 -0.46 86.9 -5.38 67.4 -0.30 126.1 -4.72 74.6 -2.71 60.2 -3.54 52.9 -39.28 127.9 -23.64 132.1 0.69 112.6 378 mm from bone rim 9.29 9.33 9.36 9.40 9.43 9.47 9.50 9.54 9.57 9.60 9.64 9.67 9.71 9.74 9.78 9.78 9.81 9.85 9.88 9.92 9.95 9.98 10.02 10.05 10.09 10.12 10.16 10.19 10.23 10.26 10.30 10.33 10.37 10.40 10.43 10.47 10.50 10.54 10.57 10.61 10.64 10.68 10.71 10.75 10.78 10.81 10.85 10.88 10.92 10.95 10.99 11.02 11.06 11.09 Sc 4.87 4.92 5.23 4.44 4.54 4.15 2.81 4.41 5.81 2.82 3.27 3.37 5.40 5.23 5.42 3.55 3.94 2.96 3.10 3.93 2.61 3.47 3.47 4.56 3.24 3.04 1.27 2.75 5.28 5.07 6.32 4.55 3.10 4.32 3.16 2.13 3.09 1.92 1.91 3.00 5.60 3.12 2.39 2.11 2.68 2.59 4.06 2.75 5.19 3.24 2.57 3.50 2.24 2.44 Mn 0.19 0.29 0.30 0.18 0.20 0.15 0.17 0.20 0.21 0.10 0.11 0.20 0.34 0.34 0.40 0.20 0.14 0.16 0.21 0.26 0.23 0.20 0.22 0.27 0.15 0.21 0.19 0.18 0.15 0.23 0.25 0.19 0.22 0.27 0.35 0.50 0.85 0.28 0.34 0.24 0.47 0.27 0.79 0.37 0.37 0.38 0.33 0.27 0.23 0.52 0.18 0.13 0.18 0.25 Fe 0.93 1.82 0.89 1.28 1.46 1.27 1.65 0.93 1.16 0.94 1.28 1.32 1.44 1.27 1.36 1.59 1.26 1.45 1.33 1.78 3.47 1.06 1.06 0.97 1.37 0.94 1.27 1.16 1.15 1.52 1.94 1.71 1.10 1.25 1.55 1.18 1.73 1.05 1.33 1.37 1.39 1.43 1.21 1.14 2.11 1.05 bd 1.47 1.33 1.04 1.39 1.45 1.25 1.65 SRHS-DU-2 Metatarsal (continued) Sr 3141.13 3836.55 2251.60 2348.94 2438.47 3066.13 3053.93 2380.88 3152.44 3402.96 2427.63 3302.29 2890.51 3999.72 4040.94 5408.00 3399.79 2844.89 2671.29 4773.70 4079.97 2804.32 4042.58 2419.71 2522.15 3046.48 1945.20 2233.16 3024.02 3948.68 4239.86 3361.52 2997.20 3128.26 4101.10 3146.68 2909.67 2632.84 2192.56 3042.26 4258.57 3256.63 2890.23 3265.08 2678.66 2901.80 4162.60 2427.37 3340.23 3367.38 3141.83 2771.91 2616.82 3211.89 Y 15.52 16.61 14.23 14.89 9.86 12.22 10.66 9.71 12.10 13.14 10.24 13.70 14.22 15.08 13.53 14.23 10.63 9.81 9.79 12.53 13.47 11.17 10.37 8.29 6.89 5.65 6.26 8.27 7.41 11.08 14.25 11.04 7.17 7.90 7.74 5.29 7.94 5.80 6.90 8.30 9.40 5.20 6.20 8.05 8.75 6.23 7.08 7.34 7.28 5.84 5.26 6.80 6.18 7.52 Ba 1689.52 2502.88 1352.21 1280.03 1210.25 nd nd 1424.97 1537.52 1353.04 1477.28 1212.74 nd 2494.70 1614.84 1460.57 1746.66 1462.18 1241.79 2347.92 2283.46 1634.74 1883.64 1087.95 1161.14 1282.86 812.39 1440.72 1672.14 2020.84 1949.48 1764.57 1452.15 1730.82 1533.48 1233.82 1394.34 1446.97 1463.47 1676.16 1404.29 1611.28 1576.73 1613.51 1649.22 1356.27 1230.45 1949.52 1453.42 2310.49 930.07 1143.45 947.02 2165.99 La 1.79 1.55 1.86 1.56 1.45 2.09 2.10 2.11 2.67 1.64 1.00 2.51 1.34 2.68 2.10 3.00 1.55 1.07 0.73 2.12 2.06 0.99 1.22 1.11 0.97 0.78 0.51 0.97 1.09 2.12 1.61 0.83 0.83 0.48 0.69 0.95 1.16 0.89 0.85 0.47 0.57 0.45 4.36 1.35 1.24 0.48 0.88 0.61 0.87 1.05 0.67 0.89 0.80 1.20 Ce 1.71 2.12 3.01 0.85 1.48 1.44 1.13 0.56 1.38 1.06 1.09 0.80 1.81 1.61 1.34 1.20 0.61 1.46 1.08 0.88 0.94 0.38 0.41 0.52 0.54 0.67 0.62 0.84 0.66 0.62 1.20 0.30 1.32 1.43 1.06 0.82 1.29 0.87 0.96 0.70 0.49 1.21 0.95 1.33 3.05 0.41 1.03 0.70 0.93 0.55 1.56 0.62 0.62 0.28 Pr 0.20 0.19 0.56 0.03 0.07 0.04 0.29 0.15 0.13 0.19 0.06 0.18 0.07 0.08 0.16 bd 0.08 0.10 bd 0.10 bd bd 0.09 0.07 bd 0.10 bd bd 0.30 0.04 0.11 0.11 0.25 bd bd 0.08 0.58 0.61 0.07 0.22 bd bd bd 0.19 0.07 0.06 0.08 bd 0.15 0.03 0.05 0.03 bd 0.05 Nd 0.57 0.21 0.18 0.18 bd 0.77 0.18 0.14 bd 0.18 0.17 0.64 0.64 bd 0.36 0.87 bd 0.20 0.40 0.57 0.76 bd bd 0.19 bd 0.40 bd 0.24 0.86 0.70 0.30 0.20 bd bd 0.57 0.23 0.78 0.22 0.21 0.63 0.47 bd bd bd bd bd 0.23 bd 0.21 0.16 bd bd bd 0.27 bd bd bd bd bd 0.31 0.45 bd bd bd bd bd 0.26 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.77 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.21 bd bd Sm bd bd 0.14 0.07 0.16 bd bd bd 0.14 0.60 0.13 0.08 bd bd 0.13 bd 0.08 0.07 bd bd bd bd bd 0.07 bd bd bd 0.09 bd bd bd 0.15 0.15 bd bd bd bd bd bd bd 0.08 0.08 0.09 0.16 bd bd 0.08 bd 0.08 bd bd bd 0.07 0.78 Eu Gd 0.45 0.26 0.22 0.22 0.51 bd 0.44 0.17 bd bd 0.21 bd 1.26 0.28 1.10 bd 0.53 bd 0.24 0.33 1.20 bd bd bd 0.23 bd 0.55 bd 1.52 bd 1.09 0.73 bd bd 1.35 0.28 0.31 0.52 bd 3.49 bd 0.80 0.86 0.26 bd bd bd 0.22 bd 0.18 bd bd bd 0.63 bd 0.06 bd 0.08 0.03 0.04 0.19 0.02 0.03 0.03 0.02 0.21 0.03 bd 0.03 0.12 bd 0.06 bd bd bd bd bd bd bd bd 0.03 bd 0.09 bd bd bd bd 0.11 bd bd bd bd bd bd bd 0.03 bd bd bd bd bd bd bd bd bd bd 0.03 0.04 Tb bd 0.25 0.33 0.54 bd 0.15 0.98 0.41 0.22 0.64 0.51 0.12 0.37 0.82 0.11 0.33 0.39 0.23 0.12 0.66 0.15 0.47 0.10 0.34 0.92 0.35 bd 0.42 bd 0.54 0.89 0.47 0.24 0.62 0.66 bd bd 0.26 0.36 0.24 0.14 bd 0.42 0.26 0.12 0.42 0.26 bd bd bd 0.09 0.72 0.22 0.47 Dy Ho 0.17 0.09 0.14 0.05 0.06 0.07 0.22 0.16 0.14 0.08 0.08 0.12 0.06 0.31 0.13 0.21 0.06 0.08 0.11 0.12 0.18 0.15 0.13 0.06 0.11 0.12 0.17 0.17 0.18 0.27 0.31 0.06 0.06 0.38 bd 0.10 0.11 0.06 0.09 0.21 0.10 bd 0.14 bd 0.09 0.05 0.03 0.05 0.31 0.02 0.04 0.02 0.19 0.04 Er 0.86 0.97 0.97 1.43 0.41 0.49 0.36 0.09 0.48 1.05 0.56 0.95 1.22 1.80 1.17 0.74 0.86 0.50 0.89 0.54 0.48 0.26 0.93 0.37 0.63 0.51 0.59 0.91 0.41 bd 0.58 0.91 0.65 1.18 0.72 0.59 0.33 0.28 0.13 0.93 0.15 0.28 0.31 0.42 0.27 0.81 0.14 0.24 0.41 0.10 0.29 0.67 0.24 0.34 Tm 0.16 0.03 0.26 0.13 0.09 0.07 0.26 0.04 0.05 0.03 0.12 0.06 0.09 0.16 0.20 0.20 bd 0.05 0.08 0.04 0.17 0.08 0.10 0.08 0.16 0.08 0.09 bd 0.03 0.13 0.21 0.11 0.05 0.03 bd 0.13 0.11 0.03 0.14 0.11 0.13 0.03 0.06 0.06 0.23 0.02 0.03 0.02 0.03 0.04 0.06 0.05 0.13 0.03 Yb 0.81 2.21 1.77 0.47 1.28 2.17 0.32 1.32 1.60 1.24 0.30 0.36 1.44 0.80 0.62 1.22 1.14 0.83 0.67 0.71 1.49 0.86 0.77 0.66 0.33 0.51 0.78 0.60 0.54 0.98 0.26 0.52 0.87 0.67 0.96 0.39 0.22 0.37 0.88 1.95 0.39 1.13 0.41 0.56 0.71 0.46 1.15 0.16 0.90 0.40 0.38 0.15 0.16 0.90 Lu 0.35 0.13 0.23 0.14 0.20 0.04 0.14 0.20 0.41 0.25 0.05 0.13 0.16 0.25 0.23 0.31 0.38 0.21 0.18 0.30 0.39 0.12 0.39 0.12 0.24 0.12 0.14 0.26 0.10 0.21 0.05 0.25 0.09 0.16 0.22 0.11 0.08 0.07 0.13 0.16 0.07 0.14 0.11 0.17 0.13 0.03 0.28 0.17 0.26 0.12 0.28 0.05 0.12 0.37 bd bd bd 0.02 bd bd bd bd bd bd bd bd bd 0.06 0.02 bd bd bd 0.02 bd bd bd bd bd 0.02 bd bd bd bd bd bd 0.02 bd 0.03 bd bd bd 0.03 bd bd 0.08 bd bd bd bd bd 0.03 bd bd 0.04 0.02 0.02 bd bd Th U ƩREE 1.46 7 2.31 8 1.37 10 1.57 6 1.21 6 2.03 8 2.29 7 1.95 5 2.08 7 1.73 7 1.17 4 1.89 6 2.75 9 1.77 9 2.17 8 4.20 8 1.80 6 2.54 5 1.00 5 2.17 6 0.97 8 0.82 3 1.80 4 0.73 4 0.87 4 1.13 4 1.44 3 2.03 4 3.51 7 4.00 6 3.75 7 2.08 5 0.94 5 1.43 5 1.63 6 2.36 4 0.89 5 0.94 4 1.46 4 0.70 9 1.07 3 0.91 4 1.23 8 1.86 5 2.41 6 1.68 3 2.97 4 3.05 2 2.09 4 1.47 3 1.92 3 1.12 3 0.94 3 1.34 5 Ce/Ce* -0.38 -0.14 -0.31 -0.53 -0.21 -0.41 -0.68 -0.81 -0.60 -0.58 -0.18 -0.77 0.04 -0.50 -0.54 -0.68 -0.70 -0.08 -0.11 -0.67 -0.64 -0.74 -0.76 -0.64 -0.62 -0.48 -0.56 -0.55 -0.73 -0.74 -0.45 -0.78 -0.32 0.18 -0.26 -0.39 -0.65 -0.76 -0.22 -0.51 -0.67 -0.11 -0.83 -0.41 0.86 -0.47 -0.19 -0.38 -0.40 -0.56 0.66 -0.43 -0.39 -0.81 Ce/Ce** 0.87 0.79 0.33 8.32 13.49 -1.28 0.25 0.26 0.75 0.38 1.78 0.51 -5.95 10.08 0.74 -10.57 40.53 1.18 1.52 3.26 -4.04 0.83 0.96 0.79 0.74 0.85 0.24 0.30 0.23 -0.61 1.15 0.23 0.40 0.78 0.76 1.03 0.16 0.09 1.34 0.32 0.21 0.46 0.36 0.56 8.01 1.96 1.34 0.51 0.47 7.43 4.30 -123.82 4.84 2.18 La/La* Y/Ho 0.70 93.1 -0.12 175.6 -0.70 102.8 -51.07 275.7 -8.54 157.7 -2.71 164.6 -0.31 49.0 0.47 58.9 1.22 87.8 -0.11 165.0 2.01 134.0 2.40 110.8 -3.34 231.1 -16.62 49.0 0.98 101.3 -6.23 68.4 -6.32 165.8 0.42 116.5 1.74 85.1 -16.93 103.2 -4.45 73.9 19.12 76.3 38.93 79.1 2.13 149.8 1.89 60.2 1.44 48.8 -0.69 37.7 -0.47 48.1 -0.30 40.1 -2.90 41.4 1.91 46.2 0.05 190.0 -0.60 122.6 -0.55 20.6 0.07 36.6 1.24 52.6 -0.77 71.2 -0.87 92.4 1.24 76.6 -0.59 39.1 -0.58 93.2 -0.72 69.0 1.67 44.8 -0.08 70.7 17.07 96.5 -10.45 120.6 1.12 223.3 -0.27 137.7 -0.31 23.6 -29.56 266.4 4.06 122.6 -8.22 276.6 -27.38 32.6 -20.03 200.8 379 mm from bone rim 11.13 11.16 11.19 11.23 11.26 11.30 11.33 11.37 11.40 11.44 11.47 11.51 11.54 11.57 11.61 11.61 11.64 11.68 11.71 11.75 11.78 11.82 11.85 11.89 11.92 11.95 11.99 12.02 12.06 12.09 12.13 12.16 12.20 12.23 12.27 12.30 12.33 12.37 12.40 12.44 12.47 12.51 12.54 12.58 12.61 12.65 12.68 12.71 12.75 12.78 12.82 12.85 12.89 12.92 Sc 5.22 4.03 3.36 4.14 3.73 3.34 7.98 3.16 3.77 3.06 3.63 2.76 3.72 2.69 3.33 3.09 2.35 3.43 2.11 3.08 3.78 2.00 2.64 2.85 2.80 3.60 4.22 4.49 2.49 2.61 2.27 2.13 2.12 2.00 4.00 3.89 3.52 2.48 1.58 2.08 1.89 1.71 2.06 2.03 3.64 2.54 2.69 2.45 2.26 2.62 1.29 0.75 1.54 2.08 Mn 0.20 0.21 0.16 0.18 0.19 0.18 0.32 0.27 0.33 0.20 0.18 0.17 0.18 0.19 0.16 0.52 0.35 0.29 0.28 0.22 0.33 0.46 0.31 0.43 0.40 0.76 0.29 0.39 0.14 0.22 0.20 0.60 0.35 0.34 0.34 0.30 0.14 0.19 0.23 0.19 0.16 0.14 0.17 0.25 0.19 0.19 0.19 0.24 0.20 0.19 0.23 0.20 0.25 0.19 Fe 1.54 1.49 0.95 1.10 1.24 0.86 1.96 0.91 1.40 0.94 1.88 0.99 1.33 1.37 1.08 1.86 1.00 1.38 1.30 1.17 1.36 2.48 1.53 1.52 3.16 1.48 2.51 2.26 1.08 1.41 bd 1.65 2.03 2.33 1.59 1.45 0.91 1.47 1.06 1.40 1.26 0.85 0.70 0.81 1.33 1.12 1.97 1.01 1.24 1.15 1.33 1.00 1.57 1.32 SRHS-DU-2 Metatarsal (continued) Sr 4958.38 3914.75 2928.53 3062.37 3118.12 2364.58 3579.70 2987.12 4241.94 2831.07 3199.07 2290.10 3675.52 2648.38 2075.65 3894.19 1770.95 2856.84 3454.47 2124.05 3006.47 3915.28 3550.82 3550.63 3588.02 3728.82 4352.34 4522.33 2208.53 2275.14 3456.64 6308.16 2986.28 3947.35 6180.12 2615.02 2106.53 2760.97 2320.99 3767.89 2236.63 2277.63 2974.19 3409.55 3164.44 2607.65 3343.58 3117.45 3436.76 3832.53 2763.43 2905.58 3135.96 2410.70 Y 11.27 8.86 8.87 6.71 9.99 5.68 9.15 7.63 9.33 5.28 7.22 6.83 7.24 7.46 5.15 9.01 5.93 5.33 6.47 4.48 7.59 5.20 5.67 6.41 6.48 5.40 6.92 4.39 3.63 2.42 3.68 8.53 4.50 4.78 10.52 4.62 6.05 3.55 3.39 2.47 3.48 3.24 3.33 3.89 6.27 2.56 3.67 3.60 3.71 3.32 4.71 2.59 2.61 2.70 Ba 2000.13 1550.89 1211.52 1191.17 1465.59 1515.72 2111.41 1388.04 2112.39 1468.54 1680.84 1302.67 1489.79 1101.61 836.44 1402.82 1250.98 1769.87 2349.16 967.62 3612.07 1801.81 3733.16 2999.20 3777.70 2710.20 nd 2139.23 1258.06 1633.50 967.77 2803.33 1711.30 2023.70 1742.98 1290.16 1123.79 1560.03 1098.92 nd 771.56 1092.40 1206.10 1097.72 1729.46 1522.46 1227.58 2209.92 1451.05 1303.94 1995.24 1548.13 4350.85 2004.59 La 1.30 1.08 1.07 1.11 1.28 0.81 1.54 1.31 2.07 1.27 2.01 1.11 0.78 1.42 0.51 2.19 0.29 0.80 0.90 0.71 0.39 0.73 0.90 1.19 1.23 0.95 0.97 1.14 0.89 0.39 0.10 0.65 0.52 0.79 0.85 0.86 0.52 0.41 0.30 0.57 0.55 0.42 0.35 0.40 1.15 0.65 0.52 0.69 0.53 0.36 0.05 0.32 0.56 0.20 Ce 11.00 1.52 2.36 0.29 0.72 1.49 2.24 1.08 2.18 1.04 2.45 1.28 1.41 0.82 1.04 1.03 0.63 0.59 0.30 1.12 1.25 1.33 1.14 0.54 0.46 0.28 0.56 1.24 bd 0.51 0.31 0.44 0.94 8.53 0.69 0.59 0.33 0.23 0.56 0.33 0.17 0.31 0.22 1.35 0.56 0.36 0.13 0.91 0.34 0.47 0.31 0.45 0.23 0.33 Pr 0.30 0.04 0.35 0.16 0.19 0.16 0.19 0.21 0.18 0.22 0.13 0.10 0.44 0.07 0.11 0.10 0.14 0.12 0.05 0.07 0.39 bd bd 0.17 0.05 0.05 bd 0.13 0.04 bd 0.04 0.18 bd 0.14 0.14 0.04 0.04 0.08 0.07 bd 0.06 bd bd bd 0.09 0.05 0.06 bd 0.12 0.04 bd 0.05 bd bd Nd 0.29 3.06 bd 0.71 bd 0.61 0.54 0.62 0.34 0.36 0.59 0.76 0.86 0.20 0.21 0.28 bd 1.08 1.18 bd bd 0.72 bd 0.32 bd 0.82 1.03 1.13 0.63 0.27 bd bd 0.76 0.28 bd 0.44 bd bd 0.21 bd 0.17 bd 0.21 bd 0.74 0.29 0.32 bd bd 0.25 0.25 bd bd bd bd bd bd bd bd 0.18 0.32 bd 0.41 bd 0.23 bd bd bd 0.50 0.33 bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.30 bd bd bd bd 0.27 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd Sm bd bd 0.21 bd 0.08 bd bd 0.33 bd 0.19 0.07 0.14 bd bd 0.23 bd 0.30 0.26 bd 0.14 bd bd bd bd bd bd 0.74 bd bd bd bd bd 0.18 0.10 bd bd bd bd 0.15 bd 0.06 bd bd bd bd bd bd bd bd 0.46 bd bd 0.10 bd Eu bd bd bd bd 0.52 bd bd 1.09 bd 0.42 bd 0.67 0.25 bd bd bd bd 1.27 0.35 bd bd bd 1.96 0.38 bd bd 0.40 bd bd 0.32 bd bd bd 0.33 0.99 0.26 0.27 bd 0.49 0.71 bd 0.22 bd bd 0.29 0.68 bd bd bd 0.30 bd bd 0.65 bd Gd Tb 0.12 bd bd 0.07 0.03 0.02 0.08 bd bd bd 0.14 0.11 bd 0.06 bd bd bd bd bd bd bd bd bd 0.05 bd bd bd bd 0.03 0.04 bd bd bd bd bd bd 0.03 0.03 bd 0.03 bd bd bd 0.08 0.03 0.04 bd bd bd bd bd bd 0.04 bd Dy 0.17 0.44 0.17 bd 0.25 bd bd 1.07 1.38 bd 0.45 0.33 0.12 0.11 0.49 0.16 bd bd bd 0.34 0.44 bd 0.32 0.19 bd bd bd bd bd 0.16 bd 0.62 bd bd 1.21 bd bd 0.26 0.24 bd 0.20 bd bd 0.33 0.29 bd 0.18 0.20 0.41 0.15 bd bd bd 0.23 Ho 0.04 bd bd 0.20 0.13 0.11 0.16 0.09 0.05 0.08 0.08 0.11 0.25 0.11 0.06 0.08 bd 0.26 0.04 0.19 bd 0.03 0.04 0.05 bd 0.16 bd 0.16 bd bd 0.07 0.15 bd 0.20 0.06 0.06 0.03 0.03 0.09 0.06 bd bd 0.03 bd 0.11 bd 0.04 0.10 0.14 bd bd 0.13 bd 0.03 Er 0.74 bd bd 0.60 0.69 0.29 0.52 0.58 0.43 1.03 0.25 0.60 0.54 0.76 0.53 0.52 bd 0.91 bd bd 0.72 bd 0.34 bd 0.40 0.17 0.21 bd 0.79 0.17 bd 0.67 0.48 0.53 0.26 0.42 0.14 0.42 0.53 0.51 0.10 bd 0.41 0.17 bd 0.73 0.20 0.21 0.30 0.15 bd 0.19 bd 0.12 Tm bd 0.10 0.28 0.03 0.12 0.04 bd 0.25 bd 0.10 0.05 bd 0.12 0.05 0.08 0.11 0.03 0.15 0.04 bd bd 0.03 bd 0.04 bd 0.04 bd 0.05 bd bd bd bd 0.03 bd 0.06 0.03 0.03 0.03 bd 0.03 0.07 0.05 0.03 0.08 0.10 0.08 0.09 bd bd bd bd bd bd bd Yb 1.72 0.21 0.99 1.40 2.02 bd bd 0.52 0.57 0.75 0.65 0.63 0.54 bd 0.53 1.40 0.17 0.30 bd 0.32 bd 0.40 0.23 0.55 0.81 0.46 0.86 0.63 0.17 1.38 bd 0.90 bd 0.70 0.35 0.37 0.19 0.19 0.70 1.01 0.43 0.31 0.36 0.24 0.21 bd 0.54 0.28 0.20 0.21 0.21 bd 0.46 0.17 Lu 0.09 0.19 bd 0.22 0.27 0.09 0.12 0.24 0.31 0.14 0.09 0.14 0.03 0.03 0.13 0.25 0.03 0.38 0.13 0.03 0.12 0.11 0.08 0.25 0.10 0.13 0.05 0.06 0.13 0.21 0.15 bd bd 0.17 0.06 bd 0.04 0.03 0.03 bd 0.05 bd 0.03 0.04 0.04 0.13 0.05 0.05 0.07 bd 0.04 0.05 0.21 bd bd bd 0.07 bd bd bd 0.03 bd bd bd bd bd bd bd bd bd bd 0.08 0.07 bd bd bd bd bd bd 0.06 bd bd bd 0.06 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.03 bd bd bd bd bd bd bd bd Th U ƩREE 1.88 16 1.21 7 1.94 5 3.71 5 3.24 6 1.41 4 1.04 6 2.61 7 1.38 8 1.40 6 2.16 7 1.76 6 2.14 5 1.03 4 1.63 4 4.04 6 1.12 2 2.49 6 1.73 3 1.22 3 1.65 3 1.04 3 1.37 5 0.74 4 2.08 3 1.53 3 1.70 5 2.80 5 0.95 3 1.24 3 0.74 1 1.87 4 1.39 3 1.90 12 4.85 5 1.40 3 2.02 2 1.47 2 1.75 3 1.64 3 1.93 2 1.16 1 1.16 2 2.06 3 0.74 4 0.99 3 1.73 2 2.51 2 1.93 2 1.02 2 0.75 1 1.39 1 1.00 2 0.58 1 Ce/Ce* 3.11 0.13 -0.11 -0.84 -0.67 -0.03 -0.08 -0.53 -0.26 -0.55 -0.10 -0.20 -0.48 -0.54 0.03 -0.63 -0.30 -0.57 -0.74 0.08 -0.40 -0.32 -0.47 -0.73 -0.70 -0.77 -0.60 -0.30 -0.21 -0.13 0.06 -0.70 -0.24 4.84 -0.55 -0.45 -0.54 -0.70 -0.10 -0.63 -0.79 -0.59 -0.67 0.83 -0.65 -0.60 -0.84 -0.18 -0.69 -0.17 0.19 -0.21 -0.76 -0.41 Ce/Ce** 2.50 -0.23 1.70 0.28 0.46 1.26 1.21 0.52 1.01 0.37 2.89 -6.68 0.26 1.22 0.78 1.09 0.87 -1.10 -0.15 -0.94 0.29 0.45 0.33 0.26 -0.98 -0.23 -0.56 -2.20 -0.95 -229.11 -0.56 0.24 1.03 4.84 0.44 -1.36 -2.82 0.46 0.79 0.52 0.30 0.41 0.32 28.62 -1.51 2.61 0.86 1.14 0.25 3.92 1.44 1.76 0.31 0.45 La/La* Y/Ho -0.55 276.6 -1.17 154.7 -11.55 154.7 2.48 32.8 0.77 79.6 0.69 51.7 0.57 58.7 0.18 87.4 0.58 196.7 -0.27 68.6 6.73 86.5 -2.97 63.2 -0.76 29.5 2.92 65.2 -0.37 86.4 3.37 114.5 1.34 67.6 -1.81 20.7 -1.43 157.5 -1.52 23.0 -0.85 89.2 -0.57 155.5 -0.58 147.3 -0.05 141.1 -2.88 87.7 -1.72 34.3 -1.75 30.8 -2.11 27.3 -1.89 39.7 -3.49 39.7 -1.15 52.2 -0.35 56.2 1.50 40.0 -0.26 23.8 -0.04 180.1 -2.53 73.3 -2.94 186.2 1.46 114.5 -0.22 37.9 0.67 43.2 0.79 76.8 0.01 76.8 -0.03 110.5 -2.69 84.8 -2.70 59.2 -10.53 70.5 -7.92 81.8 0.73 37.1 -0.34 27.4 -7.06 23.3 5.04 23.3 10.52 19.3 0.55 57.7 -0.44 96.1 380 mm from bone rim 12.96 12.99 13.03 13.06 13.09 13.13 13.16 13.20 13.23 13.27 13.30 13.34 13.37 13.41 13.44 13.47 13.51 13.54 13.58 13.61 13.65 13.68 13.72 13.75 13.79 13.82 13.85 13.89 13.92 13.96 13.99 14.03 14.06 14.10 14.13 14.17 14.20 14.23 14.27 14.30 14.34 14.37 14.41 14.44 14.48 14.51 14.55 14.58 14.61 14.65 14.68 14.72 14.75 14.79 Sc 1.53 2.40 1.73 1.15 1.87 1.96 1.93 0.91 2.70 1.80 2.86 2.76 3.46 3.34 3.06 3.00 1.39 3.32 1.54 3.47 4.26 2.85 3.43 3.64 3.00 3.37 2.96 1.27 2.88 1.69 1.30 1.61 2.58 1.62 0.82 1.00 1.99 4.01 2.23 2.51 2.02 1.80 1.21 1.99 2.23 2.14 1.69 2.22 4.26 2.74 2.69 1.37 1.68 2.95 Mn 0.23 0.24 0.22 0.25 0.56 0.25 0.21 0.27 0.28 0.26 0.50 0.20 0.22 0.20 0.15 0.24 0.16 0.19 0.15 0.22 0.20 0.15 0.18 0.26 0.21 0.56 0.28 0.24 0.16 0.23 0.16 0.23 0.23 0.23 0.23 0.17 0.24 0.23 0.16 0.16 0.20 0.26 0.21 0.19 0.33 0.20 0.19 0.13 0.18 0.38 0.35 0.22 0.23 0.85 Fe 1.14 1.16 0.99 1.80 1.35 1.44 1.92 1.22 1.46 1.89 1.37 1.76 1.21 1.20 1.02 1.35 1.28 1.05 1.96 1.47 2.52 1.17 1.10 1.42 1.09 1.10 1.65 2.06 1.01 1.46 0.84 1.25 1.03 1.62 0.79 1.36 1.14 1.14 1.31 0.92 1.43 1.12 1.24 1.29 1.43 1.46 1.32 0.81 0.84 1.50 1.07 2.40 1.53 2.10 SRHS-DU-2 Metatarsal (continued) Sr 4209.08 3737.18 2721.30 4094.82 3706.55 4385.86 2908.22 4378.13 3621.79 3811.23 3706.80 3171.19 3045.97 2609.38 3789.02 3922.12 2436.34 2619.79 3599.05 3274.60 3978.98 2670.33 2353.19 3139.13 4935.36 3988.60 3764.82 3933.43 2062.99 4816.95 2287.90 2504.32 3253.72 3254.04 3113.66 3176.39 3030.03 3101.00 2426.49 2142.58 3966.02 3064.49 2538.77 2810.53 3683.11 2854.42 3587.54 2420.91 4450.29 3332.18 3602.88 3723.67 3666.80 5846.56 Y 4.56 4.18 2.68 3.47 2.86 2.81 1.80 2.78 3.34 2.11 4.21 4.88 4.32 3.53 4.90 3.97 5.79 4.88 3.46 2.56 3.73 2.54 2.40 2.76 3.56 2.28 3.11 2.23 3.37 2.78 2.16 2.92 2.52 2.50 2.86 2.42 2.66 2.62 2.93 2.00 4.56 3.69 3.00 2.38 3.20 3.31 2.82 2.06 2.63 2.38 2.79 3.12 3.16 3.17 Ba 1997.81 1899.63 1355.37 1791.26 2124.00 1913.72 1559.86 1829.70 2414.08 1689.41 1730.36 1538.42 1749.39 931.56 1239.81 1772.42 1263.81 1100.39 1305.58 1657.53 2402.96 2048.04 1592.28 1830.68 1529.43 1841.33 3012.55 2380.01 1841.62 2453.58 1258.75 1018.37 2802.04 1316.14 1841.61 1699.44 1367.33 1583.59 1105.29 nd 1416.50 1065.67 1393.88 1230.38 1851.98 1735.32 2251.15 696.02 1205.62 1897.20 2366.27 1943.47 1715.69 4197.00 La 0.45 0.64 0.20 0.26 0.76 1.73 0.20 6.39 0.47 0.50 0.28 0.47 0.55 0.45 0.42 0.91 0.93 0.44 0.78 0.10 0.36 0.60 0.54 0.65 0.48 0.69 0.25 0.40 0.29 0.76 0.45 0.35 0.36 0.51 0.12 0.42 0.32 0.36 0.59 0.39 0.81 0.40 0.28 0.68 0.64 1.15 0.82 0.25 0.42 0.63 0.19 0.39 0.40 0.64 Ce 0.39 0.12 0.35 0.06 0.39 0.54 2.86 0.21 0.77 0.47 0.53 0.33 0.41 0.23 0.53 0.58 1.08 1.00 0.91 0.51 0.86 0.05 0.32 0.33 0.19 0.25 0.31 1.36 0.40 2.27 0.18 0.48 0.24 0.13 0.06 0.47 0.61 1.65 0.15 0.70 0.82 0.93 1.93 0.24 0.21 0.23 0.18 0.21 0.98 bd 0.82 3.45 0.55 0.12 Pr 0.11 bd 0.04 bd bd bd 0.08 bd bd bd 0.10 bd bd bd 0.04 1.10 0.04 0.08 0.05 bd bd bd bd bd bd bd bd 0.04 bd bd 0.03 bd bd bd bd 0.16 0.71 0.15 0.09 0.04 0.06 bd bd bd bd bd bd bd bd bd bd 0.11 0.08 bd bd 0.29 bd 0.64 bd bd bd bd 0.23 0.20 0.20 bd 0.25 bd bd 0.47 bd 0.44 0.27 0.50 bd 0.49 bd 0.54 0.23 bd bd bd 0.73 bd bd bd bd bd bd bd 0.23 bd bd bd bd bd bd 0.24 0.35 bd bd bd 0.59 bd bd 0.43 bd bd Nd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.30 0.71 bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.27 bd bd bd bd bd bd bd bd 0.42 bd 0.21 bd bd bd bd bd bd bd Sm bd bd bd bd bd bd 0.18 bd bd bd bd bd bd bd bd 0.17 0.08 0.24 0.10 bd bd bd bd bd bd 0.09 0.09 bd bd 0.09 bd bd bd bd bd bd 0.08 bd bd bd bd bd 0.17 bd 0.13 0.10 bd bd 0.11 bd bd bd bd bd Eu bd bd bd 0.76 bd bd bd 0.49 0.27 0.24 0.23 0.27 bd bd 0.30 bd bd bd 0.98 0.29 bd bd bd bd bd 1.15 bd bd 0.86 bd bd bd bd 0.37 bd 0.54 0.27 bd bd bd bd bd 0.55 bd bd bd bd bd 0.70 bd 0.55 1.27 0.26 bd Gd bd bd 0.03 0.09 0.04 bd bd 0.03 bd 0.12 bd 0.03 bd bd 0.04 bd bd bd bd bd bd bd bd 0.23 bd bd 0.03 bd bd 0.11 bd bd bd bd 0.04 0.06 bd bd bd bd bd bd bd bd 0.15 bd 0.02 bd 0.04 bd bd bd 0.03 bd Tb Dy 0.37 bd bd bd 0.54 0.38 bd bd bd 0.24 0.11 bd bd 0.13 0.30 0.27 0.13 bd 0.48 bd 0.52 0.14 0.11 0.15 0.14 bd bd bd bd 0.14 0.10 bd bd bd bd bd bd bd 0.10 bd bd bd 0.13 0.14 0.20 0.16 0.10 0.24 bd bd bd 0.50 0.13 bd Ho 0.14 bd bd bd 0.09 bd bd bd bd 0.03 0.03 bd 0.03 bd bd bd 0.13 bd 0.08 0.03 0.08 bd 0.03 bd bd 0.03 bd 0.03 0.03 bd bd 0.12 bd 0.13 0.04 0.03 0.06 0.04 bd bd bd bd 0.07 bd bd 0.04 0.05 0.09 bd 0.03 bd bd 0.03 bd Er 0.40 0.18 0.15 bd bd bd bd bd bd 0.13 0.12 0.29 0.15 0.28 0.16 bd bd 0.27 0.17 bd 0.18 0.15 bd bd 0.44 bd bd 0.31 0.15 bd 0.43 bd 0.18 bd 0.18 0.29 bd 0.37 0.23 0.30 0.68 0.74 bd bd bd bd 0.56 0.39 0.18 0.13 bd 0.27 bd 0.54 Tm bd 0.12 0.03 bd 0.04 0.09 0.03 bd 0.06 0.03 bd bd 0.03 0.06 0.21 0.03 bd bd 0.04 bd bd bd 0.05 0.07 0.06 0.07 bd 0.07 bd 0.03 bd bd bd bd 0.08 0.03 bd bd bd bd 0.10 0.11 bd bd 0.10 bd bd 0.03 0.12 0.06 bd bd bd 0.08 Yb 0.27 bd bd 0.27 0.52 0.27 0.20 0.17 0.20 0.17 0.50 0.39 0.21 0.37 bd 0.59 0.18 1.66 bd 0.42 0.25 0.21 0.32 bd bd 1.22 bd 0.20 0.40 0.21 bd 0.36 0.74 0.53 bd bd 0.38 0.25 0.45 bd 0.30 0.16 bd bd 0.88 0.71 0.15 0.17 0.25 bd 0.39 bd 0.18 1.20 Lu 0.20 0.35 0.07 bd bd 0.15 0.04 bd 0.04 bd bd 0.07 bd 0.07 0.04 0.11 0.03 0.13 0.13 0.08 0.09 0.11 0.06 0.16 0.04 0.04 0.04 0.11 0.04 bd 0.05 0.03 0.04 0.05 bd 0.03 bd 0.04 0.06 bd 0.06 bd 0.18 bd 0.21 0.22 0.35 0.03 0.18 0.06 0.04 0.03 0.10 bd bd bd bd bd 0.04 bd bd bd 0.03 bd 0.09 bd bd bd bd 0.03 bd bd 0.10 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.03 bd bd bd bd bd bd bd bd bd bd 0.07 bd 0.05 bd bd bd bd bd bd Th U ƩREE 1.32 2 1.45 2 0.37 1 0.69 2 0.97 2 1.67 3 1.43 4 0.79 7 0.89 2 1.45 2 2.93 2 1.96 2 1.72 2 1.14 2 1.43 2 2.61 4 1.62 3 1.72 4 1.97 4 1.91 2 3.54 3 1.66 2 3.59 1 3.11 2 2.41 2 1.90 4 1.13 1 1.52 3 1.70 3 2.04 4 1.09 1 1.39 1 1.22 2 1.20 2 1.16 1 1.02 2 0.87 3 1.66 3 0.73 2 0.82 1 2.44 3 0.75 2 1.67 3 0.42 1 1.63 3 1.61 3 2.12 2 1.00 1 2.46 4 1.55 1 1.25 2 2.42 6 1.79 2 2.63 3 Ce/Ce* -0.59 -0.88 -0.10 -0.88 -0.64 -0.75 4.06 -0.97 -0.15 -0.50 -0.28 -0.59 -0.55 -0.71 -0.16 -0.90 -0.06 0.25 -0.12 0.73 0.49 -0.94 -0.59 -0.63 -0.72 -0.73 -0.33 1.26 -0.15 1.35 -0.71 -0.37 -0.69 -0.86 -0.89 -0.58 -0.82 0.60 -0.86 0.17 -0.27 0.17 1.88 -0.78 -0.80 -0.85 -0.85 -0.67 0.20 -0.14 0.44 2.89 -0.28 -0.88 Ce/Ce** 0.33 0.20 -0.81 -0.13 -47.91 -67.27 8.17 0.41 0.76 0.43 0.42 0.47 0.63 0.61 -4.00 0.03 -2.27 4.78 6.98 -1.12 -1.89 -0.11 -0.63 -0.60 1.06 -0.60 -0.74 -2.96 -0.34 -4.09 -0.27 1.13 0.57 0.30 0.14 0.31 0.05 0.81 0.15 5.12 1.69 1.03 2.14 0.28 0.35 0.73 0.57 0.67 57.64 4.12 3.75 4.16 -2.62 -0.29 La/La* Y/Ho -0.35 33.3 1.60 32.7 -1.35 32.7 -1.36 32.7 -4.00 32.1 -7.84 52.9 -61.74 52.9 55.75 52.9 -0.17 52.9 -0.22 73.6 -0.63 151.4 0.29 138.1 0.79 124.8 7.24 85.5 -2.40 85.5 -0.92 85.5 -2.57 46.3 -5.31 45.2 -13.12 44.2 -1.17 73.6 -1.60 44.2 -2.01 67.1 -1.84 90.0 -1.94 78.7 -87.26 78.7 -2.22 67.5 -1.45 66.4 -1.67 65.4 -1.24 100.2 -2.16 62.0 -1.62 62.0 11.24 23.9 11.67 21.2 16.99 18.6 3.21 69.5 -0.47 75.7 -0.96 41.2 -0.72 63.4 0.01 54.3 -11.80 54.3 2.88 54.3 -0.20 54.3 -0.43 45.2 0.39 64.5 1.75 64.5 -25.72 83.8 -18.76 56.2 -6.40 23.3 -2.30 52.5 -5.59 81.8 -2.37 92.0 0.16 92.0 -1.82 102.3 -2.00 82.8 381 mm from bone rim 14.82 14.86 14.89 14.93 14.96 14.99 15.03 15.06 15.10 15.13 15.17 15.20 15.24 15.27 15.31 15.34 15.37 15.41 15.44 15.48 15.51 15.55 15.58 15.62 15.65 15.69 15.72 15.75 15.79 15.82 15.86 15.89 15.93 15.96 16.00 16.03 16.07 16.10 16.13 16.17 16.20 16.20 16.24 16.27 16.31 16.34 16.38 16.41 16.45 16.48 16.51 16.55 16.58 16.62 Sc 1.70 1.85 2.74 2.82 0.50 1.51 1.12 1.62 1.04 1.98 0.87 1.68 1.49 1.75 3.24 1.76 1.61 2.63 1.98 2.61 2.08 1.67 2.92 2.28 2.59 1.57 2.14 1.32 0.89 2.12 2.13 1.11 2.14 2.04 1.04 1.62 0.60 1.85 2.04 0.70 0.69 2.37 4.04 1.81 3.37 1.83 0.92 2.68 2.72 2.77 1.02 2.18 1.33 1.67 Mn 0.38 0.48 0.29 0.25 0.21 0.24 0.23 0.33 0.22 0.32 0.31 0.28 2.43 0.62 0.75 0.44 0.32 0.31 0.26 0.52 0.37 0.25 0.48 0.45 0.38 0.49 0.23 0.33 0.12 0.22 0.22 0.13 0.26 0.20 0.18 0.19 0.20 0.27 0.20 0.66 0.32 0.17 0.23 0.24 0.21 0.23 0.25 0.37 0.28 0.31 0.36 0.24 0.16 0.13 Fe 1.64 1.50 1.16 1.25 2.55 0.89 1.42 1.07 1.37 1.74 0.88 1.70 1.66 2.44 1.31 1.74 1.07 1.32 1.29 1.78 1.36 1.17 1.48 1.18 1.87 4.41 1.12 1.95 0.87 1.51 1.15 1.14 1.45 1.35 1.24 0.80 0.77 1.69 2.35 2.18 0.93 0.96 0.96 1.05 1.01 1.27 1.85 1.10 1.00 1.56 1.20 1.99 1.07 1.02 SRHS-DU-2 Metatarsal (continued) Sr 2918.02 3257.24 2981.00 3766.55 2371.96 2476.05 2560.33 3674.46 5401.83 3388.05 3287.03 4240.87 3608.94 2978.99 4531.78 3137.48 3623.44 5037.20 3622.98 5412.83 3725.78 2151.82 3879.21 2459.32 3269.52 3235.58 3816.07 4110.00 3156.20 3339.09 3124.23 2252.05 2651.80 3397.08 2549.16 2749.38 2100.13 3522.59 5438.53 1701.61 2014.98 3777.78 3881.63 3075.70 3541.43 2730.28 3008.67 3743.11 3195.88 5088.56 2041.87 3351.93 2892.02 3187.87 Y 3.51 2.74 2.04 2.58 1.89 1.35 1.15 2.87 4.12 3.87 1.69 2.19 2.72 2.99 1.20 1.76 1.63 2.17 2.00 4.23 3.79 2.05 5.51 4.60 4.28 3.55 3.28 2.56 2.19 2.84 2.03 1.34 2.03 3.05 1.92 2.18 1.49 2.08 2.60 2.47 2.64 4.59 3.30 2.29 2.73 3.36 2.18 2.76 1.83 1.59 2.23 2.78 1.98 2.22 Ba 1371.20 nd nd nd 1366.95 1762.51 1760.86 1703.01 2748.22 1686.55 1656.51 4369.26 6663.06 3050.43 nd 4769.97 nd nd 1945.20 3209.23 2069.86 1426.99 nd 1460.22 1806.13 1581.31 1499.31 1752.71 1741.84 2305.17 1804.04 1935.30 2112.67 1374.68 1365.95 1895.05 1091.04 1837.20 2707.26 1388.26 1468.62 1350.61 1520.97 1869.56 1426.69 1637.95 2477.43 1217.81 1446.23 1899.50 1570.40 2153.88 1715.49 1293.54 La 0.32 0.31 0.30 0.11 0.38 0.12 0.20 0.44 0.62 0.27 0.45 0.15 4.83 0.41 0.28 0.18 0.37 0.21 0.46 1.39 1.06 0.57 0.68 1.33 1.32 0.55 0.93 0.54 0.42 0.99 0.45 0.18 0.47 0.48 0.13 0.29 0.49 0.49 0.52 0.12 0.22 0.28 0.38 0.34 0.25 0.65 0.22 0.31 0.34 0.50 0.29 1.66 0.66 0.35 Ce 0.27 0.70 0.41 bd 0.21 0.23 0.29 0.29 0.49 0.48 0.27 0.15 0.14 0.14 0.40 0.42 0.34 0.26 0.65 0.65 0.68 1.19 1.17 0.96 0.87 0.75 0.47 0.34 0.54 1.39 0.14 0.29 0.44 0.18 0.13 0.51 0.31 0.27 0.35 0.24 0.04 0.34 0.06 0.74 0.06 0.33 0.11 0.63 1.04 0.45 0.25 0.19 0.38 0.27 bd 0.05 bd bd bd bd bd 0.08 0.04 0.06 bd bd 0.06 0.06 bd bd 0.03 bd 0.16 0.05 bd 0.03 bd bd bd bd 0.13 bd 0.03 bd bd 0.06 0.03 0.04 bd bd bd 0.08 0.69 0.07 bd bd bd 0.05 bd bd 0.38 0.04 bd 0.05 0.07 0.11 bd bd Pr Nd 0.80 0.62 bd bd 0.21 0.19 bd bd bd bd bd bd bd 0.68 bd 0.59 bd bd bd 0.57 0.47 0.60 bd bd 1.31 0.30 bd 0.33 0.19 bd bd 0.52 bd bd 0.22 0.89 bd 1.33 0.28 bd bd 0.83 bd bd 0.31 bd bd 0.25 0.56 bd 0.20 bd bd 0.43 bd 0.37 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.31 bd bd bd bd bd bd bd bd 0.43 bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.25 bd bd bd Sm bd bd bd bd 0.07 bd bd bd bd 0.12 bd bd 0.99 0.24 0.30 0.21 0.07 bd 0.16 bd bd bd bd bd bd 0.11 bd bd bd bd bd 0.25 bd bd 0.08 bd bd bd bd bd 0.08 bd bd 0.10 bd bd bd bd bd bd bd bd bd 0.08 Eu bd 0.36 bd bd bd bd bd bd bd 2.35 bd bd 0.80 6.79 bd 1.04 bd bd 0.53 0.33 bd bd 0.39 0.32 1.16 bd 0.30 bd bd bd bd bd bd bd bd bd 0.89 bd bd bd bd 0.60 bd 0.60 bd bd 0.27 bd bd bd bd 0.31 0.50 0.72 Gd bd bd bd bd 0.03 0.03 bd bd bd bd bd 0.14 0.05 bd bd bd 0.05 bd 0.03 bd bd bd 0.09 bd bd bd bd bd bd bd bd 0.05 bd bd bd bd 0.04 0.06 0.04 bd bd bd bd bd bd bd bd bd bd 0.04 bd bd bd 0.06 Tb bd bd bd bd bd bd 0.47 bd bd 0.19 0.13 0.14 0.59 bd 0.16 0.17 0.21 bd bd 0.49 bd bd bd bd bd bd bd 0.38 bd 0.13 bd bd 0.11 bd 0.12 bd bd bd 0.49 bd bd bd 0.36 bd bd bd bd bd bd 0.90 0.24 0.18 bd bd Dy Ho bd 0.04 0.03 bd bd 0.03 bd 0.10 0.07 bd bd bd bd bd 0.04 0.04 bd bd bd 0.08 0.03 0.03 0.05 0.04 bd bd bd bd 0.03 0.10 0.06 bd bd 0.06 bd bd bd bd 0.04 bd bd 0.04 bd bd 0.04 bd bd 0.11 bd bd bd bd bd bd Er 0.16 bd bd bd bd bd 0.12 0.15 bd 0.20 bd bd bd 0.64 0.17 bd 0.11 0.48 bd bd 0.15 0.50 bd 0.17 0.61 0.96 0.16 bd bd 0.14 0.14 0.11 0.24 0.13 bd 0.11 bd 0.28 0.17 bd bd bd bd 0.35 bd 0.61 0.17 bd 0.53 bd 0.26 0.20 bd 0.14 Tm bd 0.04 0.10 bd 0.06 bd bd 0.07 0.06 0.05 0.06 bd bd bd bd 0.04 bd bd 0.03 0.08 0.03 0.08 0.05 bd bd 0.17 bd 0.14 0.05 0.10 bd bd bd bd bd bd 0.04 0.03 0.08 0.08 bd 0.08 bd bd 0.04 bd 0.04 0.11 0.04 bd bd 0.17 bd 0.09 bd 0.52 0.83 bd 0.52 bd bd 0.20 bd 1.11 bd 0.21 0.28 bd 0.23 0.99 0.15 0.21 0.38 0.24 0.80 0.17 bd 0.46 0.55 0.51 0.43 bd bd 0.19 0.37 0.29 0.32 0.54 0.18 0.30 0.12 0.18 0.24 0.16 0.18 bd bd bd 0.26 0.27 0.23 0.43 bd bd bd 0.79 bd bd Yb Lu bd bd bd bd 0.03 bd 0.03 0.04 0.04 0.05 0.03 0.04 0.05 bd 0.04 0.27 bd bd 0.10 0.17 0.04 0.15 0.10 0.04 0.10 0.23 0.04 bd 0.03 0.07 0.10 bd bd 0.07 0.03 0.03 0.07 bd bd 0.03 bd bd 0.10 bd 0.14 0.10 0.04 0.12 0.04 bd bd 0.10 0.07 0.10 bd bd bd bd bd bd bd bd bd bd bd 0.03 bd bd bd bd bd bd bd bd bd bd 0.04 0.03 bd bd bd bd bd bd 0.03 0.02 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd Th U ƩREE 0.88 2 3.75 3 1.27 2 0.93 0 1.24 2 0.68 1 0.96 1 1.04 1 1.64 1 1.40 5 0.70 1 1.23 1 3.56 8 2.30 9 2.03 2 2.74 4 0.91 1 1.42 1 1.71 3 2.00 4 2.06 3 0.49 3 2.03 3 0.62 3 1.55 6 1.50 4 1.77 3 1.93 2 1.37 1 1.10 3 0.99 1 0.50 2 0.67 2 1.08 1 0.65 1 1.27 3 0.76 2 1.35 3 1.35 3 1.16 1 1.51 1 1.18 2 1.46 1 0.97 2 0.99 1 2.58 2 6.01 1 0.98 2 0.87 3 0.48 2 0.79 2 2.31 4 1.76 2 2.10 2 Ce/Ce* -0.56 0.25 -0.33 -0.24 -0.69 -0.43 -0.43 -0.64 -0.42 -0.10 -0.62 -0.62 -0.97 -0.80 -0.18 0.11 -0.36 -0.58 -0.43 -0.62 -0.48 0.59 0.08 -0.46 -0.51 -0.21 -0.70 -0.63 -0.07 0.11 -0.80 -0.35 -0.32 -0.74 -0.65 -0.06 -0.59 -0.68 -0.90 -0.42 -0.91 -0.37 -0.90 0.32 -0.95 -0.79 -0.94 0.22 0.83 -0.41 -0.58 -0.91 -0.62 -0.61 Ce/Ce** -0.32 -1.15 2.89 2.20 0.33 0.34 3.09 0.86 -1.33 -5.14 -3.42 -1.92 -2.10 -0.21 -0.51 -0.62 -0.39 1.47 0.53 -1.15 -1.51 -1.35 -1.28 -1.05 -0.49 1.12 0.32 0.59 6.10 -16.04 -1.58 -1.10 -1.26 -0.62 0.31 -0.42 -0.18 -0.14 0.03 -1.12 -0.11 -0.32 -0.15 -1.26 0.02 0.11 0.02 5.24 -1.91 -13.79 0.36 0.18 0.89 1.75 La/La* Y/Ho -1.31 82.8 -1.40 63.4 -3.20 59.3 -1.84 55.2 0.14 55.2 -0.69 51.1 -2.13 39.5 -76.45 27.9 -2.24 61.3 -1.87 45.9 -2.48 45.9 -1.50 45.9 -17.60 45.9 -1.48 45.9 -1.31 30.6 -1.22 42.9 -1.40 47.6 -2.00 47.6 -0.14 47.6 -2.93 52.2 -2.81 114.5 -1.59 73.6 -1.57 118.6 -2.13 120.7 -1.67 102.3 0.85 102.3 0.10 102.3 1.46 102.3 -10.53 83.8 -4.77 28.6 -2.73 32.1 -1.37 41.2 -2.03 41.2 -2.17 50.2 -0.24 57.8 -1.21 57.8 -1.26 57.8 -1.23 57.8 -0.93 65.4 -1.25 90.5 -1.37 90.5 -1.23 115.5 -1.62 88.6 -1.46 88.6 -0.86 61.7 -0.66 43.4 -0.94 43.4 -6.19 25.0 -1.49 47.4 -3.10 47.4 -0.22 47.4 1.98 47.4 4.52 47.4 -3.53 47.4 382 mm from bone rim 16.65 16.69 16.72 16.76 16.79 16.83 16.86 16.89 16.93 16.96 17.00 17.03 17.07 17.10 17.14 17.17 17.21 17.24 17.28 17.31 17.34 17.38 17.41 17.45 17.48 17.52 17.55 17.59 17.62 17.66 17.69 17.72 17.76 17.79 17.83 17.86 17.90 17.93 17.97 18.00 18.04 18.07 18.10 18.14 18.17 18.21 18.24 18.28 18.31 18.35 18.38 18.42 18.45 18.48 Sc 3.06 2.79 2.33 3.48 3.32 2.74 2.14 2.51 3.87 1.60 1.11 1.38 2.55 1.84 1.64 1.02 1.88 1.48 1.45 3.24 1.74 1.32 1.70 1.08 2.04 1.34 1.72 2.49 0.80 1.00 2.15 1.60 1.92 2.73 1.94 2.16 3.12 2.15 3.20 3.13 3.93 2.79 1.43 2.55 2.59 2.14 1.50 2.53 2.58 1.34 1.52 3.84 2.78 2.83 Mn 0.24 1.08 1.12 0.23 0.32 0.18 0.29 0.19 0.27 0.49 0.19 0.14 0.26 0.27 0.29 0.26 0.34 0.21 0.50 0.26 0.19 0.75 0.29 0.16 0.20 0.19 0.58 0.24 0.17 0.19 0.22 0.16 0.21 0.32 0.14 0.29 0.37 0.14 0.19 0.37 0.25 0.20 0.21 0.47 6.51 2.71 1.23 0.75 1.80 1.37 0.49 0.28 0.40 0.54 Fe 1.35 1.65 1.14 1.04 1.46 1.22 1.25 1.35 1.85 1.20 1.01 0.80 1.39 1.02 0.94 1.59 1.95 0.96 1.93 1.70 0.94 0.98 1.13 1.11 1.39 1.37 1.32 2.28 0.97 bd 2.00 0.71 1.54 1.07 0.91 0.92 1.00 0.73 1.63 0.93 1.07 1.45 1.07 1.16 3.42 2.08 1.21 0.99 1.34 1.02 3.37 bd 1.76 1.40 SRHS-DU-2 Metatarsal (continued) Sr 4902.49 3028.75 3088.17 2877.93 4069.93 2769.19 4975.82 3254.81 3694.95 3124.16 2679.07 3322.65 4529.21 3701.04 2148.41 2740.20 3317.30 2630.37 3990.63 3006.67 2262.94 4207.71 6632.76 3205.55 5458.72 5164.40 3941.90 4474.28 2077.81 3706.97 3357.19 3344.14 3106.76 4588.67 2086.02 3366.91 3448.39 4056.17 2875.04 4122.79 2768.84 4123.19 2989.69 2879.37 4604.32 2794.64 2765.20 3025.26 2583.09 2530.15 3642.67 2603.43 4934.05 3727.61 Y 2.52 3.48 2.94 2.80 3.90 3.43 4.88 2.61 3.58 1.71 2.22 1.56 4.39 1.86 1.65 1.86 2.53 1.55 2.25 3.00 3.66 4.25 6.25 3.18 3.69 2.71 2.32 3.30 2.36 2.99 3.24 3.07 3.96 3.52 4.12 3.65 3.48 3.84 4.75 6.95 5.35 5.46 4.51 4.56 6.24 4.45 4.48 3.93 5.83 3.28 5.04 3.25 2.98 6.07 Ba 3011.50 1244.95 1560.23 1715.35 1839.17 1591.20 1678.45 1574.65 1228.22 1380.12 1394.26 1921.06 2548.04 1929.54 1053.75 1381.54 1999.55 1709.65 2246.06 1285.83 nd nd nd nd nd 3207.76 nd nd 3642.32 2984.01 1854.44 1565.17 3273.49 2250.59 1361.64 1852.76 1536.58 1685.72 1314.51 1559.00 1322.77 1535.49 1361.67 1136.35 3101.66 1787.25 nd 1362.01 3774.12 1790.45 4070.74 1492.54 2276.19 2268.27 La 0.72 0.37 0.59 0.52 0.39 0.12 0.47 0.35 0.22 0.37 0.40 0.26 0.15 0.36 0.27 0.11 0.25 0.16 0.11 0.22 0.70 0.54 0.51 0.63 0.83 0.66 0.43 0.10 0.21 0.37 0.37 0.38 0.35 0.85 0.29 0.31 0.45 7.28 0.16 0.56 0.43 0.62 0.57 0.36 1.29 0.46 0.55 1.14 2.13 1.25 1.02 0.32 0.72 0.64 Ce 0.52 0.38 0.08 0.24 0.11 0.50 0.65 0.20 0.50 0.43 0.55 0.09 0.61 0.05 0.09 0.39 0.25 bd 0.17 0.17 0.67 2.09 1.18 0.20 0.55 0.22 0.32 0.61 0.44 0.67 0.11 0.34 0.20 0.40 0.22 0.24 0.23 0.54 0.11 2.11 0.44 0.37 0.29 0.37 0.73 0.43 0.32 3.96 7.70 0.98 0.71 0.89 1.22 0.72 bd bd bd bd bd 0.03 0.04 bd 0.09 bd bd 0.04 bd bd bd 0.09 bd bd bd bd 0.07 0.23 0.11 0.04 0.05 bd bd bd 0.06 bd bd bd bd bd bd bd 0.08 bd bd bd bd bd 0.08 0.03 0.18 bd 0.17 0.54 0.19 0.32 0.09 bd bd 0.05 Pr bd 0.46 bd bd 0.27 bd 0.21 0.50 bd bd 2.69 bd bd 0.50 0.67 bd 0.30 bd bd bd 0.61 0.26 0.95 1.19 0.29 bd 0.26 bd 0.35 bd bd bd bd bd bd bd bd bd bd bd 0.79 bd bd 0.59 bd 0.46 0.39 0.42 1.11 0.20 0.79 1.82 bd bd Nd bd bd bd bd bd bd bd bd bd 0.28 bd bd bd bd 0.54 bd bd 0.73 bd bd bd 0.32 bd bd 0.71 bd 0.95 0.29 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 1.01 1.33 0.49 0.63 bd bd bd Sm bd 0.08 bd bd bd bd 0.46 bd bd bd bd bd bd bd 0.08 0.09 bd bd bd bd 0.07 0.48 0.11 0.51 bd bd 0.19 0.09 0.12 bd 0.09 bd bd bd bd 0.20 bd bd bd bd bd bd bd bd bd 0.25 0.07 bd 0.30 bd bd bd 0.08 bd Eu bd 0.22 bd bd bd 0.20 0.46 bd 0.89 bd bd 0.45 0.36 bd bd 0.91 bd bd 0.27 bd 223.63 2.78 0.69 0.79 bd bd bd bd bd bd bd 0.20 bd 0.27 bd bd bd bd bd bd 0.26 bd bd 1.13 bd bd bd 0.45 bd bd bd bd bd 5.94 Gd Tb 0.04 bd bd bd bd bd bd bd 0.08 bd bd bd bd bd bd bd bd bd bd bd 0.03 0.04 bd bd 0.04 bd bd bd bd bd bd bd bd bd 0.10 0.05 bd bd bd bd 0.04 bd 0.07 bd bd bd bd 0.12 bd bd 0.11 0.03 bd bd bd 0.53 bd bd bd bd 0.37 bd bd bd 0.14 bd 0.21 bd bd bd bd 0.12 0.16 bd 0.12 bd 0.37 bd 0.17 bd bd bd 0.10 bd bd bd bd bd 0.21 bd bd bd bd 0.16 0.15 bd 0.13 0.34 bd 0.13 0.11 0.36 0.32 0.12 0.15 bd 0.14 bd Dy Ho 0.04 bd 0.03 0.03 0.20 bd bd 0.04 bd bd 0.07 0.06 bd bd 0.16 0.08 bd bd bd 0.04 0.06 0.08 0.05 0.03 0.04 0.04 bd bd bd bd bd 0.06 bd bd 0.03 bd bd 0.08 0.04 0.04 0.04 bd 0.03 0.03 0.05 0.07 bd 0.21 bd bd 0.08 0.03 0.03 0.09 Er 0.64 0.44 0.13 0.15 0.87 bd 0.27 0.16 0.17 bd bd bd 0.46 0.32 0.14 bd 0.58 bd 0.17 bd 0.13 bd bd 0.45 0.56 bd bd 0.15 0.22 0.26 0.50 0.26 bd bd 0.23 bd 0.28 bd 0.17 bd bd bd bd 0.25 bd 0.14 0.37 bd 0.17 bd 0.33 bd 0.60 0.80 Tm bd 0.06 0.11 bd 0.08 0.03 bd bd bd 0.03 bd bd 0.05 bd bd bd bd 0.03 0.11 0.04 0.06 0.07 bd 0.13 bd 0.04 0.04 0.07 bd 0.03 0.04 0.03 bd 0.04 bd 0.11 0.03 0.04 0.07 0.08 0.04 0.03 0.06 bd 0.10 0.13 0.05 0.20 0.04 bd 0.07 bd 0.10 0.09 bd 0.19 bd bd 0.69 0.34 0.18 bd bd bd 0.20 bd 0.61 0.21 0.19 0.23 bd 0.17 bd 1.16 0.17 0.67 0.26 0.40 0.49 0.68 bd bd 0.29 0.68 0.44 0.17 bd bd 0.45 bd 0.37 0.44 0.67 bd 1.33 0.21 0.19 0.16 0.89 bd 0.82 0.70 0.46 bd 0.22 1.34 0.80 bd Yb Lu bd 0.03 0.03 0.04 0.08 0.09 0.06 0.08 0.04 0.04 0.04 0.06 0.06 0.08 0.10 bd bd bd bd 0.08 bd 0.04 0.05 0.11 0.04 0.17 0.12 bd 0.03 0.03 bd bd bd 0.09 0.08 bd 0.24 0.12 0.08 0.04 0.04 0.04 0.04 bd 0.11 0.03 0.12 0.06 0.08 0.06 bd 0.07 0.11 0.10 bd bd 0.02 bd bd bd 0.02 bd bd bd bd bd bd bd bd bd 0.04 bd bd 0.06 bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.06 bd bd bd bd bd bd bd bd 0.02 bd bd bd bd bd bd bd bd 0.06 0.04 Th U ƩREE 1.73 2 1.48 3 1.82 1 3.19 1 2.01 3 1.06 1 1.14 3 1.00 1 1.99 2 1.12 1 0.86 4 1.37 1 4.22 3 0.57 2 0.14 2 0.65 2 0.19 1 0.48 1 0.45 1 0.75 2 1.10 226 0.77 8 1.45 4 0.29 4 1.19 4 0.76 2 0.98 2 2.06 1 0.80 2 1.00 2 0.90 2 0.34 1 0.59 1 1.19 2 1.94 2 0.89 1 0.55 2 1.09 8 0.85 1 3.50 3 2.49 4 1.69 1 1.73 1 2.76 3 2.45 3 3.54 2 1.15 3 1.21 9 2.72 14 0.96 3 1.75 4 1.41 5 2.04 4 1.55 8 Ce/Ce* -0.51 -0.46 -0.91 -0.72 -0.84 0.80 -0.01 -0.68 -0.20 -0.36 -0.20 -0.80 0.40 -0.92 -0.84 -0.24 -0.59 -0.60 -0.64 -0.71 -0.36 0.35 0.16 -0.77 -0.51 -0.76 -0.53 0.79 -0.10 -0.03 -0.84 -0.51 -0.69 -0.66 -0.63 -0.62 -0.72 -0.93 -0.78 1.27 -0.45 -0.63 -0.70 -0.31 -0.66 -0.66 -0.75 0.13 1.49 -0.64 -0.52 0.37 0.13 -0.22 Ce/Ce** 4.43 4.57 0.27 0.77 0.21 -64.34 6.55 -1.64 -0.21 -0.15 -0.10 -0.03 -0.22 -0.41 -0.17 0.99 0.39 0.78 0.62 0.64 -2.21 0.64 -2.48 -0.09 3.93 0.85 1.08 3.19 2.61 -2.80 -0.46 -1.44 -0.86 -1.70 -0.93 -0.99 -2.18 -7.43 -1.48 -28.85 -0.71 -1.00 -0.86 -0.42 0.40 0.23 0.17 0.49 14.64 0.20 -1.79 -0.28 -0.71 -0.36 La/La* Y/Ho -5.20 69.7 -2.84 84.6 55.27 99.6 49.03 83.6 0.73 19.8 -1.85 46.7 -10.53 46.7 -1.95 73.6 -1.09 52.7 -1.13 52.7 -1.07 31.7 -1.08 25.7 -1.05 18.0 -1.95 18.0 -1.36 10.3 85.56 23.8 -0.10 49.7 -3.28 49.7 -2.53 49.7 -4.13 75.6 -2.25 62.4 -0.74 55.5 -1.59 137.4 -1.28 93.6 -13.12 87.6 23.44 69.7 5.82 60.6 -3.46 60.6 -3.58 60.6 -1.75 60.6 -1.76 60.6 -1.77 51.5 -1.72 106.4 -2.74 106.4 -1.59 161.3 -1.63 105.9 -2.13 105.9 -20.35 50.5 -1.43 125.5 -2.49 175.3 -1.49 141.4 -1.95 138.4 -1.90 135.4 -1.38 161.3 0.34 123.5 -0.55 67.4 -0.50 43.0 -0.79 18.6 -9.17 42.5 -0.62 42.5 -2.40 66.4 -1.10 99.6 -1.38 87.6 -1.31 66.4 383 mm from bone rim 18.52 18.55 18.59 18.62 18.66 18.69 18.73 18.76 18.80 18.83 18.86 18.90 18.93 18.97 19.00 19.04 19.07 19.11 19.14 19.18 19.21 19.24 19.28 19.31 19.35 19.38 19.42 19.45 19.49 19.52 19.56 19.59 19.62 19.66 19.69 19.73 19.76 19.80 19.83 19.87 19.90 19.94 19.97 20.00 20.04 20.07 20.11 20.14 20.18 20.21 20.25 20.28 20.32 20.35 Sc 2.90 1.05 2.33 2.93 1.55 5.04 0.74 2.82 2.03 1.92 2.58 2.31 3.43 2.46 2.70 3.44 1.26 1.24 1.95 2.60 3.33 2.07 2.02 1.36 0.65 2.67 1.80 3.86 2.38 4.57 3.25 3.14 2.10 1.78 4.12 2.42 2.05 3.24 3.87 3.00 2.65 3.72 3.17 4.27 3.11 3.27 4.04 4.40 2.40 2.97 2.31 3.54 3.59 3.97 Mn 0.40 0.30 0.26 0.16 0.27 0.21 0.24 0.13 0.21 0.22 0.20 0.23 0.13 0.21 0.23 0.19 0.17 0.15 0.17 0.28 0.28 0.24 0.21 0.21 0.14 0.32 0.30 0.23 0.22 0.16 0.11 0.31 0.19 0.15 0.32 0.18 0.23 0.22 0.25 0.25 0.18 0.21 0.16 0.17 0.19 0.20 0.20 0.37 0.24 0.20 0.31 0.38 0.71 0.35 Fe 1.43 0.73 1.24 2.28 1.90 0.94 1.01 0.98 1.19 1.00 1.20 0.90 0.72 0.82 1.09 1.79 0.90 1.67 0.86 1.09 2.70 1.36 1.07 1.47 0.92 1.20 1.27 1.18 1.63 1.57 1.08 1.46 1.23 1.19 1.66 1.05 1.23 0.97 2.06 1.17 1.11 2.05 1.32 1.24 0.98 0.93 1.12 2.04 1.05 0.86 2.15 2.01 1.66 1.71 SRHS-DU-2 Metatarsal (continued) Sr 3151.54 2964.18 3273.74 3010.27 2403.79 4120.15 2730.51 2154.28 3058.03 2921.81 3212.65 3292.98 2523.92 2794.13 4023.27 3887.67 2180.14 3303.37 2402.42 2046.75 3737.72 3564.23 3220.87 4283.73 2394.40 3052.60 3386.96 2991.45 2579.57 4990.15 2532.02 2962.38 3259.52 1708.79 2969.93 2644.17 3253.02 2935.62 4667.82 4699.05 3384.14 2788.37 2033.03 2433.21 3748.64 2829.90 4161.83 3950.64 3086.63 2407.60 3159.05 3135.01 6669.79 3211.58 Y 6.71 3.53 5.48 5.54 3.99 4.58 3.96 4.12 4.26 4.18 3.63 6.30 4.55 7.35 6.08 6.30 4.07 6.04 2.86 5.04 5.34 5.05 2.22 4.95 2.84 4.61 7.49 6.91 5.24 7.61 5.67 5.52 2.71 3.60 4.84 4.47 5.16 4.60 6.26 8.81 5.04 8.13 5.99 8.93 13.57 7.38 10.86 12.05 9.26 6.56 8.99 8.60 9.20 8.79 Ba 1758.29 2433.64 1432.94 1642.06 2064.42 1203.67 1667.53 1047.71 1462.49 2238.55 1390.02 1617.59 1389.14 1906.09 1924.15 1304.47 1192.07 1607.23 1242.00 1736.52 1786.19 1460.14 1954.80 3178.01 941.55 1233.63 1703.46 1580.94 2018.14 1897.53 nd 1417.54 1709.87 1244.43 2100.50 nd 2412.57 1494.65 2037.50 3655.42 1663.45 1893.15 2194.51 1194.59 1731.19 1163.29 2555.33 7169.41 nd nd 4263.53 3445.65 4306.04 1991.99 La 1.09 0.61 0.96 0.73 0.38 0.26 0.76 0.50 0.12 0.37 0.59 1.57 0.55 0.43 0.54 0.86 0.58 0.77 0.47 0.72 1.84 1.33 0.40 0.67 0.20 0.40 0.89 0.69 0.32 0.58 0.92 1.35 0.70 1.05 0.83 0.70 0.71 0.75 0.96 1.05 0.67 1.50 0.36 1.41 3.10 0.95 1.70 1.45 1.04 1.31 1.62 1.00 1.35 0.93 Ce 1.23 0.21 0.51 0.27 0.64 0.20 2.33 0.41 0.24 0.38 1.48 1.60 0.69 0.24 0.94 0.44 0.32 0.22 0.20 0.51 0.57 0.55 0.27 0.74 0.24 0.66 0.52 0.33 1.21 0.88 0.24 2.02 0.80 1.13 2.30 0.83 0.60 0.24 0.30 1.72 0.54 0.44 0.30 0.63 0.56 1.99 0.39 0.77 0.53 0.83 0.75 1.24 1.26 0.94 Pr 0.15 0.09 0.22 0.04 0.04 bd bd bd 0.10 bd 0.18 bd bd 0.08 bd bd bd bd bd bd bd 0.13 0.07 bd bd 0.04 0.16 bd 0.18 0.05 bd bd bd 0.21 bd bd 0.20 bd 0.18 bd 0.09 bd bd 0.18 0.13 0.07 0.08 0.06 bd 0.04 0.09 0.14 0.24 bd Nd 0.60 bd 0.75 0.52 0.47 0.32 bd bd 0.59 bd bd 0.60 0.22 bd 0.27 bd bd bd 0.39 bd 0.27 0.48 bd bd 0.19 0.49 bd 0.46 1.60 0.57 bd 0.67 bd bd 0.34 0.18 0.39 0.34 0.82 0.22 bd 0.26 bd 0.20 0.19 bd 0.24 bd bd bd 0.26 bd 0.56 bd bd 0.30 bd bd bd bd bd bd bd bd bd bd bd bd 0.32 bd bd bd bd 0.50 bd bd bd bd bd bd bd bd bd bd 0.47 bd bd 0.18 0.41 bd bd 0.20 bd bd bd bd bd bd bd bd bd bd 0.31 bd bd bd bd bd Sm bd bd bd bd 0.25 bd bd bd bd 0.09 bd bd bd bd bd 0.09 bd bd 0.14 0.07 bd 0.08 0.15 0.10 bd bd bd bd bd bd 0.14 0.80 bd bd 0.06 bd bd bd bd 0.08 0.19 bd bd bd bd bd bd bd 0.28 bd 0.09 0.10 bd 0.08 Eu bd 0.84 bd bd 0.23 0.31 bd bd bd bd bd bd bd bd 0.26 bd 0.73 bd bd 0.20 0.27 bd bd bd bd 0.24 bd 0.49 bd 26.13 0.19 0.74 bd 0.15 bd bd bd bd 0.20 bd bd bd 0.18 bd bd 0.21 0.80 0.33 0.56 bd 0.86 bd 1.59 bd Gd bd 0.07 bd bd 0.07 bd bd bd bd bd 0.04 0.04 bd bd bd 0.08 bd bd 0.03 bd bd bd bd bd 0.03 bd bd bd bd 0.04 bd bd bd bd bd bd 0.11 0.05 bd bd 0.05 bd 0.05 bd bd bd 0.07 bd bd bd bd 0.04 0.08 0.03 Tb Dy 0.34 0.14 bd 0.75 bd 0.18 bd bd bd bd bd 0.17 bd bd bd bd 0.13 0.16 bd 0.12 bd bd bd bd bd 0.42 bd 0.13 bd 0.49 0.23 bd bd 0.18 bd 0.10 0.11 bd bd 0.13 0.10 0.15 0.31 0.35 bd 0.37 0.42 bd 0.30 0.13 0.45 0.63 0.16 bd Ho 0.09 0.15 0.11 0.11 0.07 0.14 bd bd bd bd 0.04 0.04 bd bd 0.08 0.12 0.09 bd 0.03 0.03 0.04 bd bd bd bd 0.11 0.09 0.03 0.23 0.12 bd 0.13 0.03 0.04 bd 0.13 0.17 0.02 0.03 bd 0.02 0.04 0.16 0.06 bd 0.06 0.03 0.15 0.26 bd 0.04 0.04 0.20 0.07 bd 0.48 0.16 0.49 bd 0.20 0.18 0.31 bd bd 0.17 0.19 0.14 0.15 1.01 bd 0.42 0.17 0.12 0.13 0.17 bd 0.41 bd 0.25 0.31 0.20 0.14 0.17 0.18 0.37 bd 0.55 0.10 0.11 0.11 0.37 0.43 0.13 0.14 0.11 0.33 0.57 0.52 0.12 0.13 0.15 0.21 0.98 0.14 0.33 0.35 0.53 0.46 Er Tm 0.04 0.03 0.03 0.04 0.10 0.04 bd 0.14 0.20 0.04 bd 0.04 bd bd 0.07 0.04 bd 0.04 0.08 0.06 0.04 0.07 bd bd bd 0.03 bd 0.09 bd bd 0.03 0.12 0.06 0.04 0.07 0.05 0.16 0.05 0.06 bd 0.14 0.07 0.05 0.03 0.03 0.24 0.13 0.09 0.25 0.06 0.04 bd bd 0.07 Yb 0.75 0.85 0.21 bd bd 0.27 0.97 bd 0.98 bd bd 0.25 bd bd 0.22 0.45 0.37 0.68 0.16 0.17 0.23 0.41 0.18 0.75 bd 0.41 1.05 0.77 0.67 0.95 0.66 0.37 bd bd 0.29 0.61 0.98 0.71 0.34 0.38 1.16 0.66 0.30 0.86 bd 0.36 0.60 1.43 1.08 0.19 1.52 0.92 0.70 0.81 Lu 0.14 0.23 0.04 0.20 0.07 0.20 0.18 0.23 0.13 bd 0.20 0.14 0.07 0.07 0.16 0.04 0.03 0.04 0.09 0.03 0.08 bd 0.17 0.05 0.03 0.04 0.10 0.24 0.24 bd bd 0.10 bd 0.23 0.13 0.06 0.06 bd 0.06 0.17 0.03 0.04 0.11 0.22 0.06 0.07 0.15 0.05 0.16 0.14 0.20 0.04 0.25 0.22 bd bd bd bd bd 0.04 bd bd bd 0.03 bd bd bd bd 0.03 bd bd bd bd 0.05 bd bd 0.03 bd bd 0.06 bd 0.05 0.06 bd 0.09 0.08 bd 0.02 bd bd 0.07 bd bd 0.03 bd bd 0.02 bd 0.02 0.02 0.03 bd bd bd bd bd 0.29 bd Th U ƩREE 1.30 4 2.04 4 2.38 3 1.42 3 0.69 2 1.10 2 0.90 4 1.11 2 2.19 2 0.68 1 0.88 3 0.80 5 1.14 2 2.08 1 2.15 4 0.96 2 1.11 3 1.41 2 0.96 2 1.36 3 1.22 4 0.48 3 0.49 2 0.71 2 1.15 1 0.23 3 2.91 3 2.39 3 2.81 5 2.32 30 1.90 3 1.04 6 1.65 2 1.47 3 2.32 5 1.81 3 2.20 4 1.72 3 2.61 3 2.38 4 2.15 3 3.23 3 1.36 2 2.01 4 1.30 4 0.80 4 1.86 5 1.69 5 2.35 6 1.41 3 2.01 6 2.07 5 2.13 7 2.77 4 Ce/Ce* -0.32 -0.80 -0.73 -0.73 0.09 -0.66 1.09 -0.51 -0.56 -0.62 0.05 -0.29 -0.39 -0.70 -0.08 -0.68 -0.70 -0.82 -0.79 -0.57 -0.76 -0.72 -0.64 -0.23 -0.47 0.09 -0.68 -0.78 0.08 0.07 -0.84 0.01 -0.38 -0.44 0.30 -0.49 -0.63 -0.85 -0.83 0.02 -0.51 -0.80 -0.69 -0.72 -0.86 0.49 -0.82 -0.57 -0.60 -0.47 -0.65 -0.26 -0.49 -0.48 Ce/Ce** 1.07 -1.23 0.28 -0.52 -1.36 0.48 25.01 4.41 0.87 0.39 0.89 2.06 0.41 0.31 0.85 0.46 0.33 0.24 0.25 0.55 0.53 0.59 0.62 4.67 0.47 -1.36 0.33 0.18 -1.53 -1.57 0.36 3.62 0.84 0.49 0.87 0.27 0.25 0.10 0.30 1.01 0.58 0.27 0.18 0.25 0.31 2.76 0.49 2.02 2.49 19.19 0.85 0.88 0.47 0.39 La/La* Y/Ho 1.32 78.3 -2.23 24.2 0.14 50.8 -2.13 49.5 -1.64 58.5 1.35 33.0 -4.98 64.3 -3.63 64.3 -1.86 64.3 0.10 64.3 -0.28 95.6 6.71 147.4 -0.48 113.3 0.07 113.3 -0.12 79.3 0.80 54.7 0.21 42.9 0.61 73.2 0.37 103.5 0.53 169.3 2.09 135.4 2.48 89.5 2.56 89.5 -9.19 89.5 -0.20 89.5 -1.64 43.5 0.06 83.2 -0.31 211.2 -1.22 22.8 -1.81 62.0 6.29 52.5 118.92 43.0 0.84 87.6 -0.21 82.2 -0.50 58.1 -0.65 34.0 -0.53 30.7 -0.49 191.2 3.24 213.2 -0.01 208.2 0.32 203.2 0.53 215.2 -0.65 38.6 -0.13 151.7 1.72 135.8 1.50 119.9 2.92 316.8 10.37 81.8 120.18 35.6 -12.90 139.3 2.47 243.1 0.33 219.2 -0.14 45.9 -0.37 126.9 384 Sc 2.90 3.61 3.97 2.21 3.31 2.59 3.53 3.14 2.29 2.40 4.10 3.11 2.81 2.73 2.80 3.24 Mn 0.45 0.35 0.28 0.20 0.34 0.43 0.43 0.48 0.63 0.27 0.34 0.42 0.21 0.25 0.26 0.44 mm from bone rim 0.00 0.03 0.07 0.10 0.14 0.17 0.21 0.24 0.28 0.31 0.35 0.38 0.41 0.45 0.48 0.52 0.55 0.59 0.62 0.66 0.69 0.73 0.76 0.79 0.83 0.86 0.90 0.93 0.97 1.00 1.04 1.07 1.11 1.14 Sc 88.40 56.44 24.39 19.72 20.67 18.46 39.22 21.10 43.17 30.10 30.77 26.85 20.20 36.07 17.35 30.18 26.59 33.29 28.14 21.38 45.03 18.56 44.70 31.20 27.92 27.64 29.24 29.29 23.53 31.31 29.91 25.43 28.29 25.58 Mn bd 0.22 0.25 0.12 0.10 0.09 0.17 0.11 0.40 0.17 0.61 0.93 0.87 1.38 0.43 0.47 0.47 0.51 0.24 0.33 0.46 0.15 0.34 0.21 0.29 0.18 0.23 0.26 0.13 0.19 0.30 0.21 0.14 0.17 SRHS-DU-89 Manual Phalanx mm from bone rim 20.38 20.42 20.45 20.49 20.52 20.56 20.59 20.63 20.66 20.70 20.73 20.76 20.80 20.83 20.87 20.90 Fe 1.02 6.47 2.06 1.27 1.31 1.18 1.12 0.69 2.29 1.04 1.34 0.86 0.86 2.93 0.85 1.12 1.21 1.15 1.14 1.58 1.12 bd 1.54 0.80 1.00 0.83 0.91 1.12 0.86 1.11 0.79 1.05 0.99 0.79 Fe 1.02 1.67 0.99 bd 0.92 1.46 bd 1.84 1.31 0.96 1.24 0.97 1.04 1.36 1.14 1.36 SRHS-DU-2 Metatarsal (continued) Sr 3447.54 7455.15 2797.22 1680.31 2628.18 1343.90 3136.98 2113.63 4142.50 2883.06 2549.71 2234.10 2803.20 2788.96 1747.91 3532.56 2864.95 3274.38 2926.47 3096.66 2906.98 2125.92 4769.57 3333.50 3123.12 2892.44 2979.36 3144.14 2151.32 3917.87 2618.17 2797.10 3326.41 2859.32 Sr 2822.86 3588.59 2462.29 4131.10 2466.22 2393.08 2819.92 3418.90 3661.78 3033.71 3619.14 3641.21 2106.82 2520.42 2854.60 3359.43 Y 691.11 686.34 318.22 229.40 238.79 180.30 330.27 201.53 399.79 363.09 377.38 241.40 204.63 314.42 220.44 326.37 293.44 299.58 310.31 278.52 325.76 196.11 390.80 328.69 291.52 295.22 312.12 287.91 228.08 400.02 295.66 279.58 271.52 216.55 Y 8.83 10.42 7.77 6.80 9.84 6.67 10.98 9.87 8.88 8.82 11.02 10.21 7.61 11.77 8.96 18.20 Ba 1548.99 1388.69 1094.55 1385.40 1020.21 811.24 2009.85 1296.36 1705.85 1128.79 1824.16 1357.68 1956.78 1343.57 1332.04 1611.57 1082.22 1844.87 1319.25 1391.22 1574.94 1186.11 1864.30 1187.55 1520.71 1100.82 1240.74 878.82 938.27 1193.76 1103.56 1084.87 1298.27 1833.48 Ba 1931.73 1947.60 nd 1633.38 1366.84 nd 1816.31 nd 1438.18 3352.04 nd 2169.52 1537.27 1534.11 1110.92 1876.14 La 519.57 830.20 280.03 184.21 204.73 166.04 422.69 212.19 453.00 345.35 304.88 265.96 219.85 272.74 201.34 324.21 287.02 265.21 262.38 321.56 281.40 158.78 333.99 249.90 226.74 223.47 287.39 218.75 207.70 258.47 210.92 218.02 174.17 239.17 La 1.28 1.24 1.89 5.55 0.92 1.48 0.85 1.58 2.44 1.16 1.59 1.48 2.13 2.08 1.08 2.34 Ce 2175.87 1231.00 530.45 557.49 426.50 334.51 697.56 508.34 1187.68 717.15 450.98 753.35 bd bd 371.36 bd bd 458.97 539.52 508.17 564.24 377.82 602.52 513.31 381.23 418.12 378.67 430.48 287.54 399.27 495.58 bd 379.99 bd Ce 4.90 1.04 0.62 2.55 0.79 0.84 0.86 4.67 8.18 1.35 2.54 0.88 0.95 4.85 0.93 7.07 Pr 127.27 110.39 71.00 43.99 51.04 32.76 70.96 34.57 94.57 62.09 46.19 55.48 58.40 40.95 33.67 65.11 57.29 64.35 48.91 58.75 45.62 30.36 53.88 41.43 37.04 44.52 40.29 39.25 36.03 51.66 36.70 36.63 38.64 30.32 Pr 0.15 0.09 0.55 bd 0.12 0.03 0.04 0.25 bd 0.20 0.29 0.26 0.16 0.13 0.14 0.34 Nd 543.00 1016.10 203.92 138.35 119.19 104.30 236.04 120.04 283.02 200.23 170.01 147.39 157.68 195.45 123.30 172.27 112.83 167.94 123.33 164.13 196.68 82.20 201.29 161.66 127.74 116.15 126.60 138.51 92.84 128.94 126.92 99.23 106.25 98.56 bd 0.18 0.19 0.98 bd 0.17 1.89 bd bd 0.79 1.66 0.21 0.37 0.75 bd bd Nd Sm 163.61 77.26 41.05 23.87 35.61 17.56 24.25 20.66 47.46 36.90 25.65 33.91 18.33 32.19 21.34 23.86 28.36 27.82 24.25 24.32 32.58 11.18 30.37 21.81 28.50 26.78 24.06 23.89 15.51 25.30 30.33 19.84 11.30 12.29 bd bd bd bd bd bd 1.26 0.59 bd bd 0.57 0.26 0.22 bd bd bd Sm Gd bd 85.69 40.81 39.67 24.49 26.10 39.91 22.59 45.49 46.56 27.95 25.46 29.61 28.86 17.29 35.90 20.25 29.75 24.87 37.60 33.68 19.06 34.21 38.37 39.76 29.25 32.95 35.76 22.86 24.74 18.85 23.28 29.10 23.82 bd 14.39 10.63 9.91 7.62 5.12 5.96 6.66 18.60 9.06 8.11 6.92 7.44 4.97 5.96 6.15 8.94 9.35 8.03 6.66 8.20 7.08 13.86 8.03 5.11 6.83 9.69 7.54 6.51 6.81 5.40 4.63 4.88 5.96 Gd 0.99 bd bd 0.12 bd bd bd bd 0.23 bd bd 0.46 bd bd bd bd Eu Eu 0.31 0.13 bd bd bd bd 0.15 bd 0.25 bd 0.08 0.07 0.13 0.18 bd bd Tb 117.35 18.44 5.96 4.14 3.77 2.72 6.58 3.31 6.85 5.32 4.94 4.86 2.98 2.77 3.40 4.76 4.51 5.50 4.64 6.41 4.95 2.75 5.14 5.11 4.33 3.45 4.50 4.62 3.83 4.24 4.32 2.74 3.17 2.89 bd 0.08 0.05 bd 0.04 0.02 bd 0.03 bd bd 0.03 bd 0.05 0.04 bd 0.06 Tb Dy 160.77 113.65 46.37 25.53 21.63 19.60 43.69 23.31 49.29 38.57 27.28 31.19 21.90 25.17 18.44 28.97 27.94 27.86 25.11 29.62 30.23 17.24 33.14 33.16 27.56 32.09 30.53 26.70 24.88 30.53 26.26 23.07 31.27 24.61 Dy 0.38 0.10 0.43 0.28 0.58 0.10 0.12 0.14 0.14 0.57 bd 0.25 bd 0.29 bd 0.69 Ho 9.93 31.84 7.62 6.18 3.98 4.79 8.58 5.32 11.21 8.36 6.55 6.84 5.57 6.22 6.28 6.65 5.02 8.64 6.92 9.15 7.43 4.95 10.16 8.12 7.15 7.57 7.77 6.65 5.12 7.30 6.64 7.17 5.69 5.83 Ho 0.16 0.10 0.05 0.07 0.02 0.05 bd 0.18 0.07 0.09 0.10 0.09 0.05 0.11 0.04 0.11 Er 88.12 67.64 25.95 15.58 15.13 8.86 23.84 14.02 38.35 29.93 19.34 19.70 19.75 20.41 17.10 20.71 12.58 22.27 22.63 22.19 20.47 13.68 29.82 28.07 25.24 15.57 19.57 20.85 16.33 19.66 22.07 17.60 19.44 17.21 Er 0.83 0.46 0.12 0.70 0.09 bd 0.26 0.15 0.90 0.25 bd 0.41 0.12 0.48 0.34 0.50 Tm 28.62 16.88 3.32 2.19 2.63 1.57 4.52 1.94 4.51 2.97 2.48 2.44 1.90 1.95 1.71 2.45 2.07 3.24 2.43 2.47 2.57 1.49 3.99 2.88 2.86 2.52 3.68 2.23 2.18 3.91 2.75 2.63 1.40 2.58 Tm 0.15 0.12 0.08 bd 0.06 0.02 0.11 0.03 0.13 0.08 0.07 0.15 0.08 0.10 0.11 bd Yb 174.36 34.27 15.18 16.42 8.53 10.34 15.91 8.63 27.02 18.98 16.24 12.97 13.00 17.63 12.11 13.64 11.24 18.89 14.05 14.75 13.21 9.58 30.93 23.86 18.56 16.88 25.10 28.13 15.75 17.25 16.49 12.42 11.12 18.43 Yb 1.10 0.30 0.63 0.20 0.48 0.57 0.17 0.82 1.98 0.33 1.79 0.18 0.46 0.84 0.45 1.00 Lu 32.04 12.60 3.02 2.92 1.83 1.17 3.48 1.66 3.74 2.59 3.09 2.04 2.00 2.60 2.16 2.78 2.03 3.21 1.65 2.20 2.48 1.94 4.79 2.75 3.36 2.77 3.01 1.99 2.21 2.98 2.21 1.93 2.38 2.10 Lu 0.13 0.16 0.29 0.06 0.07 0.05 0.13 0.04 0.22 0.15 0.07 0.16 0.11 0.04 0.12 0.06 bd 1.92 bd bd 0.05 0.07 0.12 0.11 0.12 0.04 0.12 0.08 0.27 0.12 0.05 0.18 0.03 bd bd bd 0.08 0.02 0.10 bd 0.04 0.04 bd 0.05 0.03 0.05 0.04 bd bd 0.07 Th Th 0.03 bd bd bd bd 0.04 bd 0.34 0.05 bd bd bd 0.02 0.03 bd bd U ƩREE 121.35 4140 81.55 3660 26.25 1285 14.67 1070 10.95 927 13.63 735 29.24 1604 18.22 983 44.61 2271 43.58 1524 24.78 1114 38.45 1369 19.94 558 22.78 652 19.82 835 28.13 707 18.23 580 21.98 1113 19.36 1109 29.43 1208 28.08 1244 13.69 738 26.96 1388 20.37 1138 31.33 935 22.43 946 22.88 994 22.92 985 16.94 739 20.29 981 21.13 1005 17.48 469 14.66 819 14.12 484 U ƩREE 3.79 10 2.22 4 2.05 5 1.75 11 1.30 3 1.60 3 1.28 6 1.41 8 1.81 15 1.76 5 1.25 9 2.09 5 0.95 5 1.04 10 1.05 3 1.28 12 Ce/Ce* 0.99 -0.09 -0.12 0.45 -0.02 0.06 -0.07 0.36 0.34 0.13 -0.14 0.45 0.17 0.21 0.04 -0.33 -0.13 -0.17 0.11 -0.14 0.14 0.27 0.03 0.16 -0.05 -0.02 -0.21 0.08 -0.23 -0.19 0.30 0.13 0.09 0.21 Ce/Ce* 1.44 -0.40 -0.86 -0.65 -0.47 -0.51 -0.19 0.69 1.28 -0.36 -0.13 -0.67 -0.68 0.75 -0.46 0.78 Ce/Ce** 2.63 -2.02 0.76 1.37 0.75 1.12 1.12 1.74 1.31 1.28 1.23 1.30 0.93 2.61 1.38 0.61 0.69 0.68 1.03 0.86 1.94 1.21 1.44 1.68 1.21 0.89 1.02 1.32 0.75 0.72 1.59 1.16 0.96 1.71 Ce/Ce** 2.98 0.91 0.07 0.78 1.17 10.48 -0.22 4.70 13.70 0.88 3.22 0.23 0.53 13.60 1.88 1.78 La/La* Y/Ho 0.92 69.6 -1.83 21.6 -0.25 41.7 -0.10 37.1 -0.38 60.0 0.11 37.6 0.40 38.5 0.56 37.9 -0.05 35.7 0.24 43.4 0.91 57.6 -0.17 35.3 -0.34 36.7 5.83 50.6 0.71 35.1 -0.14 49.1 -0.32 58.4 -0.30 34.7 -0.12 44.8 0.00 30.4 2.05 43.8 -0.08 39.6 0.86 38.4 1.04 40.5 0.54 40.8 -0.15 39.0 0.53 40.1 0.47 43.3 -0.03 44.5 -0.19 54.8 0.45 44.6 0.05 39.0 -0.19 47.7 0.78 37.2 La/La* Y/Ho 0.36 56.1 0.79 100.4 -0.69 144.7 2.19 96.4 5.16 482.3 -38.24 136.8 -1.22 96.5 -25.35 56.1 -8.12 130.8 0.88 102.9 -5.05 107.5 -0.43 110.2 1.04 143.7 -12.76 108.9 -14.74 235.1 -0.01 158.6 385 mm from bone rim 1.17 1.21 1.24 1.28 1.31 1.35 1.38 1.42 1.45 1.49 1.52 1.55 1.59 1.62 1.66 1.69 1.73 1.76 1.80 1.83 1.87 1.90 1.93 1.97 2.00 2.04 2.07 2.11 2.14 2.18 2.21 2.25 2.28 2.32 2.35 2.38 2.42 2.45 2.49 2.52 2.56 2.59 2.63 2.66 2.70 2.73 2.76 2.80 2.83 2.87 2.90 2.94 2.97 3.01 Sc 30.33 29.30 28.16 27.49 24.32 26.77 26.54 32.00 25.22 28.21 27.62 22.04 29.30 29.58 18.89 20.26 37.36 28.05 30.04 26.71 29.07 30.24 34.81 23.81 24.81 29.78 24.75 23.75 24.45 24.16 23.33 25.40 26.03 20.20 21.97 22.57 22.08 26.73 21.15 29.60 20.75 24.66 19.89 25.51 27.55 21.37 21.51 21.42 15.55 21.47 19.17 19.27 22.38 21.81 Mn 0.19 0.34 0.20 0.17 0.18 0.22 0.18 0.25 0.23 0.19 0.22 0.23 0.37 0.26 0.16 0.26 0.42 0.51 0.38 0.30 0.39 0.31 0.26 0.23 0.25 0.19 0.19 0.23 0.29 0.19 0.18 0.18 0.21 0.15 0.18 0.18 0.23 0.30 0.29 0.32 0.19 0.21 0.17 0.17 0.23 0.23 0.25 0.23 0.14 0.19 0.14 0.13 0.38 0.21 Fe 1.34 1.28 0.88 1.24 1.51 2.08 1.26 1.76 1.09 1.12 1.11 1.58 1.35 1.57 1.11 1.18 1.22 1.17 1.66 2.58 1.96 1.01 1.70 1.72 2.04 bd 2.04 1.01 1.58 0.97 1.10 1.28 2.14 1.49 2.08 1.01 1.34 0.85 1.05 1.65 0.93 0.89 1.18 1.47 1.08 1.00 1.27 0.90 0.92 1.76 0.81 2.01 1.23 0.96 SRHS-DU-89 Manual Phalanx (continued) Sr 3922.34 3385.74 3362.90 4136.09 2579.40 3142.79 3453.31 4115.13 3147.85 4163.16 3895.58 2933.82 3356.43 3334.61 3093.16 2532.50 4000.44 3204.84 3656.39 3153.21 4534.18 2548.59 4120.98 4461.88 4178.07 4204.22 3336.90 2998.96 2538.75 2597.91 3522.33 3167.06 2950.99 3633.21 2946.70 2796.26 3134.53 2952.80 4079.64 3721.04 2182.85 3019.00 3251.59 3773.81 2621.68 3454.51 3073.03 6545.99 2606.10 2347.05 2808.87 3776.46 3609.55 2377.96 Y 308.82 370.75 280.03 294.55 232.59 247.13 279.05 306.41 294.27 286.01 292.85 274.98 292.73 309.84 234.18 210.83 334.06 259.52 283.54 294.57 301.67 266.76 315.88 271.45 276.70 262.89 281.44 205.86 223.17 255.50 213.31 244.14 244.15 219.90 195.16 192.86 224.70 196.06 194.81 262.70 180.79 201.38 182.51 224.61 224.07 195.83 224.96 220.82 171.81 184.15 185.08 203.35 243.73 176.00 Ba 1471.09 2387.76 2300.33 1790.15 1441.94 1285.34 1197.16 1174.07 1491.04 1214.38 1402.90 1297.53 1760.31 1709.69 1148.73 1286.82 2459.73 1140.52 1526.32 2041.99 1736.83 1169.34 1689.90 1502.77 1343.81 1485.76 2733.41 1151.41 1729.73 1667.42 2217.27 1655.05 1511.87 1622.63 1042.04 1593.76 2473.89 1491.51 1812.19 1931.46 1267.56 1454.40 1272.39 1756.54 1765.86 1077.14 1459.70 1458.78 1045.06 888.77 1156.39 1139.91 1418.76 1095.38 La 235.46 225.15 214.95 192.27 146.26 191.54 190.77 235.46 186.31 191.48 208.01 162.56 223.06 218.96 137.62 138.00 223.80 150.10 190.00 157.58 159.49 140.16 208.80 151.26 133.63 131.99 157.35 103.12 119.88 110.15 113.40 125.47 125.23 86.86 108.68 88.09 93.44 98.72 101.01 117.09 88.13 89.53 87.26 102.41 77.61 83.74 86.83 87.36 61.15 88.52 88.93 72.68 88.38 77.27 Ce 549.81 330.89 430.34 309.91 292.69 369.69 285.84 289.73 469.94 378.19 291.19 296.98 394.67 313.47 281.15 214.72 550.09 395.01 386.96 234.12 503.77 223.34 402.65 344.84 353.04 233.38 240.22 193.18 196.16 173.11 158.47 143.22 170.03 215.75 123.82 206.89 185.01 129.91 149.28 129.51 102.36 138.95 118.13 150.40 112.09 152.37 103.14 135.27 bd 115.31 133.35 112.76 139.52 86.08 Pr 38.31 39.22 32.41 29.24 41.14 27.99 19.85 31.97 35.68 34.23 27.25 27.35 35.71 37.99 35.41 25.75 43.77 47.54 28.04 31.35 32.54 25.02 35.68 42.03 23.77 21.24 24.95 18.00 18.25 19.09 21.95 18.40 13.14 11.19 10.24 13.01 13.41 10.52 15.80 13.69 10.34 8.28 11.53 14.50 10.59 8.33 8.26 11.90 8.55 8.05 10.54 10.35 11.98 13.01 Nd 124.00 130.24 117.88 98.48 92.57 107.91 86.49 116.58 103.58 115.56 91.16 105.43 109.37 117.37 100.80 83.38 122.99 96.63 103.14 84.36 82.03 75.95 110.62 70.48 74.06 78.19 69.20 64.72 55.06 53.94 55.76 51.88 48.70 31.60 41.57 41.52 46.25 32.17 48.98 52.72 31.71 31.24 31.51 62.02 24.23 37.04 45.21 34.92 28.53 40.65 36.35 31.80 39.11 39.07 Sm 30.11 17.29 13.85 26.25 13.56 18.20 17.15 18.48 14.74 14.17 25.52 14.74 20.62 22.40 9.91 15.51 16.50 14.09 15.62 15.28 15.85 14.48 15.23 13.16 13.88 14.70 10.50 13.79 10.20 10.86 10.45 8.52 6.44 8.52 5.13 6.31 9.38 9.81 11.33 9.60 6.20 3.81 3.93 8.37 6.55 8.01 5.35 6.52 4.31 2.78 5.31 5.83 3.55 6.74 Eu 8.34 6.25 5.61 3.79 3.94 4.44 3.83 6.21 4.61 6.90 4.76 6.96 7.56 6.21 5.56 4.28 6.86 4.83 5.23 4.65 5.04 4.50 6.22 2.57 4.94 4.03 4.21 2.97 2.79 2.66 3.46 2.41 2.30 3.09 2.51 1.36 2.79 2.22 3.00 2.41 2.39 1.70 2.74 1.78 2.41 0.99 1.91 3.08 1.11 1.66 1.79 1.33 2.64 2.28 Gd 31.30 31.63 23.79 26.58 25.41 23.23 28.00 29.82 26.77 24.40 26.22 19.00 27.30 30.83 21.46 16.59 33.32 27.20 30.39 22.02 26.96 23.12 19.51 15.98 19.99 19.29 14.07 12.97 16.67 13.90 11.94 14.01 10.24 15.14 13.51 10.82 17.42 9.76 8.75 18.12 8.70 10.24 8.16 14.68 14.97 10.97 11.73 10.68 11.45 11.09 14.11 8.87 10.25 9.15 Tb 3.74 4.12 3.30 3.84 3.98 3.65 2.70 3.66 4.06 5.43 4.72 3.04 3.97 2.99 2.97 2.59 3.61 3.43 3.72 3.04 3.48 2.95 3.27 3.14 3.86 4.11 2.79 3.24 1.70 2.77 2.22 2.80 2.82 2.30 1.92 2.01 1.98 1.87 2.35 1.93 1.87 1.59 1.17 1.90 1.84 1.55 1.79 2.10 2.09 1.37 1.65 2.25 1.40 1.75 Dy 29.52 29.67 23.20 25.35 20.10 26.23 27.51 27.18 25.93 30.52 24.46 23.97 27.02 24.23 17.76 18.80 33.48 25.82 27.94 23.47 28.61 21.77 24.10 24.59 30.81 19.16 24.94 23.29 23.20 24.14 22.77 18.39 25.68 17.26 23.18 15.64 16.72 16.36 17.69 22.05 13.77 16.44 11.58 21.68 17.18 14.57 15.40 16.35 10.56 13.14 15.79 13.95 23.34 16.52 Ho 7.45 5.88 6.24 5.15 5.61 6.26 6.47 8.11 6.04 8.86 5.44 6.28 8.04 6.74 4.39 3.82 7.03 5.31 5.72 5.76 6.55 6.48 7.70 6.37 5.51 4.16 4.93 5.47 4.93 4.83 4.39 5.20 5.77 6.33 4.16 3.55 4.68 4.79 6.35 6.97 4.01 4.28 3.88 5.88 4.56 3.38 3.62 6.23 4.00 3.91 4.58 4.86 5.46 4.30 Er 25.01 21.29 19.48 28.50 19.42 25.10 21.83 21.61 21.98 20.35 21.75 18.40 19.23 18.51 16.31 14.58 20.46 18.81 24.61 17.93 19.40 19.76 23.67 16.17 21.18 17.93 20.45 17.34 18.90 17.55 18.76 15.62 16.42 13.97 16.59 11.71 14.93 15.23 17.86 18.51 15.13 14.58 14.50 14.38 16.81 14.57 14.42 22.52 12.07 13.88 15.26 14.97 18.94 13.54 Tm 2.82 3.16 2.91 2.22 2.04 1.91 2.09 3.16 2.73 2.75 2.75 3.06 2.26 2.56 2.74 2.07 2.28 2.10 3.36 1.70 3.65 2.40 3.55 2.59 2.69 2.16 1.97 1.92 2.90 2.17 2.48 2.53 3.05 2.29 1.54 2.08 1.49 2.19 3.03 2.00 2.34 1.69 2.10 1.99 2.20 1.48 1.91 2.14 2.04 2.27 1.77 2.40 1.61 2.14 Yb 19.88 18.40 14.19 15.52 10.79 11.36 16.31 19.24 13.13 11.27 14.86 21.68 14.06 16.43 10.64 13.60 14.42 16.51 20.22 13.73 20.44 12.33 20.06 14.29 14.49 14.82 16.61 13.86 13.89 12.65 14.55 15.42 17.06 15.25 13.26 10.95 17.24 14.20 19.05 16.13 12.16 13.79 7.21 12.72 11.75 11.13 18.23 21.76 13.04 14.08 11.30 16.30 13.36 11.08 Lu 3.43 2.09 2.31 2.38 1.77 3.37 3.66 2.51 2.51 3.02 2.23 1.97 3.36 2.97 2.25 1.76 2.70 2.55 2.60 2.30 2.96 3.02 3.46 1.93 2.26 2.47 2.58 2.65 3.08 3.13 2.27 2.28 1.68 2.51 2.87 1.87 2.56 1.74 2.63 3.29 2.14 2.73 2.40 1.87 2.01 1.65 2.19 2.10 1.31 2.04 2.35 1.25 2.87 1.40 bd 0.16 0.11 0.08 bd 0.07 bd bd 0.08 0.09 0.04 0.04 0.16 0.08 0.20 0.08 0.27 0.06 0.16 0.07 0.07 0.13 0.13 bd 0.27 bd bd bd 0.08 bd 0.04 bd 0.09 0.04 bd bd bd bd bd 0.05 bd 0.04 bd 0.04 0.04 bd bd 0.08 bd 0.07 0.07 bd bd bd Th U ƩREE 23.09 1109 26.82 865 25.10 910 27.33 769 16.61 679 18.22 821 27.33 712 26.61 814 19.81 918 21.61 847 18.31 750 19.01 711 17.30 896 23.47 822 18.71 649 14.41 555 39.84 1081 17.47 810 24.65 848 27.78 617 21.80 911 18.16 575 17.92 885 20.19 709 22.09 704 20.86 568 18.53 595 19.78 477 18.76 488 14.85 451 15.94 443 16.70 426 26.97 449 12.06 432 18.26 369 13.16 416 18.05 427 13.12 349 19.80 407 16.23 414 16.01 301 13.21 339 11.48 306 23.94 415 17.68 305 10.81 350 15.01 320 13.92 363 12.65 160 17.19 319 15.41 343 15.74 300 15.40 362 13.82 284 Ce/Ce* 0.33 -0.19 0.17 -0.06 -0.11 0.14 -0.01 -0.25 0.34 0.08 -0.14 0.02 0.01 -0.21 -0.05 -0.16 0.29 0.09 0.20 -0.22 0.63 -0.13 0.08 0.02 0.45 0.01 -0.12 0.04 -0.05 -0.13 -0.26 -0.33 -0.10 0.54 -0.22 0.38 0.18 -0.14 -0.15 -0.29 -0.26 0.06 -0.17 -0.12 -0.12 0.22 -0.19 -0.06 0.23 -0.11 -0.05 -0.07 -0.04 -0.38 Ce/Ce** 1.59 0.96 1.65 1.22 0.62 1.76 2.29 1.13 1.34 1.27 1.22 1.45 1.17 0.88 0.80 0.93 1.25 0.70 1.74 0.72 1.44 0.94 1.21 0.64 1.60 1.39 0.95 1.32 1.13 0.91 0.67 0.78 1.64 1.93 1.73 1.74 1.62 1.31 1.01 1.26 1.05 2.18 1.00 1.60 0.93 3.01 3.52 1.17 1.67 3.11 1.49 1.16 1.30 0.69 La/La* Y/Ho 0.38 41.4 0.34 63.1 0.87 44.8 0.58 57.2 -0.47 41.5 1.24 39.5 4.01 43.1 1.09 37.8 0.00 48.7 0.35 32.3 0.81 53.8 0.94 43.8 0.29 36.4 0.20 46.0 -0.27 53.4 0.20 55.2 -0.06 47.6 -0.56 48.9 0.96 49.6 -0.12 51.1 -0.19 46.0 0.14 41.2 0.23 41.0 -0.55 42.6 0.19 50.3 0.80 63.2 0.14 57.1 0.57 37.6 0.32 45.3 0.07 52.9 -0.15 48.6 0.26 46.9 1.80 42.3 0.44 34.7 3.10 46.9 0.48 54.3 0.75 48.0 0.93 40.9 0.34 30.7 1.79 37.7 0.76 45.1 2.33 47.1 0.35 47.0 2.36 38.2 0.11 49.1 4.84 57.9 -17.91 62.2 0.43 35.5 0.69 43.0 30.15 47.1 1.12 40.4 0.45 41.9 0.68 44.6 0.19 40.9 386 mm from bone rim 3.04 3.08 3.11 3.14 3.18 3.21 3.25 3.28 3.32 3.35 3.39 3.42 3.46 3.49 3.52 3.56 3.59 3.63 3.66 3.70 3.73 3.77 3.80 3.84 3.87 3.90 3.94 3.97 4.01 4.04 4.08 4.11 4.15 4.18 4.22 4.25 4.28 4.32 4.35 4.39 4.42 4.46 4.49 4.53 4.56 4.60 4.63 4.66 4.70 4.73 4.77 4.80 4.84 4.87 Sc 24.57 24.88 27.59 30.81 21.72 29.03 28.77 24.12 19.90 22.09 29.29 23.83 22.86 20.24 34.76 24.63 24.95 17.87 18.29 18.48 16.68 30.13 25.48 20.03 19.06 22.72 26.14 22.24 23.39 26.85 27.75 31.20 24.44 17.14 23.21 19.47 20.96 27.93 27.95 36.02 24.41 25.76 25.48 28.19 27.02 22.82 20.40 24.54 19.94 28.26 23.93 23.63 22.91 24.61 Mn 0.21 0.17 0.24 0.20 0.62 0.24 0.21 0.16 0.16 0.17 0.17 0.17 0.16 0.14 0.87 0.22 0.18 0.13 0.17 0.23 0.14 0.21 0.28 0.13 0.19 0.16 0.19 0.24 0.15 0.22 0.34 0.23 0.29 0.13 0.23 0.18 0.16 0.21 0.19 0.22 0.24 0.26 0.20 0.22 0.23 0.23 0.26 0.41 0.21 0.37 0.23 1.66 0.21 0.24 Fe 1.25 0.81 1.33 1.37 0.87 1.40 1.04 0.82 1.08 1.04 1.17 1.05 1.42 0.76 1.31 1.14 1.10 0.76 1.06 0.78 0.74 1.05 bd 0.93 1.04 0.94 1.49 1.21 1.37 1.99 1.57 1.17 1.23 0.74 1.26 0.89 bd 1.24 1.22 1.16 1.30 1.04 0.72 0.97 1.05 1.20 1.31 1.90 0.99 1.26 1.33 0.91 1.39 1.09 SRHS-DU-89 Manual Phalanx (continued) Sr 3823.28 4032.85 2947.17 3618.24 3425.75 3785.52 2870.55 2582.81 2841.93 3551.02 4033.90 2286.06 2827.62 2377.56 4232.40 2655.20 2847.99 2170.49 3041.46 2745.74 2779.68 3961.13 3082.71 2711.28 3205.43 3734.34 3282.30 3550.46 3461.20 3025.08 3657.97 3799.96 3003.12 1807.33 2954.24 2752.39 3048.84 3031.50 3953.82 3342.62 2640.02 3256.82 3030.88 3174.53 4219.29 3646.23 2357.50 2647.06 3664.08 2527.88 3385.17 2736.63 4416.37 3290.79 Y 207.57 215.23 321.04 250.92 191.00 271.13 273.74 238.07 192.61 206.55 220.30 180.91 202.02 152.26 235.63 202.65 176.99 136.35 172.04 167.59 134.33 178.12 204.88 154.90 214.07 179.16 213.59 239.58 185.67 215.39 255.32 221.04 201.04 163.60 216.02 197.68 218.12 261.94 227.44 317.37 233.97 269.64 216.14 227.78 197.81 220.34 219.20 185.45 207.81 196.36 185.23 194.84 189.36 216.44 Ba 1379.23 1371.64 1784.40 1537.74 1053.17 1531.60 1522.93 1933.12 1364.60 2038.51 1284.26 1285.59 1090.86 1202.33 2187.80 1235.04 1531.41 971.06 1207.90 1087.17 1183.37 1256.29 1475.70 1104.90 1691.05 1436.18 2040.78 2036.44 1555.47 1556.67 2451.19 1228.11 1613.35 1046.72 1285.20 1115.01 1391.18 1672.70 2779.65 1812.22 1946.26 1923.02 1537.96 nd 1180.09 1919.86 2738.79 1232.88 1307.26 1611.17 1181.45 1844.95 1800.35 1563.34 La 106.33 106.96 130.21 105.60 80.38 113.80 101.02 83.80 75.72 79.50 91.53 66.43 89.59 69.80 94.23 71.53 70.91 65.30 62.93 67.14 69.59 58.14 70.13 73.17 76.13 81.77 86.77 89.64 82.63 95.22 96.29 95.31 86.22 67.39 88.22 86.96 94.12 108.76 108.85 139.85 86.55 116.16 96.22 101.66 89.53 99.32 89.73 86.48 79.62 107.65 94.45 76.86 79.54 74.32 Ce 117.45 129.19 177.10 156.37 117.07 198.21 165.75 212.13 149.31 133.15 122.86 101.13 81.75 69.34 100.91 121.53 96.66 115.89 93.64 108.70 138.13 155.77 151.57 90.15 117.33 113.40 133.27 95.85 112.40 140.39 159.81 144.97 186.21 151.67 124.46 97.90 138.23 331.20 189.39 180.32 205.96 173.89 169.69 206.41 147.95 140.39 189.96 162.17 129.43 142.54 188.91 149.01 169.72 144.18 Pr 11.07 11.97 17.58 14.05 11.38 12.73 11.14 10.89 10.60 8.52 11.16 8.12 9.68 7.45 13.66 9.63 9.16 10.17 10.28 7.56 8.95 8.98 10.96 8.18 12.53 8.69 11.97 9.45 10.58 11.59 12.15 15.25 9.77 15.38 10.31 12.66 12.53 14.48 21.34 15.70 19.26 18.22 14.42 14.40 11.85 14.12 10.91 12.85 15.33 14.30 14.25 10.45 8.12 8.72 Nd 58.20 58.86 48.65 57.98 48.71 52.83 42.40 31.68 31.11 35.19 40.79 30.32 32.02 26.84 33.01 37.39 40.66 39.96 25.22 34.38 25.45 29.41 23.52 26.98 33.57 22.99 28.31 31.65 35.26 35.36 42.21 34.17 39.10 36.09 27.39 43.01 33.49 52.75 47.66 58.05 49.32 48.48 45.64 51.24 46.73 46.90 46.49 41.58 47.01 38.86 40.75 41.34 39.34 25.88 Sm 7.81 6.28 6.68 10.44 5.99 11.85 10.24 6.38 5.12 4.84 6.06 7.19 7.20 10.51 4.27 1.84 3.56 3.09 2.90 4.25 2.56 4.35 5.39 4.42 7.37 3.51 7.10 7.10 3.60 8.21 5.02 6.64 6.61 5.19 6.62 3.99 8.21 12.59 6.47 6.80 9.16 6.18 8.00 12.22 7.30 6.78 5.13 6.93 8.06 7.15 7.45 8.48 6.24 7.30 Eu 3.43 3.39 3.05 2.72 2.31 2.17 2.16 2.90 2.85 1.89 1.08 1.27 2.71 0.89 3.25 1.75 3.30 0.67 1.94 1.36 1.36 1.50 1.28 1.73 1.60 2.19 1.34 1.61 1.61 1.27 3.45 2.29 2.53 2.32 1.58 1.46 2.27 3.63 4.16 3.29 3.61 2.71 4.86 1.76 2.17 3.56 3.06 3.71 2.40 2.50 1.45 2.43 2.89 2.48 Gd 11.85 14.87 19.96 16.46 10.52 15.43 11.89 8.68 15.32 18.21 12.86 7.15 7.91 7.76 13.70 6.92 8.26 8.94 7.57 8.45 9.64 8.67 11.10 5.76 8.33 6.34 10.92 8.75 11.05 9.81 18.48 20.58 16.64 8.27 9.55 9.79 18.13 17.49 14.26 12.68 13.37 13.77 12.89 13.74 13.56 11.11 14.67 14.15 15.02 13.94 7.40 7.18 15.55 9.33 Tb 2.44 2.81 2.87 2.75 2.52 2.07 1.73 1.32 1.22 1.96 1.49 0.94 1.81 1.11 2.15 1.01 1.70 1.04 1.08 1.29 1.12 1.36 1.16 0.99 1.76 1.75 1.62 1.53 0.93 1.72 2.07 2.25 1.99 1.92 2.76 1.80 1.57 2.46 2.60 2.63 2.38 2.91 2.50 2.49 2.10 1.86 1.92 2.44 1.92 2.63 1.97 1.68 1.53 1.04 Dy 15.49 19.25 23.13 24.52 18.13 23.24 19.67 13.49 15.91 10.96 14.85 11.54 16.55 10.74 16.29 14.76 13.78 9.22 13.34 13.30 10.75 8.87 12.17 8.94 16.43 12.83 16.13 14.93 16.76 21.75 15.52 15.95 15.59 18.32 14.44 22.45 17.53 22.25 20.54 28.75 20.54 21.75 17.66 23.77 16.28 16.04 16.11 12.90 15.98 17.68 17.30 13.54 14.62 11.24 Ho 4.90 5.70 6.41 7.49 5.16 6.40 4.43 2.87 3.50 4.05 4.44 2.83 4.86 3.37 4.93 3.32 3.05 2.53 4.38 3.83 4.00 2.99 3.91 3.98 3.76 3.43 3.62 3.06 3.92 5.62 5.37 5.00 4.11 4.02 3.84 4.09 3.47 6.29 5.20 6.85 4.83 6.30 3.83 5.63 4.21 5.40 4.10 4.23 5.05 4.78 4.74 3.87 3.30 2.93 Er 19.83 19.89 23.50 18.51 12.91 24.31 16.55 13.74 14.17 16.67 12.40 14.62 15.93 13.91 16.62 13.06 14.30 8.01 15.63 9.16 5.83 15.16 11.63 11.31 14.98 13.24 10.95 17.86 15.03 17.70 20.39 12.81 13.40 13.14 13.01 16.72 15.16 16.44 14.86 21.75 14.28 23.71 13.44 18.26 15.20 18.70 17.52 10.64 17.56 12.39 13.61 11.16 14.38 12.54 Tm 2.51 2.70 2.38 2.74 2.34 3.19 3.23 1.49 2.39 1.65 1.79 1.68 2.43 1.43 2.54 1.75 2.35 1.18 2.15 2.06 1.26 1.44 2.51 2.03 1.52 2.27 2.33 1.85 1.85 3.94 3.33 3.38 2.53 1.84 1.85 2.76 1.50 2.98 2.30 3.46 2.71 2.50 2.22 2.57 2.24 2.60 2.75 1.53 2.41 1.81 2.30 1.35 2.54 2.63 Yb 14.51 13.37 21.79 18.21 14.24 22.63 22.71 14.53 10.42 10.84 11.46 10.44 15.87 15.55 16.17 10.68 12.64 9.16 10.03 10.67 9.69 8.56 12.25 10.58 16.40 9.51 13.04 13.68 12.55 19.12 22.74 17.86 8.49 13.44 14.32 11.12 10.81 19.48 19.57 26.83 9.52 16.51 9.83 12.02 14.13 15.28 14.09 9.34 12.93 14.33 17.46 11.80 8.36 10.10 Lu 2.91 2.92 2.67 3.01 1.70 3.74 3.34 1.84 2.49 1.90 3.05 2.64 2.08 1.29 2.54 1.68 2.32 0.99 2.55 1.70 1.74 1.53 2.39 1.58 1.62 2.04 2.31 1.68 2.19 2.40 4.73 1.96 2.34 1.76 1.68 2.76 1.87 3.63 2.62 4.27 2.43 2.94 2.37 2.36 2.47 2.70 2.37 2.17 2.38 2.43 1.94 1.68 1.58 1.77 Th 0.04 bd bd bd bd bd bd 0.07 bd bd bd bd bd bd bd bd 0.08 0.03 bd 0.03 bd 0.03 0.04 0.03 bd 0.06 bd 0.03 bd 0.07 bd bd bd bd bd bd bd 0.08 bd bd 0.03 0.07 bd bd bd 0.08 0.03 bd bd bd bd 0.03 0.03 bd U ƩREE 15.93 379 27.03 398 37.98 486 26.25 441 16.44 333 25.68 493 20.03 416 15.40 406 13.56 340 18.76 329 16.84 336 9.68 266 14.06 290 7.68 240 18.89 324 14.93 297 13.24 283 7.89 276 14.50 254 12.84 274 14.33 290 14.74 307 24.25 320 12.10 250 22.83 313 12.95 284 18.94 330 17.86 299 20.27 310 17.91 374 32.31 412 13.79 378 16.62 396 13.47 341 14.52 320 15.74 317 15.47 359 22.13 614 20.20 460 24.05 511 14.13 444 17.45 456 10.83 404 12.76 469 10.40 376 11.04 385 15.95 419 10.34 371 12.91 355 8.06 383 9.25 414 7.43 341 7.39 368 11.25 314 Ce/Ce* -0.27 -0.22 -0.17 -0.09 -0.13 0.13 0.07 0.56 0.19 0.10 -0.15 -0.04 -0.40 -0.35 -0.36 0.04 -0.16 0.03 -0.16 0.05 0.23 0.55 0.25 -0.20 -0.13 -0.09 -0.07 -0.30 -0.16 -0.07 0.03 -0.13 0.39 0.11 -0.10 -0.33 -0.10 0.86 -0.08 -0.17 0.18 -0.14 0.03 0.22 0.01 -0.15 0.33 0.10 -0.14 -0.19 0.17 0.18 0.42 0.24 Ce/Ce** 2.60 2.20 0.99 1.63 1.59 2.30 1.95 1.99 1.45 2.29 1.38 1.60 0.96 1.15 0.67 1.70 1.73 1.56 0.83 2.47 1.55 1.95 1.19 1.24 0.90 1.25 1.00 1.16 1.21 1.28 1.56 0.83 2.67 0.88 1.16 0.90 1.06 2.85 0.78 1.46 1.00 0.92 1.28 1.74 1.71 1.13 2.67 1.40 0.90 0.97 1.34 1.96 4.10 1.71 La/La* Y/Ho -77.04 42.3 12.88 37.7 0.34 50.1 2.08 33.5 2.38 37.0 2.74 42.4 1.86 61.8 0.48 83.0 0.39 55.0 2.84 51.0 1.33 49.7 1.46 63.9 1.15 41.6 1.58 45.2 0.09 47.8 1.48 61.1 3.46 58.1 1.22 53.8 -0.02 39.2 4.95 43.7 0.45 33.6 0.48 59.7 -0.08 52.4 1.07 38.9 0.06 56.9 0.62 52.3 0.13 59.0 1.26 78.4 0.84 47.4 0.68 38.4 1.02 47.5 -0.07 44.3 2.24 48.9 -0.32 40.7 0.48 56.3 0.68 48.3 0.31 62.8 1.12 41.7 -0.24 43.8 1.60 46.4 -0.25 48.4 0.11 42.8 0.44 56.4 0.89 40.5 1.64 46.9 0.65 40.8 2.84 53.5 0.51 43.9 0.07 41.2 0.34 41.1 0.25 39.1 1.60 50.3 11.05 57.4 0.68 74.0 387 mm from bone rim 4.91 4.94 4.98 5.01 5.04 5.08 5.11 5.15 5.18 5.22 5.25 5.29 5.29 5.32 5.36 5.39 5.43 5.46 5.49 5.53 5.56 5.60 5.63 5.67 5.70 5.74 5.77 5.81 5.84 5.88 5.91 5.94 5.98 6.01 6.05 6.08 6.12 6.15 6.19 6.22 6.26 6.29 6.32 6.36 6.39 6.43 6.46 6.50 6.53 6.57 6.60 6.64 6.67 6.70 Sc 22.25 21.84 21.56 20.51 21.46 23.52 15.52 17.94 19.35 19.11 23.34 18.32 21.34 18.28 21.31 18.12 16.43 17.54 20.11 17.93 25.80 24.41 26.30 21.38 24.39 19.21 27.16 20.07 16.28 17.63 24.21 19.81 18.68 32.66 25.23 22.21 22.66 20.23 26.08 31.44 23.91 25.68 17.15 27.18 15.92 20.80 22.22 29.24 25.14 34.30 25.56 23.69 18.06 15.19 Mn 0.20 0.25 0.20 0.21 0.31 0.29 0.14 0.20 0.19 0.21 0.20 0.14 0.21 0.15 0.22 0.22 0.20 0.23 0.16 0.17 0.40 0.21 0.24 0.21 0.37 0.18 0.26 0.20 0.16 0.15 0.19 0.23 0.14 0.28 0.19 0.21 0.19 0.18 0.30 0.23 0.38 0.38 0.33 0.48 0.30 0.51 0.54 0.36 0.43 0.34 0.23 0.39 0.20 0.19 Fe 1.15 0.86 1.21 1.48 0.98 1.37 1.96 1.02 1.22 1.11 1.08 1.58 1.05 0.76 1.69 1.40 1.05 2.14 1.21 1.79 1.29 0.99 1.43 1.76 0.93 1.02 1.30 0.85 0.93 0.60 1.13 1.27 0.91 1.68 1.73 1.10 0.89 1.53 1.56 1.28 1.39 0.94 1.07 1.48 0.63 1.04 1.14 1.28 1.28 1.05 1.16 0.93 0.90 0.79 SRHS-DU-89 Manual Phalanx (continued) Sr 2374.90 4010.97 3823.82 2518.45 3098.22 4328.14 2794.44 3674.34 2823.08 3367.95 3789.68 3038.52 2769.37 2159.48 2503.17 2824.15 2470.85 3349.03 2688.30 2421.16 2720.67 3496.11 4965.92 2869.66 3578.51 2570.80 3828.95 2919.06 3603.98 2302.47 3179.43 3275.82 3100.35 3518.01 3518.83 3417.66 3318.52 3505.06 4278.82 3874.62 3038.18 2975.76 2306.89 3002.15 2387.20 2941.32 3284.86 3582.88 4481.80 3291.60 4042.53 3556.99 3658.28 2069.79 Y 168.95 167.49 161.29 153.48 178.54 194.23 115.46 135.56 160.30 147.62 169.98 146.50 169.18 130.81 129.51 117.54 114.80 155.18 128.97 127.52 159.20 147.98 196.58 136.43 130.04 136.46 137.45 164.99 122.09 110.98 143.54 159.89 138.23 187.68 137.52 149.33 163.92 146.33 205.09 196.11 173.59 149.15 129.88 239.43 131.03 182.51 164.62 192.08 177.08 217.57 175.48 152.26 124.08 112.08 Ba 1178.50 1266.33 1632.56 1079.92 2315.37 2232.28 1126.88 1504.14 1599.97 1424.99 1488.76 2024.07 1191.32 1395.48 1784.57 1337.67 1338.32 nd 1836.01 1238.76 1251.87 1767.05 1678.72 1453.36 2208.08 1480.82 2086.84 1656.27 1492.19 1585.96 1334.24 1166.53 1032.19 1603.58 1464.53 1630.14 1580.65 1661.40 2100.96 2331.66 1386.88 1719.12 982.44 1971.62 1417.60 1321.13 1464.07 1774.02 1862.49 1953.22 1719.48 1845.14 977.35 1330.57 La 56.58 64.07 60.59 59.47 58.48 61.96 38.71 49.25 56.05 44.44 50.31 54.93 47.98 48.16 52.82 55.51 45.35 62.41 54.69 47.56 59.85 54.54 57.38 48.55 57.45 42.95 52.86 93.98 35.99 41.03 53.29 45.39 47.24 59.59 49.13 56.40 63.08 48.86 71.18 79.17 88.91 78.75 52.35 72.93 56.80 109.71 67.75 97.83 81.81 75.42 69.98 69.59 42.91 36.03 Ce 116.36 115.17 103.00 74.45 80.20 122.01 63.12 56.60 72.44 64.42 47.57 54.19 81.25 57.95 73.15 117.43 72.54 83.74 65.93 69.43 73.34 61.85 186.76 120.39 89.49 63.23 51.78 87.33 45.22 41.66 94.84 68.89 50.13 79.88 70.90 76.90 101.26 54.96 97.88 92.70 91.77 113.35 162.40 210.83 126.99 77.04 104.19 188.10 211.30 122.56 144.19 100.39 47.43 45.96 Pr 8.54 7.01 8.70 8.22 7.60 7.76 4.40 4.30 5.83 4.42 7.16 4.37 5.36 6.47 11.46 5.14 3.33 4.94 5.25 4.48 5.70 6.88 6.75 6.81 5.47 3.20 5.44 4.52 4.31 4.93 5.70 6.55 5.34 5.76 5.07 5.83 4.32 4.95 6.47 8.59 6.58 10.59 7.64 13.50 8.57 9.94 9.54 7.80 11.31 8.36 17.65 5.74 8.66 4.27 Nd 28.90 25.19 28.94 28.18 22.59 16.06 10.71 19.44 20.24 15.58 18.40 11.50 25.49 22.91 27.69 22.17 13.90 12.18 19.69 11.19 32.70 20.01 13.50 29.27 25.68 15.86 15.10 12.44 11.97 9.14 16.19 19.40 11.11 17.85 19.85 18.94 18.03 12.06 28.96 45.22 28.75 30.66 22.00 42.91 39.79 39.06 37.43 42.38 58.81 32.82 22.36 19.96 14.55 12.53 Sm 4.16 5.89 3.95 3.60 3.25 3.61 5.06 1.59 4.13 3.63 3.33 3.56 5.07 1.35 3.47 3.35 3.57 1.73 4.75 1.83 3.72 2.45 5.98 3.48 2.28 3.19 2.97 2.77 1.94 1.57 4.00 1.61 2.76 4.54 bd 0.48 2.82 3.74 5.20 3.86 3.36 4.80 3.29 6.43 5.39 3.93 3.89 9.62 4.94 6.54 3.97 3.16 4.01 1.35 Eu 1.43 1.66 1.18 0.97 1.55 1.07 1.09 0.38 1.13 0.59 1.21 0.85 1.18 1.00 0.64 0.33 1.17 0.64 1.88 1.74 1.79 0.24 1.61 1.18 0.95 0.63 0.75 1.06 0.08 0.55 1.45 0.72 1.52 1.01 1.91 1.01 1.32 0.11 0.98 3.02 2.11 1.22 1.20 1.91 1.09 1.35 1.60 1.94 1.79 1.51 1.06 1.53 0.82 0.88 Gd 8.28 7.81 5.23 11.08 7.75 5.80 6.99 5.03 11.66 4.58 5.88 7.07 4.33 8.08 8.23 4.08 4.99 4.75 5.93 6.56 4.16 6.13 8.68 6.45 5.00 5.66 3.80 5.13 5.83 6.04 5.31 4.83 3.14 4.52 4.70 7.77 2.81 2.60 3.76 13.03 9.32 7.53 6.82 7.55 6.88 7.24 8.96 14.41 15.53 6.53 3.56 3.54 5.85 5.93 Tb 1.30 1.33 1.61 1.17 0.74 2.10 0.60 1.06 0.78 0.79 1.55 1.06 0.69 0.40 1.30 0.80 0.77 1.39 1.09 0.78 1.33 2.00 1.43 1.43 0.98 0.68 0.96 1.56 0.53 1.03 0.53 1.44 0.89 1.08 1.33 1.04 1.15 1.20 1.47 1.56 1.29 1.88 1.00 1.53 1.31 1.15 1.25 0.98 1.56 1.39 0.90 1.04 0.59 1.00 Dy 13.03 9.46 9.05 13.00 12.58 10.62 8.00 12.13 7.26 8.09 10.17 8.03 6.57 11.09 9.16 8.93 7.53 8.27 13.60 6.81 9.57 9.84 13.06 16.11 17.22 7.82 10.61 8.92 11.45 5.15 7.41 6.34 6.38 14.74 8.19 10.02 10.28 10.25 7.18 14.45 13.18 18.99 9.43 13.91 8.45 12.16 13.35 14.14 13.68 13.55 13.63 10.46 9.07 10.33 Ho 2.97 2.84 2.86 3.64 2.34 4.41 2.03 3.45 2.94 2.38 2.49 3.04 2.21 2.22 3.71 3.59 2.31 2.96 2.76 1.87 3.18 3.25 3.05 5.05 5.18 1.95 1.60 1.79 2.95 2.18 3.47 2.02 2.84 4.85 2.25 3.56 2.21 3.10 3.23 5.13 3.37 5.61 2.87 4.25 2.00 3.40 3.29 3.48 3.71 3.51 3.83 2.32 1.54 1.95 Er 10.00 11.10 10.13 11.64 9.62 13.86 7.73 9.74 10.20 8.54 8.98 8.83 8.00 8.36 11.94 8.22 6.93 11.66 10.25 6.30 9.51 11.48 16.70 12.07 22.12 9.75 8.46 8.74 11.68 5.66 6.94 9.79 8.08 11.62 11.77 16.52 7.82 13.89 14.52 16.40 11.67 19.03 9.81 14.67 9.05 14.50 14.84 9.07 11.42 10.38 11.34 10.86 8.64 8.15 Tm 1.90 1.37 1.77 1.91 1.10 1.68 1.51 1.33 1.76 1.35 1.38 1.66 1.43 1.42 2.18 1.00 1.08 1.16 0.65 1.11 0.87 1.38 2.47 2.26 2.60 0.70 1.58 1.57 1.91 1.16 1.14 1.36 1.33 2.05 0.95 2.61 1.41 2.09 2.26 2.48 1.39 1.84 1.21 1.59 1.25 1.55 1.81 2.56 1.89 1.78 2.08 2.07 1.51 1.23 Yb 9.31 11.84 14.04 11.61 9.45 16.00 11.97 11.48 8.79 9.84 7.36 9.10 11.31 7.90 12.95 12.93 5.58 6.14 8.71 7.00 11.87 9.01 10.80 15.19 19.42 8.30 15.05 14.03 10.65 5.03 9.77 13.18 6.44 15.70 7.90 14.85 8.30 15.37 8.72 21.26 10.33 12.89 9.69 11.00 7.95 13.94 11.04 10.24 13.79 12.64 14.65 15.43 6.34 5.56 Lu 1.00 1.19 2.02 2.13 0.85 3.00 1.65 1.53 1.84 1.25 1.45 1.67 2.31 1.50 2.78 1.94 1.68 2.93 1.29 0.91 1.09 1.28 1.70 3.18 2.86 1.20 1.38 1.91 2.28 1.17 1.85 2.16 1.39 1.55 1.79 2.92 2.00 3.36 2.34 4.03 2.39 2.28 1.62 1.63 1.77 1.66 1.52 1.84 2.86 1.23 1.55 2.16 1.00 1.41 Th 0.06 bd 0.03 0.03 bd bd bd 0.03 bd 0.03 0.07 0.04 bd 0.07 0.09 bd bd bd 0.04 bd 0.05 bd bd bd bd bd bd bd bd 0.05 bd bd bd bd bd bd 0.04 bd bd bd bd bd bd bd 0.02 bd 0.06 bd 0.03 0.04 0.04 bd bd bd U ƩREE 8.56 264 10.31 266 8.55 253 15.62 231 8.96 218 24.13 270 7.78 164 10.03 177 10.10 205 11.44 170 12.26 167 8.90 170 9.59 203 8.05 179 11.57 221 8.55 245 9.86 171 11.30 205 14.15 196 13.84 168 9.14 219 6.70 190 11.12 330 10.27 271 14.10 257 9.11 165 10.08 172 22.88 246 7.14 147 8.17 126 10.02 212 13.36 184 14.98 149 24.90 225 6.78 186 11.65 219 6.95 227 8.23 177 12.67 254 13.63 311 13.10 274 12.45 309 8.13 291 17.72 405 7.33 277 8.92 297 14.23 280 11.72 404 10.12 434 8.55 298 9.02 311 11.94 248 6.90 153 4.56 137 Ce/Ce* 0.20 0.17 0.01 -0.24 -0.15 0.23 0.05 -0.20 -0.14 -0.03 -0.43 -0.30 0.10 -0.27 -0.30 0.45 0.16 -0.05 -0.18 -0.01 -0.17 -0.29 1.07 0.49 0.06 0.06 -0.35 -0.27 -0.20 -0.36 0.17 -0.10 -0.32 -0.09 -0.04 -0.10 0.18 -0.25 -0.06 -0.23 -0.25 -0.12 0.84 0.56 0.31 -0.52 -0.08 0.36 0.56 0.05 -0.04 0.02 -0.43 -0.19 Ce/Ce** 1.58 2.02 1.35 1.06 1.09 1.33 1.31 2.24 1.47 1.75 0.63 1.18 2.85 1.08 0.58 3.58 3.25 1.56 1.62 1.43 4.40 0.92 2.30 2.75 3.00 4.09 0.94 1.90 1.03 0.68 1.67 1.09 0.79 1.48 1.90 1.47 3.48 1.01 2.53 2.65 2.23 1.09 2.15 1.71 2.65 1.06 1.49 6.59 4.41 2.00 0.59 2.08 0.43 1.11 La/La* Y/Ho 0.61 56.9 1.50 59.1 0.64 56.4 0.80 42.2 0.52 76.3 0.12 44.1 0.40 57.0 6.45 39.3 1.45 54.5 1.63 62.1 0.18 68.3 1.15 48.1 7.75 76.5 0.97 58.8 -0.27 34.9 4.35 32.8 4.88 49.7 1.03 52.5 2.15 46.8 0.73 68.1 -9.68 50.1 0.52 45.5 0.17 64.4 2.47 27.0 8.15 25.1 22.74 70.0 0.76 85.6 2.74 92.4 0.51 41.4 0.09 50.9 0.74 41.3 0.36 79.1 0.25 48.6 1.16 38.7 2.31 61.2 1.18 41.9 5.24 74.0 0.57 47.2 5.70 63.5 -66.59 38.2 6.12 51.5 0.42 26.6 0.30 45.2 0.18 56.4 4.21 65.6 2.82 53.8 1.44 50.1 -24.96 55.2 672.10 47.7 2.11 62.0 -0.56 45.8 2.09 65.7 -0.38 80.4 0.64 57.6 388 mm from bone rim 6.74 6.77 6.81 6.84 6.88 6.91 6.95 6.98 7.02 7.05 7.08 7.12 7.15 7.19 7.22 7.26 7.29 7.33 7.36 7.40 7.43 7.46 7.50 7.53 7.57 7.60 7.64 7.67 7.71 7.74 7.78 7.81 7.84 7.88 7.91 7.95 7.98 8.02 8.05 8.09 8.12 8.16 8.19 8.22 8.26 8.29 8.33 8.36 8.40 8.43 8.47 8.50 8.54 8.57 Sc 19.87 16.13 23.30 24.63 18.82 28.07 26.04 17.94 19.66 18.39 25.73 21.72 14.86 23.32 18.13 15.63 18.46 23.48 22.89 20.79 21.89 34.01 26.78 21.84 20.18 21.92 17.60 20.98 28.42 21.46 24.45 25.63 26.40 26.49 23.87 31.13 27.60 23.70 32.86 38.64 25.61 24.47 31.05 23.42 29.18 23.50 33.20 20.87 23.89 22.96 21.99 21.31 23.10 26.47 Mn 0.22 0.15 0.18 0.17 0.16 0.22 0.49 0.15 0.13 0.26 0.29 0.25 0.22 0.39 0.20 0.15 0.16 0.34 0.50 0.37 0.50 0.64 0.55 0.46 0.28 1.04 0.60 0.32 0.46 0.24 0.34 0.45 0.19 0.47 0.36 0.26 0.30 0.26 0.30 0.22 0.17 0.18 0.25 0.15 0.16 0.16 0.24 0.16 0.19 0.25 0.21 0.21 0.24 0.36 Fe 0.88 1.37 0.93 2.27 1.30 1.11 1.20 1.27 1.44 1.63 1.11 2.07 1.09 1.62 1.10 bd 1.44 1.19 1.31 1.65 bd 1.97 1.75 1.36 1.13 1.01 1.04 1.09 1.02 1.61 1.38 1.70 0.87 1.47 1.47 1.84 1.13 2.37 1.11 1.30 1.14 0.97 1.21 1.14 2.05 1.03 2.78 1.28 1.17 0.75 1.21 4.10 6.23 bd SRHS-DU-89 Manual Phalanx (continued) Sr 2489.74 2371.57 2538.15 3105.58 3534.42 2329.50 2778.48 2795.96 3353.05 2744.90 4000.20 3364.96 3874.96 5647.26 2597.71 2179.88 2867.47 3734.69 4708.56 2583.54 3138.01 3878.97 4641.06 2790.39 4865.49 4181.83 4023.29 2610.82 3791.10 2911.73 2946.97 3783.78 2570.14 3482.53 3486.37 4621.06 2791.33 4221.74 3603.60 3240.24 3370.34 3074.09 3301.57 3755.80 2762.44 3884.72 3602.68 3262.53 3496.81 2554.75 2843.20 3416.47 3008.84 3077.84 Y 144.90 144.01 138.19 203.31 158.49 191.32 160.01 161.68 153.14 146.30 139.37 149.31 123.25 151.70 108.98 96.61 135.52 201.59 164.21 153.93 174.96 229.22 216.75 224.52 190.98 180.44 212.66 164.39 240.84 207.06 262.99 308.27 203.56 255.26 287.27 290.50 272.84 225.01 328.79 345.95 250.47 227.88 272.81 228.62 241.23 181.91 234.69 204.68 170.92 153.86 175.79 181.35 171.41 169.48 Ba 2215.28 1134.85 1882.10 1645.00 1316.09 1545.36 1431.90 1069.07 1257.66 1230.18 1949.40 1984.74 1863.43 1590.69 1531.43 1719.96 1668.70 2698.12 1567.29 1296.71 1693.53 1925.76 2194.57 1400.67 1123.96 1408.49 1523.62 1265.18 2246.59 1605.81 1839.01 2066.29 1533.40 2082.47 1836.21 1679.47 1339.71 1454.05 1442.34 1565.88 1802.65 1405.26 1504.02 1492.29 2072.47 1587.06 1393.82 1454.07 1205.47 1169.54 1691.29 1271.92 1382.60 1737.45 La 51.94 43.98 51.43 65.33 57.51 64.08 62.41 51.98 45.30 40.92 40.75 41.09 42.59 46.62 23.92 28.35 67.21 49.13 52.17 61.51 61.76 106.54 93.49 79.57 60.09 70.30 64.49 63.47 81.17 71.55 80.45 100.44 78.38 95.70 128.74 136.27 104.41 81.48 140.05 139.99 89.13 91.75 115.52 101.52 82.87 73.25 87.96 80.43 59.31 55.93 57.52 67.11 46.82 65.90 Ce 186.43 51.01 73.50 87.43 74.91 104.33 76.64 84.33 72.41 93.91 86.49 97.13 45.88 44.31 32.77 53.34 45.80 80.72 103.40 123.97 97.25 150.19 145.96 83.29 98.01 135.14 170.63 130.47 240.05 99.40 146.17 201.19 229.09 195.57 155.32 155.48 237.12 127.12 285.97 267.32 155.31 144.82 275.18 144.23 158.90 122.80 136.82 131.39 89.01 73.10 61.75 116.33 109.50 84.05 Pr 5.10 7.37 5.79 8.58 7.40 6.98 7.84 7.22 5.48 4.10 4.98 5.16 6.36 4.33 8.58 7.04 5.76 7.67 10.09 7.75 10.40 14.09 15.31 9.20 7.50 8.87 10.69 12.97 9.78 13.91 28.43 19.60 12.48 14.20 15.86 19.05 12.98 17.42 26.92 26.86 15.17 18.06 16.94 14.38 12.36 15.85 13.48 9.56 7.76 6.91 6.75 8.44 6.67 8.78 Nd 20.79 15.57 27.99 32.05 27.97 31.85 33.90 22.57 18.00 17.44 16.81 10.30 13.58 14.36 12.02 7.91 14.14 20.21 26.63 20.78 26.61 43.77 38.74 28.55 32.41 36.04 32.16 30.80 45.04 51.10 45.24 54.48 47.86 44.93 66.43 60.85 49.88 52.32 64.23 69.25 59.57 60.71 51.58 50.69 41.50 38.27 46.54 31.82 30.54 24.35 19.92 20.20 16.74 29.99 Sm 3.69 3.13 4.43 5.10 2.78 7.61 7.52 1.49 3.92 5.36 1.62 1.55 3.73 2.66 bd 2.12 3.71 3.85 3.98 3.73 6.43 5.87 7.72 4.82 7.18 3.72 4.70 6.25 5.40 6.53 9.81 12.47 6.57 8.53 9.03 10.25 8.76 6.74 10.37 7.69 7.99 8.03 6.77 8.64 8.80 7.38 6.88 7.98 4.94 4.46 3.52 1.18 3.59 1.77 Eu 1.43 0.93 0.83 0.88 2.13 2.64 1.36 0.66 0.85 0.11 1.33 1.50 0.22 1.45 0.36 0.47 1.10 2.04 1.40 2.62 1.31 2.33 3.73 1.43 1.92 3.99 2.33 2.21 4.45 1.46 2.71 2.43 3.75 1.83 2.90 4.45 3.15 3.15 4.29 4.84 2.81 3.47 4.30 2.03 1.93 2.58 2.16 2.70 2.25 1.24 1.83 1.64 1.45 2.49 Gd 7.00 3.47 8.44 8.49 1.18 8.44 6.25 5.21 6.40 4.58 4.05 3.87 3.34 5.32 3.62 3.44 9.26 6.41 10.46 13.21 13.85 10.26 10.59 8.14 8.96 13.01 8.13 15.16 17.00 14.67 12.24 15.89 16.42 16.02 21.30 23.05 13.13 12.17 11.71 15.80 14.15 13.12 18.94 12.95 11.46 15.07 9.92 7.24 10.19 6.23 12.31 5.49 4.23 10.58 Tb 0.84 1.20 1.68 2.03 1.14 1.56 1.59 0.80 1.49 0.91 0.63 0.93 0.76 0.48 0.50 0.63 0.93 1.53 1.59 1.38 1.77 2.34 1.50 1.77 1.80 2.09 1.27 1.88 2.92 2.10 2.38 2.82 1.67 2.60 2.11 2.55 2.48 2.75 3.66 2.97 2.51 2.13 3.01 1.98 2.37 1.80 1.55 1.12 1.77 1.35 1.29 1.31 0.66 2.00 Dy 6.70 7.17 12.04 10.22 12.86 12.44 12.49 11.90 6.46 11.83 6.57 8.58 6.58 4.58 4.15 4.81 7.28 14.07 12.75 10.47 11.77 16.32 17.74 16.72 10.21 15.50 12.59 11.96 19.95 20.81 15.11 20.24 17.73 21.92 13.11 24.93 19.15 20.44 19.46 28.81 20.13 20.21 28.11 18.54 18.76 14.48 16.31 20.44 12.11 11.07 7.05 14.47 7.99 7.36 Ho 2.21 2.47 3.00 2.86 2.81 2.89 2.60 2.92 2.57 2.99 3.02 2.94 2.05 2.12 1.44 2.30 2.17 4.39 2.47 4.06 2.97 3.70 6.36 3.17 3.16 4.45 2.41 3.96 6.13 6.86 4.19 6.30 4.75 4.42 4.68 6.99 5.35 3.76 6.44 6.40 5.72 5.97 7.00 5.05 4.16 5.53 3.83 4.12 3.14 2.68 2.26 3.27 2.19 3.56 Er 8.35 9.57 16.70 12.83 10.49 13.67 12.15 9.46 6.33 11.55 8.53 10.68 8.44 10.30 4.07 6.72 11.00 15.46 12.46 10.78 8.75 15.56 21.05 17.38 11.61 18.24 11.81 9.30 18.34 24.80 17.74 30.12 15.35 16.36 13.82 24.63 24.20 18.66 24.30 20.95 17.42 22.01 25.54 14.16 14.63 10.55 15.04 15.04 14.37 9.28 9.17 11.24 6.68 10.94 Tm 1.33 1.62 1.83 2.08 1.16 2.17 0.88 1.83 0.87 1.38 1.18 1.27 1.09 1.29 1.13 1.11 1.12 3.34 1.52 1.82 1.42 2.39 2.42 2.94 2.22 2.25 1.50 1.94 3.00 3.38 2.45 2.80 2.04 2.19 2.69 2.74 1.87 2.99 3.94 2.63 2.03 3.10 3.52 2.10 2.81 2.62 1.78 2.45 1.88 1.25 1.54 1.51 1.29 1.65 Yb 9.17 8.90 15.42 12.68 8.74 12.00 9.19 10.60 7.84 10.05 8.93 8.27 3.97 10.41 8.80 6.02 11.06 20.97 10.25 16.36 9.12 16.67 13.34 7.63 16.56 14.25 10.00 8.44 23.27 17.60 13.67 22.27 9.13 19.37 16.41 20.61 17.10 17.75 21.12 32.40 21.14 22.52 20.50 14.82 14.66 17.08 14.38 15.95 14.02 8.22 10.41 13.96 11.11 14.41 Lu 1.20 1.68 1.84 1.11 2.18 2.43 2.07 1.56 1.90 1.45 2.17 1.88 1.12 1.57 1.14 1.56 1.40 3.85 2.26 1.59 1.68 2.04 2.70 2.32 1.45 2.72 1.92 1.90 2.17 2.47 2.65 3.36 1.86 1.74 2.78 2.84 2.33 2.34 3.53 3.83 3.46 2.09 3.24 2.35 2.89 2.97 2.29 2.17 1.37 1.74 1.80 1.44 1.66 1.78 bd bd bd 0.08 0.08 bd 0.12 0.04 bd bd bd bd bd 0.04 bd bd bd bd bd bd 0.10 bd 0.05 bd bd bd bd 0.03 bd bd 0.07 0.17 0.03 bd bd 0.08 bd 0.16 0.04 bd 0.04 0.11 0.04 bd bd bd bd bd bd bd 0.03 0.08 0.13 bd Th U ƩREE 6.94 306 7.21 158 9.63 225 10.55 252 9.03 213 14.83 273 9.85 237 6.47 213 8.25 180 5.63 207 8.20 187 5.58 195 6.23 140 6.42 150 3.66 103 7.69 126 6.49 182 9.21 234 8.11 251 13.37 280 11.13 255 13.12 392 10.75 381 9.17 267 6.97 263 9.65 331 11.21 335 10.86 301 15.44 479 15.58 337 11.98 383 26.56 494 15.29 447 18.10 445 20.30 455 15.07 495 14.85 502 16.90 369 17.67 626 12.87 630 13.44 417 12.10 418 11.87 580 10.37 393 11.66 378 11.15 330 12.12 359 7.83 332 9.32 253 4.63 208 6.54 197 8.08 268 7.18 221 18.50 245 Ce/Ce* 1.41 -0.35 -0.08 -0.18 -0.19 0.06 -0.23 -0.02 0.01 0.53 0.34 0.48 -0.37 -0.35 -0.47 -0.11 -0.52 -0.05 0.05 0.26 -0.12 -0.14 -0.11 -0.33 0.02 0.20 0.49 0.06 0.87 -0.27 -0.29 0.06 0.68 0.20 -0.24 -0.31 0.42 -0.21 0.08 0.01 -0.03 -0.17 0.41 -0.15 0.13 -0.16 -0.10 0.04 -0.08 -0.18 -0.32 0.08 0.40 -0.22 Ce/Ce** 5.24 0.59 2.48 1.31 1.32 2.59 1.54 1.26 1.49 3.50 2.00 1.57 0.62 1.16 0.28 0.54 0.73 1.00 0.98 1.54 0.88 1.14 0.89 0.97 2.05 2.18 1.67 0.91 4.32 0.90 0.40 1.01 2.43 1.50 1.47 0.90 2.43 0.76 0.96 0.94 1.40 0.92 1.71 1.21 1.48 0.70 1.20 1.56 1.57 1.27 0.94 1.25 1.52 1.12 La/La* Y/Ho 2.97 65.6 -0.15 58.4 9.62 46.1 1.29 71.2 1.41 56.3 5.35 66.2 3.00 61.5 0.53 55.4 0.90 59.7 3.60 48.9 0.97 46.1 0.10 50.7 -0.04 60.2 1.52 71.7 -0.68 75.7 -0.56 42.0 0.87 62.3 0.10 45.9 -0.11 66.5 0.39 37.9 -0.01 58.9 0.59 61.9 0.01 34.1 0.81 70.9 3.02 60.5 2.07 40.5 0.21 88.3 -0.24 41.5 5.11 39.3 0.48 30.2 -0.65 62.8 -0.07 48.9 1.02 42.9 0.46 57.8 2.53 61.4 0.57 41.6 1.61 51.0 -0.06 59.9 -0.19 51.0 -0.12 54.0 1.03 43.8 0.21 38.2 0.39 39.0 0.86 45.2 0.60 58.0 -0.27 32.9 0.64 61.3 0.98 49.7 1.66 54.5 1.12 57.3 0.67 77.9 0.25 55.5 0.15 78.3 0.85 47.6 389 mm from bone rim 8.60 8.64 8.67 8.71 8.74 8.78 8.81 8.85 8.88 8.92 8.95 8.98 9.02 9.05 9.09 9.12 9.16 9.19 9.23 9.26 9.30 9.33 9.36 9.40 9.43 9.47 9.50 9.54 9.57 9.61 9.64 9.68 9.71 9.74 9.78 9.81 9.81 9.85 9.88 9.92 9.95 9.99 10.02 10.06 10.09 10.13 10.16 10.19 10.23 10.26 10.30 10.33 10.37 10.40 Sc 22.18 15.80 18.60 24.76 19.58 14.63 19.42 22.82 32.66 28.93 32.08 17.94 17.99 30.34 34.13 30.97 24.41 24.24 16.58 24.82 24.56 21.88 27.37 19.86 14.12 24.90 26.36 18.49 26.50 27.89 24.91 24.79 27.80 26.49 24.51 24.22 26.08 21.95 28.70 25.62 23.36 17.11 19.21 30.13 23.06 20.20 25.49 21.91 20.02 23.45 20.95 20.25 26.63 18.38 Mn 0.18 0.14 0.27 0.24 1.64 0.17 0.22 0.20 0.21 0.22 0.22 0.16 0.13 0.21 0.19 0.31 0.29 0.16 0.17 0.98 1.13 1.22 1.91 1.12 0.70 0.90 0.77 0.57 0.58 0.56 0.40 0.37 0.27 0.28 0.38 0.19 0.17 0.15 0.35 0.21 0.18 0.20 0.42 0.27 0.20 0.19 0.24 0.24 0.15 0.23 0.17 0.22 0.22 0.25 Fe 9.67 bd 27.27 33.46 bd 21.25 bd 11.97 12.08 10.24 8.20 bd bd 5.51 5.40 3.90 bd 2.37 2.14 4.93 4.21 3.27 4.57 2.60 bd 3.12 2.35 2.30 1.80 2.80 1.67 1.74 1.29 1.39 1.19 1.27 3.19 2.87 3.12 3.09 2.33 1.24 1.42 2.65 1.30 1.07 1.62 1.04 0.93 1.06 1.14 1.11 1.42 1.02 SRHS-DU-89 Manual Phalanx (continued) Sr 3696.30 2809.01 2363.68 3804.32 3540.99 3156.86 3630.35 3197.39 4051.26 3388.10 5296.38 2598.25 2578.36 3490.73 3962.74 4649.48 3671.36 2307.24 2153.80 3422.25 3132.92 2462.22 2985.90 2071.73 1804.79 3430.79 3922.31 2555.68 3332.05 3637.02 3711.54 3035.55 2945.32 2762.76 2211.48 2637.71 13454.25 3154.39 6774.94 3859.20 3558.81 3700.37 2720.68 4531.08 3386.91 2516.04 3110.30 2726.45 2507.94 3251.34 3463.03 2978.56 3952.99 2885.58 Y 147.72 135.64 161.73 223.56 203.47 134.72 167.97 156.02 207.92 245.51 264.25 170.52 136.34 228.93 282.52 243.20 235.39 207.18 141.35 237.52 248.41 220.65 291.68 185.43 154.07 205.43 221.81 171.79 231.91 264.59 215.21 206.16 195.55 191.88 176.45 184.86 185.34 175.38 216.45 201.27 129.36 175.29 155.91 252.34 190.92 153.25 177.49 194.34 147.82 151.77 140.65 128.87 176.47 130.43 Ba 1053.34 1404.37 1631.61 1365.48 1464.29 1532.31 1806.43 1371.22 2249.40 2864.69 2495.00 952.71 2283.72 1886.30 2178.39 2386.27 1618.02 2013.01 1371.39 1997.89 1544.98 1299.21 1697.12 949.88 876.46 1654.73 1277.09 1155.69 2068.77 2465.09 2262.89 1725.00 1563.21 1491.87 1570.71 1208.45 2357.69 nd 2834.93 2774.62 1171.65 1394.98 1384.98 2551.43 1840.56 1449.10 1801.04 1689.16 1395.79 nd 1986.76 1853.84 2194.49 1430.98 La 48.19 48.31 50.04 74.07 68.04 47.36 70.54 50.27 72.94 82.26 80.37 62.97 58.88 67.13 102.37 99.54 85.08 82.09 60.30 112.50 75.16 113.24 100.79 67.18 57.54 84.17 91.78 66.91 81.30 100.71 92.81 76.82 72.60 59.32 53.07 55.31 38.79 48.68 57.33 54.62 39.85 56.90 51.04 84.86 57.99 46.19 58.47 63.82 37.86 49.97 45.14 44.63 53.24 50.62 Ce 75.75 47.12 69.79 116.65 105.35 78.55 99.41 74.35 91.88 106.98 153.09 66.12 96.01 122.62 137.49 129.23 256.61 188.38 110.71 153.59 173.11 134.29 166.76 133.44 108.36 156.64 127.78 168.25 105.28 191.85 163.52 111.84 87.59 72.49 59.05 70.35 57.07 48.68 88.75 90.78 124.17 64.48 103.78 111.27 103.10 50.79 60.92 164.12 68.21 59.11 69.18 54.43 91.33 108.58 Pr 6.19 5.11 7.70 9.57 8.42 7.01 6.42 5.13 7.83 9.62 10.58 5.90 5.62 7.49 12.77 14.43 12.01 14.43 9.54 21.13 13.01 14.46 19.51 10.90 9.20 14.78 13.37 9.69 11.69 13.14 10.37 12.76 10.87 9.53 7.71 5.49 7.04 4.12 6.07 8.42 7.62 7.01 7.77 7.80 5.85 4.83 4.85 6.42 4.49 5.29 6.41 5.34 7.55 5.27 Nd 33.27 20.48 23.91 32.08 27.72 17.78 20.43 21.16 32.77 30.05 45.51 19.57 21.09 34.65 42.39 53.05 38.63 44.97 34.83 64.50 56.70 54.33 76.05 39.51 32.73 52.44 44.66 40.42 54.46 48.44 30.44 37.12 27.53 25.09 22.62 28.11 17.21 10.66 23.57 25.51 23.61 23.67 22.29 29.86 24.64 16.89 21.52 23.12 15.75 15.53 14.58 15.82 24.45 11.60 Sm 3.69 1.77 2.63 5.53 3.34 4.38 1.70 2.71 5.71 3.59 7.42 1.91 4.80 10.19 5.39 8.27 8.66 4.49 6.01 7.03 9.13 9.57 11.48 3.79 6.43 13.04 6.10 6.25 6.95 13.65 6.65 9.05 7.57 4.75 2.33 3.93 3.74 1.48 5.69 2.57 4.26 6.56 4.97 8.41 3.15 5.27 6.80 5.74 2.95 2.94 3.69 4.52 3.00 4.31 Eu 0.55 0.78 1.72 1.64 1.66 0.71 0.63 1.61 2.06 2.37 2.46 1.52 1.65 1.91 1.76 2.15 4.01 2.78 1.25 2.09 2.99 3.25 4.50 3.04 5.74 3.46 2.51 1.97 4.55 4.35 1.63 1.83 1.76 0.98 1.88 1.17 1.98 0.59 2.26 1.53 0.89 1.12 1.23 2.86 3.36 1.08 1.67 1.14 0.88 0.99 1.59 1.45 1.34 0.43 Gd 9.68 4.84 5.23 16.58 11.14 8.73 10.19 2.70 12.22 12.35 16.55 7.97 8.11 10.71 19.38 14.96 18.26 16.84 10.20 23.09 7.29 15.93 20.85 13.24 10.59 10.23 10.77 13.65 13.41 18.01 12.11 13.55 10.52 6.19 4.98 6.06 5.80 14.34 12.63 7.67 2.54 5.60 7.02 5.39 4.94 6.90 5.58 4.96 8.19 6.97 4.49 3.11 11.99 10.41 Tb 1.38 0.74 1.57 3.30 1.53 0.81 1.01 1.11 1.12 1.62 1.82 1.14 1.28 2.30 2.70 2.10 1.95 2.23 1.72 2.34 2.83 3.15 3.49 2.53 2.72 2.17 2.41 2.19 2.32 2.50 1.59 2.65 1.57 1.52 1.11 1.32 1.34 1.12 1.36 1.84 1.73 1.40 1.28 2.80 1.94 1.14 1.24 0.78 0.67 0.61 1.17 1.20 1.31 0.99 Dy 8.38 10.40 6.69 13.23 11.49 8.38 8.55 11.58 13.80 12.12 19.25 11.74 9.78 18.42 17.44 20.77 24.53 13.77 12.67 27.10 14.55 22.12 21.49 20.61 15.28 14.84 21.16 13.98 18.85 27.73 12.66 24.81 11.95 15.40 10.29 10.34 12.23 11.17 12.72 10.70 10.43 15.85 10.96 12.08 11.49 10.00 8.63 14.82 10.62 9.02 9.64 8.18 8.84 8.63 Ho 1.92 2.05 1.60 4.90 2.18 2.14 3.01 2.36 4.48 4.38 3.78 2.73 3.34 6.16 5.26 4.23 6.75 6.04 4.07 4.23 4.51 4.73 5.92 3.05 3.06 6.14 6.07 4.43 5.82 6.61 3.96 5.77 3.82 3.70 3.34 3.97 3.45 3.38 4.17 5.17 4.00 3.20 4.80 2.49 3.30 3.58 3.76 3.32 2.92 1.80 2.50 2.67 4.03 2.63 Er 11.94 7.85 8.20 17.53 13.83 8.57 8.71 7.93 14.73 17.62 22.56 8.60 12.73 21.69 14.81 22.55 15.29 15.54 14.41 18.41 15.25 16.69 19.12 14.90 13.50 20.07 18.96 17.88 22.21 26.27 12.64 20.39 17.38 16.33 12.21 12.13 12.10 9.60 15.34 16.94 12.84 14.14 14.95 13.60 11.66 10.28 7.33 10.51 8.13 8.13 10.15 10.67 12.68 7.74 Tm 1.24 1.18 1.28 2.98 1.75 1.25 1.34 1.80 2.57 2.42 3.30 1.82 1.46 3.00 2.20 2.71 3.98 1.74 1.99 2.52 2.02 2.60 3.10 2.34 1.42 2.87 2.84 2.91 2.86 2.73 1.96 2.30 1.65 2.30 1.36 2.12 1.84 2.19 2.06 1.64 1.49 2.13 1.59 2.38 1.26 1.38 2.47 2.41 1.60 1.59 1.34 1.50 2.22 1.72 Yb 8.85 9.09 6.33 14.24 7.52 7.62 8.15 9.07 16.50 14.15 22.90 12.46 12.05 16.75 19.50 17.96 24.57 15.68 11.30 14.98 18.46 13.90 25.91 9.67 10.72 10.24 18.63 16.90 15.77 19.03 15.82 19.26 10.04 15.54 13.24 8.87 7.08 10.89 7.18 19.13 14.19 14.96 12.05 9.38 10.88 6.54 9.08 13.57 8.61 16.97 10.46 6.90 11.36 12.75 Lu 1.87 1.32 1.99 2.08 2.69 2.02 2.00 1.87 1.60 2.70 3.41 1.79 1.73 3.50 3.23 3.30 3.26 2.10 1.37 2.36 2.50 2.32 3.61 2.12 1.55 2.85 2.63 1.88 3.80 3.62 1.78 3.81 2.66 2.29 2.30 2.28 2.55 1.81 2.88 2.51 1.83 2.26 1.78 3.05 2.06 1.63 1.30 2.09 1.50 0.96 1.49 1.90 2.74 1.31 Th 0.18 0.18 0.37 0.07 0.22 0.24 0.30 0.15 0.12 bd 0.04 0.13 0.11 0.05 0.11 bd 0.05 0.04 0.03 0.20 0.18 0.41 0.42 0.23 0.10 0.19 0.14 0.08 0.14 0.15 0.04 0.16 bd 0.04 bd 0.11 bd 0.05 0.19 0.13 bd 0.09 0.04 bd bd 0.03 bd 0.08 0.03 bd bd bd bd 0.11 U ƩREE 24.58 213 19.31 161 33.57 189 27.72 314 30.28 267 27.41 195 17.00 242 12.85 194 12.33 280 11.74 302 18.80 393 6.34 206 11.22 239 23.83 327 15.71 387 13.31 395 17.04 504 11.18 411 9.42 280 14.44 456 17.81 397 28.98 411 16.90 483 6.95 326 8.48 279 12.53 394 13.27 370 9.59 367 19.56 349 23.10 479 11.92 368 16.62 342 15.86 268 12.30 235 10.47 195 9.05 211 8.40 172 11.90 169 9.47 242 13.13 249 5.56 249 6.85 219 7.64 246 9.99 296 8.28 246 5.59 167 6.37 194 7.23 317 5.20 172 4.35 180 4.14 182 3.48 162 7.67 236 5.29 227 Ce/Ce* -0.03 -0.36 -0.19 -0.03 -0.03 -0.02 -0.03 -0.02 -0.17 -0.17 0.17 -0.28 0.11 0.18 -0.16 -0.23 0.81 0.26 0.06 -0.27 0.28 -0.26 -0.12 0.13 0.08 0.03 -0.17 0.49 -0.23 0.17 0.14 -0.18 -0.29 -0.30 -0.34 -0.15 -0.20 -0.30 0.02 -0.04 0.66 -0.29 0.19 -0.10 0.19 -0.27 -0.27 0.72 0.15 -0.22 -0.08 -0.23 0.03 0.42 Ce/Ce** 3.22 1.29 0.97 1.40 1.41 1.05 1.69 2.11 1.75 1.20 2.25 1.27 2.20 2.91 1.22 1.13 2.36 1.40 1.45 0.77 2.12 1.20 1.16 1.52 1.43 1.28 1.09 2.58 1.62 1.85 1.62 0.89 0.75 0.73 0.79 2.89 0.74 1.12 1.97 1.13 1.74 1.06 1.35 1.89 2.66 1.26 2.06 3.15 1.82 1.15 0.95 1.05 1.34 1.79 La/La* Y/Ho -20.77 77.1 2.49 66.2 0.36 101.0 0.85 45.6 0.86 93.4 0.12 63.1 1.40 55.8 2.99 66.0 3.04 46.4 0.81 56.0 2.71 69.9 1.49 62.5 2.17 40.9 5.83 37.2 0.87 53.7 0.99 57.6 0.57 34.9 0.20 34.3 0.80 34.7 0.09 56.1 2.02 55.0 1.39 46.7 0.75 49.2 0.72 60.8 0.67 50.4 0.52 33.5 0.63 36.5 1.94 38.7 4.61 39.8 1.23 40.0 0.74 54.3 0.16 35.7 0.10 51.2 0.07 51.9 0.34 52.9 50.51 46.6 -0.12 53.7 0.99 51.8 2.16 51.9 0.32 38.9 0.09 32.3 0.96 54.7 0.24 32.5 2.49 101.2 3.41 57.8 1.47 42.9 5.93 47.2 1.73 58.6 1.20 50.6 0.83 84.5 0.06 56.3 0.64 48.2 0.58 43.8 0.41 49.6 390 mm from bone rim 10.44 10.47 10.51 10.54 10.57 10.61 10.64 10.68 10.71 10.75 10.78 10.82 10.85 10.89 10.92 10.95 10.99 11.02 11.06 11.09 11.13 11.16 11.20 11.23 11.27 11.30 11.33 11.37 11.40 11.44 11.47 11.51 11.54 11.58 11.61 11.65 11.68 11.71 11.75 11.78 11.82 11.85 11.89 11.92 11.96 11.99 12.03 12.06 12.09 12.13 12.16 12.20 12.23 12.27 Sc 14.61 22.54 18.11 24.05 20.33 21.34 28.10 25.88 28.91 29.89 27.33 22.80 22.13 19.29 30.47 24.41 25.49 23.01 19.13 21.49 17.33 22.47 15.90 21.59 20.39 22.82 21.49 29.73 33.88 26.52 31.87 27.39 28.79 28.63 24.75 19.06 30.99 21.64 28.62 22.97 34.33 24.55 19.29 18.55 22.38 22.65 25.44 20.41 23.13 27.55 19.14 20.18 20.80 18.27 Mn 0.18 0.17 0.19 0.50 0.45 0.58 0.57 1.16 1.24 0.41 0.36 0.34 0.29 0.24 0.25 0.23 0.22 0.20 0.19 0.18 0.54 0.18 0.16 0.15 0.19 0.15 0.16 0.33 0.35 0.13 0.28 0.25 0.24 0.22 0.75 0.59 0.64 0.47 0.46 0.46 0.56 0.40 0.90 0.23 0.33 0.20 0.32 0.19 0.25 0.28 0.16 0.19 0.16 0.21 Fe 1.38 1.01 1.05 1.36 1.15 0.96 1.43 1.15 1.39 1.12 1.55 1.54 0.88 0.81 1.71 1.15 1.51 1.00 1.22 0.82 1.16 1.75 0.68 0.91 0.80 0.87 1.20 1.14 0.76 0.81 1.02 1.73 1.63 0.96 1.70 0.97 1.28 1.24 0.95 0.95 1.01 1.19 0.86 1.04 1.59 1.15 1.17 0.76 1.22 1.16 0.78 1.10 1.31 1.04 SRHS-DU-89 Manual Phalanx (continued) Sr 2360.29 2676.69 2609.60 3085.14 2844.02 2447.14 3355.10 2900.40 3908.89 3757.21 3087.98 2967.69 3139.48 3207.68 3669.15 3627.15 3561.07 4651.77 3149.74 3079.28 2641.61 3717.39 2635.96 2740.81 3009.41 3042.40 3198.81 2643.93 3502.71 2334.24 4513.34 3055.82 4552.54 3728.28 4372.45 2939.93 4146.59 3444.83 3541.31 3313.51 3674.69 3611.48 2467.42 2216.09 3446.45 2915.94 5129.92 2780.09 3903.77 3820.59 2834.23 2601.12 2818.63 4463.24 Y 151.42 144.87 153.52 197.21 189.53 165.03 269.86 255.07 262.21 215.57 242.13 221.13 183.06 139.42 227.43 188.99 203.21 173.06 156.24 134.42 147.25 200.41 127.49 152.48 168.98 176.22 196.13 226.12 263.81 191.50 223.22 213.11 198.52 216.73 230.65 169.44 250.32 168.89 190.99 219.41 191.92 188.75 165.54 149.22 162.15 138.04 160.01 159.15 167.50 189.25 138.16 152.64 166.28 161.58 Ba 1600.65 1427.70 1401.92 2109.39 nd 1766.15 2143.24 1775.30 1760.39 2073.21 1397.71 1521.19 1635.34 1340.22 2742.79 1529.34 1731.47 1717.68 1028.19 1673.21 1231.40 2043.04 1523.54 1409.32 1324.34 1280.52 2134.96 1751.78 1567.57 1373.28 nd 3035.84 2194.60 2168.82 1538.35 1677.10 1660.23 2089.27 nd 1327.04 1557.17 1705.11 1736.71 1452.91 1168.86 1671.49 1627.54 1202.45 2222.65 1926.75 1531.66 1280.45 1399.85 1762.65 La 43.64 37.85 46.51 61.41 55.13 73.86 82.35 88.81 84.89 72.07 88.74 68.11 58.09 51.45 62.89 56.28 75.73 48.91 42.06 50.42 38.01 55.12 49.71 41.38 43.89 54.51 58.73 68.20 68.88 71.56 59.18 66.84 67.05 70.42 72.60 44.77 72.22 63.24 57.96 58.25 58.61 64.44 39.19 31.77 43.80 41.23 59.25 42.55 59.66 47.08 46.01 46.91 42.06 53.10 Ce 51.27 50.24 89.58 71.39 153.30 95.73 231.06 114.71 100.03 111.26 130.20 106.81 72.17 70.97 92.00 62.46 57.17 59.87 59.52 36.04 48.86 75.03 44.62 40.62 43.28 53.71 89.67 213.55 231.79 75.70 100.10 90.20 87.64 80.60 97.13 99.41 84.31 74.50 101.88 112.23 105.79 85.99 42.87 40.13 52.06 39.21 83.21 49.74 66.86 56.63 57.96 55.31 60.15 91.69 Pr 4.66 4.23 5.92 6.98 6.76 8.28 13.19 10.02 12.39 17.95 8.67 7.92 7.93 5.25 6.57 8.44 5.16 4.66 5.04 3.40 5.60 6.08 5.33 3.89 4.53 4.19 4.88 8.22 7.65 7.09 9.30 9.52 6.30 8.98 7.49 6.58 8.91 6.21 3.93 12.29 5.42 4.13 4.77 5.00 5.16 6.02 4.32 3.31 4.97 4.24 5.62 4.18 5.04 4.59 Nd 9.20 18.66 20.58 27.14 26.47 35.35 43.51 45.34 41.55 62.30 31.76 36.28 38.91 23.01 31.62 20.39 24.48 16.79 12.45 8.97 16.45 13.29 11.42 15.21 18.61 26.32 22.42 21.24 28.44 24.27 18.20 26.62 21.07 22.20 25.86 15.10 28.63 19.00 14.46 20.92 27.15 20.80 16.49 12.61 19.90 15.14 18.23 17.49 20.04 18.06 14.93 15.69 13.67 11.79 Sm 0.98 3.26 7.15 3.68 4.75 7.76 3.87 3.79 4.01 10.83 8.36 1.68 4.60 2.82 2.59 4.10 3.76 2.36 0.81 2.41 1.91 1.69 3.28 2.53 3.61 5.02 3.99 4.66 2.26 1.74 6.40 8.04 4.79 0.71 2.73 2.99 9.39 2.83 2.60 3.37 5.15 2.51 3.48 4.98 1.07 0.58 2.24 0.87 2.93 2.50 3.20 1.77 5.06 1.36 Eu 0.29 0.79 1.11 1.10 2.44 2.17 2.96 3.71 1.79 1.13 1.76 1.50 1.67 1.12 0.96 1.40 1.28 0.84 0.61 0.72 0.91 1.26 0.10 1.23 0.96 1.25 1.32 1.11 1.61 0.73 1.19 2.15 0.55 1.17 1.39 1.69 1.52 0.84 1.22 0.88 1.26 1.75 0.85 0.83 0.21 1.21 1.00 0.78 1.53 1.06 1.56 1.32 0.40 1.11 Gd 2.27 4.44 10.24 8.35 10.35 11.62 12.15 18.41 10.52 10.26 11.29 10.08 10.71 6.10 4.50 5.25 9.65 5.17 3.64 4.00 9.15 5.90 3.92 3.79 5.20 7.10 11.52 6.98 4.05 5.92 6.38 9.23 6.62 6.78 7.40 5.97 8.09 5.64 6.67 3.35 6.54 5.42 3.15 6.20 6.44 3.76 5.58 4.04 4.02 7.14 4.64 5.02 5.04 6.77 Tb 0.94 0.81 1.70 1.68 1.49 1.91 2.51 2.59 2.15 1.36 1.70 1.81 1.58 1.24 1.00 0.98 1.54 1.52 1.07 1.53 1.37 0.86 0.94 0.87 1.20 1.00 1.27 1.56 1.13 0.87 1.81 1.34 1.58 0.85 1.68 1.03 1.43 1.24 0.66 1.36 1.56 1.10 0.87 0.59 1.11 0.97 1.07 1.00 1.14 0.98 0.90 0.64 0.84 1.29 Dy 6.25 7.12 12.95 12.14 13.98 16.89 13.56 18.61 16.73 15.39 11.81 10.46 16.03 12.24 13.33 11.50 11.33 12.03 9.56 10.43 7.87 9.74 4.99 8.54 11.81 12.10 8.92 13.26 11.30 13.00 10.19 13.20 9.59 14.37 12.82 9.38 13.60 12.94 12.21 8.46 12.40 11.49 7.59 7.93 8.62 6.55 9.88 8.51 10.79 10.70 6.42 9.73 8.76 7.48 Ho 2.07 1.67 3.41 3.35 2.90 3.38 4.79 4.96 4.59 3.77 3.48 4.18 4.24 2.65 3.71 3.94 3.41 3.34 2.28 2.06 2.47 2.73 2.69 2.75 2.50 3.11 3.52 5.30 3.14 3.54 3.12 3.29 4.01 2.88 3.72 2.59 3.54 2.61 2.99 3.39 3.49 3.17 2.51 2.96 3.28 2.09 2.64 2.47 2.69 2.97 2.24 2.71 2.47 2.11 Er 8.10 10.87 12.55 12.26 7.91 12.55 17.58 9.93 18.65 16.91 11.92 14.22 18.17 9.14 13.95 12.00 10.43 6.86 10.29 7.14 8.44 11.38 11.50 6.31 9.95 13.07 14.35 19.60 16.56 9.96 14.43 12.99 13.32 11.56 14.30 12.89 15.64 11.52 10.41 15.65 15.40 8.57 8.69 8.21 9.08 7.66 9.45 7.79 12.85 11.56 10.50 8.77 9.08 12.60 Tm 0.99 1.38 1.74 2.42 1.41 2.15 2.19 2.02 2.28 2.58 1.89 1.83 2.32 2.30 3.32 1.16 1.94 1.87 1.18 1.03 1.25 1.82 1.15 1.48 1.45 2.00 2.79 2.28 2.68 1.34 2.00 1.78 2.02 2.04 2.91 1.39 2.14 1.21 1.90 2.35 1.91 1.85 1.44 1.12 1.50 1.45 1.70 1.75 1.88 1.46 1.22 1.72 1.37 1.93 Yb 9.04 6.10 8.37 11.63 8.89 12.39 16.09 17.31 9.97 13.44 11.86 19.53 13.77 13.70 12.40 19.14 8.01 11.72 11.24 9.11 9.21 10.79 10.71 6.74 10.53 8.90 12.28 17.21 14.75 13.37 14.75 16.82 13.35 16.23 11.08 9.54 16.36 10.92 10.28 12.55 13.96 11.29 9.87 9.48 13.74 8.03 9.27 10.88 11.45 12.18 9.29 9.45 8.85 14.44 Lu 1.66 1.12 3.08 1.53 1.74 2.65 2.59 2.12 2.22 2.68 1.67 1.83 3.13 2.27 1.77 1.91 2.10 1.97 1.32 1.36 1.09 1.93 1.07 1.53 1.73 2.02 2.37 2.49 2.59 2.46 2.66 1.20 2.36 3.40 2.44 1.99 2.61 2.17 2.03 2.36 2.32 2.56 1.61 1.46 2.20 1.21 1.17 1.51 2.10 2.19 1.67 1.12 1.84 1.41 bd bd 0.06 bd bd 0.05 0.05 bd bd bd bd 0.06 0.10 bd 0.06 bd 0.16 bd bd bd bd bd bd bd bd 0.04 bd bd bd bd 0.04 bd bd 0.04 0.04 bd bd bd bd bd bd 0.04 0.13 bd bd bd bd bd bd bd bd 0.03 0.07 bd Th U ƩREE 4.78 141 5.58 149 7.65 225 7.83 225 9.17 298 17.78 287 15.84 448 20.72 342 10.83 312 9.23 342 7.32 325 7.97 286 7.16 253 7.42 204 11.04 251 8.01 209 7.25 216 7.02 178 4.24 161 6.25 139 11.51 153 9.23 198 5.63 151 7.39 137 7.02 159 11.84 194 14.88 238 22.99 386 21.45 397 33.22 232 28.38 250 16.24 263 33.44 240 34.37 242 18.16 264 12.60 215 16.02 268 19.63 215 20.14 229 14.52 257 13.95 261 12.79 225 10.10 143 11.34 133 13.62 168 9.98 135 15.57 209 10.71 153 14.50 203 20.69 179 11.60 166 13.67 164 12.01 165 9.77 212 Ce/Ce* -0.23 -0.14 0.20 -0.25 0.75 -0.16 0.60 -0.17 -0.30 -0.27 -0.01 0.00 -0.25 -0.08 -0.03 -0.35 -0.44 -0.17 -0.10 -0.47 -0.24 -0.11 -0.41 -0.33 -0.35 -0.29 0.07 0.98 1.18 -0.29 -0.03 -0.19 -0.11 -0.29 -0.11 0.31 -0.27 -0.21 0.29 -0.02 0.23 -0.01 -0.31 -0.27 -0.24 -0.44 0.02 -0.17 -0.21 -0.17 -0.21 -0.19 -0.09 0.20 Ce/Ce** 0.91 1.94 1.80 1.38 3.08 1.78 1.98 1.95 0.93 0.74 1.88 2.35 1.85 2.18 2.70 0.67 2.08 1.59 1.08 1.01 0.90 1.07 0.72 1.42 1.39 8.07 3.22 2.45 3.87 1.25 0.89 0.94 1.59 0.83 1.53 1.34 1.04 1.27 3.27 0.72 4.16 4.49 1.06 0.75 1.35 0.61 2.92 3.75 1.91 2.05 0.99 1.71 1.16 1.88 La/La* Y/Ho 0.28 73.0 4.02 87.0 1.01 45.0 1.94 58.9 1.79 65.3 3.21 48.9 0.45 56.3 4.77 51.4 0.63 57.1 0.02 57.2 1.93 69.5 5.07 52.9 10.02 43.2 4.28 52.7 9.75 61.2 0.05 48.0 13.24 59.5 1.90 51.8 0.34 68.5 1.55 65.3 0.32 59.6 0.32 73.3 0.34 47.5 2.64 55.5 2.90 67.6 -6.30 56.6 7.67 55.7 0.39 42.7 1.67 83.9 1.50 54.2 -0.14 71.5 0.28 64.8 1.53 49.5 0.27 75.3 1.44 62.0 0.03 65.4 0.79 70.6 1.10 64.7 3.26 63.8 -0.40 64.7 23.86 55.0 39.31 59.6 1.07 66.0 0.04 50.4 1.78 49.4 0.12 66.0 5.18 60.6 -65.42 64.4 3.53 62.3 4.21 63.7 0.42 61.7 2.42 56.3 0.48 67.3 0.93 76.5 391 mm from bone rim 12.30 12.34 12.37 12.41 12.44 12.47 12.51 12.54 12.58 12.61 12.65 12.68 12.72 12.75 12.79 12.82 12.85 12.89 12.92 12.96 12.99 13.03 13.06 13.10 13.13 13.17 13.20 13.23 13.27 13.30 13.34 13.37 13.41 13.44 13.48 13.51 13.55 13.58 13.61 13.65 13.68 13.72 13.75 13.79 13.82 13.86 13.89 13.93 13.96 13.99 14.03 14.06 14.10 14.13 Sc 22.57 27.18 24.50 19.01 27.67 20.42 22.89 28.00 20.92 21.56 14.38 17.21 15.99 18.83 22.86 19.24 19.72 21.82 28.37 21.20 23.20 27.82 21.00 17.62 27.00 28.52 21.42 20.97 19.42 27.91 20.79 20.76 25.53 17.25 35.88 22.52 26.14 24.03 25.70 23.28 26.43 27.24 27.75 29.50 27.76 22.51 25.86 25.28 28.84 21.49 26.17 30.43 32.86 26.86 Mn 0.23 0.29 0.22 0.17 0.19 0.15 0.25 0.20 0.34 0.22 0.20 0.13 0.16 0.28 0.30 0.22 0.30 0.74 0.30 0.17 0.58 0.34 0.20 0.16 0.21 0.29 0.15 0.19 0.18 0.14 0.19 0.18 0.22 0.12 0.32 0.21 0.43 0.49 0.22 0.12 0.19 0.60 0.22 0.23 0.22 0.17 0.24 0.14 0.22 0.15 0.16 0.21 0.39 0.35 Fe 1.23 1.27 1.10 0.75 0.81 0.92 1.09 1.51 1.22 0.95 1.54 0.92 0.86 2.93 5.76 6.24 4.46 4.33 3.94 3.93 3.42 2.64 1.92 1.39 1.77 1.38 2.13 1.29 1.24 1.94 1.56 1.00 1.10 0.55 4.03 1.62 0.98 1.00 0.92 0.73 1.49 1.69 1.70 1.46 1.18 1.21 bd 0.86 1.47 0.76 1.01 1.27 1.42 1.04 SRHS-DU-89 Manual Phalanx (continued) Sr 3226.86 3097.00 4207.24 2286.18 3412.71 2982.56 3610.50 3974.35 3942.57 3863.15 2731.30 2576.56 2727.47 2764.35 4058.66 2609.92 2354.20 3885.88 3799.28 3028.61 4508.52 3671.23 2999.13 2310.28 2762.97 3469.30 3179.06 3301.45 2482.98 4032.17 3358.56 2836.70 3065.37 2461.41 3753.62 3175.63 2720.56 2916.91 2345.77 1727.56 2679.59 3094.87 3311.97 3283.20 3260.68 2691.36 4410.96 3413.15 3855.12 2368.50 2818.37 3111.12 4901.23 2883.86 Y 150.81 193.29 182.46 147.81 170.61 153.39 179.13 208.11 177.94 161.35 180.28 148.68 163.19 157.39 175.64 137.50 155.17 188.91 202.57 164.46 245.09 247.98 211.18 176.88 224.23 225.55 231.59 204.49 233.88 245.95 244.80 210.62 257.85 150.51 317.98 242.87 236.15 281.66 257.83 155.74 315.35 266.66 330.80 277.65 269.77 254.31 310.92 261.62 339.36 221.59 250.42 283.45 267.16 245.87 Ba 1138.79 2066.47 1409.95 1148.26 1502.05 1585.74 1451.20 1223.02 1756.24 1690.49 1269.25 1563.11 1408.65 2603.30 1870.10 1286.08 1485.01 1474.41 1757.70 2262.90 1912.87 1511.12 1030.33 1092.21 1326.78 2029.11 2045.29 1747.65 1397.34 1888.92 1343.48 1017.98 2188.88 952.86 1848.74 1903.97 1209.35 1580.12 1656.89 861.68 1380.60 1294.48 1640.92 1183.71 1252.61 1464.21 1706.40 1345.17 1853.45 960.44 1448.45 1509.34 1703.24 2369.92 La 41.93 61.77 50.34 35.92 48.05 44.57 47.90 52.05 51.73 56.59 55.20 32.72 46.34 45.32 59.12 51.66 47.60 72.03 74.79 60.92 76.27 81.79 58.48 49.75 80.16 76.90 69.45 78.01 65.64 84.01 77.87 78.31 86.05 57.70 139.17 106.26 87.30 115.21 110.66 82.17 108.87 94.27 121.57 126.48 110.52 112.69 119.50 100.46 121.43 82.84 97.29 95.40 108.32 87.11 Ce 52.87 64.85 66.73 45.52 54.18 93.84 50.52 64.95 54.80 81.93 106.75 50.43 65.79 64.64 82.33 86.70 74.19 104.86 62.70 97.91 125.16 128.23 78.81 82.51 139.71 130.03 112.00 105.08 120.83 114.77 142.09 127.18 182.17 73.41 182.74 242.12 160.79 263.66 158.57 96.99 238.66 155.45 248.64 177.94 177.49 281.12 180.10 176.43 178.61 125.94 134.10 166.98 115.87 116.74 Pr 4.88 4.41 4.54 5.35 5.08 4.16 5.84 5.34 4.45 5.28 5.89 3.97 9.30 5.01 10.01 5.46 5.67 5.32 8.66 6.54 11.28 11.64 9.12 6.67 11.79 15.20 12.25 17.52 10.02 10.07 10.17 8.04 16.96 13.66 18.93 13.29 15.03 17.57 16.24 11.14 21.03 21.96 17.46 19.32 21.72 14.08 19.92 13.12 18.46 9.61 13.65 15.97 11.45 10.00 Nd 16.07 20.63 18.60 15.30 19.16 14.52 17.68 24.02 17.74 13.63 28.29 23.07 30.06 14.04 26.50 24.69 27.28 26.49 32.37 30.65 43.34 38.94 24.86 21.76 44.49 33.96 37.66 33.20 40.59 37.92 38.23 42.03 56.14 28.07 87.19 63.97 49.10 75.80 54.31 40.28 65.81 60.99 70.36 81.63 61.83 61.70 66.93 46.92 49.28 33.68 46.85 46.86 57.77 50.79 Sm 0.38 4.53 1.87 2.97 3.31 1.65 3.92 3.44 2.94 3.37 5.70 0.62 3.17 1.97 6.92 2.84 4.59 8.33 10.09 3.23 4.28 10.61 6.16 5.84 6.77 7.46 3.47 7.40 7.57 8.93 9.44 5.67 10.64 7.66 13.11 7.58 9.38 8.25 9.18 8.34 12.55 13.94 9.87 8.21 12.01 7.86 11.65 10.19 8.50 4.07 7.27 5.88 8.77 12.20 Eu 0.79 1.21 1.00 0.69 0.87 0.79 1.69 1.46 0.50 1.67 1.81 0.92 2.20 0.94 1.93 1.59 1.37 1.44 2.38 1.82 1.42 2.33 3.33 1.74 1.90 2.34 2.38 1.97 2.36 2.77 2.81 2.13 2.58 2.42 5.25 3.22 3.79 3.13 3.22 2.62 3.51 4.05 3.57 5.61 4.35 3.47 4.73 3.22 4.29 2.57 3.01 3.17 3.41 4.42 Gd 6.07 3.61 4.85 5.27 5.50 1.97 5.65 6.86 6.71 7.09 5.68 5.25 10.91 3.93 10.36 6.73 5.73 10.06 10.07 9.33 10.93 7.82 8.45 5.24 7.94 11.58 10.40 7.77 9.72 16.67 11.44 9.84 12.20 12.52 23.47 11.53 14.72 17.23 14.08 10.64 26.21 19.89 17.61 18.80 20.11 18.61 16.57 11.45 15.14 9.90 10.10 15.78 18.28 13.50 Tb 0.50 1.03 1.29 0.71 1.45 1.11 1.14 0.82 1.10 1.07 0.95 0.96 0.97 1.32 1.08 1.02 0.87 1.52 1.81 1.59 1.82 1.65 1.93 1.74 1.57 1.53 1.78 1.86 1.20 3.15 2.41 1.99 2.35 1.63 2.05 3.06 3.16 2.19 2.35 1.49 2.86 3.44 3.36 3.39 3.29 2.85 2.78 2.20 3.84 1.64 2.64 2.28 1.91 1.49 Dy 9.51 11.77 9.18 6.15 11.17 6.65 12.40 11.81 12.36 9.36 9.87 8.96 11.92 8.70 15.91 12.88 9.20 8.81 11.75 13.04 20.76 15.37 15.10 10.17 17.37 19.30 15.15 13.36 18.20 17.50 16.85 14.49 16.43 12.75 28.36 16.28 19.22 24.28 22.83 15.79 24.61 15.45 24.20 20.13 24.03 16.69 22.32 20.14 24.65 16.58 16.11 18.38 17.57 18.43 Ho 3.76 4.04 3.47 2.74 3.68 2.22 4.42 2.34 2.82 3.61 2.09 2.00 3.36 2.26 3.64 3.08 1.68 3.37 3.54 3.64 4.71 4.67 3.57 2.07 3.64 4.05 4.11 3.71 3.56 5.07 4.03 3.64 4.91 3.34 6.23 5.29 4.38 5.68 5.44 3.48 4.92 5.67 5.59 5.81 6.90 5.26 5.08 5.32 7.72 4.90 4.21 5.20 4.75 3.86 Er 9.43 15.13 9.28 11.20 9.50 8.20 10.57 14.04 11.55 10.68 14.52 6.51 11.21 10.41 12.35 6.89 10.53 9.45 12.91 14.33 18.97 17.89 17.22 9.13 15.66 18.53 9.73 14.47 14.57 16.52 10.71 14.16 17.63 9.38 18.26 17.31 15.70 20.01 18.73 10.11 19.26 17.52 27.35 18.25 20.46 18.66 20.54 13.72 23.50 11.92 24.69 16.43 17.46 14.75 Tm 1.33 2.53 1.92 1.54 2.27 1.27 2.03 1.03 1.47 1.44 1.46 1.15 1.48 1.29 1.91 1.45 1.20 1.22 2.55 1.72 1.33 1.99 1.79 1.43 1.90 1.88 1.86 2.45 2.81 3.25 2.47 2.02 3.08 1.97 2.89 2.10 2.22 2.05 2.71 1.32 2.75 3.05 2.83 2.83 3.18 2.27 2.80 2.26 3.40 1.92 2.43 2.95 2.58 1.96 Yb 14.58 14.14 17.26 5.85 12.51 9.16 10.83 12.56 6.26 7.96 13.47 5.27 7.75 7.84 10.43 7.81 9.51 16.48 14.32 11.22 18.57 12.76 16.12 6.42 15.81 15.87 10.84 10.77 19.18 14.32 13.87 15.04 10.91 8.40 22.12 14.09 17.11 13.04 12.56 12.16 23.74 12.95 13.01 17.00 17.04 18.99 14.77 14.00 18.88 12.27 18.61 16.95 17.58 15.91 Lu 1.98 2.18 1.51 1.93 1.96 1.94 2.39 2.69 1.20 1.27 2.37 1.01 2.07 1.49 1.35 2.64 1.25 2.28 1.53 1.59 3.16 2.46 2.36 1.33 1.40 2.48 1.13 2.18 2.58 1.97 2.64 2.06 3.03 1.85 3.36 1.79 2.49 3.08 2.22 1.45 2.77 2.33 3.08 2.27 2.83 1.86 2.99 3.03 3.08 2.25 2.47 2.83 2.33 2.23 Th 0.04 0.27 bd bd bd 0.07 bd bd bd bd bd bd 0.07 0.04 0.22 0.35 0.19 0.13 0.29 0.18 0.19 0.05 0.08 0.12 bd 0.04 0.03 bd 0.07 0.12 0.20 0.06 bd bd 0.09 bd bd bd bd 0.02 0.11 0.07 0.11 0.07 0.10 0.03 bd 0.03 bd bd bd 0.04 bd bd U ƩREE 9.97 164 14.79 212 12.48 192 12.01 141 15.52 179 8.18 192 6.72 177 13.70 203 8.74 176 8.34 205 8.06 254 7.25 143 11.79 207 6.73 169 12.69 244 13.66 215 9.97 201 12.67 272 11.42 249 10.01 258 15.66 342 11.72 338 13.64 247 8.87 206 14.80 350 13.85 341 10.28 292 11.76 300 9.04 319 13.75 337 11.03 345 12.71 327 15.99 425 8.23 235 18.26 553 12.07 508 26.86 404 14.14 571 12.02 433 7.56 298 16.49 558 18.49 431 20.27 569 18.27 508 22.68 486 16.04 566 18.56 491 14.19 422 19.06 481 11.18 320 15.72 383 13.47 415 17.26 388 15.42 353 Ce/Ce* -0.19 -0.24 -0.09 -0.26 -0.26 0.44 -0.34 -0.17 -0.26 -0.01 0.27 -0.03 -0.26 -0.07 -0.22 0.11 -0.01 0.05 -0.46 0.05 -0.03 -0.06 -0.22 0.01 0.03 -0.11 -0.11 -0.33 0.07 -0.13 0.12 0.08 0.11 -0.39 -0.20 0.42 0.02 0.33 -0.15 -0.28 0.16 -0.20 0.22 -0.18 -0.16 0.56 -0.15 0.08 -0.14 -0.03 -0.17 -0.02 -0.30 -0.14 Ce/Ce** 1.22 2.68 2.12 0.86 1.39 2.70 0.91 2.05 1.72 1.46 3.49 4.61 0.78 1.28 0.79 2.70 2.52 4.15 0.93 2.73 1.47 1.26 0.84 1.38 1.54 0.75 0.97 0.49 1.72 1.48 1.80 3.79 1.22 0.45 1.70 3.52 1.20 2.35 1.12 1.08 1.22 0.70 2.01 1.40 0.82 3.21 1.04 1.65 0.93 1.57 1.15 1.07 2.19 2.58 La/La* Y/Ho 0.98 40.1 10.81 47.9 3.41 52.5 0.26 54.0 1.92 46.4 1.77 69.0 0.66 40.6 5.10 88.9 3.23 63.1 0.80 44.7 9.32 86.4 -7.01 74.2 0.11 48.6 0.66 69.5 0.02 48.2 5.14 44.7 8.37 92.2 26.19 56.0 1.60 57.2 6.97 45.2 1.19 52.1 0.67 53.1 0.14 59.1 0.69 85.5 1.10 61.5 -0.25 55.7 0.17 56.3 -0.41 55.2 1.51 65.6 1.55 48.5 1.33 60.7 -193.44 57.8 0.18 52.5 -0.41 45.0 4.42 51.0 8.04 45.9 0.32 54.0 2.25 49.6 0.61 47.4 1.05 44.8 0.10 64.1 -0.22 47.0 1.62 59.1 1.95 47.8 -0.05 39.1 3.29 48.4 0.43 61.2 1.08 49.1 0.14 44.0 1.24 45.2 0.78 59.5 0.16 54.5 25.18 56.3 29.93 63.6 392 mm from bone rim 14.17 14.20 14.24 14.24 14.27 14.31 14.34 14.38 14.41 14.44 14.48 14.51 14.55 14.58 14.62 14.65 14.69 14.72 14.76 14.79 14.82 14.86 14.89 14.93 14.96 15.00 15.03 15.07 15.10 15.14 15.17 15.20 15.24 15.27 15.31 15.34 15.38 15.41 15.45 15.48 15.52 15.55 15.58 15.62 15.65 15.69 15.72 15.76 15.79 15.83 15.86 15.90 15.93 15.96 Sc 21.71 27.67 25.43 37.12 22.27 27.68 26.36 26.17 37.04 31.20 17.97 23.86 25.19 23.60 20.28 24.43 25.88 23.89 30.55 24.84 27.94 26.90 28.48 28.63 17.51 33.91 26.35 21.16 20.69 29.01 28.57 27.55 24.01 29.44 22.21 24.24 22.52 31.47 21.17 22.46 23.05 39.47 35.59 23.85 14.74 20.80 25.37 34.53 30.02 32.11 26.37 25.14 24.64 25.13 Mn 0.42 0.38 0.26 0.27 0.18 0.15 0.18 0.23 0.29 0.29 0.17 0.24 0.22 0.20 0.32 0.25 0.23 0.39 0.19 0.19 0.25 0.20 0.15 0.19 0.16 0.29 0.21 0.22 0.14 0.16 0.17 0.24 0.15 0.23 0.18 0.16 0.13 0.34 0.18 0.15 0.17 0.19 0.35 0.17 0.14 0.17 0.14 0.27 0.24 0.23 0.18 0.18 0.19 0.24 Fe 1.81 1.78 1.25 1.41 1.45 2.26 0.68 0.94 1.31 1.10 0.85 1.02 1.17 1.96 2.52 1.92 1.40 1.38 1.85 1.86 1.64 1.30 1.07 1.13 0.85 1.17 1.45 1.22 0.81 0.83 1.46 1.08 0.85 1.08 1.36 0.90 1.01 1.58 1.28 0.90 0.90 1.00 1.65 1.04 0.86 0.95 1.06 1.27 1.06 1.47 1.08 bd 1.61 1.27 SRHS-DU-89 Manual Phalanx (continued) Sr 3637.18 3975.88 3951.44 4201.98 2797.85 4332.57 2874.69 3503.88 3956.78 4191.72 2738.60 3196.93 3613.00 10731.65 4486.36 4568.62 4035.80 9309.49 4387.17 9347.88 4021.07 3291.39 3026.39 3382.41 2707.32 3433.37 3571.75 3537.97 2471.25 2685.66 3674.90 2968.40 3016.40 3590.30 2683.78 2655.10 3243.84 4116.16 3762.83 2791.26 2626.20 2941.67 4799.52 4624.54 2371.28 2877.34 3609.56 3476.86 3300.73 4959.30 3653.79 3904.37 2918.39 3520.40 Y 265.08 272.55 223.42 300.23 241.67 239.03 235.83 280.78 319.56 264.24 207.74 217.57 249.07 238.11 221.87 222.09 206.04 236.60 219.64 209.22 239.76 204.74 200.86 219.24 205.38 233.72 232.48 217.69 178.20 259.15 252.57 299.12 226.37 276.50 224.39 206.62 230.26 228.56 192.73 215.52 218.50 271.83 267.35 289.85 193.43 233.66 253.69 274.13 221.83 308.53 261.48 319.42 269.14 392.19 Ba 2081.75 2055.39 1391.44 1706.53 1018.63 1721.23 1355.95 1660.26 3136.66 1466.72 1467.15 1113.69 3766.90 nd nd nd nd 4684.78 nd nd nd 2287.21 1795.21 2821.71 2626.31 1994.77 1535.17 2510.53 1632.85 nd 2075.47 2100.13 1565.10 1433.53 1939.24 1523.70 1594.30 1876.71 1431.90 1116.61 1945.84 1219.34 1834.73 1851.95 1303.24 1258.01 1719.46 1263.63 1325.52 1936.88 1420.52 2399.58 1998.30 1735.79 La 97.68 100.89 102.74 158.05 107.21 129.52 93.46 134.60 175.66 121.41 74.66 79.10 102.18 98.65 74.06 78.74 83.64 82.93 74.47 87.64 78.92 81.11 74.71 103.52 66.53 85.58 75.01 69.03 68.84 81.38 84.91 84.03 67.02 79.03 86.48 85.70 78.43 84.84 80.90 67.69 60.40 87.77 100.95 83.29 71.33 74.64 79.80 133.68 73.30 126.74 87.68 124.85 111.99 153.54 Ce 218.59 164.10 167.96 204.81 152.07 155.88 195.48 164.96 240.75 213.49 171.40 170.10 122.56 127.63 121.53 158.23 104.36 138.95 122.07 153.86 111.51 101.67 119.04 124.82 88.75 110.67 123.28 104.41 97.46 100.37 110.37 124.24 105.61 150.64 105.55 86.85 73.25 95.06 93.30 71.64 123.39 85.52 98.01 90.97 71.89 122.38 155.13 114.31 84.74 168.84 131.79 162.69 197.80 301.56 Pr 16.34 18.17 15.69 23.68 14.90 15.80 19.62 18.69 29.11 18.99 12.59 15.48 14.39 12.69 11.19 11.20 12.22 13.68 10.28 9.81 9.84 7.94 11.54 10.44 9.48 8.31 9.42 9.94 9.18 8.02 8.66 10.74 6.90 9.72 6.74 10.58 10.30 8.82 7.13 7.16 8.04 7.45 13.85 8.05 7.36 8.52 11.58 11.08 14.98 12.75 10.54 15.21 14.93 28.24 Nd 42.25 56.67 48.39 76.44 49.91 52.69 45.20 53.05 92.23 63.25 45.19 48.90 45.44 57.82 34.13 36.66 33.07 36.10 27.71 39.10 49.05 34.44 34.67 48.80 29.68 30.98 36.34 26.69 37.85 26.58 38.71 28.50 22.22 41.80 36.56 29.50 32.51 41.67 27.45 27.47 23.59 37.36 34.82 41.81 25.81 31.12 37.06 42.54 33.35 71.06 43.49 56.05 35.51 76.09 Sm 9.31 10.05 8.45 8.63 9.12 7.85 9.46 15.78 18.36 9.78 5.15 7.67 8.23 9.04 14.14 11.70 6.73 5.93 7.63 7.58 4.30 6.53 7.37 5.32 6.96 4.82 5.34 6.00 3.93 4.68 2.19 7.70 4.05 5.61 6.93 6.72 4.76 3.70 5.26 0.96 3.89 3.63 5.01 7.48 4.41 6.80 7.46 9.61 4.20 10.45 8.46 9.61 7.31 14.21 Eu 4.88 1.61 3.46 5.40 3.88 3.08 2.28 3.99 3.64 2.91 2.56 5.14 3.95 2.08 2.92 1.74 3.01 4.16 2.40 2.39 2.70 3.04 2.08 2.77 2.69 1.43 1.25 1.56 1.98 1.10 2.28 3.26 1.42 2.39 2.17 2.10 2.95 1.43 1.81 0.86 2.19 1.44 1.64 2.65 0.81 2.50 2.96 2.99 2.40 2.57 2.41 2.74 2.84 1.87 Gd 14.88 14.28 12.66 16.80 14.97 21.05 16.00 13.37 27.51 16.75 8.57 9.95 8.67 12.71 8.62 9.59 12.60 13.53 7.61 12.01 9.06 8.14 7.35 8.40 9.73 12.95 11.81 5.61 8.46 7.68 10.58 13.75 11.01 12.00 10.20 12.42 10.30 12.57 11.31 6.05 8.62 10.46 16.50 16.82 7.44 9.98 10.76 13.35 9.79 13.60 11.62 17.95 13.01 14.60 Tb 2.00 2.31 2.39 3.29 2.49 2.22 1.69 3.48 2.92 2.83 1.92 2.84 2.46 1.81 1.92 2.14 2.16 1.82 1.82 1.75 2.17 1.85 1.99 2.06 1.54 1.94 1.37 1.34 1.52 1.08 1.61 1.93 1.14 2.34 1.78 1.08 1.99 1.90 1.83 1.29 2.22 1.20 1.97 2.40 1.82 0.81 2.57 1.89 1.67 3.03 1.81 3.29 1.97 2.94 Dy 17.16 19.33 19.85 23.05 17.25 23.30 16.06 22.98 24.31 21.93 17.00 14.86 18.39 17.93 11.93 15.36 15.67 11.42 12.88 17.48 12.65 11.60 11.98 21.95 11.26 15.45 11.60 17.46 13.21 14.92 17.55 13.70 14.79 18.47 14.32 14.83 15.95 16.70 13.88 10.95 11.86 11.66 18.42 15.82 10.14 25.10 19.11 23.35 10.48 22.71 13.13 17.83 17.30 22.94 Ho 6.23 4.77 4.43 5.32 4.61 4.64 4.84 6.19 7.02 6.14 3.98 3.75 3.80 4.86 3.98 4.54 5.65 4.81 4.45 3.59 5.54 4.18 4.45 3.90 4.16 4.03 3.63 4.17 4.32 2.82 4.46 3.66 4.09 4.99 5.70 4.51 4.79 3.89 2.67 3.23 3.90 2.80 3.42 5.42 3.06 4.15 6.48 4.90 4.06 5.04 3.57 4.85 5.43 7.65 Er 16.85 21.46 15.36 23.71 14.75 14.70 16.47 16.75 29.68 19.58 15.17 13.43 20.95 13.72 13.33 17.33 14.50 15.06 16.90 14.65 15.71 12.09 13.37 17.67 12.75 9.98 15.63 15.35 13.54 13.69 15.55 17.46 9.71 16.84 15.14 14.67 18.17 14.16 13.73 13.41 14.66 15.41 14.84 13.36 14.98 18.53 18.54 13.51 11.13 21.53 13.68 20.94 14.55 23.63 Tm 1.95 1.62 2.66 2.76 2.24 2.74 1.65 3.17 3.42 2.22 2.04 1.88 1.70 1.53 1.42 2.14 2.84 1.82 1.73 2.75 1.73 1.52 2.08 2.06 2.27 1.64 2.31 1.66 2.29 1.79 2.72 2.45 1.97 2.10 1.36 1.29 1.85 1.85 1.79 0.97 1.91 3.05 3.73 1.80 1.62 2.84 2.80 2.82 2.28 2.91 2.05 2.14 2.18 4.67 Yb 14.79 15.09 14.48 18.36 8.55 21.99 13.17 18.32 21.71 19.17 11.45 12.52 13.63 11.37 6.96 11.56 12.83 15.02 15.64 11.38 15.26 15.05 12.66 18.87 10.86 10.52 14.90 11.70 15.90 16.85 11.66 12.65 12.00 16.78 14.50 12.64 14.07 11.29 10.04 7.24 15.63 17.15 14.21 14.93 10.58 15.89 22.65 19.27 17.15 17.07 12.50 19.87 16.01 24.01 Lu 1.99 2.32 1.93 3.04 2.55 2.16 2.09 2.12 3.83 3.40 1.57 2.45 2.62 1.93 1.64 1.91 1.81 1.99 1.99 1.45 1.81 1.81 2.07 2.77 2.09 2.22 2.19 2.05 2.76 2.27 3.62 2.38 3.02 1.83 2.00 2.41 1.55 2.90 2.48 1.71 1.63 3.42 2.35 3.11 1.72 3.08 2.38 3.16 2.56 2.90 1.88 3.49 2.07 3.54 Th 0.04 0.04 0.03 0.04 bd 0.21 0.04 bd 0.12 0.05 0.07 0.04 0.05 0.16 0.23 0.04 bd bd bd 0.09 0.05 0.08 bd 0.04 bd bd bd 0.11 0.03 bd bd bd bd bd 0.07 0.03 0.04 0.04 0.08 bd bd bd 0.05 bd 0.03 bd 0.08 0.08 bd bd 0.11 bd 0.06 bd U ƩREE 12.22 465 16.16 433 13.64 420 20.93 573 15.69 404 19.97 458 15.94 437 13.49 477 26.06 680 15.05 522 12.49 373 16.20 388 14.42 369 17.17 374 10.25 308 12.58 363 13.55 311 12.39 347 16.90 308 13.11 365 12.40 320 11.68 291 13.37 305 20.73 373 16.92 259 12.04 301 10.00 314 10.54 277 16.59 281 16.69 283 16.92 315 14.67 326 23.84 265 14.45 365 15.51 309 18.89 285 16.72 271 13.15 301 14.26 274 14.37 221 15.04 282 17.02 288 24.91 330 13.72 308 11.78 233 21.08 326 19.60 379 14.22 396 12.44 272 18.46 481 22.05 345 25.34 461 18.19 443 28.02 679 Ce/Ce* 0.26 -0.11 -0.05 -0.24 -0.14 -0.24 0.07 -0.26 -0.23 0.01 0.29 0.13 -0.28 -0.20 -0.04 0.20 -0.26 -0.05 -0.01 0.14 -0.12 -0.16 -0.08 -0.20 -0.20 -0.13 0.03 -0.10 -0.13 -0.17 -0.14 -0.08 0.05 0.20 -0.13 -0.36 -0.43 -0.26 -0.20 -0.30 0.25 -0.32 -0.41 -0.26 -0.33 0.05 0.15 -0.40 -0.40 -0.11 -0.05 -0.18 0.08 0.06 Ce/Ce** 1.26 0.97 1.14 0.96 1.17 1.13 0.88 0.88 0.90 1.28 1.67 1.20 0.93 1.73 1.15 1.58 0.83 0.97 1.15 2.19 2.38 2.02 1.08 2.17 1.01 1.70 1.74 1.01 1.55 1.42 2.12 1.11 1.69 2.41 4.24 0.81 0.77 2.00 1.74 1.33 1.57 2.46 0.66 2.67 1.17 1.80 1.47 1.37 0.49 3.99 1.83 1.35 1.19 1.03 La/La* Y/Ho 0.01 42.6 0.17 57.2 0.36 50.5 0.49 56.4 0.71 52.4 0.93 51.5 -0.28 48.7 0.34 45.4 0.31 45.5 0.50 43.0 0.62 52.2 0.10 58.1 0.53 65.6 4.29 49.0 0.35 55.8 0.61 48.9 0.21 36.5 0.04 49.2 0.27 49.4 2.24 58.3 15.20 43.3 4.20 49.0 0.30 45.1 7.26 56.3 0.49 49.3 2.07 58.0 1.60 64.0 0.21 52.3 2.06 41.2 1.37 92.0 4.91 56.6 0.35 81.7 1.16 55.4 2.96 55.4 -26.90 39.3 0.48 45.8 0.64 48.0 7.83 58.8 2.69 72.3 2.05 66.7 0.46 56.0 27.02 97.0 0.19 78.1 617.70 53.4 1.51 63.2 1.49 56.3 0.52 39.2 2.90 56.0 -0.28 54.6 -12.78 61.2 2.40 73.2 1.38 65.9 0.17 49.6 -0.05 51.3 393 mm from bone rim 16.00 16.03 16.07 16.10 16.14 16.17 16.21 16.24 16.28 16.31 16.34 16.38 16.41 16.45 16.48 16.52 16.55 16.59 16.62 16.66 16.69 16.72 16.76 16.79 16.83 16.86 16.90 16.93 16.97 17.00 17.04 17.07 17.10 17.14 17.17 17.21 17.24 17.28 17.31 17.35 17.38 17.42 17.45 17.48 17.52 17.55 17.59 17.62 17.66 17.69 17.73 17.76 17.80 17.83 Sc 26.82 28.38 40.10 26.43 39.92 26.91 24.40 26.47 30.79 32.64 32.45 27.33 23.48 31.18 26.30 20.93 33.90 37.31 33.05 31.60 27.52 26.32 31.43 39.14 33.09 25.18 30.12 27.55 28.57 25.63 36.89 27.05 33.08 30.51 31.47 28.00 27.20 36.18 27.51 32.18 36.98 36.60 33.12 33.18 29.82 28.79 30.21 31.81 37.40 37.45 41.30 26.43 36.97 44.07 Mn 0.15 0.26 0.26 0.17 0.29 0.26 0.13 0.16 0.26 0.24 1.21 0.50 0.79 0.66 0.53 0.49 0.72 1.29 0.55 0.56 0.77 0.53 0.43 0.34 0.28 0.22 0.36 0.28 0.26 0.20 0.24 0.23 0.25 0.31 0.16 0.17 0.25 0.27 0.24 0.17 0.24 0.22 0.30 0.18 0.22 0.23 0.23 0.21 0.40 0.24 0.44 0.22 0.22 0.16 Fe 1.18 1.53 2.07 1.14 0.93 1.07 0.78 1.49 1.52 1.35 1.70 1.40 2.02 2.09 2.89 0.78 2.70 1.27 1.79 1.24 1.60 1.16 1.20 1.24 1.05 0.68 1.00 1.72 1.03 1.05 1.10 1.16 1.13 1.36 1.19 0.99 1.12 1.34 0.97 1.04 1.34 1.78 1.57 1.23 1.52 1.31 1.46 2.08 1.06 1.46 1.55 0.96 1.10 1.48 SRHS-DU-89 Manual Phalanx (continued) Sr 3369.70 3240.13 3734.53 3436.49 3432.54 3066.75 3189.67 2851.06 2407.23 2762.09 5216.83 4431.07 3671.40 3712.59 3926.70 2709.25 3683.64 3993.71 4338.16 3349.86 3007.22 2879.25 3419.60 2907.75 4164.58 2865.75 3437.54 3571.38 2886.60 3527.50 3974.52 3958.57 3211.63 3230.25 3669.84 3044.22 2520.81 4018.53 3339.47 2797.53 3737.06 4871.26 3670.60 3025.15 2997.50 3103.28 3185.94 3743.25 2880.95 3849.55 4336.76 2892.73 2482.79 3180.85 Y 357.06 302.44 337.90 359.48 359.05 301.32 251.60 327.68 298.47 275.69 482.83 371.02 334.83 315.05 321.70 268.02 425.41 448.52 382.44 351.64 321.41 351.90 459.64 352.04 380.64 311.71 460.67 393.83 290.99 359.07 434.04 359.32 412.18 367.66 425.57 322.08 357.81 414.06 385.23 358.23 425.22 403.64 354.17 408.25 411.21 401.31 398.53 339.76 406.47 411.31 562.26 389.99 389.52 427.90 nd 1251.30 2252.36 1822.27 1457.49 2279.47 1099.13 1900.11 1208.42 1588.14 1558.66 1798.15 1182.67 1824.84 816.14 1354.68 2049.54 1497.92 1701.24 1243.50 1250.92 1241.69 1346.89 1405.86 1918.90 1216.18 1661.52 1729.53 1611.23 1506.32 1651.81 1879.85 1736.99 1663.53 1776.14 1262.69 1510.02 1418.19 1574.92 1369.93 1845.77 2375.26 2157.66 1100.52 1952.83 2006.51 1463.43 1730.55 1518.39 1504.90 3041.02 1006.70 1939.53 1567.45 Ba La 148.37 128.40 160.15 141.14 135.45 138.74 119.06 145.16 124.32 132.11 153.15 185.62 133.84 161.46 115.77 135.26 170.58 155.13 226.97 156.35 182.42 183.08 227.33 189.89 171.88 173.34 201.42 233.25 182.50 193.94 218.96 229.23 267.90 262.49 249.48 221.09 230.95 275.13 269.26 237.03 283.27 304.84 315.24 274.12 268.70 369.21 376.38 307.60 327.09 295.04 418.17 271.58 362.32 388.36 Ce 258.11 332.38 183.60 186.92 234.67 208.52 203.28 199.66 203.72 271.77 261.91 336.05 178.20 274.05 236.52 204.26 306.86 254.37 336.76 261.81 338.55 238.23 nd 315.62 258.87 255.84 nd 403.21 325.88 284.71 421.48 nd 389.67 372.91 509.62 334.94 nd 587.49 356.36 471.11 520.83 nd 738.73 498.57 nd 571.12 543.16 452.78 432.79 615.51 1365.37 448.46 699.80 nd Pr 24.91 22.00 24.49 23.51 19.51 16.98 22.56 26.33 16.73 17.65 27.81 25.82 20.99 19.83 21.52 15.22 23.70 22.57 23.30 18.85 27.21 41.27 29.84 34.26 26.26 35.62 27.36 38.19 28.16 25.22 36.41 45.93 38.24 43.86 34.79 27.43 75.13 36.63 55.21 38.66 48.61 54.61 51.63 58.88 63.51 82.24 55.24 65.10 60.90 53.96 65.94 47.09 71.98 78.48 Nd 81.18 77.64 88.92 64.93 73.45 75.06 45.40 82.36 64.56 57.44 100.72 88.32 76.87 84.36 66.10 65.20 93.07 71.53 90.58 68.17 93.98 97.93 100.89 100.98 97.63 116.66 115.49 125.38 99.38 98.82 117.52 94.62 115.28 119.83 124.17 92.31 112.30 120.88 111.02 123.94 139.82 170.47 152.14 143.40 178.78 200.07 211.99 204.24 196.72 195.85 260.08 173.02 192.32 208.42 Sm 10.69 13.60 17.10 16.38 9.85 13.38 11.67 10.62 12.55 14.38 17.97 8.61 18.28 8.91 7.80 15.23 9.93 6.83 13.42 9.22 13.42 15.98 21.67 16.01 18.87 19.73 23.84 26.87 9.34 18.03 22.90 13.88 18.59 19.13 15.59 16.26 19.71 27.24 20.08 24.24 26.93 26.73 24.11 28.33 28.60 24.86 34.97 24.13 32.75 34.40 53.32 26.91 31.01 32.63 Eu 3.95 2.96 5.48 2.18 7.61 5.31 2.95 3.16 3.54 2.68 5.50 5.25 5.01 5.82 3.25 2.89 2.84 4.79 4.24 3.97 5.09 4.65 5.74 8.62 8.68 5.98 6.98 6.40 5.36 4.88 6.26 6.32 5.30 5.90 7.31 5.31 7.09 8.31 7.27 5.90 8.33 8.80 9.39 7.67 8.42 11.16 7.44 6.74 11.66 11.44 14.50 6.81 11.27 13.11 Gd 15.46 15.79 21.45 21.59 15.07 20.41 11.94 19.09 20.46 21.54 24.61 22.13 19.72 27.14 14.64 16.83 14.67 22.48 18.27 16.38 19.91 18.09 29.83 28.55 20.56 21.09 28.98 22.93 29.37 25.22 28.13 27.72 26.86 21.19 28.16 15.98 24.68 34.35 24.99 29.95 39.32 35.85 40.47 34.59 33.97 41.41 35.29 34.86 44.46 44.97 63.47 33.93 57.56 56.34 Tb 3.38 2.68 4.08 2.00 3.75 3.68 4.07 2.83 2.68 3.13 4.28 3.23 2.09 3.04 3.53 3.05 2.61 2.92 3.10 2.24 4.85 3.52 2.87 3.73 3.53 3.67 4.12 5.18 3.22 4.85 4.12 2.82 4.67 4.73 5.42 3.66 4.95 4.37 3.39 3.29 4.45 6.59 4.57 4.98 5.12 5.24 6.51 7.35 6.41 5.54 8.79 3.81 5.69 7.18 Dy 26.74 26.50 36.11 21.70 22.50 26.23 17.31 23.95 22.84 25.20 38.25 23.33 20.97 24.56 22.02 19.38 27.84 19.30 27.51 27.97 29.32 28.55 24.55 32.70 29.64 29.35 31.95 38.31 22.04 26.84 23.92 30.81 31.21 30.86 38.05 25.07 29.56 30.53 28.32 30.16 32.66 36.56 30.62 32.68 34.43 39.40 43.03 44.41 47.12 46.29 48.42 30.09 35.09 38.98 Ho 8.82 5.21 6.63 5.74 6.58 6.71 5.13 7.09 5.16 4.87 8.90 6.71 4.68 7.98 5.52 5.54 6.25 6.18 6.70 5.17 8.99 5.55 6.76 6.61 6.80 6.59 7.23 9.54 5.53 6.80 5.64 7.07 5.79 8.02 8.06 6.85 7.14 6.10 6.64 8.05 7.54 9.62 6.23 6.78 7.18 8.40 8.75 9.06 10.78 9.92 13.30 7.43 8.82 7.81 Er 16.68 15.85 33.07 17.28 22.07 14.61 19.65 21.93 17.44 20.72 24.61 22.99 17.13 27.90 18.48 15.89 16.90 23.38 17.31 21.90 28.71 22.77 29.32 27.31 21.71 25.54 24.83 30.00 17.89 21.37 19.61 21.11 22.58 24.17 21.44 19.50 24.88 30.05 23.96 25.14 22.69 17.62 22.82 23.58 20.03 26.60 23.26 31.60 29.53 31.15 36.22 27.64 32.50 27.13 Tm 2.27 3.08 3.27 2.60 2.76 2.90 2.72 3.17 2.42 3.14 3.83 2.77 2.30 4.15 2.40 2.38 3.01 3.09 2.37 2.71 3.08 2.23 4.71 3.37 3.65 3.14 2.87 3.75 2.46 3.09 2.23 2.61 3.64 3.60 2.97 3.12 2.81 3.47 3.17 3.00 2.45 2.54 4.32 3.70 3.81 4.11 3.16 3.20 4.10 3.20 5.02 3.19 3.65 4.35 Yb 19.87 18.26 25.19 14.34 15.07 20.56 12.63 21.34 13.12 15.05 16.38 16.88 12.96 23.49 14.82 16.55 19.44 17.39 14.71 11.63 17.32 15.11 21.87 20.28 15.21 17.92 13.81 23.90 15.70 18.84 14.91 17.37 21.60 23.69 16.23 15.81 21.28 18.87 14.68 15.53 22.53 19.21 23.25 17.45 23.22 27.35 18.22 13.96 23.99 15.57 26.64 16.95 21.76 24.26 Lu 3.60 2.16 4.23 1.95 2.09 2.95 2.32 2.81 2.97 2.20 4.35 2.67 2.29 2.49 2.64 2.28 2.64 2.46 3.76 2.58 4.61 3.29 3.58 3.38 2.63 3.70 2.28 4.07 1.98 2.39 3.28 2.93 3.25 4.44 2.38 2.73 3.30 2.71 3.62 2.41 3.78 4.26 2.70 3.17 3.65 3.29 3.63 4.89 3.99 2.62 4.53 2.46 4.22 3.06 Th 0.07 bd 0.17 0.10 bd 0.15 bd bd 0.03 0.11 0.10 bd bd 0.21 0.06 0.10 0.04 bd 0.20 bd 0.04 0.07 0.10 bd bd 0.07 bd bd bd 0.10 bd 0.04 bd 0.10 bd 0.18 0.03 bd bd 0.10 bd 0.14 0.12 0.06 0.16 0.14 bd bd 0.11 0.04 0.05 bd 0.14 0.16 U ƩREE 26.36 624 22.42 667 26.04 614 30.68 522 20.17 570 22.49 556 18.22 481 27.01 569 26.11 513 25.24 592 32.82 692 34.14 750 23.40 515 35.26 675 20.27 535 24.51 520 23.14 700 31.83 612 27.31 789 18.98 609 21.29 777 21.37 680 39.20 509 32.21 791 17.28 686 24.36 718 18.68 491 33.57 971 38.69 749 23.62 735 24.69 925 27.73 502 37.43 955 33.13 945 25.51 1064 32.84 790 30.51 564 25.83 1186 22.82 928 20.23 1018 26.07 1163 24.14 698 30.12 1426 27.93 1138 27.77 679 26.43 1414 24.71 1371 26.06 1210 31.08 1232 64.33 1365 36.92 2384 16.52 1099 23.42 1538 27.79 890 Ce/Ce* -0.02 0.44 -0.33 -0.25 0.03 -0.05 -0.09 -0.25 0.00 0.26 -0.07 0.09 -0.23 0.07 0.10 -0.02 0.08 -0.03 -0.01 0.06 0.09 -0.36 -0.25 -0.09 -0.12 -0.24 -0.01 -0.02 0.04 -0.09 0.08 -0.08 -0.13 -0.20 0.23 -0.05 -0.18 0.31 -0.32 0.13 0.02 0.13 0.33 -0.08 -0.04 -0.23 -0.15 -0.25 -0.29 0.13 0.88 -0.08 0.01 0.25 Ce/Ce** 1.16 1.82 0.93 0.78 1.56 2.00 0.75 0.82 1.62 1.72 1.17 1.52 1.07 2.12 1.17 2.08 1.77 1.23 1.95 1.72 1.47 0.52 1.07 0.95 1.26 0.81 1.82 1.19 1.39 1.54 1.28 0.74 1.07 0.83 1.79 1.40 0.46 1.81 0.54 1.34 1.08 1.24 1.47 0.77 0.84 0.63 1.30 0.75 0.79 1.42 2.84 1.20 0.94 1.15 La/La* Y/Ho 0.35 40.5 0.54 58.1 0.83 50.9 0.08 62.6 1.13 54.6 3.60 44.9 -0.27 49.1 0.17 46.2 1.43 57.8 0.69 56.6 0.53 54.3 0.78 55.3 0.82 71.5 2.79 39.5 0.11 58.3 3.25 48.4 1.48 68.0 0.49 72.6 2.27 57.1 1.30 68.0 0.69 35.8 -0.31 63.4 0.84 68.0 0.08 53.3 0.94 55.9 0.11 47.3 2.30 63.7 0.40 41.3 0.71 52.6 1.64 52.8 0.34 77.0 -0.30 50.8 0.41 71.2 0.07 45.8 0.93 52.8 0.93 47.0 -0.63 50.1 0.74 67.9 -0.33 58.1 0.35 44.5 0.10 56.4 0.18 42.0 0.19 56.9 -0.26 60.3 -0.22 57.3 -0.29 47.8 1.20 45.5 0.01 37.5 0.20 37.7 0.53 41.5 1.22 42.3 0.66 52.5 -0.12 44.2 -0.14 54.8 394 Sc 39.75 48.00 40.86 49.14 35.41 41.93 34.58 45.01 37.91 28.65 42.40 48.87 57.55 59.39 43.03 41.43 56.33 46.28 44.95 51.10 51.36 70.30 47.37 48.81 38.00 57.68 57.85 78.46 47.36 59.34 16.73 36.35 61.05 mm from bone rim 0.00 0.03 0.07 0.10 0.14 0.17 0.21 0.24 0.28 0.31 0.35 0.38 0.41 0.45 0.48 0.52 0.55 Sc 29.16 36.46 34.97 35.61 30.48 31.03 21.39 40.15 32.41 35.34 32.59 44.83 37.96 37.41 35.28 32.42 34.23 SRHS-DU-94 Femur mm from bone rim 17.86 17.90 17.93 17.97 18.00 18.04 18.07 18.11 18.14 18.18 18.21 18.24 18.28 18.31 18.35 18.38 18.42 18.45 18.49 18.52 18.56 18.59 18.62 18.66 18.69 18.73 18.76 18.80 18.83 18.87 18.90 18.94 18.97 Mn 0.20 0.18 0.26 0.23 0.21 0.29 0.17 0.21 0.19 11.34 1.24 0.79 6.75 0.33 0.54 0.64 1.11 Mn 0.26 0.25 0.43 0.18 0.20 0.14 0.25 0.56 0.27 0.24 0.45 0.46 0.59 0.86 0.61 0.45 0.59 0.39 0.36 0.44 0.58 0.46 0.30 0.37 0.27 0.45 0.28 0.41 0.31 0.21 0.17 0.46 0.45 Fe 1.21 0.99 1.56 1.04 1.89 1.10 1.08 1.31 1.33 bd 2.19 3.50 2.11 1.78 1.25 2.18 1.42 Fe 1.53 1.99 1.67 4.41 1.30 2.45 1.23 0.97 1.81 0.82 1.84 1.29 1.28 2.97 1.50 1.28 1.79 1.19 0.83 0.94 1.20 4.35 1.12 0.79 0.97 0.89 0.78 1.88 1.12 0.51 6.51 0.61 0.99 SRHS-DU-89 Manual Phalanx (continued) Sr 3690.68 2664.71 5255.85 2856.51 3135.62 5009.04 2507.22 5259.13 3232.02 7831.50 2409.99 12685.14 13811.17 6072.83 4564.44 4122.07 4421.65 Sr 3092.84 3676.08 3078.45 3717.17 4434.14 3731.98 3481.46 3079.29 2812.97 4581.18 4177.36 3359.18 3295.32 4122.47 3630.94 3409.59 4458.53 3342.17 2890.58 2708.77 2708.19 6775.33 3295.80 3059.51 1897.75 4420.91 2957.76 7558.51 2820.13 3299.76 3148.20 2169.20 5600.77 Y 246.72 299.08 401.42 274.55 486.15 384.75 236.01 387.60 358.48 396.92 262.30 475.19 327.26 312.63 282.89 251.96 286.83 Y 434.22 619.38 416.93 496.56 478.12 489.71 439.98 457.60 453.37 376.98 515.94 581.26 553.02 820.88 523.68 553.19 573.25 574.79 463.05 585.75 576.15 739.27 596.50 525.31 494.35 641.13 600.04 684.06 594.99 438.25 419.38 684.16 770.44 Ba 1668.16 1055.33 2311.50 2128.84 2179.95 2092.53 1646.90 1632.00 1339.76 nd 1687.48 nd 2144.26 nd 6255.39 1439.79 2644.70 Ba 1285.24 1543.05 1793.60 3271.28 2016.76 1232.46 1297.81 1360.52 1618.90 1046.73 1615.51 2776.38 2111.06 3352.54 2142.71 1406.24 1782.53 2521.90 1401.87 1295.39 1410.52 1988.96 2041.78 3036.88 2075.08 1166.31 1005.67 2081.11 1384.04 1595.83 3308.21 1181.74 3376.66 La 320.85 331.52 602.17 319.75 469.33 432.53 244.05 457.23 373.64 546.71 230.49 397.34 367.47 359.48 309.69 242.80 276.15 La 483.71 536.99 383.68 511.24 518.06 482.47 422.55 549.26 442.77 443.35 567.85 772.27 696.59 886.80 674.14 717.61 745.49 736.26 655.44 835.14 733.28 913.07 1069.62 694.04 684.40 686.05 624.73 909.22 660.45 714.18 419.64 846.68 1736.15 nd nd 1191.47 614.44 1142.87 nd 526.16 nd nd nd nd 1067.62 nd 815.99 512.97 709.67 469.91 Ce nd nd 1175.52 1037.82 855.04 nd 849.56 1179.70 1138.89 nd 1118.99 nd nd nd 1381.78 nd nd nd nd 1813.32 1555.86 1711.84 1369.21 1277.47 1523.97 1192.87 1171.03 2212.25 1449.89 1235.98 1181.51 1199.84 6383.28 Ce Pr 75.25 62.66 126.73 69.26 141.01 105.15 57.89 104.53 87.06 152.93 50.81 80.54 98.40 58.84 45.44 56.82 46.82 Pr 92.71 145.67 111.06 116.90 99.29 94.69 89.51 96.11 104.34 83.40 120.05 144.01 123.73 183.67 114.02 149.09 175.84 206.53 137.09 162.50 184.16 264.76 216.34 198.56 135.92 153.66 170.39 285.99 152.54 115.06 94.73 139.89 218.10 Nd 266.28 273.79 367.64 233.11 432.69 257.87 161.71 299.36 245.07 456.60 148.79 288.68 257.21 166.05 156.09 154.27 155.02 Nd 193.19 325.62 265.84 360.76 338.26 301.70 299.56 274.92 327.20 244.61 406.92 446.67 424.79 677.63 460.05 543.97 611.73 634.76 592.45 648.92 654.18 675.27 479.98 605.14 517.75 510.51 704.22 1045.64 694.75 568.65 370.59 722.83 530.87 Sm 34.61 42.68 55.31 30.94 80.41 53.43 36.41 60.59 45.77 74.53 27.56 47.64 35.35 35.61 21.22 23.43 29.47 Sm 41.46 48.90 41.56 65.25 44.07 38.09 64.07 41.45 55.34 48.32 73.03 72.41 74.64 112.68 82.28 87.87 97.34 106.14 86.67 116.81 114.66 119.07 91.04 82.08 79.13 92.25 121.98 179.50 122.81 89.16 108.83 80.84 98.64 Eu 10.20 11.29 22.05 12.29 17.35 14.26 6.17 16.40 10.69 18.52 8.57 16.65 16.36 16.54 10.28 6.10 7.79 Eu 12.90 12.79 14.36 18.48 11.85 13.93 13.47 12.15 22.18 14.72 17.65 16.25 20.17 28.38 22.41 24.43 25.45 27.69 26.67 28.94 25.97 41.17 27.48 21.38 16.25 25.88 45.40 46.20 16.25 16.72 14.81 41.73 24.49 Gd 33.14 34.72 75.44 39.28 68.37 53.77 33.20 66.11 38.19 95.47 20.70 43.62 34.98 51.21 29.83 26.94 21.87 Gd 51.39 67.54 44.56 57.59 63.53 59.77 61.84 58.95 58.14 59.52 80.08 79.78 102.90 129.50 70.41 85.06 110.35 83.15 94.38 102.02 102.88 101.69 96.54 95.41 99.96 101.50 100.31 145.84 129.41 59.27 77.56 53.67 106.53 Tb 4.94 4.86 9.57 5.11 10.71 7.11 5.07 8.29 5.36 9.75 3.49 9.93 9.85 6.85 4.80 4.04 3.86 Tb 5.80 8.35 7.38 10.22 8.28 7.57 8.52 7.95 7.04 6.61 12.90 10.36 10.04 17.69 9.99 12.94 15.71 14.18 9.24 13.44 15.07 13.51 11.15 10.92 12.37 14.83 16.04 20.68 16.27 15.36 8.90 12.85 19.61 Dy 27.58 34.66 58.65 37.01 64.01 51.09 28.34 52.77 32.29 64.09 21.01 31.04 42.16 41.85 30.34 27.08 30.13 Dy 49.67 55.36 50.87 63.98 55.46 57.51 54.00 46.90 53.86 52.34 66.26 67.73 64.74 92.76 72.00 72.36 101.28 108.24 53.92 73.88 72.74 88.18 53.43 68.48 53.94 66.85 62.42 74.55 113.70 67.99 42.67 79.24 88.69 Ho 5.67 6.05 11.60 9.09 13.95 11.65 5.41 10.62 7.97 13.05 5.37 8.27 11.51 9.58 6.68 5.85 5.27 Ho 10.69 14.22 9.81 14.46 12.66 9.05 12.01 9.85 8.89 9.65 15.92 13.51 12.52 16.90 12.92 14.45 18.67 17.11 13.00 14.30 12.73 16.48 15.65 11.75 10.21 11.91 17.29 21.16 14.15 17.73 7.59 19.08 26.09 Er 21.46 21.87 37.85 25.62 31.87 28.92 15.95 23.89 20.27 44.07 15.06 37.84 27.43 20.14 20.01 17.61 17.74 Er 18.13 33.84 27.94 43.77 29.41 28.08 35.98 28.51 24.55 27.24 39.59 31.00 31.75 47.54 39.54 39.56 48.90 41.19 29.93 35.19 44.31 42.06 41.70 24.23 17.15 36.72 29.94 68.82 55.11 26.67 18.42 37.72 26.54 Tm 2.07 2.16 4.30 3.00 3.92 3.75 2.19 4.34 3.20 5.69 1.93 4.03 3.91 4.12 3.23 1.99 2.84 Tm 3.96 4.77 3.53 4.75 4.04 4.90 3.43 3.45 3.74 3.45 6.13 5.53 4.46 5.96 3.69 3.48 4.81 5.26 4.12 5.18 4.97 6.71 3.89 4.13 2.65 5.45 4.39 8.85 8.34 4.61 2.53 8.78 8.62 Yb 12.29 18.03 35.35 17.38 31.84 19.93 11.96 24.56 15.15 30.31 12.82 24.53 18.67 24.68 20.70 14.56 18.77 Yb 26.75 32.43 21.30 24.42 24.90 23.70 19.72 20.35 22.22 29.23 29.94 33.18 28.50 39.62 24.07 24.58 27.55 28.43 24.09 24.03 27.10 33.14 25.47 28.55 25.16 39.83 22.89 36.68 29.01 25.77 22.05 26.74 58.33 Lu 1.71 1.83 4.42 2.29 4.30 2.58 1.87 4.27 2.70 6.22 1.64 3.01 3.31 3.22 2.58 2.21 2.70 Lu 3.13 6.12 3.12 5.64 4.12 2.87 2.95 3.08 2.28 2.78 5.01 4.65 3.74 5.93 4.47 4.52 4.58 3.95 3.11 4.10 3.40 4.92 3.95 3.81 4.98 4.70 5.14 10.71 7.11 3.01 4.46 bd 2.14 Th 0.03 bd 0.72 0.21 0.49 0.38 0.07 0.18 0.55 0.80 0.31 0.14 bd 0.16 0.14 bd 0.07 Th 0.25 0.04 0.03 0.08 0.04 0.03 0.05 0.06 bd 0.26 0.09 0.11 0.19 0.23 0.37 0.51 0.20 0.70 0.23 0.45 0.36 0.25 0.62 0.24 0.54 0.67 0.54 0.30 1.36 bd 0.93 bd bd U ƩREE 15.53 816 19.78 846 34.28 2603 31.95 1419 58.09 2513 69.51 1042 29.22 1136 38.96 1133 33.37 887 69.97 1518 32.48 548 40.18 2061 35.15 927 29.79 1614 37.09 1174 20.39 1293 21.32 1088 U ƩREE 31.56 993 42.87 1293 28.36 2161 37.63 2335 46.11 2069 32.09 1124 26.17 1937 23.77 2333 28.46 2271 29.20 1025 42.27 2560 34.75 1697 43.87 1599 46.92 2245 46.35 2972 43.06 1780 44.62 1988 55.29 2013 23.24 1730 41.31 3878 33.99 3551 41.75 4032 24.80 3505 41.09 3126 30.08 3184 25.94 2943 43.39 3096 48.70 5066 35.02 3470 32.18 2960 27.05 2374 25.79 3270 38.64 9328 Ce/Ce* 0.80 0.92 0.01 -0.03 0.04 -0.08 0.04 -0.14 0.04 -0.35 0.73 0.39 0.16 0.29 -0.02 0.42 -0.05 Ce/Ce* 0.03 -0.21 0.34 0.00 -0.12 -0.07 0.02 0.19 0.24 0.36 0.00 -0.13 -0.01 -0.28 0.15 0.14 0.04 -0.04 0.25 0.15 -0.01 -0.18 -0.34 -0.19 0.17 -0.14 -0.16 0.01 0.07 -0.01 0.39 -0.20 1.29 Ce/Ce** 1.91 3.04 0.96 1.02 0.86 0.73 0.90 0.77 0.91 0.54 1.61 1.62 0.91 1.38 1.32 1.22 1.14 Ce/Ce** 0.86 0.56 0.96 0.95 1.00 0.99 1.09 1.24 1.18 1.39 1.08 0.93 1.18 0.86 1.72 1.34 1.08 0.82 1.83 1.56 1.03 0.61 0.55 0.68 1.47 0.88 1.01 0.97 1.64 2.21 1.69 1.99 2.67 La/La* Y/Ho 0.13 43.5 1.80 49.4 -0.09 34.6 0.11 30.2 -0.31 34.8 -0.34 33.0 -0.23 43.6 -0.18 36.5 -0.21 45.0 -0.29 30.4 -0.12 48.9 0.34 57.5 -0.36 28.4 0.13 32.6 0.70 42.4 -0.24 43.1 0.37 54.4 La/La* Y/Ho -0.26 40.6 -0.45 43.6 -0.46 42.5 -0.09 34.3 0.28 37.8 0.11 54.1 0.12 36.6 0.08 46.5 -0.10 51.0 0.03 39.1 0.15 32.4 0.12 43.0 0.40 44.2 0.41 48.6 1.23 40.5 0.36 38.3 0.08 30.7 -0.26 33.6 1.39 35.6 0.87 40.9 0.06 45.3 -0.43 44.8 -0.27 38.1 -0.29 44.7 0.59 48.4 0.05 53.8 0.51 34.7 -0.09 32.3 1.94 42.0 9.51 24.7 0.51 55.3 74.49 35.9 0.27 29.5 395 mm from bone rim 0.59 0.62 0.66 0.69 0.73 0.76 0.79 0.83 0.86 0.90 0.93 0.97 1.00 1.04 1.07 1.11 1.14 1.17 1.21 1.24 1.28 1.31 1.35 1.38 1.42 1.45 1.49 1.52 1.55 1.59 1.62 1.66 1.69 1.73 1.76 1.80 1.83 1.87 1.90 1.93 1.97 2.00 2.04 2.07 2.11 2.14 2.18 2.21 2.25 2.28 2.31 2.35 2.38 2.42 Sc 35.25 32.70 33.29 23.84 28.19 27.44 29.59 24.23 18.44 16.18 21.68 20.78 23.00 17.65 14.92 11.96 18.89 20.31 14.90 13.57 11.49 10.39 5.69 10.59 10.99 6.59 17.54 12.37 11.73 9.33 5.52 11.51 8.90 6.99 11.87 12.19 11.26 7.24 6.29 4.31 5.70 3.19 0.98 1.81 2.67 1.50 8.95 7.65 5.06 3.06 3.77 1.99 2.45 3.02 Mn 0.68 0.77 0.23 0.58 0.62 0.76 0.83 0.41 0.25 0.41 0.35 0.25 0.18 0.18 0.22 0.14 0.22 0.24 0.22 0.21 0.26 0.30 0.18 0.35 0.31 0.22 0.82 0.36 0.43 0.41 0.22 0.40 0.36 0.17 0.75 0.51 0.39 0.43 0.34 0.29 0.32 0.37 0.37 0.52 0.25 0.23 0.31 0.24 0.26 0.22 0.27 0.22 0.33 0.29 SRHS-DU-94 Femur (continued) Fe 1.26 1.19 1.46 1.33 1.53 1.20 1.67 1.43 1.03 1.30 1.42 1.25 1.37 1.32 1.09 0.83 2.17 1.56 1.15 1.07 1.59 1.55 1.32 2.46 2.06 1.10 3.12 1.33 1.94 1.88 1.70 1.91 1.45 1.38 1.82 2.41 1.29 1.75 1.54 1.25 1.29 1.44 1.21 1.93 1.49 1.18 1.67 1.15 1.24 1.70 1.64 2.03 2.28 1.34 Sr 3610.01 8603.95 5015.80 2958.33 3320.83 2986.14 4073.31 3873.29 2893.07 3148.56 2969.27 3081.11 4053.89 3795.30 2967.04 2256.18 3861.05 3345.40 3160.54 2838.12 2965.10 5332.70 2711.62 4052.93 2796.02 2088.78 3863.48 2554.01 4034.04 2701.88 2838.10 4145.57 6030.32 5613.07 4552.01 3621.95 3103.96 3261.63 4994.06 4830.33 3341.66 2939.00 3030.65 4734.96 2894.11 2748.54 6620.96 3386.60 3341.80 3023.04 2895.67 3609.92 3760.61 3117.66 Y 251.68 180.52 210.80 179.10 152.71 176.70 204.26 117.99 106.64 97.50 97.54 95.12 106.88 98.61 86.64 58.83 99.87 82.38 75.86 44.87 51.14 48.39 27.69 35.51 37.21 45.26 116.06 79.33 86.99 59.57 43.74 48.09 63.68 46.67 75.59 100.43 72.93 61.46 28.94 24.64 15.94 29.99 11.21 12.98 7.86 19.55 69.42 56.97 34.72 23.70 21.16 18.76 10.25 7.32 Ba 1334.07 1884.39 2293.08 1728.76 1538.47 1540.32 2663.57 1234.49 1618.92 1682.29 1613.23 1620.09 1571.41 1900.86 1769.22 1298.52 1763.69 1923.67 1280.63 1579.41 2614.32 2756.83 1189.36 1673.76 1850.75 1356.06 1610.88 1705.02 1721.35 1826.81 2308.20 nd 4371.11 5506.07 4544.02 5094.78 2773.10 1970.55 2106.42 2690.61 3220.06 nd 2339.22 4572.45 2172.73 2600.66 2614.18 2667.56 1627.65 2045.40 2919.07 2563.86 2019.62 2068.89 La 192.49 201.55 198.02 165.96 160.06 140.56 123.17 90.34 60.97 80.20 68.91 66.66 65.41 60.89 43.53 26.35 38.67 38.13 33.67 24.52 25.55 21.17 13.19 11.93 13.08 23.68 72.50 32.62 48.29 46.11 23.31 44.83 30.49 29.22 49.48 63.88 25.27 24.13 15.92 13.62 10.22 4.73 2.98 9.98 1.98 9.33 21.38 22.43 11.34 7.49 9.79 7.95 3.15 3.32 nd 363.55 514.09 462.11 415.62 257.33 239.02 227.89 126.79 93.73 192.46 138.62 140.45 117.41 80.38 53.86 74.40 84.17 101.66 30.28 30.68 28.63 13.01 16.06 40.34 109.50 156.10 68.16 83.55 209.65 88.07 100.46 48.12 52.25 97.34 162.24 67.73 54.11 58.99 16.81 14.57 23.44 7.27 19.40 6.24 29.98 59.47 100.73 22.45 15.23 14.77 19.74 5.80 8.44 Ce Pr 39.42 30.65 41.43 40.92 30.40 38.53 31.18 18.97 14.69 8.76 11.97 10.52 15.65 8.38 5.81 3.15 4.88 4.76 3.31 3.35 2.82 2.82 0.84 0.89 0.86 9.66 22.40 7.27 23.19 12.65 8.49 8.98 4.20 5.20 14.45 11.66 8.50 7.02 5.72 2.23 0.85 5.28 1.39 1.48 0.55 1.41 12.09 3.25 3.76 1.98 2.21 0.81 0.57 0.44 Nd 130.63 72.78 140.06 129.90 103.44 116.29 95.23 47.82 55.96 34.79 31.49 41.90 37.17 33.67 18.81 13.41 18.94 14.50 14.86 8.63 9.72 13.44 4.06 7.58 6.16 15.41 63.96 36.43 47.57 73.78 37.13 16.92 15.97 16.98 29.68 55.68 21.06 29.61 9.85 21.79 6.40 2.84 3.02 2.49 1.48 8.92 15.55 18.05 11.40 4.59 5.51 6.15 2.24 2.84 Sm 21.41 18.17 19.66 23.26 10.73 16.45 14.47 9.11 5.95 4.41 7.82 6.82 1.51 2.80 4.67 2.82 4.96 2.27 2.89 1.13 2.56 0.68 0.42 0.28 1.34 2.03 12.10 5.12 11.85 4.52 1.09 2.39 3.36 0.58 7.66 9.65 5.58 2.87 2.78 2.34 1.00 0.52 0.52 0.37 0.59 2.29 4.93 2.55 1.99 1.84 3.78 0.82 bd bd Eu 6.80 3.91 8.91 6.30 3.69 5.60 5.49 2.23 2.98 2.91 4.21 3.24 1.00 1.49 1.64 0.95 1.57 0.98 0.87 0.27 0.68 0.52 0.06 0.34 0.20 0.34 3.71 1.84 1.87 0.68 0.66 1.67 1.21 0.61 1.84 3.11 2.29 1.72 1.04 1.21 0.30 0.71 0.15 0.22 0.18 0.31 0.85 0.57 0.86 0.55 0.71 0.37 0.10 0.09 Gd 22.41 15.29 26.62 24.60 12.17 14.40 15.45 12.03 9.82 6.69 9.67 12.37 6.86 8.30 2.82 2.79 4.90 3.49 1.82 0.89 2.25 3.40 3.15 bd 2.99 4.91 8.86 11.15 6.17 13.43 1.62 3.54 2.99 2.59 10.61 3.89 4.94 4.26 2.06 3.32 2.31 1.30 0.25 0.37 2.05 2.27 7.32 3.15 3.10 1.82 0.93 2.03 0.66 0.61 Tb 3.45 2.21 3.84 3.54 2.97 2.40 2.21 1.64 1.29 1.01 1.46 1.44 0.93 0.59 0.77 0.63 0.72 0.69 0.53 0.83 0.40 0.20 0.10 0.30 0.36 0.80 1.52 1.13 1.22 0.88 0.52 0.47 0.56 0.27 1.31 1.39 1.15 0.93 0.70 0.20 0.16 0.03 0.03 bd 0.21 0.66 0.71 0.56 0.44 0.13 0.56 0.05 0.20 0.15 Dy 24.08 20.92 26.94 20.25 14.48 16.26 17.00 6.55 9.30 9.27 9.48 8.13 7.60 7.38 4.53 2.98 3.67 5.75 5.22 2.51 3.72 1.49 1.75 1.79 1.62 5.25 10.69 6.79 9.23 4.54 2.12 5.02 3.10 3.25 8.54 10.22 5.27 2.96 2.86 1.95 3.07 0.12 0.37 0.72 1.14 1.60 7.00 4.63 2.21 3.20 1.37 0.79 0.81 0.45 Ho 5.68 3.85 5.35 5.64 3.65 3.95 3.65 2.21 2.00 1.53 2.49 2.89 1.90 1.88 1.45 1.43 1.48 1.13 1.05 0.79 1.07 0.50 0.26 0.31 0.81 1.39 2.32 1.28 1.32 1.96 0.99 1.93 0.65 1.13 2.18 2.08 1.64 1.17 0.63 0.89 0.20 0.22 0.09 0.23 0.32 0.46 1.92 1.08 0.62 0.76 0.46 0.35 0.16 0.23 Er 20.15 10.10 13.77 11.05 10.31 7.41 11.96 6.47 4.40 7.98 5.20 7.86 6.09 5.13 5.25 1.94 5.59 3.89 1.81 1.68 4.24 4.20 1.58 1.66 1.25 2.64 7.60 7.82 6.47 7.22 3.49 5.09 3.76 4.80 6.73 6.28 3.13 4.01 1.66 1.07 1.07 0.84 0.41 0.79 0.94 2.04 1.87 4.58 1.67 2.54 0.75 1.31 1.79 0.16 Tm 2.04 1.79 2.71 1.27 1.97 1.57 1.85 0.74 0.69 0.51 1.09 0.89 0.94 1.90 0.75 0.46 0.61 0.67 0.61 0.62 0.36 0.24 0.10 0.33 0.39 0.76 0.73 1.03 0.76 0.67 0.28 0.37 0.54 0.34 1.02 1.11 0.58 0.41 0.44 0.12 0.12 0.03 0.06 0.04 bd 0.27 0.49 0.29 0.59 0.21 0.16 bd 0.16 bd Yb 12.02 10.12 9.96 13.17 7.92 6.90 6.43 8.08 7.45 4.55 7.80 6.40 4.03 5.91 4.02 3.74 4.72 5.15 2.96 3.01 2.20 2.66 0.89 2.00 2.13 5.08 4.60 3.37 1.98 2.50 1.35 2.80 5.45 4.10 3.23 7.55 2.48 3.03 3.43 1.18 0.94 0.55 0.73 1.05 0.62 1.62 2.97 2.92 2.01 1.03 0.33 0.58 1.42 0.87 Lu 1.79 1.32 2.04 1.76 1.41 1.38 1.27 1.26 1.19 1.36 1.42 0.66 1.20 0.88 0.60 0.32 0.41 0.71 0.37 0.38 0.29 0.53 0.33 0.11 0.26 0.41 0.56 0.75 0.52 0.46 0.49 0.36 0.43 0.64 0.98 1.06 0.38 0.51 0.22 0.30 0.04 0.24 0.03 0.19 0.19 0.20 0.32 0.37 0.18 0.33 0.06 0.16 0.04 0.16 Th 0.33 0.03 0.33 0.38 0.33 0.25 0.11 0.07 0.19 0.11 0.06 bd 0.03 0.06 bd 0.02 0.03 bd bd 0.11 0.08 0.13 0.06 bd bd 0.20 0.07 0.13 0.15 0.06 0.11 0.12 0.07 0.03 0.04 0.07 bd 0.03 0.03 0.10 0.13 0.05 0.02 bd 0.11 0.05 0.10 0.09 0.06 bd 0.09 bd bd bd U ƩREE 22.94 482 9.98 756 21.50 1013 8.47 910 9.41 779 11.89 629 8.50 568 7.02 435 6.51 303 2.50 258 3.50 355 2.56 308 3.05 291 2.94 257 6.04 175 2.84 115 6.06 166 3.93 166 1.56 172 2.26 79 2.08 87 1.20 80 0.51 40 0.68 44 2.06 72 8.80 182 3.38 368 5.38 185 5.50 244 2.81 379 2.00 170 4.68 195 4.10 121 7.49 122 5.16 235 4.35 340 2.18 150 2.66 137 1.27 106 1.86 67 1.17 41 0.67 41 1.81 17 0.29 37 0.35 16 1.26 61 2.43 137 1.74 165 0.90 63 1.44 42 0.60 41 0.38 41 0.43 17 0.61 18 Ce/Ce* 0.12 0.05 0.33 0.32 0.39 -0.18 -0.09 0.29 0.00 -0.24 0.55 0.20 0.03 0.17 0.13 0.30 0.20 0.38 1.03 -0.25 -0.22 -0.17 -0.26 -0.03 1.29 0.65 -0.09 0.04 -0.44 1.04 0.45 0.17 -0.05 -0.02 -0.15 0.38 0.08 -0.03 0.43 -0.30 0.00 -0.14 -0.20 0.14 0.41 0.88 -0.20 1.67 -0.20 -0.07 -0.26 0.65 0.00 0.56 Ce/Ce** 1.20 1.07 1.43 1.23 1.59 0.70 0.81 1.12 1.13 1.48 1.53 1.83 0.81 1.97 1.53 2.62 2.05 1.87 5.15 0.85 1.28 1.92 3.01 -4.62 -77.87 0.87 0.70 2.00 0.30 6.17 1.66 0.91 1.50 1.12 0.57 2.65 0.73 1.16 0.81 -1.10 -12.21 0.29 0.45 1.02 1.11 14.38 0.36 9.17 0.63 0.68 0.62 -16.13 1.38 16.74 La/La* Y/Ho 0.14 44.3 0.02 46.9 0.16 39.4 -0.12 31.8 0.29 41.9 -0.26 44.8 -0.19 56.0 -0.22 53.4 0.31 53.2 2.28 63.7 -0.01 39.2 1.29 32.9 -0.35 56.3 1.71 52.4 0.68 59.9 2.88 41.2 1.65 67.3 0.64 72.8 5.28 72.3 0.23 56.7 1.26 47.9 6.50 97.0 17.39 107.7 -2.77 114.6 -4.39 45.7 -0.70 32.5 -0.39 50.1 9.49 61.8 -0.71 65.8 -3.54 30.4 0.46 44.0 -0.34 24.9 1.29 97.6 0.28 41.3 -0.52 34.6 4.68 48.3 -0.52 44.5 0.53 52.3 -0.65 45.8 -1.59 27.6 -3.29 78.7 -0.92 135.1 -0.69 119.3 -0.16 57.4 -0.36 24.3 -3.59 42.2 -0.80 36.1 -9.74 52.7 -0.39 55.8 -0.42 31.3 -0.28 46.2 -2.83 54.0 0.89 62.8 -3.63 32.5 396 mm from bone rim 2.45 2.49 2.52 2.56 2.59 2.63 2.66 2.69 2.73 2.76 2.80 2.83 2.87 2.90 2.94 2.97 3.01 3.04 3.07 3.11 3.14 3.18 3.21 3.25 3.28 3.32 3.35 3.39 3.42 3.46 3.49 3.52 3.56 3.59 3.63 3.66 3.70 3.73 3.77 3.80 3.84 3.87 3.90 3.94 3.97 4.01 4.04 4.08 4.11 4.15 4.18 4.22 4.25 4.28 Sc 2.09 1.25 1.89 5.28 2.06 1.45 1.92 2.23 2.23 3.80 5.10 5.88 8.55 7.65 12.01 8.60 9.18 9.29 7.64 7.90 9.88 7.52 5.11 7.21 3.68 5.62 5.25 5.46 6.22 4.47 2.33 1.77 2.20 1.42 1.71 1.06 0.85 0.48 0.93 1.11 1.99 1.70 1.61 2.48 1.01 1.67 0.36 0.78 1.29 1.37 1.18 2.77 2.95 3.21 Mn 0.32 0.21 0.16 0.47 0.40 0.25 0.27 0.26 0.31 0.23 0.29 0.28 0.64 0.22 0.31 0.19 0.16 0.22 0.28 0.23 0.46 0.40 0.57 0.35 0.25 0.41 0.74 0.45 0.35 0.44 0.33 0.26 0.27 0.16 0.31 0.24 0.37 0.29 0.33 0.28 0.25 0.96 0.23 0.29 0.32 0.19 0.20 0.21 0.24 0.29 0.24 0.18 0.31 0.67 SRHS-DU-94 Femur (continued) Fe 1.12 1.05 1.40 1.63 1.65 1.03 1.24 1.65 1.65 1.15 1.51 1.44 2.06 1.56 2.28 1.18 1.36 1.29 1.56 1.90 1.56 1.53 1.06 1.95 1.35 1.38 1.33 1.57 1.96 2.07 1.47 1.45 1.38 2.02 1.26 1.74 1.12 1.30 1.35 1.96 1.23 2.37 1.83 1.64 1.80 1.56 1.55 1.09 1.00 1.45 1.08 1.00 1.58 1.24 Sr 3195.92 3094.79 2907.02 3792.18 2917.90 3435.57 3151.76 3272.91 3780.41 2822.55 3274.87 3383.51 3840.03 2306.56 3473.42 3023.46 2946.40 2761.30 4092.06 2898.18 5087.88 3881.78 2518.09 4498.81 2743.77 2858.76 2829.27 2909.87 3179.12 3360.18 3364.60 2882.31 2127.32 3869.17 3203.68 3972.44 2750.23 3562.26 2828.98 3755.58 3051.65 4960.79 2420.96 3161.92 3600.92 3466.03 3008.21 2372.87 2779.33 3369.88 3430.93 3499.52 3406.84 3713.63 Y 12.32 7.54 6.07 8.37 6.58 5.02 3.50 5.43 14.60 25.41 46.87 41.36 49.38 34.62 55.50 44.53 41.49 45.38 45.38 42.29 53.15 44.53 31.94 36.36 28.63 30.25 25.38 24.41 27.98 17.65 17.17 9.90 10.01 8.91 7.12 4.55 3.00 2.89 5.65 12.33 12.13 11.41 5.20 7.87 6.13 3.90 4.03 1.45 4.23 7.83 7.09 14.67 15.02 16.95 Ba 2502.00 1992.96 1922.35 2850.73 2482.90 2033.91 3207.97 2080.99 2412.75 nd 2687.92 nd 4108.71 2080.91 2480.70 1592.20 1495.35 1499.66 1723.42 1475.35 2447.21 1578.13 1350.74 1649.65 1297.18 2473.05 1923.21 1566.16 nd 2292.08 2827.00 2048.15 1753.59 1632.16 3052.17 2034.35 2539.10 2345.49 1971.35 3282.64 2067.99 nd nd 2556.53 2979.42 1878.47 2027.93 2023.56 2035.67 2489.04 1967.56 2323.35 1724.60 1982.25 La 1.90 5.58 1.77 4.14 0.84 1.08 1.17 3.64 5.48 16.07 11.73 12.49 19.74 13.87 21.28 13.50 14.40 12.91 12.35 13.37 20.31 15.32 8.70 12.94 10.81 7.28 9.71 8.36 8.81 5.26 3.88 2.62 2.21 1.97 2.34 0.77 0.87 0.88 3.30 2.76 3.01 3.23 1.75 1.60 2.62 1.80 0.80 0.79 5.20 1.83 3.89 2.86 5.82 3.71 Ce 2.01 1.91 2.87 3.65 1.74 1.83 2.04 2.38 21.57 80.14 45.91 28.93 61.45 23.55 56.31 25.11 24.86 28.84 36.57 31.29 29.86 35.45 17.31 22.91 18.70 15.20 20.05 17.99 14.96 11.24 6.37 6.39 9.34 3.72 5.37 7.29 1.36 1.92 2.53 11.10 6.68 25.68 9.63 6.83 3.46 2.52 1.21 3.50 1.74 3.45 8.27 7.36 12.16 9.27 Pr 1.62 1.02 0.28 0.16 0.08 0.64 0.26 0.63 0.83 3.36 3.90 4.43 3.60 3.43 4.48 4.60 2.67 3.05 2.90 4.56 4.59 2.49 2.03 2.30 1.66 0.94 1.94 1.46 1.53 0.89 0.56 0.75 0.36 0.65 0.37 0.22 0.17 0.20 0.31 0.64 0.90 0.52 0.26 0.39 0.53 1.01 0.15 0.17 0.16 0.34 0.55 0.92 1.89 1.84 Nd 3.95 1.25 1.19 1.85 0.74 2.15 1.23 0.70 2.44 10.43 10.03 8.35 11.79 8.97 13.15 6.80 6.86 7.41 5.68 7.25 11.44 9.56 6.85 7.83 3.64 4.27 2.37 7.76 3.76 1.26 3.14 1.29 2.11 0.43 0.86 0.85 bd 0.17 0.90 2.44 2.14 4.09 1.16 2.28 1.10 bd 0.89 bd 0.58 0.76 2.02 3.20 1.89 4.37 Sm 0.95 bd 1.15 0.37 bd bd 0.37 0.56 1.75 3.19 3.14 2.00 1.60 1.12 0.97 2.36 2.12 0.94 0.89 1.05 1.22 1.35 1.56 2.27 0.69 2.56 0.28 0.49 1.08 1.01 0.42 0.44 bd 0.25 bd 0.25 bd bd bd 0.53 bd 0.30 bd bd bd bd bd bd bd bd 0.48 bd bd 0.92 bd 0.45 0.09 bd bd bd 0.11 0.17 0.26 0.56 1.18 0.60 0.88 0.61 0.68 0.64 1.27 0.77 0.18 0.32 0.55 0.68 0.59 0.29 0.41 0.61 0.43 0.07 0.26 0.38 0.31 0.20 bd bd 0.08 0.23 0.07 bd 0.16 0.16 0.12 0.55 bd bd 0.16 0.07 0.24 bd 0.14 bd 0.29 0.27 0.17 0.09 Eu Gd 0.94 1.19 0.57 0.36 0.29 bd 1.10 0.55 2.02 1.84 4.14 3.12 4.75 1.77 0.64 3.82 2.56 5.09 2.05 0.78 2.72 3.79 1.74 2.88 1.14 2.28 2.25 0.48 2.13 1.25 1.45 0.88 0.75 bd 0.51 bd 0.73 bd 0.27 6.86 0.39 0.91 1.61 0.27 bd 0.68 bd bd 0.23 0.30 0.72 0.58 0.28 0.91 Tb 0.26 0.14 0.20 bd 0.03 bd 0.04 0.10 0.14 0.60 0.31 0.27 0.50 0.56 0.80 0.36 0.53 0.55 0.39 0.44 0.54 0.53 0.32 0.38 0.08 0.18 0.17 0.41 0.23 0.18 0.10 0.08 0.06 0.06 bd 0.06 0.03 bd 0.13 0.09 0.07 0.03 0.03 bd 0.06 0.03 bd bd 0.03 0.07 0.06 0.10 0.07 0.11 Dy 0.46 0.29 0.41 0.71 0.28 0.46 0.53 1.08 1.13 3.61 3.55 2.77 4.79 3.70 6.09 3.44 2.85 3.06 3.02 2.68 4.59 4.26 2.28 3.45 2.01 2.11 2.62 1.54 0.94 1.10 0.50 0.43 0.49 0.49 0.37 0.37 0.24 0.58 0.13 0.64 0.57 1.04 0.78 0.26 0.90 0.33 bd 0.10 0.45 1.17 0.23 0.57 0.96 1.64 Ho bd 0.11 0.10 0.04 0.14 bd 0.09 0.07 0.35 0.97 0.86 1.11 0.97 0.79 1.56 0.75 0.77 0.99 0.75 0.67 0.67 0.60 0.40 0.82 0.50 0.37 0.52 0.77 0.34 0.15 0.20 0.11 bd 0.12 bd 0.03 0.06 0.05 0.20 0.36 0.07 0.71 0.17 0.10 0.06 0.03 bd bd 0.03 0.15 0.15 0.25 0.21 0.56 Er 0.17 0.16 bd 0.39 0.32 bd 0.39 0.30 1.71 1.84 2.09 3.66 4.26 2.98 4.29 2.86 3.00 1.99 4.42 3.09 2.60 1.68 2.29 3.97 1.84 1.36 0.76 1.96 1.95 2.01 0.33 0.82 bd 0.95 0.55 0.41 bd 0.21 0.86 0.14 1.05 0.82 0.99 0.29 0.28 bd bd 0.11 bd 0.48 0.77 1.73 1.05 1.48 Tm 0.18 0.03 bd 0.09 bd 0.07 0.09 0.06 0.07 0.37 0.57 0.40 0.18 0.39 0.37 0.45 0.60 0.62 0.38 0.18 0.32 0.34 0.38 0.49 0.16 0.33 0.13 0.28 0.17 0.09 0.12 0.15 0.18 0.09 bd 0.03 bd 0.12 0.06 0.06 0.07 0.04 0.03 0.09 0.03 bd 0.19 bd 0.08 0.14 0.06 0.07 0.07 0.14 bd 0.85 0.60 0.26 0.21 0.68 0.52 0.98 1.44 2.44 2.21 3.23 4.70 3.16 5.22 1.81 2.65 3.46 2.92 2.79 4.08 4.12 3.17 2.51 1.46 2.16 1.40 2.59 1.36 1.77 0.44 0.62 bd 1.08 0.36 0.18 bd 0.28 0.19 0.94 0.42 0.21 bd 0.77 0.37 0.16 1.32 0.43 bd 1.71 0.68 0.62 1.19 1.74 Yb Lu 0.12 0.23 0.11 0.05 0.08 0.12 bd 0.22 0.30 0.17 0.64 0.48 0.51 0.40 0.91 0.44 0.42 0.39 0.53 0.41 0.78 0.26 0.13 0.50 0.33 0.13 0.44 0.44 0.22 0.19 0.11 0.26 0.10 0.16 0.13 0.10 0.06 0.03 0.10 0.10 0.25 0.12 0.12 0.21 bd 0.12 bd bd 0.09 0.20 0.12 0.27 0.44 0.16 bd 0.12 0.03 bd 0.09 bd bd 0.03 0.03 0.03 0.08 bd 0.03 bd bd 0.02 0.02 0.02 bd 0.03 bd bd bd bd bd 0.05 bd 0.02 0.08 bd bd 0.06 0.02 bd bd bd 0.02 0.02 bd bd bd 0.03 bd bd bd 0.38 bd 0.28 bd bd bd bd bd bd Th U ƩREE 0.24 13 0.97 13 1.03 9 1.67 12 0.51 5 0.38 7 0.22 8 0.52 11 0.80 40 1.88 126 2.52 90 3.22 72 2.89 120 3.76 65 5.98 117 4.19 67 3.51 66 3.85 70 2.70 73 3.01 69 5.82 84 2.36 80 1.92 48 2.68 64 1.06 43 1.37 40 2.04 43 1.98 45 1.39 38 0.81 27 0.78 18 0.49 15 0.43 16 0.74 10 0.20 11 0.28 11 0.06 4 0.07 4 0.35 9 0.68 27 0.44 16 0.52 38 0.34 17 0.89 13 0.54 10 0.18 7 0.14 5 0.33 5 0.30 9 0.36 11 0.87 18 1.06 19 1.86 26 1.42 27 Ce/Ce* -0.77 -0.81 -0.07 -0.29 0.38 -0.53 -0.14 -0.64 1.30 1.55 0.58 -0.10 0.69 -0.20 0.35 -0.26 -0.07 0.08 0.43 -0.07 -0.27 0.32 -0.03 -0.03 0.00 0.29 0.08 0.19 -0.06 0.19 -0.03 0.07 1.40 -0.24 0.32 3.17 -0.18 0.08 -0.48 0.96 -0.05 3.54 2.23 1.03 -0.31 -0.59 -0.20 1.21 -0.72 0.01 0.27 0.06 -0.14 -0.21 Ce/Ce** 0.11 0.13 1.52 -1.98 -4.49 0.33 1.43 0.26 2.67 2.56 1.11 0.53 1.92 0.65 1.29 0.41 0.88 0.86 1.04 0.53 0.60 1.89 0.99 1.16 0.97 2.74 0.74 3.12 0.90 0.94 3.39 0.67 10.05 0.37 1.31 4.56 0.80 0.65 0.85 2.26 0.67 -22.41 5.93 6.81 0.56 0.17 3.08 3.03 1.28 0.87 1.89 0.95 0.45 0.46 La/La* Y/Ho -0.81 50.8 -0.40 69.0 1.74 58.3 -2.77 188.2 -2.22 45.7 -0.60 42.5 2.92 39.2 -0.38 80.5 0.28 41.2 0.00 26.3 -0.50 54.7 -0.62 37.2 0.26 50.9 -0.31 43.9 -0.08 35.5 -0.65 59.0 -0.10 53.9 -0.33 45.7 -0.42 60.1 -0.64 63.0 -0.28 79.9 0.99 74.2 0.04 79.2 0.38 44.1 -0.05 57.1 3.98 81.3 -0.45 49.0 -23.27 31.6 -0.07 82.6 -0.32 115.7 -9.34 84.7 -0.56 92.4 -5.01 82.1 -0.71 71.8 -0.02 109.8 0.22 147.7 -0.05 50.3 -0.56 59.4 1.09 28.8 0.35 34.7 -0.48 169.0 -2.03 16.2 2.66 30.8 -3.70 79.1 -0.29 95.7 -0.81 141.6 -4.47 146.7 1.03 146.7 7.28 151.8 -0.22 53.2 1.04 48.2 -0.21 58.6 -0.68 73.1 -0.68 30.3 397 mm from bone rim 4.32 4.35 4.39 4.42 4.46 4.49 4.53 4.56 4.60 4.63 4.66 4.66 4.70 4.73 4.77 4.80 4.84 4.87 4.91 4.94 4.98 5.01 5.04 5.08 5.11 5.15 5.18 5.22 5.25 5.29 5.32 5.36 5.39 5.42 5.46 5.49 5.53 5.56 5.60 5.63 5.67 5.70 5.74 5.77 5.80 5.84 5.87 5.91 5.94 5.98 6.01 6.05 6.08 6.12 Sc 2.62 4.13 3.06 4.20 4.94 3.86 6.10 10.35 7.13 7.56 8.57 7.44 9.32 7.42 8.31 15.28 9.29 7.95 8.36 7.00 5.15 5.27 7.11 5.50 5.74 3.33 6.20 4.48 4.34 2.23 5.56 3.89 10.29 4.84 9.56 2.44 1.63 3.25 3.40 4.12 3.79 1.34 2.16 3.82 3.79 3.59 4.79 5.60 4.27 3.86 3.91 4.84 5.23 4.95 Mn 0.21 0.24 0.17 0.20 0.26 0.42 0.35 0.30 0.28 0.40 0.86 0.24 0.20 0.17 0.32 0.40 0.33 0.24 0.22 0.32 0.17 0.23 0.33 0.36 0.52 0.30 0.35 0.32 0.33 0.42 0.55 0.29 0.56 0.39 0.40 0.27 0.19 0.31 0.27 1.50 0.24 0.23 0.20 0.52 0.19 0.27 0.21 0.20 0.22 0.25 0.20 0.22 0.19 0.29 SRHS-DU-94 Femur (continued) Fe 1.63 1.48 1.03 0.91 1.08 1.33 1.59 1.07 1.03 1.68 1.12 1.24 1.67 1.17 1.92 1.11 1.21 1.20 0.83 1.02 1.09 bd 2.30 1.74 1.76 1.76 1.29 1.33 1.68 1.26 2.04 1.08 1.20 2.11 1.57 1.53 1.18 1.37 1.12 1.52 1.10 1.00 1.53 1.75 2.12 1.39 1.06 1.00 2.06 0.83 1.85 1.61 1.43 1.67 Sr 3286.62 2955.38 2780.70 2571.94 2907.72 2989.39 3354.34 3726.68 2881.91 3552.59 4261.54 3434.47 4456.97 3625.68 3342.13 3127.79 3407.95 3196.07 2751.54 3490.35 2878.02 2824.46 7015.70 4022.22 3234.25 3199.80 4171.76 4325.55 3443.73 2505.23 3545.39 2495.20 4079.60 2633.12 3226.75 2610.63 2876.85 3092.17 3342.85 4296.94 3063.43 3847.82 2983.49 4945.40 2603.07 3956.04 3374.55 3181.39 3967.57 4098.16 2765.58 3293.27 3258.07 4054.39 Y 16.95 18.30 20.70 16.43 20.89 38.49 38.06 40.47 36.71 37.41 45.75 46.22 54.46 45.08 54.43 48.62 47.57 38.71 38.97 43.78 31.08 25.16 31.61 31.17 25.58 23.12 24.71 19.43 19.33 19.19 25.99 20.81 32.80 19.65 25.44 15.61 16.60 12.39 10.04 14.63 9.90 10.08 9.45 13.00 12.19 17.58 18.24 16.76 18.78 13.00 14.00 14.81 10.55 13.79 Ba 1683.71 1854.52 2737.18 1782.47 1780.27 2251.22 2038.37 1461.88 1485.90 1534.32 3196.83 1576.15 1570.09 1463.51 1960.81 1771.97 1818.81 1425.48 1194.86 1819.79 nd 2500.85 nd nd nd nd 4426.87 2241.07 nd 2075.05 2656.57 1200.51 2730.95 1599.14 2463.75 1532.89 1785.26 1913.58 2026.94 1926.28 1964.95 nd 1478.86 2457.23 2056.97 1788.20 1550.42 1672.35 nd 1300.71 1656.82 1282.62 1552.59 2267.05 La 5.00 4.67 3.82 3.07 4.39 6.84 8.62 10.71 5.72 6.48 8.16 13.20 14.73 10.53 13.05 10.06 12.93 13.04 9.27 15.72 7.62 7.27 10.96 8.01 7.26 5.21 5.89 3.77 4.78 3.69 6.39 5.77 5.55 4.87 14.34 2.87 3.35 3.12 4.17 4.12 4.68 3.23 1.95 2.43 3.85 4.06 3.45 3.51 3.94 2.82 3.83 4.73 4.45 4.47 Ce 11.50 8.91 8.57 13.85 14.20 30.88 24.58 32.08 10.32 19.39 15.02 30.99 36.90 34.37 22.45 33.49 17.24 32.58 16.23 21.65 20.50 14.34 23.55 31.31 30.68 12.17 11.58 10.38 10.69 8.78 12.72 7.99 10.72 12.07 8.22 7.14 7.16 14.74 6.77 6.09 7.41 5.16 4.11 4.32 8.65 4.78 5.45 7.01 5.77 6.49 9.96 10.63 7.89 11.15 Pr 0.74 0.87 0.87 1.48 0.90 1.20 2.04 1.98 0.89 1.76 1.78 2.73 2.50 1.60 3.06 2.66 2.35 2.26 1.80 1.42 1.11 1.53 1.23 2.70 1.24 0.62 1.52 1.83 0.48 0.95 1.49 1.34 1.31 0.43 0.80 0.65 0.35 0.86 1.08 0.40 0.46 0.55 0.51 0.46 0.42 0.94 1.59 0.64 0.78 0.39 0.80 1.09 0.52 0.73 Nd 3.87 1.34 2.69 3.43 2.52 4.14 11.07 7.75 3.82 6.79 1.80 5.64 10.88 8.62 6.86 5.54 9.88 7.74 5.75 5.38 2.62 5.91 5.29 5.13 4.99 2.05 2.81 2.68 1.96 1.87 4.20 1.74 6.15 1.13 3.99 3.50 2.08 5.08 1.81 2.36 3.03 1.17 1.29 0.99 1.92 3.05 1.81 3.78 2.69 0.42 0.58 3.52 2.32 0.41 Sm 1.16 0.96 0.88 0.55 0.30 0.29 1.06 2.33 0.72 0.38 0.86 2.08 1.96 1.22 1.42 0.30 3.26 0.26 0.55 0.36 bd bd bd 0.53 0.50 bd 0.61 0.32 0.67 0.64 3.36 1.40 2.31 0.34 0.43 0.70 0.62 1.43 0.36 0.47 bd bd bd 0.29 bd 0.66 2.90 bd 0.32 0.76 0.47 bd 0.86 0.24 Eu 0.26 0.19 0.44 0.16 0.54 0.44 0.48 0.62 0.36 bd 0.26 0.23 0.59 0.37 0.77 0.82 0.62 0.08 0.25 0.32 0.28 0.18 0.50 0.88 0.52 0.41 0.28 0.48 0.10 0.19 0.25 bd 0.83 0.31 1.70 bd 0.19 0.21 bd bd 0.11 0.10 0.31 0.36 0.10 0.30 0.22 bd bd bd 0.56 bd 0.52 0.22 Gd 2.01 0.32 bd 0.27 1.20 2.60 2.37 2.30 3.10 1.53 1.28 2.57 2.57 2.10 0.83 5.38 4.09 3.40 1.90 0.70 1.55 0.60 2.30 1.58 0.73 1.35 0.60 4.77 1.32 0.62 0.82 1.72 4.09 1.67 2.57 0.33 0.30 0.70 bd 1.86 0.71 1.03 1.78 0.58 0.31 0.65 1.42 0.68 0.31 bd 0.69 0.48 0.20 0.48 Tb 0.07 bd 0.28 0.06 0.25 0.21 0.25 0.55 0.08 0.23 bd 0.31 0.54 1.01 0.17 0.36 0.46 0.19 0.52 0.30 0.33 0.11 0.20 0.38 0.21 0.06 0.22 bd 0.48 0.19 0.30 0.29 0.27 0.04 0.05 0.08 0.11 0.13 bd 0.06 0.09 0.08 0.12 bd bd 0.04 0.09 bd 0.23 0.06 0.14 0.09 0.10 0.15 Dy 0.56 1.40 1.28 0.93 1.17 0.56 3.61 4.01 1.75 3.20 4.61 3.51 4.71 2.92 2.72 4.37 4.42 2.16 2.38 2.57 1.95 2.06 1.75 1.92 0.82 1.03 2.79 0.12 1.43 1.83 2.40 3.01 2.19 1.28 2.91 1.15 1.33 1.53 0.31 0.41 1.55 1.15 1.23 0.54 1.72 1.26 0.49 0.64 1.22 0.71 0.43 0.69 0.81 0.69 Ho 0.35 0.27 0.36 0.37 0.51 0.21 0.87 1.60 0.50 0.80 1.26 1.36 0.67 0.70 1.03 0.92 1.01 1.03 0.60 0.70 0.72 0.60 0.53 0.62 0.33 0.27 0.30 0.31 0.49 0.39 0.97 0.72 0.50 0.70 0.21 0.42 0.08 0.04 0.13 0.17 0.13 0.30 0.16 0.14 0.24 0.16 0.61 0.17 0.31 0.24 0.17 0.27 0.34 0.21 Er 0.77 0.86 1.87 0.44 1.29 1.55 3.39 4.13 2.44 1.03 2.76 4.16 2.95 5.02 3.92 3.05 2.83 3.67 4.55 5.34 1.33 1.96 1.77 1.70 1.19 1.01 1.30 1.02 1.25 0.85 3.13 1.48 0.97 1.44 1.61 1.49 0.99 1.33 0.57 1.00 0.38 0.37 0.68 1.42 1.22 1.23 0.38 0.74 1.20 0.67 2.36 1.19 0.57 0.65 Tm 0.13 0.33 0.17 0.13 0.28 0.20 0.52 0.54 0.28 0.40 0.55 0.45 0.68 0.39 0.69 0.70 0.34 0.58 0.29 0.58 0.18 0.29 0.19 0.22 0.12 0.16 0.28 0.41 0.23 0.11 0.34 0.32 0.27 0.31 0.35 0.04 0.18 0.17 0.08 0.11 0.04 0.24 0.24 0.07 0.19 0.12 0.21 0.28 0.34 0.12 0.11 0.20 0.15 0.11 Yb 1.22 0.90 0.83 1.93 0.64 0.82 2.06 3.27 2.72 2.73 2.43 4.22 3.22 2.57 4.00 3.41 1.88 2.61 1.55 2.02 1.77 1.74 1.88 1.13 2.11 2.31 0.43 0.68 1.18 1.58 2.07 0.24 3.25 1.43 1.23 1.23 1.10 0.25 1.02 1.33 1.28 0.25 0.91 0.63 1.16 bd 1.27 2.46 0.23 0.89 1.15 1.05 1.81 1.55 Lu 0.19 0.29 0.19 0.11 bd 0.45 0.48 0.56 0.28 0.20 0.44 0.54 1.01 0.70 0.69 0.51 0.57 0.44 0.50 0.28 0.20 0.20 0.43 0.24 0.22 0.25 0.20 0.17 0.26 0.16 0.54 0.27 0.36 0.17 0.17 0.18 0.20 0.14 0.05 0.06 0.05 0.09 0.07 0.11 0.21 0.38 0.42 bd 0.12 0.13 0.18 0.10 0.17 0.06 bd 0.06 0.11 bd bd bd 0.03 bd 0.02 bd 0.04 0.05 bd 0.06 bd bd 0.09 0.08 0.03 bd bd 0.03 bd 0.03 0.02 0.08 0.06 bd bd bd 0.04 bd bd bd 0.08 bd 0.12 0.21 0.07 0.14 bd 0.10 bd bd bd bd 0.03 bd bd bd 0.05 bd 0.04 0.02 Th U ƩREE 0.82 28 1.07 21 1.10 22 0.77 27 0.77 28 2.49 50 3.58 61 2.29 72 1.31 33 2.54 45 2.47 41 3.13 72 5.12 84 4.43 72 3.00 62 4.33 72 3.91 62 2.87 70 2.61 46 2.29 57 3.53 40 4.02 37 4.19 51 2.26 56 2.15 51 2.56 27 5.57 29 1.37 27 1.18 25 1.39 22 2.90 39 2.79 26 2.40 39 2.22 26 1.37 39 0.87 20 1.23 18 0.79 30 0.99 16 1.77 18 1.27 20 1.62 14 1.15 13 1.14 12 1.71 20 1.56 18 2.53 20 2.05 20 3.68 17 3.52 14 4.42 21 3.72 24 4.81 21 2.46 21 Ce/Ce* 0.36 0.03 0.10 0.45 0.67 1.49 0.38 0.62 0.04 0.35 -0.08 0.21 0.40 0.91 -0.17 0.52 -0.28 0.39 -0.07 -0.05 0.59 0.01 0.39 0.57 1.36 0.48 -0.09 -0.12 0.50 0.10 -0.03 -0.32 -0.07 0.71 -0.56 0.23 0.41 1.11 -0.25 0.00 0.06 -0.11 -0.03 -0.05 0.46 -0.43 -0.48 0.08 -0.23 0.38 0.34 0.10 0.13 0.42 Ce/Ce** 3.73 0.79 1.05 0.83 1.57 3.02 3.32 2.21 1.80 1.47 0.59 0.96 2.35 5.76 0.64 1.07 1.10 1.69 0.99 1.98 1.65 1.25 2.97 0.95 3.50 2.22 0.61 0.43 3.26 0.76 0.85 0.44 1.51 2.65 2.15 3.00 7.82 6.61 0.49 5.87 16.17 0.81 0.74 0.80 3.57 0.56 0.24 4.22 0.88 1.15 0.83 1.08 2.56 0.98 La/La* Y/Ho -131.92 48.2 -0.35 67.2 -0.09 58.3 -0.68 44.9 -0.11 40.8 0.43 181.5 -8.84 43.8 0.86 25.3 2.12 73.9 0.21 46.8 -0.52 36.4 -0.32 34.0 2.06 81.0 -15.67 64.3 -0.37 52.8 -0.47 53.1 1.41 47.3 0.43 37.6 0.13 64.8 2.41 62.9 0.06 42.9 0.56 42.1 3.31 60.0 -0.60 50.6 1.20 76.9 0.95 87.2 -0.49 83.2 -0.76 62.3 3.04 39.5 -0.47 49.4 -0.21 26.9 -0.51 28.9 2.73 65.2 0.92 28.1 33.57 120.6 -9.87 36.8 -7.17 219.6 -3.36 287.5 -0.52 76.4 -7.69 85.1 -4.35 75.1 -0.15 33.9 -0.38 60.3 -0.25 90.4 5.36 50.9 -0.04 109.0 -0.77 29.7 -4.56 99.0 0.28 60.0 -0.24 53.3 -0.53 82.5 -0.04 54.7 4.33 31.2 -0.42 66.3 398 mm from bone rim 6.15 6.18 6.22 6.25 6.29 6.32 6.36 6.39 6.43 6.46 6.50 6.53 6.56 6.60 6.63 6.67 6.70 6.74 6.77 6.81 6.84 6.88 6.91 6.94 6.98 7.01 7.05 7.08 7.12 7.15 7.19 7.22 7.26 7.29 7.32 7.36 7.39 7.43 7.46 7.50 7.53 7.57 7.60 7.64 7.67 7.70 7.74 7.77 7.81 7.84 7.88 7.91 7.95 7.98 Sc 2.25 3.53 3.39 2.16 3.23 1.18 3.12 3.34 3.57 3.50 3.87 3.72 3.44 1.70 3.76 3.33 2.63 3.21 3.20 1.87 3.48 2.83 3.71 2.22 1.76 1.96 2.63 2.48 2.23 3.43 2.78 3.08 1.84 3.39 2.57 2.38 2.74 1.40 2.52 2.33 0.92 3.14 4.21 2.02 2.15 2.48 1.06 1.79 2.99 1.78 1.00 0.91 2.51 2.02 Mn 0.19 0.32 0.21 0.24 0.26 0.38 0.22 0.19 0.27 0.21 0.24 0.12 0.15 0.13 0.25 0.33 0.22 0.26 0.28 0.33 0.17 0.32 0.25 0.19 0.32 0.32 0.16 0.21 0.16 0.27 0.33 0.26 0.18 0.25 0.24 0.21 0.16 0.27 0.25 0.18 0.15 0.17 0.22 0.20 0.29 0.25 0.14 0.22 0.31 0.21 0.25 0.25 0.25 0.24 SRHS-DU-94 Femur (continued) Fe 1.22 1.81 1.50 1.33 1.29 1.00 1.23 1.18 1.07 0.95 1.71 1.01 1.70 1.07 2.10 1.32 1.54 1.50 1.18 1.20 1.01 1.52 1.30 1.17 1.63 1.94 1.28 1.36 1.16 1.30 1.24 2.33 1.16 1.42 1.46 1.39 0.90 1.13 1.04 1.00 0.64 1.64 1.22 1.33 1.45 1.28 1.23 0.86 1.21 1.54 1.33 1.16 1.49 1.14 Sr 2930.37 4092.18 2870.62 3245.36 4087.97 2486.05 2746.76 2250.58 3082.60 3752.69 3114.69 2828.59 3509.03 3543.77 3503.25 4795.80 2865.59 3065.30 3243.17 2627.80 2116.72 3395.26 3253.38 3091.29 2642.47 3769.51 3341.08 2924.70 2711.01 3489.56 3302.09 3277.42 2682.71 2855.96 3705.30 3084.87 2416.15 2849.50 3654.29 2835.56 2642.84 3043.17 2950.23 2695.34 3494.81 3169.44 2957.38 2706.97 3658.93 2893.39 3262.65 3332.99 3446.92 3541.42 Y 11.84 16.49 9.27 10.27 7.65 5.47 11.21 10.51 11.10 8.20 11.31 10.07 12.24 8.64 8.36 12.37 7.61 6.62 8.11 5.46 7.09 11.11 7.32 5.57 6.88 7.61 8.17 6.27 5.78 5.73 7.69 9.70 6.64 8.34 7.12 7.58 7.94 8.80 8.51 4.57 3.54 6.99 6.41 4.58 6.31 6.55 6.56 4.45 4.26 3.68 2.39 1.90 3.72 5.00 Ba 1769.26 2760.72 1836.78 2539.74 1959.50 1545.88 1193.23 1575.73 2819.88 1213.94 2478.84 1642.59 1711.60 2029.07 1882.25 1985.55 2034.78 nd 1627.07 1329.30 1385.67 1756.46 1330.85 1855.36 1590.45 2719.65 1913.19 1426.24 1175.96 1191.52 1668.86 2692.13 989.67 1247.94 1836.36 1847.60 2128.56 1695.16 1477.26 1387.91 1032.49 1638.28 1943.34 1848.08 2685.04 2234.56 1650.75 2284.25 2900.93 2116.78 2014.25 2258.40 2508.28 2219.45 La 2.88 3.19 1.92 1.78 1.30 1.41 1.76 2.36 3.42 1.68 4.45 3.03 1.00 1.80 1.85 2.20 2.03 2.58 3.11 1.59 3.17 2.37 1.69 1.46 1.61 1.99 1.86 2.27 0.88 1.54 1.63 2.91 1.65 2.44 2.18 1.14 1.62 2.05 1.35 9.75 1.05 1.08 1.45 0.93 1.89 1.69 1.92 1.67 2.64 0.49 0.43 0.63 1.49 2.03 Ce 6.52 7.06 4.88 2.16 5.26 2.95 5.06 3.42 6.74 4.63 6.09 4.78 2.21 2.54 7.17 4.94 3.33 9.44 4.14 1.86 5.26 2.97 3.47 2.01 2.76 4.13 4.83 2.92 2.63 2.19 4.05 7.93 3.07 2.57 2.77 3.62 12.41 2.57 2.53 3.44 1.69 3.34 2.48 4.21 4.81 3.27 3.10 2.20 2.01 1.96 1.01 1.21 1.78 1.84 Pr 0.53 0.74 0.55 0.53 0.34 0.14 0.37 0.50 0.53 0.41 0.51 0.49 0.34 0.10 0.55 0.80 0.42 0.26 0.24 0.54 0.47 0.32 0.49 0.27 0.34 0.31 0.13 0.07 0.10 0.30 0.38 0.27 0.33 0.22 0.84 0.04 0.26 0.33 0.21 0.29 0.19 0.20 0.53 0.43 0.15 0.10 0.10 0.16 0.29 0.03 0.12 0.04 0.12 0.04 Nd 1.96 1.21 2.34 1.65 1.50 bd 1.10 2.10 0.77 1.30 1.50 0.58 0.60 1.63 1.15 2.99 0.87 1.92 1.07 0.99 0.52 1.90 0.66 0.39 0.44 1.04 0.55 1.72 0.19 0.25 0.74 1.58 0.19 1.92 1.23 0.74 0.75 0.39 0.89 0.56 0.96 0.23 1.80 0.23 bd 0.77 0.59 0.71 bd 0.41 bd 0.24 0.35 0.48 Sm 0.78 0.29 0.21 bd 0.90 bd 1.05 0.25 bd 1.12 0.26 0.23 bd bd 0.55 0.60 0.21 bd 0.21 bd bd 0.25 bd bd bd bd bd 0.69 bd bd 0.59 bd bd bd bd bd 0.22 bd 0.64 0.22 0.16 bd bd bd bd bd 0.23 bd bd bd bd bd bd bd Eu 0.12 bd 0.06 bd bd 0.22 0.08 bd 0.09 0.07 0.08 0.14 0.14 0.29 bd 0.09 0.06 0.14 0.06 0.06 0.19 0.08 0.08 0.07 0.16 bd 0.13 bd 0.07 bd bd bd bd 0.08 bd 0.09 0.07 0.07 bd 0.07 0.10 bd bd bd 0.08 bd 0.07 0.09 0.10 bd bd 0.09 0.13 0.09 Gd 0.38 5.15 bd bd 0.58 0.47 0.77 bd bd 0.43 bd 1.60 0.71 0.72 1.63 bd bd 0.45 0.42 1.57 0.20 0.74 0.25 0.22 0.52 0.61 0.21 0.22 0.22 1.47 0.57 bd 0.45 0.24 bd bd 0.88 bd 0.41 bd bd 0.27 0.29 0.26 0.75 bd 0.22 0.27 0.67 0.23 0.85 bd bd 0.56 Tb 0.12 0.17 0.10 bd 0.07 0.06 0.16 0.15 0.04 0.03 0.03 0.14 0.03 0.03 0.07 bd 0.12 0.05 0.10 0.05 0.02 0.12 0.03 0.06 bd 0.04 0.05 0.05 0.03 bd bd bd 0.03 0.09 bd 0.03 0.03 0.08 0.10 0.08 0.02 0.03 0.04 bd 0.06 bd 0.17 0.03 bd bd 0.07 bd bd 0.03 Dy 0.74 0.53 0.40 0.45 0.55 0.21 0.61 0.46 0.57 0.30 0.60 0.43 0.56 0.45 0.91 0.55 0.18 0.31 0.70 bd bd 0.59 0.49 bd 0.36 0.12 0.19 0.31 0.20 0.98 0.25 0.89 0.53 0.22 0.54 0.11 0.30 0.09 0.29 0.19 bd bd bd 0.10 0.47 0.31 bd 0.25 0.29 0.57 bd 0.53 bd 0.25 Ho 0.19 0.46 0.10 0.12 0.15 0.12 0.41 0.06 0.07 0.24 0.16 0.11 0.20 0.24 0.13 0.11 bd 0.28 0.31 0.14 0.23 0.06 0.03 0.09 0.06 0.08 0.11 0.22 0.14 0.07 0.18 0.27 0.06 0.16 0.07 0.07 0.11 0.29 0.10 0.03 0.10 0.07 0.11 0.27 0.09 0.11 0.11 bd 0.08 bd bd bd 0.05 0.03 Er 0.41 0.77 0.57 0.52 0.31 0.51 0.70 0.13 0.66 0.71 0.27 0.12 1.02 0.78 0.58 0.47 0.44 0.98 0.45 0.42 0.55 0.67 0.14 0.12 0.42 0.66 0.59 0.73 0.12 0.63 0.47 1.34 0.85 0.68 0.47 0.15 0.23 0.12 0.34 0.35 0.26 1.19 1.15 0.73 0.41 0.24 bd bd 0.72 bd 0.15 bd bd 0.61 Tm 0.20 0.17 bd 0.11 0.03 0.08 0.09 0.09 0.21 0.03 0.09 0.19 0.11 0.06 0.06 0.10 0.12 0.13 0.12 0.05 0.10 0.23 0.09 0.03 0.18 0.11 0.10 0.11 0.16 0.14 0.10 0.07 0.05 0.21 0.20 0.14 0.03 0.03 0.05 0.03 0.02 0.06 0.04 0.10 0.06 bd 0.05 0.07 bd bd bd 0.03 0.05 0.10 Yb 0.69 1.22 1.68 0.52 bd 1.19 1.11 0.71 2.40 0.31 1.64 0.49 0.51 0.34 0.58 1.68 0.74 0.32 0.45 1.26 0.29 0.54 1.12 bd 0.19 0.66 0.31 0.65 0.80 0.63 bd 0.89 0.48 1.08 0.62 1.04 0.47 0.33 0.30 0.31 0.23 1.19 0.43 0.19 0.90 0.65 bd 0.20 0.48 0.34 bd 0.41 bd bd Lu 0.13 0.48 0.19 0.13 0.08 0.03 0.14 0.16 0.28 0.26 0.30 0.21 0.12 0.13 0.11 0.31 0.13 0.03 0.11 0.03 0.08 0.03 0.14 0.06 0.10 0.12 0.37 0.06 0.09 0.08 0.04 0.12 0.09 0.10 0.08 bd 0.03 0.03 0.33 0.09 0.09 0.07 0.12 0.14 0.17 0.03 0.15 0.11 0.18 0.03 0.11 0.04 0.05 0.11 bd 0.06 bd bd 0.03 bd 0.03 bd 0.03 bd bd bd 0.02 bd 0.03 bd 0.04 bd 0.04 0.02 bd bd 0.03 bd bd bd 0.04 bd bd bd bd bd 0.04 0.02 0.06 bd 0.07 bd bd bd bd bd bd bd bd 0.04 0.05 bd bd bd bd bd bd 0.06 Th U ƩREE 1.70 16 3.48 21 1.22 13 1.04 8 0.82 11 2.14 7 2.29 13 2.47 10 2.41 16 2.23 12 2.57 16 1.56 13 1.68 8 0.77 9 1.70 15 2.01 15 1.55 9 2.93 17 2.48 12 1.44 9 2.16 11 3.13 11 1.23 9 1.15 5 0.86 7 1.41 10 1.74 9 2.06 10 1.23 6 1.68 8 1.64 9 2.18 16 1.02 8 2.59 10 3.20 9 1.54 7 1.72 17 1.09 6 1.11 8 1.26 15 0.65 5 1.03 8 1.29 8 1.39 8 1.07 10 0.90 7 1.20 7 1.19 6 0.64 7 0.33 4 0.22 3 0.32 3 0.72 4 1.13 6 Ce/Ce* 0.23 0.08 0.11 -0.48 0.86 0.41 0.46 -0.26 0.14 0.31 -0.12 -0.10 -0.12 0.07 0.67 -0.14 -0.15 1.44 -0.05 -0.53 -0.03 -0.24 -0.11 -0.25 -0.12 0.20 0.91 0.08 0.95 -0.25 0.21 0.86 -0.02 -0.27 -0.53 1.59 3.42 -0.29 0.08 -0.71 -0.12 0.67 -0.34 0.50 0.82 0.47 0.25 -0.11 -0.51 1.92 0.03 0.43 -0.16 -0.22 Ce/Ce** 1.57 0.74 1.35 0.44 2.51 -3.50 1.39 1.02 0.96 1.22 1.22 0.69 0.51 -1.15 1.11 0.78 0.68 -35.99 2.77 0.28 0.78 3.55 0.52 0.56 0.59 1.53 6.22 -0.94 2.23 0.50 0.89 11.43 0.61 -2.57 0.25 -3.30 5.00 0.55 1.80 0.99 2.06 1.19 0.55 0.63 3.85 -15.18 12.04 2.20 0.56 -4.81 0.79 11.50 1.51 -3.80 La/La* Y/Ho 0.61 62.3 -0.47 36.2 0.60 88.4 -0.28 85.4 1.11 52.7 -2.07 46.7 -0.08 27.0 1.07 172.2 -0.23 148.1 -0.12 33.7 0.69 72.3 -0.33 89.4 -0.62 60.0 -1.73 36.4 -0.52 62.3 -0.19 114.0 -0.31 68.8 -3.03 23.7 6.07 26.1 -0.61 37.9 -0.28 31.2 -5.80 181.3 -0.61 228.7 -0.36 65.0 -0.47 106.7 0.53 100.7 7.13 75.9 -1.72 28.1 0.22 41.8 -0.47 79.5 -0.41 43.0 -8.07 36.2 -0.52 119.8 -2.36 53.8 -0.69 99.7 -1.96 105.7 0.23 72.8 -0.33 30.7 1.82 82.4 3.64 170.0 38.46 35.3 -0.41 102.7 -0.32 57.0 -0.80 17.1 2.20 67.7 -3.89 58.8 -13.60 57.8 4.69 54.5 0.21 51.3 -1.95 62.1 -0.39 62.1 -11.09 62.1 1.40 72.8 -4.33 143.7 399 mm from bone rim 8.02 8.05 8.08 8.12 8.15 8.19 8.22 8.26 8.29 8.33 8.36 8.40 8.43 8.46 8.50 8.53 8.57 8.60 8.64 8.67 8.71 8.74 8.78 8.81 8.84 8.88 8.91 8.95 8.98 9.02 9.05 9.09 9.12 9.16 9.19 9.22 9.26 9.29 9.29 9.33 9.36 9.40 9.43 9.47 9.50 9.54 9.57 9.60 9.64 9.67 9.71 9.74 9.78 9.81 Sc 2.42 3.25 2.60 1.47 0.86 1.06 1.65 1.98 1.69 1.82 1.98 3.00 2.59 1.51 2.48 1.36 0.98 0.95 0.95 1.97 1.65 0.91 1.67 1.71 1.14 1.71 1.18 1.81 2.04 1.03 1.01 2.31 1.48 1.46 1.75 0.89 1.96 1.53 1.40 1.42 1.49 0.74 1.37 0.81 0.89 1.18 1.69 1.32 1.14 1.23 2.01 1.19 2.00 0.80 Mn 0.18 0.25 0.22 0.27 0.21 0.21 0.22 0.22 0.29 0.14 0.22 0.22 0.25 0.22 0.27 0.26 0.24 0.21 0.21 0.19 0.28 0.30 0.91 0.65 0.88 0.74 0.94 0.60 0.56 0.49 0.38 0.25 0.23 0.20 0.21 0.63 0.18 0.26 0.22 0.30 0.27 0.23 0.32 0.22 0.16 0.28 0.18 0.26 0.26 0.30 0.20 0.20 0.15 0.19 SRHS-DU-94 Femur (continued) Fe 1.08 1.48 1.17 1.07 0.92 1.29 1.02 1.44 1.21 bd 1.13 1.14 1.33 1.12 1.05 bd 1.44 2.06 1.27 1.01 1.12 1.49 1.36 1.61 1.30 1.67 0.78 1.19 0.95 0.94 2.05 1.15 1.12 2.19 1.08 0.97 1.06 1.33 0.96 1.17 1.48 1.25 1.23 1.24 1.05 1.05 1.37 1.52 1.18 1.25 1.17 1.52 0.91 0.90 Sr 3059.17 2814.37 3685.39 3089.07 2684.60 2857.74 3567.88 4224.34 3012.30 2660.69 2781.18 3076.67 4773.88 3534.35 3437.16 3905.75 3806.13 2958.05 3341.65 3382.61 3867.15 3371.27 2257.20 3465.82 3146.23 3142.37 2725.06 3518.79 3377.86 2493.38 3346.15 3086.35 2774.91 2889.04 3862.55 3532.52 2824.53 2914.22 3192.59 3938.56 3321.47 3421.60 4038.46 3546.35 2388.58 2621.75 2700.48 3613.82 2900.08 3966.40 3443.03 4510.00 2667.59 2515.82 Y 5.01 4.73 4.94 3.41 3.65 4.45 5.59 6.09 4.15 5.26 5.45 6.23 12.14 7.61 3.53 3.27 3.60 1.64 3.04 3.67 4.29 4.02 3.19 4.01 6.20 3.74 3.74 4.32 5.58 3.82 4.02 4.01 3.69 4.29 4.34 2.65 2.67 4.70 2.31 3.15 2.67 1.15 2.38 2.51 2.66 3.69 2.22 4.40 2.05 2.65 3.13 3.45 2.34 2.72 Ba 2952.50 2885.90 1782.34 1770.54 1352.88 1416.43 2781.26 1619.07 2795.58 993.00 1771.81 1410.04 2604.86 1612.72 1481.28 1961.71 2474.70 1156.91 1387.18 1379.49 2127.93 1793.91 1692.82 2845.43 2369.11 3231.01 1533.26 1479.69 2383.12 1626.98 1217.61 1262.74 1766.33 2154.30 nd 1619.09 1984.70 1121.85 1466.12 2896.86 1775.16 1970.79 2921.67 1573.58 1199.01 2726.90 1748.85 2929.43 1448.60 1211.40 1877.76 2426.27 1455.41 1341.54 La 1.35 2.30 1.85 0.84 1.01 0.56 1.58 1.43 1.76 1.23 1.52 2.40 1.68 1.23 1.59 0.82 0.77 0.34 0.72 1.22 1.03 1.23 0.80 0.63 0.76 0.62 0.70 1.38 2.13 0.89 1.22 0.99 0.75 0.79 0.97 2.09 1.13 1.61 0.81 0.82 0.99 0.51 0.39 1.36 0.80 0.88 0.41 0.78 2.58 1.12 0.64 0.86 0.63 0.20 Ce 1.35 2.34 2.09 3.27 1.08 1.90 1.52 2.65 2.31 2.29 2.03 2.14 2.49 1.18 2.54 2.29 1.15 0.52 0.49 1.38 1.68 1.71 0.80 2.03 1.26 2.00 1.52 1.12 0.81 1.49 2.39 1.72 2.89 1.40 0.65 8.09 2.49 2.69 0.73 8.15 0.89 1.31 0.79 1.00 0.89 1.77 0.58 1.58 1.13 1.00 0.52 1.02 0.93 0.61 Pr 0.06 0.33 0.21 0.07 0.16 0.12 0.10 0.58 0.27 0.28 0.19 0.25 0.41 0.27 0.07 0.07 0.04 0.08 0.13 0.17 0.04 0.15 0.21 0.21 bd 0.09 0.15 0.39 0.04 0.27 0.14 0.13 0.03 0.12 0.66 0.18 0.08 0.37 0.07 bd 0.04 0.12 0.10 bd 0.26 0.05 0.07 bd 0.03 0.11 0.10 0.27 bd bd Nd 0.18 bd 1.99 1.98 bd 0.23 2.43 bd bd 0.30 0.32 0.55 1.08 0.22 0.40 0.41 0.85 bd 0.95 0.19 0.46 bd 0.42 0.24 0.21 bd 0.65 bd bd bd 0.20 0.19 0.20 bd 0.32 bd 0.70 0.97 0.20 bd 0.77 bd bd bd bd bd bd 1.30 0.39 0.85 0.27 bd 0.96 bd bd bd bd bd bd 0.28 bd bd bd 0.18 bd 0.66 bd 0.27 bd bd bd bd 0.23 bd bd bd bd bd bd bd 0.52 bd bd bd bd bd 0.47 bd bd bd bd 0.29 bd 0.70 bd bd bd bd bd bd bd bd bd bd bd bd bd bd Sm bd bd bd bd bd bd bd 0.09 0.08 0.05 bd bd 0.10 bd 0.07 bd bd 0.05 0.14 0.07 bd 0.39 bd bd 0.08 bd 0.16 bd 0.15 bd bd bd bd bd 0.12 bd 0.08 0.09 0.14 bd 0.18 bd bd bd bd 0.30 0.21 bd 0.06 bd bd bd bd bd Eu Gd 1.32 bd bd bd bd bd 0.35 bd bd bd 0.74 0.21 0.31 0.53 bd bd bd 0.54 0.22 0.22 0.54 1.03 0.24 0.28 0.24 bd 0.25 0.59 bd bd 0.95 bd 0.22 0.54 0.37 bd bd 0.28 0.49 bd bd bd bd bd 0.24 bd bd bd 0.22 bd bd bd 0.26 bd bd bd bd bd bd 0.07 0.09 bd 0.03 0.13 bd 0.03 bd 0.06 0.03 bd 0.03 0.02 0.08 bd bd 0.03 0.03 bd 0.06 0.04 0.03 0.07 bd bd bd bd 0.03 bd 0.05 bd bd bd 0.06 bd bd 0.03 bd bd 0.03 bd bd bd 0.03 bd bd 0.04 bd bd Tb Dy 0.19 0.10 bd 0.10 bd 0.64 0.14 0.27 0.36 0.15 0.26 0.30 0.28 0.37 0.09 0.09 0.09 0.07 0.08 bd 0.65 0.10 0.34 0.39 0.22 0.26 0.10 0.71 bd bd 0.21 0.42 0.32 0.24 0.14 bd 0.38 bd 0.25 bd bd 0.13 0.82 bd 0.26 bd bd 0.38 0.23 bd 0.68 0.47 bd bd Ho 0.05 0.06 0.07 bd bd 0.03 0.04 0.15 0.10 0.09 0.05 0.27 0.24 0.30 0.06 0.09 0.06 bd 0.11 0.11 0.14 0.06 0.06 bd 0.03 0.11 0.03 0.04 0.06 bd 0.32 bd 0.06 0.03 0.14 0.04 bd bd 0.12 bd 0.04 0.03 bd bd bd bd bd 0.10 0.06 0.16 bd 0.08 bd bd Er 0.71 0.13 0.31 bd 0.11 bd 0.58 1.01 0.14 0.48 0.60 0.35 0.34 0.43 0.50 0.78 0.27 bd bd 0.25 0.14 bd 0.13 0.15 bd bd 0.13 0.32 bd 0.79 0.25 0.12 bd bd 0.20 0.51 0.14 bd 0.27 bd bd 0.30 bd bd 0.14 bd bd 0.42 bd bd bd 0.17 0.15 0.16 Tm 0.03 bd 0.03 0.18 0.08 0.13 0.08 bd 0.03 bd 0.04 bd 0.07 bd 0.08 bd 0.03 0.04 bd 0.03 bd 0.12 0.06 0.03 bd 0.14 0.09 0.07 bd 0.10 0.03 0.13 bd 0.03 0.18 bd 0.03 bd bd 0.16 bd bd 0.04 bd 0.03 bd bd bd 0.14 bd 0.12 0.11 bd bd Yb 0.79 0.18 bd 0.37 0.31 bd 0.77 0.22 bd 0.38 1.20 bd 1.14 0.38 0.33 0.17 0.18 0.26 0.32 bd 0.20 bd 1.07 bd bd 0.21 bd 1.08 0.54 bd 0.17 0.32 bd bd bd bd bd 0.41 bd bd bd bd 0.24 bd 0.38 bd 0.17 bd bd 0.18 0.24 0.23 0.20 bd Lu bd 0.03 0.04 0.07 bd 0.21 0.05 0.08 0.14 0.07 0.05 0.14 0.12 bd bd 0.03 0.10 0.05 0.03 bd 0.18 0.07 0.13 bd 0.13 bd 0.23 0.12 0.10 0.14 0.06 0.15 bd 0.04 0.05 bd bd 0.07 0.07 bd bd 0.07 0.09 bd 0.14 0.09 bd bd bd 0.07 bd 0.04 bd 0.12 bd bd bd bd bd bd 0.07 bd bd bd 0.02 bd bd bd bd bd 0.15 bd 0.04 bd bd 0.03 bd 0.03 bd 0.03 bd bd bd bd bd bd bd bd 0.08 bd bd 0.03 bd bd bd bd bd bd bd 0.03 bd bd bd bd bd bd bd bd Th U ƩREE 1.16 6 1.08 5 0.61 7 0.54 7 0.40 3 0.73 4 0.99 8 1.13 6 1.47 5 1.11 6 1.78 7 2.11 7 5.74 8 3.50 5 1.50 6 1.33 5 0.54 4 0.64 2 0.85 3 1.33 4 1.45 5 0.98 5 1.68 4 1.11 4 1.35 3 1.26 3 1.24 5 2.22 6 1.63 4 1.95 4 1.99 6 1.34 4 0.87 5 1.60 3 1.35 4 0.98 11 1.34 5 0.50 7 1.27 3 1.88 10 0.69 3 0.71 3 1.01 2 0.60 2 0.75 3 1.38 3 0.78 1 1.11 5 0.72 5 0.60 3 0.89 3 2.39 3 0.40 3 1.37 1 Ce/Ce* -0.21 -0.39 -0.27 1.69 -0.38 0.74 -0.29 -0.34 -0.24 -0.09 -0.16 -0.41 -0.30 -0.52 0.28 0.96 0.18 -0.25 -0.63 -0.32 0.33 -0.12 -0.55 0.32 -0.12 0.95 0.11 -0.64 -0.67 -0.29 0.27 0.07 2.05 0.04 -0.83 1.69 0.61 -0.19 -0.38 6.26 -0.29 0.25 -0.04 -0.55 -0.55 0.53 -0.21 0.49 -0.61 -0.40 -0.52 -0.51 -0.47 -0.52 Ce/Ce** 2.18 0.80 -1.65 -0.92 -68.89 1.33 -0.36 0.40 1.91 0.57 0.84 0.74 0.57 0.29 14.65 12.82 -0.79 -0.59 -3.82 0.59 -3.60 1.19 0.31 0.70 0.65 4.74 1.67 0.20 -1.88 0.42 1.30 0.99 33.60 1.02 0.06 4.44 -6.80 0.68 0.99 -41.51 -0.79 -2.58 -0.88 1.89 0.46 -1.06 -0.43 -0.69 -2.99 -4.63 0.52 0.33 0.49 0.22 La/La* Y/Ho 3.11 92.6 0.59 75.5 -1.92 68.5 -1.23 101.0 -2.58 101.0 -0.36 133.6 -1.37 127.5 -0.62 39.7 23.85 42.2 -0.53 60.3 0.01 118.8 0.41 23.3 -0.31 51.6 -0.54 25.7 -16.46 61.4 -8.73 36.8 -1.51 58.4 -1.30 43.0 -2.15 27.6 -0.20 32.1 -2.74 31.6 0.63 63.4 -0.49 52.3 -0.67 128.4 -0.39 204.4 10.80 33.5 1.60 119.4 -0.62 117.3 -4.92 90.6 -0.60 51.5 0.04 12.4 -0.10 38.4 -15.75 64.4 -0.03 127.5 -0.86 30.8 1.12 68.8 -2.72 43.6 -0.27 43.6 1.02 18.5 -2.97 44.6 -1.81 70.6 -1.54 34.2 -1.32 40.2 -7.31 40.2 0.02 40.2 -1.50 40.2 -1.27 40.2 -1.34 46.2 -6.31 35.1 -2.77 16.8 0.17 30.5 -0.53 44.2 -0.20 33.6 -0.88 33.6 400 mm from bone rim 9.85 9.88 9.92 9.95 9.98 10.02 10.05 10.09 10.12 10.16 10.19 10.23 10.26 10.30 10.33 10.37 10.40 10.43 10.47 10.50 10.54 10.57 10.61 10.64 10.68 10.71 10.75 10.78 10.81 10.85 10.88 10.92 10.95 10.99 11.02 11.06 11.09 11.13 11.16 11.19 11.23 11.26 11.30 11.33 11.37 11.40 11.44 11.47 11.51 11.54 11.57 11.61 11.64 11.68 Sc 0.97 1.36 0.62 1.45 1.30 0.94 1.50 0.99 1.30 1.45 2.99 1.20 0.86 0.89 0.97 1.26 0.90 1.30 1.29 1.25 1.60 0.76 1.92 1.87 1.56 1.45 2.11 1.66 1.60 2.45 1.49 1.54 1.33 1.70 0.92 2.02 1.43 2.47 2.41 0.65 1.05 0.63 0.90 0.87 0.64 0.16 0.69 0.51 0.59 1.10 0.61 1.59 0.87 0.61 Mn 0.45 0.23 0.22 0.14 0.18 0.40 0.16 0.17 0.31 0.15 0.28 0.21 0.22 0.23 0.23 0.18 0.29 0.35 0.28 0.21 0.16 0.33 0.17 0.21 0.18 0.15 0.35 0.60 0.52 0.27 0.35 0.36 0.33 0.31 0.14 0.19 0.28 0.19 0.19 0.18 0.29 0.26 0.27 0.19 0.15 0.48 0.23 0.30 0.19 0.18 0.21 0.18 0.24 0.26 SRHS-DU-94 Femur (continued) Fe 1.13 1.08 1.42 0.88 1.16 1.44 0.83 1.29 1.39 1.04 1.14 1.42 1.11 1.80 1.00 1.37 1.04 1.32 2.60 2.24 1.14 1.10 1.47 0.81 1.30 0.92 1.57 1.61 1.14 2.12 0.99 1.54 1.26 0.73 1.17 0.90 1.46 1.70 1.06 0.74 0.91 1.15 1.70 1.25 0.86 1.03 1.06 1.63 1.05 1.44 0.93 1.00 0.96 1.56 Sr 3314.94 2938.98 2707.42 2307.84 2581.07 2523.20 2627.49 2699.85 2835.76 2886.10 3589.98 2881.69 2353.11 4680.46 2118.10 3290.59 2613.70 3637.79 3392.39 2665.16 2379.91 2332.70 2647.77 2655.62 3904.06 2691.92 2996.72 3777.84 3053.67 3125.60 2795.07 2986.53 4173.37 2459.97 2970.07 2468.22 4059.67 3444.15 4105.30 3498.87 2600.91 3448.81 4155.80 2808.43 2585.96 3577.02 4222.66 4326.53 2554.48 3014.85 2512.07 3519.53 3652.72 3106.98 Y 1.80 2.57 1.70 1.73 2.27 1.30 1.80 2.35 6.27 6.36 5.73 5.51 5.11 4.55 3.19 4.11 2.62 4.53 4.66 3.46 3.09 2.75 2.45 2.39 2.80 2.36 3.71 3.96 3.36 2.90 2.82 4.78 3.61 1.78 2.41 3.87 4.42 3.42 2.03 2.07 2.05 0.59 3.33 1.93 0.80 1.18 0.73 1.47 1.81 2.12 1.74 2.56 2.27 1.89 Ba 1357.98 1693.98 1128.72 2186.99 2110.05 1938.08 1219.57 1465.80 2218.91 2085.22 2232.81 2242.63 2098.53 1813.95 1978.70 1330.74 1615.31 1879.36 2230.14 nd 2334.40 1150.26 1275.16 1626.67 2220.05 1904.83 1959.65 2008.98 nd 2802.76 1780.07 2607.09 1681.57 1843.08 1233.54 1746.27 2324.10 1756.15 1824.27 1322.37 1873.61 1160.18 2326.93 2495.95 1428.04 2233.71 3469.10 2312.63 1593.72 1408.41 1901.47 1412.30 1451.49 1764.48 La 0.54 0.67 0.72 1.72 0.64 1.23 0.58 0.90 2.62 2.99 4.74 3.98 2.18 2.72 1.56 6.43 1.03 1.23 1.97 1.65 0.78 0.65 2.28 0.62 1.21 1.62 0.81 1.14 1.62 1.04 0.78 1.04 1.21 0.88 0.83 0.94 1.42 0.50 0.84 0.66 0.68 0.32 1.11 0.25 0.14 0.43 0.45 1.06 0.43 0.66 0.57 0.54 0.24 0.52 Ce 1.19 7.65 0.59 1.19 0.70 1.18 1.08 2.79 bd 14.02 9.06 66.28 3.26 5.32 1.23 1.87 1.71 1.39 2.56 4.66 1.38 1.24 1.64 2.32 1.16 2.67 1.14 1.53 0.84 0.95 0.79 2.87 0.61 1.42 0.78 0.99 0.52 1.40 1.12 0.67 0.63 0.50 0.59 0.70 0.28 0.14 0.71 1.01 0.73 0.38 1.06 1.47 0.83 0.94 Pr 0.23 0.22 bd 0.24 0.18 0.16 0.03 0.38 0.63 3.11 1.43 1.57 0.51 0.15 0.06 0.69 0.08 0.04 1.00 0.22 0.16 0.12 0.04 0.82 0.23 0.20 0.09 0.32 0.17 0.25 bd 0.18 0.09 0.04 0.12 0.18 bd bd 0.43 bd 0.04 0.04 0.11 bd bd 0.69 0.04 bd 0.22 bd bd 0.12 0.04 0.04 bd 0.24 0.21 0.22 bd 0.46 0.18 0.89 1.96 2.60 4.20 4.71 0.84 0.43 bd 3.58 0.44 1.96 0.48 0.24 1.29 bd bd bd 0.53 0.22 0.53 0.80 0.23 bd 0.25 0.68 0.24 0.23 bd 0.51 bd bd 0.82 0.46 bd 0.21 bd bd bd 0.70 bd 0.25 3.43 bd bd 0.23 bd bd Nd bd bd bd 0.28 bd bd bd 0.27 bd bd 0.84 0.23 0.51 0.53 0.67 bd 0.27 bd 0.29 bd 0.45 bd bd bd bd bd 0.32 bd bd bd bd bd bd bd bd bd 0.38 bd bd 0.28 bd bd bd bd bd 0.86 0.60 0.64 0.26 bd bd bd bd bd Sm bd bd bd 0.07 bd 0.07 0.13 0.07 0.17 0.19 0.07 0.70 0.14 bd 0.06 bd 0.15 0.08 0.08 0.08 0.12 bd 0.08 0.25 bd 0.07 0.28 0.08 bd bd 0.08 0.23 bd bd bd bd bd bd bd bd bd 0.15 bd bd bd bd 0.17 0.08 bd 0.06 bd bd bd bd Eu bd bd bd 0.26 bd 0.26 bd bd bd 0.20 1.64 0.21 0.23 0.24 0.20 2.53 0.24 0.27 bd bd bd 0.59 bd 0.26 bd bd 0.29 0.62 0.27 0.86 bd 0.38 0.58 bd 0.25 bd bd bd bd 0.54 bd bd bd bd 0.25 bd bd bd 0.23 bd 0.24 bd bd bd Gd bd bd 0.06 0.07 bd 0.07 bd 0.10 0.07 0.32 0.20 0.03 0.15 0.03 0.05 0.10 bd bd 0.10 bd bd 0.02 bd 0.10 0.16 bd bd 0.08 bd bd bd bd 0.04 0.07 bd bd 0.09 bd bd bd bd 0.10 bd bd 0.03 bd bd bd 0.03 bd bd bd bd 0.07 Tb bd 0.15 bd 0.69 0.63 bd bd 0.78 0.29 0.54 0.41 0.69 0.50 0.26 0.22 0.14 0.39 bd 1.00 bd bd bd bd 0.14 bd 0.42 0.31 0.32 0.43 bd 0.61 bd 0.15 0.14 0.13 bd 0.19 0.18 bd bd bd bd 0.19 0.18 bd bd 0.44 bd bd bd bd 0.14 bd 0.15 Dy Ho 0.08 bd bd 0.07 0.04 bd 0.08 bd 0.07 0.08 0.07 0.06 0.06 0.06 0.03 0.07 0.10 bd bd bd 0.05 0.05 0.04 0.03 bd 0.10 0.08 0.04 bd 0.04 bd 0.20 bd 0.04 0.13 bd 0.09 bd bd 0.10 0.08 bd bd 0.05 0.03 bd 0.04 0.08 bd 0.06 0.10 0.11 0.04 0.04 bd 0.16 0.43 bd bd 0.15 0.12 0.14 0.47 0.24 0.60 0.25 0.41 bd bd bd bd 0.16 0.16 0.49 bd bd 0.79 0.15 bd 0.30 bd 0.52 bd 0.32 0.33 0.22 bd bd 0.44 bd 0.20 0.40 0.54 0.30 bd 0.14 0.21 bd 0.15 0.15 bd bd bd bd 0.28 bd bd bd Er Tm bd bd bd bd bd bd 0.03 0.06 0.10 0.03 bd bd 0.06 0.03 bd 0.17 0.06 0.03 0.14 bd 0.03 bd bd bd bd 0.07 0.04 bd bd bd 0.07 bd bd 0.10 0.10 bd bd 0.09 0.04 0.07 bd bd bd bd bd bd bd 0.11 bd bd bd bd 0.07 0.04 Yb 0.23 bd 0.19 bd bd 0.40 0.16 bd 0.42 1.42 bd 0.83 bd bd bd bd bd bd 0.83 bd bd 0.29 bd bd bd bd bd bd bd bd 0.22 0.59 0.21 bd bd 0.44 0.27 0.53 bd bd bd 0.19 bd bd bd bd bd bd bd bd bd bd bd 0.22 Lu bd 0.04 0.03 bd bd 0.04 0.06 0.07 0.11 0.09 0.04 0.06 bd bd 0.06 bd 0.17 bd 0.04 0.04 0.09 0.03 0.08 bd bd 0.04 0.04 bd 0.04 0.08 0.04 bd bd bd 0.14 0.20 0.10 0.10 bd bd 0.04 0.07 bd bd 0.04 bd bd 0.04 0.03 bd 0.10 bd bd bd bd bd 0.05 bd 0.16 0.03 bd bd bd bd bd 0.02 0.05 bd 0.04 bd 0.08 bd bd bd bd bd bd bd 0.03 0.03 bd bd 0.03 bd bd bd bd bd bd bd bd bd 0.03 bd bd bd bd bd bd 0.03 bd bd 0.02 bd bd bd bd bd Th U ƩREE 0.93 2 0.95 9 0.80 2 0.58 5 1.15 2 0.91 4 0.96 2 0.92 6 2.75 7 1.33 26 1.41 23 0.70 80 1.07 9 1.00 10 0.95 4 0.76 16 0.78 5 1.64 5 1.45 9 2.80 7 2.38 4 0.61 3 1.16 5 0.91 5 0.87 3 1.48 6 2.22 4 2.03 5 1.50 4 2.01 4 2.22 3 2.06 6 1.45 3 1.28 3 0.96 3 1.20 3 0.85 3 1.65 3 1.40 4 0.70 3 0.77 1 0.42 2 0.87 2 0.38 1 0.24 1 0.58 3 0.90 2 1.39 3 1.07 5 0.45 1 0.47 2 0.75 3 0.92 1 0.93 2 Ce/Ce* -0.23 3.63 -0.66 -0.58 -0.52 -0.41 0.43 0.08 0.54 -0.14 -0.19 5.08 -0.27 0.49 -0.37 -0.81 0.20 -0.08 -0.60 0.73 -0.08 0.04 -0.38 -0.44 -0.49 0.03 -0.09 -0.41 -0.66 -0.57 -0.55 0.53 -0.63 0.27 -0.43 -0.43 -0.82 -0.23 -0.59 -0.61 -0.31 0.00 -0.64 -0.64 -0.85 -0.96 0.07 -0.40 -0.47 -0.74 -0.21 0.34 0.93 0.27 Ce/Ce** 0.49 2.44 0.17 0.34 0.31 0.74 9.98 0.65 1.43 0.30 0.65 4.39 0.50 3.53 -0.32 0.63 7.60 -0.34 0.16 1.49 -2.93 -4.87 -1.08 0.20 0.44 0.93 4.20 0.43 0.37 0.26 0.26 2.12 0.70 10.33 0.72 0.56 0.15 0.40 0.21 0.23 -8.12 3.92 0.78 0.12 0.05 0.01 -1.60 0.63 -0.16 -0.24 -0.69 0.95 5.85 4.95 La/La* Y/Ho -0.60 23.1 -0.67 24.1 -0.68 24.1 -0.27 25.1 -0.54 58.5 0.43 39.9 -22.42 21.4 -0.64 54.5 -0.12 87.5 -0.90 78.4 -0.36 84.5 -0.50 96.6 -0.47 82.5 2.37 70.4 -1.41 119.2 110.30 59.3 -12.48 26.7 -1.31 42.0 -0.82 42.0 -0.19 42.0 -1.73 57.3 -1.93 55.3 -2.44 68.6 -0.92 68.6 -0.22 45.7 -0.14 22.7 -8.47 47.2 -0.43 101.0 0.12 90.9 -0.57 80.8 -0.61 52.2 0.86 23.6 1.56 37.0 -26.72 50.4 0.50 18.0 -0.01 32.6 -0.31 47.2 -0.76 33.6 -0.74 33.6 -0.62 20.0 -3.75 27.1 -10.93 34.7 3.18 34.7 -0.93 42.3 -0.96 24.1 -0.93 22.0 -1.78 20.0 0.09 19.0 -1.08 27.1 -1.31 35.1 -1.27 18.0 -0.44 24.1 -9.13 64.6 134.66 50.4 401 mm from bone rim 11.71 11.75 11.78 11.82 11.85 11.89 11.92 11.95 11.99 12.02 12.06 12.09 12.13 12.16 12.20 12.23 12.27 12.30 12.33 12.37 12.40 12.44 12.47 12.51 12.54 12.58 12.61 12.65 12.68 12.71 12.75 12.78 12.82 12.85 12.89 12.92 12.96 12.99 13.03 13.06 13.09 13.13 13.16 13.20 13.23 13.27 13.30 13.34 13.37 13.41 13.44 13.47 13.51 13.54 Sc 0.36 1.13 0.75 1.49 0.99 0.76 1.60 1.46 0.88 0.71 1.02 1.50 1.79 0.71 0.78 1.30 1.51 1.63 1.95 2.88 0.74 0.88 0.99 2.85 1.09 1.43 1.18 1.83 1.88 0.80 0.18 0.71 0.60 0.91 0.65 0.63 1.24 0.39 2.05 1.21 1.09 0.53 0.72 0.99 0.70 1.84 0.61 2.36 0.78 0.67 1.43 0.72 1.45 1.35 Mn 0.32 0.20 0.26 0.15 0.17 0.23 0.16 0.18 0.23 0.16 0.22 0.13 0.16 0.17 0.19 0.32 0.19 0.21 0.26 0.20 0.16 0.16 0.22 0.25 0.22 0.16 0.17 0.16 0.18 0.22 0.30 0.21 0.35 0.44 0.20 0.15 0.18 0.31 0.17 0.22 0.25 0.51 0.26 0.23 0.15 0.20 0.35 0.18 0.16 0.18 0.20 0.11 0.26 0.19 SRHS-DU-94 Femur (continued) Fe 0.94 0.97 1.50 1.35 1.25 0.95 0.73 1.34 1.86 0.90 1.25 1.30 1.14 0.69 1.03 1.51 1.00 2.04 2.43 1.85 1.11 1.13 1.26 1.39 1.18 1.43 0.90 1.15 1.32 1.04 1.15 1.14 1.31 1.37 0.87 0.87 0.96 1.33 1.16 1.03 1.13 1.26 1.10 0.78 1.42 0.94 1.13 1.22 1.16 0.82 1.49 0.76 0.99 1.04 Sr 2583.83 2919.57 4206.21 4642.26 3729.53 3582.98 2570.15 2568.76 3252.92 2522.33 3847.38 3259.39 3364.02 2318.72 3080.26 3822.00 4599.81 4054.34 6840.57 3333.81 2664.72 2434.97 2137.52 3833.09 5962.39 2959.88 2915.44 4120.20 3425.68 3207.02 3059.49 3485.56 2986.40 3020.27 2668.19 2608.94 2584.31 4109.31 3826.86 2911.46 2760.43 4014.28 3212.38 2704.39 2957.16 2605.17 2391.85 2454.75 3313.95 2073.10 3108.27 1992.06 3383.41 3648.80 Y 1.18 1.02 1.31 2.69 2.45 4.02 1.92 1.37 1.42 2.06 2.21 1.54 2.74 1.11 1.75 2.54 2.41 2.02 4.17 2.18 1.63 0.97 1.22 1.78 3.54 1.48 1.50 2.70 1.04 1.42 2.03 0.72 0.29 0.87 1.85 2.06 1.46 2.67 1.51 2.11 1.97 1.58 1.39 0.83 1.15 1.56 1.36 1.67 1.65 0.98 1.70 1.98 1.45 0.97 Ba 2476.63 1560.88 1629.84 2002.39 2468.03 1411.75 nd 2527.90 2526.18 1604.64 2454.36 2678.19 1949.97 1677.26 1695.16 2005.16 2106.31 nd nd 3614.52 1715.03 3435.44 nd 2287.03 1794.38 1329.59 1612.53 1858.27 2470.25 1220.07 1828.31 2869.07 3088.90 2082.85 2300.15 1977.63 1851.42 3175.95 1731.26 2021.24 2042.07 1863.12 1440.83 2008.06 2186.93 1948.11 1217.45 1193.28 2165.74 1104.72 2323.50 1597.81 1994.17 1940.70 La 0.14 0.44 0.85 2.35 1.12 0.76 0.57 0.27 0.68 0.88 0.73 1.10 0.55 0.26 0.39 0.85 0.17 0.32 0.62 0.58 0.50 0.33 0.49 0.48 0.67 0.63 0.54 0.48 0.32 0.53 0.39 0.36 0.46 0.37 0.65 0.73 0.78 0.84 0.34 0.34 0.59 0.50 0.86 0.41 0.17 0.18 0.22 0.38 0.52 0.06 0.47 0.20 0.38 0.25 Ce 0.62 0.07 0.28 1.24 0.81 0.76 0.58 0.76 0.39 5.77 0.41 0.88 0.78 1.12 0.31 0.38 0.35 0.59 1.34 0.97 0.21 0.17 0.59 0.48 0.86 0.28 0.46 0.33 0.32 0.36 0.78 0.54 0.93 3.16 0.37 15.96 0.61 0.68 0.42 0.30 1.31 0.36 0.09 0.33 0.35 0.36 0.18 0.43 0.13 0.24 0.37 0.28 0.19 0.10 Pr 0.24 0.06 0.36 0.05 0.11 0.22 0.25 0.15 bd 0.03 bd 0.08 0.04 bd 0.03 0.07 bd 0.09 0.08 0.04 0.14 0.03 0.12 0.14 0.11 0.03 bd 0.03 bd bd bd 0.08 bd bd 0.14 0.04 0.04 bd bd bd 0.05 bd 0.04 0.21 0.04 bd 0.11 bd bd bd bd bd bd bd Nd 0.22 bd 0.22 1.83 bd bd 0.19 bd 0.23 0.87 bd bd 3.20 0.14 bd 1.26 0.64 bd 0.22 0.23 bd bd bd bd bd 0.16 0.19 0.17 bd bd bd bd bd bd 1.83 0.44 bd 0.77 0.56 bd 0.26 0.44 bd bd 0.43 bd 0.21 0.41 0.21 0.16 0.45 bd bd 0.24 Sm 0.28 bd 0.28 bd bd 0.51 bd 0.27 bd bd bd 3.59 1.38 bd 0.23 bd bd bd 0.28 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.23 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd Eu 0.07 0.06 bd 0.21 0.10 0.07 bd bd bd bd bd 0.07 bd bd bd bd 0.15 0.08 bd 0.34 bd bd bd bd 0.07 bd 0.06 bd 0.21 bd bd bd bd bd bd bd 0.15 bd bd bd bd bd bd bd 0.07 bd bd bd bd bd bd bd 0.07 bd Gd 0.83 bd 0.26 0.33 bd 0.48 0.22 0.24 0.27 bd 0.25 bd 0.52 bd 0.21 bd bd bd bd bd 2.93 bd bd 0.29 bd bd 0.22 bd bd bd bd bd bd bd 0.22 bd 0.76 bd bd bd bd bd bd 0.22 bd bd bd 0.23 bd 0.18 bd bd bd bd bd 0.03 bd 0.09 0.09 bd bd 0.06 bd bd bd 0.03 bd bd bd bd 0.03 bd 0.03 bd bd bd 0.02 bd bd bd bd bd 0.06 bd bd bd 0.04 bd 0.06 bd bd 0.11 bd bd bd bd bd bd bd bd bd 0.03 bd bd bd bd bd bd Tb Dy 0.14 bd bd bd bd 0.25 0.36 bd bd 0.10 0.13 bd 0.67 bd bd 0.25 0.13 bd 0.14 0.42 0.12 bd bd bd 0.65 0.10 bd 0.21 bd 0.39 0.32 bd bd 0.33 bd 0.13 bd bd bd bd bd bd 0.26 0.24 bd bd bd bd bd bd 0.27 bd 0.14 bd Ho 0.17 0.08 bd 0.13 0.09 0.15 bd 0.03 bd 0.05 0.03 bd bd bd 0.03 bd 0.03 0.04 bd 0.03 bd bd 0.03 0.04 0.07 bd bd 0.03 bd bd bd bd 0.04 0.11 0.03 0.07 0.03 0.04 bd bd 0.04 bd bd bd 0.03 0.10 bd 0.03 bd bd bd 0.03 0.03 bd bd bd bd 0.20 0.20 bd 0.13 bd 0.63 0.22 0.15 0.15 bd bd bd 0.41 0.14 bd bd bd bd bd bd 0.34 0.14 bd bd bd bd 0.28 bd bd 0.16 bd bd 0.14 bd bd 0.12 0.68 bd bd bd bd 0.14 0.14 bd bd bd 0.11 bd bd bd bd Er Tm bd bd 0.03 bd bd bd 0.03 bd bd bd 0.06 0.10 0.03 0.02 0.03 bd bd 0.04 0.03 bd 0.03 bd bd bd bd bd bd bd bd bd bd 0.12 bd bd bd bd bd bd bd 0.03 0.04 0.03 bd bd bd 0.09 0.03 bd bd bd bd 0.03 bd bd Yb 0.20 bd 0.20 bd 0.26 0.72 bd 0.57 bd 0.15 bd 0.19 0.19 0.12 0.16 0.18 0.18 0.22 bd bd bd bd bd bd 0.19 bd 0.35 bd 0.17 bd bd bd bd bd bd 0.19 bd bd bd bd 0.46 0.57 bd 0.34 0.37 bd 0.57 bd 0.18 bd bd bd bd 0.22 Lu 0.07 bd 0.11 0.14 0.05 0.10 0.03 bd 0.08 0.03 bd 0.07 bd 0.05 0.09 bd bd 0.12 0.04 bd bd bd 0.03 0.08 0.03 0.03 0.03 0.06 bd 0.07 bd bd 0.04 0.03 0.03 0.07 bd bd bd bd 0.13 0.03 bd 0.03 0.10 bd 0.03 bd 0.03 bd bd bd bd bd bd bd bd 0.03 0.11 bd bd bd bd 0.02 bd 0.03 bd bd bd bd bd bd 0.03 bd bd bd 0.02 bd 0.03 bd bd bd bd bd bd bd bd bd bd 0.03 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.03 bd Th U ƩREE 0.73 3 0.36 1 0.48 3 1.26 7 2.29 3 2.19 4 1.94 2 0.62 2 1.38 2 1.26 8 0.77 2 1.55 6 0.66 7 1.17 2 0.59 1 1.26 3 2.18 2 2.29 2 1.95 3 1.60 3 1.23 4 1.66 1 3.31 1 1.66 2 2.18 3 0.98 1 0.76 2 1.42 1 0.98 1 0.50 2 0.68 1 0.32 1 0.42 2 0.73 4 0.67 3 0.70 18 0.85 2 2.01 2 1.29 2 1.04 1 2.00 3 0.62 2 1.26 1 0.48 2 1.01 2 0.39 1 0.68 1 0.76 2 0.44 1 0.39 1 0.76 2 0.61 1 0.36 1 1.47 1 Ce/Ce* -0.47 -0.90 -0.88 -0.55 -0.51 -0.56 -0.65 -0.18 -0.65 4.39 -0.59 -0.42 0.04 1.58 -0.44 -0.68 -0.34 -0.18 0.33 0.22 -0.82 -0.65 -0.42 -0.56 -0.29 -0.65 -0.35 -0.48 -0.44 -0.55 0.22 -0.23 -0.02 2.70 -0.71 15.88 -0.39 -0.36 -0.22 -0.44 0.57 -0.49 -0.92 -0.75 0.03 -0.29 -0.75 -0.52 -0.87 -0.57 -0.62 -0.60 -0.78 -0.86 Ce/Ce** 0.17 0.14 0.05 -0.35 -1.20 0.65 0.16 0.37 0.40 -3.56 -0.10 -0.24 -0.11 4.15 -0.27 -0.21 -1.87 1.24 1.63 7.12 0.11 233.59 0.39 0.26 0.59 2.85 11.51 3.21 -0.21 -0.23 -0.51 -0.47 -1.49 -5.10 -0.18 -37.22 -0.71 -0.58 -0.63 -1.00 8.55 -1.01 -0.22 0.13 -0.85 0.72 0.13 0.46 0.09 0.15 0.46 0.26 0.18 0.08 La/La* Y/Ho -0.94 6.8 0.89 12.7 -0.77 16.3 -1.66 20.0 -2.07 27.1 2.00 26.1 -0.77 34.2 -0.80 42.3 0.24 41.2 -1.54 40.2 -1.18 66.6 -1.30 64.6 -1.08 64.6 1.39 64.6 -1.32 62.5 -1.42 69.6 -1.35 76.7 2.63 52.4 0.38 57.5 -18.10 62.5 -0.59 55.4 -4.01 55.4 -0.49 48.4 -0.59 46.3 -0.26 54.3 -26.72 77.6 -7.49 77.6 -19.54 101.0 -1.19 54.4 -1.32 54.4 -1.24 54.4 -1.26 54.4 -1.46 7.9 -1.37 8.0 -1.26 62.5 -2.32 31.1 -1.83 46.3 -1.66 70.6 -1.43 60.5 -1.76 60.5 -16.68 50.4 -1.99 43.3 -2.63 43.3 -0.72 43.3 -1.33 36.2 0.04 16.0 -0.75 35.2 -0.08 54.4 -0.41 61.5 -0.93 61.5 0.47 61.5 -0.65 68.6 -0.32 42.3 -0.68 41.3 402 mm from bone rim 13.58 13.61 13.65 13.68 13.72 13.72 13.75 13.79 13.82 13.85 13.89 13.92 13.96 13.99 14.03 14.06 14.10 14.13 14.17 14.20 14.23 14.27 14.30 14.34 14.37 14.41 14.44 14.48 14.51 14.55 14.58 14.61 14.65 14.68 14.72 14.75 14.79 14.82 14.86 14.89 14.93 14.96 14.99 15.03 15.06 15.10 15.13 15.17 15.20 15.24 15.27 15.31 15.34 15.37 Sc 0.80 0.73 1.30 1.90 1.25 1.31 0.83 2.41 1.46 1.94 0.75 1.71 1.50 2.08 1.30 1.32 0.87 1.74 1.07 1.92 1.79 1.70 1.04 1.22 1.05 1.12 1.33 0.53 0.78 2.28 0.79 1.34 2.35 1.88 1.55 2.73 1.27 1.78 2.71 1.67 2.15 2.30 2.47 1.61 1.47 1.00 2.09 2.77 3.24 2.08 2.88 2.54 0.50 1.64 Mn 0.26 0.24 0.24 0.28 0.28 0.19 0.26 0.32 0.31 0.37 0.27 0.34 0.34 0.28 0.18 0.43 0.98 0.50 0.18 0.29 0.23 0.40 0.41 0.25 0.24 0.31 0.24 0.23 0.25 0.20 0.20 0.76 0.20 0.16 0.16 0.32 0.17 0.17 0.18 0.19 0.18 0.24 0.12 0.18 0.20 0.18 0.28 0.19 0.22 0.23 0.24 0.21 0.19 0.16 SRHS-DU-94 Femur (continued) Fe 0.95 1.45 1.08 1.68 1.47 1.23 1.07 1.70 1.36 0.97 1.51 1.40 1.06 1.26 1.42 1.39 1.38 1.63 0.95 1.21 1.80 1.38 1.05 1.19 1.85 1.39 0.98 1.19 0.97 1.02 1.18 1.66 0.94 1.17 1.28 1.54 1.13 1.20 1.84 1.29 0.78 0.96 0.71 1.19 0.92 0.98 1.12 1.04 1.64 1.25 1.11 1.14 0.91 0.91 Sr 3322.46 2611.73 3395.80 3539.79 3132.91 2279.10 3117.42 12394.23 6419.80 5715.36 3746.70 4156.42 2082.81 10177.20 4091.23 3110.71 4152.51 3634.59 2516.89 2935.99 3490.36 3892.61 2863.09 2970.20 3860.95 2887.20 3019.95 3410.64 3554.97 4280.51 2789.78 3083.90 2810.54 3670.34 3472.85 3427.57 2862.99 3540.41 3800.64 3269.82 2357.69 2720.12 4109.15 2465.49 3061.04 2549.30 3830.16 3439.45 2546.28 3352.47 3017.54 2880.09 2336.59 2415.78 Y 1.30 0.42 1.42 2.79 2.00 2.97 2.18 5.55 3.90 4.54 1.65 2.11 1.79 4.03 1.81 2.00 1.73 3.53 1.95 4.01 2.84 5.30 4.08 2.09 5.35 4.09 2.99 3.09 3.49 5.59 3.45 3.92 4.34 4.92 5.03 5.18 2.86 4.58 6.14 5.07 3.14 3.63 5.30 4.19 2.88 3.91 4.69 4.64 5.09 5.88 4.39 3.71 3.01 5.79 nd 1832.21 2377.91 3038.52 2955.98 5739.27 nd nd nd 4190.01 nd nd nd 3108.26 2132.36 2298.60 2019.33 3609.67 1582.78 2137.83 1934.81 2171.60 2051.59 1781.54 2449.90 2264.23 1803.77 2188.50 1970.60 2392.99 1811.61 1611.56 2046.70 2318.61 1483.07 1946.47 1423.24 1051.32 1940.09 2358.18 1848.10 1502.24 1667.36 1282.51 1826.02 1112.05 2432.09 2022.31 2536.63 nd 1907.21 1791.20 1460.60 1510.15 Ba La 0.36 0.18 0.34 1.09 0.99 2.91 0.65 1.91 1.62 0.65 0.46 1.01 0.72 1.62 0.73 0.53 0.28 1.29 0.69 0.86 0.80 0.92 1.50 0.69 1.95 0.87 0.88 0.76 1.17 1.40 0.90 1.20 1.49 2.39 1.09 2.25 1.88 2.20 2.29 1.93 1.45 1.82 1.86 2.02 1.79 1.76 1.72 2.34 1.99 2.04 1.74 1.94 0.82 1.66 Ce 0.40 0.15 0.26 0.38 0.43 0.59 0.70 1.21 0.79 0.93 0.31 1.51 0.56 1.00 0.10 0.63 1.26 3.33 0.17 0.55 0.46 0.65 0.95 1.33 1.37 0.78 1.22 0.71 0.94 1.89 0.80 1.58 1.49 2.97 1.71 1.68 1.13 3.32 1.74 1.23 0.89 2.20 2.16 1.33 2.45 3.33 1.33 1.01 2.33 1.19 2.30 1.49 1.44 1.22 Pr 0.11 0.09 bd 0.05 bd 0.13 0.04 0.10 0.07 0.10 0.17 0.43 bd bd bd bd bd bd bd bd bd 0.09 0.13 0.14 0.06 0.18 0.04 0.04 0.12 0.15 0.16 0.04 0.04 0.19 0.04 0.11 0.04 0.11 0.16 0.18 0.04 0.04 0.14 0.07 0.08 0.03 0.05 0.18 0.08 0.04 0.13 bd 0.12 0.11 bd bd 0.20 bd bd bd 1.49 0.57 0.87 0.40 bd bd bd bd 0.26 0.53 bd bd bd bd bd 1.89 0.50 0.26 0.36 bd bd bd 0.23 0.30 bd 0.43 0.45 0.45 0.44 0.62 0.43 0.45 0.62 1.07 0.47 0.24 0.42 0.21 bd 0.20 0.83 0.53 0.97 bd 1.27 0.55 0.48 0.22 Nd bd bd bd 0.33 bd bd bd bd bd bd bd bd 0.92 bd bd bd bd bd bd bd bd 1.30 bd bd bd bd bd 0.30 bd bd bd bd bd bd bd bd bd 0.27 bd bd bd bd bd bd bd 0.24 bd bd bd bd bd bd bd bd Sm bd bd bd bd 0.16 bd 0.27 0.21 0.39 0.29 0.18 0.23 0.09 bd 0.09 bd bd bd bd 0.11 bd 0.10 bd bd 0.39 bd bd 0.09 0.08 0.11 bd bd bd bd 0.16 bd bd bd bd bd bd bd bd 0.08 bd 0.22 0.10 0.38 bd bd 0.18 bd bd bd Eu bd 0.63 0.23 0.95 0.54 bd 0.29 49.28 333.19 0.48 0.30 0.37 bd bd bd bd bd bd 0.20 bd bd 0.32 bd bd bd bd 0.29 bd 0.28 bd bd 0.25 bd bd bd bd 0.26 bd bd bd bd bd 0.25 0.51 bd 0.24 bd bd bd bd bd bd bd bd Gd Tb 0.03 bd bd 0.04 0.03 bd bd 0.08 0.03 bd bd 0.04 bd bd bd bd 0.05 bd bd bd bd 0.04 bd 0.04 0.05 bd bd bd bd bd bd bd bd 0.06 0.03 0.04 bd bd bd bd 0.03 bd 0.03 0.03 bd bd bd 0.04 bd 0.07 bd 0.08 0.03 0.06 bd bd bd 0.64 bd bd 0.14 bd 0.38 bd 0.15 0.36 0.15 bd bd bd bd bd bd bd 0.33 bd 0.14 bd bd bd bd bd 0.14 0.18 0.27 bd 0.26 0.13 0.51 0.18 bd 0.52 0.36 bd 0.41 0.14 0.37 0.12 0.14 0.12 0.65 bd bd 0.27 bd bd bd 0.25 Dy Ho 0.03 bd 0.03 bd bd 0.03 0.04 0.21 bd 0.03 bd bd bd bd 0.04 0.04 0.05 bd bd bd 0.04 0.04 0.07 0.04 0.10 0.03 bd bd bd bd 0.14 0.12 0.03 0.07 0.03 bd 0.06 0.13 0.13 bd 0.03 bd 0.06 0.09 0.20 0.03 0.04 0.04 0.07 0.03 bd 0.08 bd bd bd bd 0.41 0.17 0.30 0.50 0.64 bd 0.28 bd bd bd bd bd 0.16 0.17 bd bd bd 0.39 bd 0.17 0.64 0.34 0.46 bd bd bd bd bd bd bd 0.14 bd bd 0.60 0.42 0.29 1.18 bd 0.45 0.15 0.67 0.41 0.15 0.13 0.18 0.17 0.46 0.30 0.16 bd 0.30 0.42 Er Tm bd bd 0.06 bd bd bd bd bd bd 0.03 bd 0.04 bd 0.05 0.04 0.07 bd bd bd 0.13 bd bd bd bd bd 0.03 0.07 0.03 bd bd 0.13 bd 0.06 0.06 0.12 0.09 0.03 0.06 0.04 0.04 bd bd bd 0.15 0.16 0.06 bd 0.04 0.07 0.03 0.07 0.04 bd bd bd bd bd 0.46 0.20 bd bd 0.49 0.18 0.51 0.43 bd bd bd bd 0.22 bd bd bd 0.51 bd bd 0.42 bd 0.30 0.52 bd bd 0.20 bd 0.40 bd 0.19 0.38 0.18 0.79 0.18 bd 0.26 0.22 0.39 bd 0.36 bd 0.40 0.17 0.47 1.12 bd bd 0.21 bd 0.61 bd Yb Lu bd 0.08 0.03 bd 0.15 0.15 0.08 0.18 0.27 bd bd 0.10 0.16 bd bd bd 0.05 0.06 0.08 bd 0.09 0.04 0.19 0.12 bd 0.10 0.04 0.12 bd 0.05 0.04 0.10 0.07 0.14 0.03 0.05 0.10 bd 0.29 0.04 0.04 0.22 bd 0.20 0.07 bd 0.04 0.04 bd 0.11 bd 0.13 bd 0.17 Th 0.03 bd bd bd 0.05 bd 0.03 bd bd bd bd bd 0.03 bd bd bd bd bd 0.02 bd bd 0.13 0.09 bd bd bd bd bd 0.03 bd bd bd 0.24 0.08 bd 0.04 0.03 bd bd 0.03 bd bd bd bd bd 0.05 bd bd bd bd 0.06 bd 0.08 bd U ƩREE 0.48 1 1.42 1 0.91 2 2.35 4 2.25 3 2.40 4 1.17 4 3.53 54 1.54 338 0.64 3 0.84 2 1.45 4 1.36 3 1.84 3 0.79 1 1.11 2 1.50 2 1.35 5 0.51 1 0.81 3 0.61 2 1.08 6 1.23 5 1.11 3 1.54 5 1.79 3 0.92 3 0.82 2 1.08 3 2.45 4 1.81 3 0.94 4 1.29 4 1.52 7 1.16 4 2.13 6 1.04 5 1.19 7 2.56 7 1.31 5 3.68 4 3.84 5 2.76 6 1.62 5 3.69 5 1.72 7 3.37 5 4.74 6 1.61 6 1.74 4 1.09 6 0.90 4 1.86 4 3.03 4 Ce/Ce* -0.53 -0.75 -0.61 -0.72 -0.70 -0.84 -0.20 -0.51 -0.62 -0.18 -0.75 -0.48 -0.70 -0.65 -0.94 -0.62 -0.10 0.34 -0.91 -0.73 -0.77 -0.53 -0.56 0.01 -0.42 -0.53 0.09 -0.29 -0.47 -0.12 -0.51 0.10 -0.15 -0.12 0.28 -0.41 -0.48 0.17 -0.44 -0.57 -0.48 0.04 -0.17 -0.46 0.09 0.64 -0.35 -0.69 -0.06 -0.50 -0.05 -0.43 0.04 -0.46 Ce/Ce** 0.29 0.14 0.37 -0.30 -0.79 3.10 -0.24 4.81 -0.90 1.23 0.14 0.24 0.16 0.28 0.03 0.20 0.87 2.31 0.12 0.38 0.32 -0.21 1.01 0.81 8.74 0.35 -57.27 344.40 0.65 1.00 0.44 -3.70 -3.30 1.39 -3.90 6.18 -2.60 3.95 1.50 2.63 -1.90 21.17 1.54 1.88 2.90 38.20 -1.08 0.57 -2.41 -0.58 -2.53 1.90 1.60 0.91 La/La* Y/Ho -0.58 40.3 -0.70 43.3 -0.08 46.3 -1.80 75.8 -2.16 75.8 -9.38 105.3 -1.22 60.7 -13.75 26.5 -2.46 91.2 1.15 155.9 -0.65 102.2 -0.77 102.2 -0.69 102.2 -0.30 102.2 -0.71 48.6 -0.72 52.6 -0.13 34.4 3.02 51.6 1.14 51.6 1.68 51.6 1.51 68.8 -1.29 135.6 3.03 56.4 -0.31 54.7 -21.97 51.4 -0.38 137.7 -5.84 81.4 -5.58 81.4 0.33 81.4 0.22 81.4 -0.16 25.1 -3.22 31.6 -3.61 133.6 0.93 75.5 -2.98 159.9 -14.91 102.6 -4.41 45.3 5.58 35.2 3.97 45.6 -7.94 69.4 -3.45 93.1 -30.52 89.9 1.52 86.6 4.37 44.9 2.77 14.1 -35.18 135.6 -2.29 117.4 1.52 121.5 -2.62 72.5 -1.98 172.1 -2.28 109.2 7.14 46.3 1.28 56.4 1.02 56.4 403 mm from bone rim 15.41 15.44 15.48 15.51 15.55 15.58 15.62 15.65 15.69 15.72 15.75 15.79 15.82 15.86 15.89 15.93 15.96 16.00 16.03 16.07 16.10 16.13 16.17 16.20 16.24 16.27 16.31 16.34 16.38 16.41 16.45 16.48 16.51 16.55 16.58 16.62 16.65 16.69 16.72 16.76 16.79 16.83 16.86 16.89 16.93 16.96 17.00 17.03 17.07 17.10 17.14 17.17 17.21 17.24 Sc 1.56 2.70 2.15 2.63 1.68 2.39 1.89 2.16 2.70 2.64 2.86 3.27 2.41 1.47 1.63 1.74 1.88 2.00 1.62 3.96 4.18 3.01 2.01 3.88 2.61 2.45 1.70 2.15 1.15 1.66 1.68 3.73 4.33 4.23 3.39 1.82 3.51 1.27 1.38 2.31 2.31 2.36 2.89 2.38 2.62 1.81 1.79 3.64 2.67 1.88 2.34 2.07 1.13 0.81 Mn 0.18 0.21 0.18 0.21 0.17 0.12 0.19 0.13 0.24 0.14 0.25 0.11 0.15 0.22 0.19 0.19 0.18 0.20 0.13 0.25 0.16 0.15 0.29 0.28 0.25 0.13 0.22 0.29 0.24 0.27 0.27 0.14 0.25 0.32 0.30 0.12 0.24 0.23 0.16 0.15 0.17 0.25 0.18 0.20 0.23 0.17 0.18 0.20 0.45 0.30 0.28 1.42 0.26 0.24 SRHS-DU-94 Femur (continued) Fe 2.34 1.48 1.31 1.46 1.91 0.75 1.44 0.85 1.44 1.17 1.55 1.29 1.79 1.21 0.83 0.96 0.69 0.86 1.08 0.85 1.22 0.76 1.27 1.14 1.11 1.16 1.50 1.58 1.60 1.28 1.09 0.80 1.32 1.00 1.59 1.12 1.71 1.32 0.86 0.85 1.21 1.40 1.57 1.20 1.18 0.99 1.35 0.94 1.33 1.45 1.43 1.03 1.41 2.30 Sr 4486.85 3100.79 2859.15 3364.18 3107.52 2432.16 3776.69 2272.16 3636.05 2657.66 3278.06 2850.90 4024.57 3683.44 2859.81 4281.13 1995.82 2008.47 3181.74 2487.05 2775.40 2791.06 3066.32 3273.06 3648.91 2278.31 2089.36 3511.52 2349.24 4201.22 2637.06 2016.24 2989.89 3132.69 3870.86 2452.25 3735.00 2675.04 3095.98 2626.47 3141.75 4278.64 3180.49 6358.84 4244.22 3259.85 3723.46 2870.20 2931.92 3023.29 3084.68 3637.18 2856.76 3687.33 Y 5.54 5.19 7.16 5.77 5.54 3.71 8.03 3.62 8.30 5.76 6.38 4.49 3.76 4.75 4.37 5.21 4.63 5.39 5.42 8.15 7.67 8.33 10.60 10.30 9.71 4.83 4.80 6.00 7.09 7.94 9.28 6.82 11.42 7.06 9.26 6.88 10.32 8.15 6.28 6.96 9.92 11.66 9.48 8.14 11.06 8.63 7.31 8.86 9.09 12.19 8.16 7.86 7.08 7.64 Ba 1756.07 2394.76 1911.82 1441.79 1478.58 1258.00 1967.81 1024.22 2032.85 1440.00 1528.35 1203.80 1662.60 2195.13 1576.32 1361.94 1585.77 1010.60 1301.48 1669.60 1690.82 1316.69 1698.17 1470.58 1909.75 1431.55 1606.45 1788.12 1496.16 1606.65 1591.17 1049.30 2421.69 1840.76 1526.38 996.90 2539.70 3933.06 1565.13 2034.21 1292.77 2425.85 2071.38 2037.93 1889.71 1527.99 1667.80 1659.28 1785.77 2057.67 2983.30 1824.42 1333.07 1296.77 La 2.13 2.16 3.40 1.92 1.85 1.32 2.40 1.66 2.98 1.79 4.25 1.82 2.65 0.96 1.63 1.79 1.49 1.78 1.72 3.85 3.15 3.16 2.54 3.67 3.71 1.98 2.01 2.41 3.01 2.93 3.96 2.73 5.65 4.28 3.87 3.30 5.11 3.43 2.24 3.58 4.08 5.27 4.02 3.69 4.56 3.28 4.30 3.64 4.06 3.61 3.55 1.82 1.35 1.44 Ce 1.67 2.32 1.46 1.98 1.84 1.15 4.35 1.14 3.50 2.85 2.81 1.67 3.20 1.22 1.50 2.62 1.80 2.06 5.67 3.11 1.66 5.49 8.81 4.41 4.46 2.41 3.51 4.30 3.36 4.39 3.53 2.51 4.73 5.92 5.49 3.98 5.80 2.69 2.82 3.58 4.77 8.15 3.35 3.58 10.63 5.15 2.58 3.14 9.55 4.51 3.92 2.09 3.24 2.87 Pr 0.15 0.18 0.26 0.05 0.20 0.11 0.16 0.09 0.33 0.09 0.33 0.04 0.17 0.16 0.11 0.05 0.17 0.16 0.24 0.22 0.39 0.09 0.22 0.45 0.17 0.20 0.25 0.05 0.26 bd 0.42 0.18 0.68 0.62 0.30 0.38 0.38 0.11 0.34 0.22 0.84 0.48 0.28 0.55 0.09 0.23 0.32 0.38 0.50 0.05 0.32 0.14 0.04 0.33 Nd 0.57 bd bd 0.90 1.15 0.63 0.64 1.29 0.64 1.05 1.63 0.50 0.68 bd 0.32 0.89 0.78 0.91 2.22 1.05 0.57 1.38 0.65 0.79 1.75 0.17 0.43 0.57 0.25 0.99 0.31 1.91 1.72 1.40 1.01 1.94 1.24 0.43 0.66 0.85 2.61 1.41 0.71 2.16 0.26 1.59 3.34 1.99 0.26 1.61 0.31 0.55 bd 0.82 bd bd bd 0.72 bd 0.25 bd bd bd bd 0.39 bd bd bd bd bd bd bd bd bd 0.68 bd 0.26 1.27 bd bd 0.25 bd bd bd bd bd 0.34 0.33 bd 0.19 bd bd bd bd bd 0.28 0.28 bd 0.62 bd bd 0.30 bd bd bd bd 0.27 0.33 Sm bd 0.10 0.11 bd bd bd bd bd bd bd bd bd bd bd 0.12 bd bd bd 0.40 bd 0.21 bd bd 0.57 bd 0.06 bd bd bd 0.60 0.11 0.08 bd bd 0.09 0.23 0.18 0.16 0.08 0.15 bd 0.08 bd bd 0.09 0.16 0.43 bd 0.29 0.11 0.45 bd bd bd Eu Gd 0.34 0.32 bd 0.35 0.68 0.50 bd bd 0.38 bd 0.77 bd 0.80 bd bd 1.06 bd 1.35 bd bd bd 0.66 0.26 0.63 0.29 bd bd 0.68 bd bd bd 1.26 bd 0.67 0.90 0.19 0.59 bd 0.26 0.25 bd 0.28 0.85 0.64 0.62 bd 1.13 bd 0.63 1.14 0.73 bd 0.53 0.65 bd bd bd 0.04 bd 0.03 0.05 0.11 0.09 bd 0.05 bd bd 0.09 0.05 bd 0.03 0.06 bd bd 0.12 0.04 0.06 0.04 0.04 0.02 bd 0.08 bd 0.09 bd bd 0.12 bd bd 0.07 0.07 0.09 bd bd 0.08 bd bd 0.08 0.07 bd 0.10 0.07 0.08 0.14 bd 0.16 bd bd Tb bd 0.31 0.35 bd 0.17 bd bd 0.30 bd bd 0.38 bd 0.59 0.18 0.38 bd 0.11 0.13 0.16 0.15 0.66 0.32 0.38 0.15 0.58 bd 0.12 0.16 0.14 0.58 0.18 0.25 0.17 0.33 0.74 0.09 0.14 0.25 0.25 0.25 0.85 0.55 0.14 0.63 0.61 0.93 0.42 0.58 0.93 0.19 0.36 0.64 0.13 0.32 Dy Ho 0.08 0.08 bd 0.04 bd 0.06 0.14 bd 0.09 bd 0.28 0.11 0.05 0.19 bd bd 0.11 0.13 0.32 0.04 0.08 0.16 0.10 0.19 bd 0.02 0.16 0.12 bd 0.14 0.09 0.09 0.17 0.04 0.15 0.09 0.18 0.19 0.03 0.19 0.08 0.03 0.03 bd 0.19 0.07 0.03 0.36 0.19 0.14 0.09 0.04 bd 0.28 bd 0.51 0.39 bd 0.73 0.68 0.62 0.33 0.62 0.34 0.21 0.32 0.43 1.02 bd 0.38 0.25 0.29 0.18 bd 0.36 bd 0.28 0.51 0.16 0.11 bd bd 0.32 bd 0.79 0.13 bd 0.72 0.16 0.41 1.74 0.55 0.28 0.13 0.56 1.20 0.15 1.04 0.83 0.58 0.15 bd 1.02 bd 0.99 0.70 bd 0.17 Er Tm bd 0.07 0.13 0.04 bd bd 0.18 0.07 bd 0.07 bd bd 0.05 bd 0.04 0.08 bd bd 0.08 0.18 0.08 bd 0.03 0.11 bd bd 0.06 0.04 0.17 0.05 0.09 0.09 bd 0.08 0.03 0.07 0.17 0.03 0.03 bd 0.04 0.13 0.17 0.04 0.07 0.09 0.13 0.03 0.15 bd 0.09 0.04 bd 0.04 bd bd bd bd 0.48 0.36 bd bd bd 0.44 0.27 bd bd bd 0.55 bd 0.16 0.58 0.70 0.89 0.48 0.23 0.18 0.90 0.42 0.28 0.36 0.48 0.21 0.28 0.52 0.72 0.97 0.24 0.43 0.14 bd 0.36 0.56 0.36 0.73 0.59 0.60 0.46 0.44 0.58 0.40 0.21 0.90 bd 1.05 0.23 bd 0.46 Yb Lu 0.04 bd bd bd 0.09 0.07 0.25 bd 0.20 bd 0.15 0.19 bd 0.10 0.10 0.09 0.12 0.14 0.09 bd 0.04 0.04 0.03 0.29 bd 0.03 0.07 0.04 0.04 0.05 0.29 0.03 0.04 0.22 0.08 0.05 0.15 bd bd 0.20 0.04 0.07 0.07 0.04 0.08 0.18 0.07 0.08 0.12 0.05 0.10 0.21 0.21 0.04 bd bd bd 0.21 0.03 bd bd bd 0.04 bd 0.19 bd 0.04 0.04 bd 0.07 bd bd bd bd bd 0.06 bd bd bd bd bd bd 0.03 0.08 bd 0.05 bd bd bd bd bd bd 0.05 bd 0.07 bd 0.03 0.03 0.06 0.03 0.03 bd bd bd bd bd 0.08 bd Th U ƩREE 2.76 5 3.05 6 1.95 6 5.21 6 1.68 7 1.71 5 1.95 9 2.27 5 3.23 9 2.93 7 4.10 12 1.80 5 1.28 9 2.19 4 0.83 5 0.97 7 1.26 5 1.82 8 1.45 12 3.31 10 3.62 8 4.95 12 2.82 14 3.09 14 3.19 12 1.57 5 3.03 7 1.34 9 1.51 8 2.03 10 2.52 10 3.19 10 5.47 15 4.14 15 3.19 13 4.46 11 2.96 16 2.39 8 2.53 8 1.91 10 2.28 15 2.76 19 1.46 11 2.55 13 2.32 19 1.21 13 1.15 13 4.32 11 1.99 19 3.35 12 0.89 12 1.49 7 0.53 6 2.00 8 Ce/Ce* -0.42 -0.25 -0.69 -0.13 -0.34 -0.39 0.33 -0.47 -0.24 0.24 -0.53 -0.22 -0.11 -0.29 -0.32 0.23 -0.22 -0.20 0.99 -0.39 -0.67 0.45 1.40 -0.24 -0.05 -0.18 0.09 0.54 -0.22 -0.04 -0.41 -0.32 -0.47 -0.18 0.01 -0.23 -0.18 -0.35 -0.26 -0.25 -0.40 0.06 -0.39 -0.43 1.02 0.15 -0.57 -0.43 0.48 0.10 -0.24 -0.18 1.02 -0.02 Ce/Ce** 1.55 1.78 0.57 -1.49 3.65 4.11 3.58 -0.68 0.88 -2.71 1.71 -3.30 2.51 0.79 1.39 -1.99 1.99 5.14 -4.01 2.55 0.32 -3.08 4.06 0.78 -3.22 0.82 1.08 -7.51 0.91 1.34 0.56 -1.57 0.64 0.84 2.09 2.24 1.72 3.31 0.69 2.25 0.61 1.75 1.10 0.88 12.29 117.52 -0.98 1.98 1.23 -1.51 0.85 2.03 -3.15 0.81 La/La* Y/Ho 3.97 66.5 3.38 66.5 1.48 100.0 -2.34 133.6 -7.17 97.0 -8.97 60.4 3.97 57.0 -1.87 72.8 0.23 88.6 -2.35 55.5 17.84 22.5 -3.85 40.9 4.23 76.9 0.22 25.6 1.86 33.2 -2.25 33.2 6.83 40.7 -8.52 40.7 -1.77 16.8 14.05 214.6 -0.04 92.7 -2.56 51.7 1.22 111.3 0.04 53.4 -2.89 126.9 0.00 200.4 -0.01 30.9 -4.33 48.3 0.23 51.6 0.69 55.0 -0.07 103.8 -2.24 73.7 0.35 68.3 0.03 174.1 2.06 62.8 21.60 73.4 2.07 57.4 9.60 43.2 -0.09 198.4 4.68 37.5 0.02 117.9 1.14 196.6 1.32 275.4 1.29 166.8 8.94 58.3 -4.77 131.0 -2.15 212.6 -217.44 24.5 -0.23 47.0 -2.20 87.2 0.17 90.6 3.43 198.4 -2.22 112.8 -0.28 27.3 404 mm from bone rim 17.28 17.31 17.34 17.38 17.41 17.45 17.48 17.52 17.55 17.59 17.62 17.66 17.69 17.72 17.76 17.79 17.83 17.86 17.90 17.93 17.97 18.00 18.04 18.07 18.10 18.14 18.17 18.21 18.24 18.28 18.31 18.35 18.38 18.42 18.45 18.48 18.52 18.52 18.55 18.59 18.62 18.66 18.69 18.73 18.76 18.80 18.83 18.86 18.90 18.93 18.97 19.00 19.04 19.07 Sc 1.00 1.78 1.76 2.73 0.91 1.93 2.29 1.61 2.34 2.34 2.22 2.50 2.25 2.67 2.00 3.41 2.81 2.21 1.41 2.41 1.98 2.00 1.50 2.17 1.64 1.50 1.22 1.73 2.49 2.28 2.00 3.92 2.88 2.64 2.61 3.02 2.97 2.12 2.18 2.59 2.17 1.37 1.47 2.36 1.89 2.13 2.91 1.76 1.80 3.48 2.95 1.63 4.04 2.38 Mn 0.29 0.35 0.42 0.31 0.38 0.38 0.40 0.20 0.30 0.24 0.21 0.25 0.28 0.20 0.26 0.17 0.27 0.19 0.26 0.23 0.22 0.14 0.18 0.18 0.20 0.18 0.17 0.14 0.13 0.20 0.11 0.13 0.23 0.19 0.14 0.22 0.29 0.18 0.18 0.17 0.31 0.23 0.21 0.28 0.38 0.80 0.67 0.24 0.31 0.42 0.17 0.19 0.23 0.21 SRHS-DU-94 Femur (continued) Fe 1.42 0.99 1.86 0.98 1.90 1.51 1.48 1.13 1.16 1.44 1.12 2.24 1.39 0.92 1.66 1.46 1.19 1.03 1.17 1.42 0.89 1.04 0.85 1.52 1.61 0.88 1.24 1.08 0.72 1.06 0.88 1.34 1.53 1.02 0.93 1.09 0.64 0.97 0.95 0.86 1.69 0.96 1.54 1.07 bd 4.19 2.16 2.21 1.33 bd 1.29 1.98 1.47 1.18 Sr 3190.20 3014.97 3265.35 3289.29 3929.06 3720.36 4225.62 2720.47 1968.98 3492.99 2610.70 3319.64 3740.68 3392.68 2839.76 4334.84 2968.64 3211.75 2806.46 2192.80 2609.44 2293.96 2102.12 2542.50 3554.53 1965.47 2498.00 3518.14 3617.32 4127.17 3029.90 2380.60 3075.42 2658.89 3476.24 2795.51 2153.33 3047.96 2297.63 2203.31 3359.57 1864.48 3569.26 3368.02 3630.71 4874.31 3386.64 2646.47 1872.73 3048.04 3127.04 6017.52 3388.03 2076.00 Y 6.14 8.54 5.36 7.94 8.70 6.07 10.58 7.66 9.49 7.95 10.44 14.39 12.14 13.65 9.79 10.74 11.91 11.13 8.15 11.19 7.76 5.31 7.93 8.50 7.85 5.68 6.70 8.00 7.79 10.56 10.37 12.67 14.81 10.49 13.15 10.91 8.03 9.67 8.54 8.00 11.76 10.51 9.81 8.49 11.81 14.11 8.05 12.83 11.25 17.89 11.47 18.91 12.98 10.62 Ba 1797.48 1687.41 1243.41 1503.09 2350.20 3264.85 3569.66 1352.33 1705.43 1569.47 1492.01 1313.15 2066.16 1330.87 1223.00 1616.06 1743.12 1624.97 1863.89 1723.95 1760.60 nd 1904.57 1172.07 1415.23 2104.56 1400.77 1437.14 1679.27 1234.75 1666.73 3231.12 1996.52 2011.50 1356.00 1618.18 1028.50 1424.31 2084.67 1383.32 3515.47 1031.55 1393.64 1206.20 3471.95 2226.60 2471.04 1806.74 1238.28 2282.70 1038.11 3060.09 1124.86 1061.07 La 4.84 2.33 2.45 2.50 4.17 5.92 5.45 3.16 4.38 5.38 5.33 6.69 6.68 7.98 6.36 6.63 5.26 4.41 4.58 4.07 4.88 3.88 3.59 3.52 2.06 1.69 5.27 5.24 3.98 5.27 5.25 5.96 8.62 6.03 4.51 5.01 4.85 6.06 6.94 4.52 6.84 5.63 7.53 4.81 7.11 7.21 6.33 8.82 6.33 18.04 7.79 10.71 8.13 7.15 Ce 3.69 12.51 1.94 3.47 5.91 5.45 7.26 3.94 6.51 12.65 9.87 22.49 15.81 6.29 7.95 5.41 10.05 5.42 5.03 5.07 7.99 4.41 3.88 7.22 1.39 1.69 5.18 1.98 4.27 7.20 3.05 5.25 7.41 7.07 5.41 4.59 4.99 8.06 8.55 9.53 8.40 7.74 6.68 7.04 10.11 11.64 14.58 8.20 13.95 17.63 8.18 18.01 16.14 10.07 Pr 0.16 0.20 0.39 0.29 0.32 0.48 0.41 0.44 0.62 0.72 0.81 0.67 1.16 0.45 1.28 0.55 0.48 0.31 0.19 0.64 0.19 0.33 0.39 0.39 0.21 0.30 0.28 0.11 0.58 0.53 0.53 0.27 0.66 0.19 0.72 0.31 0.12 0.31 0.49 0.51 0.50 0.51 0.63 0.62 0.42 0.75 0.89 0.67 1.23 1.68 1.37 0.90 1.15 0.76 Nd 0.24 0.97 0.21 0.56 1.55 2.31 1.91 1.47 2.32 1.40 0.88 3.22 3.51 1.50 0.68 1.16 1.52 2.65 1.41 1.50 1.80 2.49 0.42 1.44 2.11 0.77 2.91 0.32 0.28 0.78 1.13 1.17 5.15 0.68 2.23 1.80 0.24 0.52 1.56 2.79 2.68 2.36 3.44 1.94 1.38 2.65 2.09 4.81 2.23 1.65 1.74 5.68 2.81 3.28 bd bd bd 0.34 0.74 0.61 bd bd 0.23 0.72 bd 0.55 0.49 bd bd bd bd bd 0.34 1.20 bd 0.23 bd bd 1.09 bd 0.50 bd bd bd bd 0.47 bd 0.27 1.34 1.08 bd bd bd 1.79 0.32 bd bd bd bd 0.35 0.25 0.26 0.30 0.39 0.26 3.18 0.34 bd Sm Eu 0.17 bd bd 0.10 0.34 0.46 0.17 0.13 1.39 0.07 bd 0.33 0.45 0.07 0.41 0.17 0.08 0.38 bd bd 0.08 0.28 0.08 0.10 0.11 bd 0.15 bd 0.20 0.19 bd bd 0.15 0.16 0.16 bd 0.08 0.19 0.24 bd 0.19 0.23 bd 0.26 0.30 0.53 0.38 0.47 0.18 0.36 0.16 0.27 bd bd bd 0.46 bd bd bd 0.91 1.13 0.87 0.23 0.24 0.63 2.19 bd 0.22 bd 0.27 0.51 0.94 bd bd bd 0.45 bd 0.34 0.71 bd 1.48 bd 1.35 0.62 0.67 0.93 bd bd 0.53 1.79 0.28 bd 1.33 bd 1.59 bd 0.63 0.57 1.32 0.70 0.25 bd 1.18 0.78 1.04 0.45 1.00 1.11 Gd Tb 0.03 0.05 0.06 bd 0.04 0.11 bd bd 0.05 0.03 0.08 0.07 0.09 0.08 bd 0.07 0.06 0.07 0.04 bd 0.06 bd bd 0.04 0.04 0.07 bd bd 0.04 bd 0.04 bd 0.06 0.03 0.06 0.13 0.10 0.07 0.13 0.03 0.19 0.09 bd 0.07 0.16 0.29 0.03 0.06 0.14 0.05 0.09 bd 0.20 0.23 Dy 0.14 bd 0.37 bd 1.08 0.45 0.42 0.32 0.67 0.82 0.52 1.21 0.24 0.44 0.53 0.27 0.50 0.31 0.33 0.29 0.26 0.22 bd 0.84 0.70 0.30 0.97 bd 0.16 0.45 0.49 1.36 0.75 0.79 0.26 0.35 0.55 0.15 0.91 0.22 0.94 1.37 0.15 0.56 0.32 0.86 0.73 0.13 bd 0.38 0.64 0.88 0.33 0.82 Ho 0.14 0.06 0.06 0.25 0.14 0.11 0.21 0.05 bd 0.03 0.28 0.33 0.30 0.22 0.13 0.17 0.06 bd 0.04 0.07 0.13 0.14 0.12 0.08 0.04 0.07 0.18 0.05 0.16 0.23 0.04 0.40 0.25 0.23 0.06 0.22 0.14 0.11 0.03 0.08 0.12 0.19 0.35 0.28 0.16 0.30 0.15 0.03 0.07 0.43 0.29 0.28 0.25 0.07 bd 0.62 0.40 bd 0.79 0.16 0.61 0.35 0.49 0.89 0.34 1.32 0.66 0.84 0.87 0.45 0.28 1.69 0.36 1.12 0.29 0.86 0.13 bd 0.38 bd bd 0.41 0.54 0.16 0.36 1.25 0.27 0.29 1.00 bd 0.30 0.33 0.57 0.35 1.02 0.41 1.01 0.30 0.35 0.56 0.40 0.41 1.10 1.25 0.41 0.47 0.53 0.59 Er Tm 0.07 0.13 bd 0.12 bd 0.07 0.03 0.10 0.08 0.03 bd 0.10 0.11 0.21 0.06 0.16 bd 0.11 0.08 0.17 0.09 0.08 0.12 0.20 0.04 0.11 0.12 0.04 0.20 0.14 0.08 0.11 bd 0.09 0.40 0.08 0.10 bd 0.12 0.13 0.26 0.06 0.18 0.10 bd 0.04 bd bd 0.03 0.18 bd 0.10 0.04 0.03 Yb 1.01 0.82 0.36 0.24 0.26 0.21 0.60 0.15 0.65 0.34 0.30 0.58 0.35 0.48 0.19 0.79 0.55 0.22 bd bd 1.33 0.81 0.18 0.24 0.51 0.43 bd 0.27 0.48 0.44 1.19 2.31 1.45 0.38 1.13 0.51 0.20 0.89 0.38 1.26 0.91 0.91 0.67 0.20 0.23 0.25 0.53 0.18 0.63 1.39 0.18 0.32 bd 0.59 Lu 0.07 0.12 0.10 0.09 bd 0.32 0.04 0.08 0.03 0.12 0.14 0.21 0.16 bd 0.07 0.04 0.17 0.16 0.13 0.15 0.03 0.15 0.06 0.09 0.05 0.08 0.51 0.20 0.09 0.12 0.13 0.06 0.07 bd 0.10 0.05 0.07 0.12 0.10 0.09 0.08 0.13 0.08 0.11 0.09 0.14 0.10 0.07 0.15 0.20 bd bd 0.26 0.11 bd bd bd bd bd 0.06 bd bd bd 0.02 bd 0.05 bd 0.04 bd 0.03 bd bd 0.07 bd bd bd bd bd bd bd bd 0.04 bd 0.03 bd bd 0.05 bd bd bd bd bd bd 0.02 0.03 bd bd bd 0.03 bd bd 0.15 bd 0.04 bd 0.04 0.20 0.05 Th U ƩREE 1.12 11 1.74 18 0.78 6 1.22 8 3.08 15 4.43 18 3.53 18 1.76 11 1.78 18 1.76 23 5.03 19 3.98 40 4.38 30 2.72 19 3.17 19 3.97 16 1.80 20 3.09 17 2.51 13 4.27 14 2.32 17 1.02 14 0.82 9 1.44 15 0.46 9 0.47 6 2.77 18 1.43 9 1.57 12 1.65 16 1.67 13 1.44 20 3.21 25 1.48 16 3.96 18 1.82 16 1.96 12 1.61 17 1.42 21 1.69 21 2.41 24 1.29 20 1.97 21 2.18 17 3.20 22 4.34 26 2.88 27 2.70 24 4.11 28 5.76 44 1.99 22 4.68 41 4.11 31 3.69 25 Ce/Ce* -0.37 2.75 -0.55 -0.11 0.02 -0.35 -0.04 -0.25 -0.11 0.44 0.08 1.25 0.31 -0.40 -0.35 -0.43 0.31 -0.11 -0.12 -0.28 0.32 -0.20 -0.30 0.33 -0.55 -0.45 -0.24 -0.67 -0.36 -0.09 -0.61 -0.30 -0.38 -0.03 -0.31 -0.31 -0.13 0.03 -0.10 0.36 -0.11 -0.06 -0.38 -0.09 0.07 0.07 0.38 -0.33 0.17 -0.33 -0.42 0.18 0.19 -0.07 Ce/Ce** 1.70 12.80 0.32 0.99 3.78 2.19 3.29 1.03 1.33 1.46 0.85 6.61 1.43 1.61 0.40 0.83 2.28 -4.82 -26.14 0.71 -6.97 -7.95 0.69 2.32 -0.83 0.52 -2.25 1.88 0.47 1.02 0.49 3.20 -5.16 4.42 0.80 5.79 3.40 2.01 1.89 5.40 4.30 2.69 2.94 1.23 2.67 1.86 1.47 -20.26 0.91 0.72 0.43 12.82 1.29 2.09 La/La* Y/Ho 2.50 44.2 16.39 152.1 -0.41 87.6 0.17 32.2 18.42 64.4 12.69 54.3 10.75 51.0 0.73 144.0 1.07 209.7 0.02 275.4 -0.30 36.9 11.14 43.0 0.16 40.4 3.26 62.6 -0.53 73.9 0.70 63.5 1.37 189.4 -2.93 194.9 -5.90 200.4 -0.02 154.1 -3.67 59.3 -3.15 38.2 -0.03 64.8 1.59 101.7 -1.87 180.2 -0.09 76.5 -2.61 36.9 8.37 174.1 -0.36 47.2 0.17 46.6 0.43 255.1 11.36 31.9 -3.19 59.3 7.22 45.7 0.31 203.5 -11.68 49.8 4.43 58.3 1.42 84.5 2.04 265.2 -13.84 98.5 -44.24 100.6 7.32 56.3 -21.81 28.3 0.66 30.1 2.81 73.3 1.52 47.1 0.10 53.0 -3.93 407.0 -0.33 156.1 0.12 41.5 -0.36 40.2 -5.78 68.7 0.13 53.0 3.76 156.1 405 mm from bone rim 19.11 19.14 19.18 19.21 19.24 19.28 19.31 19.35 19.38 19.42 19.45 19.49 19.52 19.56 19.59 19.62 19.66 19.69 19.73 19.76 19.80 19.83 19.87 19.90 19.94 19.97 20.00 20.04 20.07 20.11 20.14 20.18 20.21 20.25 20.28 20.32 20.35 20.38 20.42 20.45 20.49 20.52 20.56 20.59 20.63 20.66 20.70 20.73 20.76 20.80 20.83 20.87 20.90 20.94 Sc 2.43 4.83 1.03 2.27 2.81 1.92 2.96 1.87 2.82 3.46 3.51 2.08 1.43 2.01 1.93 1.52 1.66 1.38 1.77 1.15 2.09 1.18 2.23 3.31 2.05 0.98 1.67 1.32 3.07 2.12 3.43 2.71 2.44 2.11 1.56 2.07 2.43 0.67 2.07 1.11 1.91 2.99 2.70 3.08 1.87 3.70 3.35 4.30 1.88 2.34 1.96 1.95 2.46 4.04 Mn 0.12 0.31 0.17 0.16 0.13 0.20 0.22 0.16 0.11 0.18 0.19 0.16 0.47 0.13 0.20 0.18 0.17 0.21 0.27 0.24 0.20 0.17 0.22 0.21 0.18 0.25 0.19 0.13 0.47 0.25 0.23 0.42 0.35 0.22 0.27 0.30 0.19 0.26 0.18 0.18 0.35 0.29 0.17 0.16 0.15 0.29 0.15 0.19 0.18 0.16 0.13 0.23 0.20 0.28 SRHS-DU-94 Femur (continued) Fe 0.95 1.20 1.29 0.82 0.91 0.89 1.16 1.28 0.86 1.09 1.68 1.28 1.28 0.85 1.64 1.59 1.87 0.92 0.89 1.61 1.41 1.30 1.26 1.16 bd 1.08 1.08 1.22 2.48 1.17 1.14 1.84 1.75 0.83 1.80 1.96 1.52 1.23 1.10 0.94 1.40 1.34 1.29 1.25 2.83 1.96 2.01 1.57 1.76 1.10 1.19 1.01 1.67 2.17 Sr 1907.95 4720.99 2709.57 2154.47 2574.99 2373.23 3615.89 3380.14 2836.41 4227.19 4258.99 2780.80 3973.34 2082.52 2542.19 3042.14 3501.82 2100.78 2555.30 2765.72 3097.29 3064.99 3930.71 2816.24 2469.34 3647.50 2440.72 2420.34 3134.16 2966.39 3640.13 4103.92 8723.61 8382.44 3342.90 4597.50 2479.94 2747.97 2964.67 2073.32 5060.29 2939.07 2579.92 3423.04 3954.01 4121.50 2737.77 3108.08 2950.08 2843.42 2816.75 2263.52 2530.48 4789.25 Y 11.86 16.13 14.13 8.09 9.98 10.62 13.83 10.45 12.72 12.02 13.02 10.26 11.32 6.39 7.69 7.09 6.58 5.96 10.49 8.44 10.22 9.23 9.14 7.68 9.22 10.14 7.98 7.18 16.15 11.56 15.79 11.99 14.92 11.37 12.36 16.39 10.15 16.27 8.76 8.80 15.70 16.23 12.47 12.31 14.84 11.98 10.91 11.32 8.90 8.81 9.57 7.09 7.27 9.10 Ba 1350.71 2370.43 2399.10 1006.99 1422.87 2047.63 1590.19 1670.76 1346.44 2798.07 1330.46 1262.46 2486.08 1578.32 1776.85 2083.35 1286.10 1528.38 1093.65 1984.58 1438.97 1454.69 2624.45 1497.48 1629.20 1381.21 1191.08 1034.24 2336.99 1426.66 1469.40 nd nd nd nd nd nd nd nd 1898.81 nd 1310.23 2102.10 1687.34 5457.76 1620.97 1312.68 2054.46 1574.26 1201.27 1209.27 1456.67 1271.46 3302.78 La 6.91 10.02 6.31 6.11 9.57 7.21 7.49 6.54 6.79 8.91 6.93 6.69 6.58 3.29 4.13 3.74 2.23 2.26 3.51 5.26 3.08 3.00 5.08 4.02 5.03 4.64 3.98 3.90 6.74 6.48 7.86 8.36 8.93 5.45 7.67 11.32 4.62 10.27 5.25 3.52 8.74 6.90 6.98 7.85 10.91 8.33 6.80 6.45 4.41 3.61 4.44 3.38 3.69 5.54 Ce 9.75 29.84 11.76 7.09 11.40 6.95 9.32 7.18 5.75 11.53 10.33 5.08 8.64 2.94 3.89 5.82 4.73 4.80 2.86 6.06 6.49 6.21 7.62 6.15 7.78 7.01 5.85 4.62 5.87 5.34 8.51 13.35 13.82 21.55 14.08 13.39 7.04 11.53 8.71 5.65 13.99 7.96 8.26 9.85 13.00 12.32 11.18 23.64 15.00 2.85 14.30 4.30 4.36 7.25 Pr 1.26 1.00 0.85 0.25 0.59 0.44 0.77 0.63 0.51 0.72 0.94 0.57 0.79 0.47 0.41 0.45 bd 0.18 0.15 0.40 0.22 0.46 0.57 0.48 0.12 0.50 0.46 0.61 0.68 0.31 0.60 1.23 1.03 0.58 0.28 0.98 0.48 1.18 0.59 0.33 1.29 1.65 1.19 0.93 0.61 1.01 0.97 0.95 0.60 0.54 0.44 0.19 0.30 0.42 Nd 2.25 3.82 2.86 1.63 2.71 1.08 2.12 1.96 0.65 4.57 4.15 2.07 bd 1.49 1.67 0.59 0.52 1.07 0.59 2.66 0.32 1.36 1.86 1.25 1.72 1.13 1.86 1.53 2.17 1.36 1.89 3.32 0.78 3.39 3.05 1.52 1.92 3.31 1.09 0.65 0.44 2.65 1.21 0.91 6.04 1.90 2.04 1.78 1.47 bd 0.86 1.53 1.12 1.06 Sm 1.47 0.35 bd 0.19 0.29 1.29 0.36 0.88 0.26 bd bd bd bd bd bd bd bd bd 0.35 0.40 bd 0.81 bd bd bd 0.27 0.25 bd bd 0.27 0.32 0.25 bd bd 0.49 0.73 bd 0.36 0.65 1.04 0.53 bd bd bd bd bd 0.24 0.61 bd bd 0.69 0.26 bd 0.85 Eu 0.15 0.11 0.43 bd 0.35 0.23 bd 0.18 bd 0.23 0.25 0.09 bd 0.36 bd 0.21 bd bd 0.32 0.12 0.12 bd bd bd bd bd 0.07 bd 0.13 0.16 0.19 0.37 0.38 bd 0.22 0.22 0.19 bd bd 0.08 bd 0.21 0.22 bd bd bd 0.07 bd 0.10 bd bd 0.16 bd bd Gd 0.24 1.39 1.13 1.94 bd 47.31 0.36 1.74 0.77 0.38 0.82 0.30 bd 0.59 0.85 0.35 bd bd bd 0.79 bd bd 0.44 bd bd 0.27 bd 0.91 0.43 0.27 bd 0.24 0.62 0.31 3.14 0.36 0.21 3.22 0.65 2.57 bd 0.35 0.72 1.08 bd 1.13 0.24 0.30 1.04 bd 0.34 1.04 0.26 bd Tb 0.06 0.58 0.24 0.02 0.03 0.09 0.13 0.10 0.09 bd bd 0.11 bd bd bd 0.04 0.04 0.04 0.08 0.05 bd bd bd bd 0.05 0.03 0.03 bd 0.15 0.06 0.08 0.09 0.15 0.15 0.12 bd 0.10 0.26 0.05 0.12 0.32 0.08 0.04 0.04 0.12 0.10 0.20 0.07 0.17 0.04 0.04 0.03 0.03 0.15 Dy 0.83 1.88 0.55 0.76 1.29 0.50 0.71 1.28 0.38 0.38 0.20 bd 0.38 0.29 0.14 0.69 0.45 0.16 0.52 0.39 0.38 0.20 1.08 1.09 0.80 0.53 0.48 0.15 1.47 0.26 0.16 0.96 0.91 0.91 0.71 0.88 0.51 1.40 0.74 1.14 0.52 1.03 0.70 0.53 0.80 1.66 0.71 1.04 1.19 0.84 0.33 0.89 0.26 0.62 Ho 0.21 0.21 0.10 0.21 0.32 0.16 0.18 0.25 0.19 bd 0.20 0.07 0.14 0.18 0.14 0.09 0.15 0.04 0.04 0.19 0.05 0.10 0.11 0.18 0.15 bd 0.15 0.15 0.10 0.17 0.16 0.33 0.11 0.04 0.21 0.49 0.18 0.35 0.11 0.25 0.45 0.26 0.04 0.26 0.28 0.21 0.15 0.11 bd 0.04 bd 0.13 0.07 0.10 Er 1.04 0.37 0.76 0.62 0.62 0.41 0.38 0.78 1.10 0.41 0.65 1.31 1.05 0.47 0.15 0.37 0.49 1.02 bd 0.42 0.20 bd 0.23 0.79 0.21 0.14 0.52 0.16 0.68 0.43 0.86 1.32 0.33 0.16 0.52 0.57 0.78 1.15 0.92 0.13 0.27 0.18 0.57 0.57 1.22 0.45 0.52 0.32 0.18 0.55 0.36 bd 0.42 0.44 Tm 0.03 0.16 0.07 0.05 0.10 0.15 0.08 0.20 0.09 bd 0.05 0.07 0.18 0.03 bd 0.04 0.11 0.07 bd bd bd 0.05 bd bd bd 0.03 0.11 bd 0.20 0.03 0.11 0.06 0.11 0.04 0.08 0.17 bd 0.13 0.03 0.15 0.12 0.08 0.17 0.04 0.08 0.03 0.03 0.04 0.08 0.16 0.12 bd 0.03 0.10 Yb 0.35 1.49 1.81 0.83 0.83 0.36 1.03 0.62 0.55 0.83 0.58 0.44 1.12 0.63 0.61 0.25 bd 0.45 1.00 0.56 0.83 0.57 bd 0.26 bd 0.96 0.70 0.21 0.92 0.58 0.68 0.70 0.22 0.22 1.03 0.77 0.15 0.25 0.31 0.55 2.63 0.25 0.77 0.25 0.70 0.60 0.52 1.29 0.25 0.24 0.24 0.74 bd 0.30 Lu 0.19 0.09 0.18 0.05 0.11 0.07 0.05 0.11 0.03 0.10 0.11 0.16 bd 0.08 bd bd bd bd 0.09 0.10 0.05 0.10 0.11 0.14 0.16 0.03 0.13 bd 0.17 0.03 0.12 0.10 0.08 0.04 0.03 0.14 bd 0.23 0.08 0.10 0.14 0.23 0.28 0.23 0.17 0.11 0.16 0.04 0.23 0.04 0.09 0.03 0.10 bd Th 0.05 0.14 bd 0.06 bd 0.05 0.04 bd bd bd bd bd bd bd 0.03 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.03 0.02 0.21 0.02 0.03 0.08 0.08 0.10 0.14 bd 0.11 0.10 0.06 0.09 bd 0.10 bd 0.03 0.10 0.08 0.25 U ƩREE 4.11 25 5.95 51 3.95 27 4.73 20 3.75 28 2.62 66 3.79 23 3.73 22 1.83 17 5.91 28 4.38 25 1.51 17 2.13 19 1.53 11 0.91 12 0.97 13 0.61 9 0.91 10 0.42 10 0.78 17 1.24 12 1.25 13 0.99 17 1.95 14 1.79 16 1.21 16 1.31 15 1.73 12 2.96 20 1.91 16 2.74 22 4.47 31 4.55 27 2.70 33 6.62 32 5.68 32 2.28 16 4.25 34 1.88 19 1.90 16 4.23 29 1.26 22 3.40 21 2.45 23 3.34 34 6.01 28 2.48 24 1.77 37 2.52 25 1.01 9 1.70 22 2.37 13 1.90 11 1.70 17 Ce/Ce* -0.23 0.99 0.13 -0.07 -0.11 -0.28 -0.18 -0.26 -0.39 -0.09 -0.09 -0.47 -0.17 -0.46 -0.37 -0.02 0.26 0.50 -0.35 -0.17 0.53 0.20 -0.03 -0.03 0.32 -0.01 -0.06 -0.32 -0.42 -0.35 -0.22 -0.06 -0.01 1.60 0.50 -0.18 0.01 -0.28 0.07 0.09 -0.05 -0.45 -0.34 -0.20 -0.09 -0.07 -0.02 1.16 1.07 -0.54 1.16 -0.02 -0.17 -0.06 Ce/Ce** 0.62 3.93 1.58 28.77 3.45 1.45 1.18 1.24 0.81 10.80 1.78 1.10 0.96 0.69 1.39 0.94 1.15 10.17 2.56 28.84 2.19 1.38 1.50 1.22 -3.52 1.23 1.83 0.70 0.95 2.80 1.55 1.04 0.90 14.45 -5.11 1.04 2.10 0.97 1.20 1.40 0.68 0.37 0.48 0.73 -2.92 0.99 0.98 2.01 2.30 0.45 2.68 -7.40 1.80 1.60 La/La* Y/Ho -0.29 56.9 2.19 75.5 0.77 136.1 -9.13 37.9 11.33 31.0 1.63 67.9 0.73 78.4 1.22 41.9 0.48 67.7 -5.82 66.3 3.07 64.8 2.25 137.0 0.25 78.4 0.56 35.3 3.09 55.2 -0.07 82.6 -0.14 43.7 -9.10 153.8 6.92 244.9 -4.87 43.7 0.63 216.6 0.26 93.6 1.03 84.6 0.43 42.2 -2.99 61.7 0.39 57.3 2.38 53.0 0.05 48.2 1.19 154.1 10.55 69.9 1.84 100.5 0.19 36.1 -0.13 130.7 -7.17 301.6 -3.10 59.7 0.39 33.8 2.69 57.2 0.60 46.5 0.18 82.9 0.44 34.9 -0.38 34.7 -0.49 63.4 -0.38 285.4 -0.12 46.6 -2.67 53.1 0.09 58.0 -0.01 73.5 -0.11 101.9 0.18 156.2 -0.04 210.5 0.37 133.1 -3.65 55.8 2.49 111.8 1.16 88.6 406 Sc 3.92 1.75 2.54 3.04 3.12 3.05 1.87 2.80 4.02 4.25 2.31 mm from bone rim 0.00 0.03 0.07 0.10 0.14 0.17 0.21 0.24 0.28 0.31 0.35 0.38 0.41 0.45 0.48 0.52 0.55 0.59 0.62 0.66 0.69 0.73 0.76 0.79 0.83 0.86 0.90 0.93 0.97 1.00 1.04 1.07 1.11 1.14 1.17 1.21 1.24 1.28 1.31 Sc 36.24 35.55 33.79 38.98 31.32 20.04 19.06 23.12 21.90 20.47 20.77 31.78 24.63 17.03 23.10 19.89 15.40 20.90 17.43 19.89 20.71 18.21 17.29 16.51 14.57 13.91 11.23 15.92 15.93 18.89 13.81 25.82 15.74 16.35 11.47 14.47 14.26 9.64 11.27 SRHS-DU-126 Femur mm from bone rim 20.97 21.01 21.04 21.08 21.11 21.14 21.18 21.21 21.25 21.28 21.32 Mn 0.33 0.30 0.24 0.28 0.20 0.13 0.21 0.12 0.23 0.16 0.17 0.24 0.17 0.81 0.55 0.50 0.40 0.25 0.19 0.27 0.33 0.29 0.38 0.31 0.18 0.21 0.13 0.29 0.18 1.00 3.48 1.69 1.43 0.75 0.46 0.46 0.35 0.23 0.19 Mn 0.33 0.28 0.17 0.25 0.19 0.19 0.15 0.27 0.21 0.30 0.31 SRHS-DU-94 Femur (continued) Fe 1.33 2.49 2.12 4.52 1.33 1.33 1.31 0.93 1.45 0.89 2.04 1.40 1.37 bd bd 1.24 1.58 1.46 1.11 1.24 1.28 1.65 1.02 1.68 1.73 1.76 1.17 0.94 0.81 1.21 4.55 1.49 2.58 1.99 1.88 1.00 1.25 0.88 0.85 Fe 2.00 2.38 1.40 2.13 2.05 1.45 1.55 1.47 1.44 1.39 1.39 Sr 4174.38 5753.34 2897.43 2687.32 2700.63 3288.61 3845.17 2830.23 5527.55 2411.45 2364.67 3269.39 2304.84 5320.26 4164.15 3325.21 2888.80 3414.31 3185.51 4865.68 5790.76 3417.81 3962.43 2972.27 2840.12 3127.91 2201.06 3290.47 2238.39 3561.78 5308.07 4004.78 3672.84 3079.93 2500.97 2877.54 3337.05 2805.40 2138.91 Sr 4477.78 4159.90 2449.72 2889.52 4253.34 3703.94 2619.22 2872.20 2972.25 3453.20 3277.19 Y 194.73 367.70 287.40 295.29 194.03 225.48 224.07 165.61 312.05 187.55 130.30 166.87 160.42 158.16 187.84 136.99 127.46 131.34 85.41 177.24 172.72 156.35 123.05 106.38 83.43 82.19 62.10 71.98 55.85 105.70 198.36 148.09 107.08 112.83 77.01 71.49 124.24 59.98 68.51 Y 8.83 7.57 4.65 10.74 11.81 10.06 11.40 12.68 11.12 16.73 11.03 Ba 2340.01 2095.97 1857.46 2013.10 1598.33 1429.91 1461.48 842.50 2628.00 1160.50 1515.56 nd 1691.32 2050.87 4272.70 2626.34 1723.64 1994.27 1687.61 1294.10 1754.36 1544.79 1920.06 2571.26 992.85 2004.75 1182.36 1663.32 1777.21 1637.91 nd 1649.87 2382.73 1746.58 1722.90 2015.35 1578.22 2181.06 1846.63 Ba 2684.55 1368.45 1817.04 2173.97 1729.37 1195.11 1291.09 1477.53 1624.45 1731.30 1449.84 La 283.99 348.10 202.16 348.34 282.52 172.02 207.08 96.12 262.01 151.92 129.90 185.77 164.85 250.63 188.54 101.47 111.65 100.85 78.73 86.32 138.48 108.93 87.91 93.29 80.13 54.55 33.26 37.26 42.14 57.43 152.35 77.05 83.90 71.85 64.84 73.59 64.59 44.60 38.91 La 3.93 2.96 2.80 6.31 5.75 5.29 9.14 6.75 4.94 8.54 5.33 Ce 867.89 bd 540.85 601.96 bd 433.98 469.47 370.18 452.89 262.86 337.40 449.35 372.73 501.86 505.69 210.01 177.57 157.90 124.16 135.33 253.45 303.40 162.32 236.32 190.68 72.18 32.87 54.22 54.19 208.23 432.42 277.97 182.34 119.77 114.68 153.10 103.69 bd 61.11 Ce 4.27 6.02 4.57 10.06 6.56 6.53 7.58 9.91 12.02 10.21 5.33 Pr 55.97 85.42 46.26 90.73 51.80 40.41 40.45 22.15 42.31 17.11 33.06 45.38 23.74 59.31 40.63 29.24 21.08 27.65 12.47 9.40 30.95 27.48 14.14 17.24 20.38 6.11 4.61 8.61 4.97 14.98 30.53 22.26 16.17 13.21 19.35 12.15 10.79 5.42 7.45 Pr 0.41 0.56 0.05 0.90 0.44 0.58 0.48 0.43 0.76 0.63 0.38 Nd 164.48 243.87 197.69 240.74 235.27 133.66 136.16 86.82 162.58 63.90 79.09 126.33 82.03 241.30 100.13 88.66 56.09 42.80 35.39 39.43 62.45 80.71 45.72 52.37 51.75 23.03 15.74 16.40 14.42 57.97 89.79 42.12 41.03 42.17 32.09 39.84 30.53 17.83 20.83 Nd 1.37 bd 0.57 1.25 1.10 4.25 2.81 1.26 2.24 2.01 0.64 Sm 31.63 43.27 39.38 37.08 43.42 18.98 22.92 11.24 23.95 12.18 16.34 14.49 18.56 46.50 17.39 14.17 10.91 8.18 5.57 6.69 10.27 15.86 8.43 12.86 7.30 4.22 2.51 3.56 3.78 8.90 17.04 12.48 9.69 5.84 3.88 6.81 4.55 5.45 3.48 bd 0.98 0.34 0.75 bd 0.25 bd bd bd 0.80 bd Sm Eu 6.81 12.11 9.56 13.83 11.30 6.28 6.37 4.81 5.40 5.53 6.01 7.86 4.63 9.38 4.33 2.73 3.52 3.46 1.72 2.84 4.35 3.71 2.45 3.35 1.82 1.15 0.70 0.88 2.31 2.21 3.85 2.50 3.21 2.37 1.59 2.38 2.03 1.74 1.13 Eu 0.37 0.10 0.10 bd 0.40 0.08 bd bd bd 0.36 bd Gd 31.29 37.64 55.56 57.83 42.24 24.34 29.17 17.40 24.42 13.33 29.60 22.31 16.69 35.88 23.93 18.52 13.63 11.41 9.28 16.98 18.37 14.27 12.84 15.53 8.31 5.63 4.87 5.74 7.55 10.97 19.67 14.39 9.41 7.42 15.74 7.74 110.89 7.70 4.30 Gd 0.41 1.30 bd 0.37 bd 1.77 bd 1.49 0.66 bd bd Tb 3.44 6.49 8.52 7.34 4.29 3.32 3.56 2.23 2.62 2.17 2.16 3.35 2.16 5.40 3.94 1.77 1.90 1.39 1.26 1.81 2.51 1.62 2.11 2.36 0.91 0.80 0.49 0.87 1.08 1.95 1.68 2.17 1.55 1.96 1.21 0.73 1.00 1.08 0.81 bd bd 0.04 0.09 0.16 bd bd 0.13 0.20 0.05 bd Tb Dy 22.56 31.99 42.67 46.34 27.48 19.55 18.12 17.31 21.22 15.07 16.65 26.15 20.01 34.63 26.42 11.97 18.50 9.29 6.58 9.21 18.42 13.11 13.97 11.16 8.49 6.56 5.08 7.19 8.43 12.21 14.26 11.76 9.09 9.49 7.96 10.13 8.48 8.67 8.52 Dy 1.00 0.16 0.66 0.54 0.21 0.50 0.18 1.47 0.16 0.78 1.68 Ho 6.57 8.19 7.03 7.66 4.98 4.17 4.38 3.11 4.25 3.63 4.05 4.49 4.61 6.11 4.70 3.11 4.22 2.81 2.29 2.10 3.56 2.27 3.28 2.68 2.24 1.72 1.32 1.55 2.07 2.06 4.34 2.90 2.67 1.72 1.74 1.58 1.58 2.24 2.20 Ho 0.25 0.16 0.12 0.04 0.11 0.09 0.23 0.05 0.20 0.29 0.05 Er 15.52 18.28 24.24 28.31 19.20 13.01 15.37 6.14 17.98 10.94 11.97 17.65 12.74 15.37 15.51 8.92 13.47 6.96 8.45 6.79 12.81 8.79 9.30 8.81 5.03 5.41 4.15 5.66 9.61 6.55 10.13 9.18 11.33 6.43 8.74 4.80 5.03 4.87 5.17 Er 0.21 0.69 0.17 0.19 2.58 0.27 0.19 1.20 1.42 1.49 0.20 Tm 2.22 2.69 2.20 2.37 2.28 1.50 1.79 0.96 2.42 1.22 1.66 1.96 1.35 2.43 2.29 1.42 1.03 0.95 0.96 1.41 1.98 0.53 0.96 1.53 0.87 0.53 0.66 0.69 1.32 0.76 1.68 1.26 1.10 0.83 0.76 0.77 0.61 0.62 0.75 Tm 0.05 bd 0.04 0.09 0.10 0.03 0.13 0.17 0.08 0.09 0.04 Yb 13.10 15.61 10.09 14.45 9.58 9.11 9.35 5.50 13.04 8.50 9.78 13.37 6.09 11.06 8.09 7.42 7.90 6.72 6.88 8.03 12.65 8.20 10.40 7.22 6.50 3.50 4.12 3.51 6.25 6.73 9.17 7.83 9.82 6.02 5.50 4.99 5.17 3.96 4.23 Yb 1.45 0.23 0.24 bd 2.17 0.90 0.26 0.26 0.95 1.13 0.81 Lu 1.35 1.56 2.54 3.35 1.05 1.12 1.18 0.83 2.21 1.13 1.33 2.23 0.85 1.76 1.19 0.97 1.01 0.73 1.00 1.17 1.55 1.00 1.15 1.43 0.84 0.41 0.53 0.57 0.74 1.01 1.26 1.28 1.80 1.56 0.95 0.89 0.47 0.43 0.60 Lu 0.05 0.13 0.04 0.14 0.17 0.03 0.05 0.10 0.04 0.05 0.05 bd 0.22 1.32 1.01 0.11 0.10 0.02 0.08 0.10 0.06 0.08 0.26 0.12 0.35 0.26 0.11 0.02 0.04 0.08 0.10 bd 0.11 0.08 bd 0.12 0.03 0.02 bd bd 0.50 0.26 0.29 0.08 0.08 0.07 0.02 0.02 bd 0.02 Th Th 0.28 0.10 0.40 0.36 0.81 0.15 0.04 0.07 0.16 0.12 0.26 U ƩREE 12.62 1507 14.12 855 19.79 1189 17.38 1500 14.57 735 15.02 881 12.42 965 13.36 645 22.03 1037 11.20 570 5.67 679 12.34 921 6.66 731 13.50 1222 5.88 943 11.84 500 7.83 442 5.66 381 3.92 295 5.04 328 5.83 572 4.36 590 2.74 375 3.10 466 3.44 385 2.25 186 3.40 111 2.91 147 4.07 159 8.88 392 9.62 788 6.14 485 5.16 383 4.80 291 4.24 279 5.09 319 5.77 349 7.70 105 4.75 159 U ƩREE 3.62 14 1.28 13 1.57 10 2.61 21 4.25 20 4.74 21 2.01 21 4.02 23 4.29 24 3.80 26 2.39 14 Ce/Ce* 0.60 -0.04 0.31 -0.20 -0.01 0.22 0.20 0.88 -0.01 0.12 0.21 0.15 0.35 -0.03 0.35 -0.10 -0.15 -0.30 -0.09 0.02 -0.09 0.30 0.05 0.37 0.11 -0.14 -0.40 -0.29 -0.18 0.67 0.48 0.57 0.15 -0.10 -0.24 0.18 -0.10 0.17 -0.16 Ce/Ce* -0.28 0.09 0.43 -0.05 -0.18 -0.20 -0.36 0.09 0.41 -0.13 -0.27 Ce/Ce** 1.59 0.83 1.80 0.64 1.72 1.22 1.34 2.27 1.42 1.97 0.92 0.98 1.85 1.21 1.14 0.76 0.81 0.44 1.00 2.15 0.68 1.13 1.27 1.44 0.87 1.53 0.83 0.51 1.11 1.86 1.46 1.02 1.05 0.99 0.46 1.41 0.96 1.71 0.81 Ce/Ce** 1.20 0.86 -8.01 0.83 1.39 -11.35 6.14 2.38 1.62 1.79 1.09 La/La* Y/Ho -0.01 29.6 -0.24 44.9 1.07 40.9 -0.34 38.6 2.64 38.9 -0.01 54.1 0.23 51.2 0.49 53.2 1.01 73.4 1.66 51.6 -0.38 32.2 -0.25 37.1 0.75 34.8 0.64 25.9 -0.25 40.0 -0.30 44.0 -0.08 30.2 -0.56 46.7 0.18 37.2 3.00 84.2 -0.38 48.5 -0.23 68.9 0.39 37.5 0.10 39.7 -0.35 37.3 1.75 47.8 0.78 46.9 -0.42 46.5 0.62 26.9 0.27 51.2 -0.03 45.7 -0.54 51.1 -0.14 40.1 0.19 65.8 -0.58 44.1 0.39 45.4 0.11 78.5 0.90 26.8 -0.04 31.1 La/La* Y/Ho 1.30 35.3 -0.32 47.7 -4.88 37.5 -0.19 238.9 1.16 110.8 -2.88 108.6 -13.51 50.2 2.07 279.4 0.26 54.6 1.99 57.3 0.75 238.9 407 mm from bone rim 1.35 1.38 1.42 1.45 1.49 1.52 1.55 1.59 1.62 1.66 1.69 1.73 1.76 1.80 1.83 1.87 1.90 1.93 1.97 2.00 2.04 2.07 2.11 2.14 2.18 2.21 2.25 2.28 2.31 2.35 2.38 2.42 2.45 2.49 2.52 2.56 2.59 2.63 2.66 2.69 2.73 2.76 2.80 2.83 2.87 2.90 2.94 2.97 3.01 3.04 3.07 3.11 3.14 3.18 Sc 13.70 12.60 15.16 12.65 16.21 11.35 14.25 11.28 11.70 13.50 11.61 9.78 10.35 10.99 13.63 5.41 8.23 4.70 2.64 11.51 6.74 7.79 6.35 6.98 9.41 6.80 7.50 7.17 6.27 9.28 8.07 5.54 3.52 2.87 2.82 3.59 7.41 7.97 4.26 8.45 6.20 4.79 5.67 8.87 7.39 7.05 7.78 8.55 11.81 7.78 7.84 8.14 8.04 9.41 Mn 0.21 0.27 0.22 0.30 0.28 0.26 0.21 0.15 0.30 0.24 0.23 0.22 0.24 0.17 0.24 0.21 0.48 0.23 0.41 0.21 0.26 0.31 0.27 0.17 0.21 0.25 0.25 0.19 0.15 0.19 0.18 0.51 0.15 0.14 0.18 0.15 0.22 0.27 0.93 0.47 0.28 0.34 0.26 0.25 0.30 0.29 0.15 0.35 0.23 0.20 0.28 0.20 0.20 0.42 SRHS-DU-126 Femur (continued) Fe 1.08 2.25 1.17 1.33 1.76 0.86 1.68 1.60 1.41 0.85 1.19 0.91 0.99 1.10 1.58 1.59 2.06 1.49 1.84 1.51 0.93 1.36 0.99 1.07 0.90 1.23 1.04 1.31 1.24 1.24 0.94 0.77 1.16 1.21 1.26 0.99 1.17 1.20 1.72 1.50 1.38 1.37 1.10 1.42 1.82 1.18 0.85 1.12 1.26 0.88 1.37 1.66 1.10 1.02 Sr 3293.47 4225.54 2683.94 3382.98 2940.36 2670.72 4938.90 1921.62 3851.91 4865.11 4333.68 2527.20 4256.55 1651.74 4985.35 2695.75 2765.27 2825.08 2294.95 3152.92 4837.65 10293.58 3875.86 3608.39 5394.19 4099.74 2967.33 4821.25 2639.78 4186.82 3642.50 3342.39 3602.25 2091.81 2944.70 2492.00 4070.42 3470.20 4083.64 3220.56 3593.60 2423.28 3166.68 4065.70 3672.92 3010.77 2941.74 3343.52 4413.96 3958.22 2020.89 3479.57 3561.27 2625.99 Y 103.54 134.62 84.81 108.52 90.10 79.95 118.31 59.86 137.76 116.51 103.52 78.64 128.59 47.09 54.64 21.79 27.23 19.03 13.45 56.96 39.95 71.37 56.06 47.07 61.16 76.92 54.43 69.14 48.21 93.96 64.43 34.05 38.98 21.49 15.39 22.01 44.66 52.88 38.48 52.55 46.24 36.72 42.39 46.71 58.76 44.91 44.08 61.33 66.47 69.48 41.15 66.20 51.66 36.44 nd 2324.79 1340.63 1873.62 2651.96 1488.24 1893.29 1448.67 2918.98 1814.93 2565.31 1324.95 1898.22 1273.94 1571.67 1494.61 2108.47 2119.58 nd 2246.61 7363.33 nd nd 2000.05 3109.36 3354.34 1743.76 2589.93 1696.77 2262.23 1707.83 1920.04 1789.59 1959.49 1998.15 1522.04 1806.07 2131.40 2501.90 2232.25 2455.98 1852.78 2811.76 2314.97 2967.09 1519.50 1099.31 3058.30 1591.02 2446.50 1590.57 2311.09 1922.30 1144.77 Ba La 52.30 71.28 37.53 39.18 48.23 34.48 62.91 50.49 64.84 41.81 48.85 27.46 39.48 13.05 17.73 8.73 11.03 9.03 13.24 30.16 22.61 24.77 22.58 19.69 22.23 42.91 16.54 27.22 15.71 29.99 29.84 12.25 9.63 5.28 3.71 9.08 17.47 16.80 15.82 15.91 13.62 11.88 20.59 15.15 28.31 16.30 13.48 20.67 25.95 34.18 14.89 19.29 14.66 14.42 Ce 116.49 136.81 64.94 76.56 69.05 60.95 140.32 98.03 170.58 96.07 96.10 60.32 75.18 32.60 30.96 12.22 16.11 10.10 8.11 49.71 38.02 58.69 46.43 48.33 49.59 106.21 33.97 45.13 39.21 56.68 60.79 35.33 27.21 10.50 10.73 14.21 25.24 54.38 67.62 34.13 33.64 21.50 35.38 47.54 93.22 26.23 26.08 52.01 39.91 47.99 29.99 33.54 28.06 27.75 Pr 8.70 12.60 6.25 8.47 6.40 4.06 10.15 9.52 11.18 8.94 8.54 7.15 6.04 3.17 4.97 1.84 0.80 1.14 1.98 5.28 4.54 4.83 3.40 3.40 4.82 5.20 2.57 4.40 1.67 4.55 3.03 2.46 1.20 1.19 0.78 1.25 2.27 2.80 4.33 3.36 2.20 2.92 3.21 2.93 4.93 4.01 2.48 4.86 2.49 5.35 3.52 2.20 2.74 1.83 Nd 27.19 37.57 21.80 21.48 19.54 13.97 41.46 25.58 38.08 24.28 29.07 16.71 18.12 8.75 10.52 3.67 4.69 1.94 3.09 21.36 11.88 13.92 14.98 10.36 11.90 29.11 9.03 10.03 9.29 15.93 12.22 5.14 6.20 2.29 2.28 5.29 7.79 6.40 13.24 11.26 7.46 5.02 11.89 6.84 12.74 10.41 6.31 17.00 11.01 11.53 7.77 11.03 10.38 6.20 Sm 5.12 4.62 2.77 3.97 5.81 4.17 6.35 6.87 9.70 3.28 6.25 4.26 3.48 0.93 1.90 0.93 0.98 2.08 1.17 3.88 2.23 5.08 2.62 3.99 2.69 4.39 0.75 3.71 2.54 2.07 2.01 2.63 bd 0.28 0.55 0.75 1.17 3.34 1.31 2.00 1.84 0.83 3.49 2.75 4.20 1.55 1.32 3.53 2.60 2.37 2.66 2.51 1.72 1.97 Eu 0.90 1.98 1.83 0.77 2.16 1.18 2.24 0.96 2.39 2.10 1.50 1.00 0.63 0.28 0.57 0.28 bd 0.31 0.35 1.02 1.33 1.51 1.72 1.19 0.53 2.21 1.12 0.88 0.50 1.67 1.00 0.78 0.31 0.25 0.11 0.39 0.58 0.19 0.78 0.71 0.49 0.37 0.86 0.32 0.56 1.15 0.64 0.93 0.34 0.79 0.63 0.60 1.17 1.06 Gd 10.05 6.64 4.35 5.84 10.16 5.62 7.05 3.23 6.37 6.80 7.66 7.17 3.68 5.01 3.17 2.56 1.97 2.08 0.47 4.10 4.14 6.34 2.62 5.26 2.24 4.05 6.02 3.71 3.17 3.25 2.68 5.25 1.05 0.69 0.18 1.50 0.78 2.09 4.60 1.80 3.49 1.65 3.69 1.06 5.59 5.41 1.49 5.39 9.53 3.26 1.95 3.52 0.98 2.36 Tb 1.29 0.97 1.11 0.64 1.47 0.62 2.30 0.79 1.09 1.20 0.89 0.43 0.83 0.38 0.49 0.25 0.26 0.09 0.08 1.01 0.72 0.87 0.59 0.56 0.83 0.64 0.43 0.44 0.30 1.06 0.45 0.54 0.14 0.18 0.18 0.34 0.23 0.35 0.55 0.62 0.28 0.28 0.37 0.28 0.72 0.42 0.45 0.49 0.86 0.78 0.34 0.60 0.50 0.70 Dy 10.05 9.21 7.96 4.81 10.68 4.29 9.56 5.54 11.41 7.71 9.69 5.39 5.31 3.18 3.58 1.14 1.33 1.40 1.60 5.82 4.38 4.98 5.14 4.71 4.51 8.78 3.60 4.85 2.90 8.13 4.82 3.04 1.76 1.08 0.63 1.66 2.88 2.87 3.11 5.39 2.70 1.56 4.63 3.94 4.34 5.79 3.17 5.69 6.09 5.23 3.21 4.56 3.13 2.32 Ho 2.85 2.54 1.93 1.43 2.22 1.53 2.18 2.02 3.18 2.15 2.54 2.11 1.65 0.54 1.36 0.40 0.57 0.10 0.40 1.64 1.09 1.70 1.44 0.89 0.82 2.19 0.94 0.97 1.03 1.37 1.01 0.87 0.42 0.30 0.29 0.57 0.55 0.99 0.96 0.83 0.56 0.82 1.43 0.88 1.11 1.44 1.54 1.22 1.27 1.55 0.91 0.80 0.60 0.48 Er 7.46 6.54 4.58 6.42 6.26 4.60 6.58 5.66 8.80 6.70 7.07 6.16 5.95 1.60 2.39 0.88 1.46 0.42 1.76 4.06 4.12 6.32 3.67 4.69 2.78 7.83 4.66 4.66 1.94 7.65 2.89 2.19 2.26 0.67 0.20 1.92 2.11 2.48 3.07 3.66 3.27 2.01 3.98 3.99 4.52 4.06 3.66 5.36 5.14 4.15 2.86 4.33 1.85 3.18 Tm 1.30 1.25 0.97 1.39 1.01 0.75 0.88 0.92 1.19 0.87 0.56 1.10 0.92 0.26 0.48 0.22 0.26 0.06 0.27 0.40 0.48 0.30 0.58 0.25 0.55 0.91 0.35 0.40 0.30 0.83 0.49 0.31 0.21 0.13 0.24 0.28 0.43 0.54 0.46 0.42 0.36 0.22 0.45 0.62 0.65 0.56 0.44 0.63 0.61 0.52 0.68 0.64 0.51 0.46 Yb 7.54 8.20 5.06 5.80 6.44 4.14 4.84 3.15 5.70 6.32 5.73 3.98 5.22 2.11 1.35 1.82 0.87 0.74 1.33 2.75 4.98 2.48 3.72 2.57 1.75 5.28 3.74 2.98 1.65 4.41 1.43 1.35 1.59 1.37 0.26 2.00 2.92 2.96 2.49 2.98 1.69 1.08 4.22 2.25 2.81 3.43 2.35 4.27 5.54 3.78 2.76 2.14 2.96 3.63 Lu 1.26 0.60 0.59 0.70 0.99 0.84 0.89 0.42 0.79 1.41 0.82 0.61 0.73 0.31 0.79 0.24 0.39 0.10 0.12 0.33 0.67 0.70 0.89 0.50 0.38 1.15 1.01 0.35 0.63 0.54 0.58 0.19 0.31 0.14 0.07 0.27 0.26 0.44 0.71 0.70 0.31 0.34 0.51 0.61 0.46 0.61 0.50 0.70 0.83 0.73 0.37 0.26 0.26 0.72 Th 0.11 0.29 0.81 0.30 0.22 0.83 0.26 0.04 0.06 0.02 0.02 0.09 bd 0.04 0.09 0.09 bd bd bd bd bd bd 0.03 0.04 bd bd 0.04 bd bd bd 0.02 bd bd bd bd bd bd bd 0.04 bd bd 0.01 0.06 0.08 bd bd 0.08 0.02 bd bd bd bd bd bd U ƩREE 5.01 253 7.12 301 4.20 162 2.56 177 5.63 190 6.97 141 6.67 298 6.59 213 7.57 335 8.33 210 8.64 225 5.88 144 4.80 167 1.07 72 2.74 80 1.83 35 1.05 41 1.15 30 1.32 34 1.37 132 2.94 101 3.09 133 5.20 110 3.32 106 2.38 106 6.24 221 3.81 85 2.45 110 3.02 81 7.01 138 3.50 123 3.45 72 0.96 52 0.89 24 0.78 20 2.03 40 3.51 65 2.54 97 4.18 119 3.65 84 2.78 72 2.38 50 3.70 95 4.18 89 4.65 164 3.47 81 2.68 64 3.36 123 3.87 112 17.75 122 2.99 73 3.63 86 2.42 70 1.85 67 Ce/Ce* 0.25 0.06 -0.03 -0.02 -0.12 0.13 0.27 0.04 0.46 0.16 0.09 0.01 0.11 0.19 -0.23 -0.29 0.06 -0.30 -0.64 -0.09 -0.12 0.25 0.20 0.36 0.12 0.56 0.19 -0.05 0.64 0.10 0.36 0.50 0.77 -0.02 0.48 -0.05 -0.11 0.82 0.92 0.09 0.41 -0.14 -0.01 0.66 0.82 -0.24 0.05 0.22 0.04 -0.19 -0.03 0.12 0.03 0.20 Ce/Ce** 1.44 1.13 1.24 0.84 1.14 1.77 1.99 1.00 1.78 1.05 1.31 0.75 1.30 1.01 0.53 0.55 7.77 0.70 0.31 1.34 0.80 1.23 2.21 1.50 0.95 6.28 1.58 0.91 6.98 1.49 2.84 1.22 5.20 0.72 1.42 1.74 1.31 1.72 1.66 1.17 1.76 0.58 1.40 1.45 1.78 0.62 0.99 1.28 2.63 0.77 0.74 3.27 1.34 1.75 La/La* Y/Ho 0.27 36.3 0.12 53.0 0.54 43.9 -0.24 76.1 0.54 40.7 1.13 52.4 1.45 54.3 -0.07 29.6 0.42 43.3 -0.17 54.2 0.40 40.8 -0.41 37.3 0.31 77.7 -0.25 86.7 -0.49 40.3 -0.35 54.7 -10.10 47.7 0.00 200.2 -0.19 33.7 1.17 34.7 -0.15 36.7 -0.03 41.9 2.65 38.9 0.18 53.1 -0.26 74.4 -10.13 35.2 0.67 57.8 -0.07 71.6 -12.69 46.7 0.71 68.5 2.72 63.8 -0.29 39.0 65.36 92.8 -0.40 70.9 -0.07 52.8 2.36 38.4 0.92 81.1 -0.09 53.2 -0.25 40.0 0.13 63.3 0.50 82.4 -0.49 44.5 0.88 29.7 -0.20 53.1 -0.04 52.9 -0.31 31.2 -0.10 28.7 0.10 50.5 4.92 52.3 -0.08 44.7 -0.38 45.3 20.04 83.0 0.67 86.1 0.90 75.8 408 mm from bone rim 3.21 3.25 3.28 3.32 3.35 3.39 3.42 3.46 3.49 3.52 3.56 3.59 3.63 3.66 3.70 3.73 3.77 3.80 3.84 3.87 3.90 3.94 3.97 4.01 4.04 4.08 4.11 4.15 4.18 4.22 4.25 4.28 4.32 4.35 4.39 4.42 4.46 4.49 4.53 4.56 4.60 4.63 4.66 4.70 4.73 4.77 4.80 4.84 4.87 4.91 4.94 4.98 5.01 5.01 Sc 10.45 9.05 8.50 6.57 8.57 7.82 7.53 8.07 7.68 6.48 8.15 7.03 8.63 4.37 7.68 5.86 5.10 7.34 7.25 5.80 9.25 3.87 4.91 5.17 5.15 5.22 6.84 5.43 5.41 3.61 3.80 2.30 4.51 2.66 3.66 1.78 2.10 2.15 2.29 2.96 5.11 6.11 3.65 2.90 2.32 3.67 3.05 2.96 2.87 2.65 2.54 3.72 3.39 2.85 Mn 0.43 0.31 0.31 0.27 1.25 0.29 0.28 0.40 0.20 0.21 0.21 0.18 0.24 0.19 0.25 0.14 0.14 0.28 0.18 0.16 0.30 0.18 0.12 0.19 0.26 0.27 0.21 0.20 0.24 0.22 0.28 0.33 0.26 0.15 0.25 0.24 0.23 0.29 0.32 0.33 1.17 0.82 0.56 0.43 0.24 0.20 0.19 0.29 0.35 0.29 0.20 0.26 0.17 0.11 SRHS-DU-126 Femur (continued) Fe bd 2.58 1.88 bd 1.37 1.64 2.35 1.85 1.13 1.26 1.81 1.22 1.31 0.95 1.15 1.06 1.37 1.40 1.73 1.28 1.16 1.06 1.19 0.94 1.80 0.97 1.08 1.79 1.02 1.24 1.50 1.44 1.81 1.17 1.35 1.33 1.30 1.57 1.43 0.96 2.26 1.93 1.65 1.79 1.23 1.33 0.91 0.89 0.97 1.17 0.79 1.41 1.50 0.78 Sr 5615.94 5409.86 3827.74 2390.62 4145.39 2971.61 4896.60 4485.02 3603.40 2068.35 3764.68 4461.39 4100.01 2660.16 3062.62 2703.79 3176.83 3616.68 2547.37 3050.77 4445.72 2509.68 3807.45 3398.33 2977.60 3401.04 2892.27 3000.79 2186.70 2984.93 2439.80 3544.26 2951.77 3061.85 3357.39 3839.54 4264.60 3708.83 2636.78 2211.52 3893.71 3911.06 2359.24 3254.26 2319.89 3367.56 2213.87 3136.07 3204.15 3880.51 2411.19 2553.23 3431.72 3307.49 Y 89.52 64.88 46.92 47.46 63.85 54.20 63.42 58.13 48.42 41.23 54.01 53.17 73.35 26.19 32.84 28.51 30.94 42.49 35.88 46.51 34.16 20.31 36.48 36.03 45.81 39.88 39.81 41.27 18.57 20.06 13.32 12.00 16.89 6.83 18.04 9.79 11.77 7.12 10.34 11.03 23.66 17.16 16.51 12.11 9.79 12.48 10.91 11.07 10.43 12.78 7.63 12.30 12.43 8.99 Ba 3509.44 1968.90 1908.42 1727.68 2202.64 1640.02 2564.34 1809.64 1856.06 1654.11 1108.46 1409.90 2007.72 1989.04 1183.14 927.76 1619.35 1826.01 1968.84 2064.00 2094.37 1295.56 2032.29 1705.18 1872.54 1533.30 1581.29 1419.54 1694.97 nd 2039.49 1351.14 1739.99 1903.33 1893.23 1943.64 1908.39 1788.37 1421.73 nd nd 1542.24 1483.41 2134.32 984.42 1420.72 1321.74 1815.59 1357.74 2039.37 1104.90 2014.34 1681.92 989.78 La 30.81 24.91 20.44 21.76 23.78 16.80 24.78 21.60 17.81 11.71 12.84 13.46 14.12 7.29 7.41 7.10 9.80 11.91 7.27 12.65 7.84 7.74 8.94 11.57 11.18 9.87 10.21 10.36 4.10 5.19 3.87 2.84 2.75 2.60 2.75 2.27 2.23 1.79 1.77 2.44 4.72 2.80 2.54 2.31 2.16 2.43 1.96 2.23 2.18 2.27 2.42 1.89 2.29 1.76 Ce 45.73 33.10 44.01 33.97 30.37 39.62 41.61 48.34 41.78 20.25 18.33 30.18 25.89 14.06 18.37 16.74 18.75 38.73 15.99 20.06 24.28 28.71 15.71 14.04 27.75 16.98 15.90 12.64 9.27 18.14 8.56 2.61 5.05 12.74 7.46 4.64 5.48 4.50 4.60 10.49 4.71 7.53 8.15 3.49 5.23 2.65 3.85 3.36 2.60 2.67 4.29 4.34 3.42 2.80 Pr 13.91 4.28 2.80 4.29 2.95 3.46 4.13 5.00 2.44 1.39 2.02 1.63 3.11 1.39 0.82 1.37 1.56 2.18 1.58 1.29 1.64 1.99 1.95 1.08 2.10 2.50 1.61 2.33 0.57 1.03 0.37 0.53 0.97 0.53 0.35 0.31 0.19 0.07 0.42 0.24 0.57 0.61 0.41 0.20 0.16 0.30 0.25 0.17 0.56 0.34 0.48 0.20 0.51 0.25 Nd 25.30 11.61 9.90 9.67 10.25 10.07 11.21 11.00 4.63 6.97 7.36 10.78 6.80 4.57 5.15 3.26 2.71 7.50 5.08 7.27 7.71 2.45 4.67 6.56 6.52 2.99 4.81 3.75 3.07 2.14 1.44 0.65 1.59 0.17 1.59 1.33 0.88 1.30 0.88 0.14 3.37 1.31 1.99 0.93 0.82 0.96 0.82 1.58 1.22 1.32 0.35 1.34 0.94 0.44 Sm 3.94 0.76 2.03 2.22 2.71 1.57 2.99 3.08 2.61 0.73 1.14 2.46 2.11 1.18 0.19 0.41 1.40 2.45 2.53 0.56 0.97 0.66 2.14 1.58 1.75 1.89 0.88 0.79 bd 1.88 0.17 0.59 0.19 bd 0.27 bd 0.27 0.52 0.18 0.17 0.21 0.91 bd 0.56 bd 0.16 0.20 0.17 0.42 0.53 bd bd 0.49 bd Eu 0.59 1.02 0.42 1.49 0.86 0.64 1.07 0.63 0.55 0.60 0.61 0.88 0.21 0.47 0.52 0.31 0.28 0.29 0.32 0.22 0.75 0.15 0.29 0.54 0.85 0.82 0.52 0.47 0.05 0.14 0.10 bd bd bd 0.16 bd 0.16 bd 0.10 0.05 bd 0.07 0.32 bd 0.05 0.10 0.18 0.05 0.38 0.48 bd bd 0.19 0.05 Gd 11.82 1.52 3.85 2.96 4.45 3.53 4.18 2.31 1.86 2.19 1.36 1.23 3.52 0.99 2.53 0.83 1.09 2.94 3.07 1.87 1.36 0.66 2.53 3.16 2.84 2.06 16.19 1.57 0.70 1.88 2.08 3.76 0.38 bd 1.10 1.20 0.53 0.78 0.53 0.17 1.50 1.36 1.07 0.28 0.16 bd 0.20 0.35 0.63 1.07 0.21 bd 0.98 0.70 Tb 1.65 0.54 0.36 0.57 0.78 0.33 0.45 0.57 0.24 0.68 0.35 0.64 0.50 0.16 0.30 0.42 0.37 0.55 0.28 0.47 0.42 0.35 0.32 0.27 0.60 0.47 0.29 0.19 bd 0.36 0.10 0.14 0.05 0.05 0.13 0.05 0.06 0.03 0.08 0.10 0.15 0.08 0.16 0.13 0.10 0.06 0.05 0.06 bd 0.06 0.23 0.14 0.08 0.02 Dy 12.08 5.95 5.37 3.73 5.03 3.46 4.30 3.77 2.83 2.69 3.35 4.94 5.98 1.93 2.76 3.45 2.52 2.88 2.74 2.29 2.95 1.29 3.43 2.99 2.68 1.43 3.37 3.96 0.95 1.50 0.85 0.48 0.38 1.44 0.67 0.29 0.65 0.51 1.04 0.77 0.94 1.33 0.78 0.41 0.98 0.49 0.39 0.77 0.41 0.78 0.52 0.89 1.12 0.44 Ho 3.25 1.30 0.94 1.18 1.30 1.17 0.95 1.48 0.64 0.58 0.97 1.11 1.15 0.36 0.57 0.76 0.70 1.17 0.84 0.73 0.64 0.58 0.71 0.94 1.25 1.20 0.49 0.46 0.30 0.37 0.28 0.14 0.14 0.26 0.07 0.20 0.23 0.03 0.22 0.17 0.26 0.36 0.26 0.10 0.20 0.10 0.07 0.21 0.44 0.13 0.18 0.07 0.14 0.24 Er 11.15 4.70 3.82 2.99 4.38 2.75 3.54 5.39 3.41 3.74 2.33 4.50 4.30 2.66 1.68 2.01 1.43 3.17 2.04 2.42 3.97 1.42 2.51 2.56 3.53 3.71 3.23 3.39 0.38 0.76 1.12 0.53 0.41 0.45 0.74 0.75 1.29 0.56 0.38 1.03 1.50 1.10 0.86 0.15 0.72 0.89 0.75 0.56 0.45 1.15 0.69 0.33 1.05 0.29 Tm 1.03 0.71 0.61 0.82 0.79 0.46 0.58 0.52 0.33 0.21 0.32 0.80 0.46 0.28 0.27 0.36 0.53 0.63 0.36 0.33 0.32 0.13 0.43 0.32 0.56 0.36 0.25 0.41 0.18 0.27 0.10 0.14 0.11 0.12 0.13 0.12 0.12 0.03 0.02 0.08 0.17 0.29 0.34 0.13 0.17 0.10 0.07 0.06 0.12 0.25 0.15 0.05 0.06 0.08 Yb 4.19 4.30 3.31 4.08 3.71 4.18 3.25 2.32 1.72 2.72 3.88 3.48 2.83 1.26 1.79 2.06 2.10 2.78 1.53 2.12 2.48 1.75 3.86 2.89 4.19 2.32 1.50 1.81 1.00 1.33 0.62 1.26 0.68 0.30 0.19 0.57 0.95 1.11 0.88 0.86 0.76 1.13 0.38 1.00 1.41 0.47 0.14 0.62 1.49 0.76 1.51 1.72 0.69 1.14 Lu 0.77 0.40 0.40 0.87 0.55 0.38 0.34 0.38 0.32 0.52 0.39 0.42 0.55 0.44 0.10 0.41 0.33 0.70 0.35 0.44 0.53 0.34 0.28 0.18 0.40 0.27 0.60 0.36 0.23 0.21 0.25 0.21 0.07 0.11 0.18 0.23 0.49 0.03 0.12 0.29 0.25 0.30 0.14 0.07 0.17 0.02 0.08 0.02 0.08 0.17 0.25 0.05 0.15 0.07 Th 0.20 0.08 0.02 bd 0.04 0.06 0.06 bd bd 0.04 0.02 0.05 bd 0.02 bd bd bd 0.02 bd 0.04 0.02 bd bd bd bd 0.03 0.03 0.02 bd 0.09 bd bd 0.06 0.02 0.03 bd bd bd bd bd 0.02 0.02 bd 0.03 bd bd bd bd bd bd bd 0.08 0.05 bd U ƩREE 9.01 166 8.05 95 4.18 98 5.87 91 3.91 92 4.58 88 5.48 103 6.28 106 4.25 81 3.76 55 3.85 55 5.39 76 2.37 72 1.25 37 4.81 42 7.44 39 2.97 44 5.05 78 3.56 44 4.70 53 7.33 56 3.89 48 3.22 48 4.63 49 6.04 66 5.13 47 3.11 60 8.67 42 1.90 21 1.68 35 1.51 20 2.36 14 1.32 13 0.62 19 2.51 16 0.77 12 1.23 14 1.25 11 7.25 11 4.06 17 4.36 19 2.82 19 4.11 17 5.29 10 5.59 12 1.66 9 4.66 9 4.31 10 2.25 11 1.18 12 3.48 11 4.53 11 4.91 12 3.62 8 Ce/Ce* -0.50 -0.26 0.30 -0.18 -0.20 0.21 -0.05 0.09 0.42 0.10 -0.18 0.42 -0.08 0.03 0.61 0.25 0.10 0.76 0.11 0.05 0.58 0.72 -0.12 -0.17 0.33 -0.20 -0.11 -0.40 0.36 0.83 0.50 -0.51 -0.28 1.53 0.69 0.24 0.72 1.01 0.25 1.88 -0.37 0.35 0.82 0.05 0.74 -0.32 0.21 0.08 -0.45 -0.31 -0.07 0.52 -0.25 -0.05 Ce/Ce** 0.26 0.75 1.90 0.70 1.22 1.17 0.98 0.84 1.39 3.08 1.13 24.05 0.72 1.14 13.61 1.10 0.95 2.10 1.12 4.89 2.71 1.04 0.73 5.95 1.42 0.49 1.02 0.42 4.22 1.49 3.16 0.35 0.40 1.48 3.71 2.30 5.33 -2.34 0.92 2.77 3.17 1.07 3.79 3.21 6.89 0.95 1.70 -3.51 0.40 1.07 0.59 39.81 0.55 0.88 La/La* Y/Ho -0.71 27.6 0.03 50.1 0.93 49.9 -0.24 40.3 1.06 49.2 -0.07 46.2 0.06 66.9 -0.37 39.3 -0.03 76.1 17.33 71.0 0.78 55.5 -3.57 47.9 -0.34 64.0 0.20 72.5 -4.74 57.7 -0.20 37.6 -0.20 43.9 0.37 36.4 0.02 42.9 -11.06 63.7 3.16 53.5 -0.57 34.9 -0.28 51.2 -6.59 38.4 0.12 36.5 -0.57 33.3 0.25 80.5 -0.46 90.5 -21.13 61.6 -0.29 53.8 2.59 48.3 -0.40 83.0 -0.65 120.5 -0.56 26.6 4.44 270.1 2.45 50.1 9.26 51.6 -1.86 224.7 -0.41 47.9 -0.05 65.1 -6.43 90.6 -0.33 47.7 5.74 63.4 9.06 117.2 32.65 48.3 0.73 123.5 0.76 150.1 -2.43 52.3 -0.44 23.9 1.29 98.2 -0.50 42.0 -3.77 166.6 -0.40 89.4 -0.11 37.6 409 mm from bone rim 5.04 5.08 5.11 5.15 5.18 5.22 5.25 5.29 5.32 5.36 5.39 5.42 5.46 5.49 5.53 5.56 5.60 5.63 5.67 5.70 5.74 5.77 5.80 5.84 5.87 5.91 5.94 5.98 6.01 6.05 6.08 6.12 6.15 6.18 6.22 6.25 6.29 6.32 6.36 6.39 6.43 6.46 6.50 6.53 6.56 6.60 6.63 6.67 6.70 6.74 6.77 6.81 6.84 6.88 Sc 3.78 3.14 2.39 3.50 4.72 3.30 4.93 2.80 2.19 2.64 2.74 3.91 4.48 3.70 2.86 3.34 3.15 2.83 2.36 2.52 3.23 2.41 2.12 1.66 3.19 2.79 1.35 2.25 0.92 1.22 1.27 1.94 1.69 3.47 1.60 0.97 2.41 2.20 2.51 1.72 1.38 1.48 1.17 1.55 0.92 1.65 2.16 1.04 1.39 1.39 2.07 1.59 2.14 1.31 Mn 0.18 0.22 0.13 0.35 0.21 0.17 0.16 0.22 0.18 0.15 0.13 0.18 0.83 0.23 0.29 0.28 0.18 0.18 0.16 0.18 0.17 0.32 0.20 0.18 0.40 0.22 0.21 0.17 0.14 0.33 0.19 0.21 0.21 0.30 0.74 0.16 0.21 2.90 5.04 0.41 0.47 0.48 0.36 1.14 0.43 0.27 1.00 0.41 0.30 0.43 0.30 0.27 0.27 0.13 SRHS-DU-126 Femur (continued) Fe 1.15 0.86 0.81 1.58 1.30 1.51 1.32 1.34 1.13 0.76 1.12 1.26 1.51 2.37 1.25 1.60 1.20 1.18 0.96 1.52 1.33 0.90 1.22 0.85 1.46 1.09 1.33 1.31 1.37 1.05 2.08 0.90 1.19 1.71 1.05 1.24 1.36 6.33 4.23 1.67 1.77 1.92 1.35 1.11 2.35 1.95 1.17 1.03 2.25 2.21 1.44 3.60 6.75 2.57 Sr 3500.36 3216.23 3846.89 3292.95 2842.62 3181.20 2708.34 4336.24 3488.47 1414.17 2932.47 3231.04 3878.16 2592.32 3077.32 3918.12 2616.21 2631.48 2557.19 2846.74 2142.06 2795.18 3310.65 3699.07 3664.59 2938.07 2198.16 2522.59 2037.29 3997.50 3166.02 1911.41 3201.06 3612.84 2379.58 2360.38 2312.60 13912.73 7520.88 6029.45 3871.38 4292.89 3801.46 2965.48 3881.33 3806.77 3664.12 3895.61 3109.21 3268.56 3851.69 4750.94 3825.59 3301.06 Y 11.21 6.82 10.13 9.02 9.89 8.44 7.49 8.28 5.61 4.66 6.95 7.16 10.06 7.42 5.99 10.14 5.84 5.96 6.66 5.88 5.77 6.01 6.72 4.92 5.00 4.23 4.32 3.34 1.80 3.39 3.61 4.40 5.80 4.86 3.99 3.82 3.68 6.81 11.92 4.16 3.11 2.82 4.96 3.12 2.42 4.45 5.78 1.91 1.86 2.81 3.35 5.43 6.73 4.91 Ba 1729.21 2407.13 2207.41 1604.85 1890.29 1491.82 1520.45 1661.90 nd 661.64 1388.68 1871.39 1841.25 2295.22 1572.87 2587.44 1432.78 1449.90 1545.00 1075.37 nd 1035.95 1620.79 1385.26 2207.16 2287.57 1443.60 1502.19 1668.99 1704.71 1457.86 1046.72 1281.67 1765.76 1350.10 1299.81 1712.56 nd 8097.86 4555.49 nd nd 2062.47 nd 1938.48 nd 3654.60 1988.34 1953.20 2578.36 2156.47 2436.19 2623.29 1292.75 La 3.36 1.87 2.27 0.76 2.22 2.27 1.50 2.26 1.65 0.75 1.32 1.12 1.29 1.29 2.29 2.28 2.27 0.83 1.64 1.70 1.59 1.55 1.67 1.37 1.24 0.72 1.63 1.25 0.24 0.60 0.89 1.27 1.76 1.38 0.70 0.63 1.69 2.16 3.06 2.03 0.47 0.50 1.24 0.63 0.56 1.20 1.22 0.94 0.16 0.54 1.09 2.40 2.48 1.53 Ce 5.21 2.82 4.30 1.38 2.61 3.17 2.42 2.91 1.90 1.33 2.24 2.86 2.36 3.50 2.74 2.31 2.22 1.73 1.88 1.92 1.96 1.76 1.38 1.33 1.28 1.18 0.83 0.69 0.90 1.63 1.34 1.30 1.48 1.42 0.70 0.44 1.72 1.22 2.34 1.23 1.04 0.84 0.95 0.95 0.51 1.93 1.38 0.56 1.37 1.08 1.16 2.49 1.74 2.29 Pr 0.34 0.17 0.54 0.25 0.20 0.29 0.06 0.39 0.08 0.14 0.05 0.17 0.25 0.22 0.24 0.11 0.10 0.35 0.21 0.25 0.26 0.27 0.56 0.12 0.04 0.26 0.20 0.17 0.03 0.31 0.08 0.24 0.04 0.28 0.04 0.16 0.03 0.18 0.16 0.08 bd 0.06 0.07 bd 0.04 0.04 0.07 0.14 0.07 0.06 0.09 0.17 0.31 0.15 Nd 0.54 0.49 0.45 1.04 0.48 0.37 0.19 1.71 0.63 bd 0.89 0.15 bd 0.44 bd 0.63 1.58 0.75 0.47 0.48 0.34 0.36 0.71 0.51 0.94 bd 0.33 0.69 0.17 0.30 bd 0.31 0.92 0.23 0.22 0.18 0.18 0.18 2.58 0.70 bd bd 0.20 0.22 bd bd 0.58 bd 0.80 bd bd bd bd 0.14 Sm 0.22 0.20 bd bd bd bd bd bd bd bd bd bd bd bd 0.42 bd bd bd bd 0.59 0.21 bd bd bd bd 0.23 0.20 bd bd bd 1.07 0.19 bd bd bd bd bd bd 0.39 0.85 bd bd bd bd bd bd bd bd bd 0.21 bd 0.58 bd bd Eu 0.06 bd 0.08 bd bd 0.07 0.07 0.27 0.11 bd 0.05 bd bd 0.08 bd 0.22 0.28 bd 0.11 0.23 bd bd 0.51 0.06 0.17 bd bd bd bd bd bd bd bd bd bd 0.13 0.13 1.80 bd bd 0.06 0.07 bd bd bd 0.07 0.07 bd 0.07 bd bd bd bd bd bd bd 0.53 bd bd 0.44 bd bd 1.70 bd 0.53 bd 0.23 bd 0.83 0.24 bd 0.66 bd 1.55 bd 0.42 bd bd bd bd 0.39 bd bd 0.34 0.52 bd bd 1.12 bd bd 1.07 0.20 1.15 bd 0.42 bd bd 1.87 bd 0.24 bd 0.24 0.23 bd bd 0.57 bd bd Gd Tb 0.08 0.02 bd 0.03 0.07 0.03 0.08 bd 0.05 0.06 0.06 0.11 bd 0.03 0.05 bd 0.06 bd 0.27 0.02 0.02 0.08 0.10 bd bd bd bd bd bd 0.04 bd bd bd bd 0.03 bd 0.18 0.05 bd bd 0.08 0.05 bd 0.10 bd 0.03 bd 0.06 bd bd 0.03 bd 0.06 bd Dy 0.64 0.10 0.67 0.12 0.28 0.22 0.57 0.45 0.46 0.16 0.18 0.26 bd 0.26 0.10 0.74 0.23 1.10 0.55 0.29 0.61 0.42 0.28 0.70 0.28 0.45 0.68 0.10 0.20 bd 0.13 bd 2.04 bd 0.26 bd 0.10 bd 0.19 0.14 0.10 bd 0.61 bd 0.15 0.25 bd bd 0.24 bd 0.11 0.14 0.36 0.26 Ho 0.13 0.14 0.26 0.28 0.28 bd 0.14 bd 0.02 0.06 0.11 0.15 0.03 0.13 0.10 0.25 0.44 0.19 0.09 0.12 0.07 0.29 0.03 0.15 0.21 bd 0.05 0.02 0.10 0.04 0.06 bd 0.07 bd 0.06 0.05 0.05 0.13 0.09 0.03 0.08 bd 0.03 0.03 0.04 0.03 0.06 0.12 bd 0.13 0.03 0.14 0.06 0.02 Er 0.71 0.85 1.17 0.95 0.31 0.49 0.62 0.25 0.41 0.36 0.39 0.29 0.40 0.57 0.79 0.27 0.77 1.21 0.30 0.21 0.56 0.58 0.31 0.22 0.46 bd 0.32 0.67 0.11 bd 0.29 0.20 0.15 1.07 0.14 0.24 0.12 0.23 1.05 0.15 0.12 0.12 bd 0.73 0.16 0.14 0.13 0.41 0.13 bd 0.12 0.16 0.65 0.19 Tm 0.03 0.07 0.13 0.09 0.17 0.13 0.05 0.19 bd 0.04 0.02 0.10 0.14 0.03 0.10 0.03 0.14 0.05 0.07 0.07 0.02 0.20 0.03 bd 0.03 0.08 0.07 bd 0.02 bd bd bd bd 0.03 bd 0.13 0.05 bd 0.05 0.07 bd bd 0.06 bd bd 0.06 0.05 0.06 bd 0.03 0.05 0.10 bd bd Yb 0.92 1.39 0.57 1.60 0.82 0.96 0.32 1.30 0.13 0.47 0.76 0.25 1.05 0.37 0.44 0.35 1.01 0.15 0.26 0.27 0.73 0.30 0.40 0.14 0.20 bd 0.56 0.14 0.29 0.25 0.37 0.81 1.17 0.60 0.18 0.62 0.15 0.15 2.48 0.19 bd bd 0.17 0.19 0.64 0.36 bd bd 0.17 0.15 0.30 1.03 bd 0.12 Lu 0.03 0.15 0.11 0.23 0.38 0.24 bd 0.12 0.22 0.04 0.16 0.07 0.10 0.07 0.19 0.13 0.12 0.03 0.12 0.10 0.03 0.08 0.07 0.08 0.15 0.30 0.10 0.03 0.14 0.09 0.03 0.12 0.18 0.07 0.14 0.06 0.14 0.17 0.05 bd 0.11 0.03 0.06 bd 0.08 0.10 bd bd bd bd 0.09 0.19 0.09 0.07 bd bd bd 0.02 bd bd 0.02 bd bd bd bd bd bd bd 0.21 0.05 bd 0.04 0.02 0.08 bd 0.13 bd 0.53 0.06 0.02 bd 0.02 0.02 0.14 bd bd 0.03 0.03 0.03 bd bd bd bd bd bd bd 0.05 bd bd bd bd bd bd bd bd bd 0.02 bd Th U ƩREE 4.15 12 3.00 8 3.99 11 4.51 7 5.31 8 3.60 9 2.49 6 3.15 10 2.48 7 2.32 3 4.03 7 2.80 6 5.65 6 2.52 7 7.27 8 4.92 8 2.78 9 2.25 7 2.10 6 4.52 8 2.12 6 1.82 6 2.83 6 1.23 5 3.07 5 1.73 3 1.49 5 1.66 4 0.74 2 0.88 4 1.47 5 2.39 4 2.87 8 0.89 6 1.17 2 0.86 3 4.03 6 2.33 6 3.73 14 2.02 5 1.59 2 1.18 2 1.86 3 0.77 5 0.95 2 4.83 4 2.21 4 1.25 3 1.91 3 1.19 2 2.69 3 5.44 8 5.14 6 1.70 5 Ce/Ce* 0.04 0.04 -0.08 -0.25 -0.20 -0.13 0.29 -0.28 -0.10 -0.05 0.38 0.47 -0.02 0.50 -0.21 -0.20 -0.22 -0.27 -0.29 -0.33 -0.30 -0.37 -0.67 -0.32 -0.14 -0.37 -0.68 -0.67 1.35 -0.16 0.05 -0.45 -0.28 -0.47 -0.23 -0.67 -0.11 -0.60 -0.41 -0.51 0.29 0.04 -0.42 0.03 -0.35 0.34 -0.13 -0.66 1.98 0.29 -0.25 -0.24 -0.56 0.01 Ce/Ce** 1.18 1.74 0.54 0.84 1.14 0.80 3.82 1.22 -10.85 2.57 -1.71 1.10 0.69 1.29 1.01 8.37 -1.04 0.42 0.77 0.64 0.55 0.47 0.18 1.87 -0.79 0.42 0.33 0.54 11.94 0.37 2.54 0.39 -0.94 0.34 7.35 0.20 22.05 0.46 -0.67 -3.36 9.05 -72.78 1.40 2.31 -1.95 -5.14 -4.53 0.73 -1.71 -8.87 2.87 1.52 0.43 1.06 La/La* Y/Ho 0.21 84.5 1.19 47.6 -0.57 38.3 0.33 32.7 0.68 35.1 -0.11 44.3 3.47 53.5 2.22 152.2 -4.44 250.9 -11.84 77.7 -1.93 63.8 -0.35 47.5 -0.42 342.8 -0.22 57.6 0.43 58.6 -15.08 41.3 -1.95 13.4 -0.66 31.1 0.13 73.0 -0.07 49.5 -0.32 77.0 -0.36 20.8 -0.67 199.9 5.50 33.0 -1.74 24.1 -0.55 57.1 0.04 90.1 1.44 136.6 -6.51 17.8 -0.79 79.5 3.58 56.0 -0.41 71.6 -2.08 87.1 -0.50 75.1 -13.60 63.1 -0.56 72.1 -38.01 71.1 0.24 51.9 -1.78 127.2 -4.11 124.4 -3.64 39.8 -2.88 104.5 2.44 169.2 2.94 97.8 -2.36 67.2 -3.45 146.8 -3.24 102.1 5.88 15.4 -1.16 18.4 -2.53 21.4 71.08 130.5 1.73 38.2 -0.04 115.2 0.07 236.6 410 mm from bone rim 6.91 6.94 6.98 7.01 7.05 7.08 7.12 7.15 7.19 7.22 7.26 7.29 7.32 7.36 7.39 7.43 7.46 7.50 7.53 7.57 7.60 7.64 7.67 7.70 7.74 7.77 7.81 7.84 7.88 7.91 7.95 7.98 8.02 8.05 8.08 8.12 8.15 8.19 8.22 8.26 8.29 8.33 8.36 8.40 8.43 8.46 8.50 8.53 8.57 8.60 8.64 8.67 8.71 8.74 Sc 1.51 0.74 1.35 1.03 0.89 1.33 0.69 2.68 1.59 1.52 1.17 2.06 1.84 1.82 1.81 0.84 1.20 0.27 0.97 0.52 1.38 1.80 1.39 2.28 2.01 1.57 1.60 1.88 1.78 1.69 1.18 1.87 2.50 2.43 0.78 1.64 1.65 0.99 1.97 1.69 3.11 0.79 2.14 0.62 1.80 0.76 0.86 0.85 1.19 1.99 1.92 1.70 2.23 1.00 Mn 0.16 0.13 0.21 0.33 0.16 0.27 0.20 0.21 0.24 0.30 0.28 0.12 0.30 0.16 0.14 0.19 0.26 0.25 0.24 0.23 0.15 0.18 0.09 0.16 0.22 0.16 0.25 0.14 0.52 0.17 0.16 0.23 0.16 0.26 0.21 0.17 0.22 0.20 0.29 0.29 0.27 0.19 0.24 0.23 0.15 0.21 0.14 0.20 0.27 0.19 0.58 0.19 0.27 0.43 SRHS-DU-126 Femur (continued) Fe 1.41 2.09 1.64 1.35 0.97 1.50 1.41 0.93 1.76 1.34 1.25 1.21 1.14 1.71 1.91 0.93 1.06 1.17 1.75 1.30 1.32 2.34 3.71 2.57 1.73 1.50 1.33 1.56 1.60 1.23 1.63 1.45 0.83 1.07 0.95 1.38 0.80 1.05 1.23 1.06 1.63 bd 2.05 0.81 1.14 1.23 1.18 1.02 1.46 1.32 1.43 1.65 2.06 1.30 Sr 2073.64 1820.20 2784.90 2660.84 1801.87 4819.27 3367.96 3413.31 3114.92 3790.17 2527.47 2769.89 2792.01 3255.70 3047.18 1878.30 2234.89 2646.88 3695.79 3983.99 2961.05 7103.22 24541.13 7272.13 5372.24 4583.30 26445.15 2353.47 3576.58 12447.17 4063.93 3315.75 3262.41 3809.71 2252.92 2643.89 3377.27 2187.55 2952.97 3449.89 3733.49 2211.70 2847.80 2997.07 3323.17 3621.80 2132.58 2660.13 2647.76 3027.06 4116.98 2650.07 2779.05 3116.08 Y 2.52 4.41 3.46 3.30 1.98 2.56 3.77 5.38 3.13 4.74 3.25 3.11 5.46 4.12 4.63 1.70 1.46 3.00 2.34 2.87 3.28 5.56 9.76 8.88 8.77 4.09 5.10 3.40 5.13 4.58 2.82 3.41 4.25 3.30 3.94 2.41 2.51 1.80 3.55 4.46 3.75 2.72 3.53 2.71 2.46 2.87 1.31 1.81 3.06 5.08 6.07 3.87 4.06 7.52 Ba 1219.40 1578.33 2576.03 1268.63 1735.87 2168.94 2278.34 1423.52 1682.76 1898.65 1558.73 1079.20 1481.63 1146.88 1371.21 1154.27 1718.12 1279.19 2577.64 1881.74 1668.77 nd nd nd nd nd 4659.84 nd nd 2004.56 nd 2983.45 nd 1972.90 1505.58 2529.49 1058.54 nd 1292.20 1578.89 nd 1045.25 1497.35 1689.80 1758.67 1912.43 1115.02 1775.57 2003.01 1871.17 1725.79 2023.73 1952.05 2069.80 La 0.37 1.05 1.22 0.36 0.49 1.03 1.72 1.65 1.00 1.41 0.74 0.89 1.55 1.02 0.27 0.44 0.42 0.59 0.36 2.15 1.04 2.12 1.17 1.39 2.46 1.03 2.00 1.03 2.16 1.27 0.72 1.89 0.97 1.09 0.94 0.39 0.89 0.68 0.76 1.53 1.34 0.55 0.81 0.27 1.26 0.75 0.36 0.50 1.03 1.21 1.37 1.13 0.59 1.41 Ce 0.42 0.76 1.88 0.91 0.52 0.94 1.51 2.23 0.91 0.89 0.84 1.11 1.28 0.65 0.49 0.32 0.21 0.36 0.60 0.89 1.04 1.53 0.76 1.26 0.99 0.92 0.98 2.22 1.60 1.43 1.34 2.37 0.94 1.89 1.02 2.35 0.50 0.91 1.04 0.96 1.61 1.05 0.74 0.58 0.58 0.60 18.86 0.68 1.54 1.41 4.98 1.88 0.74 2.33 Pr 0.07 0.14 0.12 0.03 0.02 0.08 0.06 0.09 0.04 0.28 0.04 0.05 0.09 0.10 0.11 0.07 bd bd 0.05 0.04 0.20 0.09 0.12 0.34 0.11 0.05 0.16 0.14 0.07 0.10 0.06 0.10 0.36 0.03 0.07 0.05 0.10 0.10 0.09 0.08 0.06 0.02 0.05 bd 0.06 0.09 0.08 0.09 0.22 0.03 0.25 0.11 0.03 0.19 Nd 0.13 0.12 0.55 bd 0.39 0.46 0.34 0.36 1.29 bd 0.26 bd 0.26 bd 0.44 bd bd bd 0.30 bd bd 2.71 0.68 0.44 bd bd 0.69 0.34 bd 1.18 0.51 0.40 0.64 bd 0.41 0.16 0.38 0.19 0.17 0.33 bd 0.41 bd 0.34 0.51 0.74 bd bd 0.36 0.19 1.76 0.62 0.78 1.14 bd bd bd bd bd bd bd bd bd bd 0.31 bd 0.32 bd bd bd bd bd bd bd 0.48 0.20 bd bd bd bd bd bd 0.24 0.47 bd bd 0.19 bd bd bd bd bd bd 0.20 0.23 0.33 0.37 bd bd bd bd bd bd bd bd bd bd bd Sm Eu 0.05 bd 0.20 bd bd 0.08 bd bd 0.08 bd 0.09 0.22 bd bd bd bd bd bd bd bd 0.07 0.30 4.04 0.16 0.23 bd 0.08 0.12 0.35 bd 0.55 bd bd bd bd bd bd bd bd bd 0.13 bd bd 0.06 bd 0.13 bd 0.14 bd bd bd 0.22 0.21 0.06 bd 0.28 bd bd 0.15 0.54 0.19 bd 0.25 bd 0.61 0.75 bd 1.45 bd 0.17 0.24 bd 0.34 0.30 bd 1.01 0.81 0.52 bd 0.85 0.82 0.19 0.47 0.46 0.19 0.23 bd bd 0.32 bd bd 0.21 bd bd 0.67 bd bd 0.19 0.81 bd bd 0.62 0.21 bd 0.33 0.74 0.69 0.18 Gd Tb 0.04 bd bd 0.08 bd 0.03 0.02 0.03 0.03 bd bd bd 0.11 bd bd bd bd bd bd 0.04 bd 0.02 0.04 0.06 0.06 bd bd 0.02 0.03 bd 0.05 0.09 bd bd 0.10 0.05 bd bd bd bd bd bd bd 0.02 0.02 0.03 bd bd bd 0.03 0.13 0.03 0.06 0.09 bd 0.43 0.54 bd 0.30 bd 0.10 0.21 0.51 0.14 0.15 0.19 bd 0.24 0.13 bd bd bd 0.18 bd 0.12 0.30 0.16 0.13 0.63 bd 0.27 bd 0.23 bd 0.10 0.24 0.19 bd bd bd 0.23 bd 0.61 0.19 0.22 bd 0.27 bd 0.20 0.66 0.09 bd 0.43 bd bd bd 0.34 0.29 Dy Ho 0.02 bd 0.05 bd 0.04 0.03 bd 0.08 0.09 0.14 0.04 0.02 bd 0.03 0.06 bd 0.03 0.07 0.13 0.08 0.17 0.12 0.10 bd 0.09 0.02 0.03 0.02 0.17 bd bd 0.20 bd 0.05 0.04 bd 0.06 0.03 0.05 0.07 0.20 0.04 0.02 bd 0.07 0.03 0.09 0.06 0.16 0.06 0.09 0.03 0.06 0.10 Er 0.17 0.08 0.48 bd bd bd bd 0.12 0.56 bd 0.17 0.20 0.86 0.66 0.14 0.09 bd 0.29 bd bd 0.13 0.11 0.18 0.58 bd bd 0.15 bd bd 0.13 0.33 bd bd 0.12 0.18 0.52 0.25 bd bd bd 0.12 0.27 bd bd 0.33 0.12 bd 0.34 0.59 0.38 0.57 0.41 0.25 0.21 Tm 0.04 0.03 bd 0.03 bd bd 0.02 bd 0.03 0.07 0.04 0.04 0.04 0.03 bd bd 0.06 bd bd 0.11 bd 0.02 bd 0.06 0.03 bd 0.06 0.02 bd 0.08 bd bd 0.07 bd 0.02 bd bd 0.03 0.02 bd bd 0.04 0.02 0.02 0.10 bd bd 0.04 0.08 bd 0.12 0.03 bd bd bd 0.72 0.15 bd bd 0.19 0.14 0.15 bd 0.39 bd bd bd 0.34 0.56 0.12 0.35 0.19 0.25 0.66 0.33 0.14 0.23 0.76 0.18 0.36 0.19 0.72 0.50 bd 0.14 0.51 0.27 0.77 0.23 0.13 bd bd 0.29 0.14 0.65 0.47 bd 0.14 0.14 0.15 0.38 0.22 0.31 0.83 0.24 bd 0.16 0.69 Yb Lu 0.04 0.02 bd 0.03 0.10 0.07 0.19 0.11 0.03 0.07 0.08 0.07 0.04 0.06 0.17 0.07 0.07 bd bd bd bd 0.08 0.09 0.03 0.13 0.04 0.11 0.08 bd 0.12 0.13 0.03 0.05 0.06 0.11 bd 0.09 0.06 bd 0.03 0.06 0.04 0.07 bd 0.03 0.03 0.02 0.04 0.06 0.06 0.09 0.07 0.12 0.03 bd 0.04 bd bd 0.03 bd bd bd bd bd 0.25 0.04 bd bd bd 0.07 bd bd bd bd bd 0.04 0.02 bd bd bd bd bd bd 0.05 0.08 0.02 bd bd 0.07 bd bd bd bd bd bd 0.02 bd 0.02 0.02 bd 0.04 bd bd bd 0.07 bd bd bd Th U ƩREE 0.97 1 1.49 4 1.23 5 0.62 1 0.91 2 2.07 3 2.62 4 1.49 5 2.54 5 2.35 3 2.90 3 0.61 4 2.34 5 1.83 5 1.21 2 0.57 1 0.53 1 0.42 1 0.81 2 1.88 4 3.15 4 4.80 9 1.65 8 2.30 6 1.86 5 1.15 3 2.09 6 2.78 5 2.08 6 1.55 5 1.20 4 1.99 6 1.79 4 1.65 4 1.74 3 0.64 4 2.14 2 3.08 2 3.64 3 1.98 4 1.44 5 2.41 3 0.78 2 0.75 2 0.71 4 1.31 3 0.36 20 0.67 3 1.85 5 1.78 4 1.82 10 3.98 5 3.12 4 3.73 7 Ce/Ce* -0.38 -0.56 0.03 0.75 -0.16 -0.35 -0.28 0.03 -0.26 -0.67 -0.14 -0.06 -0.37 -0.57 -0.36 -0.59 -0.71 -0.60 0.00 -0.64 -0.47 -0.42 -0.56 -0.57 -0.68 -0.30 -0.65 0.30 -0.39 -0.20 0.31 -0.04 -0.63 0.45 -0.22 2.65 -0.63 -0.20 -0.13 -0.52 -0.06 0.52 -0.32 0.11 -0.64 -0.50 25.46 -0.25 -0.24 -0.02 0.97 0.13 -0.03 0.00 Ce/Ce** 0.52 0.35 2.44 -1.46 -0.91 4.57 10.05 3.27 -0.36 0.32 7.35 4.13 1.46 0.73 0.59 0.89 1.32 2.26 4.59 -0.31 -4.32 -0.30 2.55 0.27 2.16 -1.62 1.01 1.37 -2.25 -1.22 -5.04 3.16 0.21 -2.46 5.63 4.43 0.70 0.78 0.97 1.55 8.60 -1.72 -24.44 5.58 -2.20 -2.89 -354.17 4.69 0.55 16.54 -82.74 6.84 -0.56 4.63 La/La* Y/Ho -0.25 134.6 -0.27 99.8 4.36 65.1 -1.52 59.1 -1.80 53.0 -9.62 77.4 -20.59 72.6 5.05 67.7 -1.40 33.2 -0.07 34.7 -12.02 87.6 21.28 138.6 2.33 140.7 1.42 142.7 -0.19 72.1 8.41 60.5 -5.35 48.8 -7.06 46.0 -5.72 17.9 -1.74 38.0 -2.02 18.8 -1.41 44.8 -7.72 98.3 -0.54 96.0 -2358.96 93.6 -2.44 201.9 5.99 155.0 0.09 140.7 -3.33 29.4 -1.85 23.0 -2.52 23.0 5.32 16.7 -0.65 39.9 -2.30 63.1 -9.87 99.1 0.38 72.1 2.09 45.0 -0.04 67.2 0.18 71.1 5.19 61.7 -17.85 19.2 -1.84 68.1 -4.45 161.1 -3.30 97.1 -3.68 33.2 -2.32 108.0 -2.03 14.9 -3.34 31.8 -0.41 19.2 -25.41 90.1 -2.31 71.1 -8.04 130.5 -1.43 72.1 -5.80 78.9 411 mm from bone rim 8.78 8.81 8.84 8.88 8.91 8.95 8.98 9.02 9.05 9.09 9.12 9.16 9.19 9.22 9.26 9.29 9.33 9.36 9.40 9.43 9.47 9.50 9.54 9.57 9.61 9.64 9.67 9.71 9.74 9.74 9.78 9.81 9.85 9.88 9.92 9.95 9.99 10.02 10.05 10.09 10.12 10.16 10.19 10.23 10.26 10.30 10.33 10.37 10.40 10.43 10.47 10.50 10.54 10.57 Sc 2.16 1.90 0.80 1.41 0.64 1.08 1.61 1.59 3.23 1.49 1.48 1.45 0.64 1.65 2.31 2.55 4.40 1.64 1.27 2.58 3.67 1.63 1.69 1.76 2.05 3.52 2.89 2.52 2.76 1.33 1.24 1.37 1.05 0.88 4.77 2.36 2.88 1.75 2.66 0.71 0.84 1.17 1.85 1.78 1.19 1.41 6.90 3.33 5.24 3.24 3.14 3.23 2.35 4.65 Mn 0.14 0.14 0.20 0.14 0.19 0.22 0.21 0.20 0.20 0.13 0.20 0.17 0.44 0.17 0.20 0.31 0.34 0.24 0.30 0.24 0.87 0.19 0.26 0.21 0.21 0.15 0.21 0.22 0.58 0.16 0.16 0.18 0.40 0.18 2.38 0.89 0.36 0.48 0.27 0.21 0.13 0.14 0.14 0.16 0.33 3.95 4.07 0.63 0.87 1.24 0.80 0.50 0.88 0.35 Fe 1.36 0.96 2.12 0.81 0.63 0.73 1.72 1.41 1.01 0.93 1.04 1.01 1.00 1.02 1.21 2.19 1.53 1.15 1.20 bd 2.53 1.38 1.29 0.92 1.31 1.08 1.18 1.49 4.16 1.11 1.49 1.12 0.68 1.13 10.96 3.14 1.67 1.73 2.44 0.96 0.92 1.21 1.31 0.83 2.24 7.02 3.78 2.53 2.40 3.22 2.03 2.23 1.69 3.24 SRHS-DU-126 Femur (continued) Sr 3253.13 3333.55 2376.84 2746.86 2891.15 2542.47 3592.76 3182.05 3229.66 2559.78 2307.60 3482.02 2456.53 2814.49 3152.74 6285.20 4126.05 2456.58 3496.97 3443.57 2762.31 3122.36 3406.66 3408.94 2236.52 4458.75 3449.27 3558.13 4208.20 1651.89 2729.81 3274.19 2122.65 3216.64 2675.83 3037.43 3000.84 3777.37 3668.09 3794.30 2891.21 2613.89 2800.56 1958.67 2045.34 2948.07 4843.93 2735.73 3265.46 4194.69 2688.79 2431.54 2323.20 2981.32 Y 2.69 3.08 2.40 2.68 2.96 3.40 6.00 2.77 3.11 2.53 3.15 1.73 1.93 2.54 4.23 7.16 6.47 3.40 5.28 7.78 6.74 6.08 4.94 4.21 5.49 8.90 6.21 4.23 5.43 2.01 3.00 1.38 1.73 4.93 8.07 9.80 4.90 4.22 6.65 3.86 2.45 1.26 2.92 4.07 4.96 9.43 13.46 10.04 8.06 10.99 5.08 5.59 7.58 7.34 Ba 1536.13 1024.57 1517.54 1380.91 1172.51 1209.22 2260.08 1554.51 1956.61 1262.14 1121.46 1697.73 1741.98 1627.07 1649.92 2685.47 2489.09 1132.37 1975.77 2659.12 2140.55 1985.60 1104.09 1132.35 1364.05 2045.79 2107.98 1574.14 nd 1444.50 1820.53 2022.04 1486.26 1519.53 2930.71 1514.86 1269.12 1633.03 2100.11 1620.88 1327.49 1202.32 1081.00 1226.60 nd 2826.87 3203.31 1358.03 1864.80 2461.95 1350.61 998.67 1801.76 1262.75 La 0.60 0.73 0.91 0.67 1.03 0.79 0.71 0.85 0.68 0.73 0.36 1.01 0.54 1.06 0.55 2.46 1.68 0.45 1.33 1.76 2.13 1.53 0.91 0.60 0.78 1.73 1.29 1.05 2.06 0.55 0.65 0.40 0.40 1.05 3.32 1.17 0.81 0.48 0.66 0.35 0.45 0.33 1.11 0.62 1.72 1.30 3.27 1.96 0.83 0.50 0.90 0.69 2.00 1.77 Ce 0.89 0.47 0.44 0.69 1.11 1.44 0.95 0.75 0.74 0.59 0.89 1.61 0.57 1.06 0.88 3.00 1.84 1.12 0.87 1.51 2.02 1.97 1.63 1.37 1.04 3.14 1.86 0.83 3.34 1.21 0.85 0.64 0.64 1.05 2.90 2.42 1.29 0.97 0.80 0.90 0.74 0.58 0.72 0.84 1.79 4.27 3.53 1.58 1.19 1.40 1.39 1.11 1.42 1.77 Pr 0.07 bd 0.17 bd 0.20 0.05 0.10 bd 0.03 0.02 0.08 0.06 0.08 0.06 0.19 0.18 bd 0.06 0.18 0.10 0.13 0.07 bd bd 0.06 bd 0.07 0.10 0.23 0.04 0.03 0.03 0.27 0.28 0.17 0.07 0.18 bd bd 0.13 0.11 0.03 0.10 0.06 0.19 bd 1.07 0.05 bd 0.34 bd 0.04 0.21 0.44 Nd 0.28 0.50 bd bd 0.59 bd bd bd 0.17 0.44 0.49 bd bd 0.70 0.55 1.08 0.27 0.22 bd bd 0.53 bd bd 0.30 0.84 1.07 bd bd 0.19 0.26 0.57 0.20 bd bd 1.03 0.77 bd bd 0.36 bd 0.32 0.36 0.38 0.73 0.37 bd bd bd bd bd 0.79 0.79 bd 0.43 bd bd 0.24 0.33 0.24 0.19 bd bd bd bd bd bd bd 0.21 bd bd bd 0.27 bd bd bd 0.48 bd bd bd bd bd bd 0.46 bd bd bd bd bd bd bd bd 0.65 bd bd bd bd 0.46 bd bd bd 0.75 bd bd bd bd bd bd bd Sm Eu 0.05 bd bd bd 0.21 bd bd bd bd bd bd 0.06 0.11 0.12 bd bd 0.09 0.08 bd bd bd bd bd 0.05 0.24 bd 0.39 0.06 0.07 bd 0.27 bd bd bd bd bd 0.15 bd bd 0.07 0.17 bd 0.07 bd bd bd bd bd bd bd 0.09 bd bd bd Gd 0.33 bd 0.46 0.49 1.41 bd bd 0.18 0.80 bd bd bd bd bd 1.09 0.63 bd 0.13 bd bd bd bd 0.15 0.88 bd 0.31 1.05 0.44 bd bd bd bd bd 0.65 0.40 bd 0.51 0.64 bd bd bd bd 0.22 0.65 bd 0.69 bd 0.37 bd 1.18 bd bd 0.98 bd bd bd bd bd 0.06 bd bd bd 0.05 bd bd bd bd bd 0.05 bd 0.04 0.02 0.02 0.09 0.11 bd 0.08 bd 0.02 0.04 0.03 bd 0.08 0.02 bd bd bd 0.04 0.05 0.06 bd 0.04 bd bd 0.07 bd bd 0.05 bd bd bd bd bd bd bd 0.08 0.06 0.06 Tb bd 0.39 0.35 0.16 0.12 bd 0.23 0.09 bd bd 0.19 bd 0.28 0.31 bd 0.48 bd 0.26 0.31 0.36 0.31 0.59 0.08 bd 0.30 0.16 bd 0.44 0.23 0.15 0.11 0.23 bd bd bd 1.60 0.13 bd 0.64 bd 0.09 0.11 0.56 0.54 bd 0.70 bd 0.56 bd 0.59 bd 0.15 0.24 0.38 Dy Ho 0.02 0.02 0.03 0.02 0.03 0.05 bd bd 0.15 0.04 bd 0.14 0.02 bd 0.19 bd 0.04 bd 0.05 0.09 bd 0.20 0.08 0.02 0.12 0.04 0.13 0.14 0.11 0.02 0.03 0.06 0.06 0.04 0.30 0.23 0.13 0.04 0.11 0.03 bd 0.05 0.11 0.05 0.27 bd 0.18 0.23 0.10 bd 0.08 0.12 0.06 0.06 Er 0.37 bd bd 0.09 bd 0.10 0.13 bd bd 0.38 0.21 0.12 bd bd 0.24 0.35 bd 0.14 0.34 0.92 0.34 0.52 0.26 bd 0.11 0.87 1.29 bd 0.50 0.08 bd bd 0.13 0.53 0.44 0.25 0.14 0.17 0.23 0.25 0.10 0.12 0.12 bd 0.72 bd 1.22 0.41 bd 0.32 bd bd 0.27 0.70 Tm 0.02 0.02 bd 0.04 bd bd 0.06 0.11 0.07 bd bd 0.08 bd bd 0.03 0.08 bd 0.02 0.12 0.06 0.15 0.14 0.04 bd 0.02 0.08 0.03 0.05 0.19 0.02 0.03 bd 0.08 bd 0.14 0.16 0.03 0.04 0.05 0.05 0.04 0.08 0.05 0.08 0.05 bd 0.26 bd 0.05 0.07 0.04 0.11 0.17 0.15 Yb 0.12 0.42 bd 0.35 bd 0.13 bd 0.41 bd 0.12 0.14 bd 0.13 0.30 0.15 0.92 0.91 0.09 0.29 0.52 0.44 1.02 0.34 0.25 0.43 0.45 1.13 0.31 0.49 0.45 bd 0.34 bd 0.23 1.76 1.33 0.55 0.46 bd 0.17 0.27 bd 0.16 0.31 bd 0.50 1.07 0.27 0.59 0.42 bd bd 1.42 0.18 Lu 0.07 bd bd bd 0.19 0.15 0.15 0.05 0.11 0.11 0.03 0.09 0.05 0.06 0.09 0.13 0.13 0.02 0.14 0.19 0.17 bd 0.06 0.02 0.08 0.08 0.14 0.06 0.06 0.02 0.09 0.06 0.06 bd 0.11 0.18 0.07 0.04 bd bd bd bd 0.15 bd 0.06 0.37 0.69 0.05 0.11 0.31 0.08 bd 0.13 0.27 Th 0.05 0.02 0.05 bd 0.02 bd bd 0.02 0.02 bd bd bd bd bd 0.02 bd bd bd bd 0.02 bd bd bd 0.02 0.04 bd bd 0.02 bd 0.02 bd bd bd 0.06 0.04 0.04 0.05 bd bd 0.02 0.02 bd bd 0.04 bd bd bd bd 0.04 0.12 0.03 0.16 0.05 0.05 U ƩREE 2.88 3 1.11 3 1.57 3 0.93 3 1.05 5 0.77 3 1.84 2 1.17 2 1.53 3 0.89 2 0.64 2 0.88 3 0.66 2 1.10 4 3.19 4 4.32 9 4.54 5 1.88 3 4.04 4 6.06 6 4.10 6 3.56 7 1.70 4 2.07 3 3.11 4 3.10 8 1.99 7 3.32 3 3.22 8 0.79 3 0.40 3 1.36 2 1.31 2 3.27 4 6.84 11 4.18 8 1.79 4 2.48 4 2.47 3 1.08 2 0.71 2 0.71 2 2.26 4 1.70 4 2.95 5 4.01 8 5.11 12 2.30 5 2.65 3 4.27 5 2.33 3 1.68 3 3.21 7 4.63 6 Ce/Ce* -0.07 -0.64 -0.74 -0.54 -0.43 0.35 -0.20 -0.37 -0.12 -0.34 0.20 0.19 -0.38 -0.24 -0.36 -0.12 -0.20 0.55 -0.60 -0.35 -0.29 0.02 0.32 0.52 -0.03 0.47 0.10 -0.46 0.05 0.55 0.01 0.12 -0.59 -0.54 -0.32 0.58 -0.21 -0.18 -0.41 -0.04 -0.21 0.22 -0.55 -0.09 -0.32 0.06 -0.56 -0.32 -0.31 -0.29 -0.22 0.20 -0.53 -0.53 Ce/Ce** 1.66 0.57 0.29 0.39 0.57 -59.53 1.22 4.43 10.10 -0.91 4.11 -4.20 -6.55 -1.51 0.49 6.27 1.32 2.68 0.42 1.80 2.03 13.68 31.57 4.13 -0.97 -2.09 -6.76 11.86 0.98 10.51 -1.00 7.35 0.21 0.32 6.39 -3.12 0.76 0.76 0.45 0.64 0.70 -1.61 1.02 -1.16 0.78 0.47 0.21 -3.05 0.63 0.33 1.06 -0.95 0.68 0.28 La/La* Y/Ho 1.82 132.5 1.48 130.5 0.22 85.6 -0.29 136.6 0.00 106.0 -4.40 75.1 1.16 48.1 -9.85 48.1 -16.75 21.1 -2.05 60.1 -3.87 36.4 -2.67 12.7 -2.36 85.6 -2.20 54.1 -0.42 22.6 -9.79 95.9 1.05 169.2 1.69 137.2 0.07 105.2 3.70 87.6 4.38 58.7 -12.54 29.7 -5.64 63.5 8.24 199.9 -1.63 44.8 -2.04 232.5 -3.34 48.1 -4.40 30.9 -0.09 48.1 -9.20 105.4 -1.71 107.4 -8.83 23.7 -0.78 29.7 -0.45 123.2 -13.50 26.7 -2.19 42.9 -0.05 39.0 -0.15 107.4 -0.37 62.3 -0.56 135.2 -0.20 79.5 -1.71 23.7 2.89 26.1 -1.68 76.2 0.23 18.1 -0.79 45.7 -0.71 73.2 -3.83 43.4 -0.16 79.1 -0.82 72.2 0.95 65.3 -1.54 48.1 0.79 125.2 -0.58 116.7 412 mm from bone rim 10.61 10.64 10.68 10.71 10.75 10.78 10.81 10.85 10.88 10.92 10.95 10.99 11.02 11.06 11.09 11.13 11.16 11.19 11.23 11.26 11.30 11.33 11.37 11.40 11.44 11.47 11.51 11.54 11.57 11.61 11.64 11.68 11.71 11.75 11.78 11.82 11.85 11.89 11.92 11.95 11.99 12.02 12.06 12.09 12.13 12.16 12.20 12.23 12.27 12.30 12.33 12.37 12.40 12.44 Sc 3.04 2.51 2.10 1.59 2.78 3.59 2.87 1.95 4.02 0.92 1.52 1.12 1.13 0.63 1.74 2.09 2.01 1.90 1.87 2.36 1.56 2.03 2.28 3.81 1.73 1.25 0.84 1.36 0.92 1.38 0.78 2.98 2.34 2.28 1.26 1.64 3.29 2.41 1.71 1.99 2.23 2.60 2.24 2.20 1.47 2.30 1.47 1.41 2.74 2.71 2.37 1.25 3.67 2.26 Mn 0.25 0.17 0.26 0.22 0.25 0.35 0.27 0.22 0.23 0.18 0.42 0.37 0.27 0.25 0.20 0.41 0.46 0.24 0.14 0.20 0.78 0.40 0.69 0.60 0.46 0.30 0.15 0.35 0.21 0.70 0.26 0.52 0.43 0.28 0.26 0.22 0.21 0.24 0.22 0.24 0.41 0.32 0.18 0.25 0.15 0.32 0.20 0.13 0.30 0.76 2.48 0.39 0.42 0.25 SRHS-DU-126 Femur (continued) Fe 1.35 1.18 1.90 1.70 1.79 1.06 1.29 1.14 1.45 bd 1.86 bd 1.83 1.24 1.28 1.40 0.98 1.59 1.17 1.31 1.19 1.92 2.06 2.98 1.40 1.51 1.32 0.90 1.22 1.25 0.88 2.11 1.61 1.17 1.24 1.47 1.32 2.32 1.44 1.92 2.35 2.16 0.99 1.18 0.86 1.29 0.77 1.48 3.53 7.72 4.24 2.43 2.38 2.32 Sr 2847.42 2182.22 3050.84 2757.48 3689.67 3944.99 3114.84 3724.90 3542.91 2577.05 4302.48 3855.68 3946.62 4163.23 2750.84 3763.74 3002.67 3212.10 2473.14 2324.17 3294.76 4413.67 2455.15 4053.01 2792.75 3037.76 2071.80 2431.74 2516.54 4208.18 2519.54 4097.86 3649.01 4681.85 2968.43 3765.54 4541.96 4873.48 3510.26 4839.21 3875.71 3770.20 3226.78 3047.65 2259.63 2906.03 1956.76 2117.47 2706.39 2978.17 7776.71 2941.02 2417.31 3146.33 Y 6.38 4.98 3.87 3.80 4.79 3.12 8.44 6.68 4.80 3.40 5.67 4.41 3.85 4.37 5.52 6.91 4.61 4.92 7.01 4.76 4.88 7.62 6.29 10.12 6.42 5.11 3.57 4.06 3.12 2.66 5.24 5.11 5.17 4.08 3.62 4.63 5.30 4.52 5.93 8.90 15.05 12.18 7.57 6.58 6.14 5.35 4.25 4.71 7.48 17.31 15.30 5.43 9.33 10.17 Ba 1320.31 1275.67 1633.96 1353.50 1717.86 2392.33 1848.65 1518.67 1923.40 1025.26 3390.21 1251.17 1229.77 1676.84 2153.44 3675.60 1232.13 2235.55 1263.85 1628.61 1514.39 1898.66 1501.06 2142.21 1573.43 1103.98 1034.16 1621.89 1071.27 1914.48 1369.66 1956.91 2274.86 2019.11 1305.65 1140.12 1657.41 2324.46 1855.19 1684.58 1638.99 2470.13 1470.65 2517.88 817.71 1540.92 1158.55 1815.29 1109.99 2258.17 2119.52 1480.75 1569.35 nd La 1.39 0.89 0.69 0.64 1.24 1.47 1.64 1.55 1.03 0.78 0.81 0.29 0.67 1.63 0.94 3.16 1.10 1.19 1.54 1.56 0.55 1.37 1.33 1.48 1.37 0.99 0.80 0.84 0.08 0.47 1.13 1.52 1.11 1.22 0.70 0.67 3.39 1.19 0.74 1.03 2.82 1.89 2.03 1.24 1.05 1.55 0.93 1.72 1.46 2.11 2.86 1.03 2.27 1.73 Ce 1.42 1.58 1.25 1.39 1.33 2.95 2.75 1.35 1.48 1.15 0.75 0.49 1.37 2.62 0.94 2.94 1.76 1.11 0.95 1.74 1.17 2.48 1.16 3.85 1.64 1.44 1.32 0.67 0.75 1.26 1.25 2.23 1.48 1.06 0.92 2.25 11.21 2.23 1.54 4.47 3.77 2.02 4.41 1.66 2.15 2.38 1.36 1.50 2.20 1.63 4.21 2.02 2.77 4.96 Pr 0.12 0.03 bd 0.06 0.03 0.25 0.13 0.24 bd bd 0.05 0.03 0.03 bd 0.10 0.32 0.06 0.04 0.03 0.08 0.09 0.09 0.17 0.17 0.20 bd 0.09 bd 0.11 0.18 bd 0.14 0.17 0.16 0.05 0.16 0.32 0.28 0.12 0.42 0.15 0.17 0.18 0.16 0.08 0.26 0.03 0.06 0.19 0.16 0.21 0.06 0.13 0.18 Nd 0.18 bd 0.21 0.18 0.41 0.24 1.14 0.56 0.22 0.13 bd bd bd 0.67 0.77 1.62 0.36 0.42 bd 0.76 bd bd 1.35 0.73 0.85 bd bd 0.42 bd bd bd bd 0.20 0.16 bd 0.47 0.71 0.71 0.70 0.44 2.18 0.67 0.44 bd 0.74 0.75 0.16 0.18 0.84 0.47 bd 0.17 0.57 0.35 bd 0.19 bd bd 0.25 bd bd bd bd bd bd bd bd bd 0.47 bd bd bd 0.37 bd bd 0.31 bd bd bd bd bd bd bd bd bd bd bd 0.38 bd bd 0.28 bd bd 0.27 0.22 0.20 bd bd 0.15 bd 0.20 bd 0.34 bd bd bd bd 0.14 Sm bd bd bd bd bd bd bd 0.05 0.08 bd 0.29 bd bd 0.89 0.07 bd bd 0.15 0.05 0.16 0.33 0.37 bd bd 0.12 bd bd bd 0.07 bd bd 0.09 bd bd 0.05 bd bd bd 0.06 0.24 0.13 bd 0.21 bd 0.27 bd 0.06 bd 0.20 bd 0.14 0.18 0.07 0.17 Eu Gd 0.43 bd bd bd 0.49 0.28 0.68 0.33 0.53 bd 0.96 bd 0.41 bd 0.23 3.58 0.21 1.01 bd 0.36 0.21 0.31 bd 1.17 0.20 bd bd bd bd 0.30 0.23 0.31 bd 0.19 0.32 bd bd 0.56 bd bd bd bd bd bd 0.60 0.22 0.99 0.21 0.66 0.55 bd 0.20 0.68 0.14 Tb 0.05 0.02 bd bd bd 0.07 0.03 0.06 bd 0.02 bd bd 0.02 bd bd bd bd 0.03 0.07 bd bd bd 0.12 0.04 bd bd 0.02 bd bd 0.04 bd bd 0.06 0.07 0.06 0.07 0.10 bd bd bd 0.05 0.02 0.11 0.05 0.02 0.08 0.07 bd bd bd bd bd 0.11 0.08 Dy 0.21 0.19 0.38 0.21 0.12 0.43 0.45 0.17 0.26 0.31 bd 0.09 bd 0.13 bd bd 0.11 0.12 0.18 bd 0.54 bd 0.10 0.87 0.40 0.36 bd bd 0.12 0.15 0.23 0.32 0.36 bd 0.08 bd 0.28 0.70 0.41 0.39 0.86 0.69 0.70 0.19 0.22 0.56 bd 0.11 0.50 0.84 0.49 0.20 0.79 0.28 Ho 0.19 0.05 0.09 0.03 0.06 0.22 0.22 0.06 0.07 0.02 0.04 bd 0.03 bd 0.09 0.08 0.11 0.09 0.09 0.07 0.21 0.23 0.17 0.11 0.02 0.03 0.05 bd 0.03 0.23 0.03 0.16 0.12 0.02 0.04 0.32 bd 0.07 0.21 0.13 0.08 0.30 0.07 0.12 0.09 0.17 0.05 0.19 0.25 0.35 0.06 0.10 0.03 0.07 Er 0.12 0.10 0.84 0.23 0.27 bd 1.23 bd 0.14 0.09 0.52 bd 0.11 0.44 0.13 bd 0.36 0.83 0.20 0.49 0.36 0.17 0.66 0.80 0.22 0.27 0.11 bd 0.13 0.34 1.13 0.17 0.40 0.10 0.09 0.15 0.46 0.15 0.23 1.73 0.59 0.33 0.48 0.51 0.65 0.24 0.32 0.47 0.91 0.31 1.36 0.33 0.50 0.31 Tm 0.05 0.07 0.03 0.05 bd 0.10 0.11 bd bd 0.02 bd 0.02 0.12 0.03 0.03 0.11 bd 0.09 bd 0.04 0.03 0.04 0.05 bd 0.02 0.06 0.05 bd 0.06 0.11 0.11 0.04 0.03 0.07 0.02 0.03 0.10 bd 0.10 0.03 0.03 0.09 0.10 0.07 0.09 0.03 bd 0.18 0.08 0.34 0.12 bd 0.05 0.10 Yb 0.47 bd 0.55 0.61 0.53 0.84 0.32 0.36 0.38 0.11 0.46 0.41 0.15 1.35 0.50 0.46 0.15 1.09 0.26 0.13 0.31 0.67 0.58 0.21 0.29 0.88 0.15 bd bd 1.12 bd 0.46 0.53 0.14 0.23 bd 0.40 0.61 0.75 0.57 0.78 0.72 0.13 0.41 0.21 0.32 0.42 0.15 1.20 1.63 1.07 0.29 2.13 0.90 Lu 0.03 0.12 0.03 bd 0.16 0.08 0.36 0.22 bd 0.04 0.13 bd 0.03 0.04 0.09 0.04 bd 0.17 bd 0.02 0.03 bd 0.11 0.31 0.05 0.10 0.08 bd bd 0.04 0.03 0.13 0.23 0.05 0.04 0.04 0.34 0.07 0.16 0.10 0.03 0.13 0.09 0.10 0.12 0.03 0.05 0.14 0.18 0.07 0.07 0.05 0.12 0.09 bd bd bd bd 0.02 bd 0.02 bd bd 0.05 bd 0.04 bd bd bd bd bd bd 0.51 bd bd 0.06 0.02 bd bd 0.02 bd 0.02 bd bd bd bd 0.02 0.02 bd 0.03 0.03 0.08 bd 0.16 0.04 bd bd bd bd 0.02 bd bd bd bd 0.05 bd 0.07 0.04 Th U ƩREE 1.79 5 1.76 3 1.62 4 1.09 3 1.12 5 5.94 7 2.15 9 2.16 5 1.43 4 0.78 3 1.12 4 1.59 1 1.90 3 1.41 8 2.54 4 2.66 12 1.32 4 4.18 6 1.65 4 1.14 5 1.09 4 3.74 6 2.46 6 2.49 10 2.07 5 1.73 4 1.74 3 1.00 2 0.58 1 0.57 4 1.18 4 2.18 6 1.00 5 1.04 4 1.09 3 0.99 4 0.54 18 1.16 7 0.97 5 2.04 10 2.44 12 5.49 7 1.77 9 4.70 4 1.55 6 1.54 7 1.14 5 2.52 5 3.40 9 3.19 8 22.79 11 2.57 5 2.14 10 2.39 9 Ce/Ce* -0.29 0.49 0.36 0.48 -0.10 0.12 0.19 -0.49 -0.13 -0.20 -0.29 0.14 0.63 0.30 -0.34 -0.38 0.22 -0.23 -0.46 -0.13 0.20 0.34 -0.46 0.68 -0.29 -0.14 0.08 -0.49 0.41 0.00 -0.34 0.01 -0.23 -0.47 -0.03 0.61 1.24 -0.09 0.20 0.56 0.03 -0.26 0.51 -0.18 0.45 -0.13 0.22 -0.29 -0.07 -0.45 0.06 0.50 -0.07 0.90 Ce/Ce** 0.86 -53.89 5.88 2.37 -3.22 0.82 -4.70 0.51 0.80 0.56 -3.47 -0.94 -2.83 -4.73 -4.34 1.97 10.97 -2.62 -0.95 -3.23 -1.18 -2.33 -3.07 3.74 1.22 1.58 -27.50 1.08 0.73 0.56 0.65 1.42 0.61 0.45 -415.09 1.42 3.02 0.74 5.01 0.75 -1.40 1.61 2.33 1.29 -5.61 0.96 18.83 2.49 1.87 1.03 1.49 3.58 3.45 2.28 La/La* Y/Ho 0.32 34.1 -7.72 107.8 23.43 40.8 1.06 147.1 -3.39 79.1 -0.38 14.5 -2.56 37.7 0.00 108.0 -0.12 73.2 -0.44 175.0 -3.12 145.1 -1.49 148.1 -2.18 151.1 -3.12 107.8 -2.58 64.5 23.99 87.0 -12.73 42.9 -3.23 52.7 -2.49 78.0 -2.93 71.1 -1.42 22.7 -2.02 32.9 -2.29 36.1 3.87 93.5 1.96 258.5 2.52 171.0 -3.04 70.2 3.21 86.8 -0.85 103.4 -0.66 11.5 -0.03 184.9 0.64 32.1 -0.30 42.9 -0.22 175.0 -4.87 92.0 -0.20 14.7 0.54 40.0 -0.31 65.3 -5.09 28.9 -0.74 68.1 -1.90 187.7 2.79 41.1 0.89 115.9 1.22 56.4 -2.52 67.1 0.18 32.3 -23.00 88.0 4.38 25.1 3.22 30.3 1.52 49.3 0.60 250.5 2.43 54.3 8.58 334.1 0.30 147.1 413 mm from bone rim 12.47 12.51 12.54 12.58 12.61 12.65 12.68 12.71 12.75 12.78 12.82 12.85 12.89 12.92 12.96 12.99 13.03 13.06 13.09 13.13 13.16 13.20 13.23 13.27 13.30 13.34 13.37 13.41 13.44 13.47 13.51 13.54 13.58 13.61 13.65 13.68 13.72 13.75 13.79 13.82 13.85 13.89 13.92 13.96 13.99 14.03 14.06 14.10 14.13 14.17 14.20 14.23 14.27 14.30 Sc 2.95 1.60 2.60 2.89 3.36 1.84 2.54 2.99 3.41 2.73 1.79 2.42 3.21 3.24 2.63 2.26 2.49 2.94 2.22 1.96 3.04 2.65 1.51 2.11 3.24 1.40 1.68 2.07 1.61 2.79 2.77 4.03 3.87 1.66 1.65 3.11 2.01 1.64 2.33 2.81 2.70 1.25 1.35 3.93 1.51 0.81 1.39 1.25 0.94 1.53 1.68 3.61 2.08 2.75 Mn 0.29 0.19 0.28 0.49 0.39 0.26 0.17 0.33 0.31 0.21 0.50 0.28 0.30 0.24 0.13 0.33 0.47 0.18 0.23 0.23 0.23 0.15 0.24 0.24 0.14 0.19 0.18 0.24 0.45 0.41 0.39 0.23 0.16 0.18 0.15 0.32 0.28 0.27 0.41 0.97 0.76 0.32 0.30 0.27 0.26 0.26 0.24 0.25 0.18 0.25 0.20 0.23 0.20 0.32 SRHS-DU-126 Femur (continued) Fe bd 1.53 1.33 1.63 bd 1.73 1.31 1.72 1.54 1.21 0.97 0.91 1.63 1.86 1.73 bd 2.57 1.27 1.73 1.62 1.74 1.60 1.23 1.67 0.86 0.85 1.17 1.53 1.79 2.81 1.92 1.32 1.22 1.33 0.77 2.63 1.23 1.06 2.41 3.92 4.12 1.62 2.01 3.52 2.26 1.17 1.75 1.09 1.03 1.24 1.16 1.23 1.02 1.51 Sr 3270.13 2407.70 2862.78 4196.45 3937.28 3659.00 3687.24 2816.40 3233.97 3194.42 3312.50 3013.39 4287.17 3153.98 2771.66 2978.94 3634.27 2987.40 3359.39 3017.49 2494.46 3130.17 2671.73 3689.58 2759.56 2710.43 2623.88 3423.61 4145.46 4247.13 3209.24 4098.70 3316.91 3674.79 2428.97 5145.48 2482.33 2098.23 4212.96 2613.36 3232.80 2495.00 4475.98 6733.34 4097.45 2590.09 3532.97 3418.88 2473.99 3093.29 3410.42 3663.47 2341.77 4399.25 Y 9.31 6.93 7.75 9.32 11.73 9.88 8.82 9.10 13.42 10.54 8.97 7.36 10.42 11.58 8.78 8.92 8.17 8.91 8.39 7.59 6.64 4.75 6.06 6.99 6.98 6.45 5.88 6.68 5.57 9.69 7.93 11.20 8.59 8.56 5.93 12.90 6.01 6.68 9.90 12.70 9.05 5.88 7.99 12.98 7.20 5.76 4.63 5.58 5.44 7.80 4.72 10.93 9.39 7.89 Ba 2482.65 nd nd nd 1509.95 2042.70 1631.54 1816.56 1947.67 1689.72 1719.11 1022.02 1666.86 1301.31 2141.51 1513.91 1765.28 1441.19 1530.73 1183.31 1438.33 1592.65 1189.74 1496.02 1627.13 1484.35 1211.68 2393.50 1691.86 2167.98 974.62 2205.13 1973.66 1927.09 1467.64 3342.62 1717.44 1282.09 1626.70 1266.07 1519.11 1170.31 nd nd nd nd nd 2166.11 2336.61 2506.00 2298.92 1919.93 1892.64 2344.04 La 1.79 1.08 1.58 3.37 1.76 1.03 2.26 1.80 1.82 1.63 1.73 2.43 2.18 2.85 2.23 2.10 2.78 2.52 1.89 1.25 1.30 0.75 1.22 2.05 2.68 1.35 1.56 1.32 0.93 2.11 2.57 3.68 1.95 1.98 1.01 1.95 1.84 1.62 1.36 2.69 3.41 1.47 2.14 2.18 1.07 0.87 1.34 1.33 1.11 1.89 1.04 3.92 1.16 2.03 Ce 5.65 2.78 2.43 3.09 2.38 3.40 3.38 2.54 3.02 1.39 2.78 1.23 2.13 1.95 2.19 3.22 2.35 3.35 2.83 1.54 1.00 1.12 1.62 2.23 3.09 1.04 2.45 1.85 2.00 2.85 2.93 3.27 1.14 1.35 1.34 2.51 1.34 3.11 2.37 4.03 3.21 1.13 2.85 2.37 2.15 1.47 0.65 1.20 0.90 2.61 1.44 4.42 4.00 2.89 Pr 0.19 0.15 0.47 0.31 0.31 0.10 0.26 0.10 0.20 0.20 0.03 0.17 0.36 0.16 0.14 0.40 0.45 0.06 0.29 0.24 0.25 0.09 0.03 0.06 0.03 0.42 0.03 0.04 0.26 0.18 0.17 0.49 0.28 0.20 0.19 0.18 0.13 0.33 0.15 0.19 0.13 0.12 0.18 0.04 0.08 0.06 0.34 0.25 0.06 0.06 0.15 0.69 0.12 0.34 Nd 0.57 0.24 0.37 3.43 1.54 0.39 0.78 1.02 bd 0.48 0.51 1.02 0.21 0.77 0.80 0.42 bd 0.38 0.19 0.35 0.25 0.56 0.17 0.18 0.79 0.76 0.33 0.72 bd 0.52 1.19 0.87 0.47 0.24 1.29 0.34 0.24 0.70 1.55 0.95 0.73 1.19 1.46 0.72 0.46 0.50 bd 0.48 0.53 0.37 0.18 1.51 0.68 0.45 bd bd bd 0.24 0.31 0.24 bd bd bd bd bd bd bd bd bd bd bd bd bd 0.21 bd bd bd 0.22 bd bd 0.20 bd bd bd bd bd bd bd 0.59 0.42 bd bd 0.21 0.23 bd bd bd bd 0.28 bd bd bd bd bd 0.21 bd bd bd Sm Eu 0.07 0.09 0.04 bd 0.09 bd 0.11 0.14 bd 0.17 0.12 bd bd 0.07 0.43 0.07 bd bd 0.06 0.13 bd bd bd 0.13 bd 0.07 0.18 bd 0.79 bd bd bd bd bd 0.11 bd bd 0.06 0.06 0.13 bd bd 0.22 bd 0.16 0.42 bd bd bd bd bd bd bd bd Gd 0.68 0.29 bd 4.13 0.92 0.94 1.12 0.24 0.28 bd 0.20 0.98 1.02 0.69 0.48 bd 0.95 0.22 0.22 bd bd 0.22 bd bd bd bd bd bd 0.52 bd 0.23 1.04 bd 0.28 0.58 1.24 0.29 bd 0.62 0.91 bd 0.40 0.75 0.28 0.27 bd 0.48 bd bd 0.67 0.21 bd 0.20 bd Tb 0.08 0.05 bd 0.03 0.04 0.11 0.11 bd 0.07 bd bd 0.09 0.06 0.08 bd 0.09 0.08 bd 0.05 0.03 0.07 0.05 bd 0.13 bd bd bd 0.07 0.03 0.19 bd 0.42 0.03 0.17 0.02 bd 0.07 0.08 0.10 0.14 0.04 0.05 0.09 0.21 0.03 bd bd bd bd bd bd bd 0.02 0.03 Dy 1.12 0.07 0.52 0.36 0.76 0.12 0.18 0.12 0.28 0.14 0.40 0.24 0.63 0.11 0.12 0.25 0.31 0.45 0.78 0.21 0.29 bd 0.10 0.33 0.56 0.68 0.29 0.57 1.30 0.47 0.35 0.34 0.14 bd bd 1.03 bd 0.41 1.13 0.34 0.58 0.20 0.62 0.28 0.41 0.10 0.12 0.19 0.21 bd 0.21 0.15 0.40 1.19 Ho 0.11 0.04 0.13 0.33 bd 0.26 0.07 0.09 0.07 0.18 0.15 0.12 0.19 0.11 0.06 0.06 0.04 0.08 0.14 0.08 0.18 0.08 0.15 0.08 0.16 0.06 0.12 0.11 0.06 0.23 0.09 0.30 0.10 0.18 0.07 0.05 0.07 0.03 0.23 0.17 0.22 0.13 0.03 0.07 0.03 0.20 0.06 0.07 0.18 0.19 bd 0.30 0.28 0.20 Er 1.36 0.80 0.49 0.52 0.33 0.64 0.51 0.53 0.46 0.78 0.66 0.40 0.83 0.50 0.39 0.69 1.21 0.12 1.10 0.35 0.32 0.36 0.44 0.12 0.72 0.37 0.21 0.16 0.57 0.17 0.39 1.32 1.08 bd 0.63 0.90 0.64 0.11 0.67 0.87 1.75 0.33 0.13 0.47 0.75 0.11 0.26 0.31 0.11 0.12 0.58 0.82 0.22 0.44 Tm 0.08 0.07 0.07 0.17 0.14 0.11 0.07 0.26 bd 0.07 0.07 0.03 0.15 0.03 0.06 0.03 0.04 0.08 bd 0.02 bd 0.03 bd 0.10 0.07 0.22 0.07 0.10 bd 0.18 0.06 0.24 0.03 0.03 0.05 0.10 bd 0.07 0.10 0.16 0.07 bd 0.12 0.07 0.03 0.09 0.06 0.07 0.05 0.08 0.10 0.07 0.10 0.06 Yb 0.49 0.21 0.43 0.86 0.22 0.84 0.80 1.22 0.82 1.63 0.43 0.52 1.63 0.66 1.38 0.73 0.23 0.97 0.16 0.46 bd 0.16 0.14 1.11 0.81 0.33 0.70 0.83 0.75 0.22 0.34 1.49 0.20 0.41 0.14 0.29 1.69 0.30 0.59 0.33 0.21 0.14 bd 0.41 0.20 bd 0.52 0.28 0.76 0.80 0.31 2.59 0.29 bd Lu 0.06 0.12 0.22 0.19 0.20 0.37 0.07 0.13 0.15 0.30 0.16 0.19 0.13 bd 0.29 0.03 0.25 0.30 0.09 0.11 bd bd 0.11 0.17 0.10 0.09 0.08 0.08 0.03 0.25 0.16 0.09 0.07 0.08 bd bd 0.04 0.14 0.24 0.09 0.15 0.11 0.20 0.04 0.07 0.24 0.13 0.08 0.28 0.24 0.08 0.24 0.11 0.11 bd bd 0.03 bd 0.03 bd bd 0.02 0.03 bd bd 0.10 0.02 0.05 0.07 0.02 bd bd bd bd bd bd bd bd 0.04 bd 0.04 bd 0.05 0.06 bd bd bd bd bd bd 0.03 bd bd bd bd bd bd bd bd bd bd bd bd 0.02 bd 0.03 bd bd Th U ƩREE 2.86 12 1.68 6 2.46 7 3.11 17 2.02 9 6.54 9 2.01 10 3.11 8 2.09 7 4.58 7 2.21 7 1.65 7 2.89 10 2.43 8 3.00 9 2.01 8 4.76 9 1.52 9 1.92 8 1.30 5 0.91 4 1.36 3 0.98 4 1.90 7 0.59 9 1.16 5 0.81 6 1.95 6 2.26 7 2.25 7 5.08 8 3.77 14 1.78 6 1.23 5 0.27 6 1.34 9 1.67 6 1.56 7 3.85 9 1.44 11 1.72 10 1.64 5 2.36 9 2.06 7 1.14 6 2.83 4 0.88 4 1.67 4 0.95 4 0.21 7 0.75 5 1.11 15 1.44 8 1.93 8 Ce/Ce* 1.06 0.57 -0.34 -0.37 -0.25 1.23 -0.04 0.07 0.08 -0.47 0.41 -0.63 -0.45 -0.48 -0.26 -0.18 -0.52 0.13 -0.13 -0.35 -0.59 -0.07 0.14 -0.09 0.04 -0.68 0.37 0.17 -0.05 -0.06 -0.16 -0.46 -0.65 -0.55 -0.30 -0.12 -0.46 -0.01 0.14 0.09 -0.23 -0.45 -0.06 -0.05 0.45 0.26 -0.77 -0.51 -0.38 0.14 -0.18 -0.38 1.31 -0.20 Ce/Ce** 3.00 1.49 0.35 -0.99 1.68 4.60 1.31 -3.51 1.88 0.61 -3.72 2.73 0.38 2.17 6.16 0.56 0.35 20.11 0.64 0.48 0.27 4.56 22.05 3.64 -2.10 0.20 -7.45 -1.72 0.69 1.64 -71.91 0.53 0.32 0.47 12.65 1.17 0.88 0.81 -1.82 4.18 9.89 -1.20 -5.18 -2.22 10.51 -5.69 0.14 0.40 -3.23 15.77 0.67 0.56 13.34 0.61 La/La* Y/Ho 0.80 83.4 -0.07 192.9 -0.66 60.4 -1.82 28.5 13.64 33.2 2.49 37.9 0.66 128.4 -2.67 101.4 1.60 191.9 0.24 60.0 -3.14 60.2 -10.21 61.2 -0.42 55.6 13.98 101.7 -11.74 148.4 -0.44 142.4 -0.37 210.7 -26.84 106.7 -0.36 60.8 -0.39 96.8 -0.47 36.3 -6.20 57.9 -29.31 40.8 5.30 85.6 -2.81 42.9 -0.59 114.7 -4.74 48.5 -2.13 62.5 -0.45 86.1 1.29 41.8 -4.64 90.2 -0.05 37.5 -0.13 82.3 0.06 48.5 -2.53 83.0 0.49 254.5 0.97 83.1 -0.29 260.5 -1.76 43.2 19.05 75.4 -18.98 41.8 -2.11 46.9 -2.77 262.5 -2.89 184.0 -9.99 212.7 -2.88 29.4 -0.54 78.1 -0.27 78.3 -3.24 29.6 -20.57 40.3 -0.25 38.5 -0.16 36.8 -7.63 34.1 -0.33 39.8 414 mm from bone rim 14.34 14.37 14.41 14.44 14.48 14.51 14.55 14.55 14.58 14.61 14.65 14.68 14.72 14.75 14.79 14.82 14.86 14.89 14.93 14.96 14.99 15.03 15.06 15.10 15.13 15.17 15.20 15.24 15.27 15.31 15.34 15.37 15.41 15.44 15.48 15.51 15.55 15.58 15.62 15.65 15.69 15.72 15.75 15.79 15.82 15.86 15.89 15.93 15.96 16.00 16.03 16.07 16.10 16.13 Sc 2.57 3.35 2.70 1.90 2.16 3.31 1.03 2.57 2.35 2.79 1.38 3.57 2.45 3.43 3.91 3.87 1.84 2.59 2.54 2.35 1.65 3.79 2.89 1.94 0.99 1.51 1.05 1.83 2.25 1.30 1.73 3.06 2.19 2.00 1.92 2.87 2.12 2.45 1.93 4.22 3.52 2.46 3.88 3.64 2.99 2.62 3.11 1.70 1.84 1.83 0.54 2.80 2.12 1.40 Mn 0.37 0.23 0.28 1.51 0.37 0.44 0.27 0.25 0.19 0.22 0.17 0.43 0.46 0.35 1.99 0.69 0.31 0.26 0.31 0.27 0.22 0.25 0.15 0.22 0.23 0.45 0.76 0.39 0.21 0.11 0.27 0.33 0.17 0.19 0.18 0.14 0.18 0.22 0.19 0.26 0.16 0.44 0.17 0.14 0.19 0.17 0.25 0.19 0.21 0.26 0.21 0.17 0.23 0.24 SRHS-DU-126 Femur (continued) Fe 1.46 0.90 1.03 1.21 1.44 0.93 1.42 0.93 1.41 0.99 1.06 2.10 1.67 bd 2.35 1.54 0.84 1.52 1.17 1.34 0.89 1.29 1.00 1.46 0.85 1.38 1.92 2.43 0.97 0.95 0.70 0.90 1.30 0.94 0.67 0.88 0.97 1.35 1.00 0.75 1.20 1.80 1.19 1.85 1.55 1.38 1.60 1.19 1.67 1.24 0.73 0.99 1.88 0.91 Sr 3965.64 3151.99 3305.04 2997.92 4453.17 2269.00 4972.22 4036.26 2329.16 3762.23 3400.28 4678.83 2880.94 3202.40 2826.53 3620.93 3176.76 2217.36 3414.91 2101.32 4113.97 2942.32 2163.53 4103.38 2596.38 3566.56 3505.14 4510.41 2967.72 2305.57 1882.50 3304.14 2483.03 1947.21 1821.76 2499.54 2150.80 3517.85 2350.07 2417.27 3423.92 2936.88 3064.39 2441.60 3603.76 2634.81 3516.25 3425.33 4186.73 3860.11 2528.12 2788.27 3781.67 3253.32 Y 9.53 8.99 8.75 6.85 7.12 7.90 7.78 10.15 10.43 11.98 7.41 15.62 8.10 12.03 16.25 14.51 8.37 8.44 10.02 7.82 9.88 9.09 7.77 9.93 4.12 6.48 8.31 7.53 7.95 5.40 6.61 7.67 6.90 6.35 7.43 5.41 5.20 9.84 9.07 13.50 13.71 9.91 14.16 15.98 15.19 9.37 8.36 9.15 9.30 8.16 5.83 10.52 8.23 9.63 Ba 2286.86 nd 1967.32 1356.53 2751.42 1799.64 1955.60 1347.15 1423.73 1243.11 2984.08 2990.46 1415.63 2298.04 1518.81 2282.13 910.58 1311.60 1469.98 1301.20 1407.07 1821.84 1256.24 1901.28 1984.46 2338.46 1509.35 1925.87 1173.46 1019.93 1215.73 1596.76 1817.19 1256.06 1326.79 1121.55 1170.02 1535.66 1403.14 1365.59 2852.15 1458.26 1356.36 1461.88 2485.21 2061.62 2861.62 1827.16 1821.46 2071.93 913.81 1207.62 1084.24 1180.05 La 2.00 1.47 2.29 1.91 2.62 1.99 1.30 2.65 1.86 1.48 1.09 5.19 3.11 3.38 4.19 6.04 3.39 2.12 2.61 1.81 0.72 1.56 1.60 1.05 0.98 1.25 1.21 2.46 2.11 0.86 0.91 1.68 1.35 1.06 1.79 2.19 0.66 2.23 3.01 2.97 5.85 2.11 5.81 3.50 5.22 1.75 1.74 1.89 2.32 1.76 1.73 2.46 2.66 1.65 Ce 3.83 1.94 2.58 1.71 3.97 2.72 3.65 3.09 1.30 1.90 2.45 4.25 1.73 6.41 6.79 7.99 3.95 4.52 4.07 3.15 1.39 0.96 2.31 2.63 1.71 2.45 1.62 4.07 2.79 1.18 1.22 2.39 3.29 1.34 1.99 1.04 1.39 2.23 5.57 3.26 9.35 11.44 8.55 7.90 8.42 2.07 2.32 1.98 2.86 4.67 4.21 4.66 5.34 2.38 Pr 0.06 0.06 0.35 0.02 0.03 0.34 0.07 0.25 0.16 0.13 0.10 0.48 0.15 0.49 0.38 0.40 0.41 0.29 0.66 0.16 0.04 0.51 0.30 0.16 0.10 0.13 0.26 0.17 0.10 0.06 0.29 0.04 0.23 0.12 0.91 0.03 bd 0.16 0.28 0.03 0.75 0.36 0.35 0.50 0.18 0.04 0.14 0.12 0.31 0.28 0.23 0.21 0.30 0.40 Nd 1.22 0.54 1.03 0.28 1.09 0.36 0.43 0.18 bd 0.26 bd 0.77 2.14 1.43 0.56 1.05 0.87 0.49 bd 0.23 0.71 bd 0.88 0.24 bd 0.99 0.78 1.25 0.19 0.37 0.79 0.88 1.12 0.17 0.81 0.37 0.19 0.46 0.47 0.84 1.47 0.58 1.25 0.23 1.56 1.14 0.62 0.98 1.57 0.61 0.84 1.06 bd 0.43 Sm 0.42 0.44 bd bd bd 0.87 bd 0.22 bd bd bd 0.31 bd bd 0.68 bd bd 0.29 bd 0.55 bd 0.30 bd bd bd bd bd bd bd bd bd 0.26 0.27 0.21 0.19 0.22 bd bd bd bd 0.29 0.23 0.84 bd bd 0.83 0.99 bd bd 0.24 bd 0.18 bd bd bd bd bd 0.05 bd bd bd bd bd bd bd 0.09 bd 0.08 0.10 0.28 0.06 bd 0.09 0.16 bd bd bd bd bd bd 0.09 0.62 bd bd 0.09 0.23 bd 0.12 0.06 0.06 0.07 bd bd 0.22 0.26 bd 0.05 0.08 0.09 bd bd bd 0.08 0.14 0.06 bd bd 0.15 Eu Gd 0.41 0.21 0.24 4.25 bd bd 0.50 0.44 1.10 bd 0.96 1.85 0.51 1.44 0.33 2.85 0.41 bd bd bd 0.57 bd bd bd bd bd 0.30 0.59 bd bd bd 0.26 bd 0.20 0.38 bd 0.23 bd 0.85 0.50 1.48 bd 0.67 0.27 0.62 0.27 1.48 bd bd 0.98 0.40 0.36 0.47 0.25 Tb 0.10 0.16 bd 0.08 0.45 0.03 bd 0.08 0.03 bd 0.11 0.19 0.09 0.17 0.16 bd bd bd 0.07 0.03 0.03 bd 0.06 0.03 bd bd 0.04 0.07 bd bd bd 0.03 bd bd 0.05 0.11 bd 0.07 bd 0.12 0.18 0.06 0.12 0.20 0.04 0.03 0.03 0.04 0.06 0.06 0.07 0.02 bd 0.03 Dy 0.10 0.32 0.12 0.17 0.32 0.64 0.25 0.11 0.14 0.31 0.47 0.61 0.51 0.14 0.33 0.31 0.31 bd 1.23 0.41 0.56 0.15 0.13 0.28 0.48 0.29 0.92 1.03 0.45 0.14 0.08 0.65 0.26 0.21 0.48 0.33 0.23 0.68 0.42 0.37 1.31 0.69 0.74 1.08 0.93 0.54 0.24 0.14 0.13 bd 0.40 0.45 0.71 0.13 Ho 0.23 0.11 0.03 0.10 0.05 0.08 0.25 0.11 0.20 0.08 0.26 0.23 0.13 0.14 0.12 0.23 0.10 0.11 bd 0.20 0.10 0.04 0.03 0.14 0.12 bd 0.04 0.15 0.03 0.05 0.08 0.10 0.10 0.08 0.05 0.08 0.11 0.27 0.10 0.19 0.40 0.20 0.10 0.27 0.15 0.24 0.06 0.11 0.10 0.06 0.07 0.07 0.06 0.29 Er 0.68 0.35 0.27 0.37 0.24 0.12 0.56 0.12 0.75 1.54 bd 0.67 1.11 0.47 0.55 1.20 0.68 0.48 0.51 0.60 1.39 0.49 bd 0.62 0.26 bd 0.51 1.62 0.25 0.16 0.09 1.14 0.44 0.45 0.10 0.36 0.63 0.30 0.62 0.82 0.64 0.76 0.63 1.04 0.51 0.45 0.40 0.64 bd 0.40 0.11 0.49 0.26 1.26 Tm 0.07 0.03 0.03 0.06 0.15 0.10 0.06 0.05 0.06 bd 0.11 0.29 0.21 0.17 0.24 0.04 0.10 0.03 0.07 0.13 0.03 0.07 0.03 0.27 0.06 0.03 0.18 0.07 0.11 0.07 0.07 0.03 0.06 0.10 0.09 0.08 0.05 0.10 0.03 0.12 0.10 0.11 0.08 0.16 0.04 0.06 bd 0.14 0.09 0.06 0.02 0.09 0.03 0.24 Yb 0.75 0.47 0.53 0.36 0.16 1.08 0.74 1.11 0.39 0.22 0.68 1.32 0.18 0.61 0.72 1.13 0.59 0.63 0.89 bd 0.20 bd bd 1.22 0.52 0.21 0.67 0.21 0.98 bd bd 0.56 0.38 1.05 0.55 0.47 0.16 1.18 0.61 0.54 2.31 0.66 0.60 1.76 1.12 0.39 0.35 0.84 0.96 bd 0.58 0.39 0.68 1.10 Lu 0.14 0.06 0.19 0.16 0.17 0.06 bd 0.12 0.14 0.17 0.16 0.08 0.24 0.15 0.09 0.04 0.33 bd bd 0.04 0.11 bd bd 0.04 0.06 0.23 0.33 0.08 0.15 0.04 bd 0.17 0.14 0.05 0.03 0.17 0.09 0.14 0.07 0.26 0.35 0.03 0.15 0.07 0.12 bd 0.03 0.15 0.11 0.10 0.11 0.19 0.09 0.30 Th 0.02 bd 0.02 bd bd bd bd bd bd bd 0.02 bd 0.03 bd 0.07 bd bd 0.06 0.03 0.03 0.03 bd 0.03 bd bd bd 0.03 bd bd 0.01 bd bd bd bd bd 0.04 bd 0.03 0.03 0.03 bd 0.02 bd bd bd bd bd bd 0.03 bd bd bd bd bd U ƩREE 1.33 10 1.03 6 1.19 8 1.42 10 1.15 9 1.19 8 1.21 8 1.20 9 1.47 6 0.75 6 3.04 6 6.73 16 0.68 10 5.46 15 2.89 15 0.91 22 1.44 11 2.36 9 1.61 10 0.97 7 0.55 6 3.63 4 0.63 5 0.50 7 0.43 4 0.52 6 0.57 7 1.28 12 0.78 7 1.17 3 1.21 4 0.62 8 0.59 8 0.92 5 0.85 7 0.27 6 0.32 4 0.44 8 1.69 12 1.08 10 2.19 25 2.26 17 0.92 20 1.13 17 1.29 19 1.75 8 0.39 8 1.65 7 0.45 9 0.34 9 0.83 9 0.90 11 0.75 11 1.72 9 Ce/Ce* 0.60 0.06 -0.35 -0.20 0.35 -0.24 1.14 -0.21 -0.51 -0.12 0.54 -0.44 -0.56 0.13 0.11 -0.02 -0.27 0.29 -0.27 0.21 0.48 -0.75 -0.23 0.45 0.15 0.31 -0.33 0.21 0.05 0.00 -0.44 0.22 0.36 -0.18 -0.65 -0.58 0.27 -0.27 0.26 -0.02 -0.01 2.02 0.11 0.34 0.33 0.02 -0.06 -0.22 -0.24 0.53 0.49 0.33 0.29 -0.31 Ce/Ce** -1.95 -6.86 0.75 -6.04 -1.85 0.56 19.29 0.81 0.62 1.18 5.44 0.68 -0.62 1.35 1.34 1.89 0.81 1.22 0.40 1.52 -1.30 0.14 0.79 1.23 7.14 -8.39 0.63 -22.24 2.40 7.66 0.41 -1.57 2.94 0.85 0.15 -2.73 1.26 1.47 1.55 -2.24 1.03 2.43 2.90 0.99 -10.24 -0.97 2.72 -6.85 2.15 1.47 2.32 5.18 1.60 0.41 La/La* Y/Ho -1.97 41.2 -3.89 83.9 0.26 290.3 -6.34 65.9 -2.23 132.6 -0.37 99.4 -12.77 30.6 0.04 93.2 0.39 51.3 0.51 155.3 47.29 28.0 0.32 68.8 -1.99 64.1 0.35 85.3 0.30 131.0 1.56 62.5 0.17 81.9 -0.09 78.3 -0.63 58.4 0.37 38.5 -1.62 94.1 -0.63 248.5 0.04 240.5 -0.23 71.0 -6.45 34.5 -2.63 126.6 -0.11 218.6 -3.95 51.3 1.97 286.2 -9.64 100.0 -0.45 84.8 -2.08 79.0 8.16 69.8 0.05 82.3 -0.80 156.3 -5.63 66.5 -0.01 45.9 1.79 36.3 0.34 86.9 -2.98 72.8 0.06 34.4 -0.29 49.6 3.31 138.1 -0.36 59.5 -4.57 98.7 -1.82 39.8 6.07 138.5 -3.48 84.2 61.13 93.5 -0.06 136.5 1.19 78.3 96.47 156.7 0.39 140.4 -0.56 33.8 415 mm from bone rim 16.17 16.20 16.24 16.27 16.31 16.34 16.38 16.41 16.45 16.48 16.52 16.55 16.58 16.62 16.65 16.69 16.72 16.76 16.79 16.83 16.86 16.90 16.93 16.96 17.00 17.03 17.07 17.10 17.14 17.17 17.21 17.24 17.28 17.31 17.34 17.38 17.41 17.45 17.48 17.52 17.55 17.59 17.62 17.66 17.69 17.72 17.76 17.79 17.83 17.86 17.90 17.93 17.97 18.00 Sc 2.12 3.67 1.41 1.08 3.70 1.88 1.26 2.03 2.00 2.76 1.87 3.15 3.68 3.72 5.44 3.38 1.98 3.15 1.96 2.23 2.06 2.65 0.71 0.83 1.43 2.38 2.65 1.56 1.30 1.92 2.53 1.57 2.59 2.67 1.59 2.55 1.56 0.74 1.77 1.08 1.00 1.78 0.47 1.12 1.08 0.93 1.23 1.22 0.40 0.98 1.69 0.94 1.54 0.93 Mn 0.21 0.25 0.17 0.30 0.21 0.29 0.22 0.22 0.17 0.57 0.88 1.42 1.08 2.60 1.47 1.29 0.44 0.37 0.27 0.38 0.26 0.25 0.19 2.19 0.29 0.32 0.26 0.26 0.30 0.26 0.39 0.57 0.15 0.33 0.24 0.25 0.29 0.22 0.58 0.24 0.38 0.29 0.52 0.34 0.29 0.31 0.21 0.44 0.83 0.23 0.51 0.21 0.40 0.14 SRHS-DU-126 Femur (continued) Fe bd 1.50 1.42 1.12 2.51 1.20 1.56 1.97 1.84 bd 3.41 3.63 2.87 5.61 4.58 4.40 2.12 1.60 1.22 1.73 1.32 1.49 0.93 0.85 1.38 1.24 1.83 1.32 1.53 1.08 1.26 1.23 0.73 1.41 1.08 1.24 1.64 1.31 1.56 1.03 1.27 1.31 1.52 1.63 1.72 1.42 2.17 1.03 1.11 0.79 1.07 0.88 1.05 bd Sr 2953.03 3453.09 2724.33 2589.51 3249.64 2759.62 4185.75 3334.91 2997.68 3196.36 6324.18 8164.00 3353.63 3377.29 4664.84 9739.51 23011.84 4492.33 2667.85 4057.89 6811.77 4319.36 12228.42 2691.61 2872.59 3547.58 2464.50 2695.73 2849.19 2936.77 2407.67 2967.37 2550.42 4199.40 2078.78 3620.27 3080.30 1829.73 3786.59 2982.89 2754.15 3579.57 3460.60 2684.62 3651.93 4228.28 2948.61 3643.78 2214.16 2331.28 2973.69 2933.65 3481.03 2709.82 Y 7.44 7.97 8.46 10.94 12.80 6.99 6.41 6.55 8.76 11.61 17.84 18.09 18.61 24.75 22.34 21.37 7.37 8.82 9.82 7.26 8.67 6.66 8.71 13.53 5.31 9.68 5.73 4.60 5.14 5.55 4.54 3.88 2.98 6.22 5.49 7.79 3.60 2.21 6.74 3.68 4.29 3.89 5.21 3.13 4.71 6.47 3.26 5.16 3.02 2.88 1.49 2.87 4.01 3.16 Ba 2040.61 1380.57 1278.57 1295.67 1613.68 2395.50 1568.68 2508.26 2171.26 nd nd nd nd nd nd 4060.06 1936.12 2115.38 1787.91 3081.33 776.20 nd 1284.44 1907.81 1123.02 2552.71 nd 1562.11 2952.90 1910.22 1465.32 1839.44 1172.12 2117.38 1276.40 2013.91 1827.50 1832.73 2731.46 1480.27 nd 1738.21 nd 1966.57 1976.11 1563.62 1722.07 2691.05 1273.14 1023.22 1003.00 1095.62 1023.68 904.38 La 2.24 1.81 1.47 2.14 2.52 2.26 1.31 1.81 3.07 1.92 6.25 7.60 4.15 5.63 8.18 8.67 1.87 2.38 1.71 2.15 1.80 1.76 1.52 1.42 1.79 1.76 1.36 1.26 1.28 1.53 1.20 1.65 1.76 1.63 1.18 1.47 1.14 3.01 1.40 2.32 1.21 0.91 1.07 1.15 0.76 0.75 1.21 1.33 0.55 0.86 0.43 0.66 0.87 0.59 Ce 1.94 3.75 2.31 3.97 3.25 3.07 2.15 2.08 3.73 3.03 5.31 13.85 4.84 6.68 9.73 12.08 3.86 3.28 2.15 3.56 1.60 3.56 1.69 1.31 1.86 5.43 2.04 2.20 1.21 1.79 1.14 2.28 1.14 3.47 1.40 2.45 1.17 1.41 3.10 2.13 1.59 0.91 2.26 1.62 2.73 2.88 1.85 2.61 1.58 1.16 3.69 0.79 1.64 0.99 Pr 0.25 1.13 0.18 0.23 0.21 0.34 0.36 0.36 0.37 0.23 0.63 0.91 0.30 0.65 0.99 0.77 0.75 0.38 bd 0.22 0.08 0.34 0.21 0.11 0.06 0.16 0.13 0.35 0.09 0.18 0.27 bd 0.11 0.13 0.11 0.06 0.34 0.10 0.26 0.22 0.12 0.24 0.13 0.29 bd 0.24 0.08 0.14 bd 0.09 bd bd 0.09 0.05 Nd 0.59 0.18 1.09 1.33 1.22 0.40 0.32 1.33 1.27 1.04 1.72 1.18 2.03 2.64 2.59 1.13 1.10 1.12 0.43 0.52 0.24 1.00 0.35 0.13 0.33 0.97 0.26 0.17 0.35 bd 1.62 bd 0.22 bd 1.09 0.69 bd bd 0.43 1.47 0.17 bd 0.39 0.63 0.44 1.06 bd 1.59 0.28 0.13 bd 0.33 bd 0.31 bd 0.21 0.22 0.53 bd bd bd bd 0.22 bd 1.39 bd 0.17 bd bd bd bd 0.22 bd bd bd bd bd 0.15 bd 0.29 bd bd bd 0.63 bd bd bd bd bd bd bd bd bd 0.18 bd bd bd bd bd bd 0.20 bd bd bd bd bd bd bd Sm Eu 0.10 bd 0.13 0.16 0.08 0.14 0.06 0.07 0.32 0.25 0.82 0.21 0.15 0.42 0.46 0.26 0.31 0.13 0.07 bd 0.34 0.53 0.06 0.04 0.06 0.26 bd bd 0.06 bd 0.09 0.32 bd bd bd bd 0.06 bd bd bd 0.12 0.31 bd bd 0.08 0.06 bd bd bd bd bd bd 0.09 0.05 Gd 0.53 0.43 0.21 0.26 bd 0.23 0.39 0.22 bd 0.41 0.68 bd 0.34 1.41 1.56 0.90 bd 0.67 bd 0.93 bd bd bd 0.30 bd 0.28 bd 0.83 bd 2.84 1.29 0.27 0.52 0.31 0.25 0.83 bd 0.36 1.30 0.71 bd 0.20 0.47 0.76 0.53 0.21 0.40 bd bd 0.32 0.19 bd bd bd bd bd bd bd 0.11 0.12 bd 0.03 0.05 0.05 0.12 0.09 bd 0.13 0.19 0.11 bd 0.13 0.06 0.07 0.03 0.04 0.03 bd 0.05 0.07 bd 0.05 bd 0.04 bd 0.10 0.03 bd bd 0.05 0.03 bd bd 0.04 0.13 bd bd bd bd bd 0.02 0.03 0.08 0.04 bd bd bd 0.02 Tb Dy 0.26 0.32 0.11 0.92 0.29 0.24 0.10 0.23 0.86 0.31 0.51 2.98 1.46 1.04 1.34 0.89 0.78 bd 0.13 0.31 bd 0.44 0.31 0.30 0.40 0.43 0.31 bd bd bd 0.16 bd 0.26 bd bd bd bd 0.27 bd 0.09 0.31 bd 0.23 0.12 0.13 0.42 0.30 bd 0.08 0.08 0.10 0.10 bd bd Ho 0.09 0.11 0.05 0.10 0.04 0.06 0.24 0.03 0.24 0.15 0.25 0.48 0.15 0.13 0.48 0.22 bd 0.08 0.10 0.04 0.04 0.22 0.10 0.02 0.07 0.14 0.08 0.08 0.05 0.04 0.12 0.10 0.03 0.08 bd 0.10 0.11 0.02 bd 0.11 0.03 0.15 0.09 bd 0.03 bd 0.10 0.06 0.02 0.06 0.05 bd 0.04 0.04 Er 0.96 0.47 0.24 0.29 0.48 0.65 0.10 0.62 0.35 0.67 0.56 0.58 0.75 2.10 2.32 0.98 0.14 0.73 0.42 0.51 bd 0.16 0.80 0.42 0.87 0.16 bd bd 0.57 bd 0.17 bd 0.14 0.17 bd 0.45 0.36 0.30 0.56 0.38 0.34 0.23 0.38 0.27 bd 0.11 0.11 0.52 0.28 0.17 0.32 0.32 0.35 0.30 Tm 0.02 0.10 0.13 0.06 0.03 0.03 0.07 bd 0.13 0.12 0.12 0.08 0.10 0.17 0.23 0.05 0.19 0.05 0.06 0.04 0.14 0.03 0.07 0.05 0.05 bd bd 0.12 bd 0.07 0.04 0.06 bd bd 0.03 0.10 bd 0.02 0.15 bd bd bd 0.03 0.03 0.03 bd 0.02 0.06 0.04 bd 0.07 bd 0.08 bd Yb 0.25 0.61 0.93 0.57 1.26 0.51 0.83 0.33 0.78 0.44 0.24 2.03 1.74 2.26 1.66 2.26 bd 0.96 0.19 0.44 0.20 0.43 0.90 0.33 0.86 0.83 0.44 0.60 0.30 bd 1.16 bd 0.19 bd 0.56 0.30 0.15 0.13 0.56 0.25 bd 0.15 0.17 0.36 0.57 bd bd 0.68 bd 0.11 bd 0.14 0.46 0.13 Lu 0.05 0.08 0.26 0.03 0.08 0.06 0.15 0.09 0.14 0.08 0.14 0.33 0.05 0.14 0.26 0.18 0.17 0.03 0.07 0.12 0.08 0.08 0.11 bd 0.11 0.11 0.12 0.03 0.11 0.08 0.13 0.11 0.03 0.16 0.20 0.22 0.03 bd 0.20 bd 0.03 bd 0.15 0.20 0.21 0.03 0.03 0.09 0.07 0.06 bd bd bd 0.02 bd bd bd bd bd bd bd bd bd 0.02 bd 0.07 0.14 0.18 bd bd 0.03 bd bd 0.03 bd bd 0.04 bd 0.02 bd bd bd bd 0.09 bd bd bd bd bd bd bd 0.02 0.05 bd bd bd bd bd 0.05 bd 0.06 bd bd 0.05 bd 0.02 0.03 bd Th U ƩREE 0.50 7 0.72 9 0.90 7 0.77 11 0.39 10 0.78 8 0.73 6 0.70 7 1.87 12 3.49 9 8.17 19 6.36 30 4.57 16 7.71 23 6.00 30 3.96 29 1.48 9 1.42 10 0.98 5 2.46 9 1.92 5 0.63 9 1.29 6 0.47 5 1.00 6 0.94 11 2.34 5 1.39 6 0.48 4 0.99 7 0.48 7 1.05 5 0.34 4 0.99 6 0.32 5 0.80 7 0.48 3 0.35 6 1.21 8 0.57 8 1.04 4 0.59 3 1.68 5 1.04 5 0.51 6 0.43 6 2.07 4 0.75 7 0.46 3 0.35 3 0.30 5 0.19 2 1.05 4 0.32 3 Ce/Ce* -0.44 -0.44 -0.02 0.22 -0.09 -0.21 -0.26 -0.40 -0.23 -0.01 -0.43 0.16 -0.15 -0.24 -0.25 -0.04 -0.25 -0.21 -0.31 0.10 -0.29 0.07 -0.32 -0.34 -0.14 1.10 0.01 -0.23 -0.31 -0.25 -0.53 -0.11 -0.51 0.50 -0.19 0.35 -0.56 -0.61 0.20 -0.38 -0.11 -0.54 0.32 -0.34 0.41 0.59 0.12 0.31 0.49 -0.11 3.36 -0.27 0.24 0.17 Ce/Ce** 0.69 0.20 4.91 6.93 6.19 0.64 0.41 0.75 1.18 2.10 0.82 1.11 92.37 1.48 0.93 1.18 0.39 0.88 0.53 1.45 2.04 1.08 0.64 0.86 13.52 13.11 1.28 0.40 1.85 3.00 1.64 2.24 0.85 5.36 -1.78 -3.42 0.27 3.81 0.94 9.82 1.00 0.28 1.74 0.49 0.81 1.95 -1.03 -1.63 1.30 0.96 3.80 1.08 2.14 7.87 La/La* Y/Ho 0.38 85.3 -0.86 75.5 -6.07 158.2 -7.09 111.9 -8.71 357.8 -0.27 118.7 -0.63 26.8 0.53 234.5 1.07 36.4 3.55 76.0 0.74 70.4 -0.05 37.6 -4.73 124.7 2.38 191.0 0.40 46.8 0.33 96.2 -0.71 101.4 0.21 106.6 -0.33 102.0 0.51 190.8 3.35 246.5 0.01 30.3 -0.09 84.4 0.43 724.0 -20.15 71.7 -7.75 67.6 0.41 75.1 -0.67 59.9 3.99 98.9 -11.93 145.0 -3.79 38.2 7.52 38.8 1.16 93.4 18.74 81.1 -2.02 78.6 -2.65 76.1 -0.59 33.5 -50.67 99.3 -0.32 66.6 -4.39 33.9 0.19 166.9 -0.58 25.3 0.57 59.9 -0.41 102.5 -0.64 145.0 0.74 89.0 -1.60 33.0 -1.66 88.0 -0.21 145.0 0.12 48.7 -0.21 30.6 1.02 66.0 1.46 101.3 -7.86 70.2 416 Sc 2.65 2.04 1.54 1.60 1.25 2.55 2.03 0.39 1.50 1.76 1.58 1.25 1.61 0.79 1.98 1.91 2.92 1.15 1.94 2.03 2.43 1.71 0.86 1.93 1.30 1.62 1.34 1.67 Mn 0.34 0.16 0.17 0.42 0.11 0.12 0.23 0.13 0.15 0.12 0.12 0.14 0.39 0.11 0.15 0.19 0.16 0.16 0.18 0.13 0.31 0.11 0.15 0.18 0.12 0.13 0.11 0.16 Fe 1.29 1.29 1.24 1.00 1.28 1.34 1.73 0.98 0.85 1.07 1.06 1.01 1.12 1.60 1.77 1.85 1.68 1.75 2.81 2.10 2.32 2.80 2.38 2.25 1.73 2.44 1.81 2.06 mm from bone rim 0.00 0.03 0.07 0.10 0.14 0.17 0.21 0.24 0.28 0.31 0.35 0.38 0.41 0.45 0.48 0.52 0.55 0.59 0.62 0.66 0.69 0.73 Sc 29.70 29.08 19.90 20.83 23.48 22.10 19.93 17.25 17.31 17.35 16.56 16.27 15.79 12.93 16.37 17.76 13.78 16.21 14.97 12.88 15.66 15.87 Mn bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd Fe 1.15 0.91 0.94 0.97 1.22 1.27 2.26 1.13 1.70 0.00 1.11 0.00 1.53 2.17 2.06 1.59 1.25 1.44 1.01 0.75 1.04 0.00 SRHS-DU-192 Metatarsal (Transect 1) mm from bone rim 18.04 18.07 18.10 18.14 18.17 18.21 18.24 18.28 18.31 18.35 18.38 18.42 18.45 18.48 18.52 18.55 18.59 18.62 18.66 18.69 18.73 18.76 18.80 18.83 18.86 18.90 18.93 18.97 SRHS-DU-126 Femur (continued) Sr nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd Sr 3458.81 3902.67 1900.32 4228.81 2734.54 2112.28 2905.12 2646.43 3031.04 2060.62 3301.87 3051.71 2173.01 3212.75 2847.58 2901.82 2795.25 2314.03 2791.77 3015.40 3917.33 4599.17 2738.12 3517.87 2784.60 3417.78 2410.05 2241.93 Y 165.57 215.53 127.99 128.68 132.08 143.26 124.59 123.69 111.58 71.23 79.60 68.03 74.68 63.71 82.02 73.74 63.71 78.89 74.40 53.80 46.60 50.05 Y 9.20 10.45 3.68 7.01 4.69 3.33 6.71 4.64 7.51 5.21 6.71 7.74 8.49 9.79 9.25 8.17 7.74 5.87 6.67 7.45 6.95 6.50 5.23 6.68 4.94 8.14 6.56 6.91 Ba 1337.94 1756.98 1484.06 1446.33 1157.19 1993.24 2125.43 2337.92 nd 2406.32 nd nd nd 4180.64 nd 3099.73 nd nd 1982.41 1458.50 nd 1821.34 Ba 1812.63 1068.29 726.07 2409.72 988.03 627.78 1563.22 611.90 656.91 792.48 1168.93 1410.00 1040.22 1152.28 1191.69 719.76 686.04 663.93 2570.39 1101.71 533.87 1270.79 561.15 823.02 617.84 733.41 579.17 379.05 La 231.13 258.73 163.06 172.00 127.97 142.30 152.48 142.31 116.20 76.99 75.09 69.15 76.98 64.78 58.64 65.72 53.90 66.04 53.62 37.17 35.75 38.50 La 3.97 3.31 0.66 2.03 1.19 1.12 1.47 1.16 1.20 1.81 1.82 1.87 2.87 3.60 2.27 2.67 1.17 1.51 1.47 3.04 2.66 3.49 2.01 1.31 1.29 2.28 1.77 1.79 Ce 428.89 454.50 475.72 322.56 257.23 nd 260.65 286.05 262.16 122.18 233.38 119.05 75.47 101.55 92.68 105.49 92.04 111.24 72.35 49.76 47.47 43.87 Ce 12.80 15.37 1.09 1.59 1.96 2.73 1.70 1.36 2.40 1.00 0.95 2.26 5.61 3.19 2.92 3.06 1.65 1.55 2.36 3.39 1.89 2.22 0.95 1.81 1.59 1.80 3.47 2.50 Pr 33.46 38.99 30.75 30.42 21.60 23.03 22.96 19.56 16.71 13.01 11.81 9.74 8.52 6.19 8.62 6.64 6.22 7.95 6.92 4.18 3.80 5.53 Pr 0.28 0.20 0.11 0.37 0.13 bd bd 0.04 0.29 0.10 0.06 0.52 0.39 0.15 0.13 0.43 0.17 0.03 0.11 0.22 0.19 0.30 0.25 0.38 0.21 0.20 0.21 0.06 Nd 101.66 123.72 88.54 73.70 56.89 77.02 72.38 59.62 51.20 35.53 36.42 29.60 34.42 25.06 28.94 20.14 21.06 22.62 16.55 15.88 13.30 13.03 Nd 2.16 1.17 0.75 bd 1.53 bd bd 0.25 0.28 bd 0.78 bd 0.45 1.07 0.62 0.67 0.33 0.42 bd 1.28 0.19 0.17 0.16 bd 0.74 0.59 1.10 0.18 Sm 15.68 17.43 16.93 14.86 10.46 10.97 8.94 10.42 8.18 8.75 2.36 5.33 4.97 2.88 4.76 3.60 3.36 3.03 4.71 2.77 2.21 1.68 bd 0.89 bd bd bd bd bd 0.30 bd bd bd bd bd bd 0.15 0.61 0.13 bd bd 0.19 0.23 bd bd 0.30 bd 0.96 1.13 bd Sm Eu 3.52 3.82 4.49 4.54 2.55 3.44 2.52 2.35 1.48 1.51 1.43 1.52 1.82 1.80 1.47 0.97 1.58 1.15 1.27 0.94 1.04 0.87 Eu 0.08 0.10 0.04 bd bd 0.37 bd bd bd 0.22 0.13 0.13 bd 0.25 0.09 bd 0.08 0.04 bd 0.11 0.20 0.06 bd bd bd 0.07 0.05 bd Gd 23.33 24.95 17.99 15.81 13.74 12.01 12.77 18.09 9.19 8.68 4.83 7.20 4.19 4.92 5.51 6.40 3.69 5.89 4.67 2.85 15.78 5.71 Gd 0.28 0.35 0.15 0.42 bd 0.41 0.45 bd bd bd bd bd 0.73 0.21 0.14 0.20 0.26 0.12 bd bd 0.22 0.42 0.78 bd bd 0.47 0.56 bd Tb 2.31 3.49 2.04 1.92 1.52 1.88 1.39 1.54 1.11 1.06 0.76 1.02 0.93 0.74 0.67 0.85 0.64 0.61 0.64 0.30 0.59 0.45 Tb 0.03 0.06 0.04 0.05 0.15 bd bd bd 0.04 bd 0.11 bd 0.02 0.05 0.05 bd 0.03 0.07 bd 0.07 0.05 bd 0.02 0.04 0.07 0.03 0.02 bd Dy 14.93 23.88 14.20 16.36 8.86 12.61 9.42 13.85 8.23 8.29 5.51 6.66 6.19 6.91 4.41 4.06 5.56 5.07 4.97 3.45 4.91 4.61 Dy 0.71 0.52 0.15 0.21 bd 0.20 0.91 0.15 0.67 bd bd 0.46 bd 0.21 0.37 0.40 0.39 0.43 0.19 0.38 0.45 0.52 0.29 0.44 0.87 0.12 0.28 0.21 Ho 2.97 5.07 3.53 2.80 1.97 2.56 2.72 2.77 1.99 1.31 1.14 1.52 0.92 0.96 1.21 1.20 1.61 1.27 1.32 0.84 1.05 0.97 Ho 0.04 0.09 0.02 0.11 bd bd 0.06 0.04 0.08 0.09 0.06 0.11 0.16 0.42 0.20 0.25 0.15 0.05 0.12 0.14 0.14 0.03 0.10 0.07 0.29 0.12 0.05 0.16 Er 8.90 14.99 9.95 8.05 7.64 6.93 6.08 7.75 5.28 4.88 3.54 5.51 4.62 3.68 2.67 3.82 4.96 3.82 4.74 3.17 3.67 2.53 Er 0.62 0.57 0.16 0.23 0.17 0.90 bd 0.32 0.74 0.80 1.02 bd 1.08 0.35 0.89 0.76 0.28 0.34 0.31 0.62 0.25 0.11 0.11 bd 0.64 0.65 0.51 0.23 Tm 1.27 1.88 1.05 1.25 0.66 1.02 0.86 1.12 0.94 0.65 0.59 0.61 0.69 0.78 0.61 0.62 0.83 0.57 0.66 0.49 0.64 0.65 Tm 0.07 0.06 0.02 0.05 bd bd bd 0.07 0.08 0.04 bd bd 0.02 0.23 0.14 bd 0.12 0.06 bd bd 0.16 0.07 0.02 0.14 bd 0.06 bd bd Yb 5.87 11.80 8.54 7.98 4.72 6.04 4.72 6.75 3.41 5.69 3.48 5.56 4.49 3.85 2.66 3.44 4.91 4.74 4.48 2.73 2.76 3.61 Yb 0.20 0.63 0.11 1.85 1.10 0.59 bd 0.43 bd 0.79 bd 0.33 0.78 0.61 0.64 0.29 0.19 0.36 1.08 0.14 0.16 1.35 0.84 0.43 1.27 0.34 1.48 bd Lu 1.32 2.43 0.99 1.51 0.78 1.33 0.88 1.22 0.76 0.57 0.79 0.90 0.66 0.78 0.72 0.72 0.59 0.62 0.76 0.40 0.65 0.71 Lu 0.08 0.09 0.06 0.06 0.08 0.05 0.24 0.04 0.13 0.10 0.12 bd 0.07 0.17 0.16 0.16 0.09 0.07 0.02 0.08 0.03 0.08 0.15 0.31 bd 0.03 0.12 0.17 Th 0.17 0.11 0.18 0.12 0.03 0.02 0.11 0.09 0.08 0.07 0.04 0.04 0.01 0.02 0.04 0.07 0.02 0.01 0.02 bd 0.01 0.01 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.05 bd 0.02 bd bd 0.02 bd 0.15 Th U ƩREE 22.40 875 45.72 986 23.65 838 21.36 674 12.65 517 19.71 301 11.00 559 16.47 573 13.96 487 8.37 289 6.41 381 12.66 263 8.39 225 7.92 225 7.72 214 8.74 224 14.51 201 14.78 235 10.52 178 5.04 125 6.55 134 7.75 123 U ƩREE 2.70 21 0.66 23 0.41 3 0.87 7 0.11 6 0.47 6 1.37 5 0.47 4 4.36 6 2.53 5 4.82 5 29.46 6 7.80 12 23.91 11 15.22 9 22.63 9 14.13 5 18.12 5 16.81 6 18.51 10 14.91 7 15.77 9 9.48 6 10.03 5 13.58 7 15.99 8 8.67 11 8.42 5 Ce/Ce* 0.10 0.03 0.56 0.03 0.13 0.04 0.00 0.22 0.34 -0.11 0.79 0.03 -0.36 0.06 -0.07 0.07 0.10 0.07 -0.17 -0.13 -0.13 -0.32 Ce/Ce* 1.35 2.50 -0.06 -0.57 0.08 0.75 -0.12 -0.04 -0.04 -0.58 -0.57 -0.47 0.19 -0.29 -0.02 -0.34 -0.16 -0.12 0.16 -0.19 -0.49 -0.56 -0.70 -0.40 -0.30 -0.45 0.24 0.15 Ce/Ce** 1.35 1.27 1.57 0.97 1.14 1.29 1.23 1.54 1.66 0.92 2.11 1.29 1.26 2.33 1.23 1.67 1.71 1.40 0.95 1.56 1.50 0.71 Ce/Ce** -28.90 30.19 -32.49 0.47 -1.27 -3.77 -2.35 14.44 0.57 2.17 -1.17 0.31 1.04 -67.27 4.71 0.55 0.82 -3.67 -9.26 6.09 0.67 0.48 0.25 0.34 0.92 0.92 3.75 4.33 La/La* Y/Ho 0.41 55.7 0.44 42.5 0.01 36.2 -0.10 46.0 0.02 67.1 0.46 56.0 0.43 45.8 0.49 44.7 0.43 56.0 0.05 54.2 0.32 69.7 0.45 44.7 2.42 81.5 2.99 66.2 0.62 67.6 1.01 61.7 1.11 39.6 0.55 62.3 0.21 56.4 1.80 64.4 1.44 44.4 0.08 51.8 La/La* Y/Ho -3.59 262.4 -11.72 120.9 -2.46 200.7 0.18 66.2 -1.61 92.7 -2.11 92.7 -2.46 119.2 -16.49 127.1 -0.57 90.0 89.13 57.3 -2.80 117.2 -0.61 68.2 -0.19 54.4 -6.63 23.3 26.79 46.1 -0.24 33.1 -0.05 53.3 -3.84 127.7 -3.23 57.2 -10.00 52.7 0.43 49.3 0.12 254.4 -0.22 54.3 -0.62 91.0 0.63 17.0 1.21 69.5 67.22 142.4 4.88 44.1 417 mm from bone rim 0.76 0.79 0.83 0.86 0.90 0.93 0.97 1.00 1.04 1.07 1.11 1.14 1.17 1.21 1.24 1.28 1.31 1.35 1.38 1.42 1.45 1.49 1.52 1.55 1.59 1.62 1.66 1.69 1.73 1.76 1.80 1.83 1.87 1.90 1.93 1.97 2.00 2.04 2.07 2.11 2.14 2.18 2.21 2.25 2.28 2.31 2.35 2.38 2.42 2.45 2.49 2.52 2.56 2.59 Sc 15.43 14.65 12.29 11.58 12.98 13.64 13.92 12.42 12.89 13.48 11.24 12.82 12.27 11.14 8.18 9.10 8.73 8.38 11.01 8.50 10.22 12.98 9.21 9.40 9.31 8.51 8.77 10.56 7.76 5.76 9.29 10.71 7.52 9.86 7.49 10.21 8.03 6.14 5.91 6.62 6.71 5.75 7.13 5.93 6.29 6.11 5.20 8.66 5.96 6.56 5.10 4.71 5.36 5.55 Mn bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd Fe 2.04 1.28 1.04 0.95 0.97 1.05 1.28 1.37 0.93 1.32 1.13 0.00 1.42 0.98 0.85 0.85 0.92 1.10 1.06 0.92 0.89 0.00 0.80 1.04 0.99 1.23 0.94 2.87 1.74 1.40 1.18 1.73 0.90 1.33 1.09 1.26 0.95 1.08 0.00 1.16 1.09 1.10 1.26 0.91 1.34 1.23 0.90 1.16 1.17 1.12 1.46 0.94 1.81 0.95 Sr nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd SRHS-DU-192 Metatarsal (Transect 1) (continued) Y 62.30 57.08 47.71 47.47 43.00 50.13 47.38 60.67 43.71 44.95 35.71 35.22 42.64 36.56 29.50 29.67 26.95 31.33 28.71 30.72 30.34 32.78 17.78 37.54 28.97 27.07 26.47 30.99 24.46 17.78 22.15 24.19 18.90 21.91 20.31 29.84 19.24 22.34 17.94 16.60 18.12 16.33 20.71 16.98 16.65 14.59 13.98 16.28 15.10 12.18 13.56 10.82 13.05 13.40 Ba 1680.46 1671.80 1239.78 1299.22 1645.60 1465.25 1978.65 1924.96 1303.29 1858.50 1502.18 1555.62 1723.51 1757.63 1103.43 1231.41 1267.98 2169.34 1466.81 3075.86 1873.25 1423.45 824.34 1619.27 1323.29 1820.93 1304.52 2413.95 1995.73 nd 1545.36 nd 1741.41 1728.15 1484.02 2159.55 1812.50 1449.63 1804.54 1445.12 1300.09 1564.16 1989.70 1670.32 1372.00 1094.65 1679.06 2396.02 1362.97 nd nd nd 1756.43 1469.19 La 42.17 44.95 28.07 33.38 30.35 31.47 30.01 37.33 28.67 26.97 20.07 20.33 24.35 23.68 16.88 13.60 12.67 13.99 11.91 15.72 13.21 14.59 7.41 13.64 10.31 10.87 7.53 12.17 6.33 5.98 8.64 10.48 7.28 9.15 7.70 9.49 6.37 9.03 6.80 5.92 4.87 5.07 6.20 5.68 6.02 4.89 4.48 5.16 4.39 3.72 3.82 3.15 4.20 4.46 Ce 63.57 58.11 70.14 26.59 44.16 45.58 50.01 53.31 28.34 29.77 43.51 23.79 24.41 23.13 12.35 12.68 bd 13.28 12.05 17.03 11.13 13.44 6.87 11.95 7.34 10.05 5.84 10.27 7.15 11.39 7.04 11.55 4.65 8.09 7.35 10.42 7.00 7.19 6.07 6.19 5.19 4.44 5.70 5.02 5.14 4.70 4.48 5.84 5.75 4.04 3.35 2.87 4.40 3.34 Pr 4.25 4.90 3.67 2.55 2.87 2.92 2.16 2.59 2.41 2.33 2.23 1.06 1.53 1.69 1.48 1.04 1.02 1.02 0.86 1.29 1.19 1.09 0.55 1.21 0.57 0.69 0.69 1.05 0.52 0.48 0.61 0.58 0.61 0.90 0.60 0.47 0.69 0.73 0.65 0.26 0.33 0.51 0.63 0.33 0.34 0.33 0.46 0.38 0.50 0.23 0.36 0.22 0.11 0.15 Nd 17.58 16.03 10.96 10.27 9.67 9.86 8.80 16.43 8.52 6.90 3.83 4.38 5.81 6.37 3.61 2.90 3.05 3.46 3.61 5.15 3.41 3.45 1.84 3.11 2.05 1.70 2.33 2.41 1.64 1.51 2.79 2.13 2.79 2.94 1.08 1.79 1.76 1.23 2.12 0.36 1.96 2.02 1.24 1.64 2.12 0.83 1.10 0.59 0.99 0.92 0.22 1.03 1.10 0.50 Sm 2.28 2.64 1.31 2.48 2.55 1.94 1.56 2.13 0.25 1.94 0.34 1.20 1.14 0.93 0.56 0.58 0.61 0.77 0.35 0.53 0.27 1.04 0.20 0.81 0.00 0.47 0.27 0.17 0.23 0.68 0.22 0.34 1.18 0.71 0.39 0.33 0.13 0.34 0.36 0.11 0.14 0.81 0.13 0.26 0.49 0.22 0.41 0.28 0.13 0.00 0.13 0.10 0.26 0.24 Eu 0.91 0.63 0.77 0.31 0.43 0.80 0.17 0.43 0.40 0.53 0.46 0.35 0.48 0.23 0.16 0.03 0.14 0.18 0.10 0.16 0.40 0.46 0.03 0.19 0.04 0.09 0.00 0.45 0.38 0.20 0.00 0.10 0.05 0.00 0.00 0.00 0.04 0.13 0.07 0.06 0.20 0.68 0.28 0.08 0.11 0.10 0.03 0.17 0.19 0.15 0.04 0.00 0.04 0.07 Gd 4.93 2.98 3.66 3.51 2.39 1.41 2.81 3.09 1.60 3.03 1.12 1.91 2.26 1.31 0.44 0.81 0.73 0.77 1.21 1.59 1.50 1.42 0.80 3.07 0.43 1.88 0.53 1.52 0.92 0.34 1.33 1.19 0.17 0.88 2.20 0.99 0.79 0.57 0.97 0.98 0.97 0.54 0.00 0.13 0.72 0.22 0.00 0.85 0.26 0.37 0.00 0.00 0.26 0.48 Tb 0.59 0.44 0.31 0.31 0.33 0.41 0.35 0.39 0.44 0.39 0.25 0.18 0.27 0.30 0.12 0.26 0.23 0.16 0.08 0.13 0.16 0.20 0.05 0.19 0.14 0.04 0.17 0.24 0.08 0.09 0.17 0.22 0.22 0.31 0.06 0.08 0.06 0.07 0.20 0.04 0.08 0.06 0.08 0.12 0.12 0.12 0.04 0.08 0.02 0.13 0.08 0.05 0.02 0.04 Dy 3.44 2.90 3.62 2.80 2.91 3.69 2.46 4.27 2.69 2.82 2.45 1.97 1.89 2.05 1.78 1.24 1.54 1.42 1.77 1.54 1.13 1.76 0.68 2.20 0.70 0.84 0.65 2.31 0.84 0.88 0.70 0.58 0.73 1.03 0.82 0.32 1.28 0.66 0.71 0.42 0.87 0.92 0.79 1.15 0.76 0.81 0.50 0.76 0.77 0.54 0.65 0.10 0.38 0.41 Ho 1.04 0.99 0.82 0.83 1.02 0.83 0.91 0.85 0.84 0.89 0.50 0.39 0.67 0.80 0.39 0.34 0.49 0.28 0.61 0.64 0.45 0.41 0.29 0.51 0.37 0.34 0.29 0.64 0.31 0.29 0.56 0.27 0.18 0.34 0.46 0.44 0.26 0.26 0.35 0.22 0.20 0.13 0.26 0.18 0.25 0.17 0.16 0.09 0.16 0.19 0.24 0.06 0.13 0.04 Er 4.49 3.32 3.60 2.76 2.56 2.61 3.68 3.57 2.43 3.39 1.14 2.49 1.91 2.25 1.01 1.11 1.89 1.48 1.39 1.51 1.09 1.38 0.70 1.47 1.31 1.09 1.77 1.45 0.87 1.40 1.07 1.37 0.80 1.32 0.28 0.88 1.06 1.09 0.97 0.52 0.37 0.43 1.01 1.26 1.36 1.06 0.76 0.98 0.56 0.66 0.57 0.33 0.63 1.59 Tm 0.54 0.47 0.40 0.39 0.54 0.55 0.33 0.38 0.29 0.61 0.45 0.33 0.36 0.56 0.50 0.21 0.28 0.23 0.18 0.31 0.33 0.30 0.10 0.30 0.15 0.15 0.14 0.16 0.12 0.14 0.31 0.12 0.23 0.25 0.15 0.17 0.12 0.10 0.24 0.11 0.24 0.12 0.11 0.17 0.11 0.08 0.15 0.07 0.15 0.06 0.19 0.07 0.05 0.22 Yb 4.29 3.59 3.06 2.95 3.16 3.50 2.55 2.96 2.24 1.93 2.35 2.42 3.17 2.30 2.56 1.13 0.94 1.18 1.57 1.97 1.62 2.80 0.42 2.04 2.12 1.65 1.30 1.54 1.13 0.79 1.48 1.79 1.40 2.84 1.27 0.92 0.64 0.32 0.93 0.99 1.45 1.79 0.66 0.55 0.93 0.77 0.71 1.88 1.20 0.17 0.84 0.43 1.01 1.08 Lu 0.82 0.84 0.42 0.31 0.54 0.89 0.62 0.66 0.59 0.54 0.44 0.19 0.40 0.59 0.49 0.29 0.29 0.20 0.36 0.46 0.41 0.34 0.17 0.38 0.30 0.57 0.36 0.49 0.17 0.40 0.15 0.11 0.28 0.48 0.22 0.30 0.40 0.27 0.38 0.21 0.13 0.23 0.40 0.09 0.25 0.20 0.19 0.30 0.14 0.16 0.16 0.09 0.12 0.23 bd 0.05 0.02 0.02 bd 0.03 0.03 0.07 0.01 0.06 0.01 bd 0.02 0.03 0.02 0.02 bd bd bd 0.02 0.01 0.14 bd 0.02 bd bd 0.01 bd 0.03 0.01 0.07 bd 0.03 0.02 0.01 bd 0.01 bd bd bd bd bd bd bd 0.01 bd 0.06 bd bd bd bd 0.02 bd bd Th U ƩREE 9.95 151 10.83 143 8.01 131 9.47 89 9.40 103 10.20 106 8.92 106 10.02 128 9.60 80 12.69 82 9.00 79 8.87 61 7.13 69 6.00 66 6.03 42 4.04 36 4.01 24 4.89 38 8.33 36 9.86 48 6.46 36 7.06 43 3.07 20 3.73 41 2.67 26 2.55 30 3.14 22 9.37 35 2.52 21 2.71 25 3.57 25 1.93 31 4.17 21 4.90 29 2.21 23 6.66 27 4.38 21 1.99 22 2.45 21 1.31 16 1.27 17 1.24 18 1.67 17 1.47 17 2.30 19 2.01 15 1.41 13 1.62 17 1.79 15 1.27 11 1.51 11 1.35 9 2.38 13 3.40 13 Ce/Ce* 0.01 -0.16 0.54 -0.43 -0.01 -0.01 0.21 0.05 -0.31 -0.23 0.41 -0.09 -0.25 -0.29 -0.49 -0.33 -0.27 -0.31 -0.26 -0.24 -0.42 -0.34 -0.33 -0.39 -0.45 -0.31 -0.47 -0.41 -0.20 0.35 -0.41 -0.15 -0.55 -0.41 -0.32 -0.14 -0.28 -0.44 -0.39 -0.17 -0.22 -0.42 -0.39 -0.33 -0.35 -0.29 -0.34 -0.18 -0.16 -0.18 -0.40 -0.33 -0.12 -0.38 Ce/Ce** 2.19 1.33 1.99 1.48 1.77 1.80 3.32 14.04 1.42 1.32 1.54 3.29 2.09 1.78 0.76 1.20 1.34 1.52 2.13 1.83 0.94 1.33 1.43 0.93 1.58 1.35 0.97 0.86 1.48 2.58 1.98 2.54 1.31 1.02 0.97 2.98 0.96 0.76 1.05 1.76 6.30 1.19 0.75 3.09 8.55 1.34 0.88 1.18 0.95 2.59 0.61 2.45 -5.55 2.48 La/La* Y/Ho 3.10 60.0 1.09 57.8 0.52 58.2 3.94 57.4 1.53 42.1 1.61 60.5 4.41 52.3 -6.60 71.3 2.14 52.2 1.27 50.6 0.14 70.9 6.89 89.8 3.98 63.6 3.31 45.7 0.80 75.5 1.36 87.8 1.50 55.0 2.36 111.9 5.27 47.0 3.39 47.7 1.09 67.8 1.87 80.2 2.18 60.9 0.88 73.4 3.95 78.5 1.56 78.8 1.60 91.1 0.75 48.4 1.59 79.0 1.68 61.3 8.52 39.9 4.33 89.9 7.02 103.3 1.35 63.8 0.65 44.4 5.62 67.6 0.54 75.1 0.53 85.4 1.39 50.8 1.63 73.9 -10.06 89.8 2.46 124.7 0.35 79.1 26.76 96.8 -8.69 66.5 1.46 83.5 0.54 86.9 0.65 189.4 0.19 94.3 5.56 62.6 0.03 55.8 12.47 172.3 -4.57 102.2 5.77 308.3 418 mm from bone rim 2.63 2.66 2.69 2.73 2.76 2.80 2.83 2.87 2.90 2.94 2.97 3.01 3.04 3.07 3.11 3.14 3.18 3.21 3.25 3.28 3.32 3.35 3.39 3.42 3.46 3.49 3.52 3.56 3.59 3.63 3.66 3.70 3.73 3.77 3.80 3.84 3.87 3.90 3.94 3.97 4.01 4.04 4.08 4.11 4.15 4.18 4.22 4.25 4.28 4.32 4.35 4.39 4.42 4.46 Sc 6.38 5.37 7.38 6.10 3.51 5.63 5.01 5.59 5.50 5.83 5.18 6.26 4.61 3.99 6.52 5.55 4.58 4.39 4.95 6.26 4.77 5.48 6.13 4.74 5.07 5.16 2.80 3.11 2.92 4.13 3.52 4.03 2.84 3.35 3.74 6.08 4.01 3.48 3.11 4.07 4.64 3.35 4.11 5.12 4.56 4.41 4.83 6.68 6.20 5.58 4.90 5.40 6.08 4.58 Mn bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd Fe 0.91 1.25 0.00 1.24 1.26 1.48 1.17 1.45 0.93 1.07 1.09 1.48 1.08 1.22 1.45 1.50 1.05 1.43 1.29 1.10 1.03 1.03 1.19 1.13 1.14 1.02 1.30 1.34 1.18 1.35 1.04 1.38 0.00 1.32 1.22 0.00 1.26 1.03 0.98 1.16 0.99 0.74 1.43 1.57 0.00 1.47 1.32 1.35 0.00 1.04 1.20 1.13 1.09 1.20 Sr nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd SRHS-DU-192 Metatarsal (Transect 1) (continued) Y 14.01 12.11 13.00 12.29 8.20 12.79 10.05 12.88 11.97 14.60 10.13 12.11 10.52 12.66 12.12 10.45 10.78 10.72 11.68 10.77 10.09 10.06 9.74 12.51 9.71 9.42 6.86 7.62 7.02 7.83 8.06 9.30 6.96 7.87 7.01 8.02 7.35 6.74 8.22 9.58 8.02 6.83 10.32 11.49 11.02 7.93 9.14 14.98 10.70 9.46 14.12 12.52 11.87 9.89 Ba 1479.97 1383.64 1520.85 1399.03 992.90 1802.11 1296.64 1351.67 1187.50 1784.68 1986.11 1526.48 nd nd nd nd nd nd nd nd nd nd 2888.34 3429.67 2003.58 nd 1872.26 1899.62 2310.55 1747.74 nd 2006.57 1959.58 1756.67 1704.27 1827.32 1517.01 1559.16 1073.48 nd 1505.52 1820.30 nd 3373.70 nd 2251.67 nd 2682.36 1706.27 1853.49 2260.76 2124.13 1288.52 1137.47 La 3.25 3.55 2.90 2.42 2.14 4.65 3.03 3.39 2.37 3.21 2.75 2.56 2.29 3.44 2.49 3.52 3.34 2.13 2.95 2.96 2.36 2.74 2.03 2.16 1.88 2.05 1.45 2.13 1.91 1.84 2.17 2.16 1.92 1.37 1.25 1.74 1.79 2.08 2.51 2.39 1.40 1.50 2.06 2.95 2.40 1.89 2.11 2.57 1.82 1.79 2.26 2.93 2.89 1.67 Ce 3.33 2.75 3.13 2.98 2.63 2.71 1.46 3.37 3.77 2.51 6.36 2.46 2.45 2.93 3.83 4.30 2.19 2.52 3.20 2.19 2.79 1.64 1.87 1.96 1.83 1.43 1.12 1.44 2.57 2.62 2.17 24.90 5.02 0.76 14.40 4.76 1.47 2.02 8.04 1.91 1.40 1.75 3.77 2.13 1.83 7.21 2.67 2.48 2.97 1.60 2.05 6.57 3.87 1.87 Pr 0.21 0.12 0.35 0.47 0.18 0.20 0.07 0.40 0.13 0.33 0.32 0.28 0.18 0.22 0.44 0.43 0.32 0.14 0.24 0.07 0.22 0.18 0.26 0.15 0.12 0.17 0.74 0.14 0.71 0.31 0.13 0.10 0.08 0.13 0.09 0.13 0.20 0.08 0.15 0.18 0.06 0.12 0.20 0.23 0.19 0.18 0.17 0.16 0.16 0.24 0.29 0.26 0.53 0.33 Nd 0.72 0.20 1.35 0.47 0.63 1.46 0.51 1.06 1.07 1.75 0.51 0.26 0.94 0.88 1.66 1.27 1.15 0.82 0.48 1.28 1.13 0.36 0.20 0.23 0.46 0.22 0.99 0.12 0.62 0.82 1.91 0.48 0.20 0.87 0.18 0.44 bd 0.27 0.50 0.54 0.75 0.08 1.29 0.39 0.41 0.38 1.07 0.69 0.54 0.76 0.21 1.33 0.36 0.59 Sm 0.12 0.12 0.00 0.42 0.22 0.16 0.00 0.43 0.23 0.14 0.37 0.00 0.00 0.00 0.00 0.00 0.12 0.37 0.58 0.24 0.57 0.11 0.37 0.00 0.22 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.11 0.00 0.18 0.00 0.09 0.00 0.00 0.37 0.18 0.28 0.18 0.18 0.39 0.13 0.11 0.00 0.31 Eu 0.07 0.11 0.00 0.00 0.03 0.05 0.00 0.08 0.00 0.00 0.00 0.00 1.33 0.40 0.65 1.65 0.18 0.25 0.20 0.28 0.03 0.06 0.00 0.04 0.06 0.16 0.00 0.04 0.09 0.00 0.06 0.08 0.10 0.04 0.03 0.12 0.03 0.00 0.12 0.08 0.07 0.00 0.16 0.00 0.14 0.08 0.05 0.05 0.08 0.04 0.00 0.10 0.28 0.03 Gd 0.62 0.00 0.37 0.14 0.65 0.00 0.36 0.42 0.70 0.14 0.00 0.77 0.87 1.47 28.03 0.76 4.75 0.12 0.69 0.00 0.22 0.00 0.12 13.92 0.11 0.27 0.13 0.14 0.15 0.44 0.00 0.00 0.00 0.00 0.11 0.00 0.33 0.55 0.20 0.55 0.08 0.56 0.66 0.12 0.37 0.18 0.00 0.46 0.37 0.00 0.52 0.68 0.75 0.51 Tb 0.07 0.04 0.09 0.02 0.01 0.02 0.03 0.07 0.04 0.03 0.07 0.04 0.06 0.06 0.08 0.09 0.06 0.03 0.08 0.03 0.03 0.08 0.01 0.06 0.00 0.16 0.03 0.10 0.02 0.05 0.02 0.00 0.00 0.00 0.14 0.00 0.03 0.06 0.05 0.03 0.00 0.04 0.05 0.03 0.07 0.09 0.04 0.05 0.02 0.03 0.05 0.01 0.05 0.01 Dy 0.30 0.60 0.30 0.54 0.10 0.62 0.24 0.62 0.68 0.47 0.83 0.00 0.36 0.26 0.43 0.25 0.43 0.42 0.78 0.52 0.66 0.21 0.36 0.40 0.37 0.26 0.32 0.14 0.22 0.16 0.39 0.42 0.17 0.06 0.11 0.25 0.11 0.27 0.19 0.31 0.20 0.27 0.48 0.51 0.53 0.22 0.36 0.31 0.31 0.25 0.25 0.50 0.21 0.25 Ho 0.17 0.12 0.08 0.17 0.04 0.10 0.07 0.10 0.10 0.10 0.16 0.17 0.20 0.10 0.05 0.15 0.12 0.07 0.15 0.10 0.11 0.07 0.10 0.25 0.13 0.07 0.06 0.09 0.07 0.16 0.07 0.05 0.09 0.06 0.11 0.13 0.05 0.11 0.10 0.10 0.09 0.07 0.07 0.21 0.16 0.13 0.06 0.09 0.10 0.13 0.13 0.17 0.14 0.02 Er 0.79 0.39 0.46 0.82 0.52 0.34 0.33 0.53 0.50 0.67 0.58 0.74 0.27 0.51 0.77 0.68 0.33 0.46 0.25 0.25 1.14 0.52 0.72 0.66 0.12 0.57 0.35 0.15 0.40 0.12 0.32 0.69 0.31 0.83 0.29 0.63 0.35 0.17 0.69 0.59 0.61 0.15 0.59 0.62 0.26 0.20 0.98 0.64 0.34 0.90 0.69 0.73 1.03 0.43 Tm 0.09 0.11 0.01 0.08 0.04 0.20 0.07 0.02 0.11 0.10 0.10 0.20 0.10 0.11 0.06 0.25 0.09 0.10 0.19 0.01 0.07 0.06 0.07 0.08 0.09 0.02 0.09 0.10 0.22 0.08 0.09 0.02 0.04 0.08 0.04 0.08 0.05 0.03 0.12 0.12 0.06 0.11 0.06 0.11 0.08 0.02 0.11 0.15 0.10 0.20 0.03 0.13 0.05 0.07 Yb 0.86 0.95 0.96 0.29 0.45 0.67 1.02 1.48 0.65 0.98 1.19 1.18 0.79 0.81 0.69 0.44 0.52 0.95 0.80 0.58 1.18 0.30 0.86 0.95 0.84 0.37 0.83 0.40 0.93 0.53 0.42 0.10 0.33 0.55 0.38 0.00 0.23 0.61 0.42 1.35 0.17 0.79 0.62 0.98 0.77 1.15 1.09 1.22 0.77 0.36 1.72 1.27 2.17 0.49 Lu 0.11 0.13 0.19 0.04 0.06 0.08 0.13 0.17 0.14 0.27 0.06 0.10 0.10 0.14 0.19 0.13 0.20 0.08 0.23 0.11 0.12 0.06 0.19 0.12 0.06 0.17 0.05 0.09 0.19 0.13 0.10 0.11 0.08 0.12 0.13 0.12 0.06 0.21 0.10 0.16 0.13 0.13 0.16 0.14 0.14 0.14 0.11 0.17 0.08 0.22 0.29 0.15 0.34 0.09 bd bd 0.01 0.06 0.01 bd 0.01 0.11 bd 0.04 bd bd 0.02 bd 0.04 bd 0.02 0.04 0.03 0.02 0.01 0.01 0.01 0.03 bd 0.03 0.07 0.01 0.01 bd 0.01 0.01 bd bd bd 0.03 bd bd bd 0.03 bd 0.06 0.02 0.03 0.01 bd 0.01 0.06 0.05 bd 0.01 0.01 0.01 0.02 Th U ƩREE 2.72 11 1.89 9 1.87 10 1.71 9 1.18 8 1.08 11 1.94 7 2.23 12 1.42 10 2.04 11 2.15 13 2.40 9 2.31 10 3.10 11 3.12 39 2.96 14 1.83 14 2.06 8 1.93 11 1.54 9 1.29 11 1.37 6 1.56 7 1.87 21 1.17 6 0.90 6 0.83 6 0.91 5 1.21 8 0.97 7 1.26 8 1.08 29 0.55 8 0.80 5 1.09 17 1.45 8 0.90 5 1.46 7 1.45 13 2.31 8 0.80 5 2.23 6 2.18 10 8.08 8 1.39 8 1.26 12 2.34 9 3.25 9 2.00 8 2.36 7 4.73 9 3.21 15 2.87 13 1.21 7 Ce/Ce* -0.24 -0.36 -0.32 -0.35 -0.14 -0.54 -0.59 -0.37 0.22 -0.48 0.47 -0.38 -0.23 -0.37 -0.15 -0.23 -0.56 -0.12 -0.24 -0.37 -0.20 -0.56 -0.43 -0.34 -0.28 -0.51 -0.76 -0.50 -0.49 -0.20 -0.24 8.06 1.08 -0.62 7.34 0.98 -0.47 -0.21 1.40 -0.43 -0.20 -0.17 0.23 -0.48 -0.46 1.59 -0.10 -0.27 0.14 -0.45 -0.44 0.55 -0.27 -0.41 Ce/Ce** 1.88 1.77 1.19 0.44 1.69 -18.51 -18.91 0.81 -9.79 1.80 1.50 0.59 3.55 1.81 1.15 1.03 0.85 7.32 1.09 -1.10 2.77 0.75 0.48 0.96 1.88 0.61 0.11 0.69 0.24 0.82 -0.86 45.63 5.43 14.05 12.98 4.28 0.58 3.18 5.74 1.09 -1.64 0.96 13.57 0.73 0.83 3.40 11.59 2.62 2.25 0.74 0.46 5.98 0.48 0.46 La/La* Y/Ho 2.92 84.8 2.67 101.2 1.69 172.0 -0.46 72.4 1.95 208.1 -5.99 132.0 -9.84 135.5 0.48 125.1 -3.71 120.7 -257.02 143.5 0.02 62.5 -0.07 72.1 -48.37 53.3 4.41 123.8 0.79 225.7 0.60 67.6 1.92 88.6 -10.49 143.3 0.66 75.9 -2.39 107.1 34.20 92.3 1.06 154.1 -0.22 93.0 0.66 50.2 3.46 72.8 0.37 144.8 -0.78 107.0 0.54 88.3 -0.73 97.3 0.04 49.2 -1.76 111.2 18.87 177.0 2.59 81.1 -4.00 124.4 0.85 66.3 2.27 63.2 0.13 137.0 6.17 63.4 2.61 84.7 1.58 95.3 -2.37 89.7 0.22 99.8 -4.84 153.7 0.61 54.1 0.83 67.4 0.49 59.4 -5.73 163.8 8.55 167.9 1.95 106.3 0.65 75.1 -0.23 112.4 184.91 75.6 -0.47 82.9 -0.34 403.0 419 mm from bone rim 4.49 4.53 4.56 4.60 4.63 4.66 4.70 4.73 4.77 4.80 4.84 4.87 4.91 4.94 4.98 4.98 5.01 5.04 5.08 5.11 5.15 5.18 5.22 5.25 5.29 5.32 5.36 5.39 5.42 5.46 5.49 5.53 5.56 5.60 5.63 5.67 5.70 5.74 5.77 5.80 5.84 5.87 5.91 5.94 5.98 6.01 6.05 6.08 6.12 6.15 6.18 6.22 6.25 6.29 Sc 4.10 2.72 4.82 5.01 3.74 2.88 5.00 5.52 4.16 3.34 3.73 4.94 3.02 3.51 3.32 4.06 4.30 5.17 4.28 5.53 5.38 6.67 8.50 4.65 5.53 6.89 5.23 4.86 5.80 3.74 3.97 3.20 3.62 3.46 5.17 5.86 4.13 2.82 2.77 2.31 2.83 1.76 2.36 1.93 2.19 3.70 3.02 2.63 3.36 4.29 5.18 4.60 4.03 4.74 Mn bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.16 0.13 0.20 0.18 0.18 0.18 bd 0.18 0.15 bd bd 0.16 0.17 0.17 0.15 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd Fe 1.27 1.43 0.95 1.18 0.00 1.11 0.89 1.20 0.92 1.24 1.12 1.33 0.00 1.26 0.88 0.99 0.67 0.97 0.96 1.05 1.12 0.92 0.90 0.90 0.94 -0.01 0.93 0.87 0.93 0.89 1.01 1.16 1.12 1.06 1.39 1.23 1.42 1.14 0.94 0.89 0.95 1.15 1.06 0.95 1.13 0.00 1.18 0.92 0.79 1.27 1.55 0.00 1.11 1.00 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 3342.14 nd nd nd 2922.58 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd Sr SRHS-DU-192 Metatarsal (Transect 1) (continued) Y 9.15 9.13 6.69 8.06 8.61 7.12 12.10 10.58 5.70 7.71 6.57 6.51 4.54 6.03 4.42 11.97 9.48 11.59 12.12 10.09 13.93 14.90 13.67 13.30 13.63 10.16 9.78 9.39 12.09 6.69 10.20 10.40 11.50 7.98 10.52 7.94 7.90 7.35 8.02 4.64 6.28 9.37 5.71 3.90 5.55 9.18 9.60 4.83 7.96 11.13 13.55 12.95 13.31 10.62 Ba 1965.16 nd 1346.16 2009.41 1503.10 1121.49 1830.89 nd 1409.37 nd 1234.54 1588.45 1576.41 1845.18 962.77 1000.60 1021.43 1111.24 2094.64 1277.37 1280.77 1234.68 1301.36 1315.14 1950.28 1278.06 1685.36 1133.84 1387.85 1179.61 1515.42 1687.79 1658.40 1592.61 nd 1830.46 nd 1468.89 1055.17 1436.55 1468.58 1587.65 1040.19 1284.85 1344.72 nd 1480.72 1301.02 1661.17 1544.05 1952.69 1434.89 1381.92 1482.94 La 2.63 1.57 1.20 2.40 1.57 1.81 1.91 2.37 1.75 1.35 1.36 2.59 0.93 1.39 0.96 2.27 0.77 1.07 1.51 1.76 1.96 2.55 2.14 1.98 1.76 1.60 1.97 1.40 1.57 0.41 0.74 1.96 1.23 1.13 2.07 1.43 0.70 1.56 0.44 2.37 1.23 1.31 0.65 0.63 1.40 1.39 2.33 0.99 0.90 1.61 2.66 2.10 3.45 23.22 Ce 2.79 2.69 1.17 11.65 2.35 1.57 1.89 3.14 1.18 1.21 1.61 2.01 0.81 1.42 5.43 1.48 1.06 1.16 1.26 1.15 1.10 2.06 1.91 1.26 1.31 0.92 0.92 0.83 0.74 0.54 0.85 2.23 0.99 1.74 4.02 1.12 0.94 0.78 0.88 1.86 1.75 3.16 2.33 1.55 1.90 2.87 2.92 1.93 1.96 1.38 2.43 4.09 6.94 7.54 Pr 0.13 0.30 0.30 0.24 0.17 0.17 0.10 0.33 0.22 0.74 0.06 0.24 0.10 0.09 0.39 0.15 0.08 0.19 0.16 0.09 0.17 0.07 0.10 0.05 0.21 0.12 0.16 0.03 0.08 0.08 0.16 0.27 0.16 0.27 0.15 0.17 0.11 0.02 0.06 0.09 0.16 0.03 0.05 0.10 0.29 0.11 0.10 0.09 0.12 0.16 0.17 0.54 0.96 0.79 Nd 0.43 0.89 1.53 1.43 0.95 bd 0.48 0.83 0.35 0.62 bd 0.18 0.81 0.32 0.16 0.49 0.21 0.19 0.90 bd 0.96 0.59 0.25 0.86 bd 0.89 0.20 0.38 0.20 0.61 0.26 0.44 0.38 0.47 0.42 0.48 0.52 0.23 0.47 0.20 0.58 1.07 0.65 0.41 0.29 0.65 0.21 0.41 0.18 0.27 1.11 2.11 1.61 3.49 Sm 0.00 0.21 0.00 0.17 0.10 0.00 0.00 0.11 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.21 0.58 0.27 0.00 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.26 0.12 0.65 0.00 0.00 0.00 0.14 0.19 0.00 0.00 0.00 0.11 0.27 0.00 0.00 0.23 0.68 0.28 1.72 0.38 Eu 0.12 0.00 0.00 0.00 0.00 0.08 0.07 0.10 0.16 0.07 0.07 0.06 0.00 0.00 0.12 0.12 0.16 bd bd bd 0.06 0.29 0.09 bd bd bd bd bd bd 0.00 0.09 0.04 0.00 0.04 0.07 0.00 0.38 0.09 0.03 0.00 0.17 0.11 0.03 0.00 0.03 0.06 0.16 0.11 0.03 0.00 0.00 0.21 1.58 0.15 Gd 0.10 0.43 0.00 0.34 0.86 0.09 0.11 0.44 0.21 0.12 0.34 0.21 0.28 0.13 0.39 0.00 0.00 0.27 1.51 0.33 0.23 0.24 0.34 0.36 0.30 0.55 0.27 0.00 0.00 0.00 0.16 0.14 0.16 0.29 0.00 0.00 0.16 0.15 0.23 0.13 0.29 0.19 0.11 0.20 0.73 0.11 0.00 2.01 0.35 0.11 1.36 0.28 0.24 0.64 Tb 0.04 0.01 0.05 0.10 0.02 0.01 0.03 0.03 0.04 0.04 0.03 0.10 0.07 0.03 0.00 0.05 0.03 0.00 0.04 0.08 0.03 0.06 0.04 0.00 0.00 0.00 0.03 0.09 0.00 0.00 0.04 0.05 0.08 0.09 0.06 0.00 0.04 0.04 0.03 0.02 0.03 0.02 0.00 0.01 0.00 0.04 0.05 0.01 0.11 0.04 0.06 0.05 0.10 0.12 Dy 0.76 0.83 0.45 0.50 0.56 1.21 0.39 0.21 0.21 0.18 0.28 0.31 0.27 0.31 0.00 0.60 0.14 0.65 0.92 0.16 1.37 0.12 0.51 0.52 0.44 0.13 0.13 0.24 0.13 0.28 0.40 0.13 0.16 0.50 0.70 0.52 0.31 0.29 0.39 0.19 0.14 0.46 0.28 0.10 0.47 0.72 0.40 0.43 0.46 0.73 0.83 0.21 0.89 0.74 Ho 0.03 0.12 0.15 0.15 0.16 0.09 0.29 0.11 0.06 0.02 0.10 0.03 0.10 0.20 bd 0.02 0.18 0.13 0.18 0.12 0.34 0.21 0.13 0.31 0.26 0.20 0.03 0.03 0.10 bd 0.16 0.07 0.16 0.16 0.16 0.11 0.06 bd 0.03 0.11 0.05 0.18 0.06 0.04 0.07 0.17 0.18 0.21 0.10 0.20 0.37 0.16 0.13 0.26 Er 0.06 0.74 0.33 0.46 0.66 0.39 0.73 0.29 0.17 0.33 0.43 0.92 0.30 0.14 0.21 0.55 0.15 0.43 0.61 0.70 1.64 1.06 0.56 1.15 0.64 0.59 1.62 0.66 0.59 0.51 0.88 0.74 0.69 0.55 0.35 0.50 0.26 0.16 0.31 0.27 0.31 0.50 0.43 0.27 0.19 0.37 0.87 0.40 0.31 0.43 1.54 0.76 0.33 0.75 Tm 0.13 0.05 0.07 0.08 0.06 0.06 0.12 0.06 0.15 0.03 0.04 0.10 0.08 0.06 0.00 0.09 0.00 0.03 0.08 0.04 0.11 0.03 0.24 0.04 0.10 0.09 0.19 0.06 0.06 0.06 0.06 0.06 0.05 0.14 0.07 0.09 0.13 0.05 0.05 0.09 0.03 0.04 0.03 0.02 0.07 0.04 0.03 0.01 0.04 0.09 0.14 0.11 0.07 0.15 Yb 0.51 0.82 0.32 0.84 0.67 0.19 0.96 0.54 0.44 0.61 0.64 1.21 0.58 0.09 0.00 0.42 1.81 0.36 2.10 0.68 1.80 1.20 1.20 1.99 1.25 0.37 bd 0.33 1.34 0.92 0.45 0.38 0.44 0.10 1.00 0.98 0.78 0.52 0.40 0.17 bd 0.65 0.15 0.55 0.76 1.03 1.13 0.43 1.31 0.72 0.94 0.98 1.02 1.24 Lu 0.22 0.24 0.28 0.09 0.07 0.24 0.19 0.09 0.11 0.02 0.11 0.06 0.04 0.10 0.08 0.08 0.23 0.24 0.20 0.22 0.40 0.19 0.09 0.28 0.16 0.11 0.29 0.10 0.29 0.30 0.11 0.16 0.06 0.15 0.09 0.06 0.19 0.08 0.05 0.03 0.04 0.07 0.04 0.08 0.10 0.12 0.07 0.10 0.20 0.09 0.24 0.26 0.21 0.12 Th 0.02 0.02 bd 0.02 bd bd 0.01 bd bd bd 0.01 bd 0.10 bd bd bd bd bd bd 0.07 0.02 bd bd bd bd bd bd 0.02 bd bd 0.07 bd bd 0.03 bd bd 0.02 bd 0.01 0.12 bd 0.08 0.05 0.05 bd 0.02 bd 0.01 0.04 0.02 0.12 0.10 0.05 0.13 U ƩREE 1.21 8 0.86 9 1.31 6 2.16 18 1.17 8 1.11 6 2.43 7 2.02 9 0.67 5 0.74 5 0.44 5 1.13 8 0.72 4 0.79 4 0.37 8 0.31 7 0.46 5 0.22 5 0.61 9 0.64 6 1.47 10 1.18 9 1.78 8 1.10 9 1.13 6 0.82 6 1.17 6 0.33 4 0.45 5 1.04 4 0.86 5 2.07 7 1.87 5 1.44 6 1.51 9 1.63 6 1.60 5 1.23 4 0.97 3 0.70 6 0.53 5 1.01 8 1.13 5 0.53 4 1.69 6 4.49 8 3.19 9 0.86 7 0.78 6 0.67 6 1.51 13 0.98 12 0.60 19 0.97 40 Ce/Ce* -0.18 -0.09 -0.54 2.24 -0.03 -0.41 -0.23 -0.20 -0.58 -0.74 -0.07 -0.47 -0.42 -0.24 1.03 -0.52 -0.09 -0.40 -0.45 -0.49 -0.61 -0.32 -0.29 -0.46 -0.53 -0.59 -0.67 -0.50 -0.63 -0.31 -0.43 -0.31 -0.50 -0.26 0.41 -0.50 -0.23 -0.56 0.18 -0.36 -0.12 1.08 1.59 0.42 -0.30 0.46 0.01 0.35 0.35 -0.43 -0.32 -0.10 -0.11 -0.73 Ce/Ce** 2.38 0.92 0.85 19.42 3.74 1.41 4.01 0.90 0.40 0.11 13.89 0.55 -2.54 1.92 0.88 1.17 1.22 0.43 2.51 -1.66 2.30 -7.88 1.82 -1.02 0.89 -4.72 0.43 -2.37 0.88 -4.01 0.40 0.63 0.57 0.51 2.74 0.68 1.43 -3.67 -21.62 1.78 1.33 -1.46 -2.99 2.29 0.45 9.22 2.64 3.77 1.29 0.67 20.62 1.03 0.56 1.56 La/La* Y/Ho 3.60 363.2 0.02 77.9 12.13 45.0 -7.13 55.3 -16.40 53.0 3.90 79.4 31.71 41.4 0.20 98.8 -0.05 88.3 -0.82 511.2 -10.25 67.3 0.05 249.7 -2.36 44.6 3.15 30.1 -0.77 255.0 2.77 479.9 0.56 53.8 -0.40 89.1 -10.43 65.8 -2.73 84.0 -10.45 40.5 -5.94 70.8 2.62 107.9 -2.46 43.4 2.31 53.1 -3.51 50.7 0.42 294.5 -4.04 314.0 2.33 119.5 -1.93 91.6 -0.45 63.7 -0.11 154.9 0.23 73.6 -0.47 49.5 1.64 66.0 0.63 69.2 3.26 135.0 -6.54 211.2 -2.50 287.3 2.85 42.6 1.07 119.5 -1.62 51.3 -1.71 102.6 1.59 107.2 -0.50 75.1 -10.10 55.2 2.57 52.8 6.71 22.5 -0.06 79.7 0.25 56.7 -5.84 36.5 0.33 83.5 -0.55 99.9 15.51 40.3 420 mm from bone rim 6.32 6.36 6.39 6.43 6.46 6.50 6.53 6.56 6.60 6.63 6.67 6.70 6.74 6.77 6.81 6.84 6.88 6.91 6.94 6.98 7.01 7.05 7.08 7.12 7.15 7.19 7.22 7.26 7.29 7.32 7.36 7.39 7.43 7.46 7.50 7.53 7.57 7.60 7.64 7.67 7.70 7.74 7.77 7.81 7.84 7.88 7.91 7.95 7.98 8.02 8.05 8.08 8.12 8.15 Sc 5.93 4.77 2.99 4.38 3.02 3.16 4.12 3.12 2.80 3.21 4.15 3.66 3.68 2.64 2.90 3.71 3.92 2.88 4.36 3.73 4.19 3.96 3.86 3.22 2.49 4.10 3.01 1.92 3.59 3.10 3.46 4.79 3.88 4.54 2.68 5.69 2.58 3.53 3.09 8.27 6.18 6.04 3.20 3.26 4.15 4.11 4.28 3.76 4.66 5.60 5.10 3.98 6.56 6.82 Mn bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.20 bd bd bd bd bd bd bd bd 0.16 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd Fe 1.03 1.34 1.02 1.04 1.03 1.03 1.33 1.52 0.93 0.95 1.33 1.05 1.10 1.00 0.75 1.17 1.10 1.25 0.98 1.11 1.28 1.13 0.90 1.46 1.03 1.02 0.90 1.03 1.02 0.77 0.78 0.84 0.90 1.16 1.09 1.36 0.98 1.07 1.02 2.44 2.97 4.36 1.38 0.92 1.10 1.42 1.26 1.36 1.25 1.05 1.24 1.09 1.09 1.80 Sr nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd SRHS-DU-192 Metatarsal (Transect 1) (continued) Y 11.62 10.89 6.26 9.33 8.30 6.39 11.11 8.73 7.25 9.11 8.04 9.03 8.46 9.20 7.18 8.45 8.31 8.72 6.88 9.94 9.69 5.04 7.81 9.35 7.93 9.60 6.13 6.44 6.32 8.09 5.45 14.57 9.39 9.66 13.92 11.32 10.29 5.61 7.70 27.31 24.80 25.98 10.28 6.87 9.43 10.39 11.75 11.96 11.21 18.04 16.11 12.09 17.05 17.76 Ba 1559.31 1800.38 1231.85 nd 1068.93 1127.18 2133.97 1678.89 1482.14 1351.92 1644.19 1590.96 1628.83 1573.94 1527.47 1342.96 1372.75 1358.91 1359.88 1366.73 1501.60 1530.43 1653.56 1526.43 1404.63 1435.59 1285.32 1172.92 1384.70 1479.12 1389.65 1683.62 1505.76 1667.92 2071.24 1573.50 1361.39 1185.97 886.46 1387.78 1373.53 nd 1574.88 1354.29 1345.35 1669.88 nd 1816.24 1236.78 1959.98 2084.16 1959.66 1839.56 1530.91 La 3.02 2.81 1.40 2.72 1.51 2.02 3.00 1.56 1.88 2.00 0.95 1.20 1.30 2.03 1.33 1.76 1.72 1.44 1.33 1.88 1.50 0.81 1.18 1.61 1.06 1.18 1.08 2.03 1.57 1.46 0.87 3.39 6.17 1.26 2.37 3.43 1.74 1.07 2.92 5.09 5.93 6.36 2.30 1.27 1.87 2.17 1.91 2.70 2.50 3.28 2.40 2.48 3.77 3.66 Ce 6.08 4.16 3.35 14.54 3.35 2.21 2.92 2.00 2.15 2.54 2.41 1.92 2.81 2.89 1.84 1.61 1.55 1.86 2.26 2.14 1.38 1.81 1.29 2.26 1.34 3.05 1.73 1.99 1.13 1.90 5.24 4.31 3.39 1.46 1.96 3.31 1.74 1.47 1.79 5.69 9.43 5.01 2.79 1.38 2.68 4.31 2.84 2.94 4.27 3.15 3.51 4.45 4.01 6.37 Pr 0.37 0.21 0.12 0.32 0.30 0.27 0.34 0.29 0.28 0.74 0.12 0.18 0.21 0.09 0.18 0.16 0.30 0.20 0.24 0.11 0.05 0.16 0.12 0.38 0.06 0.28 0.34 0.21 0.09 0.19 0.22 0.35 0.29 0.19 0.18 0.38 0.20 0.15 0.28 0.90 0.86 1.10 0.29 0.09 0.32 0.24 0.38 0.23 0.21 0.30 0.14 0.25 0.55 1.69 Nd 1.34 3.77 0.45 0.45 0.38 0.30 1.47 1.48 0.67 0.28 0.29 0.82 1.21 0.12 0.83 0.6