pdf - Drexel University

Transcription

pdf - Drexel University
Insights into molecular taphonomy and the evolution of sauropod posture garnered
from Late Cretaceous fossils
A Thesis
Submitted to the Faculty
of
Drexel University
by
Paul V. Ullmann
in partial fulfillment of the
requirements for the degree
of
Doctor of Philosophy
June 2015
© Copyright 2015
Paul V. Ullmann. All Rights Reserved.
ii
Dedication
For the more than 100 people that helped me excavate bones, jacket bones, package
bones, lift bones, move bones, prepare bones, fix bones, photograph bones, measure
bones, 3D scan bones, molecularly sample bones, section bones, and analyze bones
iii
Acknowledgements
No one earns a degree on their own. I could never have reached this milestone
without the gracious assistance of countless advisors, collaborators, staff, friends, and my
family. I would first like to express gratitude to Drexel University, the College of Arts
and Sciences, the Department of Biology, the Department of Biodiversity, Earth, and
Environmental Science, and all other Drexel staff who have provided me an exciting
graduate career. I am privileged to have attended Drexel during a momentous ascension
in public stature and am grateful to have taken part in the establishment and organization
of a Drexel Paleontology Collection. I hope that through my efforts in the Dread project
(as we like to call it) I have contributed in a small way to making Drexel a household
name both in the U.S. and across the globe.
Much of my research would not have been possible without financial support
from a National Science Foundation Graduate Research Fellowship (DGE Award
#1002809) and a Jurassic Foundation Grant. I thank these institutions for helping me to
expand my training and to include field research in my dissertation.
It’s difficult to put my gratitude to my advisor, Dr. Kenneth Lacovara, into words.
I owe you so much, from your excitement to fit meeting me into your busy schedule in
the spring of 2008, to your trust that I could handle researching your then newly arrived
sauropod even though all of my experience was with T. rex and ornithischians, and to
your efforts in preparing me for a long and successful career in research. Thank you for
believing in my potential from the start, letting me take part in the growth of your lab,
and study a one-of-a-kind skeleton that makes everyone else studying sauropods jealous.
I am especially grateful to the members of my dissertation committee for their
guidance, training, access to their laboratories and supplies, and overall support: Dr.
Matthew Bonnan, Dr. Jerry Harris, Dr. Aleister Saunders, Dr. Daniel Marenda, and Dr.
Amy Grunden. I am honored to have learned from each of you and hope I will become as
helpful an advisor as each of you have been to me. Dr. Bonnan , I particularly want to
thank you for your patience in training me in the ways of morphometrics.
I cannot say thank you enough to Drs. David Grandstaff and Matt Lamanna for
the training and guidance each of them have provided over the last four years. Though
neither of you were on my committee, please know I am grateful for your taking me
under wing. Your patient advisement and goodwill have not gone unnoticed, and I look
forward to continuing to collaborate with each of you.
I have enjoyed adventures in the field, lab, and the “real world” (whatever that is)
with a wonderful group of labmates during my time at Drexel. I thank each of you,
current and former graduate members of the Paleolab, for your friendship and support:
Lucio Ibircu, Jason Schein, Victoria Egerton, Elena Schroeder, Zack Boles, Kristyn
Voegele, Anna Jaworski, Rebecca Hoffman, and Ashley Adams. I have made friendships
with many of you that will last long beyond my tenure at Drexel. I extend a special thank
you to Elena Schroeder for contributing a modern alligator tissue bullet to my IHC
analyses in Chapter 3, and to Zack Boles and Kristyn Voegele for inhaling gallons of
windblown sand and plaster dust with me in the South Dakota badlands.
iv
Chapters 2 and 3 of this dissertation would not have been possible without the
support of the Standing Rock Sioux Tribe and Concordia College. I am indebted to the
Standing Rock Tribal Council and Paleontology Committee for their gracious support,
especially Bob Demery, Henry Harrison, Allen Shaw, and Adrienne Swallow. Dr.
Nellermoe, thank you for offering me the opportunity to study such a fascinating
bonebed, and thank you Allen Shaw for helping to make our multi-institutional
collaboration a reality. Together, we have healed old wounds to form an enjoyable and
productive partnership that I hope will continue for years to come.
I thank the Concordia College Biology Department for lending excavation
equipment for our dig in 2012 and for administrative support during my stays in
Moorhead. Many thanks also go to all the volunteers who assisted in excavating fossils
under the burning sun: Gerald Voegele, Laura Eider, David Momjian, Dale Malinzak,
Christine Martin, and Derek Jamerson. I owe particular gratitude to Gerald Voegele and
Jim Steinke for assistance in arranging shipment of fossils on loan to Drexel.
As noted in my dedication, I owe gratitude to innumerable volunteers and fossil
preparators for assistance in moving, preparing, and positioning bones so I could study
them, including preparators at the Academy of Natural Sciences and the Carnegie
Museum of Natural History. In particular, I thank Jason Poole, Emma Fowler, Nate
Schiff, Suraj Pandya, Aja Carter, George Keighton, Atika Mehmood, Athena Patel,
Anthony Papaccio, Kate Keen, Joshua Yan, and David Schloss for your assistance in
these endeavors. I am honored to have each of you as friends. I owe additional gratitude
to Suraj Pandya and Joshua Yan. Suraj, thank you for helping to keep my actualistic
experiment running when I could not be there to do so, lending your microscope camera,
and for your efforts in photographing fossil soft tissues. Joshua, thank you for
withstanding countless hours of tedious REE calculations in Excel; none of what I
present in Chapter 3 would have been possible without you.
I also am extremely thankful to Dr. Mary Schweitzer for graciously letting me
research in her laboratory at North Carolina State University. You and your lab group,
especially Wenxia Zheng, Tim Cleland, Liz Johnson, and Alison Moyer, have welcomed
members of our Drexel lab with open doors and I appreciate the guidance, training, and
encouragement each of you have provided during my stays in your lab. On a similar note,
I am grateful to Drs. Gomaa Omar and Richard Ash for assistance in running XRD and
LA-ICPMS analyses, respectively.
Kristyn, I know you did not want to get singled out, but I have to. You’ve stayed
by my side through thick and thin the whole way. Thank you for putting up with my
forgetfulness, tiredness, and having to take time away from being spent with you, even as
I write this now. I would never have kept my sanity through all of this without your
loving support.
Finally, I cannot have reached this goal without the undying support of my
family. I owe so much of my success to the work ethic you have each taught me. Grandpa
Victor, though I can’t see it I know you are smiling to see me finally reach this goal.
Mom, thank you for your encouragement, never letting me give up, and helping me learn
how to rise to challenges I didn’t anticipate along the way. Dad, thank you for the
confidence you’ve placed in me and for your enthusiastic support along this seemingly
never-ending journey. Each of you has sacrificed so much to help me reach this moment;
I hope seeing me finally cross the finish line is as gratifying for you as it is for me.
v
Table of Contents
LIST OF TABLES ............................................................................................................ xii
LIST OF FIGURES ...........................................................................................................xv
ABSTRACT .................................................................................................................... xxx
CHAPTER 1: MOLECULAR TAPHONOMY: DECIPHERING INTERACTIONS
BETWEEN BIOMOLECULES AND SEDIMENTARY ENVIRONMENTS THAT
LEAD TO BIOMOLECULAR PRESERVATION .............................................................1
1.1 Abstract ....................................................................................................................1
1.2 Introduction ..............................................................................................................2
1.3 Significance..............................................................................................................4
1.4 History of thought ....................................................................................................5
1.4.1 Decay ..............................................................................................................5
1.4.2 Mineralization of soft tissues ..........................................................................7
1.4.3 Bone structure and mutual protection ..........................................................11
1.4.4 Amino acid analysis and racemization .........................................................12
1.5 Diagenetic alterations.............................................................................................14
1.5.1 Alterations to biomolecules...........................................................................14
1.5.2 Alterations to biominerals.............................................................................18
1.6 Favorable molecular attributes ...............................................................................23
1.7 Relative survival of biomolecules ..........................................................................27
1.7.1 DNA...............................................................................................................27
1.7.2 Lipids.............................................................................................................28
1.7.3 Carbohydrates...............................................................................................29
vi
1.7.4 Proteins .........................................................................................................30
1.8 Analytical methods ................................................................................................35
1.9 Correlating factors .................................................................................................40
1.9.1 Geologic variables ........................................................................................43
1.9.2 Environmental variables ...............................................................................44
1.9.3 Taphonomic variables ...................................................................................45
1.10 Connections between bone biomolecule preservation and REE geochemistry ...47
1.11 Connections between bone biomolecule preservation and stable isotopes ..........49
1.12 Hypothesized molecular preservation mechanisms .............................................52
1.13 Next steps .............................................................................................................55
1.14 Conclusion ...........................................................................................................57
CHAPTER 2: SOFT TISSUE PRESERVATION AND DEPOSITIONAL
ENVIRONMENTS OF THE BASAL HELL CREEK FORMATION AT THE
STANDING ROCK HADROSAUR SITE, CORSON COUNTY, SOUTH DAKOTA...69
2.1 Abstract ..................................................................................................................69
2.2 Introduction ............................................................................................................70
2.3 Geologic setting .....................................................................................................72
2.4 Sedimentology and stratigraphy ............................................................................74
2.5 Methods..................................................................................................................77
2.6 Faunal and floral summary ....................................................................................82
2.7 Age profile .............................................................................................................85
2.8 Taphonomy ............................................................................................................86
2.8.1 Skeletal representation..................................................................................86
2.8.2 Spatial distribution and orientation of elements ...........................................87
vii
2.8.3 Voorhies groups ............................................................................................89
2.8.4 Hydraulic equivalency ..................................................................................90
2.8.5 Weathering ....................................................................................................90
2.8.6 Abrasion ........................................................................................................91
2.8.7 Breakage and fracturing ...............................................................................92
2.8.8 Tooth marks ..................................................................................................94
2.8.9 Trample marks ..............................................................................................95
2.8.10 Pathologies .................................................................................................95
2.8.11 Diagenesis ...................................................................................................97
2.8.12 Soft tissue preservation ...............................................................................98
2.8.13 Palynology ................................................................................................101
2.9 Discussion ............................................................................................................103
2.9.1 Depositional setting of the assemblage.......................................................103
2.9.2 Assemblage accumulation scenario ............................................................106
2.9.3 Diagenetic facilitation of soft tissue preservation ......................................110
2.10 Conclusions ........................................................................................................113
CHAPTER 3: CORRELATING FOSSIL BONE RARE EARTH ELEMENT PROFILES
TO PRESERVATION OF ORIGINAL SOFT TISSUES AND BIOMOLECULES ......134
3.1 Abstract ................................................................................................................134
3.2 Introduction ..........................................................................................................135
3.3 Geologic setting ...................................................................................................138
3.4 Methods................................................................................................................139
3.4.1 Samples .......................................................................................................139
3.4.2 Sample preparation .....................................................................................140
viii
3.4.3 LA-ICPMS analyses ....................................................................................141
3.4.4 Biomolecular analyses ................................................................................142
3.4.5 Tissue embedding procedure ......................................................................142
3.4.6 Sectioning and immunofluorescence...........................................................143
3.5 Results ..................................................................................................................145
3.5.1 Overall REE composition ...........................................................................145
3.5.2 Intra-bone REE depth profiles ....................................................................147
3.5.3 NASC-normalized REE patterns .................................................................150
3.5.4 (La/Yb)N vs. (La/Sm)N ratio patterns ...........................................................152
3.5.5 REE anomalies ............................................................................................153
3.5.6 Immunofluorescence ...................................................................................155
3.6 Discussion ............................................................................................................156
3.6.1 Geochemical taphonomy of SRHS ..............................................................156
3.6.2 REE correlations with soft tissue and collagen preservation at SRHS ......162
3.6.3 The use of REE data as a proxy for biomolecular preservation .................164
3.7 Conclusion ...........................................................................................................167
CHAPTER 4: ACTUALISTIC TESTING OF THE INFLUENCE OF GROUNDWATER
CHEMISTRY ON DEGRADATION OF COLLAGEN I IN BONE .............................184
4.1 Abstract ................................................................................................................184
4.2 Introduction ..........................................................................................................185
4.3 Methods................................................................................................................187
4.3.1 Materials .....................................................................................................187
4.3.2 Trial apparatus ...........................................................................................188
4.3.3 Solutions and trials .....................................................................................189
ix
4.3.4 Histology .....................................................................................................192
4.3.5 Protein extraction .......................................................................................193
4.3.6 ELISA ..........................................................................................................195
4.3.7 Immunofluorescence ...................................................................................196
4.4 Results ..................................................................................................................196
4.4.1 General observations ..................................................................................196
4.4.2 Histology .....................................................................................................197
4.4.3 ELISA ..........................................................................................................200
4.4.4 Immunofluorescence ...................................................................................202
4.5 Discussion ............................................................................................................203
4.6 Conclusion ...........................................................................................................207
CHAPTER 5: APPENDICULAR OSTEOLOGY OF DREADNOUGHTUS SCHRANI, A
GIANT TITANOSAUR (SAUROPODA, TITANOSAURIA) FROM THE LATE
CRETACEOUS OF PATAGONIA, ARGENTINA........................................................221
5.1 Abstract ................................................................................................................221
5.2 Introduction ..........................................................................................................222
5.3 Systematic paleontology ......................................................................................224
5.4 Description ...........................................................................................................225
5.4.1 Pectoral girdle ............................................................................................226
5.4.2 Forelimb ......................................................................................................231
5.4.3 Pelvic girdle ................................................................................................236
5.4.4 Hind limb ....................................................................................................242
5.5 Discussion ............................................................................................................251
5.5.1 Phylogenetic position of Dreadnoughtus schrani .......................................251
x
5.5.2 Wide-gauge specializations at extreme body size .......................................253
5.6 Conclusion ...........................................................................................................255
CHAPTER 6: CHARACTERIZING THE EVOLUTION OF WIDE-GAUGE
FEATURES IN STYLOPODIAL LIMB ELEMENTS OF TITANOSAURIFORM
SAUROPODS VIA GEOMETRIC MORPHOMETRICS ..............................................279
6.1 Abstract ................................................................................................................279
6.2 Introduction ..........................................................................................................280
6.3 Methods................................................................................................................282
6.3.1 Dataset construction ...................................................................................282
6.3.2 Statistical methods ......................................................................................284
6.4 Results ..................................................................................................................286
6.4.1 Humerus ......................................................................................................286
6.4.2 Femur ..........................................................................................................291
6.5 Discussion ............................................................................................................294
6.5.1 Osteology of wide-gauge posture................................................................294
6.5.2 Functional morphology inferences .............................................................295
6.6 Conclusions ..........................................................................................................303
CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS...........................................324
LIST OF REFERENCES .................................................................................................329
APPENDIX A: REE AND TRACE ELEMENT CONCENTRATIONS BY TRANSECT
..........................................................................................................................................373
APPENDIX B: REE AND TRACE ELEMENT CONCENTRATIONS FOR FIBULA
SRHS-DU-231 SPOT ANALYSES ................................................................................482
APPENDIX C: SUPPLEMENTAL ANALYSES OF TITANOSAURIFORM
MORPHOMETRICS DATASET ....................................................................................484
C.1 Humerus ..............................................................................................................484
xi
C.1.1 Nontitanosaurs v. Titanosaurs (NT v. T)....................................................484
C.1.1.1 Relative warps analysis .....................................................................484
C.1.1.2 Canonical variates analysis ...............................................................484
C.1.2 Nontitanosauriforms v. Basal Titanosauriforms v. Titanosaurs
(N v. TF v. T) .......................................................................................................485
C.1.2.1 Relative warps analysis .....................................................................485
C.1.2.2 Canonical variates analysis ...............................................................486
C.1.3 Nontitanosauriforms v. Titanosauriforms+UpTree (N v. TF+UpTree) .....486
C.1.3.1 Relative warps analysis .....................................................................486
C.1.3.2 Canonical variates analysis ...............................................................487
C.2 Femur ..................................................................................................................488
C.2.1 Nontitanosaurs v. Titanosaurs (NT v. T)....................................................488
C.2.1.1 Relative warps analysis .....................................................................488
C.2.1.2 Canonical variates analysis ...............................................................489
C.2.2 Nontitanosauriforms v. Basal Titanosauriforms v. Titanosaurs
(N v. TF v. T) .......................................................................................................489
C.2.2.1 Relative warps analysis .....................................................................489
C.2.2.2 Canonical variates analysis ...............................................................490
C.2.3 Nontitanosauriforms v. Titanosauriforms+UpTree (N v. TF+UpTree) .....491
C.2.3.1 Relative warps analysis .....................................................................491
C.2.3.2 Canonical variates analysis ...............................................................491
C.3 Stylopodial length comparisons ..........................................................................492
VITA ................................................................................................................................519
xii
List of Tables
Table 1.1 Lithologic, diagenetic, geochemical, ecological, and environmental factors
agreed to aid preservation of bone into the fossil record. References are intended to
provide examples, not an exhaustive list. ..........................................................................58
Table 1.2 Geologic, environmental, and taphonomic factors hypothesized to correlate to
soft tissue and/or biomolecular preservation. References are intended to provide
examples, not an exhaustive list.........................................................................................59
Table 2.1 Additional faunal material recovered from the Standing Rock Hadrosaur Site.
Abbreviation: indet, indeterminate. .................................................................................116
Table 2.2 Survival of skeletal elements of Edmontosaurus annectens at the Standing
Rock Hadrosaur Site, predicted from MNI versus actual. Abbreviations: MNI, minimum
number of individuals; NA, not applicable. .....................................................................117
Table 3.1 Average whole-bone trace element compositions for nine SRHS fossils. Iron
(Fe) is presented in weight percent (wt. %), all other elements are in parts per million
(ppm). Absence of (Ce/Ce*)N, (Ce/Ce**)N, and (La/La*)N anomalies occurs at zero. 170
Table 3.2 Summary of attributes of the nine fossil bones analyzed for REE composition.
Abbreviation: DMD, double medium diffusion sensu Kohn (2008). *Uranium suggests
flow in the marrow cavity of these specimens but REE do not. ......................................171
Table 4.1 Summary of bone attributes after completion of the experiment. Histological
Index scores follow the ranking system of Hedges and Millard (1995). Abbreviations:
ELISA, enzyme-linked immunosorbant assay; IF, immunofluorescence. ......................209
Table 5.1 Appendicular skeletal completeness of the Dreadnoughtus schrani holotype
(MPM PV 1156) versus other large sauropods. Mirrored Appendicular Counts and
Mirrored Appendicular Completeness values calculated following Lacovara et al. (2014).
..........................................................................................................................................257
Table 5.2 Phylogenetic synapomorphies in the appendicular skeletons of sauropod
dinosaurs from previous cladistic analyses. Any report where a character was attributed
to a node not conforming to the consensus are noted by an asterisk (*) or cross (†) in the
Alternative Node(s) column. The clade names Titanosauroidea and Titanosauridae are
now in disuse due to invalidity of the namesake genus Titanosaurus (Wilson and
Upchurch, 2003). Italicized characters are present in Dreadnoughtus. ...........................259
Table 6.1 Kruskal-Wallis and Mann-Whitney U test results on sauropod stylopodial bone
lengths. α =0.05 for Kruskal-Wallis tests, shown in first row. α = 0.005 for MannWhitney U tests with Bonferroni correction, shown in all subsequent rows.
xiii
Abbreviations: P, “Prosauropods”; D, Diplodocids; C, Camarasaurus; TF,
Titanosauriforms; T, Titanosaurs .....................................................................................305
Table 6.2 Significance of relative warps for sauropodomorph humeri and femora, with
dataset divided into five groups. Only the first ten relative warps are listed. The uniform
component was included in the analysis. Abbreviations: No., relative warp number; SV,
singular values (eigenvalues of traditional PCA); %, percentage of variance accounted for
by that relative warp. Cum %, cumulative percentage of variance accounted for. Bolded
relative warps account for at least 80% of the shape variation. .......................................306
Table 6.3 Anderson's χ² test results, which determine the number of statistically
significant relative warps by identifying distinct eigenvalues. ........................................307
Table 6.4 Significance differences, as discerned by Kruskal-Wallis and Mann-Whitney U
tests, on relative warps identified as significant by Anderson’s χ2 test, with dataset
divided into five groups. p values are significant at α = 0.05 for Kruskal-Wallis tests.
Taxon group abbreviations as in Table 6.1. Other abbreviations: KW, Kruskal-Wallis;
RW, relative warp. Post hoc Bonferroni significance identifiers via Mann-Whitney U
tests: †, significant difference between P and D; ‡, between P and C; ◊, between P and
TF; θ , between P and T; , between D and C; , between D and TF; , between D and T;
, between C and TF; , between C and T; , between TF and T. Group abbreviations as
in Table 6.1 ......................................................................................................................308
Table 6.5 Significant shape variables identified by canonical variates analysis of
sauropodomorph humeri and femora. Abbreviations: CV, canonical variate axis. .........309
Table 6.6 Multivariate regression of relative warp scores on maximum sauropodomorph
humeral and femoral length using Goodall's F test*........................................................310
Table A.1 REE and trace element concentrations by transect ........................................374
Table B.1 REE and trace element concentrations for fibula SRHS-DU-231 spot analyses
..........................................................................................................................................483
Table C.1 Humeri used in this study. Abbreviations: L, left; R, right. Max. length (mm)
denotes maximum proximodistal length of the specimen. Known juvenile specimens are
indicated as such. .............................................................................................................494
Table C.2 Femora used in this study. Abbreviations: L, left; R, right. Max. length (mm)
denotes maximum proximodistal length of the specimen. Known juvenile specimens are
indicated as such. .............................................................................................................496
Table C.3 MANOVA scores for partial warps and uniform components of the humerus
and femur, with dataset divided into five groups. α = 0.05. Bolded p values indicate
multivariate significance for Pillai's Trace, Wilk's Lambda, and Hotelling-Lawley's
Trace. Abbreviations: P, “Prosauropods”; D, Diplodocids; C, Camarasaurus; TF,
Titanosauriforms; T, Titanosaurs. Post hoc Bonferroni significance identifiers: †,
xiv
significant difference between P and D; ‡, between P and C; ◊, between P and TF; θ ,
between P and T; , between D and C; , between D and TF; , between D and T; ,
between C and TF; , between C and T; , between TF and T. The single comparisons for
each element found significant by Pillai, Wilks, and Hotelling-Lawley but not by post
hoc pairwise Mann Whitney U tests are identified as false positives. .............................498
Table C.4 MANOVA scores for partial warps and uniform components of the humerus,
with dataset divided in three additional manners. α = 0.05. Bolded p values indicate
multivariate significance for Pillai's Trace, Wilk's Lambda, and Hotelling-Lawley's
Trace. Abbreviations: N, Nontitanosauriforms; NT, Nontitanosaurs; TF,
Titanosauriforms; TF+up, all specimens of Titanosauriformes; T, Titanosaurs. Post hoc
Bonferroni significance identifiers: †, significant difference between N and TF; ‡,
between N and T; ◊, between TF and T ...........................................................................499
Table C.5 MANOVA scores for partial warps and uniform components of the femur,
with dataset divided in three additional manners. α = 0.05. Bolded p values indicate
multivariate significance for Pillai's Trace, Wilk's Lambda, and Hotelling-Lawley's
Trace. Abbreviations: N, Nontitanosauriforms; NT, Nontitanosaurs; TF,
Titanosauriforms; TF+up, all specimens of Titanosauriformes; T, Titanosaurs. Post hoc
Bonferroni significance identifiers: †, significant difference between N and TF; ‡,
between N and T; ◊, between TF and T. The single comparison for femora found
significant by Pillai, Wilks, and Hotelling-Lawley but not by post hoc pairwise Mann
Whitney U tests is identified as a false positive ..............................................................500
Table C.6 Significant shape variables identified by canonical variates analysis of
sauropodomorph humeri and femora, with dataset divided in three additional manners.
Abbreviations: CV, canonical variate axis; N, Nontitanosauriforms; NT, Nontitanosaurs;
TF, Titanosauriforms; TF+up, all specimens of Titanosauriformes; T, Titanosaurs. ......501
Table C.7 Kruskal-Wallis and Mann-Whitney U test results on stylopodial lengths, with
dataset divided in three additional manners. α = 0.05 for Kruskal-Wallis tests. Bonferroni
correction for Mann-Whitney U tests of NvTFvT makes α = 0.0167 for those reanalyses.
α = 0.05 (no Bonferroni correction needed) for Mann-Whitney U tests simply contrasting
NTvT and NvTF+up. Abbreviations: N, Nontitanosauriforms; NT, Nontitanosaurs; TF,
Titanosauriforms; TF+up, all specimens of Titanosauriformes; T, Titanosaurs. N/A:
Kruskal-Wallis results were not significant when comparing Nontitanosaurs to
Titanosaurs, so no Mann-Whitney U tests were conducted for either element ...............502
xv
List of Figures
Figure 1.1 Examples of pliable soft tissues recovered from ancient vertebrate fossils. (A)
Osteoid-like parallel arrangement of proteinaceous fibers following demineralization of a
Tyrannosaurus rex bone fragment. (B) Network of interconnected, flexible, transparent
vessels isolated by demineralization of a Tyrannosaurus rex bone fragment. (C) An
osteocyte isolated from demineralization products of a Cretaceous turtle shell fragment.
(D) An isolated vessel from a Tyrannosaurus rex bone fragment, including structures
morphologically consistent with endothelial cell nuclei (arrows). Each of these structures
displays morphologic consistency with modern analogs. Figures (A) and (B) modified
from Schweitzer et al. (2007b), (C) modified from Cadena and Schweitzer (2012), and
(D) modified from Schweitzer et al. (2005b).....................................................................61
Figure 1.2 An excellent example of the utility of molecular paleontology analyses.
Schweitzer et al. (2009) used sequences of the protein collagen I from fossil extracts to
independently test phylogenetic hypotheses developed solely from morphologic data.
Fossil collagen I peptide sequences place non-avian dinosaurs between extant
crocodilians and birds, in agreement with traditional conclusions based on skeletal
morphology. From Schweitzer et al. (2009). .....................................................................62
Figure 1.3 The process and results of autolithification and authigenic mineralization. (A)
Diagrammatic representation of bacteria progressively consuming muscle fibers,
coalescing metal ions, and leaving behind mineralized tissue. From Martill, 1988. (B)
Example of authigenically mineralized muscle fibers in a Santana Formation fish. Field is
shown at 12,000x. Modified from Martill (1988). (C) Example of autholithified bacteria
creating a pseudomorph of tissue in a fossil fish eye from the Las Hoyas Lagerstӓtte,
Spain. Note the comparatively larger and clearly rounded bacterial structures compared to
the finer and smoother texture developed in authigenic mineralization (B). Modified from
Gupta et al. (2008). ............................................................................................................63
Figure 1.4 Common diagenetic alterations suffered by biomolecules. (A) Hydrolytic
fragmentation. (B) Conversion of one molecular compound (serine) into another (alanine)
by loss of a hydroxyl group. (C) Deamination. (D) Conversion of one amino acid into
another (glycine) via loss of functional groups and subsequent replacement with a
hydrogen ion. (E) Racemization of a biomolecular compound from left to right isomeric
structure. From Schweitzer (2004). ...................................................................................64
Figure 1.5 Diagrammatic representation of non-avian dinosaur collagen I peptide
sequences from Asara et al. (2007) and Schweitzer et al. (2009) mapped onto a model of
a human collagen fibril (Sweeney et al., 2008). One D period is shown. All dinosaur
peptides mapped to interior monomers 2–4 and crucial cell-interaction sites, such as the
integrin binding site and the MMP1 cleavage site. This suggests a link between biological
function and peptide preservation potential .......................................................................65
xvi
Figure 1.6 Effect of enclosure of biomolecules within biomineral matrix. Intercrystalline
proteins, such as collagen I, are clearly vulnerable to hydrolysis or leaching from the
bone, whereas intracrystalline proteins (e.g., osteocalcin) may remain comparatively
protected within fluid inclusions or along crystal cleavage planes. Redrawn after Sykes et
al. (1995, fig. 4)..................................................................................................................66
Figure 1.7 Theoretical relationship of rare earth element (REE) concentration to depth
into a fossil bone, from Trueman et al. (2008a). By this theory, bones with a steep decline
in concentration with depth into the cortex (such as the specimen represented by the
lower left curve with an exponent α value of -0.005) should offer the best potential for
biomolecular preservation. Such a steep gradient would reflect minimal interactions with
groundwater and therefore rapid equilibration of the bone with its diagenetic
environment. Further, minimal postmortem uptake of REE by the middle and inner cortex
would suggest minimal alteration of these regions. This would signify that interior cortex
of the sample might be an appropriate candidate for biomolecular analyses ....................67
Figure 1.8 “Microbial masonry”: autolithified bacteria infilling the surficial opening of a
vascular canal in a fossil Thescelosaurus bone (Dinosauria: Ornithopoda), from Peterson
et al. (2010). These authors propose that rapid autolithification of bacteria within exterior
vascular and nerve canals could prevent microbial invasion and exploitation of the inner
cortex and medullary region of bones, thus protecting biomolecules and soft tissues in
inner bone regions. .............................................................................................................68
Figure 2.1 Attributes of the Standing Rock Hadrosaur Site fossil assemblage. (A) Age
profile. (B) Vertebral region abundances. (C) Vertebral component abundances. (D) Pes
series abundances. (E) Temporal-palatal series abundances. (F) Bone weathering stages.
(G) Bone abrasion stages. (H) Bone fracture types. ........................................................118
Figure 2.2 Population and biostratinomic attributes of the Standing Rock Hadrosaur Site
assemblage. (A) Frequency of specimen size classes, using three centimeter bins. (B)
Distribution of skeletal regions and series. (C) Relative frequency of elements according
to Voorhies (1969) transportation groups. White columns display the frequency of bones
in a single complete skeleton of Edmontosaurus annectens, whereas black columns
display the frequencies of bones excavated from the quarry. (D) Plunges of elongate
specimens from the 2012 quarry, the only year plunge data were collected. (E) Plunge
directions of elongate specimens from the 2012 quarry. Light gray arrow denotes the
mean (14.9°), dark gray arcs outside the compass mark range of one standard deviation
from the mean. (F). Orientation of skeletal elements for the entire excavation. (G)
Orientation of skeletal elements for solely the 2012 quarry. Rose diagrams presented as
arithmetic plots with 10° bins. .........................................................................................119
Figure 2.3 Quarry map from the summer excavation of 2012 at the Standing Rock
Hadrosaur Site, divided into bones (A) and ossified tendons and teeth (B). Bones outlined
in gray in (A) are the 12 from which samples were collected for molecular analyses.
SRHS-DU- specimen numbers for all bones are provided in (A). In (B), black lines are
partial ossified tendons whereas black spots denote small ossified tendon fragments for
xvii
which orientation data was not gathered. Gray stars in (B) denote isolated teeth (mostly
Edmontosaurus, only a few theropod teeth included). Dashed black line denotes erosional
edge of hillside. Dotted gray line denotes furthest extent of excavation into the hillside at
the end of the field season. Crosshair symbols denote the vertices of square meter grids
that are defined by the letter and number axes at the edge of the map. ...........................120
Figure 2.4 Breakage in Edmontosaurus annectens bones from the Standing Rock
Hadrosaur Site. (A) Example spiral break through the ramus of a quadrate (CC-MN2923). (B) Example concentric fracture pattern on the medial aspect of the proximal end
of a left ulna (CC-MN-48). Numbered units of scale bar in (A) are centimeters. Scale bar
for (B) equals 10 cm. .......................................................................................................122
Figure 2.5 Theropod bite marks and teeth from the Standing Rock Hadrosaur Site. (A)
Example bite marks (four subparallel tooth scores, arrows) on a metatarsal III (CC-MN1893). (B) Example shed theropod tooth recovered from the bonebed (CC-MN-P39).
Numbered units of scale bar in (A) are centimeters. Scale bar for (B) equals 1 cm........123
Figure 2.6 Examples of paleopathologies in Standing Rock Hadrosaur Site
Edmontosaurus annectens bones. (A) Osteochondrosis expressed as a localized arcuate
lesion (arrow) on the articular face of a distal caudal centrum (CC-MN-3519). (B)
Osteochondrosis-like lesion that sagittally bisects a distal caudal centrum, seen here as a
dorsoventrally oriented groove on the articular face (arrows; CC-MN-3115). (C) Two
fused caudal vertebrae (CC-MN-2897 and -2898). (D) Oblate raised lesion (arrow) on the
dorsal surface of a pedal ungual (CC-MN-2565). Scale bars all equal 5 cm...................124
Figure 2.7 X ray diffractograms of Standing Rock Hadrosaur Site fossils, encasing
sediment, and concretions within the bonebed mudstone. All diffraction spectra except
for that of cancellous bone have been vertically shifted to allow visual comparison
between samples. All biologic samples were identified as fluorapatite. Sediment was
identified to comprise illite, muscovite, anorthite, albite, and quartz. The concretion from
within the bonebed was identified as goethite. The white sandstone overlying the
bonebed (data not shown; unit 6 of Colson et al., 2004) was identified to comprise of
quartz, anorthite, microcline, muscovite, and vermiculite. ..............................................125
Figure 2.8 Demineralization products of encasing sedimentary matrix and fossil
fragments from the Standing Rock Hadrosaur Site. (A) Magnified view of sedimentary
matrix, including a small pocket of amber and abundant, small, black, organic inclusions.
(B) A fragment of femur cortex after one week of decalcification, showing numerous
parallel vascular canals beginning to emerge. (C) Osteocyte with elongate filipodia
recovered from a fragment of weathered “float” cortical bone. (D) Size comparison of an
osteocyte (upper left) and vessel fragment recovered from a fragment of weathered
“float” cortical bone. Same specimen as in (C). (E) Osteocyte with elongate filipodia
recovered from a fragment of ossified tendon. (F) Straight, cylindrical vessel fragment
(right) and pieces of fibrous matrix (lower left) recovered from a fragment of ossified
tendon. Same specimen as in (E). (G) Vessel fragment with dark, spherical, iron-rich
intravascular inclusions recovered from metatarsal SRHS-DU-274. (H) Abundant fossil
xviii
osteocytes embedded in fibrous bone matrix recovered from metatarsal SRHS-DU-274.
(I) Osteocyte with elongate filipodia recovered from fibula SRHS-DU-231. (J)
Compositional heterogeneity evident between a fossil osteocyte (center) and fibrous
matrix encasing it. Same specimen as in (I). (K) Straight, cylindrical vessel fragment
recovered from same fibula specimen as in (I) and (J). (L) Magnification of fibrous
matrix recovered from manual phalanx SRHS-DU-89. (M) Complex, branching vessel
network recovered from metatarsal SRHS-DU-306. (N) Osteocyte with elongate filipodia
recovered from caudal centrum SRHS-DU-220. (O) Example quartz (lower right) and
silt-rich matrix (upper left) grains remaining after demineralization of sedimentary
matrix. (P) Dark, parallel-aligned, tubular structures recovered following
demineralization of an Edmontosaurus tooth. Scale bars are labeled in each figure. .....126
Figure 2.9 Representative soft tissues recovered from Standing Rock Hadrosaur Site
Edmontosaurus annectens bones. All images except (A) collected by SEM. (A-B) An
extensive vessel network recovered from metatarsal SRHS-DU-306 exhibiting bright
orange color typical of many, but not all, recovered vessels. (C) A bi-layer sheet of
fibrous matrix exhibiting abundant, perpendicularly oriented cross-struts (doubleheaded
white arrow). At right, an osteocyte with long filipodia is partially covered by the matrix
sheet. (D) Two osteocytes exhibiting long filipodia (arrows). (E) Magnified view of the
surface of left osteocyte in (D), exhibiting shallow, linear grooves crisscrossing across the
cell surface (arrows). (F) An exemplar vessel fragment displaying hollow, cylindrical
form. Units of the scale bar in (A) are millimeters. Scale bar in (B) equals 1 mm. Scale
bars in (C) and (D) equal 10 μm. Scale bar in (E) equals 2 μm. Scale bar in (F) equals are
100 μm. ............................................................................................................................128
Figure 2.10 (A) SEM image of a large fragment of fibrous matrix with numerous
osteocytes attached to it (black arrows) from metatarsal SRHS-DU-306. Insets provide
closer views of two osteocytes to allow better visualization of cell structure and filipodia.
(B) Elemental composition of an osteocyte from (A) determined by EDX, from the region
outlined in dashes. (C) Elemental weight and atomic percent composition corresponding
to the spectrum in (B). Scale bar in large-scale micrograph in (A) equals 50 μm. Scale
bars in insets of (A) each equal 10 μm. ...........................................................................130
Figure 2.11 (A) SEM image of a branching vessel fragment from Edmontosaurus
annectens fibula SRHS-DU-231. Inset provides a closer view of the porous, amorphous
vessel surface. (B) Elemental weight and atomic percent composition corresponding to
the spectrum in (C). (C) Elemental composition of the vessel surface from (A)
determined by EDX, from the entire region shown in the inset of (A). Scale bar in largescale micrograph in (A) equals 100 μm. Scale bar in inset of (A) equals 10 μm. ...........131
Figure 2.12 Energy-dispersive x-ray elemental maps across an osteocyte attached to
amorphous fibrous matrix (in background of SEM image at left), from an Edmontosaurus
annectens metatarsal (SRHS-DU-306) from the Standing Rock Hadrosaur Site. Bright
white reflects a strong signal. Composition of both tissues is primarily dominated by iron
and oxygen. Scale bar in SEM image at left equals 10 μm. ............................................132
xix
Figure 2.13 Comparison of palynomorph assemblages from the Standing Rock
Hadrosaur Site (A) and MRF-03 (B), another Hell Creek Formation site where the
“mummified” Edmontosaurus “Dakota” was recovered. Data for SRHS from Colson et
al. (2004) and for MRF-03 from Vajda et al. (2013). ......................................................133
Figure 3.1 Intra-bone REE concentration gradients of La (red) and Yb (green) for SRHS
bones. (A) Metatarsal SRHS-DU-2. (B) Manual phalanx SRHS-DU-89. (C) Femur
SRHS-DU-94. (D) Femur SRHS-DU-126. (E) Metatarsal SRHS-DU-192. (F) Femur
SRHS-DU-273. (G) Pedal phalanx SRHS-DU-278. (H) Metatarsal SRHS-DU-306.
Profiles in (B) cross the entire diameter of manual phalanx SRHS-DU-89. Yellow-shaded
area in (G) denotes a goethite coating over the surface of pedal phalanx SRHS-DU-278.
Laser tracks denoted by the red line in each bone cross section. Scale bars equal 1 mm.172
Figure 3.2 Intra-bone concentration gradients of La (red), Yb (green), and U (blue) for
fibula SRHS-DU-231. Profiles cross the entire diameter of the bone. Laser track denoted
by the red line in the bone cross section. Yb and U concentrations have been multiplied
by 10 for ease of visualization. High-porosity trabecular tissue regions are highlighted in
gray. Scale bar equals 1 mm. ...........................................................................................174
Figure 3.3 Three-point moving averages of La concentrations in the outermost cortex of
each analyzed fossil. (A) Profiles across the outermost five millimeters of each bone. (B)
Enlarged view of only the external-most two millimeters of each bone, highlighting
raised concentrations in Haversian/osteonal tissue in metatarsal SRHS-DU-2. ..............175
Figure 3.4 (A) NASC-normalized REE distribution patterns from the outermost 250 μm
of each bone. (B-D) Ternary diagrams of NASC-normalized REE in SRHS bones. (B)
Average composition for each entire bone. (C) REE compositions divided into data from
each individual laser transect (usually ~ 5 mm of data each). Composition data for
transects that included the outer bone edge are denoted by dark diamonds; all other
transect data are indicated by gray circles. Note pattern for transects including the
external bone margin to be relatively enriched in LaN. (D) Transect data from (C)
classified by specimen. The 2σ circle represents two standard deviations based on ± 5%
relative standard deviation. ..............................................................................................176
Figure 3.5 Intra-bone NASC-normalized REE distribution patterns. Patterns recorded
from the outermost cortex are indicated by black lines, those from deepest within each
bone by dotted light gray lines (usually within more porous trabecular bone of the
marrow cavity), and all other analyses in between by solid dark gray lines. Specimens as
indicated. Note the different ratio scales for each specimen. ..........................................177
Figure 3.6 Summary of spot analyses around the circumference of fibula SRHS-DU-231.
(A) Location of LA-ICPMS spot analyses on the thick section. Green circles denote
analytical spots from the quarry-up side of the bone, blue circles denote spots from the
quarry-down side, the red circle (spot a10a) denotes an analysis of an iron-rich precipitate
infilling a Haversian canal, and the orange spot denotes a spot recording composition of
the cortex slightly interior to the outer cortical edge. Red line crossing the diameter of the
xx
bone cross section is the course of the laser transect presented in Figure 2. (B) NASCnormalized REE distribution patterns for each spot shown in (A). Pattern colorations
correspond to spot designations in (A). ...........................................................................179
Figure 3.7 (A) Comparison of whole-bone averages of (La/Yb)N and (La/Sm)N ratios of
SRHS fossils to ratios from various environmental waters and sedimentary particulates.
Literature data for environmental samples as follows: river waters (green field; Hoyle et
al., 1984; Goldstein and Jacobsen, 1988; Elderfield et al., 1990); suspended river loads
(dull pink field; Goldstein and Jacobsen, 1988); alkali saline groundwaters (bright pink
field; Johannesson et al., 1999); lakes (purple field; Johannesson and Lyons, 1995);
estuaries (yellow field; Elderfield et al., 1990); coastal waters (light blue field; Hoyle et
al., 1984; Elderfield and Sholkovitz, 1987; Elderfield et al., 1990); seawater (dark blue
field; Elderfield et al., 1982; De Baar et al., 1983; German et al., 1991; Piepgras and
Jacobsen, 1992; Sholkovitz et al., 1994; German et al., 1995; Zhang and Nozaki, 1996);
sea floor particles (gray field; Sholkovitz et al., 1994); marine pore fluids (orange field;
Elderfield and Sholkovitz, 1987; Haley et al., 2004; Kim et al., 2011). (B) REE
compositions of individual laser transects expressed as NASC-normalized (La/Yb)N and
(La/Sm)N ratios. Transects including the external bone edge are denoted by black
symbols whereas all other (internal) transects are represented by gray symbols. Inset
displays depth-related trends for individual specimens. ..................................................180
Figure 3.8 Intra-bone patterns of (Ce/Ce*)N, (Ce/Ce**)N, (La/La*)N, and Y/Ho
anomalies in SRHS bones. Following Herwartz et al. (2013b), (Ce/Ce*)N values were
calculated using La and Pr concentrations (CeN/(0.5*LaN + 0.5*PrN)), (Ce/Ce**)N
values were calculated from the trend of Nd and Pr concentrations (CeN/(2*PrN – NdN)),
and (La/La*)N anomalies were calculated using Pr and Nd concentrations (LaN/(3*PrN –
2*NdN)). (Ce/Ce**)N anomalies avoid issues arising from La anomalies that could
produce apparent (Ce/Ce*)N anomalies when in fact they are not present. Specimens as
indicated. Note the different ratio scales for each specimen. ..........................................181
Figure 3.9 Cerium anomaly (Ce/Ce*) values plotted against uranium concentrations for
SRHS bones. Dashed black line represents the general data trend, not a strict regression.
No Ce/Ce* anomaly is at a value of 0.0...........................................................................182
Figure 3.10 In situ localization of collagen I in demineralized cortical fragments of
Edmontosaurus annectens (fibula SRHS-DU-231; A–H) and modern Alligator (I–L) by
immunofluorescence. (A–D) Edmontosaurus demineralization products incubated with
antibodies against chicken collagen I; (A) and (C) show FITC images of two sections and
(B) and (D) present corresponding FITC and brightfield overlay images for (A) and (C)
(for visualization of section edge and tissue fragments within embedding resin). All
remaining images (E–L) are FITC images. (E) Secondary only control section that was
not exposed to primary antibodies, to control for non-specific binding of secondary
antibodies. (F) Section exposed to anti-chicken collagen I antibodies that were first
inhibited with chicken collagen (prior to incubation). (G) Section digested with
collagenase for one hour prior to exposure to anti-collagen I antibodies. (H) Section
digested with collagenase for six hours prior to exposure to anti-collagen I antibodies. (I)
xxi
Modern Alligator tissue section incubated with anti-chicken collagen I antibodies. (J)
Secondary only Alligator control section that was not exposed to primary antibodies. (K)
Alligator section exposed to anti-chicken collagen I antibodies that were first inhibited
with chicken collagen. (L) Alligator section digested with collagenase for one hour prior
to exposure to anti-collagen antibodies. All section images were taken at 40X and 200 ms
integration. ......................................................................................................................183
Figure 4.1 Experimental apparatus. General template of this design derives from that of
Daniel and Chin (2010, fig. 1). ........................................................................................210
Figure 4.2 Initial setup of the experiment, prior to wrapping the bone/sediment
incubation chambers and feeder solution bottles with aluminum foil (to simulate darkness
of burial). Peristaltic pumps (middle, on top of box) fed simulated groundwater solutions
from storage bottles at left to separate incubation chambers at right. Effluent solutions
were collected in the beakers beneath each incubation chamber. ....................................211
Figure 4.3 Chicken femora from each actualistic trial after completion of the experiment.
Proximal ends are at top. Note sand adhered by an iron-oxide cement to the epiphyseal
ends of the femur from the iron trial (arrows). Scale bar equals 5 cm. ...........................212
Figure 4.4 Histology of the femur from the water control trial after completion of the
experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed
with crossed polars. External cortex edge is at upper left, marrow cavity is at lower right.
External and internal cortex are semitransparent but the middle cortex could not be
ground to correct thickness; this region remains too thick and as a result appears opaque
(dark brown) in transmitted light (A). This region appears a dark golden color under
crossed polars (B). (C) Higher magnification of the cortex viewed by transmitted light,
showing that Haversian canals remain open. Note that some osteocyte lacunae are vacant
(appear white) within the internal cortex (arrows). (D) Representative osteon in which
some lacunae retain dark brown osteocytes while others are now empty (arrows). Inset
displays well preserved osteocytes which retain long, dark, intact filipodia (arrow). Scale
bars for (A) and (B) equal 200 μm. Scale bar for (C) equals 100 μm. Scale bar for (D)
equals 50 μm. Scale bar for inset in (D) equals 100 μm. .................................................213
Figure 4.5 Histology of the femur from the calcium carbonate trial after completion of
the experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B)
viewed with crossed polars. External cortex edge is at right, marrow cavity is at left.
Multiple Haversian canals are infilled by a brown mineral precipitate (arrows). (C) Tanbrown, cryptocrystalline mineral precipitate lining the wall of a void in the marrow
cavity. (D) Same as (C) viewed in crossed polarized light. Small patches of the mineral
precipitate exhibit high order interference colors (arrows). (E) Representative infilled
Haversian canal (arrow) at higher magnification. Infilling mineral in this canal ranges
from semi-translucent to tan-brown in color. (F) Representative well preserved osteocytes
which retain long, dark, intact filipodia (arrows). Scale bars for (A) and (B) equal 200
μm. Scale bars for (C) and (D) equal 100 μm. Scale bars for (E) and (F) equal 50 μm. .214
xxii
Figure 4.6 Histology of the femur from the phosphate trial after completion of the
experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed
with crossed polars. External cortex edge is at upper right, marrow cavity is at lower left.
Excellent preservation of the mineralized tissue structure is evident under polarized light
by retention of Maltese crosses for most osteons (arrows; see text section 4.3.2 for
description/discussion of these birefringence interference patterns). (C) Higher
magnification of the external and middle cortex viewed by transmitted light, showing
negligible alteration of the tissues and predominantly open Haversian canals. Only rarely
are Haversian canals partially infilled by a brown mineral precipitate (arrows). (D)
Representative well preserved osteocytes which retain long, dark, intact filipodia
(arrows). Scale bars for (A) and (B) equal 200 μm. Scale bar for (C) equals 100 μm.
Scale bar for (D) equals 50 μm. .......................................................................................216
Figure 4.7 Histology of the femur from the iron trial after completion of the experiment.
(A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed with crossed
polars. External cortex edge is at top, marrow cavity is at bottom. (C) Orange-brown,
mineral precipitate cementing sand grains together within a void in the marrow cavity.
(D) Same as (C) viewed in crossed polarized light. Quartz sand grains exhibit moderate
order interference colors ranging from blue to green, pink, orange, and yellow. (E) An
iron-rich precipitate (gold-brown color) cementing sand grains (arrows) together and
lining a strut of bone (white, gray, and black linear feature) within the marrow cavity. (F)
High magnification of the middle cortex demonstrating universally vacant osteocyte
lacunae (clearly visible examples are noted by arrows). Scale bars for (A) and (B) equal
100 μm. Scale bars for (C–E) equal 200 μm. Scale bar for (F) equals 50 μm. ................217
Figure 4.8 Representative ELISA testing bone HCl and GuHCl extracts from each
actualistic trial against antibodies to chicken collagen I. The presented absorbance
readings were taken at 405 nm at 2.5 hrs. Bone extracts were plated at 0.1 μg/well.
Extraction blanks testing laboratory reagents are presented at right as ‘Blank HCl’ and
‘Blank GuHCl’; no absorbance for these samples confirms that no contaminants are
present in laboratory buffers. Dark bars to the right of the white bars represent secondary
only controls in which no primary antibodies were added. These readings are essentially
undetectable, confirming no spurious binding of secondary antibodies to the plate. ......219
Figure 4.9 In situ immunofluorescence of collagen I in demineralized cortical fragments
of chicken femora from each trial. (A–D) Water control trial. (E–H) Calcium carbonate
trial. (I–L) Phosphate trial. (M–P) Iron trial. The first column (A, E, I, M) shows chicken
femur demineralization products incubated with antibodies against chicken collagen I.
The second column (B, F, J, N) shows secondary only control sections that were not
exposed to primary antibodies, to control for non-specific binding of secondary
antibodies. The third column (C, G, K, O) shows sections exposed to anti-chicken
collagen I antibodies that were first inhibited with chicken collagen (prior to incubation).
The fourth column (D, H, L, P) shows sections digested with collagenase for one hour
prior to exposure to anti-collagen I antibodies. All images are taken in FITC channel. All
section images were taken at 40X and 50 ms integration. ...............................................220
xxiii
Figure 5.1 (A) Reconstruction of Dreadnoughtus schrani. Preserved elements shown in
white. Scale bar is 1 m. (B) Locality map of discovery site of Dreadnoughtus (star) along
Rio La Leona in Santa Cruz Province, Argentina. Figures modified, with permission,
from Lacovara et al. (2014). ............................................................................................262
Figure 5.2 Left scapula of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) lateral view; (B) ventral view; (C) medial view; (D) dorsal view; (E) proximal view
(medial toward the top of the page); (F) distal view (lateral toward the top of the page).
Abbreviations: ac, acromion process; gl, glenoid; obr, oblique ridge; scb, scapular blade;
scf, supracoracoideus fossa. Scale bar equals 20 cm. ......................................................263
Figure 5.3 Left coracoid of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) lateral view; (B) medial view; (C) ventral view (lateral toward the top of the page).
(D) Close up, caudomedial view through the coracoid foramen. Abbreviations: cf,
coracoid foramen; gl, glenoid. Scale bar equals 10 cm. ..................................................264
Figure 5.4 Left and right sternal plates of the holotype of Dreadnoughtus schrani (MPM
PV 1156) in (A) dorsal view; (B) ventral view. Abbreviation: cvr, cranioventral ridge.
Scale bar equals 20 cm. ....................................................................................................265
Figure 5.5 Left humerus of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view;
(F) distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: cuf,
cuboid fossa; dpc, deltopectoral crest; hd, humeral head; rac, radial condyle; ulc, ulnar
condyle. Scale bar equals 20 cm. ....................................................................................266
Figure 5.6 Left ulna of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A)
cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view; (F)
distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: clp,
craniolateral process; cmp, craniomedial process; ol, olecranon; raa, radial articulation;
scar, positive relief muscle scar. Scale bar equals 20 cm. ..............................................267
Figure 5.7 Left radius of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view
(cranial toward the top of the page); (F) distal view (cranial toward the bottom of the
page). Abbreviations: ior, interosseous ridge; ula, ulnar articular facet. Scale bar equals
20 cm................................................................................................................................268
Figure 5.8 Pelvic girdle of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
left lateral view. Right ilium has been mirrored for the image. Scale bar equals 20 cm.
..........................................................................................................................................269
Figure 5.9 Left ilium of the paratype of Dreadnoughtus schrani (MPM PV 3546) in (A)
cranial view; (B) lateral view. (C) Right ilium of holotype (MPM PV 1156) in dorsal
view (cranial toward the left side of the page). Abbreviations: acet, acetabulum; isped,
ischiadic peduncle; poap, postacetabular process; pped, pubic peduncle; prap,
xxiv
preacetabular process; sr, sacral rib; vlp, ventrolateral process. Scale bars each are 20
cm.....................................................................................................................................270
Figure 5.10 (A) Pubes of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
caudoventral view. (B) Right pubis in lateral view; (C) distal view (cranial toward the
top of the page). Abbreviations: acet, acetabulum; ilped, iliac peduncle; isped, ischiadic
peduncle; of, obturator foramen. Scale bar equals 20 cm for (A) and (B) and 10 cm for
(C). ...................................................................................................................................271
Figure 5.11 Left ischium of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) medial view; (B) lateral view. (C) Distal view of ischiadic blade (dorsal toward the
top of the page). (D) Proximal view of iliac peduncle (caudal toward the top of the page).
Abbreviations: acet, acetabulum; ilped, iliac peduncle; ist, ischiadic tuberosity; pped,
pubic peduncle. Scale bars equal 20 cm for (A) and (B) and 10 cm for (C) and (D). .....272
Figure 5.12 Left femur of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view;
(F) distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: fic,
fibular condyle; ft, fourth trochanter; gtr, greater trochanter; hd, head; lb, lateral bulge;
tic, tibial condyle. Scale bar equals 20 cm. ......................................................................273
Figure 5.13 Right tibia of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view
(lateral toward the top of the page); (F) distal view (lateral toward the bottom of the
page). Abbreviations: aspa, articular surface for the ascending process of the astragalus;
cc, cnemial crest; cvp, caudoventral process. Scale bar equals 20 cm. ...........................274
Figure 5.14 Left fibula of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal
view (medial toward the top of the page); (F) distal view (medial toward the bottom of
the page). Abbreviations: cmr, craniomedial ridge; lt, lateral tuberosity. Scale bar
equals 20 cm. ...................................................................................................................275
Figure 5.15 Left astragalus of the holotype of Dreadnoughtus schrani (MPM PV
1156) in (A) cranial view; (B) proximal view (medial toward the right side of the
page); (C) lateral view; (D) caudal view; (E) distal view (medial toward the left side of
the page); (F) medial view. Abbreviations: asp, ascending process; caf, caudal fossa;
das, distal articular surface; fia, fibular articulation; tia, tibial articulation. Scale bar
equals 10 cm. .............................................................................................................. 276
Figure 5.16 Right metatarsals I (A–F) and II (G–L) of the holotype of Dreadnoughtus
schrani (MPM PV 1156) in (A) and (G), cranial view; (B) and (H), medial view; (C)
and (I), caudal view; (D) and (J), lateral view; (E) and (K), proximal view; (F) and (L),
distal view. In (E–F) and (K–L), cranial is toward the top of the page. Scale bar equals
10 cm. ......................................................................................................................... 277
xxv
Figure 5.17 Right pedal digit I ungual of the holotype of Dreadnoughtus schrani (MPM
PV 1156) in (A) lateral view; (B) medial view; (C) dorsal view; (D) proximal view.
Abbreviation: flt, flexor tubercle. Scale bar equals 10 cm. .............................................278
Figure 6.1 Landmarks from Bonnan (2004, 2007) used in thin plate splines analyses of
sauropodomorph humeri and femora. (A) Right humerus in cranial view. (B) Right femur
in caudal view. Landmarks for humerus: 1, medial border of proximal humerus; 2, medial
border of humeral head; 3, lateral border of humeral head; 4, proximolateral corner of the
deltopectoral crest; 5, peak of distal deltopectoral crest; 6 and 11, lateral and medial
locations that encompass the minimum midshaft width, respectively; 7, lateral border of
lateral distal condyle; 8, medial border of lateral distal condyle; 9, lateral border of
medial distal condyle; 10, medial border of medial distal condyle. Landmarks for femur:
1, proximolateral peak of greater trochanter; 2, lateral border of femoral head; 3, medial
border of femoral head; 4, peak of fourth trochanter; 5 and 8, medial and lateral locations
that encompass the minimum midshaft width, respectively; 6, medial border of distal
humerus; 7, lateral border of distal humerus; 9, lateral-most peak of lateral bulge. .......311
Figure 6.2 Thin plate splines plots of relative warp scores for sauropodomorph humeri
(A) and femora (B). RW1 is plotted against RW2. (C–D) Reference forms for center of
each plot, at the (0,0) position of the solid black circle crosshairs. .................................312
Figure 6.3 Mean sauropodomorph humeral (top row) and femoral (bottom row)
morphologies of each taxonomic division utilized in TPS analyses. Sample sizes for
humeri (N): “Prosauropods” = 15, Diplodocids = 25, Camarasaurus = 12, Basal
Titanosauriforms = 11, Titanosaurs = 26. Sample sizes for femora (N): “Prosauropods” =
18, Diplodocids = 16, Camarasaurus = 7, Basal Titanosauriforms = 9, Titanosaurs = 23.
..........................................................................................................................................313
Figure 6.4 Canonical variates analyses (CVA) of sauropodomorph humeri (A–B) and
femora (C). Only axes identified as significant (possessing distinct eigenvalues) are
shown. (A) Plot of CV1-CV2 for humeri. (B) Plot of CV1-CV3 for humeri. (C) Plot of
CV1-CV2 for femora. Symbols as noted in legend. Larger symbols of each group
represent the mean scores for each taxonomic division...................................................314
Figure 6.5 Regression of maximum shape change component, RW1, on log-transformed
maximum bone length for sauropodomorph (A) humeri and (B) femora. Symbols:
“Prosauropods” (solid circles), Diplodocids (open triangles), Camarasaurus (solid
squares), Basal Titanosauriforms (open circles), and Titanosaurs (asterisks). The
consensus reference form, occurring along the line at an RW1 score of zero, is presented
at left in each plot. Deformation grids at right reflect shape variation characterizing
strongly positive and negative scorings along RW1. Dark positively sloping lines are
linear regression models fit to the data, with r² values of 0.23 for humeri and 0.08 for
femora. Numbers on reference form identify landmarks as listed in Figure 6.1. ............315
Figure 6.6 Mean-to-mean transformations displaying sauropodomorph stylopodial shape
changes associated with the transition from Non-titanosaurs to Titanosaurs (see
xxvi
explanation of dataset divisions in Methods), displayed in three different manners: thin
plate spline grids (A) and (D), vector plots (B) and (E), and simple overlay of group
means (C) and (F). Humeri are shown in (A–C) and femora in (D–F). Transformations
are from consensus of all Non-titanosaur specimens to consensus of all Titanosaur
specimens. In (C) and (F) overlays, mean forms for Titanosaurs are shown in black over
top of the mean forms for Non-titanosaurs in gray. .........................................................317
Figure 6.7 Effect of reorientation of the humeral head and mediolateral broadening of the
humerus on moment arm length for sauropod forelimb abductor musculature. The M.
deltoideus scapularis is shown as an exemplar. (A) General sauropod condition in which
the humeral head faces dorsally (as noted by the arrow) and the humerus is somewhat
slender. (B) Condition encountered in some derived titanosaurians (e.g.,
Opisthocoelicaudia) wherein the humeral head has become dorsomedially directed (note
reorientation of the arrow) and the humerus has become mediolaterally broad, causing the
moment arm for the M. deltoideus scapularis to become lengthened. Black circle in (A)
and (B) denotes glenoid joint center. Black line in (A) and (B) denotes the moment arm
for the M. deltoideus scapularis. (C) Comparison of moment arm lengths from (A) (top)
and (B) (bottom), demonstrating a longer moment arm given the forelimb construction
presented in (B). (A) and (B) depict cranial view. ...........................................................318
Figure 6.8 Hypothesized relationship between a cranial shift in center of mass (COM),
mediolateral narrowing of the humerus, and neck and cranial trunk posture in sauropod
dinosaurs. (A) If a sauropod possesses mediolaterally broad humeri, the center of mass
likely is positioned nearer to the pelvic girdle and the neck and cranial trunk will be held
more closely to horizontal. (B) If a sauropod possesses mediolaterally slender humeri, the
center of mass likely is positioned more cranially in the trunk and the neck and cranial
trunk will slightly ascend. These relationships are built upon a demonstration by
Henderson (2006) that slenderness of stylopodial limb elements appears to correlate with
proximity to the center of mass. Mediolateral humeral narrowing shortens moment arm
lengths for proximal forelimb musculature, as shown by decreasing length of the solid
black lines in the lower figures. The M. subscapularis (a forelimb adductor) and M.
deltoideus clavicularis (a forelimb abductor) are shown as exemplars. Black circles
denote glenoid joint center. Dashed black lines trace the line of action of each muscle.
Solid black lines denote muscle moment arms. Abbreviations: sbs., subscapularis; delt. c.,
deltoideus clavicularis. Upper figures depict lateral view, lower figures depict cranial
view. Skeletal reconstruction in (A) modified from Lacovara et al. (2014). Skeletal
reconstruction in (B) modified from an original by Scott Hartman from
http://www.skeletaldrawing.com/sauropods-and-kin/. ....................................................319
Figure 6.9 Effect of proximal migration of the sauropod deltopectoral crest on moment
arm length for the M. pectoralis, a primary forelimb adductor. (A) General sauropod
condition in which the peak of the deltopectoral crest lies at nearly one-third the
proximodistal length of the humerus. (B) More proximal expression of the deltopectoral
crest, as in brachiosaurids and (as evidenced by this analysis) some titanosaurians (e.g.,
Panamericansaurus, Paralititan), reorients the M. pectoralis more mediolaterally,
thereby shortening its moment arm about the glenoid. Black circle in (A) and (B) denotes
xxvii
glenoid joint center. Black line in (A) and (B) denotes the moment arm for the M.
pectoralis. (C) Comparison of moment arm lengths from (A) (top) and (B) (bottom),
demonstrating a longer moment arm given the forelimb construction presented in (A).
(A) and (B) depict cranial view .......................................................................................321
Figure 6.10 Effect of mediolateral femoral broadening on sauropod proximal hindlimb
musculature. The M. iliofemoralis and M. ischiotrochantericus are shown as exemplars.
(A) General sauropod condition with a somewhat slender femur. (B) Condition
encountered in wide-gauge titanosauriforms wherein the femur has become
mediolaterally broad, causing the moment arms for the M. iliofemoralis and M.
ischiotrochantericus to become slightly lengthened. Black circle in (A) and (B) denotes
glenoid joint center. Black lines in (A) and (B) denote muscle moment arms. (C)
Comparison of moment arm lengths for each muscle from (A) (top) and (B) (bottom),
demonstrating slightly longer moment arms given the hindlimb construction presented in
(B). (A) and (B) depict caudal view. Abbreviations: ilfem. = iliofemoralis; istr. =
ischiotrochantericus. (A) and (B) depict caudal view. .....................................................322
Figure 6.11 Demonstration of how mediolateral femoral broadening and medial
migration of the fourth trochanter maintain the insertion site of the M. adductor femoris
at the same position relative to the body midline in sauropods. (A) General sauropod
condition in which the femur is somewhat slender and the fourth trochanter is situated
slightly on the caudal face. (B) Wide-gauge titanosauriform condition in which the femur
is comparatively mediolaterally broadened and the fourth trochanter is caudomedially
positioned on the shaft. Any potential lateral shift to the insertion site of the M. adductor
femoris is negated by medial migration of the fourth trochanter, maintaining the insertion
site at the same position relative to the body midline. Transect lengths from body midline
(dashed line) to the M. adductor femoris insertion (solid black lines) are equal in both
scenarios, as shown in (C). (A) and (B) depict caudal view. ...........................................323
Figure C.1 (A–D) Thin plate splines plots of partial warp scores for humeri, with dataset
divided into five groups. Only partial warps identified as significant via nonparametric
Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A)
Uniform X v. Uniform Y. (B) X1 v. Y1. (C) X2 v. Y2. (D) X4 v. Y4. (E) Reference form
for center of each plot, at the (0,0) position of the crosshairs. ........................................503
Figure C.2 (A–D) Thin plate splines plots of partial warp scores for humeri, with dataset
divided into five groups. Only partial warps identified as significant via nonparametric
Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A) X5 v.
Y5. (B) X6 v. Y6. (C) X7 v. Y7. (D) X8 v. Y8. (E) Reference form for center of each
plot, at the (0,0) position of the crosshairs. .....................................................................504
Figure C.3 (A–F) Thin plate splines plots of partial warp scores for femora, with dataset
divided into five groups. Only partial warps identified as significant via nonparametric
Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are presented. (A)
Uniform X v. Uniform Y. (B) X2 v. Y2. (C) X3 v. Y3. (D) X4 v. Y4. (E) X5 v. Y5. (F)
xxviii
X6 v. Y6. (G) Reference form for center of each plot, at the (0,0) position of the
crosshairs. ........................................................................................................................505
Figure C.4. Variation in CV scores by taxonomic divisions for humeri (A–C) and femora
(D–E). Only canonical variate axes identified as significant (possessing distinct
eigenvalues) are shown. CV1 (A), CV2 (B), and CV3 (C) for humeri. CV1 (D) and CV2
(E) for femora. Symbols as noted in legend. ..................................................................506
Figure C.5 Progressive transformation of means for humeri (top row) and femora
(bottom row) from average of all Nontitanosauriforms to Basal Titanosauriforms to
Titanosaurs. See Methods in main text for definition of taxon divisions. Progressions are
intended to reflect relative shape differences between taxa divisions and are not intended
to imply a direct evolutionary lineage (for example, Basal Titanosauriform mean includes
brachiosaurid specimens (terminal taxa in titanosauriform phylogeny) which are not part
of a direct evolutionary progression from ancestral sauropodomorphs to titanosaurians).
..........................................................................................................................................507
Figure C.6 (A–F) Thin plate splines plots of partial warp scores for humeri, with dataset
divided in three additional manners. Only partial warps identified as significant via
nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are
presented. (A), (C), and (E), Uniform X v. Uniform Y. (B), (D), and (F), X2 v. Y2. (G)
Reference form for center of each plot, at the (0,0) position of the crosshairs. Symbols as
indicated by legends. .......................................................................................................508
Figure C.7 (A–F) Thin plate splines plots of partial warp scores for humeri, with dataset
divided in three additional manners. Only partial warps identified as significant via
nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are
presented. (A), (C), and (E), X4 v. Y4. (B), (D), and (F), X5 v. Y5. (G) Reference form
for center of each plot, at the (0,0) position of the crosshairs. Symbols as indicated by
legends. ............................................................................................................................509
Figure C.8 (A–F) Thin plate splines plots of partial warp scores for humeri, with dataset
divided in three additional manners. Only partial warps identified as significant via
nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are
presented. (A), (C), and (E), X6 v. Y6. (B), (D), and (F), X8 v. Y8. (G) Reference form
for center of each plot, at the (0,0) position of the crosshairs. Symbols as indicated by
legends. ............................................................................................................................510
Figure C.9 (A) Thin plate splines plot of partial warp scores for humeri, with dataset
divided as indicated in legend. Only partial warps identified as significant via
nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are
presented. X1 v. Y1 is shown. (B) Reference form for center of the plot, at the (0,0)
position of the crosshairs. ................................................................................................511
Figure C.10 (A–C) Thin plate splines plots of relative warp scores for humeri, with
dataset divided in three additional manners as noted in the legends. RW1 plotted against
xxix
RW2 in all figures. See Methods in main text for definition of taxon divisions. (D)
Reference form for center of each plot, at the (0,0) position of the solid black circle
crosshairs..........................................................................................................................512
Figure C.11 Canonical variates analyses (CVA) of sauropodomorph humeri with dataset
divided in three additional manners. Only axes identified as significant (possessing
distinct eigenvalues) are shown. Plots of CV1-CV2 for humeri with dataset divided into
(A) Nontitanosaurs v. Titanosaurs, (B) Nontitanosauriforms v. Basal Titanosauriforms v.
Titanosaurs, and (C) Nontitanosauriforms v. Titanosauriforms+UpTree. See Methods in
main text for definition of taxon divisions. Symbols as noted in legends. Larger symbols
of each group represent the mean scores for each taxonomic division. ..........................513
Figure C.12 (A–F) Thin plate splines plots of partial warp scores for femora, with dataset
divided in three additional manners. Only partial warps identified as significant via
nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are
presented. (A), (C), and (E), Uniform X v. Uniform Y. (B), (D), and (F), X2 v. Y2. (G)
Reference form for center of each plot, at the (0,0) position of the crosshairs. Symbols as
indicated by legends. ........................................................................................................514
Figure C.13 (A–C) Thin plate splines plots of partial warp scores for femora, with
dataset divided in three additional manners. Only partial warps identified as significant
via nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are
presented. (A–C) X3 v. Y3. (D) Reference form for center of each plot, at the (0,0)
position of the crosshairs. Symbols as indicated by legends. ..........................................515
Figure C.14 (A–D) Thin plate splines plots of partial warp scores for femora, with
dataset divided in two additional manners. Only partial warps identified as significant via
nonparametric Kruskal-Wallis and subsequent pairwise Mann-Whitney U tests are
presented. (A–B) X4 v. Y4, with symbols as indicated by legends. (C–D) X6 v. Y6, with
symbols as indicated by legends. (E) Reference form for center of each plot, at the (0,0)
position of the crosshairs. ...............................................................................................516
Figure C.15 (A–C) Thin plate splines plots of relative warp scores for femora, with
dataset divided in three additional manners as noted in each legend. RW1 plotted against
RW2 in all figures. Symbols as indicated in the legends. (D) Reference form for center of
each plot, at the (0,0) position of the solid black circle crosshairs. .................................517
Figure C.16 Canonical variates analyses (CVA) of sauropodomorph femora with dataset
divided in three additional manners. Only axes identified as significant (possessing
distinct eigenvalues) are shown. Plots of CV1-CV2 for femora with dataset divided into
(A) Nontitanosaurs v. Titanosaurs, (B) Nontitanosauriforms v. Basal Titanosauriforms v.
Titanosaurs, and (C) Nontitanosauriforms v. Titanosauriforms+UpTree. See Methods in
main text for definition of taxon divisions. Symbols as noted in legends. Larger symbols
of each group represent the mean scores for each taxonomic division............................518
xxx
Abstract
Insights into molecular taphonomy and the evolution of sauropod posture garnered from
Late Cretaceous fossils
Paul V. Ullmann
Kenneth J. Lacovara, Ph.D
The dichotomy of this dissertation results from my fascination with taphonomy and an
opportunity I received to study Dreadnoughtus schrani, a giant, new sauropod. I begin by
compiling the most comprehensive literature review to date on molecular paleontology.
This synthesis reveals the plethora of factors contributing to and controlling survival of
biomolecules in the fossil record. However, sedimentologic, geochemical, and
environmental controls on molecular preservation remain poorly understood. To examine
these factors, I studied a case study site, the Standing Rock Hadrosaur Site (SRHS), and
performed actualistic experiments simulating fossilization in the laboratory. My
experiments tested the effect of simulated, metal-enriched groundwaters on biomolecular
decay. Immunoassay results following three months of simulated burial confirm that
early-diagenetic permineralization can inhibit protracted microbial attack and that acidic
conditions degrade soft tissues more rapidly than they dissolve bone mineral.
Taphonomic analyses of SRHS indicate the bonebed represents a mass death assemblage
formed by rapid burial in a shallow floodplain lake. Demineralization of SRHS bone
fragments yields abundant soft tissue structures morphologically consistent with modern
analogs. Concretions aided stabilization of these tissues by cementing regions of the
encasing sediment. Immunofluorescence indicates survival of endogenous collagen I in
tissues from one of these bones. Rare earth element (REE) composition of SRHS bones
strongly supports brief diffusion and retention of primarily early-diagenetic REE
xxxi
signatures. This constitutes the first confirmation that retention of early diagenetic REE
signatures may correlate with biomolecular preservation. In the final two chapters of this
dissertation, I examine titanosaurian sauropod anatomy and evolution. Comparisons of
Dreadnoughtus with related taxa reveal that only a single feature, an accessory process
on the iliac preacetabulum, is unique to the largest titanosauriforms. This implies that the
appendicular expression of wide-gauge posture is not influenced by body size.
Morphometric analyses reveal evolution of wide-gauge posture to be characterized by
humeral narrowing, femoral broadening, medial deflection of the humeral head, and
proximal migration of the deltopectoral crest and fourth trochanter. These shifts signify a
minimization of muscle contraction to generate forelimb excursion and an increase in
mechanical advantage for hind limb abductor and adductor muscles in titanosauriforms.
1
CHAPTER 1: MOLECULAR TAPHONOMY: DECIPHERING INTERACTIONS
BETWEEN BIOMOLECULES AND SEDIMENTARY ENVIRONMENTS THAT
LEAD TO BIOMOLECULAR PRESERVATION
1.1 Abstract
Recent discoveries of geologically ancient endogenous biomolecules are
revolutionizing our view of fossilization processes. Traditional explanations of soft tissue
preservation by mineral replacement are inadequate for some specimens. Pioneering
actualistic experiments and high-resolution chemical and immunological assays are
beginning to provide the first clues as to how such labile components may persist in
ancient fossils. Yet much remains to be discerned, such as which depositional
environments best favor remarkable preservation, how and in what ways taphonomic
history influences the chances of biomolecular recovery, the ranges of chemical reaction
pathways that can stabilize tissues and molecules, and the temporal window over which
these processes must operate.
Researchers in the nascent field of molecular taphonomy seek to answer these
intriguing questions. Here, I provide a review of current knowledge in this field.
Hydrolysis, oxidation, and microbial attack are the primary agents of decay among an
abundant suite of contributors. Molecular mapping of collagen peptides recovered from
Cretaceous-age dinosaur remains suggests that structurally internal, nonpolar, non-acidic,
hydrophobic, functionally significant residues have the highest preservation potential.
Preservation potential is also increased by association with a mineral matrix, complex
three-dimensional structure, and abundance of cross-linking. Lipids have the highest
2
preservation potential (such as in kerogen and fossil fuels), whereas DNA has low
preservation potential. Thus far, the only agreed-on proxies for molecular retention are
excellent morphologic preservation, minimal weathering, and fossilization in a cold
and/or dry environment. Retention of endogenous geochemical signatures in biominerals
should correspond to specimens retaining biomolecules, though no one has yet drawn
direct comparisons between preservation of both types of signals. It also remains
unknown if autolithification or authigenic mineralization preclude biomolecular
preservation. Sedimentological, geochemical, environmental, and diagenetic factors
presumed to contribute to molecular retention need clarification. Understanding of
molecular preservation mechanisms will not advance until these factors are discerned.
1.2 Introduction
Traces of endogenous biomolecules (e.g., collagen I and keratin) and pliable soft
tissues (e.g., fibrous matrix, blood vessels; Figure 1.1) have recently been discovered in
fossils of dinosaurs and other extinct vertebrates (e.g., Embery et al., 2000, 2003;
Schweitzer et al., 2005b, 2007b, 2009, 2013; Manning et al., 2009; Edwards et al., 2011;
Lindgren et al., 2011; Cadena and Schweitzer, 2012, 2014; Glass et al., 2012, 2013;
Schroeder, 2013). Peptide fragments have even been recovered from Cretaceous sauropod
eggshell (Schweitzer et al., 2005a). These discoveries require that paleontologists dismiss
the long-held presumption that organic matter always decays or is replaced by mineral
precipitation (e.g., Martin, 1999; Trueman et al., 2003).
Numerous studies document preservation of soft tissues by hypothesized
3
inorganic or organic “replacement” mechanisms (e.g., Berner, 1968; Bergstrom, 1990;
Kellner, 1996; Briggs et al., 1997, 2000; Dal Sasso and Signore, 1998; Briggs, 2003;
Martin et al., 2004; Butterfield et al., 2007; Carpenter, 2007). These investigations
examined fossils from a variety of organisms, ages, and depositional settings ranging
from Cambrian Konservat-Lagerstӓtten to so-called “mummies” of Cretaceous dinosaurs.
However, no fossilization mechanism outlined in any of these reports would allow for, let
alone explain, preservation of still-pliable soft tissues retaining portions of their original
molecular compositions. To date, only a few a potential mechanisms have been proposed
to account for such preservation, despite a long-standing call for research in this field
(originally by Eglinton and Logan, 1991). This gap in the literature most likely reflects
our as yet preliminary knowledge of involved factors. To advance the field, it is now
imperative to understand mechanisms for such extraordinary preservation.
Although Eglinton and Logan (1991, p. 320) originally defined molecular
taphonomy as “the molecular aspects of fossilization processes,” this definition is too
vague in modern context. Advancements in analytical technologies (e.g., mass
spectrometry) offer new means of studying each step of the preservation process, from
autolytic decay to geochemical reactions. Therefore, for increased clarity, molecular
taphonomy is herein defined as the study of biostratinomic processes, diagenetic
alterations, biogeochemical reactions, and environmental–geochemical conditions that
facilitate or preclude preservation of endogenous biomolecules. Included subtopics
comprise necrolysis, molecular condensation reactions, mineralization processes,
microbial interactions, and trace element exchange between tissues and groundwater. All
of these processes have been extensively researched regarding preservation potential of
4
various biomineralized tissues (e.g., Behrensmeyer et al., 1992; Martin, 1999), but each
yet needs exploration pertaining to biomolecular preservation. Indeed, clarification of
molecular stabilization pathways is a primary goal of molecular taphonomy.
Here, I provide a review of current knowledge on molecular preservation
processes that may serve as a foundation for ensuing research. I provide summaries of; 1)
fossilization mechanisms thought to preserve soft tissues and their constituent
biomolecules, and; 2) taphonomic processes, environmental/geological settings,
geochemical regimes, and molecular attributes identified to correlate with biomolecular
preservation.
1.3 Significance
Ancient molecular discoveries have important implications. Besides defying longheld assumptions about the preservation of endogenous organics, biomolecules record
crucial information about evolutionary pathways and relationships. For instance,
Schweitzer et al. (2009) used non-avian dinosaur collagen I amino acid sequences to infer
phylogenetic relationships. Their analyses placed the recovered dinosaurian material
between modern crocodilians and birds and provided an independent validation of
phylogenies based solely on skeletal morphology (Figure 1.2). Organ et al. (2008) also
performed phylogenetic analyses to determine affinity of protein sequences from an
American mastodon and confirmed its placement amongst modern Elephantinae. Thus,
the importance of molecular discoveries is that they can be used to both discern
systematic relationships and independently test molecular clocks and relationships
5
estimated from morphology alone. Protein sequences can also be used to track the
emergence of molecular novelties in the fossil record and estimate rates of molecular
evolution (Schweitzer, 2003, 2011; Asara et al., 2007; Peterson et al., 2007; Schweitzer et
al., 2007b).
Further, biomolecular information may ultimately provide an invaluable source of
information about the physiology, appearance, and paleoecology of an extinct taxon,
allowing us to better understand adaptive responses to climate change (Schweitzer et al.,
2008, 2014b; Schweitzer, 2011). Molecular sequences can also be used to discern
historical trends in population genetics (e.g., Orlando et al., 2002) or the phylogenetic
position of indeterminate fossil material to the family or genus level (e.g., Buckley et al.,
2011). Regarding molecular taphonomy specifically, as Collins et al. (2000, p. 1139)
state, “the future success of ancient biomolecule research largely depends on our
understanding the interaction between these materials and their environment throughout
diagenesis”. On a broader scale, heightened understanding of molecular stabilization
pathways holds the potential to inform the construction of biomaterials and may
contribute to novel treatments for human diseases (Schweitzer et al., 2014b and
references therein).
1.4 History of thought
1.4.1 Decay
Upon death, cellular necrosis and lysosome enzyme-driven autolysis begin to
decompose the soft tissues of an organism (Child, 1995; Majno and Joris, 1995). If burial
6
does not occur soon after death, the majority of soft tissues (e.g., skin, muscle, organs)
will most likely be broken down by microbial decomposers or consumed by scavengers
(Allison, 1990; Eglinton and Logan, 1991). Only in rare circumstances may
mineralization of soft tissues begin to take place before burial (e.g., a fish carcass
descending into supersaline bottom waters where bacterial mats may protect it,
concentrate metal ions, and facilitate mineralization; Martill, 1988). Once buried,
microbes from within encasing sediments infiltrate remaining tissues and can create
distinct chemical microenvironments in various portions of the decaying organism
(Trueman et al., 2003; McNamara et al., 2009). The suite of microbial (mainly bacterial)
decomposers will be governed by environmental and soil factors such as temperature, pH,
vertical nutrient distribution, and moisture (Nealson, 1997; Eglinton and Logan, 1991;
Child, 1995). Tissue composition and anatomy will exert control over aerobic/anaerobic
and acidic/basic conditions within regions of the carcass, and microbial attack will be
constrained by this ensemble of chemical microenvironments (Allison, 1988; Child,
1995; Zhu et al., 2005; McNamara et al., 2009). Historical hypotheses suggest that
protection from microbial attack should be vital for soft tissue and molecular preservation
(e.g., Hedges, 2002; Trueman and Martill, 2002). Yet, due to cessation of biological
maintenance processes (Bada et al., 1999; Nielsen-Marsh, 2002), DNA, proteins, lipids,
and carbohydrates will all naturally degrade on their own following death, even in anoxic
conditions (Allison, 1988). Intriguingly, some reports suggest that microbial
decomposition of some volatile tissues may actually aid preservation of other organic
remains within a carcass by creating geochemical gradients that force mineral
precipitation (Briggs, 2003; Lingham-Soliar and Glab, 2010).
7
Historical taphonomic hypotheses suggest that endogenous soft tissues are too
volatile to preserve through geologic time. Laboratory studies of biomolecules in solution
have estimated preservational limits of ~100,000 years for DNA and a few million years
for proteins (e.g., Lindahl and Nyberg, 1972; Nielsen-Marsh, 2002; Allentoft et al.,
2012). Under this context, recovery of biomolecular remains from pre-Pleistocene fossils
has received much scrutiny. It must be considered, however, that preservation timelines
from aqueous solution studies are based on isolated biomolecules not associated with a
stabilizing mineral matrix, a fact that severely limits their comparative value (Geigl,
2002; San Antonio et al., 2011). Therefore, focusing on theoretical decay rates or “limits
of preservation” (e.g., Nielsen-Marsh, 2002; Allentoft et al., 2012) is unproductive.
Historical thought almost exclusively invokes mineralization to explain long-term
preservation of soft tissues. Reported examples of mineral “replacement” of soft tissue
structures are numerous, such as replication of amphibian organs and tissue linings
(McNamara et al., 2009) and mineralization of skin outlines of hadrosaurid dinosaurs
(Carpenter, 2007). Review of presumed mineral-replication mechanisms is useful for
comparison against other mechanisms (reviewed later in Section 1.12) that could instead
preserve original organic matter.
1.4.2 Mineralization of soft tissues
Invading microbes release extracellular enzymes that act as ligands to liberate,
capture, and metabolize organic nutrients (e.g., amino acid monomers or elements such as
P, S, Zn, C, Ca, etc.; Farrimond and Eglinton, 1990; Ehrlich, 1996; Bergmann et al.,
2010; Gadd, 2010). In aerobic conditions, microbes can use O2 as an electron donor to
8
oxidize organic molecules, thereby liberating metal ions and respiring CO2 (Martill,
1988; Allison, 1990; Chin et al., 2003). Build up of CO2 and organic decay products
(e.g., H2S) alters pH values within the confined spaces of a carcass (Brett and Baird,
1986; Hammes and Verstraete, 2002; Briggs, 2003; Zhu et al., 2005). This in turn favors
precipitation of certain minerals over others (e.g., as pH drops, apatite precipitation will
be favored over calcite; Sagemann et al., 1999; Briggs, 2003). Meanwhile, release of
metal ions creates steep pore-fluid geochemical gradients that reach equilibration by
mineral precipitation (Briggs, 2003). Primary cations released from labile tissues may
also contribute to chemical control over which mineral precipitates (Prevot and Lucas,
1990; Bergmann et al., 2010).
According to historical hypotheses, soft tissue “replacement” can then proceed by
either authigenic mineralization or autolithification (Figure 1.3), depending on the
microbial genera (e.g., Geobacter, Escherichia, Bacillus, Solibacter, Rhodococcus,
Pseudomonas, Aeromonas, Stenotrophomonas, Xanthomonas; Child et al., 1993; Child,
1995; Asara et al., 2007; Gadd, 2010; Muller et al., 2011), groundwater salinity (Briggs,
2003), the metal ions released from organic molecules, and those present in the
groundwater system (Toporski et al., 2002). Autolithification involves bacteria
accumulating metal ions on or in their cell walls/periplasmic space or cytoplasm (Liebig,
2001; Ennever et al., 1974; Hirschler et al., 1990; Hammes and Verstraete, 2002).
Anionic carboxyl and phosphoryl groups of bacterial cell walls and exopolysaccharides
can facilitate electrostatic absorption of metallic cations (Dunn et al., 1997; Farmer, 1999;
Toporski et al., 2002), most commonly by passive means (Hirschler et al., 1990;
Konhauser, 1998). Anions can also bind to cell wall cations (e.g. NH3+) or bridging
9
cations such as Mg2+ (Dunn et al., 1997). In this manner, many workers have proposed
that bacteria can act as nucleation sites that concentrate ions for rapid mineral
precipitation (Wilby et al., 1996; Briggs et al., 1997; Dunn et al., 1997; Farmer, 1999;
Zhu et al., 2005; Gadd, 2010). As the bacteria consume organic tissues, they can occupy
the sites originally held by the soft tissues and mineralize in place. Thus, as they become
individually lithified, they are thought to reproduce the form of the tissue being
consumed (Briggs, 2003), forming a mineralized pseudomorph of the soft tissue anatomy
of the carcass (e.g., primate fur in Franzen, 1990; fish eyes in Gupta et al., 2008; Figure
1.3A,C). Alternatively, bacteria forming a biofilm could autolithify to become an
encrusted coating or outline that mimics soft tissue structures and might limit further
decay (e.g., leaves in Dunn et al., 1997). Some researchers propose that mineralized
biofilms can be distinguished from mineralized soft tissues by identification of 1–5 μmsize microspherules, or so- called bacterial pseudomorphs (distinguishable from
authigenically precipitated microspherules which are smaller, generally < 1 µm; Briggs
and Kear, 1993; Konhauser, 1998; Dunn et al., 1997; Zhu et al., 2005).
In principle, authigenic mineralization is thought to only involve lithification of
the tissue being consumed (Briggs, 2003). Researchers propose that in this process,
microbial mats that coat the surfaces of decomposing tissues create “enclosed” chemical
microenvironments that limit scavenging and carcass flotation (Wilby et al., 1996;
Briggs, 2003). Elements from the decaying tissues and surrounding soils and pore fluids
become concentrated beneath the microbial mat and geochemical gradients force mineral
replacement of the degrading tissue (Farmer, 1999; Briggs, 2003; Babcock et al., 2006).
This type of mineralization has been modeled in actualistic experiments (e.g. Briggs and
10
Kear, 1993; Sagemann et al., 1999; Martin et al., 2004) and is thought to account for
numerous Lagerstӓtten. Examples include Libros Formation frog nerves, organs, and
collagen fibers (McNamara et al., 2009), and Santana Formation dinosaur muscle fibers
(Kellner, 1996) and fish muscle fibers and organ linings (Martill, 1988, 1990; e.g., Figure
1.3B). Portions of the skin envelope of an Edmontosaurus may also have been preserved
by authigenesis (Manning et al., 2009). The mineral species precipitated depends on
tissue composition (e.g., nervous tissues likely mineralize to calcium carbonate due to
their abundant calcium-binding enzymes; McNamara et al., 2009), pH, elemental
geochemistry of pore waters, entombing sediment composition, water salinity, and the
availability of various electron acceptors (Berner, 1968; Allison, 1990; Briggs, 2003; Zhu
et al., 2005; McNamara et al., 2009). Apatite, silica, calcite, pyrite, gypsum, aragonite,
siderite, and clay minerals (e.g., illite) are the most common precipitates (Briggs et al.,
1997; Briggs, 2003; Zhu et al., 2005; McNamara et al., 2009). Authigenesis can occur
quickly (within as little as two weeks; Briggs and Kear, 1993), thereby preserving soft
tissue anatomy in surprising detail.
Strikingly, no investigation has yet tested whether authigenic mineralization or
autolithification preclude biomolecular preservation (Schweitzer, 2011). McNamara et al.
(2006, 2009) proposed retention of organic elemental signatures within mineralized soft
tissues, which they termed “organic preservation”, but presented no direct evidence for
biomolecular characterization. Direct testing of exquisitely mineralized labile tissues,
such as those presented by McNamara et al. (2009), is needed for evaluation of the
linkage between mineralization and potential retention of molecular character.
11
1.4.3 Bone structure and mutual protection
Numerous authors describe how the interweaving of collagen I and biogenic
hydroxyapatite in bone provides “mutually protective” benefits (Tuross et al., 1989;
Curry, 1990; Ambler and Daniel, 1991; Muyzer et al., 1992; Child, 1995; Briggs, 1999;
Collins and Gernaey, 2001; Collins et al., 2002; Trueman and Martill, 2002; Zazzo et al.,
2004; Gupta et al., 2007; Lindgren et al., 2011). The network of bioapatite has minute
intercrystalline spaces, only a few micrometers in width (Francillon-Vieillot et al., 1990;
Trueman and Martill, 2002). In fresh bone, these intercrystalline gaps are large enough to
allow water molecules to diffuse into collagen but are too small to allow passage of larger
molecules, such as bacterial proteases (Trueman and Martill, 2002). Limited
intercrystalline spacings of bioapatite therefore restrict mobility of exogenous microbes
and their extracellular enzymes, which is thought to protect primary proteins from
metabolization (Trueman and Martill, 2002). Encasement of collagen in hydroxyapatite
matrix may also restrict molecular swelling during autolysis (Lingham-Soliar and
Wesley-Smith, 2008; Zylberberg and Laurin, 2011), which would limit its potential
degradation by elevating the activation energy of hydrolysis (Collins et al., 2000).
Concurrently, collagen serves as a protective barrier against chemical dissolution of
bioapatite because it passivates hydroxyapatite crystal surfaces, limiting their chemical
reactivity (Collins et al., 2002). Presence of collagen has also been demonstrated to limit
trace element diffusion rates (Kohn and Moses, 2013), meaning that collagen retention
retards elemental alteration of bioapatite. This is the nature of mutual protection.
Mutual protection considerations clearly imply that the long-term fates of collagen
and bioapatite are shared (Collins et al., 2002). This conclusion is significant because
12
both components can provide valuable data; bioapatite can retain original geochemical
signatures reflecting the diet, habitat choice, and burial environment of an organism
(Rogers et al., 2007 and references therein) and proteins can be useful for molecular
systematics and paleobiology (e.g., Tuross et al., 1989; Curry, 1990; Schweitzer et al.,
2009).
1.4.4 Amino acid analysis and racemization
Biological left handed (L) amino acids slowly convert to right handed (D) isomer
forms with time (Bada and Helfman, 1975). The rate of racemization is influenced by
environmental temperature, water availability, amino acid structure, the size and polarity
of adjacent amino acids within the peptide, and presence/absence of microbial racemase
enzymes (Bada and Helfman, 1975; Wehmiller and Belknap, 1976; Bada, 1985; Child et
al., 1993; Van Duin and Collins, 1998; Collins et al., 2009). Given enough time, the D/L
ratio of a sample should theoretically increase from zero to equilibration around 0.5 (a
ratio of approximately 1:1) (Bada, 1985). Molecular structures dictate that aspartic acid
racemizes the fastest, followed by alanine, glutamic acid, and leucine (Bada, 1985; Sykes
et al., 1995). Concordance of amino acid results to this sequence of decreasing D/L ratios
(the overall “extent of racemization”) has been suggested as a criterion for authenticating
ancient age of molecular results and as a means of screening samples to find those most
favorable for DNA retention (e.g., Poinar et al., 1996; Austin et al., 1997; Bada et al.,
1999; Hofreiter et al., 2001).
The utility of this assay is limited because it can only provide negative and often
indirect evidence. One important problem is that a low D/L ratio could just as easily
13
reflect retention of ancient biomolecular material as it could recent contamination.
Second, high racemization, though it might suggest ancient age, cannot differentiate
between ancient endogenous amino acids and ones introduced during early diagenesis;
the origin of amino acids cannot be constrained with confidence by this assay.
Compositional analyses are therefore essential to run in tandem to identify if the
proportions of amino acids in a fossil remain consistent with those in modern analogs
(Gurley et al., 1991; Bada et al., 1999). This may be found even following significant loss
of amino acids (e.g., Dobberstein et al., 2009; Buckley et al., 2011). Although secondary
amino acids are thought to commonly be introduced into fossils during diagenesis,
endogenous amino acids may also be protected and stable over geologic timescales. For
example, humic acids may encapsulate and shield biomolecular compounds from
enzymatic attack (Westbroek et al., 1979; Zang et al., 2000).
Collins et al. (2009) identified that the racemization of most bone amino acids is
dependent on denaturing of collagen I. In fact, the triple helical quaternary structure of
collagen I sterically inhibits racemization so strongly (except at more relatively exposed
telopeptides; Child et al., 1993) that collagen must degrade substantially before it can
begin to form the necessary succinimide intermediate (Van Duin and Collins, 1998;
Collins et al., 1999, 2009). Encasement within chemically hyporeactive hydroxyapatite
may additionally deter racemization due to limited porosity and permeability of the
mineral matrix (Collins et al., 2003). Furthermore, Collins et al. (2009) found no
correlation between the extent of racemization and ability to successfully amplify DNA
from fossils, casting strong doubt on the validity of racemization dating and the utility of
the assay as a criterion for authenticity. Theoretical temporal limits for DNA retrieval
14
(Poinar et al., 1996) outlined by early authors from aqueous solution studies were not
based on amino acids in association with a mineral matrix and are no longer substantiated
(Collins et al., 2009). To summarize, as Collins et al. (2009) conclude, racemization is
not a useful screening technique, and more rigorous, direct testing of biomolecular
presence and structure, such as those outlined in Section 1.7, should be performed instead
or in addition.
1.5 Diagenetic alterations
1.5.1 Alterations to biomolecules
To identify molecular remnants in fossils, one must first recognize how they can
degrade and be altered. The most common types of diagenetic molecular alterations are
hydrolysis, oxidation, loss due to decay or microbial attack, exchange between
endogenous and exogenous sources, conversions due to decay and/or recombination of
molecules, and condensation reactions (Figure 1.4). Yet, it is important to remember that
variability predominates (Tuross, 2002).
Hydrolytic fragmentation may represent the most common modification of
biomolecules during diagenesis (Child, 1995). This process shortens molecular chain
lengths (e.g., Figure 1.4A) and may free individual amino acids or fatty acids, making
them more consumable for microbes (Eglinton and Logan, 1991; Collins and Gernaey,
2001). Fragmentation of peptides increases the number of exposed molecular termini
(Tuross, 2002), which increases the solubility of biomolecules (Tuross et al., 1989; Curry,
1990). Hydrolysis can occur due to impregnation of groundwater or as a consequence of
15
bacterial proteases (Trueman and Martill, 2002). If it occurs by inorganic means, it can
increase vulnerability to microbial attack (Collins and Gernaey, 2001). Additionally,
hydrolysis can generate hydrogen cations, facilitating biomineral dissolution through
development of acidic conditions (Trueman et al., 2004).
Oxidation of molecular components is also common (Ambler and Daniel, 1991).
Oxidative deamination (e.g., Figure 1.4C) and decarboxylation can cleave peptide bonds
of proteins, permanently disassociating them (Berner, 1968; Tuross, 2002; Lindgren et
al., 2011) or converting original amino acids into different amino acids (e.g.,
carboxyglutamine to glutamine; Muyzer et al., 1992). Certain oxidative products may still
reflect their parent biomolecules with a limited degree of specificity. For instance, the
functional group methyl indole, a component of aromatic amino acids, indicates the
presence of degraded protein (Gupta et al., 2007). Some compounds are more vulnerable
to oxidation than others, such as the S enantiomer amino acids cysteine and methionine
(Ambler and Daniel, 1991).
In general, four additional common alterations may occur to molecular
components: loss due to decay or attack, exchange with exogenous compounds,
conversion due to decay or recombination, or condensation into agglutinations. Leaching
by groundwater (Grupe, 1995; Schweitzer et al., 1997a) and microbial attack (Eglinton
and Logan, 1991; Hedges, 2002; Schweitzer, 2003) are two primary processes resulting
in loss of biomolecules and/or their components (e.g., Figure 1.4B). However, many
other mechanisms of loss also take place. Lipids can become hydrocarbons by losing
functional groups via dehydration, hydrogenation, or decarboxylation (Farrimond and
Eglinton, 1990). DNA commonly degrades through depurination, depyrimidation,
16
deamination, and hydrolytic cleavage of its sugar-phosphate bonds (Collins et al., 2002;
Schweitzer, 2003, 2004). Certain amino acids (serine, threonine, glutamine) can also be
lost through ester formation (Tuross, 2002).
The above processes often result in preferential loss of entire molecules (due to
differential stability/durability) or individual functional groups. For example, aspartic
acid and the amino acids threonine, glutamine, serine, proline, and hydroxyproline are
more commonly lost from collagen than are alanine, glycine, and leucine (DeNiro and
Weiner, 1988; Glimcher et al., 1990; Grupe, 1995; Tuross, 2002). Such preferential loss
patterns may reflect loss of inherently less stable structures (e.g., hydroxyproline; Ambler
and Daniel, 1991) and/or microbial exploitation of molecular components with greater
nutrient value (e.g., aspartic acid with four carbon atoms versus glycine with only two;
Grupe, 1995).
Exchange of molecular components can lead to structural conversions (e.g.,
Figure 1.4D,E) or it can simply obfuscate original biomolecular identity. Side-chain
functional groups of amino acids may be exchanged between endogenous proteins and
microbial products or soil organic matter (e.g., methylation, glycosylation; Schweitzer,
2004). Labile elements, such as chlorine and sodium, are often lost in fossil organics
(Pate et al., 1989; Schweitzer et al., 2005a) and are commonly replaced by other
elements, thereby facilitating permineralization. If no elemental exchange occurs, then
volatile loss will concentrate metals in the remaining residues, which can potentially
inhibit microbial attack and stimulate mineralization (Edwards et al., 2011). Isotopes may
also be exchanged between biomolecules and surrounding pore waters (DeNiro and
Weiner, 1988). In collagen, for example, this usually results in increased δ13C/δ15N ratios
17
due to nitrogen loss and concurrent carbon addition (Tuross, 2002).
Conversion of molecular components may be more common than is recognized
because it is difficult to diagnose. For example, diagenetic conversion of the nitrogenous
bases of DNA: such conversions can provide apparently legitimate sequence data that are
covertly overprinted by degradative alterations (Collins et al., 2002; Schweitzer, 2003,
2004). Thankfully, some conversions are more easily identified. For instance, one amino
acid can be converted into another by oxidative cleavage of peptide bonds, aromatization
of carbon rings, deamidation, or dehydroxylation (Eglinton and Logan, 1991). These
processes commonly increase the abundance in fossils of the simplest amino acid, glycine
(Endo et al., 1995; Grupe, 1995). Such conversions to simpler molecules are rampant
during diagenesis.
Numerous workers support condensation reactions as diagenetic stabilization
mechanisms. Whether by direct polymerization, Amadori rearrangements, or Maillard
reaction sequences, polycondensation can generate highly insoluble aggregations of
molecular material referred to as geopolymers, agglutinations, humic acid-like
melanoidins, or advanced glycation endproducts (Curry, 1987, 1990; Farrimond and
Eglinton, 1990; Bada et al., 1999; Fogel and Tuross, 1999; Tuross, 2002; Schweitzer,
2003; Gupta et al., 2008). At the core of many geopolymers likely lies degraded
biomolecular debris, shielded by hydrophobic fatty acids (Cody et al., 2011) or other
molecular components. Agglutinations can incorporate molecular fragments from both
endogenous and exogenous sources (e.g., from microbes or soil organic matter) and are
held together by numerous cross-links (Schweitzer et al., 2005a). Although these bonds
make the aggregations practically inert and insoluble, they also hamper sequencing
18
efforts (Schweitzer, 2004). Fortunately, cleaving reagents can separate condensation
products to make them more accessible (Poinar et al., 1998). For example, treatment with
N- phenacylthiazolium bromide allowed improved sequencing of DNA from a 20 Ka
ground sloth coprolite by breaking cross-links formed by Maillard reactions (Poinar et al.,
1998).
1.5.2 Alterations to biominerals
Because many biomolecules are components of biomineralized tissues, their fate
is tied to that of the biomineral. For this reason, it is also essential to understand ways in
which biominerals can be altered through diagenesis. As expected, diagenetic alterations
to biominerals are as varied as those affecting biomolecules. The most common of these
include elemental exchange, permineralization, recrystallization, uptake of rare earth
elements, and isotopic exchange.
Exchange of major, minor, and trace elements is an alteration that occurs to all
fossils during at least some phase of their history (Hedges, 2002; Goodwin et al., 2007;
Trueman, 2007). Major element exchange is constrained by groundwater chemistry,
microbial activity, tissue chemistry, and lithology (Pate et al., 1989); it is especially
enhanced when tissue chemistry and lithology significantly differ (Bergmann et al.,
2010). For example, bones preserved in limestone are surrounded by calcium and will be
more prone to loss of phosphate, whereas bones preserved in siliceous terrestrial
sediments will display higher calcium loss and greater phosphate retention (Goodwin et
al., 2007; Bergmann et al., 2010). Such elemental exchange can take place at both macroand micro-scales. For example, Goodwin et al. (2007) observed apparent exchange of
19
calcium and phosphorous for iron and magnesium in areas surrounding Haversian canals
in certain dinosaur bones.
A common result of ionic exchange for bone bioapatite is conversion to
fluorapatite (via exchange of F- for OH-; Kohn et al., 1999; Trueman, 1999). Such
alteration can be identified by microprobe analysis, energy dispersive x-ray spectroscopy
(EDX), or by increased density over that of modern analogs (Schweitzer et al., 1997a;
Trueman, 1999). Histological integrity can remain unaffected by fluorapatite conversion
(Prevot and Lucas, 1990; Elorza et al., 1999), so the influence of this alteration on
molecular preservation is yet to be determined. Intriguingly, chemical analyses of
Quaternary fossils suggest that significant fractions of proteins can remain even after
moderate histological modification (Hedges and Millard, 1995).
Permineralization, which is also common and sometimes considered integral to
preservation (Trueman et al., 2008b), is not ubiquitous. Arguments have been made both
in support of microbially-mediated permineralization aiding biomolecular retention
(Daniel and Chin, 2010) and for avoidance of permineralization to be essential for such
preservation (Schweitzer et al., 1997a). This relationship requires further examination.
In the case of bone, recrystallization is historically considered a universal
alteration because of thermodynamic instability of bioapatite crystals in buried,
waterlogged conditions (Hedges and Millard, 1995; Hedges, 2002). However, unaltered
bioapatite crystals have been identified in archaeological-age bone (Schoeninger et al.,
1989) and Cretaceous sauropod bones (Dumont et al., 2011), showing that occurrence
and rate of recrystallization are variable. Hubert et al. (1996) suggest that Ostwald
ripening, in which new large crystallites grow at the expense of original smaller ones
20
(Trueman et al., 2004), may not be the exclusive means by which recrystallization takes
place. They suggest that if it occurs quickly enough, recrystallization may spare original
bioapatite crystal cores by utilizing them as seed crystals for mineral growth. When
recrystallization does occur, the following effects are seen: 1) crystal size increases
(Tuross et al., 1989; Hedges and Millard, 1995; Trueman et al., 2004); 2) crystals contain
fewer defects (e.g., anionic vacancies; Cazalbou et al., 2004) and less strain (Hedges and
Millard, 1995); 3) bone microporosity decreases in exchange for macroporosity (pores
<40Å in exchange for >100Å; Hedges and Millard, 1995; Goodwin et al., 2007), and; 4)
crystal c-axes may become randomly oriented (Schweitzer et al., 1997a; see Hubert et al.
1996 for an exception). The Ca/P ratio of recrystallized bone will likely remain unaltered
because the mineral portion is still apatite (Hedges and Millard, 1995; Schweitzer et al.,
1997a). However, recrystallization can be identified by heightened x-ray diffraction
(XRD) peaks of low cumulative width in comparison to peaks for modern bone (because
the mineral has developed a more pure form; Schoeninger et al., 1989).
The incorporation of rare earth elements (REEs) is another diagenetic process
affecting biominerals. For example, substitution of REEs for Ca2+ is ubiquitous in fossil
bioapatite (Trueman, 2007). REE incorporation generally is more extensive towards the
exterior surface of specimens due to greater exposure to pore fluids (Williams et al.,
1997; Trueman, 2007), which facilitates additional uptake by surface adsorption
(Trueman et al., 2011). Permeating, advective fluid flow through tissue porosity can
distribute dissolved ions throughout an entire skeletal specimen (Hinz and Kohn, 2010).
Microbes can also enhance bioapatite recrystallization and heteroionic substitution of
REEs into bioapatite (Grupe and Piepenbrink, 1989). Which REEs are incorporated
21
depends on concentrations in pore fluids and original tissue structure and chemistry (e.g.
Gueriau et al., 2014). Incorporation of REEs has traditionally been viewed as an early
diagenetic process because of high concentrations in Holocene and Pleistocene fossils
(e.g., Trueman, 1999). However, recent investigations demonstrate that REEs can, under
certain circumstances, be incorporated throughout the entire burial history of a fossil
(Kocsis et al., 2010; Tütken et al., 2011; Herwartz et al., 2011, 2013b). Prolonged uptake
may lead to late diagenetic overprinting of original geochemical signatures (e.g., marine
overprinting of terrestrial REE patterns can occur rapidly; Tütken et al., 2008). In bone,
uptake of REEs predominantly occurs following the loss of collagen (Trueman et al.,
2004); therefore, bones that retain more collagen should theoretically present lower REE
concentrations (Trueman et al., 2008a; see Section 1.9 for further discussion). Conversely,
because REE concentrations in live bone are low (Trueman, 2007), it is taken as a rule
that the more REEs encountered in bioapatite, the more it has been diagenetically altered
(Trueman et al., 2004). A side-effect of REE incorporation is that insertion of trivalent
REE (REE3+) ions for divalent calcium (Ca2+) necessitates a charge balance by insertion
of another cation in an adjacent mineral lattice site (Reynard et al., 1999; Kohn and
Moses, 2013). As a result, many bone phosphorous (P5+) and calcium (Ca2+) lattice sites
will be replaced by commonly available cations such as silicon (Si4+) and sodium (Na+),
respectively (Reynard et al., 1999). Such integration of additional major elements might
also facilitate secondary crystal nucleation and permineralization. Extensive alteration by
paired substitutions may cause mismatch of specimens from predictions of simple latticestrain theory fractionation models (Kohn and Moses, 2013). This may provide an
efficient means to identify specimens with complex diagenetic histories wherein certain
22
cations may have rate-limited REE diffusion.
Isotopic exchange with surrounding pore fluids is another common alteration to
biominerals. Exchange can occur during recrystallization, or isotopes from exogenous
sources can be adsorbed onto crystal surfaces (Zazzo et al., 2004). For bone, exchange of
oxygen isotopes can occur to both carbonate and phosphate (Fricke, 2007). Endogenous
δ13C may be changed due to incorporation of carbon dioxide into exposed crystal lattice
sites following microbial hydrolysis of collagen (Zazzo et al., 2004). Iacumin et al.
(1996) suggested that alteration of endogenous oxygen isotopes can be identified by
checking for deviation from a linear relationship between the δ18O in bone mineral
phosphate and carbonate. More recent evaluations of this test seem to support its utility in
identifying altered specimens (Martin et al., 2008); however, this test cannot be applied if
the taxon under study did not originally possess a linear correlation between δ18O in
bioapatite phosphate and carbonate (e.g., fishes; Kolodny et al., 1996).
Lastly, microbial attack can increase potential inorganic alteration of biominerals
and biomolecules. For instance, microbial enzyme catalysis can enhance biomineral
dissolution, postmortem elemental uptake by tissues, ionic and isotopic exchange with
groundwater, and biomineral recrystallization (Grupe and Piepenbrink, 1989; Zazzo et al.,
2004; Tütken et al., 2008; Gadd, 2010; Kohn and Moses, 2013). Microbial oxidation or
reduction of biomolecular ions can also stimulate molecular conversions and
condensations (Gadd, 2010). For these reasons, microbial attack is traditionally regarded
as invariably detrimental to fossilization. However, recent, counterintuitive evidence that
microbially-induced precipitation can enhance tissue stabilization through rapid
permineralization (Daniel and Chin, 2010) suggests that much is still to be discerned
23
about fossilization processes, especially regarding molecular preservation. It may even be
possible that microbially-enhanced rapid recrystallization could entrap endogenous
molecules before they are consumed or degraded (Hedges, 2002).Further, autolithification
of bacteria within external vascular canals, or “microbial masonry,” may limit elemental
alteration of biominerals by hindering percolation of groundwater through the tissue
(Peterson et al., 2010; see Section 1.11 for further discussion).
1.6 Favorable molecular attributes
It has taken decades to reach a consensus on structural attributes that increase
preservation potential of a biomolecule. Many of these conclusions derive from studies of
collagen I, a bias resulting from its abundance in vertebrate bone and a focus by many
researchers on the fossilization of bone.
High abundance of collagen I in bone is presumably a key factor to why this
particular protein has been identified in fossils; if more of a biomolecule is originally
present, preservation potential should be accordingly higher (Ambler and Daniel, 1991).
Unlike osteocalcin, osteonectin, or sialoproteins, collagen I is not acidic; this makes it
comparatively less soluble in water (Grupe, 1995; Briggs, 1999). Moreover, San Antonio
et al. (2011) found by sequencing of fossil extracts that few acidic residues of collagen
are preserved, suggesting that acidic amino acids are more vulnerable to early diagenetic
proteolysis. Close association with a mineral matrix also provides protective benefits for
collagen I and other biomolecules, as discussed above in Section 1.3.3 (Schweitzer et al.,
2008; San Antonio et al., 2011; Schweitzer, 2011). A composition comprising a large
24
percentage (~60%) of the most thermostable amino acids (alanine, glycine, and proline)
also contributes to the persistence of collagen through time (Wang et al., 2012).
The tightly wound and multi-level structure of collagen I results in high stability
and multiple impediments to degradation (Perumal et al., 2008; San Antonio et al., 2011;
Zylberberg and Laurin, 2011; Wang et al., 2012). Collagen is virtually insoluble in water
(Schweitzer et al., 1997a, 2008; Collins et al., 2002; Orgel et al., 2006) and highly
resistant to racemization (Van Duin and Collins, 1998) because of its tight helical
polymerization with abundant inter-molecular and inter-microfibrillar cross-links and
hydrogen bonds. Parallel alignment of monomers 1–5 leaves exterior monomers 1 and 5
more vulnerable but protects interior monomers 2–4 (for example, portions of monomer 5
would have to be proteolyzed before monomer 4 could be accessed; Perumal et al., 2008).
Moreover, close, parallel, quasi-hexagonal packing of microfibrils within fibers protects
those portions in the middle of the packing arrangement (Orgel et al., 2006).
San Antonio et al. (2011) found that there is a definitive, nonrandom pattern to
preservation of collagen I. Mapping non-avian dinosaur collagen peptides onto molecular
models of collagen I (cf. Sweeney et al., 2008) revealed that the structurally and
functionally most significant sequences were identified from fossil extracts, whereas less
crucial sequences were lost. In particular, critical amino acid sequences involved in fibril
remodeling during life (representing portions of the cell interaction domain; Sweeney et
al., 2008) were preferentially preserved over other portions of the collagen I molecule.
Eleven peptide sequences mapped to seven regions of the molecule (Figure 1.8): five of
the 11 mapped to hydrophobic regions; three mapped to the Integrin binding site (a
location where important ligand signaling molecules attach during life); and one mapped
25
to the MMP1 binding site (a location important in cleaving of the molecule during fibril
remodeling). This remarkable correspondence, between functional motifs in structure of
the molecule and preservation, suggests that biological function is a potentially
underappreciated factor. From these results, San Antonio et al. (2011) suggested that
more relatively interior, nonpolar, and hydrophobic residues will be more likely to
survive while hydrophilic and charged residues have low preservation potential.
Hydrophobicity limits potential for hydrolysis (Briggs et al., 2000; Schweitzer, 2004,
2011; San Antonio et al., 2011). Nonpolar functional groups are presumably less prone to
solubilization or microbial attack (San Antonio et al., 2011). Aromaticity may also incur
stability over geologic timescales (e.g., porphyrins; Kolesnikov and Egorov, 1977),
though aromatic amino acids (e.g., tryptophan, tyrosine) are more vulnerable to radiation
and oxidation (Ambler and Daniel, 1991). Hydroxyamino acids (e.g., threonine, serine,
hydroxyproline) have been found to be more susceptible to hydrolysis (Ambler and
Daniel, 1991) than are hydrophobic acids (e.g., valine and leucine; Bada et al., 1999).
Intriguingly, McNamara et al. (2009) note that initial loss of labile amino acids
leads to an increased proportion of hydroxyproline within collagen. This is significant
because it causes collagen fibrils to gain an increasingly negative charge and therefore
heightened potential for electrostatic adsorption of metal cations. Electrostatic adsorption
could then facilitate mineralization (McNamara et al., 2009). Hence, counterintuitively,
partial degradation may increase the preservation potential of remaining collagen.
To summarize, researchers analyzing collagen I in fossils have suggested that low
solubility, nonpolarity, hydrophobicity, lack of acidity, abundant intermolecular crosslinking, complex three-dimensional structure, association with a mineral matrix, and
26
important biological function are key factors aiding its preservation. These traits might
serve as a guide to identifying other biomolecules amenable to persisting through
geologic time. Indeed, numerous authors agree that biomolecules comprising structural
tissues should possess the greatest preservation potential due to their tight and complex
molecular packing and abundance of cross-links (Eglinton and Logan, 1991; Briggs et al.,
2000; Collins and Gernaey, 2001; Schweitzer et al., 2008, 2013; Zylberberg and Laurin,
2011). Study of feather melanins confirms that cross-linking increases durability of
tissues (Zhang et al., 2010), and cross-links can also occlude reactive sites (Butterfield,
1990). Although charge might be viewed as detrimental because it allows for electrostatic
removal, negatively charged DNA has been shown to adsorb to sand grains and become
inert to DNAse digestion (Romanowski et al., 1991). Polymers comprised of a diverse set
of monomers (e.g., melanin) or with diverse link types (e.g., lignin) may require many
different enzymes or microbial species to break them down. Therefore, such
macromolecules likely have high preservation potential (Butterfield, 1990). Additional
attributes contributing to long-term stability of biomolecules include: 1) the inclusion of
hydrogen bonds (Eglinton and Logan, 1991; Van Duin and Collins, 1998); 2) full
saturation of molecular structure (e.g. sporopollenin; Butterfield, 1990; Chin et al., 2003);
3) a polyaromatic framework (e.g. lignin; Butterfield, 1990); 4) complex third-order
structures (molecular folding patterns; Eglinton and Logan, 1991), and; 5)
sclerotization/biomineralization (Butterfield, 1990; Briggs, 1999; Zhu et al., 2005).
Apart from molecular attributes, the porosities and densities of biominerals and
the thicknesses of tissues are thought to influence the preservation potential of biological
27
tissues and their constituent biomolecules. In general, dense, low-porosity biominerals
(Goodwin et al., 2007) and thick tissues (Briggs, 1999) are more recalcitrant.
1.7 Relative survival of biomolecules
Lipids have the highest preservation potential, followed by structural
carbohydrates, then proteins, and lastly nucleic acids (Briggs et al., 2000). Original
molecular remnants are commonly preserved in the fossil record, albeit in degraded form.
1.7.1 DNA
DNA may be the most informative biomolecule, but unfortunately it is highly
vulnerable to hydrolysis, oxidation, and photooxidation (Austin et al., 1997; Briggs,
1999; Hofreiter et al., 2001; Poinar and Pӓӓbo, 2001; Schweitzer, 2003, 2011). Thus, it is
thought that one can expect to encounter traces of original DNA only in specimens also
yielding traces of other biomolecules (Poinar and Pӓӓbo, 2001). Furthermore, DNA
analyses require polymerase chain reaction (PCR) amplification to isolate enough
material for characterization. If contaminant DNA is present in the sample, be it from
microbial or human or other origin, it will also be amplified, complicating sequencing
analyses (Austin et al., 1997; Schweitzer, 2003, 2004). Also, high abundance of cytosine
and tyrosine can facilitate oxidative modification of residues to hydantoins that block
DNA polymerases and thus hamper PCR (Hofreiter et al., 2001). Degradation of nucleic
acids releases phosphate that may assist permineralization or phosphatization of tissues
by authigenic mineralization (Martill, 1988). DNA has a slightly negative overall charge
28
and therefore an affinity for absorption to hydroxyapatite crystals (Collins et al., 2002;
Schweitzer, 2004). This property has been shown to stabilize DNA against thermal decay
(Allentoft et al., 2012). Thermostability is also likely increased by greater structural
complexity as circular-structured mitochondrial DNA degrades at less than half the rate
of straight-stranded nuclear DNA (Allentoft et al., 2012). Cold conditions have thus far
yielded the oldest supported recoveries of endogenous eukaryotic DNA, with the oldest
being from ~700 Ka ice cores (Willerslev et al., 2007) and permafrost (Orlando et al.,
2013).
1.7.2 Lipids
Many lipids are hydrophobic and aliphatic (fully saturated and therefore nearly
insoluble), and thus lipids are the most commonly preserved type of biomolecule in the
fossil record (e.g., suberans, resin polyditerpenoids, etc.; Eglinton and Logan, 1991;
Briggs et al., 2000; De Leeuw et al., 1991). Individual saturated fatty acids enjoy
similarly high preservation potential (Chin et al., 2003) despite being more readily
metabolized by microbes than hydrocarbons (Eglinton and Logan, 1991). Longer lipids
(>20 carbons) are expected to have relatively greater preservation potential than shorter
lipids because they are less soluble and therefore less easily exploited by microbes
(Eglinton and Logan, 1991). For example, through Py-GCMS of Oligocene leaves, Briggs
(1999) identified that the aliphatic lipid cutan is encountered in greater concentrations and
in a less degraded form than short carbon chain cutin. Lipids are highly conserved across
taxa, generally yielding limited physiologic or phylogenetic information (Schweitzer,
2004). Furthermore, lipids can easily lose side-chain functional groups to become
29
degraded hydrocarbons (Farrimond and Eglinton, 1990; Briggs, 1999). When this occurs,
the resultant product may retain structural specificity to its parent molecule. For example,
5α(H)-cholestane constitutes the degraded hydrocarbon form of cholesterol (Farrimond
and Eglinton, 1990). These degraded compounds are therefore used as biomarkers. Lipid
biomarkers are dominant components of kerogen (biomolecular debris including
breakdown products and condensation aggregates; Farrimond and Eglinton, 1990;
Eglinton and Logan, 1991). Perhaps the greatest utilities of fossil lipids are: 1) as an
initial test of biomolecular preservation, and; 2) for the detection of the earliest life forms
on Earth, or beyond (Eigenbrode, 2008). As an example, preservation of DNA would be
unexpected if biomolecules with presumably greater preservation potential, such as lipids,
were not also encountered in the same specimen (Poinar and Pӓӓbo, 2001).
1.7.3 Carbohydrates
Mono- and polysaccharide carbohydrates are generally water soluble and
comprised of weak bonds (Schweitzer, 2004). Polysaccharides have higher preservation
potential because they are more often insoluble (Eglinton and Logan, 1991; Briggs,
1999). In particular, complex structural polysaccharides (e.g., insect chitins and plant
lignins), cellulose, algaenins, and sporellins are especially insoluble because they contain
abundant cross-links (Briggs, 1999; Schweitzer, 2004; Bierstedt et al., 1998; Stankiewicz
et al., 1998). However, they remain weaker in structural form than lipids (e.g. cellulose is
structurally weaker than the plant cuticle lipids cutan and cutin; Dunn et al., 1997).
Polymers may experience preferential preservation over monomers because they must
first be broken down into monomers to be utilized by microbes (Butterfield, 1990).
30
Biological condensation between structural polysaccharides and proteins or between
multiple polysaccharides (to form macromolecular complexes, such as cellulose and
lignin in the lignocellulose of fruit and seed walls) greatly increases the preservation
potential of both molecules (Butterfield, 1990; Briggs, 1999). As an example, the
extracellular matrix glycosaminoglycan (“mucopolysaccharide”) carbohydrates
hyaluronan and chondroitan sulphate have been identified from extracts of a Cretaceous
dinosaur (Embery et al., 2003). These compounds may owe their resilience to the ability
of associated extracellular matrix sialoproteins to induce mineralization (Embery et al.,
2003). Certain functional groups can be used to identify remains unique to particular
polysaccharides (Boyce et al., 2002), such as phenols likely deriving from lignins (Gupta
et al., 2007). The oldest identified traces of chitin come from the Oligocene Enspel
Lagerstӓtte of Germany (Stankiewicz et al., 1998). Allison (1988) and Stankiewicz et al.
(1998) demonstrated that this polysaccharide decays more quickly in saltwater than
freshwater.
1.7.4 Proteins
Proteins have received special attention in molecular paleontological studies due
to their universal high abundance in organisms and utility in phylogenetic, physiological,
and ecological analyses (Schweitzer, 2003). Among vertebrate proteins, collagen I has
received the most attention. This is due to its incorporation into bone, its sheer
abundance, and its inferred high preservation potential as reviewed above (Section 1.5).
Many non-collagenous proteins (NCPs), despite their relatively minor abundance
(e.g. < 3% of bone tissue by dry weight; Schoeninger et al., 1989), have been identified in
31
ancient vertebrate fossils. These include osteocalcin, keratin, ovalbumin, albumin, alpha2-HS-glycoprotein (α2HSG), immunoglobulin G, elastin, laminin, melanin, cystatin,
hemoglobin, histones, phosphoendopeptidase (PHEX), actin, and tubulin.
Osteocalcin is the most abundant NCP in bone (~10–20% of NCPs; Collins et al.,
2002; Smith et al., 2005). It bonds strongly to hydroxyapatite due to its abundance of
acidic and negatively charged aspartic and carboxyglutamine amino acids (Eglinton and
Logan, 1991; Child, 1995; Smith et al., 2005). Encasement within hydroxyapatite crystals
provides intracrystalline proteins, like osteocalcin (see Figure 1.6), heightened protection
from hydrolysis and therefore increased preservation potential (Glimcher et al., 1990;
Muyzer et al., 1992; Sykes et al., 1995; Schweitzer, 2003). The middle peptide sequence
of osteocalcin is often best represented in fossils due to strong binding of its γcarboxyglutamic acid (Gla)-rich central peptide to bone hydroxyapatite (Collins et al.,
2000). The N-terminal epitope has been identified as less stable than the C-terminal
epitope, likely due to inclusion of a hydrophobic sequence within the C-terminal peptide
(Collins et al., 2000). Osteocalcin uniquely includes the amino acid Gla, so Gla can be
used to identify it in fossil extracts (Muyzer et al., 1992). Immunofluorescence and high
performance liquid chromatography (HPLC) have successfully been used to identify
traces of osteocalcin in fossils as old as 125 Ma (Huq et al., 1985; Ulrich et al., 1987;
Ajie et al., 1992; Muyzer et al., 1992; Embery et al., 2000; Schweitzer et al., 2002;
Humpula et al., 2007). Further, a complete sequence for this protein has been identified
from bone of a 55–60 Ka bison preserved in permafrost (Nielsen-Marsh et al., 2002).
However, retention of intracrystalline proteins clearly necessitates retention of minimally
altered or unaltered biomineral (Tuross et al., 1989; Collins et al., 2002). Examination of
32
archaeological bone demonstrates this relationship; osteocalcin is not detected if bone
experiences extensive histologic alteration or recrystallization (Collins et al., 2000; Smith
et al., 2005).
Keratin is a highly ordered and durable polymer that in laboratory experiments
has been demonstrated to be more resistant to microbial and physical degradation than
collagen (Lingham-Soliar and Glab, 2010). This is likely due to inclusion of abundant
nonpolar amino acids and cross-links in keratin (Schweitzer, 2011). Keratin has high
preservation potential due to its association with bone, incorporation within durable
integumentary structures, complex polymer structure, and the presence of hydrophobic
residues in its central helix (Schweitzer et al., 1999a). Furthermore, β keratin is rich in
cystine moieties with stabilizing disulfide cross-linking bonds (Edwards et al., 2011).
Such structure also makes β keratin highly resistant to common microbial proteases (e.g.,
trypsin). This means that it must be degraded by hydrolysis or disulfide bridge reduction
to be exploited by microbes (Schweitzer et al., 1999b). Accordingly, traces of keratin
have been identified in multiple fossils of Eocene age (Edwards et al., 2011) and older
(see Schweitzer [2011] for an in depth review of Mesozoic examples). Presence and
endogeneity of both β- and α-keratin in ancient fossils are supported by many lines of
evidence, including: 1) antibody binding in enzyme-linked immunosorbant assays
(ELISAs) and immunohistochemical assays (Schweitzer et al., 1999a, 1999b); 2)
absorption of keratin-unique amide I–III bands in Fourier transform infrared spectroscopy
(FTIR; e.g. Manning et al., 2009; Edwards et al., 2011), and; 3) mapping of amide
compounds to fossil skin via attenuated total reflection (ATR)-FTIR (Edwards et al.,
2011).
33
Melanins are also thought to have high preservation potential due to their large,
heavily cross-linked, and highly insoluble twisted-pleated-sheet structure (Schweitzer,
2011; Carney et al., 2012; Glass et al., 2012; Moyer et al., 2014). Melanic functional
groups (e.g., carboxylic acid and ketone groups) have been localized to fossil cephalopod
ink (Glass et al., 2012, 2013), putative melanosomes in fossil fish eyes (Lindgren et al.,
2012), and select fossil feathers (Barden et al., 2011) via pyrolysis gas chromatographymass spectrometry (PyGCMS), x-ray photoelectron spectroscopy (XPS), and FTIR.
Alkaline hydrogen peroxide oxidation is perhaps the most reliable method developed to
date to identify melanin in fossils (Glass et al., 2012). In this assay, eumelanin is broken
down into characteristic markers that can signal its presence in a sample (its monomeric
precursors 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid; Glass et al.,
2012). Comparisons of fossil specimens that have and have not experienced thermal
maturation demonstrate that eumelanin remains stable until the onset of the so- called “oil
window” (≥ 435°C), at which point it begins to decay into aliphatic compounds (Glass et
al., 2013).
The use of high resolution chemical techniques is key to resolving ongoing
debates about the identity of putative melanosomes in fossils (e.g., Vinther et al., 2008,
2010; Clarke et al., 2010; Li et al., 2010, 2012, 2014; Zhang et al., 2010; Carney et al.,
2012; Lindgren et al., 2012; McNamara et al., 2013; Moyer et al., 2014; Barden et al.,
2015). Wogelius et al. (2011, p. 2) propose that metal zoning patterns, or “melaninchelate derived control on trace metal distribution,” may be retained in such structures as
some of the chelated ions (e.g. Co2+, Cu2+) are non-biodegradable biocides. In two recent
studies, Barden et al. (2015) and Wogelius et al. (2011) identified elevated concentrations
34
of organically bound melanin-chelate metals (Cu2+, Zn2+) within purported melanosomes
but not within the surrounding matrix. Though this suggests an organic nature to the
structures, co-localization of elemental chemistry to such structures does not alone rule
out diagenetic explanations. For instance, it is also possible that bacteria could absorb
these metals from solution during autolithification. High-resolution chemical assays, such
as PyGCMS, alkaline hydrogen peroxide oxidation, and time of flight-secondary ion
mass spectrometry (TOF-SIMS), afford more effective means of discerning the identities
of these structures because one can directly test for the presence of organic compounds
unique to bacteria. To date, however, the utility of PyGCMS and FTIR have been
hampered by a dearth of comparative data derived from modern bacteria (Barden et al.,
2015).
Traces of many other proteins have also been identified in archaeological
specimens and fossils from the Quaternary, including the serum proteins albumin (Prager
et al., 1980; Tuross, 1989; Montgelard, 1992; Collins et al., 2002; Wadsworth and
Buckley, 2014), α2HSG (Wadsworth and Buckley, 2014), and immunoglobulin G (Torres
et al., 2002), the shell matrix protein dermatopontin (Sarashina et al., 2008), and the
blood protein hemoglobin (Collins et al., 2002; Schweitzer et al., 2002). Hemoglobin is
thought to have moderate preservation potential because it is bacteriostatic (i.e., it inhibits
bacterial growth or reproduction) (Parish et al., 2001). This property may account for
discovery of traces of hemoglobin from an Eocene blood-engorged mosquito (Greenwalt
et al., 2013) and Cretaceous dinosaur bone (Schweitzer et al., 1997b). Bulk extractions
from Cretaceous dinosaur bones have also yielded traces of the protease inhibitor cystatin
(Embery et al., 2003), and demineralization of Cretaceous dinosaur cortical bone has
35
isolated vessels yielding traces of the vascular-lining proteins elastin (Schweitzer et al.,
2009, 2014a) and laminin (Schweitzer et al., 2009) and osteocytes presenting antibody
binding against tubulin, PHEX, histones (Schweitzer et al., 2013), and actin (Schweitzer
et al., 2013, 2014a). The storage protein ovalbumin has also been identified in Cretaceous
sauropod eggshells (Schweitzer et al., 2005a). Biomolecules that bind to collagen I (e.g.,
collagen V, fibronectin; Sweeney et al., 2008) or interact with it (e.g., lumican, biglycan,
chondroadherin; Wadsworth and Buckley, 2014) may also possess heightened
preservation potential. Non-mineralized collagen in dermal layers is an example of a
biomolecule with low preservation potential as it lacks association with a mineral matrix,
has few cross-links, retains intramolecular water, and has numerous hydrophilic residues
(Schweitzer, 2011).
1.8 Analytical methods
Numerous techniques have been used to study fossil soft tissues and many also
support the endogeneity of discoveries. Criteria for acceptance of endogeneity of
molecular discoveries were described in detail by Schweitzer (2011). A comprehensive
review of analytical methods potentially useful in molecular paleontology was provided
by Schweitzer et al. (2008).
In general, molecular assays are performed to determine two things: the presence
of non-mineral organic matter present in a specimen, and, if it is present, what is the
nature of that material.
Discerning whether non-mineral organics remain in a fossil generally requires
36
removal of the mineral portion of specimens. However, XRD of powdered or cut samples
should always be employed first to clarify the overall mineralogical composition of
specimens for study (e.g., Manning et al., 2009). The Rietveld method (Rietveld, 1969)
can be applied to XRD data to allow quantitative approximation of the abundance of
constituent minerals (e.g., Piga et al., 2011). Histologic examination should also be
performed (when possible) as a preliminary qualitative survey of the extent of micromorphologic alteration that a specimen has endured (Turner-Walker and Jans, 2008). For
example, when studying bone, significant development of bacterial or fungal
microscopical focal destructions would indicate significant degradation by microbes (Jans
et al., 2004; Jans, 2008), which would imply poor biomolecular recovery potential.
Electron diffraction pattern analysis can also be employed when studying bone to test for
survival of c-axis-aligned hydroxyapatite crystals (e.g. Schweitzer et al., 1997a). Soft
tissue remains can be isolated from fossil bone by demineralization with a weak acid
(e.g., ethylenediaminetetraacetic acid, EDTA) or a dilute strong acid (e.g., hydrochloric
acid, HCl) for a period of days to weeks. Cleland et al. (2012) identified that EDTA, the
most commonly used demineralizing agent, may actually not be the best choice for bone.
Instead, they note that dilute HCl produces less smearing of extracts upon electrophoresis.
The three-dimensional structure of fossil demineralization products may be
visualized by many techniques depending on the end goal. Commonly employed
techniques include: 1) transmitted light microscopy (e.g., Schweitzer et al., 2005b,
2007b); 2) scanning electron microscopy (SEM; e.g., Pawlicki et al., 1966; Cadena and
Schweitzer, 2012; Armitage and Anderson, 2013); 3) environmental SEM (ESEM; e.g.,
Manning et al., 2009); 4) field-emission SEM (FESEM; e.g., Schweitzer et al., 2009); 5)
37
transmission electron microscopy (TEM; e.g., Schweitzer et al., 2007a), and; 6) atomic
force microscopy (AFM; e.g., Avci et al., 2005). Intriguing new assays for characterizing
fossil soft tissues include micro-x-ray fluorescence (μXRF), electron energy loss
spectroscopy, micro-x-ray absorption near edge structure (μXANES), and micro-XRD
(μXRD). These techniques make it now possible to create submicron-scale elemental
maps of isolated tissues, determine the coordination chemistry of their comprising
elements, and discern the mineralogy of microcrystalline coatings or structures on or
within fossil tissues (Schweitzer et al., 2014a).
Structural and elemental characterization of samples can be discerned by
numerous techniques. The density layout of extracts can be determined by addition of
back-scattered electron analyses to SEM (e.g., Manning et al., 2009). EDX or XRF (e.g.,
Pawlicki and Nowogrodzka-Zagorska, 1998; Peterson et al., 2010) can also be performed
in tandem with SEM to determine elemental composition at chosen points or to generate
elemental maps (e.g. Orr et al., 1998). Electron or infrared microprobes can also be used
to identify elemental compositions at selected points (e.g. Manning et al., 2009).
Chemical staining with dyes (e.g., toluidine blue) is a valuable technique allowing one to
demonstrate similar absorption or lack thereof by fossil and modern extracts (Pawlicki,
1995; Lindgren et al., 2011; Zylberberg and Laurin, 2011; Schweitzer et al., 2013).
Identification of the molecular character of fossil organics often requires careful
chemical extraction followed by high resolution spectroscopy, mass spectrometry, or
immunoassays (Schweitzer et al., 2008). Biomolecular remains can effectively be
extracted and purified by incubation in HCl, guanidine-HCl, EDTA, or ammonium
bicarbonate (Cleland et al., 2012). Polyacrylamide gel electrophoresis with silver- and/or
38
dye-staining is an effective technique to approximate the molecular weight of extracts and
to concentrate them for further analyses (Fogel and Tuross, 1999; Schweitzer et al.,
2009). Amino acid analysis, though not a definitive identification tool (as discussed
above in Section 1.3.4), allows discrimination of the relative abundances of amino acids
in an extract (e.g., Lindgren et al., 2011). ELISA and immunoblot provide excellent
specificity of identification as they exploit antigen-antibody interactions (Curry, 1987;
Schweitzer et al., 2008). In these techniques, antibody binding signifies the presence of
molecular material with epitopes of the same structure as those for which the antibodies
were created (De Jong et al., 1974; Westbroek et al., 1979; Endo et al., 1995; Schweitzer
et al., 2009, 2013). Conversely, fossil extracts can be used as antigens to produce
antibodies that, if checked for cross-reactivity with extracts from modern taxa, can
provide a rough approximation of phylogenetic affiliation of a fossil (e.g., Montgelard,
1992; Schweitzer et al., 2002). Bond types and their relative abundances in a sample may
be characterized by performing FTIR (e.g., Manning et al., 2009) or HPLC (e.g., Gurley
et al., 1991). Further, the suite of molecular functional groups comprising a sample can be
elucidated by performing Py-GCMS (e.g., Gupta et al., 2008) or TOF- SIMS (e.g.,
Schweitzer et al., 2007a).
Many forms of mass spectrometry can be performed to gather sequence data, the
ultimate target for many molecular applications. However, traditional Edman sequencing
is unsuccessful for fossils because: 1) it requires concentrations of protein normally
greater than those garnered from fossils; 2) it can produce misleading chimeric sequences
by PCR jumping (in which the polymerase enzyme jumps from degraded template to
degraded template, producing chimeric sequences; DeSalle et al., 1993), and; 3)
39
polymerase enzymes used in this technique can be blocked by lesions (Nielsen-Marsh et
al., 2002; Humpula et al., 2007) or inhibited by breakdown products such as fulvic acids
(Tuross, 1994). Because chemical techniques are often of higher sensitivity and
specificity than sequencing assays, specimens may present positive results for molecular
retention yet yield no sequence data (Schweitzer, 2011). Useful techniques to improve
sequence gains include affinity purification or immunoprecipitation during sample
preparation, use of multiple fragmentation methods (e.g., collision-induced dissociation,
CID), and use of de novo sequencing algorithms (Schweitzer et al., 2014b).
Interpretations of mass spectra derived from fossils must always consider inherent
constraints. First, many preserved molecular fragments may remain unrecognized as
current databases do not include sequences from many extant organisms (Schweitzer et
al., 2013, 2014b). Second, sequences from modern reference organisms may be derived
beyond recognition compared to their ancient counterparts (Humpula et al., 2007). Third,
we do not yet know how to determine likely types of modifications when searching for
database matches, nor what additional types of decay alterations may be possible (e.g.,
still-unrecognized molecular conversions). Fourth, preservational microenvironments
may lead to concentration differences between samples (i.e., samples from one extract
may yield results while those from a second replication may not; Schweitzer et al., 2009).
Fifth, preservation processes may cause molecules to fragment in atypical manners or
inhibit digestion or ionization for mass spectrometric analyses (Schweitzer et al., 2014b).
Finally, contamination will invariably complicate interpretation of spectra (Bern et al.,
2009).
40
Spatial localization of molecular components is a feature that can aid in
identification and possibly provide independent support of endogeneity (Edwards et al.,
2011; Wogelius et al., 2011). Synchrotron rapid scanning (SRS)-XRF can produce
detailed elemental maps across large flat specimens or thin sections (Janssens et al., 1999;
Edwards et al., 2011, 2013; Bergmann et al., 2010, 2012; Field et al., 2013; Manning et
al., 2013). In combination with XANES or extended x-ray absorption fine structure, it is
possible to identify and map the coordination chemistry (valence state) of sulfur, copper
and other cations to determine if they are bound in inorganic minerals or in
organometallic compounds (e.g. Bergmann et al., 2010; Edwards et al., 2011; Wogelius
et al., 2011). Molecular bond types can be mapped across regions of flat specimens or
thin sections to approximate probable molecular composition via infrared spectroscopy
mapping (e.g., Lindgren et al., 2011), synchrotron micro-FTIR mapping (e.g., Lebon et
al., 2011), or ATR-FTIR (e.g., Edwards et al., 2011). Further, performing in situ
immunofluorescence allows one to localize peptide fragments presenting epitope binding
with chosen antibodies (Schweitzer et al., 2007a, 2009, 2013). Recent advances in TOFSIMS now even allow mapping of mass spectra at submicron scale (Toporski et al. 2002;
Lindgren et al. 2012). Now, for the first time, it is possible to spatially correlate mass
spectra to pinpoint locations of fossil soft tissues.
1.9 Correlating factors
Processes that play important roles in preservation of organics are generally well
understood. For instance, extensive pre-burial weathering will degrade bone and limit its
41
potential for fossilization (Behrensmeyer, 1978). Numerous lithological, diagenetic,
geochemical, ecological, and environmental factors are known to favor long-term
preservation of tissues, including bone (Table 1.1). Though it is often presumed that
fossil age is of utmost importance, Hagelberg et al. (1991) found that burial history, not
age, is the overriding control on both tissue preservation and biomolecular retention.
However, taphonomic and diagenetic factors specifically favoring the
preservation of pliable soft tissues and biomolecules remain mostly unknown (Manning
et al., 2009; Schweitzer et al., 2009). Processes traditionally viewed as essential, such as
permineralization (Trueman et al., 2008b), clearly do not always occur and could
potentially signify considerable alteration rather than stabilization (Schweitzer et al.,
1997a). Thus far, only one agent has been identified as having a likely role in nearly
every case of biomolecular preservation: iron. Iron is nearly universally discovered in
association with pliable soft tissue discoveries, regardless of specimen age or depositional
environment (Pawlicki, 1995; Pawlicki and Nowogrodzka-Zagorska, 1998; Schweitzer
and Horner, 1999; Schweitzer et al., 2007b, 2014a; Greenwalt et al., 2013). Via μXRD
and μXANES, Schweitzer et al. (2014a) found that iron is commonly present in
Cretaceous dinosaur vessels as nanocrystalline goethite and/or a disordered biogenic iron
oxyhydroxide (Schweitzer et al., 2014a).
It remains unclear if the abundance of iron in fossil soft tissues is a function of: 1)
preferential degradation and loss of more labile/volatile elements (suggested by
Greenwalt et al., 2013); 2) postmortem concentration and binding around soft tissues
(suggested by Schweitzer et al. 2007b, 2014a); 3) incorporation from exogenous pore
fluids and sedimentary sources, or; 4) some combination of these processes. Recent
42
investigations of certain Cretaceous specimens, however, identify a lack of iron in
entombing sediments, suggesting that organics pertaining to the organism itself may, at
least in some cases, be a more likely source (Schweitzer et al., 2014a). Regardless of its
source, near-universal presence of iron strongly suggests it plays an important role in
molecular preservation reactions, though it is unlikely to be the only important metal
involved (Manning et al., 2009; Schweitzer et al., 2010, 2014a; Schweitzer, 2011). Iron
inhibits autolytic enzymes and hence minimizes tissue decay (Ferris et al., 1988). It also
may indirectly aid preservation of soft tissues by binding with oxygen to prevent
oxidation (Schweitzer et al., 2014a). Moreover, iron oxidation can catalyze the
production of free radicals that, in turn, initiate chain reactions of peroxidation and
protein condensation that may effectively fix tissues in a manner similar to formaldehyde
fixation (see Section 1.11 below) (Schweitzer et al., 2014a). Iron enrichment may initially
suppress ionization for some samples when attempting mass spectrometry (Schweitzer et
al., 2013) or create mineralized coatings that can prevent impregnation of histochemical
dyes (Pawlicki, 1995). However, pretreatment with iron chelators, such as pyridoxal
isonicotinoyl hydrazone, can effectively curtail these problems (Schweitzer et al., 2013,
2014a). Strengthening of antibody binding signals after iron chelation suggests that iron
may also aid preservation by blocking active enzyme binding sites (Schweitzer et al.,
2013).
Numerous hypotheses on sedimentological, diagenetic, and geochemical factors
contributing to molecular preservation have been proposed. Yet, most remain untested
inferences. A thorough literature review yields a list of geologic, environmental, and
taphonomic factors possibly correlating to molecular preservation (Table 1.2).
43
1.9.1 Geologic variables
Disparate reasoning has been used to infer that both porous and nonporous
sediments could favor molecular preservation. Porous sediments (e.g., sandstones) have
been deemed favorable because they allow drainage of autolytic enzymes away from a
carcass (Schweitzer et al., 2007a). Also, porous sediments tend to minimize fracturing of
fossils due to their limited compaction potential (due to larger grain sizes that cannot
compact closely without deforming; Peterson et al., 2010). This can limit infiltration of
diagenetic pore fluids and microbial decomposers. The significance of this potentiality
has been criticized because porous sediments also allow greater exposure to flowing
groundwater, which could enhance chemical dissolution and facilitate microbial attack
(Hedges, 2002). Accordingly, some suggest that nonporous and well-compacted
sediments may be more favorable because their low permeability better hinders mobility
of microbial decomposers and diagenetic fluids (Eglinton and Logan, 1991; Muyzer et
al., 1992; Peterson et al., 2010; Herwartz et al., 2011). High compaction may also impose
thermodynamic stability on biomolecules by steric hindrance/locking (Geigl, 2002).
Furthermore, compaction may induce molecular condensation reactions by forced
proximity (Eglinton and Logan, 1991). Early and/or rapid cementation reduces
permeability in both porous and nonporous sediments (Herwartz et al., 2011). Rapid
cementation is identifiable in petrographic thin section by high “minus-cement porosity,”
“floating” grains within cement, and uncompressed, short grain contacts (Hubert et al.,
1996). Overall, it appears that porous and nonporous sediments may each offer beneficial
conditions under certain circumstances.
44
An abundance of dissolved metal cations inhibits autolytic decay of bacteria
(Leduc et al., 1982). Mineralogical composition of sediments also likely plays an as-yet
unidentified role in molecular preservation. For example, the presence of clays is inferred
to be beneficial because grains with high surface areas and chemical reactivity may
adsorb and inactivate autolytic and/or microbial enzymes (see Section 1.11 for further
discussion of clays) (Butterfield, 1990; Schweitzer, 2004). Finally, deep burial has been
proposed to favor molecular preservation because it may isolate a carcass beneath
biologically active sediment zones (Schweitzer, 2004; Asara et al., 2007).
1.9.2 Environmental variables
Environmental settings conducive to molecular preservation (other than special
traps such as tar pits, e.g., Stankiewicz et al., 1998) have yet to be explored in detail. Dry
settings, such as caves, eolian dunes, and entrapment in amber, offer high molecular
potential owing to limited autolysis and hydrolysis (Baird and Rowley, 1990; Eglinton
and Logan, 1991; Hagelberg et al., 1991; Grupe, 1995; Bada et al., 1999; Briggs et al.,
2000; Collins and Gernaey, 2001; Hofreiter et al., 2001; Schweitzer, 2003; LinghamSoliar and Glab, 2010; Edwards et al., 2011). Dry conditions also facilitate desiccation, a
process that stabilizes soft tissues (Poinar and Pӓӓbo, 2001; Lingham-Soliar and Glab,
2010). Cold settings are equally as promising thanks to hindrance of microbial activity
(Eglinton and Logan, 1991; Hagelberg et al., 1991; Briggs et al., 2000; Collins and
Gernaey, 2001; Hofreiter et al., 2001; Poinar and Pӓӓbo, 2001; Schweitzer, 2004).
Furthermore, cold allows minimal disassociation of molecular structure (Perumal et al.,
2008) and therefore limits racemization potential (Van Duin and Collins, 1998). For these
45
reasons, cold and dry permafrost has yielded the oldest genome yet recovered (Orlando et
al., 2013). Reducing environments are also hypothesized to be favorable because of their
ability to restrict oxidation through chelation of metal ions (Eglinton and Logan, 1991).
Preservation of fossils within environments of similar chemistry to their composition
(e.g., a bone preserved in carbonate- and phosphate-rich chalk) likely will facilitate rapid
chemical equilibration with groundwater, thereby limiting degradative reactions
(Williams et al., 1997; Lindgren et al., 2011). For bone, favorable alkaline conditions can
be produced, even within an acidic setting, if a large accumulation of bones is present to
buffer the local pH (Haynes et al., 2002).
1.9.3 Taphonomic variables
Taphonomic processes that limit fossilization potential likely also control the
potential for biomolecular survival. Two processes that would likely diminish molecular
preservation potential are pre-burial weathering (Trueman et al., 2004; Fernandez-Jalvo et
al., 2010) and long-distance transport (Eglinton and Logan, 1991). However, the
relationships of most taphonomic and diagenetic variables to molecular preservation
remain unresolved. The only certain correlation yet identified is that excellent
morphologic and histologic preservation yields the best potential for molecular results
(Eglinton and Logan, 1991; Hagelberg et al., 1991; Schweitzer et al., 1997a, 2008;
Hedges, 2002; Schweitzer, 2004, 2011; Zazzo et al., 2004; Goodwin et al., 2007; TurnerWalker and Jans, 2008). Such a synergistic relationship does not always hold true,
however, because chemical alteration could still have taken place (Schoeninger et al.,
1989; Dutta et al., 2010) and degraded specimens may still yield positive results (Hedges
46
and Millard, 1995). Nonetheless, visually “well-preserved” specimens generally offer the
greatest potential.
This correlation has been logically extended as a predictive tool. Hence, some
have suggested that specimens lacking permineralization or recrystallization may offer
the best potential for molecular preservation because lack of these processes signifies
minimal diagenetic alteration (Schweitzer et al., 1997a; Lindgren et al., 2011).
Conversely, rapid permineralization and recrystallization quickly stabilize biominerals
with the diagenetic environment, so some have suggested that specimens presenting
evidence for these swift alterations could still yield molecular results (Schoeninger et al.,
1989; Grupe, 1995; Hedges and Millard, 1995; Elorza et al., 1999; Goodwin et al., 2007;
Trueman et al., 2008a; Kocsis et al., 2010). Additionally, it may be possible that as
bioapatite recrystallizes, it could potentially enhance protection of intracrystalline
biomolecules (e.g., osteocalcin; Sykes et al., 1995) and effectively encapsulate peptide
fragments of intercrystalline proteins such as collagen (Tütken and Vennemann, 2011).
Early and rapid authigenic mineralization or mineral precipitation over tissues may also
facilitate molecular stabilization by encasing organics before they can be substantially
degraded (Schweitzer, 2003, 2004; Schweitzer et al., 2007b; Peterson et al., 2010;
Edwards et al., 2011). Rapid, single-event incorporation of REEs into biominerals is
suggestive of the least possible interactions with diagenetic pore fluids (Trueman et al.,
2008a). As a result, specimens presenting a pattern of REE concentrations reflective of this
manner of incorporation likely offer the best molecular potential (Trueman et al., 2008a).
Lastly, because fracturing facilitates invasion by microbial decomposers and pore fluids,
Peterson et al. (2010) suggested that minimal fracturing is essential for molecular
47
survival.
To summarize, the only factors currently known to be useful screening tools to
assess molecular potential are excellent morphologic and histologic preservation, minimal
preburial weathering and transport, and preservation in inferred cold and/or dry
environments (Table 1.2). However, exceptions to these correlations exist. For example,
specimens examined by Schoeninger et al. (1989), Briggs et al. (2000), and Goodwin et
al. (2007) retain excellent morphologic and histologic integrity but also present
substantial chemical alteration.
Further investigation into taphonomic correlates to molecular preservation is clearly
needed, as many have already observed (Tuross et al., 1989; Briggs, 1999; Schweitzer,
2004; Trueman et al., 2004; Schweitzer et al., 2007a; Turner-Walker and Jans, 2008). In
essence, what is needed is a molecular extension of the taphonomic modes of
Behrensmeyer et al. (1992). Systematic study of specimens from different depositional
environments is needed to identify favorable environmental conditions and flesh out the
suite of variables influencing molecular preservation (Turner-Walker and Jans, 2008).
Only then can generalizations be drawn as to the most promising settings for long-term
molecular preservation.
1.10 Connections between bone biomolecule preservation and REE geochemistry
Retention of original geochemical signals is expected to be linked with molecular
preservation because preservation of endogenous signals, be they geochemical or
biomolecular, necessitates minimal alteration of original tissue. Diagenesis affects both
48
inorganic and organic components of tissues, and it is plausible that alterations to each
component may be correlated to one another. One such diagenetic process important to
those studying bone is uptake of REEs.
Correlation of REE analyses with molecular results could clarify diagenetic
regimes favoring preservation of biomolecules (Trueman et al., 2008a). This tentatively
hypothesized association does not rely on an assumption of solely early diagenetic
incorporation of REEs. This is because if biomolecular material remains, then the history
of the specimen certainly was adequately conducive for such fragile material to persist,
no matter the extent of alteration of bone by REE uptake. Preliminary investigations
suggest relatively unaltered, early- diagenetic REE signals may be encountered in enamel
(because of its larger crystal sizes and lower porosity; Herwartz et al., 2011; Kohn and
Moses, 2013) and bones displaying rapid “single diffusion” incorporation mechanics
(Kocsis et al., 2010).
Spatial heterogeneity of REE concentrations within a specimen is important
because it provides a detailed record of diagenetic history (Trueman et al., 2008a; Koenig
et al., 2009; Suarez et al., 2010; Herwartz et al., 2013b). REE signatures can vary both
with depth into bones (Trueman et al., 2008a; Koenig et al., 2009) and around their
circumference (Suarez et al., 2010). Importantly, variation with depth into a specimen
(from the outermost cortex inward, e.g., Figure 1.7) reflects differences in extent of pore
water interactions, meaning it may be an indirect indicator of rate of recrystallization
(Trueman et al., 2008a, 2011; Koenig et al., 2009). When abundant REEs are present in
the outermost cortex (or concentrated around Haversian canals) but few REEs are
incorporated into interior bone (or laminae distant to Haversian canals), it signifies that a
49
bone has had relatively minor and brief interaction with diagenetic pore fluids (Trueman
et al., 2008a). Because it is interaction with pore fluids that causes recrystallization, it
follows that brief fluid interactions also suggest rapid hydroxyapatite recrystallization
(Trueman et al., 2008a; Koenig et al., 2009).
Such a potential connection between REE patterns and recrystallization rate is
important because rapid recrystallization would mean rapid equilibration of a bone with
its diagenetic environment (Trueman et al., 2008a). Necessity of quick equilibration for
molecular preservation is considered crucial because extensive interaction with diagenetic
pore fluids would enhance potential for degradation of biomolecules (Tuross et al., 1989;
Trueman et al., 2008a). Minimal diagenetic alteration is therefore concluded to be vital
for preservation of both bone apatite and biomolecules.
Though the relationship between REE profiles and biomolecular retention is
unlikely to be as simple as discussed above (and indeed might vary considerably on a
specimen by specimen basis), this has yet to be discerned. When taken as a whole,
available evidence suggests that REE profiles may be powerfully predictive tools in
combination with additional taphonomic information about the history of fossils (e.g.,
weathering, abrasion, encasing sediment lithology; Trueman, 2013). Regarding future
work, Trueman (2013) suggested that models fit to REE-depth profiles may be used as
taphonomic characters to compare and contrast diagenetic histories of fossils from
separate localities. I agree that this is a promising topic for exploration and add that this
exercise would advance development of molecular preservation proxies.
1.11 Connections between bone biomolecule preservation and stable isotopes
50
Stable isotope ratios of 18O/16O and 13C/12C in fossil bone reflect the preferred diet
and habitat through the lifetime of an animal (Koch, 1998; Fricke, 2007). Preburial
weathering and recrystallization may, in some cases, only slightly impact the variance of
bone collagen or hydroxyapatite isotope ratios (Weiner et al., 1976; Koch et al., 2000). In
contrast, microbial attack can lead to substantially diminished oxygen isotope ratios
(Fernandez-Jalvo et al., 2010) due either to exogenous contamination, biased protein loss,
or isotopic exchange (Koch et al., 2000). Also, extensive diagenetic permineralization
may bias bulk sample readings to reflect those of diagenetic fluids instead of those
pertaining to the bioapatite (Kohn et al., 1999; Tütken et al., 2008). Such diagenetic
overprinting is especially problematic in highly saline or extreme pH environments
(Tütken et al., 2008). Consequently, limited diagenetic alteration is considered essential
in stable isotope analyses (Tuross et al., 1988; Stanton Thomas and Carlson, 2004), just
as it is in paleomolecular analyses.
Multiple reports support retention of original, biogenic, stable-isotope ratios in
minimally altered fossil material (Koch, 1998; Kohn et al., 1999; Stanton Thomas and
Carlson, 2004; Fricke et al., 2008; Tütken et al., 2008). Enamel is the least altered
biomineralized tissue because it contains few organics and has a dense crystalline
structure (Stanton Thomas and Carlson, 2004; Zazzo et al., 2004).The minimal organics
of enamel offer little nutritional value to microbes, and its limited vascularity limits
permeation of diagenetic fluids (Stanton Thomas and Carlson, 2004). The dense
crystallinity and durability of enamel confers it high preservation potential (Martin,
1999). Experimental studies show that when bone and/or dentine are also present,
51
microbial decomposers will not attack enamel (perhaps because of its comparatively
nominal organics; Zazzo et al., 2004). Common minimal alteration of enamel through
diagenesis suggests that it may also experience minimal long-term REE incorporation,
thereby retaining early diagenetic REE signals (though this has yet to be tested; Kocsis et
al., 2010). These considerations imply that biomolecules will have a higher chance of
preservation in tooth enamel. However, the minimal original concentrations of
biomolecules in enamel may preclude molecular study at this time.
The same concepts discussed above for enamel also apply to bone. More densely
crystalline regions of bone likely enjoy similar prohibition of microbial attack and should
be more likely to retain original biomolecules and isotopic signatures. Although
cancellous bone may be more rapidly “fossilized” in experiments, it also experiences
more extensive microbial interactions and diagenetic recrystallization (Daniel and Chin,
2010). The impacts of this on geochemical signal and molecular retention (though yet to
be determined) are likely not favorable. Compact bone of the cortex is more densely
crystalline (Francillon-Vieillot et al., 1990) and therefore should be less likely to undergo
pervasive microbial attack. Hence, collagen, NCPs, and DNA should be more relatively
protected by bioapatite in the cortex (Hagelberg et al., 1991). Additionally, as discussed
in Section 1.3.3, the presence of collagen protects bioapatite crystal surfaces and
therefore can prevent original bone crystals from becoming chemically reactive (Collins
et al., 2002). Thus, both bioapatite and bone proteins may enjoy heightened protection
within cortical tissue, concurrently favoring molecular and geochemical preservation.
This has been hypothesized previously (Hedges, 2002; Zazzo et al., 2004; Goodwin et
al., 2007).
52
1.12 Hypothesized molecular preservation mechanisms
Two molecular reactions have been proposed to account for preservation of
ancient biomolecules: a natural fixation process (Schweitzer et al., 2007b, 2014a) and
ternary complexation (Edwards et al., 2011).
Schweitzer et al. (2007b, 2014a) hypothesized that iron-catalyzed free radical
reactions may mediate tissue fixation, creating stability that may last through geologic
time. During life, iron is bound into biominerals produced by the protein ferritin because
it works as an antioxidant (Schweitzer et al., 2014a and references therein). Any errantly
released iron ions can induce DNA-amino acid cross-linking (e.g., covalent tyrosinethymine cross-links; Altman et al., 1995). Schweitzer et al. (2007b, 2014a) posited that
cessation of ferritin iron binding by death allows soluble Fe(II) ions freed by autolysis
from decaying iron-containing biomolecules (e.g., hemoglobin and myoglobin), in the
presence of oxygen, to induce Fenton reactions that generate unstable free oxy radicals
(e.g., OH•). These free radicals can directly stabilize soft tissues by inducing protein
condensation reactions and peroxidation of membrane lipids (Schweitzer et al., 2014a).
Free radicals can also indirectly aid molecular preservation by inhibiting microbial
growth (simply by their presence) and inducing solution hypoxia through oxidation,
forming insoluble Fe(III) nanoparticles. Cross-linking of protein remnants could
incorporate intracellular biomolecules as well as membrane constituents; this process
could thus account for antibody binding against the transmembrane protein PHEX in
dinosaur osteocytes (Schweitzer et al., 2013). Generated polymers would be highly stable
53
and could plausibly protect endogenous molecular components against degradation.
Schweitzer et al. (2013) added that rapid, early diagenetic recrystallization may
concurrently encase condensation products to further protect them.
To test this hypothesis, Schweitzer et al. (2014a) performed an actualistic
experiment incubating ostrich blood vessels in red blood cell lysate (solubilized
hemoglobin, simulating postmortem erythrocyte lysis) under oxic and hypoxic
conditions. The treatment lead to rapid precipitation of a heme-oxygen complex that
enhanced soft tissue stability and biomolecular recovery compared to control trials
lacking hemoglobin incubation. These results supported the conclusion that iron catalyzes
chemical reactions resulting in natural fixation.
Edwards et al. (2011) suggested a similar mechanism to explain the preservation
of amide compounds in fossil reptile skin residues: ternary complexation of dissolved
metal cations, protein-derived compounds, and silicate crystal surfaces. As in the
mechanism proposed by Schweitzer et al. (2007b, 2014a), polymerization stabilizes the
molecular material. However, Edwards et al. (2011) suggested that binding also occurs
with crystal surfaces and free metal cations in solution (not just between molecular
components). These authors favored the importance of metal cation chelation and mineral
cation exchange over molecular cross-linking. They cited a favorable mixture of metal
species, minerals, and molecular functional groups in their specimen as evidence
suggestive of ternary complexation.
Three macro-scale diagenetic processes have also been hypothesized to stabilize
or protect biomolecules during early diagenesis: 1) inactivation of microbial enzymes by
clays (Butterfield, 1990); 2) bacterially-mediated permineralization (Carpenter, 2005;
54
Daniel and Chin, 2010), and; 3) rapid permineralization of exterior pores by bacterial
autolithification (Peterson et al., 2010).
Based on studies of the Cambrian Burgess Shale, Butterfield (1990) cited clay
adsorption to biomolecules as a possible stabilizing factor. Clays have slightly negative
crystallite surface charges and high cation exchange capacities due to their large surface
areas (Butterfield, 1990 and references therein). As Butterfield (1990) noted,
biomolecules electrostatically adsorb onto, or permanently bind with, the surfaces of
clays (e.g., Guimaraes et al., 2007). This can have two effects. If, for instance, a microbial
protease enzyme binds to clay, then its activity is almost entirely inhibited (Butterfield,
1990 and references therein). Conversely, if an endogenous biomolecule binds to clays,
then portions of it are physically shielded from degradation (Butterfield, 1990 and
references therein; Guimaraes et al., 2007).
Daniel and Chin (2010) induced rapid, bacterially-mediated permineralization
(specifically infilling of bone porosity) that could effectively protect biomolecules from
decomposing agents. For bone, minor dissolution of hydroxyapatite likely would be
necessary to mobilize phosphate for recrystallization and infilling of pore space. Their
experiment demonstrated that inorganic, chemically-driven mineral precipitation is an
ineffective process unlikely to greatly aid preservation of bone. Rather, their experiment
elucidated the counterintuitive importance of bacteria in rapidly stabilizing bone. They
concluded that rapid, bacterially-mediated permineralization can fill void spaces to
prevent protracted groundwater interactions and microbial attack.
Peterson et al. (2010) suggested that bacterially-mediated permineralization is
spatially controlled and potentially restricted by the preservation state of a bone when it
55
was buried. Their paleomolecular analyses showed that bones fractured prior to burial do
not retain pliable soft tissues, but unfractured specimens do. This, they explained, likely
results from unfractured bones having few points of entry for bacteria (only a few
vascular canals exit to the surface of bones to allow penetration to deeper within bone).
This point was corroborated by an independent, actualistic study by Fernandez-Jalvo et
al. (2010), which showed that bacterial attack is greatest at the outer surface of bone and
rapidly diminishes inward. Peterson et al. (2010) also found that rapid autolithification of
bacteria in external pores can block deeper vascular canal entrances, thereby preventing
exogenous bacteria from penetrating to the interior of bones after early diagenesis (Figure
1.8). Biomolecules in the inner cortex and cancellous matrix could thus be protected from
microbial attack. They termed this process “microbial masonry” and emphasized that
histologic structuring of vascular canals is a key control on postmortem microbial attack.
1.13 Next steps
Molecular taphonomy is a field of key importance that is yet in its early days. This
field holds promise for groundbreaking discoveries and identification of critical answers
to pressing questions concerning the depth of information that can be obtained from the
fossil record. Though more than 25 years have passed since early treatises of this field
(e.g., Curry, 1987), an integrated, interdisciplinary approach remains necessary.
Interdisciplinary taphonomic research is open to researchers from a wide range of
backgrounds and is needed on many fronts.
Depositional environment, and taphonomic, geochemical, and diagenetic controls
56
on molecular preservation remain topics of critical importance. Water chemistry, pH, and
salinity constrain nearly all involved (biomolecule-preserving) processes, including: 1)
composition and activity of the microbial decomposer flora; 2) which minerals may
inorganically precipitate; 3) racemization rates, and; 4) potential elemental and isotopic
exchange. However, the full range of environmental conditions and diagenetic
chemistries in which molecular retention can be found remains to be ascertained. Because
preservation fidelity is so variable, even within a single specimen, it is likely that
numerous additional factors influencing molecular preservation are yet to be discovered
(Manning et al., 2009; Schweitzer et al., 2009, 2010). Clarification of environmental and
taphonomic correlates to molecular preservation represents a crucial next step in the
future of molecular taphonomy. Only once these have been identified can the bounds on
potential fossilization mechanisms be delineated and investigations begin into how they
proceed through actualistic experimentation.
Linkage between geochemical and molecular preservation is another important
topic for future study. No study of molecular preservation has yet documented retention
of endogenous (or early diagenetic) geochemical signatures from the same specimen.
Neither has any study of REEs or stable isotopes documented endogenous molecular
results. Excellent preservation of both primary geochemical signals and endogenous
biomolecules could be favored by the same conditions, so this connection is ripe for
evaluation. In particular, it is conceivable that geochemical assays may facilitate
elucidation of molecular fossilization mechanisms and serve as screening methods prior
to paleomolecular investigations (suggested by Koenig et al., 2009).
57
1.14 Conclusion
Molecular taphonomy is an important field in need of continued exploration. The
primary goal of molecular taphonomists will be to elucidate preservation mechanisms,
but the first step will be to identify a common suite (if one truly exists) of environmental,
geochemical, and diagenetic conditions correlating with molecular retention. With such
knowledge in hand, characterization of fossilization pathways that can lead to this
exceptional preservation mode can be pursued.
Answers to the mystery of molecular preservation can advance the field of
paleontology by: 1) helping predict favorable conditions for preservation of
biomolecules; 2) helping better explain the completeness of the fossil record; 3) aiding in
the clarification of fossilization processes, and; 4) assisting in making new discoveries,
not only of new specimens and species, but of exquisitely preserved fossils retaining soft
tissues. Knowledge of the biomolecular compositions of extinct taxa can provide
unparalleled comprehension of their phylogenetic, anatomical, behavioral, and ecological
characters. Understanding mechanisms for preservation of pliable soft tissues and
endogenous biomolecules will not only account for their presence in ancient fossils, but
will also enrich our perception of the organisms from which they derive.
58
Table 1.1 Lithologic, diagenetic, geochemical, ecological, and environmental factors
agreed to aid preservation of bone into the fossil record. References are intended to
provide examples, not an exhaustive list.
Factor
Explanation
Rapid burial
less time for decomposition
Episodic sedimentation
better chance of burial
Alkaline soils &
basic/neutral pH waters
acidity dissolves and
enhances hydrolysis
Low energy settings
less degradative processes
Waterlogged sites
creates anoxia
High productivity
environments
Presence of calcite
more biomass to potentially
preserve
can stabilize apatite
Anoxia
limits scavenging and
microbial activity
Adsorption of metal ions
Phosphate-rich soils
blocks off organics from
further decay
limits dissolution and
promotes phosphatization
Presence of toxic metal
ions
limits microbial attack
Rapid permineralization
stabilizes bone with encasing
sediments
Low organic content
elicits less microbial attack,
e.g. enamel
Cancellous bone preserves
faster?
high porosity facilitates
bacterial permineralization?
Reference(s)
Manning et al., 2009;
Martin, 1999;
Schweitzer, 2003, 2004;
Eglinton and Logan,
1991; Seilacher, 1990;
Poinar and Pӓӓbo, 2001;
Allison, 1988; Zhu et al.,
2005; Brett, 1995
Briggs, 2003
Retallack, 1984; Suarez
et al., 2007; Tuross et al.,
1989; Schweitzer, 2004;
Child, 1995; Briggs,
1999; Haynes et al., 2002
Briggs et al., 1997;
White et al., 1998
Hedges, 2002; Briggs et
al., 2000; Hagelberg et
al., 1991
Briggs, 2003; Martin,
1999
Schweitzer et al., 2007a
Briggs, 2003; Martin,
1999; Tuross et al., 1989;
Schweitzer, 2004;
Seilacher, 1990; Brett,
1995; Huq et al., 1985
Briggs, 2003; Liebig,
2001
Child, 1995
Child, 1995; Muller et
al., 2011
Trueman et al., 2008a;
Daniel and Chin, 2010
Zazzo et al., 2004; Fricke
et al., 2008; Kohn et al.,
1999
Daniel and Chin, 2010
59
Table 1.2 Geologic, environmental, and taphonomic factors hypothesized to correlate to
soft tissue and/or biomolecular preservation. References are intended to provide
examples, not an exhaustive list.
Factor
GEOLOGIC
Explanation
Reference(s)
Porous sediments
allows drainage of decay
enzymes and fluids?
Schweitzer et al., 2007a
Well compacted
sediments
limits microbial mobility and
oxidation and facilitates
reactions?
Eglinton and Logan, 1991;
Muyzer et al., 1992;
Schweitzer and Horner,
1999
Mudstones better
Sandstones better
more compaction and less
water flow limit microbial
activity?
less compaction and
fracturing, so less microbial
infiltration?
Peterson et al., 2010
Schweitzer et al., 2007a
Early/rapid cementation
limits diagenetic pore fluid
and microbial mobility?
Herwartz et al., 2011;
Hubert et al., 1996; Boyce
et al., 2002
Presence of clays
can adsorb enzymes and limit
water infiltration and
reactions?
Schweitzer, 2004; Zhu et
al., 2005
Deep burial
limits microbial activity?
Asara et al., 2007;
Schweitzer, 2004
limits autolysis & hydrolysis
and facilitates desiccation
Briggs et al., 2000;
Schweitzer, 2003; Grupe,
1995; Collins and
Gernaey, 2001; LinghamSoliar and Glab, 2010;
Eglinton and Logan, 1991;
Edwards et al., 2011;
Poinar and Pӓӓbo, 2001;
Hagelberg et al., 1991;
Hofreiter et al., 2001;
Baird and Rowley, 1990
ENVIRONMENTAL
Dry environments
60
Factor
Cool environments
Reducing environments
better
Chemically stable
settings
TAPHONOMIC
Explanation
limits disassociation and
microbial activity
chelation of metal ions limits
oxidation damage?
stable environments limit
reactions?
Reference(s)
Briggs et al., 2000;
Perumal et al., 2008;
Collins and Gernaey,
2001; Schweitzer, 2004;
Eglinton and Logan, 1991;
Poinar and Pӓӓbo, 2001;
Hagelberg et al., 1991;
Hofreiter et al., 2001;
Wadsworth and Buckley,
2014
Eglinton and Logan, 1991
Williams et al., 1997;
Lindgren et al., 2011
Minimal preburial
weathering
limits degradation of proteins
Trueman et al., 2004;
Fernandez-Jalvo et al.,
2010
Minimal preburial
transport
limits exposure to reactants
and decomposers
Eglinton and Logan, 1991
synergistic relationship to
molecular preservation
Hedges, 2002; Zazzo et
al., 2004; Goodwin et al.,
2007; Schweitzer et al.,
1997a, 2008; Schweitzer,
2004; Eglinton and Logan,
1991; Turner-Walker and
Jans, 2008; Hagelberg et
al., 1991
Excellent morphologic &
histologic preservation
Lack of permineralization signifies minimal interaction
and recrystallization
with water
Schweitzer et al., 1997a
Rapid permineralization
or recrystallization
can stabilize bioapatite with
unaltered crystal cores?
Goodwin et al., 2007;
Hubert et al., 1996; Elorza
et al., 1999; Hedges and
Millard, 1995;
Schoeninger et al., 1989;
Kocsis et al., 2010;
Trueman et al., 2008a;
Grupe, 1995
Rapid single
incorporation of REE
least water
interactions/alterations?
limits microbial invasion,
recrystallization, and
elemental alteration?
Minimal fracturing
required
Trueman et al., 2008a
Peterson et al., 2010;
Herwartz et al., 2013
61
Figure 1.1 Examples of pliable soft tissues recovered from ancient vertebrate fossils. (A)
Osteoid-like parallel arrangement of proteinaceous fibers following demineralization of a
Tyrannosaurus rex bone fragment. (B) Network of interconnected, flexible, transparent
vessels isolated by demineralization of a Tyrannosaurus rex bone fragment. (C) An
osteocyte isolated from demineralization products of a Cretaceous turtle shell fragment.
(D) An isolated vessel from a Tyrannosaurus rex bone fragment, including structures
morphologically consistent with endothelial cell nuclei (arrows). Each of these structures
displays morphologic consistency with modern analogs. Figures (A) and (B) modified
from Schweitzer et al. (2007b), (C) modified from Cadena and Schweitzer (2012), and
(D) modified from Schweitzer et al. (2005b).
62
Figure 1.2 An excellent example of the utility of molecular paleontology analyses.
Schweitzer et al. (2009) used sequences of the protein collagen I from fossil extracts to
independently test phylogenetic hypotheses developed solely from morphologic data.
Fossil collagen I peptide sequences place non-avian dinosaurs between extant
crocodilians and birds, in agreement with traditional conclusions based on skeletal
morphology. From Schweitzer et al. (2009).
63
Figure 1.3 The process and results of autolithification and authigenic mineralization. (A)
Diagrammatic representation of bacteria progressively consuming muscle fibers,
coalescing metal ions, and leaving behind mineralized tissue. From Martill, 1988. (B)
Example of authigenically mineralized muscle fibers in a Santana Formation fish. Field is
shown at 12,000x. Modified from Martill (1988). (C) Example of autholithified bacteria
creating a pseudomorph of tissue in a fossil fish eye from the Las Hoyas Lagerstӓtte,
Spain. Note the comparatively larger and clearly rounded bacterial structures compared to
the finer and smoother texture developed in authigenic mineralization (B). Modified from
Gupta et al. (2008).
64
Figure 1.4 Common diagenetic alterations suffered by biomolecules. (A) Hydrolytic
fragmentation. (B) Conversion of one molecular compound (serine) into another (alanine)
by loss of a hydroxyl group. (C) Deamination. (D) Conversion of one amino acid into
another (glycine) via loss of functional groups and subsequent replacement with a
hydrogen ion. (E) Racemization of a biomolecular compound from left to right isomeric
structure. From Schweitzer (2004).
65
Figure 1.5 Diagrammatic representation of non-avian dinosaur collagen I peptide
sequences from Asara et al. (2007) and Schweitzer et al. (2009) mapped onto a model of
a human collagen fibril (Sweeney et al., 2008). One D period is shown. All dinosaur
peptides mapped to interior monomers 2–4 and crucial cell-interaction sites, such as the
integrin binding site and the MMP1 cleavage site. This suggests a link between biological
function and peptide preservation potential.
66
Figure 1.6 Effect of enclosure of biomolecules within biomineral matrix. Intercrystalline
proteins, such as collagen I, are clearly vulnerable to hydrolysis or leaching from the
bone, whereas intracrystalline proteins (e.g., osteocalcin) may remain comparatively
protected within fluid inclusions or along crystal cleavage planes. Redrawn after Sykes et
al. (1995, fig. 4).
67
Figure 1.7 Theoretical relationship of rare earth element (REE) concentration to depth
into a fossil bone, from Trueman et al. (2008a). By this theory, bones with a steep decline
in concentration with depth into the cortex (such as the specimen represented by the
lower left curve with an exponent α value of -0.005) should offer the best potential for
biomolecular preservation. Such a steep gradient would reflect minimal interactions with
groundwater and therefore rapid equilibration of the bone with its diagenetic
environment. Further, minimal postmortem uptake of REE by the middle and inner cortex
would suggest minimal alteration of these regions. This would signify that interior cortex
of the sample might be an appropriate candidate for biomolecular analyses.
68
Figure 1.8 “Microbial masonry”: autolithified bacteria infilling the surficial opening of a
vascular canal in a fossil Thescelosaurus bone (Dinosauria: Ornithopoda), from Peterson
et al. (2010). These authors propose that rapid autolithification of bacteria within exterior
vascular and nerve canals could prevent microbial invasion and exploitation of the inner
cortex and medullary region of bones, thus protecting biomolecules and soft tissues in
inner bone regions.
69
CHAPTER 2: SOFT TISSUE PRESERVATION AND DEPOSITIONAL
ENVIRONMENTS OF THE BASAL HELL CREEK FORMATION AT THE
STANDING ROCK HADROSAUR SITE, CORSON COUNTY, SOUTH DAKOTA
2.1 Abstract
Taphonomic analyses of the Standing Rock Hadrosaur Site have yielded
important insight into both environmental settings recorded by basal strata of the
Maastrichtian Hell Creek Formation and early diagenetic conditions facilitating
preservation of soft tissue structures into the fossil record. To date, over 4,700 bones of
the hadrosaurid dinosaur Edmontosaurus annectens have been collected from this
bonebed, and demineralization of cortical and cancellous samples from ten bones have
yielded pliable soft tissue structures consistent in morphology with osteocytes, blood
vessels, and fibrous bone matrix. I also document the first recovery of osteocytes and
vessels from a fossil vertebra and ossified tendons. Representation of every skeletal
element, horizontality of most bones, and rarity of bone weathering and abrasion suggest
brief preburial exposure and transport with minimal sorting bias. However, near-universal
disarticulation and disassociation, localized orientation of bones, and infrequent preburial
breakage indicate moderate flow energy during deposition. Additional fauna, though rare,
are indicative of a near-shore fluvial setting, and palynofloral analyses signify deposition
in a small, shallow, coastal-plain pond surrounded by a cypress-dominated marsh.
Cumulatively, results support the conclusion that a herd of primarily subadult and adult
E. annectens died in a nearby fluvial setting in a mass mortality event and, following
brief decay and scavenging by theropods, their bones were deposited in a shallow,
70
coastal-plain pond by a flooding event. Evidence indicates that oxygenated flood waters
and/or groundwater oxidized initially sideritic concretions to goethite, facilitating rapid
local cementation of portions of the sediment that likely aided stabilization of soft tissues
by shielding them from prolonged exposure to pore fluids. My findings corroborate
previous propositions that iron-rich environments and rapid burial facilitate soft-tissue
preservation.
2.2 Introduction
The Standing Rock Hadrosaur Site (SRHS) is located in north-central South
Dakota, approximately 15 miles south of Morristown, within the Standing Rock Sioux
Reservation. At this locality, the upper Fox Hills and lower Hell Creek formations are
exposed in a broad, 30 meter-tall cut bank along the Grand River. Bones can be found
protruding from the hillside approximately half-way up the bluff for nearly its entire 500
m length, approximately 5 m above the sharp, planar Fox Hills-Hell Creek contact
(Colson et al., 2004). A normal fault at the northwest end of the bluff offsets the strata by
roughly 4–5 m, but since its depiction by Colson et al. (2004), a large slump has obscured
visibility of the fault and likely buried the western-most exposure of the bonebed. The
bone-bearing unit fades out into a shallow, grassy slope at the southeast end of the bluff.
Colson et al. (2004) used a distinct suite of palynomorphs to date the SRHS to the
Maastrichtian, in accordance with previous workers who assigned a Maastrichtian age to
the Fox Hills-Hell Creek formational contact (e.g., Cobban and Reeside, 1952; Hicks et
al., 2002). Unlike exposures further west in Montana, the Fox Hills-Hell Creek contact is
71
generally conformable throughout central North and South Dakota (Waage, 1968; Frye,
1969; Murphy et al., 2002) where sedimentation was likely more consistent.
Excavation at the site began upon its discovery in 1993 by a collaboration
between private land owners, Concordia College, and Minnesota State UniversityMoorhead. Concordia continued annual summer excavations through 2003, collecting a
total of more than 4,000 bones. The site was hence initially named the Concordia
Hadrosaur Site, and was published with this name in a stratigraphic report (Colson et al.,
2004). However, later investigations of land ownership boundaries found that two of the
three excavations performed by Concordia crews actually took place on land owned by
the Standing Rock Sioux Reservation. Accordingly, fossils collected in these first 11
years are now split between collections of the Biology Department of Concordia College
in Moorhead, Minnesota, and the Paleontology Department at the headquarters of the
Standing Rock Sioux Reservation in Fort Yates, North Dakota. After a 6 year hiatus, in
2010 the Standing Rock Paleontology Department (SRPD) reinitiated annual summer
excavations at the eastern end of the bluff. Via an invitation by lead Concordia project
researcher Dr. Ron Nellermoe, Drexel University joined the suite of programs
investigating the bonebed and I led a collaborative expedition between Drexel,
Concordia, and the Standing Rock Reservation to the site in the summer of 2012.
Because all excavations since 2010 (including our collaborative dig in 2012) have been
pioneered by the SRPD and Standing Rock reservation staff, we have renamed the
bonebed the Standing Rock Hadrosaur Site in honor of their ardent support.
Here I report a detailed taphonomic account of the SRHS bonebed. Because
demineralization assays documented preservation of soft tissue structures within these
72
fossils, I sought to identify geologic, taphonomic, environmental, and geochemical
factors likely contributing to soft tissue preservation.
2.3 Geologic setting
On a broad scale, the Pierre Shale, Fox Hills Formation, and Hell Creek
Formation record a regressive sequence of shallow-marine to near-shore fluviodeltaic
deposits along the western shore of the Western Interior Cretaceous Seaway (WIS)
(Waage, 1968; Frye, 1969; Moore, 1976; Murphy et al., 2002; Colson et al., 2004). The
Fox Hills represents near-shore sedimentation transitional between the marine WIS shales
of the Pierre Shale and the fluviodeltaic sediments of the Hell Creek Formation (Moore,
1976). In the Dakotas, the uppermost beds are referred to as the Colgate facies of the Iron
Lightning Member, comprising 5–15 m of very fine, white to light gray sandstones
containing common, broad lenses with abundant carbonaceous plant matter and abundant
Ophiomorpha burrows (Waage, 1968; Murphy et al., 2002). These beds specifically
record subtidal, beach, and foreshore environments (Murphy et al., 2002). At SRHS, as
noted by Colson et al. (2004), the abundance of clearly visible, large-scale foresets and
low-angle planar-tabular beds perforated by numerous Ophiomorpha burrows indicates
fairly rapid deposition at this coastal margin, both in subtidal and supratidal settings.
In an early study, Waage (1968) characterized the lower Hell Creek sequence as a
southeastward prograding delta. This classic portrayal has been scrutinized by more
recent investigations that highlight significant sedimentologic variability among basal
Hell Creek strata reflective of estuarine, supratidal marsh, floodplain, lagoon, and
73
brackish-water inlet depositional settings (Murphy et al., 2002). Paleosols indicate typical
Hell Creek environments including tropical woodlands, subhumid and seasonally dry
floodplains, and coniferous swamps (Retallack, 1997). One commonality across central
North and South Dakota is that the most basal Hell Creek beds are often shales
containing abundant coal seams or lignified plant matter (Frye, 1969; Murphy et al.,
2002). This is also true of the SRHS bluff, where the initial beds of the Hell Creek
Formation are lignitic shales (Colson et al., 2004). These widespread, basal, lignitic
shales represent a rare exception to discontinuity of beds in the Hell Creek (Moore, 1976)
and they record expansive coastal swamps and marshes (Kroeger, 2002). At SRHS, these
basal beds represent the Little Beaver Creek Member of the Hell Creek Formation
(Colson et al., 2004), following the lithostratigraphic nomenclature of Frye (1969).
Dinosaur bonebeds are not uncommon through the Hell Creek Formation,
including in the basal part of the formation. This is especially true of the unit in the
central Dakotas, where bonebeds tend to be found most commonly in the lowermost
portions of the formation (Russell and Manabe, 2002). Other bonebeds known from these
low units include a monodominant assemblage of Edmontosaurus at the Mason Dinosaur
Quarry near Faith, South Dakota (Christians, 1992), a diverse assemblage including small
maniraptorans, pachycephalosaurians, and Thescelosaurus called The Sandy Site near
Buffalo, South Dakota (Bartlett, 1999), and a hadrosaur-dominated bonebed called the
Stumpf Site near Mandan, North Dakota (Hoganson et al., 1994). Edmontosaurus in
particular appears to have commonly fallen victim to mass mortality events as it is
frequently recorded in large bonebeds in the Hell Creek and correlative strata throughout
74
western North America (Christians, 1992; Derstler, 1995; Jacobsen and Ryan, 1999;
Chadwick et al., 2006; Bell, 2007; Gangloff and Fiorillo, 2010).
2.4 Sedimentology and Stratigraphy
A detailed stratigraphic summary of the bluff was presented by Colson et al.
(2004). Therefore, I will here only briefly review and supplement the sedimentology and
stratigraphy of the bonebed horizon and beds directly underlying and overlying it.
Directly underlying the bonebed horizon at SRHS is a variable-thickness lignitic
shale containing 20–40% organic fragments (units 5b and 5c-lower of Colson et al.,
2004). This unit exhibits friable parting texture and thins toward the southeast end of the
bluff. Abundant, minute gypsum or anhydrite crystals have formed along shale fractures
through diagenesis. Modern pedogenic alterations are evident in some locations in this
unit, namely small (< 10 cm²), locally-constrained slickensides. Also dispersed within
this unit are several thin, laterally discontinuous lenses of a light gray, sandy siltstone
containing indeterminate bivalve casts and small, tabular, calcareous cone-in-cone
concretions. Though the origin of cone-in-cone concretions is still debated, they are
generally agreed to form in carbonaceous, brackish-water shale deposits by growth of
fibrous calcite during early diagenesis (Franks, 1969). Based on the inclusion of bivalve
casts and cone-in-cone concretions, I suggest these lenses record deposition in shallow,
ephemeral estuaries or tidal inlets.
Colson et al. (2004) originally characterized the bonebed horizon (their unit 5cmiddle) as a purple peaty shale representative of a coastal swamp setting. Their “purple”
75
descriptor alludes to the wealth of partially coalified organic matter in the bonebed
horizon. This mudstone averages about 30 cm in thickness. The base of this unit exhibits
a gradational contact with the underlying gray, friable mudstone described above (units
5b and 5c-lower of Colson et al., 2004). Lithologically, the basal portion of the bonebed
is generally grayer in color and more fissile than the upper extent of the bonebed, which
commonly presents a yellow-stained, more massive, clayey character. Matrix sediments
occasionally present mottling, with discrete, thin, locally-restricted pockets of very fine
sand rarely encountered. Amorphous goethite concretions (as determined by x-ray
diffraction) are abundant throughout the entire bed, but especially in the upper half of the
mudstone. These range from the size of a small marble to over 10 cm in some cases and
exhibit yellow-orange or blue-black coloration, even within the same concretion. Organic
remains of plants are also profuse throughout the bonebed mudstone, including abundant
small inclusions of amber. Although most organics are unidentifiable fragments that have
undergone the initial stages of coalification (see Palynology section, below), a few small
twigs of cypress and redwood trees and numerous Metasequoia cones have been
recovered (see Faunal and Floral Summary below). Partial lignified logs are also present
and are generally encountered directly underneath or between bones in the bottom of the
assemblage. Conspicuously absent are indicators of pedogenesis, namely root traces and
cutans, or altered, clay-rich joint surfaces (Retallack, 1988). Though the unit does display
abundant clay slickensides, these are spatially confined to small (generally < 10 cm²)
regions. Furthermore, it also contains abundant partially open fractures with incipient
formation of minute, needle-shaped gypsum or anydrite crystals. I attribute these features
to recent pedogenic processes occurring along the modern hillside rather than ancient
76
pedogenesis, primarily due to the common crystallization of gypsum/anhydrite as a late
diagenetic/pedogenic evaporite (Retallack, 1988).
Overlying the bonebed mudstone in the eastern half of the bluff is a white, very
fine grained, heterolithic sandstone (unit 6 of Colson et al., 2004) with rare, faint trough
cross bedding and a basal lag including abundant heavily oxidized bone fragments,
ossified tendon fragments, and small (< 2 cm) mud rip-up clasts. This broad, lens-shaped
unit exhibits a sharp, erosive contact into the underlying bonebed-containing mudstone
that includes flute casts in some areas. Its erosive depth increases toward the east. Toward
its eastern exposure, the basal lag of the sandstone includes abundant small bones and
partial bones as well as mud rip-up clasts, tendon fragments, and teeth. To date, the most
abundant skeletal elements in this eastern basal lag are teeth, caudal and cervical
vertebrae, and cervical ribs; limb bones and dorsal vertebrae are rare. Some of these
elements are incomplete or display signs of fragmentation and/or abrasion. Increasing bed
thickness and the presence of more numerous, larger bones toward the eastern end of the
bluff suggest the channel thalweg passed within, or at least closer to, this area.
Cumulatively, sedimentary composition, bedforms, and taphonomic findings are
consistent with the interpretation that this overlying sandstone represents a channel
deposit recording fluvial erosion and reworking of skeletal elements from the bonebed
proper.
In the western half of the bluff, the bone-bearing mudstone is overlain by typical
fluvial deposits of the Hell Creek, including interlaminated floodplain siltstones,
discontinuous sandstone lenses, and variegated mudstones (units 7, 8, and 9 of Colson et
al., 2004). Bed contacts tend to be sharp and generally planar, and lateral discontinuity of
77
beds is common. Sandstone lenses comprise well-sorted, very fine to medium sand and
commonly exhibit planar tabular and ripple cross bedding (visible by iron staining and, in
some spots, by very thin mud/organic matter drapes (perhaps indicating tidal influence))
and basal lags including 0.5–3 cm clay rip-up clasts. Organic remains are rare in the
sandstones, but remain fairly common throughout siltstones and shaly mudstones (~10–
40%; Colson et al., 2004); they are particularly concentrated in some thin beds.
2.5 Methods
Traditional taphonomic methods were employed (Rogers et al., 2007), comprising
analyses of bone spatial distributions, orientations, surface modifications, ontogenetic
characterization, and histological examination. Preburial weathering was categorized in
the 0–3 simplified ranks of Behrensmeyer (1978), following other bonebed studies (e.g.,
Ryan et al., 2001; Gangloff and Fiorillo, 2010), in which 0 represents no weathering and
3 represents extensive, deep cracking and flaking of exterior bone. Abrasion was
similarly categorized using the 0–3 simplified ranks of Fiorillo (1988), following Ryan et
al. (2001), where 0 represents no abrasion and 3 represents severe rounding of epiphyses
and processes. Element fractures were categorized as spiral, longitudinal,
transverse/compressional, or unfractured following Ryan et al. (2001). I separately
discuss methods for determination of an age profile for SRHS Edmontosaurus bones,
analyses of Voorhies transportation groups, x-ray diffraction, and soft tissue assays
below.
78
An age profile of Edmontosaurus annectens individuals from SRHS was
calculated using the body size classes of Horner et al. (2000). These age classes are based
on known femoral lengths and corresponding body lengths for Maiasaura peeblesorum, a
hadrosaurine of similar adult body size and proportions to Edmontosaurus (Gangloff and
Fiorillo, 2010). By assuming an average adult femur length for Maiasaura of 110 cm
(Horner, 1994), Horner et al. (2000) consider “adults” as individuals with femora at least
1 m in length (90.9% of the average adult size, 110 cm), “subadults” as individuals with
femora 68–100 cm in length (61.8–90.9% of average adult size), “late juveniles” as
individuals with femora 50–68 cm in length (45.5–61.8% of average adult size), and
“early juveniles” as individuals with femora 12–18 cm in length (10.9–16.4% of average
adult size). I follow Gangloff and Fiorillo (2010) who expanded this classification
scheme in two manners. First, Gangloff and Fiorillo (2010) calculated corresponding
body size cutoffs for additional, large appendicular and cranial elements (quadrate,
dentary, tibia, metatarsal III, ulna, humerus, ilium, and scapula), making the scheme more
comprehensive and applicable for analyzing disarticulated individuals. Second, Gangloff
and Fiorillo (2010) added a “late early juvenile” age class to account for individuals
between the maximum size of “early juveniles” (16.4% mean adult size) and minimize
size of “late juveniles” (45.5% mean adult size) in the Horner et al. (2000) classification
scheme. Mean adult bone lengths for Edmontosaurus annectens were calculated by
summing and averaging E. annectens bone lengths provided in Gangloff and Fiorillo
(2010, supp. data 3) with the largest such element from SRHS, which frequently were
longer than the five museum specimens considered by Gangloff and Fiorillo (2010).
79
Bones were classified according to Voorhies (1969) groups I and II to examine
potential effects of hydraulic sorting on the SRHS assemblage. Group III was not
considered because Voorhies (1969) originally based this group on the fused skulls of
mammals. Nonavian dinosaurs, however, do not typically exhibit cranial fusion beyond
the braincase (Gates, 2005). Therefore, cranial elements (including those of the lower
jaw) were assigned to group II following Gates (2005) and Lauters et al. (2007).
Additional modifications to the original Voorhies (1969) groups followed Gates (2005),
comprising inclusion of metapodials, phalanges, and hemal arches in group I and carpals,
all stylopodial and zeugopodial limb bones, and all pelvic and pectoral bones in group II.
Because no fused sacra have been recovered from SRHS, unfused sacrals were included
in group I. Following Gangloff and Fiorillo (2010), vertebral centra ≥ 85% complete
were included as “complete” vertebrae and only rib fragments ≥ 10 cm in length were
considered as “complete” ribs for counting purposes. These changes account for the
differing bone sizes and shapes in hadrosaurids compared to those of sheep and coyotes
in the original analysis of Voorhies (1969).
X-ray diffraction (XRD) was performed to characterize the mineralogy of fossil
specimens, entombing sedimentary matrix, and concretions within the host matrix.
Roughly 1–2 mg samples were powdered (for 10 minutes) to less than 10 μm in SPEX
tungsten carbide Mixer-Mills (model #8000). Analyses were then performed on a Phillips
X'Pert diffractometer (#DY1738) at the University of Pennsylvania, using Cu Kα
radiation (λ = 1.54178Å) and operating at 45 kV and 40 mA. Diffraction patterns were
measured from 5–75 °2θ with a step size of 0.017 °2θ and a time of 1.3 seconds per step
80
(= 0.77 degrees per minute). Phillips proprietary software HighScore Plus v. 3.0e was
used to interpret resulting diffraction traces.
All excavation in the 2012 quarry was conducted while wearing nitrile gloves to
limit contamination for ensuing soft tissue analyses (see below). Samples of cortical bone
were collected via a sterile technique immediately following discovery and exposure of
bones in the field (Schweitzer et al., 2008). This involved hammering a dedicated,
autoclaved chisel into bone shafts to extract small fragments of cortex. Limb bones were
targeted for most samples following the hypothesis that solid, durable, midshaft-cortical
bone would best protect soft tissues against decay (Hagelberg et al., 1991; Hedges, 2002;
Zazzo et al., 2004; Goodwin et al., 2007). Collected samples were wrapped in autoclaved
aluminum foil and stored in autoclaved canning jars over silicagel desiccant beads until
analysis in the laboratory. A concretion from within the host sediment and associated
sediment samples from adjacent to each bone were also collected in the same manner. A
fragment of moderately weathered (lightened by solar UV radiation) “float” cortical bone
that had tumbled part way down the hillside was also collected and tested. In total 13
bone samples were collected, ten of which have thus far been tested: two femora (SRHSDU-125 and -273), three metatarsals (SRHS-DU-192, -274, -306), two phalanges (SRHSDU-89 and -278), a fibula (SRHS-DU-231), a caudal centrum (SRHS-DU-220), and a
fragment of “float” cortex. A fragment of ossified tendon from the middle of the quarry,
another found as “float”, and a tooth from the middle of the quarry were also sterilely
collected and tested. Fossil samples thus encompassed the full range of highly porous and
permeable cancellous bone (phalanges SRHS-DU-89 and -278) to solid, low porosity,
cortex (femora SRHS-DU-125 and -273) and enamel (tooth).
81
Demineralization of fossil samples with 0.5 M disodium
ethylenediaminetetraacetic acid (EDTA) pH 8 was carried out to test for the preservation
of soft tissues. EDTA chelates calcium ions from bone, leaving behind iron oxides and
any soft tissue remains that do not possess divalent cations (Schweitzer et al., 2005b).
Demineralization was conducted in a paleomolecular-dedicated fume hood for a period of
1–4 weeks, with daily solution exchanges (following the protocol of Schweitzer et al.,
2005b, 2007b, 2009). For standard transmitted light microscopy, demineralization
products were transferred to glass slides with sterile glass pipettes, then covered with
sterile cover slips. Optical microscopy was conducted on a Leica DM750 microscope and
images were collected with either a Leica ICC50 HD or an AmScope digital camera.
For field-emission scanning electron microscopy-energy dispersive x-ray
(FESEM-EDX) analyses, solid bone and sediment samples were adhered to aluminum
stubs with Sticky Tabs double-sided carbon tape (Canemco, Quebec, Canada). Fossil
demineralization products were thoroughly rinsed with double-distilled water, then
allowed to air dry onto pure silicon chips overnight in a dedicated laminar flow hood
before being adhered to aluminum stubs with Sticky Tabs. Imaging of uncoated samples
was conducted on a Zeiss Supra 50VP FESEM at either three or 15 kV (depending on
sample weakness and desired contrast), a working distance of 11–28 mm, and
magnification ranging up to 7000X. Semi-quantitative elemental maps and spot analyses
were collected as a standardless assay (for 5 min per spot or map) via a coupled Oxford
model 7430 INCAx microanalyzer.
Because histologic integrity is thought to represent a rough proxy for
biomolecular preservation (Schweitzer et al., 2008), I cut a thin section from the fibula
82
examined for soft tissue preservation (SRHS-DU-231) to test its degree of
microstructural preservation. To maintain close proximity between histologic and softtissue sampling sites, I transversely cut the fibula midshaft only a few centimeters away
from the soft-tissue sample site. Thin section preparation methods generally followed
those outlined for fossil bone by Chinsamy and Raath (1992), including embedding in
Silmar 41 epoxy resin (US Composites, West Palm Beach, FL) followed by cutting,
grinding, and polishing to a final thickness that optimized optical contrast. Histologic
terminology follows that of Francillon-Vieillot et al. (1990). Bone microstructure
integrity was ranked according to the Histologic Index of Hedges and Millard (1995).
2.6 Faunal and floral summary
SRHS is a monodominant bonebed of the hadrosaurid Edmontosaurus (Colson et
al., 2004). All non-microfossil bones thus far recovered from the assemblage belong to
this taxon. Colson et al. (2004) could not successfully identify which species of
Edmontosaurus is entombed, but recent advances in our morphological understanding of
these taxa (notably by Prieto Marquez (2008) and Campione and Evans (2011)) now
allow for this question to be addressed. Though the remains are almost entirely
disarticulated, anatomy of individual bones can be used to differentiate E. annectens from
E. regalis (Prieto Marquez, 2008). In particular, Prieto Marquez (2008) identifies
postcranial differences between the two species in features of the coracoid, humerus,
ilium, pubis, ischium, and third metatarsal. In comparison to E. regalis, E. annectens has
a relatively longer, “hook-like” ventral process of the coracoid (Prieto Marquez, 2008,
83
character 218), a wider angle formed by the cranial margin of the distal deltopectoral
crest with the proximalmost humeral shaft (ch. 231), a dorsoventrally shorter central
blade of the ilium (relative to the craniocaudal distance between the pubic peduncle and
caudodorsal prominence of the ischial peduncle; ch. 246), a longer prepubic process of
the pubis (ch. 274), a proximodistally shorter pubic peduncle of the ischium (ch. 280),
and proportionately longer and narrower third metatarsals (ch. 294). Bones from SRHS
exhibit character states matching those presented by Prieto Marquez (2008) for E.
annectens for four of these six features (chs. 218, 231, 246, and 294), indicating a
confident identification for the SRHS hadrosaur as E. annectens. SRHS pubes and ischia
exhibit morphologies that score for multiple states for characters 274 and 280 of Prieto
Marquez (2008), not allowing definitive identification: SRHS ischia exhibit pubic
peduncles that are either short (state 2 for ch. 280, as for E. annectens) or as long as wide
(state 1 for ch. 280, as for E. regalis), and SRHS pubes exhibit both very long (state 2 for
ch. 274, as for E. annectens) and moderate-length (state 1 for ch. 274, as for E. regalis)
prepubic processes. I refrain from assigning these variable morphologies to ontogenetic
or intraspecific investigation and instead suggest such variation is an avenue for further
research.
An additional morphological difference between E. annectens and E. regalis is
described by Campione and Evans (2011), who note that the nasal in E. annectens shows
relatively weak excavation in the caudodorsal corner of the narial vestibule in comparison
to E. regalis. Nasals from SRHS show weak excavation at this location, again consistent
with E. annectens.
84
Additional fauna are represented primarily by microfossils and are collectively
indicative of a fluvial to coastal environment, consistent with stratigraphic interpretations
of the depositional setting (Table 2.1). Though no bones of any dinosaur other than E.
annectens have been found in the bonebed proper, teeth of at least one troodontid (N = 2)
and dromaeosaurid (N = 86) theropod have been recovered. Mammals are well
represented by abundant multituberculate remains (N = 58, comprising 57 teeth and one
partial dentary) and single teeth of a metatherian, eutherian, and indeterminate therian.
The most abundant microfossils in the bonebed are referable to the gar Lepisosteus
occidentalis, and comprise scales, teeth, and vertebrae. Additional vertebrate remains
include two partial crocodilian scutes, teeth of the crocodilians Brachychampsa montana
and Borealosuchus sternbergi, two Myledaphus bipartitus (ray) teeth, shell fragments of
Compsemys sp., a partial costal and shell fragments of an indeterminate trionychid turtle,
five trunk vertebrae of the amiid fish Kindleia fragosa, and two teeth of the semi-aquatic
choristodere Champsosaurus sp. Invertebrates are represented solely by steinkerns of the
snail Campeloma sp. (N = 3) and an indeterminate unionid clam (N = 2). Redwood cones
referable to Metasequoia sp. are the most abundant remains of vegetation (N = 20), and
two Metasequoia leaf imprints and a single Taxodium occidentalis (cypress) leaf imprint
have also been discovered. In short, no exclusively marine taxa have been identified;
rather, fresh and brackish-water inhabitants abound, including gar and amiid fish,
crocodilians, turtles, Myledaphus, Campeloma, unionids, and cypress trees.
Of the 4,702 dinosaurian bones (other than teeth) thus far discovered at SRHS, all
are attributable to E. annectens. The minimum number of E. annectens individuals
represented (MNI, as counted by the abundance of left versus right elements following
85
Badgley, 1986) is 44, based on left digit IV metatarsals. Given the remarkably long
outcrop of the bonebed, there are clearly thousands of bones still buried and the real
number of individuals interred in the assemblage is assuredly much higher.
2.7 Age Profile
Age estimates for SRHS bones were calculated by converting measured bone
lengths to percentages of adult means for E. annectens (see Methods, above). Overall,
SRHS bones ranged from 21.6% to 115.3% of adult mean lengths, including numerous
elements (quadrates, femora, tibiae, third metatarsals) more than 10% longer than those
of “adult” specimens considered by Gangloff and Fiorillo (2010). These percentages
correspond to an age range of “late early juvenile” to “adult”. Cranial elements exhibit
the greatest range, 21.6%–115.3% of adult means, and third metatarsals exhibit by far the
narrowest range (77.6%–114.4%) and highest average (93.6% adult mean size) of all
elements considered. Tibiae and radii exhibit moderately narrow ranges, 49.3%–110.5%,
compared to the remainder of limb elements. The majority of bone dimensions
correspond to ranges for “subadult” individuals, followed secondly by “adult” individuals
(Figure 2.1A). No bones pertaining to “early juveniles” or hatchlings have been found.
Neurocentral suture closure is a characteristic ontogenetic feature of extant
crocodilians (Brochu, 1996) and has been used to characterize ontogenetic stage of fossils
of other archosaurs, including nonavian dinosaurs (e.g., Gangloff and Fiorillo, 2010). Of
a sample of 539 vertebrae, 397 (74%) exhibit neurocentral closure. A total of 466 caudal
vertebrae are included in this sample, of which 375 (81%) exhibit suture closure. Nearly
86
all distal caudal vertebrae (194/199, 97.5%) exhibit neurocentral closure, as do the
majority of proximal caudal vertebrae (25/30, 83%). Most proximal caudal vertebrae
(23/29, 79%) also exhibit fusion of transverse processes. A single distal caudal vertebra
exhibits closure of one half of the neural arch whereas the other half remains open, and a
single proximal caudal vertebra exhibits fusion of one transverse process but not the
other. Closure frequency progressively decreases cranially through the vertebral column,
with only 45% of dorsal vertebrae (13/29) and 23% of cervical vertebrae (9/39)
exhibiting closure. An additional two axes and three sacral vertebrae included in this
sample do not exhibit closure. Cumulatively, patterns of SRHS vertebral fusion generally
conform to the caudal-to-cranial closure pattern known for extant crocodilians during
ontogeny (Brochu, 1996) and corroborate the abundance of relatively “mature” subadults
and adults in the assemblage as inferred above from linear bone measurements.
2.8 Taphonomy
2.8.1 Skeletal representation
Every bone comprising the skeleton of an Edmontosaurus has been collected from
the site except for scleral ossicles. This exception likely owes to the difficulty of
identifying these small, non-descript elements. Sizes of non-microfossil material from
SRHS range from ossified tendon fragments and teeth less than 2 cm in greatest
dimension to two 127 cm long femora (mean specimen length = 17.8 cm). Fossil sizes are
clearly skewed toward smaller lengths (Figure 2.2A), reflecting the great abundance of
ossified tendon fragments and isolated teeth in the assemblage. Most maxillae retain all
87
or the majority of their teeth, but not a single dentary has been recovered with even a
partially intact tooth battery. No preference of preservation of left or right elements is
observed: a survey of 2,058 bones provided a count of 1,034 left and 1,019 right
elements.
As at the Liscomb Edmontosaurus bonebed in Alaska (Gangloff and Fiorillo,
2010), vertebrae are the most common elements and pedal bones are more common than
those of the manus (Figure 2.2B; Table 2.2). Postcranial elements show greater survival
than cranial elements, though certain cranial elements (e.g., quadrates, jugals, maxillae)
exhibit survival rates on par with other regions of the skeleton. Metatarsals (81.1%) and
metacarpals (70.7%) exhibit the greatest survival percentages. Despite the fact that nearly
1,100 caudal vertebrae have been collected, this is less than half the number (40.8%) that
would be predicted from 44 individuals (2,640). Eighty-six percent of vertebrae collected
are caudals, while only 5% are dorsals (Figure 2.1B); it is likely that these numbers
partially reflect the greater number of caudal vertebrae in a single individual. Only seven
sacral centra have been recovered, none of which are fused with other centra. Vertebral
components exhibit nearly equal abundances among centra (23%), neural arches (27%),
neural spines (20%), and chevrons (28%), with only unfused proximal caudal transverse
processes being rare (2%; Figure 2.1C).
2.8.2 Spatial distribution and orientation of elements
All Edmontosaurus bones from SRHS are disarticulated and disassociated except
for four partially fused braincases. Numerous braincase elements were also found
disarticulated, however, even of the same size as the elements contributing to the four
88
partially fused braincases. This indicates that: 1) cranial bone fusion did not occur until
late in ontogeny; 2) fusion did not occur at a particular somatic age for this hadrosaur,
and; 3) skulls were exposed long enough to allow tough soft tissues binding cranial
elements to decompose.
Quarry maps compiled from each field season, such as that for 2012 (Figure
2.3A), demonstrate the prolific abundance and dense packing of bones throughout nearly
the entire studied exposure. Only minor local clustering of bones can be identified in
some regions. Elemental abundances ranged from 24–43 bones/m², with an average of 34
bones/m² over a representative ~ 9 m² area excavated in the summer of 2012. Four
summers of excavation in another 27 m² area along the bluff yielded 23–116 bones/m²
with an average of 56 bones/m². Stacking of bones is common, with up to six bones being
observed to overlie one another on certain occasions. However, the largest limb bones
(femora and tibiae) do not tend to stack over one another. A slight normal grading pattern
is seen in the field, with smaller bones (e.g., unfused vertebral neural arches, hemal
arches) being encountered more frequently in the upper portions of the mudstone.
Ossified tendon fragments and isolated teeth also appear to conform to a slightly graded
distribution within the bed. In map view, tendon fragments and teeth appear randomly
distributed, with only minor evidence of clustering of teeth in some areas (Figure 2.3B).
The vast majority of bones are encountered at nearly horizontal orientations
within the single horizon (Figure 2.2D). No bone plunges greater than 30° were recorded
among 59 long bones (e.g., limb elements, ribs, dentaries, neural spines) recovered from
a representative ~ 9 m² area of the bonebed excavated in the summer of 2012. Moreover,
68% of bones from this representative excavation exhibit plunge ≤ 10°. A Rayleigh test
89
rejects the null hypothesis of a uniform distribution of bone plunge directions (Z = 0.38, p
< 0.001), though they present a wide standard deviation range (Figure 2.2E).
No patterns are evident among all measured bone strikes (N = 4,385) from the site
to date (Figure 2.2F). A second rose diagram (Figure 2.2G) was constructed to investigate
whether closer inspection over a smaller area of the quarry would still yield a
random/uniform pattern of bone orientations. This analysis summarized bone strikes over
a ~ 9 m² area excavated in the summer of 2012. At this smaller scale, there is a clear
bimodal pattern to bone strikes, comprising a northeast-southwest trend and a nearly eastwest trend. Evidently, currents acted heterogeneously over the vast bonebed, with small
areas experiencing either stronger flow or sustained flow for longer periods of time.
2.8.3 Voorhies groups
The SRHS assemblage is dominated by Voorhies group I elements, especially
vertebrae, phalanges, and metapodials (Figure 2.2C). This is evident in a group I:II ratio
of 3:1 (in other words, 75% of preserved bones can be classified as group I elements,
25% as group II elements). Overrepresentation and underrepresentation are each evident
for select bones of each group. Of group I elements, vertebrae, metapodials, and
phalanges are moderately overrepresented whereas hemal arches are clearly
underrepresented (3.9% observed vs 12.5% expected). Of group II elements, limb bones
are modestly overrepresented whereas cranial elements are underrepresented. Ribs (7%
observed vs 9% expected), carpals (0.1% vs 0.5%), and girdle elements (1.6% vs 1.5%)
nearly exhibit expected frequencies.
90
2.8.4 Hydraulic equivalency
As previously discussed, SRHS specimens range in size from 2–127 cm in
greatest length, with an average size of 18 cm. Whereas only 41% of specimens are < 10
cm long, the majority (70%) are < 20 cm long. The majority of larger bones (25 of the
remaining 30%) are 20–50 cm long. When these dimensions are compared to sizes of
hydraulically equivalent quartz grains using the equivalency chart of Behrensmeyer
(1975, p. 496), the vast majority of SRHS bones are hydraulically equivalent to quartz
grains of > 2 mm in diameter, or granule to pebble size gravel. In sharp contrast, grain
sizes of the bonebed matrix are dominated by clay and silt with sparse very-fine to fine
sand. This considerable discrepancy between bone hydraulic equivalents and encasing
sediment grain sizes suggests that flow competency was inadequate to accomplish long
distance, sustained transport of the bones, implying that the assemblage is autochthonous
to the site of burial and that the depositional setting was one of low energy.
2.8.5 Weathering
A representative sample of 1,806 bones in Concordia College collections and
excavated in the summer of 2012 were surveyed for preservation state attributes,
including preburial weathering, abrasion, fracture patterns, and biogenic alterations such
as bite marks and pathologies. These bones were categorized into the four weathering
stages employed by Ryan et al. (2001) (Figure 2.1F). The vast majority of specimens
(96%, N = 1,738) are unweathered (Stage 0), while only 0.1% (N = 1) of bones present
significant preburial weathering features (Stage 3), including deep longitudinal cracking
and loss of surficial bone. An equally small proportion of bones (0.1%, N = 1) presents
91
moderate weathering (Stage 2), primarily in the form of deep, longitudinally oriented
cracks. Roughly 4% of bones (N = 66) display shallow cracking of surface bone
indicative of short-term, subaerial exposure (Stage 1). When encountered, moderate and
significant preburial weathering are commonly localized to portions of specimens rather
than over the entire surfaces of bones. This localization of weathering suggests partial
burial of the respective bones for a period of months to years. Such rarity of substantial
weathering contrasts with weathering profiles of modern and fossil attritional
assemblages (e.g., Potts, 1986; Fiorillo, 1988, 1991a), which generally display a less
severely skewed character, with more bones presenting slight to moderate weathering.
This difference clearly signifies rapid burial of SRHS bones.
2.8.6 Abrasion
Teeth were excluded from the dataset analyzed for postmortem modifications
because they can withstand substantial transport and decay, yet display no clear
indications of abrasion (Argast et al., 1987). Of the 1,806 bones studied, none displayed
stage 3 abrasion, and only four (0.2%) showed moderate rounding of broken and
unbroken ends (stage 2; Figure 2.1G). A minority of bones, roughly 8% (N = 148),
exhibit evidence of slight rounding (stage 1). Most bones (92%, N = 1,654) exhibit no
signs of abrasion. This profile is remarkably similar to that of bone weathering at SRHS
(compare Figures 2.1F and G), yet comparison of these datasets identifies that signs of
postmortem weathering and abrasion are infrequently correlated to the same specimens:
only 8% of bones with observable abrasion or weathering display both types of
modification. Rarity of significant weathering is suggestive of minimal transport of most
92
specimens, though it must be noted that this correlation is not so clear cut. For example,
fresh bone is known to show striking resistance to abrasion (Behrensmeyer, 1990),
meaning that bones might be transported a considerable distance before displaying signs
of rounding or surface polishing. However, inclusion in the assemblage of a few bones
displaying moderate abrasion demonstrates with certainty that allochthonous material
transported in from more landward locations comprises a small contribution to the SRHS
bonebed.
2.8.7 Breakage and fracturing
Nearly two-thirds (62%, N = 688) of the 1,806 bones in the collections dataset are
complete, though I feel this statistic is heavily biased and does not adequately reflect the
nature of the assemblage in the field. The incompleteness of many specimens is likely
attributable to loss during excavation or difficulty of collection given the extremely dense
nature of the assemblage, forcing us to divide certain bones in order to collect others.
Many incomplete elements show freshly broken edges along transverse fractures,
supporting this inference.
Complete bones include elements of all sizes, from minute manual phalanges and
distal caudals through ilia and femora. The vast majority of incomplete bones are cranial
elements, vertebrae, and ribs. Appendicular elements are almost always complete; the
only exceptions are fragmented and sometimes spiral-broken, thin margins of some
scapulae and ischial blades (Figure 2.1H). Preburial fractures are encountered in only
12.6% of bones (N = 218), most of which are spiral breaks of narrow vertebral processes
and cranial element extensions and blades (e.g., Figure 2.4A). However, many intricate
93
cranial elements with thin processes and blades, such as pterygoids and jugals, also
remain fully intact. Unfractured bones comprise nearly one-quarter of specimens (21%).
Most unfractured bones are small elements comprised of dense, homogenous internal
bone structure, namely phalanges, vertebral centra, and small metacarpals. This pattern
for dense, homogenous tissue structure to resist diagenetic fracturing is also seen in larger
limb bones, in which condyles frequently remain unfractured while shafts can display
substantial compression artifacts (transverse and longitudinal breaks). In fact, nearly
every element that is fractured displays evidence of compression or crushing-induced
fracturing in the form of transverse and/or longitudinal breaks. It is not uncommon to find
bones crushed into one another (examples include crossing limb bone shafts and vertebral
centra crushed together). Evidence of such cases (N = 27) is seen in the form of stepped,
concentric, crescentic fractures (e.g., Figure 2.4B). The general abundance of transverse
and longitudinal fracturing is sensible given the fine-grained host lithology of the
bonebed: as noted by Ryan et al. (2001), bones preserved in fine-grained mudstones and
siltstones tend to more frequently display evidence of sediment compaction (in the form
of compressional fracturing) than bones preserved in coarser-grained sandstones.
A general pattern was found during excavation that bones closer to the hillside
tend to display a greater degree of shattering than bones covered by greater amounts of
protective overburden further back in the hillside. This may be attributable to nascent
slumping of the edge of the hill downslope (noted at some locations along the butte) as
well as shallowly penetrating freeze-thaw swelling cycles due to the strong seasonal
fluctuations that occur in the Dakota badlands region.
94
2.8.8 Tooth marks
Putative or definitive tooth marks on SRHS bones are encountered on 100 (5.5%)
of the 1,806 bones surveyed. This proportion is slightly greater than in many dinosaur
bonebed assemblages (0–4%; Fiorillo, 1991b). Bite marks are almost universally isolated
or parallel shallow scores forming V-shaped grooves along bone surfaces (Figure 2.5A).
Only a few putative tooth impact pits were identified amongst the representative bone
dataset, and no indications of gnawing were encountered. In contrast to the Liscomb
Edmontosaurus bonebed in Alaska (Gangloff and Fiorillo, 2010), the majority (52%) of
bite marks occur on appendicular elements, almost all of which are on limb bones rather
than girdle elements. Only 31% of tooth scores are on axial elements (ribs, chevrons,
vertebrae, and gastralia), while the remaining 17% are on cranial elements (primarily
dentaries and quadrates).
Shed or broken theropod teeth (N = 89), ranging from 0.6–5.8 cm in apicobasal
crown height, were commonly scattered amongst bones in the host horizon as well as at
the base of the sandstone unit overlying the bonebed assemblage. These teeth are of
typical dromaeosaurid character (Currie et al., 1990), exhibiting strong lateral
compression, modest recurvature, and small, rounded serrations along the carinae that are
slightly larger along the caudal carina (Figure 2.5B). Because no theropod bones have yet
been recovered from the bonebed horizon, the overlying or underlying strata, nor the
immediate vicinity, I assign these teeth to an as-yet indeterminate dromaeosaurid. The
shallow and narrow forms of most tooth scores on the hadrosaurid bones are consistent
with marks one would expect formed by these teeth. I therefore consider it probable that
many of the theropod teeth encountered in the assemblage were shed or lost during
95
scavenging of the Edmontosaurus carcasses, either at the site of deposition or at a slightly
upstream location where the carcasses were likely decomposing (see Discussion for more
on the interpreted burial scenario).
2.8.9 Trample marks
Trample marks are discernible as faint, closely-spaced parallel lines across the
surface of a bone created by scratching of coarse sediment grains or other bones across
the surface during trampling by animals (Behrensmeyer et al., 1986). Putative trampling
lines are rare among SRHS bones, being found on only 32 specimens (1.8% of the 1,806
bones surveyed). Most are on the shafts of elongate bones, especially ribs and limb
elements. These marks are generally present in single, small patches on bone surfaces
rather than over large areas or in multiple areas. This pattern of confined localization and
a general scarcity of coarse sediment grains (i.e., sand) in the host horizon suggest these
marks were more likely formed by scraping of bones against one another during transport
or by trampling-induced churning of bones rather than by abrasion of sediment grains
against bones during trampling.
2.8.10 Pathologies
A total of 45 bones, 2.5% of the 1,806 surveyed, show evidence of pathologies.
All but eight of these pertain to axial elements, and most of these pertain to caudal
vertebrae, as was also true for Edmontosaurus at the Liscomb bonebed (Gangloff and
Fiorillo, 2010). Common axial pathologies include isolated lesions (N = 6) and healing of
fractures or breaks in neural spines (N = 11), transverse processes (N = 2), hemal arches
96
(N = 2), and rib shafts and heads (N = 1 each). Osteochondrosis, a developmental
abnormality caused by incomplete differentiation of cartilage from bone (Rothschild and
Tanke, 2006), was also observed. Though normally seen at articular ends of limb
elements (Rothschild and Tanke, 2006), Gangloff and Fiorillo (2010) identified that
Edmontosaurus vertebrae, especially caudals, also commonly display evidence of
osteochondrosis on the articular faces of their centra. This same pathology is also found
to be common among caudal vertebrae at SRHS (N = 9), especially distal caudal
vertebrae (seven of the nine occurrences). This pathology is expressed by depressed
grooves in centra faces (e.g., Figure 2.6A). Five caudal centra also exhibit craniocaudally
oriented grooves across the entire centrum length and dorsoventrally along the sagittal
plane in cranial and caudal view (Figure 2.6B). The cause of these pathologies remains
unclear, but I tentatively propose these represent cases of craniocaudally split centra
captured in the process of rehealing. Two cases of fusion of caudal centra are also present
in Concordia collections (Figure 2.6C), presumably reflecting tumor growth or healing of
impact-related trauma.
No pathologies were encountered in cranial elements. Six appendicular
pathologies have been identified: a lesion on the dorsal surface of a pedal ungual (Figure
2.6D), pitting on two pedal phalanges, a lesion encircling the midshaft of a large limb
element (specimen is currently incomplete, but the shaft cross section shape is most
consistent with a tibia), a lesion on the lateral face of a manual phalanx, and a broken and
healed pubic blade. Most lesions are evident as growths with finely pitted, amorphous
bone texture.
97
2.8.11 Diagenesis
Energy-dispersive x-ray (EDX) analyses of cortical bone identified it to be
comprised of calcium, phosphorous, and oxygen. XRD confirmed that all ossified
specimens, namely cortical bone, cancellous bone, a tooth, and ossified tendon, are
comprised of fluorapatite (Figure 2.7). Hydroxyapatite was also found as a close match to
the fossil bone XRD spectra, and chlorapatite was found as close match to the tooth
diffractogram, but in each case, peak residuals were smaller when the spectra were
matched against fluorapatite. Nearly every bone is unpermineralized. One exception is a
femur collected in 2012, which exhibits a thin coating of quartz (as determined by SEMEDX) over portions of medullary cavity trabeculae. Under SEM, the quartz coatings
exhibit a nodular surface and fine, radial growth patterns in cross section, signifying brief
precipitation from supersaturated diagenetic fluids. Partial or complete permineralization
with pyrite is exceedingly rare (N = 6), but pyritic concretions adhered onto bone
surfaces are encountered at a slightly higher frequency (N = 28, 0.01% of total). Five of
these pyritic concretions also permeate portions of interior bone, creating local zones of
permineralization. Incipient pyrite “disease” is beginning to degrade some of these
specimens, in which the pyrite concretions are friable and crumble when touched.
Many limb bone epiphyses and porous edges of vertebral centra and processes are
partially encased in yellow goethite concretions or are permeated by an unconsolidated,
bright red-orange powder. XRD analyses failed to provide spectra for this material,
signifying it is amorphous in nature, and EDX identified it as being comprised of iron and
oxygen. Thus, both amorphous iron oxides and goethite commonly are concentrated
around bones. Given that amorphous iron oxide tends to concentrate not only around
98
bones but precisely around the more porous regions where biogenic fluids, such as blood,
could most easily leach out of the bone, an intriguing avenue for future research would be
to test if organically bound iron in the form of haeme is present in this material.
2.8.12 Soft tissue preservation
Demineralization yielded abundant structures morphologically consistent with
vertebrate osteocytes, blood vessels, and fibrous bone matrix (Figure 2.8). These
structures were even recovered from a fragment of moderately weathered “float” cortical
bone (Figures 2.8C–D). Numerous osteocytes and few vessel fragments were also
isolated from ossified tendon samples, representing the first recovery of these structures
from such tissue. Soft tissue structures were absent in all sediment samples, which
instead yielded rounded to angular sand grains of varying composition, small lignite
fragments, amber inclusions, and dark, granular, fine-grained fragments of silty matrix
(Figures 2.8A,N).
Certain bones (such as metatarsal SRHS-DU-306 and femur SRHS-DU-273)
yielded more numerous soft tissue structures than others (such as phalanx SRHS-DU-278
and metatarsal SRHS-DU-274), but there is no clear correlation between bone type and
soft tissue recovery. However, cortical bone yielded far more vessel fragments than
cancellous bone. This may be due to the greater protective mineral encasement of vessels
in cortical bone.
In both bone and tendon samples, osteocytes are recognizable as oblate, rounded
structures frequently with long, branching extensions emanating in all directions (Figures
99
2.8C,E,I–J). These extensions are morphologically consistent with filipodia of modern
bone cells. Filipodia of some osteocytes exceed 20 μm in length (Figures 2.8C,I).
No vessels were recovered from phalanx SRHS-DU-278, and only a single vessel
fragment was recovered from phalanx SRHS-DU-89. Osteocytes vary between stellate
and flattened-oblate morphologies as defined by Cadena and Schweitzer (2012), and
typically exhibit light yellow-tan to dark brown color (Figures 2.8E,I). Some osteocytes,
however, are nearly translucent and lack filipodia (Figure 2.8H). SEM of osteocytes
found that many present fine, linear grooves crisscrossing the surface of the main body of
the osteocyte (Figure 2.9E). Similar grooves have previously been noted on fossil
osteocytes from the dinosaur Tarbosaurus by Pawlicki (1995; Pawlicki and
Nowogrodzka-Zagorska, 1998), who suggested they are impressions of collagen fibrils.
Tendon and cortical and cancellous bone yielded small fragments of fibrous tissue
consistent with collagenous bone matrix (Figures 2.8F,H,J,L). Matrix fragments normally
appear translucent, though samples from phalanx SRHS-DU-278 exhibit a yellowish hue
likely due to iron staining. These tissues appear as rough, porous, fibrous masses, and
osteocytes are occasionally seen embedded within and attached to matrix fragments
(Figures 2.8H,J). This is especially clear under SEM (Figures 2.9C–D, 2.10A). SEM
analyses also found that some fragments of fibrous matrix exhibit a bi-layer structure
comprising two primary fibrillar sheets interconnected by abundant cross-struts (Figure
2.9C). Compositional heterogeneity between osteocytes and fibrous matrix is clearly
evident in some samples, such as fibula SRHS-DU-231, in which fibrous matrix remains
translucent, whereas osteocytes are dark orange-brown in color (Figure 2.8J).
100
Vessel fragments are plentiful in some samples (Figure 2.8B), and some remain
slightly pliable (flexible). These structures are uniformly cylindrical in form and hollow
(Figures 2.8F,K, 2.9F), and many exhibit intricate branching patterns. Metatarsal SRHSDU-306 preserves intricate, interconnecting vessel networks (Figures 2.8M, 2.9A–B). All
vessels, including pliable vessels, exhibit yellow to orange or brown coloration. A few
vessel fragments are rigid and appear nearly black in coloration, suggesting they may be
iron oxide casts of vessel canals rather than partially preserved original vessels. Some
vessels contain abundant red-brown, spherical microstructures that exhibit a narrow range
in diameter from 5–15 μm (Figure 2.8G). Similar intravascular microstructures
previously identified in dinosaur vessels (Pawlicki, 1995; Schweitzer and Horner, 1999;
Schweitzer et al., 2005b) have been attributed to condensation of erythrocyte degradation
products that induces precipitation of nanocrystalline goethite (Schweitzer et al., 2014a).
Demineralization of a tooth, carried out for an additional 3 weeks due to the high
crystallinity of enamel, yielded dark brown networks of cylindrical structures (Figures
2.8O–P). The cylindrical structures comprising many of these networks are frequently
parallel to one another, and occasionally thin, short, cylindrical struts can be seen
interconnecting the long, main tubular structures (Figure 2.8O). EDX was not conducted
on these products due to time constraints. I hypothesize these structures may be ironoxide casts of longitudinal dentine tubules, similar to those described by Bocherens et al.
(1994). Dentine tubules in hadrosaur teeth have been identified to primarily run parallel
to one another in a longitudinal (root to apex) direction (Erickson et al., 2012) and,
though I am not aware of any published estimates of their diameter in dinosaur teeth, they
101
appear in published figures to have diameters of roughly 1–2 μm (for reference, modern
human dentine tubules are also 1–2 μm in diameter; Gunji and Kobayashi, 1983).
EDX spot analyses (Figures 2.10 and 2.11) and mapping (Figure 2.12) of soft
tissue demineralization products identifies their compositions as primarily comprising
iron and oxygen. This is true of all tissue types: osteocytes, fibrous matrix, and vessels.
Carbon, silicon, and phosphorous were identified as additional minor components of
vessels and osteocytes, and aluminum was also identified as a minor constituent of the
elemental inventory of osteocytes. Because iron encasement may physically shield tissues
from impregnation by histochemical dyes (Pawlicki, 1995), cause ion suppression when
attempting mass spectrometry, and potentially block active enzymatic binding sites of
proteins (Schweitzer et al., 2013), pretreatment with iron chelators (e.g., pyridoxal
isonicotinoyl hydrazone) might likely be needed before attempting immunological assays
or mass spectrometry (Schweitzer et al., 2013, 2014a) on these tissues.
2.8.13 Palynology
The palynoflora of the bonebed horizon was originally presented by Colson et al.
(2004, table 3; Figure 2.13A herein). Those authors also noted a high but variable
proportion of organic material within the bonebed unit (30–60% organic matter) and a
noteworthy abundance of “coalified logs” (Colson et al., 2004, table 1) immediately
beneath the dense accumulation of bones. Their petrographic examination of the
kerogenous assemblage identified abundant, partially coalified plant matter, including
vitrinite (thermally altered/coalified wood), telinite (coalified wood retaining
recognizable cell structures), and inertinite (specifically micrinite, fossil charcoal from
102
ancient fires) (ASTM, 2011; ICCP, 1998, 2001). Macrofloral remains comprise an
abundance of Metasequoia sp. (redwood) cones (N = 20), two fragments of coalified
Metasequoia sp. branches, and a coalified fragment of a Taxodium occidentalis (cypress)
branch.
Gymnosperm (46%) and angiosperm (43%) pollen dominate the palynomorph
assemblage, with fern spores comprising nearly the entire remaining faunal composition
(~11%). Based on general morphology, it is likely that indeterminate monolete and trilete
type fern spores listed by Colson et al. (2004) are referable to Cyathidites and
Laevigatosporites, respectively. Spores of bryophytes, or lycopsid club mosses, are
extremely rare, and no algal spores or marine dinoflagellates were recovered. The cypress
pollen Taxodiaceaepollenites is by far the most common overall and is also by far the
most common gymnosperm palynomorph. Angiosperm palynomorphs are dominated by
Tricolpopollenites, which is generally attributed to the wild rhubarb Gunnera (Vajda et
al., 2013). The index forms Aquilapollenites, Wodehouseia spinata, and Cranwellia
rumseyensis (nearly indistinguishable from Striatellipollis striatellus; Nichols, 2002)
signify a late Maastrichtian age for the bonebed horizon.
Many of the same palynomorphs were found by Vajda et al. (2013) at the site of a
“mummified” Edmontosaurus annectens (MRF-03), also from the basal Hell Creek
Formation, in southwestern North Dakota (Figure 2.13B). Palynomorphs represented at
both sites include the fern spores Gleicheniidites, Cyathidites, and Laevigatosporites, the
gymnosperm palynomorphs Pinuspollenites (pine) and Taxodiaceaepollenites (cypress),
and the angiosperm palynomorphs Aquilapollenites (wild columbine),
Cranwellia/Striatellipollis (mistletoe), Tricolpites (wild rhubarb Gunnera), and
103
Triporopollenites (birch). However, palynofloral composition at SRHS differs from the
MRF-03 site presented by Vajda et al. (2013) in that SRHS lacks algal spores and marine
dinoflagellates and includes proportionately more angiosperm pollen and fewer fern
spores than at MRF-03. Bryophytes are also less common at SRHS than at MRF-03.
2.9 Discussion
2.9.1 Depositional setting of the assemblage
Strata underlying the bonebed record a regressive sequence of near-shore
sedimentation, as evidenced by an abundance of mature, cross-stratified foreshore
sandstones in the Fox Hills Formation, perforated by abundant Ophiomorpha shrimp
burrows (Colson et al., 2004), overlain by dark, organic-rich mudstones deposited in
supratidal coastal plain marshes (see Stratigraphy section, above). Strata overlying the
bonebed reflect deposition in typical Hell Creek fluvial channels and floodplains (Colson
et al., 2004; this paper).
The precise microenvironment represented by the bone-bearing mudstone is
difficult to interpret. Colson et al. (2004) originally characterized this bed as being
deposited in a “coastal swamp.” However, there are multiple problems with this
interpretation. Foremost among these is a high ratio of sediment to organics within the
horizon. Deposition in temporally long-lived paludal marshes, in contrast, is dominated
by organic debris in the form of peat, which later becomes coalified (Staub and Cohen,
1979; McCabe, 1984). Though lignifed logs are common in the basal portion of the bed,
there is no distinct coal horizon. A second problem is that salt marshes tend to be acidic
104
environments in which bone is expected to have low preservation potential
(Behrensmeyer et al., 1992). Finally, although cypress pollen is indeed common in this
horizon, one cannot be certain that this abundance equates with an autochthonous pollen
record; indeed, it may reflect just the opposite (see below).
Sedimentologic features of the bonebed mudstone and non-dinosaurian fauna
preserved within the assemblage only provide vague indications of the depositional
environment. As two facies examples, no root traces are encountered in the bed and no
channel sandstones underlie the assemblage, demonstrating lack of development of an
extensive marsh (Kroeger, 2002) and indicating deposition did not occur within an
abandoned channel, respectively. The majority of fish, turtle, crocodilian, and
invertebrate remains collected are referable to taxa inhabiting fluvial channels and their
immediate overbank settings, yet the sedimentology of the bed clearly does not reflect
attributes typical of fluvial channels. This contradiction demonstrates that at least short
distance transport occurred.
Palynoflora of the bonebed horizon provide an illuminating record of the local
environment, recording a warm and humid subtropical forest comprised primarily of
cypress trees, wild rhubarb, and an understory of various ferns and herbaceous
angiosperms. The local canopy also included a small component of pine and birch trees
occasionally playing host to the epiphyte mistletoe Cranwellia/Striatellipollis. This floral
assemblage includes a greater proportion of cypress and birch trees and a lesser
proportion of ferns than another basal Hell Creek Formation site in southwestern North
Dakota (MRF-03; Vajda et al., 2013), which may be a product of differing depositional
microenvironments surrounded by differing vegetation. According to Kroeger (2002),
105
floodplain ponds and lakes capture a record of the surrounding regional vegetation,
whereas floodplain and oxbow marshes better record the floral composition of the
immediate local environment. At SRHS, the most common palynomorphs are the small
forms Taxodiaceaepollenites (46%) and Tricolpopollenites (24%); large palynomorphs,
such as Wodehouseia spinata and Lycopodium spores, are exceedingly rare (each < 1%)
(Colson et al., 2004, table 3). Taxodiaceaepollenites and Tricolpopollenites, as well as
Triporopollenites (another common SRHS palynomorph), have been found most
commonly in flood-basin lake/pond deposits in the Hell Creek Formation (Kroeger,
2002), suggesting the SRHS bone-bearing mudstone records such a small, coastal plain
pond.
Corroborating evidence for this interpretation includes an abundance of
palynomorphs from diverse, tall, canopy trees, including those deriving from cypress,
birch, beech, alder, and pine trees. Palynomorphs from taller plants have a greater
likelihood of long distance dispersal and hence would be more likely to accumulate in
standing bodies of water (Kroeger, 2002). In addition, the most common fern spore,
Cyathidites, has been attributed to tree ferns; spores of ground-dwelling ferns are slightly
less abundant. In combination, rarity of spores from salt-tolerant tree ferns (5%) and
abundance of palynomorphs from freshwater cypress (46%) strongly suggest the
depositional setting was a paludal marsh rather than a vegetated intertidal flat (cf. Wilhite
and Toliver, 1990; Gomez et al., 2002).
The assemblage of palynomorphs at SRHS is thus attributable to a coastal plain
pond/lake within a cypress-dominated marsh. This interpretation is supported by other
facies attributes of small, near-shore lake deposits observed in the bonebed horizon, such
106
as: 1) a lack of root traces that would be characteristic of an extensive, established salt
marsh (Kroeger, 2002); 2) an abundance of highly fragmented plant remains; 3) rare
invertebrate fossils, and; (4) random, minor mottling of the matrix, including discrete,
thin pockets of very fine sand (Reineck and Singh, 1980; Kroeger, 2002). By contrast, a
considerably greater abundance of bryophytes and ground-dwelling fern spores at MRF03 indicate that site may record a comparatively more terrestrial, lowland, fluvial marsh
environment (sensu Kroeger, 2002).
2.9.2 Assemblage accumulation scenario
The SRHS represents a mass mortality assemblage that can be characterized as a
biogenic, intrinsic assemblage following the classification scheme of Rogers and Kidwell
(2007). Evidence supporting this inference includes its monospecific nature concerning
large vertebrates, scarcity of weathering and other indications of attritional accumulation,
and general depositional setting (Rogers and Kidwell, 2007). Though I agree with Colson
et al. (2004) that larger individuals comprise the majority of the bonebed age profile, I do
not agree that this is viable evidence of attritional accumulation. As reviewed by Eberth
et al. (2007), young juveniles would also be expected to comprise a significant fraction of
an attritional age profile.
The cause of mortality remains unknown, but certain possibilities can plausibly be
eliminated. No indications of drought (e.g., caliche [pedogenic carbonate] horizons or
nodules, red/oxidized paleosols; Rogers, 1990) are encountered within the bonebed
mudstone or surrounding strata. Although a lack of young juveniles may be consistent
with miring (Sander, 1992), disarticulation, horizontal orientation of most bones, lack of
107
overrepresentation of bones from the ventral and caudal regions of the body, and absence
of contorted strata eliminate miring as the cause of mass mortality (Rogers and Kidwell,
2007). Pathologies are rare and consistently portray breakage and healing rather than any
prevalent disease, suggesting a fatal pathogen is either unlikely or left no osteological
signifiers. Eberth (1998 pers. communication cited in Johnson et al., 2002) proposed
storm surges as another killing agent along shores of the inland seaway, but the absence
of marine invertebrates and dinoflagellates in the palynomorph assemblage argue against
a storm surge as the cause of death for these hadrosaurids. Death by drowning during a
flood or while fording a river (e.g., Wood et al., 1988) are each plausible explanations,
though no conclusive evidence is available to discern the likelihood of either scenario.
A lack of clear overrepresentation of Voorhies group II elements and
underrepresentation of group I elements identifies minimal, if any, winnowing by
preburial fluvial processes, suggesting the assemblage is virtually autochthonous (i.e., the
animals died in this location rather than somewhere upstream). This suggestion is also
substantiated by: (1) a definitive abundance of group I bones (Figure 2.2C) that would be
easily removed by fluvial currents (Behrensmeyer, 1975); (2) generally modest
departures of observed bone frequencies from those expected in a skeleton for both group
I and II elements (5.4% and 2.5% differences on average, respectively, between observed
and expected frequencies; Figure 2.2C); (3) scarce degradation of fossil palynomorphs,
which suggests minimal transport (Kroeger, 2002) of sediments now comprising the
bonebed horizon, and; (4) lack of hydraulic equivalency between bones and their
encasing sediments.
108
However, variation in the patterns of over- and underrepresentation amongst
bones of group I and II suggest slight spatial mixing may have occurred during deposition
or burial, meaning that a parautochthonous origin cannot be ruled out. Moreover, nearly
universal disarticulation and disassociation of skeletal elements unequivocally
demonstrate physical disruption of decaying carcasses (rather than death by obrution). I
infer disruption was caused by low energy currents due to the fine size of clastics of the
bone-bearing stratum and rarity of abrasion. Decomposition was prolonged enough to
allow complete disarticulation upon exposure to currents but brief enough to evade even
moderate weathering. Alternatively, bone weathering may have been inhibited by
subaqueous decomposition (i.e., within the pond or marsh; Rogers, 1990) due to factors
such as minimal temperature and humidity fluctuations (Behrensmeyer, 1978).
Though the location of death is difficult to constrain, the uniform paucity of bone
weathering constrains the location of decomposition to be autochthonous or minimally
parautochthonous with respect to the site of burial (in agreement with Colson et al.,
2004). This conclusion is corroborated by an absence of definitive evidence of longdistance transport of the remains. However, downstream transport of floating carcasses
from a distant upstream locality (followed by decay in the pond/marsh) cannot
conclusively be ruled out. I consider this scenario less parsimonious because no channel
deposits underlie the bonebed horizon and there is no evidence for their erosive removal,
meaning that carcasses moved en masse downstream would also have had to breach the
channel and traverse part of the floodplain to accumulate in the coastal plain marsh.
Although possible (e.g., Turnbull and Martill, 1988), as Rogers (1990) discussed,
transportation of large carcasses across a forested floodplain would require a significant
109
flood event; but there is no conclusive evidence of such a major flooding event in this
portion of the stratigraphic succession at SRHS. Moreover, sedimentology of the bonebed
horizon is inconsistent with a channel-proximal crevasse splay deposit (e.g., normal
grading is too poorly developed; Reineck and Singh, 1980). A general lack of pattern to
the orientation of bones is also inconsistent with a crevasse splay event, in which
unidirectional currents would be anticipated to orient bones.
Concerning burial, occurrence of all bones in a single bed with slight normal
grading signifies waning flow competency during a single depositional event
(Behrensmeyer, 1988). Given the typical fluvial nature of the Hell Creek Formation
deposits directly overlying the bonebed mudstone (Colson et al., 2004), I posit this event
was a flood. In contrast to interpretations by Colson et al. (2004), I find the generally fine
grain size of the entombing and directly overlying matrix (within the bonebed horizon) to
be consistent with deposition of suspended sediment in a distal floodplain setting (such as
the coastal plain marsh envisaged for SRHS). In addition, the lesser volume of organic
matter in the upper portion of this mudstone is more consistent with rapid deposition than
continued, gradual accumulation of sediments.
Thus, I conclude the following scenario from sedimentologic, stratigraphic,
taphonomic, and palynologic data: a herd of primarily subadult and adult Edmontosaurus
annectens perished in a sudden mass mortality event near a paludal pond near the WIKS
shoreline. Their carcasses underwent decomposition for a moderate time period (either
above the water line or within the shallow pond) in which nearly all soft tissues were lost
but bones were not subjected to decay from subaerial weathering. Dromaeosaurid
theropods scavenged some of the remains before a moderate-energy fluvial flood
110
remobilized and disarticulated any remaining articulated elements, creating full
disassociation of the skeletons. Burial was accomplished by fine clastic influx from the
flood, in which distal floodwaters spread out in the lake and lost flow competency,
creating the normally graded deposit of suspension-load silt and clay now entombing the
remains.
2.9.3 Diagenetic facilitation of soft tissue preservation
Preservation of original soft tissues in geologically ancient bone was once thought
impossible (e.g., Lindahl and Nyberg, 1972; Nielsen-Marsh, 2002), but recent
investigations have found such remarkable preservation to be quite common (Schweitzer
et al., 2005b, 2007b, 2009, 2013; Peterson et al., 2010; Cadena and Schweitzer, 2012,
2014; Cleland, 2012; Armitage and Anderson, 2013). Because SRHS bones exhibit
excellent morphologic preservation and lack permineralization, I hypothesized they
would be ideal candidates to retain endogenous soft tissues like those garnered in the
above references. Excellent morphologic and histologic preservation frequently (though
not universally) correlate with biomolecular preservation (Eglinton and Logan, 1991;
Hagelberg et al., 1991; Hedges, 2002; Schweitzer, 2004; Turner-Walker and Jans, 2008),
and lack of permineralization has been suggested to signify excellent candidates for
molecular analyses because such specimens must have experienced minimal interactions
with permeating pore fluids (Schweitzer et al., 1997a). For SRHS bones, distinctly low
trace element concentrations of both cortical and cancellous bone further support limited
and brief diagenetic interactions with pore fluids (Ullmann et al., 2014), which has also
been hypothesized to favor biomolecular preservation (Trueman et al., 2008a).
111
Ultimately, decalcification with EDTA supported my hypothesis that soft tissues
should be preserved: bones from SRHS yielded numerous structures morphologically
consistent with vertebrate osteocytes, blood vessels, and fibrous bone matrix. Numerous
environmental, geologic, and taphonomic factors likely contributed to preservation of
these structures at SRHS. First, rapid burial by a flooding event could have facilitated
stabilization of organics by promoting anaerobic conditions (Allison, 1988), thereby
limiting decomposition (e.g., Eglinton and Logan, 1991; Poinar and Paabo, 2001;
Schweitzer, 2004; Manning et al., 2009). Second, reducing, waterlogged conditions may
have created anoxia that can minimize scavenging and microbial activity (Tuross et al.,
1989; Briggs et al., 2000; Hedges, 2002; Briggs, 2003; Schweitzer, 2004). Shallow
floodplain lakes, such as that envisaged at SRHS, are also generally neutral to slightly
alkaline in pH (Retallack, 1988), which should favor stability of endogenous tissues
more so than acidic environments (Tuross et al., 1989; Schweitzer, 2004). Third, the finegrained matrix hosting the bonebed may have facilitated soft tissue preservation simply
by its composition and structure: clays undergo significant compaction, which has been
hypothesized to limit microbial mobility and potential for oxidation (Eglinton and Logan,
1991; Muyzer et al., 1992; Peterson et al., 2010). Moreover, clays in the host matrix
could adsorb and inactivate microbial enzymes (Butterfield, 1990). Finally, these bones
have experienced an ideal taphonomic history, namely minimal transport and weathering.
These factors have each been proposed to limit biomolecular degradation due to,
respectively, limited protein degradation (Trueman et al., 2004; Fernandez-Jalvo et al.,
2010) and limited exposure to reactants and decomposers (Eglinton and Logan, 1991).
112
EDX results (Figures 2.10B, 2.11B) suggest that compositional heterogeneity
among preserved tissues (as reflected in differential coloration between some of these
structures, as in Figure 2.8J) primarily reflect differences in the degree of incorporation
of iron. Iron was clearly abundant at SRHS, as evidenced by EDX analyses of soft tissues
as well as the abundance of goethite concretions and amorphous iron oxides within the
encasing sediments. Recent investigations of the effects of iron on soft tissue stabilization
identify that iron plays a fundamental role in making reactive tissues stable and inert by:
1) passivating epitopes of comprising biomolecules (Briggs, 2003; Cleland, 2012); 2)
inhibiting autolysis (Liebig, 2001), and/or; 3) producing free oxy radicals that induce
natural fixation (Schweitzer et al., 2014a). It is likely that the great abundance of iron at
SRHS facilitated stabilization of bone soft tissues in one or all of these manners.
The abundance of amorphous iron oxide and goethite (FeOOH) concretions in the
bonebed mudstone owes to oxidation, and one might find it difficult to constrain the
timing of oxidation because ancient floodwaters that promoted burial and modern
meteoric water percolating through the sediments are equally plausible oxidative agents.
However, goethite never occurs as a primary concretion (Rowe et al., 2001); rather, it
forms by oxidation of siderite (FeCO3) on exposure to molecular oxygen (Senkayi et al.,
1986; Rowe et al., 2001; Loope et al., 2012). In the transformation, any manganese
substituting for Fe2+ is released and recrystallizes on the exterior of the concretion as a
dark, thin film of todorokite ([Ca,K,Na,Mg,Ba,Mn][Mn,Mg,Al]6O12•3H2O; Senkayi et
al., 1986). SRHS concretions commonly exhibit such thin, dark blue to brown coatings,
consistent with their original mineralogy being sideritic. Because siderite often forms as
nodules (Morad, 1998) in reducing, organic-rich, standing-water environments such as
113
coastal plain ponds like that inferred at SRHS (Morad, 1998; Russell et al., 2001; Loope
et al., 2012), it is reasonable to conclude that the concretions formed during initial
diagenesis. In the absence of abundant sulfide in pond/marsh environments, bicarbonate
released by dysaerobic-anaerobic decomposition (bacterial oxidation) of organic matter
combines with dissolved ferrous iron to form siderite nodules in the shallow burial zone
(cm to dm below the water table; Coleman, 1993). Siderite nodules often nucleate around
organics, such as microbial concentrations (Coleman, 1993) or entire animals (e.g., the
Mazon Creek Lagerstӓtte; Allison, 1988). At SRHS, bones appear to commonly serve as
condensation nuclei for the concretions, especially porous limb bone epiphyses and
vertebral edges, perhaps because these areas represent primary sources of iron via
outflow of iron-rich blood during decay. This is important because modeling experiments
show that siderite concretions grow rapidly (Chan et al., 2007), likely entirely during
early diagenesis (Loope et al., 2012). Rapid, early cementation around porous regions of
bones and of portions of the surrounding sediment would decrease microbial mobility and
flow of diagenetic pore fluids (Hubert et al., 1996; Boyce et al., 2002), raising
preservation potential for soft tissues. In this manner, partial cementation of the host
matrix at SRHS took place prior to oxidation, partly shielding soft tissues from its
harmful effects.
2.10 Conclusions
Based on my cumulative findings, I conclude that the SRHS bone-bearing
mudstone records a mass mortality event that took place either autochthonous or
114
parautochthonous to the site of burial. Sedimentation following a period of high-standing
water levels buried the hadrosaurid remains in a shallow pond within a cypress-rich
marsh encircled by lush subtropical forest. This environmental setting is entirely
consistent with previous considerations of basal Hell Creek strata, and more importantly
offers a detailed record of low-lying floodplain microenvironments recorded in such beds
in the central Dakotas.
The specific taphonomic history of these specimens was amenable to soft tissue
preservation. This is clearly evident given the abundance of osteocytes, fibrous matrix,
and vessels recovered upon demineralization of fossil cortical bone, cancellous bone, and
ossified tendon. Although decomposition was sufficiently prolonged and intense to allow
complete disarticulation and disassociation of the carcasses, bones evaded prolonged
subaerial exposure and transport. Rapid burial in a reducing, dysoxic, iron-rich but
sulfate-poor diagenetic setting both limited decay of soft tissues and facilitated
cementation of portions of the entombing sedimentary matrix through growth of sideritic
concretions. It is the growth of these presumably early diagenetic siderite concretions that
may, perhaps, have been the most crucial step. It is plausible that, by decreasing
permeability of the sedimentary matrix, concretion formation limited flow of pore fluids
and mobility of microbial decomposers. In addition, growth of siderite over bone surfaces
appears to have efficiently stabilized bones with the diagenetic environment and shielded
many of them from prolonged interaction with pore fluids (by inhibiting percolation of
groundwater through the pore spaces of the bones).
Hence, in agreement with Schweitzer et al. (2014a), I find it plausible that other
fossils preserved by rapid burial in iron-rich sediments are potentially excellent
115
candidates for retention of pliable soft tissues and biomolecules. Documentation of soft
tissue and biomolecular preservation in fossils must always be accompanied by detailed
analyses of the sedimentologic and taphonomic context of the remains; without this
crucial information, one can never understand how the fossil under study has entered, let
alone persisted in the fossil record.
116
Table 2.1 Additional faunal material recovered from the Standing Rock Hadrosaur Site.
Abbreviation: indet, indeterminate.
Taxon
Lepisosteus occidentalis
Dromaeosauridae indet.
Multituberculata indet.
Metasequoia sp.
Brachychampsa montana
Borealosuchus sternbergi
Kindleia fragosa
Trionychidae indet.
Compsemys victa
Campeloma sp.
Myledaphus bipartitus
Troodon formosus
Unionidae indet.
Crocodilia indet.
Champsosaurus sp.
Taxodium occidentalis
Metatheria indet.
Eutheria indet.
Theria indet.
Group/common name
Gar
Dromaeosaurid
Multituberculate
Redwood tree
Alligator
Crocodile
Amiid fish
Turtle
Turtle
Snail
Ray
Troodontid
Unionid clam
Crocodilian
Champsosaur
Cypress tree
Advanced mammal
Advanced mammal
Advanced mammal
Element(s)
Count
Scales, teeth, vertebrae
197
Teeth
89
Teeth, partial dentary
58
Leaf imprints, cones
22
Teeth
20
Teeth
6
Trunk vertebrae
5
Costal, carapace fragments
3
Carapace fragments
3
Steinkerns
3
Teeth
2
Teeth
2
Steinkerns
2
Scute fragments
2
Teeth
2
Leaf imprint
1
Molar tooth (talonid portion)
1
Lower molar tooth
1
Premolar tooth
1
117
Table 2.2 Survival of skeletal elements of Edmontosaurus annectens at the Standing
Rock Hadrosaur Site, predicted from MNI versus actual. Abbreviations: MNI, minimum
number of individuals; NA, not applicable.
MNI for Number Original Predicted
this
Found Number Number % Survival
element
SKULL1
44
NA
505
82
3608
14.0
Quadrate
44
28
54
2
88
61.4
Jugal
44
28
50
2
88
56.8
Postorbital
44
16
27
2
88
30.7
Exoccipital
44
6
11
2
88
12.5
Parietal
44
5
5
1
44
11.4
Frontal
44
18
38
2
88
43.2
Basisphenoid
44
7
7
1
44
15.9
Maxilla
44
22
45
2
88
51.1
MANDIBLE
44
24
104
13
572
18.2
Dentary
44
15
38
2
88
43.2
VERTEBRAL COLUMN2
44
NA
1270
94
4136
30.7
3
Caudals
44
NA
1078
60
2640
40.8
Dorsals
44
NA
59
183
792
7.4
APPENDICULAR SKELETON
44
44
1809
100
4400
41.1
Scapulae
44
4
28
2
88
31.8
Radii
44
18
42
2
88
47.7
Tibiae
44
5
33
2
88
37.5
Metatarsals
44
44
214
6
264
81.1
Metacarpals
44
40
249
8
352
70.7
Phalanges
44
40
899
70
3080
29.2
1
Maximum number of primary and accessory cranial elements excluding teeth.
2
Count of complete vertebrae plus centra.
3
Midpoint in range cited by Horner et al. (2004).
Element
MNI
118
Figure 2.1 Attributes of the Standing Rock Hadrosaur Site fossil assemblage. (A) Age
profile. (B) Vertebral region abundances. (C) Vertebral component abundances. (D) Pes
series abundances. (E) Temporal-palatal series abundances. (F) Bone weathering stages.
(G) Bone abrasion stages. (H) Bone fracture types.
119
Figure 2.2 Population and biostratinomic attributes of the Standing Rock Hadrosaur Site
assemblage. (A) Frequency of specimen size classes, using three centimeter bins. (B)
Distribution of skeletal regions and series. (C) Relative frequency of elements according
to Voorhies (1969) transportation groups. White columns display the frequency of bones
in a single complete skeleton of Edmontosaurus annectens, whereas black columns
display the frequencies of bones excavated from the quarry. (D) Plunges of elongate
specimens from the 2012 quarry, the only year plunge data were collected. (E) Plunge
directions of elongate specimens from the 2012 quarry. Light gray arrow denotes the
mean (14.9°), dark gray arcs outside the compass mark range of one standard deviation
from the mean. (F). Orientation of skeletal elements for the entire excavation. (G)
Orientation of skeletal elements for solely the 2012 quarry. Rose diagrams presented as
arithmetic plots with 10° bins.
120
121
Figure 2.3 Quarry map from the summer excavation of 2012 at the Standing Rock
Hadrosaur Site, divided into bones (A) and ossified tendons and teeth (B). Bones outlined
in gray in (A) are the 12 from which samples were collected for soft tissue analyses.
SRHS-DU specimen numbers for all bones are provided in (A). In (B), black lines are
partial ossified tendons whereas black spots denote small ossified tendon fragments for
which orientation data were not gathered. Gray stars in (B) denote isolated teeth (mostly
Edmontosaurus, only a few theropod teeth included). Dashed black line denotes erosional
edge of hillside. Dotted gray line denotes furthest extent of excavation into the hillside at
the end of the field season. Crosshair symbols denote the vertices of square meter grids
that are defined by the letter and number axes at the edge of the map.
122
Figure 2.4 Breakage in Edmontosaurus annectens bones from the Standing Rock
Hadrosaur Site. (A) Example spiral break through the ramus of a quadrate (CC-MN2923). (B) Example concentric fracture pattern on the medial aspect of the proximal end
of a left ulna (CC-MN-48). Numbered units of scale bar in (A) are centimeters. Scale bar
for (B) equals 10 cm.
123
Figure 2.5 Theropod bite marks and teeth from the Standing Rock Hadrosaur Site. (A)
Example bite marks (four subparallel tooth scores, arrows) on a metatarsal III (CC-MN1893). (B) Example shed theropod tooth recovered from the bonebed (CC-MN-P39).
Numbered units of scale bar in (A) are centimeters. Scale bar for (B) equals 1 cm.
124
Figure 2.6 Examples of paleopathologies in Standing Rock Hadrosaur Site
Edmontosaurus annectens bones. (A) Osteochondrosis expressed as a localized arcuate
lesion (arrow) on the articular face of a distal caudal centrum (CC-MN-3519). (B)
Osteochondrosis-like lesion that sagittally bisects a distal caudal centrum, seen here as a
dorsoventrally oriented groove on the articular face (arrows; CC-MN-3115). (C) Two
fused caudal vertebrae (CC-MN-2897 and -2898). (D) Oblate raised lesion (arrow) on the
dorsal surface of a pedal ungual (CC-MN-2565). Scale bars all equal 5 cm.
125
Figure 2.7 X ray diffractograms of Standing Rock Hadrosaur Site fossils, encasing
sediment, and concretions within the bonebed mudstone. All diffraction spectra except
for that of cancellous bone have been vertically shifted to allow visual comparison
between samples. All biologic samples were identified as fluorapatite. Sediment was
identified to comprise illite, muscovite, anorthite, albite, and quartz. The concretion from
within the bonebed was identified as goethite. The white sandstone overlying the
bonebed (data not shown; unit 6 of Colson et al., 2004) was identified to comprise of
quartz, anorthite, microcline, muscovite, and vermiculite.
126
Figure 2.8 Demineralization products of encasing sedimentary matrix and fossil
fragments from the Standing Rock Hadrosaur Site. (A) Magnified view of sedimentary
matrix, including a small pocket of amber and abundant, small, black, organic inclusions.
(B) A fragment of femur cortex after one week of decalcification, showing numerous
parallel vascular canals beginning to emerge. (C) Osteocyte with elongate filipodia
recovered from a fragment of weathered “float” cortical bone. (D) Size comparison of an
osteocyte (upper left) and vessel fragment recovered from a fragment of weathered
“float” cortical bone. Same specimen as in (C). (E) Osteocyte with elongate filipodia
recovered from a fragment of ossified tendon. (F) Straight, cylindrical vessel fragment
(right) and pieces of fibrous matrix (lower left) recovered from a fragment of ossified
tendon. Same specimen as in (E). (G) Vessel fragment with dark, spherical, iron-rich
intravascular inclusions recovered from metatarsal SRHS-DU-274. (H) Abundant fossil
osteocytes embedded in fibrous bone matrix recovered from metatarsal SRHS-DU-274.
(I) Osteocyte with elongate filipodia recovered from fibula SRHS-DU-231. (J)
Compositional heterogeneity evident between a fossil osteocyte (center) and fibrous
matrix encasing it. Same specimen as in (I). (K) Straight, cylindrical vessel fragment
recovered from same fibula specimen as in (I) and (J). (L) Magnification of fibrous
matrix recovered from manual phalanx SRHS-DU-89. (M) Complex, branching vessel
network recovered from metatarsal SRHS-DU-306. (N) Osteocyte with elongate filipodia
recovered from caudal centrum SRHS-DU-220. (O) Example quartz (lower right) and
silt-rich matrix (upper left) grains remaining after demineralization of sedimentary
matrix. (P) Dark, parallel-aligned, tubular structures recovered following
127
Figure 2.8 (continued) demineralization of an Edmontosaurus tooth. Scale bars are
labeled in each figure.
128
Figure 2.9 Representative soft tissues recovered from Standing Rock Hadrosaur Site
Edmontosaurus annectens bones. All images except (A) collected by SEM. (A–B) An
extensive vessel network recovered from metatarsal SRHS-DU-306 exhibiting bright
orange color typical of many, but not all, recovered vessels. (C) A bi-layer sheet of
fibrous matrix exhibiting abundant, perpendicularly oriented cross-struts (doubleheaded
white arrow). At right, an osteocyte with long filipodia is partially covered by the matrix
sheet. (D) Two osteocytes exhibiting long filipodia (arrows). (E) Magnified view of the
surface of left osteocyte in (D), exhibiting shallow, linear grooves crisscrossing across the
cell surface (arrows). (F) An exemplar vessel fragment displaying hollow, cylindrical
form. Units of the scale bar in (A) are millimeters. Scale bar in (B) equals 1 mm. Scale
129
Figure 2.9 (continued) bars in (C) and (D) equal 10 μm. Scale bar in (E) equals 2 μm.
Scale bar in (F) equals are 100 μm.
130
Figure 2.10 (A) SEM image of a large fragment of fibrous matrix with numerous
osteocytes attached to it (black arrows) from metatarsal SRHS-DU-306. Insets provide
closer views of two osteocytes to allow better visualization of cell structure and filipodia.
(B) Elemental composition of an osteocyte from (A) determined by EDX, from the region
outlined in dashes. (C) Elemental weight and atomic percent composition corresponding
to the spectrum in (B). Scale bar in large-scale micrograph in (A) equals 50 μm. Scale
bars in insets of (A) each equal 10 μm.
131
Figure 2.11 (A) SEM image of a branching vessel fragment from Edmontosaurus
annectens fibula SRHS-DU-231. Inset provides a closer view of the porous, amorphous
vessel surface. (B) Elemental weight and atomic percent composition corresponding to
the spectrum in (C). (C) Elemental composition of the vessel surface from (A)
determined by EDX, from the entire region shown in the inset of (A). Scale bar in largescale micrograph in (A) equals 100 μm. Scale bar in inset of (A) equals 10 μm.
132
Figure 2.12 Energy-dispersive x-ray elemental maps across an osteocyte attached to
amorphous fibrous matrix (in background of SEM image at left), from an Edmontosaurus
annectens metatarsal (SRHS-DU-306) from the Standing Rock Hadrosaur Site. Bright
white reflects a strong signal. Composition of both tissues is primarily dominated by iron
and oxygen. Scale bar in SEM image at left equals 10 μm.
133
Figure 2.13 Comparison of palynomorph assemblages from the Standing Rock
Hadrosaur Site (A) and MRF-03 (B), another Hell Creek Formation site where the
“mummified” Edmontosaurus “Dakota” was recovered. Data for SRHS from Colson et
al. (2004) and for MRF-03 from Vajda et al. (2013).
134
CHAPTER 3: CORRELATING FOSSIL BONE RARE EARTH ELEMENT
PROFILES TO PRESERVATION OF ORIGINAL SOFT TISSUES AND
BIOMOLECULES
3.1 Abstract
Based on a proposed link between trace element composition and rate of bone
hydroxyapatite recrystallization, Trueman et al. (2008a, Comptes Rendus Palevol)
hypothesized that rare earth element (REE) profiles could be used as a proxy for
preservation potential of endogenous soft tissues and their constituent biomolecules. I
directly evaluated this hypothesis by documenting intra-bone REE patterns and
conducting immunoassays for collagen I in an Edmontosaurus annectens fibula from the
Standing Rock Hadrosaur Site (SRHS) in the Cretaceous Hell Creek Formation of Corson
County, South Dakota. As presented in Chapter 2, this fibula and eight additional bones
from this site yielded soft tissue structures upon demineralization that were
morphologically consistent with osteocytes, blood vessels, and fibrous matrix. LAICPMS analyses reveal that SRHS bones appear to preserve, at least in part, early
diagenetic trace element signatures. Evidence substantiating this interpretation includes
remarkably low REE concentrations, steep declines in LREE concentrations with
increasing cortical depth, and low concentrations of MREE and elements with moderate
and low diffusivities through the middle cortex. These attributes imply that the duration
of trace element diffusion was brief. Thus, limited interaction with pore waters in late
diagenesis both minimized degradation of soft tissues and mitigated overprinting of early
diagenetic REE profiles. According to the hypothesis advanced by Trueman et al.
135
(2008a), SRHS bones would be favorable candidates for biomolecular preservation.
Immunofluorescence tests on one bone, fibula SRHS-DU-231, confirm preservation of
the protein collagen I. I therefore provide the first confirmation of the prediction
advanced by Trueman et al. (2008a): a positive correlation between biomolecular
preservation and retention of early diagenetic REE signatures.
3.2 Introduction
Diagenetic uptake of REE is ubiquitous in fossil bone (Trueman, 2007) and
relevant to biomolecular preservation because the relative concentrations of REE reflect
the extent of diagenetic pore fluid interactions a bone has experienced (Trueman, 1999;
Trueman et al., 2008a, 2011; Suarez et al., 2010; Kocsis et al., 2010; Herwartz et al.,
2013b). Because permeating, flowing groundwaters are the primary delivery mechanism
of REE to bone, it is inferred that the higher the concentrations of REE encountered in a
specimen the more prolonged were pore fluid interactions (Trueman, 2007; Trueman et
al., 2008a, 2011; Hinz and Kohn, 2010; Kocsis et al., 2010). As a result, it has been
proposed that the best preservation of original organics in bones will be in those
exhibiting the lowest REE concentrations (Trueman et al., 2004, 2008a).
Another variable of key importance is spatial heterogeneity of REE within a fossil
specimen; this is because the spatial distribution of provides a detailed record of
diagenetic alteration (Trueman et al., 2008a; Koenig et al., 2009; Rogers et al., 2010;
Suarez et al., 2010; Herwartz et al., 2013b), no matter how brief, long, simple, or
complex it may have been. If REE profiles were correlated with molecular recovery or
136
lack thereof, they could help shed light on geochemical conditions favoring biomolecular
preservation (Trueman et al., 2008a). Crucially, this hypothesis is not stringent on
unaltered preservation of initial, early diagenetic REE profiles. Even if initial REE
profiles were changed through geologic time, the resultant (end) profiles would still
reflect the total diagenetic history of the bone. Though they might no longer accurately
reflect the original preservation environment (at least in many cases/specimens, e.g.,
Tütken et al., 2008; Kocsis et al., 2010), REE composition patterns and profiles will still
characterize the complexity of interactions with groundwaters over the duration of burial
(e.g., Tütken et al., 2008, 2011; Kowal-Linka et al., 2014). REE profiles thus constitute a
useful record of the diagenetic regime(s) controlling initial bone fossilization and longterm stability.
Despite decades of separate research on the preservation of endogenous
geochemical signatures (e.g., Pate et al., 1989; Barrick and Showers, 1994; Samoilov and
Benjamini, 1996; Lee-Thorp and Sponheimer, 2003; Goodwin et al., 2007; Arppe et al.,
2009; Eagle et al., 2011) and soft tissues comprising original biomolecules (e.g., Pawlicki
et al., 1995; Pawlicki and Nowogrodzka-Zagorska, 1998; Avci et al., 2005; Schweitzer et
al., 2005, 2007a, 2009, 2013; Lindgren et al., 2011; Schroeder, 2013), no study has
directly linked these fields by examining the exact same fossil specimen. As a result, it
remains unknown how, or if, retention of original isotopic and/or trace element signatures
relates to retention of endogenous soft tissues and/or molecules in biomineralized tissues
(Trueman et al., 2008a). In theory, retention of endogenous isotopic signatures or early
diagenetic REE profiles should be positively correlated with biomolecular preservation
because each (presumably) necessitates minimal degradation and chemical alteration of
137
bone through diagenesis (cf., for example, Schweitzer (2011) and Trueman and Martill
(2002)). Degradation of bone crystallites due to inorganic or microbial enzyme-driven
dissolution would expose the proteinaceous matrix, leaving it vulnerable to hydrolysis,
oxidation, and other destructive forces. Conversely, decay of the fibrous protein matrix
would expose otherwise passivated bone crystallite surfaces to geochemical gradients in
permeating pore fluids. This codependency for survival forms the basis of the historical
“mutual protection” theory of bone fossilization (e.g., Tuross et al., 1989; Curry, 1990;
Ambler and Daniel, 1991; Child, 1995; Collins et al., 2002; Trueman and Martill, 2002).
A rarely considered corollary of “mutual protection” is that if one encounters
excellent preservation of the crystal portion of a bone (i.e., retention of histological
microanatomy and relatively unaltered, endogenous isotopic or early diagenetic trace
element signatures), it can plausibly be expected that the bone may also yield traces of its
original biomolecular composition. Trueman et al. (2008a) were the first to propose this
extension of “mutual protection” theory, suggesting that REE concentration vs. depth
profiles could be used as a proxy for biomolecular preservation in fossil bones. In
particular, they predicted that bones presenting low overall REE concentrations and
steeply declining REE concentrations with cortical depth are the best candidates to retain
endogenous biomolecules (because they signify the least interaction with pore waters). If
support were found for this correlation, molecular paleontologists would gain a useful,
relatively quick proxy to screen a suite of fossils prior to biochemical analyses (i.e.,
protein extraction, mass spectrometry, etc.).
In this Chapter, I test the hypothesis advanced by Trueman et al. (2008a) by
evaluating intra-bone REE patterns and preservation of the primary bone protein collagen
138
I from the exact same bone (a hadrosaur fibula, SRHS-DU-231, studied in Chapter 2).
Further, I examine REE patterns in the six of the eight additional bones that yielded
pliable soft tissues in Chapter 2, as well as two additional SRHS bones. Future protein
extractions and immunoassays will examine collagen I preservation in the full suite of 13
bones for which molecularly clean samples have been collected from the site (see
Chapter 2, section 2.4).
3.3 Geologic setting
Bones for this study were collected from the Standing Rock Hadrosaur Site
(SRHS) in Corson County, South Dakota. As discussed by Colson et al. (2004) and in
Chapter 2 of this dissertation, SRHS is a vast bonebed of disarticulated juvenile to adult
Edmontosaurus annectens near the base of the Maastrichtian Hell Creek Formation. The
bonebed, comprising a 30 cm thick, silty, sandy, organic-rich mudstone, crops out for
roughly 500 meters along the face of a cut bank bluff carved by the Grand River. Strata
exposed in the bluff comprise shallow marine (Fox Hills Formation) to nearshore
fluviodeltaic (Hell Creek Formation) sediments deposited along the western shore of the
Western Interior Cretaceous Seaway (Colson et al., 2004; Chapter 2 of this dissertation
and references therein). Specifically, Fox Hills deposits exposed in the lower half of the
bluff record subtidal, beach, and lagoonal shoreface environments, and basal Hell Creek
strata in the upper half of the bluff record expansive coastal and paludal marshes, fluvial
channels, floodplains, and ephemeral floodplain ponds (Colson et al., 2004). Based on the
monospecific character of the assemblage, paucity of weathering and abrasion, the
139
palynoflora of the bone-bearing horizon, and evidence that abundant goethite concretions
within the bonebed unit were initially sideritic, I interpreted the assemblage to have
formed as a result of a mass mortality event at or near the site of burial, and that bones
were buried by distal flood-derived sediments in a shallow coastal plain pond within a
paludal marsh (see Chapter 2, section 2.8.2).
3.4 Methods
3.4.1 Samples
Nine SRHS Edmontosaurus annectens limb bones previously selected for analysis
of soft tissue preservation (see Chapter 2, section 2.4) were chosen for examination of
trace element composition. This assemblage includes a manual phalanx (SRHS-DU-89),
three femora (SRHS-DU-94, -126, -273), a fibula (SRHS-DU-231), three metatarsals
(SRHS-DU-2, -192, -306), and a pedal phalanx (SRHS-DU-278). These elements were
chosen in my initial study (Chapter 2) to encompass as wide a range as possible of burial
depth and cortical thickness, and to include a variety of element types that would
comprise varying degrees of cortical porosity. In this regard, specimens range from
highly porous phalanges comprised primarily of trabecular bone to femora with
centimeters of solid, dense cortex. I chose this suite of samples in order to examine the
influences of cortical thickness and porosity/permeability on: 1) soft tissue preservation
(Chapter 2), and; 2) biomolecular preservation and REE composition and spatial
distribution (this chapter).
140
All nine specimens are well-preserved, exhibiting no weathering or abrasion, and
all seven of these that were analyzed in Chapter 2 yielded pliable soft tissues
morphologically consistent with vertebrate osteocytes and fibrous proteinaceous matrix
upon demineralization of cortical bone fragments with 0.5 M ethylenediaminetetraacetic
acid (EDTA) pH 8.0 (Chapter 2, fig. 2.8). Fragments of tubular structures
morphologically consistent with blood vessels were also collected from many of the
specimens (Chapter 2, fig. 2.8). In this chapter, I further examine these bones by two
means. First, I immunologically test biomolecular extracts from one of these bones,
fibula SRHS-DU-231, for preservation of the primary bone protein collagen I. Second,
the rare earth element geochemistry of each specimen was identified in order to see how,
or if, their REE compositions correlate with the preservation of soft tissues documented
in Chapter 2. In combination, these analyses afford the first direct test of the hypothesis
that REE composition correlates to and can be used as a proxy for endogenous
biomolecular preservation (Trueman et al., 2008a).
3.4.2 Sample preparation
Thick sections (~3 mm) were cut from bone midshafts using a Lortone LS18 slab
saw. Sections were initially rinsed with distilled water then washed in an acetone bath by
gentle rocking for a few minutes to remove cutting oils. Sections were then allowed to
dry in a laminar flow fume hood for 48 hours. Fragments of thick sections comprising the
entire cortical thickness were placed directly in the laser ablation chamber for elemental
analyses.
141
3.4.3 LA-ICPMS analyses
Spatial heterogeneity of REE and other pertinent trace elements was examined by
laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Analyses
were conducted using a New Wave UP-213(213 nm wavelength) Nd:YAG laser coupled
to a Finnigan Element2 ICPMS at the University of Maryland. Specific isotopes
measured were: 45Sc, 55Mn, 57Fe, 88Sr, 89Y, 137Ba, 139La, 140Ce, 141Pr, 143Nd, 147Sm, 153Eu,
157
Gd, 159Tb, 163Dy, 165Ho, 167Er, 169Tm, 173Yb, 175Lu, 232Th, and 238U. Iron is reported in
weight percent (wt.%); all other concentrations are reported in parts per million (ppm).
The laser system was operated at 2–3 J/cm2and a pulse rate of 10 Hz for transect
analyses. Transect data were collected using a laser diameter of 40 μm (except for SRHSDU-192 which was analyzed with a laser diameter of 30 μm) moving at a scan speed of
50 μm/s. Thus, individual readings along each transect are spaced roughly 35 μm apart.
Total transect lengths ranged from 1.2–4.3 cm. Background collection was performed
prior to each reading for 20 s. Averaged background readings were subtracted from
measured intensities to calculate fossil elemental concentrations. Spot analyses around
the circumference of fibula SRHS-DU-231 were performed at a pulse rate of 7 Hz with a
laser diameter of 40 μm for 40–50 s/spot, penetrating to a final depth of roughly 30 μm.
NIST 610 glass was used as an external standard and 43Ca was measured as an internal
standard to enable quantification of elemental concentrations. Reproducibility, taken as
percent relative standard deviation (%RSD) for all REE in the NIST 610 glass standard,
averaged <5% and remained below 10% for each element in all runs except for a few
REE in one run. For comparison to fossil bones from other sites in the literature, REE
concentrations were normalized using the North American Shale Composite (NASC)
142
using values from Gromet et al. (1984) and, for praseodymium (Pr), holmium (Ho), and
thulium (Tm), from Haskin et al. (1968) (subscript N denotes shale-normalized values or
ratios).
3.4.4 Biomolecular analyses
Fossil analyses were performed in a dedicated ancient laboratory at North
Carolina State University (NCSU). Modern control immunoassays were performed in a
separate NCSU laboratory. Cortical bone from an extant archosaur, the American
alligator (Alligator mississippiensis), served as a modern control. Inhibition and
collagenase digestion assays were performed as specificity controls; these assays,
respectively, control for non-specific paratopes in the polyclonal primary antibodies and
non-specific binding of the primary antibodies to molecules other than the target protein
(collagen I).
3.4.5 Tissue embedding procedure
I followed the fossil embedding and immunofluorescence procedures of
Schweitzer et al. (2007a, 2009) for my analyses. A step-by-step guide to these protocols
is provided by Zheng and Schweitzer (2012).
A roughly cubic centimeter-size cortical fragment of fibula SRHS-DU-231 was
decalcified with freshly prepared 0.5 M disodium ethylenediaminetetraacetic acid
(EDTA) pH 8.0 in a six well plate. EDTA was exchanged daily for two weeks, then a
sterile glass pipette was used to collect soft, freed demineralization products into 1.5 ml
centrifuge tubes. Collected samples were washed 10 times with EpureTM water (a few
143
seconds each), transferred to fresh 15 ml tubes, and fixed with 4 ml of 10% neutral buffer
formalin pH 7.2 for one hour. Samples were briefly washed twice with EpureTM water,
then twice with 1X phosphate buffered saline (PBS), transferred to a new 15 ml tube, and
dehydrated twice in 70% ethanol (30 min. each). Resin impregnation involved incubation
(for one hour) in a 2:1 solution of 70% ethanol and LR WhiteTM (Electron Microscopy
Services) followed by two incubations (one hour each) in pure LR WhiteTM. A
micropipette and a sharpened wooden dowel were then used to transfer demineralization
products into 0.95 ml gelatin capsules (size 00, 8.81 mm diameter). Final embedding was
accomplished by filling capsules with pure LR WhiteTM and polymerizing at 60°C for 48
hours.
Procedures for control alligator bone matched those above (also performed in a
separate laboratory) with the following exception. Demineralization of modern cortical
bone yielded an intact mass of extracellular matrix; a small fragment of this mass, to
comprise my eventual sample for embedding, was extracted and minced with a sterile
scalpel on a sterilized lab plate. Sterilized tweezers were then used to transfer minced
tissue fragments into a 1.5 ml centrifuge tube for initial washing.
3.4.6 Sectioning and immunofluorescence
220–230 nm sections were cut (using separate diamond knives for modern and
ancient tissues) with a Leica EM UC6 ultramicrotome. Eight sections were added per
well of a six well Teflon printed slide (Electron Microscopy Services). Slides were
initially dried for 3–4.5 hours on a slide warmer, then continued drying overnight at 45°C
to adhere tissue sections to the slide.
144
The volume of each solution added in all of the following incubations was 100
μl/well. Antigen retrieval was initiated by incubation with 25 μg/ml proteinase K (Roche)
in 1X PBS at 37°C for 15 minutes. Following two 10 minute washes with PBS pH 7.4,
antigen retrieval was continued by three 10 minute incubations in 0.5 M EDTA pH 8.0.
After another two washes as above, autofluorescence was quenched by two incubations
in 1 mg/ml NaBH4. After another two washes as above, slides were placed in a humidity
chamber for all remaining incubations. First, sections were incubated for two hours in 4%
normal goat serum in PBS pH 7.4 to inhibit non-specific antibody binding. Selected wells
were then incubated (overnight at 4°C in a humidity chamber) with polyclonal rabbit
anti-chicken collagen I antibodies (Millipore AB752P) diluted 1:40 in a primary dilution
buffer (PDB = 0.1% bovine serum albumin/0.1% cold fish skin gelatin/0.5% Triton X100/0.05% sodium azide/0.01 M PBS pH 7.3), chicken collagen-inhibited (at ~6 mg/ml
in PDB, prepared in modern laboratory) antibodies (same as above), or in PBS pH 7.4
(for wells to serve as secondary-only controls).
Following two washes each with PBS pH 7.4/0.5% Tween 20 (PBS-T) then PBS
pH 7.4 (all 10 minutes each), all wells were incubated for two hours at room temperature
with biotinylated goat anti-rabbit IgG H+L antibodies (Vector) diluted 1:333 in a
secondary dilution buffer (SDB = 0.01 M PBS pH 7.2/0.05% Tween 20). After two
washes each as above, wells were incubated for one hour in a humidity chamber in the
dark in fluorescein avidin D (FITC) diluted 1:1000 in SDB. After two final washes each
as above, slides were mounted with 5 μl/well of VectaShield H-1000 mounting medium.
Cover slips were then applied and slides were stored in the dark until imaging. Sections
were imaged at 40X later the same day or the following day using a Zeiss Axioskop 2
145
Plus microscope with a connected Zeiss Axiocam MRC5 camera. Various exposure times
were attempted spanning 50–200 ms, but only 200 ms images are presented here.
Digestion assays were performed for select wells by incubation in 1 mg/ml
collagenase A (Roche) in Dulbecco’s PBS prior to antigen retrieval with proteinase K.
Digestions were performed at 37°C in a humidity chamber for either one hour (with
changes each 20 minutes), three hours (with changes each hour, then each 20 minutes for
the final hour), or six hours (with changes each hour, then each 20 minutes for the final
hour). Digestion was not continued longer than six hours to avoid potential non-specific
degradation of collagen by trace contaminant proteases in the collagenase A solution as
prepared by Roche (clostripain, a trypsin-like activity, and a neutral protease; Roche
Applied Science, 2012). After digestion, slides were washed twice (for 10 minutes) in
PBS pH 7.4. Antigen retrieval then proceeded with proteinase K as described above.
3.5 Results
3.5.1 Overall REE composition
SRHS bones exhibit low concentrations of REE, Y, and U in comparison to most
other Mesozoic bones reported in the literature (see below). This is evident in overall
average trace element composition and in depth profiles for individual elements.
All SRHS bones, regardless of variations in degree of overall porosity and cortical
thickness, average ∑REE < 600 ppm (Table 3.1). By comparison, Triassic reptile bones
collected from shallow marine sediments of Poland exhibit ∑REE averaging 2700–3800
ppm (Kowal-Linka et al., 2014), and dinosaur bones from the Cretaceous Two Medicine,
146
Judith River, Dinosaur Park, and Cedar Mountain formations of western North America
are reported to exhibit ∑REE ranging from 1100 ppm to greater than 25000 ppm
(averages of 1136 ppm (Trueman, 1999), 7557 ppm (Rogers et al. 2010), 4020 ppm
(Rogers et al., 2010), 1544 ppm (Trueman, 1999), and ranging up to > 25000 ppm
(Suarez et al., 2007)].
A positive relationship is evident between tissue porosity/permeability and
elemental concentrations: elements with greater overall porosity (SRHS-DU-2, -89, and 278) exhibit almost universally greater trace element concentrations. This is reflected in
average ∑REE being higher in these elements (Table 3.1), as well as flatter profiles with
higher concentrations in the internal cortex and trabeculae (e.g., Figure 1B,G). Pedal
phalanx SRHS-DU-278 does not display as markedly high concentrations as manual
phalanx SRHS-DU-89, despite similarly high overall porosity; this may owe to the laser
transect analyzing an area directly underlying a dense iron concretion coating (see
Discussion).
Uranium (U) concentrations in SRHS bones range from 2–18ppm, considerably
less than the average values of 222 ppm and 49 ppm reported from vertebrate
microfossils collected from similar lithologies in fluvial deposits of the Judith River and
Two Medicine formations, respectively (Rogers et al., 2010). Uranium concentrations
average ~0.3–5 ppm in middle cortices but are somewhat more elevated in the middle
cortex of elements with greater porosity (e.g., concentrations ~4–30 ppm in manual
phalanx SRHS-DU-89; Appendix A).
Strontium (Sr) and barium (Ba) concentrations are the highest of all recorded
elements, with concentrations one to two orders of magnitude higher than all REE (Sr
147
and Ba bone averages ranging from ~2500–3700 ppm and ~1500–2150 ppm,
respectively; Table 3.1). Average scandium (Sc) concentrations are high (range 2.8–26.5
ppm) and exhibit a strong positive correlation with overall bone porosity, alike many
other elements.
3.5.2 Intra-bone REE depth profiles
All SRHS bones exhibit steeply declining REE concentrations with increasing
cortical depth, especially for LREE. Specifically, all La concentrations (except for
weathered metatarsal SRHS-DU-2) are < 800 ppm at the outer cortex edge and decrease
to < 200 ppm by two millimeters into the cortex (Figures 1B–H, 2, and 3), generally
encompassing a decrease of roughly two orders of magnitude. Again, this pattern holds
regardless of cortical porosity or the thickness of dense cortical bone. Such low
concentrations at the external cortex margin are more akin to those of a Pleistocene bone
measured by Trueman et al. (2011; outer cortex edge La concentration ~300 ppm) than
most Mesozoic dinosaur bones collected from similar fluvial-influenced environments in
the literature; the latter commonly exhibit cortex-edge La concentrations exceeding 900
ppm (e.g., three bone fragments from the Judith River Formation with external La
concentrations ca. 1500 ppm and another from the Maevarano Formation at ~2500 ppm
[Koenig et al., 2009]; an Apatosaurus femur from the Morrison Formation with external
La concentration ~800 ppm that maintains concentrations > 400 ppm at five millimeters
of cortical depth [Herwartz et al., 2011]; a bone from the Judith River Formation with
external La concentrations ~1500–2500 ppm that remain above 400 ppm at two
millimeters of cortical depth [Trueman et al., 2011]).
148
Only three bones (femora SRHS-DU-94 and -273 and fibula SRHS-DU-231)
exhibit obvious kinks in La profiles across the external cortex that are thought to reflect
double medium diffusion along Haversian canals as well as advective diffusion across the
cortex (Kohn, 2008), though exponential modeling would be necessary to fully explore
this potentiality. Femur SRHS-DU-94 is perhaps the best example, exhibiting a markedly
steep La profile that suddenly shallows in slope at a cortical depth ~1.75 mm (Figure 1C).
Some bones, most notably SRHS-DU-2, exhibit locally enriched REE concentrations in
osteonal tissue surrounding Haversian canals (Figure 3B), providing supporting evidence
for diffusive uptake through these systems.
Most bone La profiles exhibit relatively minimal to modest deviations from best
fit lines in the external cortex, but metatarsal SRHS-DU-2 clearly differs with a high
degree of variation (Figure 3A). The three bones with the next highest deviations in La
concentration profiles in the outer cortex are metatarsal SRHS-DU-306, femur SRHSDU-126, and manual phalanx SRHS-DU-89. Overall cortical porosity or thickness does
not appear to correlate with deviation from best fit lines in La profiles.
Three bones (manual phalanx SRHS-DU-89, femur SRHS-DU-94, and metatarsal
SRHS-DU-306) exhibit REE profiles that show hints of fluid flow through the medullary
cavity that served as a secondary diffusion front. This is reflected by slightly elevated
REE concentrations in the innermost cortex and internal trabeculae relative to the middle
cortex (Figure 1B,C,H). Three U profiles that exhibit slight rises in concentrations in the
innermost cortex and internal trabeculae suggest that another three bones (femur SRHSDU-126, fibula SRHS-DU-231, and pedal phalanx SRHS-DU-278) also experienced
minor fluid flow through the medullary cavity (an example U profile for fibula SRHS-
149
DU-231 is presented in Figure 2). That U displays such patterns but REE do not in some
bones may owe to differing elemental supplies or the chemistry of pore fluids changing
with time (see Discussion). Counterintuitively, occurrences of secondary diffusion from
the medullary cavity do not appear to correlate strongly with overall tissue porosity.
MREE exhibit concentration profiles generally intermediate in slope between
those of LREE and HREE. HREE profiles, for which Yb is presented in my figures as a
representative, are universally significantly flatter than LREE profiles. Ytterbium
concentrations commonly remain quite low in the middle and internal cortex (0.5–2 ppm
or lower; Figures 1 and 2), and frequently encroach on or fall below detection limit
(Appendix A). However, bones exhibiting evidence of a secondary diffusion front from
within the medullary cavity (e.g., SRHS-DU-306) exhibit slightly higher concentrations
in the middle cortex (~1–5 ppm; Appendix A). Alike Yb, lutetium (Lu) often encroaches
on or drops below lower detection limit in middle and internal cortices (Appendix A).
Yet, unlike Yb, Lu concentrations exhibit a strong correlation with overall bone porosity;
highly porous phalanges (SRHS-DU-89 and -278) exhibit far higher Lu concentrations
throughout the entire cortex. Despite this, all but one Lu profile remain flatter than Yb
profiles, with cortical concentrations within the lower range of values reported from other
Mesozoic dinosaur bones by Herwartz et al. (2011). Only one bone (metatarsal SRHSDU-306) exhibits distinct secondary diffusion of Lu from within the marrow cavity.
Uranium depth profiles generally display greater deviations from best fit lines
than most REE profiles and exhibit shallow declines with increasing cortical depth in a
manner similar to Yb in these bones (e.g., Figure 2). For every analyzed bone, Sr and Ba
exhibit high concentration depth profiles that are essentially flat (data not shown).
150
3.5.3 NASC-normalized REE patterns
Spider diagrams of NASC-normalized REE concentrations from the external 250
μm of bone cortices display remarkable consistency (Figure 4A). Shale-normalized
concentrations range from values comparable to NASC to roughly 30 times NASC
values. Patterns for all but one bone, manual phalanx SRHS-DU-89, are characterized by
relative LREE enrichment and HREE depletion relative to MREE. Only manual phalanx
SRHS-DU-89 exhibits a distinctly different pattern with relative enrichment in MREE
(most notably terbium [Tb]) and HREE in the outermost cortex. Fibula SRHS-DU-231
exhibits a slight depletion in cerium (Ce), and five bones (SRHS-DU-2, -94, -231, -278,
and -306) exhibit slight enrichment in europium (Eu) in the outermost cortex. Though a
ternary plot of NdN-GdN-YbN (Figure 4B) suggests modest variation in bone composition
(i.e., variation exceeds two standard deviations), this depicts whole-bone averages that
incorporate varying amounts of dense cortex and porous trabecular bone. One cannot
reasonably expect to see similar patterns in such an all-encompassing comparison.
To better reveal intra-bone REE patterns with respect to NASC, I have plotted the
composition of individual bone transects in additional LaN-GdN-YbN ternary plots (Figure
4C–D) and spider diagrams (Figure 5). These figures demonstrate that bones frequently
become relatively LREE and MREE depleted with increasing cortical depth, shifting
from relatively LREE enriched at the outer cortex edge to HREE enriched in the inner
cortex. Three bones (SRHS-DU-2, -94, -231) display relatively even shifts towards
greater enrichment in both MREE and HREE (Figure 4D). Only one bone (SRHS-DU273), which also has the lowest concentrations, exhibits a shift toward considerable
151
MREE enrichment with cortical depth (Figure 4D). Transects including the external
cortex edge are either flat or exhibit modest LREE enrichment. Internal cortex transects
are almost always depleted relative to NASC values, with the most porous bones being
the only exceptions (phalanges SRHS-DU-89 and -278). Many transects exhibit local
peaks at Eu or gadolinium (Gd; e.g., internal transects of SRHS-DU-273). However,
behavior of Gd in ICPMS has been noted to be erratic due to isobaric interference effects
(e.g., Kemp and Trueman, 2003), so peaks for this element are likely artifacts. Internal
cortex transects of metatarsal SRHS-DU-306 and femur SRHS-DU-94 are REE enriched
relative to middle cortex transects in these bones, clearly indicating secondary diffusion
from within marrow cavities.
Spot analyses were conducted around the perimeter of the fibula section (SRHSDU-231) in order to test for circumferential variation in REE composition (e.g., Suarez et
al., 2010). Both spot analyses (Figure 6, Appendix B) and a spider diagram of transects
cutting across the section (Figure 5) illustrate lower concentrations on the quarry down
side of the bone. Spot analyses (Figure 6B) also highlight proportionally less MREE on
the quarry down side (also see Appendix B), and the spider diagram (Figure 5) suggests a
negative Ce anomaly on the quarry-up side external transect (c03a). However, this
apparent anomaly is artificial due to Ce concentrations being so high in this transect that
they frequently were not detected (n.d. in Appendix A), causing the transect average to
artificially be underestimated by overweighting of lower concentrations deeper within the
c03a transect. Spot analyses clearly demonstrate relative LREE depletion and strong
HREE enrichment in an iron rich precipitate relative to bone (spot a10a in Figure 6). This
precipitate was likely originally siderite but is now oxidized to goethite (see Chapter 2,
152
section 2.8.3). Spots on the quarry down side are very similar in composition to those on
the quarry up side; the only noteworthy difference is relatively greater La enrichment on
the quarry down side. Spot a08a on the quarry down side exhibits far lower shalenormalized concentrations than all other spots, even others on the same side of the bone.
Because this spot is comparatively depleted in LREE and MREE, a commonly depthdependent pattern evident in bone spider diagrams (Figure 5), I suspect that a minute
piece of the external edge may have flaked away and that data for this spot reflects the
composition of bone somewhat interior to the true cortical edge.
3.5.4 (La/Yb)N vs. (La/Sm)N ratio patterns
SRHS bones have a consistent composition distinct from published values for
environmental water samples, pore fluids, dissolved loads, and sedimentary particulates
(Figure 7A). Average SRHS bone compositions are characterized by (La/Sm)N values >
2.0 and (La/Yb)N values slightly less than 1.0, generally reflecting enrichment in LREE
and HREE (but not MREE) relative to environmental samples. Only pedal phalanx
SRHS-DU-278 possesses a (La/Yb)N value exceeding 1.0, perhaps owing to an iron-rich
concretion coating over the analyzed area diminishing diffusion of Yb and other HREE
with low diffusivities (see Discussion). Bone (La/Yb)N values are generally most similar
in range to those of river, lake, and estuary waters (Elderfield et al., 1990; Johannesson
and Lyons, 1995) and alkali saline groundwaters (Johannesson et al., 1999).
When REE ratios are plotted for individual transects a consistent pattern emerges
of decreasing (La/Yb)N and increasing (La/Sm)N with increasing cortical depth (Figure
7B). Femur SRHS-DU-273 is the only bone to deviate from this pattern. It exhibits a
153
decrease in both (La/Yb)N and (La/Sm)N with increasing depth. Nearly all external
transects exhibit (La/Yb)N ratios > 1.0 whereas all middle and internal cortex transects
have ratios ≤ 1.0. All transect (La/Sm)N ratios range between 1.0–7.0.
3.5.5 REE anomalies
(Ce/Ce*)N, (La/La*)N, and La-corrected (Ce/Ce**)N anomalies are usually absent
at the outer cortex edge (Figure 8). All three of these anomalies fluctuate between
positive and negative values in the same specimens, with (Ce/Ce**)N and (La/La*)N
values varying in some specimens by three orders of magnitude. As noted by Herwartz et
al. (2013b), presence of both positive and negative anomalies in the same specimens casts
doubt on the utility of Ce anomalies as paleo-redox indicators. SRHS-DU-2 (an exposed
and sun-bleached metatarsal), SRHS-DU-231 (a fibula with a longitudinal strut bisecting
the medullary cavity), and SRHS-DU-273 (specimen with the lowest concentrations)
exhibit the greatest fluctuations in anomaly values. Values for all three anomalies display
a surprisingly consistent absence in the external three millimeters of pedal phalanx
SRHS-DU-278, perhaps due to shielding effects of a goethite coating over the bone
surface. Iron-rich minerals are known to effectively scavenge REE (Koeppenkastrop and
De Carlo, 1993), so it is thus not surprising that far greater REE concentrations are
encountered in the goethite coating than in the underlying bone or in any other bone
(Figure 8).
(Ce/Ce*)N anomalies generally remain absent across bone profiles, fluctuating
positively and negatively by roughly an order of magnitude or less in the majority of
specimens analyzed (exceptions are SRHS-DU-2, -94, and -273 which exhibit variation
154
by roughly two orders of magnitude). Two bones (SRHS-DU-2 and -273) and one bone
(SRHS-DU-192), respectively, develop slightly negative (Ce/Ce*)N anomalies in the
internal and middle cortex. When (Ce/Ce*)N anomalies are averaged for entire bones
(Table 3.1), they display a weak negative relationship with U concentrations (Figure 9),
which Metzger et al. (2004) suggest to reflect simultaneous uptake of Ce and U.
Because (Ce/Ce*)N anomalies are in part based on La concentrations, La
anomalies can bias (Ce/Ce*)N values. The calculation of (Ce/Ce**)N anomalies removes
this problem by instead inferring expected Ce concentrations from praseodymium (Pr)
and neodymium (Nd) concentrations (Herwartz et al., 2013b). (Ce/Ce**)N anomalies
commonly become slightly positive through the middle and internal cortex (Figure 8),
though fluctuations are considerable.
(La/La*)N anomalies fluctuate considerably but show no clear trend in most
bones. One clear exception is metatarsal SRHS-DU-192, which displays a smoothly
increasing (positive) (La/La*)N anomaly with depth (Figure 8). Herwartz et al. (2013b),
who saw similar patterns in some of their specimens, claim that such trends are common
in aquatic settings due to tetrad effects. Both Ce/Ce** and La/La* anomalies are often
negative (seen as data gaps in log plots of Figure 8) due to significantly greater Nd than
Pr concentrations.
Ytterbium/holmium (Y/Ho) ratios remain near chondritic (26; Pack et al., 2007)
across most bone profiles with most displaying variation of roughly one order of
magnitude but no strong trends with cortical depth (Figure 8). A few bones (e.g., SRHSDU-2, -192, -231) exhibit slightly positive Y/Ho anomalies in the middle cortex, perhaps
suggestive of tetrad effects (Herwartz et al., 2013b). These positive Y/Ho anomalies
155
cannot be attributed to precipitation of secondary apatite (Herwartz et al., 2013b) because
all specimens remain unpermineralized; they may instead owe to dissolutionreprecipitation during recrystallization of bone hydroxyapatite to fluorapatite (as
identified by x-ray diffraction; see Chapter 2, section 2.7.11).
3.5.6 Immunofluorescence
Successful binding of antibodies raised against chicken collagen to Alligator
collagen has been found previously (Schroeder, 2013), confirming the highly conserved
nature of archosaurian collagen I. Further, successful binding with an archosaur
(alligator) more distantly related to chicken than Edmontosaurus signifies that the avian
antibodies used are an appropriate choice for detection of collagen in nonavian dinosaurs.
In situ immunofluorescence of demineralized cortical bone of fibula SRHS-DU231 revealed positive reactivity to polyclonal anti-chicken collagen I antibodies (Figure
10A–D). Though immunoreactivity was not as strong as in modern controls (i.e., fainter
fluorescence, cf. Figure A and I), fluorescence was clearly isolated to tissue sections and
above the levels of secondary only controls. Secondary only and inhibition specificity
controls exhibited no and extremely reduced binding, respectively (Figure 10E,F,J,K).
Digestion specificity controls (with collagenase prior to antibody exposure) for fossil
sections initially did not affect signal intensity or resulted in increased signal intensity
(one hour digestion, Figure 10G). This result has been seen previously (Schweitzer et al.,
2008; Schroeder, 2013) and attributed to enzymatic digestion not having been performed
long enough to adequately break apart insoluble protein aggregates (e.g., Ramos-Vara
and Beissenherz, 2000). In contrast, increasing the duration of digestion to six hours
156
produced dramatically reduced binding, confirming the fossil antigens are structurally
consistent with collagen (i.e., have abundant X-Gly bonds that are rare in other proteins;
Harper and Kang, 1970). Binding in modern Alligator control sections was expressed
across the entire section (Figure 10I) whereas binding in fossil sections was frequently
stronger at or near the periphery of demineralized tissue fragments (Figure 10A–D).
3.6 Discussion
3.6.1 Geochemical taphonomy of SRHS
Consistently low REE concentrations and smooth, “simple diffusion” (sensu
Trueman et al., 2008a) profiles with cortical depth suggest a common diagenetic history
for the SRHS assemblage relating to the depositional history of the site. More
specifically, modest variance in bone composition (Figures 4A–B and 7B, Table 3.1)
suggests either minimal reworking of bones or extensive late diagenetic overprinting. The
latter appears unlikely given the low average concentrations (Table 3.1, Appendix A) and
lack of evidence for leaching or secondary REE incorporation phases (Figure 1).
Preservation of seasonal δ18O cycles in enamel of Edmontosaurus maxillary teeth from
SRHS (Stanton Thomas and Carlson, 2004) further signifies a lack of extensive late
diagenetic overprinting. Moreover, the rarity of postmortem weathering and abrasion and
confinement of bones to a single horizon indicates minimal reworking (Chapter 2). Since
all available trace element and taphonomic evidence argues against attritional
accumulation of bones, the conclusion that the SRHS assemblage represents a mass
mortality event (drawn in Chapter 2) is upheld.
157
Lack of MREE enrichment causes most bones to lack distinct W-shape profiles
indicative of strongly-acting tetrad effects or extensive secondary apatite precipitation
(Herwartz et al., 2013b). However, a few bones (SRHS-DU-273, -192, -94, and -126)
display potential evidence of modest tetrad effects in the form of W-shape NASC
normalized patterns in the internal cortex (i.e., MREE enrichment in the internal cortex;
Figure 5). These examples of MREE enrichment in interior bone do not appear to
correlate with tissue porosity, overall concentration level, or evidence of secondary
diffusion from within the marrow cavity. All bones are entombed in the same lithology
with only small-scale textural heterogeneities, so differences in host rock permeability
(Herwartz et al., 2013a; Kowal-Linka and Jochum, 2015) are also unlikely to explain
MREE enrichment. Rather, three of four bones with middle/internal cortex MREE
enrichment exhibit evidence of double medium diffusion through Haversian canals
(Table 3.2). Though this may explain elevated MREE concentrations deeper within the
bones, one would also expect elevated LREE concentrations due to their high
diffusivities (Kohn and Moses, 2013). That LREE concentrations are not elevated in
middle cortices implies that LREE may have preferentially been incorporated into
external cortices, so that their availability in pore fluids that reached middle cortices was
reduced. This could be accomplished by a propagating recrystallization front during early
diagenesis (Kohn and Moses, 2013).
Slight positive (Ce/Ce**)N anomalies in the middle and internal cortex of many
SRHS bones (Figure 8) may also reflect localized tetrad effects (Herwartz et al., 2013b),
but I suggest it is more likely that these primarily derive from a diagenetic phase of
oxidation. Substantial evidence supports diagenetic oxidation, namely; 1) common high
158
Sc concentrations (likely owing to oxidation-induced precipitation of microscopic, Scscavenging, Fe-oxide minerals on Haversian canal walls and in voids in the bone;
Williams and Potts, 1988; Williams et al., 1997); 2) abundance of highly oxidized bone
fragments at the base of a channel sandstone immediately overlying the assemblage (see
Chapter 2, section 2.3), and; 3) abundant goethite concretions within the bonebed horizon
that commonly bear thin, blue todorokite coatings indicating oxidative expulsion of
manganese from originally sideritic concretions (Chapter 2 and references therein).
Though oxidation has clearly taken place, two lines of evidence characterize the
initial diagenetic setting as reducing. First, siderite (FeCO3) concretions commonly form
in organic-rich mudstones deposited in shallow-water coastal plain settings such as
paludal marshes and floodplain ponds (Curtis and Coleman, 1986; Morad, 1998). In these
environments, bacterial decomposition of organics produces dissolved bicarbonate
(HCO3-) that can cause carbonate supersaturation and therefore mineral precipitation
(Coleman, 1993). Second, SRHS bones possess little U, suggesting that they did not
fossilize in oxidizing soils during early diagenesis (Metzger et al., 2004). The
predominately fine grain size of the host matrix (rather than a coarse grained, welldrained composition) matches this inference. The argillaceous matrix hosting the
bonebed may also account for, due to limited permeability, the overall low REE
concentrations of bones and lack of more complex REE concentration-depth profiles
(Herwartz et al., 2011, 2013a; Kowal-Linka et al., 2014; Kowal-Linka and Jochum,
2015).
Low bone REE concentrations also may be products of early diagenetic removal
of REE by growth of abundant siderite concretions within the bonebed. Fe/Mn-rich
159
precipitates are known to efficiently scavenge REE and other trace elements from
surrounding pore fluids (e.g., Koeppenkastrop and De Carlo, 1993), which would reduce
trace element availability to bones. Pedal phalanx SRHS-DU-278 provides an example of
this effect, in which a low porosity concretion coating appears to have absorbed
considerable amounts of REE and limited REE uptake by the underlying bone (e.g., Yb
concentrations greater than an order of magnitude higher in the concretion coating than in
underlying bone; Appendix A, Figure 1G). This “shielding” effect may have worked in a
manner similar to that of dense enamel limiting REE uptake by more internal dentine
(Hinz and Kohn, 2010).
The pattern seen in all but one SRHS bone of decreasing (La/Yb)N and increasing
(La/Sm)N with cortical depth has been interpreted many ways in the literature. For
example, Reynard et al. (1999) assigned such patterns to represent “substitutionrecrystallization” REE incorporation mechanics, whereas Trueman et al. (2006)
interpreted such specimens (their ‘group 4’) to reflect long-term REE scavenging by
adsorption. Most recently, Herwartz et al. (2013b) reconsidered (La/Yb)N–(La/Sm)N
patterns in light of new laser-ablation derived data and concluded that all previous
interpretations based on solution ICPMS analyses (e.g., Reynard et al., 1999; Trueman et
al., 2006) were biased by bulk sample averaging effects. Herwartz et al. (2013b) (and
Trueman et al., 2011) offer a compelling argument that such ratio trends reflect “normal
intra-bone fractionation” driven by decreasing partition coefficients with increasing
atomic radii for REE; because the order of closest fit of REE ionic radii to the Ca2+ lattice
site in bone hydroxyapatite is Sm3+ > La3+ > Yb3+, fractionation (based on ionic radius)
will occur during uptake, causing preferential earlier uptake of Sm and La by the external
160
cortex because of their better fit. This “normal” fractionation would thus simultaneously
depress (La/Yb)N values and raise (La/Sm)N values in the internal cortex relative to the
external cortex. This model fits data from SRHS bones, especially considering that
minimal pore fluid flow would enhance fractionation effects during uptake (Trueman et
al., 2011).
Femur SRHS-DU-273, which shifts toward lower (La/Sm)N values with depth,
exhibits a “recrystallization/late diagenetic alteration” pattern according to Reynard et al.
(1999) and Trueman et al. (2006). But since those authors used bulk samples and solution
ICPMS, I instead follow the interpretation of in situ LA-ICPMS data by Herwartz et al.
(2013b). Herwartz et al. (2013b) suggest that this direction of shift may be due to relative
MREE enrichment from surrounding pore waters perhaps becoming MREE enriched
from dissolved organic matter, reduction of Fe oxides, or leaching from MREE-rich
minerals. Expression of this (La/Yb)N–(La/Sm)N pattern in only one analyzed bone
suggests that MREE became locally enriched in small regions of the bonebed, possibly in
areas with greater accumulation of plant debris and dissolved organic matter.
Taken together, normal intra-bone fractionation trends (sensu Herwartz et al.,
2013b) in the (La/Yb)N vs. (La/Sm)N plot (Figure 7A), low concentrations of MREE and
elements with moderate (e.g., U) and low diffusivities (e.g., Yb) in middle cortices
(Figures 1 and 2, Appendix A), and flatter profiles for U than REE (Appendix A), despite
similar diffusivities for these elements in bone (Kohn and Moses, 2013), suggest that
pore fluid replenishment was not active through the majority of diagenesis and that,
instead, pore fluids changed in chemistry with time. Were fluid replenishment sustained
for even a modest length of time, one would expect; 1) higher concentrations of MREE
161
and elements with low diffusivities in the middle cortex due to preferential uptake of
LREE in the external cortex (Trueman et al., 2011; Kohn and Moses, 2013), and; 2) that
elements with similar diffusivities would develop similar shaped depth profiles. The
differing profile shapes between U and REE in SRHS bones suggest that REE availability
to interior bone dwindled with time while that of U remained relatively high. Kohn and
Moses (2013) attributed similar patterns to less effective uptake of U by bone mineral,
maintaining higher U concentrations in soil waters for a longer duration of time. Because
this model also fits data for SRHS specimens, I follow their interpretation.
According to Herwartz et al. (2011, p. 92), such exceptions to long-term REE
uptake are rare and likely only occur “where special taphonomic and physicochemical
conditions either inhibited or especially promoted transport of REE in the diagenetic
fluid.” SRHS bones appear to comprise only a third known exception; Herwartz et al.
(2011) suggested two Cretaceous bones analyzed by Koenig et al. (2009) are two other
exceptions. Alike the bones analyzed by Koenig et al. (2009), SRHS bones appear to
have experienced a “limited REE supply over burial time” (Herwartz et al., 2011, p. 92),
likely owing to two factors discussed above: 1) a low permeability, fine grain host matrix,
and; 2) early diagenetic removal of REE by concretion growth.
To summarize, cumulative REE data indicate a simple diagenetic history for
SRHS bones that involved a brief period of primary trace element uptake compared to
many other similarly aged fossils. Despite a lack of permineralization, pore fluid
replenishment appears to have been impeded following early diagenesis, perhaps due to
low permeability of the fine grain host matrix. In addition, removal of a significant
fraction of REE by early diagenetic growth of siderite concretions in the bonebed horizon
162
appears to have further limited bone REE uptake and, in cases where concretions grew on
bone surfaces, shielded regions of bones against chemical alteration.
3.6.2 REE correlations with soft tissue and collagen preservation at SRHS
Immunofluorescence positively identified endogenous collagen I in
demineralization products of fibula SRHS-DU-231 (Figure 10A–D). Antibodies are most
likely binding to semi-translucent/white fragments of tissue morphologically consistent
with bone fibrous matrix that are visible by optical microscopy (Chapter 2, fig. 2.8).
Though immunofluorescence still needs to be performed on the additional eight
specimens tested in Chapter 2, that all nine bones yielded identical, abundant, pliable
fibrous matrix upon demineralization suggests immunofluorescence would also positively
identify collagen I in those specimens.
Many burial history and diagenetic factors controlling the REE composition of
SRHS bones likely also contributed to their preservation of soft tissues and collagen.
First, rapid burial by flooding events (see Chapter 2, section 2.8.2) yielded consistent
trace element composition among bones and minimized soft tissue degradation by aerial
exposure (e.g., UV radiation and weathering; Behrensmeyer, 1978; Trueman et al., 2004;
Fernandez-Jalvo et al., 2010). Indeed, rapid burial is widely considered essential for soft
tissue preservation in the fossil record (e.g., Allison, 1988; Eglinton and Logan, 1991;
Martin, 1999; Schweitzer, 2003, 2004, 2011; Zhu et al., 2005; Manning et al., 2009).
Second, burial in a chemically stable, low energy environment (a small paludal pond; see
Chapter 2, section 2.8.1) restricted the development of varied, complex REE
compositions and minimized degradative processes acting on the bones and their soft
163
tissues (e.g., abrasion, chemical reactions; Fiorillo, 1988; Williams et al., 1997). Third,
burial in a terrestrial reducing environment stimulated the precipitation of REEscavenging siderite concretions (e.g., Koeppenkastrop and De Carlo, 1993; Coleman,
1993) that limited REE uptake by bone and shielded regions of some bones against
chemical alteration. Chelation of metal ions in reducing conditions may also have
minimized oxidative damage to collagen and other biomolecules (Eglinton and Logan,
1991). Fourth, the argillaceous host matrix that limited pore fluid replenishment and
therefore REE uptake also limited potential hydrolysis of biomolecules and minimized
the influx of microbial decomposers (e.g., Eglinton and Logan, 1991; Muyzer et al.,
1992; Peterson et al., 2010). Abundant clay in the host matrix may also have mitigated
degradation of soft tissues by adsorbing and thereby inactivating microbial enzymes
(Butterfield, 1990; Schweitzer, 2004; Zhu et al., 2005). Additionally, waterlogged
conditions combined with low permeability of the host matrix may have produced local
zones of anoxia that could have further limited microbial activity and oxidation of
biomolecules (e.g., Huq et al., 1985; Tuross et al., 1989; Martin, 1999; Briggs et al.,
2000; Hedges, 2002; Briggs, 2003; Schweitzer, 2004).
Tissue density and porosity appear to influence both REE uptake and the recovery
of soft tissues from SRHS bones. Phalanges (SRHS-DU-89 and -278) with thin cortex
and highly porous, cancellous internal structure display higher REE concentrations and
relatively flatter REE profiles, and yielded abundant osteocytes but only minute amounts
of fibrous matrix fragments (and few vessels) upon demineralization (Chapter 2, section
2.7.12). Evidence from previous studies characterizing the trace element chemistry of
fossil bone (e.g., Hagelberg et al., 1991; Goodwin et al., 2007; Daniel and Chin, 2010;
164
Anné et al., 2014) indicate that highly porous tissues facilitate pore fluid flow and
therefore recrystallization, elemental exchange and adsorption, hydrolysis, and microbial
attack. Considering the greater trace element uptake (and hence greater alteration) and
minimal yield of fibrous matrix from phalanges SRHS-DU-89 and -278, I infer that the
probability of recovering collagen from such porous bones may be lower (but not zero;
e.g., Schweitzer et al., 1997a). However, considering the wealth of osteocytes recovered
from these specimens, high porosity bones may still offer high potential for recovery of
biomolecules preserved in osteocytes (e.g., actin, tubulin, histones).
3.6.3 The use of REE data as a proxy for biomolecular preservation
Trueman et al.’s (2008a) hypothesis of a link between REE concentration-depth
profiles and biomolecular recovery potential was based upon an inference of primary
REE uptake during the process of recrystallization in early diagenesis. The same pore
fluid interactions that cause recrystallization and lead to REE uptake will also affect the
biomolecular components of bone through hydrolysis, solubilization, and mobilization of
autolytic enzymes and microbial decomposers. Trueman et al. (2008a) proposed that if
pore fluid interactions were brief, and hydrated conditions facilitate (or may indeed be
required for) recrystallization, then bones briefly exposed to groundwater must have
recrystallized rapidly. As they discussed, rapid recrystallization would be an efficient
means of quickly stabilizing a bone with its early diagenetic environment. However, there
is an inherent difficulty in drawing such inferences from fossil bones because we are only
left with the end composition of the mineral phase(s). Though REE uptake may primarily
take place during recrystallization as Trueman et al. (2008a) suggested, protracted uptake
165
over geologic timescales of burial will alter and obscure original depth profiles so that
they: 1) provide biased fossilization rate estimates from approximated diffusivities (Kohn
and Moses, 2013), and; 2) yield erroneous Lu-Hf ages (Kocsis et al., 2010; Herwartz et
al, 2011, 2013a). Evidence amassed from fossils of varying ages and environments (e.g.,
Kocsis et al., 2010; Herwartz et al., 2011, 2013a) and the proficiency of bone as a trace
element sink (Kohn and Moses, 2013) suggest that all pre-Quaternary fossils continue to
uptake minor amounts of REE and other trace elements throughout their entire burial
history (potentially > 50% of total end concentrations gained through late diagenesis;
Kocsis et al., 2010). Thus, it is unlikely that even bones with as low of concentrations and
simple depth profiles as the specimens from SRHS would allow accurate characterization
of the duration of early diagenetic recrystallization in an absolute sense. What can be
discerned from REE taphonomy with confidence, however, is the overall relative extent
of diagenetic alteration of a bone. Crucially, this is also what governs the
decay/degradation of bone soft tissues and their constituent biomolecules. In short,
“simple diffusion” profiles (sensu Trueman et al., 2008a) may yield erroneous Lu-Hf
ages (e.g., Kocsis et al., 2010; Herwartz et al., 2011, 2013a) but they still denote simple
long-term diagenetic histories that are logically more favorable for biomolecular
retention.
Although debate continues over the precise mechanics of REE uptake (e.g.,
Trueman et al., 2006, 2011; Kocsis et al., 2010; Herwartz et al., 2011, 2013a, 2013b;
Kohn and Moses, 2013), that issue is of little importance to the question of whether or not
REE composition is a viable proxy for biomolecular recovery potential. Whether “simple
diffusion” profiles (such as found in most SRHS bones) result from high REE uptake in
166
early diagenesis followed by closed system behavior or from continual minor uptake of
additional REE over geological timescales (e.g., Kocsis et al., 2010) is vitally important
when attempting to constrain the geochemistry of the original depositional environment,
but biomolecular recovery potential depends on the entire diagenetic history of a
specimen, not just the initial geochemical regime to which it was exposed. Therefore,
what matters most are: 1) the overall level of trace element concentrations (high vs. low),
and; 2) the general character of REE profiles. Theoretically, specimens that incorporated
REE solely in early diagenesis and then became closed systems would logically be
excellent candidates to retain biomolecules (due to long-term stable conditions).
However, a mounting body of evidence suggests that such specimens rarely exist (Kocsis
et al., 2010; Herwartz et al., 2011, 2013a). Specimens which display evidence of trace
element leaching (e.g., Kocsis et al., 2010, fig. 2B), secondary incorporation phases (e.g.,
Kocsis et al., 2010, fig. 2C), or yet more complex diagenetic histories involving multiple
exposures to groundwaters of varying compositions (e.g., Kocsis et al., 2010, fig. 2E–F;
Herwartz et al., 2013b, fig. 9G), would be expected to have lower likelihood of
biomolecular recovery as any of these processes would reflect re-exposure to new pore
fluids later in diagenesis that could actively degrade soft tissues. Even if REE are
continually incorporated through late diagenesis, models suggests that this occurs at very
minor levels (likely < 0.2 ppm/Ma; Kocsis et al., 2010) and constitutes a slow, relatively
inconsequential process rather than a rapid, strong geochemical shift that would be more
apt to degrade soft tissues.
Although evidence found in this study supports the hypothesis advanced by
Trueman et al. (2008a), the relationship between REE profiles and biomolecular retention
167
is unlikely to always be so straightforward. Tissue type, structure, and location of
biomolecules within tissues are also key variables that must be considered (Eglinton and
Logan, 1991; Briggs et al., 2000; Collins and Gernaey, 2001; Zylberberg and Laurin,
2011; Schweitzer et al., 2013). Also, though an inverse relationship was identified
between REE concentrations and recovery of fossil bone fibrous matrix (cf. Tütken et al.,
2008), osteocytes do not appear as affected by trace element uptake. Hence, REE profiles
may better reflect the recovery potential for extracellular matrix structural proteins than
for intracellular proteins.
3.7 Conclusion
Minimal variation in REE composition and concentration-depth profile patterns
supports a lack of complex hydrologic regimes through diagenesis and a brief period of
trace element uptake at SRHS. Three factors appear to have mitigated REE uptake by
these fossils: 1) a well-compacted, low porosity, fine-grained host matrix that limited
pore fluid replenishment; 2) rapid burial in a chemically stable, reducing, subaqueous
environment, and; 3) scavenging of trace elements by early diagenetic growth of siderite
concretions. Common growth of siderite concretions over bone surfaces may have
provided an additional shielding effect against further trace element uptake. Although
bones remain unpermineralized and, therefore, open systems, trace element evidence
does not support extensive chemical alteration. Thus, according to Trueman et al.
(2008a), these bones would represent ideal targets for biomolecular analyses.
Immunofluorescence confirms the preservation of endogenous collagen I in one
168
specimen, thereby providing the first evidence in support of Trueman et al.’s (2008a)
proposal of a link between REE composition and biomolecular recovery potential.
In agreement with Anné et al. (2014), data gathered here show that tissue porosity
clearly governs effective diffusion through bone; greater porosity and permeability
facilitate enhanced trace element uptake and thus greater alteration. Because
demineralization of high-porosity tissues yielded a lesser abundance and variety of soft
tissues than was recovered from dense cortical bone (Chapter 2), I infer that the relative
preservation potential of at least some structural biopolymers (e.g., collagen I) is lower in
cancellous bone tissue. Despite higher trace element concentrations, recovery of
numerous osteocytes by demineralization of trabecular tissues suggests that fossil
cancellous bone may still be a viable source of biomolecules comprising osteocytes.
The relationship between REE profiles and biomolecular recovery potential
remains far from clear. Extensive alteration by processes such as leaching or secondary
incorporation phases likely decrease biomolecular preservation potential, but the
specimens analyzed herein do not exhibit such REE patterns and therefore shed no light
on these expectations. Though protracted, late-diagenetic uptake of REE will provide
erroneous Lu-Hf age estimates for fossil bones, it is unlikely to affect the utility of REE
profiles as a biomolecular preservation proxy. Available evidence suggests that REE
profiles may be predictive proxies for biomolecular recovery when considered alongside
a framework of traditional taphonomic and sedimentologic context. However, further
testing is needed to confirm whether or not the correlations identified herein between
REE composition and soft tissue preservation also hold true for biomolecular retention in
fossil bone. With a current sample size of only one, evidence supports the hypothesis
169
advanced by Trueman et al. (2008a). However, we do not yet know the extent of
interplay between chemical alteration and biomolecular recovery potential. To fully test
to what degree chemical alteration diminishes the preservation potential of biomolecules,
trace element analyses must be conducted in tandem with quantitative immunoassays
(e.g., enzyme linked immunosorbant assays) and/or mass spectrometry on a suite of
fossils covering the spectrum of tissue porosity/permeability.
SRHS-DU-# Element Sc
2
Metatarsal 7.23
89
Manual
26.5
Phalanx
94
Femur
4.05
126
Femur
4.17
192
Metatarsal 6.78
231
Fibula
5.08
273
Femur
2.81
278
Pedal
20.9
Phalanx
306
Metatarsal 9.32
0.243 1.68 3615
77.3 1897
1934
1759
1701
2129
1849
1538
22.7
23.5
23.7
42.6
7.44
82.1
3352
3481
2900
3697
2583
3642
0.300
0.352
0.027
0.311
0.041
0.468
1.34
1.52
1.19
1.36
1.23
1.63
Y
Ba
67.0 1753
249 1639
Mn
Fe
Sr
0.301 1.40 3379
0.301 1.65 3370
42.7
16.4
13.2
16.3
27.4
4.67
65.6
La
58.7
142
Pr
14.4
24.3
84.9
8.31
25.8 3.38
25.2 2.53
28.0 2.15
34.5 5.42
7.57 0.663
109 11.4
Ce
132
239
Sm
8.42
13.6
25.7
5.03
10.3 1.75
7.76 1.44
6.79 1.17
16.8 2.86
1.87 0.333
32.7 5.46
Nd
44.7
80.8
Gd
9.24
17.9
Tb
1.24
2.97
Dy
7.69
20.6
1.59
6.01 0.868
6.27
0.585 2.79 0.308 2.02
0.478 2.24 0.277 1.96
0.380 1.92 0.224 1.66
0.945 4.18 0.510 3.50
0.175 0.840 0.072 0.542
1.76 7.44 0.988 6.71
Eu
2.46
4.13
Er
Tm
4.78 0.607
16.9 2.43
1.47
4.85 0.692
4.47 0.699 0.174
0.038
0.032
0.044
0.033
0.018
0.086
Yb
Lu
Th
4.32 0.596 0.059
15.2 2.49 0.064
0.485 1.51 0.215 1.36 0.225
0.478 1.60 0.217 1.40 0.235
0.424 1.42 0.207 1.52 0.266
0.830 2.65 0.359 2.31 0.387
0.134 0.475 0.073 0.487 0.092
1.60 5.01 0.654 4.23 0.692
Ho
1.66
5.15
7.52
2.98
3.25
4.22
4.45
2.01
9.61
193
67
59
62
103
18
253
0.05
-0.19
0.02
0.05
-0.34
-0.03
-0.08
0.09
-0.19
0.05
0.42
-0.32
0.14
-0.03
0.07
0.00
0.07
0.64
0.06
0.30
0.09
52.5
46.8
49.2
55.9
51.4
55.8
51.3
U
ƩREE Ce/Ce* Ce/Ce** La/La* Y/Ho
4.72 291
0.07
-0.02
-0.15
40.4
17.4 587
-0.06
0.12
0.37
48.3
Table 3.1 Average whole-bone trace element compositions for nine SRHS fossils. Iron (Fe) is presented in weight percent (wt. %), all
other elements are in parts per million (ppm). Absence of (Ce/Ce*)N, (Ce/Ce**)N, and (La/La*)N anomalies occurs at zero.
170
171
Table 3.2 Summary of attributes of the nine fossil bones analyzed for REE composition.
Abbreviation: DMD, double medium diffusion sensu Kohn (2008). *Uranium suggests
flow in the marrow cavity of these specimens but REE do not.
Clear
DMD kink
SRHS-DU-#
for La?
2
89
94
126
192
231
273
278
306
No
No
Yes
No
No
Yes
Yes
No
No
Relative
noise in
outer cortex
for La
High
Moderate
Low
Moderate
Low
Low
Low
Low
Moderate
REE suggest
flow in
marrow
cavity?
No
Yes
Yes
No*
No
No*
No
No*
Yes
Relative
concentration
levels
Relative
porosity
overall
Moderate
High
Low
Low
Low
Low
Low (very)
Low
Low
Moderate
High
Low
Low
Low
Low
Low
High
Low
172
Figure 3.1 Intra-bone REE concentration gradients of La (red) and Yb (green) for SRHS
bones. (A) Metatarsal SRHS-DU-2. (B) Manual phalanx SRHS-DU-89. (C) Femur
173
Figure 3.1 (continued) SRHS-DU-94. (D) Femur SRHS-DU-126. (E) Metatarsal SRHSDU-192. (F) Femur SRHS-DU-273. (G) Pedal phalanx SRHS-DU-278. (H) Metatarsal
SRHS-DU-306. Profiles in (B) cross the entire diameter of manual phalanx SRHS-DU89. Yellow-shaded area in (G) denotes a goethite coating over the surface of pedal
phalanx SRHS-DU-278. Laser tracks denoted by the red line in each bone cross section.
Scale bars equal 1 mm.
174
Figure 3.2 Intra-bone concentration gradients of La (red), Yb (green), and U (blue) for
fibula SRHS-DU-231. Profiles cross the entire diameter of the bone. Laser track denoted
by the red line in the bone cross section. Yb and U concentrations have been multiplied
by 10 for ease of visualization. High-porosity trabecular tissue regions are highlighted in
gray. Scale bar equals 1 mm.
175
Figure 3.3 Three-point moving averages of La concentrations in the outermost cortex of
each analyzed fossil. (A) Profiles across the outermost five millimeters of each bone. (B)
Enlarged view of only the external-most two millimeters of each bone, highlighting
raised concentrations in Haversian/osteonal tissue in metatarsal SRHS-DU-2.
176
Figure 3.4 (A) NASC-normalized REE distribution patterns from the outermost 250 μm
of each bone. (B-D) Ternary diagrams of NASC-normalized REE in SRHS bones. (B)
Average composition for each entire bone. (C) REE compositions divided into data from
each individual laser transect (usually ~ 5 mm of data each). Composition data for
transects that included the outer bone edge are denoted by dark diamonds; all other
transect data are indicated by gray circles. Note pattern for transects including the
external bone margin to be relatively enriched in LaN. (D) Transect data from (C)
classified by specimen. The 2σ circle represents two standard deviations based on ± 5%
relative standard deviation.
177
178
Figure 3.5 Intra-bone NASC-normalized REE distribution patterns. Patterns recorded
from the outermost cortex are indicated by black lines, those from deepest within each
bone by dotted light gray lines (usually within more porous trabecular bone of the
marrow cavity), and all other analyses in between by solid dark gray lines. Specimens as
indicated. Note the different ratio scales for each specimen.
179
Figure 3.6 Summary of spot analyses around the circumference of fibula SRHS-DU-231.
(A) Location of LA-ICPMS spot analyses on the thick section. Green circles denote
analytical spots from the quarry-up side of the bone, blue circles denote spots from the
quarry-down side, the red circle (spot a10a) denotes an analysis of an iron-rich precipitate
infilling a Haversian canal, and the orange spot denotes a spot recording composition of
the cortex slightly interior to the outer cortical edge. Red line crossing the diameter of the
bone cross section is the course of the laser transect presented in Figure 2. (B) NASCnormalized REE distribution patterns for each spot shown in (A). Pattern colorations
correspond to spot designations in (A).
180
Figure 3.7 (A) Comparison of whole-bone averages of (La/Yb)N and (La/Sm)N ratios of
SRHS fossils to ratios from various environmental waters and sedimentary particulates.
Literature data for environmental samples as follows: river waters (green field; Hoyle et
al., 1984; Goldstein and Jacobsen, 1988; Elderfield et al., 1990); suspended river loads
(dull pink field; Goldstein and Jacobsen, 1988); alkali saline groundwaters (bright pink
field; Johannesson et al., 1999); lakes (purple field; Johannesson and Lyons, 1995);
estuaries (yellow field; Elderfield et al., 1990); coastal waters (light blue field; Hoyle et
al., 1984; Elderfield and Sholkovitz, 1987; Elderfield et al., 1990); seawater (dark blue
field; Elderfield et al., 1982; De Baar et al., 1983; German et al., 1991; Piepgras and
Jacobsen, 1992; Sholkovitz et al., 1994; German et al., 1995; Zhang and Nozaki, 1996);
sea floor particles (gray field; Sholkovitz et al., 1994); marine pore fluids (orange field;
Elderfield and Sholkovitz, 1987; Haley et al., 2004; Kim et al., 2011). (B) REE
compositions of individual laser transects expressed as NASC-normalized (La/Yb)N and
(La/Sm)N ratios. Transects including the external bone edge are denoted by black
symbols whereas all other (internal) transects are represented by gray symbols. Inset
displays depth-related trends for individual specimens.
181
Figure 3.8 Intra-bone patterns of (Ce/Ce*)N, (Ce/Ce**)N, (La/La*)N, and Y/Ho
anomalies in SRHS bones. Following Herwartz et al. (2013b), (Ce/Ce*)N values were
calculated using La and Pr concentrations (CeN/(0.5*LaN + 0.5*PrN)), (Ce/Ce**)N values
were calculated from the trend of Nd and Pr concentrations (CeN/(2*PrN – NdN)), and
(La/La*)N anomalies were calculated using Pr and Nd concentrations (LaN/(3*PrN –
2*NdN)). (Ce/Ce**)N anomalies avoid issues arising from La anomalies that could
produce apparent (Ce/Ce*)N anomalies when in fact they are not present. Specimens as
indicated. Note the different ratio scales for each specimen.
182
Figure 3.9 Cerium anomaly (Ce/Ce*) values plotted against uranium concentrations for
SRHS bones. Dashed black line represents the general data trend, not a strict regression.
No Ce/Ce* anomaly is at a value of 0.0.
183
Figure 3.10 In situ localization of collagen I in demineralized cortical fragments of
Edmontosaurus annectens (fibula SRHS-DU-231; A–H) and modern Alligator (I–L) by
immunofluorescence. (A–D) Edmontosaurus demineralization products incubated with
antibodies against chicken collagen I; (A) and (C) show FITC images of two sections and
(B) and (D) present corresponding FITC and brightfield overlay images for (A) and (C)
(for visualization of section edge and tissue fragments within embedding resin). All
remaining images (E–L) are FITC images. (E) Secondary only control section that was
not exposed to primary antibodies, to control for non-specific binding of secondary
antibodies. (F) Section exposed to anti-chicken collagen I antibodies that were first
inhibited with chicken collagen (prior to incubation). (G) Section digested with
collagenase for one hour prior to exposure to anti-collagen I antibodies. (H) Section
digested with collagenase for six hours prior to exposure to anti-collagen I antibodies. (I)
Modern Alligator tissue section incubated with anti-chicken collagen I antibodies. (J)
Secondary only Alligator control section that was not exposed to primary antibodies. (K)
Alligator section exposed to anti-chicken collagen I antibodies that were first inhibited
with chicken collagen. (L) Alligator section digested with collagenase for one hour prior
to exposure to anti-collagen antibodies. All section images were taken at 40X and 200 ms
integration.
184
CHAPTER 4: ACTUALISTIC TESTING OF THE INFLUENCE OF
GROUNDWATER CHEMISTRY ON DEGRADATION OF COLLAGEN I IN
BONE
4.1 Abstract
Though recent reports have heightened our understanding of biomolecular
stabilization reactions in early diagenesis, little remains known about how groundwater
chemistry can aid or hinder preservation of bone biomolecules through geologic time. To
examine this topic, I conducted actualistic experiments employing varied fluid
compositions simulating a suite of groundwaters. Chicken (Gallus gallus) femora were
placed in a matrix of natural river sand. To simulate groundwater flow, deionized water
or solutions supersaturated with calcium carbonate or enriched in phosphate or iron were
percolated through separate trials for a period of three months. Afterward, degradation of
the bones was examined via thin sectioning and histologic study as well as
immunofluorescence and enzyme-linked immunosorbent assays against collagen I, the
primary bone structural protein. Results demonstrate that early diagenetic
permineralization may hamper long-term microbial attack, and hence increase the
potential for a bone to retain biomolecules through late diagenesis. High acidity appears
to degrade soft tissues more rapidly than it dissolves bone mineral. Cementation of
sediment over bone surfaces may preferentially become expressed over more porous
regions of bone tissue, perhaps due to greater release of decay compounds from such
regions. Future variations of this actualistic taphonomy experiment employing varying
solution metal concentrations, bacterial floras, pH values, host sediments, and testing
185
bones primarily comprising different tissue types (i.e. dense cortex versus porous
cancellous bone) could provide further important insights into how early diagenetic
environments control the initial decay of bone biomolecules.
4.2 Introduction
As discussed in Chapter 1, discovery of endogenous biomolecules in ancient
fossils is becoming increasingly common (e.g., Muyzer et al., 1992; Embery et al., 2000,
2003; Schweitzer et al., 2005a, 2007a, 2009, 2013; Cappellini et al., 2011; Lindgren et
al., 2011; Glass et al., 2012, 2013). These discoveries challenge long held presumptions
about the nature of fossilization processes and provide intriguing avenues for; 1)
identifying anatomically indeterminate fossil remains (e.g., Buckley et al., 2009, 2011);
2) testing of phylogenetic hypotheses independent of skeletal morphology (e.g., Asara et
al., 2007; Organ et al., 2008; Schweitzer et al., 2009); 3) calibrating of molecular clocks
for cladistic analyses (Schweitzer, 2003); 4) tracking the genetic and phylogeographic
history of species populations (e.g., Paabo et al., 2004; Rogaev et al., 2006), and; 5)
examining trajectories of molecular evolution and organismal physiology (Schweitzer,
2003).
Advancement of our understanding of molecular preservation mechanisms is
critical for developing methods for discerning sample endogeneity and so that
paleontologists may account for such seemingly remarkable discoveries. In particular, a
better understanding must be reached of precise molecular reaction pathways that may
186
take place during early diagenesis to facilitate long term stabilization of biomolecules
(e.g., Schweitzer et al., 2014a).
Groundwater composition, flow rate, pH, and temporal fluctuations in these
variables mediate diagenetic alteration of bone after it is buried in sedimentary
environments (Martin, 1999). One fruitful means of exploring how these variables
influence molecular decay is to model fossil formation in the laboratory through
actualistic taphonomy (Kowalewski and Labarbera, 2004). Experimental recreation of
decay and fossilization pathways allow one to control and reduce the number of
independent variables and evaluate physicochemical processes in a manner not
achievable by direct study of ancient fossils. For example, actualistic studies have
advanced our understanding of how microbes may mediate permineralization of bone
(Carpenter, 2005; Daniel and Chin, 2010), how fluvial currents winnow mass death
assemblages of skeletons (e.g., Varricchio et al., 2005) or impart directionality patterns to
fossil assemblages (e.g., Voorhies, 1969), and how subaerial weathering can
progressively degrade bone (Behrensmeyer, 1978).
In this chapter, I present results of an actualistic experiment conducted to explore
the influence of groundwater chemistry on biomolecular decay. As in Carpenter (2005)
and Daniel and Chin (2010), bones were placed within a sedimentary matrix and exposed
to simulated groundwater of varying composition for a period of three months.
Simulations included calcium carbonate supersaturation, enrichment in phosphate, and
enrichment in iron. These choices were made with the intent of modeling fossilization
within a diverse suite of environments, so that the results could inform paleontologists
working with vertebrates from diverse environments. The findings build upon those of
187
Carpenter (2005) and Daniel and Chin (2010), extend conclusions of these type of
experiments down to the molecular level, and provide a basic foundation for further
actualistic testing.
4.3 Methods
4.3.1 Materials
All expendable materials used in construction of the trial apparatuses were
purchased new, including silicone tubing (VWR), silicone (Lowes), cellophane
(Rakuten), faucet aerators (Lowes), steel wool (Lowes), aluminum foil (Fisher),
disposable lab spatulas (Fisher), polyethylene screw top caps from 50 ml centrifuge tubes
(VWR), 60 ml syringes (VWR), and calcium carbonate (Sigma-12010), phosphoric acid
(Sigma-466123), and iron III chloride (Sigma-157740) salts (Sigma). Glassware were
washed with bleach and 95% ethanol, then autoclaved prior to use. ShoutTM (used for
degreasing) and organic chicken (Gallus gallus) thighs were purchased from local
vendors (Walmart and Shoprite Groceries, respectively). Femora (with the periostea still
attached) were extracted from the chicken thighs with disposable sterile scalpels and
degreased in a 10% ShoutTM solution by rocking in separate 600 ml Erlenmeyer flasks for
48 hours (with changes every 16 hours; following method of Schroeder, 2013). After
degreasing, bones were rinsed in deionized water and stored at 4°C overnight.
Natural river sand was collected from the north side of a cutbank exposure along
the Mullica River in southern New Jersey (39°44’02.83” N, 74°42’40.33” W) to serve as
a permeable sedimentary matrix. The Mullica was chosen due to ease of accessibility,
high maturity of the sand in its banks, and the limited human development along this
188
river. Sand was collected from just above, at, and beneath the water level and forced
through a 1 mm sieve (Zoro Tools) to remove any organic particulates and as an effort to
homogenize the collected sand sample for use in the trials. Because bones buried in
natural environments are exposed to bacteria and other microbes in the sediment, no
effort was made to sterilize the sand (i.e. no treatment with sodium azide or bleach).
Compositionally, the collected sand is > 99% medium to fine grained quartz. Texturally,
the sand is well sorted with subrounded to angular grains. Lithic grains (< 1%) which
derive from weathering of igneous and metamorphic rocks are most commonly fine sand
size and subrounded. These grains are primarily black in color, but yellow, tan, dark gray,
and reddish-brown grains are also found. Some lithic grains appear to be isolated
hornblende crystals from igneous/metamorphic rocks.
4.3.2 Trial apparatus
The trial apparatus employed here was based on that of Daniel and Chin (2010;
which was based on that of Carpenter, 2005) and is summarized in Figure 4.1. Nitrile
gloves were worn during the construction of each identical apparatus. 60 ml syringes
(with plungers removed) were utilized as sterile incubation chambers for the experiment.
To ensure sand would not pass through the base of the syringes, a small tuft of autoclavesterilized steel wool was placed in the bottom of each syringe, then covered by an
autoclaved faucet aerator (fine steel mesh). Roughly 10 ml of sand was then added to
each syringe, a femur was placed in each with the distal end directed down, and sand was
packed around and over top of each femur with a disposable, sterile lab spatula. A small
tuft of steel wool was then placed over the sand (to disperse solution drips, ensuring that
189
bones would remain buried, i.e. dripping solutions would not excavate a depression in the
sand down to the bone). Lids for incubator chambers were prepared by drilling a 7 mm
hole (with an autoclave-sterilized drill bit) in the center of polyethylene screw top lids
from 50 ml centrifuge tubes, then attaching a lid to each syringe with clear 100%
silicone. Incubation chambers were suspended upright from ring stands via ring clamps.
600 ml beakers were placed under each syringe to collect effluent solution; waste
solution was dumped on average every 48 hours. Prepared “groundwater” solutions (in 1
L jars) were placed beside the trial apparatuses and fed via quarter inch silicone tubing
through a peristaltic pump and into assigned incubation chambers (Figures 4.1 and 4.2).
100% silicone was then used to form airtight seals of silicone tubes into the lids of
incubation chambers. To limit influx of airborne contaminants, cellophane was taped
over the top of each solution feeder jar and each gap between syringes and effluent
beakers. Aluminum foil was wrapped around each incubation chamber and around each
solution feeder jar to simulate the darkness of burial.
4.3.3 Solutions and trials
“Groundwater” solutions were simulated to either be enriched with calcium
carbonate (CaCO3), phosphoric acid (H3PO4), or iron chloride (FeCl3). Aqueous solutions
of these metals were made by solubilization of pure salts. FeCl3 was specifically chosen
so that, once it was dissolved, chlorine anions (Cl-) would immediately bind with trace
sodium or potassium in the water and precipitate out as NaCl or KCl salts, thereby
removing Cl- as a “contaminating” ion from the solution prior to its use in the trial.
H3PO4 was also specifically chosen so that once it was dissolved excess hydrogen cations
190
(H+) would either be lost as hydrogen gas or bind with dissolved oxygen (O2) to form
new water molecules, thereby removing excess H+ as a “contaminating” ion from the
solution prior to its use in the trial. CaCO3 salt
Calcium carbonate was chosen because; 1) calcium is a primary component of
bone hydroxyapatite (Francillon-Vieillot et al., 1990) and an essential metal nutrient
sought by microbial decomposers (Ehrlich, 1996; Gadd, 2010); 2) calcite is a common
cementing mineral in clastic sedimentary environments (Boggs, 2003; Grupe and
Piepenbrink, 1989), and; 3) this compound has been successfully modeled in a similar
experiment (Daniel and Chin, 2010), allowing me to attempt to replicate their trial. A
supersaturated solution was prepared by dissolving 2 g of CaCO3 per 1 L of 0°C
deionized water (salt dissolved into solution as the water melted) titrated to pH 6.5 with 1
N hydrochloric acid (HCl). Freezing of the water and titration to acidic pH were
necessary to enhance calcium carbonate solubilization (because CaCO3 solubility
increases with decreasing temperature and pH; Coto et al., 2012). Prepared solution was
filtered (via disposable 0.22 μm screw top filters, Corning) to remove any remaining
undissolved CaCO3, yielding a final concentration of ~ 0.67 g/L. This is nearly twice
normal saturation levels (0.3 g/L at pH 6.5; Daniel and Chin, 2010).
Iron chloride was chosen because iron is a common product of hemoglobin and
myoglobin degradation that is hypothesized to catalyze free radical reactions that
stabilize soft tissues and biomolecules during early diagenesis (Schweitzer et al., 2007b,
2014a; Bertazzo et al., 2015). A 10 mM FeCl3 solution was prepared following the
protocol of Ferris et al. (1988). This involved dissolving 1.62 g of FeCl3 in 1 L of water
191
in a laminar flow fume hood at room temperature, then filtering the solution (0.22 μm) to
remove any undissolved FeCl3.
Finally, phosphoric acid was chosen because phosphate; 1) is the second primary
component of bone hydroxyapatite (Francillon-Vieillot et al., 1990); 2) is another
essential metal nutrient sought by microbial decomposers (Hirschler et al., 1990; Prevot
and Lucas, 1990; Ehrlich, 1996; Gadd, 2010), and; 3) commonly contributes to
"replication" minerals (e.g., in the process of phosphatization; Martill, 1988, 1990;
Kellner, 1996; Briggs et al., 1997; Briggs, 2003; Zhu et al., 2005). Since no previous
attempts at modeling a groundwater enriched with phosphate in the literature could be
found, twice maximum reported natural abundance was taken as a conservative starting
point. Sheldon (1981) reports that the concentration of phosphorous in natural pore
waters can reach as high as 9 mg/L, so a solution was prepared at 18 mg/L. 9 mg/L would
equate to a concentration at 0.29 mM, so I prepared a solution at twice this concentration,
58 mM. As there are 31 g of phosphorous in one mole of phosphoric acid (H3PO4), 56 mg
of phosphoric acid salt is needed to make 1 L of a 58 mM solution. This solution was
hence prepared by dissolving 56 mg phosphoric acid salt per 1 L of deionized water.
Since this would make an unnaturally acidic solution, the pH was raised back to 7 by
adding a few drops of 6 N sodium hydroxide (Aqua Solutions NC9933635). The final
solution was not filtered because no undissolved salts remained (because the phosphate
concentration was still far below saturation level).
Fresh solutions were prepared every 3–4 days and continually fed to incubation
chambers by two used, three-channel peristaltic pumps (Pharmacia model P-3, Ebay)
which were calibrated to matching flow rates of 1 L/day (= 0.7 ml/min) (Figure 4.2). This
192
rate matches that used by Daniel and Chin (201) as an average groundwater flow rate in
natural environments. In their experiment this rate equated to a flow velocity of 0.24
m/day (calculated by dividing solution volume per unit time by cross sectional area of the
apparatus). Because of the smaller diameter of my apparatus compared to theirs, 1 L/day
equates to a flow velocity of ~1.63 m/day in my experiment. This value still falls well
within natural bounds (0.025–15 m/day as cited by Daniel and Chin [2010] and
references therein).
After completion of the three-month experiment, contents of the incubation
chambers were removed and the bones photographed. I then described their general state
of decay and, with separate, sterile, disposable scalpels, divided the shaft of each femur
into three sections for; 1) histologic embedding; 2) grinding and protein extraction, and;
3) demineralization and immunofluorescence. This splicing revealed that light-colored
degradation products of medullary tissue remained within the shaft of each femur. These
tissues were manually removed prior to further examinations.
Pliable, partly decomposed periostea were immediately removed from diaphyseal
segments using separate, sterile disposable scalpels. Finalized bone samples designated
for histology and protein extraction were stored at -20°C until further use. Those
designated for immunofluorescence were demineralized in freshly prepared 0.5 M
ethylenediaminetetraacetic acid (EDTA) pH 8.0 (0.22 μm filtered) in new, autoclavesterilized 20 ml glass scintillation vials for two weeks (with EDTA changed daily).
4.3.4 Histology
193
Traditional methods for fossil bone embedding and sectioning were followed
(Chinsamy and Raath, 1992). This first involved impregnation of designated diaphysis
segments with Silmar 41TM resin (US Composites) in a vacuum chamber for 7 minutes at
23 in Hg pressure. Embedded bone segments were allowed to polymerize (1.007 volumes
of methyl ethyl ketone peroxide as catalyst) overnight at 4°C, then at room temperature
for another 24 hours. A precision wafer saw (Buehler IsoMet 1000) was used to cut 1.5
mm thick transverse sections of each respective diaphysis sample. Because bone tissues
displayed slightly pliable character at this stage, both faces of the thick sections were
briefly treated with Paleobond Penetrant Stabilizer (Pb002) and allowed to dry overnight.
One face of each section was ground and polished with successively finer sandpapers
(320 and 600 grits on a Buehler EcoMet 4000 Grinder/Polisher), then adhered to a frosted
glass slide with two ton Clear WeldTM epoxy and allowed to dry at room temperature
overnight. Mounted sections were then ground and polished as above to a final thickness
of ~100 μm. Slides were optically examined via transmitted and polarized light sources
with a Zeiss Axioskop 40 petrographic polarizing microscope; images were collected
from 10–50X via an attached Zeiss Axiocam MRC5 camera and associated Axiovision
software.
4.3.5 Protein extraction
As in Chapter 3, biomolecular assays testing the extent of retention of collagen I
were performed in triplicate at North Carolina State University (NCSU).
I followed the sequential demineralization-based immunoprecipitation extraction
protocol of Schroeter (2013) for this study. Aliquots of 2 g of cortical bone were ground
194
to fine powder (< 1 mm grain size) in nitric acid and baking-sterilized (520°C) mortar
and pestles. Separately, aliquots of sediment (again 2 g each) were also ground to serve
as negative controls. After adding resulting bone or sediment powders to separate 10 ml
spin columns (Pierce) and leaving one additional spin column per column of bone
powder empty to serve as a buffer control, columns were placed in 50 ml centrifuge tubes
(Fisher) and demineralized overnight on a rocker with 10 ml of 0.6 M hydrochloric acid
(HCl). Columns were centrifuged (1,000 rcf) the following day to collect an ‘HCl
extract’. Demineralization was then continued with 10 ml of 4 M guanidine
hydrochloride (GuHCl) in 0.05 M Tris pH 7.4, again incubating (this time at 65°C)
overnight on a rocker. Columns were then centrifuged the following day to collect a
‘GuHCl extract’. Supernatant extracts were stored at 4°C until protein precipitation,
which began with centrifugation (8,000 rcf, 10 min) to pelletize any remaining
undissolved solids. Resulting (protein-containing) supernatants were then decanted into
new 50 ml tubes (one for each HCl extract and two for each GuHCl extract) for
immunoprecipitation. Precipitation was performed overnight with rocking (at -20°C) with
2.5 ml of 100% trichloracetic acid for each HCl extract or 25 ml of 100% ethanol for
each GuHCl extract. Precipitated HCl extracts were finalized the following day by three
repetitions of 20 minute centrifugation (8,500 rpm), decanting of waste supernatant, and
washing with 5 ml of 100% acetone. Precipitated GuHCl extracts were finalized by three
repetitions of 10 minute centrifugation, decanting of waste supernatant, and washing with
5 ml of 90% ethanol. After final centrifugation and decanting of waste supernatants, all
tubes were inverted over paper towels in a laminar flow hood to dry overnight (at room
temperature). Finalized extract tubes were then sealed and stored at -80°C until analysis.
195
4.3.6 ELISA
I followed the ELISA protocol of Zheng and Schweitzer (2012) (also see
Schweitzer et al., 2009, 2007a). Extracts were resuspended in 1X phosphate buffered
saline (PBS) to form 1 mg/ml stocks. For the buffer control, 1 ml of PBS was added to
the extract tube and immediately collected, as no pellet was visible. Serial dilutions were
then performed to form 1 μg/ml stocks for ELISA. Bone sample solutions and 1X PBS
(for group blanks) were plated at 100 μl/well (= 0.1 μg/well of sample) on an Immulon
2HB U-bottom microtiter plate (Thermo Scientific) and allowed to incubate for 4 hrs at
room temperature (RT). An additional row was left empty as a plate blank to test for any
laboratory contaminants. Plated solutions were discarded, and non-specific binding was
then inhibited with 200 μl/well of blocking buffer (5% bovine serum albumin in 1X PBS
with 2% Thimersol and Tween 20) for 4 hrs at RT. After discarding blocking buffer,
selected wells were incubated overnight at 4°C with rabbit anti-chicken collagen I
antibodies (US Biological C7510-13B) diluted 1:400 in blocking buffer. Wells
designated as group blank received only blocking buffer. Solutions were again discarded,
then the plate was washed 10–15 times with ELISA wash buffer (10% PBS in Epure
water with 0.1% Tween 20). Wells were then incubated for 2 hrs at RT at 100 μl/well
with alkaline phosphatase conjugated goat anti-rabbit IgG H+L secondary antibodies
(Invitrogen) diluted 1:1000 in blocking buffer. Solutions were discarded, plate washed as
above, and wells were incubated at 100 μl/well with substrate (9.8% diethanolamine, 0.5
mM MgCl2 + 1 tablet of p-Nitrophenylphosphate [Sigma N-9389]). Absorbance was read
every 10–30 min at 405 nm with a Molecular Devices THERMOmax microplate reader.
196
4.3.7 Immunofluorescence
Demineralized bone tissues were embedded, sectioned, and analyzed following
the same procedures described in detail in Chapter 3 sections 3.3.5 and 3.3.6, which were
based on protocols of Schweitzer et al. (2007a, 2009) and Zheng and Schweitzer (2012).
As a brief review, this involved mincing of demineralized tissues with a sterile razor on a
sterilized lab plate, fixation with 10% neutral buffer formalin, sequential dehydrations in
70% ethanol and a 2:1 solution of 70% ethanol/LR WhiteTM, and embedding in pure LR
WhiteTM resin (Electron Microscopy Services). 200 nm sections were treated with 25
μg/ml proteinase K (Roche) and 0.5 M EDTA pH 8.0 to retrieve antigens. Sections were
then incubated with polyclonal rabbit anti-chicken collagen I antibodies (Millipore
AB752P) at 1:40 dilution (in primary dilution buffer; see Chapter 3), biotinylated goat
anti-rabbit IgG H+L antibodies (Vector) diluted 1:333 (in secondary dilution buffer; see
Chapter 3), then fluorescein avidin D (FITC) diluted 1:1000 (in secondary dilution
buffer). Sections were imaged at 40X and 50 ms exposure using a Zeiss Axioskop 2 Plus
microscope with a connected Zeiss Axiocam MRC5 camera. Digestion (with collagenase
A, Roche) and inhibition assays were also conducted following the same procedures
detailed in Chapter 3 section 3.3.6, except that only one hour digestions were conducted
here.
4.4 Results
4.4.1 General observations
197
The iron trial bone/sediment incubation chamber gained a dark orange coloration
within the first two weeks that was maintained for the remainder of the three-month
experiment. In the third month, the tip of the syringe for this trial frequently became
blocked by iron oxide precipitation, preventing the flow of waste solution from the
incubation chamber. When this occurred, an ethanol and autoclave-sterilized straight
dissection pick was twisted within the syringe top to reestablish fluid flow by breaking up
clots of precipitated mineral. This was never necessary for the other three trials.
After completion of the trials bones and sediment were emptied from the
incubation chambers and manually separated with separate, sterile, disposable scalpels.
Contrary to expectations based on the results of Daniel and Chin (2010), minimal sand
was cemented to the exterior of the femur in the calcium carbonate trial. Bones from the
water control, calcium carbonate, and phosphate trials remained hard to the touch and
similar in color to when the experiment was begun (Figure 4.3). In sharp contrast, the
femur from the iron trial was soft, pliable, and darkened in color. Yellow and orangestained sand was cemented over much of this bone, especially over remnants of articular
cartilage on the epiphyseal ends (Figure 4.3, arrows).
4.4.2 Histology
Histological integrity is generally well preserved in bones of all four trials. All
four femora can be assigned a Histologic Index of 5 (“unaltered”) according to the scale
of Hedges and Millard (1995; Table 4.1), with osteons and osteocyte lacunae still clearly
visible in every specimen. No bone sections exhibited definitive evidence of microbial
attack (e.g., Wedl tunneling, microscopic focal destructions; Jans, 2008).
198
All four femora retain excellent preservation of original crystalline structure as
evidenced by retention of alternating dark and light bands (e.g., Figures 4.4B, 4.7B) and
osteon Maltese crosses (e.g., Figure 4.6B) under polarized light (Hubert et al., 1996; Jans
et al., 2002). Maltese crosses are birefringence patterns that form as a product of
hydroxyapatite crystal orientation; crystals that are aligned with their c axes parallel to
the viewfinder block the passage of polarized light and appear dark. Crystals oriented in
any other manner will allow the passage of light and appear bright. In an osteon in fresh
bone, alternating layers of collagen fibrils and hydroxyapatite form an interference
pattern that creates a cross of birefringence under polarized light (Hubert et al., 1996).
Retention of these crosses in osteons of all trials indicates the mineral structure of the
tissues has not been significantly altered.
Inexplicably, it was exceedingly difficult to grind/polish the water control femur
section to even thickness even within the scale of a single cortical wall. As a result,
whereas the internal cortex and outer cortical edge reached optimal thickness much of the
middle cortex remains thicker than desired and consequently appears dark tan-brown
under transmitted light (Figure 4.4A) and dark gold under polarized light (Figure 4.4B).
This partially obscures visualization of the fine structural details of the middle cortex;
yet, osteons are still clearly visible, as are osteocytes within some lamellae around
osteons (Figure 4.4A,C). Haversian canals remain open (Figure 4.4C). Osteocytes are
present in some regions throughout the cortex and are dark red-brown in color as in the
calcium carbonate trial. However, osteocytes are locally absent from lacunae in small
regions of internal cortex (open lacunae seen as bright, simple ovoid entities; Figure
4.4D). When osteocytes remain they commonly retain visible filopodia (e.g., Figure
199
4.4D, inset), though they are not as frequently encountered as in the femur from the
calcium carbonate trial.
A cryptocrystalline mineral precipitate frequently infills Haversian canals and
partially infills medullary cavity voids in the femur from the calcium carbonate trial
(Figure 4.5A–E), occasionally cementing sand grains to walls within the internal
medullary cavity. In transmitted light, such infills are visible as semi-translucent, gray to
dark tan mineral deposits (e.g., Figure 4.5C,E). Under polarized light, mineral linings
generally appear golden brown and locally include patches exhibiting bright, high-order
interference colors (small regions of pastel colors; Figure 4.5D). These characteristics
identify the mineral precipitate to be calcite, as expected from the CaCO3-supersaturated
solution used in this trial. Osteocytes remain within lacunae, are dark red-brown in color,
and consistently retain filopodial extensions from the central cellular body (Figure 4.5F).
The femur from the phosphate trial appears essentially unaltered in all respects
(Figure 4.6A–B). Haversian canals frequently remain open (Figure 4.6C), crystal
orientations are preserved (i.e. Maltese crosses are very common under crossed polars;
Figure 4.6B), and osteocytes remain present throughout the entire section. As in the
calcium carbonate trial, osteocytes appear dark red-brown in color and retain readily
visible, long filopodia (Figure 4.6D). Mineral infillings and linings, though rare, appear
similar to those in the calcium carbonate trial in that they are tan to brown in color (e.g.,
Figure 4.6C) and occasionally exhibit faint high order interference colors under polarized
light. It is not clear if these infillings should also be assigned to calcite as there is no
apparent source of calcium other than the bone, and the bone does not appear to exhibit
any signs of dissolution. Nonetheless, based on optical similarity, I tentatively assign
200
them to the mineral calcite because it is a very common cementing mineral in fluvial
sediments (Boggs, 2003).
The femur from the iron trial exhibits the greatest alteration of the four trials
(Figure 4.7A–B). A dark orange-brown mineral precipitate, presumably an iron oxide
mineral such as goethite, frequently lines and partially infills voids in the medullary
cavity (Figure 4.7C–E). Subrounded sand grains are commonly cemented together by this
mineral in the medullary cavity (e.g., Figure 4.7C–D). The sand grains commonly display
a wide range of moderate order interference colors (yellow, blue, pink, purple) under
cross-polarized light (e.g., Figure 4.7D,E), consistent with a quartz composition. In
contrast to all other trials, osteocyte lacunae are almost universally empty (Figure 4.7F).
Osteocyte lacunae also appear proportionally larger and elongated relative to the
thickness of osteonal lamellae in this femur than those from the other trials.
4.4.3 ELISA
Collagen I was positively identified in all GuHCl extracts and most HCl extracts
(absorbance at least twice background signal from plate blank; Schroeder, 2013, and
references therein). Results demonstrate that almost all collagen I appears to be collected
in the GuHCl extracts rather than the HCl extracts (Figure 4.8). In two of three replicates
GuHCl extracts of the calcium carbonate trial reached saturation (3.0) more rapidly than
did GuHCl extracts from the deionized water control. In a third replicate, GuHCl extracts
of the water control reached saturation first. Saturation was normally reached in less than
1.5 hrs. That both calcium carbonate and water control trials reached saturation so rapidly
reflects negligible decay of collagen I in these trials. GuHCl extracts from the phosphate
201
trials achieved modestly lower absorbances (~1.5–2.7) in 1.5 hrs than either the water
control or the calcium carbonate trial. Iron trial GuHCl extracts exhibit significantly
lower absorbance than GuHCl extracts from any other trials, generally displaying
absorbance around 0.7–1.8 in 1.5 hrs. However, iron trial HCl extracts yielded greater
absorbance readings than HCl extracts of all other trials, though this is still only an
absorbance of 0.1–0.3 in 1.5 hrs. This pattern indicates initial demineralization in the HCl
extraction more readily and rapidly freed collagen from the iron trial bone than from
bones from other trials. Buffer blanks yielded no significant absorbance (Figure 4.8),
indicating no contaminants were present in the blocking buffer. Secondary only control
wells also yielded negligible absorbance readings (Figure 4.8), confirming no spurious
binding of secondary antibodies to the plate.
The fact that collagen I accounts for ~90% of the organic component of bone
(Schmidt-Schultz and Schultz, 2004) permits a rough approximation of the amount of
collagen remaining in each trial’s extract. By this statistic, ~90 ng of the 100 ng of extract
plated per well should be collagen I. Using the highest 150 min absorbance as reference
(calcium carbonate GuHCl absorbance in third replicate, ~3.2), percentage calculations
indicate that GuHCl absorbance values of 2.8–3.0, 1.5–2.7, and 0.7–1.8 reflect retention
of 79–84 ng, 42–76 ng, and 20–51 ng collagen per 100 ng of extract respectively for the
water control, phosphate, and iron trials (compared to an assumed 90 ng collagen/100 ng
extract for the calcium carbonate trial). These findings suggest that approximately twice
as much collagen has been lost to decay in the iron trial than in the water control and
calcium carbonate trials.
202
4.4.4 Immunofluorescence
Collagen I was positively detected in all four femora (Figure 4.9, first column). In
agreement with ELISA results (see Table 4.1), fluorescent signal intensity was greatest
for the femur from the water control (Figure 4.9A), of moderate intensity for the femur
from the phosphate trial (Figure 4.9I), and weakest for the femur from the iron trial
(Figure 4.9M). The femur from the calcium carbonate trial exhibited a fluorescent signal
(Figure 4.9E) intermediate in intensity between that of the femora from the water control
and phosphate trials. Binding is expressed throughout entire tissue sections for all four
femora, consistent with collagen I comprising the majority of structural protein in bone;
only rarely do a few osteonal lamellae exhibit brighter fluorescence than other regions of
tissue.
“Secondary only” controls, in which anti-collagen antibodies were not added,
present no fluorescence for all trials (Figure 4.9, second column). This affirms a lack of
non-specific binding by secondary antibodies. Inhibition controls, in which primary
antibodies were inhibited by incubation with purified chicken collagen prior to incubation
with sample tissues, also exhibit no fluorescence (Figure 4.9, third column). This
confirms high specificity of the primary antibodies towards binding only to avian
collagen I. Digestion controls, in which tissue sections were degraded by incubation for
one hour with the enzyme collagenase, present dramatically reduced fluorescence in
comparison to non-digested sections (Figure 4.9, fourth column). Such drastic reduction
in signal supports the presence of a protein structurally consistent with collagen I (i.e.
contains abundant Pro-X-Gly amino acid sequences that are rare in other proteins; Harper
and Kang, 1970; Roche Applied Science, 2012).
203
4.5 Discussion
Immunofluorescence and ELISA results (for GuHCl extracts) generally agree
about the relative extent of decay of collagen I among the four trials. The order from least
to most decay was: water control ≈ calcium carbonate, phosphate, iron (Table 4.1).
Because all other variables were held constant among the trials (i.e., temperature,
darkness, flow rate, taxonomic identity, tissue type, and unaltered, natural bacterial flora),
reduction in immunoassay signals resulted from exposure to differing solutions. These
solutions primarily differed in two aspects: the metal ion of enrichment and pH. The pH
values of the solutions were directly chosen to be near neutral for the calcium carbonate
trial (pH = 6.5) and phosphate trial (pH = 7) to simulate natural conditions. However, pH
was not adjusted for the solution in the iron trial. The pH of that solution was solely
determined by the addition of iron chloride to water, and this made it very acidic (pH =
2.2). This solution has been successfully used to promote rapid iron oxide precipitation to
aid fossilization of bacteria (Ferris et al., 1988) and leaves (Dunn et al., 1997). However,
a pH of 2.2 is presumably too acidic for modeling of an environment that would be likely
to preserve bone. Bacteria, leaves, and bones will generally become fossilized in
drastically dissimilar environments with contrasting hydrologic and geochemical regimes
(Behrensmeyer et al., 1992; Martin, 1999). Whereas plant matter will commonly be
preserved in acidic, dysaerobic, environments such as swamps and marshes, bones will
normally dissolve under such conditions (Behrensmeyer et al., 1992; Child, 1995). In
contrast, bones have higher preservation potential in organic-poor, near-neutral to slightly
204
alkaline pH soils and sediments (Retallack, 1984, 1997; Behrensmeyer et al., 1992).
Thus, my iron trial modeled an environment that would not be conducive to bone
preservation. Therefore, the considerable decay of collagen in the femur from this trial is
an expected result. That the femur from the iron trial was the only bone to provide a
greater collagen yield from the initial HCl extraction (Figure 4.8) logically concurs with
the softer character of the bone post-experiment and attests to the relatively greater
decomposition yielded by this trial.
Rapid cementation (Boyce et al., 2002; Schweitzer, 2003, 2004) and exposure to
iron (Schweitzer et al., 2007b, 2014a) have each been proposed to promote stabilization
of biomolecules during early diagenesis. Intriguingly, despite clear indications of a loss
of mineral for the femur in the iron trial (e.g., it was soft and pliable to the touch), rapid
precipitation of an iron cement occurred over much of the bone (Figure 4.3). Greater
development of iron cement over the epiphyseal ends may owe to a greater emission of
iron-rich hemoglobin decay products from these more porous tissue regions (cf.
Schweitzer et al., 2014a). Expression of iron cements chiefly over epiphyses echoes the
condition of Cretaceous dinosaur bones from the Standing Rock Hadrosaur Site that I
analyzed in Chapters 2 and 3. This similarity warrants further investigation, specifically
into the conditions promoting early diagenetic precipitation of iron cements and
concretions and how such precipitates may influence long-term preservation of
biomolecules.
Remarkably little decay is evident in the femur from the water control trial, and
why this is the case is difficult to explain. ELISA absorbance readings for GuHCl
extracts from this bone still reached saturation within 1.5 hr, despite hydrated, oxic
205
conditions and a lack of forced mineralization by metal supersaturation in this trial.
Plausible explanations for why such little decay occurred in this trial could be that
bacterial populations were low and/or that the trial was not run long enough for extensive
microbial attack to take place. Previous actualistic experiments suggest that three months
should be more than enough time to yield significant changes; either decay,
mineralization, or a combination of these processes (e.g., Berner, 1968; Allison, 1988;
Ferris et al., 1988; Briggs and Kear, 1993; Dunn et al., 1997; Sagemann et al., 1999;
Martin et al., 2004; Carpenter, 2005; Daniel and Chin, 2010; Moyer et al., 2014;
Schweitzer et al., 2014a).
Absence of microbial focal destructions and Wedl tunneling in the thin section for
the water control (and in the other trials; Figures 4.4–4.7) suggests that microbial attack
was minimal. However, empty osteocyte lacunae within confined regions of the inner
cortex of the femur from the water control (Figure 4.4C,D) indicate that microbial attack
did indeed take place. This decay cannot be attributed to acidity of the solution because,
as in the phosphate trial, it was neutral in pH. Therefore, microbes appear to primarily
have been attacking the soft tissue components of the bones rather than the mineral
phase.
Absence of phosphate mineral precipitation in the phosphate trial indicates a
concentration of twice the maximum known natural abundance was not high enough to
induce inorganic nor bacterially-mediated phosphate precipitation (neither active nor
passive). That inorganic precipitation did not occur is unsurprising because the solution
was well below the saturation point. However, it is somewhat surprising that bacteriallymediated precipitation did not occur. This could be due to; 1) not a high enough
206
concentration of phosphate provided in the trial’s solution; 2) not enough phosphate
being dissolved into solution from the bone because the pH was not acidic enough; 3) too
few bacteria around the bone to promote production of a visible amount of mineral
precipitation, or; 4) a combination of these factors. Options one and two above are
certainly plausible, but the ubiquity of bacteria in modern environments makes option
three above unlikely. A potential additional argument, that the bacteria present were
incapable of inducing mineral precipitation, can be discounted because the hydrous
exopolysaccharides secreted by and encasing bacteria are highly negatively charged (by
anionic carboxyl and phosphoryl groups; Farmer, 1999) and therefore commonly bind
metallic cations (which promotes mineral nucleation; Hirschler et al., 1990; Konhauser,
1998; Farmer, 1999; Liebig, 2001; Toporski et al., 2002). Since loss of collagen is
evident from ELISA and immunofluorescence results (Figures 4.8 and 4.9I) and the
modeled solution was neutral in pH, microbial enzymes (either endogenous/autolytic or
exogenic, or both) were likely the primary agents of decay. Oxidation and hydrolysis
(Child, 1995; Trueman and Martill, 2002) were also likely contributors to decay, but
strong ELISA and immunofluorescence signals for collagen in the femur from the water
control trial suggest that these agents were not acting strongly over the duration of the
experiment.
Rapid permineralization clearly aided biomolecular stabilization in the calcium
carbonate trial. The most convincing evidence supporting this conclusion is that, in two
of three replicates, ELISA absorbance readings for GuHCl extracts reached saturation
even more rapidly than those of the water control trial. Although histologic examination
found permineralization to have been incomplete (Figure 4.5), this did not seem to be a
207
limiting factor. It thus appears that even partial permineralization may help protect bone
collagen. According to ELISA and immunofluorescence results (Figures 4.8 and 4.9),
two of the three trials which did not produce extensive permineralization, namely the iron
and phosphate trials, exhibited greater loss of collagen. In total, these findings support the
conclusion that bacterially mediated permineralization may aid stabilization of bone soft
tissues and their constituent biomolecules in addition to the mineral component of bone.
4.6 Conclusion
Carpenter (2005) and Daniel and Chin (2010), who conducted similar
experiments, suggested that bacterially mediated permineralization can rapidly
equilibrate a buried bone with its surrounding geochemical setting and thereby increase
its changes of long-term survival in the fossil record. The results of the experiment
presented here support this conclusion and further suggest that such microbiallyfacilitated stabilization of bone extends down to the molecular level. By providing the
right conditions, incipient permineralization can be modeled within a laboratory
environment within a timeframe of a few months. As Hubert et al. (1996) suggested,
complete or partial permineralization, whether achieved by inorganic or bacteriallymediated means, may hinder microbial mobility and thereby protect a portion of bone
soft tissues and biomolecules from microbial attack through protracted diagenesis. Acidic
conditions are detrimental to bone preservation (Behrensmeyer et al., 1992), and it
appears that acidity degrades soft tissue components more rapidly than it dissolves bone
hydroxyapatite. Iron enrichment in groundwater may facilitate siderite or iron oxide
208
precipitation, and early diagenetic growth of iron-rich mineral cements, linings, and
concretions play a complex and underappreciated role in biomolecular preservation.
Growth of iron-rich cements may commonly first occur over more porous regions of
bone such as limb bone epiphyses, perhaps due to greater discharge of iron-rich, bloodderived hemoglobin breakdown products from such tissue regions. Further actualistic
testing is crucial to advancing our understanding of biomolecular preservation
mechanisms (Schweitzer et al., 2014a). Critical variables in need of further investigation
include conditions promoting rapid, early diagenetic mineral precipitation, the
significance of bacterial flora composition, and the role of iron in biomolecular
stabilization.
209
Table 4.1 Summary of bone attributes after completion of the experiment. Histological
Index scores follow the ranking system of Hedges and Millard (1995). Abbreviations:
ELISA, enzyme-linked immunosorbant assay; IF, immunofluorescence.
Trial
H2O
(control)
Histological
Index after
trial duration
5
CaCO3
5
PO4
Fe
5
5
Histologic alterations
Some osteocytes lost to decay in
internal cortex
Common calcite infilling of
Haversian canals, linings in
medullary cavity
Rare mineral infillings/linings
Common iron oxide infillings and
linings, nearly all osteocytes lost
to decay
Relative
ELISA
signal
High
High
High
High
Relative
IF signal
Moderate Moderate
Low
Low
210
Figure 4.1 Experimental apparatus. General template of this design derives from that of
Daniel and Chin (2010, fig. 1).
211
Figure 4.2 Initial setup of the experiment, prior to wrapping the bone/sediment
incubation chambers and feeder solution bottles with aluminum foil (to simulate darkness
of burial). Peristaltic pumps (middle, on top of box) fed simulated groundwater solutions
from storage bottles at left to separate incubation chambers at right. Effluent solutions
were collected in the beakers beneath each incubation chamber.
212
Figure 4.3 Chicken femora from each actualistic trial after completion of the experiment.
Proximal ends are at top. Note sand adhered by an iron-oxide cement to the epiphyseal
ends of the femur from the iron trial (arrows). Scale bar equals 5 cm.
213
Figure 4.4 Histology of the femur from the water control trial after completion of the
experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed
with crossed polars. External cortex edge is at upper left, marrow cavity is at lower right.
External and internal cortex are semitransparent but the middle cortex could not be
ground to correct thickness; this region remains too thick and as a result appears opaque
(dark brown) in transmitted light (A). This region appears a dark golden color under
crossed polars (B). (C) Higher magnification of the cortex viewed by transmitted light,
showing that Haversian canals remain open. Note that some osteocyte lacunae are vacant
(appear white) within the internal cortex (arrows). (D) Representative osteon in which
some lacunae retain dark brown osteocytes while others are now empty (arrows). Inset
displays well preserved osteocytes which retain long, dark, intact filipodia (arrow). Scale
bars for (A) and (B) equal 200 μm. Scale bar for (C) equals 100 μm. Scale bar for (D)
equals 50 μm. Scale bar for inset in (D) equals 100 μm.
214
Figure 4.5 Histology of the femur from the calcium carbonate trial after completion of
the experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B)
viewed with crossed polars. External cortex edge is at right, marrow cavity is at left.
Multiple Haversian canals are infilled by a brown mineral precipitate (arrows). (C) Tanbrown, cryptocrystalline mineral precipitate lining the wall of a void in the marrow
cavity. (D) Same as (C) viewed in crossed polarized light. Small patches of the mineral
precipitate exhibit high order interference colors (arrows). (E) Representative infilled
Haversian canal (arrow) at higher magnification. Infilling mineral in this canal ranges
from semi-translucent to tan-brown in color. (F) Representative well preserved osteocytes
215
Figure 4.5 (continued) which retain long, dark, intact filipodia (arrows). Scale bars for
(A) and (B) equal 200 μm. Scale bars for (C) and (D) equal 100 μm. Scale bars for (E)
and (F) equal 50 μm.
216
Figure 4.6 Histology of the femur from the phosphate trial after completion of the
experiment. (A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed
with crossed polars. External cortex edge is at upper right, marrow cavity is at lower left.
Excellent preservation of the mineralized tissue structure is evident under polarized light
by retention of Maltese crosses for most osteons (arrows; see text section 4.3.2 for
description/discussion of these birefringence interference patterns). (C) Higher
magnification of the external and middle cortex viewed by transmitted light, showing
negligible alteration of the tissues and predominantly open Haversian canals. Only rarely
are Haversian canals partially infilled by a brown mineral precipitate (arrows). (D)
Representative well preserved osteocytes which retain long, dark, intact filipodia
(arrows). Scale bars for (A) and (B) equal 200 μm. Scale bar for (C) equals 100 μm.
Scale bar for (D) equals 50 μm.
217
Figure 4.7 Histology of the femur from the iron trial after completion of the experiment.
(A–B) Cross section of entire cortex in (A) transmitted light and (B) viewed with crossed
polars. External cortex edge is at top, marrow cavity is at bottom. (C) Orange-brown,
mineral precipitate cementing sand grains together within a void in the marrow cavity.
(D) Same as (C) viewed in crossed polarized light. Quartz sand grains exhibit moderate
order interference colors ranging from blue to green, pink, orange, and yellow. (E) An
iron-rich precipitate (gold-brown color) cementing sand grains (arrows) together and
lining a strut of bone (white, gray, and black linear feature) within the marrow cavity. (F)
High magnification of the middle cortex demonstrating universally vacant osteocyte
218
Figure 4.7 (continued) lacunae (clearly visible examples are noted by arrows). Scale
bars for (A) and (B) equal 100 μm. Scale bars for (C–E) equal 200 μm. Scale bar for (F)
equals 50 μm.
219
Figure 4.8 Representative ELISA testing bone HCl and GuHCl extracts from each
actualistic trial against antibodies to chicken collagen I. The presented absorbance
readings were taken at 405 nm at 2.5 hrs. Bone extracts were plated at 0.1 μg/well.
Extraction blanks testing laboratory reagents are presented at right as ‘Blank HCl’ and
‘Blank GuHCl’; no absorbance for these samples confirms that no contaminants are
present in laboratory buffers. Dark bars to the right of the white bars represent secondary
only controls in which no primary antibodies were added. These readings are essentially
undetectable, confirming no spurious binding of secondary antibodies to the plate.
220
Figure 4.9 In situ immunofluorescence of collagen I in demineralized cortical fragments
of chicken femora from each trial. (A–D) Water control trial. (E–H) Calcium carbonate
trial. (I–L) Phosphate trial. (M–P) Iron trial. The first column (A, E, I, M) shows chicken
femur demineralization products incubated with antibodies against chicken collagen I.
The second column (B, F, J, N) shows secondary only control sections that were not
exposed to primary antibodies, to control for non-specific binding of secondary
antibodies. The third column (C, G, K, O) shows sections exposed to anti-chicken
collagen I antibodies that were first inhibited with chicken collagen (prior to incubation).
The fourth column (D, H, L, P) shows sections digested with collagenase for one hour
prior to exposure to anti-collagen I antibodies. All images are taken in FITC channel. All
section images were taken at 40X and 50 ms integration.
221
CHAPTER 5: APPENDICULAR OSTEOLOGY OF DREADNOUGHTUS
SCHRANI, A GIANT TITANOSAURIAN (SAUROPODA, TITANOSAURIA)
FROM THE LATE CRETACEOUS OF PATAGONIA, ARGENTINA
5.1 Abstract
The postcranial anatomies of giant titanosaurians remain poorly known because of
a combination of preservational and collection biases. Dreadnoughtus schrani, a recently
described, large titanosaur from the Campanian–Maastrichtian Cerro Fortaleza Formation
of Santa Cruz Province, Argentina, offers the first opportunity for detailed study of
appendicular anatomy of a truly giant titanosaurian. The entire appendicular skeleton is
represented except the manus and portions of the pes. Comparisons with related
titanosauriforms identify three definitive appendicular autapomorphies of Dreadnoughtus
schrani: (1) a cranioventrally-caudodorsally oriented ridge across the medial surface of
the cranial end of the scapular blade; (2) a distinct concavity on the caudomedial surface
of the proximal radius, and; (3) the distal end of the radius is subrectangular with
subequal craniocaudal and mediolateral dimensions. Appendicular similarities between
Dreadnoughtus and other titanosauriforms encompass a wide taxonomic range, from
Giraffatitan to saltasaurines, and a wide range of body sizes, from Argentinosaurus to
Magyarosaurus. Only a single feature is shared exclusively by Dreadnoughtus and at
least one other enormous titanosauriform: an accessory ventrolateral process on the
preacetabular lobe of the ilium. This process appears to have arisen in response to greater
stress applied by hind limb adductor musculature in these giant terrestrial vertebrates.
222
Continued investigation of titanosaurian anatomy, myology, and biomechanics is needed
to gain greater understanding of the functional nature of wide-gauge posture.
5.2 Introduction
Sauropod dinosaurs are the largest terrestrial vertebrates ever to roam this planet.
Their diversity and extended temporal range of over 140 million years speak to their
collective success as dominant megaherbivores in Jurassic and Cretaceous ecosystems.
Titanosaurian sauropods in particular became the dominant herbivorous dinosaurs in
Gondwanan landmasses during the Cretaceous (Upchurch et al., 2004). Despite their
well-documented diversity, knowledge of titanosaurian appendicular anatomy remains
largely based on highly derived but smaller representatives, including Neuquensaurus
(Otero, 2010), Opisthocoelicaudia (Borsuk-Bialynicka, 1977), and Rapetosaurus (Curry
Rogers, 2009).
Large titanosaurians suffer from not only preservation biases (considering the
amount of sediment needed to bury such massive organisms; Lacovara et al., 2014), but
also are widely perceived to have suffered historically from collection biases. The largest
currently known taxa are based on limited material, including few appendicular bones.
For example, appendicular elements of known specimens of Argentinosaurus
huinculensis comprise only a fibula and a questionably referred femoral shaft (Bonaparte
and Coria, 1993). Appendicular elements in the holotype of Paralititan stromeri include
only partial scapulae, a complete right and incomplete left humerus, and the distal end of
a single metacarpal (Smith et al., 2001). The holotype of Puertasaurus reuili (Novas et
223
al., 2005) includes no appendicular material. A recent report by Fowler and Sullivan
(2012) suggests that Alamosaurus sanjuanensis may have reached nearly the size of
Argentinosaurus, but the only appendicular element of this giant individual referred to
the taxon is a distal half of a femur. Appendicular elements of the holotype of the
previously most complete large titanosaurian, Futalognkosaurus dukei, include only both
ilia and the right pubis and ischium (no limb elements; Calvo et al., 2007b).
The holotype skeleton of Dreadnoughtus schrani, discovered in 2005 in southern
Patagonia (Lacovara et al., 2014), is far more complete than any of the aforementioned
giants. The holotype of Dreadnoughtus comprises the most complete appendicular
skeleton of any titanosaurian estimated to weigh more than 30 metric tons, and comprises
the most complete appendicular skeleton of any sauropod estimated to weigh more than
51 metric tons (Table 5.1). Dreadnoughtus thus provides a rare view of the limb and
girdle anatomy of a large titanosaurian, which is crucial to advance understanding of
wide-gauge anatomy and locomotion at extreme body size. Though most of the
appendicular portion of the holotype skeleton was found disarticulated and adjacent to a
disarticulated, smaller, second individual (the paratype), elements could be confidently
assigned to each individual based on close association, quarry location, size, and overlap
in representation. Preserved appendicular elements of the holotype of Dreadnoughtus
include both sternal plates, the left coracoid, scapula, humerus, ulna, and radius, a
complete pelvis, the left femur, both tibiae, left fibula and astragalus, right metatarsals I
and II, and the ungual of right pedal digit I. The paratype includes a complete pelvis and
left femur. Thus, nearly the entire appendicular skeleton is represented. Here I expand on
224
the description of Dreadnoughtus by Lacovara et al. (2014) and offer additional
comparisons of its appendicular elements with those of other titanosauriforms.
Institutional Abbreviations—MACN, Museo Argentina de Ciencias Naturales,
Buenos Aires, Argentina; MCS, Museo de Cinco Saltos, Río Negro Province, Argentina;
MPCA, Museo Provincial “Carlos Ameghino,” Cipolletti, Argentina; MPM, Museo
Padre Molina, Rio Gallegos, Argentina.
5.3 Systematic paleontology
SAUROPODA Marsh, 1878
NEOSAUROPODA Bonaparte, 1986
TITANOSAURIA Bonaparte and Coria, 1993
DREADNOUGHTUS SCHRANI Lacovara, Lamanna, Ibiricu, Poole, Schroeter, Ullmann,
Voegele, Boles, Carter, Fowler, Egerton, Moyer, Coughenour, Schein, Harris, Martínez,
and Novas, 2014
(Figures 5.1–5.17)
Holotype—MPM PV 1156, a partial skeleton including a fragment of maxilla, a
caudal cervical vertebra (~ 9th), seven dorsal vertebrae, partial sacrum, a nearly complete
caudal series, both sternal plates, left coracoid, scapula, humerus, ulna, and radius,
complete pelvis, left femur, both tibiae, left fibula and astragalus, right metatarsals I and
II, and right pedal digit I ungual.
225
Paratype—MPM PV 3546, a partial skeleton including a partial cranial cervical (~
4th), six proximal caudal vertebrae, both ilia, ischia, and pubes, and left femur.
Ontogenetic Age—Histologic analyses of the humerus and femur of the holotype
(Schroeter et al., 2011; Lacovara et al., 2014) showed that the holotype was not fully
grown, at most having achieved Histologic Ontogenetic Stage 9 of the 14-stage sequence
proposed by Klein and Sander (2008) at its time of death.
Age and Distribution—MPM PV 1156 and MPM PV 3546 were discovered in a
convoluted, mixed lithesome of the Cerro Fortaleza Formation (interpreted as a crevasse
splay horizon), from an outcrop in the northern Rio La Leona Valley between Lago
Argentino and Lago Viedma, Santa Cruz Province, southern Argentina (Lacovara et al.,
2014; Figure 5.1B). These outcrops were previously referred to as the Pari Aike
Formation (e.g., Novas et al., 2005). However, by performing stratigraphic correlations,
Egerton (2011) identified that the two formations are geologically distinct, with the Cerro
Fortaleza overlying (and hence younger than) the Pari Aike. Based on the ages of
underlying and overlying strata, the Cerro Fortaleza is middle/late Campanian to early
Maastrichtian in age. These sediments were interpreted as primarily meandering streamfloodplain mudstones with intermittent channel sandstones (Egerton, 2011).
5.4 Description
When corresponding elements from both sides of either the holotype or paratype
are preserved (e.g., right and left tibiae), descriptions are based on the most complete
and/or least taphonomically distorted element. Comprehensive measurements for each
226
element of both MPM PV 1156 and MPM PV 3546 are provided in Lacovara et al.
(2014:supplementary table 1).
5.4.1 Pectoral girdle
Scapula—The left scapula (Figure 5.2) is the largest yet discovered for any
titanosaurian, measuring 1.74 m in length. It is not co-ossifed to the coracoid, supporting
histological evidence (Schroeter et al., 2011; Lacovara et al., 2014) that this individual
had yet to reach full adult size at the time of its death (Ikejiri, 2004; Ikejiri et al., 2005;
Schwarz et al., 2007b). I describe the scapula and coracoid in their anatomical positions
(as described for sauropods by Schwarz et al., 2007a), in which proximal is considered
toward the glenoid and distal toward the caudodorsal end of the blade.
The scapula is craniocaudally concave medially with a broad proximal end and
narrow distal blade. The glenoid border is mediolaterally wide, beveled medially, and, in
lateral view, shorter than the coracoid articular surface. The acromion comprises a large,
broad, round process that protrudes dorsally from the dorsal portion of the proximal
scapula. The acromial ridge is pronounced, running nearly parallel to the coracoid
articular edge of the scapula in lateral view. It divides a craniocaudally narrow, shallowly
concave distal region from a broad, deeply concave proximal region. In lateral view, the
glenoid and coracoid articular surfaces meet at an obtuse angle of approximately 148°.
A single tubercle with muscle scar texturing projects caudoventromedially from
the proximal scapula distal to the glenoid lip. Another sizable muscle scar tubercle rises
off the medial face of the scapular blade base near its dorsal margin. This muscle scar
marks the inferred origination of the M. subscapularis (= scapular branch only of M.
227
subcoracoscapularis of Borsuk-Bialynicka, 1977). Distal to this muscle scar, an oblique
ridge runs caudodorsally from the ventral to the dorsal border. The ridge appears to be
natural rather than taphonomic because no cracking or fracturing surrounds it, the lateral
side of the scapular blade in this region exhibits no physical disruption, and subtle muscle
scar texturing can be seen along the caudoventral aspect of the ridge.
The scapular blade is D-shaped in proximal cross-section with a convex lateral
face and concave medial face, but flattens to a rectangular cross-section at its distal end.
The blade expands craniocaudally only minimally at its distal end.
Comparisons—The scapula of Dreadnoughtus is clearly titanosaurian in
character, lacking significant craniocaudal expansion of the distal blade (as seen in
Camarasaurus and rebbachisaurids; Apesteguía et al., 2010). Additionally, the broad,
round acromial process is similar to those seen in nearly all macronarians. Lack of a
dorsomedial prominence along the scapular distal blade contrasts with the conditions in
Aeolosaurus (Powell, 2003), Lirainosaurus (Díez Díaz et al., 2013), Saltasaurus (Powell,
2003), and Neuquensaurus (Otero, 2010). Dreadnoughtus shares with numerous
titanosaurians (e.g., Paralititan [Smith et al., 2001], Aeolosaurus [Powell, 2003],
Lirainosaurus [Díez Díaz et al., 2013], Saltasaurus [Powell, 2003], Neuquensaurus
[Otero, 2010]) a sizable muscle-scar tubercle rising medially near the base of the scapular
blade, a feature notably less developed in the diplodocoid Suuwassea (Harris, 2007) and
basal titanosauriform Angolatitan (Mateus et al., 2011). Prominence of the deltoid ridge
on the acromion (to the degree that a concave area is formed distal to it) is also seen in
Elaltitan (Mannion and Otero, 2012). Although Dreadnoughtus and Lirainosaurus each
possess a ridge on the medial scapula, in the latter taxon the ridge runs adjacent and
228
parallel to the ventral margin (Díez Díaz et al., 2013). Hence, the oblique medial ridge is
an autapomorphy of Dreadnoughtus, likely related to origination of a pectoral muscle.
The absence of a second caudoventromedial tubercle differs from the conditions
seen in Sauroposeidon (D'Emic and Foreman, 2012), Alamosaurus (D'Emic et al., 2011),
and Neuquensaurus (pers. obs. by M. D'Emic and J. Wilson, as cited in D'Emic et al.,
2011). The presence of a single, large tubercle in this position has been noted in most, if
not all, basal titanosauriforms (e.g., Chubutisaurus [Carballido et al., 2011], Wintonotitan
[Hocknull et al., 2009], Ligabuesaurus [Bonaparte et al., 2006], Angolatitan [Mateus et
al., 2011], Daxiatitan [You et al., 2008], and Euhelopus [Wilson and Upchurch, 2009])
and a few titanosaurians (Mendozasaurus [pers. obs. by M. D'Emic and J. Wilson, as
cited in D'Emic et al., 2011], Elaltitan [Mannion and Otero, 2012], Paralititan [Smith et
al., 2001], Yongjinglong [Li et al., 2014]). This tubercle marks an origination of the M.
triceps longus in crocodilians (Meers, 2003). Though Li et al. (2014) extended this term
to a nonavian dinosaur, the homology of this assignment is in need of more detailed
examination.
Coracoid—The left coracoid (Figure 5.3) lacks its caudoventral glenoid corner
but is clearly quadrangular in shape. The cranioventral margin is rectangular (sensu
Wilson, 2002) and a robust, laterally placed infraglenoid lip (sensu Wilson, 2002)
extends ventrally from the main coracoid body. When viewed dorsally, the cranial half of
the coracoid bends craniomedially. The coracoid foramen is deeply inset into the
coracoid body in lateral view, is craniocaudally elongate, and runs cranioventrolaterally
to caudodorsomedially through the coracoid body. This foramen perforates the
scapulocoracoid articular surface in medial view, but not in lateral view because of its
229
oblique course through the bone. The dorsal margin of the coracoid is comparatively thin
relative to the cranial margin and the remainder of the bone. The glenoid surface widens
transversely to more than twice the width of the cranial portion of the coracoid. The
scapular articular surface broadens ventrally and, if it were completely preserved, would
be roughly triangular in outline. The medial surface of the coracoid is broadly concave
craniocaudally and dorsoventrally while the lateral surface is, overall, broadly convex
craniocaudally and dorsoventrally. A vertically oriented muscle-scar ridge, inferred as the
origin of the M. biceps brachii (Borsuk-Bialynicka, 1977), adorns the craniodorsal
portion of the lateral face.
Comparisons—The position of the coracoid foramen migrates cranially through
the coracoid through titanosaurian ontogeny: it bisects the scapulocoracoid articulation in
juvenile and “subadult” specimens of Camarasaurus (Ikejiri, 2004; Wilhite, 2005), an
unnamed/unattributed brachiosaurid (Carballido et al., 2012a; Schwarz et al., 2007b), and
Yongjinglong (Li et al., 2014), while in fully “adult” specimens the foramen never bisects
the articulation (Ikejiri et al., 2005; Wilhite, 2005). The foramen in the coracoid of
Dreadnoughtus appears intermediate in position, thus agreeing with other evidence that
the holotypic individual was not fully grown.
Lirainosaurus (Company et al., 2009; Díez Díaz et al., 2013) possesses a similar
transverse widening of the glenoid surface to more than twice the width of the cranial
blade portion of the coracoid seen in Dreadnoughtus. A pronounced scar (inferred to be
for M. biceps brachii) is also well developed in Rapetosaurus (Curry Rogers, 2009); thus,
prominence of this muscle scar no longer is an autapomorphy of Rapetosaurus. Three
features of the coracoid of Dreadnoughtus are also encountered in saltasaurids: deep inset
230
of the coracoid foramen in lateral view (Curry Rogers, 2005), having a rectangular
cranioventral margin, and presence of a robust infraglenoid lip (Wilson, 2002).
Sternal Plate—Both sternal plates are preserved (Figure 5.4). The right plate is
nearly complete but has been taphonomically distorted by compression against abutting
elements in the quarry. Distortions include fracturing and double layering of cortical
bone, depressions, adhesion of fragments of other bones to its surface, and compressioninduced ridges and valleys along its surface. Its preserved form, measuring 113 cm in
length, nevertheless is consistent with the left plate.
The better preserved left sternal plate is a flat, thin, semilunar element. Its greatest
craniocaudal length is 72% the length of the humerus. A cranioventral ridge runs parallel
to the lateral margin near the cranial corner of the ventral face, thereby modestly
thickening this corner of the plate. The long, dorsoventrally thin, straight articular surface
for the contralateral sternal plate gives the bone only modestly semilunar shape. The
caudal end of the plate is round in dorsal view.
Comparisons—The cranioventral ridge on the sternal plate of Dreadnoughtus is a
characteristic titanosaurian synapomorphy (Sanz et al., 1999), as is the semilunar shape
of the bone (Salgado et al., 1997a). The long, straight, dorsoventrally thin articular
surface for the contralateral sternal plate and round caudal blade of Dreadnoughtus are
similar to the morphologies in many titanosaurians (e.g., Mendozasaurus [González Riga,
2003], Petrobrasaurus [Filippi et al., 2011b], Aeolosaurus [Salgado et al., 1997b],
Alamosaurus [Gilmore, 1946], Maxakalisaurus [Kellner et al., 2006]). The articular
surface for the contralateral sternal is markedly longer than those seen in Malawisaurus
(Jacobs et al., 1993; Gomani, 2005), Alamosaurus (Gilmore, 1946), Qingxiusaurus (Mo
231
et al., 2008), and Narambuenatitan (Filippi et al., 2011a), which gives the sternal plate a
less semilunar shape than the greatly arcuate sternal plates of those taxa. The sternal
plates of Dreadnoughtus are comparatively shorter relative to the humerus than in
saltasaurids (sternal plate length:humeral length ratio is 0.72 in Dreadnoughtus while in
saltasaurids this ratio is > 0.75; Upchurch, 1998).
5.4.2 Forelimb
Humerus—The left humerus (Figure 5.5) is 1.6 m long and has a transversely
expanded morphology, especially at the midshaft. It is considered robust by the
Robustness Index (RI) of Wilson and Upchurch (2003: RI = average of proximal,
midshaft, and distal breadths divided by element length), with an RI of 0.333, using the
categories proposed by Carballido et al. (2012b: RI > 0.33 considered robust).The
humeral head is dorsally convex (both craniocaudally and mediolaterally) and
craniocaudally narrow, and rises distinctly above the proximal end of the deltopectoral
crest. In proximal view, the proximal end appears cranially concave; as in most
titanosaurians, this end is transversely expanded to more than twice the minimum
mediolateral midshaft breath (74 versus 32 cm, respectively). The proximolateral corner
of the humerus lacks any noteworthy expansion. A significant fracture has caudally offset
the proximolateral corner and much of the deltopectoral crest, creating an unnatural ridge
and pocket along the caudal face of the distal deltopectoral crest.
The deltopectoral crest is relatively prominent and twists medially along the
cranial face of the shaft. It is narrow and extends distally to about one-third the length of
the element. The distal end of the deltopectoral crest projects cranially into a distinct
232
knob. A prominent lateral bulge projects along the distolateral edge of the crest, a feature
interpreted in Jainosaurus (and, ostensibly, other sauropods) as an attachment site for
forelimb adductor muscles by Wilson et al. (2011).
The distal end of the humerus is transversely expanded to a lesser extent than the
proximal end, reaching a breadth of 54 cm. The distal condyles remain undivided and are
subequal in dimensions with semi-triangular shapes in distal view. Pronounced
supracondylar ridges ascend along the caudal face of the shaft. These ridges bound a
proximodistally long but narrow cuboid fossa.
Comparisons—The humerus of Dreadnoughtus is clearly titanosaurian,
possessing a prominent and medially twisted deltopectoral crest, greater proximal than
distal expansion, and pronounced supracondylar ridges on the caudal face (Sanz et al.,
1999). However, Dreadnoughtus lacks two features attributed to saltasaurids: expansion
at the proximolateral corner (Upchurch, 1998; Upchurch et al., 2004) and division of the
distal condyles (Wilson, 2002). The humeral head is comparatively less medially
displaced relative to the long axis of the shaft in caudal view than for most titanosaurians
(taxa with a similar condition include Isisaurus [Jain and Bandyopadhyay, 1999],
Qingxiusaurus [Mo et al., 2008], and Rapetosaurus [Curry Rogers, 2009]). Similarly, the
medial displacement of the deltopectoral crest is less than those of Opisthocoelicaudia
(Borsuk-Bialynicka, 1977) and Mendozasaurus (González Riga, 2003). The narrowness
and relatively short proximodistal length of the deltopectoral crest of Dreadnoughtus is a
common feature among titanosaurians (e.g., Rinconsaurus [Calvo and González Riga,
2003], Rapetosaurus [Curry Rogers, 2009], Malawisaurus [Gomani, 2005]), though
Narambuenatitan (Filippi et al., 2011a) and some saltasaurids (e.g., Neuquensaurus
233
[Otero, 2010] and Opisthocoelicaudia [Borsuk-Bialynicka, 1977]) possess distally
elongate crests. Development of the distal deltopectoral crest into a notable knob is
common among basal titanosauriforms (e.g., Ligabuesaurus; Bonaparte et al., 2006),
many basal titanosaurians, and some lithostrotians (e.g., Paralititan [Smith et al., 2001],
Gondwanatitan [Kellner and de Azevedo, 1999], Jainosaurus [Wilson et al., 2009],
Lirainosaurus [Díez Díaz et al., 2013], Aeolosaurus [Powell, 2003]). The condition
present in all of these taxa, including Dreadnoughtus, however, is not as proportionally
well developed as the massive distal deltopectoral crests of saltasaurids (Wilson, 2002).
Dreadnoughtus shares with Jainosaurus (Wilson et al., 2011), Alamosaurus (Gilmore,
1946), Qingxiusaurus (Mo et al., 2008), and Saltasaurus (Powell, 2003) a prominent
lateral bulge along the distolateral edge of the deltopectoral crest.
Ulna—The left ulna (Figure 5.6) is gracile (midshaft width < 25% of bone length;
Curry Rogers, 2005) and has a prominent olecranon projecting above the main articular
surface. The proximal ulna is triradiate with a significantly more robust craniomedial
than craniolateral process, though both are about the same length. The craniomedial
process has a concave humeral articular surface; the craniolateral process slopes ventrally
away from the olecranon in lateral view. The straight shaft is triangular in cross-section
because of a longitudinal ridge descending caudodistally from the olecranon. A deep
pocket lies medial to this olecranon ridge along the proximal portion of the shaft. This
pocket is so well developed that a portion of it is obscured in caudal view by the
ascending olecranon ridge. This feature may not be entirely artificial; its depth may be
partly a function of crushing of the olecranon ridge into the fossa beside it, but when
viewed proximally, a fossa was clearly well developed in this location regardless of any
234
potential crushing. The proximal portion of the ascending olecranon ridge curves slightly
medially. A sizable, positive-relief muscle scar is located about one-quarter of the way
down the shaft along the medial side of the cranial face. Also, a low-relief, longitudinal
ridge defines the medial edge of the radial articular facet in cranial view. The distally flat
ulnar condyle is transversely expanded, narrow craniocaudally, and shallowly concave
cranially.
Comparisons—Dreadnoughtus, Diamantinasaurus (Hocknull et al., 2009), and
Aeolosaurus (Garcia and Salgado, 2011) each possess more robust craniomedial than
craniolateral proximal ulnar processes. The concave proximal articular surface of the
craniomedial process in Dreadnoughtus is shared with saltasaurids (Upchurch, 1998),
Venenosaurus (Tidwell et al., 2001), Aeolosaurus (Salgado and Coria, 1993; Garcia and
Salgado, 2011), Elaltitan (Mannion and Otero, 2012), and Diamantinasaurus (Hocknull
et al., 2009). The depression medial to the descending olecranon ridge that is deep in
Dreadnoughtus is normally shallow in titanosaurians (e.g., Rapetosaurus [Curry Rogers,
2009], Saltasaurus [Powell, 2003], Lirainosaurus [Company et al., 2009; Díez Díaz et
al., 2013]). Expression of this pocket as a distinct cavity in the proximal ulna in proximal
view is only shared between Dreadnoughtus and Elaltitan (Mannion and Otero, 2012).
Clear presence of a raised muscle scar on the cranial face of the ulnar shaft is shared by
Dreadnoughtus, Aeolosaurus (Garcia and Salgado, 2011), and Neuquensaurus (Otero,
2010). Numerous titanosaurians, including Dreadnoughtus, Neuquensaurus (Otero,
2010), Isisaurus (Jain and Bandyopadhyay, 1999), Jainosaurus (Wilson et al., 2009),
Narambuenatitan (Filippi et al., 2011a), and Aegyptosaurus (Stromer, 1932) each possess
a low, longitudinal ridge along the cranial ulna denoting the medial limit of the
235
articulation of the radius. Transverse expansion of the distal ulna otherwise is seen only
in opisthocoelicaudiines and Pitekunsaurus (Filippi and Garrido, 2008) (though modestly
developed in Aeolosaurus; Garcia and Salgado, 2011) and contrasts with the conditions
in most other titanosaurians (e.g., Rapetosaurus [Curry Rogers, 2009], Elaltitan
[Mannion and Otero, 2012], Neuquensaurus [Otero, 2010]).
Radius—The left radius (Figure 5.7) is gracile by the definition of Curry Rogers
(2005): its greatest midshaft width is only 15% of the maximum length of the element.
The proximal articular facet is shallowly concave. A sizable cavity on the caudomedial
aspect of the proximal radius is discernible in proximal view. The shaft appears medially
convex in caudal view and displays a characteristic titanosaurian interosseous ridge
(sensu Curry Rogers, 2009) running diagonally down the caudal diaphyseal face from the
caudal proximal condyle to the caudolateral corner of the distal radius. The distal radius
lacks any remarkable transverse expansion; rather, it is nearly square in distal view with a
shallow cavity along its caudal face for articulation with the distal ulna. The distal
condyle is beveled proximolaterally at about 20°.
Comparisons—The wide, caudomedial cavity on the proximal radius of
Dreadnoughtus is absent in the radii of most other titanosaurians (e.g., Neuquensaurus
[Otero, 2010], Uberabatitan [Salgado and Carvalho, 2008], Opisthocoelicaudia [BorsukBialynicka, 1977]). This feature is present as only a shallow depression in Rapetosaurus
(Curry Rogers, 2009) and Jainosaurus (Wilson et al., 2011). Deep development of this
fossa is therefore autapomorphic for Dreadnoughtus. Medial bowing of the radial shaft is
also seen in Jainosaurus (Wilson et al., 2011), Elaltitan (Mannion and Otero, 2012), and
Aeolosaurus (Garcia and Salgado, 2011). A similar lack of transverse expansion of the
236
distal radius is also found in Rapetosaurus (Curry Rogers, 2009), Elaltitan (Mannion and
Otero, 2012), and Venenosaurus (Tidwell et al., 2001), but is unlike the conditions in
other titanosaurians (e.g., Tapuisaurus [Zaher et al., 2011], Neuquensaurus [Otero, 2010],
Alamosaurus [Gilmore, 1946]). Subequal distal dimensions and square shape contrast
with the ovoid distal radii of Rapetosaurus (Curry Rogers, 2009), Neuquensaurus (Otero,
2010), and Saltasaurus (Powell, 2003) and may constitute a reversal to the ancestral
sauropod state (Wilson and Sereno, 1998). Hence, this feature is proposed as an
autapomorphy for Dreadnoughtus. Proximolateral beveling of the distal condyle has been
proposed as a lithostrotian feature (Curry Rogers, 2005).
5.4.3 Pelvic girdle
Ilium—Both ilia of the holotype are preserved, though only the supraacetabular
region and pubic and ischiadic peduncles are preserved of the left element (Figures 5.8–
5.9). Although the dorsal margin of the supraacetabular portion of the right ilium is
distorted to face medially, this element is far more complete than its left counterpart.
The right ilium bears a long preacetabular lobe that flares craniolaterally
approximately 40° from the sacral axis. Doubling of the lateral width of the incompletely
preserved sacrum and doubling of the extent of lateral flaring of the right preacetabular
lobe indicates that, in life, the cranial tips of the lobes would have been separated by
approximately 2.3 m. A rounded, mediolaterally narrow process arises from the
ventrolateral edge of the preacetabular lobe near its cranial margin. The craniocaudal
position of the highest point of the preacetabular lobe is difficult to determine because of
medial crushing of the caudodorsal preacetabular margin and much of the
237
supraacetabular region, but in the paratype the highest point lies cranial to the pubic
peduncle, giving the ilium a craniodorsal-caudoventral “tilt” in lateral view. The
postacetabular lobe is subrectangular in lateral view and projects slightly caudolaterally
from the sacral axis. The pubic peduncle is complete except for its craniodistolateral
corner. It projects perpendicular to the sacral axis and is proportionally much longer than
the ischiadic peduncle. In distal view, the pubic peduncle is narrow with its long axis
(estimated length 34 cm) oriented mediolaterally. The ischiadic peduncle has been
fractured and offset medially by compression, though it is not otherwise deformed. It is
short, mediolaterally expanded like the pubic peduncle, and fully separate from the
postacetabular lobe. The articular ends of both peduncles are rugose where they would
have been covered by cartilage in life.
Comparisons—Dreadnoughtus, Alamosaurus (Gilmore, 1946), and Giraffatitan
(D’Emic, 2012) are the only titanosauriforms that possess accessory processes on the
ventrolateral margins of their iliac preacetabular lobes, situated caudal to the craniolateral
tip of the lobe. Although D’Emic (2012) noted the presence of a similar process in
saltasaurines, in those taxa it is the cranial edge of the preacetabular process that thickens
and expands laterally (Powell, 1992; also see fig. 7 of Otero, 2010). Moderate (~ 40°)
craniolateral projection of the preacetabular lobe from the sacral axis in Dreadnoughtus is
most like Trigonosaurus (~ 35°; Campos et al., 2005), but much less than in
Epachthosaurus (~ 55°; Martínez et al., 2004), Opisthocoelicaudia (~ 60°; BorsukBialynicka, 1977), Saltasaurus (~ 60°; Powell, 2003), Neuquensaurus (~ 65°; Otero,
2010), or Isisaurus (~ 90°; Jain and Bandyopadhyay, 1999). Furthermore, the
preacetabular lobes of Dreadnoughtus are not as horizontally turned as in saltasaurids,
238
Isisaurus (Jain and Bandyopadhyay, 1999), or Trigonosaurus (Campos et al., 2005). The
craniodorsal to caudoventral tilt of the ilia in Dreadnoughtus is also seen in many
lithostrotians (e.g., Rinconsaurus [Calvo and González Riga, 2003], Diamantinasaurus
[Hocknull et al., 2009]). Retained separation of the ischiadic peduncle from the
postacetabular lobe in Dreadnoughtus contrasts with the condition in saltasaurines (e.g.,
Rocasaurus; Salgado and Azpilicueta, 2000).
Pubis—The right pubis of the holotype (Figure 5.10) is nearly complete, lacking
only its acetabular surface and ischiadic articular surface. Despite some compactionrelated distortion, the complete left pubis of the holotype displays well the proximal
morphology of the peduncles and acetabulum. The pubis of Dreadnoughtus is a robust
element that has expanded proximal and distal blades. The distal end twists
craniomedially approximately 90° relative to the proximal end, thereby forming a nearly
co-planar articulation with the cranial blade of the contralateral pubis.
The left pubis contributes minimally to the cranioventral portion of the
acetabulum; the acetabular border is distinctly shorter than the puboischiadic articular
surface. The iliac peduncle is robust (due in part to dorsoventral lithostatic compression)
and has a subrectangular, flat proximal articular surface of roughly equal area to the
adjacent acetabular surface. The obturator foramen is directed cranioventrally and lies
dorsal to the midpoint of the ischiadic articular surface. The puboischiadic contact is
mediolaterally wide and flares laterally in an arc from the main body of the pubis. This
surface is short relative to the length of the pubis. A longitudinal ridge runs along the
ventrolateral aspect of the shaft. In medial view, the interpubic articular surface twists
medially from the ischiadic peduncle to form a sigmoidal ridge. The distal pubic blade
239
tapers medially from its lateral margin. The medial portion of the distal pubic blade is
dorsoventrally thick.
In contrast to the tapering pubes of the holotype, the distal blades of the pubes of
the paratype are sub-rectangular in dorsoventral profile. When the right pubis of the
paratype is viewed ventrally, however, the edge where cartilage rugosities arise does
taper slightly medially, suggesting that the overall form of the distal end of the blade of
this specimen may be partly altered by dorsoventral compression and torsion.
Comparisons—The twisted overall form of the pubis of Dreadnoughtus is similar
to that of Saltasaurus (Powell, 2003). Other titanosaurians (e.g., Elaltitan [Mannion and
Otero, 2012], Neuquensaurus [Otero, 2010], Epachthosaurus [Martínez et al., 2004],
Paludititan [Csiki et al., 2010]) display less angular differences between the proximal and
distal ends. As in many titanosaurians (e.g., Saltasaurus [Powell, 2003], Aeolosaurus
[Garcia and Salgado, 2011], Elaltitan [Mannion and Otero, 2012], Tangvayosaurus
[Allain et al., 1999], Rocasaurus [Salgado and Azpilicueta, 2000]), the contribution of
the pubis of Dreadnoughtus to the acetabulum is shorter than the puboischiadic articular
surface. The robust, subrectangular, proximally flat iliac peduncle is similar in form to
those of Petrobrasaurus (Filippi et al., 2011b) and Sonidosaurus (Xu et al., 2006), but
not quite as robust as those of Narambuenatitan (Filippi et al., 2011a) or Huabeisaurus
(Pang and Cheng, 2000). Possession of a longitudinal ridge along the ventrolateral pubic
shaft is also seen in Uberabatitan (Salgado and Carvalho, 2008) and Saltasaurus (Powell,
2003), though in those taxa this feature is more developed. The moderately developed
form of this ridge in Dreadnoughtus compares more favorably with the conditions seen in
Futalognkosaurus (Calvo et al., 2007b) and Aeolosaurus (Salgado and Coria, 1993;
240
Garcia and Salgado, 2011). Additionally, Dreadnoughtus shares with Muyelensaurus
(Calvo et al., 2007a) dorsoventral thickening of the distal pubic blade.
Of all titanosauriforms, only Opisthocoelicaudia (Borsuk-Bialynicka, 1977)
possesses a similarly pronounced medial tapering of the distal pubic blade. This condition
contrasts with those of most titanosaurians (e.g., Elaltitan [Mannion and Otero, 2012],
Petrobrasaurus [Filippi et al., 2011b], Narambuenatitan [Filippi et al., 2011a]), where, as
in the paratype of Dreadnoughtus, the distal blade is rectangular or subcircular in
dorsoventral profile. Although the fact that the paratype individual is smaller than the
holotype might suggest that medial tapering of the distal pubis could develop
ontogenetically in this taxon, it remains uncertain if this may instead be explained by
sexual dimorphism, individual variation, or taphonomic distortion.
Ischium—Both ischia of the holotype are preserved. The right ischium has been
taphonomically compressed into nearly a single plane, while the left ischium (Figure
5.11) remains mostly undeformed.
The left ischium is shorter than the pubis, having an ischium:pubis length ratio of
only 0.8. The articular surface for the contralateral ischium extends to the ventral end of
the pubic articular surface. The pubic articular surface is mediolaterally wide and arches
laterally in cranial view such that it forms a lateral bowl over the main body of the
ischium. This surface is longer than the distance from its most dorsal point to the end of
the iliac peduncle. The iliac peduncle is craniocaudally narrow and broadly convex in
caudal view. Roughly one-fourth of the acetabular margin is encompassed by this
peduncle and the proximal shaft of the ischium. A rough tuberosity for the inferred origin
of the M. flexor tibialis (Borsuk-Bialynicka, 1977) is present near the caudal margin of
241
the lateral surface across from the distal end of the pubic articular surface. The caudal
blade is twisted roughly orthogonal to the main body of the ischium such that it would
articulate in a horizontally co-planar manner with the distal blade of the contralateral
ischium. The caudal blade is short (less than twice the length of its pubic articular
surface) and laminar, expanded only slightly beyond the main body of the ischium, and it
angles caudoventrally away from the pubic articular surface by roughly 20° in lateral
view. This low angle may be influenced by lithostatic compression in the craniocaudal
direction, especially considering that this angle for the right ischium of the paratype is
about 40°. No emargination is present distal to the pubic articulation.
Comparisons—The ischia of Dreadnoughtus possess four clear titanosaurian
synapomorphies: (1) they are shorter than the pubes (Salgado et al., 1997a); (2) a short
and laminar caudal blade (Sanz et al., 1999); (3) the caudal blade is less than twice the
length of the pubic articular surface (Calvo et al., 2007b), and; (4) the caudal blade has no
emargination distal to the pubic articulation (Wilson, 2002). Dreadnoughtus shares with
Aeolosaurus strong mediolateral widening of the pubic articular surface (Garcia and
Salgado, 2011, fig. 4G). Extension of the contralateral ischiadic articular surface to the
ventral end of the pubic articular surface is only otherwise seen in saltasaurids
(Upchurch, 1998). Andesaurus (Calvo and Bonaparte, 1991), Alamosaurus (Salgado et
al., 1997a), Venenosaurus (Tidwell et al., 2001), Sonidosaurus (Xu et al., 2006),
Isisaurus (Jain and Bandyopadhyay, 1999), Aragosaurus (Sanz et al., 1987), and
Tangvayosaurus (Allain et al., 1999) also possess a contralateral articular surface that is
longer than the distance from its most dorsal point to the end of the iliac peduncle. This
morphology contrasts with those of Aeolosaurus (Salgado and Coria, 1993; Powell, 2003;
242
Garcia and Salgado, 2011), Futalognkosaurus (Calvo et al., 2007b), and saltasaurines.
The craniocaudally narrow iliac peduncle of Dreadnoughtus starkly contrasts with the
craniocaudal expansion seen in the ischia of Alamosaurus (D'Emic et al., 2011). The
main body of the ischium of Dreadnoughtus is proportionally narrower than in some
titanosaurians (e.g., Alamosaurus [Salgado et al., 1997a; D'Emic et al., 2011],
Diamantinasaurus [Hocknull et al., 2009], Rocasaurus [Salgado and Azpilicueta, 2000],
Paludititan [Csiki et al., 2010]) but is like the narrow forms of Andesaurus (Calvo and
Bonaparte, 1991), Gondwanatitan (Kellner and de Azevedo, 1999), Malawisaurus
(Gomani, 2005), Tangvayosaurus (Allain et al., 1999), and Futalognkosaurus (Calvo et
al., 2007b). Dreadnoughtus and a small suite of titanosaurians (Neuquensaurus [Otero,
2010], Rapetosaurus [Curry Rogers, 2009], Alamosaurus [Gilmore, 1922], and
Opisthocoelicaudia [Borsuk-Bialynicka, 1977]) share development of a sizable lateral
tuberosity for the inferred origin of the M. flexor tibialis. The degree of expansion of the
distal ischiadic blade in Dreadnoughtus contrasts with both the wide blades of
Diamantinasaurus (Hocknull et al., 2009) and Aeolosaurus (Salgado and Coria, 1993)
and the narrow blade of Antarctosaurus wichmannianus (Powell, 2003), but is similar in
moderate expansion to the distal ischia of Maxakalisaurus (Kellner et al., 2006),
Sonidosaurus (Xu et al., 2006), Andesaurus (Calvo and Bonaparte, 1991), and many
other titanosaurians.
5.4.4 Hind limb
Femur—The left femur of the holotype (Figure 5.12) of Dreadnoughtus is nearly
2 m long and is among the largest sauropod femora yet described, shorter only than that
243
of “Antarctosaurus” giganteus (Mazzetta et al., 2004). The shaft is elliptical with a
transverse long axis. The femoral head is convex and rises farther dorsally than the
greater trochanter. The greater trochanter is reduced to a low, narrow rise. A prominent
lateral bulge protrudes from the femoral shaft and the proximal one-third of the femur
angles medially. A thin, proximodistal crest extends from the lateral bulge to the greater
trochanter. The low, rounded fourth trochanter is located just above midshaft and runs
along the caudomedial edge of the shaft. The distal condyles are not beveled
dorsomedially and do not expand onto the cranial face of the shaft. They are nearly equal
in breadth (13 and 14 cm for the fibular and tibial condyles, respectively) and angle
craniolaterally to caudomedially 50–60° from the craniocaudal axis. Were this
morphology accepted at face value, such a high, medially inclined angle could plausibly
be an autapomorphy of Dreadnoughtus. However, lithostatic compaction has somewhat
flattened the middle and distal portions of the shaft, so the exact extent to which this
feature is a product of distortion is unclear. Moreover, no logical biomechanical
interpretation can be advanced for such canted distal condyles, so attributing this
appearance to lithostatically induced distortion may be preferable (following Wilson et
al., 2011).
Comparisons—Subequal distal condyles suggests Dreadnoughtus is a
lithostrotian (Upchurch et al., 2004), and lack of expansion of the distal condyles onto the
cranial side of the shaft excludes it from Saltasaurinae (Wilson, 2002). The femoral head
is not as proximomedially directed as those of many titanosaurians (e.g., Rinconsaurus
[Calvo and González Riga, 2003], Malawisaurus [Gomani, 2005], Jainosaurus [Wilson
et al., 2011], Petrobrasaurus [Filippi et al., 2011b], Lirainosaurus [Díez Díaz et al.,
244
2013]). The fourth trochanter is relatively more prominent than in most advanced
lithostrotians in which this feature is nearly absent (e.g., Epachthosaurus [Martínez et al.,
2004], Diamantinasaurus [Hocknull et al., 2009], Lirainosaurus [Sanz et al., 1999]).
Dreadnoughtus lacks the dorsomedial beveling of the distal condyles that appears
characteristic of saltasaurids (Wilson, 2002).
Tibia—The right tibia (Figure 5.13) is expanded much farther craniocaudally than
transversely at both the proximal and distal ends. This character is partially accentuated
by mediolateral taphonomic compression. With an RI of 0.28, this element is considered
gracile using the metric of Wilson and Upchurch (2003) and categories of Salgado et al.
(2014: RI > 0.3 considered robust). A large, lateral bulge forms the cranial portion of the
proximal tibial articular surface. The cnemial crest originates near the midpoint of the
medial face in proximal view. It twists cranially and terminates in a craniolaterally
oriented apex in front of the middle of the shaft in cranial view. The crest extends
cranioventrally to a point below the ventral margin of the lateral bulge. The proximal
articular surface is broadly concave for articulation with the tibial condyle of the femur.
Like the proximal and distal ends, the midshaft is craniocaudally expanded (20 cm wide
craniocaudally, 13 cm mediolaterally). The distal condyles are narrow and subequal in
dimensions. Their long axes are directed roughly 30° laterally relative to the proximal
end. As with the femur, this may be a result of taphonomic compression-induced rotation.
The distal articular surface is slightly convex craniocaudally. The left tibia has undergone
extensive lithostatic compaction and is missing the caudal corner of its proximal end.
Comparisons—The substantial craniocaudal elongation yet moderate transverse
expansion of the ends of the tibiae of Dreadnoughtus compares favorably with the tibial
245
proportions of Aegyptosaurus (Stromer, 1932), Tangvayosaurus (Allain et al., 1999), and
Huabeisaurus (Pang and Cheng, 2000), but contrasts with taxa such as Neuquensaurus
(Otero, 2010), Saltasaurus (Powell, 2003), Jainosaurus (Wilson et al., 2011), and
Diamantinasaurus (Hocknull et al., 2009), which possess relatively transversely
expanded ends of the tibia. Origination of the cnemial crest near the midpoint of the
medial face is also seen in Diamantinasaurus (Hocknull et al., 2009), but in most other
titanosauriforms (e.g., Mendozasaurus [González Riga, 2003], Petrobrasaurus [Filippi et
al., 2011b], Malawisaurus [Gomani, 2005], Jainosaurus [Wilson et al., 2011]) it
originates from the cranial aspect of the proximal end. The lateral proximal bulge of the
tibia of Dreadnoughtus is larger than that in Atsinganosaurus (Garcia et al., 2010) and is
similar to, though perhaps not as pronounced as, those of Uberabatitan (Salgado and
Carvalho, 2008), Diamantinasaurus (Hocknull et al., 2009), Antarctosaurus
wichmannianus (Powell, 2003), and Gobititan (You et al., 2003). A similar cranioventral
sloping of the cnemial crest to that of Dreadnoughtus, to beneath the lateral bulge, is also
seen in Lirainosaurus (Díez Díaz et al., 2013), Neuquensaurus (Otero, 2010),
Epachthosaurus (Martínez et al., 2004), Diamantinasaurus (Hocknull et al., 2009), and
Gobititan (You et al., 2003). Jainosaurus (Wilson et al., 2011: fig. 7F) has a similar
craniocaudal expansion of the midshaft as Dreadnoughtus, and Aegyptosaurus (Stromer,
1932), Diamantinasaurus (Hocknull et al., 2009), and Laplatasaurus (Huene, 1929)
display similarly narrow and subequal distal condyles. The tibiae of Dreadnoughtus and
Ruyangosaurus (Lü et al., 2009) each have a roughly 30° lateral turn of the distal
condyles with respect to the shaft, in contrast to some lithostrotians, such as Jainosaurus
246
(Wilson et al., 2011) and Antarctosaurus wichmannianus (Powell, 2003). However, as
above, this feature may have a lithostatic influence in at least Dreadnoughtus.
Fibula—The left fibula (Figure 5.14) is robust, but narrow mediolaterally. The
subrectangular proximal articular surface is beveled medially. A pronounced, thin,
craniomedial ridge runs longitudinally down the proximal one-third of the shaft from the
proximal articular surface. The fibular shaft displays a sigmoid curvature in lateral view.
Specifically, the shaft bows distinctly below the lateral tuberosity, then part way down
the shaft turns back to a more purely proximodistal orientation, resulting in the caudal
end lying farther caudally than the long axis of the proximal half of the fibular shaft.
When viewed laterally, the lateral tuberosity angles from the cranial edge proximally to
the caudal edge distally, enhancing the sigmoid appearance of the fibular shaft. The large,
ovoid lateral tuberosity projects from the lateral face just above the midshaft, giving the
fibula a bent appearance in cranial view. A deep cavity occupies the medial portion of the
distal shaft for articulation with the distal tibia. The flat distal articular surface is round in
distal view.
Comparisons—The overall robustness and bent form (in lateral view) of the fibula
of Dreadnoughtus is remarkably similar to those of Aeolosaurus (Salgado et al., 1997b),
Neuquensaurus (Otero, 2010), Saltasaurus (Powell, 2003), and Uberabatitan (Salgado
and Carvalho, 2008). The sigmoid shape of the fibular shaft is similar to, but better
expressed than, those of Uberabatitan (Salgado and Carvalho, 2008), Opisthocoelicaudia
(Borsuk-Bialynicka, 1977), and Saltasaurus (Powell, 2003). This feature is also seen in
Aeolosaurus (Salgado et al., 1997b: fig. 5) and, purportedly, a specimen of
Neuquensaurus (MCS-5/26; Salgado et al., 2005). A similarly deep caudodistal pocket
247
for articulation with the tibia is seen in Gobititan (You et al., 2003), Antarctosaurus
wichmannianus (Huene, 1929), and the saltasaurines Saltasaurus (Powell, 2003) and
Neuquensaurus (Otero, 2010). Also, many titanosaurians have similar, thin craniomedial
ridges along their proximal fibulae (e.g., Uberabatitan [Salgado and Carvalho, 2008],
Malawisaurus [Gomani, 2005], Jainosaurus [Wilson et al., 2011]).
Astragalus—The left astragalus (Figure 5.15) is nearly complete except for the
proximal portion of the ascending process and proximocaudal-most tip. It is a
proximodistally short element that is triangular in proximal view with a mostly flat
proximal articular surface and a convex distal surface. The astragalus tapers medially in
cranial view. The astragalus is not pyramidal in form due to a low, laterally-placed
ascending process. A thin lip of bone extends laterally from the ascending process and
articulates with the medial pocket of the distal fibula. The fibular articular facet, ventral
to this lip, is the only portion of the astragalus not covered in thick bumps and rugosities.
The caudal fossa is undivided.
Comparisons—The low, simple astragalus of Dreadnoughtus is similar to those of
Camarasaurus (as figured in Wilson and Sereno, 1998) and Elaltitan (Mannion and
Otero, 2012), but clearly contrasts with the tall, pyramidal forms encountered in
saltasaurids (Wilson, 2002), Diamantinasaurus (Hocknull et al., 2009), Aeolosaurus
(Salgado et al., 1997b), Antarctosaurus wichmannianus (Powell, 2003), and
Amargatitanis (Apesteguía, 2007). However, Elaltitan does not possess the thin, laterally
projecting lip at the proximal edge of the astragalus (Mannion and Otero, 2012) seen in
Dreadnoughtus. An ascending process that is only a low rise is similar to the
morphologies of the processes in Epachthosaurus (Martínez et al., 2004) and Gobititan
248
(You et al., 2003) but unlike the enlarged, elevated processes in most other titanosaurians
(e.g., Uberabatitan [Salgado and Carvalho, 2008], Opisthocoelicaudia [BorsukBialynicka, 1977], Neuquensaurus [Otero, 2010], Diamantinasaurus [Hocknull et al.,
2009]). Lack of division of the caudal fossa is a reversal now shared by Dreadnoughtus,
Diamantinasaurus (Hocknull et al., 2009), and saltasaurids (Wilson, 2002).
Metatarsal I—Right metatarsal I (Figure 5.16A–F) is short and robust with
transversely expanded proximal and distal ends. The proximal expansion is greater than
that of the distal end, and the proximal articular surface slopes ventromedially. In
proximal view, the articular surface has a slightly sigmoidal lateral edge and a convex
medial outline, and narrows to a point craniolaterally. A longitudinal ridge runs down the
proximal half of the lateral face, delineating the caudal margin of the broad articular facet
for metatarsal II. The distal condyles are subequal in size and separated caudally by a
shallow flexor indentation. The distal articular surface is broadly convex craniocaudally.
Comparisons—Metatarsal I of Dreadnoughtus is similar in morphology to those
of Aeolosaurus (Salgado et al., 1997b), Laplatasaurus (Huene, 1929), Neuquensaurus
(Otero, 2010), Alamosaurus (D'Emic et al., 2011), Venenosaurus (Tidwell et al., 2001),
and Rapetosaurus (Curry Rogers, 2009). As in these taxa, the shaft is proportionately
robust (i.e., mediolateral proximal breadth:minimum midshaft breadth in cranial view is
0.81 for Dreadnoughtus, ~ 0.93 for Alamosaurus [D’Emic et al., 2011], ~ 0.81 for
Epachthosaurus [Martinez et al., 2004], and ~ 0.82 for Venenosaurus [Tidwell et al.,
2001]). It is less proximally bulky than in Agustinia (Bonaparte, 1999) and less distally
expanded than the metatarsals I of Gobititan (You et al., 2003) and Venenosaurus
(Tidwell et al., 2001). The convex medial outline of the proximal end, sigmoidal lateral
249
edge, and narrow craniolateral point of the bone in Dreadnoughtus are shared with
Rapetosaurus (Curry Rogers, 2009), Laplatasaurus (Huene, 1929), Epachthosaurus
(Martínez et al., 2004), and Venenosaurus (Tidwell et al., 2001), but unlike the more
ovoid to circular proximal articular surfaces of Agustinia (Bonaparte, 1999),
Neuquensaurus (Otero, 2010), and Alamosaurus (D'Emic et al., 2011). Rapetosaurus
(Curry Rogers, 2009), Aeolosaurus (Salgado et al., 1997b), and Neuquensaurus (Otero,
2010) each also have a proximodistal ridge along the proximal portion of the lateral face.
Multiple titanosauriforms, now including Dreadnoughtus, Rapetosaurus (Curry
Rogers, 2009), Laplatasaurus (Huene, 1929), and Gobititan (You et al., 2003), have a
shallow flexor indentation on the caudal face of metatarsal I. In tandem with a convex
distal end of this metatarsal, this morphology is thought to indicate possible phalangeal
motion in titanosaurians (Bonnan, 2005; Curry Rogers, 2009).
Metatarsal II—Right metatarsal II (Figure 5.16G–L) has nearly the same form as
metatarsal I but is slightly longer and proportionately narrower at midshaft. As with
metatarsal I, a distinct proximal tubercle is present at the caudolateral corner of the
proximal end, but unlike in the former, it does not lead ventrally to a longitudinal ridge.
Instead, this tubercle forms the caudal extent of a nearly straight lateral edge in proximal
view. Also as in metatarsal I, the proximal articular surface slopes ventromedially, the
distal condyles are subequal in size, and the caudodistal margin has a shallow flexor
indentation.
Comparisons—Metatarsal II of Dreadnoughtus appears proportionately broader at
midshaft than those of Rapetosaurus (Curry Rogers, 2009), Aeolosaurus (Powell, 2003),
Alamosaurus (Gilmore, 1946), and Gobititan (You et al., 2003). In this respect, the shape
250
of this element in Dreadnoughtus is more like those of Epachthosaurus (Martínez et al.,
2004), Agustinia (Bonaparte, 1999), and Venenosaurus (Tidwell et al., 2001). The
straight lateral edge is similar to those of the second metatarsals of Aeolosaurus (Powell,
2003), Rapetosaurus (Curry Rogers, 2009), and Laplatasaurus (Huene, 1929), but unlike
some other titanosaurians (e.g., Neuquensaurus [Otero, 2010], Epachthosaurus [Martínez
et al., 2004]).
Pedal Digit I Ungual—Pedal ungual I (Figure 5.17) of Dreadnoughtus is narrow
and sickle-shaped. Although its distal tip is missing, the tapering slope of the dorsal and
ventral edges indicates that the claw would be slightly longer than metatarsal I. This
condition was subjectively named “robust” by Wilson and Sereno (1998), who also noted
that this condition is present in all sauropods. The ungual has a laterally beveled proximal
articular facet that, in articulation with its non-ungual phalanx, resulted in the claw being
deflected laterally relative to the long axis of digit I. The proximoplantar surface bears a
sizeable flexor projection. In dorsal view, the right face of the claw is straighter than the
left; in distal view, the right side is also flatter than the noticeably convex left side. This
combination of features identifies this as a right element: the lateral face is flat where it
abutted the ungual of pedal digit II, and the medial face lacks this flattening because it
did not abut another ungual. In proximal view, the tall, ovoid phalangeal articular facet is
laterally compressed. Numerous, deep, anastomosing channels cover the entire claw
(except the proximal articular surface), suggestive of a thick keratinous sheath.
Comparisons—The overall appearance of right pedal ungual I of Dreadnoughtus
is essentially indistinguishable from the same element in other titanosaurians for which it
is known (Opisthocoelicaudia [Borsuk-Bialynicka, 1977], Malawisaurus [Gomani,
251
2005], Rapetosaurus [Curry Rogers, 2009], Gobititan [You et al., 2003], Paludititan
[Csiki et al., 2010], and Epachthosaurus [Martínez et al., 2004]). Among titanosaurians,
only Opisthocoelicaudia (Borsuk-Bialynicka, 1977) has a similarly large flexor tubercle.
5.5 Discussion
5.5.1 Phylogenetic position of Dreadnoughtus schrani
Comparisons garnered from this study highlight the utility of the appendicular
skeleton as a framework for classification within Titanosauria. Dreadnoughtus clearly is
a titanosaurian because it has a pronounced and medially deflected deltopectoral crest
(Sanz et al., 1999), a prominent olecranon, semilunar sternal plates (Wilson, 2002), and
ischia that are shorter than the pubes (Salgado et al., 1997a). Moreover, Dreadnoughtus
possesses all other appendicular titanosaurian (e.g., Salgado et al., 1997a; Wilson, 2002;
Upchurch et al., 2004) and lithostrotian (Curry Rogers, 2005; Zaher et al., 2011)
synapomorphies identified by previous workers (Table 5.2) except two proposed by
Curry Rogers (2005) for Lithostrotia: midshaft width of the ulna is less than one-quarter
the proximodistal length of the bone and the proximal radius is not expanded to at least
one-third the length of the element (this ratio for Dreadnoughtus is 0.29). Given the
instability of titanosaurian phylogenetic relationships in recent investigations (e.g.,
Salgado et al., 1997a; Wilson, 2002; Upchurch et al., 2004; Curry Rogers, 2005; Zaher et
al., 2011), it is possible that future analyses might cause a revision in the taxonomic
position of Dreadnoughtus. If Dreadnoughtus were to be recovered as a basal
lithostrotian, these two features would be autapomorphic reversals. Regardless, I note that
252
although a cladistic analysis (presented in our original description; Lacovara et al., 2014)
found Dreadnoughtus to be a basal titanosaurian just outside of Lithostrotia,
Dreadnoughtus possesses abundant lithostrotian features in its appendicular skeleton
(italicized in Table 5.2), such as a proportionately broad distal tibia (Zaher et al, 2011),
proximolateral beveling of the distal radius, subequal distal femoral condyles (Curry
Rogers, 2005), and a nearly horizontal and laterally projected preacetabular lobe of the
ilium (Salgado et al., 1997a). Additionally, Dreadnoughtus uniquely shares three
appendicular similarities with the lithostrotian Aeolosaurus: (1) clear presence of a raised
muscle scar on the cranial face of the ulnar shaft (Garcia and Salgado, 2011); (2) strong
mediolateral widening of the pubic articular surface of the ischium (Garcia and Salgado,
2011, fig. 4G), and; (3) Dreadnoughtus and a specimen of Aeolosaurus sp. (MPCA
27100; Salgado et al., 1997b) each have a distinct caudal rotation of the fibular shaft,
giving the element a strongly sigmoidal appearance in lateral view. Dreadnoughtus also
shares exclusively with Aeolosaurus and Gondwanatitan (monophyletic clade comprising
these latter two taxa termed Aeolosaurini by Franco-Rosas et al., 2004) two features of
the caudal vertebrae: proximal caudals with neural arches on the cranial border of the
centrum, and middle caudal prezygapophyses that are greater than 50% the length of the
centrum (Ibiricu, 2010). I therefore suggest that future cladistic analyses should include
either or both Aeolosaurus or Gondwanatitan in addition to Dreadnoughtus to test
whether inclusion of all of these taxa in a single analysis would recover Dreadnoughtus
as a lithostrotian with close relations to Aeolosaurini.
Additionally, the appendicular skeleton of Dreadnoughtus exhibits a few features
historically viewed as characteristic of saltasaurids (e.g., coracoid with an infraglenoid lip
253
[Wilson, 2002], concave proximal surface of the craniomedial proximal process of the
ulna [Upchurch, 1998], caudal fossa of the astragalus undivided [Wilson, 2002]),
demonstrating either convergence of Dreadnoughtus with saltasaurids or that these
features characterize a broader suite of titanosaurians. In sum, appendicular features
support a derived-basal titanosaurian to basal lithostrotian affinity for Dreadnoughtus,
concordant with our original phylogenetic analysis (Lacovara et al., 2014), though future
phylogenetic analyses with broader taxon sampling (i.e., inclusion of aeolosaurines and
rinconsaurians) are necessary to evaluate whether or not this taxon should be placed in a
more derived position relative to our original determination.
5.5.2 Wide-gauge specializations at extreme body size
Appendicular specializations might be expected as necessary to reach body sizes
as extreme as those of the largest titanosaurians. However, comparisons presented herein
highlight a striking consistency in form for the appendicular skeletons across
titanosauriforms of a wide range of body sizes. Numerous anatomical features are shared
between the large Dreadnoughtus and small titanosauriform taxa. Examples include a
high degree of torsion between the proximal and distal ends of the pubis (also in the small
taxon Saltasaurus; Powell, 2003), projection of the cnemial crest from the medial aspect
of the proximal tibia (also in the small taxon Diamantinasaurus; Hocknull et al., 2009),
and expression of a thin craniomedial ridge on the proximal fibula (also in small taxon
Magyarosaurus; Huene, 1932). Additionally, many features shared among
titanosauriforms of all sizes pertain to muscle originations and insertions, such as distal
development of the deltopectoral crest into a distinct knob (related to inferred insertion of
254
the M. pectoralis, and perhaps also the M. supracoracoideus [cf. Meers, 2003]),
caudolateral expansion of the distal deltopectoral crest (for the inferred insertion of the
M. scapulohumeralis anterior), and raised bulges on the medial aspect of the scapular
blade (inferred origination of the M. subscapularis) and lateral face of the ischium
(inferred origination of the M. flexor tibialis) (Borsuk-Bialynicka, 1977; Dilkes, 1999;
Carrano and Hutchinson, 2002; Langer et al., 2007). Commonality of such features
among related animals, regardless of body size, suggests these features are instead
attributable to common ancestry (i.e., are synapomorphies of either Titanosauria,
Lithostrotia, or a more inclusive sub-clade).
In contrast, only a single feature currently pertains to only the largest of
titanosauriform taxa: possession of an accessory process on the ventrolateral edge of the
preacetabular lobe caudal to its craniolateral corner. This feature is shared only by
Dreadnoughtus, Giraffatitan, and Alamosaurus. Fibrous, ridged surface texture on this
process in the holotype and paratype of Dreadnoughtus diagnose this feature as a
probable site of muscle/tendon attachment. Myological comparisons with taxa
phylogenetically bracketing non-avian dinosaurs (basal reptiles and avian dinosaurs;
Witmer, 1995) indicate that this is a probable site of origination of part 2 and possibly
also part 1 of the M. puboischiofemoralis internus (Borsuk-Bialynicka, 1977; Carrano
and Hutchinson, 2002). Development of this muscle scar into a distinct, osseous process
may have been a response to greater stress applied by this hind limb adductor in the
largest titanosauriforms. Although limb abduction and adduction are commonly assumed
to be negligible during simple walking on an even, level surface (e.g., Henderson, 2006;
Sellers et al., 2013), an unexpectedly high degree of hind limb adduction occurs during
255
the mid-swing to late-stance phases in modern elephants (Ren et al., 2008). That hind
limb adduction during locomotion is greater than presumed in large narrow-gauge
terrestrial vertebrates raises the expectation that this would also apply to wide-gauge
terrestrial vertebrates. This is especially true given that wide-gauge posture would cause
greater bending stresses on limb bone shafts (Wilson and Carrano, 1999), which could be
averted in certain circumstances by enhanced hind limb adduction or abductive/adductive
control of the hind limbs. Additionally, hind limb adduction would be a critical
component of dynamic stability when traversing uneven or compositionally
heterogeneous terrain. I therefore propose that enhanced capability for limb adduction
may be necessary to maintain stability and limit bending stresses during locomotion for
large terrestrial vertebrates.
5.6 Conclusion
Dreadnoughtus schrani is the most complete giant titanosaurian yet discovered.
The large (nearly 60 metric ton; Lacovara et al., 2014) holotypic individual, MPM PV
1156, possesses a combination of robust and gracile limb elements. Appendicular
features, namely lack of fusion of the scapula and coracoid and the relative placement of
the coracoid foramen, support a “subadult” age for this specimen. Hence, despite its
enormous size, the holotype individual does not represent a full-size adult. A plethora of
appendicular features are similar among titanosauriforms of all body sizes, but only one
feature seems to characterize multiple of the largest taxa. This feature, possession of a
ventrolateral process on the preacetabular lobe of the ilium, may have arisen in response
256
to greater stress applied by hind limb adductor musculature in the largest
titanosauriforms. I suggest, following Mannion and Upchurch (2010), that this may
reflect a need for strong adductive capability during standing on or walking over uneven
ground. Further investigations into the osteological basis of wide-gauge posture (in both
basal and derived titanosauriforms), synchronous myological alterations, and
biomechanical characterization of wide-gauge locomotion are needed. Recent
examinations of titanosauriform trackways (González Riga, 2011; Vila et al., 2013) and
myology (Otero and Vizcaino, 2008; Ibiricu et al., 2014) provide an excellent foundation
for future investigations. Only through continued exploration of these fields can we reach
a better understanding of the locomotion of these enigmatic giants.
Taxon
Specimen
Clade
Estimated
Total
Number of
Mirrored
Mirrored
Appendicular
Body Mass Number of Appendicular
Appendicular Appendicular Body Mass Source
Completeness*
(kg)
Elements
Elements
Count
Completeness*
Argentinosaurus huinculensis
PVPH-1
Titanosauria
90000
13
1
1.6%
2
3.1% Benson et al. 2014
“Antarctosaurus” giganteus
MLP 26-316
Titanosauria
69000
6
4
6.3%
6
9.4% Mazzetta et al. 2004
MPM PV 1156 Titanosauria
59291
115
21
32.8%
32
50.0% Lacovara et al. 2014
Dreadnoughtus schrani
Paralititan stromeri
CGM 81119
Titanosauria
59000
20
12
18.8%
20
31.3% Burness et al. 2001
Brachiosaurus altithorax
FMNH P 25107 Brachiosauridae
56255
~29
5
5.8%
8
9.3% Benson et al. 2014
Turiasaurus riodevensis
CPT 1195-1261 Eusauropoda
50923
~111
38
39.6%
70
72.9% Benson et al. 2014
Diplodocus "Seismosaurus" hallorum NMMNH P-3690 Diplodocidae
49276
~47
6
7.3%
8
9.8% Seebacher 2001
Elaltitan lilloi
PVL 4628
Titanosauria
42798
16
11
17.2%
20
31.3% Benson et al. 2014
Apatosaurus louisae
CM 3018
Diplodocidae
41269
176
42
51.2%
70
85.4% Benson et al. 2014
Futalognkosaurus dukei
MUCPv-323
Titanosauria
38139
39
4
6.3%
6
9.4% Benson et al. 2014
Alamosaurus sanjuanensis
USNM 15560
Titanosauria
†35164
72
14
21.9%
24
37.5% Benson et al. 2014
Giraffititan brancai
HMN SII
Brachiosauridae
34003
~93
27
31.4%
42
48.8% Benson et al. 2014
Opisthocoelicaudia skarzynskii
ZPAL MgD-I/48 Titanosauria
25418
~123
~52
81.3%
~64
100.0% Benson et al. 2014
Diamantinasaurus matildae
AODF 603
Titanosauria
23077
31
19^
29.7%
32^
50.0% Benson et al. 2014
Ligabuesaurus leanzai
MCF-PHV-233 Titanosauriformes
20435
~27
17
22.4%
32
42.1% Benson et al. 2014
Camarasaurus grandis
YPM 1901
Macronaria
18175
~53
23
26.7%
42
48.8% Benson et al. 2014
Mamenchisaurus hochuanensis
IVPP holotype
Eusauropoda
18170
156
26
26.5%
44
44.9% Seebacher 2001
Omeisaurus tianfunensis
ZDM T5701
Eusauropoda
15757
124
30
30.6%
52
53.1% Benson et al. 2014
Petrobrasaurus puestohernandezi
MAU-Pv-PH-449 Titanosauria
14884
~38
13
20.3%
18
28.1% Benson et al. 2014
Diplodocus carnegii
CM 84
Diplodocidae
13801
78
9
11.0%
14
17.1% Benson et al. 2014
Barosaurus lentus
AMNH 6341
Diplodocidae
13164
90
19
23.2%
30
36.6% Benson et al. 2014
Epachthosaurus sciuttoi
UNPSJB-PV 920 Titanosauria
12980
142
62
96.9%
64
100.0% Benson et al. 2014
Dicraeosaurus hansemanni
HMN m
Dicraeosauridae
12800
113
7
8.5%
14
17.1% Gunga et al. 1999
Camarasaurus lewisi
BYU 9047
Macronaria
11652
125
14
16.3%
26
30.2% Seebacher 2001
Limaysaurus tessonei
MUCPv-205
Rebbachisauridae
11595
~144
27
32.9%
34
41.5% Benson et al. 2014
Amargasaurus cazaui
MACN-N 15
Dicraeosauridae
10737
~71
12
14.6%
24
29.3% Benson et al. 2014
Shunosaurus lii
ZDM T5402
Eusauropoda
6671
223
77
77.0%
86
86.0% Benson et al. 2014
Atacamatitan chilensis
SGO-PV-961
Titanosauria
4349
~10
3
4.7%
6
9.4% Benson et al. 2014
Rapetosaurus krausei
FMNH PR 2209 Titanosauria
1646
~110
38
59.4%
52
81.3% Benson et al. 2014
Argyrosaurus superbus
MLP 77-V-29-1 Titanosauria
8
8
12.5%
16
25.0%
Overosaurus paradasorum
MAU-Pv-CO-439 Titanosauria
62
2
3.1%
2
3.1%
Puertasaurus reuili
MPM 10002
Titanosauria
4
0
0.0%
0
0.0%
Ruyangosaurus giganteus
41HIII-0002
Titanosauriformes
6
2
2.6%
4
5.3%
*Calculations were based on a count of 64 appendicular elements in a complete skeleton of a titanosaurian, 76 in basal titanosauriforms, 86 in brachiosaurids and early macronarians, 82 in
diplodocoids (diplodocids, dicraeosaurids, rebbachisaurids), 96 in basal eusauropods, 98 in Mamenchisaurus, and 100 in Shunosaurus.
^Four manual phalanges and a manual ungual were not included in these counts for Diamantinasaurus because all definitive titanosaurians lack these elements.
~Estimated because exact list of elements was not provided in original report(s).
Table 5.1 Appendicular skeletal completeness of the Dreadnoughtus schrani holotype (MPM PV 1156) versus other large sauropods.
Mirrored Appendicular Counts and Mirrored Appendicular Completeness values calculated following Lacovara et al. (2014).
257
†Mass estimate for Alamosaurus based on referred specimen TMM 41541.
Note: for titanosaurians, if the number of dorsal vertebrae for a taxon exceeded the expectation of 10 (e.g., Opisthocoelicaudia, Rapetosaurus ) or if the number of pedal phalanges for a
taxon exceeded the expectation of 12 (e.g., Opisthocoelicaudia, Epachthosaurus), then the taxon was deemed "complete" in the counts.
258
REFERENCE(S)
Salgado et al., 1997a; Calvo
and Gonzalez Riga, 2003;
Gallina and Apesteguia, 2010*
Crescentic sternal plates
Wilson, 2002
Sternal plates have an anteroventral ridge
Sanz et al., 1999
Humerus has developed posterior supracondylar ridges
Sanz et al., 1999*
Prominent and medially twisted deltopectoral crest on humerus
Sanz et al., 1999*
Ulna with prominent olecranon (a reversal)
Wilson and Sereno, 1998;
Wilson, 2002; Calvo et al.
2007b*
Radius proximal width divided by shaft length is at least 0.33
Upchurch, 1998*; Upchurch et
al., 2004†
No ossified carpals
Wilson and Sereno, 1998;
Upchurch, 1998*
Metacarpals without distal phalangeal articular facets
Calvo and Gonzalez Riga,
2003; Calvo et al., 2007b
Ilium anterolaterally expanded
Sanz et al., 1999*
Pubis longer than ischium (ischium:pubis length ratio <0.9) (a reversal) Salgado et al., 1997a; Wilson
and Sereno, 1998; Calvo and
Gonzalez Riga, 2003;
Bonaparte et al., 2006*; Calvo
et al., 2007b
Titanosauria (Bonaparte and Coria 1993) = unranked
Coracoid quadrangular in shape
CLADE (ORIGINATING AUTHOR) = RANK
*Titanosauroidea
*Titanosauridae
*Titanosauroidea,
†Somphospondyli
*Saltasauridae
*Titanosauroidea
*Titanosauroidea
*Titanosauridae
*Titanosauroidea
ALTERNATIVE
NODE(S)
Table 5.2 Phylogenetic synapomorphies in the appendicular skeletons of sauropod dinosaurs from previous cladistic analyses. Any
report where a character was attributed to a node not conforming to the consensus are noted by an asterisk (*) or cross (†) in the
Alternative Node(s) column. The clade names Titanosauroidea and Titanosauridae are now in disuse due to invalidity of the namesake
genus Titanosaurus (Wilson and Upchurch, 2003). Italicized characters are present in Dreadnoughtus.
259
Coracoid with infraglenoid lip
Coracoid foramen deeply inset into coracoid body in lateral view
Sternal plate length is at least 75% humerus length
Humerus deltopectoral crest expanded distally
No manual phalanges
Preacetabular lobe ilium nearly horizontal and outwardly projected
Femur distal condyles are subequal in breadth
Saltasauridae (Powell 1992) = family
Dorsal coracoid margin at or above the proximal scapular expansion’s
dorsal margin (a reversal)
Coracoid with rectangular anteroventral margin
Proximal end of metacarpal IV is anteroposteriorly elongate, so oval
No ungual on manual digit I
Robust proximal end of radius
Distal end of radius is beveled proximolaterally
Ischiatic process of ischium is short and laminar
lschial blade platelike, no emargination distal to pubic peduncle
Distal tibia expanded transversely to 2x midshaft breadth
Lithostrotia (Upchurch et al. 2004) = unranked
Acromial edge of scapula lacks expansion
Stout ulna
Ischium posterior process < 2x length of the pubis articulation
CLADE (ORIGINATING AUTHOR) = RANK
Wilson, 2002; Curry Rogers,
2005
Wilson, 2002
Curry Rogers, 2005
Upchurch, 1998
Wilson, 2002
Upchurch, 1998
Curry Rogers, 2005
Wilson, 2002; Curry Rogers,
2005
Curry Rogers, 2005
Wilson, 2002*; Curry Rogers,
2005
Curry Rogers, 2005
Salgado et al., 1997a
Salgado et al., 1997a; Wilson,
2002*
Salgado et al., 1997a
Curry Rogers, 2005
Bonaparte et al., 2006*; Calvo
et al., 2007b
Sanz et al., 1999
Wilson, 2002
Wilson, 2002
REFERENCE(S)
*Opisthocoelicaudiinae
*Saltasauridae
ALTERNATIVE
NODE(S)
*Titanosauridae
260
Humerus with prominent rounded process at the junction of its proximal
and lateral surfaces
Humerus distal condyles divided (a reversal)
A concave area on the dorsal surface of the craniomedial proximal
process of the ulna
Metacarpal I is longer than metacarpals II and III
Symphysis between the Ischia extends to the ventral end of the pubic
articular surface
Reduced 4th trochanter
Femur midshaft transverse diameter at least 185% anteroposterior
diameter
Femur distal condyles beveled dorsomedially
Cnemial crest of tibia curves anteriorly
Astragalar posterior fossa undivided (a reversal)
Astragalus pyramidal
Opisthocoelicaudiinae (McIntosh 1990) = subfamily
Scapula base D-shaped
Saltasaurinae (Powell 1992) = subfamily
Femoral distal condyles exposed on anterior face of femoral shaft
CLADE (ORIGINATING AUTHOR) = RANK
Wilson, 2002
Wilson, 2002
Wilson, 2002
Curry Rogers, 2005
Wilson, 2002
Wilson, 2002
Sanz et al., 1999
Wilson, 2002
Upchurch, 1998
Upchurch, 1998
Wilson, 2002
Upchurch, 1998
Upchurch et al., 2004
REFERENCE(S)
ALTERNATIVE
NODE(S)
261
262
Figure 5.1 (A) Reconstruction of Dreadnoughtus schrani. Preserved elements shown in
white. Scale bar is 1 m. (B) Locality map of discovery site of Dreadnoughtus (star) along
Rio La Leona in Santa Cruz Province, Argentina. Figures modified from Lacovara et al.
(2014).
263
Figure 5.2 Left scapula of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) lateral view; (B) ventral view; (C) medial view; (D) dorsal view; (E) proximal view
(medial toward the top of the page); (F) distal view (lateral toward the top of the page).
Abbreviations: ac, acromion process; gl, glenoid; obr, oblique ridge; scb, scapular blade;
scf, supracoracoideus fossa. Scale bar equals 20 cm.
264
Figure 5.3 Left coracoid of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) lateral view; (B) medial view; (C) ventral view (lateral toward the top of the page).
(D) Close up, caudomedial view through the coracoid foramen. Abbreviations: cf,
coracoid foramen; gl, glenoid. Scale bar equals 10 cm.
265
Figure 5.4 Left and right sternal plates of the holotype of Dreadnoughtus schrani (MPM
PV 1156) in (A) dorsal view; (B) ventral view. Abbreviation: cvr, cranioventral ridge.
Scale bar equals 20 cm.
266
Figure 5.5 Left humerus of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view;
(F) distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: cuf,
cuboid fossa; dpc, deltopectoral crest; hd, humeral head; rac, radial condyle; ulc, ulnar
condyle. Scale bar equals 20 cm.
267
Figure 5.6 Left ulna of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A)
cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view; (F)
distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: clp,
craniolateral process; cmp, craniomedial process; ol, olecranon; raa, radial articulation;
scar, positive relief muscle scar. Scale bar equals 20 cm.
268
Figure 5.7 Left radius of the holotype of Dreadnoughtus schrani (MPM PV 1156) in (A)
cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view
(cranial toward the top of the page); (F) distal view (cranial toward the bottom of the
page). Abbreviations: ior, interosseous ridge; ula, ulnar articular facet. Scale bar equals
20 cm.
269
Figure 5.8 Pelvic girdle of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
left lateral view. Right ilium has been mirrored for the image. Scale bar equals 20 cm.
270
Figure 5.9 Left ilium of the paratype of Dreadnoughtus schrani (MPM PV 3546) in (A)
cranial view; (B) lateral view. (C) Right ilium of holotype (MPM PV 1156) in dorsal
view (cranial toward the left side of the page). Abbreviations: acet, acetabulum; isped,
ischiadic peduncle; poap, postacetabular process; pped, pubic peduncle; prap,
preacetabular process; sr, sacral rib; vlp, ventrolateral process. Scale bars each are 20 cm.
271
Figure 5.10 (A) Pubes of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
caudoventral view. (B) Right pubis in lateral view; (C) distal view (cranial toward the top
of the page). Abbreviations: acet, acetabulum; ilped, iliac peduncle; isped, ischiadic
peduncle; of, obturator foramen. Scale bar equals 20 cm for (A) and (B) and 10 cm for
(C).
272
Figure 5.11 Left ischium of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) medial view; (B) lateral view. (C) Distal view of ischiadic blade (dorsal toward the
top of the page). (D) Proximal view of iliac peduncle (caudal toward the top of the page).
Abbreviations: acet, acetabulum; ilped, iliac peduncle; ist, ischiadic tuberosity; pped,
pubic peduncle. Scale bars equal 20 cm for (A) and (B) and 10 cm for (C) and (D).
273
Figure 5.12 Left femur of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view;
(F) distal view. In (E) and (F), cranial is toward the top of the page. Abbreviations: fic,
fibular condyle; ft, fourth trochanter; gtr, greater trochanter; hd, head; lb, lateral bulge;
tic, tibial condyle. Scale bar equals 20 cm.
274
Figure 5.13 Right tibia of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view
(lateral toward the top of the page); (F) distal view (lateral toward the bottom of the
page). Abbreviations: aspa, articular surface for the ascending process of the astragalus;
cc, cnemial crest; cvp, caudoventral process. Scale bar equals 20 cm.
275
Figure 5.14 Left fibula of the holotype of Dreadnoughtus schrani (MPM PV 1156) in
(A) cranial view; (B) lateral view; (C) caudal view; (D) medial view; (E) proximal view
(medial toward the top of the page); (F) distal view (medial toward the bottom of the
page). Abbreviations: cmr, craniomedial ridge; lt, lateral tuberosity. Scale bar equals 20
cm.
276
Figure 5.15 Left astragalus of the holotype of Dreadnoughtus schrani (MPM PV 1156)
in (A) cranial view; (B) proximal view (medial toward the right side of the page); (C)
lateral view; (D) caudal view; (E) distal view (medial toward the left side of the page);
(F) medial view. Abbreviations: asp, ascending process; caf, caudal fossa; das, distal
articular surface; fia, fibular articulation; tia, tibial articulation. Scale bar equals 10 cm.
277
Figure 5.16 Right metatarsals I (A–F) and II (G–L) of the holotype of Dreadnoughtus
schrani (MPM PV 1156) in (A) and (G), cranial view; (B) and (H), medial view; (C) and
(I), caudal view; (D) and (J), lateral view; (E) and (K), proximal view; (F) and (L), distal
view. In (E–F) and (K–L), cranial is toward the top of the page. Scale bar equals 10 cm.
278
Figure 5.17 Right pedal digit I ungual of the holotype of Dreadnoughtus schrani (MPM
PV 1156) in (A) lateral view; (B) medial view; (C) dorsal view; (D) proximal view.
Abbreviation: flt, flexor tubercle. Scale bar equals 10 cm.
279
CHAPTER 6: CHARACTERIZING THE EVOLUTION OF WIDE-GAUGE
FEATURES IN STYLOPODIAL LIMB ELEMENTS OF TITANOSAURIFORM
SAUROPODS VIA GEOMETRIC MORPHOMETRICS
6.1 Abstract
Wide-gauge posture of titanosauriform sauropods remains an enigmatic
peculiarity among terrestrial vertebrates. Here, two-dimensional geometric
morphometrics and thin plate splines analyses were used to quantitatively analyze shape
differences among sauropodomorph humeri and femora to identify how these elements
may differ according to body gauge. Results demonstrate that titanosauriforms generally
possess proportionately gracile humeri in comparison to other sauropods, with relatively
more medially oriented humeral heads and proximally located deltopectoral crests.
Myological repercussions of these features demonstrate a relative sacrificing of muscular
torque for forelimb abduction/adduction in exchange for minimization of necessary
muscle contraction to generate the same degree of limb excursion. Regarding femora,
titanosauriforms possess significantly broader femora mediolaterally than other
sauropods, with comparatively proximomedially placed fourth trochanters. Canonical
variates results also identify a trend for titanosauriform femora to present distal condyles
that are more frequently perpendicular to the long axis of the shaft or beveled medially.
All of these femoral shape characteristics are expressed to the greatest degree by
titanosaurians. Myologically, mediolateral femoral broadening increases relative
mechanical advantages for hind limb abductor and adductor musculature. This supports
previous hypotheses that suggested titanosauriforms were capable of a greater degree of
hind limb abduction and adduction. This capability may have been necessary to maintain
280
dynamic stability during wide-gauge locomotion over uneven terrain. Overall, my results
corroborate previous qualitative assessments of wide-gauge attributes, afford new
insights into statistically significant but obscure shape patterns, and add new clarity to
aspects of the functional morphology of wide-gauge posture.
6.2 Introduction
Titanosauriform sauropods were a diverse group of Jurassic–Cretaceous
herbivores, including both the largest terrestrial vertebrates that have ever existed (e.g.,
Argentinosaurus Bonaparte and Coria, 1993; Dreadnoughtus Lacovara et al., 2014) and
clear examples of insular dwarfism (e.g., Magyarosaurus von Huene, 1932;
Lirainosaurus Sanz et al., 1999). Despite their great range in body size, all
titanosauriforms shared a suite of appendicular specializations that collectively resulted in
what has been termed wide-gauge posture in which the upright limbs were held away
from the body midline (Wilson and Carrano, 1999). No modern analogs exist to aid
understanding of locomotion with this unique posture. Large modern terrestrial
mammals, such as the rhinoceros and the African elephant Loxodonta africana, are
narrow-gauge, with their vertical limbs held close to the body midline. Previous reports
provide excellent qualitative descriptions of appendicular anatomy associated with
narrow- and wide-gauge stances but have yet to study such anatomy in a quantitatively
rigorous manner. Examples of osteological features thought to be associated with widegauge posture include laterally flared iliac preacetabula, development of a lateral bulge
on the proximal femur, widening of the sacrum, reduction of the pollex claw,
281
craniocaudally elongate proximal tibiae, and shortening of the ischium relative to the
pubis (Wilson and Carrano, 1999; Carrano, 2005). Saltasaurid titanosaurians in particular
display extreme wide-gauge posture in that their distal femoral condyles are beveled
medially, obligating the femora to articulate in a laterally-bowed posture (Wilson and
Carrano, 1999). For these reasons, Wilson and Carrano (1999) posited that
titanosauriforms were the sauropods responsible for forming wide-gauge trackways.
Previous considerations of sauropodomorph stylopodial limb element morphology
by two-dimensional geometric morphometrics (Bonnan, 2004, 2007) demonstrated that
this technique can efficiently resolve shape differences among taxa and according to body
size. A major advantage of morphometric techniques is that one can discuss shape
differences among specimens in terms of statistical significance rather than in subjective,
qualitative terms. These techniques allow powerful analyses of shape variation among a
dataset, providing a robust means to statistically analyze shape differences of
appendicular bones between titanosauriform sauropods and other sauropodomorphs.
Here, I test the hypothesis that titanosauriform humeri and femora shapes were
significantly different both from those of other sauropods and from sauropodomorphs
generally. Geometric morphometrics was used to explore shape differences among
sauropodomorph humeri and femora in an effort to statistically define the wide-gauge
features of these elements. Further, these changes were related to muscular lines of action
and relative moment arm lengths to gain understanding of; 1) the biomechanical nature of
titanosauriform wide-gauge locomotion, and; 2) how these dinosaurs may have moved
differently from their narrow-gauge counterparts.
282
6.3 Methods
6.3.1 Dataset construction
The humerus and femur were chosen for analyses for multiple reasons, as
previously outlined by Bonnan (2004, 2007). First, these stylopodial elements are the
largest and most functionally significant limb elements, as evidenced by processes and
scars (e.g., the deltopectoral crest) for primary limb protractor and retractor musculature.
Second, the well-developed muscle attachment structures of these elements provide
distinct landmarks on humeri and femora ideal for geometric morphometrics. Third, the
robust nature of these elements affords them high preservation potential (e.g., resistance
against weathering and lithostatic-induced distortions), which results in a reasonably high
sample size for analyses. Furthermore, these elements are easily identified and often
impressive in size for sauropods, so humeri and femora may be more prevalent in
museum collections owing to collection biases. Lastly, the anatomies of humeri and
femora can be translated more readily into a two-dimensional plane than is possible for
other limb elements (e.g., tibiae, radii).
The sauropodomorph dataset compiled by Bonnan (2004, 2007) was
supplemented by inclusion of non-sauropod sauropodomorphs (hereafter, referred to as
“Prosauropods”), titanosaurian sauropods, and additional basal titanosauriforms. The
original dataset included 47 humeri and 29 femora, which were photographed for
inclusion during museum visitations. “Prosauropod” specimens were also observed
directly and photographed by Dr. Matthew Bonnan, but published photographs were used
for titanosaurs and basal titanosauriforms other than Brachiosaurus and Giraffatitan.
283
Overall, this increased the total sample size of sauropodomorph humeri from 47 to 89 and
femora from 29 to 73 (for a complete listing of specimen numbers and lengths, refer to
Appendix C). The number of included specimens definitively attributable to juvenile
individuals is low (six humeri, four femora), and analyses were performed to check for
any potential ontogenetic signals in my results. Only complete humeri and femora were
included so that every landmark could be placed with confidence for each specimen.
Sample sizes were not uniform, but at least seven specimens were included of each
subgroup: humeri: “Prosauropods” N=15, Diplodocids N=25, Camarasaurus N=12,
Basal Titanosauriforms (including brachiosaurs) N=11, Titanosaurs N=26; femora:
“Prosauropods” N=18, Diplodocids N=16, Camarasaurus N=7, Basal Titanosauriforms
N=9, Titanosaurs N=23. Camarasaurus was separated out as its own group owing to its
high sample size and unique phylogenetic position within this dataset as the only
included basal macronarian. I used the same 11 landmarks for humeri and 9 for femora
chosen by Bonnan (2004, 2007; Figure 6.1) to facilitate direct comparison of my results
with those of Bonnan (2004, 2007).
In order to thoroughly test for changes in bone shape through sauropod evolution,
the dataset was divided in four different manners for analysis. The first analysis used all
five groups as listed above: “Prosauropods”, Diplodocids, Camarasaurus, Basal
Titanosauriforms, and Titanosaurs. A second analysis combined all four nontitanosaurian subgroups as "Nontitanosaurs" to allow direct comparison of Titanosaurs
against all other sauropodomorphs. A third analysis compared Titanosaurs against Basal
Titanosauriforms and "Nontitanosauriforms", a grouping of the “Prosauropods”,
Diplodocids, and Camarasaurus. The final dataset division again combined
284
“Prosauropods”, Diplodocids, and Camarasaurus as "Nontitanosauriforms" and
compared them to a single grouping of all taxa included in Titanosauriformes, termed
herein "Titanosauriforms + Up Tree" (= Basal Titanosauriforms + Titanosaurs). Division
of the dataset in this way necessitated repetitive analyses but allowed for exhaustive and
detailed investigation of shape change trends. Specifically, this facilitated approximation
of phylogenetic position of shape change events and tracking of their occurrences through
sauropod evolution. For brevity and to avoid confusion, only the finest division of the
dataset into five sauropodomorph groups is summarized below; results for the other
dataset divisions are provided elsewhere (Appendix C).
6.3.2 Statistical methods
Allometry of sauropodomorph humeri and femora were tested by regression of
first relative warp scores against log10-transformed element lengths, as in Bonnan (2007).
Regression was not performed on midshaft cortical areas because this variable is based
on midshaft circumferences, which are frequently not reported in new taxon descriptions
and hence could not be gathered or approximated for most titanosaurian and basal
titanosauriform taxa added to the dataset. Maximum lengths were gathered by direct
measurement of specimens in the original construction of this dataset (Bonnan 2004,
2007), and were gathered from the literature (or estimated to the nearest centimeter from
figure scale bars when not reported) for titanosaurians and basal titanosauriforms.
Element lengths were tested against normality by a Shapiro-Wilk's test, and significant
differences in length amongst dataset groups were identified by Kruskal-Wallis and
subsequent pairwise Mann-Whitney U tests, following Bonnan (2004). Additional
285
element measurements (e.g., deltopectoral crest length, craniocaudal breadth at midshaft,
etc.) were gathered by Bonnan (2004, 2007) for many sauropod specimens, but these are
frequently unreported in titanosaurian descriptions, precluding traditional linear
morphometric analyses at this time.
For thin plate splines (TPS) analysis, Bonnan (2004, 2007) photographed humeri
in cranial view and femora in caudal view at a standardized camera distance of 1.85 m.
“Prosauropod” specimens that have now been added to the dataset were photographed in
the same manner, but literature-collected figures clearly could not be standardized to any
additional extent.
TPS analyses were used to calculate group consensus forms, document shape
variation patterns, and evaluate evolutionary trajectories in element form. These analyses
were performed in the TPS Suite of freeware programs provided by Rohlf (2005).
Landmarks were first digitized using tpsDig2, then tpsSmall was used prior to statistical
analyses to check for sample variation below that which could hinder statistical power.
This program calculates the mean variation of Procrustes distances from the consensus
form, and a high correlation between these values implies low variance. The tpsSmall
analysis found a correlation > 0.99 for the total sample, verifying that sample variation is
sufficiently low to allow TPS analyses and powerful statistical testing. Partial and relative
warp analyses were carried out in tpsRelw and the statistical package R (R Development
Core Team, 2010). For partial warp scores, multivariate analysis of variance (MANOVA)
tests were performed in R to identify any significant differences among the taxon
groupings. Significant differences among groups in relative warp scores were identified
in R through nonparametric Kruskal-Wallis tests followed by pairwise Mann-Whitney U
286
comparisons. Anderson's χ², a test statistic that identifies the number of significant
relative warps, was implemented in the freeware Integrated Morphometrics Package
(IMP; Sheets, 2003). Deformation grids for visualization of implied transformations were
created with tpsSplin (Rohlf, 2005). Two tests for allometry were conducted. First,
multiple regression of partial warp scores against log10-transformed maximum lengths
was performed in tpsRegr (Rohlf, 2005). Second, specimen scores on the first relative
warp were regressed against log10-transformed bone lengths and a linear model was fit to
these data. Each test provides different benefits: multiple regression in tpsRegr provides
measures of significance (e.g., Goodall's F) and the percentage of total shape variation
accounted for by the independent variable (known as the coefficient of determination, R²;
see Monteiro, 1999), while R allows for greater graphing capabilities.
A canonical variates analysis (CVA) was also conducted in an attempt to identify
shape variables that can best distinguish sauropodomorph humeri and femora. CVA, also
referred to as discriminant function analysis, performs a principal components analysis
(PCA) with a priori-assigned specimen identities to separate groups as best as possible
according to shape. In doing so, the analysis discovers a shape variable or variables (if
there are any) that significantly define and differentiate between the chosen groups.
6.4 Results
6.4.1 Humerus
Sauropodomorph humeral lengths do not conform to a normal distribution
(Shapiro-Wilk's p = 0.022). Kruskal-Wallis and subsequent pairwise Mann-Whitney U
287
tests demonstrate that Basal Titanosauriforms have significantly longer humeri and
“Prosauropods” significantly shorter humeri than all other groups (Table 6.1). These
results clearly correspond to postural and body size differences, respectively, among
sauropodomorphs (see section 6.4).
MANOVA of partial warp scores identified both uniform components and
numerous partial warps as displaying significant variation among the taxa divisions. Post
hoc pairwise Mann-Whitney U tests (with Bonferroni correction) identify abundant
significant differences (Table C.3), clearly demonstrating that significant variation exists
among sauropodomorph humeri in multiple regards (Figures C.1 and C.2).
Relative warps analysis identified 18 relative warps (RW1–RW18), the first five
of which account for more than 80% of total humeral shape variation (Table 6.2). Only
RW1 is identified as statistically significant by an Anderson's χ2 test, accounting for 34%
of total shape variability (Table 6.3). Kruskal-Wallis tests on RW1 scores identified
abundant significant differences between taxa groups (Table 6.4).
Proximodistal placement of the deltopectoral crest (landmark 5) varies in both
shape variables accounting for the most variation among specimens, RW1 and RW2: in a
biplot of these two axes, specimens with distally placed crests plot negatively along RW1
and positively along RW2 in the upper left morphospace quadrant while those with
proximally located crests plot positively on RW1 and negatively along RW2 in the lower
right quadrant (Figure 6.2A). In this plot, RW2 reflects distally and medially located
deltopectoral crest peaks with rounded, proximally raised heads (positively) or
proximally placed deltopectoral crests, flattened and medially oriented humeral heads,
and broader overall form (negatively). As previously found by Bonnan (2004),
288
Camarasaurus and Diplodocid humeri overlap in RW1-RW2 morphospace (Figure
6.2A), suggesting very similar forms in these disparate taxa. Diplodocids span the
greatest negative to positive range of any group on both RW1 and RW2 axes,
demonstrating that these sauropods present considerable morphological variation.
Although “Prosauropods” almost exclusively occupy the upper left quadrant (Figure
6.2A), multiple specimens of three of the four sauropod groups considered (Diplodocids,
Basal Titanosauriforms, and Titanosaurs) plot within the lower right quadrant reflecting
proximally placed deltopectoral crests. Interestingly, no Camarasaurus specimens plot in
the lower right quadrant; rather, many Camarasaurus (and Diplodocid) specimens plot in
the lower left quadrant, which includes components of distal (RW1) and proximal (RW2)
deltopectoral crest displacement. This reflects a high degree of variability in
proximodistal placement of the crest in these two neosauropod groups.
Relative warp 1 presents the greatest variation among the taxa, with Basal
Titanosauriforms and Titanosaurs each significantly differing from “Prosauropods”,
Diplodocids, and Camarasaurus (Table 6.4). Basal Titanosauriforms and Titanosaurs
generally overlap in positive RW1 scores, representing mediolateral slenderness and
proximally located deltopectoral crests. Only a single titanosaurian specimen (MLP-CS
1050, Neuquensaurus; Otero, 2010) plots negatively along RW1, reflecting the relative
mediolateral expansion of the ends relative to the shaft for this specimen.
Unexpectedly, among Sauropoda, Camarasaurus specimens appear to present the
greatest average medial displacement of the deltopectoral crest. Visual comparison of
group mean forms (Figure 6.3) portrays this contrast well, wherein landmark 5 for
Camarasaurus specimens is medially displaced from a chord connecting landmarks 4 and
289
6 (the proximomedial humeral extremity and medial position of minimum midshaft
constriction, respectively). However, this difference cannot be claimed significant
because RW3 was not identified to be significant by the Anderson’s χ2 test (Table 6.3).
A CVA was conducted to determine shape variables that can best differentiate
groups of sauropodomorph humeri. This analysis identified three statistically significant
shape variables, CV1, CV2, and CV3 (Table 6.5), and correctly placed 73 of 89 humeri
(82%) in their respective taxonomic groups. Four Diplodocid specimens were incorrectly
identified as Camarasaurus, six Camarasaurus specimens were incorrectly identified as
Diplodocid, one Basal Titanosauriform and one Titanosaur specimen each were
incorrectly identified as Diplodocid, and four Basal Titanosauriform specimens were
incorrectly identified as Titanosaurian. Shape variable CV1 is remarkably similar to RW1
found via relative warps analysis. Like RW1, CV1 includes a component of dorsomedial
orientation of the humeral head (landmarks 2 and 3), overall medial (positive) or lateral
(negative) shear, and proximal (positive) or distal (negative) placement of the
deltopectoral crest. “Prosauropods” plot exclusively negatively along CV1 and
Diplodocid and Camarasaurus specimens generally overlap in CV1-CV2 morphospace
(Figure 6.4A). All Basal Titanosauriforms plot around zero or with positive CV1 values
(Figure C.4A). Shape variable CV2 characterizes only a lateral (positive) or medial
(negative) deflection of the humeral head. Interestingly, macronarian sauropods plot as a
fairly continuous progression in CV1-CV2 morphospace, with increasingly positive
values for both CVs as one progresses from Camarasaurus to Basal Titanosauriforms to
Titanosaurs (Figure 6.4A). “Prosauropod” specimens span a large positive–negative
range along CV2, while Camarasaurus specimens plot exclusively with zero or negative
290
CV2 scores (Figure C.4B). Positive CV3 scores reflect medial shear of the shaft, while
negative scores reflect lateral shear (Figure 6.4B). All groups span negative to positive
scores for CV3 except Basal Titanosauriforms, which plot exclusively with greatly
negative values (Figure 6.4B, Figure C.4C). Overall, these CVA results characterize long
term macronarian evolution as involving increasing medial turning of the humeral head
and proximal migration of the deltopectoral crest.
To test for allometric scaling, Bonnan (2007) visualized shape change with
increasing element size by plotting RW1 scores against log10-transformed proximodistal
bone length. That analysis identified an allometric scaling pattern among neosauropod
humeri, with smaller, juvenile specimens tending to share a proportionately broad
morphology. This identification of allometry among sauropodomorph humeri was
reevaluated in the current analysis through expansion of the dataset to include
titanosaurians and basal titanosauriforms other than brachiosaurids. In the current
analysis, multiple regression of partial warp scores against log-transformed bone length
found that only 9.47% of the total shape variation can be accounted for by size (Table
6.6). Linear regression of RW1 scores against lengths for the expanded dataset identifies
a significant allometric signal for the shape of sauropodomorph humeri (Goodall’s F =
9.1533, p = 0.000, Table 6.6; Figure 6.5A). A linear model fit to the data (for ease of
visualization) highlights considerable variation about this pattern (r² = 0.23, Figure 6.5A).
In general, with increasing length, sauropodomorph humeri tend towards more
proportionately narrow forms with more proximally positioned deltopectoral crests
(Figure 6.5A). Although one might expect that basal titanosauriform humeri, in particular
those of brachiosaurids, contribute to this pattern, numerous titanosaurian humeri also
291
plot with highly positive RW1 scores for their lengths (in comparison to other
sauropodomorphs). Not surprisingly, “Prosauropod” humeri also contribute to this pattern
by generally plotting with negative RW1 scores, reflecting overall broad forms, at small
bone sizes (Figure 6.5A).
6.4.2 Femur
As with the humeri, sauropodomorph femoral lengths do not conform to a normal
distribution (Shapiro-Wilk's p = 0.0002). Kruskal-Wallis and pairwise Mann-Whitney U
tests demonstrate that “Prosauropods” have significantly shorter femora than all other
groups, and Basal Titanosauriforms have significantly longer femora than Diplodocids
and Titanosaurs (Table 6.1). Though Basal Titanosauriform humeri were found to be
significantly longer than those of Camarasaurus (see above), Basal Titanosauriform
femora are not (p = 0.056).
MANOVA of partial warp scores identifies multiple partial warps and Uniform X
as presenting significant variation among the groups (Table C.3). Hence, as with the
humeri, considerable shape variation exists among sauropodomorph femora (Figure C.3).
Relative warps analysis of the femora dataset identified a total of 14 relative
warps (RW1–RW14). As for the humeri, the first five relative warps account for more
than 80% of total shape variation (Table 6.2). An Anderson's χ2 test identified the first
two relative warps as statistically significant, with RW1 accounting for 39% of total
shape variation and RW2 accounting for 22% (Table 6.3).
Relative warp 1 presents the greatest number of significant differences among the
taxa, separating out Titanosaurs as differing from “Prosauropods,” Diplodocids, and
292
Camarasaurus (Table 6.4). All but three Titanosaur femora plot negatively along RW1,
reflecting their mediolaterally wide shafts with comparatively more proximally placed
fourth trochanters, distally placed minimum midshaft constrictions, and more dorsally
directed femoral heads (Figure 6.2B). Diplodocid and Camarasaurus specimens span a
wide range of positive and negative RW1 scores, reflecting high degrees of generic and
individual variation, respectively. Most “Prosauropod” femora present positive RW1
scores, reflecting more medially directed femoral heads and narrow forms overall with
fourth trochanters more distally and caudally placed.
Relative warp 2 scores significantly differ only between “Prosauropods” and
Diplodocids (Table 6.4). On RW2, most Diplodocids plot negatively with mediolaterally
narrow femora with proportionately long shafts and proximal fourth trochanters that are
well-separated from the point of minimum midshaft constriction (Figure 6.2B).
“Prosauropod” specimens present considerable variation along RW2 with a slightly
positive average, reflecting the opposite morphology.
A CVA of the femoral dataset identified two statistically significant shape
variables, CV1 and CV2, that effectively discriminate taxonomic groupings (Table 6.5).
A total of 53 of 73 femora (73%) were correctly placed in their respective groups. The
majority of incorrect placements involved Basal Titanosauriform specimens being
incorrectly assigned to other groups (N=8), or specimens from other groups being
assigned to the Basal Titanosauriform group (N=8). Positive shape component CV1
scores reflect a medially facing femoral head, a fourth trochanter adjacent to the
minimum midshaft, and a proportionately elongate distal end. Negative CV1 scores
reflect a dorsally directed and wider femoral head, more proximally located fourth
293
trochanter, and a relatively short distal end. “Prosauropod” femora are easily separated
from those of the sauropod groups, plotting exclusively with positive CV1 scores (Figure
6.4C). In contrast, all four sauropod groups generally overlap one another with
predominantly negative CV1 scores (Figures 6.4C and Appendix C Figure C.4D),
demonstrating relatively dorsally directed femoral heads in these obligate quadrupeds.
Component CV2 characterizes a mediolaterally narrow (positively) or broad (negatively)
femur, and with increasingly negative scores includes slight development of the lateral
bulge, rotation of the distal condyles to perpendicular to the shaft, and a medially
positioned fourth trochanter. This axis better differentiates sauropod groups, with
Diplodocids plotting at zero or with positive scores whereas all but one Titanosaur
specimen plot negatively (Appendix C Figure C.4E). The range of values for
Camarasaurus and Basal Titanosauriform specimens almost perfectly overlaps in CV1CV2 shape space (Figure 6.4C). In general, these results characterize titanosauriform
evolution as involving increasing mediolateral broadening of the femur, development of
the lateral bulge, medial shifting of the fourth trochanter to the posteromedial edge of the
shaft rather than on its caudal face, and rotation of the distal condyles (from initially
beveled laterally) to become perpendicular to the shaft long axis. These trends should be
viewed as tentative because the absolute difference in CV2 scores is minute and
individual group score distributions for Camarasaurus, Basal Titanosauriforms, and
Titanosaurs each overlap.
Multiple regression of partial warp scores against log-transformed, proximodistal
femur length was performed to evaluate if sauropodomorph femora display allometric
scaling. This regression found only 14.44% of variation in femoral shape to be
294
attributable to size (Table 6.6). However, as was the case for humeri, regression of RW1
scores against element length (Figure 6.5B) identifies a significant allometric signal for
the shape of sauropodomorph femora (Goodall’s F = 12.0457, p = 0.000, Table 6.6).
A linear model fit signifies even greater variation about this pattern (r2 = 0.08) than was
encountered for the humeral dataset. With increasing length, sauropodomorph femora
generally exhibit proportionately broader forms with more medially positioned fourth
trochanters (Figure 6.5B). Titanosaurian femora contribute greatly to this pattern by
plotting with highly negative RW1 scores at long bone lengths (Figure 6.5B). Thus, both
humeri and femora of sauropodomorphs present allometric scaling signals when
considered at a broad phylogenetic level.
6.5 Discussion
6.5.1 Osteology of wide-gauge posture
The results support the hypothesis that the shapes of titanosauriform humeri and
femora are significantly different from those of other sauropodomorphs. Relative warps
analyses and CVAs demonstrate that titanosauriform sauropods, in comparison to
“Prosauropods” and other sauropods, possessed: 1) more medially oriented humeral
heads; 2) proportionately more slender humeri mediolaterally (especially true for
brachiosaurids and other basal titanosauriforms); 3) more proximally and medially
located deltopectoral crests; 4) mediolaterally broader femora; 5) femora with fourth
trochanters positioned along the caudomedial edge rather than on the caudal face, and; 6)
distal femoral condyles that are, on average, perpendicular to the long axis of the shaft or
295
medially beveled rather than laterally beveled (Figures 6.2, 6.6, and Appendix C Figure
C.5). Taxonomic re-division of the dataset to further explore timing of appearance of
these appendicular changes confirms that they were already developed in basal
titanosauriforms and are not exclusive to titanosaurians (Appendix C). Even features
generally thought to characterize brachiosaurids, such as slender overall humeral form
and considerable proximal migration of the deltopectoral crest, are clearly also
encountered in some titanosaurians (e.g., slender humeri of Muyelensaurus and
Paralititan) and other basal titanosauriforms (e.g., proximally placed deltopectoral crests
in Angolatitan and Fukuititan), respectively. Accordingly, humeral breadth and position
of the deltopectoral crest may better reflect posture than phylogenetic affinities (see
section 6.5.2 below).
Myological reconstructions of dinosaurs (e.g., Dilkes, 1999; Carrano and
Hutchinson, 2002), including of sauropodomorphs (e.g., Borsuk-Bialynicka, 1977;
Langer et al., 2007; Otero and Vizcaino, 2008), permit inference of soft tissue
repercussions of the bone shape changes attributed to titanosauriforms, listed above.
Accordingly, significant changes in musculature and limb function for titanosauriforms
relative to other sauropodomorphs that would be associated with each evolutionary
shape-change trend can be highlighted.
6.5.2 Functional morphology inferences
Analyses indicated a trend for dorsomedial rather than dorsal protrusion of the
humeral head in titanosauriforms, which would shift the forelimb laterally as a whole.
Although mediolateral gauge of the hind limbs appears to correlate strongly with the
296
craniocaudal position of the center of mass (e.g., Henderson, 2006), the relationship does
not appear to be so straightforward for the forelimbs. For example, brachiosaurids have
been presumed to have more cranially positioned centers of mass (Henderson, 2006), but
they do not exhibit narrow-gauge forelimbs that would best support the body by
minimizing bending moments on the humeri (Wilson and Carrano, 1999). Rather,
brachiosaurids exhibit moderate separation between the forelimbs (Henderson, 2006),
which is manifested in modest mediolateral separation between manus prints in Jurassic
wide-gauge trackways (Day et al., 2002). As a result, dorsomedial protrusion of the
humeral head in titanosauriforms may suggest a modest broadening of the forelimbs, but
does not appear to provide concrete evidence as to the craniocaudal position of the center
of mass of a taxon.
Regardless of the position of the center of mass, laterally shifting the axis of the
forelimbs provided a wider-gauge, and presumably a more statically-stable forelimb
stance. However, this shift may have also allowed greater torsional stresses and bending
moments to act on the humeral shaft. As Wilson and Carrano (1999) noted,
titanosauriforms possessed an adaptation to counterbalance these stresses and maintain
sufficient safety factors: significant mediolateral broadening of the shaft (see below).
Concerning musculature, humeral head reorientation would primarily affect proximal
muscles. In particular, moment arms would have been shortened for certain proximal
forelimb adductors (e.g., M. scapulohumeralis posterior and M. subscapularis) and
lengthened for forelimb abductors (M. deltoideus scapularis and clavicularis) (Figure
6.7). As a result, it is inferred that greater torque could be produced by forelimb
abductors while a greater degree of forelimb adduction could be achieved. These trends
297
suggest enhanced abilities to maintain stability during locomotion for titanosauriforms in
comparison to other sauropods with narrower-gauge forelimbs.
That titanosauriforms typically have proportionately slender humeri in
comparison to other sauropods may be a product of two changes. First, mediolateral
expansion of the midshaft: increased humeral midshaft eccentricity relative to basal
macronarians (e.g., Camarasaurus) is clearly evident in some titanosaurians (e.g.,
Dreadnoughtus, Paralititan), causing the proximal and distal ends to appear relatively
less developed. This condition, which has been more frequently discussed for the femur,
may have developed as a means to counter increased mediolateral bending forces on the
midshaft under wide-gauge posture (e.g., Wilson and Carrano, 1999; Wilson, 2002;
Carrano, 2005). Hence, it is likely that titanosaurians with extreme wide-gauge stances,
such as saltasaurids, would present the greatest humeral midshaft eccentricity. Further
investigation is needed to confirm this trend.
The second change affecting mediolateral humeral width is (in some
titanosauriforms) an absolute decrease in proportions of the proximal and distal breadths
relative to humeral length. Though some titanosaurians have humeri that present
relatively broad ends, such as in Opisthocoelicaudia (proximal breadth equals 56% of
humeral length), brachiosaurids and other titanosaurians clearly do not. For example,
proximal breadth is only 25% and 33% of humeral length in Muyelensaurus (MRS-Pv70) and Petrobrasaurus (MAU-Pv-PH-449/36), respectively. Taxa with such markedly
slender humeri would possess shorter moment arms for both forelimb adductors (M.
scapulohumeralis posterior and M. subscapularis) and abductors (M. scapulohumeralis
anterior and M. deltoideus scapularis and clavicularis), providing these muscles with
298
decreased mechanical advantages for mediolateral forelimb movements (Figure 6.8).
Intriguingly, the opposite trend is encountered for the hind limb, where greater emphasis
appears to be placed on limb abduction/adduction potential (see below). Because
mediolateral reduction of the humerus would narrow stance gauge and imply a center of
mass position in relative proximity to the forelimbs (according to Henderson, 2006),
titanosaurians with notably slender humeri may likely have possessed more cranially
positioned centers of mass (Figure 6.8). This inference is supported by observations that
handprints in wide-gauge trackways are proportionately larger than in narrow-gauge
trackways (Lockley et al., 1994), indicating that a greater proportion of body mass was
supported by the forelimbs in wide-gauge sauropods (Henderson, 2006). Frequently, as
exemplified by brachiosaurids (Henderson, 2006), such a shift is suggested to involve
relative shortening of the tail and elevation of the neck and cranial trunk into a more
inclined posture; therefore, titanosaurians with slender humeri may have had similarly
inclined postures. Nonetheless, neck posture in sauropods is a highly debated subject
(e.g., Taylor et al., 2009; Christian and Dzemski, 2011; Preuschoft and Klein, 2013), and
continued exploration of cervical series morphology in relation to axial posture is
essential to resolving the debate over sauropod neck orientation.
Migration of the deltopectoral crest proximally and medially in sauropods,
especially brachiosaurids and (as evidenced by this analysis) many titanosaurians (e.g.,
Panamericansaurus, Paralititan), strongly suggests muscular torque was diminished,
whereas the range of motion proximally was increased in these animals (cf., Bonnan,
2007). In particular, strong proximomedial displacement of the deltopectoral crest yields
shorter muscle moment arms for humeral retraction (M. scapulohumeralis anterior) and
299
the primary forelimb abductors (M. deltoideus scapularis and clavicularis) and adductor
(M. pectoralis). Perhaps the most significant of these effects is shortening of the moment
arm for the M. pectoralis (Figure 6.9). Although a more proximal insertion of the M.
pectoralis would require less muscular contraction to yield the same adductive angular
excursion of the forelimb, the same moment (= rotational force) would be necessary to
generate a given motion. Therefore, the M. pectoralis would have had to exert a greater
linear force along its line of action to generate the same rotational force (to produce the
limb motion) that would have been produced if the muscle inserted more distally on the
humerus. This fact is further compounded by the unknown variable of muscle cross
sectional area, leaving any conclusion as to what affect (if any) deltopectoral crest
repositioning may have had on energy expenditure intractable.
Mediolateral broadening of the femur in titanosauriforms may have arisen to
support great body mass, as in other graviportal vertebrates (Carrano, 2005). As for the
humerus, this “columnar” condition afforded sauropods a means to minimize increased
bending moments and torsional stresses on the femoral shaft (Wilson and Carrano, 1999;
Carrano, 2005). Femora are particularly mediolaterally broad in wide-gauge
titanosauriforms, presumably in response to increased bending stresses due to distinctly
laterally-held hind limbs (Wilson and Carrano, 1999). When considered in a
musculoskeletal context, mediolateral broadening of the femur would have most
significantly affected proximal musculature. For example, the lines of action of the M.
iliofemoralis (a hind limb abductor), M. puboischiofemoralis internus part 2 (a hind limb
adductor), and M. ischiotrochantericus (a hind limb long axis rotator and partial femoral
retractor) would each have been lengthened and reoriented more mediolaterally (Figure
300
6.10). This, in turn, slightly lengthened moment arms for each of these muscles, yielding
overall greater torque for hind limb abduction (by the M. iliofemoralis and M.
ischiotrochantericus) and adduction (by the M. puboischiofemoralis internus part 2).
Similar effects also occur with two muscles inserting more distally: mediolateral femoral
broadening increases the adductive moment arm of M. puboischiofemoralis internus part
1 and all three branches of the Mm. puboischiofemoralis externus, providing each of
these adductors with greater torque production capability. A possible explanation for
these abduction/adduction differences between titanosauriforms and other sauropods may
lie in their differing gauge stance, wherein greater hind limb abductive and adductive
capability may have been necessary to maintain stability during wide-gauge locomotion
over uneven terrain. Such a conclusion has been previously advanced by Mannion and
Upchurch (2010), who found supporting evidence in the common occurrence of widegauge trackways and titanosaur body fossils in fluvio-lacustrine deposits, which suggests
these sauropods may have preferred inland environments that can present a wider range
of topographic variability than most coastal carbonate platforms.
Positioning of the fourth trochanter along the caudomedial diaphysis in
titanosauriforms may have had several functional repercussions. First, this shift would
maintain the retractive capability of the M. caudofemoralis longus by keeping the line of
action of this muscle in a primarily craniocaudal orientation. Second, this shift would
shorten the M. adductor femoris (a hind limb adductor). Neither moment arm length nor
orientation for this muscle would be significantly altered, however, when this trend is
considered in combination with mediolateral broadening of the femur: any apparent
medial shift of the inferred M. adductor femoris insertion (just lateral to the fourth
301
trochanter on the caudal shaft face; Otero and Vizcaino, 2008) is offset by mediolateral
broadening of the bone. These two trends appear to maintain the insertion site of the M.
adductor femoris at the same relative distance away from the body midline (Figure 6.11).
Finally, titanosauriform femora often present distal condyles that are
perpendicular to the long axis of the shaft or are medially beveled. In contrast,
“Prosauropod” femora generally display laterally beveled distal condyles, signifying an
inward cant to the bone in vivo so that the distal hind limbs meet near the body midline
under the animal in narrow-gauge posture (the ancestral condition). Perpendicular or
“flat” distal condyles in basal titanosauriforms and many titanosaurians signify a vertical
femoral posture, providing a moderate wide-gauge stance (e.g., Giraffatitan in
Henderson, 2006). Medial beveling, as seen in saltasaurids (the most derived
titanosaurians; Wilson, 2002), signifies an extreme wide-gauge condition in which the
femora descend away from the body midline. This pattern has been qualitatively
identified by previous authors (e.g., Wilson, 2002) and is supported statistically by my
analyses.
To summarize, shape trends identified herein suggest that titanosauriforms
possessed, relative to other sauropodomorphs; 1) an increased range of forelimb
adduction; 2) slightly increased mechanical advantage for forelimb abductor musculature,
and; 3) distinctly increased mechanical advantages for hind limb abductor and adductor
musculature. These differences aid minimization of bending stresses on stylopodial limb
shafts and allow for greater control of transverse movements of the center of mass. The
latter may have provided titanosauriforms greater static and dynamic stability than
narrow-gauge sauropods; that is, greater ability to return to a stable, normal locomotion
302
pattern following a disturbance (Alexander, 2002). To explore this idea in greater detail,
consider the stability of a tricycle and, by analogy, narrow-gauge stance in sauropods as
similar to a narrow tricycle and wide-gauge stance as similar to a wide tricycle. Although
quadrupedal, it is supposed that sauropods, like elephants, would likely have maintained
a statically stable equilibrium throughout their stride by keeping three feet in contact with
the ground at all times, hence forming dynamic “stability triangles” during locomotion
(Henderson, 2006). While moving, the dynamic stability of a tricycle, or ability to avoid
toppling over while turning, depends on two variables: the height of its center of mass
from the ground and the width of its wheelbase. The dynamic stability of a tricycle can be
increased by two potential changes: either lowering the center of mass or widening the
wheel base so as to provide a greater area of support encompassed by its wheels (its
polygon of support). By analogy, if the height of the center of mass above the ground is
assumed to be approximately equal on average among narrow- and wide-gauge
sauropods (an assumption based on the appendicular proportions and body size ranges of
taxa of each gauge; e.g., Mazzetta et al., 2004; Carrano, 2005; Sander et al., 2011), then
dynamic stability can instead be increased by increasing gauge width. A wider sauropod,
just like a wider tricycle, will have a greater resistance to falling over during a turn or
while traversing rough or steep terrain. Specifically, wide-gauge posture endows
titanosauriforms with greater dynamic stability by providing larger area “stability
triangles” (Henderson, 2006) during locomotion, which also offer a larger margin of
stability (the center of mass can be kept further from the edges of the stability triangle,
meaning the animal is safely staying within its stable limits; Alexander, 2002).
303
It must be noted that a locomotion-related selective advantage is not the only
possible explanation for gauge differences. In fact, whether wide-gauge posture arose in
titanosauriforms as a directional evolutionary trend or merely as a means to maintain
stability given an adaptively widened torso remains unknown. Importantly, however, the
interpretations of dynamic stability discussed above are not contingent on the
evolutionary origin of wide-gauge posture, but rather characterize the functional nature of
wide-gauge posture. The stability of wide-gauge stance is an inherent biomechanical
character that, at the least, was not deleterious because Titanosauria clearly became a
diverse and long-lived clade.
6.6 Conclusions
Geometric morphometric analyses of sauropodomorph humeri and femora have
yielded statistical confirmation of previously hypothesized anatomical differences
associated with body gauge and support the hypothesis that titanosauriform humerus and
femur shape were significantly different than those of other sauropodomorphs. Moreover,
these analyses have identified additional anatomical features that (with statistical
significance) characterize wide-gauge posture, such as a relatively proximally placed
deltopectoral crest and medially positioned fourth trochanter. Correlation of these
osteological shifts with soft tissues and their geometries provides new understanding of
the musculature of titanosauriforms and the biomechanical nature of wide-gauge
locomotion. For example, concurrent mediolateral broadening of femora and medial
shifting of the fourth trochanter appear to maintain the insertion site of the M.
304
caudofemoralis at the same relative distance away from the body midline, maintaining
the retractive capability of this muscle.
General trends identified herein that differentiate titanosauriforms from other
sauropodomorphs are a possibly increased range of forelimb protraction and adduction,
slightly increased mechanical advantage for forelimb abduction, and distinctly increased
mechanical advantages for hind limb abduction and adduction. These changes are
inferred to have allowed for greater control of transverse movements of the center of
mass, a character that supports the proposition by Mannion and Upchurch (2010) that
some titanosauriforms may have been adapted to relatively topographically uneven,
inland, fluvio-lacustrine settings. Wide-gauge posture afforded titanosauriforms greater
static stability, dynamic stability, and a larger margin of stability during locomotion by
providing wider “stability triangles” between foot contacts with the ground. Additionally,
association between proportionately slender stylopodial elements and proximity to the
center of body mass suggests that titanosaurians with gracile humeri possessed more
cranially placed centers of mass and likely more cranially-ascending axial columns.
Insights such as these permit better understanding of the evolutionary progression leading
to extreme wide-gauge posture in saltasaurids and how wide-gauge posture functioned
during locomotion.
305
Table 6.1 Kruskal-Wallis and Mann-Whitney U test results on sauropod stylopodial bone
lengths. α = 0.05 for Kruskal-Wallis tests, shown in first row. α = 0.005 for MannWhitney U tests with Bonferroni correction, shown in all subsequent rows.
Abbreviations: P, “Prosauropods”; D, Diplodocids; C, Camarasaurus; TF,
Titanosauriforms; T, Titanosaurs.
HUMERUS
Test
Kruskal-Wallis
P/D
P/C
P/TF
P/T
D/C
D/TF
D/T
C/TF
C/T
TF/T
p
0.000
0.000
0.000
0.000
0.000
0.987
0.000
0.327
0.002
0.499
0.003
FEMUR
Test
Kruskal-Wallis
P/D
P/C
P/TF
P/T
D/C
D/TF
D/T
C/TF
C/T
TF/T
p
0.000
0.000
0.001
0.000
0.000
0.535
0.036
0.284
0.056
1.000
0.012
306
Table 6.2 Significance of relative warps for sauropodomorph humeri and femora, with
dataset divided into five groups. Only the first ten relative warps are listed. The uniform
component was included in the analysis. Abbreviations: No., relative warp number; SV,
singular values (eigenvalues of traditional PCA); %, percentage of variance accounted for
by that relative warp. Cum %, cumulative percentage of variance accounted for. Bolded
relative warps account for at least 80% of the shape variation.
No.
1
2
3
4
5
6
7
8
9
10
HUMERUS
SV
%
0.53883
34.47%
0.35365
14.85%
0.32485
12.53%
0.29205
10.13%
0.26065
8.07%
0.19782
4.65%
0.18361
4.00%
0.16688
3.31%
0.12165
1.76%
0.11111
1.47%
Cum % No.
34.47% 1
49.33% 2
61.86% 3
71.98% 4
80.05% 5
84.70% 6
88.70% 7
92.01% 8
93.76% 9
95.23% 10
FEMUR
SV
%
0.49334
39.09%
0.36651
21.57%
0.26938
11.66%
0.21693
7.56%
0.17927
5.16%
0.16860
4.57%
0.14820
3.53%
0.12217
2.40%
0.08980
1.30%
0.08117
1.06%
Cum %
39.09%
60.66%
72.32%
79.88%
85.04%
89.60%
93.13%
95.53%
96.82%
97.88%
307
Table 6.3 Anderson's χ² test results, which determine the number of statistically
significant relative warps by identifying distinct eigenvalues.
Element
Humerus
Femur
Number of RWs
extracted
18
14
Anderson's χ²
p
15.0933*
6.2360, 6.6200
<0.05
<0.05
RWs with distinct
eigenvalues
RW 1 (34%)
RW 1 (39%), RW 2 (22%)
*Only the χ² value for comparison of RW1 to RW2 is shown as no other comparisons
yielded significant results. Distinct relative warps are considered "biologically"
significant. Percentage of the total shape variation accounted for by significant relative
warps are shown in parentheses.
308
Table 6.4 Significance differences, as discerned by Kruskal-Wallis and Mann-Whitney U
tests, on relative warps identified as significant by Anderson’s χ2 test, with dataset
divided into five groups. p values are significant at α = 0.05 for Kruskal-Wallis tests.
Taxon group abbreviations as in Table 6.1. Other abbreviations: KW, Kruskal-Wallis;
RW, relative warp. Post hoc Bonferroni significance identifiers via Mann-Whitney
tests , significant difference between P and D; , between P and C; ◊, between P and
F; , between P and ; , between D and C; , between D and F; , between D and ;
, between C and F; , between C and ; , between TF and T. Group abbreviations as
in Table 6.1.
HUMERUS
FEMUR
Significant
Significant
RW KW p
RW KW p
Differences
Differences
1 0.000 ◊,θ,∩,□,≡,∫
1 0.000 θ,□,∫
2 0.029 †
309
Table 6.5 Significant shape variables identified by canonical variates analysis of
sauropodomorph humeri and femora. Abbreviations: CV, canonical variate axis.
Element CVs with distinct eigenvalues
Humerus
CV1
CV2
CV3
Femur
CV1
CV2
p
0.000
0.000
0.008
0.000
0.000
310
Table 6.6 Multivariate regression of relative warp scores on maximum sauropodomorph
humeral and femoral length using Goodall's F test*.
Variable
Humerus Maximum Length
Femur Maximum Length
n
89
73
r²
0.6459
0.5237
Goodall's F
9.1533
12.0457
df
p
18, 1566 0.0000
14, 994 0.0000
R²
9.47%
14.44%
*Length measurements were log10 transformed prior to analyses.
r² values are derived from multiple regression of all partial warps on maximum element
length.
R², the coefficient of determination, represents the percentage of shape change explained
by the variable.
311
Figure 6.1 Landmarks from Bonnan (2004, 2007) used in thin plate splines analyses of
sauropodomorph humeri and femora. (A) Right humerus in cranial view. (B) Right femur
in caudal view. Landmarks for humerus: 1, medial border of proximal humerus; 2, medial
border of humeral head; 3, lateral border of humeral head; 4, proximolateral corner of the
deltopectoral crest; 5, peak of distal deltopectoral crest; 6 and 11, lateral and medial
locations that encompass the minimum midshaft width, respectively; 7, lateral border of
lateral distal condyle; 8, medial border of lateral distal condyle; 9, lateral border of
medial distal condyle; 10, medial border of medial distal condyle. Landmarks for femur:
1, proximolateral peak of greater trochanter; 2, lateral border of femoral head; 3, medial
border of femoral head; 4, peak of fourth trochanter; 5 and 8, medial and lateral locations
that encompass the minimum midshaft width, respectively; 6, medial border of distal
humerus; 7, lateral border of distal humerus; 9, lateral-most peak of lateral bulge.
312
Figure 6.2 Thin plate splines plots of relative warp scores for sauropodomorph humeri
(A) and femora (B). RW1 is plotted against RW2. (C–D) Reference forms for center of
each plot, at the (0,0) position of the solid black circle crosshairs.
313
Figure 6.3 Mean sauropodomorph humeral (top row) and femoral (bottom row)
morphologies of each taxonomic division utilized in TPS analyses. Sample sizes for
humeri (N): “Prosauropods” = 15, Diplodocids = 25, Camarasaurus = 12, Basal
Titanosauriforms = 11, Titanosaurs = 26. Sample sizes for femora (N): “Prosauropods” =
18, Diplodocids = 16, Camarasaurus = 7, Basal Titanosauriforms = 9, Titanosaurs = 23.
314
Figure 6.4 Canonical variates analyses (CVA) of sauropodomorph humeri (A–B) and
femora (C). Only axes identified as significant (possessing distinct eigenvalues) are
shown. (A) Plot of CV1-CV2 for humeri. (B) Plot of CV1-CV3 for humeri. (C) Plot of
CV1-CV2 for femora. Symbols as noted in legend. Larger symbols of each group
represent the mean scores for each taxonomic division.
315
Figure 6.5 Regression of maximum shape change component, RW1, on log-transformed
maximum bone length for sauropodomorph (A) humeri and (B) femora. Symbols:
“Prosauropods” (solid circles), Diplodocids (open triangles), Camarasaurus (solid
squares), Basal Titanosauriforms (open circles), and Titanosaurs (asterisks). The
consensus reference form, occurring along the line at an RW1 score of zero, is presented
at left in each plot. Deformation grids at right reflect shape variation characterizing
316
Figure 6.5 (continued) strongly positive and negative scorings along RW1. Dark
positively sloping lines are linear regression models fit to the data, with r² values of 0.23
for humeri and 0.08 for femora. Numbers on reference form identify landmarks as listed
in Figure 6.1.
317
Figure 6.6 Mean-to-mean transformations displaying sauropodomorph stylopodial shape
changes associated with the transition from Non-titanosaurs to Titanosaurs (see
explanation of dataset divisions in Methods), displayed in three different manners: thin
plate spline grids (A) and (D), vector plots (B) and (E), and simple overlay of group
means (C) and (F). Humeri are shown in (A–C) and femora in (D–F). Transformations
are from consensus of all Non-titanosaur specimens to consensus of all Titanosaur
specimens. In (C) and (F) overlays, mean forms for Titanosaurs are shown in black over
top of the mean forms for Non-titanosaurs in gray.
318
Figure 6.7 Effect of reorientation of the humeral head and mediolateral broadening of the
humerus on moment arm length for sauropod forelimb abductor musculature. The M.
deltoideus scapularis is shown as an exemplar. (A) General sauropod condition in which
the humeral head faces dorsally (as noted by the arrow) and the humerus is somewhat
slender. (B) Condition encountered in some derived titanosaurians (e.g.,
Opisthocoelicaudia) wherein the humeral head has become dorsomedially directed (note
reorientation of the arrow) and the humerus has become mediolaterally broad, causing the
moment arm for the M. deltoideus scapularis to become lengthened. Black circle in (A)
and (B) denotes glenoid joint center. Black line in (A) and (B) denotes the moment arm
for the M. deltoideus scapularis. (C) Comparison of moment arm lengths from (A) (top)
and (B) (bottom), demonstrating a longer moment arm given the forelimb construction
presented in (B). (A) and (B) depict cranial view.
319
Figure 6.8 Hypothesized relationship between a cranial shift in center of mass (COM),
mediolateral narrowing of the humerus, and neck and cranial trunk posture in sauropod
dinosaurs. (A) If a sauropod possesses mediolaterally broad humeri, the center of mass
likely is positioned nearer to the pelvic girdle and the neck and cranial trunk will be held
more closely to horizontal. (B) If a sauropod possesses mediolaterally slender humeri, the
center of mass likely is positioned more cranially in the trunk and the neck and cranial
trunk will slightly ascend. These relationships are built upon a demonstration by
Henderson (2006) that slenderness of stylopodial limb elements appears to correlate with
proximity to the center of mass. Mediolateral humeral narrowing shortens moment arm
lengths for proximal forelimb musculature, as shown by decreasing length of the solid
320
Figure 6.8 (continued) black lines in the lower figures. The M. subscapularis (a forelimb
adductor) and M. deltoideus clavicularis (a forelimb abductor) are shown as exemplars.
Black circles denote glenoid joint center. Dashed black lines trace the line of action of
each muscle. Solid black lines denote muscle moment arms. Abbreviations: sbs.,
subscapularis; delt. c., deltoideus clavicularis. Upper figures depict lateral view, lower
figures depict cranial view. Skeletal reconstruction in (A) modified from Lacovara et al.
(2014). Skeletal reconstruction in (B) modified from an original by Scott Hartman from
http://www.skeletaldrawing.com/sauropods-and-kin/.
321
Figure 6.9 Effect of proximal migration of the sauropod deltopectoral crest on moment
arm length for the M. pectoralis, a primary forelimb adductor. (A) General sauropod
condition in which the peak of the deltopectoral crest lies at nearly one-third the
proximodistal length of the humerus. (B) More proximal expression of the deltopectoral
crest, as in brachiosaurids and (as evidenced by this analysis) some titanosaurians (e.g.,
Panamericansaurus, Paralititan), reorients the M. pectoralis more mediolaterally,
thereby shortening its moment arm about the glenoid. Black circle in (A) and (B) denotes
glenoid joint center. Black line in (A) and (B) denotes the moment arm for the M.
pectoralis. (C) Comparison of moment arm lengths from (A) (top) and (B) (bottom),
demonstrating a longer moment arm given the forelimb construction presented in (A).
(A) and (B) depict cranial view.
322
Figure 6.10 Effect of mediolateral femoral broadening on sauropod proximal hind limb
musculature. The M. iliofemoralis and M. ischiotrochantericus are shown as exemplars.
(A) General sauropod condition with a somewhat slender femur. (B) Condition
encountered in wide-gauge titanosauriforms wherein the femur has become
mediolaterally broad, causing the moment arms for the M. iliofemoralis and M.
ischiotrochantericus to become slightly lengthened. Black circle in (A) and (B) denotes
glenoid joint center. Black lines in (A) and (B) denote muscle moment arms. (C)
Comparison of moment arm lengths for each muscle from (A) (top) and (B) (bottom),
demonstrating slightly longer moment arms given the hind limb construction presented in
(B). (A) and (B) depict caudal view. Abbreviations: ilfem. = iliofemoralis; istr. =
ischiotrochantericus. (A) and (B) depict caudal view.
323
Figure 6.11 Demonstration of how mediolateral femoral broadening and medial
migration of the fourth trochanter maintain the insertion site of the M. adductor femoris
at the same position relative to the body midline in sauropods. (A) General sauropod
condition in which the femur is somewhat slender and the fourth trochanter is situated
slightly on the caudal face. (B) Wide-gauge titanosauriform condition in which the femur
is comparatively mediolaterally broadened and the fourth trochanter is caudomedially
positioned on the shaft. Any potential lateral shift to the insertion site of the M. adductor
femoris is negated by medial migration of the fourth trochanter, maintaining the insertion
site at the same position relative to the body midline. Transect lengths from body midline
(dashed line) to the M. adductor femoris insertion (solid black lines) are equal in both
scenarios, as shown in (C). (A) and (B) depict caudal view.
324
CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS
In this dissertation I have examined geologic and geochemical correlates to
molecular preservation, as well as titanosauriform anatomy and evolution. Chapter 1
constitutes a thorough review of literature relevant to the field of molecular paleontology
that hopefully, once published as a review article, will serve as a valuable resource for
students and researchers entering this fascinating, emerging field. One point emphasized
in this review is that the role of authigenic mineralization of tissues, with respect to
biomolecular retention, remains unclear. Testing this question in the future will require
running a protein extraction on a sample of mineralized tissue (such as those reported by
Martill (1988, 1990), Kellner (1996), and McNamara et al. (2009)). Also, though
numerous hypotheses have been advanced to explain survival of biomolecules through
geologic time, understanding of chemical reaction pathways facilitating early-diagenetic
stabilization of molecules remains poor. Current hypotheses suggest that condensation of
molecular decay products driven by free radicals (Schweitzer et al., 2014a) and binding
with minerals (Edwards et al., 2011) may swiftly render endogenous components inert
and insoluble, so that they may persist over geologic timescales. Research into molecular
preservation pathways is needed to facilitate explanation and evaluation of such
remarkable discoveries.
Chapters 2, 3, and 4 explore environmental-geochemical settings and taphonomic
scenarios that may lead to and serve as proxies for molecular preservation in fossilized
bone. Geological, environmental, and geochemical conditions favoring molecular
survival remain enigmatic (Chapter 1). To advance understanding of this subject, rare
325
earth element (REE) and biomolecular analyses were performed (Chapter 3) on the same
fossils examined for soft tissue preservation in Chapter 2. Results of these analyses
confirm that REE composition of fossil bone may serve as a useful proxy for potential
molecular recovery (as hypothesized by Trueman et al., 2008a). As found in Chapter 3,
fossil bones with low trace element concentrations and “simple diffusion” concentration
gradients with cortical depth (sensu Trueman et al., 2008a) are (as they inferred) viable
reservoirs of ancient soft tissues and biomolecules. REE analyses can thus provide a
valuable, inexpensive test prior to time-intensive and costly molecular assays.
Views in REE taphonomy have been changing dramatically over the last decade.
In 2009, many researchers held the presumption that the REE composition of fossil bone
reflects that of the early diagenetic environment (Trueman et al., 1999, 2006; Metzger et
al., 2004; Suarez et al., 2007). A shift in view has developed over the last five years due
to mounting evidence that fossil bone commonly acts as an open system over its entire
duration of burial (e.g., Kocsis et al., 2010; Herwartz et al., 2011, 2013a). The case study
site analyzed in Chapters 2 and 3 (the Standing Rock Hadrosaur Site in Corson County,
South Dakota) appears to represent only a third possible exception to long-term open
system behavior by fossil bone (Chapter 3). This unexpected finding demonstrates that
exceptions to the new paradigm exist. Moreover, because these bones yielded soft tissues
(Chapter 2) and endogenous collagen I (Chapter 3), early mitigation of open system
behavior may indeed protect endogenous molecules and early diagenetic REE signals. As
soft tissues were also recovered from fossil ossified tendons and a vertebral centrum
(Chapter 2), these tissues also constitute viable targets for future paleomolecular
analyses.
326
Results from Chapters 2, 3, and 4 also demonstrate that iron-rich concretions
formed concurrently with fossilization during early diagenesis may chemically shield
bone tissues from protracted microbial attack and pore fluid exposure. As concluded in
Chapter 2, and in agreement with suggestions in prior literature (e.g., Schweitzer et al.,
2007b), rapid burial in an iron-rich environment appears to facilitate soft tissue
preservation. Further, iron-rich, reducing, terrestrial settings such as floodplains, paludal
marshes, and small ponds may induce growth of siderite concretions that can hinder
microbial and groundwater mobility by partial cementation of entombing sediments and
coating of fossil surfaces (Chapter 2). Such mineralized concretion coatings may serve as
physical barriers shielding underlying tissues from groundwater and microbes, thus
allowing underlying tissues to escape significant alteration (Chapter 3). Fossil bones from
this case study site (Chapter 2) and actualistic experiments (Chapter 4) indicate that ironmineral cements may first form over more porous regions of tissue, perhaps due to
greater release of iron-rich hemoglobin decay products from these tissue regions. Should
permineralization take place, either by inorganic or microbially-mediated means, the
hindrance it creates to pore fluid flow and microbial mobility may also protect bone soft
tissues and biomolecules from decay (Chapter 4). Fruitful subjects for exploration in
future actualistic experiments include the influences of soil bacterial flora composition,
sediment mineralogy, sediment texture, groundwater pH, tissue structure, and soil
temperature on biomolecular decay. Insights gained from actualistic experiments hold the
potential to answer questions about tissue and molecular decay that cannot be answered
by study of end-product fossils.
327
Chapters 5 and 6 examine the anatomy and evolutionary history of titanosaurian
sauropod dinosaurs. Anatomical comparison of the appendicular skeletons of
Dreadnoughtus schrani and other titanosauriforms (Chapter 5) reveals that extreme large
body size does not appear to require or induce anatomical specializations to the limbs or
girdles (e.g., reorientation of processes, proportionally greater development of muscle
attachment sites). Rather, most wide-gauge characteristics are expressed among
titanosauriforms across a wide range of body sizes. Only possession of an accessory
ventrolateral process on the preacetabular lobe of the ilium appears to correlate with
extreme body size. This unique feature may reflect greater application of stress on the
preacetabulum by hind limb adductor musculature in the largest titanosauriforms. Yet,
comparisons are needed across a broader phylogenetic scope to fully characterize the
relationship between large body size and functional anatomy. From a broader
perspective, Chapter 5 provides correlations of appendicular character states to taxon
body size; these data may be useful in ongoing cladistic analyses and studies on the
evolution of gigantism in non-avian dinosaurs.
Morphometrics analyses reveal that the evolution of wide-gauge posture is
characterized by mediolateral narrowing of the humerus, medial reorientation of the
humeral head, mediolateral broadening of the femur, and proximal migration of the
deltopectoral crest and fourth trochanter (Chapter 6). Many of these features were
hypothesized to characterize wide-gauge posture by Wilson and Carrano (1999). Hence,
morphometric analyses provide independent, statistical corroboration of their inferences.
In particular, proximal migration of the deltopectoral crest and fourth trochanter (major
muscle attachment sites) represent a tradeoff of mechanical advantage in exchange for
328
reduction of muscle contraction for a given limb excursion. These shifts may reflect an
optimization of muscle energy expenditure per given action, though the unknown
material properties and volumes of dinosaur muscles preclude practical testing of this
inference. As a whole, shape changes among sauropodomorph femora (Chapter 6)
suggest that wide-gauge titanosauriforms were capable of a greater degree of hind limb
abduction and adduction than their narrow-gauge counterparts. This implies that widegauge posture may have provided titanosauriforms with greater dynamic stability during
locomotion; however, extant phylogenetic bracket-constrained musculoskeletal modeling
would be necessary to examine that topic. Incorporation of additional elements and 3D
data in future morphometric analyses offers the potential to advance our understanding
of: 1) the functional morphology of titanosauriform wide-gauge posture, and; 2)
biomechanical constraints on functional anatomy and locomotion at extreme body size.
329
List of References
Ajie, H. O., I. R. Kaplan, P. V. Hauschka, D. Kirner, P. J. Slota, and R. E. Taylor. 1992.
Radiocarbon dating of bone osteocalcin: isolating and characterizing a noncollagenous protein. Radiocarbon 34: 296–305.
Alexander, R. M. 2002. Stability and maneuverability of terrestrial vertebrates.
Integrative and Comparative Biology 42: 158–164.
Allain, R., P. Taquet, B. Battail, J. Dejax, P. Richir, M. Véran, F. Limon-Duparcmeur, R.
Vacant, O. Mateus, P. Sayarath, B. Khenthavong, and S. Phouyavong. 1999. Un
nouveau genre de dinosaur sauropode de la formation des Grès supérieurs
(Aptien-Albien) du Laos. Comptes Rendus de l’Académie des Sciences, Series
IIA, Earth and Planetary Sciences 329: 609–616.
Allentoft, M. E., M. Collins, D. Harker, J. Haile, C. L. Oskam, M. L. Hale, P. F. Campos,
J. A. Samaniego, M. T. P. Gilbert, E. Willerslev, G. Zhang, R. P. Scofield, R. N.
Holdaway, and M. Bunce. 2012. The half-life of DNA in bone: measuring decay
kinetics in 158 dated fossils. Proceedings of the Royal Society B 279: 4724–4733.
Allison, P. A. 1988. The role of anoxia in the decay and mineralization of proteinaceous
macro-fossils. Paleobiology 14: 139–154.
Allison, P. A. 1990. Decay processes, p. 213–216 in Briggs, D. E. G., and P. R. Crowther
(eds.), Paleobiology: a synthesis. Blackwell Scientific Publications, Oxford.
Altman, S. A., T. H. Zastawny, L. Randers-Eichhorn, M. A. Cacciuttolo, S. A. Akman,
M. Dizdaroglu, and G. Rao. 1995. Formation of DNA-protein cross-links in
cultured mammalian cells upon treatment with iron ions. Free Radical Biology
and Medicine 19: 897–902.
Ambler, R. P., and M. Daniel. 1991. Proteins and molecular paleontology. Philosophical
Transactions of the Royal Society of London B 333: 381–389.
American Society for Testing and Materials (ASTM), 2011, p. 464–469 in D2799-11
Standard test method for microscopical determination of the maceral composition
of coal. ASTM International, West Conshohocken.
Anné, J., N. P. Edwards, R. A. Wogelius, A. R. Tumarkin-Deratzian, W. I. Sellers, A.
van Veelen, U. Bergmann, D. Sokaras, R. Alonso-Mori, K. Ignatyev, V. M.
Egerton, and P. L. Manning. 2014. Synchrotron imaging reveals bone healing and
remodelling strategies in extinct and extant vertebrates. Journal of the Royal
Society Interface 11: 20140277.
330
Apesteguía, S. 2007. The sauropod diversity of the La Amarga Formation (Barremian),
Neuquén (Argentina). Gondwana Research 12: 533–546.
Apesteguía, S., P. A. Gallina, and A. Haluza. 2010. Not just a pretty face: anatomical
peculiarities in the postcranium of rebbachisaurids (Sauropoda: Diplodocoidea).
Historical Biology 22: 165–174.
Argast, S., J. O. Farlow, R. M. Gabet, and D. L. Brinkman. 1987. Transport-induced
abrasion of fossil reptilian teeth: implications for the existence of Tertiary
dinosaurs in the Hell Creek Formation, Montana. Geology 15: 927–930.
Armitage, M. H., and K. L. Anderson. 2013. Soft sheets of fibrillar bone from a fossil of
the supraorbital horn of the dinosaur Triceratops horridus. Acta Histochemica
115: 603–608.
Asara, J. M., M. H. Schweitzer, L. M. Freimark, M. Phillips, and L. C. Cantley. 2007.
Protein sequences from mastodon and Tyrannosaurus rex revealed by mass
spectrometry. Science 316: 280–285.
Austin, J. J., A. B. Smith, and R. H. Thomas. 1997. Palaeontology in a molecular world:
the search for authentic ancient DNA. Trends in Ecology & Evolution 12: 303–
306.
Avci, R., M. H. Schweitzer, R. D. Boyd, J. L. Wittmeyer, F. T. Arce, and J. O. Calvo.
2005. Preservation of bone collagen from the Late Cretaceous period studied by
immunological techniques and atomic force microscopy. Langmuir 21: 3584–
3590.
Babcock, L. E., S. A. Leslie, D. H. Elliot, A. L. Stigall, L. A. Ford, and D. E. G. Briggs.
2006. The "preservation paradox": microbes as a key to exceptional fossil
preservation in the Kirkpatrick Basalt (Jurassic), Antarctica. The Sedimentary
Record 4: 4–8.
Bada, J. L. 1985. Amino acid racemization dating of fossil bones. Annual Reviews in
Earth and Planetary Science 13: 241–268.
Bada, J. L., and P. Helfman. 1975. Amino acid racemization dating of fossil bones.
World Archaeology 7: 160–173.
Bada, J. L., X. S. Wang, and H. Hamilton. 1999. Preservation of key biomolecules in the
fossil record: current knowledge and future challenges. Philosophical
Transactions of the Royal Society of London B 354: 77–87.
Badgley, C. 1986. Counting individuals in mammalian fossil assemblages from fluvial
environments. PALAIOS 1: 328–338.
331
Baird, R. F., and M. J. Rowley. 1990. Preservation of avian collagen in Australian
Quaternary cave deposits. Palaeontology 33: 447–451.
Barden, H. E., R. A. Wogelius, D. Li, P. Manning, N. P. Edwards, and B. E. Van
Dongen. 2011. Morphological and geochemical evidence of eumelanin
preservation in the feathers of the Early Cretaceous bird, Gansus yumenensis.
PLoS ONE 6: e25494.
Barden, H. E., U. Bergmann, N. P. Edwards, V. M. Egerton, P. L. Manning, S. Perry, A.
van Veelen, R. A. Wogelius, and B. E. van Dongen. 2015. Bacteria or
melanosomes? A geochemical analysis of micro-bodies on a tadpole from the
Oligocene Enspel Formation of Germany. Paleobiodiversity and
Palaeoenvironments 95: 33–45.
Bartlett, J. 1999. Taphonomy and characteristics of a diverse Maastrichtian assemblage:
The Sandy Site, Hell Creek Formation, South Dakota. Journal of Vertebrate
Paleontology 19 (Supp 3): 31A.
Behrensmeyer, A. K. 1975. The taphonomy and paleoecology of Plio-Pleistocene
vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin of the Museum of
Comparative Zoology 146: 473–578.
Behrensmeyer, A. K. 1978. Taphonomic and ecologic information from bone weathering.
Paleobiology 4: 150–162.
Behrensmeyer, A. K. 1988. Vertebrate preservation in fluvial channels. Palaeogeography,
Palaeoclimatology, Palaeoecology 63: 183–199.
Behrensmeyer, A. K. 1990. Transport/hydrodynamics of bones, p. 232–235 in Briggs, D.
E. G., and P. R. Crowther (eds.), Palaeobiology: a synthesis. Blackwell Scientific
Publications, Oxford.
Behrensmeyer, A. K., K. D. Gordon, and G. T. Yanagi. 1986. Trampling as a cause of
bone surface damage and pseudo-cutmarks. Nature 319: 768–771.
Behrensmeyer, A. K., R. W. Hook, C. E. Badgley, J. A. Boy, R. E. Chapman, P. Dodson,
R. A. Gastaldo, R. W. Graham, L. D. Martin, P. E. Olsen, R. A. Spicer, R. E.
Taggart, and M. V. H. Wilson. 1992. Paleoenvironmental contexts and
taphonomic modes, p. 15–136 in Behrensmeyer, A. K., J. D. Damuth, W. A.
DiMichele, R. Potts, H.-D. Sues, and S. L. Wing (eds.), Evolutionary
paleoecology of terrestrial plants and animals. Chicago University Press, Chicago.
Bell, P. 2007. The Danek Bonebed: an unusual dinosaur assemblage from the Horseshoe
Canyon Formation, Edmonton, Alberta. Journal of Vertebrate Paleontology 27
(Supp 3): 46A.
332
Benson, R. B. J., N. E. Campione, M. T. Carrano, P. D. Mannion, C. Sullivan, P.
Upchurch, and D. C. Evans. 2014. Rates of dinosaur body mass evolution indicate
170 million years of sustained ecological innovation on the avian stem lineage.
PLOS Biology 12: e1001853.
Bergmann, U., R. W. Morton, P. L. Manning, W. I. Sellers, S. Farrar, K. G. Huntley, R.
A. Wogelius, and P. Larson. 2010. Archaeopteryx feathers and bone chemistry
fully revealed via synchrotron imaging. Proceedings of the National Academy of
Sciences 107: 9060–9065.
Bergmann, U., P. L. Manning, and R. A. Wogelius. 2012. Chemical mapping of
paleontological and archeological artifacts with synchrotron x-rays. Annual
Review of Analytical Chemistry 5: 361–389.
Bergstrom, J. 1990. Hunsruck Slate, p. 277–279 in Briggs, D. E. G., and P. R. Crowther
(eds.), Paleobiology: a synthesis. Blackwell Scientific Publications, Oxford.
Bern, M., B. S. Phinney, and D. Goldberg. 2009. Reanalysis of Tyrannosaurus rex mass
spectra. Journal of Proteome Research 8: 4328–4332.
Berner, R. A. 1968. Calcium carbonate concretions formed by the decomposition of
organic matter. Science 159: 195–197.
Bertazzo, S., S. C. R. Maidment, C. Kallepitis, S. Fearn, M. M. Stevens, and H. Xie.
2015. Fibres and cellular structures preserved in 75-million-year-old dinosaur
specimens. Nature Communications 6: 7352.
Bierstedt, A., B. A. Stankiewicz, D. E. G. Briggs, and R. P. Evershed. 1998. Quantitative
and qualitative analysis of chitin in fossil arthropods using a combination of
colorimetric assay and pyrolysis-gas chromatography-mass spectrometry. The
Analyst 123: 139–145.
Bocherens, H., D. B. Brinkman, Y. Dauphin, and A. Mariotti. 1994. Microstructural and
geochemical investigations on Late Cretaceous archosaur teeth from Alberta,
Canada. Canadian Journal of Earth Sciences 31: 783–792.
Boggs, S., Jr. 2003. Petrology of sedimentary rocks. The Blackburn Press, Caldwell.
Bonaparte, J. F. 1986. Les dinosaures (Carnosaures, Allosauridés, Sauropodes,
Cétiosauridés) du Jurassique moyen de Cerro Cóndor (Chubut, Argentina).
Annales de Paléontologie 72: 325–386.
Bonaparte, J. F. 1999. An armoured sauropod from the Aptian of northern Patagonia,
Argentina. Proceedings of the Second Gondwanan Dinosaur Symposium 15: 1–
12.
333
Bonaparte, J. F., and R. A. Coría. 1993. Un nuevo y gigantesco saurópodo titanosaurio de
la Formación Río Limay (Albiano–Cenomaniano) de la provincia del Neuquén,
Argentina. Ameghiniana 30: 271–282.
Bonaparte, J. F., B. J. González Riga, and S. Apesteguía. 2006. Ligabuesaurus leanzai
gen. et sp. nov. (Dinosauria, Sauropoda), a new titanosaur from the Lohan Cura
Formation (Aptian, Lower Cretaceous) of Neuquén, Patagonia, Argentina.
Cretaceous Research 27: 364–376.
Bonnan, M. F. 2004. Morphometric analysis of humerus and femur shape in Morrison
sauropods: implications for functional morphology and paleobiology.
Paleobiology 30: 444–470.
Bonnan, M. F. 2005. Pes anatomy in sauropod dinosaurs: implications for functional
morphology, evolution, and phylogeny, p. 346–380 in Tidwell, V., and K.
Carpenter (eds.), Thunder-lizards: the sauropodomorph dinosaurs. Indiana
University Press, Bloomington.
Bonnan, M. F. 2007. Linear and geometric morphometric analysis of long bone scaling
patterns in Jurassic Neosauropod dinosaurs: their functional and paleobiological
implications. The Anatomical Record 290: 1089–1111.
Borsuk-Bialynicka, M. 1977. A new camarasaurid sauropod Opisthocoelicaudia
skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia. Palaeontologia
Polonica 37: 5–78.
Boyce, C. K., G. D. Cody, M. Feser, C. Jacobsen, A. H. Knoll, and S. Wirick. 2002.
Organic chemical differentiation within fossil plant cell walls detected with x-ray
spectromicroscopy. Geology 30: 1039–1042.
Brett, C. E. 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow
marine environments. PALAIOS 10: 597–616.
Brett, C. E., and G. C. Baird. 1986. Comparative taphonomy: a key to
paleoenvironmental interpretation based on fossil preservation. PALAIOS 1: 207–
227.
Briggs, D. E. G. 1999. Molecular taphonomy of animal and plant cuticles: selective
preservation and diagenesis. Philosophical Transactions of the Royal Society of
London B 354: 7–17.
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of softbodied fossils. Annual Reviews in Earth and Planetary Science 31: 275–301.
Briggs, D. E. G., and A. J. Kear. 1993. Fossilization of soft tissue in the laboratory.
Science 259: 1439–1442.
334
Briggs, D. E. G., P. R. Wilby, B. P. Pérez-Moreno, J. L. Sanz, and M. Fregenal-Martínez.
1997. The mineralization of dinosaur soft tissue in the Lower Cretaceous of Las
Hoyas, Spain. Journal of the Geological Society 154: 587.
Briggs, D. E. G., R. P. Evershed, and M. J. Lockheart. 2000. The biomolecular
paleontology of continental fossils. Paleobiology 26: 169–193.
Brochu, C. A. 1996. Closure of neurocentral sutures during crocodilian ontogeny:
implications for maturity assessment in fossil archosaurs. Journal of Vertebrate
Paleontology 16: 49–62.
Buckley, M., M. J. Collins, J. Thomas-Oates, and J. C. Wilson. 2009. Species
identification by analysis of bone collagen using matrix-assisted laser
desorption/ionisation time-of-flight mass spectrometry. Rapid Communications in
Mass Spectrometry 23: 3843–3854.
Buckley, M., N. Larkin, and M. Collins. 2011. Mammoth and Mastodon collagen
sequences; survival and utility. Geochimica et Cosmochimica Acta 75: 2007–
2016.
Burness, G. P., J. Diamond, and T. Flannery. 2001. Dinosaurs, dragons, and dwarfs: the
evolution of maximal body size. Proceedings of the National Academy of
Sciences 98: 14518–14523.
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the
taphonomy of the Burgess Shale. Paleobiology 16: 272–286.
Butterfield, N. J., U. Balthasar, and L. A. Wilson. 2007. Fossil diagenesis in the Burgess
Shale. Palaeontology 50: 537–543.
Cadena, E. A., and M. H. Schweitzer. 2012. Variation in osteocytes morphology vs bone
type in turtle shell and their exceptional preservation from the Jurassic to the
present. Bone 51: 614–620.
Cadena, E. A., and M. H. Schweitzer. 2014. A pelomedusoid turtle from the PaleoceneEocene of Colombia exhibiting preservation of blood vessels and osteocytes.
Journal of Herpetology 48: 461–465.
Calvo, J. O., and J. F. Bonaparte. 1991. Andesaurus delgadoi gen et sp. nov. (SaurischiaSauropoda), dinosaurio Titanosauridae de la Formación Río Limay (AlbianoCenomaniano), Neuquén, Argentina. Ameghiniana 28: 303–310.
Calvo, J. O., and B. J. González Riga. 2003. Rinconsaurus caudamirus gen. et sp. nov., a
new titanosaurid (Dinosauria, Sauropoda) from the Late Cretaceous of Patagonia,
Argentina. Revista Geológica de Chile 30: 333–353.
335
Calvo, J. O., B. J. González-Riga, and J. D. Porfiri. 2007a. A new titanosaur sauropod
from the Late Cretaceous of Neuquén, Patagonia, Argentina. Arquivos de Museo
Nacional, Rio de Janeiro 65: 485–504.
Calvo, J. O., J. D. Porfiri, B. J. González-Riga, and A. W. A. Kellner. 2007b. A new
Cretaceous terrestrial ecosystem from Gondwana with the description of a new
sauropod dinosaur. Anais de Academia Brasileira de Ciências 79: 529–541.
Campione, N. E., and D. C. Evans. 2011. Cranial growth and variation in edmontosaurs
(Dinosauria: Hadrosauridae): implications for latest Cretaceous megaherbivore
diversity in North America. PLoS ONE 6: e25186.
Campos, D., A. W. A. Kellner, R. J. Bertini, and R. M. Santucci. 2005. On a titanosaurid
(Dinosauria, Sauropoda) vertebral column from the Bauru Group, Late
Cretaceous of Brazil. Arquivos de Museo Nacional, Rio de Janeiro 63: 565–593.
Cappelini, E., L. J. Jensen, D. Szklarczyk, A. Ginolhac, R. A. R. da Fonseca, T. W.
Stafford Jr., S. R. Holen, M. J. Collins, L. Orlando, E. Willerslev, M. T. P.
Gilbert, and J. V. Olsen. 2011. Proteomic analysis of a Pleistocene mammoth
femur reveals more than one hundred ancient bone proteins. Journal of Proteome
Research 11: 917–926.
Carballido, J. L., D. Pol, I. Cerda, and L. Salgado. 2011. The osteology of Chubutisaurus
insignis del Corro, 1975 (Dinosauria: Neosauropoda) from the 'middle'
Cretaceous of central Patagonia, Argentina. Journal of Vertebrate Paleontology
31: 93–110.
Carballido, J. L., J. S. Marpmann, D. Schwarz-Wings, and B. Pabst. 2012a. New
information on a juvenile sauropod specimen from the Morrison Formation and
the reassessment of its systematic position. Palaeontology 55: 567–582.
Carballido, J. L., L. Salgado, D. Pol, J. I. Canudo, and A. Garrido. 2012b. A new basal
rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the
Neuquén Basin; evolution and biogeography of the group. Historical Biology 24:
631–654.
Carney, R. M., J. Vinther, M. D. Shawkey, L. D'Alba, and J. Ackermann. 2012. New
evidence on the colour and nature of the isolated Archaeopteryx feather. Nature
Communications 3: 1642.
Carpenter, K. 2005. Experimental investigation of the role of bacteria in bone
fossilization. Neues Jahrbuch für Geologie und Palӓontologie Monatshefte 2005:
83–94.
336
Carpenter, K. 2007. How to make a fossil: part 2 – dinosaur mummies and other soft
tissue. The Journal of Paleontological Science JPS.C.07.0002: 1–23.
Carrano, M. T. 2005. The evolution of sauropod locomotion: morphological diversity of a
secondarily quadrupedal radiation, p. 229–251 in Curry Rogers, K. A., and J. A.
Wilson (eds.), The sauropods: evolution and paleobiology. University of
California Press, Berkeley.
Carrano, M. T., and J. R. Hutchinson. 2002. Pelvic and hindlimb musculature of
Tyrannosaurus rex (Dinosauria: Theropoda). Journal of Morphology 253: 207–
228.
Cazalbou, S., D. Eichert, C. Drouet, C. Combes, and C. Rey. 2004. Mineralisations
biologiques a base de phosphate de calcium. Comptes Rendus Palevol 3: 563–
572.
Chadwick, A., L. Spencer, and L. Turner. 2006. Preliminary depositional model for an
Upper Cretaceous Edmontosaurus bonebed. Journal of Vertebrate Paleontology
26 (Supp 3): 49A.
Chan, M. A., J. Ormo, A. J. Park, M. Stich, V. Souza-Egipsy, and G. Komatsu. 2007.
Models of iron oxide concretion formation: field, numerical, and laboratory
comparisons. Geofluids 7: 1–13.
Child, A. M. 1995. Microbial taphonomy of archaeological bone. Studies in Conservation
40: 19–30.
Child, A. M., R. D. Gillard, and A. M. Pollard. 1993. Microbially-induced promotion of
amino acid racemization in bone: isolation of the microorganisms and the
detection of their enzymes. Journal of Archaeological Science 20: 159–168.
Chin, K., D. A. Eberth, M. H. Schweitzer, T. A. Rando, W. J. Sloboda, and J. R. Horner.
2003. Remarkable preservation of undigested muscle tissue within a Late
Cretaceous tyrannosaurid coprolite from Alberta, Canada. PALAIOS 18: 286–
294.
Chinsamy, A., and M. A. Raath. 1992. Preparation of fossil bone for histological
examination. Palaeontologia Africana 29: 39–44.
Christian, A., and G. Dzemski. 2011. Neck posture in sauropods, p. 251–262 in Klein, N.,
K. Remes, C. T. Gee, and M. Sander (eds.), Biology of the sauropod dinosaurs:
understanding the life of giants. Indiana University Press, Bloomington.
Christians, J. P. 1992. Taphonomy and sedimentology of the Mason Dinosaur Quarry,
Hell Creek Formation (Upper Cretaceous), South Dakota. M.S. thesis, University
of Wisconsin, Madison, 91 pp.
337
Clarke, J. A., D. T. Ksepka, R. Salas-Gismondi, A. J. Altamirano, M. D. Shawkey, L.
D'Alba, J. Vinther, T. J. DeVries, and P. Baby. 2010. Fossil evidence for
evolution of the shape and color of penguin feathers. Science 330: 954–957.
Cleland, T. P. 2012. Mode of preservation and characterization of soft tissues and
molecules in exceptionally preserved fossils. Ph.D. dissertation, North Carolina
State University, Raleigh, 177 pp.
Cleland, T. P., K. K. Voegele, and M. H. Schweitzer. 2012. Empirical evaluation of
methodology related to the extraction of bone proteins. PLoS ONE 7: e31443.
Cobban, W. A., and J. B. Reeside, Jr. 1952. Correlation of the Cretaceous formations of
the Western Interior of the United States. Bulletin of the Geological Society of
America 63: 1011–1044.
Cody, G. D., N. S. Gupta, D. E. G. Briggs, A. L. D. Kilcoyne, R. Summons, F. Kenig, R.
E. Plotnick, and A. C. Scott. 2011. Molecular signature of chitin-protein complex
in Paleozoic arthropods. Geology 39: 255–258.
Coleman, M. L. 1993. Microbial processes: controls on the shape and composition of
carbonate concretions. Marine Geology 113: 127–140.
Collins, M. J., and A. M. Gernaey. 2001. Proteins, p. 245–247 in Briggs, D. E. G., and P.
R. Crowther (eds.), Palaeobiology II. Blackwell Scientific Publications, Oxford.
Collins, M. J., E. R. Waite, and A. C. T. van Duin. 1999. Predicting protein
decomposition: the case of aspartic-acid racemization kinetics. Philosophical
Transactions of the Royal Society of London B 354: 51–64.
Collins, M. J., A. M. Gernaey, C. M. Nielsen-Marsh, C. Vermeer, and P. Westbroek.
2000. Slow rates of degradation of osteocalcin: green light for fossil bone protein?
Geology 28: 1139–1142.
Collins, M. J., C. M. Nielsen-Marsh, J. Hiller, C. I. Smith, J. P. Roberts, R. V. Prigodich,
T. J. Wess, J. Csapo, A. R. Millard, and G. Turner-Walker. 2002. The survival of
organic matter in bone: a review. Archaeometry 44: 383–394.
Collins, M. J., D. Walton, G. B. Curry, M. S. Riley, T. N. Von Wallmenich, N. M.
Savage, G. Muyzer, and P. Westbroek. 2003. Long-term trends in the survival of
immunological epitopes entombed in fossil brachiopod skeletons. Organic
Geochemistry 34: 89–96.
338
Collins, M. J., K. E. H. Penkman, N. Rohland, B. Shapiro, R. C. Dobberstein, S. RitzTimme, and M. Hofreiter. 2009. Is amino acid racemization a useful tool for
screening for ancient DNA in bone? Proceedings of the Royal Society B 276:
2971–2977.
Colson, M. C., R. O. Colson, and R. Nellermoe. 2004. Stratigraphy and depositional
environments of the upper Fox Hills and lower Hell Creek Formations at the
Concordia Hadrosaur Site in northwestern South Dakota. Rocky Mountain
Geology 39: 93–111.
Company, J., X. Pereda-Suberbiola, and J. I. Ruiz-Omeñaca. 2009. Nuevos restos fósiles
del dinosaurio Lirainosaurus (Sauropoda, Titanosauria) en el Cretácico Superior
(Campaniano-Maastrichtiano) de la Península Ibérica. Ameghiniana 46: 391–405.
Coto, B., C. Martos, J. L. Peña, R. Rodríguez, and G. Pastor. 2012. Effects in the
solubility of CaCO3: experimental study and model description. Fluid Phase
Equilibria 324: 1–7.
Csiki, Z., V. Codrea, C. Jipa-Murzea, and C.-N. Pascal Godefroit. 2010. A partial
titanosaur (Sauropoda, Dinosauria) skeleton from the Maastrichtian of Nălaţ-Vad,
Haţeg Basin, Romania. Neus Jahrbuch für Geologie und Paläontologie,
Abhandlungen 258: 297–324.
Currie, P. J., J. K. Rigby, Jr., and R. E. Sloan. 1990. Theropod teeth from the Judith River
Formation of southern Alberta, Canada, p. 107–125 in Carpenter, K., and P. J.
Currie (eds.), Dinosaur systematics: perspectives and approaches. Cambridge
University Press, Cambridge.
Curry, G. B. 1987. Molecular palaeontology: new life for old molecules. Trends in
Ecology & Evolution 2: 161–165.
Curry, G. B. 1990. Molecular palaeontology, p. 95–100 in Briggs, D. E. G., and P. R.
Crowther (eds.), Paleobiology: a synthesis. Blackwell Scientific Publications,
Oxford.
Curry Rogers, K. 2005. Titanosauria: a phylogenetic overview, p. 50–103 in Curry
Rogers, K., and J. A. Wilson (eds.), The sauropods: evolution and paleobiology.
University of California Press, Berkeley.
Curry Rogers, K. 2009. The postcranial osteology of Rapetosaurus krausei (Sauropoda:
Titanosauria) from the Late Cretaceous of Madagascar. Journal of Vertebrate
Paleontology 29: 1046–1086.
339
Curtis, C. D., and M. L. Coleman. 1986. Controls on the precipitation of early diagenetic
calcite, dolomite and siderite concretions in complex depositional sequences.
Society of Economic Paleontologists and Mineralogists, Roles of Organic Matter
in Sediment Diagenesis SP38.
D'Emic, M. D. 2012. The early evolution of titanosauriform sauropod dinosaurs.
Zoological Journal of the Linnean Society 166: 624–671.
D'Emic, M. D., and B. Z. Foreman. 2012. The beginning of the sauropod dinosaur hiatus
in North America: insights from the Lower Cretaceous Cloverly Formation of
Wyoming. Journal of Vertebrate Paleontology 32: 883–902.
D'Emic, M. D., J. A. Wilson, and T. E. Williamson. 2011. A sauropod dinosaur pes from
the latest Cretaceous of North America and the validity of Alamosaurus
sanjuanensis (Sauropoda, Titanosauria). Journal of Vertebrate Paleontology 31:
1072–1079.
Dal Sasso, C., and M. Signore. 1998. Exceptional soft-tissue preservation in a theropod
dinosaur from Italy. Nature 392: 383–387.
Daniel, J. C., and K. Chin. 2010. The role of bacterially mediated precipitation in the
permineralization of bone. PALAIOS 25: 507–516.
Day, J. J., P. Upchurch, D. B. Norman, A. S. Gale, and H. P. Powell. 2002. Sauropod
trackways, evolution, and behavior. Science 296: 1659.
De Baar, H. J. W., M. P. Bacon, and P. G. Brewer. 1983. Rare-earth distributions with a
positive Ce anomaly in the Western North Atlantic Ocean. Nature 301: 324–327.
De Jong, E. W., P. Westbroek, J. F. Westbroek, and J. W. Bruning. 1974. Preservation of
antigenic properties of macromolecules over 70 Myr. Nature 252: 63–64.
De Leeuw, J. W., and C. Largeau. 1993. A review of macromolecular organic compounds
that comprise living organisms and their role in kerogen, coal, and petroleum
formation, p. 23–72 in Engel, M. H., and S. A. Macko (eds.), Organic
geochemistry. Plenum Press, New York.
De Leeuw, J. W., P. F. Van Bergen, B. G. K. Van Aarssen, J.-P. L. A. Gatellier, J. S.
Sinninghe Damste, and M. E. Collinson. 1991. Resistant biomacromolecules as
major contributors to kerogen. Philosophical Transactions of the Royal Society of
London B 333: 329–337.
DeNiro, M. J., and S. Weiner. 1988. Chemical, enzymatic and spectroscopic
characterization of "collagen" and other organic fractions from prehistoric bones.
Geochimica et Cosmochimica Acta 52: 2197–2206.
340
DeSalle, R., M. Barcia, and C. Wray. 1993. PCR jumping in clones of 30-million-yearold DNA fragments from amber preserved termites (Mastotermes
electrodominicus). Experientia 49: 906–909.
Derstler, K. 1995. The Dragon's Grave – an Edmontosaurus bonebed containing theropod
eggshells and juveniles, Lance Formation (Uppermost Cretaceous), Niobrara
County, Wyoming. Journal of Vertebrate Paleontology 15 (Supp 3); 26A.
Díez Díaz, V., X. Pereda Superbiola, and J. L. Sanz. 2013. Appendicular skeleton and
dermal armour of the Late Cretaceous titanosaur Lirainosaurus astibia
(Dinosauria: Sauropoda) from Spain. Palaeontologia Electronica 16: 19A.
Dilkes, D. W. 1999. Appendicular myology of the hadrosaurian dinosaur Maiasaura
peeblesorum from the Late Cretaceous (Campanian) of Montana. Transactions of
the Royal Society of Edinburgh, Earth Sciences 90: 87–125.
Dobberstein, R. C., M. J. Collins, O. E. Craig, G. Taylor, K. E. H. Penkman, and S. RitzTimme. 2009. Archaeological collagen: why worry about collagen diagenesis?
Archaeological and Anthropological Science 1: 31–42.
Doberenz, A. R., and R. Lund. 1966. Evidence for collagen in a fossil of the Lower
Jurassic. Nature 212: 1502–1503.
Dumont, M., A. Kostka, P. M. Sander, A. Borbely, and A. Kaysser-Pyzalla. 2011. Size
and size distribution of apatite crystals in sauropod fossil bones. Palaeogeography,
Palaeoclimatology, Palaeoecology 310: 108–116.
Dunn, K. A., R. J. C. McLean, G. R. Upchurch, and R. L. Folk. 1997. Enhancement of
leaf fossilization potential by bacterial biofilms. Geology 25: 1119–1122.
Dutta, S., C. Hartkopf-Froder, U. Mann, H. Wilkes, R. Brocke, and N. Bertram. 2009.
Macromolecular composition of Palaeozoic scolecodonts: insights into the
molecular taphonomy of zoomorphs. Lethaia 43: 334–343.
Eberth, D. A., R. R. Rogers, and A. R. Fiorillo. 2007. A practical approach to the study of
bonebeds, p. 265–332 in Rogers, R. R., D. A. Eberth, and A. R. Fiorillo (eds.),
Bonebeds: genesis, analysis, and paleobiological significance. University of
Chicago Press, Chicago.
Edwards, N. P., H. E. Barden, B. E. Van Dongen, P. L. Manning, P. L. Larson, U.
Bergmann, W. I. Sellers, and R. A. Wogelius. 2011. Infrared mapping resolves
soft tissue preservation in 50 million year-old reptile skin. Proceedings of the
Royal Society B 278: 3209–3218.
341
Edwards, N. P., R. A. Wogelius, U. Bergmann, P. Larson, W. I. Sellers, and P. L.
Manning. 2013. Mapping prehistoric ghosts in the synchrotron. Applied Physics
A 111: 147–155.
Egerton, V. M. 2011. The geology, paleontology and paleoecology of the Cerro Fortaleza
Formation, Patagonia (Argentina). Ph.D. dissertation, Drexel University,
Philadelphia, 275 pp.
Eglinton, G., and G. A. Logan. 1991. Molecular preservation. Philosophical Transactions
of the Royal Society of London B 333: 315–328.
Ehrlich, H. L. 1996. How microbes influence mineral growth and dissolution. Chemical
Geology 132: 5–9.
Eigenbrode, J. L. 2008. Fossil lipids for life-detection: a case study from the early Earth
record. Space Science Reviews 135: 161–185.
Elderfield, H., and M. J. Greaves. 1982. The rare earth elements in seawater. Nature 296:
214–219.
Elderfield, H., and E. R. Sholkovitz. 1987. Rare earth elements in the pore waters of
reducing nearshore sediments. Earth and Planetary Science Letters 82: 280–288.
Elderfield, H., R. Upstill-Goddard, and E. R. Sholkovitz. 1990. The rare earth elements in
rivers, estuaries, and coastal seas and their significance to the composition of
ocean waters. Geochimica et Cosmochimica Acta 54: 971–991.
Elorza, J., H. Astibia, X. Murelaga, and X. Pereda-Suberbiola. 1999. Francolite as a
diagenetic mineral in dinosaur and other Upper Cretaceous reptile bones (Lano,
Iberian Peninsula): microstructural, petrological and geochemical features.
Cretaceous Research 20: 169–187.
Embery, G., A. C. Milner, R. J. Waddington, R. C. Hall, M. S. Langley, and A. M. Milan.
2000. The isolation and detection of non-collagenous proteins from the compact
bone of the dinosaur Iguanodon. Connective Tissue Research 41: 249–259.
Embery, G., A. C. Milner, R. J. Waddington, R. C. Hall, M. S. Langley, and A. M. Milan.
2003. Identification of proteinaceous material in the bone of the dinosaur
Iguanodon. Connective Tissue Research 44 (Supp 1): 41–46.
Endo, K., D. Walton, R. A. Reyment, and G. B. Curry. 1995. Fossil intra-crystalline
biomolecules of brachiopod shells: diagenesis and preserved geo-biological
information. Organic Geochemistry 23: 661–673.
Ennever, J., J. J. Vogel, and J. L. Streckfuss. 1974. Calcification by Escherischia coli.
Journal of Bacteriology 119: 1061–1062.
342
Erickson, G. M., B. A. Krick, M. Hamilton, G. R. Bourne, M. A. Norell, E. Lilleodden,
and W. G. Sawyer. 2012. Complex dental structure and wear biomechanics in
hadrosaurid dinosaurs. Science 338: 98–100.
Farmer, J. 1999. Taphonomic modes in microbial fossilization, p. 94–102 in Farmer, J.,
M. L. Fogel, J. Lawrence, M. I. Lester, and G. J. Olsen (eds.), Size limits of very
small organisms: proceedings of a workshop. National Academy Press,
Washington.
Farrimond, P., and G. Eglinton. 1990. The record of organic components and the nature
of source rocks, p. 217–222 in Briggs, D. E. G., and P. R. Crowther (eds.),
Paleobiology: a synthesis. Blackwell Scientific Publications, Oxford.
Fernandez-Jalvo, Y., P. Andrews, D. Pesquero, C. Smith, D. Marin-Monfort, B. Sanchez,
E. M. Geigel, and A. Alonso. 2010. Early bone diagenesis in temperate
environments part I: surface features and histology. Palaeogeography,
Palaeoclimatology, Palaeoecology 288: 62–81.
Ferris, F. G., W. S. Fyfe, and T. J. Beveridge. 1988. Metallic ion binding by Bacillus
subtilis: implications for the fossilization of microorganisms. Geology 16: 149–
152.
Field, D. J., L. D'Alba, J. Vinther, S. M. Webb, W. Gearty, and M. D. Shawkey. 2013.
Melanin concentration gradients in modern and fossil feathers. PLoS ONE 8:
e59451.
Filippi, L. S., and A. C. Garrido. 2008. Pitekunsaurus macayai gen. et sp. nov., nuevo
titanosaurio (Saurischia, Sauropoda) del Cretácico Superior de la Cuenca
Neuquina, Argentina. Ameghiniana 45: 575–590.
Filippi, L. S., R. A. García, and A. C. Garrido. 2011a. A new titanosaur sauropod
dinosaur from the Upper Cretaceous of north Patagonia, Argentina. Acta
Palaeontologica Polonica 56: 505–520.
Filippi, L. S., J. I. Canudo, J. L. Salgado, A. C. Garrido, R. A. García, I. Cerda, and A.
Otero. 2011b. A new sauropod titanosaur from the Plottier Formation (Upper
Cretaceous) of Patagonia (Argentina). Geological Acta 9: 1–12.
Fiorillo, A. R. 1988. Taphonomy of Hazard Homestead Quarry (Ogallala Group),
Hitchcock County, Nebraska. University of Wyoming Contributions to Geology
26: 57–97.
Fiorillo, A. R. 1991a. Taphonomy and depositional setting of Careless Creek Quarry
(Judith River Formation), Wheatland County, Montana, U.S.A. Palaeogeography,
Palaeoclimatology, Palaeoecology 81: 281–311.
343
Fiorillo, A. R. 1991b. Prey bone utilization by predatory dinosaurs. Palaeogeography,
Palaeoclimatology, Palaeoecology 88: 157–166.
Fogel, M. L., and N. Tuross. 1999. Transformation of plant biochemicals to geological
macromolecules during early diagenesis. Oecologia 120: 336–346.
Fowler, D. W., and R. M. Sullivan. 2012. The first giant titanosaurian sauropod from the
Upper Cretaceous of North America. Acta Palaeontologica Polonica 56: 685–690.
Francillon-Vieillot, H., V. de Buffrénil, J. Castanet, J. Géraudie, F. J. Meunier, J. Y. Sire,
L. Zylberberg, and A. de Ricqlès. 1990. Microstructure and mineralization of
vertebrate skeletal tissues, p. 471–547 in Carter, J.G. (ed.), Skeletal
biomineralization: patterns, processes and evolutionary trends. Van Nostrand
Reinhold, New York.
Franco-Rosas, A. C., L. Salgado, C. F. Rosas, and I. Carvalho. 2004. Nuevos materiales
de titanosaurios (Sauropoda) en el Cretácico Superior de Mato Grosso, Brasil.
Revista Brasileira de Paleontologia 7: 329–336.
Franks, P. C. 1969. Nature, origin, and significance of cone-in-cone structures in the
Kiowa Formation (Early Cretaceous), north-central Kansas. Journal of
Sedimentary Research 39: 1438–1454.
Franzen, J. L. 1990. Grube Messel, p. 289–293 in Briggs, D. E. G., and P. R. Crowther
(eds.), Palaeobiology: a synthesis. Blackwell Scientific Publications, Oxford.
Fricke, H. 2007. Stable isotope geochemistry of bonebed fossils: reconstructing
paleoenvironments, paleoecology, and paleobiology, p. 437–490 in Rogers, R. R.,
D. A. Eberth, and A. R. Fiorillo (eds.), Bonebeds: genesis, analysis, and
paleobiological significance. University of Chicago Press, Chicago.
Fricke, H. C., R. R. Rogers, R. Backlund, C. N. Dwyer, and S. Echt. 2008. Preservation
of primary stable isotope signals in dinosaur remains, and environmental
gradients of the Late Cretaceous of Montana and Alberta. Investigating climates,
environments and biology using stable isotopes 266: 13–27.
Frye, C. I. 1969. Stratigraphy of the Hell Creek Formation in North Dakota. North
Dakota Geological Survey Bulletin 54: 1–65.
Gadd, G. M. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation.
Microbiology 156: 609–643.
Gallina, P. A., and S. Apesteguía. 2011. Cranial anatomy and phylogenetic position of the
titanosaurian sauropod Bonitasaura salgadoi. Acta Palaeontologica Polonica 56:
45–60.
344
Gangloff, R. A., and A. R. Fiorillo. 2010. Taphonomy and paleoecology of a bonebed
from the Prince Creek Formation, north slope, Alaska. PALAIOS 25: 299–317.
Garcia, G., S. Amico, F. Fournier, E. Thouand, and X. Valentin. 2010. A new titanosaur
genus (Dinosauria, Sauropoda) from the Late Cretaceous of southern France and
its paleobiogeographic implications. Bulletin de la Société Géologique de France
181: 269–277.
García, R. A., and L. Salgado. 2011. The titanosaur sauropods from the Allen Formation
(late Campanian–early Maastrichtian) of Salitral Moreno (Patagonia, Río Negro,
Argentina). Acta Palaeontologica Polonica 58: 269–284.
Gates, T. A. 2005. The Late Jurassic Cleveland-Lloyd Dinosaur Quarry as a droughtinduced assemblage. PALAIOS 20: 363–375.
Geigl, E. 2002. On the circumstances surrounding the preservation and analysis of very
old DNA. Archaeometry 44: 337–342.
German, C. R., B. P. Holliday, and H. Elderfield. 1991. Redox cycling of rare earth
elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica
Acta 55: 3553–3558.
German, C. R., T. Masuzawa, M. J. Greaves, H. Elderfield, and J. M. Edmond. 1995.
Dissolved rare earth elements in the Southern Ocean: cerium oxidation and the
influence of hydrography. Geochimica et Cosmochimica Acta 59: 1551–1558.
Gilmore, C. W. 1922. A new sauropod dinosaur from the Ojo Alamo Formation of New
Mexico. Smithsonian Miscellaneous Collections 72: 1–9.
Gilmore, C. W. 1946. Reptilian fauna of the North Horn Formation of central Utah.
United States Department of the Interior Geological Survey 210-C: 29–53.
Glass, K., S. Ito, P. R. Wilby, T. Sota, A. Nakamura, C. Russell Bowers, J. Vinther, S.
Dutta, R. Summons, D. E. G. Briggs, K. Wakamatsu, and J. D. Simon. 2012.
Direct chemical evidence for eumelanin pigment from the Jurassic period.
Proceedings of the National Academy of Sciences 109: 10218–10223.
Glass, K., S. Ito, P. R. Wilby, T. Sota, A. Nakamura, C. Russell Bowers, K. E. Miller, S.
Dutta, R. Summons, D. E. G. Briggs, K. Wakamatsu, and J. D. Simon. 2013.
Impact of diagenesis and maturation on the survival of eumelanin in the fossil
record. Organic Geochemistry 64: 29–37.
Glimcher, M. J., L. Cohen-Solal, D. Kossiva, and A. de Ricqlès. 1990. Biochemical
analyses of fossil enamel and dentin. Paleobiology 16: 219–232.
345
Goldstein, S. J., and S. B. Jacobsen. 1988. Rare earth elements in river waters. Earth and
Planetary Science Letters 89: 35–47.
Gomani, E. M. 2005. Sauropod dinosaurs from the Early Cretaceous of Malawi, Africa.
Palaeontologia Electronica 8: 27A.
Gomez, B., C. Martín-Closas, G. Barale, N. Solé de Porta, F. Thévenard, and G.
Guignard. 2002. Frenelopsis (Coniferales: Cheirolepidiaceae) and related male
organ genera from the Lower Cretaceous of Spain. Palaeontology 45: 997–1036.
González Riga, B. J. 2003. A new titanosaur (Dinosauria, Sauropoda) from the Upper
Cretaceous of Mendoza Province, Argentina. Ameghiniana 40: 155–172.
González Riga, B. J. 2011. Speeds and stance of titanosaur sauropods: analysis of
Titanopodus tracks from the Late Cretaceous of Mendoza, Argentina. Anais da
Academia Brasileira de Ciências 83: 279–290.
Goodwin, M. B., P. G. Grant, G. Bench, and P. A. Holroyd. 2007. Elemental composition
and diagenetic alteration of dinosaur bone: distinguishing micron-scale spatial and
compositional heterogeneity using PIXE. Palaeogeography, Palaeoclimatology,
Palaeoecology 253: 458–476.
Greenwalt, D. E., Y. S. Goreva, S. M. Siljestrom, T. Rose, and R. E. Harbach. 2013.
Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged
mosquito. Proceedings of the National Academy of Sciences 110: 18496–18500.
Gromet, L. P., R. F. Dymek, L. A. Haskin, and R. L. Korotev. 1984. The "North
American shale composite": its compilation, major and trace element
characteristics. Geochimica et Cosmochimica Acta 48: 2469–2482.
Grupe, G. 1995. Preservation of collagen in bone from dry, sandy soil. Journal of
Archaeological Science 22: 193–199.
Grupe, G., and H. Piepenbrink. 1989. Impact of microbial activity on trace element
concentrations in excavated bones. Applied Geochemistry 4: 293–298.
Gueriau, P., C. Mocuta, D. B. Dutheil, S. X. Cohen, D. Thiaudiere, S. Charbonnier, G.
Clement, and L. Bertrand. 2014. Trace elemental imaging of rare earth elements
discriminates tissues at microscale in flat fossils. PLoS ONE 9: e86946.
Guimaraes, A. F., V. S. T. Ciminelli, and W. L. Vasconcelos. 2007. Surface modification
of synthetic clay aimed at biomolecule adsorption: synthesis and characterization.
Materials Research 10: 37–41.
346
Gunga, H.-C., K. Kirsch, J. Rittweger, L. Röcker, A. Clarke, J. Albertz, A. Wiedemann,
S. Mokry, T. Suthau, A. Wehr, W.-D. Heinrich, and H.-P. Schultze. 1999. Body
size and body volume distribution in two sauropods from the Upper Jurassic of
Tendaguru (Tanzania). Mitteilungen aus dem Museum für Naturkunde der
Humboldt-Universitӓt Berlin, Geowissenschaftliche Reihe 2: 91–102.
Gunji, T., and S. Kobayashi. 1983. Distribution and organization of odontoblast
processes in human dentin. Archivum Histologicum Japonicum 46: 213–219.
Gupta, N. S., D. E. G. Briggs, M. E. Collinson, R. P. Evershed, R. Michels, and R. D.
Pancost. 2007. Molecular preservation of plant and insect cuticles from the
Oligocene Enspel Formation, Germany: evidence against derivation of aliphatic
polymer from sediment. Organic Geochemistry 38: 404–418.
Gupta, N. S., O. Cambra-Moo, D. E. G. Briggs, G. D. Love, M. A. Fregenal-Martinez,
and R. E. Summons. 2008. Molecular taphonomy of macrofossils from the
Cretaceous Las Hoyas Formation, Spain. Cretaceous Research 29: 1–8.
Gurley, L. R., J. G. Valdez, W. D. Spall, B. F. Smith, and D. D. Gillette. 1991. Proteins
in fossil bone of the dinosaur, Seismosaurus. Journal of Protein Chemistry 10: 75–
90.
Hagelberg, E., L. S. Bell, T. Allen, A. Boyde, S. J. Jones, and J. B. Clegg. 1991. Analysis
of ancient bone DNA: techniques and applications. Philosophical Transactions of
the Royal Society of London B 333: 399–407.
Haley, B. A., G. P. Klinkhammer, and J. McManus. 2004. Rare earth elements in pore
waters of marine sediments. Geochimica et Cosmochimica Acta 68: 1265–1279.
Hammes, F., and W. Verstraete. 2002. Key roles of pH and calcium metabolism in
microbial carbonate precipitation. Re/Views in Environmental Science and
Bio/Technology 1: 3–7.
Harper, E., and A. H. Kang. 1970. Studies on the specificity of bacterial collagenase.
Biochemical and Biophysical Research Communications 41: 482–487.
Harris, J. 2007. The appendicular skeleton of Suuwassea emilieae (Sauropoda:
Flagellicaudata) from the Upper Jurassic Morrison Formation of Montana (USA).
Geobios 40: 501–522.
Haskin, L. A., M. A. Haskin, F. A. Frey, and T. R. Wildeman. 1968. Relative and
absolute terrestrial abundances of the rare earths, p. 889–912 in Ahrens, L. H.
(ed.), Origin and distribution of the elements. Pergamon, Oxford.
347
Haynes, S., J. B. Searle, A. Bretman, and K. M. Dobney. 2002. Bone preservation and
ancient DNA: the application of screening methods for predicting DNA survival.
Journal of Archaeological Science 29: 585–592.
Hedges, R. E. M. 2002. Bone diagenesis: an overview of processes. Archaeometry 44:
319–328.
Hedges, R. E. M., and A. R. Millard. 1995. Measurements and relationships of diagenetic
alteration of bone from three archaeological sites. Journal of Archaeological
Science 22: 201–209.
Henderson, D. M. 2006. Burly gaits: centers of mass, stability, and the trackways of
sauropod dinosaurs. Journal of Vertebrate Paleontology 26: 907–921.
Herwartz, D., T. Tütken, C. Munker, K. P. Jochum, B. Stoll, and P. M. Sander. 2011.
Timescales and mechanisms of REE and Hf uptake in fossil bones. Geochimica et
Cosmochimica Acta 75: 82–105.
Herwartz, D., C. Munker, T. Tütken, J. E. Hoffmann, A. Wittke, and B. Barbier. 2013a.
Lu-Hf isotope systematics of fossil biogenic apatite and their effects on
geochronology. Geochimica et Cosmochimica Acta 101: 328–343.
Herwartz, D., T. Tütken, K. P. Jochum, and P. M. Sander. 2013b. Rare earth element
systematics of fossil bone revealed by LA-ICPMS analysis. Geochimica et
Cosmochimica Acta 103: 161–183.
Hinz, E. A., and M. J. Kohn. 2010. The effect of tissue structure and soil chemistry on
trace element uptake in fossils. Geochimica et Cosmochimica Acta 74: 3213–
3231.
Hirschler, A., J. Lucas, and J.-C. Hubert. 1990. Apatite genesis: a biologically induced or
biologically controlled mineral formation process? Geomicrobiology Journal 7:
47–57.
Hocknull, S. A., M. A. White, T. R. Tischler, A. G. Cook, N. D. Calleja, T. Sloan, and D.
A. Elliott. 2009. New mid-Cretaceous (latest Albian) dinosaurs from Winton,
Queensland, Australia. PLoS ONE 4: e6190.
Hofreiter, M., D. Serre, H. N. Poinar, M. Kuch, and S. Pӓӓbo. 2001. Ancient DNA.
Nature Reviews 2: 353–359.
Hoganson, J. W., J. M. Campbell, and E. C. Murphy. 1994. Stratigraphy and
paleontology of the Cretaceous Hell Creek Formation, Stumpf Site, Morton
County, North Dakota. North Dakota Academy of Science Proceedings 48: 95.
348
Horner, J. R. 1994. Comparative taphonomy of some dinosaur and extant bird colonial
nesting grounds, p. 116–123 in Carpenter, K., K. F. Hirsch, and J. R. Horner
(eds.), Dinosaur eggs and babies. Cambridge University Press, Cambridge.
Horner, J. R., A. de Ricqlès, and K. Padian. 2000. Long bone histology of the hadrosaurid
dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an
ontogenetic series of skeletal elements. Journal of Vertebrate Paleontology 20:
115–129.
Hoyle, J., H. Elderfield, A. Gledhill, and M. Greaves. 1984. The behaviour of the rare
earth elements during mixing of river and sea waters. Geochimica et
Cosmochimica Acta 48: 143–149.
Hubert, J. F., P. T. Panish, D. J. Chure, and K. S. Prostak. 1996. Chemistry,
microstructure, petrology, and diagenetic model of Jurassic dinosaur bones,
Dinosaur National Monument, Utah. Journal of Sedimentary Research 66: 531–
547.
Huene, F. von. 1929. Los saurisquios y ornitisquios del Cretacéo Argentino. Anales del
Museo de la Plata III: 1–196.
Huene, F. von. 1932. Die fossile reptil-ordnung Saurischia, ihre Entwicklung und
Geschichte. Monographien zur Geologie und Palaeontologie, Serie 1 4: 1–361.
Humpula, J. F., P. H. Ostrom, H. Gandhi, J. R. Strahler, A. K. Walker, T. W. Stafford Jr.,
J. J. Smith, M. R. Voorhies, R. G. Corner, and P. C. Andrews. 2007. Investigation
of the protein osteocalcin of Camelops hesternus: sequence, structure and
phylogenetic implications. Geochimica et Cosmochimica Acta 71: 5956–5967.
Huq, N. L., S. M. Rambaud, L.-C. Teh, A. D. Davies, B. McCulloch, M. M. Trotter, and
G. E. Chapman. 1985. Immunochemical detection and characterisation of
osteocalcin from moa bone. Biochemical and Biophysical Research
Communications 129: 714–720.
Iacumin, P., H. Bocherens, A. Mariotti, and A. Longinelli. 1996. Oxygen isotope
analyses of co-existing carbonate and phosphate in biogenic apatite: a way to
monitor diagenetic alteration of bone phosphate? Earth and Planetary Science
Letters 142: 1–6.
Ibiricu, L. M. 2010. Evolution of the caudal vertebral series in macronarian sauropod
dinosaurs: morphofunctional and phylogenetic implications. Ph.D. dissertation,
Drexel University, Philadelphia, 343 pp.
Ibiricu, L. M., M. C. Lamanna, and K. J. Lacovara. 2014. The influence of caudofemoral
musculature on the titanosaurian (Saurischia: Sauropoda) tail skeleton:
morphological and phylogenetic implications. Historical Biology 26: 454–471.
349
Ikejiri, T. 2004. Anatomy of Camarasaurus lentus (Dinosauria: Sauropoda) from the
Morrison Formation (Late Jurassic), Thermopolis, central Wyoming, with
determination and interpretation of ontogenetic, sexual dimorphic, and individual
variation in the genus. M.S. thesis, Fort Hays State University, Hays, 339 pp.
Ikejiri, T., V. Tidwell, and D. L. Trexler. 2005. New adult specimens of Camarasaurus
lentus highlight ontogenetic variation within the species, p. 154–179 in Tidwell,
V., and K. Carpenter (eds.), Thunder-lizards: the sauropodomorph dinosaurs.
Indiana University Press, Bloomington.
International Committee for Coal and Organic Petrology (ICCP). 1998. The new vitrinite
classification. Fuel 77: 349–358.
International Committee for Coal and Organic Petrology (ICCP). 2001. The new
inertinite classification. Fuel 80: 459–471.
Jacobs, L. L., D. A. Winkler, W. R. Downs, and E. M. Gomani. 1993. New material of an
Early Cretaceous titanosaurid sauropod dinosaur from Malawi. Palaeontology 36:
523–534.
Jacobsen, A. R., and M. J. Ryan. 1999. Taphonomic aspects of theropod tooth-marked
bones from an Edmontosaurus bone bed (Lower Maastrichtian), Alberta, Canada.
Journal of Vertebrate Paleontology 19 (Supp 3): 55A.
Jain, S. L., and S. Bandyopadhyay. 1997. New titanosaurid (Dinosauria: Sauropoda) from
the Late Cretaceous of central India. Journal of Vertebrate Paleontology 17: 114–
136.
Jans, M. M. E. 2008. Microbial bioerosion of bone – a review, p. 397–413 in Wisshak,
M., and L. Tapanila (eds.), Current developments in bioerosion. Springer-Verlag,
Berlin.
Jans, M. M. E., H. Kars, C. M. Nielsen-Marsh, C. I. Smith, A. G. Nord, P. Arthur, and N.
Earl. 2002. In situ preservation of archaeological bone: a histological study within
a multidisciplinary approach. Archaeometry 44: 343–352.
Jans, M. M. E., C. M. Nielsen-Marsh, C. I. Smith, M. J. Collins, and H. Kars. 2004.
Characterisation of microbial attack on archaeological bone. Journal of
Archaeological Science 31: 87–95.
Janssens, K., L. Vincze, B. Vekemans, C. T. Williams, M. Radtke, M. Haller, and A.
Knochel. 1999. The non-destructive determination of REE in fossilized bone
using synchrotron radiation induced K-line X-ray microfluorescence analysis.
Journal of Analytical Chemistry 363: 413–420.
350
Johannesson, K. H., and W. B. Lyons. 1995. Rare-earth element geochemistry of Colour
Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories,
Canada. Chemical Geology 119: 209–223.
Johannesson, K. H., I. M. Farnham, C. Guo, and K. J. Stetzenbach. 1999. Rare earth
element fractionation and concentration variations along a groundwater flow path
within a shallow, basin-fill aquifer, southern Nevada, USA. Geochimica et
Cosmochimica Acta 63: 2697–2708.
Kaye, T. G., G. Gaugler, and Z. Sawlowicz. 2008. Dinosaurian soft tissues interpreted as
bacterial biofilms. PLoS ONE 3: e2808.
Kellner, A. W. A. 1996. Fossilized theropod soft tissue. Nature 379: 32.
Kellner, A. W. A., and A. K. de Azevedo. 1999. A new sauropod dinosaur (Titanosauria)
from the Late Cretaceous of Brazil. Proceedings of the Second Gondwanan
Dinosaur Symposium 15: 111–142.
Kellner, A. W. A., D. Campos, S. A. K. de Azevedo, M. N. F. Trotta, D. D. R. Henriques,
M. N. T. Craik, and H. Silva. 2006. On a new titanosaur sauropod from the Bauru
Group, Late Cretaceous of Brazil. Boletim do Museu Nacional (Nova Série),
Geologia 74: 1–31.
Kemp, R. A., and C. N. Trueman. 2003. Rare earth elements in Solnhofen biogenic
apatite: geochemical clues to the paleoenvironment. Sedimentary Geology 155:
109–127.
Kim, J.-H., M. E. Torres, B. A. Haley, M. Kastner, J. W. Pohlman, M. Riedel, and Y.-J.
Lee. 2011. The effect of diagenesis and fluid migration on rare earth element
distribution in fluids of the northern Cascadia accretionary margin. Chemical
Geology 291: 152–165.
Klein, N., and M. Sander. 2008. Ontogenetic stages in the long bone histology of
sauropod dinosaurs. Paleobiology 34: 247–263.
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual
Reviews in Earth and Planetary Science 26: 573–613.
Koch, P. L., A. K. Behrensmeyer, A. W. Stoti, N. Tuross, R. P. Evershed, M. L. Fogel.
2000. The effects of weathering on the stable isotope composition of bones.
Ancient Biomolecules 3: 117–134.
Kocsis, L., C. N. Trueman, and M. R. Palmer. 2010. Protracted diagenetic alteration of
REE contents in fossil bioapatites: direct evidence from Lu-Hf isotope
systematics. Geochimica et Cosmochimica Acta 74: 6077–6092.
351
Koenig, A. E., R. R. Rogers, and C. N. Trueman. 2009. Visualizing fossilization using
laser ablation-inductively coupled plasma-mass spectrometry maps of trace
elements in Late Cretaceous bones. Geology 37: 511–514.
Koeppenkastrop, D., and E. H. De Carlo. 1993. Uptake of rare earth elements from
solution by metal oxides. Environmental Science and Technology 27: 1796–1802.
Kohn, M. J. 2008. Models of diffusion-limited uptake of trace elements in fossils and
rates of fossilization. Geochimica et Cosmochimica Acta 72: 3758–3770.
Kohn, M. J., and R. J. Moses. 2013. Trace element diffusivities in bone rule out simple
diffusive uptake during fossilization but explain in vivo uptake and release.
Proceedings of the National Academy of Sciences 110: 419–424.
Kohn, M. J., M. J. Schoeninger, and W. W. Barker. 1999. Altered states: effects of
diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63:
2737–2747.
Kolesnikov, M. P., and I. A. Egorov. 1977. Porphyrins and phycobilins in Precambrian
rocks. Origins of Life 8: 383–390.
Kolodny, Y., B. Luz, M. Sander, and W. A. Clemens. 1996. Dinosaur bones: fossils or
pseudomorphs? The pitfalls fo physiology reconstruction from apatitic fossils.
Palaeogeography, Palaeoclimatology, Palaeoecology 126: 161–171.
Konhauser, K. O. 1998. Diversity of bacterial iron mineralization. Earth-Science Reviews
43: 91–121.
Kowal-Linka, M., and K. P. Jochum. 2015. Variability of trace element uptake in marine
reptile bones from three Triassic sites (S Poland): influence of diagenetic
processes on the host rock and significance of the applied methodology. Chemical
Geology 397: 1–13.
Kowal-Linka, M., K. P. Jochum, and D. Surmik. 2014. LA-ICP-MS analysis of rare earth
elements in marine reptile bones from the Middle Triassic bonebed (Upper
Silesia, S Poland): impact of long-lasting diagenesis, and factors controlling the
uptake. Chemical Geology 363: 213–228.
Kowalewski, M., and M. Labarbera. 2004. Actualistic taphonomy: death, decay, and
disintegration in contemporary settings. PALAIOS 19: 423–427.
Kroeger, T. J. 2002. Palynology of the Hell Creek Formation (Upper Cretaceous,
Maastrichtian) in northwestern South Dakota: effects of paleoenvironment on the
composition of palynomorph assemblages. Geological Society of America Special
Paper 361: 457–472.
352
Lacovara, K. J., M. C. Lamanna, L. M. Ibiricu, J. C. Poole, E. R. Schroeter, P. V.
Ullmann, K. K. Voegele, Z. M. Boles, A. M. Carter, E. K. Fowler, V. M. Egerton,
A. E. Moyer, C. L. Coughenour, J. P. Schein, J. D. Harris, R. D. Martínez, and F.
E. Novas. 2014. A gigantic, exceptionally complete titanosaurian sauropod
dinosaur from southern Patagonia, Argentina. Scientific Reports 4: 6196.
Langer, M. C., M. A. G. Franҫa, and S. Gabriel. 2007. The pectoral girdle and forelimb
anatomy of the stem-sauropodomorph Saturnalia tupiniquim (Upper Triassic,
Brazil). Special Papers in Palaeontology 77: 113–137.
Lauters, P., Y. L. Bolotsky, J. V. Itterbeeck, and P. Godefroit. 2008. Taphonomy and age
profile of a latest Cretaceous dinosaur bone bed in far eastern Russia. PALAIOS
23: 153–162.
Lebon, M., K. Muller, J.-J. Bahain, F. Frohlich, C. Falgueres, L. Bertrand, C. Sandt, and
I. Reiche. 2011. Imaging fossil bone alterations at the microscale by SR-FTIR
microspectroscopy. Journal of Analytical and Atomic Spectrometry 26: 922–929.
Leduc, M., R. Kasra, and J. van Heijenoort. 1982. Induction and control of the autolytic
system of Escherichia coli. Journal of Bacteriology 152: 26–34.
Li, L., D. Li, H. You, and P. Dodson. 2014. A new titanosaurian sauropod from the
Hekou Group (Lower Cretaceous) of the Lanzhou-Minhe Basin, Gansu Province,
China. PLoS ONE 9: e85979.
Li, Q., K.-Q. Gao, J. Vinther, M. D. Shawkey, J. A. Clarke, L. D'Alba, Q. Meng, D. E. G.
Briggs, and R. O. Prum. 2010. Plumage color pattern of an extinct dinosaur.
Science 327: 1369–1372.
Li, Q., K.-Q. Gao, Q. Meng, J. A. Clarke, M. D. Shawkey, L. D'Alba, R. Pei, M. Ellison,
M. A. Norell, and J. Vinther. 2012. Reconstruction of Microraptor and the
evolution of iridescent plumage. Science 335: 1215–1219.
Li, Q., J. A. Clarke, K.-Q. Gao, C.-F. Zhou, Q. Meng, D. Li, L. D'Alba, and M. D.
Shawkey. 2014. Melanosome evolution indicates a key physiological shift within
feathered dinosaurs. Nature 507: 350–353.
Liebig, K. 2001. Bacteria, p. 253–256 in Briggs, D. E. G., and P. R. Crowther (eds.),
Palaeobiology II. Blackwell Scientific Publications, Oxford.
Lindahl, T., and B. Nyberg. 1972. Rate of chain breakage at apurinic sites in doublestranded deoxyribonucleic acid. Biochemistry 11: 3618–3623.
Lindgren, J., P. Uvdal, A. Engdahl, A. H. Lee, C. Alwmark, K. Bergquist, E. Nilsson, P.
Ekstrom, M. Rasmussen, D. A. Douglas, M. J. Polycn, and L. L. Jacobs. 2011.
Microspectroscopic evidence of Cretaceous bone proteins. PLoS ONE 6: e19445.
353
Lindgren, J., P. Uvdal, P. Sjovall, D. E. Nilsson, A. Engdahl, B. P. Schultz, and V. Thiel.
2012. Molecular preservation of the pigment melanin in fossil melanosomes.
Nature Communications 3: 824–830.
Lingham-Soliar, T. 2008. A unique cross section through the skin of the dinosaur
Psittacosaurus from China showing a complex fibre architecture. Proceedings of
the Royal Society B 275: 775–780.
Lingham-Soliar, T., and J. Glab. 2010. Dehydration: a mechanism for the preservation of
fine detail in fossilised soft tissue of ancient terrestrial animals. Palaeogeography,
Palaeoclimatology, Palaeoecology 291: 481–487.
Lingham-Soliar, T., and G. Plodowski. 2010. The integument of Psittacosaurus from
Liaoning Province, China: taphonomy, epidermal patterns and color of a
ceratopsian dinosaur. Naturwissenschaften 97: 479–486.
Lingham-Soliar, T., and J. Wesley-Smith. 2008. First investigation of the collagen Dband ultrastructure in fossilized vertebrate integument. Proceedings of the Royal
Society B 275: 2207–2212.
Lockley, M. G., C. Meyer, A. P. Hunt, and S. G. Lucas. 1994. The distribution of
sauropod tracks and trackmakers. Gaia 10: 233–248.
Loope, D. B., R. M. Kettler, K. A. Weber, N. L. Hinrichs, and D. T. Burgess. 2012.
Rinded iron-oxide concretions: hallmarks of altered siderite masses of both early
and late diagenetic origin. Sedimentology 59: 1769–1781.
Lü, J., L. Xu, S. Jia, X. Zhang, J. Zhang, L. Yang, H. You, and Q. Ji. 2009. A new
gigantic sauropod dinosaur from the Cretaceous of Ruyang, Henan, China.
Geological Bulletin of China 28: 1–10.
Majno, G., and I. Joris. 1995. Apoptosis, oncosis, and necrosis: an overview of cell death.
American Journal of Pathology 146: 3–15.
Manning, P. L., P. M. Morris, A. McMahon, E. Jones, A. Gize, J. H. S. Macquaker, G.
Wolff, A. Thompson, J. Marshall, K. G. Taylor, T. Lyson, S. Gaskell, O.
Reamtong, W. I. Sellers, B. E. Van Dongen, M. Buckley, and R. A. Wogelius.
2009. Mineralized soft-tissue structure and chemistry in a mummified hadrosaur
from the Hell Creek Formation, North Dakota (USA). Proceedings of the Royal
Society B 276: 3429–3437.
354
Manning, P. L., N. P. Edwards, R. A. Wogelius, U. Bergmann, H. E. Barden, P. L.
Larson, D. Schwarz-Wings, V. M. Egerton, D. Sokaras, R. A. Mori, and W. I.
Sellers. 2013. Synchrotron-based chemical imaging reveals plumage patterns in a
150 million year old early bird. Journal of Analytical and Atomic Spectrometry
28: 1024–1030.
Mannion, P. D., and A. Otero. 2012. A reappraisal of the Late Cretaeous Argentinean
sauropod dinosaur Argyrosaurus superbus, with a description of a new titanosaur
genus. Journal of Vertebrate Paleontology 32: 614–638.
Mannion, P. D., and P. Upchurch. 2010. A quantitative analysis of environmental
associations in sauropod dinosaurs. Paleobiology 36: 253–282.
Marsh, O. C. 1878. Principal characters of American Jurassic dinosaurs. Part I. American
Journal of Science, Series 3 16: 411–416.
Martill, D. M. 1988. Preservation of fish in the Cretaceous Santana Formation of Brazil.
Paleontology 32: 1–18.
Martill, D. M. 1990. Macromolecular resolution of fossilized muscle tissue from an
elopomorph fish. Nature 346: 171–172.
Martin, C., I. Bentaleb, R. Kaandorp, P. Iacumin, and K. Chatri. 2008. Intra-tooth study
of modern rhinoceros enamel δ18O: Is the difference between phosphate and
carbonate δ18O a sound diagenetic test? Palaeogeography, Palaeoclimatology,
Palaeoecology 266: 183–189.
Martin, D., D. E. G. Briggs, and R. J. Parkes. 2004. Experimental attachment of sediment
particles to invertebrate eggs and the preservation of soft-bodied fossils. Journal
of the Geological Society, London 161: 735–738.
Martin, R. E. 1999. Taphonomy: a process approach. Cambridge University Press, New
York.
Martínez, R. D., O. Giménez, J. Rodríguez, M. Luna, and M. Lamanna. 2004. An
articulated specimen of the basal titanosaurian (Dinosauria: Sauropoda)
Epachthosaurus sciuttoi from the early Late Cretaceous Bajo Barreal Formation
of Chubut Province, Argentina. Journal of Vertebrate Paleontology 24: 107–120.
Mateus, O., L. L. Jacobs, A. S. Schulp, M. J. Polcyn, T. S. Tavares, A. Buta Neto, M. L.
Morais, and M. T. Antunes. 2011. Angolatitan adamastor, a new sauropod
dinosaur and the first record from Angola. Anais de Academia Brasileira de
Ciências 83: 221–233.
355
Mazzetta, G. V., P. Christiansen, and R. A. Fariña. 2004. Giants and bizarres: body size
of some southern South American Cretaceous dinosaurs. Historical Biology 16:
1–13.
McCabe, P. J. 1984. Depositional environments of coal and coal-bearing strata. Special
Publications of the International Association of Sedimentologists 7: 13–42.
McIntosh, J. S. 1990. Sauropoda, p. 345–401 in Weishampel, D. B., H. Osmólska, and P.
Dodson (eds.), The Dinosauria. University of California Press, Berkeley.
McNamara, M. E., P. J. Orr, and S. L. Kearns. 2006. High-fidelity organic preservation
of bone marrow in ca. 10 Ma amphibians. Geology 34: 641–644.
McNamara, M. E., P. J. Orr, S. L. Kearns, L. Alcala, P. Anadon, and E. Penalver Mollar.
2009. Soft-tissue preservation in Miocence frogs from Libros, Spain: insights into
the genesis of decay microenvironments. PALAIOS 24: 104–117.
McNamara, M. E., D. E. G. Briggs, P. J. Orr, D. J. Field, and Z. Wang. 2013.
Experimental maturation of feathers: implications for reconstructions of fossil
feather colour. Biology Letters 9: 1–6.
Meers, M. B. 2003. Crocodylian forelimb musculature and its relevance to Archosauria.
Anatomical Record Part A 274: 891–916.
Metzger, C. A., D. O. Terry Jr., and D. E. Grandstaff. 2004. Effect of paleosol formation
on rare earth element signatures in fossil bone. Geology 32: 497–500.
Mo, J.-Y., C.-L. Huang, Z.-R. Zhao, W. Wang, and X. Xu. 2008. A new titanosaur
(Dinosauria: Sauropoda) from the Late Cretaceous of Guangxi, China. Vertebrata
PalAsiatica 46: 147–156.
Monteiro, L. R. 1999. Multivariate regression models and geometric morphometrics: the
search for causal factors in the analysis of shape. Systematic Biology 48: 192–
199.
Montgelard, C. 1992. Albumin preservation in fossil bones and systematics of
Malpaisomys insularis (Muridae, Rodentia), an extinct rodent of the Canary
Islands. Historical Biology 6: 293–302.
Moore, W. L. 1976. The stratigraphy and environments of deposition of the Cretaceous
Hell Creek Formation (reconnaissance) and the Paleocene Ludlow Formation
(detailed), southwestern North Dakota. North Dakota Geological Survey Report
of Investigation No. 56: 1–40.
356
Morad, S. 1998. Carbonate cementation in sandstones: distribution patterns and
geochemical evolution. Special Publications of the International Association of
Sedimentologists 26: 1–26.
Moyer, A. E., W. Zheng, E. A. Johnson, M. Lamanna, D. Li, K. J. Lacovara, and M. H.
Schweitzer. 2014. Melanosomes or microbes: testing an alternative hypothesis for
the origin of microbodies in fossil feathers. Scientific Reports 4: e4233.
Muller, K., C. Chadefaux, N. Thomas, and I. Reiche. 2011. Microbial attack of
archaeological bones versus high concentrations of heavy metals in the burial
environment. A case study of animal bones from a mediaeval copper workshop in
Paris. Palaeogeography, Palaeoclimatology, Palaeoecology 310: 39–51.
Murphy, E. C., J. W. Hoganson, and K. R. Johnson. 2002. Lithostratigraphy of the Hell
Creek Formation in North Dakota. Geological Society of America Special Paper
361: 9–34.
Muyzer, G., P. Sandberg, M. H. J. Knapen, C. Vermeer, M. Collins, and P. Westbroek.
1992. Preservation of the bone protein osteocalcin in dinosaurs. Geology 20: 871–
874.
Nealson, K. H. 1997. Sediment bacteria: who's there, what are they doing, and what's
new? Annual Reviews in Earth and Planetary Science 25: 403–434.
Nichols, D. J. 2002. Palynology and palynostratigraphy of the Hell Creek Formation in
North Dakota: a microfossil record of plants at the end of Cretaceous time.
Geological Society of America Special Paper 361: 393–456.
Nielsen-Marsh, C. M. 2002. Biomolecules in fossil remains. The Biochemist: 12–14.
Nielsen-Marsh, C. M., P. H. Ostrom, H. Gandhi, B. Shapiro, A. Cooper, P. V. Hauschka,
and M. J. Collins. 2002. Sequence preservation of osteocalcin protein and
mitochondrial DNA in bison bones older than 55 ka. Geology 30: 1099–1102.
Novas, F. E., L. Salgado, J. Calvo, and F. Agnolin. 2005. Giant titanosaur (Dinosauria,
Sauropoda) from the Late Cretaceous of Patagonia. Revista del Museo Argentino
de Ciencias Naturales 7: 37–41.
Organ, C. L., M. H. Schweitzer, W. Zheng, L. M. Freimark, L. C. Cantley, and J. M.
Asara. 2008. Molecular phylogenetics of Mastodon and Tyrannosaurus rex.
Science 320: 499.
Orgel, J., T. C. Irving, A. Miller, and T. J. Wess. 2006. Microfibrillar structure of type I
collagen in situ. Proceedings of the National Academy of Sciences 103: 9001–
9005.
357
Orlando, L., D. Bonjean, H. Bocherens, A. Thenot, A. Argant, M. Otte, and C. Hӓnni.
2002. Ancient DNA and the population genetics of cave bears (Ursus spelaeus)
through space and time. Molecular Biology and Evolution 19: 1920–1933.
Orlando, L., A. Ginolhac, G. Zhang, D. Froese, A. Abrechtsen, M. Stiller, M. Schubert,
E. Cappelini, B. Petersen, I. Moltke, P. L. F. Johnson, M. Fumagalli, J. T.
Vilstrup, M. Raghavan, T. Korneliussen, A.-S. Malaspinas, J. Vogt, D.
Szklarczyk, C. D. Kelstrup, J. Vinther, A. Dolocan, J. Stenderup, A. M. V.
Velazquez, J. Cahill, M. Rasmussen, X. Wang, J. Min, G. D. Zazula, A. SeguinOrlando, C. Mortensen, K. Magnussen, J. F. Thompson, J. Weinstock, K.
Gregersen, K. H. Røed, V. Eisenmann, C. J. Rubin, D. C. Miller, D. F. Antczak,
M. F. Bertelsen, S. Brunak, K. A. S. Al-Rasheid, O. Ryder, L. Andersson, J.
Mundy, A. Krogh, M. T. P. Gilbert, K. Kjær, T. Sicheritz-Ponten, L. J. Jensen, J.
V. Olsen, M. Hofreiter, R. Nielsen, B. Shapiro, J. Wang, and E. Willerslev. 2013.
Recalibrating Equus evolution using the genome sequence of an early Middle
Pleistocene horse. Nature 499: 74–81.
Orr, P. J., D. E. G. Briggs, and S. L. Kearns. 1998. Cambrian Burgess Shale animals
replicated in clay minerals. Science 281: 1173–1175.
Otero, A. 2010. The appendicular skeleton of Neuquensaurus, a Late Cretaceous
saltasaurine sauropod from Patagonia, Argentina. Acta Palaeontologica Polonica
55: 399–426.
Otero, A., and S. F. Vizcaino. 2008. Hindlimb musculature and function of
Neuquensaurus australis (Sauropoda: Titanosauria). Ameghiniana 45: 333–348.
Pӓӓbo, S., H. N. Poinar, D. Serre, V. Jaenicke-Despres, J. Hebler, N. Rohland, M. Kuch,
J. Krause, L. Vigilant, and M. Hofreiter. 2004. Genetic analyses from ancient
DNA. Annual Reviews in Genetics 38: 645–679.
Pack, A., S. S. Russell, J. M. G. Shelley, and M. van Zuilen. 2007. Geo- and
cosmochemistry of the twin elements yttrium and holmium. Geochimica et
Cosmochimica Acta 71: 4592–4608.
Pang, Q., and Z. Cheng. 2000. A new family of sauropod dinosaur from the Upper
Cretaceous of Tianzhen, Shanxi Province, China. Acta Geologica Sinica 74: 117–
125.
Parish, C. A., H. Jiang, Y. Tokiwa, N. Berova, K. Nakanishi, D. McCabe, W. Zuckerman,
M. M. Xia, and J. E. Gabay. 2001. Broad-spectrum antimicrobial activity of
hemoglobin. Bioorganic and Medicinal Chemistry 9: 377–382.
Pate, F. D., J. T. Hutton, and K. Norrish. 1989. Ionic exchange between soil solution and
bone: toward a predictive model. Applied Geochemistry 4: 303–316.
358
Pawlicki, R. 1995. Histochemical demonstration of DNA in osteocytes from dinosaur
bones. Folia Histochemica et Cytobiologica 33: 183–186.
Pawlicki, R., and M. Nowogrodzka-Zagorska. 1998. Blood vessels and red blood cells
preserved in dinosaur bones. Annals of Anatomy 180: 73–77.
Pawlicki, R., A. Korbel, and H. Kubiak. 1966. Cells, collagen fibrils and vessels in
dinosaur bone. Nature 211: 655–657.
Perumal, S., O. Antipova, and J. Orgel. 2008. Collagen fibril architecture, domain
organization, and triple-helical conformation govern its proteolysis. Proceedings
of the National Academy of Sciences 105: 2824–2829.
Peterson, J. E., M. E. Lenczewski, and R. P. Scherer. 2010. Influence of microbial
biofilms on the preservation of primary soft tissue in fossil and extant archosaurs.
PLoS ONE 5: e13334.
Peterson, K. J., R. E. Summons, and P. C. J. Donoghue. 2007. Molecular palaeobiology.
Palaeontology 50: 775–809.
Piepgras, D. J., and S. B. Jacobsen. 1992. The behavior of rare earth elements in
seawater: precise determination of variations in the North Pacific water column.
Geochimica et Cosmochimica Acta 56: 1851–1862.
Piga, G., A. Santos-Cubedo, A. Brunetti, M. Piccinini, A. Malgosa, E. Napolitano, and S.
Enzo. 2011. A multi-technique approach by XRD, XRF, FT-IR to characterize the
diagenesis of dinosaur bones from Spain. Palaeogeography, Palaeoclimatology,
Palaeoecology 310: 92–107.
Poinar, H. N., and S. Pӓӓbo. 2001. DNA, p. 241–245 in Briggs, D. E. G., and P. R.
Crowther (eds.), Palaeobiology II. Blackwell Scientific Publications, Oxford.
Poinar, H. N., M. Hoss, J. L. Bada, and S. Pӓӓbo. 1996. Amino acid racemization and the
preservation of ancient DNA. Science 272: 864–866.
Poinar, H. N., M. Hofreiter, W. G. Spaulding, P. S. Martin, B. A. Stankiewicz, H. Bland,
R. P. Evershed, G. Possnert, and S. Pӓӓbo. 1998. Molecular coproscopy: dung and
diet of the extinct ground sloth Nothrotheriops shastensis. Science 281: 402–405.
Potts, R. 1986. Temporal span of bone accumulations at Olduvai Gorge and implications
for early hominid foraging behavior. Paleobiology 12: 25–31.
Powell, J. E. 1992. Osteologia de Saltasaurus loricatus (Sauropoda - Titanosauridae) del
Cretácico Superior del noroeste Argentino, p. 165–230 in Sanz, J. L., and A. D.
Buscalioni (eds.), Los dinosaurios y su entorno biotico: actas del segundo curso
de paleontologia en Cuenca. Institutio "Juan de Valdes", Cuenca, Argentina.
359
Powell, J. E. 2003. Revision of South American titanosaurid dinosaurs: palaeobiological,
palaeobiogeographical and phylogenetic aspects. Records of the Queen Victoria
Museum 111: 1–173.
Prager, E. M., A. C. Wilson, J. M. Lowenstein, and V. M. Sarich. 1980. Mammoth
albumin. Science 209: 287–289.
Preuschoft, H., and N. Klein. 2013. Torsion and bending in the neck and tail of sauropod
dinosaurs and the function of cervical ribs: insights from functional morphology
and biomechanics. PLoS ONE 8: e78574.
Prevot, L., and J. Lucas. 1990. Phosphate, p. 256–257 in Briggs, D. E. G., and P. R.
Crowther (eds.), Paleobiology: a synthesis. Blackwell Scientific Publications,
Oxford.
Prieto-Marquez, A. 2008. Phylogeny and historical biogeography of hadrosaurid
dinosaurs. Ph.D. dissertation, Florida State University, Tallahassee, 936 pp.
R Development Core Team. 2010. R: a language and environment for statistical
computing. 2.12.0 ed. Vienna, Austria: R Foundation for Statistical Computing.
Ramos-Vara, J. A., and M. E. Beissenherz. 2000. Optimization of immunohistochemical
methods using two different antigen retrieval methods on formalin-fixed, paraffinembedded tissues: experience with 63 markers. Journal of Veterinary Diagnostic
Investigation 12: 307–311.
Reineck, H.-E., and I. B. Singh. 1980. Depositional sedimentary environments. SpringerVerlag, Berlin, 439 pp.
Ren, L., C. E. Miller, R. Lair, and J. R. Hutchinson. 2008. Integration of biomechanical
compliance, leverage, and power in elephant limbs. Proceedings of the National
Academy of Sciences USA 107: 7078–7082.
Retallack, G. J. 1984. Completeness of the rock and fossil record: some estimates using
fossil soils. Paleobiology 10: 59–78.
Retallack, G. J. 1988. Field recognition of paleosols. Geological Society of America
Special Paper 216: 1–20.
Retallack, G. J. 1997. Dinosaurs and dirt, p. 345–359 in Wolberg, D. L., E. Stump, and
G. D. Rosenberg (eds.), Dinofest International Proceedings. Academy of Natural
Sciences, Philadelphia.
360
Reynard, B., C. Lecuyer, and P. Grandjean. 1999. Crystal-chemical controls on rare-earth
element concentrations in fossil biogenic apatites and implications for
paleoenvironmental reconstructions. Chemical Geology 155: 233–241.
Rietveld, H. M. 1969. A profile refinement method for nuclear and magnetic structures.
Journal of Applied Crystallography 2: 65–71.
Roche Applied Science. 2012. Instructions for use, REF 10103578001:
https://pim-eservices.roche.com/LifeScience/Document/4bd132eb-06ee-e31198a1-00215a9b0ba8.
Rogaev, E. I., Y. K. Moliaka, B. A. Malyarchuk, F. A. Kondrashov, M. V. Derenko, I.
Chumakov, and A. P. Grigorenko. 2006. Complete mitochondrial genome and
phylogeny of Pleistocene mammoth Mammuthus primigenius. PLoS Biology 4:
e73.
Rogers, R. R. 1990. Taphonomy of three dinosaur bone beds in the Upper Cretaceous
Two Medicine Formation of northwestern Montana: evidence for drought-related
mortality. PALAIOS 5: 394–413.
Rogers, R. R., and S. M. Kidwell. 2007. A conceptual framework for the genesis and
analysis of vertebrate skeletal concentrations, p. 1–64 in Rogers, R. R., D. A.
Eberth, and A. R. Fiorillo (eds.), Bonebeds: genesis, analysis, and paleobiological
significance. University of Chicago Press, Chicago.
Rogers, R. R., D. A. Eberth, and A. R. Fiorillo. 2007. Bonebeds: genesis, analysis, and
paleobiological significance. University of Chicago Press, Chicago.
Rogers, R. R., H. C. Fricke, V. Addona, R. R. Canavan, C. N. Dwyer, C. L. Harwood, A.
E. Koenig, R. Murray, J. T. Thole, and J. Williams. 2010. Using laser ablationinductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore
geochemical taphonomy of vertebrate fossils in the Upper Cretaceous Two
Medicine and Judith River Formations of Montana. PALAIOS 25: 183–195.
Rohlf, F. J. 2005. Thin-plate splines (TPS) software family: TPSDIG, TPSRELW,
TPSREGR, TPSSMALL, TPSUTIL. SUNY, Stony Brook University.
Romanowski, G., M. G. Lorenz, and W. Wackernagel. 1991. Adsorption of plasmid
DNA to mineral surfaces and protection against DNase I. Applied and
Enviromental Microbiology 57: 1057–1061.
Rothschild, B., and D. H. Tanke. 2006. Osteochondrosis in Late Cretaceous Hadrosauria:
a manifestation of ontologic failure, p. 171–183 in Carpenter, K. (ed.), Horns and
beaks: ceratopsian and ornithopod dinosaurs. Indiana University Press,
Bloomington.
361
Rowe, T., E. F. McBride, and P. C. Sereno. 2001. Dinosaur with a heart of stone. Science
291: 783a.
Russell, D. A., and M. Manabe. 2002. Synopsis of the Hell Creek (uppermost
Cretaceous) dinosaur assemblage. Geological Society of America Special Paper
361: 169–176.
Russell, D. A., P. E. Fisher, R. E. Barrick, and M. K. Stoskopf. 2001. Response to:
dinosaur with a heart of stone. Science 291: 783a–784a.
Ryan, M. J., A. P. Russell, D. A. Eberth, and P. J. Currie. 2001. The Taphonomy of a
Centrosaurus (Ornithischia: Certopsidae) bone bed from the Dinosaur Park
Formation (Upper Campanian), Alberta, Canada, with comments on cranial
ontogeny. PALAIOS 16: 482–506.
Sagemann, J., S. J. Bale, D. E. G. Briggs, and R. J. Parkes. 1999. Controls on the
formation of authigenic minerals in association with decaying organic matter: an
experimental approach. Geochimica et Cosmochimica Acta 63: 1083–1095.
Salgado, L., and C. Azpilicueta. 2000. Un nuevo saltasaurino (Sauropoda,
Titanosauridae) de la provincia de Río Negro (Formación Allen, Cretácico
Superior), Patagonia, Argentina. Ameghiniana 37: 259–264.
Salgado, L., and I. Carvalho. 2008. Uberabatitan ribeiroi, a new titanosaur from the
Marília Formation (Bauru Group, Upper Cretaceous), Minas Gerais, Brazil.
Paleontology 51: 881–901.
Salgado, L., and R. A. Coría. 1993. El genero Aeolosaurus (Sauropoda, Titanosauridae)
en la Formacion Allen (Campaniano–Maastrichtiano) de la Provincia de Rio
Negro, Argentina. Ameghiniana 30: 119–128.
Salgado, L., R. A. Coría, and J. O. Calvo. 1997a. Evolution of titanosaurid sauropods I:
phylogenetic analysis based on the postcranial evidence. Ameghiniana 34: 3–32.
Salgado, L., R. A. Coría, and J. O. Calvo. 1997b. Presencia del genero Aeolosaurus
(Sauropoda, Titanosauridae) en la Formacion Los Alamitos, Cretácico Superior
de la Provincia de Rio Negro, Argentina. Revista Geociências 2: 44–49.
Salgado, L., S. Apesteguía, and S. E. Heredia. 2005. A new specimen of Neuquensaurus
australis, a Late Cretaceous saltasaurine titanosaur from North Patagonia. Journal
of Vertebrate Paleontology 25: 623–634.
Salgado, L., P. A. Gallina, and A. P. Carabajal. 2014. Redescription of Bonatitan reigi
(Sauropoda: Titanosauria), from the Campanian-Maastricthian of the Río Negro
Province (Argentina). Historical Biology 27: 525–548.
362
San Antonio, J. D., M. H. Schweitzer, S. T. Jensen, R. Kalluri, M. Buckley, J. Orgel.
2011. Dinosaur peptides suggest mechanisms of protein survival. PLoS ONE 6:
e20381.
Sander, P. M. 1992. The Norian Plateosaurus bonebeds of central Europe and their
taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology 93: 255–299.
Sander, P. M., A. Christian, M. Clauss, R. Fechner, C. T. Gee, E.-M. Griebeler, H.-C.
Gunga, J. Hummel, H. Mallison, S. F. Perry, H. Preuschoft, O. W. M. Rauhut, K.
Remes, T. Tutken, O. Wings, and U. Witzel. 2011. Biology of the sauropod
dinosaurs: the evolution of gigantism. Biological Reviews 86: 117–155.
Sanz, J. L., A. D. Buscalioni, M.-L. Casanovas, and J.-V. Santafé. 1987. Dinosaurios del
Cretácico Inferior de Galve (Teruel, España), p. 45–64 in Sanz, J. L. (ed.),
Geología y Paleontología (Arcosaurios) de los Yacimientos Cretacicos de Galve
(Teruel) y Tremp (Lerida). Museo Nacional de Ciencias Naturales, Madrid, Spain.
Sanz, J. L., J. E. Powell, J. Le Loeuff, R. Martínez, and X. Pereda Suberbiola. 1999.
Sauropod remains from the upper Cretaceous of Laño (northcentral Spain),
titanosaur phylogenetic relationships. Estudios del Museo de Ciencias Naturales
de Álava 14: 235–255.
Sarashina, I., Y. Kunitomo, M. Iijima, S. Chiba, and K. Endo. 2008. Preservation of the
shell matrix protein dermatopontin in 1500 year old land snail fossils from the
Bonin islands. Organic Geochemistry 39: 1742–1746.
Schmidt-Schultz, T. H., and M. Schultz. 2004. Bone protects proteins over thousands of
years: extraction, analysis, and interpretation of extracellular matrix proteins in
archaeological skeletal remains. American Journal of Physical Anthropology 128:
30–39.
Schoeninger, M. J., K. M. Moore, M. L. Murray, and J. D. Kingston. 1989. Detection of
bone preservation in archaeological and fossil samples. Applied Geochemistry 4:
281–292.
Schroeter, E. A. R. 2013. The morphology, histology, and molecular preservation of an
exceptionally complete titanosaur from southernmost Patagonia. PhD dissertation,
Drexel University, Philadelphia, 274 pp.
Schroeter, E. A. R., Z. M. Boles, and K. J. Lacovara. 2011. The histology of a massive
titanosaur from Argentina and implications for maximum size. Society of
Vertebrate Paleontology Programs and Abstracts 2011: 189.
Schwarz, D., F. Eberhard, and C. A. Meyer. 2007a. Novel reconstruction of the
orientation of the pectoral girdle in sauropods. Anatomical Record 290: 32–47.
363
Schwarz, D., T. Ikejiri, B. H. Breithaupt, P. M. Sander, and N. Klein. 2007b. A nearly
complete skeleton of an early juvenile diplodocid (Dinosauria: Sauropoda) from
the Lower Morrison Formation (Late Jurassic) of north central Wyoming and its
implications for early ontogeny and pneumaticity in sauropods. Historical Biology
19: 225–253.
Schweitzer, M. H. 2003. The future of molecular paleontology. Palaeontologia
Electronica 5(2).
Schweitzer, M. H. 2004. Molecular paleontology: some current advances and problems.
Annales de Paléontologie 90: 81–102.
Schweitzer, M. H. 2011. Soft tissue preservation in terrestrial Mesozoic vertebrates.
Annual Reviews in Earth and Planetary Science 39: 187–216.
Schweitzer, M. H., and J. R. Horner. 1999. Intravascular microstructures in trabecular
bone tissues of Tyrannosaurus rex. Annales de Paleontologie 85: 179–192.
Schweitzer, M. H., C. Johnson, T. G. Zocco, J. R. Horner, and J. R. Starkey. 1997a.
Preservation of biomolecules in cancellous bone of Tyrannosaurus rex. Journal of
Vertebrate Paleontology 17: 349–359.
Schweitzer, M. H., M. Marshall, K. Carron, D. S. Bohle, S. C. Busse, E. V. Arnold, D.
Barnard, J. R. Horner, and J. R. Starkey. 1997b. Heme compounds in dinosaur
trabecular bone. Proceedings of the National Academy of Sciences 94: 6291–
6296.
Schweitzer, M. H., J. A. Watt, R. Avci, C. A. Forster, D. W. Krause, L. Knapp, R. R.
Rogers, I. Beech, and M. Marshall. 1999a. Keratin immunoreactivity in the Late
Cretaceous bird Rahonavis ostromi. Journal of Vertebrate Paleontology 19: 712–
722.
Schweitzer, M. H., J. A. Watt, R. Avci, L. Knapp, L. Chiappe, M. Norell, and M.
Marshall. 1999b. Beta-keratin specific immunological reactivity in feather-like
structures of the Cretaceous alvarezsaurid, Shuvuuia deserti. Journal of
Experimental Zoology 285: 146–157.
Schweitzer, M. H., C. L. Hill, J. M. Asara, W. S. Lane, and S. H. Pincus. 2002.
Identification of immunoreactive material in mammoth fossils. Journal of
Molecular Evolution 55: 696–705.
Schweitzer, M. H., L. Chiappe, A. C. Garrido, J. M. Lowenstein, and S. H. Pincus.
2005a. Molecular preservation in Late Cretaceous sauropod dinosaur eggshells.
Proceedings of the Royal Society B 272: 775–784.
364
Schweitzer, M. H., J. L. Wittmeyer, J. R. Horner, and J. K. Toporski. 2005b. Soft-tissue
vessels and cellular preservation in Tyrannosaurus rex. Science 307: 1952–1955.
Schweitzer, M. H., Z. Suo, R. Avci, J. M. Asara, M. A. Allen, F. T. Arce, and J. R.
Horner. 2007a. Analyses of soft tissue from Tyrannosaurus rex suggest the
presence of protein. Science 316: 277–280.
Schweitzer, M. H., J. L. Wittmeyer, and J. R. Horner. 2007b. Soft tissue and cellular
preservation in vertebrate skeletal elements from the Cretaceous to the present.
Proceedings of the Royal Society B 274: 183–197.
Schweitzer, M. H., R. Avci, T. Collier, and M. B. Goodwin. 2008. Microscopic, chemical
and molecular methods for examining fossil preservation. Comptes Rendus
Palevol 7: 159–184.
Schweitzer, M. H., W. Zheng, C. L. Organ, R. Avci, Z. Suo, L. M. Freimark, V. S.
Lebleu, M. B. Duncan, M. G. V. Heiden, J. M. Neveu, W. S. Lane, J. S. Cottrell,
J. R. Horner, L. C. Cantley, R. Kalluri, and J. M. Asara. 2009. Biomolecular
characterization and protein sequences of the Campanian hadrosaur B.
canadensis. Science 324: 626–631.
Schweitzer, M. H., T. P. Cleland, W. Zheng, and J. San Antonio. 2010. Molecular
mechanisms for the preservation of soft tissues and original biomolecules in
fossils. Journal of Vertebrate Paleontology 30 (Supp 3): 160A–161A.
Schweitzer, M. H., W. Zheng, T. P. Cleland, and M. Bern. 2013. Molecular analyses of
dinosaur osteocytes support the presence of endogenous molecules. Bone 52:
414–423.
Schweitzer, M. H., W. Zheng, T. P. Cleland, M. B. Goodwin, E. Boatman, E. Theil, M.
A. Marcus, and S. C. Fakra. 2014a. A role for iron and oxygen chemistry in
preserving soft tissues, cells and molecules from deep time. Proceedings of the
Royal Society B 281: 1–10.
Schweitzer, M. H., E. R. Schroeter, and M. B. Goshe. 2014b. Protein molecular data from
ancient (>1 million years old) fossil material: pitfalls, possibilities, and grand
challenges. Analytical Chemistry 86: 6731–6740.
Seebacher, F. 2001. A new method to calculate allometric length-mass relationships of
dinosaurs. Journal of Vertebrate Paleontology 21: 51–60.
Sellers, W. I., L. Margetts, R. A. Coría, and P. L. Manning. 2013. March of the titans: the
locomotor capabilities of sauropod dinosaurs. PLoS ONE 8: e78733.
365
Senkayi, A. L., J. B. Dixon, and L. R. Hossner. 1986. Todorokite, goethite, and hematite:
alteration products of siderite in east Texas lignite overburden. Soil Science 142:
36–42.
Sheets, H. D. 2003. IMP-Integrated Morphometric Package. Department of Physics,
Canisius College, Buffalo, New York.
http://www3.canisius.edu/~sheets/morphsoft.html.
Sheldon, R. P. 1981. Ancient marine phosphates. Annual Reviews in Earth and Planetary
Science 9: 251–284.
Sholkovitz, E. R., W. M. Landing, and B. L. Lewis. 1994. Ocean particle chemistry: the
fractionation of rare earth elements between suspended particles and seawater.
Geochimica et Cosmochimica Acta 58: 1567–1579.
Smith, C. I., O. E. Craig, R. V. Prigodich, C. M. Nielsen-Marsh, M. M. E. Jans, C.
Vermeer, and M. J. Collins. 2005. Diagenesis and survival of osteocalcin in
archaeological bone. Journal of Archaeological Science 32: 105–113.
Smith, J. B., M. C. Lamanna, K. J. Lacovara, P. Dodson, J. R. Smith, J. C. Poole, R.
Giegengack, and Y. Attia. 2001. A giant sauropod dinosaur from an upper
Cretaceous mangrove deposit in Egypt. Science 292: 1704–1706.
Stankiewicz, B. A., D. E. G. Briggs, R. P. Evershed, R. F. Miller, and A. Bierstedt. 1998.
The fate of chitin in Quaternary and Tertiary strata, p. 211–224 in Stankiewicz, B.
A., and P. F. van Bergen (eds.), Nitrogen-containing macromolecules in the bioand geosphere. American Chemical Society Symposium Series, Washington.
Stanton Thomas, K. J., and S. J. Carlson. 2004. Microscale δ18O and δ13C isotopic
analysis of an ontogenetic series of the hadrosaurid dinosaur Edmontosaurus:
implications for physiology and ecology. Palaeogeography, Palaeoclimatology,
Palaeoecology 206: 257–287.
Staub, J. R., and A. D. Cohen. 1979. The Snuggedy Swamp of South Carolina: a backbarrier estuarine coal-forming environment. Journal of Sedimentary Petrology 49:
133–144.
Stromer, E. 1932. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten
Ägyptens II: Wirbeltierreste der Baharîje-Stufe (unterstes Cenoman): 11
Sauropoda. Abhandlungen der Bayerischen Akademie der Wissenschaften
Mathematisch-naturwissenschaftliche Abteilung, Neue Folge10: 1–21.
Suarez, C. A., M. B. Suarez, D. O. Terry Jr., and D. E. Grandstaff. 2007. Rare earth
element geochemistry and taphonomy of the Early Cretaceous Crystal Geyser
Dinosaur Quarry, east-central Utah. PALAIOS 22: 500–512.
366
Suarez, C. A., G. L. Macpherson, L. A. Gonzalez, and D. E. Grandstaff. 2010.
Heterogeneous rare earth element (REE) patterns and concentrations in a fossil
bone: implications for the use of REE in vertebrate taphonomy and fossilization
history. Geochimica et Cosmochimica Acta 74: 2970–2988.
Sweeney, S. M., J. P. Orgel, A. Fertala, J. D. McAuliffe, K. R. Turner, G. A. Di Lullo, S.
Chen, O. Antipova, S. Perumal, L. Ala-Kokko, A. Forlino, W. A. Cabral, A. M.
Barnes, J. C. Marini, and J. D. San Antonio. 2008. Candidate cell and matrix
interaction domains on the collagen fibril, the predominant protein of vertebrates.
Journal of Biological Chemistry 283: 21187–21197.
Sykes, G. A., M. J. Collins, and D. I. Walton. 1995. The significance of a geochemically
isolated intracrystalline organic fraction within biominerals. Organic
Geochemistry 23: 1059–1065.
Taylor, M. P., M. J. Wedel, and D. Naish. 2009. Head and neck posture in sauropod
dinosaurs inferred from extant animals. Acta Palaeontologica Polonica 54: 213–
220.
Tidwell, V., K. Carpenter, and S. Meyer. 2001. New titanosauriform (Sauropoda) from
the Poison Strip Member of the Cedar Mountain Formation (Lowe Cretaceous),
Utah, p. 139–165 in Tanke, D., and K. Carpenter (eds.), Mesozoic vertebrate life.
Indiana University Press, Bloomington.
Toporski, J. K. W., A. Steele, F. Westall, R. Avci, D. M. Martill, and D. S. McKay. 2002.
Morphologic and spectral investigation of exceptionally well-preserved bacterial
biofilms from the Oligocene Enspel formation, Germany. Geochimica et
Cosmochimica Acta 66: 1773–1791.
Torres, J. M., C. Borja, and E. G. Olivares. 2002. Immunoglobulin G in 1.6 million-yearold fossil bones from Venta Micena (Granada, Spain). Journal of Archaeological
Science 29: 167–175.
Trueman, C. N. 1999. Rare earth element geochemistry and taphonomy of terrestrial
vertebrate assemblages. PALAIOS 14: 555–568.
Trueman, C. N. 2007. Trace element geochemistry of bonebeds, p. 397–435 in Rogers, R.
R., D. A. Eberth, and A. R. Fiorillo (eds.), Bonebeds: genesis, analysis, and
paleobiological significance. University of Chicago Press, Chicago.
Trueman, C. N. 2013. Chemical taphonomy of biomineralized tissues. Palaeontology 56:
475–486.
Trueman, C. N., and M. J. Benton. 1997. A geochemical method to trace the taphonomic
history of reworked bones in sedimentary settings. Geology 25: 263–266.
367
Trueman, C. N., and D. M. Martill. 2002. The long-term survival of bone: the role of
bioerosion. Archaeometry 44: 371–382.
Trueman, C. N., M. J. Benton, and M. R. Palmer. 2003. Geochemical taphonomy of
shallow marine vertebrate assemblages. Palaeogeography, Palaeoclimatology,
Palaeoecology 197: 151–169.
Trueman, C. N., A. K. Behrensmeyer, N. Tuross, and S. Weiner. 2004. Mineralogical and
compositional changes in bones exposed on soil surfaces in Amboseli National
Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. Journal
of Archaeological Science 31: 721–739.
Trueman, C. N., A. K. Behrensmeyer, R. Potts, and N. Tuross. 2006. High-resolution
records of location and stratigraphic provenance from the rare earth element
composition of fossil bones. Geochimica et Cosmochimica Acta 70: 4343–4355.
Trueman, C. N., M. R. Palmer, J. Field, K. Privat, N. Ludgate, V. Chavagnac, D. A.
Eberth, R. Cifelli, and R. R. Rogers. 2008a. Comparing rates of recrystallisation
and the potential for preservation of biomolecules from the distribution of trace
elements in fossil bones. Comptes Rendus Palevol 7: 145–158.
Trueman, C. N., K. Privat, and J. Field. 2008b. Why do crystallinity values fail to predict
the extent of diagenetic alteration of bone mineral? Palaeogeography,
Palaeoclimatology, Palaeoecology 266: 160–167.
Trueman, C. N., L. Kocsis, M. R. Palmer, and C. Dewdney. 2011. Fractionation of rare
earth elements within bone mineral: a natural cation exchange system.
Palaeogeography, Palaeoclimatology, Palaeoecology 310: 124–132.
Turnbull, W. D., and D. M. Martill. 1988. Taphonomy and preservation of a
monospecific titanothere assemblage from the Washakie Formation (Late
Eocene), southern Wyoming. An ecological accident in the fossil record.
Palaeogeography, Palaeoclimatology, Palaeoecology 63: 91–105.
Turner-Walker, G., and M. Jans. 2008. Reconstructing taphonomic histories using
histological analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 266:
227–235.
Tuross, N. 1989. Albumin preservation in the Taima-taima mastodon skeleton. Applied
Geochemistry 4: 255–259.
Tuross, N. 1994. The biochemistry of ancient DNA in bone. Experientia 50: 530–535.
Tuross, N. 2002. Alterations in fossil collagen. Archaeometry 44: 427–434.
368
Tuross, N., M. L. Fogel, and P. E. Hare. 1988. Variability in the preservation of the
isotopic composition of collagen from fossil bone. Geochimica et Cosmochimica
Acta 52: 929–935.
Tuross, N., A. K. Behrensmeyer, E. D. Eanes, L. W. Fisher, and P. E. Hare. 1989.
Molecular preservation and crystallographic alterations in a weathering sequence
of wildebeest bones. Applied Geochemistry 4: 261–270.
Tütken, T., and T. W. Vennemann. 2011. Fossil bones and teeth: preservation or
alteration of biogenic compositions? Palaeogeography, Palaeoclimatology,
Palaeoecology 310: 1–8.
Tütken, T., T. W. Vennemann, and H. Pfretzschner. 2008. Early diagenesis of bone and
tooth apatite in fluvial and marine settings: constraints from combined oxygen
isotope, nitrogen and REE analysis. Palaeogeography, Palaeoclimatology,
Palaeoecology 266: 254–268.
Tütken, T., T. W. Vennemann, and H. Pfretzschner. 2011. Nd and Sr isotope
compositions in modern and fossil bones – proxies for vertebrate provenance and
taphonomy. Geochimica et Cosmochimica Acta 75: 5951–5970.
Ullmann, P. V., D. E. Grandstaff, R. D. Ash, and K. J. Lacovara. 2014. Rapid and brief
trace element uptake by bone at the Standing Rock Edmontosaurus bonebed, Hell
Creek Formation, Corson County, SD: an exception to long-term rare earth
element uptake. Geological Society of America Abstracts with Programs 46: 221.
Ulrich, M. M. W., W. R. K. Perizonius, C. F. Spoor, P. Sandberg, and C. Vermeer. 1987.
Extraction of osteocalcin from fossil bones and teeth. Biochemical and
Biophysical Research Communications 149: 712–719.
Upchurch, P. 1998. The phylogenetic relationships of sauropod dinosaurs. Zoological
Journal of the Linnean Society 124: 43–103.
Upchurch, P., P. M. Barrett, and P. Dodson. 2004. Sauropoda, p. 259–322 in
Weishampel, D. B., P. Dodson, and H. Osmólska (eds.), The Dinosauria, second
edition. University of California Press, Berkeley.
Vajda, V., T. R. Lyson, A. Bercovici, J. H. Doman, and D. A. Pearson. 2013. A snapshot
into the terrestrial ecosystem of an exceptionally well-preserved dinosaur
(Hadrosauridae) from the Upper Cretaceous of North Dakota, USA. Cretaceous
Research 46: 114–122.
Van Duin, A. C. T., and M. J. Collins. 1998. The effects of conformational constraints on
aspartic acid racemization. Organic Geochemistry 29: 1227–1232.
369
Varricchio, D. J., F. J. Jackson, B. Scherzeer, and J. Shelton. 2005. Don't have a cow,
man! It's only actualistic taphonomy on the Yellowstone River of Montana.
Journal of Vertebrate Paleontology 25 (Supp 3): 126A.
Vila, B., O. Oms, À. Galobart, K. T. Bates, V. M. Egerton, and P. L. Manning. 2013.
Dynamic similarity in titanosaur sauropods: ichnological evidence from the
Fumanya Dinosaur Tracksite (Southern Pyrenees). PLoS ONE 8: e57408.
Vinther, J., D. E. G. Briggs, R. O. Prum, and V. Saranathan. 2008. The colour of fossil
feathers. Biology Letters 4: 522–525.
Vinther, J., D. E. G. Briggs, J. A. Clarke, G. Mayr, and R. O. Prum. 2010. Structural
coloration in a fossil feather. Biology Letters 6: 128–131.
Voorhies, M. R. 1969. Taphonomy and population dynamics of an early Pliocene
vertebrate fauna, Knox County, Nebraska. Contributions to Geology Special
Paper 1: 1–69.
Waage, K. M. 1967. Cretaceous transitional environments and faunas in central South
Dakota, p. 237–266 in A symposium on paleoenvironments of the Cretaceous
seaway in the Western Interior: Geological Society of America Rocky Mountain
Section 20th Annual Meeting. Colorado School of Mines, Golden.
Wadsworth, C., and M. Buckley. 2014. Proteome degradation in fossils: investigating the
longevity of protein survival in ancient bone. Rapid Communications in Mass
Spectrometry 28: 605–615.
Wang, S.-Y., E. Cappellini, and H.-Y. Zhang. 2012. Why collagens best survived in
fossils? Clues from amino acid thermal stability. Biochemical and Biophysical
Research Communications 422: 5–7.
Wehmiller, J. F., and D. F. Belknap. 1976. Alternative kinetic models for the
interpretation of amino acids enantiomeric ratios in Pleistocene mollusks:
examples from California, Washington, and Florida. Quaternary Research 9: 330–
348.
Weiner, S., H. A. Lowenstam, and L. Hood. 1976. Characteriation of 80-million-year-old
mollusk shell proteins. Proceedings of the National Academy of Sciences USA
73: 2541–2545.
Weiner, S., W. Traub, and H. Elster. 1989. The molecular structure of bone and its
relation to diagenesis. Applied Geochemistry 4: 231–232.
370
Westbroek, P., P. H. Van Der Meide, J. S. Van Der Wey-Kloppers, R. J. Van Der Sluis, J.
W. De Leeuw, and E. W. De Jong. 1979. Fossil macromolecules from cephalopod
shells: characterization, immunological response and diagenesis. Paleobiology 5:
151–167.
Wilby, P. R., D. E. G. Briggs, P. Bernier, and C. Gaillard. 1996. Role of microbial mats
in the fossilization of soft tissues. Geology 24: 787–790.
Wilhite, D. R. 2005. Variation in the appendicular skeleton of North American sauropod
dinosaurs: taxonomic implications, p. 268–301 in Tidwell, V., and K. Carpenter
(eds.), Thunder-lizards: the sauropodomorph dinosaurs. Indiana University Press,
Bloomington.
Wilhite, L. P., and J. R. Toliver. 1990. Baldcypress-pondcypress, p. 563–572 in Sivics of
North America Volume I, Conifers. Agriculture Handbook 654. USDA Forest
Service, Washington.
Willerslev, E., E. Cappellini, W. Boomsma, R. Nielsen, M. B. Hebsgaard, T. B. Brand,
M. Hofreiter, M. Bunce, H. N. Poinar, D. Dahl-Jensen, S. Johnsen, J. P.
Steffensen, O. Bennike, J.-L. Schwenninger, R. Nathan, S. Armitage, C.-J. de
Hoog, V. Alfimov, M. Christl, J. Beer, R. Muscheler, J. Barker, M. Sharp, K. E.
H. Penkman, J. Haile, P. Taberlet, M. T. P. Gilbert, A. Casoli, E. Campani, and
M. J. Collins. 2007. Ancient biomolecules from deep ice cores reveal a forested
southern Greenland. Science 317: 111–113.
Williams, C. T., and P. J. Potts. 1988. Element distribution maps in fossil bones.
Archaeometry 30: 237–247.
Williams, C. T., P. Henderson, C. A. Marlow, and T. I. Molleson. 1997. The environment
of deposition indicated by the distribution of rare earth elements in fossil bones
from Olduvai Gorge, Tanzania. Applied Geochemistry 12: 537–547.
Wilson, J. A. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis.
Zoological Journal of the Linnean Society 136: 217–276.
Wilson, J. A., and M. T. Carrano. 1999. Titanosaurs and the origin of "wide-gauge"
trackways: a biomechanical and systematic perspective on sauropod locomotion.
Paleobiology 25: 252–267.
Wilson, J. A., and P. C. Sereno. 1998. Early evolution and higher-level phylogeny of
sauropod dinosaurs. Society of Vertebrate Paleontology Memoir 5: 1–71.
Wilson, J. A., and P. Upchurch. 2003. A revision of Titanosaurus Lydekker (Dinosauria Sauropoda), the first dinosaur with a 'Gondwanan' distribution. Journal of
Systematic Paleontology 1: 125–160.
371
Wilson, J. A., and P. Upchurch. 2009. Redescription and reassessment of the
phylogenetic affinities of Euhelopus zdanskyi (Dinosauria: Sauropoda) from the
Early Cretaceous of China. Journal of Systematic Palaeontology 7: 199–239.
Wilson, J. A., M. D. D'Emic, K. A. Curry Rogers, D. M. Mohabey, and S. Sen. 2009.
Reassessment of the sauropod dinosaur Jainosaurus (="Antarctosaurus")
septentrionalis from the Upper Cretaceous of India. Contributions from the
Museum of Paleontology, University of Michigan 32: 17–40.
Wilson, J. A., P. M. Barrett, and M. T. Carrano. 2011. An associated partial skeleton of
Jainosaurus cf. septentrionalis (Dinosauria: Sauropoda) from the Late Cretaceous
of Chhota Simla, central India. Palaeontology 54: 981–998.
Witmer, L. M. 1995. The extant phylogenetic bracket and the importance of
reconstructing soft tissues in fossils, p. 19–33 in Thomason, J. (ed.), Functional
morphology in vertebrate paleontology. Cambridge University Press, Cambridge.
Wogelius, R. A., P. L. Manning, H. E. Barden, N. P. Edwards, S. M. Webb, W. I. Sellers,
K. G. Taylor, P. L. Larson, P. Dodson, H. You, L. Da-qing, and U. Bergmann.
2011. Trace metals as biomarkers for eumelanin pigment in the fossil record.
Science 333: 1622–1626.
Wood, J. M., R. G. Thomas, and J. Visser. 1988. Fluvial processes and vertebrate
taphonomy: the Upper Cretaceous Judith River Formation, south-central Dinosaur
Provincial Park, Alberta, Canada. Palaeogeography, Palaeoclimatology,
Palaeoecology 66: 127–143.
Xu, X., X. Zhang, Q. Tan, X. Zhao, and L. Tan. 2006. A new titanosaurian sauropod
from Late Cretaceous of Nei Mongol, China. Acta Geologica Sinica 80: 20–26.
You, H., F. Tang, and Z. Luo. 2003. A new basal titanosaur (Dinosauria: Sauropoda)
from the Early Cretaceous of China. Acta Geologica Sinica (English Edition) 77:
424–429.
You, H., D. Li, L. Zhou, and Q. Ji. 2008. Daxiatitan binglingi: a giant sauropod dinosaur
from the Early Cretaceous of China. Gansu Geology 17: 1–10.
Zaher, H., D. Pol, A. B. Carvalho, P. M. Nascimento, C. Riccomini, P. Larson, R. JuarezValieri, R. Pires-Domingues, N. J. da Silva, Jr., and D. Campos D. 2011. A
complete skull of an Early Cretaceous sauropod and the evolution of advanced
titanosaurians. PLoS ONE 6: e16663.
Zang, X., J. D. H. van Heemst, K. J. Dria, and P. G. Hatcher. 2000. Encapsulation of
protein in humic acid from a histosol as an explanation for the occurrence of
organic nitrogen in soil and sediment. Organic Geochemistry 31: 679–695.
372
Zazzo, A., C. Lecuyer, and A. Mariotti. 2004. Experimentally-controlled carbon and
oxygen isotope exchange between bioapatites and water under inorganic and
microbially-mediated conditions. Geochimica et Cosmochimica Acta 68: 1–12.
Zhang, F., S. L. Kearns, P. J. Orr, M. J. Benton, Z. Zhou, D. Johnson, X. Xu, and X.
Wang. 2010. Fossilized melanosomes and the colour of Cretaceous dinosaurs and
birds. Nature 463: 1075–1078.
Zhang, J., and Y. Nozaki. 1996. Rare earth elements and yttrium in seawater: ICP-MS
determinations in the East Caroline, Coral Sea, and South Fiji basins of the
western South Pacific Ocean. Geochimica et Cosmochimica Acta 60: 4631–4644.
Zheng, W., and M. H. Schweitzer. 2012. Chemical analyses of fossil bone, p. 153–172 in
Bell, L. S. (ed.), Forensic microscopy for skeletal tissues: methods and protocols.
Humana Press, New York.
Zhu, M., L. E. Babcock, and M. Steiner. 2005. Fossilization modes in the Chengjiang
Lagerstatte (Cambrian of China): testing the roles of organic preservation and
diagenetic alteration in exceptional preservation. Palaeogeography,
Palaeoclimatology, Palaeoecology 220: 31–46.
Zylberberg, L., and M. Laurin. 2011. Analysis of fossil bone organic matrix by
transmission electron microscopy. Comptes Rendus Palevol 10: 357–366.
373
APPENDIX A: REE AND TRACE ELEMENT CONCENTRATIONS BY
TRANSECT
Appendix A contains all rare earth element (REE: La – Lu) and other trace
element (Sc, Mn, Fe, Sr, Y, Ba, Th, U) concentrations recorded for each Standing Rock
Hadrosaur Site bone examined. Concentrations are presented in parts per million (ppm)
for all elements except iron (Fe), which is presented in weight percent. For visual
representation of all transect data please refer to Figures 3.1–3.3 and Figure 3.8 of this
dissertation. Two transects were performed on metatarsal SRHS-DU-192 to check for
reproducibility of results; these are labeled Transect 1 and Transect 2. All readings after
16.00 mm along Transect 2 of metatarsal SRHS-DU-192 were collected along a
concentric laser track rather than continuing radially from the bone center; as such, these
data examine the consistency of trace element concentrations across the external cortex
surface (a horizontal line denotes this boundary in the table below). All readings from the
first 1.50 mm of pedal phalanx SRHS-DU-278 document trace element concentrations in
a goethite coating on the external surface of the bone (a horizontal line again denotes this
boundary in the table below). Absence of (Ce/Ce*)N, (Ce/Ce**)N, and (La/La*)N
anomalies occurs at 1.00. Abbreviations: bd, below detection; nd, not detected due to
sensor overload.
mm from
bone rim
0.00
0.03
0.07
0.10
0.14
0.17
0.21
0.24
0.28
0.31
0.35
0.38
0.41
0.45
0.48
0.52
0.55
0.59
0.62
0.66
0.69
0.73
0.76
0.79
0.83
0.86
0.90
0.93
0.97
1.00
1.04
1.07
1.11
1.14
1.17
1.21
1.24
1.28
1.31
1.35
1.38
1.42
1.45
1.49
1.52
1.55
1.59
1.62
1.66
1.69
1.73
1.76
1.80
1.83
Sc
53.73
44.39
26.20
41.33
22.63
18.20
37.16
34.46
15.59
34.48
19.69
12.23
28.20
28.53
31.35
27.01
15.04
9.02
37.10
38.17
12.44
30.35
30.10
17.21
38.24
29.65
19.69
14.00
22.09
25.83
22.79
25.67
54.40
36.03
23.25
17.71
26.82
10.94
9.33
27.64
29.25
20.42
26.24
5.55
12.03
8.17
8.43
23.71
22.14
27.48
17.79
16.40
33.49
14.87
SRHS-DU-2 Metatarsal
Mn
0.29
0.29
0.28
0.35
0.08
0.31
0.14
0.22
0.20
0.31
0.25
0.71
0.30
1.02
0.80
0.80
0.87
0.28
0.67
0.97
0.21
0.48
0.18
0.20
0.43
0.41
0.11
0.22
0.24
0.14
0.31
0.24
0.96
0.32
0.32
0.16
0.21
0.13
0.24
0.35
0.41
0.24
0.37
0.07
1.45
0.14
0.07
0.11
0.12
0.26
0.11
0.10
0.21
0.30
Fe
3.13
2.73
1.75
1.45
0.77
1.23
1.67
1.42
1.58
2.04
1.09
1.47
0.41
2.23
1.71
1.35
0.85
1.14
3.11
2.01
1.80
1.44
1.62
0.91
2.65
3.12
0.90
0.89
1.95
2.14
1.85
1.08
4.01
1.81
2.06
8.37
0.99
0.63
1.24
2.71
1.39
0.91
1.85
0.40
2.53
0.88
0.51
2.78
1.46
1.13
1.44
0.92
1.59
1.32
Sr
6036.69
3663.63
3352.54
3812.84
4669.74
3594.45
4060.46
3036.71
2905.15
4623.29
3181.69
4330.90
1660.37
4405.84
2475.80
3684.90
3468.29
984.23
3412.84
5661.59
2108.61
7206.13
3338.37
2464.38
4445.94
3066.99
3197.46
1046.88
4987.31
3795.29
3786.40
6277.89
6120.23
6430.89
5320.07
1242.91
2897.12
2190.95
3371.15
4708.39
4129.36
4449.96
2936.13
1917.00
4757.89
1253.24
2764.78
2959.39
2943.31
5911.26
2712.01
1634.19
5095.74
2012.59
Y
683.65
287.52
388.71
653.43
223.20
415.43
546.37
417.06
208.52
445.26
268.06
221.75
222.83
704.46
489.18
389.59
271.45
250.11
449.34
524.59
240.86
509.38
397.45
226.79
639.35
585.29
229.92
246.57
279.92
304.59
351.00
458.59
651.19
514.56
298.09
296.49
377.24
222.49
253.12
404.13
367.84
288.65
394.20
121.61
390.30
186.34
128.84
360.86
616.10
471.16
367.44
145.83
388.06
319.50
Ba
2661.49
1454.91
1753.02
1548.48
1047.37
775.96
1354.40
2990.54
1299.57
1116.30
1228.79
2340.56
1309.99
3052.91
2837.16
1899.00
957.45
810.99
1815.45
2903.87
1539.92
2774.25
803.09
2326.88
2759.10
2914.14
1376.20
1443.24
2565.69
1291.94
2485.68
1553.71
3433.63
4594.75
1722.13
2002.13
1683.71
1266.26
1627.61
2662.69
2808.58
2347.57
3112.85
762.44
2631.21
1004.03
829.67
1039.29
2599.67
1838.48
1920.19
658.74
1415.79
1364.91
La
1370.57
500.21
895.77
1398.43
506.54
917.30
572.29
671.91
242.77
636.96
547.88
634.82
598.83
888.20
604.53
857.34
340.48
319.02
674.98
905.42
334.78
885.35
511.37
440.06
875.32
693.69
414.10
454.08
578.18
389.44
845.81
522.65
797.22
855.80
510.36
352.35
365.85
233.75
325.15
547.31
449.01
422.51
342.40
130.51
305.87
104.32
171.97
316.37
309.72
512.30
358.21
134.57
332.40
303.50
Ce
2955.19
1796.47
1215.44
nd
893.28
1945.61
nd
3175.83
1184.00
1029.23
786.48
nd
1278.54
nd
1144.56
1730.60
956.16
815.32
nd
1693.55
922.66
1312.03
956.38
1202.15
3321.00
3664.98
803.24
1351.84
2143.26
1583.90
nd
2010.29
2250.40
nd
nd
1235.78
1463.59
634.22
818.59
2121.86
1086.06
1158.70
749.98
386.89
588.85
561.60
486.30
1082.84
1339.60
1493.40
907.35
525.81
1064.39
1001.83
Pr
192.18
188.17
198.29
261.53
167.30
278.02
199.85
218.66
181.64
117.99
94.43
169.16
84.80
219.78
113.98
217.37
73.70
71.19
217.19
242.28
171.89
230.18
108.11
134.81
263.66
629.29
45.89
80.85
135.73
173.79
172.07
135.61
167.97
177.89
129.38
97.38
163.13
80.23
52.36
125.24
80.31
96.38
105.48
21.25
109.25
36.00
47.08
90.26
79.86
46.09
91.14
48.34
131.96
129.72
Nd
679.92
528.49
711.62
937.72
471.52
641.13
482.83
530.28
334.33
501.20
390.19
299.80
263.63
804.70
592.40
520.39
372.95
232.26
730.63
1030.10
179.61
793.11
319.02
328.69
817.74
838.86
326.42
264.06
648.41
445.38
716.25
533.82
680.00
568.69
297.81
211.10
400.45
170.76
161.98
321.23
463.92
380.29
309.32
75.29
218.76
137.80
119.92
286.96
210.48
335.81
360.99
131.38
375.40
191.48
Sm
149.82
104.09
171.42
99.10
120.58
78.82
143.61
85.72
47.70
103.47
80.69
49.74
64.98
110.24
104.76
92.78
54.03
34.17
86.30
173.92
45.79
112.26
92.09
49.37
253.57
184.27
46.93
114.16
77.65
49.54
55.09
105.51
115.68
134.51
56.59
48.39
126.54
50.61
33.78
106.78
67.97
31.42
75.39
8.58
45.61
23.03
21.67
81.02
43.77
90.64
47.14
24.54
89.72
59.83
Eu
56.92
31.91
33.91
39.94
28.31
41.45
28.39
40.99
22.01
29.05
15.78
15.85
18.06
33.98
14.11
14.54
15.44
14.42
31.86
55.29
15.07
37.03
29.61
25.96
32.65
30.94
13.10
8.92
29.90
38.72
28.02
29.22
45.64
30.72
30.18
18.07
13.92
7.18
8.22
14.80
14.70
20.35
14.84
5.39
14.51
2.96
7.81
17.48
19.00
10.37
22.10
5.45
10.78
17.98
Gd
108.10
93.92
112.79
114.88
60.35
90.18
113.08
107.01
52.24
118.14
45.21
72.43
79.67
121.97
61.99
83.08
27.12
48.68
65.25
239.54
69.51
96.66
73.51
62.25
230.96
116.85
46.01
58.18
80.90
114.22
74.82
54.75
106.31
94.98
105.67
51.77
43.66
39.97
48.89
75.15
53.28
49.75
56.05
20.65
31.50
40.86
21.23
30.51
54.84
52.87
83.23
43.95
92.99
40.57
Tb
16.68
12.04
14.34
15.15
11.56
10.46
21.85
12.42
6.29
14.61
6.35
7.29
5.75
13.34
8.74
8.33
7.47
6.43
14.26
24.87
5.53
14.86
10.36
5.41
18.17
21.10
6.33
4.31
15.18
10.23
5.75
8.55
21.33
13.65
17.02
7.44
7.78
3.98
6.08
9.37
10.59
13.41
7.06
1.93
6.33
4.53
4.73
5.15
6.03
10.95
3.56
2.39
6.65
8.15
Dy
85.53
90.00
79.20
78.98
58.51
95.44
81.69
64.57
45.83
54.59
52.29
59.37
28.09
61.09
80.69
56.19
35.44
17.58
108.96
88.36
42.94
53.92
39.09
27.94
65.23
83.29
42.67
61.41
57.11
58.31
44.78
51.67
88.56
63.31
79.81
35.92
33.38
21.60
29.36
63.13
45.72
45.29
63.68
20.98
55.41
26.86
22.90
41.91
105.17
42.50
75.19
30.75
66.48
47.53
Ho
13.18
14.70
14.02
20.49
9.47
21.43
14.25
14.22
9.29
8.11
10.42
5.95
10.88
19.28
13.18
13.76
6.46
7.01
6.77
15.20
5.61
18.34
9.73
10.34
11.90
14.89
8.82
7.09
8.12
14.82
7.35
17.58
19.03
20.28
9.83
6.49
8.31
6.05
4.61
10.47
21.15
6.06
9.94
2.61
10.26
4.59
4.67
11.93
11.64
8.00
13.77
5.74
10.73
7.15
Er
56.51
49.29
58.22
62.82
33.70
29.37
24.85
33.83
11.09
23.20
18.87
22.20
15.38
41.64
34.21
43.51
22.88
11.13
25.94
45.75
13.19
30.25
29.30
15.77
38.12
51.31
14.11
24.02
33.19
33.89
39.03
27.21
51.36
16.97
43.23
26.23
22.50
11.09
16.08
23.05
12.87
7.62
23.25
6.57
21.17
7.50
12.54
34.97
42.24
43.14
34.73
11.22
37.76
20.59
Tm
9.03
6.89
2.72
5.13
4.01
3.37
4.09
7.56
3.04
3.29
0.87
2.92
1.29
9.03
2.88
4.37
2.85
2.32
3.09
7.62
1.24
8.43
2.68
2.21
7.22
3.69
2.10
3.64
1.93
1.12
2.41
1.64
4.94
2.75
4.79
3.17
2.23
0.80
0.91
0.61
4.02
3.03
1.47
1.15
2.44
1.50
1.60
2.13
4.16
3.44
3.44
1.58
4.67
2.88
Yb
53.22
23.23
34.80
45.55
19.27
16.02
39.52
10.86
25.53
40.21
18.75
16.82
16.99
27.59
17.63
22.50
11.02
8.51
37.82
27.97
15.20
28.63
10.44
11.06
50.52
34.00
10.52
25.47
13.53
25.91
32.51
34.62
50.41
13.12
15.27
12.26
9.93
9.80
16.83
22.90
9.48
16.86
18.13
7.07
20.58
3.82
8.31
17.37
13.56
37.61
14.47
10.41
46.47
12.83
Lu
3.58
4.49
4.68
4.57
2.71
2.91
3.59
2.22
3.52
3.01
3.25
1.91
2.06
2.87
3.43
2.04
0.84
1.13
2.50
3.39
1.24
4.16
2.44
0.89
5.17
2.06
1.91
3.47
1.23
0.94
2.15
2.36
3.67
3.75
4.17
1.86
2.03
2.32
1.22
4.86
3.10
3.07
1.65
1.09
4.08
1.53
1.79
5.00
5.86
2.19
2.39
2.16
3.90
4.08
Table A.1 REE and trace element concentrations by transect.
Th
2.46
1.81
3.78
2.83
1.21
5.24
1.46
0.56
0.21
0.98
0.87
0.44
0.31
bd
1.22
0.98
0.25
bd
0.48
1.94
bd
0.26
0.41
0.17
0.43
bd
0.16
bd
bd
0.24
bd
0.20
bd
bd
0.53
0.28
0.34
0.13
bd
bd
bd
2.34
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.10
bd
bd
U
ƩREE
32.31 5750
37.40 3444
54.09 3547
43.95 3084
7.98 2387
18.34 4172
24.52 1730
36.17 4976
5.62 2169
14.43 2683
11.23 2071
25.26 1358
13.12 2469
20.16 2354
41.92 2797
15.08 3667
12.12 1927
9.51 1589
27.54 2006
36.21 4553
14.80 1824
37.65 3625
15.83 2194
7.73 2317
26.84 5991
34.93 6369
8.64 1782
7.85 2462
13.34 3824
23.42 2940
13.66 2026
14.93 3535
18.95 4403
25.89 1996
12.55 1304
14.99 2108
8.42 2663
7.13 1272
6.22 1524
14.35 3447
9.35 2322
8.93 2255
14.52 1779
8.31
690
14.98 1435
4.90
957
5.12
933
20.53 2024
27.80 2246
18.91 2689
15.23 2018
11.64
978
27.97 2274
22.74 1848
Ce/Ce*
0.30
0.35
-0.32
-0.60
-0.29
-0.10
0.76
0.93
0.15
-0.13
-0.20
-0.26
0.28
-0.36
0.01
-0.06
0.41
0.27
-0.24
-0.15
-0.15
-0.32
-0.05
0.15
0.62
0.08
0.26
0.63
0.80
0.38
0.10
0.77
0.44
0.04
0.59
0.57
0.35
0.08
0.44
0.90
0.32
0.35
-0.08
0.68
-0.25
1.13
0.27
0.50
1.00
1.01
0.18
0.51
0.17
0.15
Ce/Ce**
1.86
0.95
0.75
0.49
0.53
0.62
1.16
1.32
0.53
1.33
1.22
0.49
1.62
0.69
2.37
0.72
2.84
1.28
0.66
1.07
0.37
0.67
0.91
0.81
1.35
0.43
-40.84
1.87
3.00
0.86
1.55
2.03
1.91
1.08
1.19
1.09
0.82
0.68
1.67
1.59
4.79
1.65
0.73
2.20
0.45
2.06
0.97
1.31
1.60
-38.04
1.37
1.06
0.81
0.58
La/La*
Y/Ho
0.89
51.9
-0.51
19.6
0.23
27.7
0.46
31.9
-0.44
23.6
-0.50
19.4
-0.55
38.4
-0.51
29.3
-0.82
22.4
1.49
54.9
1.39
25.7
-0.52
37.3
0.49
20.5
0.16
36.5
455.15
37.1
-0.38
28.3
13.29
42.0
0.02
35.7
-0.26
66.3
0.73
34.5
-0.79
43.0
-0.04
27.8
-0.07
40.8
-0.48
21.9
-0.30
53.7
-0.87
39.3
-3.08
26.1
0.28
34.8
3.41
34.5
-0.63
20.6
1.08
47.8
0.34
26.1
0.81
34.2
0.06
25.4
-0.40
30.3
-0.47
45.7
-0.64
45.4
-0.58
36.8
0.30
54.9
-0.27
38.6
-5.29
17.4
0.54
47.6
-0.37
39.6
0.63
46.6
-0.61
38.0
-0.07
40.6
-0.39
27.6
-0.24
30.2
-0.33
52.9
-3.35
58.9
0.39
26.7
-0.51
25.4
-0.53
36.2
-0.72
44.7
374
mm from
bone rim
1.87
1.90
1.93
1.97
2.00
2.04
2.07
2.11
2.14
2.18
2.21
2.25
2.28
2.31
2.35
2.38
2.42
2.45
2.49
2.52
2.56
2.59
2.63
2.66
2.69
2.73
2.76
2.80
2.83
2.87
2.90
2.94
2.97
3.01
3.04
3.07
3.11
3.14
3.18
3.21
3.25
3.28
3.32
3.35
3.39
3.42
3.46
3.49
3.52
3.56
3.59
3.63
3.66
3.70
Sc
32.02
31.70
12.27
15.03
38.91
14.11
16.37
21.77
25.23
12.59
41.42
20.00
18.87
15.88
8.71
9.90
29.86
13.21
34.01
12.32
14.13
20.20
15.72
7.83
21.46
11.69
27.69
13.92
29.52
20.48
12.61
13.96
12.86
18.68
12.87
14.39
17.72
16.82
23.97
15.78
35.08
14.09
17.67
22.63
18.19
17.14
16.11
17.89
18.28
4.56
19.31
21.55
14.03
16.17
Mn
0.10
0.12
0.10
0.09
0.30
0.12
0.68
0.91
0.39
0.21
0.29
0.16
0.20
0.32
0.21
0.75
0.30
0.23
0.50
0.29
0.30
1.34
0.25
0.28
0.35
0.30
0.17
0.38
0.19
0.19
0.08
0.21
0.40
0.33
0.15
0.15
0.23
0.26
0.31
0.20
0.19
0.15
0.85
0.28
0.22
0.24
0.15
0.31
0.28
0.30
0.29
0.39
0.45
0.17
Fe
0.78
1.29
1.24
1.16
2.18
1.11
1.89
1.62
1.23
0.72
1.64
0.95
1.56
2.16
0.55
3.17
1.61
1.98
2.99
1.09
0.83
2.21
1.89
2.86
3.23
1.07
1.56
0.86
1.44
1.40
2.41
1.49
1.09
1.33
0.99
1.39
1.22
1.60
1.07
1.34
1.65
1.87
1.06
1.39
2.46
0.94
1.22
2.32
2.04
0.91
1.07
1.56
1.05
1.63
SRHS-DU-2 Metatarsal (continued)
Sr
2431.38
4799.87
1835.34
3107.55
7197.67
2503.05
3620.29
3926.26
4313.73
2019.73
4250.50
1771.73
3905.64
4731.35
3109.69
2164.87
3306.16
2281.69
5102.75
2243.51
3390.80
3424.72
3974.42
2782.64
2539.27
4274.18
2848.26
3905.18
5351.59
2316.01
3982.45
6590.37
6374.23
3577.77
2252.24
5817.37
3796.02
4625.57
2966.53
2260.62
3113.99
2021.05
3386.30
2319.26
2064.18
2150.26
5359.66
3679.17
2969.33
4367.89
2699.40
2498.09
4436.72
3294.51
Y
308.92
574.06
151.26
236.65
557.49
485.70
331.72
386.83
602.38
172.40
326.12
271.05
283.67
543.89
143.37
190.68
210.62
272.03
461.32
108.36
152.20
328.84
220.11
209.22
221.99
258.67
241.92
271.85
270.95
148.72
94.23
186.35
277.19
148.66
142.40
201.48
272.44
172.52
205.75
263.37
236.17
201.59
166.60
213.68
164.02
154.92
130.60
223.62
189.31
109.51
141.29
170.72
212.69
200.35
Ba
1072.10
2475.62
1139.87
882.29
1843.39
1158.70
3384.18
2317.51
3596.56
571.16
2931.40
1067.22
1682.05
1792.95
800.12
1170.27
1274.93
1034.65
1652.12
2571.86
1724.62
1416.64
1560.96
2608.24
1734.73
1114.65
1242.98
1473.31
1107.51
1347.86
1007.33
851.92
1692.12
1831.75
1089.46
763.78
903.93
976.54
2288.14
1223.64
2884.13
1127.09
1194.86
1447.20
2276.99
1906.81
nd
888.70
1616.54
972.71
1561.24
1774.39
1291.65
1516.29
La
150.96
535.05
196.97
163.85
406.72
182.09
251.11
327.11
310.56
123.31
282.54
153.10
252.56
279.06
164.72
153.82
184.09
92.96
244.51
74.53
92.28
194.34
143.06
109.35
94.95
131.82
110.19
105.80
202.45
103.30
99.71
137.50
212.84
135.51
72.44
113.88
150.12
241.65
207.05
120.75
96.42
96.30
110.79
114.13
98.36
90.22
74.57
125.11
93.63
67.94
93.67
91.50
110.83
98.20
Ce
227.86
931.74
448.30
434.13
995.99
647.61
345.86
712.98
1178.91
266.29
843.95
367.48
847.66
1105.77
242.46
217.73
580.56
404.97
400.67
133.09
200.13
399.73
231.95
312.83
391.41
nd
262.28
461.09
481.00
275.75
174.30
205.52
500.40
202.10
145.32
223.17
210.34
298.94
312.14
222.59
233.60
112.93
160.24
204.93
274.67
172.25
118.02
178.16
184.51
115.75
245.30
189.07
85.93
281.18
Pr
42.23
53.52
54.46
61.41
53.34
65.32
40.29
100.93
68.30
35.44
44.61
71.15
36.33
60.13
32.72
29.04
32.24
33.88
50.92
34.11
21.86
30.08
19.29
22.32
26.08
31.68
41.91
37.65
25.92
31.90
23.21
27.39
42.77
24.99
14.48
17.74
28.68
38.76
42.17
10.43
35.99
14.79
50.76
11.36
7.99
12.76
15.33
17.27
16.98
14.79
12.88
14.43
17.45
27.05
Nd
129.22
413.39
97.39
152.54
272.52
161.52
232.31
257.63
377.66
113.40
233.74
150.13
183.81
170.20
75.40
156.55
71.83
96.19
185.48
143.00
111.80
151.46
93.67
75.02
123.04
160.14
98.72
82.40
97.62
79.13
46.06
90.40
107.53
70.79
71.44
69.89
122.68
96.00
78.41
52.84
103.46
48.20
84.98
42.88
66.77
60.48
27.38
108.66
61.82
43.48
42.96
43.34
77.29
64.98
Sm
22.41
61.68
27.31
29.13
41.67
31.69
29.08
49.66
29.16
34.77
37.95
19.85
46.50
20.70
12.31
18.09
31.38
25.69
24.36
8.26
16.34
38.54
15.44
18.44
20.47
9.53
10.59
21.53
39.11
21.52
16.71
16.86
28.18
16.73
10.10
17.68
24.57
20.65
27.57
29.89
14.61
21.72
11.35
7.93
6.97
3.62
20.58
5.01
8.03
9.14
21.04
1.72
10.32
13.00
Eu
11.07
14.63
7.42
12.35
17.00
10.71
7.57
14.92
13.63
5.65
17.49
8.13
6.99
7.00
2.01
7.07
2.36
4.63
5.23
3.97
7.64
5.15
6.63
4.31
7.52
3.43
8.27
4.52
10.28
2.70
4.08
10.13
12.71
7.96
1.52
3.10
6.85
3.62
11.05
3.36
7.33
0.54
5.45
2.98
4.19
2.18
2.47
3.02
4.83
3.53
5.17
3.13
10.55
3.91
Gd
47.08
31.76
36.98
21.80
52.49
29.10
43.71
45.78
98.52
16.57
52.08
30.05
66.12
58.38
15.33
23.02
41.00
45.30
30.65
17.79
32.01
16.74
38.92
22.07
24.50
18.64
14.48
16.83
11.92
40.46
14.32
18.33
16.06
13.65
5.91
25.98
29.24
20.22
22.49
14.60
21.46
23.04
13.28
17.45
10.21
21.34
10.72
19.63
17.68
6.37
24.34
28.93
26.27
10.58
Tb
4.72
8.43
5.37
4.65
6.67
9.12
7.09
8.27
11.47
2.00
11.05
3.83
3.57
7.03
3.56
3.20
6.48
2.73
5.34
2.34
3.43
3.03
2.87
4.59
5.10
3.15
2.25
4.07
6.35
4.02
4.81
6.19
3.05
2.80
3.22
2.96
3.73
3.25
4.07
3.53
4.03
5.13
2.41
2.81
2.47
1.71
2.10
3.85
4.98
0.77
2.71
1.43
3.17
1.28
Dy
26.15
51.46
25.61
26.33
47.19
21.88
28.86
50.51
62.28
11.28
44.97
42.46
50.26
39.80
26.87
23.46
28.91
18.51
15.05
15.08
20.93
37.04
22.27
18.70
39.35
15.56
28.50
28.96
36.39
34.48
13.04
30.60
15.80
14.74
8.25
16.28
33.73
8.27
28.70
29.61
19.91
14.79
28.35
20.00
24.30
12.22
24.38
32.57
25.08
21.96
14.70
19.19
15.86
39.59
Ho
7.08
8.53
6.38
5.12
7.11
9.48
12.76
10.82
15.12
3.37
9.98
6.90
9.73
12.08
2.81
5.84
8.44
8.91
6.23
3.35
3.03
5.89
6.07
4.16
4.62
5.46
4.30
5.66
6.72
3.21
2.62
4.25
7.02
4.33
2.17
4.58
4.61
5.56
6.59
4.24
8.16
3.67
6.24
3.79
3.75
4.56
4.59
5.39
5.04
1.40
9.61
3.94
5.67
8.82
Er
20.21
63.21
8.21
23.44
43.87
27.10
38.76
23.05
15.34
9.89
18.64
8.54
29.36
14.99
8.24
12.37
16.51
31.10
20.16
6.95
9.55
12.40
15.09
10.78
25.14
11.03
11.15
7.92
18.00
13.22
9.34
19.71
23.48
8.80
10.63
15.51
12.93
9.97
9.67
15.73
15.39
10.48
11.94
11.48
11.93
9.56
6.49
21.14
8.45
9.62
11.07
21.02
17.38
28.53
Tm
1.09
3.32
0.89
2.15
2.71
1.12
2.87
2.32
6.65
0.96
0.28
2.88
1.85
2.35
0.63
2.88
1.48
4.10
2.77
0.56
1.65
1.95
1.50
2.80
1.81
1.95
1.68
1.22
2.78
1.84
0.71
3.20
1.87
1.90
0.80
2.69
2.40
3.14
4.45
2.98
2.50
0.41
2.32
1.80
0.39
0.20
1.72
bd
4.12
0.44
0.87
1.98
0.94
1.48
bd
45.28
3.63
11.95
39.44
16.57
21.63
24.43
38.43
5.90
35.29
11.32
12.96
19.86
9.36
8.82
21.88
26.87
21.86
9.21
20.26
16.43
23.09
7.15
12.68
9.29
14.77
21.01
6.81
7.50
5.09
14.37
24.58
15.56
11.27
15.41
18.36
18.01
9.60
11.72
15.30
10.10
20.57
16.58
7.29
19.01
11.47
10.49
18.20
10.02
5.33
7.26
17.27
9.06
Yb
Lu
0.40
5.35
0.82
2.39
1.51
3.77
1.23
2.22
0.41
1.31
2.57
1.60
2.06
3.61
0.57
1.37
1.99
1.30
1.77
0.63
1.84
2.99
1.96
0.26
4.04
2.17
1.07
1.36
2.48
2.28
1.46
2.38
2.08
1.59
1.79
0.93
1.33
1.31
2.62
1.66
0.31
2.07
1.72
1.76
1.33
1.84
1.39
2.23
1.53
0.83
1.70
1.54
0.78
2.75
bd
bd
bd
bd
bd
bd
bd
0.85
0.31
bd
0.24
bd
0.45
bd
0.11
bd
0.25
bd
bd
bd
bd
bd
bd
bd
0.22
0.18
bd
bd
bd
bd
bd
bd
bd
0.13
bd
0.28
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.13
0.48
bd
bd
bd
bd
bd
bd
Th
U
ƩREE
12.93
690
24.28 2227
19.79
920
11.78
951
24.56 1988
15.15 1217
26.33 1063
55.74 1631
33.43 2226
5.33
630
28.93 1635
18.92
877
19.98 1550
8.90 1801
3.65
597
7.31
663
11.24 1029
6.62
797
19.16 1015
9.23
453
9.05
543
3.50
916
9.67
622
8.45
613
14.66
781
11.79
404
7.10
610
6.48
800
20.17
948
8.94
621
8.17
415
18.19
587
26.05
998
14.15
521
9.11
359
13.05
530
13.88
650
14.35
769
14.62
767
6.74
524
21.79
578
11.67
364
8.00
510
10.90
460
12.74
521
9.21
412
5.89
321
19.42
533
20.54
455
8.42
306
9.53
491
8.96
428
14.90
400
14.54
590
Ce/Ce*
-0.33
0.17
0.02
0.00
0.51
0.37
-0.21
-0.08
0.90
-0.06
0.72
-0.21
1.00
1.00
-0.23
-0.24
0.74
0.67
-0.16
-0.41
0.05
0.19
-0.01
0.48
0.85
0.19
-0.11
0.69
0.47
0.12
-0.15
-0.22
0.22
-0.19
0.05
0.13
-0.25
-0.29
-0.22
0.28
-0.09
-0.32
-0.52
0.20
0.97
0.14
-0.18
-0.14
0.07
-0.14
0.58
0.19
-0.55
0.28
Ce/Ce**
0.57
-9.08
0.66
0.65
4.20
0.91
3.01
0.66
5.04
0.83
4.58
0.44
5.11
1.84
0.66
1.99
1.57
1.20
0.98
0.58
2.07
2.87
2.37
1.61
2.78
2.25
0.56
1.06
2.40
0.80
0.62
0.85
1.09
0.81
2.06
1.72
1.13
0.71
0.60
4.68
0.66
0.85
0.25
2.34
-9.97
2.53
0.61
6.57
1.35
0.80
2.17
1.37
0.81
0.94
La/La*
Y/Ho
-0.27
43.6
-2.75
67.3
-0.53
23.7
-0.57
46.2
34.87
78.4
-0.55
51.3
-5.88
26.0
-0.46
35.7
-7.13
39.8
-0.23
51.2
-76.73
32.7
-0.69
39.3
20.50
29.1
-0.14
45.0
-0.23
51.1
-13.38
32.7
-0.15
24.9
-0.49
30.5
0.36
74.0
-0.05
32.3
20.34
50.2
16.07
55.9
8.39
36.3
0.17
50.3
2.31
48.1
11.42
47.4
-0.59
56.3
-0.59
48.0
1.40
40.3
-0.48
46.3
-0.41
36.0
0.16
43.9
-0.18
39.5
0.01
34.3
7.24
65.6
1.24
44.0
1.49
59.1
0.01
31.0
-0.35
31.2
35.85
62.2
-0.49
28.9
0.48
54.9
-0.73
26.7
2.10
56.4
-2.72
43.8
5.76
34.0
-0.37
28.4
-3.93
41.5
0.56
37.6
-0.11
78.3
0.72
14.7
0.27
43.3
2.62
37.5
-0.43
22.7
375
mm from
bone rim
3.73
3.77
3.80
3.84
3.87
3.90
3.94
3.97
4.01
4.04
4.08
4.11
4.15
4.18
4.22
4.25
4.28
4.32
4.35
4.39
4.42
4.46
4.49
4.53
4.56
4.60
4.63
4.66
4.70
4.73
4.77
4.80
4.84
4.87
4.87
4.91
4.94
4.98
5.01
5.04
5.08
5.11
5.15
5.18
5.22
5.25
5.29
5.32
5.36
5.39
5.42
5.46
5.49
5.53
Sc
6.16
22.35
16.65
9.40
17.09
17.52
7.08
15.16
13.77
17.23
10.76
7.14
20.40
3.59
19.88
17.13
10.60
12.68
16.34
12.78
8.55
11.18
13.90
12.56
13.45
15.45
17.55
15.81
16.88
15.84
5.41
10.76
9.97
11.26
13.48
12.94
12.87
13.04
12.74
17.69
16.29
15.05
14.18
10.15
14.46
12.53
13.56
14.88
12.63
9.61
10.65
11.33
10.75
9.79
Mn
0.10
0.11
0.18
0.09
0.23
0.14
0.43
0.30
0.17
0.19
0.17
0.17
0.13
0.08
0.16
0.30
0.07
0.18
0.21
0.27
0.39
0.22
0.40
0.21
0.17
0.18
0.52
0.25
0.20
0.11
0.11
0.15
0.50
0.19
0.22
0.12
0.18
0.13
0.25
0.26
0.18
0.17
0.22
0.25
0.42
0.27
0.23
0.29
0.26
0.44
0.70
0.35
0.30
0.24
Fe
0.51
0.70
1.87
1.44
1.33
0.77
1.17
1.70
2.73
1.13
2.25
1.28
1.52
0.40
5.86
1.04
0.56
0.68
1.48
1.07
0.94
1.24
1.50
1.57
1.50
1.21
1.30
1.52
1.09
1.37
0.71
0.96
1.33
1.12
0.77
0.93
1.29
1.02
1.66
1.45
1.09
1.06
1.56
1.15
2.16
2.57
1.34
1.32
1.51
1.40
1.42
1.28
1.60
2.10
SRHS-DU-2 Metatarsal (continued)
Sr
1867.52
3521.49
6219.24
4718.72
5292.01
3793.87
3320.83
4430.52
6058.91
1980.42
1980.94
2575.12
3210.66
1769.55
3579.54
2460.46
3709.46
2058.41
5802.07
3923.90
3244.32
4751.57
4131.73
2180.50
2740.07
2262.07
5602.13
4217.44
4085.05
2897.99
3082.09
13175.07
4392.97
2584.13
3331.56
3097.04
2799.22
2655.16
3106.43
3242.30
2823.29
3409.51
4294.02
2978.50
5474.14
2906.52
2979.56
4749.65
3820.53
2748.95
3388.78
2429.37
3216.84
2322.75
Y
158.14
134.56
208.28
175.17
288.07
124.76
104.52
215.70
188.15
185.05
120.82
112.15
119.41
112.71
204.77
116.47
71.62
88.28
126.13
177.55
118.11
105.96
102.30
136.91
146.11
97.83
148.38
224.57
135.66
86.36
69.18
70.78
105.94
80.09
100.13
102.19
117.31
87.49
121.64
155.46
108.61
115.91
111.43
87.30
116.73
99.96
97.97
133.88
118.28
95.31
84.20
72.18
88.17
72.94
Ba
798.67
1162.02
1353.53
1342.00
1766.16
918.26
824.94
1397.21
2040.54
1714.43
1574.30
1443.73
1149.51
1185.91
1945.86
1750.91
1135.33
1053.50
3667.24
1404.58
1336.44
1450.51
2130.41
1890.01
2543.16
1522.64
2115.84
1769.34
3146.30
1270.90
nd
2447.67
4421.12
3020.32
1104.11
1158.12
1772.69
1656.75
1652.61
1962.00
1694.03
1819.45
3024.76
1792.67
1669.36
4760.92
2016.99
2011.09
1630.03
1628.40
1713.64
2420.54
2751.54
2053.43
La
45.17
60.83
91.53
77.84
68.50
28.04
54.73
111.37
79.31
79.29
59.02
43.70
50.41
45.58
57.31
57.60
29.15
37.18
79.71
107.72
27.78
52.61
56.09
74.76
57.07
50.47
55.38
61.74
46.80
26.19
18.08
23.51
39.98
43.31
33.26
36.86
29.89
26.96
29.10
44.31
27.33
31.13
29.34
27.26
25.76
29.44
29.97
26.13
33.58
21.62
20.79
17.94
28.99
18.18
Ce
148.28
143.44
265.85
125.07
197.52
65.08
83.95
196.93
157.30
128.83
168.62
170.73
89.34
66.80
181.10
99.56
35.70
52.48
87.15
88.43
181.68
64.55
70.36
119.92
57.79
62.96
63.33
50.49
54.63
70.84
96.25
52.90
55.77
40.37
51.13
40.10
44.78
26.08
48.40
66.70
30.73
36.27
51.82
65.28
48.18
29.10
32.14
35.50
31.87
23.02
24.77
22.86
33.62
37.70
Pr
9.58
11.20
14.39
8.94
16.66
7.28
13.07
10.06
20.26
22.79
14.32
5.97
17.93
15.24
15.01
8.66
6.65
5.57
8.79
7.69
5.34
4.71
8.62
2.52
5.42
4.19
11.30
5.46
3.18
8.83
2.94
2.81
5.08
3.72
6.13
4.21
5.51
3.55
4.29
6.51
3.63
3.21
5.14
3.14
3.07
2.85
2.76
3.64
3.47
2.40
2.19
2.27
2.86
1.99
Nd
38.84
39.29
50.95
69.82
114.38
25.85
41.63
53.10
26.13
29.39
18.96
10.40
39.43
22.11
19.98
29.14
9.40
10.44
32.83
13.59
17.71
27.38
19.68
19.06
21.01
16.74
24.37
19.41
20.04
16.18
5.02
5.10
17.97
16.84
17.16
15.58
13.91
8.69
12.72
21.41
11.79
10.39
12.95
12.13
13.00
10.92
9.39
12.54
10.36
8.57
8.83
6.82
11.93
8.80
Sm
3.18
16.28
19.59
1.94
5.27
bd
7.36
6.37
2.23
bd
1.74
1.38
3.78
2.52
4.35
7.96
1.25
2.50
bd
7.00
bd
bd
8.60
bd
bd
3.65
11.27
16.96
bd
1.61
bd
1.22
bd
bd
2.95
4.06
4.27
2.20
2.60
3.03
1.51
1.65
3.26
2.19
2.54
2.88
3.66
2.57
0.34
1.95
1.29
3.83
2.39
1.54
Eu
2.23
3.42
2.94
0.58
3.97
2.12
3.54
5.11
2.02
0.59
1.58
2.09
3.41
1.52
3.93
1.43
1.51
bd
1.31
bd
2.13
1.98
1.94
0.53
2.17
1.65
1.35
1.27
0.55
0.97
2.17
0.73
bd
0.87
0.97
0.84
1.07
0.58
0.68
1.71
0.63
0.99
2.07
1.10
0.98
1.73
0.46
0.99
0.52
0.42
0.39
0.16
0.96
0.66
Gd
7.25
9.53
7.13
13.34
15.47
8.26
11.50
16.63
4.33
5.71
8.55
2.68
14.82
7.41
10.65
6.20
2.42
2.42
2.07
13.67
5.17
1.55
14.70
12.05
3.48
8.92
22.06
12.41
9.04
6.31
7.07
3.57
4.49
4.21
4.63
6.43
6.28
4.32
4.47
9.29
7.40
4.20
5.69
3.34
48.18
4.71
6.59
3.97
3.06
2.73
4.32
6.44
3.91
2.81
Tb
2.13
3.27
3.18
3.22
2.18
1.17
2.43
1.50
1.59
2.08
2.90
0.98
3.36
1.04
3.35
0.94
0.74
1.48
0.78
1.38
1.26
0.19
1.27
0.41
1.92
0.43
1.59
2.00
1.97
0.38
1.43
0.58
0.18
0.51
0.83
1.11
1.26
0.88
1.58
2.01
1.14
1.01
0.81
0.86
1.12
0.87
0.65
0.87
0.61
0.99
0.37
0.55
0.63
0.39
Dy
9.68
8.60
22.35
19.69
22.85
2.03
20.50
19.41
28.03
17.91
10.95
4.67
12.75
13.38
10.49
18.35
7.23
7.84
11.59
14.58
13.64
12.65
10.33
16.08
6.93
15.81
14.07
13.24
10.68
14.80
10.44
6.48
14.82
13.89
8.64
9.60
10.77
6.34
8.76
12.37
7.25
7.11
11.14
8.41
8.21
6.31
5.57
6.71
7.65
5.49
7.46
8.27
6.77
4.66
Ho
2.15
3.69
9.67
2.32
2.83
1.34
3.16
3.30
7.51
4.92
2.72
1.82
1.12
2.27
1.55
3.80
1.19
0.74
1.82
2.78
1.90
2.94
2.30
3.58
1.28
2.61
3.49
1.51
3.98
1.35
2.02
1.02
2.58
2.59
2.05
2.24
3.50
2.14
3.16
3.36
2.53
1.42
2.78
1.78
2.09
2.38
1.68
2.03
2.03
1.97
1.74
1.44
2.04
1.06
Er
6.70
13.71
16.75
8.21
13.91
7.43
10.06
14.55
12.99
3.09
6.45
8.76
11.97
3.99
11.49
15.91
2.64
6.61
10.38
14.74
19.62
7.79
9.05
7.42
5.69
11.54
8.30
16.74
8.78
4.27
6.35
7.73
9.74
8.37
9.46
7.06
8.99
6.22
9.76
14.35
7.94
8.14
7.82
8.31
8.61
6.40
8.52
10.84
10.02
5.87
6.00
3.60
5.03
4.29
Tm
1.09
1.29
4.47
1.77
2.40
0.96
2.01
1.21
0.76
2.68
0.59
0.63
1.72
2.16
2.24
1.63
0.57
0.43
0.99
2.12
0.40
0.93
3.18
1.20
0.61
1.66
0.51
0.72
1.47
0.18
0.69
0.13
1.40
0.82
1.11
1.18
1.38
0.82
1.45
1.77
0.76
0.75
1.20
1.28
0.83
1.06
0.87
1.26
1.11
1.21
0.83
0.62
1.00
0.68
Yb
0.73
2.26
13.66
9.52
7.37
10.84
9.23
11.86
7.83
12.32
6.11
2.90
14.55
7.94
10.65
6.65
6.12
4.38
27.52
11.39
7.42
3.44
6.00
12.29
13.84
15.30
14.15
11.83
6.47
4.52
5.89
3.42
2.15
16.14
9.05
6.75
7.44
7.10
9.08
10.83
7.37
8.72
5.56
8.31
6.34
8.94
4.90
8.47
7.24
6.22
5.24
5.72
6.67
3.69
Lu
0.54
0.62
1.24
2.23
1.68
1.79
1.12
2.70
1.71
1.74
0.67
0.53
0.72
0.96
0.83
1.41
0.80
0.32
0.83
1.48
1.35
1.46
3.54
0.22
0.91
0.69
2.00
1.34
0.94
1.03
1.53
0.93
0.98
1.83
1.23
1.15
1.26
0.73
0.95
1.05
1.38
1.13
1.24
0.77
0.97
1.10
1.08
1.26
1.27
1.27
0.85
1.04
1.08
0.78
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.17
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.06
bd
0.03
0.05
bd
bd
bd
bd
bd
bd
bd
bd
0.03
0.04
bd
0.05
0.02
0.08
0.03
0.09
Th
U
ƩREE
3.56
278
12.03
317
9.05
524
15.26
344
18.86
475
2.43
162
6.70
264
19.57
454
8.29
352
13.50
311
12.81
303
15.52
257
5.70
265
4.57
193
7.50
333
3.42
259
2.80
105
5.07
132
7.16
266
8.83
287
4.12
285
11.03
182
8.32
216
3.18
270
5.74
178
6.44
197
8.33
233
8.02
215
7.01
169
5.16
157
2.39
160
4.21
110
4.51
155
5.84
153
10.95
149
8.51
137
6.49
140
5.30
97
5.68
137
7.29
199
4.59
111
4.78
116
5.89
141
3.51
144
5.06
170
3.91
109
6.38
108
8.38
117
5.24
113
6.04
84
4.63
85
4.54
82
7.40
108
4.51
87
Ce/Ce*
0.67
0.28
0.67
0.03
0.37
0.07
-0.26
0.22
-0.08
-0.29
0.36
1.37
-0.31
-0.41
0.45
0.01
-0.40
-0.17
-0.29
-0.40
2.47
-0.15
-0.27
0.32
-0.31
-0.12
-0.41
-0.43
-0.14
0.08
2.03
0.43
-0.13
-0.35
-0.17
-0.30
-0.19
-0.41
-0.02
-0.11
-0.31
-0.23
-0.03
0.54
0.19
-0.33
-0.27
-0.18
-0.37
-0.31
-0.21
-0.21
-0.22
0.35
Ce/Ce**
2.21
1.54
2.23
-6.60
67.83
1.08
0.70
4.86
0.56
0.41
0.86
2.26
0.43
0.33
0.88
1.32
0.40
0.76
1.27
0.91
3.87
5.01
0.72
-31.08
1.43
2.10
0.48
1.12
11.17
0.65
2.57
1.51
1.33
1.84
0.83
1.21
0.76
0.67
1.17
1.15
0.94
1.26
0.94
2.79
2.38
1.35
1.36
1.15
0.95
1.17
1.60
1.05
1.75
3.09
La/La*
Y/Ho
0.81
73.4
0.41
36.4
0.69
21.5
-2.47
75.4
-2.09 101.8
0.03
92.9
-0.09
33.1
-63.59
65.4
-0.56
25.0
-0.61
37.6
-0.53
44.5
-0.07
61.6
-0.59 106.4
-0.65
49.8
-0.57 132.0
0.59
30.6
-0.49
60.0
-0.12 118.9
1.72
69.3
0.80
63.8
0.22
62.1
-9.06
36.0
-0.02
44.4
-6.53
38.3
2.49 114.0
3.41
37.4
-0.29
42.5
2.02 149.0
-6.88
34.1
-0.61
64.1
-0.22
34.3
0.09
69.5
1.08
41.1
6.53
31.0
0.00
48.9
1.57
45.5
-0.11
33.6
0.21
40.8
0.33
38.5
0.56
46.3
0.69
42.9
1.18
81.7
-0.06
40.1
1.87
49.1
2.78
55.8
2.33
42.0
1.66
58.2
0.80
66.0
0.92
58.2
1.44
48.4
2.57
48.5
0.58
50.1
3.36
43.3
4.14
69.0
376
mm from
bone rim
5.56
5.60
5.63
5.67
5.70
5.74
5.77
5.80
5.84
5.87
5.91
5.94
5.98
6.01
6.05
6.08
6.12
6.15
6.18
6.22
6.25
6.29
6.32
6.36
6.39
6.43
6.46
6.50
6.53
6.56
6.60
6.63
6.67
6.70
6.74
6.77
6.81
6.84
6.88
6.91
6.94
6.98
7.01
7.05
7.08
7.12
7.15
7.19
7.22
7.26
7.29
7.32
7.36
7.39
Sc
14.19
10.78
7.51
8.09
11.48
10.93
12.23
14.64
15.06
16.43
11.93
12.37
11.56
14.91
10.17
8.14
6.72
9.74
5.06
9.29
6.71
10.29
8.41
6.18
9.35
10.56
8.89
6.30
8.25
5.66
8.06
9.66
7.77
8.01
8.15
8.49
3.70
7.18
5.78
6.02
6.66
6.32
7.06
8.34
7.24
9.20
8.56
7.21
11.27
9.69
12.24
6.63
8.36
7.09
Mn
0.29
0.23
0.38
0.34
0.24
0.21
0.19
0.29
0.26
0.27
0.17
0.25
0.23
0.18
0.17
0.28
0.18
0.25
0.15
0.27
0.21
0.33
0.15
0.15
0.23
0.18
0.20
0.16
0.20
0.18
0.39
0.34
0.32
0.32
0.37
0.59
0.22
0.84
0.50
0.65
0.21
0.24
0.49
0.32
0.33
0.25
0.23
0.21
0.23
0.20
0.18
0.21
0.26
0.29
Fe
1.49
1.21
0.90
1.34
1.35
bd
0.80
2.00
1.52
1.74
1.01
1.44
1.70
1.11
1.44
2.64
1.69
1.48
1.34
1.42
1.12
1.18
0.93
0.90
1.23
1.47
1.33
0.81
1.51
1.15
1.82
1.61
1.92
0.95
1.50
2.38
0.96
1.52
1.34
1.86
1.02
0.99
1.06
1.17
1.29
1.72
1.71
1.57
1.20
1.52
1.66
1.41
1.53
1.22
SRHS-DU-2 Metatarsal (continued)
Sr
3922.13
3181.03
2507.91
3436.50
3749.18
2992.89
2216.64
4501.09
5006.21
3864.73
2949.30
3374.09
3256.88
4757.77
3402.24
3437.76
2473.81
2965.51
2720.24
3719.81
3808.92
3697.75
2047.31
2921.56
3958.44
3231.53
3088.23
2942.07
2561.73
2653.01
3135.82
3346.75
3287.38
4133.03
2838.89
3988.82
3569.84
3433.53
3205.59
2584.33
3989.76
3361.76
2547.14
3867.24
2500.90
6055.14
2396.09
3157.95
3570.87
2522.81
3105.46
2742.99
3688.44
3391.37
Y
92.65
82.04
59.85
78.67
86.34
92.04
68.02
123.18
100.41
106.13
67.32
83.22
70.05
83.40
69.82
61.38
55.07
55.97
45.66
48.25
57.02
66.89
41.19
42.27
69.48
61.07
56.09
50.40
47.91
53.89
64.31
50.60
52.85
51.51
53.56
54.81
48.97
50.94
42.98
48.48
57.32
49.90
32.83
49.18
33.03
73.68
36.40
43.60
58.31
57.87
53.00
43.58
46.58
37.97
Ba
1537.86
1625.03
1464.68
1167.90
2202.69
1283.60
1273.94
1653.01
1991.03
1825.19
956.41
1129.73
1137.64
2025.89
1031.03
1788.38
1070.54
2149.02
1638.91
1712.56
1347.12
1848.68
1372.35
1322.98
1991.26
1372.63
1844.13
989.46
949.07
1275.48
3227.80
1846.47
nd
nd
3133.00
1931.53
1702.94
2052.32
1609.47
1334.71
2029.06
1887.09
1404.00
2097.69
1271.60
2349.08
nd
1440.37
1359.07
1180.61
1248.53
1426.16
1178.85
1463.50
La
25.38
22.40
15.80
26.51
19.13
18.89
18.12
28.85
31.32
22.82
19.78
21.55
17.31
19.11
12.36
12.54
9.91
15.30
13.44
15.12
11.07
16.59
7.72
10.99
19.56
9.00
10.68
11.31
11.52
11.46
14.23
9.25
10.03
10.85
13.38
12.36
11.68
10.19
8.13
11.38
10.91
6.88
4.80
8.34
5.97
11.43
5.68
10.44
7.94
9.44
6.17
8.09
7.65
7.22
Ce
39.37
28.64
38.28
26.03
96.44
20.20
22.08
31.92
33.63
40.47
29.50
72.37
21.04
22.09
14.48
13.42
15.35
16.57
16.75
13.69
12.18
19.10
6.10
11.83
16.58
9.80
14.46
9.12
7.55
11.02
21.08
7.94
11.65
11.49
17.06
10.47
11.78
12.45
9.81
12.33
11.83
9.38
4.18
7.96
6.44
13.62
9.56
9.59
6.67
8.81
6.00
11.75
7.86
6.97
Pr
4.42
1.66
1.83
3.19
3.42
1.20
2.39
3.51
3.26
1.79
1.63
2.19
1.52
1.81
1.23
1.35
0.99
1.13
0.98
1.36
2.53
1.44
0.56
1.29
1.33
1.42
1.31
0.83
1.15
1.19
1.78
0.76
1.08
1.24
1.05
1.29
2.30
0.82
0.81
0.86
0.74
0.60
0.57
0.22
0.45
0.90
0.66
0.39
0.47
0.48
0.31
0.43
0.57
0.57
Nd
8.63
9.83
6.00
6.90
21.98
6.55
8.16
15.11
9.44
10.64
12.11
4.52
4.96
3.27
5.74
3.37
4.17
3.07
2.56
4.40
3.48
6.24
1.51
2.28
6.96
4.56
3.56
2.68
2.08
3.14
4.42
4.59
2.31
1.07
6.09
3.35
2.25
1.76
2.97
6.67
5.09
2.16
0.60
2.34
1.89
1.09
1.04
0.68
2.06
1.14
1.11
2.27
2.47
bd
Sm
2.92
1.23
0.96
0.80
1.79
1.97
3.57
1.11
1.84
2.95
1.32
bd
1.99
2.36
1.10
0.21
bd
0.46
0.16
0.22
0.73
1.88
1.37
0.59
1.10
0.78
1.60
0.86
0.23
0.23
0.89
0.22
0.28
0.43
1.97
0.47
0.22
1.95
0.51
1.67
1.41
0.40
bd
bd
0.17
0.66
0.21
0.27
bd
0.78
bd
0.27
0.79
0.22
Eu
1.17
0.59
0.22
1.13
0.77
0.30
0.80
0.45
0.37
0.69
0.56
0.47
0.40
0.35
0.41
0.19
0.67
0.42
0.19
0.60
0.11
0.19
0.34
0.06
0.53
0.24
0.16
0.19
0.07
0.14
0.44
0.13
0.42
0.13
0.42
0.14
0.14
0.15
0.08
bd
0.28
0.06
0.11
0.28
0.05
0.20
0.19
0.16
0.08
0.18
0.16
0.33
0.12
0.07
Gd
5.41
3.14
1.89
2.10
3.02
3.38
3.79
3.28
3.31
5.48
3.64
1.27
1.30
2.71
1.08
1.05
1.46
2.27
0.80
1.51
1.97
2.46
1.34
1.54
2.59
1.54
2.10
0.85
1.12
1.39
4.35
1.30
1.64
2.75
2.21
1.63
1.33
2.08
0.75
1.31
1.62
2.95
0.89
1.54
2.23
2.26
1.23
0.81
bd
0.77
0.53
1.61
0.97
0.87
Tb
0.57
0.47
0.71
0.60
0.54
0.52
0.70
1.05
0.65
0.62
0.53
1.04
0.59
0.74
0.20
0.33
0.28
0.22
0.21
0.36
0.37
0.52
0.51
0.25
0.34
0.43
0.25
0.18
0.19
0.22
0.38
0.36
0.56
0.25
0.50
0.39
0.29
0.31
0.09
0.08
0.53
0.19
0.21
0.22
0.04
0.47
0.17
0.16
0.42
0.21
0.10
0.13
0.16
0.16
Dy
5.92
5.33
6.82
5.40
4.31
6.86
5.86
7.31
12.54
3.78
5.21
3.86
3.03
8.14
3.45
2.46
3.48
3.44
2.65
3.92
2.98
4.51
2.74
3.96
3.49
3.14
4.12
3.42
3.29
4.43
2.56
1.17
2.41
2.69
2.98
1.59
1.85
2.74
2.33
1.93
3.85
4.05
0.79
2.56
1.01
3.64
1.21
2.50
2.12
1.70
1.04
2.89
1.72
1.92
Ho
2.53
1.48
1.70
1.76
1.84
1.92
1.50
2.22
2.10
2.36
1.33
1.55
1.15
1.61
1.06
1.18
0.85
1.47
0.64
1.51
1.00
1.01
1.07
0.96
1.32
0.88
1.19
0.52
0.93
1.02
1.28
0.58
1.00
0.80
0.88
0.57
0.98
0.96
0.58
0.88
1.10
0.99
0.63
1.05
0.40
0.91
0.78
0.79
1.36
1.06
0.61
1.18
0.38
0.51
Er
7.00
6.22
6.08
5.50
7.83
3.76
6.26
11.13
7.76
6.91
4.18
4.23
2.79
5.39
4.50
4.38
3.13
3.53
2.22
4.76
2.88
4.61
4.21
5.16
5.34
3.71
3.95
3.63
2.76
2.24
5.14
1.98
3.81
1.59
5.79
3.37
4.17
4.54
2.42
2.64
5.71
3.80
1.53
2.31
1.47
3.99
3.97
3.47
2.03
3.82
2.55
3.88
1.67
2.46
Tm
1.63
0.73
0.77
1.10
0.64
0.51
1.19
1.78
0.74
1.50
0.70
0.50
0.61
0.54
0.85
0.46
0.30
0.74
0.22
0.48
0.50
0.54
0.55
0.56
0.55
0.39
0.52
0.32
0.42
0.40
1.42
0.48
0.80
0.34
0.61
0.49
0.59
0.20
0.17
0.61
0.65
0.55
0.27
0.64
0.20
0.60
0.36
0.63
0.44
0.52
0.43
0.59
0.45
0.46
Yb
11.08
5.50
4.37
5.23
6.08
6.69
6.43
5.95
8.35
4.81
6.09
6.69
3.94
8.52
3.85
3.72
3.50
2.90
3.85
4.31
2.80
7.42
3.18
2.74
4.77
5.10
2.61
4.06
2.71
3.30
6.81
2.46
3.89
3.61
6.10
2.64
2.68
5.79
2.85
3.74
4.44
5.04
2.54
3.94
0.85
7.82
2.49
3.45
2.89
3.69
2.26
3.43
2.08
3.26
Lu
1.48
1.03
0.70
0.47
0.84
1.03
1.13
1.69
1.21
0.96
0.97
0.92
0.97
1.50
0.59
0.59
0.66
0.44
0.64
0.47
0.60
0.99
0.40
0.77
0.53
0.56
0.71
0.38
0.38
0.60
1.31
0.59
0.63
0.57
0.61
0.54
0.46
0.62
0.26
0.64
0.81
0.43
0.37
0.68
0.33
0.96
0.61
0.59
0.87
0.85
0.58
0.80
0.63
0.31
bd
bd
0.05
bd
0.02
bd
bd
0.04
bd
0.03
0.03
0.08
bd
bd
bd
bd
bd
bd
bd
bd
0.04
bd
bd
bd
0.02
bd
0.03
0.02
0.02
bd
bd
bd
0.03
0.02
bd
bd
0.09
0.03
0.02
bd
bd
bd
bd
bd
0.02
bd
bd
bd
bd
bd
bd
bd
bd
bd
Th
U
ƩREE
10.29
118
4.91
88
6.27
86
7.23
87
4.41
169
3.85
74
5.06
82
10.65
115
8.42
117
12.57
106
7.58
88
6.53
121
4.54
62
5.19
78
6.65
51
4.55
45
3.05
45
4.38
52
2.52
45
5.18
53
2.38
43
4.14
67
2.67
32
5.90
43
3.20
65
4.53
42
2.90
47
4.15
38
5.61
34
2.62
41
3.30
66
2.89
32
4.77
40
2.69
38
4.75
60
2.49
39
4.28
41
1.55
45
2.37
32
3.94
45
3.75
49
3.07
37
2.02
17
7.02
32
1.76
21
9.59
49
2.45
28
8.62
34
4.70
27
6.68
33
5.26
22
7.38
38
5.16
28
4.90
25
Ce/Ce*
-0.14
-0.08
0.55
-0.38
1.76
-0.20
-0.25
-0.30
-0.29
0.26
0.05
1.24
-0.16
-0.21
-0.21
-0.30
0.04
-0.22
-0.10
-0.38
-0.46
-0.20
-0.43
-0.31
-0.38
-0.37
-0.15
-0.42
-0.56
-0.36
-0.07
-0.39
-0.24
-0.32
-0.09
-0.44
-0.47
-0.13
-0.19
-0.22
-0.20
-0.06
-0.45
-0.20
-0.22
-0.15
0.08
-0.25
-0.37
-0.27
-0.24
0.12
-0.26
-0.31
Ce/Ce**
0.73
7.00
2.35
0.70
22.72
4.68
1.08
1.42
1.05
9.45
-15.31
2.78
1.54
0.98
2.14
0.92
2.36
1.43
1.63
1.12
0.35
2.11
1.07
0.73
3.04
0.76
1.08
1.21
0.53
0.89
1.09
4.79
0.93
0.63
5.85
0.77
0.35
1.31
1.54
-7.39
76.28
1.90
0.51
-4.18
2.13
1.09
1.11
1.92
2.22
1.66
2.40
6.68
2.19
1.46
La/La*
Y/Ho
-0.22
36.7
-9.24
55.6
0.98
35.2
0.21
44.6
-3.01
46.8
-28.25
48.0
0.87
45.4
3.04
55.4
0.84
47.9
-8.49
45.0
-3.41
50.5
0.38
53.6
1.58
60.7
0.37
51.9
7.41
66.0
0.52
52.2
3.56
65.1
1.41
38.1
1.35
71.2
1.49
32.0
-0.50
56.8
4.95
66.1
1.46
38.6
0.09
43.9
-148.83
52.6
0.39
69.7
0.46
47.2
2.01
97.6
0.31
51.5
0.67
52.8
0.29
50.4
-7.41
86.9
0.34
52.8
-0.11
64.3
-10.43
61.0
0.62
96.5
-0.47
50.2
0.80
53.3
1.93
73.9
-3.30
54.9
-4.92
52.0
2.10
50.7
-0.11
51.9
-4.14
46.7
4.71
83.0
0.41
81.1
0.04
46.7
2.36
55.3
7.54
43.0
2.08
54.7
4.51
86.4
-145.35
37.0
5.90 122.4
2.27
75.0
377
mm from
bone rim
7.43
7.46
7.50
7.53
7.57
7.60
7.64
7.67
7.70
7.74
7.77
7.81
7.84
7.88
7.91
7.95
7.98
8.02
8.05
8.08
8.12
8.15
8.19
8.22
8.26
8.29
8.33
8.36
8.40
8.43
8.46
8.50
8.53
8.57
8.60
8.64
8.67
8.71
8.74
8.78
8.81
8.84
8.88
8.91
8.95
8.98
9.02
9.05
9.09
9.12
9.16
9.19
9.22
9.26
Sc
7.63
5.78
8.01
5.34
8.94
7.93
9.06
8.19
6.95
7.41
6.71
7.16
6.72
8.96
8.38
9.24
5.35
7.64
6.30
9.24
8.83
9.38
7.08
6.18
6.51
6.99
9.19
6.03
9.51
7.73
4.63
7.23
5.55
4.86
4.22
4.37
3.69
4.19
3.10
2.73
2.63
2.99
2.45
4.60
5.03
6.26
5.65
6.31
4.97
4.50
7.38
9.14
6.08
5.66
Mn
0.40
0.36
0.35
0.30
0.41
0.35
0.21
0.32
0.18
0.21
0.21
0.26
0.28
0.19
0.31
0.26
0.25
0.18
0.28
0.17
0.16
0.36
0.16
0.16
0.13
0.21
0.25
0.27
0.37
0.75
0.40
0.48
0.39
0.31
0.23
0.27
0.23
0.19
0.19
0.20
0.30
0.22
0.16
0.17
0.18
0.20
0.20
0.18
0.13
0.13
0.22
0.24
0.27
0.18
Fe
1.59
1.66
1.30
1.07
2.20
bd
1.20
1.47
1.21
0.96
1.28
1.38
1.20
1.30
1.66
1.36
1.30
1.07
1.50
1.04
0.98
1.24
1.05
1.24
0.78
1.35
1.29
1.14
1.44
1.63
1.71
1.48
1.02
1.76
1.37
1.44
1.39
1.43
1.22
1.63
1.28
1.28
0.93
1.30
1.75
1.60
2.50
1.78
1.17
1.13
1.17
1.47
1.82
1.65
SRHS-DU-2 Metatarsal (continued)
Sr
3100.41
3715.19
4178.45
4439.15
4096.81
3749.16
3603.38
3484.69
2434.87
3255.62
2351.93
3341.20
2851.03
3145.54
4722.87
3924.65
3307.36
2944.25
3771.75
2888.43
3310.97
2706.94
3585.30
3998.93
2200.96
3438.60
3177.23
2816.66
4409.65
4420.90
3660.63
2700.02
3678.87
3155.62
3290.74
3369.42
3018.38
2974.06
4378.60
4898.68
2302.41
3372.53
2244.72
3574.68
4671.72
5664.01
3944.38
8949.28
1726.28
3185.34
3394.30
3905.02
4206.97
4180.59
Y
37.02
34.73
45.14
36.62
40.14
44.31
32.19
38.49
29.74
30.92
30.88
42.58
34.38
42.49
37.90
37.32
31.49
34.64
27.17
41.88
35.63
33.48
32.16
32.98
23.68
35.34
32.58
28.81
38.03
32.16
22.36
23.39
24.79
20.85
22.68
22.57
19.37
16.64
21.96
14.56
9.94
12.29
11.25
16.16
15.98
21.62
16.96
22.03
10.54
12.54
22.46
25.01
21.60
18.41
Ba
1262.92
1087.64
2195.61
1878.17
1867.78
1585.29
1760.95
1971.19
1739.46
1518.84
1255.78
1816.74
1461.19
1456.17
1786.07
1673.51
1316.18
1378.48
1008.15
1505.16
954.75
1238.45
1596.52
1446.96
1436.58
1384.66
1616.75
1432.49
2809.42
3503.75
1552.41
2103.38
1851.88
1418.61
1493.72
1900.94
1441.25
1595.32
1656.39
1386.49
986.78
1258.96
1065.66
nd
nd
nd
nd
nd
1693.76
1797.49
1263.39
1742.38
2270.44
1746.71
La
4.53
5.43
7.89
7.74
7.21
7.26
5.87
8.59
6.41
5.67
5.51
5.89
4.38
6.71
6.07
4.73
3.48
4.66
4.86
7.47
3.83
3.86
4.81
4.18
3.08
2.56
4.15
3.28
3.64
5.55
7.98
6.87
12.32
5.39
4.30
7.88
2.54
3.21
1.82
2.29
1.25
1.81
1.50
1.73
1.70
3.41
2.05
2.00
1.49
1.98
3.63
2.98
2.06
1.83
Ce
4.52
5.21
8.63
9.32
7.35
6.01
11.40
9.70
4.88
4.11
3.63
5.07
6.18
3.40
3.35
3.39
3.03
2.96
3.02
2.73
4.06
5.41
2.96
2.91
3.36
3.60
3.91
4.63
2.78
3.30
13.70
8.56
16.65
5.52
7.15
9.49
5.14
4.01
2.03
2.83
1.49
1.53
1.13
3.43
1.97
1.69
1.15
1.42
1.35
1.29
1.33
1.72
1.59
1.46
Pr
0.43
0.51
0.71
1.02
0.54
0.41
0.29
0.38
0.69
0.24
0.62
0.48
0.14
0.32
0.39
0.11
0.47
0.32
0.29
0.58
0.16
0.20
0.18
0.26
0.21
0.08
0.11
0.04
0.14
0.62
3.77
2.70
0.60
0.77
0.73
0.58
0.55
0.20
0.41
0.23
0.06
0.19
0.03
0.12
0.12
0.69
0.06
0.28
0.03
0.06
0.12
0.07
0.08
bd
Nd
1.55
3.38
3.11
1.55
1.81
0.80
2.73
1.40
1.04
1.57
2.12
1.72
1.50
0.68
0.90
1.55
0.22
0.82
0.63
1.29
0.74
1.15
0.62
1.08
1.03
bd
1.83
0.95
1.63
2.28
2.68
2.46
3.47
3.45
2.04
1.11
0.70
0.23
0.85
0.21
0.34
0.89
0.56
0.22
bd
0.86
0.52
0.19
0.32
0.80
1.26
0.38
0.45
0.24
Sm
0.19
0.27
bd
0.19
bd
0.77
0.41
0.72
0.63
0.21
0.78
0.26
0.40
0.83
bd
0.27
0.27
0.25
bd
0.62
bd
0.27
bd
bd
bd
bd
bd
bd
0.49
bd
0.50
0.74
0.44
0.20
1.23
bd
0.42
bd
bd
bd
bd
0.27
0.23
0.54
bd
bd
0.21
bd
bd
bd
bd
bd
bd
bd
bd
0.33
0.35
0.17
0.28
0.23
0.18
0.36
0.13
0.13
0.18
0.16
0.24
bd
0.08
0.08
0.16
0.15
0.08
bd
0.07
bd
bd
0.63
bd
0.17
0.11
bd
bd
bd
0.07
0.30
0.20
0.36
0.06
0.08
0.19
bd
0.08
bd
bd
0.16
bd
0.08
0.08
0.05
0.13
bd
0.06
0.12
bd
bd
bd
0.27
Eu
Gd
1.10
1.60
0.69
1.83
1.54
0.95
0.40
2.61
1.44
1.24
bd
0.76
0.20
0.81
1.07
bd
bd
1.21
bd
3.38
bd
0.54
bd
0.51
0.24
0.81
3.26
1.69
0.96
1.16
0.73
1.21
3.45
0.58
0.80
1.05
0.42
0.28
0.25
0.26
0.61
bd
0.22
bd
1.61
0.17
0.82
0.24
0.58
0.38
0.16
0.46
0.27
0.30
Tb
0.09
0.13
0.06
0.18
0.26
0.11
0.17
0.03
0.15
0.05
0.09
0.21
0.07
0.03
0.22
0.09
0.19
0.15
0.06
0.18
0.11
0.03
0.12
0.03
0.26
0.07
0.04
0.27
0.23
0.05
0.18
0.15
0.18
0.12
0.05
0.03
0.05
bd
0.12
0.12
0.02
0.06
bd
0.03
bd
0.02
0.17
0.03
0.05
0.07
0.08
0.03
bd
bd
Dy
1.44
2.22
0.67
2.61
3.16
2.13
1.58
1.39
1.21
1.32
1.22
1.62
1.93
2.51
1.43
2.06
1.31
0.95
1.23
1.05
0.43
1.60
1.08
1.26
0.36
1.33
0.89
0.83
0.95
3.21
0.83
0.83
0.84
1.71
0.59
0.64
1.02
0.41
0.12
0.50
0.59
0.91
0.44
0.39
0.92
0.50
0.50
0.35
0.09
1.11
0.65
0.56
1.31
0.58
Ho
0.76
0.75
0.87
0.47
0.86
0.72
0.57
0.58
0.38
0.48
0.49
0.62
0.31
0.89
0.52
0.48
0.75
0.50
0.49
0.64
0.32
0.43
0.39
0.53
0.51
0.50
0.53
0.45
0.53
0.57
0.42
0.24
0.74
0.47
0.27
0.61
0.18
0.38
0.15
0.22
0.20
0.16
0.22
0.29
0.23
0.25
0.25
0.17
0.14
0.21
0.42
0.20
0.16
bd
Er
2.17
2.43
2.59
2.85
2.96
3.14
2.59
2.29
2.09
2.77
2.06
2.05
3.17
4.06
2.14
1.41
1.86
2.47
3.37
2.80
1.41
1.46
0.79
1.38
2.35
1.02
0.97
1.51
2.59
1.86
2.09
1.56
1.39
0.83
0.86
1.55
1.57
0.45
0.81
0.55
0.65
1.42
0.12
0.85
1.59
0.91
0.99
0.77
0.72
1.32
1.24
0.24
1.15
1.28
Tm
0.38
0.50
0.75
0.51
0.71
0.46
0.23
0.47
0.36
0.22
0.36
0.39
0.14
0.50
0.37
0.31
0.78
0.28
0.44
0.32
0.18
0.16
0.46
0.27
0.57
0.38
0.55
0.20
0.73
0.22
0.17
0.08
0.35
0.34
0.28
0.24
0.32
0.46
0.12
0.24
0.12
0.12
0.18
0.03
0.25
0.14
0.29
0.22
0.20
0.24
0.35
0.21
0.19
0.17
Yb
2.22
3.97
1.80
5.35
5.02
4.03
3.15
3.54
1.61
2.50
2.46
3.98
1.54
3.84
3.22
1.68
1.90
2.41
2.14
3.71
3.59
2.51
1.22
2.19
2.07
4.25
2.06
1.40
3.78
1.64
2.42
2.07
1.38
0.96
0.71
1.49
0.44
1.99
2.51
0.55
0.43
0.94
0.32
0.94
1.72
1.93
0.73
1.02
0.82
2.02
2.12
1.47
2.67
2.12
Lu
0.38
1.00
0.80
0.45
0.75
0.73
0.26
0.74
0.29
0.48
0.40
0.46
0.33
0.49
0.48
0.41
0.65
0.38
0.45
0.59
0.28
0.60
0.48
0.30
0.57
0.35
0.75
0.36
0.87
0.65
0.31
0.22
0.42
0.33
0.23
0.17
0.49
0.32
0.36
0.17
0.34
0.31
0.17
0.27
0.24
0.37
0.27
0.25
0.12
0.24
0.28
0.32
0.07
0.58
bd
bd
bd
bd
bd
bd
bd
0.05
bd
bd
0.04
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.02
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.02
bd
bd
bd
bd
bd
bd
bd
0.02
0.08
bd
bd
bd
0.02
bd
bd
bd
bd
0.03
bd
bd
bd
Th
U
ƩREE
2.54
20
3.76
28
3.77
29
3.25
34
3.61
32
5.97
28
4.11
30
3.12
33
3.55
21
2.35
21
2.33
20
4.04
24
3.17
21
4.66
25
2.82
20
4.72
17
6.25
15
2.93
18
3.15
17
7.64
25
2.61
15
6.67
18
3.19
13
2.56
16
2.84
15
2.73
15
5.01
19
2.47
16
8.68
19
4.26
21
2.24
36
2.87
28
1.74
42
1.39
21
1.49
19
1.17
25
1.45
14
1.18
12
1.59
10
2.55
8
0.67
6
1.49
9
0.73
5
1.12
9
1.82
10
1.74
11
3.18
8
3.01
7
2.25
6
2.86
10
3.17
12
2.51
9
3.90
10
3.03
9
Ce/Ce*
-0.32
-0.35
-0.24
-0.26
-0.27
-0.37
0.51
-0.10
-0.50
-0.42
-0.57
-0.39
0.17
-0.60
-0.59
-0.39
-0.47
-0.53
-0.53
-0.74
-0.15
0.09
-0.50
-0.48
-0.20
0.17
-0.20
0.25
-0.38
-0.62
-0.44
-0.54
0.06
-0.39
-0.07
-0.13
0.02
-0.07
-0.45
-0.17
-0.06
-0.45
-0.35
0.46
-0.15
-0.74
-0.53
-0.57
-0.21
-0.45
-0.70
-0.51
-0.37
-0.43
Ce/Ce**
1.30
16.87
1.99
0.69
1.57
1.19
-6.82
3.20
0.53
16.39
0.69
1.27
-5.09
0.92
0.76
-1.85
0.41
0.87
0.89
0.41
4.47
9.59
1.94
1.62
3.05
-1.68
-1.46
-2.86
-1.76
0.67
0.24
0.22
10.01
1.22
0.96
1.35
0.68
1.38
0.42
0.86
8.47
1.39
-1.38
2.39
2.90
0.18
-4.64
0.33
-4.35
-1.27
-1.30
8.68
6.86
0.83
La/La*
Y/Ho
1.93
48.5
-4.19
46.4
5.24
51.8
-0.09
77.9
2.22
46.5
1.35
61.9
-3.16
56.9
5.49
66.4
0.11
79.0
-8.91
64.5
1.20
62.6
2.26
68.5
-3.58 110.1
2.07
47.7
1.37
72.8
-3.18
77.6
-0.31
42.0
1.43
68.8
1.39
55.4
0.89
65.7
16.68 110.9
-16.13
77.6
5.70
82.4
5.51
61.9
15.43
46.9
-2.11
71.1
-2.43
61.5
-2.97
64.4
-2.79
71.7
1.58
56.9
-0.79
53.7
-0.74
98.7
-16.30
33.6
3.46
44.0
0.07
84.2
0.84
37.1
-0.48 108.6
0.69
44.2
-0.37 142.4
0.05
66.2
-19.11
50.2
5.92
75.9
-2.67
51.4
0.96
55.4
8.98
69.6
-0.46
86.9
-5.38
67.4
-0.30 126.1
-4.72
74.6
-2.71
60.2
-3.54
52.9
-39.28 127.9
-23.64 132.1
0.69 112.6
378
mm from
bone rim
9.29
9.33
9.36
9.40
9.43
9.47
9.50
9.54
9.57
9.60
9.64
9.67
9.71
9.74
9.78
9.78
9.81
9.85
9.88
9.92
9.95
9.98
10.02
10.05
10.09
10.12
10.16
10.19
10.23
10.26
10.30
10.33
10.37
10.40
10.43
10.47
10.50
10.54
10.57
10.61
10.64
10.68
10.71
10.75
10.78
10.81
10.85
10.88
10.92
10.95
10.99
11.02
11.06
11.09
Sc
4.87
4.92
5.23
4.44
4.54
4.15
2.81
4.41
5.81
2.82
3.27
3.37
5.40
5.23
5.42
3.55
3.94
2.96
3.10
3.93
2.61
3.47
3.47
4.56
3.24
3.04
1.27
2.75
5.28
5.07
6.32
4.55
3.10
4.32
3.16
2.13
3.09
1.92
1.91
3.00
5.60
3.12
2.39
2.11
2.68
2.59
4.06
2.75
5.19
3.24
2.57
3.50
2.24
2.44
Mn
0.19
0.29
0.30
0.18
0.20
0.15
0.17
0.20
0.21
0.10
0.11
0.20
0.34
0.34
0.40
0.20
0.14
0.16
0.21
0.26
0.23
0.20
0.22
0.27
0.15
0.21
0.19
0.18
0.15
0.23
0.25
0.19
0.22
0.27
0.35
0.50
0.85
0.28
0.34
0.24
0.47
0.27
0.79
0.37
0.37
0.38
0.33
0.27
0.23
0.52
0.18
0.13
0.18
0.25
Fe
0.93
1.82
0.89
1.28
1.46
1.27
1.65
0.93
1.16
0.94
1.28
1.32
1.44
1.27
1.36
1.59
1.26
1.45
1.33
1.78
3.47
1.06
1.06
0.97
1.37
0.94
1.27
1.16
1.15
1.52
1.94
1.71
1.10
1.25
1.55
1.18
1.73
1.05
1.33
1.37
1.39
1.43
1.21
1.14
2.11
1.05
bd
1.47
1.33
1.04
1.39
1.45
1.25
1.65
SRHS-DU-2 Metatarsal (continued)
Sr
3141.13
3836.55
2251.60
2348.94
2438.47
3066.13
3053.93
2380.88
3152.44
3402.96
2427.63
3302.29
2890.51
3999.72
4040.94
5408.00
3399.79
2844.89
2671.29
4773.70
4079.97
2804.32
4042.58
2419.71
2522.15
3046.48
1945.20
2233.16
3024.02
3948.68
4239.86
3361.52
2997.20
3128.26
4101.10
3146.68
2909.67
2632.84
2192.56
3042.26
4258.57
3256.63
2890.23
3265.08
2678.66
2901.80
4162.60
2427.37
3340.23
3367.38
3141.83
2771.91
2616.82
3211.89
Y
15.52
16.61
14.23
14.89
9.86
12.22
10.66
9.71
12.10
13.14
10.24
13.70
14.22
15.08
13.53
14.23
10.63
9.81
9.79
12.53
13.47
11.17
10.37
8.29
6.89
5.65
6.26
8.27
7.41
11.08
14.25
11.04
7.17
7.90
7.74
5.29
7.94
5.80
6.90
8.30
9.40
5.20
6.20
8.05
8.75
6.23
7.08
7.34
7.28
5.84
5.26
6.80
6.18
7.52
Ba
1689.52
2502.88
1352.21
1280.03
1210.25
nd
nd
1424.97
1537.52
1353.04
1477.28
1212.74
nd
2494.70
1614.84
1460.57
1746.66
1462.18
1241.79
2347.92
2283.46
1634.74
1883.64
1087.95
1161.14
1282.86
812.39
1440.72
1672.14
2020.84
1949.48
1764.57
1452.15
1730.82
1533.48
1233.82
1394.34
1446.97
1463.47
1676.16
1404.29
1611.28
1576.73
1613.51
1649.22
1356.27
1230.45
1949.52
1453.42
2310.49
930.07
1143.45
947.02
2165.99
La
1.79
1.55
1.86
1.56
1.45
2.09
2.10
2.11
2.67
1.64
1.00
2.51
1.34
2.68
2.10
3.00
1.55
1.07
0.73
2.12
2.06
0.99
1.22
1.11
0.97
0.78
0.51
0.97
1.09
2.12
1.61
0.83
0.83
0.48
0.69
0.95
1.16
0.89
0.85
0.47
0.57
0.45
4.36
1.35
1.24
0.48
0.88
0.61
0.87
1.05
0.67
0.89
0.80
1.20
Ce
1.71
2.12
3.01
0.85
1.48
1.44
1.13
0.56
1.38
1.06
1.09
0.80
1.81
1.61
1.34
1.20
0.61
1.46
1.08
0.88
0.94
0.38
0.41
0.52
0.54
0.67
0.62
0.84
0.66
0.62
1.20
0.30
1.32
1.43
1.06
0.82
1.29
0.87
0.96
0.70
0.49
1.21
0.95
1.33
3.05
0.41
1.03
0.70
0.93
0.55
1.56
0.62
0.62
0.28
Pr
0.20
0.19
0.56
0.03
0.07
0.04
0.29
0.15
0.13
0.19
0.06
0.18
0.07
0.08
0.16
bd
0.08
0.10
bd
0.10
bd
bd
0.09
0.07
bd
0.10
bd
bd
0.30
0.04
0.11
0.11
0.25
bd
bd
0.08
0.58
0.61
0.07
0.22
bd
bd
bd
0.19
0.07
0.06
0.08
bd
0.15
0.03
0.05
0.03
bd
0.05
Nd
0.57
0.21
0.18
0.18
bd
0.77
0.18
0.14
bd
0.18
0.17
0.64
0.64
bd
0.36
0.87
bd
0.20
0.40
0.57
0.76
bd
bd
0.19
bd
0.40
bd
0.24
0.86
0.70
0.30
0.20
bd
bd
0.57
0.23
0.78
0.22
0.21
0.63
0.47
bd
bd
bd
bd
bd
0.23
bd
0.21
0.16
bd
bd
bd
0.27
bd
bd
bd
bd
bd
0.31
0.45
bd
bd
bd
bd
bd
0.26
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.77
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.21
bd
bd
Sm
bd
bd
0.14
0.07
0.16
bd
bd
bd
0.14
0.60
0.13
0.08
bd
bd
0.13
bd
0.08
0.07
bd
bd
bd
bd
bd
0.07
bd
bd
bd
0.09
bd
bd
bd
0.15
0.15
bd
bd
bd
bd
bd
bd
bd
0.08
0.08
0.09
0.16
bd
bd
0.08
bd
0.08
bd
bd
bd
0.07
0.78
Eu
Gd
0.45
0.26
0.22
0.22
0.51
bd
0.44
0.17
bd
bd
0.21
bd
1.26
0.28
1.10
bd
0.53
bd
0.24
0.33
1.20
bd
bd
bd
0.23
bd
0.55
bd
1.52
bd
1.09
0.73
bd
bd
1.35
0.28
0.31
0.52
bd
3.49
bd
0.80
0.86
0.26
bd
bd
bd
0.22
bd
0.18
bd
bd
bd
0.63
bd
0.06
bd
0.08
0.03
0.04
0.19
0.02
0.03
0.03
0.02
0.21
0.03
bd
0.03
0.12
bd
0.06
bd
bd
bd
bd
bd
bd
bd
bd
0.03
bd
0.09
bd
bd
bd
bd
0.11
bd
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.03
0.04
Tb
bd
0.25
0.33
0.54
bd
0.15
0.98
0.41
0.22
0.64
0.51
0.12
0.37
0.82
0.11
0.33
0.39
0.23
0.12
0.66
0.15
0.47
0.10
0.34
0.92
0.35
bd
0.42
bd
0.54
0.89
0.47
0.24
0.62
0.66
bd
bd
0.26
0.36
0.24
0.14
bd
0.42
0.26
0.12
0.42
0.26
bd
bd
bd
0.09
0.72
0.22
0.47
Dy
Ho
0.17
0.09
0.14
0.05
0.06
0.07
0.22
0.16
0.14
0.08
0.08
0.12
0.06
0.31
0.13
0.21
0.06
0.08
0.11
0.12
0.18
0.15
0.13
0.06
0.11
0.12
0.17
0.17
0.18
0.27
0.31
0.06
0.06
0.38
bd
0.10
0.11
0.06
0.09
0.21
0.10
bd
0.14
bd
0.09
0.05
0.03
0.05
0.31
0.02
0.04
0.02
0.19
0.04
Er
0.86
0.97
0.97
1.43
0.41
0.49
0.36
0.09
0.48
1.05
0.56
0.95
1.22
1.80
1.17
0.74
0.86
0.50
0.89
0.54
0.48
0.26
0.93
0.37
0.63
0.51
0.59
0.91
0.41
bd
0.58
0.91
0.65
1.18
0.72
0.59
0.33
0.28
0.13
0.93
0.15
0.28
0.31
0.42
0.27
0.81
0.14
0.24
0.41
0.10
0.29
0.67
0.24
0.34
Tm
0.16
0.03
0.26
0.13
0.09
0.07
0.26
0.04
0.05
0.03
0.12
0.06
0.09
0.16
0.20
0.20
bd
0.05
0.08
0.04
0.17
0.08
0.10
0.08
0.16
0.08
0.09
bd
0.03
0.13
0.21
0.11
0.05
0.03
bd
0.13
0.11
0.03
0.14
0.11
0.13
0.03
0.06
0.06
0.23
0.02
0.03
0.02
0.03
0.04
0.06
0.05
0.13
0.03
Yb
0.81
2.21
1.77
0.47
1.28
2.17
0.32
1.32
1.60
1.24
0.30
0.36
1.44
0.80
0.62
1.22
1.14
0.83
0.67
0.71
1.49
0.86
0.77
0.66
0.33
0.51
0.78
0.60
0.54
0.98
0.26
0.52
0.87
0.67
0.96
0.39
0.22
0.37
0.88
1.95
0.39
1.13
0.41
0.56
0.71
0.46
1.15
0.16
0.90
0.40
0.38
0.15
0.16
0.90
Lu
0.35
0.13
0.23
0.14
0.20
0.04
0.14
0.20
0.41
0.25
0.05
0.13
0.16
0.25
0.23
0.31
0.38
0.21
0.18
0.30
0.39
0.12
0.39
0.12
0.24
0.12
0.14
0.26
0.10
0.21
0.05
0.25
0.09
0.16
0.22
0.11
0.08
0.07
0.13
0.16
0.07
0.14
0.11
0.17
0.13
0.03
0.28
0.17
0.26
0.12
0.28
0.05
0.12
0.37
bd
bd
bd
0.02
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.06
0.02
bd
bd
bd
0.02
bd
bd
bd
bd
bd
0.02
bd
bd
bd
bd
bd
bd
0.02
bd
0.03
bd
bd
bd
0.03
bd
bd
0.08
bd
bd
bd
bd
bd
0.03
bd
bd
0.04
0.02
0.02
bd
bd
Th
U
ƩREE
1.46
7
2.31
8
1.37
10
1.57
6
1.21
6
2.03
8
2.29
7
1.95
5
2.08
7
1.73
7
1.17
4
1.89
6
2.75
9
1.77
9
2.17
8
4.20
8
1.80
6
2.54
5
1.00
5
2.17
6
0.97
8
0.82
3
1.80
4
0.73
4
0.87
4
1.13
4
1.44
3
2.03
4
3.51
7
4.00
6
3.75
7
2.08
5
0.94
5
1.43
5
1.63
6
2.36
4
0.89
5
0.94
4
1.46
4
0.70
9
1.07
3
0.91
4
1.23
8
1.86
5
2.41
6
1.68
3
2.97
4
3.05
2
2.09
4
1.47
3
1.92
3
1.12
3
0.94
3
1.34
5
Ce/Ce*
-0.38
-0.14
-0.31
-0.53
-0.21
-0.41
-0.68
-0.81
-0.60
-0.58
-0.18
-0.77
0.04
-0.50
-0.54
-0.68
-0.70
-0.08
-0.11
-0.67
-0.64
-0.74
-0.76
-0.64
-0.62
-0.48
-0.56
-0.55
-0.73
-0.74
-0.45
-0.78
-0.32
0.18
-0.26
-0.39
-0.65
-0.76
-0.22
-0.51
-0.67
-0.11
-0.83
-0.41
0.86
-0.47
-0.19
-0.38
-0.40
-0.56
0.66
-0.43
-0.39
-0.81
Ce/Ce**
0.87
0.79
0.33
8.32
13.49
-1.28
0.25
0.26
0.75
0.38
1.78
0.51
-5.95
10.08
0.74
-10.57
40.53
1.18
1.52
3.26
-4.04
0.83
0.96
0.79
0.74
0.85
0.24
0.30
0.23
-0.61
1.15
0.23
0.40
0.78
0.76
1.03
0.16
0.09
1.34
0.32
0.21
0.46
0.36
0.56
8.01
1.96
1.34
0.51
0.47
7.43
4.30
-123.82
4.84
2.18
La/La*
Y/Ho
0.70
93.1
-0.12 175.6
-0.70 102.8
-51.07 275.7
-8.54 157.7
-2.71 164.6
-0.31
49.0
0.47
58.9
1.22
87.8
-0.11 165.0
2.01 134.0
2.40 110.8
-3.34 231.1
-16.62
49.0
0.98 101.3
-6.23
68.4
-6.32 165.8
0.42 116.5
1.74
85.1
-16.93 103.2
-4.45
73.9
19.12
76.3
38.93
79.1
2.13 149.8
1.89
60.2
1.44
48.8
-0.69
37.7
-0.47
48.1
-0.30
40.1
-2.90
41.4
1.91
46.2
0.05 190.0
-0.60 122.6
-0.55
20.6
0.07
36.6
1.24
52.6
-0.77
71.2
-0.87
92.4
1.24
76.6
-0.59
39.1
-0.58
93.2
-0.72
69.0
1.67
44.8
-0.08
70.7
17.07
96.5
-10.45 120.6
1.12 223.3
-0.27 137.7
-0.31
23.6
-29.56 266.4
4.06 122.6
-8.22 276.6
-27.38
32.6
-20.03 200.8
379
mm from
bone rim
11.13
11.16
11.19
11.23
11.26
11.30
11.33
11.37
11.40
11.44
11.47
11.51
11.54
11.57
11.61
11.61
11.64
11.68
11.71
11.75
11.78
11.82
11.85
11.89
11.92
11.95
11.99
12.02
12.06
12.09
12.13
12.16
12.20
12.23
12.27
12.30
12.33
12.37
12.40
12.44
12.47
12.51
12.54
12.58
12.61
12.65
12.68
12.71
12.75
12.78
12.82
12.85
12.89
12.92
Sc
5.22
4.03
3.36
4.14
3.73
3.34
7.98
3.16
3.77
3.06
3.63
2.76
3.72
2.69
3.33
3.09
2.35
3.43
2.11
3.08
3.78
2.00
2.64
2.85
2.80
3.60
4.22
4.49
2.49
2.61
2.27
2.13
2.12
2.00
4.00
3.89
3.52
2.48
1.58
2.08
1.89
1.71
2.06
2.03
3.64
2.54
2.69
2.45
2.26
2.62
1.29
0.75
1.54
2.08
Mn
0.20
0.21
0.16
0.18
0.19
0.18
0.32
0.27
0.33
0.20
0.18
0.17
0.18
0.19
0.16
0.52
0.35
0.29
0.28
0.22
0.33
0.46
0.31
0.43
0.40
0.76
0.29
0.39
0.14
0.22
0.20
0.60
0.35
0.34
0.34
0.30
0.14
0.19
0.23
0.19
0.16
0.14
0.17
0.25
0.19
0.19
0.19
0.24
0.20
0.19
0.23
0.20
0.25
0.19
Fe
1.54
1.49
0.95
1.10
1.24
0.86
1.96
0.91
1.40
0.94
1.88
0.99
1.33
1.37
1.08
1.86
1.00
1.38
1.30
1.17
1.36
2.48
1.53
1.52
3.16
1.48
2.51
2.26
1.08
1.41
bd
1.65
2.03
2.33
1.59
1.45
0.91
1.47
1.06
1.40
1.26
0.85
0.70
0.81
1.33
1.12
1.97
1.01
1.24
1.15
1.33
1.00
1.57
1.32
SRHS-DU-2 Metatarsal (continued)
Sr
4958.38
3914.75
2928.53
3062.37
3118.12
2364.58
3579.70
2987.12
4241.94
2831.07
3199.07
2290.10
3675.52
2648.38
2075.65
3894.19
1770.95
2856.84
3454.47
2124.05
3006.47
3915.28
3550.82
3550.63
3588.02
3728.82
4352.34
4522.33
2208.53
2275.14
3456.64
6308.16
2986.28
3947.35
6180.12
2615.02
2106.53
2760.97
2320.99
3767.89
2236.63
2277.63
2974.19
3409.55
3164.44
2607.65
3343.58
3117.45
3436.76
3832.53
2763.43
2905.58
3135.96
2410.70
Y
11.27
8.86
8.87
6.71
9.99
5.68
9.15
7.63
9.33
5.28
7.22
6.83
7.24
7.46
5.15
9.01
5.93
5.33
6.47
4.48
7.59
5.20
5.67
6.41
6.48
5.40
6.92
4.39
3.63
2.42
3.68
8.53
4.50
4.78
10.52
4.62
6.05
3.55
3.39
2.47
3.48
3.24
3.33
3.89
6.27
2.56
3.67
3.60
3.71
3.32
4.71
2.59
2.61
2.70
Ba
2000.13
1550.89
1211.52
1191.17
1465.59
1515.72
2111.41
1388.04
2112.39
1468.54
1680.84
1302.67
1489.79
1101.61
836.44
1402.82
1250.98
1769.87
2349.16
967.62
3612.07
1801.81
3733.16
2999.20
3777.70
2710.20
nd
2139.23
1258.06
1633.50
967.77
2803.33
1711.30
2023.70
1742.98
1290.16
1123.79
1560.03
1098.92
nd
771.56
1092.40
1206.10
1097.72
1729.46
1522.46
1227.58
2209.92
1451.05
1303.94
1995.24
1548.13
4350.85
2004.59
La
1.30
1.08
1.07
1.11
1.28
0.81
1.54
1.31
2.07
1.27
2.01
1.11
0.78
1.42
0.51
2.19
0.29
0.80
0.90
0.71
0.39
0.73
0.90
1.19
1.23
0.95
0.97
1.14
0.89
0.39
0.10
0.65
0.52
0.79
0.85
0.86
0.52
0.41
0.30
0.57
0.55
0.42
0.35
0.40
1.15
0.65
0.52
0.69
0.53
0.36
0.05
0.32
0.56
0.20
Ce
11.00
1.52
2.36
0.29
0.72
1.49
2.24
1.08
2.18
1.04
2.45
1.28
1.41
0.82
1.04
1.03
0.63
0.59
0.30
1.12
1.25
1.33
1.14
0.54
0.46
0.28
0.56
1.24
bd
0.51
0.31
0.44
0.94
8.53
0.69
0.59
0.33
0.23
0.56
0.33
0.17
0.31
0.22
1.35
0.56
0.36
0.13
0.91
0.34
0.47
0.31
0.45
0.23
0.33
Pr
0.30
0.04
0.35
0.16
0.19
0.16
0.19
0.21
0.18
0.22
0.13
0.10
0.44
0.07
0.11
0.10
0.14
0.12
0.05
0.07
0.39
bd
bd
0.17
0.05
0.05
bd
0.13
0.04
bd
0.04
0.18
bd
0.14
0.14
0.04
0.04
0.08
0.07
bd
0.06
bd
bd
bd
0.09
0.05
0.06
bd
0.12
0.04
bd
0.05
bd
bd
Nd
0.29
3.06
bd
0.71
bd
0.61
0.54
0.62
0.34
0.36
0.59
0.76
0.86
0.20
0.21
0.28
bd
1.08
1.18
bd
bd
0.72
bd
0.32
bd
0.82
1.03
1.13
0.63
0.27
bd
bd
0.76
0.28
bd
0.44
bd
bd
0.21
bd
0.17
bd
0.21
bd
0.74
0.29
0.32
bd
bd
0.25
0.25
bd
bd
bd
bd
bd
bd
bd
bd
0.18
0.32
bd
0.41
bd
0.23
bd
bd
bd
0.50
0.33
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.30
bd
bd
bd
bd
0.27
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
Sm
bd
bd
0.21
bd
0.08
bd
bd
0.33
bd
0.19
0.07
0.14
bd
bd
0.23
bd
0.30
0.26
bd
0.14
bd
bd
bd
bd
bd
bd
0.74
bd
bd
bd
bd
bd
0.18
0.10
bd
bd
bd
bd
0.15
bd
0.06
bd
bd
bd
bd
bd
bd
bd
bd
0.46
bd
bd
0.10
bd
Eu
bd
bd
bd
bd
0.52
bd
bd
1.09
bd
0.42
bd
0.67
0.25
bd
bd
bd
bd
1.27
0.35
bd
bd
bd
1.96
0.38
bd
bd
0.40
bd
bd
0.32
bd
bd
bd
0.33
0.99
0.26
0.27
bd
0.49
0.71
bd
0.22
bd
bd
0.29
0.68
bd
bd
bd
0.30
bd
bd
0.65
bd
Gd
Tb
0.12
bd
bd
0.07
0.03
0.02
0.08
bd
bd
bd
0.14
0.11
bd
0.06
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.05
bd
bd
bd
bd
0.03
0.04
bd
bd
bd
bd
bd
bd
0.03
0.03
bd
0.03
bd
bd
bd
0.08
0.03
0.04
bd
bd
bd
bd
bd
bd
0.04
bd
Dy
0.17
0.44
0.17
bd
0.25
bd
bd
1.07
1.38
bd
0.45
0.33
0.12
0.11
0.49
0.16
bd
bd
bd
0.34
0.44
bd
0.32
0.19
bd
bd
bd
bd
bd
0.16
bd
0.62
bd
bd
1.21
bd
bd
0.26
0.24
bd
0.20
bd
bd
0.33
0.29
bd
0.18
0.20
0.41
0.15
bd
bd
bd
0.23
Ho
0.04
bd
bd
0.20
0.13
0.11
0.16
0.09
0.05
0.08
0.08
0.11
0.25
0.11
0.06
0.08
bd
0.26
0.04
0.19
bd
0.03
0.04
0.05
bd
0.16
bd
0.16
bd
bd
0.07
0.15
bd
0.20
0.06
0.06
0.03
0.03
0.09
0.06
bd
bd
0.03
bd
0.11
bd
0.04
0.10
0.14
bd
bd
0.13
bd
0.03
Er
0.74
bd
bd
0.60
0.69
0.29
0.52
0.58
0.43
1.03
0.25
0.60
0.54
0.76
0.53
0.52
bd
0.91
bd
bd
0.72
bd
0.34
bd
0.40
0.17
0.21
bd
0.79
0.17
bd
0.67
0.48
0.53
0.26
0.42
0.14
0.42
0.53
0.51
0.10
bd
0.41
0.17
bd
0.73
0.20
0.21
0.30
0.15
bd
0.19
bd
0.12
Tm
bd
0.10
0.28
0.03
0.12
0.04
bd
0.25
bd
0.10
0.05
bd
0.12
0.05
0.08
0.11
0.03
0.15
0.04
bd
bd
0.03
bd
0.04
bd
0.04
bd
0.05
bd
bd
bd
bd
0.03
bd
0.06
0.03
0.03
0.03
bd
0.03
0.07
0.05
0.03
0.08
0.10
0.08
0.09
bd
bd
bd
bd
bd
bd
bd
Yb
1.72
0.21
0.99
1.40
2.02
bd
bd
0.52
0.57
0.75
0.65
0.63
0.54
bd
0.53
1.40
0.17
0.30
bd
0.32
bd
0.40
0.23
0.55
0.81
0.46
0.86
0.63
0.17
1.38
bd
0.90
bd
0.70
0.35
0.37
0.19
0.19
0.70
1.01
0.43
0.31
0.36
0.24
0.21
bd
0.54
0.28
0.20
0.21
0.21
bd
0.46
0.17
Lu
0.09
0.19
bd
0.22
0.27
0.09
0.12
0.24
0.31
0.14
0.09
0.14
0.03
0.03
0.13
0.25
0.03
0.38
0.13
0.03
0.12
0.11
0.08
0.25
0.10
0.13
0.05
0.06
0.13
0.21
0.15
bd
bd
0.17
0.06
bd
0.04
0.03
0.03
bd
0.05
bd
0.03
0.04
0.04
0.13
0.05
0.05
0.07
bd
0.04
0.05
0.21
bd
bd
bd
0.07
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.08
0.07
bd
bd
bd
bd
bd
bd
0.06
bd
bd
bd
0.06
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
Th
U
ƩREE
1.88
16
1.21
7
1.94
5
3.71
5
3.24
6
1.41
4
1.04
6
2.61
7
1.38
8
1.40
6
2.16
7
1.76
6
2.14
5
1.03
4
1.63
4
4.04
6
1.12
2
2.49
6
1.73
3
1.22
3
1.65
3
1.04
3
1.37
5
0.74
4
2.08
3
1.53
3
1.70
5
2.80
5
0.95
3
1.24
3
0.74
1
1.87
4
1.39
3
1.90
12
4.85
5
1.40
3
2.02
2
1.47
2
1.75
3
1.64
3
1.93
2
1.16
1
1.16
2
2.06
3
0.74
4
0.99
3
1.73
2
2.51
2
1.93
2
1.02
2
0.75
1
1.39
1
1.00
2
0.58
1
Ce/Ce*
3.11
0.13
-0.11
-0.84
-0.67
-0.03
-0.08
-0.53
-0.26
-0.55
-0.10
-0.20
-0.48
-0.54
0.03
-0.63
-0.30
-0.57
-0.74
0.08
-0.40
-0.32
-0.47
-0.73
-0.70
-0.77
-0.60
-0.30
-0.21
-0.13
0.06
-0.70
-0.24
4.84
-0.55
-0.45
-0.54
-0.70
-0.10
-0.63
-0.79
-0.59
-0.67
0.83
-0.65
-0.60
-0.84
-0.18
-0.69
-0.17
0.19
-0.21
-0.76
-0.41
Ce/Ce**
2.50
-0.23
1.70
0.28
0.46
1.26
1.21
0.52
1.01
0.37
2.89
-6.68
0.26
1.22
0.78
1.09
0.87
-1.10
-0.15
-0.94
0.29
0.45
0.33
0.26
-0.98
-0.23
-0.56
-2.20
-0.95
-229.11
-0.56
0.24
1.03
4.84
0.44
-1.36
-2.82
0.46
0.79
0.52
0.30
0.41
0.32
28.62
-1.51
2.61
0.86
1.14
0.25
3.92
1.44
1.76
0.31
0.45
La/La*
Y/Ho
-0.55 276.6
-1.17 154.7
-11.55 154.7
2.48
32.8
0.77
79.6
0.69
51.7
0.57
58.7
0.18
87.4
0.58 196.7
-0.27
68.6
6.73
86.5
-2.97
63.2
-0.76
29.5
2.92
65.2
-0.37
86.4
3.37 114.5
1.34
67.6
-1.81
20.7
-1.43 157.5
-1.52
23.0
-0.85
89.2
-0.57 155.5
-0.58 147.3
-0.05 141.1
-2.88
87.7
-1.72
34.3
-1.75
30.8
-2.11
27.3
-1.89
39.7
-3.49
39.7
-1.15
52.2
-0.35
56.2
1.50
40.0
-0.26
23.8
-0.04 180.1
-2.53
73.3
-2.94 186.2
1.46 114.5
-0.22
37.9
0.67
43.2
0.79
76.8
0.01
76.8
-0.03 110.5
-2.69
84.8
-2.70
59.2
-10.53
70.5
-7.92
81.8
0.73
37.1
-0.34
27.4
-7.06
23.3
5.04
23.3
10.52
19.3
0.55
57.7
-0.44
96.1
380
mm from
bone rim
12.96
12.99
13.03
13.06
13.09
13.13
13.16
13.20
13.23
13.27
13.30
13.34
13.37
13.41
13.44
13.47
13.51
13.54
13.58
13.61
13.65
13.68
13.72
13.75
13.79
13.82
13.85
13.89
13.92
13.96
13.99
14.03
14.06
14.10
14.13
14.17
14.20
14.23
14.27
14.30
14.34
14.37
14.41
14.44
14.48
14.51
14.55
14.58
14.61
14.65
14.68
14.72
14.75
14.79
Sc
1.53
2.40
1.73
1.15
1.87
1.96
1.93
0.91
2.70
1.80
2.86
2.76
3.46
3.34
3.06
3.00
1.39
3.32
1.54
3.47
4.26
2.85
3.43
3.64
3.00
3.37
2.96
1.27
2.88
1.69
1.30
1.61
2.58
1.62
0.82
1.00
1.99
4.01
2.23
2.51
2.02
1.80
1.21
1.99
2.23
2.14
1.69
2.22
4.26
2.74
2.69
1.37
1.68
2.95
Mn
0.23
0.24
0.22
0.25
0.56
0.25
0.21
0.27
0.28
0.26
0.50
0.20
0.22
0.20
0.15
0.24
0.16
0.19
0.15
0.22
0.20
0.15
0.18
0.26
0.21
0.56
0.28
0.24
0.16
0.23
0.16
0.23
0.23
0.23
0.23
0.17
0.24
0.23
0.16
0.16
0.20
0.26
0.21
0.19
0.33
0.20
0.19
0.13
0.18
0.38
0.35
0.22
0.23
0.85
Fe
1.14
1.16
0.99
1.80
1.35
1.44
1.92
1.22
1.46
1.89
1.37
1.76
1.21
1.20
1.02
1.35
1.28
1.05
1.96
1.47
2.52
1.17
1.10
1.42
1.09
1.10
1.65
2.06
1.01
1.46
0.84
1.25
1.03
1.62
0.79
1.36
1.14
1.14
1.31
0.92
1.43
1.12
1.24
1.29
1.43
1.46
1.32
0.81
0.84
1.50
1.07
2.40
1.53
2.10
SRHS-DU-2 Metatarsal (continued)
Sr
4209.08
3737.18
2721.30
4094.82
3706.55
4385.86
2908.22
4378.13
3621.79
3811.23
3706.80
3171.19
3045.97
2609.38
3789.02
3922.12
2436.34
2619.79
3599.05
3274.60
3978.98
2670.33
2353.19
3139.13
4935.36
3988.60
3764.82
3933.43
2062.99
4816.95
2287.90
2504.32
3253.72
3254.04
3113.66
3176.39
3030.03
3101.00
2426.49
2142.58
3966.02
3064.49
2538.77
2810.53
3683.11
2854.42
3587.54
2420.91
4450.29
3332.18
3602.88
3723.67
3666.80
5846.56
Y
4.56
4.18
2.68
3.47
2.86
2.81
1.80
2.78
3.34
2.11
4.21
4.88
4.32
3.53
4.90
3.97
5.79
4.88
3.46
2.56
3.73
2.54
2.40
2.76
3.56
2.28
3.11
2.23
3.37
2.78
2.16
2.92
2.52
2.50
2.86
2.42
2.66
2.62
2.93
2.00
4.56
3.69
3.00
2.38
3.20
3.31
2.82
2.06
2.63
2.38
2.79
3.12
3.16
3.17
Ba
1997.81
1899.63
1355.37
1791.26
2124.00
1913.72
1559.86
1829.70
2414.08
1689.41
1730.36
1538.42
1749.39
931.56
1239.81
1772.42
1263.81
1100.39
1305.58
1657.53
2402.96
2048.04
1592.28
1830.68
1529.43
1841.33
3012.55
2380.01
1841.62
2453.58
1258.75
1018.37
2802.04
1316.14
1841.61
1699.44
1367.33
1583.59
1105.29
nd
1416.50
1065.67
1393.88
1230.38
1851.98
1735.32
2251.15
696.02
1205.62
1897.20
2366.27
1943.47
1715.69
4197.00
La
0.45
0.64
0.20
0.26
0.76
1.73
0.20
6.39
0.47
0.50
0.28
0.47
0.55
0.45
0.42
0.91
0.93
0.44
0.78
0.10
0.36
0.60
0.54
0.65
0.48
0.69
0.25
0.40
0.29
0.76
0.45
0.35
0.36
0.51
0.12
0.42
0.32
0.36
0.59
0.39
0.81
0.40
0.28
0.68
0.64
1.15
0.82
0.25
0.42
0.63
0.19
0.39
0.40
0.64
Ce
0.39
0.12
0.35
0.06
0.39
0.54
2.86
0.21
0.77
0.47
0.53
0.33
0.41
0.23
0.53
0.58
1.08
1.00
0.91
0.51
0.86
0.05
0.32
0.33
0.19
0.25
0.31
1.36
0.40
2.27
0.18
0.48
0.24
0.13
0.06
0.47
0.61
1.65
0.15
0.70
0.82
0.93
1.93
0.24
0.21
0.23
0.18
0.21
0.98
bd
0.82
3.45
0.55
0.12
Pr
0.11
bd
0.04
bd
bd
bd
0.08
bd
bd
bd
0.10
bd
bd
bd
0.04
1.10
0.04
0.08
0.05
bd
bd
bd
bd
bd
bd
bd
bd
0.04
bd
bd
0.03
bd
bd
bd
bd
0.16
0.71
0.15
0.09
0.04
0.06
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.11
0.08
bd
bd
0.29
bd
0.64
bd
bd
bd
bd
0.23
0.20
0.20
bd
0.25
bd
bd
0.47
bd
0.44
0.27
0.50
bd
0.49
bd
0.54
0.23
bd
bd
bd
0.73
bd
bd
bd
bd
bd
bd
bd
0.23
bd
bd
bd
bd
bd
bd
0.24
0.35
bd
bd
bd
0.59
bd
bd
0.43
bd
bd
Nd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.30
0.71
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.27
bd
bd
bd
bd
bd
bd
bd
bd
0.42
bd
0.21
bd
bd
bd
bd
bd
bd
bd
Sm
bd
bd
bd
bd
bd
bd
0.18
bd
bd
bd
bd
bd
bd
bd
bd
0.17
0.08
0.24
0.10
bd
bd
bd
bd
bd
bd
0.09
0.09
bd
bd
0.09
bd
bd
bd
bd
bd
bd
0.08
bd
bd
bd
bd
bd
0.17
bd
0.13
0.10
bd
bd
0.11
bd
bd
bd
bd
bd
Eu
bd
bd
bd
0.76
bd
bd
bd
0.49
0.27
0.24
0.23
0.27
bd
bd
0.30
bd
bd
bd
0.98
0.29
bd
bd
bd
bd
bd
1.15
bd
bd
0.86
bd
bd
bd
bd
0.37
bd
0.54
0.27
bd
bd
bd
bd
bd
0.55
bd
bd
bd
bd
bd
0.70
bd
0.55
1.27
0.26
bd
Gd
bd
bd
0.03
0.09
0.04
bd
bd
0.03
bd
0.12
bd
0.03
bd
bd
0.04
bd
bd
bd
bd
bd
bd
bd
bd
0.23
bd
bd
0.03
bd
bd
0.11
bd
bd
bd
bd
0.04
0.06
bd
bd
bd
bd
bd
bd
bd
bd
0.15
bd
0.02
bd
0.04
bd
bd
bd
0.03
bd
Tb
Dy
0.37
bd
bd
bd
0.54
0.38
bd
bd
bd
0.24
0.11
bd
bd
0.13
0.30
0.27
0.13
bd
0.48
bd
0.52
0.14
0.11
0.15
0.14
bd
bd
bd
bd
0.14
0.10
bd
bd
bd
bd
bd
bd
bd
0.10
bd
bd
bd
0.13
0.14
0.20
0.16
0.10
0.24
bd
bd
bd
0.50
0.13
bd
Ho
0.14
bd
bd
bd
0.09
bd
bd
bd
bd
0.03
0.03
bd
0.03
bd
bd
bd
0.13
bd
0.08
0.03
0.08
bd
0.03
bd
bd
0.03
bd
0.03
0.03
bd
bd
0.12
bd
0.13
0.04
0.03
0.06
0.04
bd
bd
bd
bd
0.07
bd
bd
0.04
0.05
0.09
bd
0.03
bd
bd
0.03
bd
Er
0.40
0.18
0.15
bd
bd
bd
bd
bd
bd
0.13
0.12
0.29
0.15
0.28
0.16
bd
bd
0.27
0.17
bd
0.18
0.15
bd
bd
0.44
bd
bd
0.31
0.15
bd
0.43
bd
0.18
bd
0.18
0.29
bd
0.37
0.23
0.30
0.68
0.74
bd
bd
bd
bd
0.56
0.39
0.18
0.13
bd
0.27
bd
0.54
Tm
bd
0.12
0.03
bd
0.04
0.09
0.03
bd
0.06
0.03
bd
bd
0.03
0.06
0.21
0.03
bd
bd
0.04
bd
bd
bd
0.05
0.07
0.06
0.07
bd
0.07
bd
0.03
bd
bd
bd
bd
0.08
0.03
bd
bd
bd
bd
0.10
0.11
bd
bd
0.10
bd
bd
0.03
0.12
0.06
bd
bd
bd
0.08
Yb
0.27
bd
bd
0.27
0.52
0.27
0.20
0.17
0.20
0.17
0.50
0.39
0.21
0.37
bd
0.59
0.18
1.66
bd
0.42
0.25
0.21
0.32
bd
bd
1.22
bd
0.20
0.40
0.21
bd
0.36
0.74
0.53
bd
bd
0.38
0.25
0.45
bd
0.30
0.16
bd
bd
0.88
0.71
0.15
0.17
0.25
bd
0.39
bd
0.18
1.20
Lu
0.20
0.35
0.07
bd
bd
0.15
0.04
bd
0.04
bd
bd
0.07
bd
0.07
0.04
0.11
0.03
0.13
0.13
0.08
0.09
0.11
0.06
0.16
0.04
0.04
0.04
0.11
0.04
bd
0.05
0.03
0.04
0.05
bd
0.03
bd
0.04
0.06
bd
0.06
bd
0.18
bd
0.21
0.22
0.35
0.03
0.18
0.06
0.04
0.03
0.10
bd
bd
bd
bd
bd
0.04
bd
bd
bd
0.03
bd
0.09
bd
bd
bd
bd
0.03
bd
bd
0.10
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.07
bd
0.05
bd
bd
bd
bd
bd
bd
Th
U
ƩREE
1.32
2
1.45
2
0.37
1
0.69
2
0.97
2
1.67
3
1.43
4
0.79
7
0.89
2
1.45
2
2.93
2
1.96
2
1.72
2
1.14
2
1.43
2
2.61
4
1.62
3
1.72
4
1.97
4
1.91
2
3.54
3
1.66
2
3.59
1
3.11
2
2.41
2
1.90
4
1.13
1
1.52
3
1.70
3
2.04
4
1.09
1
1.39
1
1.22
2
1.20
2
1.16
1
1.02
2
0.87
3
1.66
3
0.73
2
0.82
1
2.44
3
0.75
2
1.67
3
0.42
1
1.63
3
1.61
3
2.12
2
1.00
1
2.46
4
1.55
1
1.25
2
2.42
6
1.79
2
2.63
3
Ce/Ce*
-0.59
-0.88
-0.10
-0.88
-0.64
-0.75
4.06
-0.97
-0.15
-0.50
-0.28
-0.59
-0.55
-0.71
-0.16
-0.90
-0.06
0.25
-0.12
0.73
0.49
-0.94
-0.59
-0.63
-0.72
-0.73
-0.33
1.26
-0.15
1.35
-0.71
-0.37
-0.69
-0.86
-0.89
-0.58
-0.82
0.60
-0.86
0.17
-0.27
0.17
1.88
-0.78
-0.80
-0.85
-0.85
-0.67
0.20
-0.14
0.44
2.89
-0.28
-0.88
Ce/Ce**
0.33
0.20
-0.81
-0.13
-47.91
-67.27
8.17
0.41
0.76
0.43
0.42
0.47
0.63
0.61
-4.00
0.03
-2.27
4.78
6.98
-1.12
-1.89
-0.11
-0.63
-0.60
1.06
-0.60
-0.74
-2.96
-0.34
-4.09
-0.27
1.13
0.57
0.30
0.14
0.31
0.05
0.81
0.15
5.12
1.69
1.03
2.14
0.28
0.35
0.73
0.57
0.67
57.64
4.12
3.75
4.16
-2.62
-0.29
La/La*
Y/Ho
-0.35
33.3
1.60
32.7
-1.35
32.7
-1.36
32.7
-4.00
32.1
-7.84
52.9
-61.74
52.9
55.75
52.9
-0.17
52.9
-0.22
73.6
-0.63 151.4
0.29 138.1
0.79 124.8
7.24
85.5
-2.40
85.5
-0.92
85.5
-2.57
46.3
-5.31
45.2
-13.12
44.2
-1.17
73.6
-1.60
44.2
-2.01
67.1
-1.84
90.0
-1.94
78.7
-87.26
78.7
-2.22
67.5
-1.45
66.4
-1.67
65.4
-1.24 100.2
-2.16
62.0
-1.62
62.0
11.24
23.9
11.67
21.2
16.99
18.6
3.21
69.5
-0.47
75.7
-0.96
41.2
-0.72
63.4
0.01
54.3
-11.80
54.3
2.88
54.3
-0.20
54.3
-0.43
45.2
0.39
64.5
1.75
64.5
-25.72
83.8
-18.76
56.2
-6.40
23.3
-2.30
52.5
-5.59
81.8
-2.37
92.0
0.16
92.0
-1.82 102.3
-2.00
82.8
381
mm from
bone rim
14.82
14.86
14.89
14.93
14.96
14.99
15.03
15.06
15.10
15.13
15.17
15.20
15.24
15.27
15.31
15.34
15.37
15.41
15.44
15.48
15.51
15.55
15.58
15.62
15.65
15.69
15.72
15.75
15.79
15.82
15.86
15.89
15.93
15.96
16.00
16.03
16.07
16.10
16.13
16.17
16.20
16.20
16.24
16.27
16.31
16.34
16.38
16.41
16.45
16.48
16.51
16.55
16.58
16.62
Sc
1.70
1.85
2.74
2.82
0.50
1.51
1.12
1.62
1.04
1.98
0.87
1.68
1.49
1.75
3.24
1.76
1.61
2.63
1.98
2.61
2.08
1.67
2.92
2.28
2.59
1.57
2.14
1.32
0.89
2.12
2.13
1.11
2.14
2.04
1.04
1.62
0.60
1.85
2.04
0.70
0.69
2.37
4.04
1.81
3.37
1.83
0.92
2.68
2.72
2.77
1.02
2.18
1.33
1.67
Mn
0.38
0.48
0.29
0.25
0.21
0.24
0.23
0.33
0.22
0.32
0.31
0.28
2.43
0.62
0.75
0.44
0.32
0.31
0.26
0.52
0.37
0.25
0.48
0.45
0.38
0.49
0.23
0.33
0.12
0.22
0.22
0.13
0.26
0.20
0.18
0.19
0.20
0.27
0.20
0.66
0.32
0.17
0.23
0.24
0.21
0.23
0.25
0.37
0.28
0.31
0.36
0.24
0.16
0.13
Fe
1.64
1.50
1.16
1.25
2.55
0.89
1.42
1.07
1.37
1.74
0.88
1.70
1.66
2.44
1.31
1.74
1.07
1.32
1.29
1.78
1.36
1.17
1.48
1.18
1.87
4.41
1.12
1.95
0.87
1.51
1.15
1.14
1.45
1.35
1.24
0.80
0.77
1.69
2.35
2.18
0.93
0.96
0.96
1.05
1.01
1.27
1.85
1.10
1.00
1.56
1.20
1.99
1.07
1.02
SRHS-DU-2 Metatarsal (continued)
Sr
2918.02
3257.24
2981.00
3766.55
2371.96
2476.05
2560.33
3674.46
5401.83
3388.05
3287.03
4240.87
3608.94
2978.99
4531.78
3137.48
3623.44
5037.20
3622.98
5412.83
3725.78
2151.82
3879.21
2459.32
3269.52
3235.58
3816.07
4110.00
3156.20
3339.09
3124.23
2252.05
2651.80
3397.08
2549.16
2749.38
2100.13
3522.59
5438.53
1701.61
2014.98
3777.78
3881.63
3075.70
3541.43
2730.28
3008.67
3743.11
3195.88
5088.56
2041.87
3351.93
2892.02
3187.87
Y
3.51
2.74
2.04
2.58
1.89
1.35
1.15
2.87
4.12
3.87
1.69
2.19
2.72
2.99
1.20
1.76
1.63
2.17
2.00
4.23
3.79
2.05
5.51
4.60
4.28
3.55
3.28
2.56
2.19
2.84
2.03
1.34
2.03
3.05
1.92
2.18
1.49
2.08
2.60
2.47
2.64
4.59
3.30
2.29
2.73
3.36
2.18
2.76
1.83
1.59
2.23
2.78
1.98
2.22
Ba
1371.20
nd
nd
nd
1366.95
1762.51
1760.86
1703.01
2748.22
1686.55
1656.51
4369.26
6663.06
3050.43
nd
4769.97
nd
nd
1945.20
3209.23
2069.86
1426.99
nd
1460.22
1806.13
1581.31
1499.31
1752.71
1741.84
2305.17
1804.04
1935.30
2112.67
1374.68
1365.95
1895.05
1091.04
1837.20
2707.26
1388.26
1468.62
1350.61
1520.97
1869.56
1426.69
1637.95
2477.43
1217.81
1446.23
1899.50
1570.40
2153.88
1715.49
1293.54
La
0.32
0.31
0.30
0.11
0.38
0.12
0.20
0.44
0.62
0.27
0.45
0.15
4.83
0.41
0.28
0.18
0.37
0.21
0.46
1.39
1.06
0.57
0.68
1.33
1.32
0.55
0.93
0.54
0.42
0.99
0.45
0.18
0.47
0.48
0.13
0.29
0.49
0.49
0.52
0.12
0.22
0.28
0.38
0.34
0.25
0.65
0.22
0.31
0.34
0.50
0.29
1.66
0.66
0.35
Ce
0.27
0.70
0.41
bd
0.21
0.23
0.29
0.29
0.49
0.48
0.27
0.15
0.14
0.14
0.40
0.42
0.34
0.26
0.65
0.65
0.68
1.19
1.17
0.96
0.87
0.75
0.47
0.34
0.54
1.39
0.14
0.29
0.44
0.18
0.13
0.51
0.31
0.27
0.35
0.24
0.04
0.34
0.06
0.74
0.06
0.33
0.11
0.63
1.04
0.45
0.25
0.19
0.38
0.27
bd
0.05
bd
bd
bd
bd
bd
0.08
0.04
0.06
bd
bd
0.06
0.06
bd
bd
0.03
bd
0.16
0.05
bd
0.03
bd
bd
bd
bd
0.13
bd
0.03
bd
bd
0.06
0.03
0.04
bd
bd
bd
0.08
0.69
0.07
bd
bd
bd
0.05
bd
bd
0.38
0.04
bd
0.05
0.07
0.11
bd
bd
Pr
Nd
0.80
0.62
bd
bd
0.21
0.19
bd
bd
bd
bd
bd
bd
bd
0.68
bd
0.59
bd
bd
bd
0.57
0.47
0.60
bd
bd
1.31
0.30
bd
0.33
0.19
bd
bd
0.52
bd
bd
0.22
0.89
bd
1.33
0.28
bd
bd
0.83
bd
bd
0.31
bd
bd
0.25
0.56
bd
0.20
bd
bd
0.43
bd
0.37
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.31
bd
bd
bd
bd
bd
bd
bd
bd
0.43
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.25
bd
bd
bd
Sm
bd
bd
bd
bd
0.07
bd
bd
bd
bd
0.12
bd
bd
0.99
0.24
0.30
0.21
0.07
bd
0.16
bd
bd
bd
bd
bd
bd
0.11
bd
bd
bd
bd
bd
0.25
bd
bd
0.08
bd
bd
bd
bd
bd
0.08
bd
bd
0.10
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.08
Eu
bd
0.36
bd
bd
bd
bd
bd
bd
bd
2.35
bd
bd
0.80
6.79
bd
1.04
bd
bd
0.53
0.33
bd
bd
0.39
0.32
1.16
bd
0.30
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.89
bd
bd
bd
bd
0.60
bd
0.60
bd
bd
0.27
bd
bd
bd
bd
0.31
0.50
0.72
Gd
bd
bd
bd
bd
0.03
0.03
bd
bd
bd
bd
bd
0.14
0.05
bd
bd
bd
0.05
bd
0.03
bd
bd
bd
0.09
bd
bd
bd
bd
bd
bd
bd
bd
0.05
bd
bd
bd
bd
0.04
0.06
0.04
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.04
bd
bd
bd
0.06
Tb
bd
bd
bd
bd
bd
bd
0.47
bd
bd
0.19
0.13
0.14
0.59
bd
0.16
0.17
0.21
bd
bd
0.49
bd
bd
bd
bd
bd
bd
bd
0.38
bd
0.13
bd
bd
0.11
bd
0.12
bd
bd
bd
0.49
bd
bd
bd
0.36
bd
bd
bd
bd
bd
bd
0.90
0.24
0.18
bd
bd
Dy
Ho
bd
0.04
0.03
bd
bd
0.03
bd
0.10
0.07
bd
bd
bd
bd
bd
0.04
0.04
bd
bd
bd
0.08
0.03
0.03
0.05
0.04
bd
bd
bd
bd
0.03
0.10
0.06
bd
bd
0.06
bd
bd
bd
bd
0.04
bd
bd
0.04
bd
bd
0.04
bd
bd
0.11
bd
bd
bd
bd
bd
bd
Er
0.16
bd
bd
bd
bd
bd
0.12
0.15
bd
0.20
bd
bd
bd
0.64
0.17
bd
0.11
0.48
bd
bd
0.15
0.50
bd
0.17
0.61
0.96
0.16
bd
bd
0.14
0.14
0.11
0.24
0.13
bd
0.11
bd
0.28
0.17
bd
bd
bd
bd
0.35
bd
0.61
0.17
bd
0.53
bd
0.26
0.20
bd
0.14
Tm
bd
0.04
0.10
bd
0.06
bd
bd
0.07
0.06
0.05
0.06
bd
bd
bd
bd
0.04
bd
bd
0.03
0.08
0.03
0.08
0.05
bd
bd
0.17
bd
0.14
0.05
0.10
bd
bd
bd
bd
bd
bd
0.04
0.03
0.08
0.08
bd
0.08
bd
bd
0.04
bd
0.04
0.11
0.04
bd
bd
0.17
bd
0.09
bd
0.52
0.83
bd
0.52
bd
bd
0.20
bd
1.11
bd
0.21
0.28
bd
0.23
0.99
0.15
0.21
0.38
0.24
0.80
0.17
bd
0.46
0.55
0.51
0.43
bd
bd
0.19
0.37
0.29
0.32
0.54
0.18
0.30
0.12
0.18
0.24
0.16
0.18
bd
bd
bd
0.26
0.27
0.23
0.43
bd
bd
bd
0.79
bd
bd
Yb
Lu
bd
bd
bd
bd
0.03
bd
0.03
0.04
0.04
0.05
0.03
0.04
0.05
bd
0.04
0.27
bd
bd
0.10
0.17
0.04
0.15
0.10
0.04
0.10
0.23
0.04
bd
0.03
0.07
0.10
bd
bd
0.07
0.03
0.03
0.07
bd
bd
0.03
bd
bd
0.10
bd
0.14
0.10
0.04
0.12
0.04
bd
bd
0.10
0.07
0.10
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.04
0.03
bd
bd
bd
bd
bd
bd
0.03
0.02
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
Th
U
ƩREE
0.88
2
3.75
3
1.27
2
0.93
0
1.24
2
0.68
1
0.96
1
1.04
1
1.64
1
1.40
5
0.70
1
1.23
1
3.56
8
2.30
9
2.03
2
2.74
4
0.91
1
1.42
1
1.71
3
2.00
4
2.06
3
0.49
3
2.03
3
0.62
3
1.55
6
1.50
4
1.77
3
1.93
2
1.37
1
1.10
3
0.99
1
0.50
2
0.67
2
1.08
1
0.65
1
1.27
3
0.76
2
1.35
3
1.35
3
1.16
1
1.51
1
1.18
2
1.46
1
0.97
2
0.99
1
2.58
2
6.01
1
0.98
2
0.87
3
0.48
2
0.79
2
2.31
4
1.76
2
2.10
2
Ce/Ce*
-0.56
0.25
-0.33
-0.24
-0.69
-0.43
-0.43
-0.64
-0.42
-0.10
-0.62
-0.62
-0.97
-0.80
-0.18
0.11
-0.36
-0.58
-0.43
-0.62
-0.48
0.59
0.08
-0.46
-0.51
-0.21
-0.70
-0.63
-0.07
0.11
-0.80
-0.35
-0.32
-0.74
-0.65
-0.06
-0.59
-0.68
-0.90
-0.42
-0.91
-0.37
-0.90
0.32
-0.95
-0.79
-0.94
0.22
0.83
-0.41
-0.58
-0.91
-0.62
-0.61
Ce/Ce**
-0.32
-1.15
2.89
2.20
0.33
0.34
3.09
0.86
-1.33
-5.14
-3.42
-1.92
-2.10
-0.21
-0.51
-0.62
-0.39
1.47
0.53
-1.15
-1.51
-1.35
-1.28
-1.05
-0.49
1.12
0.32
0.59
6.10
-16.04
-1.58
-1.10
-1.26
-0.62
0.31
-0.42
-0.18
-0.14
0.03
-1.12
-0.11
-0.32
-0.15
-1.26
0.02
0.11
0.02
5.24
-1.91
-13.79
0.36
0.18
0.89
1.75
La/La*
Y/Ho
-1.31
82.8
-1.40
63.4
-3.20
59.3
-1.84
55.2
0.14
55.2
-0.69
51.1
-2.13
39.5
-76.45
27.9
-2.24
61.3
-1.87
45.9
-2.48
45.9
-1.50
45.9
-17.60
45.9
-1.48
45.9
-1.31
30.6
-1.22
42.9
-1.40
47.6
-2.00
47.6
-0.14
47.6
-2.93
52.2
-2.81 114.5
-1.59
73.6
-1.57 118.6
-2.13 120.7
-1.67 102.3
0.85 102.3
0.10 102.3
1.46 102.3
-10.53
83.8
-4.77
28.6
-2.73
32.1
-1.37
41.2
-2.03
41.2
-2.17
50.2
-0.24
57.8
-1.21
57.8
-1.26
57.8
-1.23
57.8
-0.93
65.4
-1.25
90.5
-1.37
90.5
-1.23 115.5
-1.62
88.6
-1.46
88.6
-0.86
61.7
-0.66
43.4
-0.94
43.4
-6.19
25.0
-1.49
47.4
-3.10
47.4
-0.22
47.4
1.98
47.4
4.52
47.4
-3.53
47.4
382
mm from
bone rim
16.65
16.69
16.72
16.76
16.79
16.83
16.86
16.89
16.93
16.96
17.00
17.03
17.07
17.10
17.14
17.17
17.21
17.24
17.28
17.31
17.34
17.38
17.41
17.45
17.48
17.52
17.55
17.59
17.62
17.66
17.69
17.72
17.76
17.79
17.83
17.86
17.90
17.93
17.97
18.00
18.04
18.07
18.10
18.14
18.17
18.21
18.24
18.28
18.31
18.35
18.38
18.42
18.45
18.48
Sc
3.06
2.79
2.33
3.48
3.32
2.74
2.14
2.51
3.87
1.60
1.11
1.38
2.55
1.84
1.64
1.02
1.88
1.48
1.45
3.24
1.74
1.32
1.70
1.08
2.04
1.34
1.72
2.49
0.80
1.00
2.15
1.60
1.92
2.73
1.94
2.16
3.12
2.15
3.20
3.13
3.93
2.79
1.43
2.55
2.59
2.14
1.50
2.53
2.58
1.34
1.52
3.84
2.78
2.83
Mn
0.24
1.08
1.12
0.23
0.32
0.18
0.29
0.19
0.27
0.49
0.19
0.14
0.26
0.27
0.29
0.26
0.34
0.21
0.50
0.26
0.19
0.75
0.29
0.16
0.20
0.19
0.58
0.24
0.17
0.19
0.22
0.16
0.21
0.32
0.14
0.29
0.37
0.14
0.19
0.37
0.25
0.20
0.21
0.47
6.51
2.71
1.23
0.75
1.80
1.37
0.49
0.28
0.40
0.54
Fe
1.35
1.65
1.14
1.04
1.46
1.22
1.25
1.35
1.85
1.20
1.01
0.80
1.39
1.02
0.94
1.59
1.95
0.96
1.93
1.70
0.94
0.98
1.13
1.11
1.39
1.37
1.32
2.28
0.97
bd
2.00
0.71
1.54
1.07
0.91
0.92
1.00
0.73
1.63
0.93
1.07
1.45
1.07
1.16
3.42
2.08
1.21
0.99
1.34
1.02
3.37
bd
1.76
1.40
SRHS-DU-2 Metatarsal (continued)
Sr
4902.49
3028.75
3088.17
2877.93
4069.93
2769.19
4975.82
3254.81
3694.95
3124.16
2679.07
3322.65
4529.21
3701.04
2148.41
2740.20
3317.30
2630.37
3990.63
3006.67
2262.94
4207.71
6632.76
3205.55
5458.72
5164.40
3941.90
4474.28
2077.81
3706.97
3357.19
3344.14
3106.76
4588.67
2086.02
3366.91
3448.39
4056.17
2875.04
4122.79
2768.84
4123.19
2989.69
2879.37
4604.32
2794.64
2765.20
3025.26
2583.09
2530.15
3642.67
2603.43
4934.05
3727.61
Y
2.52
3.48
2.94
2.80
3.90
3.43
4.88
2.61
3.58
1.71
2.22
1.56
4.39
1.86
1.65
1.86
2.53
1.55
2.25
3.00
3.66
4.25
6.25
3.18
3.69
2.71
2.32
3.30
2.36
2.99
3.24
3.07
3.96
3.52
4.12
3.65
3.48
3.84
4.75
6.95
5.35
5.46
4.51
4.56
6.24
4.45
4.48
3.93
5.83
3.28
5.04
3.25
2.98
6.07
Ba
3011.50
1244.95
1560.23
1715.35
1839.17
1591.20
1678.45
1574.65
1228.22
1380.12
1394.26
1921.06
2548.04
1929.54
1053.75
1381.54
1999.55
1709.65
2246.06
1285.83
nd
nd
nd
nd
nd
3207.76
nd
nd
3642.32
2984.01
1854.44
1565.17
3273.49
2250.59
1361.64
1852.76
1536.58
1685.72
1314.51
1559.00
1322.77
1535.49
1361.67
1136.35
3101.66
1787.25
nd
1362.01
3774.12
1790.45
4070.74
1492.54
2276.19
2268.27
La
0.72
0.37
0.59
0.52
0.39
0.12
0.47
0.35
0.22
0.37
0.40
0.26
0.15
0.36
0.27
0.11
0.25
0.16
0.11
0.22
0.70
0.54
0.51
0.63
0.83
0.66
0.43
0.10
0.21
0.37
0.37
0.38
0.35
0.85
0.29
0.31
0.45
7.28
0.16
0.56
0.43
0.62
0.57
0.36
1.29
0.46
0.55
1.14
2.13
1.25
1.02
0.32
0.72
0.64
Ce
0.52
0.38
0.08
0.24
0.11
0.50
0.65
0.20
0.50
0.43
0.55
0.09
0.61
0.05
0.09
0.39
0.25
bd
0.17
0.17
0.67
2.09
1.18
0.20
0.55
0.22
0.32
0.61
0.44
0.67
0.11
0.34
0.20
0.40
0.22
0.24
0.23
0.54
0.11
2.11
0.44
0.37
0.29
0.37
0.73
0.43
0.32
3.96
7.70
0.98
0.71
0.89
1.22
0.72
bd
bd
bd
bd
bd
0.03
0.04
bd
0.09
bd
bd
0.04
bd
bd
bd
0.09
bd
bd
bd
bd
0.07
0.23
0.11
0.04
0.05
bd
bd
bd
0.06
bd
bd
bd
bd
bd
bd
bd
0.08
bd
bd
bd
bd
bd
0.08
0.03
0.18
bd
0.17
0.54
0.19
0.32
0.09
bd
bd
0.05
Pr
bd
0.46
bd
bd
0.27
bd
0.21
0.50
bd
bd
2.69
bd
bd
0.50
0.67
bd
0.30
bd
bd
bd
0.61
0.26
0.95
1.19
0.29
bd
0.26
bd
0.35
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.79
bd
bd
0.59
bd
0.46
0.39
0.42
1.11
0.20
0.79
1.82
bd
bd
Nd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.28
bd
bd
bd
bd
0.54
bd
bd
0.73
bd
bd
bd
0.32
bd
bd
0.71
bd
0.95
0.29
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
1.01
1.33
0.49
0.63
bd
bd
bd
Sm
bd
0.08
bd
bd
bd
bd
0.46
bd
bd
bd
bd
bd
bd
bd
0.08
0.09
bd
bd
bd
bd
0.07
0.48
0.11
0.51
bd
bd
0.19
0.09
0.12
bd
0.09
bd
bd
bd
bd
0.20
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.25
0.07
bd
0.30
bd
bd
bd
0.08
bd
Eu
bd
0.22
bd
bd
bd
0.20
0.46
bd
0.89
bd
bd
0.45
0.36
bd
bd
0.91
bd
bd
0.27
bd
223.63
2.78
0.69
0.79
bd
bd
bd
bd
bd
bd
bd
0.20
bd
0.27
bd
bd
bd
bd
bd
bd
0.26
bd
bd
1.13
bd
bd
bd
0.45
bd
bd
bd
bd
bd
5.94
Gd
Tb
0.04
bd
bd
bd
bd
bd
bd
bd
0.08
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.03
0.04
bd
bd
0.04
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.10
0.05
bd
bd
bd
bd
0.04
bd
0.07
bd
bd
bd
bd
0.12
bd
bd
0.11
0.03
bd
bd
bd
0.53
bd
bd
bd
bd
0.37
bd
bd
bd
0.14
bd
0.21
bd
bd
bd
bd
0.12
0.16
bd
0.12
bd
0.37
bd
0.17
bd
bd
bd
0.10
bd
bd
bd
bd
bd
0.21
bd
bd
bd
bd
0.16
0.15
bd
0.13
0.34
bd
0.13
0.11
0.36
0.32
0.12
0.15
bd
0.14
bd
Dy
Ho
0.04
bd
0.03
0.03
0.20
bd
bd
0.04
bd
bd
0.07
0.06
bd
bd
0.16
0.08
bd
bd
bd
0.04
0.06
0.08
0.05
0.03
0.04
0.04
bd
bd
bd
bd
bd
0.06
bd
bd
0.03
bd
bd
0.08
0.04
0.04
0.04
bd
0.03
0.03
0.05
0.07
bd
0.21
bd
bd
0.08
0.03
0.03
0.09
Er
0.64
0.44
0.13
0.15
0.87
bd
0.27
0.16
0.17
bd
bd
bd
0.46
0.32
0.14
bd
0.58
bd
0.17
bd
0.13
bd
bd
0.45
0.56
bd
bd
0.15
0.22
0.26
0.50
0.26
bd
bd
0.23
bd
0.28
bd
0.17
bd
bd
bd
bd
0.25
bd
0.14
0.37
bd
0.17
bd
0.33
bd
0.60
0.80
Tm
bd
0.06
0.11
bd
0.08
0.03
bd
bd
bd
0.03
bd
bd
0.05
bd
bd
bd
bd
0.03
0.11
0.04
0.06
0.07
bd
0.13
bd
0.04
0.04
0.07
bd
0.03
0.04
0.03
bd
0.04
bd
0.11
0.03
0.04
0.07
0.08
0.04
0.03
0.06
bd
0.10
0.13
0.05
0.20
0.04
bd
0.07
bd
0.10
0.09
bd
0.19
bd
bd
0.69
0.34
0.18
bd
bd
bd
0.20
bd
0.61
0.21
0.19
0.23
bd
0.17
bd
1.16
0.17
0.67
0.26
0.40
0.49
0.68
bd
bd
0.29
0.68
0.44
0.17
bd
bd
0.45
bd
0.37
0.44
0.67
bd
1.33
0.21
0.19
0.16
0.89
bd
0.82
0.70
0.46
bd
0.22
1.34
0.80
bd
Yb
Lu
bd
0.03
0.03
0.04
0.08
0.09
0.06
0.08
0.04
0.04
0.04
0.06
0.06
0.08
0.10
bd
bd
bd
bd
0.08
bd
0.04
0.05
0.11
0.04
0.17
0.12
bd
0.03
0.03
bd
bd
bd
0.09
0.08
bd
0.24
0.12
0.08
0.04
0.04
0.04
0.04
bd
0.11
0.03
0.12
0.06
0.08
0.06
bd
0.07
0.11
0.10
bd
bd
0.02
bd
bd
bd
0.02
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.04
bd
bd
0.06
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.06
bd
bd
bd
bd
bd
bd
bd
bd
0.02
bd
bd
bd
bd
bd
bd
bd
bd
0.06
0.04
Th
U
ƩREE
1.73
2
1.48
3
1.82
1
3.19
1
2.01
3
1.06
1
1.14
3
1.00
1
1.99
2
1.12
1
0.86
4
1.37
1
4.22
3
0.57
2
0.14
2
0.65
2
0.19
1
0.48
1
0.45
1
0.75
2
1.10
226
0.77
8
1.45
4
0.29
4
1.19
4
0.76
2
0.98
2
2.06
1
0.80
2
1.00
2
0.90
2
0.34
1
0.59
1
1.19
2
1.94
2
0.89
1
0.55
2
1.09
8
0.85
1
3.50
3
2.49
4
1.69
1
1.73
1
2.76
3
2.45
3
3.54
2
1.15
3
1.21
9
2.72
14
0.96
3
1.75
4
1.41
5
2.04
4
1.55
8
Ce/Ce*
-0.51
-0.46
-0.91
-0.72
-0.84
0.80
-0.01
-0.68
-0.20
-0.36
-0.20
-0.80
0.40
-0.92
-0.84
-0.24
-0.59
-0.60
-0.64
-0.71
-0.36
0.35
0.16
-0.77
-0.51
-0.76
-0.53
0.79
-0.10
-0.03
-0.84
-0.51
-0.69
-0.66
-0.63
-0.62
-0.72
-0.93
-0.78
1.27
-0.45
-0.63
-0.70
-0.31
-0.66
-0.66
-0.75
0.13
1.49
-0.64
-0.52
0.37
0.13
-0.22
Ce/Ce**
4.43
4.57
0.27
0.77
0.21
-64.34
6.55
-1.64
-0.21
-0.15
-0.10
-0.03
-0.22
-0.41
-0.17
0.99
0.39
0.78
0.62
0.64
-2.21
0.64
-2.48
-0.09
3.93
0.85
1.08
3.19
2.61
-2.80
-0.46
-1.44
-0.86
-1.70
-0.93
-0.99
-2.18
-7.43
-1.48
-28.85
-0.71
-1.00
-0.86
-0.42
0.40
0.23
0.17
0.49
14.64
0.20
-1.79
-0.28
-0.71
-0.36
La/La*
Y/Ho
-5.20
69.7
-2.84
84.6
55.27
99.6
49.03
83.6
0.73
19.8
-1.85
46.7
-10.53
46.7
-1.95
73.6
-1.09
52.7
-1.13
52.7
-1.07
31.7
-1.08
25.7
-1.05
18.0
-1.95
18.0
-1.36
10.3
85.56
23.8
-0.10
49.7
-3.28
49.7
-2.53
49.7
-4.13
75.6
-2.25
62.4
-0.74
55.5
-1.59 137.4
-1.28
93.6
-13.12
87.6
23.44
69.7
5.82
60.6
-3.46
60.6
-3.58
60.6
-1.75
60.6
-1.76
60.6
-1.77
51.5
-1.72 106.4
-2.74 106.4
-1.59 161.3
-1.63 105.9
-2.13 105.9
-20.35
50.5
-1.43 125.5
-2.49 175.3
-1.49 141.4
-1.95 138.4
-1.90 135.4
-1.38 161.3
0.34 123.5
-0.55
67.4
-0.50
43.0
-0.79
18.6
-9.17
42.5
-0.62
42.5
-2.40
66.4
-1.10
99.6
-1.38
87.6
-1.31
66.4
383
mm from
bone rim
18.52
18.55
18.59
18.62
18.66
18.69
18.73
18.76
18.80
18.83
18.86
18.90
18.93
18.97
19.00
19.04
19.07
19.11
19.14
19.18
19.21
19.24
19.28
19.31
19.35
19.38
19.42
19.45
19.49
19.52
19.56
19.59
19.62
19.66
19.69
19.73
19.76
19.80
19.83
19.87
19.90
19.94
19.97
20.00
20.04
20.07
20.11
20.14
20.18
20.21
20.25
20.28
20.32
20.35
Sc
2.90
1.05
2.33
2.93
1.55
5.04
0.74
2.82
2.03
1.92
2.58
2.31
3.43
2.46
2.70
3.44
1.26
1.24
1.95
2.60
3.33
2.07
2.02
1.36
0.65
2.67
1.80
3.86
2.38
4.57
3.25
3.14
2.10
1.78
4.12
2.42
2.05
3.24
3.87
3.00
2.65
3.72
3.17
4.27
3.11
3.27
4.04
4.40
2.40
2.97
2.31
3.54
3.59
3.97
Mn
0.40
0.30
0.26
0.16
0.27
0.21
0.24
0.13
0.21
0.22
0.20
0.23
0.13
0.21
0.23
0.19
0.17
0.15
0.17
0.28
0.28
0.24
0.21
0.21
0.14
0.32
0.30
0.23
0.22
0.16
0.11
0.31
0.19
0.15
0.32
0.18
0.23
0.22
0.25
0.25
0.18
0.21
0.16
0.17
0.19
0.20
0.20
0.37
0.24
0.20
0.31
0.38
0.71
0.35
Fe
1.43
0.73
1.24
2.28
1.90
0.94
1.01
0.98
1.19
1.00
1.20
0.90
0.72
0.82
1.09
1.79
0.90
1.67
0.86
1.09
2.70
1.36
1.07
1.47
0.92
1.20
1.27
1.18
1.63
1.57
1.08
1.46
1.23
1.19
1.66
1.05
1.23
0.97
2.06
1.17
1.11
2.05
1.32
1.24
0.98
0.93
1.12
2.04
1.05
0.86
2.15
2.01
1.66
1.71
SRHS-DU-2 Metatarsal (continued)
Sr
3151.54
2964.18
3273.74
3010.27
2403.79
4120.15
2730.51
2154.28
3058.03
2921.81
3212.65
3292.98
2523.92
2794.13
4023.27
3887.67
2180.14
3303.37
2402.42
2046.75
3737.72
3564.23
3220.87
4283.73
2394.40
3052.60
3386.96
2991.45
2579.57
4990.15
2532.02
2962.38
3259.52
1708.79
2969.93
2644.17
3253.02
2935.62
4667.82
4699.05
3384.14
2788.37
2033.03
2433.21
3748.64
2829.90
4161.83
3950.64
3086.63
2407.60
3159.05
3135.01
6669.79
3211.58
Y
6.71
3.53
5.48
5.54
3.99
4.58
3.96
4.12
4.26
4.18
3.63
6.30
4.55
7.35
6.08
6.30
4.07
6.04
2.86
5.04
5.34
5.05
2.22
4.95
2.84
4.61
7.49
6.91
5.24
7.61
5.67
5.52
2.71
3.60
4.84
4.47
5.16
4.60
6.26
8.81
5.04
8.13
5.99
8.93
13.57
7.38
10.86
12.05
9.26
6.56
8.99
8.60
9.20
8.79
Ba
1758.29
2433.64
1432.94
1642.06
2064.42
1203.67
1667.53
1047.71
1462.49
2238.55
1390.02
1617.59
1389.14
1906.09
1924.15
1304.47
1192.07
1607.23
1242.00
1736.52
1786.19
1460.14
1954.80
3178.01
941.55
1233.63
1703.46
1580.94
2018.14
1897.53
nd
1417.54
1709.87
1244.43
2100.50
nd
2412.57
1494.65
2037.50
3655.42
1663.45
1893.15
2194.51
1194.59
1731.19
1163.29
2555.33
7169.41
nd
nd
4263.53
3445.65
4306.04
1991.99
La
1.09
0.61
0.96
0.73
0.38
0.26
0.76
0.50
0.12
0.37
0.59
1.57
0.55
0.43
0.54
0.86
0.58
0.77
0.47
0.72
1.84
1.33
0.40
0.67
0.20
0.40
0.89
0.69
0.32
0.58
0.92
1.35
0.70
1.05
0.83
0.70
0.71
0.75
0.96
1.05
0.67
1.50
0.36
1.41
3.10
0.95
1.70
1.45
1.04
1.31
1.62
1.00
1.35
0.93
Ce
1.23
0.21
0.51
0.27
0.64
0.20
2.33
0.41
0.24
0.38
1.48
1.60
0.69
0.24
0.94
0.44
0.32
0.22
0.20
0.51
0.57
0.55
0.27
0.74
0.24
0.66
0.52
0.33
1.21
0.88
0.24
2.02
0.80
1.13
2.30
0.83
0.60
0.24
0.30
1.72
0.54
0.44
0.30
0.63
0.56
1.99
0.39
0.77
0.53
0.83
0.75
1.24
1.26
0.94
Pr
0.15
0.09
0.22
0.04
0.04
bd
bd
bd
0.10
bd
0.18
bd
bd
0.08
bd
bd
bd
bd
bd
bd
bd
0.13
0.07
bd
bd
0.04
0.16
bd
0.18
0.05
bd
bd
bd
0.21
bd
bd
0.20
bd
0.18
bd
0.09
bd
bd
0.18
0.13
0.07
0.08
0.06
bd
0.04
0.09
0.14
0.24
bd
Nd
0.60
bd
0.75
0.52
0.47
0.32
bd
bd
0.59
bd
bd
0.60
0.22
bd
0.27
bd
bd
bd
0.39
bd
0.27
0.48
bd
bd
0.19
0.49
bd
0.46
1.60
0.57
bd
0.67
bd
bd
0.34
0.18
0.39
0.34
0.82
0.22
bd
0.26
bd
0.20
0.19
bd
0.24
bd
bd
bd
0.26
bd
0.56
bd
bd
0.30
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.32
bd
bd
bd
bd
0.50
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.47
bd
bd
0.18
0.41
bd
bd
0.20
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.31
bd
bd
bd
bd
bd
Sm
bd
bd
bd
bd
0.25
bd
bd
bd
bd
0.09
bd
bd
bd
bd
bd
0.09
bd
bd
0.14
0.07
bd
0.08
0.15
0.10
bd
bd
bd
bd
bd
bd
0.14
0.80
bd
bd
0.06
bd
bd
bd
bd
0.08
0.19
bd
bd
bd
bd
bd
bd
bd
0.28
bd
0.09
0.10
bd
0.08
Eu
bd
0.84
bd
bd
0.23
0.31
bd
bd
bd
bd
bd
bd
bd
bd
0.26
bd
0.73
bd
bd
0.20
0.27
bd
bd
bd
bd
0.24
bd
0.49
bd
26.13
0.19
0.74
bd
0.15
bd
bd
bd
bd
0.20
bd
bd
bd
0.18
bd
bd
0.21
0.80
0.33
0.56
bd
0.86
bd
1.59
bd
Gd
bd
0.07
bd
bd
0.07
bd
bd
bd
bd
bd
0.04
0.04
bd
bd
bd
0.08
bd
bd
0.03
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
0.04
bd
bd
bd
bd
bd
bd
0.11
0.05
bd
bd
0.05
bd
0.05
bd
bd
bd
0.07
bd
bd
bd
bd
0.04
0.08
0.03
Tb
Dy
0.34
0.14
bd
0.75
bd
0.18
bd
bd
bd
bd
bd
0.17
bd
bd
bd
bd
0.13
0.16
bd
0.12
bd
bd
bd
bd
bd
0.42
bd
0.13
bd
0.49
0.23
bd
bd
0.18
bd
0.10
0.11
bd
bd
0.13
0.10
0.15
0.31
0.35
bd
0.37
0.42
bd
0.30
0.13
0.45
0.63
0.16
bd
Ho
0.09
0.15
0.11
0.11
0.07
0.14
bd
bd
bd
bd
0.04
0.04
bd
bd
0.08
0.12
0.09
bd
0.03
0.03
0.04
bd
bd
bd
bd
0.11
0.09
0.03
0.23
0.12
bd
0.13
0.03
0.04
bd
0.13
0.17
0.02
0.03
bd
0.02
0.04
0.16
0.06
bd
0.06
0.03
0.15
0.26
bd
0.04
0.04
0.20
0.07
bd
0.48
0.16
0.49
bd
0.20
0.18
0.31
bd
bd
0.17
0.19
0.14
0.15
1.01
bd
0.42
0.17
0.12
0.13
0.17
bd
0.41
bd
0.25
0.31
0.20
0.14
0.17
0.18
0.37
bd
0.55
0.10
0.11
0.11
0.37
0.43
0.13
0.14
0.11
0.33
0.57
0.52
0.12
0.13
0.15
0.21
0.98
0.14
0.33
0.35
0.53
0.46
Er
Tm
0.04
0.03
0.03
0.04
0.10
0.04
bd
0.14
0.20
0.04
bd
0.04
bd
bd
0.07
0.04
bd
0.04
0.08
0.06
0.04
0.07
bd
bd
bd
0.03
bd
0.09
bd
bd
0.03
0.12
0.06
0.04
0.07
0.05
0.16
0.05
0.06
bd
0.14
0.07
0.05
0.03
0.03
0.24
0.13
0.09
0.25
0.06
0.04
bd
bd
0.07
Yb
0.75
0.85
0.21
bd
bd
0.27
0.97
bd
0.98
bd
bd
0.25
bd
bd
0.22
0.45
0.37
0.68
0.16
0.17
0.23
0.41
0.18
0.75
bd
0.41
1.05
0.77
0.67
0.95
0.66
0.37
bd
bd
0.29
0.61
0.98
0.71
0.34
0.38
1.16
0.66
0.30
0.86
bd
0.36
0.60
1.43
1.08
0.19
1.52
0.92
0.70
0.81
Lu
0.14
0.23
0.04
0.20
0.07
0.20
0.18
0.23
0.13
bd
0.20
0.14
0.07
0.07
0.16
0.04
0.03
0.04
0.09
0.03
0.08
bd
0.17
0.05
0.03
0.04
0.10
0.24
0.24
bd
bd
0.10
bd
0.23
0.13
0.06
0.06
bd
0.06
0.17
0.03
0.04
0.11
0.22
0.06
0.07
0.15
0.05
0.16
0.14
0.20
0.04
0.25
0.22
bd
bd
bd
bd
bd
0.04
bd
bd
bd
0.03
bd
bd
bd
bd
0.03
bd
bd
bd
bd
0.05
bd
bd
0.03
bd
bd
0.06
bd
0.05
0.06
bd
0.09
0.08
bd
0.02
bd
bd
0.07
bd
bd
0.03
bd
bd
0.02
bd
0.02
0.02
0.03
bd
bd
bd
bd
bd
0.29
bd
Th
U
ƩREE
1.30
4
2.04
4
2.38
3
1.42
3
0.69
2
1.10
2
0.90
4
1.11
2
2.19
2
0.68
1
0.88
3
0.80
5
1.14
2
2.08
1
2.15
4
0.96
2
1.11
3
1.41
2
0.96
2
1.36
3
1.22
4
0.48
3
0.49
2
0.71
2
1.15
1
0.23
3
2.91
3
2.39
3
2.81
5
2.32
30
1.90
3
1.04
6
1.65
2
1.47
3
2.32
5
1.81
3
2.20
4
1.72
3
2.61
3
2.38
4
2.15
3
3.23
3
1.36
2
2.01
4
1.30
4
0.80
4
1.86
5
1.69
5
2.35
6
1.41
3
2.01
6
2.07
5
2.13
7
2.77
4
Ce/Ce*
-0.32
-0.80
-0.73
-0.73
0.09
-0.66
1.09
-0.51
-0.56
-0.62
0.05
-0.29
-0.39
-0.70
-0.08
-0.68
-0.70
-0.82
-0.79
-0.57
-0.76
-0.72
-0.64
-0.23
-0.47
0.09
-0.68
-0.78
0.08
0.07
-0.84
0.01
-0.38
-0.44
0.30
-0.49
-0.63
-0.85
-0.83
0.02
-0.51
-0.80
-0.69
-0.72
-0.86
0.49
-0.82
-0.57
-0.60
-0.47
-0.65
-0.26
-0.49
-0.48
Ce/Ce**
1.07
-1.23
0.28
-0.52
-1.36
0.48
25.01
4.41
0.87
0.39
0.89
2.06
0.41
0.31
0.85
0.46
0.33
0.24
0.25
0.55
0.53
0.59
0.62
4.67
0.47
-1.36
0.33
0.18
-1.53
-1.57
0.36
3.62
0.84
0.49
0.87
0.27
0.25
0.10
0.30
1.01
0.58
0.27
0.18
0.25
0.31
2.76
0.49
2.02
2.49
19.19
0.85
0.88
0.47
0.39
La/La*
Y/Ho
1.32
78.3
-2.23
24.2
0.14
50.8
-2.13
49.5
-1.64
58.5
1.35
33.0
-4.98
64.3
-3.63
64.3
-1.86
64.3
0.10
64.3
-0.28
95.6
6.71 147.4
-0.48 113.3
0.07 113.3
-0.12
79.3
0.80
54.7
0.21
42.9
0.61
73.2
0.37 103.5
0.53 169.3
2.09 135.4
2.48
89.5
2.56
89.5
-9.19
89.5
-0.20
89.5
-1.64
43.5
0.06
83.2
-0.31 211.2
-1.22
22.8
-1.81
62.0
6.29
52.5
118.92
43.0
0.84
87.6
-0.21
82.2
-0.50
58.1
-0.65
34.0
-0.53
30.7
-0.49 191.2
3.24 213.2
-0.01 208.2
0.32 203.2
0.53 215.2
-0.65
38.6
-0.13 151.7
1.72 135.8
1.50 119.9
2.92 316.8
10.37
81.8
120.18
35.6
-12.90 139.3
2.47 243.1
0.33 219.2
-0.14
45.9
-0.37 126.9
384
Sc
2.90
3.61
3.97
2.21
3.31
2.59
3.53
3.14
2.29
2.40
4.10
3.11
2.81
2.73
2.80
3.24
Mn
0.45
0.35
0.28
0.20
0.34
0.43
0.43
0.48
0.63
0.27
0.34
0.42
0.21
0.25
0.26
0.44
mm from
bone rim
0.00
0.03
0.07
0.10
0.14
0.17
0.21
0.24
0.28
0.31
0.35
0.38
0.41
0.45
0.48
0.52
0.55
0.59
0.62
0.66
0.69
0.73
0.76
0.79
0.83
0.86
0.90
0.93
0.97
1.00
1.04
1.07
1.11
1.14
Sc
88.40
56.44
24.39
19.72
20.67
18.46
39.22
21.10
43.17
30.10
30.77
26.85
20.20
36.07
17.35
30.18
26.59
33.29
28.14
21.38
45.03
18.56
44.70
31.20
27.92
27.64
29.24
29.29
23.53
31.31
29.91
25.43
28.29
25.58
Mn
bd
0.22
0.25
0.12
0.10
0.09
0.17
0.11
0.40
0.17
0.61
0.93
0.87
1.38
0.43
0.47
0.47
0.51
0.24
0.33
0.46
0.15
0.34
0.21
0.29
0.18
0.23
0.26
0.13
0.19
0.30
0.21
0.14
0.17
SRHS-DU-89 Manual Phalanx
mm from
bone rim
20.38
20.42
20.45
20.49
20.52
20.56
20.59
20.63
20.66
20.70
20.73
20.76
20.80
20.83
20.87
20.90
Fe
1.02
6.47
2.06
1.27
1.31
1.18
1.12
0.69
2.29
1.04
1.34
0.86
0.86
2.93
0.85
1.12
1.21
1.15
1.14
1.58
1.12
bd
1.54
0.80
1.00
0.83
0.91
1.12
0.86
1.11
0.79
1.05
0.99
0.79
Fe
1.02
1.67
0.99
bd
0.92
1.46
bd
1.84
1.31
0.96
1.24
0.97
1.04
1.36
1.14
1.36
SRHS-DU-2 Metatarsal (continued)
Sr
3447.54
7455.15
2797.22
1680.31
2628.18
1343.90
3136.98
2113.63
4142.50
2883.06
2549.71
2234.10
2803.20
2788.96
1747.91
3532.56
2864.95
3274.38
2926.47
3096.66
2906.98
2125.92
4769.57
3333.50
3123.12
2892.44
2979.36
3144.14
2151.32
3917.87
2618.17
2797.10
3326.41
2859.32
Sr
2822.86
3588.59
2462.29
4131.10
2466.22
2393.08
2819.92
3418.90
3661.78
3033.71
3619.14
3641.21
2106.82
2520.42
2854.60
3359.43
Y
691.11
686.34
318.22
229.40
238.79
180.30
330.27
201.53
399.79
363.09
377.38
241.40
204.63
314.42
220.44
326.37
293.44
299.58
310.31
278.52
325.76
196.11
390.80
328.69
291.52
295.22
312.12
287.91
228.08
400.02
295.66
279.58
271.52
216.55
Y
8.83
10.42
7.77
6.80
9.84
6.67
10.98
9.87
8.88
8.82
11.02
10.21
7.61
11.77
8.96
18.20
Ba
1548.99
1388.69
1094.55
1385.40
1020.21
811.24
2009.85
1296.36
1705.85
1128.79
1824.16
1357.68
1956.78
1343.57
1332.04
1611.57
1082.22
1844.87
1319.25
1391.22
1574.94
1186.11
1864.30
1187.55
1520.71
1100.82
1240.74
878.82
938.27
1193.76
1103.56
1084.87
1298.27
1833.48
Ba
1931.73
1947.60
nd
1633.38
1366.84
nd
1816.31
nd
1438.18
3352.04
nd
2169.52
1537.27
1534.11
1110.92
1876.14
La
519.57
830.20
280.03
184.21
204.73
166.04
422.69
212.19
453.00
345.35
304.88
265.96
219.85
272.74
201.34
324.21
287.02
265.21
262.38
321.56
281.40
158.78
333.99
249.90
226.74
223.47
287.39
218.75
207.70
258.47
210.92
218.02
174.17
239.17
La
1.28
1.24
1.89
5.55
0.92
1.48
0.85
1.58
2.44
1.16
1.59
1.48
2.13
2.08
1.08
2.34
Ce
2175.87
1231.00
530.45
557.49
426.50
334.51
697.56
508.34
1187.68
717.15
450.98
753.35
bd
bd
371.36
bd
bd
458.97
539.52
508.17
564.24
377.82
602.52
513.31
381.23
418.12
378.67
430.48
287.54
399.27
495.58
bd
379.99
bd
Ce
4.90
1.04
0.62
2.55
0.79
0.84
0.86
4.67
8.18
1.35
2.54
0.88
0.95
4.85
0.93
7.07
Pr
127.27
110.39
71.00
43.99
51.04
32.76
70.96
34.57
94.57
62.09
46.19
55.48
58.40
40.95
33.67
65.11
57.29
64.35
48.91
58.75
45.62
30.36
53.88
41.43
37.04
44.52
40.29
39.25
36.03
51.66
36.70
36.63
38.64
30.32
Pr
0.15
0.09
0.55
bd
0.12
0.03
0.04
0.25
bd
0.20
0.29
0.26
0.16
0.13
0.14
0.34
Nd
543.00
1016.10
203.92
138.35
119.19
104.30
236.04
120.04
283.02
200.23
170.01
147.39
157.68
195.45
123.30
172.27
112.83
167.94
123.33
164.13
196.68
82.20
201.29
161.66
127.74
116.15
126.60
138.51
92.84
128.94
126.92
99.23
106.25
98.56
bd
0.18
0.19
0.98
bd
0.17
1.89
bd
bd
0.79
1.66
0.21
0.37
0.75
bd
bd
Nd
Sm
163.61
77.26
41.05
23.87
35.61
17.56
24.25
20.66
47.46
36.90
25.65
33.91
18.33
32.19
21.34
23.86
28.36
27.82
24.25
24.32
32.58
11.18
30.37
21.81
28.50
26.78
24.06
23.89
15.51
25.30
30.33
19.84
11.30
12.29
bd
bd
bd
bd
bd
bd
1.26
0.59
bd
bd
0.57
0.26
0.22
bd
bd
bd
Sm
Gd
bd
85.69
40.81
39.67
24.49
26.10
39.91
22.59
45.49
46.56
27.95
25.46
29.61
28.86
17.29
35.90
20.25
29.75
24.87
37.60
33.68
19.06
34.21
38.37
39.76
29.25
32.95
35.76
22.86
24.74
18.85
23.28
29.10
23.82
bd
14.39
10.63
9.91
7.62
5.12
5.96
6.66
18.60
9.06
8.11
6.92
7.44
4.97
5.96
6.15
8.94
9.35
8.03
6.66
8.20
7.08
13.86
8.03
5.11
6.83
9.69
7.54
6.51
6.81
5.40
4.63
4.88
5.96
Gd
0.99
bd
bd
0.12
bd
bd
bd
bd
0.23
bd
bd
0.46
bd
bd
bd
bd
Eu
Eu
0.31
0.13
bd
bd
bd
bd
0.15
bd
0.25
bd
0.08
0.07
0.13
0.18
bd
bd
Tb
117.35
18.44
5.96
4.14
3.77
2.72
6.58
3.31
6.85
5.32
4.94
4.86
2.98
2.77
3.40
4.76
4.51
5.50
4.64
6.41
4.95
2.75
5.14
5.11
4.33
3.45
4.50
4.62
3.83
4.24
4.32
2.74
3.17
2.89
bd
0.08
0.05
bd
0.04
0.02
bd
0.03
bd
bd
0.03
bd
0.05
0.04
bd
0.06
Tb
Dy
160.77
113.65
46.37
25.53
21.63
19.60
43.69
23.31
49.29
38.57
27.28
31.19
21.90
25.17
18.44
28.97
27.94
27.86
25.11
29.62
30.23
17.24
33.14
33.16
27.56
32.09
30.53
26.70
24.88
30.53
26.26
23.07
31.27
24.61
Dy
0.38
0.10
0.43
0.28
0.58
0.10
0.12
0.14
0.14
0.57
bd
0.25
bd
0.29
bd
0.69
Ho
9.93
31.84
7.62
6.18
3.98
4.79
8.58
5.32
11.21
8.36
6.55
6.84
5.57
6.22
6.28
6.65
5.02
8.64
6.92
9.15
7.43
4.95
10.16
8.12
7.15
7.57
7.77
6.65
5.12
7.30
6.64
7.17
5.69
5.83
Ho
0.16
0.10
0.05
0.07
0.02
0.05
bd
0.18
0.07
0.09
0.10
0.09
0.05
0.11
0.04
0.11
Er
88.12
67.64
25.95
15.58
15.13
8.86
23.84
14.02
38.35
29.93
19.34
19.70
19.75
20.41
17.10
20.71
12.58
22.27
22.63
22.19
20.47
13.68
29.82
28.07
25.24
15.57
19.57
20.85
16.33
19.66
22.07
17.60
19.44
17.21
Er
0.83
0.46
0.12
0.70
0.09
bd
0.26
0.15
0.90
0.25
bd
0.41
0.12
0.48
0.34
0.50
Tm
28.62
16.88
3.32
2.19
2.63
1.57
4.52
1.94
4.51
2.97
2.48
2.44
1.90
1.95
1.71
2.45
2.07
3.24
2.43
2.47
2.57
1.49
3.99
2.88
2.86
2.52
3.68
2.23
2.18
3.91
2.75
2.63
1.40
2.58
Tm
0.15
0.12
0.08
bd
0.06
0.02
0.11
0.03
0.13
0.08
0.07
0.15
0.08
0.10
0.11
bd
Yb
174.36
34.27
15.18
16.42
8.53
10.34
15.91
8.63
27.02
18.98
16.24
12.97
13.00
17.63
12.11
13.64
11.24
18.89
14.05
14.75
13.21
9.58
30.93
23.86
18.56
16.88
25.10
28.13
15.75
17.25
16.49
12.42
11.12
18.43
Yb
1.10
0.30
0.63
0.20
0.48
0.57
0.17
0.82
1.98
0.33
1.79
0.18
0.46
0.84
0.45
1.00
Lu
32.04
12.60
3.02
2.92
1.83
1.17
3.48
1.66
3.74
2.59
3.09
2.04
2.00
2.60
2.16
2.78
2.03
3.21
1.65
2.20
2.48
1.94
4.79
2.75
3.36
2.77
3.01
1.99
2.21
2.98
2.21
1.93
2.38
2.10
Lu
0.13
0.16
0.29
0.06
0.07
0.05
0.13
0.04
0.22
0.15
0.07
0.16
0.11
0.04
0.12
0.06
bd
1.92
bd
bd
0.05
0.07
0.12
0.11
0.12
0.04
0.12
0.08
0.27
0.12
0.05
0.18
0.03
bd
bd
bd
0.08
0.02
0.10
bd
0.04
0.04
bd
0.05
0.03
0.05
0.04
bd
bd
0.07
Th
Th
0.03
bd
bd
bd
bd
0.04
bd
0.34
0.05
bd
bd
bd
0.02
0.03
bd
bd
U
ƩREE
121.35 4140
81.55 3660
26.25 1285
14.67 1070
10.95
927
13.63
735
29.24 1604
18.22
983
44.61 2271
43.58 1524
24.78 1114
38.45 1369
19.94
558
22.78
652
19.82
835
28.13
707
18.23
580
21.98 1113
19.36 1109
29.43 1208
28.08 1244
13.69
738
26.96 1388
20.37 1138
31.33
935
22.43
946
22.88
994
22.92
985
16.94
739
20.29
981
21.13 1005
17.48
469
14.66
819
14.12
484
U
ƩREE
3.79
10
2.22
4
2.05
5
1.75
11
1.30
3
1.60
3
1.28
6
1.41
8
1.81
15
1.76
5
1.25
9
2.09
5
0.95
5
1.04
10
1.05
3
1.28
12
Ce/Ce*
0.99
-0.09
-0.12
0.45
-0.02
0.06
-0.07
0.36
0.34
0.13
-0.14
0.45
0.17
0.21
0.04
-0.33
-0.13
-0.17
0.11
-0.14
0.14
0.27
0.03
0.16
-0.05
-0.02
-0.21
0.08
-0.23
-0.19
0.30
0.13
0.09
0.21
Ce/Ce*
1.44
-0.40
-0.86
-0.65
-0.47
-0.51
-0.19
0.69
1.28
-0.36
-0.13
-0.67
-0.68
0.75
-0.46
0.78
Ce/Ce**
2.63
-2.02
0.76
1.37
0.75
1.12
1.12
1.74
1.31
1.28
1.23
1.30
0.93
2.61
1.38
0.61
0.69
0.68
1.03
0.86
1.94
1.21
1.44
1.68
1.21
0.89
1.02
1.32
0.75
0.72
1.59
1.16
0.96
1.71
Ce/Ce**
2.98
0.91
0.07
0.78
1.17
10.48
-0.22
4.70
13.70
0.88
3.22
0.23
0.53
13.60
1.88
1.78
La/La*
Y/Ho
0.92
69.6
-1.83
21.6
-0.25
41.7
-0.10
37.1
-0.38
60.0
0.11
37.6
0.40
38.5
0.56
37.9
-0.05
35.7
0.24
43.4
0.91
57.6
-0.17
35.3
-0.34
36.7
5.83
50.6
0.71
35.1
-0.14
49.1
-0.32
58.4
-0.30
34.7
-0.12
44.8
0.00
30.4
2.05
43.8
-0.08
39.6
0.86
38.4
1.04
40.5
0.54
40.8
-0.15
39.0
0.53
40.1
0.47
43.3
-0.03
44.5
-0.19
54.8
0.45
44.6
0.05
39.0
-0.19
47.7
0.78
37.2
La/La*
Y/Ho
0.36
56.1
0.79 100.4
-0.69 144.7
2.19
96.4
5.16 482.3
-38.24 136.8
-1.22
96.5
-25.35
56.1
-8.12 130.8
0.88 102.9
-5.05 107.5
-0.43 110.2
1.04 143.7
-12.76 108.9
-14.74 235.1
-0.01 158.6
385
mm from
bone rim
1.17
1.21
1.24
1.28
1.31
1.35
1.38
1.42
1.45
1.49
1.52
1.55
1.59
1.62
1.66
1.69
1.73
1.76
1.80
1.83
1.87
1.90
1.93
1.97
2.00
2.04
2.07
2.11
2.14
2.18
2.21
2.25
2.28
2.32
2.35
2.38
2.42
2.45
2.49
2.52
2.56
2.59
2.63
2.66
2.70
2.73
2.76
2.80
2.83
2.87
2.90
2.94
2.97
3.01
Sc
30.33
29.30
28.16
27.49
24.32
26.77
26.54
32.00
25.22
28.21
27.62
22.04
29.30
29.58
18.89
20.26
37.36
28.05
30.04
26.71
29.07
30.24
34.81
23.81
24.81
29.78
24.75
23.75
24.45
24.16
23.33
25.40
26.03
20.20
21.97
22.57
22.08
26.73
21.15
29.60
20.75
24.66
19.89
25.51
27.55
21.37
21.51
21.42
15.55
21.47
19.17
19.27
22.38
21.81
Mn
0.19
0.34
0.20
0.17
0.18
0.22
0.18
0.25
0.23
0.19
0.22
0.23
0.37
0.26
0.16
0.26
0.42
0.51
0.38
0.30
0.39
0.31
0.26
0.23
0.25
0.19
0.19
0.23
0.29
0.19
0.18
0.18
0.21
0.15
0.18
0.18
0.23
0.30
0.29
0.32
0.19
0.21
0.17
0.17
0.23
0.23
0.25
0.23
0.14
0.19
0.14
0.13
0.38
0.21
Fe
1.34
1.28
0.88
1.24
1.51
2.08
1.26
1.76
1.09
1.12
1.11
1.58
1.35
1.57
1.11
1.18
1.22
1.17
1.66
2.58
1.96
1.01
1.70
1.72
2.04
bd
2.04
1.01
1.58
0.97
1.10
1.28
2.14
1.49
2.08
1.01
1.34
0.85
1.05
1.65
0.93
0.89
1.18
1.47
1.08
1.00
1.27
0.90
0.92
1.76
0.81
2.01
1.23
0.96
SRHS-DU-89 Manual Phalanx (continued)
Sr
3922.34
3385.74
3362.90
4136.09
2579.40
3142.79
3453.31
4115.13
3147.85
4163.16
3895.58
2933.82
3356.43
3334.61
3093.16
2532.50
4000.44
3204.84
3656.39
3153.21
4534.18
2548.59
4120.98
4461.88
4178.07
4204.22
3336.90
2998.96
2538.75
2597.91
3522.33
3167.06
2950.99
3633.21
2946.70
2796.26
3134.53
2952.80
4079.64
3721.04
2182.85
3019.00
3251.59
3773.81
2621.68
3454.51
3073.03
6545.99
2606.10
2347.05
2808.87
3776.46
3609.55
2377.96
Y
308.82
370.75
280.03
294.55
232.59
247.13
279.05
306.41
294.27
286.01
292.85
274.98
292.73
309.84
234.18
210.83
334.06
259.52
283.54
294.57
301.67
266.76
315.88
271.45
276.70
262.89
281.44
205.86
223.17
255.50
213.31
244.14
244.15
219.90
195.16
192.86
224.70
196.06
194.81
262.70
180.79
201.38
182.51
224.61
224.07
195.83
224.96
220.82
171.81
184.15
185.08
203.35
243.73
176.00
Ba
1471.09
2387.76
2300.33
1790.15
1441.94
1285.34
1197.16
1174.07
1491.04
1214.38
1402.90
1297.53
1760.31
1709.69
1148.73
1286.82
2459.73
1140.52
1526.32
2041.99
1736.83
1169.34
1689.90
1502.77
1343.81
1485.76
2733.41
1151.41
1729.73
1667.42
2217.27
1655.05
1511.87
1622.63
1042.04
1593.76
2473.89
1491.51
1812.19
1931.46
1267.56
1454.40
1272.39
1756.54
1765.86
1077.14
1459.70
1458.78
1045.06
888.77
1156.39
1139.91
1418.76
1095.38
La
235.46
225.15
214.95
192.27
146.26
191.54
190.77
235.46
186.31
191.48
208.01
162.56
223.06
218.96
137.62
138.00
223.80
150.10
190.00
157.58
159.49
140.16
208.80
151.26
133.63
131.99
157.35
103.12
119.88
110.15
113.40
125.47
125.23
86.86
108.68
88.09
93.44
98.72
101.01
117.09
88.13
89.53
87.26
102.41
77.61
83.74
86.83
87.36
61.15
88.52
88.93
72.68
88.38
77.27
Ce
549.81
330.89
430.34
309.91
292.69
369.69
285.84
289.73
469.94
378.19
291.19
296.98
394.67
313.47
281.15
214.72
550.09
395.01
386.96
234.12
503.77
223.34
402.65
344.84
353.04
233.38
240.22
193.18
196.16
173.11
158.47
143.22
170.03
215.75
123.82
206.89
185.01
129.91
149.28
129.51
102.36
138.95
118.13
150.40
112.09
152.37
103.14
135.27
bd
115.31
133.35
112.76
139.52
86.08
Pr
38.31
39.22
32.41
29.24
41.14
27.99
19.85
31.97
35.68
34.23
27.25
27.35
35.71
37.99
35.41
25.75
43.77
47.54
28.04
31.35
32.54
25.02
35.68
42.03
23.77
21.24
24.95
18.00
18.25
19.09
21.95
18.40
13.14
11.19
10.24
13.01
13.41
10.52
15.80
13.69
10.34
8.28
11.53
14.50
10.59
8.33
8.26
11.90
8.55
8.05
10.54
10.35
11.98
13.01
Nd
124.00
130.24
117.88
98.48
92.57
107.91
86.49
116.58
103.58
115.56
91.16
105.43
109.37
117.37
100.80
83.38
122.99
96.63
103.14
84.36
82.03
75.95
110.62
70.48
74.06
78.19
69.20
64.72
55.06
53.94
55.76
51.88
48.70
31.60
41.57
41.52
46.25
32.17
48.98
52.72
31.71
31.24
31.51
62.02
24.23
37.04
45.21
34.92
28.53
40.65
36.35
31.80
39.11
39.07
Sm
30.11
17.29
13.85
26.25
13.56
18.20
17.15
18.48
14.74
14.17
25.52
14.74
20.62
22.40
9.91
15.51
16.50
14.09
15.62
15.28
15.85
14.48
15.23
13.16
13.88
14.70
10.50
13.79
10.20
10.86
10.45
8.52
6.44
8.52
5.13
6.31
9.38
9.81
11.33
9.60
6.20
3.81
3.93
8.37
6.55
8.01
5.35
6.52
4.31
2.78
5.31
5.83
3.55
6.74
Eu
8.34
6.25
5.61
3.79
3.94
4.44
3.83
6.21
4.61
6.90
4.76
6.96
7.56
6.21
5.56
4.28
6.86
4.83
5.23
4.65
5.04
4.50
6.22
2.57
4.94
4.03
4.21
2.97
2.79
2.66
3.46
2.41
2.30
3.09
2.51
1.36
2.79
2.22
3.00
2.41
2.39
1.70
2.74
1.78
2.41
0.99
1.91
3.08
1.11
1.66
1.79
1.33
2.64
2.28
Gd
31.30
31.63
23.79
26.58
25.41
23.23
28.00
29.82
26.77
24.40
26.22
19.00
27.30
30.83
21.46
16.59
33.32
27.20
30.39
22.02
26.96
23.12
19.51
15.98
19.99
19.29
14.07
12.97
16.67
13.90
11.94
14.01
10.24
15.14
13.51
10.82
17.42
9.76
8.75
18.12
8.70
10.24
8.16
14.68
14.97
10.97
11.73
10.68
11.45
11.09
14.11
8.87
10.25
9.15
Tb
3.74
4.12
3.30
3.84
3.98
3.65
2.70
3.66
4.06
5.43
4.72
3.04
3.97
2.99
2.97
2.59
3.61
3.43
3.72
3.04
3.48
2.95
3.27
3.14
3.86
4.11
2.79
3.24
1.70
2.77
2.22
2.80
2.82
2.30
1.92
2.01
1.98
1.87
2.35
1.93
1.87
1.59
1.17
1.90
1.84
1.55
1.79
2.10
2.09
1.37
1.65
2.25
1.40
1.75
Dy
29.52
29.67
23.20
25.35
20.10
26.23
27.51
27.18
25.93
30.52
24.46
23.97
27.02
24.23
17.76
18.80
33.48
25.82
27.94
23.47
28.61
21.77
24.10
24.59
30.81
19.16
24.94
23.29
23.20
24.14
22.77
18.39
25.68
17.26
23.18
15.64
16.72
16.36
17.69
22.05
13.77
16.44
11.58
21.68
17.18
14.57
15.40
16.35
10.56
13.14
15.79
13.95
23.34
16.52
Ho
7.45
5.88
6.24
5.15
5.61
6.26
6.47
8.11
6.04
8.86
5.44
6.28
8.04
6.74
4.39
3.82
7.03
5.31
5.72
5.76
6.55
6.48
7.70
6.37
5.51
4.16
4.93
5.47
4.93
4.83
4.39
5.20
5.77
6.33
4.16
3.55
4.68
4.79
6.35
6.97
4.01
4.28
3.88
5.88
4.56
3.38
3.62
6.23
4.00
3.91
4.58
4.86
5.46
4.30
Er
25.01
21.29
19.48
28.50
19.42
25.10
21.83
21.61
21.98
20.35
21.75
18.40
19.23
18.51
16.31
14.58
20.46
18.81
24.61
17.93
19.40
19.76
23.67
16.17
21.18
17.93
20.45
17.34
18.90
17.55
18.76
15.62
16.42
13.97
16.59
11.71
14.93
15.23
17.86
18.51
15.13
14.58
14.50
14.38
16.81
14.57
14.42
22.52
12.07
13.88
15.26
14.97
18.94
13.54
Tm
2.82
3.16
2.91
2.22
2.04
1.91
2.09
3.16
2.73
2.75
2.75
3.06
2.26
2.56
2.74
2.07
2.28
2.10
3.36
1.70
3.65
2.40
3.55
2.59
2.69
2.16
1.97
1.92
2.90
2.17
2.48
2.53
3.05
2.29
1.54
2.08
1.49
2.19
3.03
2.00
2.34
1.69
2.10
1.99
2.20
1.48
1.91
2.14
2.04
2.27
1.77
2.40
1.61
2.14
Yb
19.88
18.40
14.19
15.52
10.79
11.36
16.31
19.24
13.13
11.27
14.86
21.68
14.06
16.43
10.64
13.60
14.42
16.51
20.22
13.73
20.44
12.33
20.06
14.29
14.49
14.82
16.61
13.86
13.89
12.65
14.55
15.42
17.06
15.25
13.26
10.95
17.24
14.20
19.05
16.13
12.16
13.79
7.21
12.72
11.75
11.13
18.23
21.76
13.04
14.08
11.30
16.30
13.36
11.08
Lu
3.43
2.09
2.31
2.38
1.77
3.37
3.66
2.51
2.51
3.02
2.23
1.97
3.36
2.97
2.25
1.76
2.70
2.55
2.60
2.30
2.96
3.02
3.46
1.93
2.26
2.47
2.58
2.65
3.08
3.13
2.27
2.28
1.68
2.51
2.87
1.87
2.56
1.74
2.63
3.29
2.14
2.73
2.40
1.87
2.01
1.65
2.19
2.10
1.31
2.04
2.35
1.25
2.87
1.40
bd
0.16
0.11
0.08
bd
0.07
bd
bd
0.08
0.09
0.04
0.04
0.16
0.08
0.20
0.08
0.27
0.06
0.16
0.07
0.07
0.13
0.13
bd
0.27
bd
bd
bd
0.08
bd
0.04
bd
0.09
0.04
bd
bd
bd
bd
bd
0.05
bd
0.04
bd
0.04
0.04
bd
bd
0.08
bd
0.07
0.07
bd
bd
bd
Th
U
ƩREE
23.09 1109
26.82
865
25.10
910
27.33
769
16.61
679
18.22
821
27.33
712
26.61
814
19.81
918
21.61
847
18.31
750
19.01
711
17.30
896
23.47
822
18.71
649
14.41
555
39.84 1081
17.47
810
24.65
848
27.78
617
21.80
911
18.16
575
17.92
885
20.19
709
22.09
704
20.86
568
18.53
595
19.78
477
18.76
488
14.85
451
15.94
443
16.70
426
26.97
449
12.06
432
18.26
369
13.16
416
18.05
427
13.12
349
19.80
407
16.23
414
16.01
301
13.21
339
11.48
306
23.94
415
17.68
305
10.81
350
15.01
320
13.92
363
12.65
160
17.19
319
15.41
343
15.74
300
15.40
362
13.82
284
Ce/Ce*
0.33
-0.19
0.17
-0.06
-0.11
0.14
-0.01
-0.25
0.34
0.08
-0.14
0.02
0.01
-0.21
-0.05
-0.16
0.29
0.09
0.20
-0.22
0.63
-0.13
0.08
0.02
0.45
0.01
-0.12
0.04
-0.05
-0.13
-0.26
-0.33
-0.10
0.54
-0.22
0.38
0.18
-0.14
-0.15
-0.29
-0.26
0.06
-0.17
-0.12
-0.12
0.22
-0.19
-0.06
0.23
-0.11
-0.05
-0.07
-0.04
-0.38
Ce/Ce**
1.59
0.96
1.65
1.22
0.62
1.76
2.29
1.13
1.34
1.27
1.22
1.45
1.17
0.88
0.80
0.93
1.25
0.70
1.74
0.72
1.44
0.94
1.21
0.64
1.60
1.39
0.95
1.32
1.13
0.91
0.67
0.78
1.64
1.93
1.73
1.74
1.62
1.31
1.01
1.26
1.05
2.18
1.00
1.60
0.93
3.01
3.52
1.17
1.67
3.11
1.49
1.16
1.30
0.69
La/La*
Y/Ho
0.38
41.4
0.34
63.1
0.87
44.8
0.58
57.2
-0.47
41.5
1.24
39.5
4.01
43.1
1.09
37.8
0.00
48.7
0.35
32.3
0.81
53.8
0.94
43.8
0.29
36.4
0.20
46.0
-0.27
53.4
0.20
55.2
-0.06
47.6
-0.56
48.9
0.96
49.6
-0.12
51.1
-0.19
46.0
0.14
41.2
0.23
41.0
-0.55
42.6
0.19
50.3
0.80
63.2
0.14
57.1
0.57
37.6
0.32
45.3
0.07
52.9
-0.15
48.6
0.26
46.9
1.80
42.3
0.44
34.7
3.10
46.9
0.48
54.3
0.75
48.0
0.93
40.9
0.34
30.7
1.79
37.7
0.76
45.1
2.33
47.1
0.35
47.0
2.36
38.2
0.11
49.1
4.84
57.9
-17.91
62.2
0.43
35.5
0.69
43.0
30.15
47.1
1.12
40.4
0.45
41.9
0.68
44.6
0.19
40.9
386
mm from
bone rim
3.04
3.08
3.11
3.14
3.18
3.21
3.25
3.28
3.32
3.35
3.39
3.42
3.46
3.49
3.52
3.56
3.59
3.63
3.66
3.70
3.73
3.77
3.80
3.84
3.87
3.90
3.94
3.97
4.01
4.04
4.08
4.11
4.15
4.18
4.22
4.25
4.28
4.32
4.35
4.39
4.42
4.46
4.49
4.53
4.56
4.60
4.63
4.66
4.70
4.73
4.77
4.80
4.84
4.87
Sc
24.57
24.88
27.59
30.81
21.72
29.03
28.77
24.12
19.90
22.09
29.29
23.83
22.86
20.24
34.76
24.63
24.95
17.87
18.29
18.48
16.68
30.13
25.48
20.03
19.06
22.72
26.14
22.24
23.39
26.85
27.75
31.20
24.44
17.14
23.21
19.47
20.96
27.93
27.95
36.02
24.41
25.76
25.48
28.19
27.02
22.82
20.40
24.54
19.94
28.26
23.93
23.63
22.91
24.61
Mn
0.21
0.17
0.24
0.20
0.62
0.24
0.21
0.16
0.16
0.17
0.17
0.17
0.16
0.14
0.87
0.22
0.18
0.13
0.17
0.23
0.14
0.21
0.28
0.13
0.19
0.16
0.19
0.24
0.15
0.22
0.34
0.23
0.29
0.13
0.23
0.18
0.16
0.21
0.19
0.22
0.24
0.26
0.20
0.22
0.23
0.23
0.26
0.41
0.21
0.37
0.23
1.66
0.21
0.24
Fe
1.25
0.81
1.33
1.37
0.87
1.40
1.04
0.82
1.08
1.04
1.17
1.05
1.42
0.76
1.31
1.14
1.10
0.76
1.06
0.78
0.74
1.05
bd
0.93
1.04
0.94
1.49
1.21
1.37
1.99
1.57
1.17
1.23
0.74
1.26
0.89
bd
1.24
1.22
1.16
1.30
1.04
0.72
0.97
1.05
1.20
1.31
1.90
0.99
1.26
1.33
0.91
1.39
1.09
SRHS-DU-89 Manual Phalanx (continued)
Sr
3823.28
4032.85
2947.17
3618.24
3425.75
3785.52
2870.55
2582.81
2841.93
3551.02
4033.90
2286.06
2827.62
2377.56
4232.40
2655.20
2847.99
2170.49
3041.46
2745.74
2779.68
3961.13
3082.71
2711.28
3205.43
3734.34
3282.30
3550.46
3461.20
3025.08
3657.97
3799.96
3003.12
1807.33
2954.24
2752.39
3048.84
3031.50
3953.82
3342.62
2640.02
3256.82
3030.88
3174.53
4219.29
3646.23
2357.50
2647.06
3664.08
2527.88
3385.17
2736.63
4416.37
3290.79
Y
207.57
215.23
321.04
250.92
191.00
271.13
273.74
238.07
192.61
206.55
220.30
180.91
202.02
152.26
235.63
202.65
176.99
136.35
172.04
167.59
134.33
178.12
204.88
154.90
214.07
179.16
213.59
239.58
185.67
215.39
255.32
221.04
201.04
163.60
216.02
197.68
218.12
261.94
227.44
317.37
233.97
269.64
216.14
227.78
197.81
220.34
219.20
185.45
207.81
196.36
185.23
194.84
189.36
216.44
Ba
1379.23
1371.64
1784.40
1537.74
1053.17
1531.60
1522.93
1933.12
1364.60
2038.51
1284.26
1285.59
1090.86
1202.33
2187.80
1235.04
1531.41
971.06
1207.90
1087.17
1183.37
1256.29
1475.70
1104.90
1691.05
1436.18
2040.78
2036.44
1555.47
1556.67
2451.19
1228.11
1613.35
1046.72
1285.20
1115.01
1391.18
1672.70
2779.65
1812.22
1946.26
1923.02
1537.96
nd
1180.09
1919.86
2738.79
1232.88
1307.26
1611.17
1181.45
1844.95
1800.35
1563.34
La
106.33
106.96
130.21
105.60
80.38
113.80
101.02
83.80
75.72
79.50
91.53
66.43
89.59
69.80
94.23
71.53
70.91
65.30
62.93
67.14
69.59
58.14
70.13
73.17
76.13
81.77
86.77
89.64
82.63
95.22
96.29
95.31
86.22
67.39
88.22
86.96
94.12
108.76
108.85
139.85
86.55
116.16
96.22
101.66
89.53
99.32
89.73
86.48
79.62
107.65
94.45
76.86
79.54
74.32
Ce
117.45
129.19
177.10
156.37
117.07
198.21
165.75
212.13
149.31
133.15
122.86
101.13
81.75
69.34
100.91
121.53
96.66
115.89
93.64
108.70
138.13
155.77
151.57
90.15
117.33
113.40
133.27
95.85
112.40
140.39
159.81
144.97
186.21
151.67
124.46
97.90
138.23
331.20
189.39
180.32
205.96
173.89
169.69
206.41
147.95
140.39
189.96
162.17
129.43
142.54
188.91
149.01
169.72
144.18
Pr
11.07
11.97
17.58
14.05
11.38
12.73
11.14
10.89
10.60
8.52
11.16
8.12
9.68
7.45
13.66
9.63
9.16
10.17
10.28
7.56
8.95
8.98
10.96
8.18
12.53
8.69
11.97
9.45
10.58
11.59
12.15
15.25
9.77
15.38
10.31
12.66
12.53
14.48
21.34
15.70
19.26
18.22
14.42
14.40
11.85
14.12
10.91
12.85
15.33
14.30
14.25
10.45
8.12
8.72
Nd
58.20
58.86
48.65
57.98
48.71
52.83
42.40
31.68
31.11
35.19
40.79
30.32
32.02
26.84
33.01
37.39
40.66
39.96
25.22
34.38
25.45
29.41
23.52
26.98
33.57
22.99
28.31
31.65
35.26
35.36
42.21
34.17
39.10
36.09
27.39
43.01
33.49
52.75
47.66
58.05
49.32
48.48
45.64
51.24
46.73
46.90
46.49
41.58
47.01
38.86
40.75
41.34
39.34
25.88
Sm
7.81
6.28
6.68
10.44
5.99
11.85
10.24
6.38
5.12
4.84
6.06
7.19
7.20
10.51
4.27
1.84
3.56
3.09
2.90
4.25
2.56
4.35
5.39
4.42
7.37
3.51
7.10
7.10
3.60
8.21
5.02
6.64
6.61
5.19
6.62
3.99
8.21
12.59
6.47
6.80
9.16
6.18
8.00
12.22
7.30
6.78
5.13
6.93
8.06
7.15
7.45
8.48
6.24
7.30
Eu
3.43
3.39
3.05
2.72
2.31
2.17
2.16
2.90
2.85
1.89
1.08
1.27
2.71
0.89
3.25
1.75
3.30
0.67
1.94
1.36
1.36
1.50
1.28
1.73
1.60
2.19
1.34
1.61
1.61
1.27
3.45
2.29
2.53
2.32
1.58
1.46
2.27
3.63
4.16
3.29
3.61
2.71
4.86
1.76
2.17
3.56
3.06
3.71
2.40
2.50
1.45
2.43
2.89
2.48
Gd
11.85
14.87
19.96
16.46
10.52
15.43
11.89
8.68
15.32
18.21
12.86
7.15
7.91
7.76
13.70
6.92
8.26
8.94
7.57
8.45
9.64
8.67
11.10
5.76
8.33
6.34
10.92
8.75
11.05
9.81
18.48
20.58
16.64
8.27
9.55
9.79
18.13
17.49
14.26
12.68
13.37
13.77
12.89
13.74
13.56
11.11
14.67
14.15
15.02
13.94
7.40
7.18
15.55
9.33
Tb
2.44
2.81
2.87
2.75
2.52
2.07
1.73
1.32
1.22
1.96
1.49
0.94
1.81
1.11
2.15
1.01
1.70
1.04
1.08
1.29
1.12
1.36
1.16
0.99
1.76
1.75
1.62
1.53
0.93
1.72
2.07
2.25
1.99
1.92
2.76
1.80
1.57
2.46
2.60
2.63
2.38
2.91
2.50
2.49
2.10
1.86
1.92
2.44
1.92
2.63
1.97
1.68
1.53
1.04
Dy
15.49
19.25
23.13
24.52
18.13
23.24
19.67
13.49
15.91
10.96
14.85
11.54
16.55
10.74
16.29
14.76
13.78
9.22
13.34
13.30
10.75
8.87
12.17
8.94
16.43
12.83
16.13
14.93
16.76
21.75
15.52
15.95
15.59
18.32
14.44
22.45
17.53
22.25
20.54
28.75
20.54
21.75
17.66
23.77
16.28
16.04
16.11
12.90
15.98
17.68
17.30
13.54
14.62
11.24
Ho
4.90
5.70
6.41
7.49
5.16
6.40
4.43
2.87
3.50
4.05
4.44
2.83
4.86
3.37
4.93
3.32
3.05
2.53
4.38
3.83
4.00
2.99
3.91
3.98
3.76
3.43
3.62
3.06
3.92
5.62
5.37
5.00
4.11
4.02
3.84
4.09
3.47
6.29
5.20
6.85
4.83
6.30
3.83
5.63
4.21
5.40
4.10
4.23
5.05
4.78
4.74
3.87
3.30
2.93
Er
19.83
19.89
23.50
18.51
12.91
24.31
16.55
13.74
14.17
16.67
12.40
14.62
15.93
13.91
16.62
13.06
14.30
8.01
15.63
9.16
5.83
15.16
11.63
11.31
14.98
13.24
10.95
17.86
15.03
17.70
20.39
12.81
13.40
13.14
13.01
16.72
15.16
16.44
14.86
21.75
14.28
23.71
13.44
18.26
15.20
18.70
17.52
10.64
17.56
12.39
13.61
11.16
14.38
12.54
Tm
2.51
2.70
2.38
2.74
2.34
3.19
3.23
1.49
2.39
1.65
1.79
1.68
2.43
1.43
2.54
1.75
2.35
1.18
2.15
2.06
1.26
1.44
2.51
2.03
1.52
2.27
2.33
1.85
1.85
3.94
3.33
3.38
2.53
1.84
1.85
2.76
1.50
2.98
2.30
3.46
2.71
2.50
2.22
2.57
2.24
2.60
2.75
1.53
2.41
1.81
2.30
1.35
2.54
2.63
Yb
14.51
13.37
21.79
18.21
14.24
22.63
22.71
14.53
10.42
10.84
11.46
10.44
15.87
15.55
16.17
10.68
12.64
9.16
10.03
10.67
9.69
8.56
12.25
10.58
16.40
9.51
13.04
13.68
12.55
19.12
22.74
17.86
8.49
13.44
14.32
11.12
10.81
19.48
19.57
26.83
9.52
16.51
9.83
12.02
14.13
15.28
14.09
9.34
12.93
14.33
17.46
11.80
8.36
10.10
Lu
2.91
2.92
2.67
3.01
1.70
3.74
3.34
1.84
2.49
1.90
3.05
2.64
2.08
1.29
2.54
1.68
2.32
0.99
2.55
1.70
1.74
1.53
2.39
1.58
1.62
2.04
2.31
1.68
2.19
2.40
4.73
1.96
2.34
1.76
1.68
2.76
1.87
3.63
2.62
4.27
2.43
2.94
2.37
2.36
2.47
2.70
2.37
2.17
2.38
2.43
1.94
1.68
1.58
1.77
Th
0.04
bd
bd
bd
bd
bd
bd
0.07
bd
bd
bd
bd
bd
bd
bd
bd
0.08
0.03
bd
0.03
bd
0.03
0.04
0.03
bd
0.06
bd
0.03
bd
0.07
bd
bd
bd
bd
bd
bd
bd
0.08
bd
bd
0.03
0.07
bd
bd
bd
0.08
0.03
bd
bd
bd
bd
0.03
0.03
bd
U
ƩREE
15.93
379
27.03
398
37.98
486
26.25
441
16.44
333
25.68
493
20.03
416
15.40
406
13.56
340
18.76
329
16.84
336
9.68
266
14.06
290
7.68
240
18.89
324
14.93
297
13.24
283
7.89
276
14.50
254
12.84
274
14.33
290
14.74
307
24.25
320
12.10
250
22.83
313
12.95
284
18.94
330
17.86
299
20.27
310
17.91
374
32.31
412
13.79
378
16.62
396
13.47
341
14.52
320
15.74
317
15.47
359
22.13
614
20.20
460
24.05
511
14.13
444
17.45
456
10.83
404
12.76
469
10.40
376
11.04
385
15.95
419
10.34
371
12.91
355
8.06
383
9.25
414
7.43
341
7.39
368
11.25
314
Ce/Ce*
-0.27
-0.22
-0.17
-0.09
-0.13
0.13
0.07
0.56
0.19
0.10
-0.15
-0.04
-0.40
-0.35
-0.36
0.04
-0.16
0.03
-0.16
0.05
0.23
0.55
0.25
-0.20
-0.13
-0.09
-0.07
-0.30
-0.16
-0.07
0.03
-0.13
0.39
0.11
-0.10
-0.33
-0.10
0.86
-0.08
-0.17
0.18
-0.14
0.03
0.22
0.01
-0.15
0.33
0.10
-0.14
-0.19
0.17
0.18
0.42
0.24
Ce/Ce**
2.60
2.20
0.99
1.63
1.59
2.30
1.95
1.99
1.45
2.29
1.38
1.60
0.96
1.15
0.67
1.70
1.73
1.56
0.83
2.47
1.55
1.95
1.19
1.24
0.90
1.25
1.00
1.16
1.21
1.28
1.56
0.83
2.67
0.88
1.16
0.90
1.06
2.85
0.78
1.46
1.00
0.92
1.28
1.74
1.71
1.13
2.67
1.40
0.90
0.97
1.34
1.96
4.10
1.71
La/La*
Y/Ho
-77.04
42.3
12.88
37.7
0.34
50.1
2.08
33.5
2.38
37.0
2.74
42.4
1.86
61.8
0.48
83.0
0.39
55.0
2.84
51.0
1.33
49.7
1.46
63.9
1.15
41.6
1.58
45.2
0.09
47.8
1.48
61.1
3.46
58.1
1.22
53.8
-0.02
39.2
4.95
43.7
0.45
33.6
0.48
59.7
-0.08
52.4
1.07
38.9
0.06
56.9
0.62
52.3
0.13
59.0
1.26
78.4
0.84
47.4
0.68
38.4
1.02
47.5
-0.07
44.3
2.24
48.9
-0.32
40.7
0.48
56.3
0.68
48.3
0.31
62.8
1.12
41.7
-0.24
43.8
1.60
46.4
-0.25
48.4
0.11
42.8
0.44
56.4
0.89
40.5
1.64
46.9
0.65
40.8
2.84
53.5
0.51
43.9
0.07
41.2
0.34
41.1
0.25
39.1
1.60
50.3
11.05
57.4
0.68
74.0
387
mm from
bone rim
4.91
4.94
4.98
5.01
5.04
5.08
5.11
5.15
5.18
5.22
5.25
5.29
5.29
5.32
5.36
5.39
5.43
5.46
5.49
5.53
5.56
5.60
5.63
5.67
5.70
5.74
5.77
5.81
5.84
5.88
5.91
5.94
5.98
6.01
6.05
6.08
6.12
6.15
6.19
6.22
6.26
6.29
6.32
6.36
6.39
6.43
6.46
6.50
6.53
6.57
6.60
6.64
6.67
6.70
Sc
22.25
21.84
21.56
20.51
21.46
23.52
15.52
17.94
19.35
19.11
23.34
18.32
21.34
18.28
21.31
18.12
16.43
17.54
20.11
17.93
25.80
24.41
26.30
21.38
24.39
19.21
27.16
20.07
16.28
17.63
24.21
19.81
18.68
32.66
25.23
22.21
22.66
20.23
26.08
31.44
23.91
25.68
17.15
27.18
15.92
20.80
22.22
29.24
25.14
34.30
25.56
23.69
18.06
15.19
Mn
0.20
0.25
0.20
0.21
0.31
0.29
0.14
0.20
0.19
0.21
0.20
0.14
0.21
0.15
0.22
0.22
0.20
0.23
0.16
0.17
0.40
0.21
0.24
0.21
0.37
0.18
0.26
0.20
0.16
0.15
0.19
0.23
0.14
0.28
0.19
0.21
0.19
0.18
0.30
0.23
0.38
0.38
0.33
0.48
0.30
0.51
0.54
0.36
0.43
0.34
0.23
0.39
0.20
0.19
Fe
1.15
0.86
1.21
1.48
0.98
1.37
1.96
1.02
1.22
1.11
1.08
1.58
1.05
0.76
1.69
1.40
1.05
2.14
1.21
1.79
1.29
0.99
1.43
1.76
0.93
1.02
1.30
0.85
0.93
0.60
1.13
1.27
0.91
1.68
1.73
1.10
0.89
1.53
1.56
1.28
1.39
0.94
1.07
1.48
0.63
1.04
1.14
1.28
1.28
1.05
1.16
0.93
0.90
0.79
SRHS-DU-89 Manual Phalanx (continued)
Sr
2374.90
4010.97
3823.82
2518.45
3098.22
4328.14
2794.44
3674.34
2823.08
3367.95
3789.68
3038.52
2769.37
2159.48
2503.17
2824.15
2470.85
3349.03
2688.30
2421.16
2720.67
3496.11
4965.92
2869.66
3578.51
2570.80
3828.95
2919.06
3603.98
2302.47
3179.43
3275.82
3100.35
3518.01
3518.83
3417.66
3318.52
3505.06
4278.82
3874.62
3038.18
2975.76
2306.89
3002.15
2387.20
2941.32
3284.86
3582.88
4481.80
3291.60
4042.53
3556.99
3658.28
2069.79
Y
168.95
167.49
161.29
153.48
178.54
194.23
115.46
135.56
160.30
147.62
169.98
146.50
169.18
130.81
129.51
117.54
114.80
155.18
128.97
127.52
159.20
147.98
196.58
136.43
130.04
136.46
137.45
164.99
122.09
110.98
143.54
159.89
138.23
187.68
137.52
149.33
163.92
146.33
205.09
196.11
173.59
149.15
129.88
239.43
131.03
182.51
164.62
192.08
177.08
217.57
175.48
152.26
124.08
112.08
Ba
1178.50
1266.33
1632.56
1079.92
2315.37
2232.28
1126.88
1504.14
1599.97
1424.99
1488.76
2024.07
1191.32
1395.48
1784.57
1337.67
1338.32
nd
1836.01
1238.76
1251.87
1767.05
1678.72
1453.36
2208.08
1480.82
2086.84
1656.27
1492.19
1585.96
1334.24
1166.53
1032.19
1603.58
1464.53
1630.14
1580.65
1661.40
2100.96
2331.66
1386.88
1719.12
982.44
1971.62
1417.60
1321.13
1464.07
1774.02
1862.49
1953.22
1719.48
1845.14
977.35
1330.57
La
56.58
64.07
60.59
59.47
58.48
61.96
38.71
49.25
56.05
44.44
50.31
54.93
47.98
48.16
52.82
55.51
45.35
62.41
54.69
47.56
59.85
54.54
57.38
48.55
57.45
42.95
52.86
93.98
35.99
41.03
53.29
45.39
47.24
59.59
49.13
56.40
63.08
48.86
71.18
79.17
88.91
78.75
52.35
72.93
56.80
109.71
67.75
97.83
81.81
75.42
69.98
69.59
42.91
36.03
Ce
116.36
115.17
103.00
74.45
80.20
122.01
63.12
56.60
72.44
64.42
47.57
54.19
81.25
57.95
73.15
117.43
72.54
83.74
65.93
69.43
73.34
61.85
186.76
120.39
89.49
63.23
51.78
87.33
45.22
41.66
94.84
68.89
50.13
79.88
70.90
76.90
101.26
54.96
97.88
92.70
91.77
113.35
162.40
210.83
126.99
77.04
104.19
188.10
211.30
122.56
144.19
100.39
47.43
45.96
Pr
8.54
7.01
8.70
8.22
7.60
7.76
4.40
4.30
5.83
4.42
7.16
4.37
5.36
6.47
11.46
5.14
3.33
4.94
5.25
4.48
5.70
6.88
6.75
6.81
5.47
3.20
5.44
4.52
4.31
4.93
5.70
6.55
5.34
5.76
5.07
5.83
4.32
4.95
6.47
8.59
6.58
10.59
7.64
13.50
8.57
9.94
9.54
7.80
11.31
8.36
17.65
5.74
8.66
4.27
Nd
28.90
25.19
28.94
28.18
22.59
16.06
10.71
19.44
20.24
15.58
18.40
11.50
25.49
22.91
27.69
22.17
13.90
12.18
19.69
11.19
32.70
20.01
13.50
29.27
25.68
15.86
15.10
12.44
11.97
9.14
16.19
19.40
11.11
17.85
19.85
18.94
18.03
12.06
28.96
45.22
28.75
30.66
22.00
42.91
39.79
39.06
37.43
42.38
58.81
32.82
22.36
19.96
14.55
12.53
Sm
4.16
5.89
3.95
3.60
3.25
3.61
5.06
1.59
4.13
3.63
3.33
3.56
5.07
1.35
3.47
3.35
3.57
1.73
4.75
1.83
3.72
2.45
5.98
3.48
2.28
3.19
2.97
2.77
1.94
1.57
4.00
1.61
2.76
4.54
bd
0.48
2.82
3.74
5.20
3.86
3.36
4.80
3.29
6.43
5.39
3.93
3.89
9.62
4.94
6.54
3.97
3.16
4.01
1.35
Eu
1.43
1.66
1.18
0.97
1.55
1.07
1.09
0.38
1.13
0.59
1.21
0.85
1.18
1.00
0.64
0.33
1.17
0.64
1.88
1.74
1.79
0.24
1.61
1.18
0.95
0.63
0.75
1.06
0.08
0.55
1.45
0.72
1.52
1.01
1.91
1.01
1.32
0.11
0.98
3.02
2.11
1.22
1.20
1.91
1.09
1.35
1.60
1.94
1.79
1.51
1.06
1.53
0.82
0.88
Gd
8.28
7.81
5.23
11.08
7.75
5.80
6.99
5.03
11.66
4.58
5.88
7.07
4.33
8.08
8.23
4.08
4.99
4.75
5.93
6.56
4.16
6.13
8.68
6.45
5.00
5.66
3.80
5.13
5.83
6.04
5.31
4.83
3.14
4.52
4.70
7.77
2.81
2.60
3.76
13.03
9.32
7.53
6.82
7.55
6.88
7.24
8.96
14.41
15.53
6.53
3.56
3.54
5.85
5.93
Tb
1.30
1.33
1.61
1.17
0.74
2.10
0.60
1.06
0.78
0.79
1.55
1.06
0.69
0.40
1.30
0.80
0.77
1.39
1.09
0.78
1.33
2.00
1.43
1.43
0.98
0.68
0.96
1.56
0.53
1.03
0.53
1.44
0.89
1.08
1.33
1.04
1.15
1.20
1.47
1.56
1.29
1.88
1.00
1.53
1.31
1.15
1.25
0.98
1.56
1.39
0.90
1.04
0.59
1.00
Dy
13.03
9.46
9.05
13.00
12.58
10.62
8.00
12.13
7.26
8.09
10.17
8.03
6.57
11.09
9.16
8.93
7.53
8.27
13.60
6.81
9.57
9.84
13.06
16.11
17.22
7.82
10.61
8.92
11.45
5.15
7.41
6.34
6.38
14.74
8.19
10.02
10.28
10.25
7.18
14.45
13.18
18.99
9.43
13.91
8.45
12.16
13.35
14.14
13.68
13.55
13.63
10.46
9.07
10.33
Ho
2.97
2.84
2.86
3.64
2.34
4.41
2.03
3.45
2.94
2.38
2.49
3.04
2.21
2.22
3.71
3.59
2.31
2.96
2.76
1.87
3.18
3.25
3.05
5.05
5.18
1.95
1.60
1.79
2.95
2.18
3.47
2.02
2.84
4.85
2.25
3.56
2.21
3.10
3.23
5.13
3.37
5.61
2.87
4.25
2.00
3.40
3.29
3.48
3.71
3.51
3.83
2.32
1.54
1.95
Er
10.00
11.10
10.13
11.64
9.62
13.86
7.73
9.74
10.20
8.54
8.98
8.83
8.00
8.36
11.94
8.22
6.93
11.66
10.25
6.30
9.51
11.48
16.70
12.07
22.12
9.75
8.46
8.74
11.68
5.66
6.94
9.79
8.08
11.62
11.77
16.52
7.82
13.89
14.52
16.40
11.67
19.03
9.81
14.67
9.05
14.50
14.84
9.07
11.42
10.38
11.34
10.86
8.64
8.15
Tm
1.90
1.37
1.77
1.91
1.10
1.68
1.51
1.33
1.76
1.35
1.38
1.66
1.43
1.42
2.18
1.00
1.08
1.16
0.65
1.11
0.87
1.38
2.47
2.26
2.60
0.70
1.58
1.57
1.91
1.16
1.14
1.36
1.33
2.05
0.95
2.61
1.41
2.09
2.26
2.48
1.39
1.84
1.21
1.59
1.25
1.55
1.81
2.56
1.89
1.78
2.08
2.07
1.51
1.23
Yb
9.31
11.84
14.04
11.61
9.45
16.00
11.97
11.48
8.79
9.84
7.36
9.10
11.31
7.90
12.95
12.93
5.58
6.14
8.71
7.00
11.87
9.01
10.80
15.19
19.42
8.30
15.05
14.03
10.65
5.03
9.77
13.18
6.44
15.70
7.90
14.85
8.30
15.37
8.72
21.26
10.33
12.89
9.69
11.00
7.95
13.94
11.04
10.24
13.79
12.64
14.65
15.43
6.34
5.56
Lu
1.00
1.19
2.02
2.13
0.85
3.00
1.65
1.53
1.84
1.25
1.45
1.67
2.31
1.50
2.78
1.94
1.68
2.93
1.29
0.91
1.09
1.28
1.70
3.18
2.86
1.20
1.38
1.91
2.28
1.17
1.85
2.16
1.39
1.55
1.79
2.92
2.00
3.36
2.34
4.03
2.39
2.28
1.62
1.63
1.77
1.66
1.52
1.84
2.86
1.23
1.55
2.16
1.00
1.41
Th
0.06
bd
0.03
0.03
bd
bd
bd
0.03
bd
0.03
0.07
0.04
bd
0.07
0.09
bd
bd
bd
0.04
bd
0.05
bd
bd
bd
bd
bd
bd
bd
bd
0.05
bd
bd
bd
bd
bd
bd
0.04
bd
bd
bd
bd
bd
bd
bd
0.02
bd
0.06
bd
0.03
0.04
0.04
bd
bd
bd
U
ƩREE
8.56
264
10.31
266
8.55
253
15.62
231
8.96
218
24.13
270
7.78
164
10.03
177
10.10
205
11.44
170
12.26
167
8.90
170
9.59
203
8.05
179
11.57
221
8.55
245
9.86
171
11.30
205
14.15
196
13.84
168
9.14
219
6.70
190
11.12
330
10.27
271
14.10
257
9.11
165
10.08
172
22.88
246
7.14
147
8.17
126
10.02
212
13.36
184
14.98
149
24.90
225
6.78
186
11.65
219
6.95
227
8.23
177
12.67
254
13.63
311
13.10
274
12.45
309
8.13
291
17.72
405
7.33
277
8.92
297
14.23
280
11.72
404
10.12
434
8.55
298
9.02
311
11.94
248
6.90
153
4.56
137
Ce/Ce*
0.20
0.17
0.01
-0.24
-0.15
0.23
0.05
-0.20
-0.14
-0.03
-0.43
-0.30
0.10
-0.27
-0.30
0.45
0.16
-0.05
-0.18
-0.01
-0.17
-0.29
1.07
0.49
0.06
0.06
-0.35
-0.27
-0.20
-0.36
0.17
-0.10
-0.32
-0.09
-0.04
-0.10
0.18
-0.25
-0.06
-0.23
-0.25
-0.12
0.84
0.56
0.31
-0.52
-0.08
0.36
0.56
0.05
-0.04
0.02
-0.43
-0.19
Ce/Ce**
1.58
2.02
1.35
1.06
1.09
1.33
1.31
2.24
1.47
1.75
0.63
1.18
2.85
1.08
0.58
3.58
3.25
1.56
1.62
1.43
4.40
0.92
2.30
2.75
3.00
4.09
0.94
1.90
1.03
0.68
1.67
1.09
0.79
1.48
1.90
1.47
3.48
1.01
2.53
2.65
2.23
1.09
2.15
1.71
2.65
1.06
1.49
6.59
4.41
2.00
0.59
2.08
0.43
1.11
La/La*
Y/Ho
0.61
56.9
1.50
59.1
0.64
56.4
0.80
42.2
0.52
76.3
0.12
44.1
0.40
57.0
6.45
39.3
1.45
54.5
1.63
62.1
0.18
68.3
1.15
48.1
7.75
76.5
0.97
58.8
-0.27
34.9
4.35
32.8
4.88
49.7
1.03
52.5
2.15
46.8
0.73
68.1
-9.68
50.1
0.52
45.5
0.17
64.4
2.47
27.0
8.15
25.1
22.74
70.0
0.76
85.6
2.74
92.4
0.51
41.4
0.09
50.9
0.74
41.3
0.36
79.1
0.25
48.6
1.16
38.7
2.31
61.2
1.18
41.9
5.24
74.0
0.57
47.2
5.70
63.5
-66.59
38.2
6.12
51.5
0.42
26.6
0.30
45.2
0.18
56.4
4.21
65.6
2.82
53.8
1.44
50.1
-24.96
55.2
672.10
47.7
2.11
62.0
-0.56
45.8
2.09
65.7
-0.38
80.4
0.64
57.6
388
mm from
bone rim
6.74
6.77
6.81
6.84
6.88
6.91
6.95
6.98
7.02
7.05
7.08
7.12
7.15
7.19
7.22
7.26
7.29
7.33
7.36
7.40
7.43
7.46
7.50
7.53
7.57
7.60
7.64
7.67
7.71
7.74
7.78
7.81
7.84
7.88
7.91
7.95
7.98
8.02
8.05
8.09
8.12
8.16
8.19
8.22
8.26
8.29
8.33
8.36
8.40
8.43
8.47
8.50
8.54
8.57
Sc
19.87
16.13
23.30
24.63
18.82
28.07
26.04
17.94
19.66
18.39
25.73
21.72
14.86
23.32
18.13
15.63
18.46
23.48
22.89
20.79
21.89
34.01
26.78
21.84
20.18
21.92
17.60
20.98
28.42
21.46
24.45
25.63
26.40
26.49
23.87
31.13
27.60
23.70
32.86
38.64
25.61
24.47
31.05
23.42
29.18
23.50
33.20
20.87
23.89
22.96
21.99
21.31
23.10
26.47
Mn
0.22
0.15
0.18
0.17
0.16
0.22
0.49
0.15
0.13
0.26
0.29
0.25
0.22
0.39
0.20
0.15
0.16
0.34
0.50
0.37
0.50
0.64
0.55
0.46
0.28
1.04
0.60
0.32
0.46
0.24
0.34
0.45
0.19
0.47
0.36
0.26
0.30
0.26
0.30
0.22
0.17
0.18
0.25
0.15
0.16
0.16
0.24
0.16
0.19
0.25
0.21
0.21
0.24
0.36
Fe
0.88
1.37
0.93
2.27
1.30
1.11
1.20
1.27
1.44
1.63
1.11
2.07
1.09
1.62
1.10
bd
1.44
1.19
1.31
1.65
bd
1.97
1.75
1.36
1.13
1.01
1.04
1.09
1.02
1.61
1.38
1.70
0.87
1.47
1.47
1.84
1.13
2.37
1.11
1.30
1.14
0.97
1.21
1.14
2.05
1.03
2.78
1.28
1.17
0.75
1.21
4.10
6.23
bd
SRHS-DU-89 Manual Phalanx (continued)
Sr
2489.74
2371.57
2538.15
3105.58
3534.42
2329.50
2778.48
2795.96
3353.05
2744.90
4000.20
3364.96
3874.96
5647.26
2597.71
2179.88
2867.47
3734.69
4708.56
2583.54
3138.01
3878.97
4641.06
2790.39
4865.49
4181.83
4023.29
2610.82
3791.10
2911.73
2946.97
3783.78
2570.14
3482.53
3486.37
4621.06
2791.33
4221.74
3603.60
3240.24
3370.34
3074.09
3301.57
3755.80
2762.44
3884.72
3602.68
3262.53
3496.81
2554.75
2843.20
3416.47
3008.84
3077.84
Y
144.90
144.01
138.19
203.31
158.49
191.32
160.01
161.68
153.14
146.30
139.37
149.31
123.25
151.70
108.98
96.61
135.52
201.59
164.21
153.93
174.96
229.22
216.75
224.52
190.98
180.44
212.66
164.39
240.84
207.06
262.99
308.27
203.56
255.26
287.27
290.50
272.84
225.01
328.79
345.95
250.47
227.88
272.81
228.62
241.23
181.91
234.69
204.68
170.92
153.86
175.79
181.35
171.41
169.48
Ba
2215.28
1134.85
1882.10
1645.00
1316.09
1545.36
1431.90
1069.07
1257.66
1230.18
1949.40
1984.74
1863.43
1590.69
1531.43
1719.96
1668.70
2698.12
1567.29
1296.71
1693.53
1925.76
2194.57
1400.67
1123.96
1408.49
1523.62
1265.18
2246.59
1605.81
1839.01
2066.29
1533.40
2082.47
1836.21
1679.47
1339.71
1454.05
1442.34
1565.88
1802.65
1405.26
1504.02
1492.29
2072.47
1587.06
1393.82
1454.07
1205.47
1169.54
1691.29
1271.92
1382.60
1737.45
La
51.94
43.98
51.43
65.33
57.51
64.08
62.41
51.98
45.30
40.92
40.75
41.09
42.59
46.62
23.92
28.35
67.21
49.13
52.17
61.51
61.76
106.54
93.49
79.57
60.09
70.30
64.49
63.47
81.17
71.55
80.45
100.44
78.38
95.70
128.74
136.27
104.41
81.48
140.05
139.99
89.13
91.75
115.52
101.52
82.87
73.25
87.96
80.43
59.31
55.93
57.52
67.11
46.82
65.90
Ce
186.43
51.01
73.50
87.43
74.91
104.33
76.64
84.33
72.41
93.91
86.49
97.13
45.88
44.31
32.77
53.34
45.80
80.72
103.40
123.97
97.25
150.19
145.96
83.29
98.01
135.14
170.63
130.47
240.05
99.40
146.17
201.19
229.09
195.57
155.32
155.48
237.12
127.12
285.97
267.32
155.31
144.82
275.18
144.23
158.90
122.80
136.82
131.39
89.01
73.10
61.75
116.33
109.50
84.05
Pr
5.10
7.37
5.79
8.58
7.40
6.98
7.84
7.22
5.48
4.10
4.98
5.16
6.36
4.33
8.58
7.04
5.76
7.67
10.09
7.75
10.40
14.09
15.31
9.20
7.50
8.87
10.69
12.97
9.78
13.91
28.43
19.60
12.48
14.20
15.86
19.05
12.98
17.42
26.92
26.86
15.17
18.06
16.94
14.38
12.36
15.85
13.48
9.56
7.76
6.91
6.75
8.44
6.67
8.78
Nd
20.79
15.57
27.99
32.05
27.97
31.85
33.90
22.57
18.00
17.44
16.81
10.30
13.58
14.36
12.02
7.91
14.14
20.21
26.63
20.78
26.61
43.77
38.74
28.55
32.41
36.04
32.16
30.80
45.04
51.10
45.24
54.48
47.86
44.93
66.43
60.85
49.88
52.32
64.23
69.25
59.57
60.71
51.58
50.69
41.50
38.27
46.54
31.82
30.54
24.35
19.92
20.20
16.74
29.99
Sm
3.69
3.13
4.43
5.10
2.78
7.61
7.52
1.49
3.92
5.36
1.62
1.55
3.73
2.66
bd
2.12
3.71
3.85
3.98
3.73
6.43
5.87
7.72
4.82
7.18
3.72
4.70
6.25
5.40
6.53
9.81
12.47
6.57
8.53
9.03
10.25
8.76
6.74
10.37
7.69
7.99
8.03
6.77
8.64
8.80
7.38
6.88
7.98
4.94
4.46
3.52
1.18
3.59
1.77
Eu
1.43
0.93
0.83
0.88
2.13
2.64
1.36
0.66
0.85
0.11
1.33
1.50
0.22
1.45
0.36
0.47
1.10
2.04
1.40
2.62
1.31
2.33
3.73
1.43
1.92
3.99
2.33
2.21
4.45
1.46
2.71
2.43
3.75
1.83
2.90
4.45
3.15
3.15
4.29
4.84
2.81
3.47
4.30
2.03
1.93
2.58
2.16
2.70
2.25
1.24
1.83
1.64
1.45
2.49
Gd
7.00
3.47
8.44
8.49
1.18
8.44
6.25
5.21
6.40
4.58
4.05
3.87
3.34
5.32
3.62
3.44
9.26
6.41
10.46
13.21
13.85
10.26
10.59
8.14
8.96
13.01
8.13
15.16
17.00
14.67
12.24
15.89
16.42
16.02
21.30
23.05
13.13
12.17
11.71
15.80
14.15
13.12
18.94
12.95
11.46
15.07
9.92
7.24
10.19
6.23
12.31
5.49
4.23
10.58
Tb
0.84
1.20
1.68
2.03
1.14
1.56
1.59
0.80
1.49
0.91
0.63
0.93
0.76
0.48
0.50
0.63
0.93
1.53
1.59
1.38
1.77
2.34
1.50
1.77
1.80
2.09
1.27
1.88
2.92
2.10
2.38
2.82
1.67
2.60
2.11
2.55
2.48
2.75
3.66
2.97
2.51
2.13
3.01
1.98
2.37
1.80
1.55
1.12
1.77
1.35
1.29
1.31
0.66
2.00
Dy
6.70
7.17
12.04
10.22
12.86
12.44
12.49
11.90
6.46
11.83
6.57
8.58
6.58
4.58
4.15
4.81
7.28
14.07
12.75
10.47
11.77
16.32
17.74
16.72
10.21
15.50
12.59
11.96
19.95
20.81
15.11
20.24
17.73
21.92
13.11
24.93
19.15
20.44
19.46
28.81
20.13
20.21
28.11
18.54
18.76
14.48
16.31
20.44
12.11
11.07
7.05
14.47
7.99
7.36
Ho
2.21
2.47
3.00
2.86
2.81
2.89
2.60
2.92
2.57
2.99
3.02
2.94
2.05
2.12
1.44
2.30
2.17
4.39
2.47
4.06
2.97
3.70
6.36
3.17
3.16
4.45
2.41
3.96
6.13
6.86
4.19
6.30
4.75
4.42
4.68
6.99
5.35
3.76
6.44
6.40
5.72
5.97
7.00
5.05
4.16
5.53
3.83
4.12
3.14
2.68
2.26
3.27
2.19
3.56
Er
8.35
9.57
16.70
12.83
10.49
13.67
12.15
9.46
6.33
11.55
8.53
10.68
8.44
10.30
4.07
6.72
11.00
15.46
12.46
10.78
8.75
15.56
21.05
17.38
11.61
18.24
11.81
9.30
18.34
24.80
17.74
30.12
15.35
16.36
13.82
24.63
24.20
18.66
24.30
20.95
17.42
22.01
25.54
14.16
14.63
10.55
15.04
15.04
14.37
9.28
9.17
11.24
6.68
10.94
Tm
1.33
1.62
1.83
2.08
1.16
2.17
0.88
1.83
0.87
1.38
1.18
1.27
1.09
1.29
1.13
1.11
1.12
3.34
1.52
1.82
1.42
2.39
2.42
2.94
2.22
2.25
1.50
1.94
3.00
3.38
2.45
2.80
2.04
2.19
2.69
2.74
1.87
2.99
3.94
2.63
2.03
3.10
3.52
2.10
2.81
2.62
1.78
2.45
1.88
1.25
1.54
1.51
1.29
1.65
Yb
9.17
8.90
15.42
12.68
8.74
12.00
9.19
10.60
7.84
10.05
8.93
8.27
3.97
10.41
8.80
6.02
11.06
20.97
10.25
16.36
9.12
16.67
13.34
7.63
16.56
14.25
10.00
8.44
23.27
17.60
13.67
22.27
9.13
19.37
16.41
20.61
17.10
17.75
21.12
32.40
21.14
22.52
20.50
14.82
14.66
17.08
14.38
15.95
14.02
8.22
10.41
13.96
11.11
14.41
Lu
1.20
1.68
1.84
1.11
2.18
2.43
2.07
1.56
1.90
1.45
2.17
1.88
1.12
1.57
1.14
1.56
1.40
3.85
2.26
1.59
1.68
2.04
2.70
2.32
1.45
2.72
1.92
1.90
2.17
2.47
2.65
3.36
1.86
1.74
2.78
2.84
2.33
2.34
3.53
3.83
3.46
2.09
3.24
2.35
2.89
2.97
2.29
2.17
1.37
1.74
1.80
1.44
1.66
1.78
bd
bd
bd
0.08
0.08
bd
0.12
0.04
bd
bd
bd
bd
bd
0.04
bd
bd
bd
bd
bd
bd
0.10
bd
0.05
bd
bd
bd
bd
0.03
bd
bd
0.07
0.17
0.03
bd
bd
0.08
bd
0.16
0.04
bd
0.04
0.11
0.04
bd
bd
bd
bd
bd
bd
bd
0.03
0.08
0.13
bd
Th
U
ƩREE
6.94
306
7.21
158
9.63
225
10.55
252
9.03
213
14.83
273
9.85
237
6.47
213
8.25
180
5.63
207
8.20
187
5.58
195
6.23
140
6.42
150
3.66
103
7.69
126
6.49
182
9.21
234
8.11
251
13.37
280
11.13
255
13.12
392
10.75
381
9.17
267
6.97
263
9.65
331
11.21
335
10.86
301
15.44
479
15.58
337
11.98
383
26.56
494
15.29
447
18.10
445
20.30
455
15.07
495
14.85
502
16.90
369
17.67
626
12.87
630
13.44
417
12.10
418
11.87
580
10.37
393
11.66
378
11.15
330
12.12
359
7.83
332
9.32
253
4.63
208
6.54
197
8.08
268
7.18
221
18.50
245
Ce/Ce*
1.41
-0.35
-0.08
-0.18
-0.19
0.06
-0.23
-0.02
0.01
0.53
0.34
0.48
-0.37
-0.35
-0.47
-0.11
-0.52
-0.05
0.05
0.26
-0.12
-0.14
-0.11
-0.33
0.02
0.20
0.49
0.06
0.87
-0.27
-0.29
0.06
0.68
0.20
-0.24
-0.31
0.42
-0.21
0.08
0.01
-0.03
-0.17
0.41
-0.15
0.13
-0.16
-0.10
0.04
-0.08
-0.18
-0.32
0.08
0.40
-0.22
Ce/Ce**
5.24
0.59
2.48
1.31
1.32
2.59
1.54
1.26
1.49
3.50
2.00
1.57
0.62
1.16
0.28
0.54
0.73
1.00
0.98
1.54
0.88
1.14
0.89
0.97
2.05
2.18
1.67
0.91
4.32
0.90
0.40
1.01
2.43
1.50
1.47
0.90
2.43
0.76
0.96
0.94
1.40
0.92
1.71
1.21
1.48
0.70
1.20
1.56
1.57
1.27
0.94
1.25
1.52
1.12
La/La*
Y/Ho
2.97
65.6
-0.15
58.4
9.62
46.1
1.29
71.2
1.41
56.3
5.35
66.2
3.00
61.5
0.53
55.4
0.90
59.7
3.60
48.9
0.97
46.1
0.10
50.7
-0.04
60.2
1.52
71.7
-0.68
75.7
-0.56
42.0
0.87
62.3
0.10
45.9
-0.11
66.5
0.39
37.9
-0.01
58.9
0.59
61.9
0.01
34.1
0.81
70.9
3.02
60.5
2.07
40.5
0.21
88.3
-0.24
41.5
5.11
39.3
0.48
30.2
-0.65
62.8
-0.07
48.9
1.02
42.9
0.46
57.8
2.53
61.4
0.57
41.6
1.61
51.0
-0.06
59.9
-0.19
51.0
-0.12
54.0
1.03
43.8
0.21
38.2
0.39
39.0
0.86
45.2
0.60
58.0
-0.27
32.9
0.64
61.3
0.98
49.7
1.66
54.5
1.12
57.3
0.67
77.9
0.25
55.5
0.15
78.3
0.85
47.6
389
mm from
bone rim
8.60
8.64
8.67
8.71
8.74
8.78
8.81
8.85
8.88
8.92
8.95
8.98
9.02
9.05
9.09
9.12
9.16
9.19
9.23
9.26
9.30
9.33
9.36
9.40
9.43
9.47
9.50
9.54
9.57
9.61
9.64
9.68
9.71
9.74
9.78
9.81
9.81
9.85
9.88
9.92
9.95
9.99
10.02
10.06
10.09
10.13
10.16
10.19
10.23
10.26
10.30
10.33
10.37
10.40
Sc
22.18
15.80
18.60
24.76
19.58
14.63
19.42
22.82
32.66
28.93
32.08
17.94
17.99
30.34
34.13
30.97
24.41
24.24
16.58
24.82
24.56
21.88
27.37
19.86
14.12
24.90
26.36
18.49
26.50
27.89
24.91
24.79
27.80
26.49
24.51
24.22
26.08
21.95
28.70
25.62
23.36
17.11
19.21
30.13
23.06
20.20
25.49
21.91
20.02
23.45
20.95
20.25
26.63
18.38
Mn
0.18
0.14
0.27
0.24
1.64
0.17
0.22
0.20
0.21
0.22
0.22
0.16
0.13
0.21
0.19
0.31
0.29
0.16
0.17
0.98
1.13
1.22
1.91
1.12
0.70
0.90
0.77
0.57
0.58
0.56
0.40
0.37
0.27
0.28
0.38
0.19
0.17
0.15
0.35
0.21
0.18
0.20
0.42
0.27
0.20
0.19
0.24
0.24
0.15
0.23
0.17
0.22
0.22
0.25
Fe
9.67
bd
27.27
33.46
bd
21.25
bd
11.97
12.08
10.24
8.20
bd
bd
5.51
5.40
3.90
bd
2.37
2.14
4.93
4.21
3.27
4.57
2.60
bd
3.12
2.35
2.30
1.80
2.80
1.67
1.74
1.29
1.39
1.19
1.27
3.19
2.87
3.12
3.09
2.33
1.24
1.42
2.65
1.30
1.07
1.62
1.04
0.93
1.06
1.14
1.11
1.42
1.02
SRHS-DU-89 Manual Phalanx (continued)
Sr
3696.30
2809.01
2363.68
3804.32
3540.99
3156.86
3630.35
3197.39
4051.26
3388.10
5296.38
2598.25
2578.36
3490.73
3962.74
4649.48
3671.36
2307.24
2153.80
3422.25
3132.92
2462.22
2985.90
2071.73
1804.79
3430.79
3922.31
2555.68
3332.05
3637.02
3711.54
3035.55
2945.32
2762.76
2211.48
2637.71
13454.25
3154.39
6774.94
3859.20
3558.81
3700.37
2720.68
4531.08
3386.91
2516.04
3110.30
2726.45
2507.94
3251.34
3463.03
2978.56
3952.99
2885.58
Y
147.72
135.64
161.73
223.56
203.47
134.72
167.97
156.02
207.92
245.51
264.25
170.52
136.34
228.93
282.52
243.20
235.39
207.18
141.35
237.52
248.41
220.65
291.68
185.43
154.07
205.43
221.81
171.79
231.91
264.59
215.21
206.16
195.55
191.88
176.45
184.86
185.34
175.38
216.45
201.27
129.36
175.29
155.91
252.34
190.92
153.25
177.49
194.34
147.82
151.77
140.65
128.87
176.47
130.43
Ba
1053.34
1404.37
1631.61
1365.48
1464.29
1532.31
1806.43
1371.22
2249.40
2864.69
2495.00
952.71
2283.72
1886.30
2178.39
2386.27
1618.02
2013.01
1371.39
1997.89
1544.98
1299.21
1697.12
949.88
876.46
1654.73
1277.09
1155.69
2068.77
2465.09
2262.89
1725.00
1563.21
1491.87
1570.71
1208.45
2357.69
nd
2834.93
2774.62
1171.65
1394.98
1384.98
2551.43
1840.56
1449.10
1801.04
1689.16
1395.79
nd
1986.76
1853.84
2194.49
1430.98
La
48.19
48.31
50.04
74.07
68.04
47.36
70.54
50.27
72.94
82.26
80.37
62.97
58.88
67.13
102.37
99.54
85.08
82.09
60.30
112.50
75.16
113.24
100.79
67.18
57.54
84.17
91.78
66.91
81.30
100.71
92.81
76.82
72.60
59.32
53.07
55.31
38.79
48.68
57.33
54.62
39.85
56.90
51.04
84.86
57.99
46.19
58.47
63.82
37.86
49.97
45.14
44.63
53.24
50.62
Ce
75.75
47.12
69.79
116.65
105.35
78.55
99.41
74.35
91.88
106.98
153.09
66.12
96.01
122.62
137.49
129.23
256.61
188.38
110.71
153.59
173.11
134.29
166.76
133.44
108.36
156.64
127.78
168.25
105.28
191.85
163.52
111.84
87.59
72.49
59.05
70.35
57.07
48.68
88.75
90.78
124.17
64.48
103.78
111.27
103.10
50.79
60.92
164.12
68.21
59.11
69.18
54.43
91.33
108.58
Pr
6.19
5.11
7.70
9.57
8.42
7.01
6.42
5.13
7.83
9.62
10.58
5.90
5.62
7.49
12.77
14.43
12.01
14.43
9.54
21.13
13.01
14.46
19.51
10.90
9.20
14.78
13.37
9.69
11.69
13.14
10.37
12.76
10.87
9.53
7.71
5.49
7.04
4.12
6.07
8.42
7.62
7.01
7.77
7.80
5.85
4.83
4.85
6.42
4.49
5.29
6.41
5.34
7.55
5.27
Nd
33.27
20.48
23.91
32.08
27.72
17.78
20.43
21.16
32.77
30.05
45.51
19.57
21.09
34.65
42.39
53.05
38.63
44.97
34.83
64.50
56.70
54.33
76.05
39.51
32.73
52.44
44.66
40.42
54.46
48.44
30.44
37.12
27.53
25.09
22.62
28.11
17.21
10.66
23.57
25.51
23.61
23.67
22.29
29.86
24.64
16.89
21.52
23.12
15.75
15.53
14.58
15.82
24.45
11.60
Sm
3.69
1.77
2.63
5.53
3.34
4.38
1.70
2.71
5.71
3.59
7.42
1.91
4.80
10.19
5.39
8.27
8.66
4.49
6.01
7.03
9.13
9.57
11.48
3.79
6.43
13.04
6.10
6.25
6.95
13.65
6.65
9.05
7.57
4.75
2.33
3.93
3.74
1.48
5.69
2.57
4.26
6.56
4.97
8.41
3.15
5.27
6.80
5.74
2.95
2.94
3.69
4.52
3.00
4.31
Eu
0.55
0.78
1.72
1.64
1.66
0.71
0.63
1.61
2.06
2.37
2.46
1.52
1.65
1.91
1.76
2.15
4.01
2.78
1.25
2.09
2.99
3.25
4.50
3.04
5.74
3.46
2.51
1.97
4.55
4.35
1.63
1.83
1.76
0.98
1.88
1.17
1.98
0.59
2.26
1.53
0.89
1.12
1.23
2.86
3.36
1.08
1.67
1.14
0.88
0.99
1.59
1.45
1.34
0.43
Gd
9.68
4.84
5.23
16.58
11.14
8.73
10.19
2.70
12.22
12.35
16.55
7.97
8.11
10.71
19.38
14.96
18.26
16.84
10.20
23.09
7.29
15.93
20.85
13.24
10.59
10.23
10.77
13.65
13.41
18.01
12.11
13.55
10.52
6.19
4.98
6.06
5.80
14.34
12.63
7.67
2.54
5.60
7.02
5.39
4.94
6.90
5.58
4.96
8.19
6.97
4.49
3.11
11.99
10.41
Tb
1.38
0.74
1.57
3.30
1.53
0.81
1.01
1.11
1.12
1.62
1.82
1.14
1.28
2.30
2.70
2.10
1.95
2.23
1.72
2.34
2.83
3.15
3.49
2.53
2.72
2.17
2.41
2.19
2.32
2.50
1.59
2.65
1.57
1.52
1.11
1.32
1.34
1.12
1.36
1.84
1.73
1.40
1.28
2.80
1.94
1.14
1.24
0.78
0.67
0.61
1.17
1.20
1.31
0.99
Dy
8.38
10.40
6.69
13.23
11.49
8.38
8.55
11.58
13.80
12.12
19.25
11.74
9.78
18.42
17.44
20.77
24.53
13.77
12.67
27.10
14.55
22.12
21.49
20.61
15.28
14.84
21.16
13.98
18.85
27.73
12.66
24.81
11.95
15.40
10.29
10.34
12.23
11.17
12.72
10.70
10.43
15.85
10.96
12.08
11.49
10.00
8.63
14.82
10.62
9.02
9.64
8.18
8.84
8.63
Ho
1.92
2.05
1.60
4.90
2.18
2.14
3.01
2.36
4.48
4.38
3.78
2.73
3.34
6.16
5.26
4.23
6.75
6.04
4.07
4.23
4.51
4.73
5.92
3.05
3.06
6.14
6.07
4.43
5.82
6.61
3.96
5.77
3.82
3.70
3.34
3.97
3.45
3.38
4.17
5.17
4.00
3.20
4.80
2.49
3.30
3.58
3.76
3.32
2.92
1.80
2.50
2.67
4.03
2.63
Er
11.94
7.85
8.20
17.53
13.83
8.57
8.71
7.93
14.73
17.62
22.56
8.60
12.73
21.69
14.81
22.55
15.29
15.54
14.41
18.41
15.25
16.69
19.12
14.90
13.50
20.07
18.96
17.88
22.21
26.27
12.64
20.39
17.38
16.33
12.21
12.13
12.10
9.60
15.34
16.94
12.84
14.14
14.95
13.60
11.66
10.28
7.33
10.51
8.13
8.13
10.15
10.67
12.68
7.74
Tm
1.24
1.18
1.28
2.98
1.75
1.25
1.34
1.80
2.57
2.42
3.30
1.82
1.46
3.00
2.20
2.71
3.98
1.74
1.99
2.52
2.02
2.60
3.10
2.34
1.42
2.87
2.84
2.91
2.86
2.73
1.96
2.30
1.65
2.30
1.36
2.12
1.84
2.19
2.06
1.64
1.49
2.13
1.59
2.38
1.26
1.38
2.47
2.41
1.60
1.59
1.34
1.50
2.22
1.72
Yb
8.85
9.09
6.33
14.24
7.52
7.62
8.15
9.07
16.50
14.15
22.90
12.46
12.05
16.75
19.50
17.96
24.57
15.68
11.30
14.98
18.46
13.90
25.91
9.67
10.72
10.24
18.63
16.90
15.77
19.03
15.82
19.26
10.04
15.54
13.24
8.87
7.08
10.89
7.18
19.13
14.19
14.96
12.05
9.38
10.88
6.54
9.08
13.57
8.61
16.97
10.46
6.90
11.36
12.75
Lu
1.87
1.32
1.99
2.08
2.69
2.02
2.00
1.87
1.60
2.70
3.41
1.79
1.73
3.50
3.23
3.30
3.26
2.10
1.37
2.36
2.50
2.32
3.61
2.12
1.55
2.85
2.63
1.88
3.80
3.62
1.78
3.81
2.66
2.29
2.30
2.28
2.55
1.81
2.88
2.51
1.83
2.26
1.78
3.05
2.06
1.63
1.30
2.09
1.50
0.96
1.49
1.90
2.74
1.31
Th
0.18
0.18
0.37
0.07
0.22
0.24
0.30
0.15
0.12
bd
0.04
0.13
0.11
0.05
0.11
bd
0.05
0.04
0.03
0.20
0.18
0.41
0.42
0.23
0.10
0.19
0.14
0.08
0.14
0.15
0.04
0.16
bd
0.04
bd
0.11
bd
0.05
0.19
0.13
bd
0.09
0.04
bd
bd
0.03
bd
0.08
0.03
bd
bd
bd
bd
0.11
U
ƩREE
24.58
213
19.31
161
33.57
189
27.72
314
30.28
267
27.41
195
17.00
242
12.85
194
12.33
280
11.74
302
18.80
393
6.34
206
11.22
239
23.83
327
15.71
387
13.31
395
17.04
504
11.18
411
9.42
280
14.44
456
17.81
397
28.98
411
16.90
483
6.95
326
8.48
279
12.53
394
13.27
370
9.59
367
19.56
349
23.10
479
11.92
368
16.62
342
15.86
268
12.30
235
10.47
195
9.05
211
8.40
172
11.90
169
9.47
242
13.13
249
5.56
249
6.85
219
7.64
246
9.99
296
8.28
246
5.59
167
6.37
194
7.23
317
5.20
172
4.35
180
4.14
182
3.48
162
7.67
236
5.29
227
Ce/Ce*
-0.03
-0.36
-0.19
-0.03
-0.03
-0.02
-0.03
-0.02
-0.17
-0.17
0.17
-0.28
0.11
0.18
-0.16
-0.23
0.81
0.26
0.06
-0.27
0.28
-0.26
-0.12
0.13
0.08
0.03
-0.17
0.49
-0.23
0.17
0.14
-0.18
-0.29
-0.30
-0.34
-0.15
-0.20
-0.30
0.02
-0.04
0.66
-0.29
0.19
-0.10
0.19
-0.27
-0.27
0.72
0.15
-0.22
-0.08
-0.23
0.03
0.42
Ce/Ce**
3.22
1.29
0.97
1.40
1.41
1.05
1.69
2.11
1.75
1.20
2.25
1.27
2.20
2.91
1.22
1.13
2.36
1.40
1.45
0.77
2.12
1.20
1.16
1.52
1.43
1.28
1.09
2.58
1.62
1.85
1.62
0.89
0.75
0.73
0.79
2.89
0.74
1.12
1.97
1.13
1.74
1.06
1.35
1.89
2.66
1.26
2.06
3.15
1.82
1.15
0.95
1.05
1.34
1.79
La/La*
Y/Ho
-20.77
77.1
2.49
66.2
0.36 101.0
0.85
45.6
0.86
93.4
0.12
63.1
1.40
55.8
2.99
66.0
3.04
46.4
0.81
56.0
2.71
69.9
1.49
62.5
2.17
40.9
5.83
37.2
0.87
53.7
0.99
57.6
0.57
34.9
0.20
34.3
0.80
34.7
0.09
56.1
2.02
55.0
1.39
46.7
0.75
49.2
0.72
60.8
0.67
50.4
0.52
33.5
0.63
36.5
1.94
38.7
4.61
39.8
1.23
40.0
0.74
54.3
0.16
35.7
0.10
51.2
0.07
51.9
0.34
52.9
50.51
46.6
-0.12
53.7
0.99
51.8
2.16
51.9
0.32
38.9
0.09
32.3
0.96
54.7
0.24
32.5
2.49 101.2
3.41
57.8
1.47
42.9
5.93
47.2
1.73
58.6
1.20
50.6
0.83
84.5
0.06
56.3
0.64
48.2
0.58
43.8
0.41
49.6
390
mm from
bone rim
10.44
10.47
10.51
10.54
10.57
10.61
10.64
10.68
10.71
10.75
10.78
10.82
10.85
10.89
10.92
10.95
10.99
11.02
11.06
11.09
11.13
11.16
11.20
11.23
11.27
11.30
11.33
11.37
11.40
11.44
11.47
11.51
11.54
11.58
11.61
11.65
11.68
11.71
11.75
11.78
11.82
11.85
11.89
11.92
11.96
11.99
12.03
12.06
12.09
12.13
12.16
12.20
12.23
12.27
Sc
14.61
22.54
18.11
24.05
20.33
21.34
28.10
25.88
28.91
29.89
27.33
22.80
22.13
19.29
30.47
24.41
25.49
23.01
19.13
21.49
17.33
22.47
15.90
21.59
20.39
22.82
21.49
29.73
33.88
26.52
31.87
27.39
28.79
28.63
24.75
19.06
30.99
21.64
28.62
22.97
34.33
24.55
19.29
18.55
22.38
22.65
25.44
20.41
23.13
27.55
19.14
20.18
20.80
18.27
Mn
0.18
0.17
0.19
0.50
0.45
0.58
0.57
1.16
1.24
0.41
0.36
0.34
0.29
0.24
0.25
0.23
0.22
0.20
0.19
0.18
0.54
0.18
0.16
0.15
0.19
0.15
0.16
0.33
0.35
0.13
0.28
0.25
0.24
0.22
0.75
0.59
0.64
0.47
0.46
0.46
0.56
0.40
0.90
0.23
0.33
0.20
0.32
0.19
0.25
0.28
0.16
0.19
0.16
0.21
Fe
1.38
1.01
1.05
1.36
1.15
0.96
1.43
1.15
1.39
1.12
1.55
1.54
0.88
0.81
1.71
1.15
1.51
1.00
1.22
0.82
1.16
1.75
0.68
0.91
0.80
0.87
1.20
1.14
0.76
0.81
1.02
1.73
1.63
0.96
1.70
0.97
1.28
1.24
0.95
0.95
1.01
1.19
0.86
1.04
1.59
1.15
1.17
0.76
1.22
1.16
0.78
1.10
1.31
1.04
SRHS-DU-89 Manual Phalanx (continued)
Sr
2360.29
2676.69
2609.60
3085.14
2844.02
2447.14
3355.10
2900.40
3908.89
3757.21
3087.98
2967.69
3139.48
3207.68
3669.15
3627.15
3561.07
4651.77
3149.74
3079.28
2641.61
3717.39
2635.96
2740.81
3009.41
3042.40
3198.81
2643.93
3502.71
2334.24
4513.34
3055.82
4552.54
3728.28
4372.45
2939.93
4146.59
3444.83
3541.31
3313.51
3674.69
3611.48
2467.42
2216.09
3446.45
2915.94
5129.92
2780.09
3903.77
3820.59
2834.23
2601.12
2818.63
4463.24
Y
151.42
144.87
153.52
197.21
189.53
165.03
269.86
255.07
262.21
215.57
242.13
221.13
183.06
139.42
227.43
188.99
203.21
173.06
156.24
134.42
147.25
200.41
127.49
152.48
168.98
176.22
196.13
226.12
263.81
191.50
223.22
213.11
198.52
216.73
230.65
169.44
250.32
168.89
190.99
219.41
191.92
188.75
165.54
149.22
162.15
138.04
160.01
159.15
167.50
189.25
138.16
152.64
166.28
161.58
Ba
1600.65
1427.70
1401.92
2109.39
nd
1766.15
2143.24
1775.30
1760.39
2073.21
1397.71
1521.19
1635.34
1340.22
2742.79
1529.34
1731.47
1717.68
1028.19
1673.21
1231.40
2043.04
1523.54
1409.32
1324.34
1280.52
2134.96
1751.78
1567.57
1373.28
nd
3035.84
2194.60
2168.82
1538.35
1677.10
1660.23
2089.27
nd
1327.04
1557.17
1705.11
1736.71
1452.91
1168.86
1671.49
1627.54
1202.45
2222.65
1926.75
1531.66
1280.45
1399.85
1762.65
La
43.64
37.85
46.51
61.41
55.13
73.86
82.35
88.81
84.89
72.07
88.74
68.11
58.09
51.45
62.89
56.28
75.73
48.91
42.06
50.42
38.01
55.12
49.71
41.38
43.89
54.51
58.73
68.20
68.88
71.56
59.18
66.84
67.05
70.42
72.60
44.77
72.22
63.24
57.96
58.25
58.61
64.44
39.19
31.77
43.80
41.23
59.25
42.55
59.66
47.08
46.01
46.91
42.06
53.10
Ce
51.27
50.24
89.58
71.39
153.30
95.73
231.06
114.71
100.03
111.26
130.20
106.81
72.17
70.97
92.00
62.46
57.17
59.87
59.52
36.04
48.86
75.03
44.62
40.62
43.28
53.71
89.67
213.55
231.79
75.70
100.10
90.20
87.64
80.60
97.13
99.41
84.31
74.50
101.88
112.23
105.79
85.99
42.87
40.13
52.06
39.21
83.21
49.74
66.86
56.63
57.96
55.31
60.15
91.69
Pr
4.66
4.23
5.92
6.98
6.76
8.28
13.19
10.02
12.39
17.95
8.67
7.92
7.93
5.25
6.57
8.44
5.16
4.66
5.04
3.40
5.60
6.08
5.33
3.89
4.53
4.19
4.88
8.22
7.65
7.09
9.30
9.52
6.30
8.98
7.49
6.58
8.91
6.21
3.93
12.29
5.42
4.13
4.77
5.00
5.16
6.02
4.32
3.31
4.97
4.24
5.62
4.18
5.04
4.59
Nd
9.20
18.66
20.58
27.14
26.47
35.35
43.51
45.34
41.55
62.30
31.76
36.28
38.91
23.01
31.62
20.39
24.48
16.79
12.45
8.97
16.45
13.29
11.42
15.21
18.61
26.32
22.42
21.24
28.44
24.27
18.20
26.62
21.07
22.20
25.86
15.10
28.63
19.00
14.46
20.92
27.15
20.80
16.49
12.61
19.90
15.14
18.23
17.49
20.04
18.06
14.93
15.69
13.67
11.79
Sm
0.98
3.26
7.15
3.68
4.75
7.76
3.87
3.79
4.01
10.83
8.36
1.68
4.60
2.82
2.59
4.10
3.76
2.36
0.81
2.41
1.91
1.69
3.28
2.53
3.61
5.02
3.99
4.66
2.26
1.74
6.40
8.04
4.79
0.71
2.73
2.99
9.39
2.83
2.60
3.37
5.15
2.51
3.48
4.98
1.07
0.58
2.24
0.87
2.93
2.50
3.20
1.77
5.06
1.36
Eu
0.29
0.79
1.11
1.10
2.44
2.17
2.96
3.71
1.79
1.13
1.76
1.50
1.67
1.12
0.96
1.40
1.28
0.84
0.61
0.72
0.91
1.26
0.10
1.23
0.96
1.25
1.32
1.11
1.61
0.73
1.19
2.15
0.55
1.17
1.39
1.69
1.52
0.84
1.22
0.88
1.26
1.75
0.85
0.83
0.21
1.21
1.00
0.78
1.53
1.06
1.56
1.32
0.40
1.11
Gd
2.27
4.44
10.24
8.35
10.35
11.62
12.15
18.41
10.52
10.26
11.29
10.08
10.71
6.10
4.50
5.25
9.65
5.17
3.64
4.00
9.15
5.90
3.92
3.79
5.20
7.10
11.52
6.98
4.05
5.92
6.38
9.23
6.62
6.78
7.40
5.97
8.09
5.64
6.67
3.35
6.54
5.42
3.15
6.20
6.44
3.76
5.58
4.04
4.02
7.14
4.64
5.02
5.04
6.77
Tb
0.94
0.81
1.70
1.68
1.49
1.91
2.51
2.59
2.15
1.36
1.70
1.81
1.58
1.24
1.00
0.98
1.54
1.52
1.07
1.53
1.37
0.86
0.94
0.87
1.20
1.00
1.27
1.56
1.13
0.87
1.81
1.34
1.58
0.85
1.68
1.03
1.43
1.24
0.66
1.36
1.56
1.10
0.87
0.59
1.11
0.97
1.07
1.00
1.14
0.98
0.90
0.64
0.84
1.29
Dy
6.25
7.12
12.95
12.14
13.98
16.89
13.56
18.61
16.73
15.39
11.81
10.46
16.03
12.24
13.33
11.50
11.33
12.03
9.56
10.43
7.87
9.74
4.99
8.54
11.81
12.10
8.92
13.26
11.30
13.00
10.19
13.20
9.59
14.37
12.82
9.38
13.60
12.94
12.21
8.46
12.40
11.49
7.59
7.93
8.62
6.55
9.88
8.51
10.79
10.70
6.42
9.73
8.76
7.48
Ho
2.07
1.67
3.41
3.35
2.90
3.38
4.79
4.96
4.59
3.77
3.48
4.18
4.24
2.65
3.71
3.94
3.41
3.34
2.28
2.06
2.47
2.73
2.69
2.75
2.50
3.11
3.52
5.30
3.14
3.54
3.12
3.29
4.01
2.88
3.72
2.59
3.54
2.61
2.99
3.39
3.49
3.17
2.51
2.96
3.28
2.09
2.64
2.47
2.69
2.97
2.24
2.71
2.47
2.11
Er
8.10
10.87
12.55
12.26
7.91
12.55
17.58
9.93
18.65
16.91
11.92
14.22
18.17
9.14
13.95
12.00
10.43
6.86
10.29
7.14
8.44
11.38
11.50
6.31
9.95
13.07
14.35
19.60
16.56
9.96
14.43
12.99
13.32
11.56
14.30
12.89
15.64
11.52
10.41
15.65
15.40
8.57
8.69
8.21
9.08
7.66
9.45
7.79
12.85
11.56
10.50
8.77
9.08
12.60
Tm
0.99
1.38
1.74
2.42
1.41
2.15
2.19
2.02
2.28
2.58
1.89
1.83
2.32
2.30
3.32
1.16
1.94
1.87
1.18
1.03
1.25
1.82
1.15
1.48
1.45
2.00
2.79
2.28
2.68
1.34
2.00
1.78
2.02
2.04
2.91
1.39
2.14
1.21
1.90
2.35
1.91
1.85
1.44
1.12
1.50
1.45
1.70
1.75
1.88
1.46
1.22
1.72
1.37
1.93
Yb
9.04
6.10
8.37
11.63
8.89
12.39
16.09
17.31
9.97
13.44
11.86
19.53
13.77
13.70
12.40
19.14
8.01
11.72
11.24
9.11
9.21
10.79
10.71
6.74
10.53
8.90
12.28
17.21
14.75
13.37
14.75
16.82
13.35
16.23
11.08
9.54
16.36
10.92
10.28
12.55
13.96
11.29
9.87
9.48
13.74
8.03
9.27
10.88
11.45
12.18
9.29
9.45
8.85
14.44
Lu
1.66
1.12
3.08
1.53
1.74
2.65
2.59
2.12
2.22
2.68
1.67
1.83
3.13
2.27
1.77
1.91
2.10
1.97
1.32
1.36
1.09
1.93
1.07
1.53
1.73
2.02
2.37
2.49
2.59
2.46
2.66
1.20
2.36
3.40
2.44
1.99
2.61
2.17
2.03
2.36
2.32
2.56
1.61
1.46
2.20
1.21
1.17
1.51
2.10
2.19
1.67
1.12
1.84
1.41
bd
bd
0.06
bd
bd
0.05
0.05
bd
bd
bd
bd
0.06
0.10
bd
0.06
bd
0.16
bd
bd
bd
bd
bd
bd
bd
bd
0.04
bd
bd
bd
bd
0.04
bd
bd
0.04
0.04
bd
bd
bd
bd
bd
bd
0.04
0.13
bd
bd
bd
bd
bd
bd
bd
bd
0.03
0.07
bd
Th
U
ƩREE
4.78
141
5.58
149
7.65
225
7.83
225
9.17
298
17.78
287
15.84
448
20.72
342
10.83
312
9.23
342
7.32
325
7.97
286
7.16
253
7.42
204
11.04
251
8.01
209
7.25
216
7.02
178
4.24
161
6.25
139
11.51
153
9.23
198
5.63
151
7.39
137
7.02
159
11.84
194
14.88
238
22.99
386
21.45
397
33.22
232
28.38
250
16.24
263
33.44
240
34.37
242
18.16
264
12.60
215
16.02
268
19.63
215
20.14
229
14.52
257
13.95
261
12.79
225
10.10
143
11.34
133
13.62
168
9.98
135
15.57
209
10.71
153
14.50
203
20.69
179
11.60
166
13.67
164
12.01
165
9.77
212
Ce/Ce*
-0.23
-0.14
0.20
-0.25
0.75
-0.16
0.60
-0.17
-0.30
-0.27
-0.01
0.00
-0.25
-0.08
-0.03
-0.35
-0.44
-0.17
-0.10
-0.47
-0.24
-0.11
-0.41
-0.33
-0.35
-0.29
0.07
0.98
1.18
-0.29
-0.03
-0.19
-0.11
-0.29
-0.11
0.31
-0.27
-0.21
0.29
-0.02
0.23
-0.01
-0.31
-0.27
-0.24
-0.44
0.02
-0.17
-0.21
-0.17
-0.21
-0.19
-0.09
0.20
Ce/Ce**
0.91
1.94
1.80
1.38
3.08
1.78
1.98
1.95
0.93
0.74
1.88
2.35
1.85
2.18
2.70
0.67
2.08
1.59
1.08
1.01
0.90
1.07
0.72
1.42
1.39
8.07
3.22
2.45
3.87
1.25
0.89
0.94
1.59
0.83
1.53
1.34
1.04
1.27
3.27
0.72
4.16
4.49
1.06
0.75
1.35
0.61
2.92
3.75
1.91
2.05
0.99
1.71
1.16
1.88
La/La*
Y/Ho
0.28
73.0
4.02
87.0
1.01
45.0
1.94
58.9
1.79
65.3
3.21
48.9
0.45
56.3
4.77
51.4
0.63
57.1
0.02
57.2
1.93
69.5
5.07
52.9
10.02
43.2
4.28
52.7
9.75
61.2
0.05
48.0
13.24
59.5
1.90
51.8
0.34
68.5
1.55
65.3
0.32
59.6
0.32
73.3
0.34
47.5
2.64
55.5
2.90
67.6
-6.30
56.6
7.67
55.7
0.39
42.7
1.67
83.9
1.50
54.2
-0.14
71.5
0.28
64.8
1.53
49.5
0.27
75.3
1.44
62.0
0.03
65.4
0.79
70.6
1.10
64.7
3.26
63.8
-0.40
64.7
23.86
55.0
39.31
59.6
1.07
66.0
0.04
50.4
1.78
49.4
0.12
66.0
5.18
60.6
-65.42
64.4
3.53
62.3
4.21
63.7
0.42
61.7
2.42
56.3
0.48
67.3
0.93
76.5
391
mm from
bone rim
12.30
12.34
12.37
12.41
12.44
12.47
12.51
12.54
12.58
12.61
12.65
12.68
12.72
12.75
12.79
12.82
12.85
12.89
12.92
12.96
12.99
13.03
13.06
13.10
13.13
13.17
13.20
13.23
13.27
13.30
13.34
13.37
13.41
13.44
13.48
13.51
13.55
13.58
13.61
13.65
13.68
13.72
13.75
13.79
13.82
13.86
13.89
13.93
13.96
13.99
14.03
14.06
14.10
14.13
Sc
22.57
27.18
24.50
19.01
27.67
20.42
22.89
28.00
20.92
21.56
14.38
17.21
15.99
18.83
22.86
19.24
19.72
21.82
28.37
21.20
23.20
27.82
21.00
17.62
27.00
28.52
21.42
20.97
19.42
27.91
20.79
20.76
25.53
17.25
35.88
22.52
26.14
24.03
25.70
23.28
26.43
27.24
27.75
29.50
27.76
22.51
25.86
25.28
28.84
21.49
26.17
30.43
32.86
26.86
Mn
0.23
0.29
0.22
0.17
0.19
0.15
0.25
0.20
0.34
0.22
0.20
0.13
0.16
0.28
0.30
0.22
0.30
0.74
0.30
0.17
0.58
0.34
0.20
0.16
0.21
0.29
0.15
0.19
0.18
0.14
0.19
0.18
0.22
0.12
0.32
0.21
0.43
0.49
0.22
0.12
0.19
0.60
0.22
0.23
0.22
0.17
0.24
0.14
0.22
0.15
0.16
0.21
0.39
0.35
Fe
1.23
1.27
1.10
0.75
0.81
0.92
1.09
1.51
1.22
0.95
1.54
0.92
0.86
2.93
5.76
6.24
4.46
4.33
3.94
3.93
3.42
2.64
1.92
1.39
1.77
1.38
2.13
1.29
1.24
1.94
1.56
1.00
1.10
0.55
4.03
1.62
0.98
1.00
0.92
0.73
1.49
1.69
1.70
1.46
1.18
1.21
bd
0.86
1.47
0.76
1.01
1.27
1.42
1.04
SRHS-DU-89 Manual Phalanx (continued)
Sr
3226.86
3097.00
4207.24
2286.18
3412.71
2982.56
3610.50
3974.35
3942.57
3863.15
2731.30
2576.56
2727.47
2764.35
4058.66
2609.92
2354.20
3885.88
3799.28
3028.61
4508.52
3671.23
2999.13
2310.28
2762.97
3469.30
3179.06
3301.45
2482.98
4032.17
3358.56
2836.70
3065.37
2461.41
3753.62
3175.63
2720.56
2916.91
2345.77
1727.56
2679.59
3094.87
3311.97
3283.20
3260.68
2691.36
4410.96
3413.15
3855.12
2368.50
2818.37
3111.12
4901.23
2883.86
Y
150.81
193.29
182.46
147.81
170.61
153.39
179.13
208.11
177.94
161.35
180.28
148.68
163.19
157.39
175.64
137.50
155.17
188.91
202.57
164.46
245.09
247.98
211.18
176.88
224.23
225.55
231.59
204.49
233.88
245.95
244.80
210.62
257.85
150.51
317.98
242.87
236.15
281.66
257.83
155.74
315.35
266.66
330.80
277.65
269.77
254.31
310.92
261.62
339.36
221.59
250.42
283.45
267.16
245.87
Ba
1138.79
2066.47
1409.95
1148.26
1502.05
1585.74
1451.20
1223.02
1756.24
1690.49
1269.25
1563.11
1408.65
2603.30
1870.10
1286.08
1485.01
1474.41
1757.70
2262.90
1912.87
1511.12
1030.33
1092.21
1326.78
2029.11
2045.29
1747.65
1397.34
1888.92
1343.48
1017.98
2188.88
952.86
1848.74
1903.97
1209.35
1580.12
1656.89
861.68
1380.60
1294.48
1640.92
1183.71
1252.61
1464.21
1706.40
1345.17
1853.45
960.44
1448.45
1509.34
1703.24
2369.92
La
41.93
61.77
50.34
35.92
48.05
44.57
47.90
52.05
51.73
56.59
55.20
32.72
46.34
45.32
59.12
51.66
47.60
72.03
74.79
60.92
76.27
81.79
58.48
49.75
80.16
76.90
69.45
78.01
65.64
84.01
77.87
78.31
86.05
57.70
139.17
106.26
87.30
115.21
110.66
82.17
108.87
94.27
121.57
126.48
110.52
112.69
119.50
100.46
121.43
82.84
97.29
95.40
108.32
87.11
Ce
52.87
64.85
66.73
45.52
54.18
93.84
50.52
64.95
54.80
81.93
106.75
50.43
65.79
64.64
82.33
86.70
74.19
104.86
62.70
97.91
125.16
128.23
78.81
82.51
139.71
130.03
112.00
105.08
120.83
114.77
142.09
127.18
182.17
73.41
182.74
242.12
160.79
263.66
158.57
96.99
238.66
155.45
248.64
177.94
177.49
281.12
180.10
176.43
178.61
125.94
134.10
166.98
115.87
116.74
Pr
4.88
4.41
4.54
5.35
5.08
4.16
5.84
5.34
4.45
5.28
5.89
3.97
9.30
5.01
10.01
5.46
5.67
5.32
8.66
6.54
11.28
11.64
9.12
6.67
11.79
15.20
12.25
17.52
10.02
10.07
10.17
8.04
16.96
13.66
18.93
13.29
15.03
17.57
16.24
11.14
21.03
21.96
17.46
19.32
21.72
14.08
19.92
13.12
18.46
9.61
13.65
15.97
11.45
10.00
Nd
16.07
20.63
18.60
15.30
19.16
14.52
17.68
24.02
17.74
13.63
28.29
23.07
30.06
14.04
26.50
24.69
27.28
26.49
32.37
30.65
43.34
38.94
24.86
21.76
44.49
33.96
37.66
33.20
40.59
37.92
38.23
42.03
56.14
28.07
87.19
63.97
49.10
75.80
54.31
40.28
65.81
60.99
70.36
81.63
61.83
61.70
66.93
46.92
49.28
33.68
46.85
46.86
57.77
50.79
Sm
0.38
4.53
1.87
2.97
3.31
1.65
3.92
3.44
2.94
3.37
5.70
0.62
3.17
1.97
6.92
2.84
4.59
8.33
10.09
3.23
4.28
10.61
6.16
5.84
6.77
7.46
3.47
7.40
7.57
8.93
9.44
5.67
10.64
7.66
13.11
7.58
9.38
8.25
9.18
8.34
12.55
13.94
9.87
8.21
12.01
7.86
11.65
10.19
8.50
4.07
7.27
5.88
8.77
12.20
Eu
0.79
1.21
1.00
0.69
0.87
0.79
1.69
1.46
0.50
1.67
1.81
0.92
2.20
0.94
1.93
1.59
1.37
1.44
2.38
1.82
1.42
2.33
3.33
1.74
1.90
2.34
2.38
1.97
2.36
2.77
2.81
2.13
2.58
2.42
5.25
3.22
3.79
3.13
3.22
2.62
3.51
4.05
3.57
5.61
4.35
3.47
4.73
3.22
4.29
2.57
3.01
3.17
3.41
4.42
Gd
6.07
3.61
4.85
5.27
5.50
1.97
5.65
6.86
6.71
7.09
5.68
5.25
10.91
3.93
10.36
6.73
5.73
10.06
10.07
9.33
10.93
7.82
8.45
5.24
7.94
11.58
10.40
7.77
9.72
16.67
11.44
9.84
12.20
12.52
23.47
11.53
14.72
17.23
14.08
10.64
26.21
19.89
17.61
18.80
20.11
18.61
16.57
11.45
15.14
9.90
10.10
15.78
18.28
13.50
Tb
0.50
1.03
1.29
0.71
1.45
1.11
1.14
0.82
1.10
1.07
0.95
0.96
0.97
1.32
1.08
1.02
0.87
1.52
1.81
1.59
1.82
1.65
1.93
1.74
1.57
1.53
1.78
1.86
1.20
3.15
2.41
1.99
2.35
1.63
2.05
3.06
3.16
2.19
2.35
1.49
2.86
3.44
3.36
3.39
3.29
2.85
2.78
2.20
3.84
1.64
2.64
2.28
1.91
1.49
Dy
9.51
11.77
9.18
6.15
11.17
6.65
12.40
11.81
12.36
9.36
9.87
8.96
11.92
8.70
15.91
12.88
9.20
8.81
11.75
13.04
20.76
15.37
15.10
10.17
17.37
19.30
15.15
13.36
18.20
17.50
16.85
14.49
16.43
12.75
28.36
16.28
19.22
24.28
22.83
15.79
24.61
15.45
24.20
20.13
24.03
16.69
22.32
20.14
24.65
16.58
16.11
18.38
17.57
18.43
Ho
3.76
4.04
3.47
2.74
3.68
2.22
4.42
2.34
2.82
3.61
2.09
2.00
3.36
2.26
3.64
3.08
1.68
3.37
3.54
3.64
4.71
4.67
3.57
2.07
3.64
4.05
4.11
3.71
3.56
5.07
4.03
3.64
4.91
3.34
6.23
5.29
4.38
5.68
5.44
3.48
4.92
5.67
5.59
5.81
6.90
5.26
5.08
5.32
7.72
4.90
4.21
5.20
4.75
3.86
Er
9.43
15.13
9.28
11.20
9.50
8.20
10.57
14.04
11.55
10.68
14.52
6.51
11.21
10.41
12.35
6.89
10.53
9.45
12.91
14.33
18.97
17.89
17.22
9.13
15.66
18.53
9.73
14.47
14.57
16.52
10.71
14.16
17.63
9.38
18.26
17.31
15.70
20.01
18.73
10.11
19.26
17.52
27.35
18.25
20.46
18.66
20.54
13.72
23.50
11.92
24.69
16.43
17.46
14.75
Tm
1.33
2.53
1.92
1.54
2.27
1.27
2.03
1.03
1.47
1.44
1.46
1.15
1.48
1.29
1.91
1.45
1.20
1.22
2.55
1.72
1.33
1.99
1.79
1.43
1.90
1.88
1.86
2.45
2.81
3.25
2.47
2.02
3.08
1.97
2.89
2.10
2.22
2.05
2.71
1.32
2.75
3.05
2.83
2.83
3.18
2.27
2.80
2.26
3.40
1.92
2.43
2.95
2.58
1.96
Yb
14.58
14.14
17.26
5.85
12.51
9.16
10.83
12.56
6.26
7.96
13.47
5.27
7.75
7.84
10.43
7.81
9.51
16.48
14.32
11.22
18.57
12.76
16.12
6.42
15.81
15.87
10.84
10.77
19.18
14.32
13.87
15.04
10.91
8.40
22.12
14.09
17.11
13.04
12.56
12.16
23.74
12.95
13.01
17.00
17.04
18.99
14.77
14.00
18.88
12.27
18.61
16.95
17.58
15.91
Lu
1.98
2.18
1.51
1.93
1.96
1.94
2.39
2.69
1.20
1.27
2.37
1.01
2.07
1.49
1.35
2.64
1.25
2.28
1.53
1.59
3.16
2.46
2.36
1.33
1.40
2.48
1.13
2.18
2.58
1.97
2.64
2.06
3.03
1.85
3.36
1.79
2.49
3.08
2.22
1.45
2.77
2.33
3.08
2.27
2.83
1.86
2.99
3.03
3.08
2.25
2.47
2.83
2.33
2.23
Th
0.04
0.27
bd
bd
bd
0.07
bd
bd
bd
bd
bd
bd
0.07
0.04
0.22
0.35
0.19
0.13
0.29
0.18
0.19
0.05
0.08
0.12
bd
0.04
0.03
bd
0.07
0.12
0.20
0.06
bd
bd
0.09
bd
bd
bd
bd
0.02
0.11
0.07
0.11
0.07
0.10
0.03
bd
0.03
bd
bd
bd
0.04
bd
bd
U
ƩREE
9.97
164
14.79
212
12.48
192
12.01
141
15.52
179
8.18
192
6.72
177
13.70
203
8.74
176
8.34
205
8.06
254
7.25
143
11.79
207
6.73
169
12.69
244
13.66
215
9.97
201
12.67
272
11.42
249
10.01
258
15.66
342
11.72
338
13.64
247
8.87
206
14.80
350
13.85
341
10.28
292
11.76
300
9.04
319
13.75
337
11.03
345
12.71
327
15.99
425
8.23
235
18.26
553
12.07
508
26.86
404
14.14
571
12.02
433
7.56
298
16.49
558
18.49
431
20.27
569
18.27
508
22.68
486
16.04
566
18.56
491
14.19
422
19.06
481
11.18
320
15.72
383
13.47
415
17.26
388
15.42
353
Ce/Ce*
-0.19
-0.24
-0.09
-0.26
-0.26
0.44
-0.34
-0.17
-0.26
-0.01
0.27
-0.03
-0.26
-0.07
-0.22
0.11
-0.01
0.05
-0.46
0.05
-0.03
-0.06
-0.22
0.01
0.03
-0.11
-0.11
-0.33
0.07
-0.13
0.12
0.08
0.11
-0.39
-0.20
0.42
0.02
0.33
-0.15
-0.28
0.16
-0.20
0.22
-0.18
-0.16
0.56
-0.15
0.08
-0.14
-0.03
-0.17
-0.02
-0.30
-0.14
Ce/Ce**
1.22
2.68
2.12
0.86
1.39
2.70
0.91
2.05
1.72
1.46
3.49
4.61
0.78
1.28
0.79
2.70
2.52
4.15
0.93
2.73
1.47
1.26
0.84
1.38
1.54
0.75
0.97
0.49
1.72
1.48
1.80
3.79
1.22
0.45
1.70
3.52
1.20
2.35
1.12
1.08
1.22
0.70
2.01
1.40
0.82
3.21
1.04
1.65
0.93
1.57
1.15
1.07
2.19
2.58
La/La*
Y/Ho
0.98
40.1
10.81
47.9
3.41
52.5
0.26
54.0
1.92
46.4
1.77
69.0
0.66
40.6
5.10
88.9
3.23
63.1
0.80
44.7
9.32
86.4
-7.01
74.2
0.11
48.6
0.66
69.5
0.02
48.2
5.14
44.7
8.37
92.2
26.19
56.0
1.60
57.2
6.97
45.2
1.19
52.1
0.67
53.1
0.14
59.1
0.69
85.5
1.10
61.5
-0.25
55.7
0.17
56.3
-0.41
55.2
1.51
65.6
1.55
48.5
1.33
60.7
-193.44
57.8
0.18
52.5
-0.41
45.0
4.42
51.0
8.04
45.9
0.32
54.0
2.25
49.6
0.61
47.4
1.05
44.8
0.10
64.1
-0.22
47.0
1.62
59.1
1.95
47.8
-0.05
39.1
3.29
48.4
0.43
61.2
1.08
49.1
0.14
44.0
1.24
45.2
0.78
59.5
0.16
54.5
25.18
56.3
29.93
63.6
392
mm from
bone rim
14.17
14.20
14.24
14.24
14.27
14.31
14.34
14.38
14.41
14.44
14.48
14.51
14.55
14.58
14.62
14.65
14.69
14.72
14.76
14.79
14.82
14.86
14.89
14.93
14.96
15.00
15.03
15.07
15.10
15.14
15.17
15.20
15.24
15.27
15.31
15.34
15.38
15.41
15.45
15.48
15.52
15.55
15.58
15.62
15.65
15.69
15.72
15.76
15.79
15.83
15.86
15.90
15.93
15.96
Sc
21.71
27.67
25.43
37.12
22.27
27.68
26.36
26.17
37.04
31.20
17.97
23.86
25.19
23.60
20.28
24.43
25.88
23.89
30.55
24.84
27.94
26.90
28.48
28.63
17.51
33.91
26.35
21.16
20.69
29.01
28.57
27.55
24.01
29.44
22.21
24.24
22.52
31.47
21.17
22.46
23.05
39.47
35.59
23.85
14.74
20.80
25.37
34.53
30.02
32.11
26.37
25.14
24.64
25.13
Mn
0.42
0.38
0.26
0.27
0.18
0.15
0.18
0.23
0.29
0.29
0.17
0.24
0.22
0.20
0.32
0.25
0.23
0.39
0.19
0.19
0.25
0.20
0.15
0.19
0.16
0.29
0.21
0.22
0.14
0.16
0.17
0.24
0.15
0.23
0.18
0.16
0.13
0.34
0.18
0.15
0.17
0.19
0.35
0.17
0.14
0.17
0.14
0.27
0.24
0.23
0.18
0.18
0.19
0.24
Fe
1.81
1.78
1.25
1.41
1.45
2.26
0.68
0.94
1.31
1.10
0.85
1.02
1.17
1.96
2.52
1.92
1.40
1.38
1.85
1.86
1.64
1.30
1.07
1.13
0.85
1.17
1.45
1.22
0.81
0.83
1.46
1.08
0.85
1.08
1.36
0.90
1.01
1.58
1.28
0.90
0.90
1.00
1.65
1.04
0.86
0.95
1.06
1.27
1.06
1.47
1.08
bd
1.61
1.27
SRHS-DU-89 Manual Phalanx (continued)
Sr
3637.18
3975.88
3951.44
4201.98
2797.85
4332.57
2874.69
3503.88
3956.78
4191.72
2738.60
3196.93
3613.00
10731.65
4486.36
4568.62
4035.80
9309.49
4387.17
9347.88
4021.07
3291.39
3026.39
3382.41
2707.32
3433.37
3571.75
3537.97
2471.25
2685.66
3674.90
2968.40
3016.40
3590.30
2683.78
2655.10
3243.84
4116.16
3762.83
2791.26
2626.20
2941.67
4799.52
4624.54
2371.28
2877.34
3609.56
3476.86
3300.73
4959.30
3653.79
3904.37
2918.39
3520.40
Y
265.08
272.55
223.42
300.23
241.67
239.03
235.83
280.78
319.56
264.24
207.74
217.57
249.07
238.11
221.87
222.09
206.04
236.60
219.64
209.22
239.76
204.74
200.86
219.24
205.38
233.72
232.48
217.69
178.20
259.15
252.57
299.12
226.37
276.50
224.39
206.62
230.26
228.56
192.73
215.52
218.50
271.83
267.35
289.85
193.43
233.66
253.69
274.13
221.83
308.53
261.48
319.42
269.14
392.19
Ba
2081.75
2055.39
1391.44
1706.53
1018.63
1721.23
1355.95
1660.26
3136.66
1466.72
1467.15
1113.69
3766.90
nd
nd
nd
nd
4684.78
nd
nd
nd
2287.21
1795.21
2821.71
2626.31
1994.77
1535.17
2510.53
1632.85
nd
2075.47
2100.13
1565.10
1433.53
1939.24
1523.70
1594.30
1876.71
1431.90
1116.61
1945.84
1219.34
1834.73
1851.95
1303.24
1258.01
1719.46
1263.63
1325.52
1936.88
1420.52
2399.58
1998.30
1735.79
La
97.68
100.89
102.74
158.05
107.21
129.52
93.46
134.60
175.66
121.41
74.66
79.10
102.18
98.65
74.06
78.74
83.64
82.93
74.47
87.64
78.92
81.11
74.71
103.52
66.53
85.58
75.01
69.03
68.84
81.38
84.91
84.03
67.02
79.03
86.48
85.70
78.43
84.84
80.90
67.69
60.40
87.77
100.95
83.29
71.33
74.64
79.80
133.68
73.30
126.74
87.68
124.85
111.99
153.54
Ce
218.59
164.10
167.96
204.81
152.07
155.88
195.48
164.96
240.75
213.49
171.40
170.10
122.56
127.63
121.53
158.23
104.36
138.95
122.07
153.86
111.51
101.67
119.04
124.82
88.75
110.67
123.28
104.41
97.46
100.37
110.37
124.24
105.61
150.64
105.55
86.85
73.25
95.06
93.30
71.64
123.39
85.52
98.01
90.97
71.89
122.38
155.13
114.31
84.74
168.84
131.79
162.69
197.80
301.56
Pr
16.34
18.17
15.69
23.68
14.90
15.80
19.62
18.69
29.11
18.99
12.59
15.48
14.39
12.69
11.19
11.20
12.22
13.68
10.28
9.81
9.84
7.94
11.54
10.44
9.48
8.31
9.42
9.94
9.18
8.02
8.66
10.74
6.90
9.72
6.74
10.58
10.30
8.82
7.13
7.16
8.04
7.45
13.85
8.05
7.36
8.52
11.58
11.08
14.98
12.75
10.54
15.21
14.93
28.24
Nd
42.25
56.67
48.39
76.44
49.91
52.69
45.20
53.05
92.23
63.25
45.19
48.90
45.44
57.82
34.13
36.66
33.07
36.10
27.71
39.10
49.05
34.44
34.67
48.80
29.68
30.98
36.34
26.69
37.85
26.58
38.71
28.50
22.22
41.80
36.56
29.50
32.51
41.67
27.45
27.47
23.59
37.36
34.82
41.81
25.81
31.12
37.06
42.54
33.35
71.06
43.49
56.05
35.51
76.09
Sm
9.31
10.05
8.45
8.63
9.12
7.85
9.46
15.78
18.36
9.78
5.15
7.67
8.23
9.04
14.14
11.70
6.73
5.93
7.63
7.58
4.30
6.53
7.37
5.32
6.96
4.82
5.34
6.00
3.93
4.68
2.19
7.70
4.05
5.61
6.93
6.72
4.76
3.70
5.26
0.96
3.89
3.63
5.01
7.48
4.41
6.80
7.46
9.61
4.20
10.45
8.46
9.61
7.31
14.21
Eu
4.88
1.61
3.46
5.40
3.88
3.08
2.28
3.99
3.64
2.91
2.56
5.14
3.95
2.08
2.92
1.74
3.01
4.16
2.40
2.39
2.70
3.04
2.08
2.77
2.69
1.43
1.25
1.56
1.98
1.10
2.28
3.26
1.42
2.39
2.17
2.10
2.95
1.43
1.81
0.86
2.19
1.44
1.64
2.65
0.81
2.50
2.96
2.99
2.40
2.57
2.41
2.74
2.84
1.87
Gd
14.88
14.28
12.66
16.80
14.97
21.05
16.00
13.37
27.51
16.75
8.57
9.95
8.67
12.71
8.62
9.59
12.60
13.53
7.61
12.01
9.06
8.14
7.35
8.40
9.73
12.95
11.81
5.61
8.46
7.68
10.58
13.75
11.01
12.00
10.20
12.42
10.30
12.57
11.31
6.05
8.62
10.46
16.50
16.82
7.44
9.98
10.76
13.35
9.79
13.60
11.62
17.95
13.01
14.60
Tb
2.00
2.31
2.39
3.29
2.49
2.22
1.69
3.48
2.92
2.83
1.92
2.84
2.46
1.81
1.92
2.14
2.16
1.82
1.82
1.75
2.17
1.85
1.99
2.06
1.54
1.94
1.37
1.34
1.52
1.08
1.61
1.93
1.14
2.34
1.78
1.08
1.99
1.90
1.83
1.29
2.22
1.20
1.97
2.40
1.82
0.81
2.57
1.89
1.67
3.03
1.81
3.29
1.97
2.94
Dy
17.16
19.33
19.85
23.05
17.25
23.30
16.06
22.98
24.31
21.93
17.00
14.86
18.39
17.93
11.93
15.36
15.67
11.42
12.88
17.48
12.65
11.60
11.98
21.95
11.26
15.45
11.60
17.46
13.21
14.92
17.55
13.70
14.79
18.47
14.32
14.83
15.95
16.70
13.88
10.95
11.86
11.66
18.42
15.82
10.14
25.10
19.11
23.35
10.48
22.71
13.13
17.83
17.30
22.94
Ho
6.23
4.77
4.43
5.32
4.61
4.64
4.84
6.19
7.02
6.14
3.98
3.75
3.80
4.86
3.98
4.54
5.65
4.81
4.45
3.59
5.54
4.18
4.45
3.90
4.16
4.03
3.63
4.17
4.32
2.82
4.46
3.66
4.09
4.99
5.70
4.51
4.79
3.89
2.67
3.23
3.90
2.80
3.42
5.42
3.06
4.15
6.48
4.90
4.06
5.04
3.57
4.85
5.43
7.65
Er
16.85
21.46
15.36
23.71
14.75
14.70
16.47
16.75
29.68
19.58
15.17
13.43
20.95
13.72
13.33
17.33
14.50
15.06
16.90
14.65
15.71
12.09
13.37
17.67
12.75
9.98
15.63
15.35
13.54
13.69
15.55
17.46
9.71
16.84
15.14
14.67
18.17
14.16
13.73
13.41
14.66
15.41
14.84
13.36
14.98
18.53
18.54
13.51
11.13
21.53
13.68
20.94
14.55
23.63
Tm
1.95
1.62
2.66
2.76
2.24
2.74
1.65
3.17
3.42
2.22
2.04
1.88
1.70
1.53
1.42
2.14
2.84
1.82
1.73
2.75
1.73
1.52
2.08
2.06
2.27
1.64
2.31
1.66
2.29
1.79
2.72
2.45
1.97
2.10
1.36
1.29
1.85
1.85
1.79
0.97
1.91
3.05
3.73
1.80
1.62
2.84
2.80
2.82
2.28
2.91
2.05
2.14
2.18
4.67
Yb
14.79
15.09
14.48
18.36
8.55
21.99
13.17
18.32
21.71
19.17
11.45
12.52
13.63
11.37
6.96
11.56
12.83
15.02
15.64
11.38
15.26
15.05
12.66
18.87
10.86
10.52
14.90
11.70
15.90
16.85
11.66
12.65
12.00
16.78
14.50
12.64
14.07
11.29
10.04
7.24
15.63
17.15
14.21
14.93
10.58
15.89
22.65
19.27
17.15
17.07
12.50
19.87
16.01
24.01
Lu
1.99
2.32
1.93
3.04
2.55
2.16
2.09
2.12
3.83
3.40
1.57
2.45
2.62
1.93
1.64
1.91
1.81
1.99
1.99
1.45
1.81
1.81
2.07
2.77
2.09
2.22
2.19
2.05
2.76
2.27
3.62
2.38
3.02
1.83
2.00
2.41
1.55
2.90
2.48
1.71
1.63
3.42
2.35
3.11
1.72
3.08
2.38
3.16
2.56
2.90
1.88
3.49
2.07
3.54
Th
0.04
0.04
0.03
0.04
bd
0.21
0.04
bd
0.12
0.05
0.07
0.04
0.05
0.16
0.23
0.04
bd
bd
bd
0.09
0.05
0.08
bd
0.04
bd
bd
bd
0.11
0.03
bd
bd
bd
bd
bd
0.07
0.03
0.04
0.04
0.08
bd
bd
bd
0.05
bd
0.03
bd
0.08
0.08
bd
bd
0.11
bd
0.06
bd
U
ƩREE
12.22
465
16.16
433
13.64
420
20.93
573
15.69
404
19.97
458
15.94
437
13.49
477
26.06
680
15.05
522
12.49
373
16.20
388
14.42
369
17.17
374
10.25
308
12.58
363
13.55
311
12.39
347
16.90
308
13.11
365
12.40
320
11.68
291
13.37
305
20.73
373
16.92
259
12.04
301
10.00
314
10.54
277
16.59
281
16.69
283
16.92
315
14.67
326
23.84
265
14.45
365
15.51
309
18.89
285
16.72
271
13.15
301
14.26
274
14.37
221
15.04
282
17.02
288
24.91
330
13.72
308
11.78
233
21.08
326
19.60
379
14.22
396
12.44
272
18.46
481
22.05
345
25.34
461
18.19
443
28.02
679
Ce/Ce*
0.26
-0.11
-0.05
-0.24
-0.14
-0.24
0.07
-0.26
-0.23
0.01
0.29
0.13
-0.28
-0.20
-0.04
0.20
-0.26
-0.05
-0.01
0.14
-0.12
-0.16
-0.08
-0.20
-0.20
-0.13
0.03
-0.10
-0.13
-0.17
-0.14
-0.08
0.05
0.20
-0.13
-0.36
-0.43
-0.26
-0.20
-0.30
0.25
-0.32
-0.41
-0.26
-0.33
0.05
0.15
-0.40
-0.40
-0.11
-0.05
-0.18
0.08
0.06
Ce/Ce**
1.26
0.97
1.14
0.96
1.17
1.13
0.88
0.88
0.90
1.28
1.67
1.20
0.93
1.73
1.15
1.58
0.83
0.97
1.15
2.19
2.38
2.02
1.08
2.17
1.01
1.70
1.74
1.01
1.55
1.42
2.12
1.11
1.69
2.41
4.24
0.81
0.77
2.00
1.74
1.33
1.57
2.46
0.66
2.67
1.17
1.80
1.47
1.37
0.49
3.99
1.83
1.35
1.19
1.03
La/La*
Y/Ho
0.01
42.6
0.17
57.2
0.36
50.5
0.49
56.4
0.71
52.4
0.93
51.5
-0.28
48.7
0.34
45.4
0.31
45.5
0.50
43.0
0.62
52.2
0.10
58.1
0.53
65.6
4.29
49.0
0.35
55.8
0.61
48.9
0.21
36.5
0.04
49.2
0.27
49.4
2.24
58.3
15.20
43.3
4.20
49.0
0.30
45.1
7.26
56.3
0.49
49.3
2.07
58.0
1.60
64.0
0.21
52.3
2.06
41.2
1.37
92.0
4.91
56.6
0.35
81.7
1.16
55.4
2.96
55.4
-26.90
39.3
0.48
45.8
0.64
48.0
7.83
58.8
2.69
72.3
2.05
66.7
0.46
56.0
27.02
97.0
0.19
78.1
617.70
53.4
1.51
63.2
1.49
56.3
0.52
39.2
2.90
56.0
-0.28
54.6
-12.78
61.2
2.40
73.2
1.38
65.9
0.17
49.6
-0.05
51.3
393
mm from
bone rim
16.00
16.03
16.07
16.10
16.14
16.17
16.21
16.24
16.28
16.31
16.34
16.38
16.41
16.45
16.48
16.52
16.55
16.59
16.62
16.66
16.69
16.72
16.76
16.79
16.83
16.86
16.90
16.93
16.97
17.00
17.04
17.07
17.10
17.14
17.17
17.21
17.24
17.28
17.31
17.35
17.38
17.42
17.45
17.48
17.52
17.55
17.59
17.62
17.66
17.69
17.73
17.76
17.80
17.83
Sc
26.82
28.38
40.10
26.43
39.92
26.91
24.40
26.47
30.79
32.64
32.45
27.33
23.48
31.18
26.30
20.93
33.90
37.31
33.05
31.60
27.52
26.32
31.43
39.14
33.09
25.18
30.12
27.55
28.57
25.63
36.89
27.05
33.08
30.51
31.47
28.00
27.20
36.18
27.51
32.18
36.98
36.60
33.12
33.18
29.82
28.79
30.21
31.81
37.40
37.45
41.30
26.43
36.97
44.07
Mn
0.15
0.26
0.26
0.17
0.29
0.26
0.13
0.16
0.26
0.24
1.21
0.50
0.79
0.66
0.53
0.49
0.72
1.29
0.55
0.56
0.77
0.53
0.43
0.34
0.28
0.22
0.36
0.28
0.26
0.20
0.24
0.23
0.25
0.31
0.16
0.17
0.25
0.27
0.24
0.17
0.24
0.22
0.30
0.18
0.22
0.23
0.23
0.21
0.40
0.24
0.44
0.22
0.22
0.16
Fe
1.18
1.53
2.07
1.14
0.93
1.07
0.78
1.49
1.52
1.35
1.70
1.40
2.02
2.09
2.89
0.78
2.70
1.27
1.79
1.24
1.60
1.16
1.20
1.24
1.05
0.68
1.00
1.72
1.03
1.05
1.10
1.16
1.13
1.36
1.19
0.99
1.12
1.34
0.97
1.04
1.34
1.78
1.57
1.23
1.52
1.31
1.46
2.08
1.06
1.46
1.55
0.96
1.10
1.48
SRHS-DU-89 Manual Phalanx (continued)
Sr
3369.70
3240.13
3734.53
3436.49
3432.54
3066.75
3189.67
2851.06
2407.23
2762.09
5216.83
4431.07
3671.40
3712.59
3926.70
2709.25
3683.64
3993.71
4338.16
3349.86
3007.22
2879.25
3419.60
2907.75
4164.58
2865.75
3437.54
3571.38
2886.60
3527.50
3974.52
3958.57
3211.63
3230.25
3669.84
3044.22
2520.81
4018.53
3339.47
2797.53
3737.06
4871.26
3670.60
3025.15
2997.50
3103.28
3185.94
3743.25
2880.95
3849.55
4336.76
2892.73
2482.79
3180.85
Y
357.06
302.44
337.90
359.48
359.05
301.32
251.60
327.68
298.47
275.69
482.83
371.02
334.83
315.05
321.70
268.02
425.41
448.52
382.44
351.64
321.41
351.90
459.64
352.04
380.64
311.71
460.67
393.83
290.99
359.07
434.04
359.32
412.18
367.66
425.57
322.08
357.81
414.06
385.23
358.23
425.22
403.64
354.17
408.25
411.21
401.31
398.53
339.76
406.47
411.31
562.26
389.99
389.52
427.90
nd
1251.30
2252.36
1822.27
1457.49
2279.47
1099.13
1900.11
1208.42
1588.14
1558.66
1798.15
1182.67
1824.84
816.14
1354.68
2049.54
1497.92
1701.24
1243.50
1250.92
1241.69
1346.89
1405.86
1918.90
1216.18
1661.52
1729.53
1611.23
1506.32
1651.81
1879.85
1736.99
1663.53
1776.14
1262.69
1510.02
1418.19
1574.92
1369.93
1845.77
2375.26
2157.66
1100.52
1952.83
2006.51
1463.43
1730.55
1518.39
1504.90
3041.02
1006.70
1939.53
1567.45
Ba
La
148.37
128.40
160.15
141.14
135.45
138.74
119.06
145.16
124.32
132.11
153.15
185.62
133.84
161.46
115.77
135.26
170.58
155.13
226.97
156.35
182.42
183.08
227.33
189.89
171.88
173.34
201.42
233.25
182.50
193.94
218.96
229.23
267.90
262.49
249.48
221.09
230.95
275.13
269.26
237.03
283.27
304.84
315.24
274.12
268.70
369.21
376.38
307.60
327.09
295.04
418.17
271.58
362.32
388.36
Ce
258.11
332.38
183.60
186.92
234.67
208.52
203.28
199.66
203.72
271.77
261.91
336.05
178.20
274.05
236.52
204.26
306.86
254.37
336.76
261.81
338.55
238.23
nd
315.62
258.87
255.84
nd
403.21
325.88
284.71
421.48
nd
389.67
372.91
509.62
334.94
nd
587.49
356.36
471.11
520.83
nd
738.73
498.57
nd
571.12
543.16
452.78
432.79
615.51
1365.37
448.46
699.80
nd
Pr
24.91
22.00
24.49
23.51
19.51
16.98
22.56
26.33
16.73
17.65
27.81
25.82
20.99
19.83
21.52
15.22
23.70
22.57
23.30
18.85
27.21
41.27
29.84
34.26
26.26
35.62
27.36
38.19
28.16
25.22
36.41
45.93
38.24
43.86
34.79
27.43
75.13
36.63
55.21
38.66
48.61
54.61
51.63
58.88
63.51
82.24
55.24
65.10
60.90
53.96
65.94
47.09
71.98
78.48
Nd
81.18
77.64
88.92
64.93
73.45
75.06
45.40
82.36
64.56
57.44
100.72
88.32
76.87
84.36
66.10
65.20
93.07
71.53
90.58
68.17
93.98
97.93
100.89
100.98
97.63
116.66
115.49
125.38
99.38
98.82
117.52
94.62
115.28
119.83
124.17
92.31
112.30
120.88
111.02
123.94
139.82
170.47
152.14
143.40
178.78
200.07
211.99
204.24
196.72
195.85
260.08
173.02
192.32
208.42
Sm
10.69
13.60
17.10
16.38
9.85
13.38
11.67
10.62
12.55
14.38
17.97
8.61
18.28
8.91
7.80
15.23
9.93
6.83
13.42
9.22
13.42
15.98
21.67
16.01
18.87
19.73
23.84
26.87
9.34
18.03
22.90
13.88
18.59
19.13
15.59
16.26
19.71
27.24
20.08
24.24
26.93
26.73
24.11
28.33
28.60
24.86
34.97
24.13
32.75
34.40
53.32
26.91
31.01
32.63
Eu
3.95
2.96
5.48
2.18
7.61
5.31
2.95
3.16
3.54
2.68
5.50
5.25
5.01
5.82
3.25
2.89
2.84
4.79
4.24
3.97
5.09
4.65
5.74
8.62
8.68
5.98
6.98
6.40
5.36
4.88
6.26
6.32
5.30
5.90
7.31
5.31
7.09
8.31
7.27
5.90
8.33
8.80
9.39
7.67
8.42
11.16
7.44
6.74
11.66
11.44
14.50
6.81
11.27
13.11
Gd
15.46
15.79
21.45
21.59
15.07
20.41
11.94
19.09
20.46
21.54
24.61
22.13
19.72
27.14
14.64
16.83
14.67
22.48
18.27
16.38
19.91
18.09
29.83
28.55
20.56
21.09
28.98
22.93
29.37
25.22
28.13
27.72
26.86
21.19
28.16
15.98
24.68
34.35
24.99
29.95
39.32
35.85
40.47
34.59
33.97
41.41
35.29
34.86
44.46
44.97
63.47
33.93
57.56
56.34
Tb
3.38
2.68
4.08
2.00
3.75
3.68
4.07
2.83
2.68
3.13
4.28
3.23
2.09
3.04
3.53
3.05
2.61
2.92
3.10
2.24
4.85
3.52
2.87
3.73
3.53
3.67
4.12
5.18
3.22
4.85
4.12
2.82
4.67
4.73
5.42
3.66
4.95
4.37
3.39
3.29
4.45
6.59
4.57
4.98
5.12
5.24
6.51
7.35
6.41
5.54
8.79
3.81
5.69
7.18
Dy
26.74
26.50
36.11
21.70
22.50
26.23
17.31
23.95
22.84
25.20
38.25
23.33
20.97
24.56
22.02
19.38
27.84
19.30
27.51
27.97
29.32
28.55
24.55
32.70
29.64
29.35
31.95
38.31
22.04
26.84
23.92
30.81
31.21
30.86
38.05
25.07
29.56
30.53
28.32
30.16
32.66
36.56
30.62
32.68
34.43
39.40
43.03
44.41
47.12
46.29
48.42
30.09
35.09
38.98
Ho
8.82
5.21
6.63
5.74
6.58
6.71
5.13
7.09
5.16
4.87
8.90
6.71
4.68
7.98
5.52
5.54
6.25
6.18
6.70
5.17
8.99
5.55
6.76
6.61
6.80
6.59
7.23
9.54
5.53
6.80
5.64
7.07
5.79
8.02
8.06
6.85
7.14
6.10
6.64
8.05
7.54
9.62
6.23
6.78
7.18
8.40
8.75
9.06
10.78
9.92
13.30
7.43
8.82
7.81
Er
16.68
15.85
33.07
17.28
22.07
14.61
19.65
21.93
17.44
20.72
24.61
22.99
17.13
27.90
18.48
15.89
16.90
23.38
17.31
21.90
28.71
22.77
29.32
27.31
21.71
25.54
24.83
30.00
17.89
21.37
19.61
21.11
22.58
24.17
21.44
19.50
24.88
30.05
23.96
25.14
22.69
17.62
22.82
23.58
20.03
26.60
23.26
31.60
29.53
31.15
36.22
27.64
32.50
27.13
Tm
2.27
3.08
3.27
2.60
2.76
2.90
2.72
3.17
2.42
3.14
3.83
2.77
2.30
4.15
2.40
2.38
3.01
3.09
2.37
2.71
3.08
2.23
4.71
3.37
3.65
3.14
2.87
3.75
2.46
3.09
2.23
2.61
3.64
3.60
2.97
3.12
2.81
3.47
3.17
3.00
2.45
2.54
4.32
3.70
3.81
4.11
3.16
3.20
4.10
3.20
5.02
3.19
3.65
4.35
Yb
19.87
18.26
25.19
14.34
15.07
20.56
12.63
21.34
13.12
15.05
16.38
16.88
12.96
23.49
14.82
16.55
19.44
17.39
14.71
11.63
17.32
15.11
21.87
20.28
15.21
17.92
13.81
23.90
15.70
18.84
14.91
17.37
21.60
23.69
16.23
15.81
21.28
18.87
14.68
15.53
22.53
19.21
23.25
17.45
23.22
27.35
18.22
13.96
23.99
15.57
26.64
16.95
21.76
24.26
Lu
3.60
2.16
4.23
1.95
2.09
2.95
2.32
2.81
2.97
2.20
4.35
2.67
2.29
2.49
2.64
2.28
2.64
2.46
3.76
2.58
4.61
3.29
3.58
3.38
2.63
3.70
2.28
4.07
1.98
2.39
3.28
2.93
3.25
4.44
2.38
2.73
3.30
2.71
3.62
2.41
3.78
4.26
2.70
3.17
3.65
3.29
3.63
4.89
3.99
2.62
4.53
2.46
4.22
3.06
Th
0.07
bd
0.17
0.10
bd
0.15
bd
bd
0.03
0.11
0.10
bd
bd
0.21
0.06
0.10
0.04
bd
0.20
bd
0.04
0.07
0.10
bd
bd
0.07
bd
bd
bd
0.10
bd
0.04
bd
0.10
bd
0.18
0.03
bd
bd
0.10
bd
0.14
0.12
0.06
0.16
0.14
bd
bd
0.11
0.04
0.05
bd
0.14
0.16
U
ƩREE
26.36
624
22.42
667
26.04
614
30.68
522
20.17
570
22.49
556
18.22
481
27.01
569
26.11
513
25.24
592
32.82
692
34.14
750
23.40
515
35.26
675
20.27
535
24.51
520
23.14
700
31.83
612
27.31
789
18.98
609
21.29
777
21.37
680
39.20
509
32.21
791
17.28
686
24.36
718
18.68
491
33.57
971
38.69
749
23.62
735
24.69
925
27.73
502
37.43
955
33.13
945
25.51 1064
32.84
790
30.51
564
25.83 1186
22.82
928
20.23 1018
26.07 1163
24.14
698
30.12 1426
27.93 1138
27.77
679
26.43 1414
24.71 1371
26.06 1210
31.08 1232
64.33 1365
36.92 2384
16.52 1099
23.42 1538
27.79
890
Ce/Ce*
-0.02
0.44
-0.33
-0.25
0.03
-0.05
-0.09
-0.25
0.00
0.26
-0.07
0.09
-0.23
0.07
0.10
-0.02
0.08
-0.03
-0.01
0.06
0.09
-0.36
-0.25
-0.09
-0.12
-0.24
-0.01
-0.02
0.04
-0.09
0.08
-0.08
-0.13
-0.20
0.23
-0.05
-0.18
0.31
-0.32
0.13
0.02
0.13
0.33
-0.08
-0.04
-0.23
-0.15
-0.25
-0.29
0.13
0.88
-0.08
0.01
0.25
Ce/Ce**
1.16
1.82
0.93
0.78
1.56
2.00
0.75
0.82
1.62
1.72
1.17
1.52
1.07
2.12
1.17
2.08
1.77
1.23
1.95
1.72
1.47
0.52
1.07
0.95
1.26
0.81
1.82
1.19
1.39
1.54
1.28
0.74
1.07
0.83
1.79
1.40
0.46
1.81
0.54
1.34
1.08
1.24
1.47
0.77
0.84
0.63
1.30
0.75
0.79
1.42
2.84
1.20
0.94
1.15
La/La*
Y/Ho
0.35
40.5
0.54
58.1
0.83
50.9
0.08
62.6
1.13
54.6
3.60
44.9
-0.27
49.1
0.17
46.2
1.43
57.8
0.69
56.6
0.53
54.3
0.78
55.3
0.82
71.5
2.79
39.5
0.11
58.3
3.25
48.4
1.48
68.0
0.49
72.6
2.27
57.1
1.30
68.0
0.69
35.8
-0.31
63.4
0.84
68.0
0.08
53.3
0.94
55.9
0.11
47.3
2.30
63.7
0.40
41.3
0.71
52.6
1.64
52.8
0.34
77.0
-0.30
50.8
0.41
71.2
0.07
45.8
0.93
52.8
0.93
47.0
-0.63
50.1
0.74
67.9
-0.33
58.1
0.35
44.5
0.10
56.4
0.18
42.0
0.19
56.9
-0.26
60.3
-0.22
57.3
-0.29
47.8
1.20
45.5
0.01
37.5
0.20
37.7
0.53
41.5
1.22
42.3
0.66
52.5
-0.12
44.2
-0.14
54.8
394
Sc
39.75
48.00
40.86
49.14
35.41
41.93
34.58
45.01
37.91
28.65
42.40
48.87
57.55
59.39
43.03
41.43
56.33
46.28
44.95
51.10
51.36
70.30
47.37
48.81
38.00
57.68
57.85
78.46
47.36
59.34
16.73
36.35
61.05
mm from
bone rim
0.00
0.03
0.07
0.10
0.14
0.17
0.21
0.24
0.28
0.31
0.35
0.38
0.41
0.45
0.48
0.52
0.55
Sc
29.16
36.46
34.97
35.61
30.48
31.03
21.39
40.15
32.41
35.34
32.59
44.83
37.96
37.41
35.28
32.42
34.23
SRHS-DU-94 Femur
mm from
bone rim
17.86
17.90
17.93
17.97
18.00
18.04
18.07
18.11
18.14
18.18
18.21
18.24
18.28
18.31
18.35
18.38
18.42
18.45
18.49
18.52
18.56
18.59
18.62
18.66
18.69
18.73
18.76
18.80
18.83
18.87
18.90
18.94
18.97
Mn
0.20
0.18
0.26
0.23
0.21
0.29
0.17
0.21
0.19
11.34
1.24
0.79
6.75
0.33
0.54
0.64
1.11
Mn
0.26
0.25
0.43
0.18
0.20
0.14
0.25
0.56
0.27
0.24
0.45
0.46
0.59
0.86
0.61
0.45
0.59
0.39
0.36
0.44
0.58
0.46
0.30
0.37
0.27
0.45
0.28
0.41
0.31
0.21
0.17
0.46
0.45
Fe
1.21
0.99
1.56
1.04
1.89
1.10
1.08
1.31
1.33
bd
2.19
3.50
2.11
1.78
1.25
2.18
1.42
Fe
1.53
1.99
1.67
4.41
1.30
2.45
1.23
0.97
1.81
0.82
1.84
1.29
1.28
2.97
1.50
1.28
1.79
1.19
0.83
0.94
1.20
4.35
1.12
0.79
0.97
0.89
0.78
1.88
1.12
0.51
6.51
0.61
0.99
SRHS-DU-89 Manual Phalanx (continued)
Sr
3690.68
2664.71
5255.85
2856.51
3135.62
5009.04
2507.22
5259.13
3232.02
7831.50
2409.99
12685.14
13811.17
6072.83
4564.44
4122.07
4421.65
Sr
3092.84
3676.08
3078.45
3717.17
4434.14
3731.98
3481.46
3079.29
2812.97
4581.18
4177.36
3359.18
3295.32
4122.47
3630.94
3409.59
4458.53
3342.17
2890.58
2708.77
2708.19
6775.33
3295.80
3059.51
1897.75
4420.91
2957.76
7558.51
2820.13
3299.76
3148.20
2169.20
5600.77
Y
246.72
299.08
401.42
274.55
486.15
384.75
236.01
387.60
358.48
396.92
262.30
475.19
327.26
312.63
282.89
251.96
286.83
Y
434.22
619.38
416.93
496.56
478.12
489.71
439.98
457.60
453.37
376.98
515.94
581.26
553.02
820.88
523.68
553.19
573.25
574.79
463.05
585.75
576.15
739.27
596.50
525.31
494.35
641.13
600.04
684.06
594.99
438.25
419.38
684.16
770.44
Ba
1668.16
1055.33
2311.50
2128.84
2179.95
2092.53
1646.90
1632.00
1339.76
nd
1687.48
nd
2144.26
nd
6255.39
1439.79
2644.70
Ba
1285.24
1543.05
1793.60
3271.28
2016.76
1232.46
1297.81
1360.52
1618.90
1046.73
1615.51
2776.38
2111.06
3352.54
2142.71
1406.24
1782.53
2521.90
1401.87
1295.39
1410.52
1988.96
2041.78
3036.88
2075.08
1166.31
1005.67
2081.11
1384.04
1595.83
3308.21
1181.74
3376.66
La
320.85
331.52
602.17
319.75
469.33
432.53
244.05
457.23
373.64
546.71
230.49
397.34
367.47
359.48
309.69
242.80
276.15
La
483.71
536.99
383.68
511.24
518.06
482.47
422.55
549.26
442.77
443.35
567.85
772.27
696.59
886.80
674.14
717.61
745.49
736.26
655.44
835.14
733.28
913.07
1069.62
694.04
684.40
686.05
624.73
909.22
660.45
714.18
419.64
846.68
1736.15
nd
nd
1191.47
614.44
1142.87
nd
526.16
nd
nd
nd
nd
1067.62
nd
815.99
512.97
709.67
469.91
Ce
nd
nd
1175.52
1037.82
855.04
nd
849.56
1179.70
1138.89
nd
1118.99
nd
nd
nd
1381.78
nd
nd
nd
nd
1813.32
1555.86
1711.84
1369.21
1277.47
1523.97
1192.87
1171.03
2212.25
1449.89
1235.98
1181.51
1199.84
6383.28
Ce
Pr
75.25
62.66
126.73
69.26
141.01
105.15
57.89
104.53
87.06
152.93
50.81
80.54
98.40
58.84
45.44
56.82
46.82
Pr
92.71
145.67
111.06
116.90
99.29
94.69
89.51
96.11
104.34
83.40
120.05
144.01
123.73
183.67
114.02
149.09
175.84
206.53
137.09
162.50
184.16
264.76
216.34
198.56
135.92
153.66
170.39
285.99
152.54
115.06
94.73
139.89
218.10
Nd
266.28
273.79
367.64
233.11
432.69
257.87
161.71
299.36
245.07
456.60
148.79
288.68
257.21
166.05
156.09
154.27
155.02
Nd
193.19
325.62
265.84
360.76
338.26
301.70
299.56
274.92
327.20
244.61
406.92
446.67
424.79
677.63
460.05
543.97
611.73
634.76
592.45
648.92
654.18
675.27
479.98
605.14
517.75
510.51
704.22
1045.64
694.75
568.65
370.59
722.83
530.87
Sm
34.61
42.68
55.31
30.94
80.41
53.43
36.41
60.59
45.77
74.53
27.56
47.64
35.35
35.61
21.22
23.43
29.47
Sm
41.46
48.90
41.56
65.25
44.07
38.09
64.07
41.45
55.34
48.32
73.03
72.41
74.64
112.68
82.28
87.87
97.34
106.14
86.67
116.81
114.66
119.07
91.04
82.08
79.13
92.25
121.98
179.50
122.81
89.16
108.83
80.84
98.64
Eu
10.20
11.29
22.05
12.29
17.35
14.26
6.17
16.40
10.69
18.52
8.57
16.65
16.36
16.54
10.28
6.10
7.79
Eu
12.90
12.79
14.36
18.48
11.85
13.93
13.47
12.15
22.18
14.72
17.65
16.25
20.17
28.38
22.41
24.43
25.45
27.69
26.67
28.94
25.97
41.17
27.48
21.38
16.25
25.88
45.40
46.20
16.25
16.72
14.81
41.73
24.49
Gd
33.14
34.72
75.44
39.28
68.37
53.77
33.20
66.11
38.19
95.47
20.70
43.62
34.98
51.21
29.83
26.94
21.87
Gd
51.39
67.54
44.56
57.59
63.53
59.77
61.84
58.95
58.14
59.52
80.08
79.78
102.90
129.50
70.41
85.06
110.35
83.15
94.38
102.02
102.88
101.69
96.54
95.41
99.96
101.50
100.31
145.84
129.41
59.27
77.56
53.67
106.53
Tb
4.94
4.86
9.57
5.11
10.71
7.11
5.07
8.29
5.36
9.75
3.49
9.93
9.85
6.85
4.80
4.04
3.86
Tb
5.80
8.35
7.38
10.22
8.28
7.57
8.52
7.95
7.04
6.61
12.90
10.36
10.04
17.69
9.99
12.94
15.71
14.18
9.24
13.44
15.07
13.51
11.15
10.92
12.37
14.83
16.04
20.68
16.27
15.36
8.90
12.85
19.61
Dy
27.58
34.66
58.65
37.01
64.01
51.09
28.34
52.77
32.29
64.09
21.01
31.04
42.16
41.85
30.34
27.08
30.13
Dy
49.67
55.36
50.87
63.98
55.46
57.51
54.00
46.90
53.86
52.34
66.26
67.73
64.74
92.76
72.00
72.36
101.28
108.24
53.92
73.88
72.74
88.18
53.43
68.48
53.94
66.85
62.42
74.55
113.70
67.99
42.67
79.24
88.69
Ho
5.67
6.05
11.60
9.09
13.95
11.65
5.41
10.62
7.97
13.05
5.37
8.27
11.51
9.58
6.68
5.85
5.27
Ho
10.69
14.22
9.81
14.46
12.66
9.05
12.01
9.85
8.89
9.65
15.92
13.51
12.52
16.90
12.92
14.45
18.67
17.11
13.00
14.30
12.73
16.48
15.65
11.75
10.21
11.91
17.29
21.16
14.15
17.73
7.59
19.08
26.09
Er
21.46
21.87
37.85
25.62
31.87
28.92
15.95
23.89
20.27
44.07
15.06
37.84
27.43
20.14
20.01
17.61
17.74
Er
18.13
33.84
27.94
43.77
29.41
28.08
35.98
28.51
24.55
27.24
39.59
31.00
31.75
47.54
39.54
39.56
48.90
41.19
29.93
35.19
44.31
42.06
41.70
24.23
17.15
36.72
29.94
68.82
55.11
26.67
18.42
37.72
26.54
Tm
2.07
2.16
4.30
3.00
3.92
3.75
2.19
4.34
3.20
5.69
1.93
4.03
3.91
4.12
3.23
1.99
2.84
Tm
3.96
4.77
3.53
4.75
4.04
4.90
3.43
3.45
3.74
3.45
6.13
5.53
4.46
5.96
3.69
3.48
4.81
5.26
4.12
5.18
4.97
6.71
3.89
4.13
2.65
5.45
4.39
8.85
8.34
4.61
2.53
8.78
8.62
Yb
12.29
18.03
35.35
17.38
31.84
19.93
11.96
24.56
15.15
30.31
12.82
24.53
18.67
24.68
20.70
14.56
18.77
Yb
26.75
32.43
21.30
24.42
24.90
23.70
19.72
20.35
22.22
29.23
29.94
33.18
28.50
39.62
24.07
24.58
27.55
28.43
24.09
24.03
27.10
33.14
25.47
28.55
25.16
39.83
22.89
36.68
29.01
25.77
22.05
26.74
58.33
Lu
1.71
1.83
4.42
2.29
4.30
2.58
1.87
4.27
2.70
6.22
1.64
3.01
3.31
3.22
2.58
2.21
2.70
Lu
3.13
6.12
3.12
5.64
4.12
2.87
2.95
3.08
2.28
2.78
5.01
4.65
3.74
5.93
4.47
4.52
4.58
3.95
3.11
4.10
3.40
4.92
3.95
3.81
4.98
4.70
5.14
10.71
7.11
3.01
4.46
bd
2.14
Th
0.03
bd
0.72
0.21
0.49
0.38
0.07
0.18
0.55
0.80
0.31
0.14
bd
0.16
0.14
bd
0.07
Th
0.25
0.04
0.03
0.08
0.04
0.03
0.05
0.06
bd
0.26
0.09
0.11
0.19
0.23
0.37
0.51
0.20
0.70
0.23
0.45
0.36
0.25
0.62
0.24
0.54
0.67
0.54
0.30
1.36
bd
0.93
bd
bd
U
ƩREE
15.53
816
19.78
846
34.28 2603
31.95 1419
58.09 2513
69.51 1042
29.22 1136
38.96 1133
33.37
887
69.97 1518
32.48
548
40.18 2061
35.15
927
29.79 1614
37.09 1174
20.39 1293
21.32 1088
U
ƩREE
31.56
993
42.87 1293
28.36 2161
37.63 2335
46.11 2069
32.09 1124
26.17 1937
23.77 2333
28.46 2271
29.20 1025
42.27 2560
34.75 1697
43.87 1599
46.92 2245
46.35 2972
43.06 1780
44.62 1988
55.29 2013
23.24 1730
41.31 3878
33.99 3551
41.75 4032
24.80 3505
41.09 3126
30.08 3184
25.94 2943
43.39 3096
48.70 5066
35.02 3470
32.18 2960
27.05 2374
25.79 3270
38.64 9328
Ce/Ce*
0.80
0.92
0.01
-0.03
0.04
-0.08
0.04
-0.14
0.04
-0.35
0.73
0.39
0.16
0.29
-0.02
0.42
-0.05
Ce/Ce*
0.03
-0.21
0.34
0.00
-0.12
-0.07
0.02
0.19
0.24
0.36
0.00
-0.13
-0.01
-0.28
0.15
0.14
0.04
-0.04
0.25
0.15
-0.01
-0.18
-0.34
-0.19
0.17
-0.14
-0.16
0.01
0.07
-0.01
0.39
-0.20
1.29
Ce/Ce**
1.91
3.04
0.96
1.02
0.86
0.73
0.90
0.77
0.91
0.54
1.61
1.62
0.91
1.38
1.32
1.22
1.14
Ce/Ce**
0.86
0.56
0.96
0.95
1.00
0.99
1.09
1.24
1.18
1.39
1.08
0.93
1.18
0.86
1.72
1.34
1.08
0.82
1.83
1.56
1.03
0.61
0.55
0.68
1.47
0.88
1.01
0.97
1.64
2.21
1.69
1.99
2.67
La/La*
Y/Ho
0.13
43.5
1.80
49.4
-0.09
34.6
0.11
30.2
-0.31
34.8
-0.34
33.0
-0.23
43.6
-0.18
36.5
-0.21
45.0
-0.29
30.4
-0.12
48.9
0.34
57.5
-0.36
28.4
0.13
32.6
0.70
42.4
-0.24
43.1
0.37
54.4
La/La*
Y/Ho
-0.26
40.6
-0.45
43.6
-0.46
42.5
-0.09
34.3
0.28
37.8
0.11
54.1
0.12
36.6
0.08
46.5
-0.10
51.0
0.03
39.1
0.15
32.4
0.12
43.0
0.40
44.2
0.41
48.6
1.23
40.5
0.36
38.3
0.08
30.7
-0.26
33.6
1.39
35.6
0.87
40.9
0.06
45.3
-0.43
44.8
-0.27
38.1
-0.29
44.7
0.59
48.4
0.05
53.8
0.51
34.7
-0.09
32.3
1.94
42.0
9.51
24.7
0.51
55.3
74.49
35.9
0.27
29.5
395
mm from
bone rim
0.59
0.62
0.66
0.69
0.73
0.76
0.79
0.83
0.86
0.90
0.93
0.97
1.00
1.04
1.07
1.11
1.14
1.17
1.21
1.24
1.28
1.31
1.35
1.38
1.42
1.45
1.49
1.52
1.55
1.59
1.62
1.66
1.69
1.73
1.76
1.80
1.83
1.87
1.90
1.93
1.97
2.00
2.04
2.07
2.11
2.14
2.18
2.21
2.25
2.28
2.31
2.35
2.38
2.42
Sc
35.25
32.70
33.29
23.84
28.19
27.44
29.59
24.23
18.44
16.18
21.68
20.78
23.00
17.65
14.92
11.96
18.89
20.31
14.90
13.57
11.49
10.39
5.69
10.59
10.99
6.59
17.54
12.37
11.73
9.33
5.52
11.51
8.90
6.99
11.87
12.19
11.26
7.24
6.29
4.31
5.70
3.19
0.98
1.81
2.67
1.50
8.95
7.65
5.06
3.06
3.77
1.99
2.45
3.02
Mn
0.68
0.77
0.23
0.58
0.62
0.76
0.83
0.41
0.25
0.41
0.35
0.25
0.18
0.18
0.22
0.14
0.22
0.24
0.22
0.21
0.26
0.30
0.18
0.35
0.31
0.22
0.82
0.36
0.43
0.41
0.22
0.40
0.36
0.17
0.75
0.51
0.39
0.43
0.34
0.29
0.32
0.37
0.37
0.52
0.25
0.23
0.31
0.24
0.26
0.22
0.27
0.22
0.33
0.29
SRHS-DU-94 Femur (continued)
Fe
1.26
1.19
1.46
1.33
1.53
1.20
1.67
1.43
1.03
1.30
1.42
1.25
1.37
1.32
1.09
0.83
2.17
1.56
1.15
1.07
1.59
1.55
1.32
2.46
2.06
1.10
3.12
1.33
1.94
1.88
1.70
1.91
1.45
1.38
1.82
2.41
1.29
1.75
1.54
1.25
1.29
1.44
1.21
1.93
1.49
1.18
1.67
1.15
1.24
1.70
1.64
2.03
2.28
1.34
Sr
3610.01
8603.95
5015.80
2958.33
3320.83
2986.14
4073.31
3873.29
2893.07
3148.56
2969.27
3081.11
4053.89
3795.30
2967.04
2256.18
3861.05
3345.40
3160.54
2838.12
2965.10
5332.70
2711.62
4052.93
2796.02
2088.78
3863.48
2554.01
4034.04
2701.88
2838.10
4145.57
6030.32
5613.07
4552.01
3621.95
3103.96
3261.63
4994.06
4830.33
3341.66
2939.00
3030.65
4734.96
2894.11
2748.54
6620.96
3386.60
3341.80
3023.04
2895.67
3609.92
3760.61
3117.66
Y
251.68
180.52
210.80
179.10
152.71
176.70
204.26
117.99
106.64
97.50
97.54
95.12
106.88
98.61
86.64
58.83
99.87
82.38
75.86
44.87
51.14
48.39
27.69
35.51
37.21
45.26
116.06
79.33
86.99
59.57
43.74
48.09
63.68
46.67
75.59
100.43
72.93
61.46
28.94
24.64
15.94
29.99
11.21
12.98
7.86
19.55
69.42
56.97
34.72
23.70
21.16
18.76
10.25
7.32
Ba
1334.07
1884.39
2293.08
1728.76
1538.47
1540.32
2663.57
1234.49
1618.92
1682.29
1613.23
1620.09
1571.41
1900.86
1769.22
1298.52
1763.69
1923.67
1280.63
1579.41
2614.32
2756.83
1189.36
1673.76
1850.75
1356.06
1610.88
1705.02
1721.35
1826.81
2308.20
nd
4371.11
5506.07
4544.02
5094.78
2773.10
1970.55
2106.42
2690.61
3220.06
nd
2339.22
4572.45
2172.73
2600.66
2614.18
2667.56
1627.65
2045.40
2919.07
2563.86
2019.62
2068.89
La
192.49
201.55
198.02
165.96
160.06
140.56
123.17
90.34
60.97
80.20
68.91
66.66
65.41
60.89
43.53
26.35
38.67
38.13
33.67
24.52
25.55
21.17
13.19
11.93
13.08
23.68
72.50
32.62
48.29
46.11
23.31
44.83
30.49
29.22
49.48
63.88
25.27
24.13
15.92
13.62
10.22
4.73
2.98
9.98
1.98
9.33
21.38
22.43
11.34
7.49
9.79
7.95
3.15
3.32
nd
363.55
514.09
462.11
415.62
257.33
239.02
227.89
126.79
93.73
192.46
138.62
140.45
117.41
80.38
53.86
74.40
84.17
101.66
30.28
30.68
28.63
13.01
16.06
40.34
109.50
156.10
68.16
83.55
209.65
88.07
100.46
48.12
52.25
97.34
162.24
67.73
54.11
58.99
16.81
14.57
23.44
7.27
19.40
6.24
29.98
59.47
100.73
22.45
15.23
14.77
19.74
5.80
8.44
Ce
Pr
39.42
30.65
41.43
40.92
30.40
38.53
31.18
18.97
14.69
8.76
11.97
10.52
15.65
8.38
5.81
3.15
4.88
4.76
3.31
3.35
2.82
2.82
0.84
0.89
0.86
9.66
22.40
7.27
23.19
12.65
8.49
8.98
4.20
5.20
14.45
11.66
8.50
7.02
5.72
2.23
0.85
5.28
1.39
1.48
0.55
1.41
12.09
3.25
3.76
1.98
2.21
0.81
0.57
0.44
Nd
130.63
72.78
140.06
129.90
103.44
116.29
95.23
47.82
55.96
34.79
31.49
41.90
37.17
33.67
18.81
13.41
18.94
14.50
14.86
8.63
9.72
13.44
4.06
7.58
6.16
15.41
63.96
36.43
47.57
73.78
37.13
16.92
15.97
16.98
29.68
55.68
21.06
29.61
9.85
21.79
6.40
2.84
3.02
2.49
1.48
8.92
15.55
18.05
11.40
4.59
5.51
6.15
2.24
2.84
Sm
21.41
18.17
19.66
23.26
10.73
16.45
14.47
9.11
5.95
4.41
7.82
6.82
1.51
2.80
4.67
2.82
4.96
2.27
2.89
1.13
2.56
0.68
0.42
0.28
1.34
2.03
12.10
5.12
11.85
4.52
1.09
2.39
3.36
0.58
7.66
9.65
5.58
2.87
2.78
2.34
1.00
0.52
0.52
0.37
0.59
2.29
4.93
2.55
1.99
1.84
3.78
0.82
bd
bd
Eu
6.80
3.91
8.91
6.30
3.69
5.60
5.49
2.23
2.98
2.91
4.21
3.24
1.00
1.49
1.64
0.95
1.57
0.98
0.87
0.27
0.68
0.52
0.06
0.34
0.20
0.34
3.71
1.84
1.87
0.68
0.66
1.67
1.21
0.61
1.84
3.11
2.29
1.72
1.04
1.21
0.30
0.71
0.15
0.22
0.18
0.31
0.85
0.57
0.86
0.55
0.71
0.37
0.10
0.09
Gd
22.41
15.29
26.62
24.60
12.17
14.40
15.45
12.03
9.82
6.69
9.67
12.37
6.86
8.30
2.82
2.79
4.90
3.49
1.82
0.89
2.25
3.40
3.15
bd
2.99
4.91
8.86
11.15
6.17
13.43
1.62
3.54
2.99
2.59
10.61
3.89
4.94
4.26
2.06
3.32
2.31
1.30
0.25
0.37
2.05
2.27
7.32
3.15
3.10
1.82
0.93
2.03
0.66
0.61
Tb
3.45
2.21
3.84
3.54
2.97
2.40
2.21
1.64
1.29
1.01
1.46
1.44
0.93
0.59
0.77
0.63
0.72
0.69
0.53
0.83
0.40
0.20
0.10
0.30
0.36
0.80
1.52
1.13
1.22
0.88
0.52
0.47
0.56
0.27
1.31
1.39
1.15
0.93
0.70
0.20
0.16
0.03
0.03
bd
0.21
0.66
0.71
0.56
0.44
0.13
0.56
0.05
0.20
0.15
Dy
24.08
20.92
26.94
20.25
14.48
16.26
17.00
6.55
9.30
9.27
9.48
8.13
7.60
7.38
4.53
2.98
3.67
5.75
5.22
2.51
3.72
1.49
1.75
1.79
1.62
5.25
10.69
6.79
9.23
4.54
2.12
5.02
3.10
3.25
8.54
10.22
5.27
2.96
2.86
1.95
3.07
0.12
0.37
0.72
1.14
1.60
7.00
4.63
2.21
3.20
1.37
0.79
0.81
0.45
Ho
5.68
3.85
5.35
5.64
3.65
3.95
3.65
2.21
2.00
1.53
2.49
2.89
1.90
1.88
1.45
1.43
1.48
1.13
1.05
0.79
1.07
0.50
0.26
0.31
0.81
1.39
2.32
1.28
1.32
1.96
0.99
1.93
0.65
1.13
2.18
2.08
1.64
1.17
0.63
0.89
0.20
0.22
0.09
0.23
0.32
0.46
1.92
1.08
0.62
0.76
0.46
0.35
0.16
0.23
Er
20.15
10.10
13.77
11.05
10.31
7.41
11.96
6.47
4.40
7.98
5.20
7.86
6.09
5.13
5.25
1.94
5.59
3.89
1.81
1.68
4.24
4.20
1.58
1.66
1.25
2.64
7.60
7.82
6.47
7.22
3.49
5.09
3.76
4.80
6.73
6.28
3.13
4.01
1.66
1.07
1.07
0.84
0.41
0.79
0.94
2.04
1.87
4.58
1.67
2.54
0.75
1.31
1.79
0.16
Tm
2.04
1.79
2.71
1.27
1.97
1.57
1.85
0.74
0.69
0.51
1.09
0.89
0.94
1.90
0.75
0.46
0.61
0.67
0.61
0.62
0.36
0.24
0.10
0.33
0.39
0.76
0.73
1.03
0.76
0.67
0.28
0.37
0.54
0.34
1.02
1.11
0.58
0.41
0.44
0.12
0.12
0.03
0.06
0.04
bd
0.27
0.49
0.29
0.59
0.21
0.16
bd
0.16
bd
Yb
12.02
10.12
9.96
13.17
7.92
6.90
6.43
8.08
7.45
4.55
7.80
6.40
4.03
5.91
4.02
3.74
4.72
5.15
2.96
3.01
2.20
2.66
0.89
2.00
2.13
5.08
4.60
3.37
1.98
2.50
1.35
2.80
5.45
4.10
3.23
7.55
2.48
3.03
3.43
1.18
0.94
0.55
0.73
1.05
0.62
1.62
2.97
2.92
2.01
1.03
0.33
0.58
1.42
0.87
Lu
1.79
1.32
2.04
1.76
1.41
1.38
1.27
1.26
1.19
1.36
1.42
0.66
1.20
0.88
0.60
0.32
0.41
0.71
0.37
0.38
0.29
0.53
0.33
0.11
0.26
0.41
0.56
0.75
0.52
0.46
0.49
0.36
0.43
0.64
0.98
1.06
0.38
0.51
0.22
0.30
0.04
0.24
0.03
0.19
0.19
0.20
0.32
0.37
0.18
0.33
0.06
0.16
0.04
0.16
Th
0.33
0.03
0.33
0.38
0.33
0.25
0.11
0.07
0.19
0.11
0.06
bd
0.03
0.06
bd
0.02
0.03
bd
bd
0.11
0.08
0.13
0.06
bd
bd
0.20
0.07
0.13
0.15
0.06
0.11
0.12
0.07
0.03
0.04
0.07
bd
0.03
0.03
0.10
0.13
0.05
0.02
bd
0.11
0.05
0.10
0.09
0.06
bd
0.09
bd
bd
bd
U
ƩREE
22.94
482
9.98
756
21.50 1013
8.47
910
9.41
779
11.89
629
8.50
568
7.02
435
6.51
303
2.50
258
3.50
355
2.56
308
3.05
291
2.94
257
6.04
175
2.84
115
6.06
166
3.93
166
1.56
172
2.26
79
2.08
87
1.20
80
0.51
40
0.68
44
2.06
72
8.80
182
3.38
368
5.38
185
5.50
244
2.81
379
2.00
170
4.68
195
4.10
121
7.49
122
5.16
235
4.35
340
2.18
150
2.66
137
1.27
106
1.86
67
1.17
41
0.67
41
1.81
17
0.29
37
0.35
16
1.26
61
2.43
137
1.74
165
0.90
63
1.44
42
0.60
41
0.38
41
0.43
17
0.61
18
Ce/Ce*
0.12
0.05
0.33
0.32
0.39
-0.18
-0.09
0.29
0.00
-0.24
0.55
0.20
0.03
0.17
0.13
0.30
0.20
0.38
1.03
-0.25
-0.22
-0.17
-0.26
-0.03
1.29
0.65
-0.09
0.04
-0.44
1.04
0.45
0.17
-0.05
-0.02
-0.15
0.38
0.08
-0.03
0.43
-0.30
0.00
-0.14
-0.20
0.14
0.41
0.88
-0.20
1.67
-0.20
-0.07
-0.26
0.65
0.00
0.56
Ce/Ce**
1.20
1.07
1.43
1.23
1.59
0.70
0.81
1.12
1.13
1.48
1.53
1.83
0.81
1.97
1.53
2.62
2.05
1.87
5.15
0.85
1.28
1.92
3.01
-4.62
-77.87
0.87
0.70
2.00
0.30
6.17
1.66
0.91
1.50
1.12
0.57
2.65
0.73
1.16
0.81
-1.10
-12.21
0.29
0.45
1.02
1.11
14.38
0.36
9.17
0.63
0.68
0.62
-16.13
1.38
16.74
La/La*
Y/Ho
0.14
44.3
0.02
46.9
0.16
39.4
-0.12
31.8
0.29
41.9
-0.26
44.8
-0.19
56.0
-0.22
53.4
0.31
53.2
2.28
63.7
-0.01
39.2
1.29
32.9
-0.35
56.3
1.71
52.4
0.68
59.9
2.88
41.2
1.65
67.3
0.64
72.8
5.28
72.3
0.23
56.7
1.26
47.9
6.50
97.0
17.39 107.7
-2.77 114.6
-4.39
45.7
-0.70
32.5
-0.39
50.1
9.49
61.8
-0.71
65.8
-3.54
30.4
0.46
44.0
-0.34
24.9
1.29
97.6
0.28
41.3
-0.52
34.6
4.68
48.3
-0.52
44.5
0.53
52.3
-0.65
45.8
-1.59
27.6
-3.29
78.7
-0.92 135.1
-0.69 119.3
-0.16
57.4
-0.36
24.3
-3.59
42.2
-0.80
36.1
-9.74
52.7
-0.39
55.8
-0.42
31.3
-0.28
46.2
-2.83
54.0
0.89
62.8
-3.63
32.5
396
mm from
bone rim
2.45
2.49
2.52
2.56
2.59
2.63
2.66
2.69
2.73
2.76
2.80
2.83
2.87
2.90
2.94
2.97
3.01
3.04
3.07
3.11
3.14
3.18
3.21
3.25
3.28
3.32
3.35
3.39
3.42
3.46
3.49
3.52
3.56
3.59
3.63
3.66
3.70
3.73
3.77
3.80
3.84
3.87
3.90
3.94
3.97
4.01
4.04
4.08
4.11
4.15
4.18
4.22
4.25
4.28
Sc
2.09
1.25
1.89
5.28
2.06
1.45
1.92
2.23
2.23
3.80
5.10
5.88
8.55
7.65
12.01
8.60
9.18
9.29
7.64
7.90
9.88
7.52
5.11
7.21
3.68
5.62
5.25
5.46
6.22
4.47
2.33
1.77
2.20
1.42
1.71
1.06
0.85
0.48
0.93
1.11
1.99
1.70
1.61
2.48
1.01
1.67
0.36
0.78
1.29
1.37
1.18
2.77
2.95
3.21
Mn
0.32
0.21
0.16
0.47
0.40
0.25
0.27
0.26
0.31
0.23
0.29
0.28
0.64
0.22
0.31
0.19
0.16
0.22
0.28
0.23
0.46
0.40
0.57
0.35
0.25
0.41
0.74
0.45
0.35
0.44
0.33
0.26
0.27
0.16
0.31
0.24
0.37
0.29
0.33
0.28
0.25
0.96
0.23
0.29
0.32
0.19
0.20
0.21
0.24
0.29
0.24
0.18
0.31
0.67
SRHS-DU-94 Femur (continued)
Fe
1.12
1.05
1.40
1.63
1.65
1.03
1.24
1.65
1.65
1.15
1.51
1.44
2.06
1.56
2.28
1.18
1.36
1.29
1.56
1.90
1.56
1.53
1.06
1.95
1.35
1.38
1.33
1.57
1.96
2.07
1.47
1.45
1.38
2.02
1.26
1.74
1.12
1.30
1.35
1.96
1.23
2.37
1.83
1.64
1.80
1.56
1.55
1.09
1.00
1.45
1.08
1.00
1.58
1.24
Sr
3195.92
3094.79
2907.02
3792.18
2917.90
3435.57
3151.76
3272.91
3780.41
2822.55
3274.87
3383.51
3840.03
2306.56
3473.42
3023.46
2946.40
2761.30
4092.06
2898.18
5087.88
3881.78
2518.09
4498.81
2743.77
2858.76
2829.27
2909.87
3179.12
3360.18
3364.60
2882.31
2127.32
3869.17
3203.68
3972.44
2750.23
3562.26
2828.98
3755.58
3051.65
4960.79
2420.96
3161.92
3600.92
3466.03
3008.21
2372.87
2779.33
3369.88
3430.93
3499.52
3406.84
3713.63
Y
12.32
7.54
6.07
8.37
6.58
5.02
3.50
5.43
14.60
25.41
46.87
41.36
49.38
34.62
55.50
44.53
41.49
45.38
45.38
42.29
53.15
44.53
31.94
36.36
28.63
30.25
25.38
24.41
27.98
17.65
17.17
9.90
10.01
8.91
7.12
4.55
3.00
2.89
5.65
12.33
12.13
11.41
5.20
7.87
6.13
3.90
4.03
1.45
4.23
7.83
7.09
14.67
15.02
16.95
Ba
2502.00
1992.96
1922.35
2850.73
2482.90
2033.91
3207.97
2080.99
2412.75
nd
2687.92
nd
4108.71
2080.91
2480.70
1592.20
1495.35
1499.66
1723.42
1475.35
2447.21
1578.13
1350.74
1649.65
1297.18
2473.05
1923.21
1566.16
nd
2292.08
2827.00
2048.15
1753.59
1632.16
3052.17
2034.35
2539.10
2345.49
1971.35
3282.64
2067.99
nd
nd
2556.53
2979.42
1878.47
2027.93
2023.56
2035.67
2489.04
1967.56
2323.35
1724.60
1982.25
La
1.90
5.58
1.77
4.14
0.84
1.08
1.17
3.64
5.48
16.07
11.73
12.49
19.74
13.87
21.28
13.50
14.40
12.91
12.35
13.37
20.31
15.32
8.70
12.94
10.81
7.28
9.71
8.36
8.81
5.26
3.88
2.62
2.21
1.97
2.34
0.77
0.87
0.88
3.30
2.76
3.01
3.23
1.75
1.60
2.62
1.80
0.80
0.79
5.20
1.83
3.89
2.86
5.82
3.71
Ce
2.01
1.91
2.87
3.65
1.74
1.83
2.04
2.38
21.57
80.14
45.91
28.93
61.45
23.55
56.31
25.11
24.86
28.84
36.57
31.29
29.86
35.45
17.31
22.91
18.70
15.20
20.05
17.99
14.96
11.24
6.37
6.39
9.34
3.72
5.37
7.29
1.36
1.92
2.53
11.10
6.68
25.68
9.63
6.83
3.46
2.52
1.21
3.50
1.74
3.45
8.27
7.36
12.16
9.27
Pr
1.62
1.02
0.28
0.16
0.08
0.64
0.26
0.63
0.83
3.36
3.90
4.43
3.60
3.43
4.48
4.60
2.67
3.05
2.90
4.56
4.59
2.49
2.03
2.30
1.66
0.94
1.94
1.46
1.53
0.89
0.56
0.75
0.36
0.65
0.37
0.22
0.17
0.20
0.31
0.64
0.90
0.52
0.26
0.39
0.53
1.01
0.15
0.17
0.16
0.34
0.55
0.92
1.89
1.84
Nd
3.95
1.25
1.19
1.85
0.74
2.15
1.23
0.70
2.44
10.43
10.03
8.35
11.79
8.97
13.15
6.80
6.86
7.41
5.68
7.25
11.44
9.56
6.85
7.83
3.64
4.27
2.37
7.76
3.76
1.26
3.14
1.29
2.11
0.43
0.86
0.85
bd
0.17
0.90
2.44
2.14
4.09
1.16
2.28
1.10
bd
0.89
bd
0.58
0.76
2.02
3.20
1.89
4.37
Sm
0.95
bd
1.15
0.37
bd
bd
0.37
0.56
1.75
3.19
3.14
2.00
1.60
1.12
0.97
2.36
2.12
0.94
0.89
1.05
1.22
1.35
1.56
2.27
0.69
2.56
0.28
0.49
1.08
1.01
0.42
0.44
bd
0.25
bd
0.25
bd
bd
bd
0.53
bd
0.30
bd
bd
bd
bd
bd
bd
bd
bd
0.48
bd
bd
0.92
bd
0.45
0.09
bd
bd
bd
0.11
0.17
0.26
0.56
1.18
0.60
0.88
0.61
0.68
0.64
1.27
0.77
0.18
0.32
0.55
0.68
0.59
0.29
0.41
0.61
0.43
0.07
0.26
0.38
0.31
0.20
bd
bd
0.08
0.23
0.07
bd
0.16
0.16
0.12
0.55
bd
bd
0.16
0.07
0.24
bd
0.14
bd
0.29
0.27
0.17
0.09
Eu
Gd
0.94
1.19
0.57
0.36
0.29
bd
1.10
0.55
2.02
1.84
4.14
3.12
4.75
1.77
0.64
3.82
2.56
5.09
2.05
0.78
2.72
3.79
1.74
2.88
1.14
2.28
2.25
0.48
2.13
1.25
1.45
0.88
0.75
bd
0.51
bd
0.73
bd
0.27
6.86
0.39
0.91
1.61
0.27
bd
0.68
bd
bd
0.23
0.30
0.72
0.58
0.28
0.91
Tb
0.26
0.14
0.20
bd
0.03
bd
0.04
0.10
0.14
0.60
0.31
0.27
0.50
0.56
0.80
0.36
0.53
0.55
0.39
0.44
0.54
0.53
0.32
0.38
0.08
0.18
0.17
0.41
0.23
0.18
0.10
0.08
0.06
0.06
bd
0.06
0.03
bd
0.13
0.09
0.07
0.03
0.03
bd
0.06
0.03
bd
bd
0.03
0.07
0.06
0.10
0.07
0.11
Dy
0.46
0.29
0.41
0.71
0.28
0.46
0.53
1.08
1.13
3.61
3.55
2.77
4.79
3.70
6.09
3.44
2.85
3.06
3.02
2.68
4.59
4.26
2.28
3.45
2.01
2.11
2.62
1.54
0.94
1.10
0.50
0.43
0.49
0.49
0.37
0.37
0.24
0.58
0.13
0.64
0.57
1.04
0.78
0.26
0.90
0.33
bd
0.10
0.45
1.17
0.23
0.57
0.96
1.64
Ho
bd
0.11
0.10
0.04
0.14
bd
0.09
0.07
0.35
0.97
0.86
1.11
0.97
0.79
1.56
0.75
0.77
0.99
0.75
0.67
0.67
0.60
0.40
0.82
0.50
0.37
0.52
0.77
0.34
0.15
0.20
0.11
bd
0.12
bd
0.03
0.06
0.05
0.20
0.36
0.07
0.71
0.17
0.10
0.06
0.03
bd
bd
0.03
0.15
0.15
0.25
0.21
0.56
Er
0.17
0.16
bd
0.39
0.32
bd
0.39
0.30
1.71
1.84
2.09
3.66
4.26
2.98
4.29
2.86
3.00
1.99
4.42
3.09
2.60
1.68
2.29
3.97
1.84
1.36
0.76
1.96
1.95
2.01
0.33
0.82
bd
0.95
0.55
0.41
bd
0.21
0.86
0.14
1.05
0.82
0.99
0.29
0.28
bd
bd
0.11
bd
0.48
0.77
1.73
1.05
1.48
Tm
0.18
0.03
bd
0.09
bd
0.07
0.09
0.06
0.07
0.37
0.57
0.40
0.18
0.39
0.37
0.45
0.60
0.62
0.38
0.18
0.32
0.34
0.38
0.49
0.16
0.33
0.13
0.28
0.17
0.09
0.12
0.15
0.18
0.09
bd
0.03
bd
0.12
0.06
0.06
0.07
0.04
0.03
0.09
0.03
bd
0.19
bd
0.08
0.14
0.06
0.07
0.07
0.14
bd
0.85
0.60
0.26
0.21
0.68
0.52
0.98
1.44
2.44
2.21
3.23
4.70
3.16
5.22
1.81
2.65
3.46
2.92
2.79
4.08
4.12
3.17
2.51
1.46
2.16
1.40
2.59
1.36
1.77
0.44
0.62
bd
1.08
0.36
0.18
bd
0.28
0.19
0.94
0.42
0.21
bd
0.77
0.37
0.16
1.32
0.43
bd
1.71
0.68
0.62
1.19
1.74
Yb
Lu
0.12
0.23
0.11
0.05
0.08
0.12
bd
0.22
0.30
0.17
0.64
0.48
0.51
0.40
0.91
0.44
0.42
0.39
0.53
0.41
0.78
0.26
0.13
0.50
0.33
0.13
0.44
0.44
0.22
0.19
0.11
0.26
0.10
0.16
0.13
0.10
0.06
0.03
0.10
0.10
0.25
0.12
0.12
0.21
bd
0.12
bd
bd
0.09
0.20
0.12
0.27
0.44
0.16
bd
0.12
0.03
bd
0.09
bd
bd
0.03
0.03
0.03
0.08
bd
0.03
bd
bd
0.02
0.02
0.02
bd
0.03
bd
bd
bd
bd
bd
0.05
bd
0.02
0.08
bd
bd
0.06
0.02
bd
bd
bd
0.02
0.02
bd
bd
bd
0.03
bd
bd
bd
0.38
bd
0.28
bd
bd
bd
bd
bd
bd
Th
U
ƩREE
0.24
13
0.97
13
1.03
9
1.67
12
0.51
5
0.38
7
0.22
8
0.52
11
0.80
40
1.88
126
2.52
90
3.22
72
2.89
120
3.76
65
5.98
117
4.19
67
3.51
66
3.85
70
2.70
73
3.01
69
5.82
84
2.36
80
1.92
48
2.68
64
1.06
43
1.37
40
2.04
43
1.98
45
1.39
38
0.81
27
0.78
18
0.49
15
0.43
16
0.74
10
0.20
11
0.28
11
0.06
4
0.07
4
0.35
9
0.68
27
0.44
16
0.52
38
0.34
17
0.89
13
0.54
10
0.18
7
0.14
5
0.33
5
0.30
9
0.36
11
0.87
18
1.06
19
1.86
26
1.42
27
Ce/Ce*
-0.77
-0.81
-0.07
-0.29
0.38
-0.53
-0.14
-0.64
1.30
1.55
0.58
-0.10
0.69
-0.20
0.35
-0.26
-0.07
0.08
0.43
-0.07
-0.27
0.32
-0.03
-0.03
0.00
0.29
0.08
0.19
-0.06
0.19
-0.03
0.07
1.40
-0.24
0.32
3.17
-0.18
0.08
-0.48
0.96
-0.05
3.54
2.23
1.03
-0.31
-0.59
-0.20
1.21
-0.72
0.01
0.27
0.06
-0.14
-0.21
Ce/Ce**
0.11
0.13
1.52
-1.98
-4.49
0.33
1.43
0.26
2.67
2.56
1.11
0.53
1.92
0.65
1.29
0.41
0.88
0.86
1.04
0.53
0.60
1.89
0.99
1.16
0.97
2.74
0.74
3.12
0.90
0.94
3.39
0.67
10.05
0.37
1.31
4.56
0.80
0.65
0.85
2.26
0.67
-22.41
5.93
6.81
0.56
0.17
3.08
3.03
1.28
0.87
1.89
0.95
0.45
0.46
La/La*
Y/Ho
-0.81
50.8
-0.40
69.0
1.74
58.3
-2.77 188.2
-2.22
45.7
-0.60
42.5
2.92
39.2
-0.38
80.5
0.28
41.2
0.00
26.3
-0.50
54.7
-0.62
37.2
0.26
50.9
-0.31
43.9
-0.08
35.5
-0.65
59.0
-0.10
53.9
-0.33
45.7
-0.42
60.1
-0.64
63.0
-0.28
79.9
0.99
74.2
0.04
79.2
0.38
44.1
-0.05
57.1
3.98
81.3
-0.45
49.0
-23.27
31.6
-0.07
82.6
-0.32 115.7
-9.34
84.7
-0.56
92.4
-5.01
82.1
-0.71
71.8
-0.02 109.8
0.22 147.7
-0.05
50.3
-0.56
59.4
1.09
28.8
0.35
34.7
-0.48 169.0
-2.03
16.2
2.66
30.8
-3.70
79.1
-0.29
95.7
-0.81 141.6
-4.47 146.7
1.03 146.7
7.28 151.8
-0.22
53.2
1.04
48.2
-0.21
58.6
-0.68
73.1
-0.68
30.3
397
mm from
bone rim
4.32
4.35
4.39
4.42
4.46
4.49
4.53
4.56
4.60
4.63
4.66
4.66
4.70
4.73
4.77
4.80
4.84
4.87
4.91
4.94
4.98
5.01
5.04
5.08
5.11
5.15
5.18
5.22
5.25
5.29
5.32
5.36
5.39
5.42
5.46
5.49
5.53
5.56
5.60
5.63
5.67
5.70
5.74
5.77
5.80
5.84
5.87
5.91
5.94
5.98
6.01
6.05
6.08
6.12
Sc
2.62
4.13
3.06
4.20
4.94
3.86
6.10
10.35
7.13
7.56
8.57
7.44
9.32
7.42
8.31
15.28
9.29
7.95
8.36
7.00
5.15
5.27
7.11
5.50
5.74
3.33
6.20
4.48
4.34
2.23
5.56
3.89
10.29
4.84
9.56
2.44
1.63
3.25
3.40
4.12
3.79
1.34
2.16
3.82
3.79
3.59
4.79
5.60
4.27
3.86
3.91
4.84
5.23
4.95
Mn
0.21
0.24
0.17
0.20
0.26
0.42
0.35
0.30
0.28
0.40
0.86
0.24
0.20
0.17
0.32
0.40
0.33
0.24
0.22
0.32
0.17
0.23
0.33
0.36
0.52
0.30
0.35
0.32
0.33
0.42
0.55
0.29
0.56
0.39
0.40
0.27
0.19
0.31
0.27
1.50
0.24
0.23
0.20
0.52
0.19
0.27
0.21
0.20
0.22
0.25
0.20
0.22
0.19
0.29
SRHS-DU-94 Femur (continued)
Fe
1.63
1.48
1.03
0.91
1.08
1.33
1.59
1.07
1.03
1.68
1.12
1.24
1.67
1.17
1.92
1.11
1.21
1.20
0.83
1.02
1.09
bd
2.30
1.74
1.76
1.76
1.29
1.33
1.68
1.26
2.04
1.08
1.20
2.11
1.57
1.53
1.18
1.37
1.12
1.52
1.10
1.00
1.53
1.75
2.12
1.39
1.06
1.00
2.06
0.83
1.85
1.61
1.43
1.67
Sr
3286.62
2955.38
2780.70
2571.94
2907.72
2989.39
3354.34
3726.68
2881.91
3552.59
4261.54
3434.47
4456.97
3625.68
3342.13
3127.79
3407.95
3196.07
2751.54
3490.35
2878.02
2824.46
7015.70
4022.22
3234.25
3199.80
4171.76
4325.55
3443.73
2505.23
3545.39
2495.20
4079.60
2633.12
3226.75
2610.63
2876.85
3092.17
3342.85
4296.94
3063.43
3847.82
2983.49
4945.40
2603.07
3956.04
3374.55
3181.39
3967.57
4098.16
2765.58
3293.27
3258.07
4054.39
Y
16.95
18.30
20.70
16.43
20.89
38.49
38.06
40.47
36.71
37.41
45.75
46.22
54.46
45.08
54.43
48.62
47.57
38.71
38.97
43.78
31.08
25.16
31.61
31.17
25.58
23.12
24.71
19.43
19.33
19.19
25.99
20.81
32.80
19.65
25.44
15.61
16.60
12.39
10.04
14.63
9.90
10.08
9.45
13.00
12.19
17.58
18.24
16.76
18.78
13.00
14.00
14.81
10.55
13.79
Ba
1683.71
1854.52
2737.18
1782.47
1780.27
2251.22
2038.37
1461.88
1485.90
1534.32
3196.83
1576.15
1570.09
1463.51
1960.81
1771.97
1818.81
1425.48
1194.86
1819.79
nd
2500.85
nd
nd
nd
nd
4426.87
2241.07
nd
2075.05
2656.57
1200.51
2730.95
1599.14
2463.75
1532.89
1785.26
1913.58
2026.94
1926.28
1964.95
nd
1478.86
2457.23
2056.97
1788.20
1550.42
1672.35
nd
1300.71
1656.82
1282.62
1552.59
2267.05
La
5.00
4.67
3.82
3.07
4.39
6.84
8.62
10.71
5.72
6.48
8.16
13.20
14.73
10.53
13.05
10.06
12.93
13.04
9.27
15.72
7.62
7.27
10.96
8.01
7.26
5.21
5.89
3.77
4.78
3.69
6.39
5.77
5.55
4.87
14.34
2.87
3.35
3.12
4.17
4.12
4.68
3.23
1.95
2.43
3.85
4.06
3.45
3.51
3.94
2.82
3.83
4.73
4.45
4.47
Ce
11.50
8.91
8.57
13.85
14.20
30.88
24.58
32.08
10.32
19.39
15.02
30.99
36.90
34.37
22.45
33.49
17.24
32.58
16.23
21.65
20.50
14.34
23.55
31.31
30.68
12.17
11.58
10.38
10.69
8.78
12.72
7.99
10.72
12.07
8.22
7.14
7.16
14.74
6.77
6.09
7.41
5.16
4.11
4.32
8.65
4.78
5.45
7.01
5.77
6.49
9.96
10.63
7.89
11.15
Pr
0.74
0.87
0.87
1.48
0.90
1.20
2.04
1.98
0.89
1.76
1.78
2.73
2.50
1.60
3.06
2.66
2.35
2.26
1.80
1.42
1.11
1.53
1.23
2.70
1.24
0.62
1.52
1.83
0.48
0.95
1.49
1.34
1.31
0.43
0.80
0.65
0.35
0.86
1.08
0.40
0.46
0.55
0.51
0.46
0.42
0.94
1.59
0.64
0.78
0.39
0.80
1.09
0.52
0.73
Nd
3.87
1.34
2.69
3.43
2.52
4.14
11.07
7.75
3.82
6.79
1.80
5.64
10.88
8.62
6.86
5.54
9.88
7.74
5.75
5.38
2.62
5.91
5.29
5.13
4.99
2.05
2.81
2.68
1.96
1.87
4.20
1.74
6.15
1.13
3.99
3.50
2.08
5.08
1.81
2.36
3.03
1.17
1.29
0.99
1.92
3.05
1.81
3.78
2.69
0.42
0.58
3.52
2.32
0.41
Sm
1.16
0.96
0.88
0.55
0.30
0.29
1.06
2.33
0.72
0.38
0.86
2.08
1.96
1.22
1.42
0.30
3.26
0.26
0.55
0.36
bd
bd
bd
0.53
0.50
bd
0.61
0.32
0.67
0.64
3.36
1.40
2.31
0.34
0.43
0.70
0.62
1.43
0.36
0.47
bd
bd
bd
0.29
bd
0.66
2.90
bd
0.32
0.76
0.47
bd
0.86
0.24
Eu
0.26
0.19
0.44
0.16
0.54
0.44
0.48
0.62
0.36
bd
0.26
0.23
0.59
0.37
0.77
0.82
0.62
0.08
0.25
0.32
0.28
0.18
0.50
0.88
0.52
0.41
0.28
0.48
0.10
0.19
0.25
bd
0.83
0.31
1.70
bd
0.19
0.21
bd
bd
0.11
0.10
0.31
0.36
0.10
0.30
0.22
bd
bd
bd
0.56
bd
0.52
0.22
Gd
2.01
0.32
bd
0.27
1.20
2.60
2.37
2.30
3.10
1.53
1.28
2.57
2.57
2.10
0.83
5.38
4.09
3.40
1.90
0.70
1.55
0.60
2.30
1.58
0.73
1.35
0.60
4.77
1.32
0.62
0.82
1.72
4.09
1.67
2.57
0.33
0.30
0.70
bd
1.86
0.71
1.03
1.78
0.58
0.31
0.65
1.42
0.68
0.31
bd
0.69
0.48
0.20
0.48
Tb
0.07
bd
0.28
0.06
0.25
0.21
0.25
0.55
0.08
0.23
bd
0.31
0.54
1.01
0.17
0.36
0.46
0.19
0.52
0.30
0.33
0.11
0.20
0.38
0.21
0.06
0.22
bd
0.48
0.19
0.30
0.29
0.27
0.04
0.05
0.08
0.11
0.13
bd
0.06
0.09
0.08
0.12
bd
bd
0.04
0.09
bd
0.23
0.06
0.14
0.09
0.10
0.15
Dy
0.56
1.40
1.28
0.93
1.17
0.56
3.61
4.01
1.75
3.20
4.61
3.51
4.71
2.92
2.72
4.37
4.42
2.16
2.38
2.57
1.95
2.06
1.75
1.92
0.82
1.03
2.79
0.12
1.43
1.83
2.40
3.01
2.19
1.28
2.91
1.15
1.33
1.53
0.31
0.41
1.55
1.15
1.23
0.54
1.72
1.26
0.49
0.64
1.22
0.71
0.43
0.69
0.81
0.69
Ho
0.35
0.27
0.36
0.37
0.51
0.21
0.87
1.60
0.50
0.80
1.26
1.36
0.67
0.70
1.03
0.92
1.01
1.03
0.60
0.70
0.72
0.60
0.53
0.62
0.33
0.27
0.30
0.31
0.49
0.39
0.97
0.72
0.50
0.70
0.21
0.42
0.08
0.04
0.13
0.17
0.13
0.30
0.16
0.14
0.24
0.16
0.61
0.17
0.31
0.24
0.17
0.27
0.34
0.21
Er
0.77
0.86
1.87
0.44
1.29
1.55
3.39
4.13
2.44
1.03
2.76
4.16
2.95
5.02
3.92
3.05
2.83
3.67
4.55
5.34
1.33
1.96
1.77
1.70
1.19
1.01
1.30
1.02
1.25
0.85
3.13
1.48
0.97
1.44
1.61
1.49
0.99
1.33
0.57
1.00
0.38
0.37
0.68
1.42
1.22
1.23
0.38
0.74
1.20
0.67
2.36
1.19
0.57
0.65
Tm
0.13
0.33
0.17
0.13
0.28
0.20
0.52
0.54
0.28
0.40
0.55
0.45
0.68
0.39
0.69
0.70
0.34
0.58
0.29
0.58
0.18
0.29
0.19
0.22
0.12
0.16
0.28
0.41
0.23
0.11
0.34
0.32
0.27
0.31
0.35
0.04
0.18
0.17
0.08
0.11
0.04
0.24
0.24
0.07
0.19
0.12
0.21
0.28
0.34
0.12
0.11
0.20
0.15
0.11
Yb
1.22
0.90
0.83
1.93
0.64
0.82
2.06
3.27
2.72
2.73
2.43
4.22
3.22
2.57
4.00
3.41
1.88
2.61
1.55
2.02
1.77
1.74
1.88
1.13
2.11
2.31
0.43
0.68
1.18
1.58
2.07
0.24
3.25
1.43
1.23
1.23
1.10
0.25
1.02
1.33
1.28
0.25
0.91
0.63
1.16
bd
1.27
2.46
0.23
0.89
1.15
1.05
1.81
1.55
Lu
0.19
0.29
0.19
0.11
bd
0.45
0.48
0.56
0.28
0.20
0.44
0.54
1.01
0.70
0.69
0.51
0.57
0.44
0.50
0.28
0.20
0.20
0.43
0.24
0.22
0.25
0.20
0.17
0.26
0.16
0.54
0.27
0.36
0.17
0.17
0.18
0.20
0.14
0.05
0.06
0.05
0.09
0.07
0.11
0.21
0.38
0.42
bd
0.12
0.13
0.18
0.10
0.17
0.06
bd
0.06
0.11
bd
bd
bd
0.03
bd
0.02
bd
0.04
0.05
bd
0.06
bd
bd
0.09
0.08
0.03
bd
bd
0.03
bd
0.03
0.02
0.08
0.06
bd
bd
bd
0.04
bd
bd
bd
0.08
bd
0.12
0.21
0.07
0.14
bd
0.10
bd
bd
bd
bd
0.03
bd
bd
bd
0.05
bd
0.04
0.02
Th
U
ƩREE
0.82
28
1.07
21
1.10
22
0.77
27
0.77
28
2.49
50
3.58
61
2.29
72
1.31
33
2.54
45
2.47
41
3.13
72
5.12
84
4.43
72
3.00
62
4.33
72
3.91
62
2.87
70
2.61
46
2.29
57
3.53
40
4.02
37
4.19
51
2.26
56
2.15
51
2.56
27
5.57
29
1.37
27
1.18
25
1.39
22
2.90
39
2.79
26
2.40
39
2.22
26
1.37
39
0.87
20
1.23
18
0.79
30
0.99
16
1.77
18
1.27
20
1.62
14
1.15
13
1.14
12
1.71
20
1.56
18
2.53
20
2.05
20
3.68
17
3.52
14
4.42
21
3.72
24
4.81
21
2.46
21
Ce/Ce*
0.36
0.03
0.10
0.45
0.67
1.49
0.38
0.62
0.04
0.35
-0.08
0.21
0.40
0.91
-0.17
0.52
-0.28
0.39
-0.07
-0.05
0.59
0.01
0.39
0.57
1.36
0.48
-0.09
-0.12
0.50
0.10
-0.03
-0.32
-0.07
0.71
-0.56
0.23
0.41
1.11
-0.25
0.00
0.06
-0.11
-0.03
-0.05
0.46
-0.43
-0.48
0.08
-0.23
0.38
0.34
0.10
0.13
0.42
Ce/Ce**
3.73
0.79
1.05
0.83
1.57
3.02
3.32
2.21
1.80
1.47
0.59
0.96
2.35
5.76
0.64
1.07
1.10
1.69
0.99
1.98
1.65
1.25
2.97
0.95
3.50
2.22
0.61
0.43
3.26
0.76
0.85
0.44
1.51
2.65
2.15
3.00
7.82
6.61
0.49
5.87
16.17
0.81
0.74
0.80
3.57
0.56
0.24
4.22
0.88
1.15
0.83
1.08
2.56
0.98
La/La*
Y/Ho
-131.92
48.2
-0.35
67.2
-0.09
58.3
-0.68
44.9
-0.11
40.8
0.43 181.5
-8.84
43.8
0.86
25.3
2.12
73.9
0.21
46.8
-0.52
36.4
-0.32
34.0
2.06
81.0
-15.67
64.3
-0.37
52.8
-0.47
53.1
1.41
47.3
0.43
37.6
0.13
64.8
2.41
62.9
0.06
42.9
0.56
42.1
3.31
60.0
-0.60
50.6
1.20
76.9
0.95
87.2
-0.49
83.2
-0.76
62.3
3.04
39.5
-0.47
49.4
-0.21
26.9
-0.51
28.9
2.73
65.2
0.92
28.1
33.57 120.6
-9.87
36.8
-7.17 219.6
-3.36 287.5
-0.52
76.4
-7.69
85.1
-4.35
75.1
-0.15
33.9
-0.38
60.3
-0.25
90.4
5.36
50.9
-0.04 109.0
-0.77
29.7
-4.56
99.0
0.28
60.0
-0.24
53.3
-0.53
82.5
-0.04
54.7
4.33
31.2
-0.42
66.3
398
mm from
bone rim
6.15
6.18
6.22
6.25
6.29
6.32
6.36
6.39
6.43
6.46
6.50
6.53
6.56
6.60
6.63
6.67
6.70
6.74
6.77
6.81
6.84
6.88
6.91
6.94
6.98
7.01
7.05
7.08
7.12
7.15
7.19
7.22
7.26
7.29
7.32
7.36
7.39
7.43
7.46
7.50
7.53
7.57
7.60
7.64
7.67
7.70
7.74
7.77
7.81
7.84
7.88
7.91
7.95
7.98
Sc
2.25
3.53
3.39
2.16
3.23
1.18
3.12
3.34
3.57
3.50
3.87
3.72
3.44
1.70
3.76
3.33
2.63
3.21
3.20
1.87
3.48
2.83
3.71
2.22
1.76
1.96
2.63
2.48
2.23
3.43
2.78
3.08
1.84
3.39
2.57
2.38
2.74
1.40
2.52
2.33
0.92
3.14
4.21
2.02
2.15
2.48
1.06
1.79
2.99
1.78
1.00
0.91
2.51
2.02
Mn
0.19
0.32
0.21
0.24
0.26
0.38
0.22
0.19
0.27
0.21
0.24
0.12
0.15
0.13
0.25
0.33
0.22
0.26
0.28
0.33
0.17
0.32
0.25
0.19
0.32
0.32
0.16
0.21
0.16
0.27
0.33
0.26
0.18
0.25
0.24
0.21
0.16
0.27
0.25
0.18
0.15
0.17
0.22
0.20
0.29
0.25
0.14
0.22
0.31
0.21
0.25
0.25
0.25
0.24
SRHS-DU-94 Femur (continued)
Fe
1.22
1.81
1.50
1.33
1.29
1.00
1.23
1.18
1.07
0.95
1.71
1.01
1.70
1.07
2.10
1.32
1.54
1.50
1.18
1.20
1.01
1.52
1.30
1.17
1.63
1.94
1.28
1.36
1.16
1.30
1.24
2.33
1.16
1.42
1.46
1.39
0.90
1.13
1.04
1.00
0.64
1.64
1.22
1.33
1.45
1.28
1.23
0.86
1.21
1.54
1.33
1.16
1.49
1.14
Sr
2930.37
4092.18
2870.62
3245.36
4087.97
2486.05
2746.76
2250.58
3082.60
3752.69
3114.69
2828.59
3509.03
3543.77
3503.25
4795.80
2865.59
3065.30
3243.17
2627.80
2116.72
3395.26
3253.38
3091.29
2642.47
3769.51
3341.08
2924.70
2711.01
3489.56
3302.09
3277.42
2682.71
2855.96
3705.30
3084.87
2416.15
2849.50
3654.29
2835.56
2642.84
3043.17
2950.23
2695.34
3494.81
3169.44
2957.38
2706.97
3658.93
2893.39
3262.65
3332.99
3446.92
3541.42
Y
11.84
16.49
9.27
10.27
7.65
5.47
11.21
10.51
11.10
8.20
11.31
10.07
12.24
8.64
8.36
12.37
7.61
6.62
8.11
5.46
7.09
11.11
7.32
5.57
6.88
7.61
8.17
6.27
5.78
5.73
7.69
9.70
6.64
8.34
7.12
7.58
7.94
8.80
8.51
4.57
3.54
6.99
6.41
4.58
6.31
6.55
6.56
4.45
4.26
3.68
2.39
1.90
3.72
5.00
Ba
1769.26
2760.72
1836.78
2539.74
1959.50
1545.88
1193.23
1575.73
2819.88
1213.94
2478.84
1642.59
1711.60
2029.07
1882.25
1985.55
2034.78
nd
1627.07
1329.30
1385.67
1756.46
1330.85
1855.36
1590.45
2719.65
1913.19
1426.24
1175.96
1191.52
1668.86
2692.13
989.67
1247.94
1836.36
1847.60
2128.56
1695.16
1477.26
1387.91
1032.49
1638.28
1943.34
1848.08
2685.04
2234.56
1650.75
2284.25
2900.93
2116.78
2014.25
2258.40
2508.28
2219.45
La
2.88
3.19
1.92
1.78
1.30
1.41
1.76
2.36
3.42
1.68
4.45
3.03
1.00
1.80
1.85
2.20
2.03
2.58
3.11
1.59
3.17
2.37
1.69
1.46
1.61
1.99
1.86
2.27
0.88
1.54
1.63
2.91
1.65
2.44
2.18
1.14
1.62
2.05
1.35
9.75
1.05
1.08
1.45
0.93
1.89
1.69
1.92
1.67
2.64
0.49
0.43
0.63
1.49
2.03
Ce
6.52
7.06
4.88
2.16
5.26
2.95
5.06
3.42
6.74
4.63
6.09
4.78
2.21
2.54
7.17
4.94
3.33
9.44
4.14
1.86
5.26
2.97
3.47
2.01
2.76
4.13
4.83
2.92
2.63
2.19
4.05
7.93
3.07
2.57
2.77
3.62
12.41
2.57
2.53
3.44
1.69
3.34
2.48
4.21
4.81
3.27
3.10
2.20
2.01
1.96
1.01
1.21
1.78
1.84
Pr
0.53
0.74
0.55
0.53
0.34
0.14
0.37
0.50
0.53
0.41
0.51
0.49
0.34
0.10
0.55
0.80
0.42
0.26
0.24
0.54
0.47
0.32
0.49
0.27
0.34
0.31
0.13
0.07
0.10
0.30
0.38
0.27
0.33
0.22
0.84
0.04
0.26
0.33
0.21
0.29
0.19
0.20
0.53
0.43
0.15
0.10
0.10
0.16
0.29
0.03
0.12
0.04
0.12
0.04
Nd
1.96
1.21
2.34
1.65
1.50
bd
1.10
2.10
0.77
1.30
1.50
0.58
0.60
1.63
1.15
2.99
0.87
1.92
1.07
0.99
0.52
1.90
0.66
0.39
0.44
1.04
0.55
1.72
0.19
0.25
0.74
1.58
0.19
1.92
1.23
0.74
0.75
0.39
0.89
0.56
0.96
0.23
1.80
0.23
bd
0.77
0.59
0.71
bd
0.41
bd
0.24
0.35
0.48
Sm
0.78
0.29
0.21
bd
0.90
bd
1.05
0.25
bd
1.12
0.26
0.23
bd
bd
0.55
0.60
0.21
bd
0.21
bd
bd
0.25
bd
bd
bd
bd
bd
0.69
bd
bd
0.59
bd
bd
bd
bd
bd
0.22
bd
0.64
0.22
0.16
bd
bd
bd
bd
bd
0.23
bd
bd
bd
bd
bd
bd
bd
Eu
0.12
bd
0.06
bd
bd
0.22
0.08
bd
0.09
0.07
0.08
0.14
0.14
0.29
bd
0.09
0.06
0.14
0.06
0.06
0.19
0.08
0.08
0.07
0.16
bd
0.13
bd
0.07
bd
bd
bd
bd
0.08
bd
0.09
0.07
0.07
bd
0.07
0.10
bd
bd
bd
0.08
bd
0.07
0.09
0.10
bd
bd
0.09
0.13
0.09
Gd
0.38
5.15
bd
bd
0.58
0.47
0.77
bd
bd
0.43
bd
1.60
0.71
0.72
1.63
bd
bd
0.45
0.42
1.57
0.20
0.74
0.25
0.22
0.52
0.61
0.21
0.22
0.22
1.47
0.57
bd
0.45
0.24
bd
bd
0.88
bd
0.41
bd
bd
0.27
0.29
0.26
0.75
bd
0.22
0.27
0.67
0.23
0.85
bd
bd
0.56
Tb
0.12
0.17
0.10
bd
0.07
0.06
0.16
0.15
0.04
0.03
0.03
0.14
0.03
0.03
0.07
bd
0.12
0.05
0.10
0.05
0.02
0.12
0.03
0.06
bd
0.04
0.05
0.05
0.03
bd
bd
bd
0.03
0.09
bd
0.03
0.03
0.08
0.10
0.08
0.02
0.03
0.04
bd
0.06
bd
0.17
0.03
bd
bd
0.07
bd
bd
0.03
Dy
0.74
0.53
0.40
0.45
0.55
0.21
0.61
0.46
0.57
0.30
0.60
0.43
0.56
0.45
0.91
0.55
0.18
0.31
0.70
bd
bd
0.59
0.49
bd
0.36
0.12
0.19
0.31
0.20
0.98
0.25
0.89
0.53
0.22
0.54
0.11
0.30
0.09
0.29
0.19
bd
bd
bd
0.10
0.47
0.31
bd
0.25
0.29
0.57
bd
0.53
bd
0.25
Ho
0.19
0.46
0.10
0.12
0.15
0.12
0.41
0.06
0.07
0.24
0.16
0.11
0.20
0.24
0.13
0.11
bd
0.28
0.31
0.14
0.23
0.06
0.03
0.09
0.06
0.08
0.11
0.22
0.14
0.07
0.18
0.27
0.06
0.16
0.07
0.07
0.11
0.29
0.10
0.03
0.10
0.07
0.11
0.27
0.09
0.11
0.11
bd
0.08
bd
bd
bd
0.05
0.03
Er
0.41
0.77
0.57
0.52
0.31
0.51
0.70
0.13
0.66
0.71
0.27
0.12
1.02
0.78
0.58
0.47
0.44
0.98
0.45
0.42
0.55
0.67
0.14
0.12
0.42
0.66
0.59
0.73
0.12
0.63
0.47
1.34
0.85
0.68
0.47
0.15
0.23
0.12
0.34
0.35
0.26
1.19
1.15
0.73
0.41
0.24
bd
bd
0.72
bd
0.15
bd
bd
0.61
Tm
0.20
0.17
bd
0.11
0.03
0.08
0.09
0.09
0.21
0.03
0.09
0.19
0.11
0.06
0.06
0.10
0.12
0.13
0.12
0.05
0.10
0.23
0.09
0.03
0.18
0.11
0.10
0.11
0.16
0.14
0.10
0.07
0.05
0.21
0.20
0.14
0.03
0.03
0.05
0.03
0.02
0.06
0.04
0.10
0.06
bd
0.05
0.07
bd
bd
bd
0.03
0.05
0.10
Yb
0.69
1.22
1.68
0.52
bd
1.19
1.11
0.71
2.40
0.31
1.64
0.49
0.51
0.34
0.58
1.68
0.74
0.32
0.45
1.26
0.29
0.54
1.12
bd
0.19
0.66
0.31
0.65
0.80
0.63
bd
0.89
0.48
1.08
0.62
1.04
0.47
0.33
0.30
0.31
0.23
1.19
0.43
0.19
0.90
0.65
bd
0.20
0.48
0.34
bd
0.41
bd
bd
Lu
0.13
0.48
0.19
0.13
0.08
0.03
0.14
0.16
0.28
0.26
0.30
0.21
0.12
0.13
0.11
0.31
0.13
0.03
0.11
0.03
0.08
0.03
0.14
0.06
0.10
0.12
0.37
0.06
0.09
0.08
0.04
0.12
0.09
0.10
0.08
bd
0.03
0.03
0.33
0.09
0.09
0.07
0.12
0.14
0.17
0.03
0.15
0.11
0.18
0.03
0.11
0.04
0.05
0.11
bd
0.06
bd
bd
0.03
bd
0.03
bd
0.03
bd
bd
bd
0.02
bd
0.03
bd
0.04
bd
0.04
0.02
bd
bd
0.03
bd
bd
bd
0.04
bd
bd
bd
bd
bd
0.04
0.02
0.06
bd
0.07
bd
bd
bd
bd
bd
bd
bd
bd
0.04
0.05
bd
bd
bd
bd
bd
bd
0.06
Th
U
ƩREE
1.70
16
3.48
21
1.22
13
1.04
8
0.82
11
2.14
7
2.29
13
2.47
10
2.41
16
2.23
12
2.57
16
1.56
13
1.68
8
0.77
9
1.70
15
2.01
15
1.55
9
2.93
17
2.48
12
1.44
9
2.16
11
3.13
11
1.23
9
1.15
5
0.86
7
1.41
10
1.74
9
2.06
10
1.23
6
1.68
8
1.64
9
2.18
16
1.02
8
2.59
10
3.20
9
1.54
7
1.72
17
1.09
6
1.11
8
1.26
15
0.65
5
1.03
8
1.29
8
1.39
8
1.07
10
0.90
7
1.20
7
1.19
6
0.64
7
0.33
4
0.22
3
0.32
3
0.72
4
1.13
6
Ce/Ce*
0.23
0.08
0.11
-0.48
0.86
0.41
0.46
-0.26
0.14
0.31
-0.12
-0.10
-0.12
0.07
0.67
-0.14
-0.15
1.44
-0.05
-0.53
-0.03
-0.24
-0.11
-0.25
-0.12
0.20
0.91
0.08
0.95
-0.25
0.21
0.86
-0.02
-0.27
-0.53
1.59
3.42
-0.29
0.08
-0.71
-0.12
0.67
-0.34
0.50
0.82
0.47
0.25
-0.11
-0.51
1.92
0.03
0.43
-0.16
-0.22
Ce/Ce**
1.57
0.74
1.35
0.44
2.51
-3.50
1.39
1.02
0.96
1.22
1.22
0.69
0.51
-1.15
1.11
0.78
0.68
-35.99
2.77
0.28
0.78
3.55
0.52
0.56
0.59
1.53
6.22
-0.94
2.23
0.50
0.89
11.43
0.61
-2.57
0.25
-3.30
5.00
0.55
1.80
0.99
2.06
1.19
0.55
0.63
3.85
-15.18
12.04
2.20
0.56
-4.81
0.79
11.50
1.51
-3.80
La/La*
Y/Ho
0.61
62.3
-0.47
36.2
0.60
88.4
-0.28
85.4
1.11
52.7
-2.07
46.7
-0.08
27.0
1.07 172.2
-0.23 148.1
-0.12
33.7
0.69
72.3
-0.33
89.4
-0.62
60.0
-1.73
36.4
-0.52
62.3
-0.19 114.0
-0.31
68.8
-3.03
23.7
6.07
26.1
-0.61
37.9
-0.28
31.2
-5.80 181.3
-0.61 228.7
-0.36
65.0
-0.47 106.7
0.53 100.7
7.13
75.9
-1.72
28.1
0.22
41.8
-0.47
79.5
-0.41
43.0
-8.07
36.2
-0.52 119.8
-2.36
53.8
-0.69
99.7
-1.96 105.7
0.23
72.8
-0.33
30.7
1.82
82.4
3.64 170.0
38.46
35.3
-0.41 102.7
-0.32
57.0
-0.80
17.1
2.20
67.7
-3.89
58.8
-13.60
57.8
4.69
54.5
0.21
51.3
-1.95
62.1
-0.39
62.1
-11.09
62.1
1.40
72.8
-4.33 143.7
399
mm from
bone rim
8.02
8.05
8.08
8.12
8.15
8.19
8.22
8.26
8.29
8.33
8.36
8.40
8.43
8.46
8.50
8.53
8.57
8.60
8.64
8.67
8.71
8.74
8.78
8.81
8.84
8.88
8.91
8.95
8.98
9.02
9.05
9.09
9.12
9.16
9.19
9.22
9.26
9.29
9.29
9.33
9.36
9.40
9.43
9.47
9.50
9.54
9.57
9.60
9.64
9.67
9.71
9.74
9.78
9.81
Sc
2.42
3.25
2.60
1.47
0.86
1.06
1.65
1.98
1.69
1.82
1.98
3.00
2.59
1.51
2.48
1.36
0.98
0.95
0.95
1.97
1.65
0.91
1.67
1.71
1.14
1.71
1.18
1.81
2.04
1.03
1.01
2.31
1.48
1.46
1.75
0.89
1.96
1.53
1.40
1.42
1.49
0.74
1.37
0.81
0.89
1.18
1.69
1.32
1.14
1.23
2.01
1.19
2.00
0.80
Mn
0.18
0.25
0.22
0.27
0.21
0.21
0.22
0.22
0.29
0.14
0.22
0.22
0.25
0.22
0.27
0.26
0.24
0.21
0.21
0.19
0.28
0.30
0.91
0.65
0.88
0.74
0.94
0.60
0.56
0.49
0.38
0.25
0.23
0.20
0.21
0.63
0.18
0.26
0.22
0.30
0.27
0.23
0.32
0.22
0.16
0.28
0.18
0.26
0.26
0.30
0.20
0.20
0.15
0.19
SRHS-DU-94 Femur (continued)
Fe
1.08
1.48
1.17
1.07
0.92
1.29
1.02
1.44
1.21
bd
1.13
1.14
1.33
1.12
1.05
bd
1.44
2.06
1.27
1.01
1.12
1.49
1.36
1.61
1.30
1.67
0.78
1.19
0.95
0.94
2.05
1.15
1.12
2.19
1.08
0.97
1.06
1.33
0.96
1.17
1.48
1.25
1.23
1.24
1.05
1.05
1.37
1.52
1.18
1.25
1.17
1.52
0.91
0.90
Sr
3059.17
2814.37
3685.39
3089.07
2684.60
2857.74
3567.88
4224.34
3012.30
2660.69
2781.18
3076.67
4773.88
3534.35
3437.16
3905.75
3806.13
2958.05
3341.65
3382.61
3867.15
3371.27
2257.20
3465.82
3146.23
3142.37
2725.06
3518.79
3377.86
2493.38
3346.15
3086.35
2774.91
2889.04
3862.55
3532.52
2824.53
2914.22
3192.59
3938.56
3321.47
3421.60
4038.46
3546.35
2388.58
2621.75
2700.48
3613.82
2900.08
3966.40
3443.03
4510.00
2667.59
2515.82
Y
5.01
4.73
4.94
3.41
3.65
4.45
5.59
6.09
4.15
5.26
5.45
6.23
12.14
7.61
3.53
3.27
3.60
1.64
3.04
3.67
4.29
4.02
3.19
4.01
6.20
3.74
3.74
4.32
5.58
3.82
4.02
4.01
3.69
4.29
4.34
2.65
2.67
4.70
2.31
3.15
2.67
1.15
2.38
2.51
2.66
3.69
2.22
4.40
2.05
2.65
3.13
3.45
2.34
2.72
Ba
2952.50
2885.90
1782.34
1770.54
1352.88
1416.43
2781.26
1619.07
2795.58
993.00
1771.81
1410.04
2604.86
1612.72
1481.28
1961.71
2474.70
1156.91
1387.18
1379.49
2127.93
1793.91
1692.82
2845.43
2369.11
3231.01
1533.26
1479.69
2383.12
1626.98
1217.61
1262.74
1766.33
2154.30
nd
1619.09
1984.70
1121.85
1466.12
2896.86
1775.16
1970.79
2921.67
1573.58
1199.01
2726.90
1748.85
2929.43
1448.60
1211.40
1877.76
2426.27
1455.41
1341.54
La
1.35
2.30
1.85
0.84
1.01
0.56
1.58
1.43
1.76
1.23
1.52
2.40
1.68
1.23
1.59
0.82
0.77
0.34
0.72
1.22
1.03
1.23
0.80
0.63
0.76
0.62
0.70
1.38
2.13
0.89
1.22
0.99
0.75
0.79
0.97
2.09
1.13
1.61
0.81
0.82
0.99
0.51
0.39
1.36
0.80
0.88
0.41
0.78
2.58
1.12
0.64
0.86
0.63
0.20
Ce
1.35
2.34
2.09
3.27
1.08
1.90
1.52
2.65
2.31
2.29
2.03
2.14
2.49
1.18
2.54
2.29
1.15
0.52
0.49
1.38
1.68
1.71
0.80
2.03
1.26
2.00
1.52
1.12
0.81
1.49
2.39
1.72
2.89
1.40
0.65
8.09
2.49
2.69
0.73
8.15
0.89
1.31
0.79
1.00
0.89
1.77
0.58
1.58
1.13
1.00
0.52
1.02
0.93
0.61
Pr
0.06
0.33
0.21
0.07
0.16
0.12
0.10
0.58
0.27
0.28
0.19
0.25
0.41
0.27
0.07
0.07
0.04
0.08
0.13
0.17
0.04
0.15
0.21
0.21
bd
0.09
0.15
0.39
0.04
0.27
0.14
0.13
0.03
0.12
0.66
0.18
0.08
0.37
0.07
bd
0.04
0.12
0.10
bd
0.26
0.05
0.07
bd
0.03
0.11
0.10
0.27
bd
bd
Nd
0.18
bd
1.99
1.98
bd
0.23
2.43
bd
bd
0.30
0.32
0.55
1.08
0.22
0.40
0.41
0.85
bd
0.95
0.19
0.46
bd
0.42
0.24
0.21
bd
0.65
bd
bd
bd
0.20
0.19
0.20
bd
0.32
bd
0.70
0.97
0.20
bd
0.77
bd
bd
bd
bd
bd
bd
1.30
0.39
0.85
0.27
bd
0.96
bd
bd
bd
bd
bd
bd
0.28
bd
bd
bd
0.18
bd
0.66
bd
0.27
bd
bd
bd
bd
0.23
bd
bd
bd
bd
bd
bd
bd
0.52
bd
bd
bd
bd
bd
0.47
bd
bd
bd
bd
0.29
bd
0.70
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
Sm
bd
bd
bd
bd
bd
bd
bd
0.09
0.08
0.05
bd
bd
0.10
bd
0.07
bd
bd
0.05
0.14
0.07
bd
0.39
bd
bd
0.08
bd
0.16
bd
0.15
bd
bd
bd
bd
bd
0.12
bd
0.08
0.09
0.14
bd
0.18
bd
bd
bd
bd
0.30
0.21
bd
0.06
bd
bd
bd
bd
bd
Eu
Gd
1.32
bd
bd
bd
bd
bd
0.35
bd
bd
bd
0.74
0.21
0.31
0.53
bd
bd
bd
0.54
0.22
0.22
0.54
1.03
0.24
0.28
0.24
bd
0.25
0.59
bd
bd
0.95
bd
0.22
0.54
0.37
bd
bd
0.28
0.49
bd
bd
bd
bd
bd
0.24
bd
bd
bd
0.22
bd
bd
bd
0.26
bd
bd
bd
bd
bd
bd
0.07
0.09
bd
0.03
0.13
bd
0.03
bd
0.06
0.03
bd
0.03
0.02
0.08
bd
bd
0.03
0.03
bd
0.06
0.04
0.03
0.07
bd
bd
bd
bd
0.03
bd
0.05
bd
bd
bd
0.06
bd
bd
0.03
bd
bd
0.03
bd
bd
bd
0.03
bd
bd
0.04
bd
bd
Tb
Dy
0.19
0.10
bd
0.10
bd
0.64
0.14
0.27
0.36
0.15
0.26
0.30
0.28
0.37
0.09
0.09
0.09
0.07
0.08
bd
0.65
0.10
0.34
0.39
0.22
0.26
0.10
0.71
bd
bd
0.21
0.42
0.32
0.24
0.14
bd
0.38
bd
0.25
bd
bd
0.13
0.82
bd
0.26
bd
bd
0.38
0.23
bd
0.68
0.47
bd
bd
Ho
0.05
0.06
0.07
bd
bd
0.03
0.04
0.15
0.10
0.09
0.05
0.27
0.24
0.30
0.06
0.09
0.06
bd
0.11
0.11
0.14
0.06
0.06
bd
0.03
0.11
0.03
0.04
0.06
bd
0.32
bd
0.06
0.03
0.14
0.04
bd
bd
0.12
bd
0.04
0.03
bd
bd
bd
bd
bd
0.10
0.06
0.16
bd
0.08
bd
bd
Er
0.71
0.13
0.31
bd
0.11
bd
0.58
1.01
0.14
0.48
0.60
0.35
0.34
0.43
0.50
0.78
0.27
bd
bd
0.25
0.14
bd
0.13
0.15
bd
bd
0.13
0.32
bd
0.79
0.25
0.12
bd
bd
0.20
0.51
0.14
bd
0.27
bd
bd
0.30
bd
bd
0.14
bd
bd
0.42
bd
bd
bd
0.17
0.15
0.16
Tm
0.03
bd
0.03
0.18
0.08
0.13
0.08
bd
0.03
bd
0.04
bd
0.07
bd
0.08
bd
0.03
0.04
bd
0.03
bd
0.12
0.06
0.03
bd
0.14
0.09
0.07
bd
0.10
0.03
0.13
bd
0.03
0.18
bd
0.03
bd
bd
0.16
bd
bd
0.04
bd
0.03
bd
bd
bd
0.14
bd
0.12
0.11
bd
bd
Yb
0.79
0.18
bd
0.37
0.31
bd
0.77
0.22
bd
0.38
1.20
bd
1.14
0.38
0.33
0.17
0.18
0.26
0.32
bd
0.20
bd
1.07
bd
bd
0.21
bd
1.08
0.54
bd
0.17
0.32
bd
bd
bd
bd
bd
0.41
bd
bd
bd
bd
0.24
bd
0.38
bd
0.17
bd
bd
0.18
0.24
0.23
0.20
bd
Lu
bd
0.03
0.04
0.07
bd
0.21
0.05
0.08
0.14
0.07
0.05
0.14
0.12
bd
bd
0.03
0.10
0.05
0.03
bd
0.18
0.07
0.13
bd
0.13
bd
0.23
0.12
0.10
0.14
0.06
0.15
bd
0.04
0.05
bd
bd
0.07
0.07
bd
bd
0.07
0.09
bd
0.14
0.09
bd
bd
bd
0.07
bd
0.04
bd
0.12
bd
bd
bd
bd
bd
bd
0.07
bd
bd
bd
0.02
bd
bd
bd
bd
bd
0.15
bd
0.04
bd
bd
0.03
bd
0.03
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
0.08
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
Th
U
ƩREE
1.16
6
1.08
5
0.61
7
0.54
7
0.40
3
0.73
4
0.99
8
1.13
6
1.47
5
1.11
6
1.78
7
2.11
7
5.74
8
3.50
5
1.50
6
1.33
5
0.54
4
0.64
2
0.85
3
1.33
4
1.45
5
0.98
5
1.68
4
1.11
4
1.35
3
1.26
3
1.24
5
2.22
6
1.63
4
1.95
4
1.99
6
1.34
4
0.87
5
1.60
3
1.35
4
0.98
11
1.34
5
0.50
7
1.27
3
1.88
10
0.69
3
0.71
3
1.01
2
0.60
2
0.75
3
1.38
3
0.78
1
1.11
5
0.72
5
0.60
3
0.89
3
2.39
3
0.40
3
1.37
1
Ce/Ce*
-0.21
-0.39
-0.27
1.69
-0.38
0.74
-0.29
-0.34
-0.24
-0.09
-0.16
-0.41
-0.30
-0.52
0.28
0.96
0.18
-0.25
-0.63
-0.32
0.33
-0.12
-0.55
0.32
-0.12
0.95
0.11
-0.64
-0.67
-0.29
0.27
0.07
2.05
0.04
-0.83
1.69
0.61
-0.19
-0.38
6.26
-0.29
0.25
-0.04
-0.55
-0.55
0.53
-0.21
0.49
-0.61
-0.40
-0.52
-0.51
-0.47
-0.52
Ce/Ce**
2.18
0.80
-1.65
-0.92
-68.89
1.33
-0.36
0.40
1.91
0.57
0.84
0.74
0.57
0.29
14.65
12.82
-0.79
-0.59
-3.82
0.59
-3.60
1.19
0.31
0.70
0.65
4.74
1.67
0.20
-1.88
0.42
1.30
0.99
33.60
1.02
0.06
4.44
-6.80
0.68
0.99
-41.51
-0.79
-2.58
-0.88
1.89
0.46
-1.06
-0.43
-0.69
-2.99
-4.63
0.52
0.33
0.49
0.22
La/La*
Y/Ho
3.11
92.6
0.59
75.5
-1.92
68.5
-1.23 101.0
-2.58 101.0
-0.36 133.6
-1.37 127.5
-0.62
39.7
23.85
42.2
-0.53
60.3
0.01 118.8
0.41
23.3
-0.31
51.6
-0.54
25.7
-16.46
61.4
-8.73
36.8
-1.51
58.4
-1.30
43.0
-2.15
27.6
-0.20
32.1
-2.74
31.6
0.63
63.4
-0.49
52.3
-0.67 128.4
-0.39 204.4
10.80
33.5
1.60 119.4
-0.62 117.3
-4.92
90.6
-0.60
51.5
0.04
12.4
-0.10
38.4
-15.75
64.4
-0.03 127.5
-0.86
30.8
1.12
68.8
-2.72
43.6
-0.27
43.6
1.02
18.5
-2.97
44.6
-1.81
70.6
-1.54
34.2
-1.32
40.2
-7.31
40.2
0.02
40.2
-1.50
40.2
-1.27
40.2
-1.34
46.2
-6.31
35.1
-2.77
16.8
0.17
30.5
-0.53
44.2
-0.20
33.6
-0.88
33.6
400
mm from
bone rim
9.85
9.88
9.92
9.95
9.98
10.02
10.05
10.09
10.12
10.16
10.19
10.23
10.26
10.30
10.33
10.37
10.40
10.43
10.47
10.50
10.54
10.57
10.61
10.64
10.68
10.71
10.75
10.78
10.81
10.85
10.88
10.92
10.95
10.99
11.02
11.06
11.09
11.13
11.16
11.19
11.23
11.26
11.30
11.33
11.37
11.40
11.44
11.47
11.51
11.54
11.57
11.61
11.64
11.68
Sc
0.97
1.36
0.62
1.45
1.30
0.94
1.50
0.99
1.30
1.45
2.99
1.20
0.86
0.89
0.97
1.26
0.90
1.30
1.29
1.25
1.60
0.76
1.92
1.87
1.56
1.45
2.11
1.66
1.60
2.45
1.49
1.54
1.33
1.70
0.92
2.02
1.43
2.47
2.41
0.65
1.05
0.63
0.90
0.87
0.64
0.16
0.69
0.51
0.59
1.10
0.61
1.59
0.87
0.61
Mn
0.45
0.23
0.22
0.14
0.18
0.40
0.16
0.17
0.31
0.15
0.28
0.21
0.22
0.23
0.23
0.18
0.29
0.35
0.28
0.21
0.16
0.33
0.17
0.21
0.18
0.15
0.35
0.60
0.52
0.27
0.35
0.36
0.33
0.31
0.14
0.19
0.28
0.19
0.19
0.18
0.29
0.26
0.27
0.19
0.15
0.48
0.23
0.30
0.19
0.18
0.21
0.18
0.24
0.26
SRHS-DU-94 Femur (continued)
Fe
1.13
1.08
1.42
0.88
1.16
1.44
0.83
1.29
1.39
1.04
1.14
1.42
1.11
1.80
1.00
1.37
1.04
1.32
2.60
2.24
1.14
1.10
1.47
0.81
1.30
0.92
1.57
1.61
1.14
2.12
0.99
1.54
1.26
0.73
1.17
0.90
1.46
1.70
1.06
0.74
0.91
1.15
1.70
1.25
0.86
1.03
1.06
1.63
1.05
1.44
0.93
1.00
0.96
1.56
Sr
3314.94
2938.98
2707.42
2307.84
2581.07
2523.20
2627.49
2699.85
2835.76
2886.10
3589.98
2881.69
2353.11
4680.46
2118.10
3290.59
2613.70
3637.79
3392.39
2665.16
2379.91
2332.70
2647.77
2655.62
3904.06
2691.92
2996.72
3777.84
3053.67
3125.60
2795.07
2986.53
4173.37
2459.97
2970.07
2468.22
4059.67
3444.15
4105.30
3498.87
2600.91
3448.81
4155.80
2808.43
2585.96
3577.02
4222.66
4326.53
2554.48
3014.85
2512.07
3519.53
3652.72
3106.98
Y
1.80
2.57
1.70
1.73
2.27
1.30
1.80
2.35
6.27
6.36
5.73
5.51
5.11
4.55
3.19
4.11
2.62
4.53
4.66
3.46
3.09
2.75
2.45
2.39
2.80
2.36
3.71
3.96
3.36
2.90
2.82
4.78
3.61
1.78
2.41
3.87
4.42
3.42
2.03
2.07
2.05
0.59
3.33
1.93
0.80
1.18
0.73
1.47
1.81
2.12
1.74
2.56
2.27
1.89
Ba
1357.98
1693.98
1128.72
2186.99
2110.05
1938.08
1219.57
1465.80
2218.91
2085.22
2232.81
2242.63
2098.53
1813.95
1978.70
1330.74
1615.31
1879.36
2230.14
nd
2334.40
1150.26
1275.16
1626.67
2220.05
1904.83
1959.65
2008.98
nd
2802.76
1780.07
2607.09
1681.57
1843.08
1233.54
1746.27
2324.10
1756.15
1824.27
1322.37
1873.61
1160.18
2326.93
2495.95
1428.04
2233.71
3469.10
2312.63
1593.72
1408.41
1901.47
1412.30
1451.49
1764.48
La
0.54
0.67
0.72
1.72
0.64
1.23
0.58
0.90
2.62
2.99
4.74
3.98
2.18
2.72
1.56
6.43
1.03
1.23
1.97
1.65
0.78
0.65
2.28
0.62
1.21
1.62
0.81
1.14
1.62
1.04
0.78
1.04
1.21
0.88
0.83
0.94
1.42
0.50
0.84
0.66
0.68
0.32
1.11
0.25
0.14
0.43
0.45
1.06
0.43
0.66
0.57
0.54
0.24
0.52
Ce
1.19
7.65
0.59
1.19
0.70
1.18
1.08
2.79
bd
14.02
9.06
66.28
3.26
5.32
1.23
1.87
1.71
1.39
2.56
4.66
1.38
1.24
1.64
2.32
1.16
2.67
1.14
1.53
0.84
0.95
0.79
2.87
0.61
1.42
0.78
0.99
0.52
1.40
1.12
0.67
0.63
0.50
0.59
0.70
0.28
0.14
0.71
1.01
0.73
0.38
1.06
1.47
0.83
0.94
Pr
0.23
0.22
bd
0.24
0.18
0.16
0.03
0.38
0.63
3.11
1.43
1.57
0.51
0.15
0.06
0.69
0.08
0.04
1.00
0.22
0.16
0.12
0.04
0.82
0.23
0.20
0.09
0.32
0.17
0.25
bd
0.18
0.09
0.04
0.12
0.18
bd
bd
0.43
bd
0.04
0.04
0.11
bd
bd
0.69
0.04
bd
0.22
bd
bd
0.12
0.04
0.04
bd
0.24
0.21
0.22
bd
0.46
0.18
0.89
1.96
2.60
4.20
4.71
0.84
0.43
bd
3.58
0.44
1.96
0.48
0.24
1.29
bd
bd
bd
0.53
0.22
0.53
0.80
0.23
bd
0.25
0.68
0.24
0.23
bd
0.51
bd
bd
0.82
0.46
bd
0.21
bd
bd
bd
0.70
bd
0.25
3.43
bd
bd
0.23
bd
bd
Nd
bd
bd
bd
0.28
bd
bd
bd
0.27
bd
bd
0.84
0.23
0.51
0.53
0.67
bd
0.27
bd
0.29
bd
0.45
bd
bd
bd
bd
bd
0.32
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.38
bd
bd
0.28
bd
bd
bd
bd
bd
0.86
0.60
0.64
0.26
bd
bd
bd
bd
bd
Sm
bd
bd
bd
0.07
bd
0.07
0.13
0.07
0.17
0.19
0.07
0.70
0.14
bd
0.06
bd
0.15
0.08
0.08
0.08
0.12
bd
0.08
0.25
bd
0.07
0.28
0.08
bd
bd
0.08
0.23
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.15
bd
bd
bd
bd
0.17
0.08
bd
0.06
bd
bd
bd
bd
Eu
bd
bd
bd
0.26
bd
0.26
bd
bd
bd
0.20
1.64
0.21
0.23
0.24
0.20
2.53
0.24
0.27
bd
bd
bd
0.59
bd
0.26
bd
bd
0.29
0.62
0.27
0.86
bd
0.38
0.58
bd
0.25
bd
bd
bd
bd
0.54
bd
bd
bd
bd
0.25
bd
bd
bd
0.23
bd
0.24
bd
bd
bd
Gd
bd
bd
0.06
0.07
bd
0.07
bd
0.10
0.07
0.32
0.20
0.03
0.15
0.03
0.05
0.10
bd
bd
0.10
bd
bd
0.02
bd
0.10
0.16
bd
bd
0.08
bd
bd
bd
bd
0.04
0.07
bd
bd
0.09
bd
bd
bd
bd
0.10
bd
bd
0.03
bd
bd
bd
0.03
bd
bd
bd
bd
0.07
Tb
bd
0.15
bd
0.69
0.63
bd
bd
0.78
0.29
0.54
0.41
0.69
0.50
0.26
0.22
0.14
0.39
bd
1.00
bd
bd
bd
bd
0.14
bd
0.42
0.31
0.32
0.43
bd
0.61
bd
0.15
0.14
0.13
bd
0.19
0.18
bd
bd
bd
bd
0.19
0.18
bd
bd
0.44
bd
bd
bd
bd
0.14
bd
0.15
Dy
Ho
0.08
bd
bd
0.07
0.04
bd
0.08
bd
0.07
0.08
0.07
0.06
0.06
0.06
0.03
0.07
0.10
bd
bd
bd
0.05
0.05
0.04
0.03
bd
0.10
0.08
0.04
bd
0.04
bd
0.20
bd
0.04
0.13
bd
0.09
bd
bd
0.10
0.08
bd
bd
0.05
0.03
bd
0.04
0.08
bd
0.06
0.10
0.11
0.04
0.04
bd
0.16
0.43
bd
bd
0.15
0.12
0.14
0.47
0.24
0.60
0.25
0.41
bd
bd
bd
bd
0.16
0.16
0.49
bd
bd
0.79
0.15
bd
0.30
bd
0.52
bd
0.32
0.33
0.22
bd
bd
0.44
bd
0.20
0.40
0.54
0.30
bd
0.14
0.21
bd
0.15
0.15
bd
bd
bd
bd
0.28
bd
bd
bd
Er
Tm
bd
bd
bd
bd
bd
bd
0.03
0.06
0.10
0.03
bd
bd
0.06
0.03
bd
0.17
0.06
0.03
0.14
bd
0.03
bd
bd
bd
bd
0.07
0.04
bd
bd
bd
0.07
bd
bd
0.10
0.10
bd
bd
0.09
0.04
0.07
bd
bd
bd
bd
bd
bd
bd
0.11
bd
bd
bd
bd
0.07
0.04
Yb
0.23
bd
0.19
bd
bd
0.40
0.16
bd
0.42
1.42
bd
0.83
bd
bd
bd
bd
bd
bd
0.83
bd
bd
0.29
bd
bd
bd
bd
bd
bd
bd
bd
0.22
0.59
0.21
bd
bd
0.44
0.27
0.53
bd
bd
bd
0.19
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.22
Lu
bd
0.04
0.03
bd
bd
0.04
0.06
0.07
0.11
0.09
0.04
0.06
bd
bd
0.06
bd
0.17
bd
0.04
0.04
0.09
0.03
0.08
bd
bd
0.04
0.04
bd
0.04
0.08
0.04
bd
bd
bd
0.14
0.20
0.10
0.10
bd
bd
0.04
0.07
bd
bd
0.04
bd
bd
0.04
0.03
bd
0.10
bd
bd
bd
bd
bd
0.05
bd
0.16
0.03
bd
bd
bd
bd
bd
0.02
0.05
bd
0.04
bd
0.08
bd
bd
bd
bd
bd
bd
bd
0.03
0.03
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
0.03
bd
bd
0.02
bd
bd
bd
bd
bd
Th
U
ƩREE
0.93
2
0.95
9
0.80
2
0.58
5
1.15
2
0.91
4
0.96
2
0.92
6
2.75
7
1.33
26
1.41
23
0.70
80
1.07
9
1.00
10
0.95
4
0.76
16
0.78
5
1.64
5
1.45
9
2.80
7
2.38
4
0.61
3
1.16
5
0.91
5
0.87
3
1.48
6
2.22
4
2.03
5
1.50
4
2.01
4
2.22
3
2.06
6
1.45
3
1.28
3
0.96
3
1.20
3
0.85
3
1.65
3
1.40
4
0.70
3
0.77
1
0.42
2
0.87
2
0.38
1
0.24
1
0.58
3
0.90
2
1.39
3
1.07
5
0.45
1
0.47
2
0.75
3
0.92
1
0.93
2
Ce/Ce*
-0.23
3.63
-0.66
-0.58
-0.52
-0.41
0.43
0.08
0.54
-0.14
-0.19
5.08
-0.27
0.49
-0.37
-0.81
0.20
-0.08
-0.60
0.73
-0.08
0.04
-0.38
-0.44
-0.49
0.03
-0.09
-0.41
-0.66
-0.57
-0.55
0.53
-0.63
0.27
-0.43
-0.43
-0.82
-0.23
-0.59
-0.61
-0.31
0.00
-0.64
-0.64
-0.85
-0.96
0.07
-0.40
-0.47
-0.74
-0.21
0.34
0.93
0.27
Ce/Ce**
0.49
2.44
0.17
0.34
0.31
0.74
9.98
0.65
1.43
0.30
0.65
4.39
0.50
3.53
-0.32
0.63
7.60
-0.34
0.16
1.49
-2.93
-4.87
-1.08
0.20
0.44
0.93
4.20
0.43
0.37
0.26
0.26
2.12
0.70
10.33
0.72
0.56
0.15
0.40
0.21
0.23
-8.12
3.92
0.78
0.12
0.05
0.01
-1.60
0.63
-0.16
-0.24
-0.69
0.95
5.85
4.95
La/La*
Y/Ho
-0.60
23.1
-0.67
24.1
-0.68
24.1
-0.27
25.1
-0.54
58.5
0.43
39.9
-22.42
21.4
-0.64
54.5
-0.12
87.5
-0.90
78.4
-0.36
84.5
-0.50
96.6
-0.47
82.5
2.37
70.4
-1.41 119.2
110.30
59.3
-12.48
26.7
-1.31
42.0
-0.82
42.0
-0.19
42.0
-1.73
57.3
-1.93
55.3
-2.44
68.6
-0.92
68.6
-0.22
45.7
-0.14
22.7
-8.47
47.2
-0.43 101.0
0.12
90.9
-0.57
80.8
-0.61
52.2
0.86
23.6
1.56
37.0
-26.72
50.4
0.50
18.0
-0.01
32.6
-0.31
47.2
-0.76
33.6
-0.74
33.6
-0.62
20.0
-3.75
27.1
-10.93
34.7
3.18
34.7
-0.93
42.3
-0.96
24.1
-0.93
22.0
-1.78
20.0
0.09
19.0
-1.08
27.1
-1.31
35.1
-1.27
18.0
-0.44
24.1
-9.13
64.6
134.66
50.4
401
mm from
bone rim
11.71
11.75
11.78
11.82
11.85
11.89
11.92
11.95
11.99
12.02
12.06
12.09
12.13
12.16
12.20
12.23
12.27
12.30
12.33
12.37
12.40
12.44
12.47
12.51
12.54
12.58
12.61
12.65
12.68
12.71
12.75
12.78
12.82
12.85
12.89
12.92
12.96
12.99
13.03
13.06
13.09
13.13
13.16
13.20
13.23
13.27
13.30
13.34
13.37
13.41
13.44
13.47
13.51
13.54
Sc
0.36
1.13
0.75
1.49
0.99
0.76
1.60
1.46
0.88
0.71
1.02
1.50
1.79
0.71
0.78
1.30
1.51
1.63
1.95
2.88
0.74
0.88
0.99
2.85
1.09
1.43
1.18
1.83
1.88
0.80
0.18
0.71
0.60
0.91
0.65
0.63
1.24
0.39
2.05
1.21
1.09
0.53
0.72
0.99
0.70
1.84
0.61
2.36
0.78
0.67
1.43
0.72
1.45
1.35
Mn
0.32
0.20
0.26
0.15
0.17
0.23
0.16
0.18
0.23
0.16
0.22
0.13
0.16
0.17
0.19
0.32
0.19
0.21
0.26
0.20
0.16
0.16
0.22
0.25
0.22
0.16
0.17
0.16
0.18
0.22
0.30
0.21
0.35
0.44
0.20
0.15
0.18
0.31
0.17
0.22
0.25
0.51
0.26
0.23
0.15
0.20
0.35
0.18
0.16
0.18
0.20
0.11
0.26
0.19
SRHS-DU-94 Femur (continued)
Fe
0.94
0.97
1.50
1.35
1.25
0.95
0.73
1.34
1.86
0.90
1.25
1.30
1.14
0.69
1.03
1.51
1.00
2.04
2.43
1.85
1.11
1.13
1.26
1.39
1.18
1.43
0.90
1.15
1.32
1.04
1.15
1.14
1.31
1.37
0.87
0.87
0.96
1.33
1.16
1.03
1.13
1.26
1.10
0.78
1.42
0.94
1.13
1.22
1.16
0.82
1.49
0.76
0.99
1.04
Sr
2583.83
2919.57
4206.21
4642.26
3729.53
3582.98
2570.15
2568.76
3252.92
2522.33
3847.38
3259.39
3364.02
2318.72
3080.26
3822.00
4599.81
4054.34
6840.57
3333.81
2664.72
2434.97
2137.52
3833.09
5962.39
2959.88
2915.44
4120.20
3425.68
3207.02
3059.49
3485.56
2986.40
3020.27
2668.19
2608.94
2584.31
4109.31
3826.86
2911.46
2760.43
4014.28
3212.38
2704.39
2957.16
2605.17
2391.85
2454.75
3313.95
2073.10
3108.27
1992.06
3383.41
3648.80
Y
1.18
1.02
1.31
2.69
2.45
4.02
1.92
1.37
1.42
2.06
2.21
1.54
2.74
1.11
1.75
2.54
2.41
2.02
4.17
2.18
1.63
0.97
1.22
1.78
3.54
1.48
1.50
2.70
1.04
1.42
2.03
0.72
0.29
0.87
1.85
2.06
1.46
2.67
1.51
2.11
1.97
1.58
1.39
0.83
1.15
1.56
1.36
1.67
1.65
0.98
1.70
1.98
1.45
0.97
Ba
2476.63
1560.88
1629.84
2002.39
2468.03
1411.75
nd
2527.90
2526.18
1604.64
2454.36
2678.19
1949.97
1677.26
1695.16
2005.16
2106.31
nd
nd
3614.52
1715.03
3435.44
nd
2287.03
1794.38
1329.59
1612.53
1858.27
2470.25
1220.07
1828.31
2869.07
3088.90
2082.85
2300.15
1977.63
1851.42
3175.95
1731.26
2021.24
2042.07
1863.12
1440.83
2008.06
2186.93
1948.11
1217.45
1193.28
2165.74
1104.72
2323.50
1597.81
1994.17
1940.70
La
0.14
0.44
0.85
2.35
1.12
0.76
0.57
0.27
0.68
0.88
0.73
1.10
0.55
0.26
0.39
0.85
0.17
0.32
0.62
0.58
0.50
0.33
0.49
0.48
0.67
0.63
0.54
0.48
0.32
0.53
0.39
0.36
0.46
0.37
0.65
0.73
0.78
0.84
0.34
0.34
0.59
0.50
0.86
0.41
0.17
0.18
0.22
0.38
0.52
0.06
0.47
0.20
0.38
0.25
Ce
0.62
0.07
0.28
1.24
0.81
0.76
0.58
0.76
0.39
5.77
0.41
0.88
0.78
1.12
0.31
0.38
0.35
0.59
1.34
0.97
0.21
0.17
0.59
0.48
0.86
0.28
0.46
0.33
0.32
0.36
0.78
0.54
0.93
3.16
0.37
15.96
0.61
0.68
0.42
0.30
1.31
0.36
0.09
0.33
0.35
0.36
0.18
0.43
0.13
0.24
0.37
0.28
0.19
0.10
Pr
0.24
0.06
0.36
0.05
0.11
0.22
0.25
0.15
bd
0.03
bd
0.08
0.04
bd
0.03
0.07
bd
0.09
0.08
0.04
0.14
0.03
0.12
0.14
0.11
0.03
bd
0.03
bd
bd
bd
0.08
bd
bd
0.14
0.04
0.04
bd
bd
bd
0.05
bd
0.04
0.21
0.04
bd
0.11
bd
bd
bd
bd
bd
bd
bd
Nd
0.22
bd
0.22
1.83
bd
bd
0.19
bd
0.23
0.87
bd
bd
3.20
0.14
bd
1.26
0.64
bd
0.22
0.23
bd
bd
bd
bd
bd
0.16
0.19
0.17
bd
bd
bd
bd
bd
bd
1.83
0.44
bd
0.77
0.56
bd
0.26
0.44
bd
bd
0.43
bd
0.21
0.41
0.21
0.16
0.45
bd
bd
0.24
Sm
0.28
bd
0.28
bd
bd
0.51
bd
0.27
bd
bd
bd
3.59
1.38
bd
0.23
bd
bd
bd
0.28
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.23
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
Eu
0.07
0.06
bd
0.21
0.10
0.07
bd
bd
bd
bd
bd
0.07
bd
bd
bd
bd
0.15
0.08
bd
0.34
bd
bd
bd
bd
0.07
bd
0.06
bd
0.21
bd
bd
bd
bd
bd
bd
bd
0.15
bd
bd
bd
bd
bd
bd
bd
0.07
bd
bd
bd
bd
bd
bd
bd
0.07
bd
Gd
0.83
bd
0.26
0.33
bd
0.48
0.22
0.24
0.27
bd
0.25
bd
0.52
bd
0.21
bd
bd
bd
bd
bd
2.93
bd
bd
0.29
bd
bd
0.22
bd
bd
bd
bd
bd
bd
bd
0.22
bd
0.76
bd
bd
bd
bd
bd
bd
0.22
bd
bd
bd
0.23
bd
0.18
bd
bd
bd
bd
bd
0.03
bd
0.09
0.09
bd
bd
0.06
bd
bd
bd
0.03
bd
bd
bd
bd
0.03
bd
0.03
bd
bd
bd
0.02
bd
bd
bd
bd
bd
0.06
bd
bd
bd
0.04
bd
0.06
bd
bd
0.11
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
Tb
Dy
0.14
bd
bd
bd
bd
0.25
0.36
bd
bd
0.10
0.13
bd
0.67
bd
bd
0.25
0.13
bd
0.14
0.42
0.12
bd
bd
bd
0.65
0.10
bd
0.21
bd
0.39
0.32
bd
bd
0.33
bd
0.13
bd
bd
bd
bd
bd
bd
0.26
0.24
bd
bd
bd
bd
bd
bd
0.27
bd
0.14
bd
Ho
0.17
0.08
bd
0.13
0.09
0.15
bd
0.03
bd
0.05
0.03
bd
bd
bd
0.03
bd
0.03
0.04
bd
0.03
bd
bd
0.03
0.04
0.07
bd
bd
0.03
bd
bd
bd
bd
0.04
0.11
0.03
0.07
0.03
0.04
bd
bd
0.04
bd
bd
bd
0.03
0.10
bd
0.03
bd
bd
bd
0.03
0.03
bd
bd
bd
bd
0.20
0.20
bd
0.13
bd
0.63
0.22
0.15
0.15
bd
bd
bd
0.41
0.14
bd
bd
bd
bd
bd
bd
0.34
0.14
bd
bd
bd
bd
0.28
bd
bd
0.16
bd
bd
0.14
bd
bd
0.12
0.68
bd
bd
bd
bd
0.14
0.14
bd
bd
bd
0.11
bd
bd
bd
bd
Er
Tm
bd
bd
0.03
bd
bd
bd
0.03
bd
bd
bd
0.06
0.10
0.03
0.02
0.03
bd
bd
0.04
0.03
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.12
bd
bd
bd
bd
bd
bd
bd
0.03
0.04
0.03
bd
bd
bd
0.09
0.03
bd
bd
bd
bd
0.03
bd
bd
Yb
0.20
bd
0.20
bd
0.26
0.72
bd
0.57
bd
0.15
bd
0.19
0.19
0.12
0.16
0.18
0.18
0.22
bd
bd
bd
bd
bd
bd
0.19
bd
0.35
bd
0.17
bd
bd
bd
bd
bd
bd
0.19
bd
bd
bd
bd
0.46
0.57
bd
0.34
0.37
bd
0.57
bd
0.18
bd
bd
bd
bd
0.22
Lu
0.07
bd
0.11
0.14
0.05
0.10
0.03
bd
0.08
0.03
bd
0.07
bd
0.05
0.09
bd
bd
0.12
0.04
bd
bd
bd
0.03
0.08
0.03
0.03
0.03
0.06
bd
0.07
bd
bd
0.04
0.03
0.03
0.07
bd
bd
bd
bd
0.13
0.03
bd
0.03
0.10
bd
0.03
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
0.03
0.11
bd
bd
bd
bd
0.02
bd
0.03
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
0.02
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.03
bd
Th
U
ƩREE
0.73
3
0.36
1
0.48
3
1.26
7
2.29
3
2.19
4
1.94
2
0.62
2
1.38
2
1.26
8
0.77
2
1.55
6
0.66
7
1.17
2
0.59
1
1.26
3
2.18
2
2.29
2
1.95
3
1.60
3
1.23
4
1.66
1
3.31
1
1.66
2
2.18
3
0.98
1
0.76
2
1.42
1
0.98
1
0.50
2
0.68
1
0.32
1
0.42
2
0.73
4
0.67
3
0.70
18
0.85
2
2.01
2
1.29
2
1.04
1
2.00
3
0.62
2
1.26
1
0.48
2
1.01
2
0.39
1
0.68
1
0.76
2
0.44
1
0.39
1
0.76
2
0.61
1
0.36
1
1.47
1
Ce/Ce*
-0.47
-0.90
-0.88
-0.55
-0.51
-0.56
-0.65
-0.18
-0.65
4.39
-0.59
-0.42
0.04
1.58
-0.44
-0.68
-0.34
-0.18
0.33
0.22
-0.82
-0.65
-0.42
-0.56
-0.29
-0.65
-0.35
-0.48
-0.44
-0.55
0.22
-0.23
-0.02
2.70
-0.71
15.88
-0.39
-0.36
-0.22
-0.44
0.57
-0.49
-0.92
-0.75
0.03
-0.29
-0.75
-0.52
-0.87
-0.57
-0.62
-0.60
-0.78
-0.86
Ce/Ce**
0.17
0.14
0.05
-0.35
-1.20
0.65
0.16
0.37
0.40
-3.56
-0.10
-0.24
-0.11
4.15
-0.27
-0.21
-1.87
1.24
1.63
7.12
0.11
233.59
0.39
0.26
0.59
2.85
11.51
3.21
-0.21
-0.23
-0.51
-0.47
-1.49
-5.10
-0.18
-37.22
-0.71
-0.58
-0.63
-1.00
8.55
-1.01
-0.22
0.13
-0.85
0.72
0.13
0.46
0.09
0.15
0.46
0.26
0.18
0.08
La/La*
Y/Ho
-0.94
6.8
0.89
12.7
-0.77
16.3
-1.66
20.0
-2.07
27.1
2.00
26.1
-0.77
34.2
-0.80
42.3
0.24
41.2
-1.54
40.2
-1.18
66.6
-1.30
64.6
-1.08
64.6
1.39
64.6
-1.32
62.5
-1.42
69.6
-1.35
76.7
2.63
52.4
0.38
57.5
-18.10
62.5
-0.59
55.4
-4.01
55.4
-0.49
48.4
-0.59
46.3
-0.26
54.3
-26.72
77.6
-7.49
77.6
-19.54 101.0
-1.19
54.4
-1.32
54.4
-1.24
54.4
-1.26
54.4
-1.46
7.9
-1.37
8.0
-1.26
62.5
-2.32
31.1
-1.83
46.3
-1.66
70.6
-1.43
60.5
-1.76
60.5
-16.68
50.4
-1.99
43.3
-2.63
43.3
-0.72
43.3
-1.33
36.2
0.04
16.0
-0.75
35.2
-0.08
54.4
-0.41
61.5
-0.93
61.5
0.47
61.5
-0.65
68.6
-0.32
42.3
-0.68
41.3
402
mm from
bone rim
13.58
13.61
13.65
13.68
13.72
13.72
13.75
13.79
13.82
13.85
13.89
13.92
13.96
13.99
14.03
14.06
14.10
14.13
14.17
14.20
14.23
14.27
14.30
14.34
14.37
14.41
14.44
14.48
14.51
14.55
14.58
14.61
14.65
14.68
14.72
14.75
14.79
14.82
14.86
14.89
14.93
14.96
14.99
15.03
15.06
15.10
15.13
15.17
15.20
15.24
15.27
15.31
15.34
15.37
Sc
0.80
0.73
1.30
1.90
1.25
1.31
0.83
2.41
1.46
1.94
0.75
1.71
1.50
2.08
1.30
1.32
0.87
1.74
1.07
1.92
1.79
1.70
1.04
1.22
1.05
1.12
1.33
0.53
0.78
2.28
0.79
1.34
2.35
1.88
1.55
2.73
1.27
1.78
2.71
1.67
2.15
2.30
2.47
1.61
1.47
1.00
2.09
2.77
3.24
2.08
2.88
2.54
0.50
1.64
Mn
0.26
0.24
0.24
0.28
0.28
0.19
0.26
0.32
0.31
0.37
0.27
0.34
0.34
0.28
0.18
0.43
0.98
0.50
0.18
0.29
0.23
0.40
0.41
0.25
0.24
0.31
0.24
0.23
0.25
0.20
0.20
0.76
0.20
0.16
0.16
0.32
0.17
0.17
0.18
0.19
0.18
0.24
0.12
0.18
0.20
0.18
0.28
0.19
0.22
0.23
0.24
0.21
0.19
0.16
SRHS-DU-94 Femur (continued)
Fe
0.95
1.45
1.08
1.68
1.47
1.23
1.07
1.70
1.36
0.97
1.51
1.40
1.06
1.26
1.42
1.39
1.38
1.63
0.95
1.21
1.80
1.38
1.05
1.19
1.85
1.39
0.98
1.19
0.97
1.02
1.18
1.66
0.94
1.17
1.28
1.54
1.13
1.20
1.84
1.29
0.78
0.96
0.71
1.19
0.92
0.98
1.12
1.04
1.64
1.25
1.11
1.14
0.91
0.91
Sr
3322.46
2611.73
3395.80
3539.79
3132.91
2279.10
3117.42
12394.23
6419.80
5715.36
3746.70
4156.42
2082.81
10177.20
4091.23
3110.71
4152.51
3634.59
2516.89
2935.99
3490.36
3892.61
2863.09
2970.20
3860.95
2887.20
3019.95
3410.64
3554.97
4280.51
2789.78
3083.90
2810.54
3670.34
3472.85
3427.57
2862.99
3540.41
3800.64
3269.82
2357.69
2720.12
4109.15
2465.49
3061.04
2549.30
3830.16
3439.45
2546.28
3352.47
3017.54
2880.09
2336.59
2415.78
Y
1.30
0.42
1.42
2.79
2.00
2.97
2.18
5.55
3.90
4.54
1.65
2.11
1.79
4.03
1.81
2.00
1.73
3.53
1.95
4.01
2.84
5.30
4.08
2.09
5.35
4.09
2.99
3.09
3.49
5.59
3.45
3.92
4.34
4.92
5.03
5.18
2.86
4.58
6.14
5.07
3.14
3.63
5.30
4.19
2.88
3.91
4.69
4.64
5.09
5.88
4.39
3.71
3.01
5.79
nd
1832.21
2377.91
3038.52
2955.98
5739.27
nd
nd
nd
4190.01
nd
nd
nd
3108.26
2132.36
2298.60
2019.33
3609.67
1582.78
2137.83
1934.81
2171.60
2051.59
1781.54
2449.90
2264.23
1803.77
2188.50
1970.60
2392.99
1811.61
1611.56
2046.70
2318.61
1483.07
1946.47
1423.24
1051.32
1940.09
2358.18
1848.10
1502.24
1667.36
1282.51
1826.02
1112.05
2432.09
2022.31
2536.63
nd
1907.21
1791.20
1460.60
1510.15
Ba
La
0.36
0.18
0.34
1.09
0.99
2.91
0.65
1.91
1.62
0.65
0.46
1.01
0.72
1.62
0.73
0.53
0.28
1.29
0.69
0.86
0.80
0.92
1.50
0.69
1.95
0.87
0.88
0.76
1.17
1.40
0.90
1.20
1.49
2.39
1.09
2.25
1.88
2.20
2.29
1.93
1.45
1.82
1.86
2.02
1.79
1.76
1.72
2.34
1.99
2.04
1.74
1.94
0.82
1.66
Ce
0.40
0.15
0.26
0.38
0.43
0.59
0.70
1.21
0.79
0.93
0.31
1.51
0.56
1.00
0.10
0.63
1.26
3.33
0.17
0.55
0.46
0.65
0.95
1.33
1.37
0.78
1.22
0.71
0.94
1.89
0.80
1.58
1.49
2.97
1.71
1.68
1.13
3.32
1.74
1.23
0.89
2.20
2.16
1.33
2.45
3.33
1.33
1.01
2.33
1.19
2.30
1.49
1.44
1.22
Pr
0.11
0.09
bd
0.05
bd
0.13
0.04
0.10
0.07
0.10
0.17
0.43
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.09
0.13
0.14
0.06
0.18
0.04
0.04
0.12
0.15
0.16
0.04
0.04
0.19
0.04
0.11
0.04
0.11
0.16
0.18
0.04
0.04
0.14
0.07
0.08
0.03
0.05
0.18
0.08
0.04
0.13
bd
0.12
0.11
bd
bd
0.20
bd
bd
bd
1.49
0.57
0.87
0.40
bd
bd
bd
bd
0.26
0.53
bd
bd
bd
bd
bd
1.89
0.50
0.26
0.36
bd
bd
bd
0.23
0.30
bd
0.43
0.45
0.45
0.44
0.62
0.43
0.45
0.62
1.07
0.47
0.24
0.42
0.21
bd
0.20
0.83
0.53
0.97
bd
1.27
0.55
0.48
0.22
Nd
bd
bd
bd
0.33
bd
bd
bd
bd
bd
bd
bd
bd
0.92
bd
bd
bd
bd
bd
bd
bd
bd
1.30
bd
bd
bd
bd
bd
0.30
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.27
bd
bd
bd
bd
bd
bd
bd
0.24
bd
bd
bd
bd
bd
bd
bd
bd
Sm
bd
bd
bd
bd
0.16
bd
0.27
0.21
0.39
0.29
0.18
0.23
0.09
bd
0.09
bd
bd
bd
bd
0.11
bd
0.10
bd
bd
0.39
bd
bd
0.09
0.08
0.11
bd
bd
bd
bd
0.16
bd
bd
bd
bd
bd
bd
bd
bd
0.08
bd
0.22
0.10
0.38
bd
bd
0.18
bd
bd
bd
Eu
bd
0.63
0.23
0.95
0.54
bd
0.29
49.28
333.19
0.48
0.30
0.37
bd
bd
bd
bd
bd
bd
0.20
bd
bd
0.32
bd
bd
bd
bd
0.29
bd
0.28
bd
bd
0.25
bd
bd
bd
bd
0.26
bd
bd
bd
bd
bd
0.25
0.51
bd
0.24
bd
bd
bd
bd
bd
bd
bd
bd
Gd
Tb
0.03
bd
bd
0.04
0.03
bd
bd
0.08
0.03
bd
bd
0.04
bd
bd
bd
bd
0.05
bd
bd
bd
bd
0.04
bd
0.04
0.05
bd
bd
bd
bd
bd
bd
bd
bd
0.06
0.03
0.04
bd
bd
bd
bd
0.03
bd
0.03
0.03
bd
bd
bd
0.04
bd
0.07
bd
0.08
0.03
0.06
bd
bd
bd
0.64
bd
bd
0.14
bd
0.38
bd
0.15
0.36
0.15
bd
bd
bd
bd
bd
bd
bd
0.33
bd
0.14
bd
bd
bd
bd
bd
0.14
0.18
0.27
bd
0.26
0.13
0.51
0.18
bd
0.52
0.36
bd
0.41
0.14
0.37
0.12
0.14
0.12
0.65
bd
bd
0.27
bd
bd
bd
0.25
Dy
Ho
0.03
bd
0.03
bd
bd
0.03
0.04
0.21
bd
0.03
bd
bd
bd
bd
0.04
0.04
0.05
bd
bd
bd
0.04
0.04
0.07
0.04
0.10
0.03
bd
bd
bd
bd
0.14
0.12
0.03
0.07
0.03
bd
0.06
0.13
0.13
bd
0.03
bd
0.06
0.09
0.20
0.03
0.04
0.04
0.07
0.03
bd
0.08
bd
bd
bd
bd
0.41
0.17
0.30
0.50
0.64
bd
0.28
bd
bd
bd
bd
bd
0.16
0.17
bd
bd
bd
0.39
bd
0.17
0.64
0.34
0.46
bd
bd
bd
bd
bd
bd
bd
0.14
bd
bd
0.60
0.42
0.29
1.18
bd
0.45
0.15
0.67
0.41
0.15
0.13
0.18
0.17
0.46
0.30
0.16
bd
0.30
0.42
Er
Tm
bd
bd
0.06
bd
bd
bd
bd
bd
bd
0.03
bd
0.04
bd
0.05
0.04
0.07
bd
bd
bd
0.13
bd
bd
bd
bd
bd
0.03
0.07
0.03
bd
bd
0.13
bd
0.06
0.06
0.12
0.09
0.03
0.06
0.04
0.04
bd
bd
bd
0.15
0.16
0.06
bd
0.04
0.07
0.03
0.07
0.04
bd
bd
bd
bd
bd
0.46
0.20
bd
bd
0.49
0.18
0.51
0.43
bd
bd
bd
bd
0.22
bd
bd
bd
0.51
bd
bd
0.42
bd
0.30
0.52
bd
bd
0.20
bd
0.40
bd
0.19
0.38
0.18
0.79
0.18
bd
0.26
0.22
0.39
bd
0.36
bd
0.40
0.17
0.47
1.12
bd
bd
0.21
bd
0.61
bd
Yb
Lu
bd
0.08
0.03
bd
0.15
0.15
0.08
0.18
0.27
bd
bd
0.10
0.16
bd
bd
bd
0.05
0.06
0.08
bd
0.09
0.04
0.19
0.12
bd
0.10
0.04
0.12
bd
0.05
0.04
0.10
0.07
0.14
0.03
0.05
0.10
bd
0.29
0.04
0.04
0.22
bd
0.20
0.07
bd
0.04
0.04
bd
0.11
bd
0.13
bd
0.17
Th
0.03
bd
bd
bd
0.05
bd
0.03
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
0.02
bd
bd
0.13
0.09
bd
bd
bd
bd
bd
0.03
bd
bd
bd
0.24
0.08
bd
0.04
0.03
bd
bd
0.03
bd
bd
bd
bd
bd
0.05
bd
bd
bd
bd
0.06
bd
0.08
bd
U
ƩREE
0.48
1
1.42
1
0.91
2
2.35
4
2.25
3
2.40
4
1.17
4
3.53
54
1.54
338
0.64
3
0.84
2
1.45
4
1.36
3
1.84
3
0.79
1
1.11
2
1.50
2
1.35
5
0.51
1
0.81
3
0.61
2
1.08
6
1.23
5
1.11
3
1.54
5
1.79
3
0.92
3
0.82
2
1.08
3
2.45
4
1.81
3
0.94
4
1.29
4
1.52
7
1.16
4
2.13
6
1.04
5
1.19
7
2.56
7
1.31
5
3.68
4
3.84
5
2.76
6
1.62
5
3.69
5
1.72
7
3.37
5
4.74
6
1.61
6
1.74
4
1.09
6
0.90
4
1.86
4
3.03
4
Ce/Ce*
-0.53
-0.75
-0.61
-0.72
-0.70
-0.84
-0.20
-0.51
-0.62
-0.18
-0.75
-0.48
-0.70
-0.65
-0.94
-0.62
-0.10
0.34
-0.91
-0.73
-0.77
-0.53
-0.56
0.01
-0.42
-0.53
0.09
-0.29
-0.47
-0.12
-0.51
0.10
-0.15
-0.12
0.28
-0.41
-0.48
0.17
-0.44
-0.57
-0.48
0.04
-0.17
-0.46
0.09
0.64
-0.35
-0.69
-0.06
-0.50
-0.05
-0.43
0.04
-0.46
Ce/Ce**
0.29
0.14
0.37
-0.30
-0.79
3.10
-0.24
4.81
-0.90
1.23
0.14
0.24
0.16
0.28
0.03
0.20
0.87
2.31
0.12
0.38
0.32
-0.21
1.01
0.81
8.74
0.35
-57.27
344.40
0.65
1.00
0.44
-3.70
-3.30
1.39
-3.90
6.18
-2.60
3.95
1.50
2.63
-1.90
21.17
1.54
1.88
2.90
38.20
-1.08
0.57
-2.41
-0.58
-2.53
1.90
1.60
0.91
La/La*
Y/Ho
-0.58
40.3
-0.70
43.3
-0.08
46.3
-1.80
75.8
-2.16
75.8
-9.38 105.3
-1.22
60.7
-13.75
26.5
-2.46
91.2
1.15 155.9
-0.65 102.2
-0.77 102.2
-0.69 102.2
-0.30 102.2
-0.71
48.6
-0.72
52.6
-0.13
34.4
3.02
51.6
1.14
51.6
1.68
51.6
1.51
68.8
-1.29 135.6
3.03
56.4
-0.31
54.7
-21.97
51.4
-0.38 137.7
-5.84
81.4
-5.58
81.4
0.33
81.4
0.22
81.4
-0.16
25.1
-3.22
31.6
-3.61 133.6
0.93
75.5
-2.98 159.9
-14.91 102.6
-4.41
45.3
5.58
35.2
3.97
45.6
-7.94
69.4
-3.45
93.1
-30.52
89.9
1.52
86.6
4.37
44.9
2.77
14.1
-35.18 135.6
-2.29 117.4
1.52 121.5
-2.62
72.5
-1.98 172.1
-2.28 109.2
7.14
46.3
1.28
56.4
1.02
56.4
403
mm from
bone rim
15.41
15.44
15.48
15.51
15.55
15.58
15.62
15.65
15.69
15.72
15.75
15.79
15.82
15.86
15.89
15.93
15.96
16.00
16.03
16.07
16.10
16.13
16.17
16.20
16.24
16.27
16.31
16.34
16.38
16.41
16.45
16.48
16.51
16.55
16.58
16.62
16.65
16.69
16.72
16.76
16.79
16.83
16.86
16.89
16.93
16.96
17.00
17.03
17.07
17.10
17.14
17.17
17.21
17.24
Sc
1.56
2.70
2.15
2.63
1.68
2.39
1.89
2.16
2.70
2.64
2.86
3.27
2.41
1.47
1.63
1.74
1.88
2.00
1.62
3.96
4.18
3.01
2.01
3.88
2.61
2.45
1.70
2.15
1.15
1.66
1.68
3.73
4.33
4.23
3.39
1.82
3.51
1.27
1.38
2.31
2.31
2.36
2.89
2.38
2.62
1.81
1.79
3.64
2.67
1.88
2.34
2.07
1.13
0.81
Mn
0.18
0.21
0.18
0.21
0.17
0.12
0.19
0.13
0.24
0.14
0.25
0.11
0.15
0.22
0.19
0.19
0.18
0.20
0.13
0.25
0.16
0.15
0.29
0.28
0.25
0.13
0.22
0.29
0.24
0.27
0.27
0.14
0.25
0.32
0.30
0.12
0.24
0.23
0.16
0.15
0.17
0.25
0.18
0.20
0.23
0.17
0.18
0.20
0.45
0.30
0.28
1.42
0.26
0.24
SRHS-DU-94 Femur (continued)
Fe
2.34
1.48
1.31
1.46
1.91
0.75
1.44
0.85
1.44
1.17
1.55
1.29
1.79
1.21
0.83
0.96
0.69
0.86
1.08
0.85
1.22
0.76
1.27
1.14
1.11
1.16
1.50
1.58
1.60
1.28
1.09
0.80
1.32
1.00
1.59
1.12
1.71
1.32
0.86
0.85
1.21
1.40
1.57
1.20
1.18
0.99
1.35
0.94
1.33
1.45
1.43
1.03
1.41
2.30
Sr
4486.85
3100.79
2859.15
3364.18
3107.52
2432.16
3776.69
2272.16
3636.05
2657.66
3278.06
2850.90
4024.57
3683.44
2859.81
4281.13
1995.82
2008.47
3181.74
2487.05
2775.40
2791.06
3066.32
3273.06
3648.91
2278.31
2089.36
3511.52
2349.24
4201.22
2637.06
2016.24
2989.89
3132.69
3870.86
2452.25
3735.00
2675.04
3095.98
2626.47
3141.75
4278.64
3180.49
6358.84
4244.22
3259.85
3723.46
2870.20
2931.92
3023.29
3084.68
3637.18
2856.76
3687.33
Y
5.54
5.19
7.16
5.77
5.54
3.71
8.03
3.62
8.30
5.76
6.38
4.49
3.76
4.75
4.37
5.21
4.63
5.39
5.42
8.15
7.67
8.33
10.60
10.30
9.71
4.83
4.80
6.00
7.09
7.94
9.28
6.82
11.42
7.06
9.26
6.88
10.32
8.15
6.28
6.96
9.92
11.66
9.48
8.14
11.06
8.63
7.31
8.86
9.09
12.19
8.16
7.86
7.08
7.64
Ba
1756.07
2394.76
1911.82
1441.79
1478.58
1258.00
1967.81
1024.22
2032.85
1440.00
1528.35
1203.80
1662.60
2195.13
1576.32
1361.94
1585.77
1010.60
1301.48
1669.60
1690.82
1316.69
1698.17
1470.58
1909.75
1431.55
1606.45
1788.12
1496.16
1606.65
1591.17
1049.30
2421.69
1840.76
1526.38
996.90
2539.70
3933.06
1565.13
2034.21
1292.77
2425.85
2071.38
2037.93
1889.71
1527.99
1667.80
1659.28
1785.77
2057.67
2983.30
1824.42
1333.07
1296.77
La
2.13
2.16
3.40
1.92
1.85
1.32
2.40
1.66
2.98
1.79
4.25
1.82
2.65
0.96
1.63
1.79
1.49
1.78
1.72
3.85
3.15
3.16
2.54
3.67
3.71
1.98
2.01
2.41
3.01
2.93
3.96
2.73
5.65
4.28
3.87
3.30
5.11
3.43
2.24
3.58
4.08
5.27
4.02
3.69
4.56
3.28
4.30
3.64
4.06
3.61
3.55
1.82
1.35
1.44
Ce
1.67
2.32
1.46
1.98
1.84
1.15
4.35
1.14
3.50
2.85
2.81
1.67
3.20
1.22
1.50
2.62
1.80
2.06
5.67
3.11
1.66
5.49
8.81
4.41
4.46
2.41
3.51
4.30
3.36
4.39
3.53
2.51
4.73
5.92
5.49
3.98
5.80
2.69
2.82
3.58
4.77
8.15
3.35
3.58
10.63
5.15
2.58
3.14
9.55
4.51
3.92
2.09
3.24
2.87
Pr
0.15
0.18
0.26
0.05
0.20
0.11
0.16
0.09
0.33
0.09
0.33
0.04
0.17
0.16
0.11
0.05
0.17
0.16
0.24
0.22
0.39
0.09
0.22
0.45
0.17
0.20
0.25
0.05
0.26
bd
0.42
0.18
0.68
0.62
0.30
0.38
0.38
0.11
0.34
0.22
0.84
0.48
0.28
0.55
0.09
0.23
0.32
0.38
0.50
0.05
0.32
0.14
0.04
0.33
Nd
0.57
bd
bd
0.90
1.15
0.63
0.64
1.29
0.64
1.05
1.63
0.50
0.68
bd
0.32
0.89
0.78
0.91
2.22
1.05
0.57
1.38
0.65
0.79
1.75
0.17
0.43
0.57
0.25
0.99
0.31
1.91
1.72
1.40
1.01
1.94
1.24
0.43
0.66
0.85
2.61
1.41
0.71
2.16
0.26
1.59
3.34
1.99
0.26
1.61
0.31
0.55
bd
0.82
bd
bd
bd
0.72
bd
0.25
bd
bd
bd
bd
0.39
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.68
bd
0.26
1.27
bd
bd
0.25
bd
bd
bd
bd
bd
0.34
0.33
bd
0.19
bd
bd
bd
bd
bd
0.28
0.28
bd
0.62
bd
bd
0.30
bd
bd
bd
bd
0.27
0.33
Sm
bd
0.10
0.11
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.12
bd
bd
bd
0.40
bd
0.21
bd
bd
0.57
bd
0.06
bd
bd
bd
0.60
0.11
0.08
bd
bd
0.09
0.23
0.18
0.16
0.08
0.15
bd
0.08
bd
bd
0.09
0.16
0.43
bd
0.29
0.11
0.45
bd
bd
bd
Eu
Gd
0.34
0.32
bd
0.35
0.68
0.50
bd
bd
0.38
bd
0.77
bd
0.80
bd
bd
1.06
bd
1.35
bd
bd
bd
0.66
0.26
0.63
0.29
bd
bd
0.68
bd
bd
bd
1.26
bd
0.67
0.90
0.19
0.59
bd
0.26
0.25
bd
0.28
0.85
0.64
0.62
bd
1.13
bd
0.63
1.14
0.73
bd
0.53
0.65
bd
bd
bd
0.04
bd
0.03
0.05
0.11
0.09
bd
0.05
bd
bd
0.09
0.05
bd
0.03
0.06
bd
bd
0.12
0.04
0.06
0.04
0.04
0.02
bd
0.08
bd
0.09
bd
bd
0.12
bd
bd
0.07
0.07
0.09
bd
bd
0.08
bd
bd
0.08
0.07
bd
0.10
0.07
0.08
0.14
bd
0.16
bd
bd
Tb
bd
0.31
0.35
bd
0.17
bd
bd
0.30
bd
bd
0.38
bd
0.59
0.18
0.38
bd
0.11
0.13
0.16
0.15
0.66
0.32
0.38
0.15
0.58
bd
0.12
0.16
0.14
0.58
0.18
0.25
0.17
0.33
0.74
0.09
0.14
0.25
0.25
0.25
0.85
0.55
0.14
0.63
0.61
0.93
0.42
0.58
0.93
0.19
0.36
0.64
0.13
0.32
Dy
Ho
0.08
0.08
bd
0.04
bd
0.06
0.14
bd
0.09
bd
0.28
0.11
0.05
0.19
bd
bd
0.11
0.13
0.32
0.04
0.08
0.16
0.10
0.19
bd
0.02
0.16
0.12
bd
0.14
0.09
0.09
0.17
0.04
0.15
0.09
0.18
0.19
0.03
0.19
0.08
0.03
0.03
bd
0.19
0.07
0.03
0.36
0.19
0.14
0.09
0.04
bd
0.28
bd
0.51
0.39
bd
0.73
0.68
0.62
0.33
0.62
0.34
0.21
0.32
0.43
1.02
bd
0.38
0.25
0.29
0.18
bd
0.36
bd
0.28
0.51
0.16
0.11
bd
bd
0.32
bd
0.79
0.13
bd
0.72
0.16
0.41
1.74
0.55
0.28
0.13
0.56
1.20
0.15
1.04
0.83
0.58
0.15
bd
1.02
bd
0.99
0.70
bd
0.17
Er
Tm
bd
0.07
0.13
0.04
bd
bd
0.18
0.07
bd
0.07
bd
bd
0.05
bd
0.04
0.08
bd
bd
0.08
0.18
0.08
bd
0.03
0.11
bd
bd
0.06
0.04
0.17
0.05
0.09
0.09
bd
0.08
0.03
0.07
0.17
0.03
0.03
bd
0.04
0.13
0.17
0.04
0.07
0.09
0.13
0.03
0.15
bd
0.09
0.04
bd
0.04
bd
bd
bd
bd
0.48
0.36
bd
bd
bd
0.44
0.27
bd
bd
bd
0.55
bd
0.16
0.58
0.70
0.89
0.48
0.23
0.18
0.90
0.42
0.28
0.36
0.48
0.21
0.28
0.52
0.72
0.97
0.24
0.43
0.14
bd
0.36
0.56
0.36
0.73
0.59
0.60
0.46
0.44
0.58
0.40
0.21
0.90
bd
1.05
0.23
bd
0.46
Yb
Lu
0.04
bd
bd
bd
0.09
0.07
0.25
bd
0.20
bd
0.15
0.19
bd
0.10
0.10
0.09
0.12
0.14
0.09
bd
0.04
0.04
0.03
0.29
bd
0.03
0.07
0.04
0.04
0.05
0.29
0.03
0.04
0.22
0.08
0.05
0.15
bd
bd
0.20
0.04
0.07
0.07
0.04
0.08
0.18
0.07
0.08
0.12
0.05
0.10
0.21
0.21
0.04
bd
bd
bd
0.21
0.03
bd
bd
bd
0.04
bd
0.19
bd
0.04
0.04
bd
0.07
bd
bd
bd
bd
bd
0.06
bd
bd
bd
bd
bd
bd
0.03
0.08
bd
0.05
bd
bd
bd
bd
bd
bd
0.05
bd
0.07
bd
0.03
0.03
0.06
0.03
0.03
bd
bd
bd
bd
bd
0.08
bd
Th
U
ƩREE
2.76
5
3.05
6
1.95
6
5.21
6
1.68
7
1.71
5
1.95
9
2.27
5
3.23
9
2.93
7
4.10
12
1.80
5
1.28
9
2.19
4
0.83
5
0.97
7
1.26
5
1.82
8
1.45
12
3.31
10
3.62
8
4.95
12
2.82
14
3.09
14
3.19
12
1.57
5
3.03
7
1.34
9
1.51
8
2.03
10
2.52
10
3.19
10
5.47
15
4.14
15
3.19
13
4.46
11
2.96
16
2.39
8
2.53
8
1.91
10
2.28
15
2.76
19
1.46
11
2.55
13
2.32
19
1.21
13
1.15
13
4.32
11
1.99
19
3.35
12
0.89
12
1.49
7
0.53
6
2.00
8
Ce/Ce*
-0.42
-0.25
-0.69
-0.13
-0.34
-0.39
0.33
-0.47
-0.24
0.24
-0.53
-0.22
-0.11
-0.29
-0.32
0.23
-0.22
-0.20
0.99
-0.39
-0.67
0.45
1.40
-0.24
-0.05
-0.18
0.09
0.54
-0.22
-0.04
-0.41
-0.32
-0.47
-0.18
0.01
-0.23
-0.18
-0.35
-0.26
-0.25
-0.40
0.06
-0.39
-0.43
1.02
0.15
-0.57
-0.43
0.48
0.10
-0.24
-0.18
1.02
-0.02
Ce/Ce**
1.55
1.78
0.57
-1.49
3.65
4.11
3.58
-0.68
0.88
-2.71
1.71
-3.30
2.51
0.79
1.39
-1.99
1.99
5.14
-4.01
2.55
0.32
-3.08
4.06
0.78
-3.22
0.82
1.08
-7.51
0.91
1.34
0.56
-1.57
0.64
0.84
2.09
2.24
1.72
3.31
0.69
2.25
0.61
1.75
1.10
0.88
12.29
117.52
-0.98
1.98
1.23
-1.51
0.85
2.03
-3.15
0.81
La/La*
Y/Ho
3.97
66.5
3.38
66.5
1.48 100.0
-2.34 133.6
-7.17
97.0
-8.97
60.4
3.97
57.0
-1.87
72.8
0.23
88.6
-2.35
55.5
17.84
22.5
-3.85
40.9
4.23
76.9
0.22
25.6
1.86
33.2
-2.25
33.2
6.83
40.7
-8.52
40.7
-1.77
16.8
14.05 214.6
-0.04
92.7
-2.56
51.7
1.22 111.3
0.04
53.4
-2.89 126.9
0.00 200.4
-0.01
30.9
-4.33
48.3
0.23
51.6
0.69
55.0
-0.07 103.8
-2.24
73.7
0.35
68.3
0.03 174.1
2.06
62.8
21.60
73.4
2.07
57.4
9.60
43.2
-0.09 198.4
4.68
37.5
0.02 117.9
1.14 196.6
1.32 275.4
1.29 166.8
8.94
58.3
-4.77 131.0
-2.15 212.6
-217.44
24.5
-0.23
47.0
-2.20
87.2
0.17
90.6
3.43 198.4
-2.22 112.8
-0.28
27.3
404
mm from
bone rim
17.28
17.31
17.34
17.38
17.41
17.45
17.48
17.52
17.55
17.59
17.62
17.66
17.69
17.72
17.76
17.79
17.83
17.86
17.90
17.93
17.97
18.00
18.04
18.07
18.10
18.14
18.17
18.21
18.24
18.28
18.31
18.35
18.38
18.42
18.45
18.48
18.52
18.52
18.55
18.59
18.62
18.66
18.69
18.73
18.76
18.80
18.83
18.86
18.90
18.93
18.97
19.00
19.04
19.07
Sc
1.00
1.78
1.76
2.73
0.91
1.93
2.29
1.61
2.34
2.34
2.22
2.50
2.25
2.67
2.00
3.41
2.81
2.21
1.41
2.41
1.98
2.00
1.50
2.17
1.64
1.50
1.22
1.73
2.49
2.28
2.00
3.92
2.88
2.64
2.61
3.02
2.97
2.12
2.18
2.59
2.17
1.37
1.47
2.36
1.89
2.13
2.91
1.76
1.80
3.48
2.95
1.63
4.04
2.38
Mn
0.29
0.35
0.42
0.31
0.38
0.38
0.40
0.20
0.30
0.24
0.21
0.25
0.28
0.20
0.26
0.17
0.27
0.19
0.26
0.23
0.22
0.14
0.18
0.18
0.20
0.18
0.17
0.14
0.13
0.20
0.11
0.13
0.23
0.19
0.14
0.22
0.29
0.18
0.18
0.17
0.31
0.23
0.21
0.28
0.38
0.80
0.67
0.24
0.31
0.42
0.17
0.19
0.23
0.21
SRHS-DU-94 Femur (continued)
Fe
1.42
0.99
1.86
0.98
1.90
1.51
1.48
1.13
1.16
1.44
1.12
2.24
1.39
0.92
1.66
1.46
1.19
1.03
1.17
1.42
0.89
1.04
0.85
1.52
1.61
0.88
1.24
1.08
0.72
1.06
0.88
1.34
1.53
1.02
0.93
1.09
0.64
0.97
0.95
0.86
1.69
0.96
1.54
1.07
bd
4.19
2.16
2.21
1.33
bd
1.29
1.98
1.47
1.18
Sr
3190.20
3014.97
3265.35
3289.29
3929.06
3720.36
4225.62
2720.47
1968.98
3492.99
2610.70
3319.64
3740.68
3392.68
2839.76
4334.84
2968.64
3211.75
2806.46
2192.80
2609.44
2293.96
2102.12
2542.50
3554.53
1965.47
2498.00
3518.14
3617.32
4127.17
3029.90
2380.60
3075.42
2658.89
3476.24
2795.51
2153.33
3047.96
2297.63
2203.31
3359.57
1864.48
3569.26
3368.02
3630.71
4874.31
3386.64
2646.47
1872.73
3048.04
3127.04
6017.52
3388.03
2076.00
Y
6.14
8.54
5.36
7.94
8.70
6.07
10.58
7.66
9.49
7.95
10.44
14.39
12.14
13.65
9.79
10.74
11.91
11.13
8.15
11.19
7.76
5.31
7.93
8.50
7.85
5.68
6.70
8.00
7.79
10.56
10.37
12.67
14.81
10.49
13.15
10.91
8.03
9.67
8.54
8.00
11.76
10.51
9.81
8.49
11.81
14.11
8.05
12.83
11.25
17.89
11.47
18.91
12.98
10.62
Ba
1797.48
1687.41
1243.41
1503.09
2350.20
3264.85
3569.66
1352.33
1705.43
1569.47
1492.01
1313.15
2066.16
1330.87
1223.00
1616.06
1743.12
1624.97
1863.89
1723.95
1760.60
nd
1904.57
1172.07
1415.23
2104.56
1400.77
1437.14
1679.27
1234.75
1666.73
3231.12
1996.52
2011.50
1356.00
1618.18
1028.50
1424.31
2084.67
1383.32
3515.47
1031.55
1393.64
1206.20
3471.95
2226.60
2471.04
1806.74
1238.28
2282.70
1038.11
3060.09
1124.86
1061.07
La
4.84
2.33
2.45
2.50
4.17
5.92
5.45
3.16
4.38
5.38
5.33
6.69
6.68
7.98
6.36
6.63
5.26
4.41
4.58
4.07
4.88
3.88
3.59
3.52
2.06
1.69
5.27
5.24
3.98
5.27
5.25
5.96
8.62
6.03
4.51
5.01
4.85
6.06
6.94
4.52
6.84
5.63
7.53
4.81
7.11
7.21
6.33
8.82
6.33
18.04
7.79
10.71
8.13
7.15
Ce
3.69
12.51
1.94
3.47
5.91
5.45
7.26
3.94
6.51
12.65
9.87
22.49
15.81
6.29
7.95
5.41
10.05
5.42
5.03
5.07
7.99
4.41
3.88
7.22
1.39
1.69
5.18
1.98
4.27
7.20
3.05
5.25
7.41
7.07
5.41
4.59
4.99
8.06
8.55
9.53
8.40
7.74
6.68
7.04
10.11
11.64
14.58
8.20
13.95
17.63
8.18
18.01
16.14
10.07
Pr
0.16
0.20
0.39
0.29
0.32
0.48
0.41
0.44
0.62
0.72
0.81
0.67
1.16
0.45
1.28
0.55
0.48
0.31
0.19
0.64
0.19
0.33
0.39
0.39
0.21
0.30
0.28
0.11
0.58
0.53
0.53
0.27
0.66
0.19
0.72
0.31
0.12
0.31
0.49
0.51
0.50
0.51
0.63
0.62
0.42
0.75
0.89
0.67
1.23
1.68
1.37
0.90
1.15
0.76
Nd
0.24
0.97
0.21
0.56
1.55
2.31
1.91
1.47
2.32
1.40
0.88
3.22
3.51
1.50
0.68
1.16
1.52
2.65
1.41
1.50
1.80
2.49
0.42
1.44
2.11
0.77
2.91
0.32
0.28
0.78
1.13
1.17
5.15
0.68
2.23
1.80
0.24
0.52
1.56
2.79
2.68
2.36
3.44
1.94
1.38
2.65
2.09
4.81
2.23
1.65
1.74
5.68
2.81
3.28
bd
bd
bd
0.34
0.74
0.61
bd
bd
0.23
0.72
bd
0.55
0.49
bd
bd
bd
bd
bd
0.34
1.20
bd
0.23
bd
bd
1.09
bd
0.50
bd
bd
bd
bd
0.47
bd
0.27
1.34
1.08
bd
bd
bd
1.79
0.32
bd
bd
bd
bd
0.35
0.25
0.26
0.30
0.39
0.26
3.18
0.34
bd
Sm
Eu
0.17
bd
bd
0.10
0.34
0.46
0.17
0.13
1.39
0.07
bd
0.33
0.45
0.07
0.41
0.17
0.08
0.38
bd
bd
0.08
0.28
0.08
0.10
0.11
bd
0.15
bd
0.20
0.19
bd
bd
0.15
0.16
0.16
bd
0.08
0.19
0.24
bd
0.19
0.23
bd
0.26
0.30
0.53
0.38
0.47
0.18
0.36
0.16
0.27
bd
bd
bd
0.46
bd
bd
bd
0.91
1.13
0.87
0.23
0.24
0.63
2.19
bd
0.22
bd
0.27
0.51
0.94
bd
bd
bd
0.45
bd
0.34
0.71
bd
1.48
bd
1.35
0.62
0.67
0.93
bd
bd
0.53
1.79
0.28
bd
1.33
bd
1.59
bd
0.63
0.57
1.32
0.70
0.25
bd
1.18
0.78
1.04
0.45
1.00
1.11
Gd
Tb
0.03
0.05
0.06
bd
0.04
0.11
bd
bd
0.05
0.03
0.08
0.07
0.09
0.08
bd
0.07
0.06
0.07
0.04
bd
0.06
bd
bd
0.04
0.04
0.07
bd
bd
0.04
bd
0.04
bd
0.06
0.03
0.06
0.13
0.10
0.07
0.13
0.03
0.19
0.09
bd
0.07
0.16
0.29
0.03
0.06
0.14
0.05
0.09
bd
0.20
0.23
Dy
0.14
bd
0.37
bd
1.08
0.45
0.42
0.32
0.67
0.82
0.52
1.21
0.24
0.44
0.53
0.27
0.50
0.31
0.33
0.29
0.26
0.22
bd
0.84
0.70
0.30
0.97
bd
0.16
0.45
0.49
1.36
0.75
0.79
0.26
0.35
0.55
0.15
0.91
0.22
0.94
1.37
0.15
0.56
0.32
0.86
0.73
0.13
bd
0.38
0.64
0.88
0.33
0.82
Ho
0.14
0.06
0.06
0.25
0.14
0.11
0.21
0.05
bd
0.03
0.28
0.33
0.30
0.22
0.13
0.17
0.06
bd
0.04
0.07
0.13
0.14
0.12
0.08
0.04
0.07
0.18
0.05
0.16
0.23
0.04
0.40
0.25
0.23
0.06
0.22
0.14
0.11
0.03
0.08
0.12
0.19
0.35
0.28
0.16
0.30
0.15
0.03
0.07
0.43
0.29
0.28
0.25
0.07
bd
0.62
0.40
bd
0.79
0.16
0.61
0.35
0.49
0.89
0.34
1.32
0.66
0.84
0.87
0.45
0.28
1.69
0.36
1.12
0.29
0.86
0.13
bd
0.38
bd
bd
0.41
0.54
0.16
0.36
1.25
0.27
0.29
1.00
bd
0.30
0.33
0.57
0.35
1.02
0.41
1.01
0.30
0.35
0.56
0.40
0.41
1.10
1.25
0.41
0.47
0.53
0.59
Er
Tm
0.07
0.13
bd
0.12
bd
0.07
0.03
0.10
0.08
0.03
bd
0.10
0.11
0.21
0.06
0.16
bd
0.11
0.08
0.17
0.09
0.08
0.12
0.20
0.04
0.11
0.12
0.04
0.20
0.14
0.08
0.11
bd
0.09
0.40
0.08
0.10
bd
0.12
0.13
0.26
0.06
0.18
0.10
bd
0.04
bd
bd
0.03
0.18
bd
0.10
0.04
0.03
Yb
1.01
0.82
0.36
0.24
0.26
0.21
0.60
0.15
0.65
0.34
0.30
0.58
0.35
0.48
0.19
0.79
0.55
0.22
bd
bd
1.33
0.81
0.18
0.24
0.51
0.43
bd
0.27
0.48
0.44
1.19
2.31
1.45
0.38
1.13
0.51
0.20
0.89
0.38
1.26
0.91
0.91
0.67
0.20
0.23
0.25
0.53
0.18
0.63
1.39
0.18
0.32
bd
0.59
Lu
0.07
0.12
0.10
0.09
bd
0.32
0.04
0.08
0.03
0.12
0.14
0.21
0.16
bd
0.07
0.04
0.17
0.16
0.13
0.15
0.03
0.15
0.06
0.09
0.05
0.08
0.51
0.20
0.09
0.12
0.13
0.06
0.07
bd
0.10
0.05
0.07
0.12
0.10
0.09
0.08
0.13
0.08
0.11
0.09
0.14
0.10
0.07
0.15
0.20
bd
bd
0.26
0.11
bd
bd
bd
bd
bd
0.06
bd
bd
bd
0.02
bd
0.05
bd
0.04
bd
0.03
bd
bd
0.07
bd
bd
bd
bd
bd
bd
bd
bd
0.04
bd
0.03
bd
bd
0.05
bd
bd
bd
bd
bd
bd
0.02
0.03
bd
bd
bd
0.03
bd
bd
0.15
bd
0.04
bd
0.04
0.20
0.05
Th
U
ƩREE
1.12
11
1.74
18
0.78
6
1.22
8
3.08
15
4.43
18
3.53
18
1.76
11
1.78
18
1.76
23
5.03
19
3.98
40
4.38
30
2.72
19
3.17
19
3.97
16
1.80
20
3.09
17
2.51
13
4.27
14
2.32
17
1.02
14
0.82
9
1.44
15
0.46
9
0.47
6
2.77
18
1.43
9
1.57
12
1.65
16
1.67
13
1.44
20
3.21
25
1.48
16
3.96
18
1.82
16
1.96
12
1.61
17
1.42
21
1.69
21
2.41
24
1.29
20
1.97
21
2.18
17
3.20
22
4.34
26
2.88
27
2.70
24
4.11
28
5.76
44
1.99
22
4.68
41
4.11
31
3.69
25
Ce/Ce*
-0.37
2.75
-0.55
-0.11
0.02
-0.35
-0.04
-0.25
-0.11
0.44
0.08
1.25
0.31
-0.40
-0.35
-0.43
0.31
-0.11
-0.12
-0.28
0.32
-0.20
-0.30
0.33
-0.55
-0.45
-0.24
-0.67
-0.36
-0.09
-0.61
-0.30
-0.38
-0.03
-0.31
-0.31
-0.13
0.03
-0.10
0.36
-0.11
-0.06
-0.38
-0.09
0.07
0.07
0.38
-0.33
0.17
-0.33
-0.42
0.18
0.19
-0.07
Ce/Ce**
1.70
12.80
0.32
0.99
3.78
2.19
3.29
1.03
1.33
1.46
0.85
6.61
1.43
1.61
0.40
0.83
2.28
-4.82
-26.14
0.71
-6.97
-7.95
0.69
2.32
-0.83
0.52
-2.25
1.88
0.47
1.02
0.49
3.20
-5.16
4.42
0.80
5.79
3.40
2.01
1.89
5.40
4.30
2.69
2.94
1.23
2.67
1.86
1.47
-20.26
0.91
0.72
0.43
12.82
1.29
2.09
La/La*
Y/Ho
2.50
44.2
16.39 152.1
-0.41
87.6
0.17
32.2
18.42
64.4
12.69
54.3
10.75
51.0
0.73 144.0
1.07 209.7
0.02 275.4
-0.30
36.9
11.14
43.0
0.16
40.4
3.26
62.6
-0.53
73.9
0.70
63.5
1.37 189.4
-2.93 194.9
-5.90 200.4
-0.02 154.1
-3.67
59.3
-3.15
38.2
-0.03
64.8
1.59 101.7
-1.87 180.2
-0.09
76.5
-2.61
36.9
8.37 174.1
-0.36
47.2
0.17
46.6
0.43 255.1
11.36
31.9
-3.19
59.3
7.22
45.7
0.31 203.5
-11.68
49.8
4.43
58.3
1.42
84.5
2.04 265.2
-13.84
98.5
-44.24 100.6
7.32
56.3
-21.81
28.3
0.66
30.1
2.81
73.3
1.52
47.1
0.10
53.0
-3.93 407.0
-0.33 156.1
0.12
41.5
-0.36
40.2
-5.78
68.7
0.13
53.0
3.76 156.1
405
mm from
bone rim
19.11
19.14
19.18
19.21
19.24
19.28
19.31
19.35
19.38
19.42
19.45
19.49
19.52
19.56
19.59
19.62
19.66
19.69
19.73
19.76
19.80
19.83
19.87
19.90
19.94
19.97
20.00
20.04
20.07
20.11
20.14
20.18
20.21
20.25
20.28
20.32
20.35
20.38
20.42
20.45
20.49
20.52
20.56
20.59
20.63
20.66
20.70
20.73
20.76
20.80
20.83
20.87
20.90
20.94
Sc
2.43
4.83
1.03
2.27
2.81
1.92
2.96
1.87
2.82
3.46
3.51
2.08
1.43
2.01
1.93
1.52
1.66
1.38
1.77
1.15
2.09
1.18
2.23
3.31
2.05
0.98
1.67
1.32
3.07
2.12
3.43
2.71
2.44
2.11
1.56
2.07
2.43
0.67
2.07
1.11
1.91
2.99
2.70
3.08
1.87
3.70
3.35
4.30
1.88
2.34
1.96
1.95
2.46
4.04
Mn
0.12
0.31
0.17
0.16
0.13
0.20
0.22
0.16
0.11
0.18
0.19
0.16
0.47
0.13
0.20
0.18
0.17
0.21
0.27
0.24
0.20
0.17
0.22
0.21
0.18
0.25
0.19
0.13
0.47
0.25
0.23
0.42
0.35
0.22
0.27
0.30
0.19
0.26
0.18
0.18
0.35
0.29
0.17
0.16
0.15
0.29
0.15
0.19
0.18
0.16
0.13
0.23
0.20
0.28
SRHS-DU-94 Femur (continued)
Fe
0.95
1.20
1.29
0.82
0.91
0.89
1.16
1.28
0.86
1.09
1.68
1.28
1.28
0.85
1.64
1.59
1.87
0.92
0.89
1.61
1.41
1.30
1.26
1.16
bd
1.08
1.08
1.22
2.48
1.17
1.14
1.84
1.75
0.83
1.80
1.96
1.52
1.23
1.10
0.94
1.40
1.34
1.29
1.25
2.83
1.96
2.01
1.57
1.76
1.10
1.19
1.01
1.67
2.17
Sr
1907.95
4720.99
2709.57
2154.47
2574.99
2373.23
3615.89
3380.14
2836.41
4227.19
4258.99
2780.80
3973.34
2082.52
2542.19
3042.14
3501.82
2100.78
2555.30
2765.72
3097.29
3064.99
3930.71
2816.24
2469.34
3647.50
2440.72
2420.34
3134.16
2966.39
3640.13
4103.92
8723.61
8382.44
3342.90
4597.50
2479.94
2747.97
2964.67
2073.32
5060.29
2939.07
2579.92
3423.04
3954.01
4121.50
2737.77
3108.08
2950.08
2843.42
2816.75
2263.52
2530.48
4789.25
Y
11.86
16.13
14.13
8.09
9.98
10.62
13.83
10.45
12.72
12.02
13.02
10.26
11.32
6.39
7.69
7.09
6.58
5.96
10.49
8.44
10.22
9.23
9.14
7.68
9.22
10.14
7.98
7.18
16.15
11.56
15.79
11.99
14.92
11.37
12.36
16.39
10.15
16.27
8.76
8.80
15.70
16.23
12.47
12.31
14.84
11.98
10.91
11.32
8.90
8.81
9.57
7.09
7.27
9.10
Ba
1350.71
2370.43
2399.10
1006.99
1422.87
2047.63
1590.19
1670.76
1346.44
2798.07
1330.46
1262.46
2486.08
1578.32
1776.85
2083.35
1286.10
1528.38
1093.65
1984.58
1438.97
1454.69
2624.45
1497.48
1629.20
1381.21
1191.08
1034.24
2336.99
1426.66
1469.40
nd
nd
nd
nd
nd
nd
nd
nd
1898.81
nd
1310.23
2102.10
1687.34
5457.76
1620.97
1312.68
2054.46
1574.26
1201.27
1209.27
1456.67
1271.46
3302.78
La
6.91
10.02
6.31
6.11
9.57
7.21
7.49
6.54
6.79
8.91
6.93
6.69
6.58
3.29
4.13
3.74
2.23
2.26
3.51
5.26
3.08
3.00
5.08
4.02
5.03
4.64
3.98
3.90
6.74
6.48
7.86
8.36
8.93
5.45
7.67
11.32
4.62
10.27
5.25
3.52
8.74
6.90
6.98
7.85
10.91
8.33
6.80
6.45
4.41
3.61
4.44
3.38
3.69
5.54
Ce
9.75
29.84
11.76
7.09
11.40
6.95
9.32
7.18
5.75
11.53
10.33
5.08
8.64
2.94
3.89
5.82
4.73
4.80
2.86
6.06
6.49
6.21
7.62
6.15
7.78
7.01
5.85
4.62
5.87
5.34
8.51
13.35
13.82
21.55
14.08
13.39
7.04
11.53
8.71
5.65
13.99
7.96
8.26
9.85
13.00
12.32
11.18
23.64
15.00
2.85
14.30
4.30
4.36
7.25
Pr
1.26
1.00
0.85
0.25
0.59
0.44
0.77
0.63
0.51
0.72
0.94
0.57
0.79
0.47
0.41
0.45
bd
0.18
0.15
0.40
0.22
0.46
0.57
0.48
0.12
0.50
0.46
0.61
0.68
0.31
0.60
1.23
1.03
0.58
0.28
0.98
0.48
1.18
0.59
0.33
1.29
1.65
1.19
0.93
0.61
1.01
0.97
0.95
0.60
0.54
0.44
0.19
0.30
0.42
Nd
2.25
3.82
2.86
1.63
2.71
1.08
2.12
1.96
0.65
4.57
4.15
2.07
bd
1.49
1.67
0.59
0.52
1.07
0.59
2.66
0.32
1.36
1.86
1.25
1.72
1.13
1.86
1.53
2.17
1.36
1.89
3.32
0.78
3.39
3.05
1.52
1.92
3.31
1.09
0.65
0.44
2.65
1.21
0.91
6.04
1.90
2.04
1.78
1.47
bd
0.86
1.53
1.12
1.06
Sm
1.47
0.35
bd
0.19
0.29
1.29
0.36
0.88
0.26
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.35
0.40
bd
0.81
bd
bd
bd
0.27
0.25
bd
bd
0.27
0.32
0.25
bd
bd
0.49
0.73
bd
0.36
0.65
1.04
0.53
bd
bd
bd
bd
bd
0.24
0.61
bd
bd
0.69
0.26
bd
0.85
Eu
0.15
0.11
0.43
bd
0.35
0.23
bd
0.18
bd
0.23
0.25
0.09
bd
0.36
bd
0.21
bd
bd
0.32
0.12
0.12
bd
bd
bd
bd
bd
0.07
bd
0.13
0.16
0.19
0.37
0.38
bd
0.22
0.22
0.19
bd
bd
0.08
bd
0.21
0.22
bd
bd
bd
0.07
bd
0.10
bd
bd
0.16
bd
bd
Gd
0.24
1.39
1.13
1.94
bd
47.31
0.36
1.74
0.77
0.38
0.82
0.30
bd
0.59
0.85
0.35
bd
bd
bd
0.79
bd
bd
0.44
bd
bd
0.27
bd
0.91
0.43
0.27
bd
0.24
0.62
0.31
3.14
0.36
0.21
3.22
0.65
2.57
bd
0.35
0.72
1.08
bd
1.13
0.24
0.30
1.04
bd
0.34
1.04
0.26
bd
Tb
0.06
0.58
0.24
0.02
0.03
0.09
0.13
0.10
0.09
bd
bd
0.11
bd
bd
bd
0.04
0.04
0.04
0.08
0.05
bd
bd
bd
bd
0.05
0.03
0.03
bd
0.15
0.06
0.08
0.09
0.15
0.15
0.12
bd
0.10
0.26
0.05
0.12
0.32
0.08
0.04
0.04
0.12
0.10
0.20
0.07
0.17
0.04
0.04
0.03
0.03
0.15
Dy
0.83
1.88
0.55
0.76
1.29
0.50
0.71
1.28
0.38
0.38
0.20
bd
0.38
0.29
0.14
0.69
0.45
0.16
0.52
0.39
0.38
0.20
1.08
1.09
0.80
0.53
0.48
0.15
1.47
0.26
0.16
0.96
0.91
0.91
0.71
0.88
0.51
1.40
0.74
1.14
0.52
1.03
0.70
0.53
0.80
1.66
0.71
1.04
1.19
0.84
0.33
0.89
0.26
0.62
Ho
0.21
0.21
0.10
0.21
0.32
0.16
0.18
0.25
0.19
bd
0.20
0.07
0.14
0.18
0.14
0.09
0.15
0.04
0.04
0.19
0.05
0.10
0.11
0.18
0.15
bd
0.15
0.15
0.10
0.17
0.16
0.33
0.11
0.04
0.21
0.49
0.18
0.35
0.11
0.25
0.45
0.26
0.04
0.26
0.28
0.21
0.15
0.11
bd
0.04
bd
0.13
0.07
0.10
Er
1.04
0.37
0.76
0.62
0.62
0.41
0.38
0.78
1.10
0.41
0.65
1.31
1.05
0.47
0.15
0.37
0.49
1.02
bd
0.42
0.20
bd
0.23
0.79
0.21
0.14
0.52
0.16
0.68
0.43
0.86
1.32
0.33
0.16
0.52
0.57
0.78
1.15
0.92
0.13
0.27
0.18
0.57
0.57
1.22
0.45
0.52
0.32
0.18
0.55
0.36
bd
0.42
0.44
Tm
0.03
0.16
0.07
0.05
0.10
0.15
0.08
0.20
0.09
bd
0.05
0.07
0.18
0.03
bd
0.04
0.11
0.07
bd
bd
bd
0.05
bd
bd
bd
0.03
0.11
bd
0.20
0.03
0.11
0.06
0.11
0.04
0.08
0.17
bd
0.13
0.03
0.15
0.12
0.08
0.17
0.04
0.08
0.03
0.03
0.04
0.08
0.16
0.12
bd
0.03
0.10
Yb
0.35
1.49
1.81
0.83
0.83
0.36
1.03
0.62
0.55
0.83
0.58
0.44
1.12
0.63
0.61
0.25
bd
0.45
1.00
0.56
0.83
0.57
bd
0.26
bd
0.96
0.70
0.21
0.92
0.58
0.68
0.70
0.22
0.22
1.03
0.77
0.15
0.25
0.31
0.55
2.63
0.25
0.77
0.25
0.70
0.60
0.52
1.29
0.25
0.24
0.24
0.74
bd
0.30
Lu
0.19
0.09
0.18
0.05
0.11
0.07
0.05
0.11
0.03
0.10
0.11
0.16
bd
0.08
bd
bd
bd
bd
0.09
0.10
0.05
0.10
0.11
0.14
0.16
0.03
0.13
bd
0.17
0.03
0.12
0.10
0.08
0.04
0.03
0.14
bd
0.23
0.08
0.10
0.14
0.23
0.28
0.23
0.17
0.11
0.16
0.04
0.23
0.04
0.09
0.03
0.10
bd
Th
0.05
0.14
bd
0.06
bd
0.05
0.04
bd
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.03
0.02
0.21
0.02
0.03
0.08
0.08
0.10
0.14
bd
0.11
0.10
0.06
0.09
bd
0.10
bd
0.03
0.10
0.08
0.25
U
ƩREE
4.11
25
5.95
51
3.95
27
4.73
20
3.75
28
2.62
66
3.79
23
3.73
22
1.83
17
5.91
28
4.38
25
1.51
17
2.13
19
1.53
11
0.91
12
0.97
13
0.61
9
0.91
10
0.42
10
0.78
17
1.24
12
1.25
13
0.99
17
1.95
14
1.79
16
1.21
16
1.31
15
1.73
12
2.96
20
1.91
16
2.74
22
4.47
31
4.55
27
2.70
33
6.62
32
5.68
32
2.28
16
4.25
34
1.88
19
1.90
16
4.23
29
1.26
22
3.40
21
2.45
23
3.34
34
6.01
28
2.48
24
1.77
37
2.52
25
1.01
9
1.70
22
2.37
13
1.90
11
1.70
17
Ce/Ce*
-0.23
0.99
0.13
-0.07
-0.11
-0.28
-0.18
-0.26
-0.39
-0.09
-0.09
-0.47
-0.17
-0.46
-0.37
-0.02
0.26
0.50
-0.35
-0.17
0.53
0.20
-0.03
-0.03
0.32
-0.01
-0.06
-0.32
-0.42
-0.35
-0.22
-0.06
-0.01
1.60
0.50
-0.18
0.01
-0.28
0.07
0.09
-0.05
-0.45
-0.34
-0.20
-0.09
-0.07
-0.02
1.16
1.07
-0.54
1.16
-0.02
-0.17
-0.06
Ce/Ce**
0.62
3.93
1.58
28.77
3.45
1.45
1.18
1.24
0.81
10.80
1.78
1.10
0.96
0.69
1.39
0.94
1.15
10.17
2.56
28.84
2.19
1.38
1.50
1.22
-3.52
1.23
1.83
0.70
0.95
2.80
1.55
1.04
0.90
14.45
-5.11
1.04
2.10
0.97
1.20
1.40
0.68
0.37
0.48
0.73
-2.92
0.99
0.98
2.01
2.30
0.45
2.68
-7.40
1.80
1.60
La/La*
Y/Ho
-0.29
56.9
2.19
75.5
0.77 136.1
-9.13
37.9
11.33
31.0
1.63
67.9
0.73
78.4
1.22
41.9
0.48
67.7
-5.82
66.3
3.07
64.8
2.25 137.0
0.25
78.4
0.56
35.3
3.09
55.2
-0.07
82.6
-0.14
43.7
-9.10 153.8
6.92 244.9
-4.87
43.7
0.63 216.6
0.26
93.6
1.03
84.6
0.43
42.2
-2.99
61.7
0.39
57.3
2.38
53.0
0.05
48.2
1.19 154.1
10.55
69.9
1.84 100.5
0.19
36.1
-0.13 130.7
-7.17 301.6
-3.10
59.7
0.39
33.8
2.69
57.2
0.60
46.5
0.18
82.9
0.44
34.9
-0.38
34.7
-0.49
63.4
-0.38 285.4
-0.12
46.6
-2.67
53.1
0.09
58.0
-0.01
73.5
-0.11 101.9
0.18 156.2
-0.04 210.5
0.37 133.1
-3.65
55.8
2.49 111.8
1.16
88.6
406
Sc
3.92
1.75
2.54
3.04
3.12
3.05
1.87
2.80
4.02
4.25
2.31
mm from
bone rim
0.00
0.03
0.07
0.10
0.14
0.17
0.21
0.24
0.28
0.31
0.35
0.38
0.41
0.45
0.48
0.52
0.55
0.59
0.62
0.66
0.69
0.73
0.76
0.79
0.83
0.86
0.90
0.93
0.97
1.00
1.04
1.07
1.11
1.14
1.17
1.21
1.24
1.28
1.31
Sc
36.24
35.55
33.79
38.98
31.32
20.04
19.06
23.12
21.90
20.47
20.77
31.78
24.63
17.03
23.10
19.89
15.40
20.90
17.43
19.89
20.71
18.21
17.29
16.51
14.57
13.91
11.23
15.92
15.93
18.89
13.81
25.82
15.74
16.35
11.47
14.47
14.26
9.64
11.27
SRHS-DU-126 Femur
mm from
bone rim
20.97
21.01
21.04
21.08
21.11
21.14
21.18
21.21
21.25
21.28
21.32
Mn
0.33
0.30
0.24
0.28
0.20
0.13
0.21
0.12
0.23
0.16
0.17
0.24
0.17
0.81
0.55
0.50
0.40
0.25
0.19
0.27
0.33
0.29
0.38
0.31
0.18
0.21
0.13
0.29
0.18
1.00
3.48
1.69
1.43
0.75
0.46
0.46
0.35
0.23
0.19
Mn
0.33
0.28
0.17
0.25
0.19
0.19
0.15
0.27
0.21
0.30
0.31
SRHS-DU-94 Femur (continued)
Fe
1.33
2.49
2.12
4.52
1.33
1.33
1.31
0.93
1.45
0.89
2.04
1.40
1.37
bd
bd
1.24
1.58
1.46
1.11
1.24
1.28
1.65
1.02
1.68
1.73
1.76
1.17
0.94
0.81
1.21
4.55
1.49
2.58
1.99
1.88
1.00
1.25
0.88
0.85
Fe
2.00
2.38
1.40
2.13
2.05
1.45
1.55
1.47
1.44
1.39
1.39
Sr
4174.38
5753.34
2897.43
2687.32
2700.63
3288.61
3845.17
2830.23
5527.55
2411.45
2364.67
3269.39
2304.84
5320.26
4164.15
3325.21
2888.80
3414.31
3185.51
4865.68
5790.76
3417.81
3962.43
2972.27
2840.12
3127.91
2201.06
3290.47
2238.39
3561.78
5308.07
4004.78
3672.84
3079.93
2500.97
2877.54
3337.05
2805.40
2138.91
Sr
4477.78
4159.90
2449.72
2889.52
4253.34
3703.94
2619.22
2872.20
2972.25
3453.20
3277.19
Y
194.73
367.70
287.40
295.29
194.03
225.48
224.07
165.61
312.05
187.55
130.30
166.87
160.42
158.16
187.84
136.99
127.46
131.34
85.41
177.24
172.72
156.35
123.05
106.38
83.43
82.19
62.10
71.98
55.85
105.70
198.36
148.09
107.08
112.83
77.01
71.49
124.24
59.98
68.51
Y
8.83
7.57
4.65
10.74
11.81
10.06
11.40
12.68
11.12
16.73
11.03
Ba
2340.01
2095.97
1857.46
2013.10
1598.33
1429.91
1461.48
842.50
2628.00
1160.50
1515.56
nd
1691.32
2050.87
4272.70
2626.34
1723.64
1994.27
1687.61
1294.10
1754.36
1544.79
1920.06
2571.26
992.85
2004.75
1182.36
1663.32
1777.21
1637.91
nd
1649.87
2382.73
1746.58
1722.90
2015.35
1578.22
2181.06
1846.63
Ba
2684.55
1368.45
1817.04
2173.97
1729.37
1195.11
1291.09
1477.53
1624.45
1731.30
1449.84
La
283.99
348.10
202.16
348.34
282.52
172.02
207.08
96.12
262.01
151.92
129.90
185.77
164.85
250.63
188.54
101.47
111.65
100.85
78.73
86.32
138.48
108.93
87.91
93.29
80.13
54.55
33.26
37.26
42.14
57.43
152.35
77.05
83.90
71.85
64.84
73.59
64.59
44.60
38.91
La
3.93
2.96
2.80
6.31
5.75
5.29
9.14
6.75
4.94
8.54
5.33
Ce
867.89
bd
540.85
601.96
bd
433.98
469.47
370.18
452.89
262.86
337.40
449.35
372.73
501.86
505.69
210.01
177.57
157.90
124.16
135.33
253.45
303.40
162.32
236.32
190.68
72.18
32.87
54.22
54.19
208.23
432.42
277.97
182.34
119.77
114.68
153.10
103.69
bd
61.11
Ce
4.27
6.02
4.57
10.06
6.56
6.53
7.58
9.91
12.02
10.21
5.33
Pr
55.97
85.42
46.26
90.73
51.80
40.41
40.45
22.15
42.31
17.11
33.06
45.38
23.74
59.31
40.63
29.24
21.08
27.65
12.47
9.40
30.95
27.48
14.14
17.24
20.38
6.11
4.61
8.61
4.97
14.98
30.53
22.26
16.17
13.21
19.35
12.15
10.79
5.42
7.45
Pr
0.41
0.56
0.05
0.90
0.44
0.58
0.48
0.43
0.76
0.63
0.38
Nd
164.48
243.87
197.69
240.74
235.27
133.66
136.16
86.82
162.58
63.90
79.09
126.33
82.03
241.30
100.13
88.66
56.09
42.80
35.39
39.43
62.45
80.71
45.72
52.37
51.75
23.03
15.74
16.40
14.42
57.97
89.79
42.12
41.03
42.17
32.09
39.84
30.53
17.83
20.83
Nd
1.37
bd
0.57
1.25
1.10
4.25
2.81
1.26
2.24
2.01
0.64
Sm
31.63
43.27
39.38
37.08
43.42
18.98
22.92
11.24
23.95
12.18
16.34
14.49
18.56
46.50
17.39
14.17
10.91
8.18
5.57
6.69
10.27
15.86
8.43
12.86
7.30
4.22
2.51
3.56
3.78
8.90
17.04
12.48
9.69
5.84
3.88
6.81
4.55
5.45
3.48
bd
0.98
0.34
0.75
bd
0.25
bd
bd
bd
0.80
bd
Sm
Eu
6.81
12.11
9.56
13.83
11.30
6.28
6.37
4.81
5.40
5.53
6.01
7.86
4.63
9.38
4.33
2.73
3.52
3.46
1.72
2.84
4.35
3.71
2.45
3.35
1.82
1.15
0.70
0.88
2.31
2.21
3.85
2.50
3.21
2.37
1.59
2.38
2.03
1.74
1.13
Eu
0.37
0.10
0.10
bd
0.40
0.08
bd
bd
bd
0.36
bd
Gd
31.29
37.64
55.56
57.83
42.24
24.34
29.17
17.40
24.42
13.33
29.60
22.31
16.69
35.88
23.93
18.52
13.63
11.41
9.28
16.98
18.37
14.27
12.84
15.53
8.31
5.63
4.87
5.74
7.55
10.97
19.67
14.39
9.41
7.42
15.74
7.74
110.89
7.70
4.30
Gd
0.41
1.30
bd
0.37
bd
1.77
bd
1.49
0.66
bd
bd
Tb
3.44
6.49
8.52
7.34
4.29
3.32
3.56
2.23
2.62
2.17
2.16
3.35
2.16
5.40
3.94
1.77
1.90
1.39
1.26
1.81
2.51
1.62
2.11
2.36
0.91
0.80
0.49
0.87
1.08
1.95
1.68
2.17
1.55
1.96
1.21
0.73
1.00
1.08
0.81
bd
bd
0.04
0.09
0.16
bd
bd
0.13
0.20
0.05
bd
Tb
Dy
22.56
31.99
42.67
46.34
27.48
19.55
18.12
17.31
21.22
15.07
16.65
26.15
20.01
34.63
26.42
11.97
18.50
9.29
6.58
9.21
18.42
13.11
13.97
11.16
8.49
6.56
5.08
7.19
8.43
12.21
14.26
11.76
9.09
9.49
7.96
10.13
8.48
8.67
8.52
Dy
1.00
0.16
0.66
0.54
0.21
0.50
0.18
1.47
0.16
0.78
1.68
Ho
6.57
8.19
7.03
7.66
4.98
4.17
4.38
3.11
4.25
3.63
4.05
4.49
4.61
6.11
4.70
3.11
4.22
2.81
2.29
2.10
3.56
2.27
3.28
2.68
2.24
1.72
1.32
1.55
2.07
2.06
4.34
2.90
2.67
1.72
1.74
1.58
1.58
2.24
2.20
Ho
0.25
0.16
0.12
0.04
0.11
0.09
0.23
0.05
0.20
0.29
0.05
Er
15.52
18.28
24.24
28.31
19.20
13.01
15.37
6.14
17.98
10.94
11.97
17.65
12.74
15.37
15.51
8.92
13.47
6.96
8.45
6.79
12.81
8.79
9.30
8.81
5.03
5.41
4.15
5.66
9.61
6.55
10.13
9.18
11.33
6.43
8.74
4.80
5.03
4.87
5.17
Er
0.21
0.69
0.17
0.19
2.58
0.27
0.19
1.20
1.42
1.49
0.20
Tm
2.22
2.69
2.20
2.37
2.28
1.50
1.79
0.96
2.42
1.22
1.66
1.96
1.35
2.43
2.29
1.42
1.03
0.95
0.96
1.41
1.98
0.53
0.96
1.53
0.87
0.53
0.66
0.69
1.32
0.76
1.68
1.26
1.10
0.83
0.76
0.77
0.61
0.62
0.75
Tm
0.05
bd
0.04
0.09
0.10
0.03
0.13
0.17
0.08
0.09
0.04
Yb
13.10
15.61
10.09
14.45
9.58
9.11
9.35
5.50
13.04
8.50
9.78
13.37
6.09
11.06
8.09
7.42
7.90
6.72
6.88
8.03
12.65
8.20
10.40
7.22
6.50
3.50
4.12
3.51
6.25
6.73
9.17
7.83
9.82
6.02
5.50
4.99
5.17
3.96
4.23
Yb
1.45
0.23
0.24
bd
2.17
0.90
0.26
0.26
0.95
1.13
0.81
Lu
1.35
1.56
2.54
3.35
1.05
1.12
1.18
0.83
2.21
1.13
1.33
2.23
0.85
1.76
1.19
0.97
1.01
0.73
1.00
1.17
1.55
1.00
1.15
1.43
0.84
0.41
0.53
0.57
0.74
1.01
1.26
1.28
1.80
1.56
0.95
0.89
0.47
0.43
0.60
Lu
0.05
0.13
0.04
0.14
0.17
0.03
0.05
0.10
0.04
0.05
0.05
bd
0.22
1.32
1.01
0.11
0.10
0.02
0.08
0.10
0.06
0.08
0.26
0.12
0.35
0.26
0.11
0.02
0.04
0.08
0.10
bd
0.11
0.08
bd
0.12
0.03
0.02
bd
bd
0.50
0.26
0.29
0.08
0.08
0.07
0.02
0.02
bd
0.02
Th
Th
0.28
0.10
0.40
0.36
0.81
0.15
0.04
0.07
0.16
0.12
0.26
U
ƩREE
12.62 1507
14.12
855
19.79 1189
17.38 1500
14.57
735
15.02
881
12.42
965
13.36
645
22.03 1037
11.20
570
5.67
679
12.34
921
6.66
731
13.50 1222
5.88
943
11.84
500
7.83
442
5.66
381
3.92
295
5.04
328
5.83
572
4.36
590
2.74
375
3.10
466
3.44
385
2.25
186
3.40
111
2.91
147
4.07
159
8.88
392
9.62
788
6.14
485
5.16
383
4.80
291
4.24
279
5.09
319
5.77
349
7.70
105
4.75
159
U
ƩREE
3.62
14
1.28
13
1.57
10
2.61
21
4.25
20
4.74
21
2.01
21
4.02
23
4.29
24
3.80
26
2.39
14
Ce/Ce*
0.60
-0.04
0.31
-0.20
-0.01
0.22
0.20
0.88
-0.01
0.12
0.21
0.15
0.35
-0.03
0.35
-0.10
-0.15
-0.30
-0.09
0.02
-0.09
0.30
0.05
0.37
0.11
-0.14
-0.40
-0.29
-0.18
0.67
0.48
0.57
0.15
-0.10
-0.24
0.18
-0.10
0.17
-0.16
Ce/Ce*
-0.28
0.09
0.43
-0.05
-0.18
-0.20
-0.36
0.09
0.41
-0.13
-0.27
Ce/Ce**
1.59
0.83
1.80
0.64
1.72
1.22
1.34
2.27
1.42
1.97
0.92
0.98
1.85
1.21
1.14
0.76
0.81
0.44
1.00
2.15
0.68
1.13
1.27
1.44
0.87
1.53
0.83
0.51
1.11
1.86
1.46
1.02
1.05
0.99
0.46
1.41
0.96
1.71
0.81
Ce/Ce**
1.20
0.86
-8.01
0.83
1.39
-11.35
6.14
2.38
1.62
1.79
1.09
La/La*
Y/Ho
-0.01
29.6
-0.24
44.9
1.07
40.9
-0.34
38.6
2.64
38.9
-0.01
54.1
0.23
51.2
0.49
53.2
1.01
73.4
1.66
51.6
-0.38
32.2
-0.25
37.1
0.75
34.8
0.64
25.9
-0.25
40.0
-0.30
44.0
-0.08
30.2
-0.56
46.7
0.18
37.2
3.00
84.2
-0.38
48.5
-0.23
68.9
0.39
37.5
0.10
39.7
-0.35
37.3
1.75
47.8
0.78
46.9
-0.42
46.5
0.62
26.9
0.27
51.2
-0.03
45.7
-0.54
51.1
-0.14
40.1
0.19
65.8
-0.58
44.1
0.39
45.4
0.11
78.5
0.90
26.8
-0.04
31.1
La/La*
Y/Ho
1.30
35.3
-0.32
47.7
-4.88
37.5
-0.19 238.9
1.16 110.8
-2.88 108.6
-13.51
50.2
2.07 279.4
0.26
54.6
1.99
57.3
0.75 238.9
407
mm from
bone rim
1.35
1.38
1.42
1.45
1.49
1.52
1.55
1.59
1.62
1.66
1.69
1.73
1.76
1.80
1.83
1.87
1.90
1.93
1.97
2.00
2.04
2.07
2.11
2.14
2.18
2.21
2.25
2.28
2.31
2.35
2.38
2.42
2.45
2.49
2.52
2.56
2.59
2.63
2.66
2.69
2.73
2.76
2.80
2.83
2.87
2.90
2.94
2.97
3.01
3.04
3.07
3.11
3.14
3.18
Sc
13.70
12.60
15.16
12.65
16.21
11.35
14.25
11.28
11.70
13.50
11.61
9.78
10.35
10.99
13.63
5.41
8.23
4.70
2.64
11.51
6.74
7.79
6.35
6.98
9.41
6.80
7.50
7.17
6.27
9.28
8.07
5.54
3.52
2.87
2.82
3.59
7.41
7.97
4.26
8.45
6.20
4.79
5.67
8.87
7.39
7.05
7.78
8.55
11.81
7.78
7.84
8.14
8.04
9.41
Mn
0.21
0.27
0.22
0.30
0.28
0.26
0.21
0.15
0.30
0.24
0.23
0.22
0.24
0.17
0.24
0.21
0.48
0.23
0.41
0.21
0.26
0.31
0.27
0.17
0.21
0.25
0.25
0.19
0.15
0.19
0.18
0.51
0.15
0.14
0.18
0.15
0.22
0.27
0.93
0.47
0.28
0.34
0.26
0.25
0.30
0.29
0.15
0.35
0.23
0.20
0.28
0.20
0.20
0.42
SRHS-DU-126 Femur (continued)
Fe
1.08
2.25
1.17
1.33
1.76
0.86
1.68
1.60
1.41
0.85
1.19
0.91
0.99
1.10
1.58
1.59
2.06
1.49
1.84
1.51
0.93
1.36
0.99
1.07
0.90
1.23
1.04
1.31
1.24
1.24
0.94
0.77
1.16
1.21
1.26
0.99
1.17
1.20
1.72
1.50
1.38
1.37
1.10
1.42
1.82
1.18
0.85
1.12
1.26
0.88
1.37
1.66
1.10
1.02
Sr
3293.47
4225.54
2683.94
3382.98
2940.36
2670.72
4938.90
1921.62
3851.91
4865.11
4333.68
2527.20
4256.55
1651.74
4985.35
2695.75
2765.27
2825.08
2294.95
3152.92
4837.65
10293.58
3875.86
3608.39
5394.19
4099.74
2967.33
4821.25
2639.78
4186.82
3642.50
3342.39
3602.25
2091.81
2944.70
2492.00
4070.42
3470.20
4083.64
3220.56
3593.60
2423.28
3166.68
4065.70
3672.92
3010.77
2941.74
3343.52
4413.96
3958.22
2020.89
3479.57
3561.27
2625.99
Y
103.54
134.62
84.81
108.52
90.10
79.95
118.31
59.86
137.76
116.51
103.52
78.64
128.59
47.09
54.64
21.79
27.23
19.03
13.45
56.96
39.95
71.37
56.06
47.07
61.16
76.92
54.43
69.14
48.21
93.96
64.43
34.05
38.98
21.49
15.39
22.01
44.66
52.88
38.48
52.55
46.24
36.72
42.39
46.71
58.76
44.91
44.08
61.33
66.47
69.48
41.15
66.20
51.66
36.44
nd
2324.79
1340.63
1873.62
2651.96
1488.24
1893.29
1448.67
2918.98
1814.93
2565.31
1324.95
1898.22
1273.94
1571.67
1494.61
2108.47
2119.58
nd
2246.61
7363.33
nd
nd
2000.05
3109.36
3354.34
1743.76
2589.93
1696.77
2262.23
1707.83
1920.04
1789.59
1959.49
1998.15
1522.04
1806.07
2131.40
2501.90
2232.25
2455.98
1852.78
2811.76
2314.97
2967.09
1519.50
1099.31
3058.30
1591.02
2446.50
1590.57
2311.09
1922.30
1144.77
Ba
La
52.30
71.28
37.53
39.18
48.23
34.48
62.91
50.49
64.84
41.81
48.85
27.46
39.48
13.05
17.73
8.73
11.03
9.03
13.24
30.16
22.61
24.77
22.58
19.69
22.23
42.91
16.54
27.22
15.71
29.99
29.84
12.25
9.63
5.28
3.71
9.08
17.47
16.80
15.82
15.91
13.62
11.88
20.59
15.15
28.31
16.30
13.48
20.67
25.95
34.18
14.89
19.29
14.66
14.42
Ce
116.49
136.81
64.94
76.56
69.05
60.95
140.32
98.03
170.58
96.07
96.10
60.32
75.18
32.60
30.96
12.22
16.11
10.10
8.11
49.71
38.02
58.69
46.43
48.33
49.59
106.21
33.97
45.13
39.21
56.68
60.79
35.33
27.21
10.50
10.73
14.21
25.24
54.38
67.62
34.13
33.64
21.50
35.38
47.54
93.22
26.23
26.08
52.01
39.91
47.99
29.99
33.54
28.06
27.75
Pr
8.70
12.60
6.25
8.47
6.40
4.06
10.15
9.52
11.18
8.94
8.54
7.15
6.04
3.17
4.97
1.84
0.80
1.14
1.98
5.28
4.54
4.83
3.40
3.40
4.82
5.20
2.57
4.40
1.67
4.55
3.03
2.46
1.20
1.19
0.78
1.25
2.27
2.80
4.33
3.36
2.20
2.92
3.21
2.93
4.93
4.01
2.48
4.86
2.49
5.35
3.52
2.20
2.74
1.83
Nd
27.19
37.57
21.80
21.48
19.54
13.97
41.46
25.58
38.08
24.28
29.07
16.71
18.12
8.75
10.52
3.67
4.69
1.94
3.09
21.36
11.88
13.92
14.98
10.36
11.90
29.11
9.03
10.03
9.29
15.93
12.22
5.14
6.20
2.29
2.28
5.29
7.79
6.40
13.24
11.26
7.46
5.02
11.89
6.84
12.74
10.41
6.31
17.00
11.01
11.53
7.77
11.03
10.38
6.20
Sm
5.12
4.62
2.77
3.97
5.81
4.17
6.35
6.87
9.70
3.28
6.25
4.26
3.48
0.93
1.90
0.93
0.98
2.08
1.17
3.88
2.23
5.08
2.62
3.99
2.69
4.39
0.75
3.71
2.54
2.07
2.01
2.63
bd
0.28
0.55
0.75
1.17
3.34
1.31
2.00
1.84
0.83
3.49
2.75
4.20
1.55
1.32
3.53
2.60
2.37
2.66
2.51
1.72
1.97
Eu
0.90
1.98
1.83
0.77
2.16
1.18
2.24
0.96
2.39
2.10
1.50
1.00
0.63
0.28
0.57
0.28
bd
0.31
0.35
1.02
1.33
1.51
1.72
1.19
0.53
2.21
1.12
0.88
0.50
1.67
1.00
0.78
0.31
0.25
0.11
0.39
0.58
0.19
0.78
0.71
0.49
0.37
0.86
0.32
0.56
1.15
0.64
0.93
0.34
0.79
0.63
0.60
1.17
1.06
Gd
10.05
6.64
4.35
5.84
10.16
5.62
7.05
3.23
6.37
6.80
7.66
7.17
3.68
5.01
3.17
2.56
1.97
2.08
0.47
4.10
4.14
6.34
2.62
5.26
2.24
4.05
6.02
3.71
3.17
3.25
2.68
5.25
1.05
0.69
0.18
1.50
0.78
2.09
4.60
1.80
3.49
1.65
3.69
1.06
5.59
5.41
1.49
5.39
9.53
3.26
1.95
3.52
0.98
2.36
Tb
1.29
0.97
1.11
0.64
1.47
0.62
2.30
0.79
1.09
1.20
0.89
0.43
0.83
0.38
0.49
0.25
0.26
0.09
0.08
1.01
0.72
0.87
0.59
0.56
0.83
0.64
0.43
0.44
0.30
1.06
0.45
0.54
0.14
0.18
0.18
0.34
0.23
0.35
0.55
0.62
0.28
0.28
0.37
0.28
0.72
0.42
0.45
0.49
0.86
0.78
0.34
0.60
0.50
0.70
Dy
10.05
9.21
7.96
4.81
10.68
4.29
9.56
5.54
11.41
7.71
9.69
5.39
5.31
3.18
3.58
1.14
1.33
1.40
1.60
5.82
4.38
4.98
5.14
4.71
4.51
8.78
3.60
4.85
2.90
8.13
4.82
3.04
1.76
1.08
0.63
1.66
2.88
2.87
3.11
5.39
2.70
1.56
4.63
3.94
4.34
5.79
3.17
5.69
6.09
5.23
3.21
4.56
3.13
2.32
Ho
2.85
2.54
1.93
1.43
2.22
1.53
2.18
2.02
3.18
2.15
2.54
2.11
1.65
0.54
1.36
0.40
0.57
0.10
0.40
1.64
1.09
1.70
1.44
0.89
0.82
2.19
0.94
0.97
1.03
1.37
1.01
0.87
0.42
0.30
0.29
0.57
0.55
0.99
0.96
0.83
0.56
0.82
1.43
0.88
1.11
1.44
1.54
1.22
1.27
1.55
0.91
0.80
0.60
0.48
Er
7.46
6.54
4.58
6.42
6.26
4.60
6.58
5.66
8.80
6.70
7.07
6.16
5.95
1.60
2.39
0.88
1.46
0.42
1.76
4.06
4.12
6.32
3.67
4.69
2.78
7.83
4.66
4.66
1.94
7.65
2.89
2.19
2.26
0.67
0.20
1.92
2.11
2.48
3.07
3.66
3.27
2.01
3.98
3.99
4.52
4.06
3.66
5.36
5.14
4.15
2.86
4.33
1.85
3.18
Tm
1.30
1.25
0.97
1.39
1.01
0.75
0.88
0.92
1.19
0.87
0.56
1.10
0.92
0.26
0.48
0.22
0.26
0.06
0.27
0.40
0.48
0.30
0.58
0.25
0.55
0.91
0.35
0.40
0.30
0.83
0.49
0.31
0.21
0.13
0.24
0.28
0.43
0.54
0.46
0.42
0.36
0.22
0.45
0.62
0.65
0.56
0.44
0.63
0.61
0.52
0.68
0.64
0.51
0.46
Yb
7.54
8.20
5.06
5.80
6.44
4.14
4.84
3.15
5.70
6.32
5.73
3.98
5.22
2.11
1.35
1.82
0.87
0.74
1.33
2.75
4.98
2.48
3.72
2.57
1.75
5.28
3.74
2.98
1.65
4.41
1.43
1.35
1.59
1.37
0.26
2.00
2.92
2.96
2.49
2.98
1.69
1.08
4.22
2.25
2.81
3.43
2.35
4.27
5.54
3.78
2.76
2.14
2.96
3.63
Lu
1.26
0.60
0.59
0.70
0.99
0.84
0.89
0.42
0.79
1.41
0.82
0.61
0.73
0.31
0.79
0.24
0.39
0.10
0.12
0.33
0.67
0.70
0.89
0.50
0.38
1.15
1.01
0.35
0.63
0.54
0.58
0.19
0.31
0.14
0.07
0.27
0.26
0.44
0.71
0.70
0.31
0.34
0.51
0.61
0.46
0.61
0.50
0.70
0.83
0.73
0.37
0.26
0.26
0.72
Th
0.11
0.29
0.81
0.30
0.22
0.83
0.26
0.04
0.06
0.02
0.02
0.09
bd
0.04
0.09
0.09
bd
bd
bd
bd
bd
bd
0.03
0.04
bd
bd
0.04
bd
bd
bd
0.02
bd
bd
bd
bd
bd
bd
bd
0.04
bd
bd
0.01
0.06
0.08
bd
bd
0.08
0.02
bd
bd
bd
bd
bd
bd
U
ƩREE
5.01
253
7.12
301
4.20
162
2.56
177
5.63
190
6.97
141
6.67
298
6.59
213
7.57
335
8.33
210
8.64
225
5.88
144
4.80
167
1.07
72
2.74
80
1.83
35
1.05
41
1.15
30
1.32
34
1.37
132
2.94
101
3.09
133
5.20
110
3.32
106
2.38
106
6.24
221
3.81
85
2.45
110
3.02
81
7.01
138
3.50
123
3.45
72
0.96
52
0.89
24
0.78
20
2.03
40
3.51
65
2.54
97
4.18
119
3.65
84
2.78
72
2.38
50
3.70
95
4.18
89
4.65
164
3.47
81
2.68
64
3.36
123
3.87
112
17.75
122
2.99
73
3.63
86
2.42
70
1.85
67
Ce/Ce*
0.25
0.06
-0.03
-0.02
-0.12
0.13
0.27
0.04
0.46
0.16
0.09
0.01
0.11
0.19
-0.23
-0.29
0.06
-0.30
-0.64
-0.09
-0.12
0.25
0.20
0.36
0.12
0.56
0.19
-0.05
0.64
0.10
0.36
0.50
0.77
-0.02
0.48
-0.05
-0.11
0.82
0.92
0.09
0.41
-0.14
-0.01
0.66
0.82
-0.24
0.05
0.22
0.04
-0.19
-0.03
0.12
0.03
0.20
Ce/Ce**
1.44
1.13
1.24
0.84
1.14
1.77
1.99
1.00
1.78
1.05
1.31
0.75
1.30
1.01
0.53
0.55
7.77
0.70
0.31
1.34
0.80
1.23
2.21
1.50
0.95
6.28
1.58
0.91
6.98
1.49
2.84
1.22
5.20
0.72
1.42
1.74
1.31
1.72
1.66
1.17
1.76
0.58
1.40
1.45
1.78
0.62
0.99
1.28
2.63
0.77
0.74
3.27
1.34
1.75
La/La*
Y/Ho
0.27
36.3
0.12
53.0
0.54
43.9
-0.24
76.1
0.54
40.7
1.13
52.4
1.45
54.3
-0.07
29.6
0.42
43.3
-0.17
54.2
0.40
40.8
-0.41
37.3
0.31
77.7
-0.25
86.7
-0.49
40.3
-0.35
54.7
-10.10
47.7
0.00 200.2
-0.19
33.7
1.17
34.7
-0.15
36.7
-0.03
41.9
2.65
38.9
0.18
53.1
-0.26
74.4
-10.13
35.2
0.67
57.8
-0.07
71.6
-12.69
46.7
0.71
68.5
2.72
63.8
-0.29
39.0
65.36
92.8
-0.40
70.9
-0.07
52.8
2.36
38.4
0.92
81.1
-0.09
53.2
-0.25
40.0
0.13
63.3
0.50
82.4
-0.49
44.5
0.88
29.7
-0.20
53.1
-0.04
52.9
-0.31
31.2
-0.10
28.7
0.10
50.5
4.92
52.3
-0.08
44.7
-0.38
45.3
20.04
83.0
0.67
86.1
0.90
75.8
408
mm from
bone rim
3.21
3.25
3.28
3.32
3.35
3.39
3.42
3.46
3.49
3.52
3.56
3.59
3.63
3.66
3.70
3.73
3.77
3.80
3.84
3.87
3.90
3.94
3.97
4.01
4.04
4.08
4.11
4.15
4.18
4.22
4.25
4.28
4.32
4.35
4.39
4.42
4.46
4.49
4.53
4.56
4.60
4.63
4.66
4.70
4.73
4.77
4.80
4.84
4.87
4.91
4.94
4.98
5.01
5.01
Sc
10.45
9.05
8.50
6.57
8.57
7.82
7.53
8.07
7.68
6.48
8.15
7.03
8.63
4.37
7.68
5.86
5.10
7.34
7.25
5.80
9.25
3.87
4.91
5.17
5.15
5.22
6.84
5.43
5.41
3.61
3.80
2.30
4.51
2.66
3.66
1.78
2.10
2.15
2.29
2.96
5.11
6.11
3.65
2.90
2.32
3.67
3.05
2.96
2.87
2.65
2.54
3.72
3.39
2.85
Mn
0.43
0.31
0.31
0.27
1.25
0.29
0.28
0.40
0.20
0.21
0.21
0.18
0.24
0.19
0.25
0.14
0.14
0.28
0.18
0.16
0.30
0.18
0.12
0.19
0.26
0.27
0.21
0.20
0.24
0.22
0.28
0.33
0.26
0.15
0.25
0.24
0.23
0.29
0.32
0.33
1.17
0.82
0.56
0.43
0.24
0.20
0.19
0.29
0.35
0.29
0.20
0.26
0.17
0.11
SRHS-DU-126 Femur (continued)
Fe
bd
2.58
1.88
bd
1.37
1.64
2.35
1.85
1.13
1.26
1.81
1.22
1.31
0.95
1.15
1.06
1.37
1.40
1.73
1.28
1.16
1.06
1.19
0.94
1.80
0.97
1.08
1.79
1.02
1.24
1.50
1.44
1.81
1.17
1.35
1.33
1.30
1.57
1.43
0.96
2.26
1.93
1.65
1.79
1.23
1.33
0.91
0.89
0.97
1.17
0.79
1.41
1.50
0.78
Sr
5615.94
5409.86
3827.74
2390.62
4145.39
2971.61
4896.60
4485.02
3603.40
2068.35
3764.68
4461.39
4100.01
2660.16
3062.62
2703.79
3176.83
3616.68
2547.37
3050.77
4445.72
2509.68
3807.45
3398.33
2977.60
3401.04
2892.27
3000.79
2186.70
2984.93
2439.80
3544.26
2951.77
3061.85
3357.39
3839.54
4264.60
3708.83
2636.78
2211.52
3893.71
3911.06
2359.24
3254.26
2319.89
3367.56
2213.87
3136.07
3204.15
3880.51
2411.19
2553.23
3431.72
3307.49
Y
89.52
64.88
46.92
47.46
63.85
54.20
63.42
58.13
48.42
41.23
54.01
53.17
73.35
26.19
32.84
28.51
30.94
42.49
35.88
46.51
34.16
20.31
36.48
36.03
45.81
39.88
39.81
41.27
18.57
20.06
13.32
12.00
16.89
6.83
18.04
9.79
11.77
7.12
10.34
11.03
23.66
17.16
16.51
12.11
9.79
12.48
10.91
11.07
10.43
12.78
7.63
12.30
12.43
8.99
Ba
3509.44
1968.90
1908.42
1727.68
2202.64
1640.02
2564.34
1809.64
1856.06
1654.11
1108.46
1409.90
2007.72
1989.04
1183.14
927.76
1619.35
1826.01
1968.84
2064.00
2094.37
1295.56
2032.29
1705.18
1872.54
1533.30
1581.29
1419.54
1694.97
nd
2039.49
1351.14
1739.99
1903.33
1893.23
1943.64
1908.39
1788.37
1421.73
nd
nd
1542.24
1483.41
2134.32
984.42
1420.72
1321.74
1815.59
1357.74
2039.37
1104.90
2014.34
1681.92
989.78
La
30.81
24.91
20.44
21.76
23.78
16.80
24.78
21.60
17.81
11.71
12.84
13.46
14.12
7.29
7.41
7.10
9.80
11.91
7.27
12.65
7.84
7.74
8.94
11.57
11.18
9.87
10.21
10.36
4.10
5.19
3.87
2.84
2.75
2.60
2.75
2.27
2.23
1.79
1.77
2.44
4.72
2.80
2.54
2.31
2.16
2.43
1.96
2.23
2.18
2.27
2.42
1.89
2.29
1.76
Ce
45.73
33.10
44.01
33.97
30.37
39.62
41.61
48.34
41.78
20.25
18.33
30.18
25.89
14.06
18.37
16.74
18.75
38.73
15.99
20.06
24.28
28.71
15.71
14.04
27.75
16.98
15.90
12.64
9.27
18.14
8.56
2.61
5.05
12.74
7.46
4.64
5.48
4.50
4.60
10.49
4.71
7.53
8.15
3.49
5.23
2.65
3.85
3.36
2.60
2.67
4.29
4.34
3.42
2.80
Pr
13.91
4.28
2.80
4.29
2.95
3.46
4.13
5.00
2.44
1.39
2.02
1.63
3.11
1.39
0.82
1.37
1.56
2.18
1.58
1.29
1.64
1.99
1.95
1.08
2.10
2.50
1.61
2.33
0.57
1.03
0.37
0.53
0.97
0.53
0.35
0.31
0.19
0.07
0.42
0.24
0.57
0.61
0.41
0.20
0.16
0.30
0.25
0.17
0.56
0.34
0.48
0.20
0.51
0.25
Nd
25.30
11.61
9.90
9.67
10.25
10.07
11.21
11.00
4.63
6.97
7.36
10.78
6.80
4.57
5.15
3.26
2.71
7.50
5.08
7.27
7.71
2.45
4.67
6.56
6.52
2.99
4.81
3.75
3.07
2.14
1.44
0.65
1.59
0.17
1.59
1.33
0.88
1.30
0.88
0.14
3.37
1.31
1.99
0.93
0.82
0.96
0.82
1.58
1.22
1.32
0.35
1.34
0.94
0.44
Sm
3.94
0.76
2.03
2.22
2.71
1.57
2.99
3.08
2.61
0.73
1.14
2.46
2.11
1.18
0.19
0.41
1.40
2.45
2.53
0.56
0.97
0.66
2.14
1.58
1.75
1.89
0.88
0.79
bd
1.88
0.17
0.59
0.19
bd
0.27
bd
0.27
0.52
0.18
0.17
0.21
0.91
bd
0.56
bd
0.16
0.20
0.17
0.42
0.53
bd
bd
0.49
bd
Eu
0.59
1.02
0.42
1.49
0.86
0.64
1.07
0.63
0.55
0.60
0.61
0.88
0.21
0.47
0.52
0.31
0.28
0.29
0.32
0.22
0.75
0.15
0.29
0.54
0.85
0.82
0.52
0.47
0.05
0.14
0.10
bd
bd
bd
0.16
bd
0.16
bd
0.10
0.05
bd
0.07
0.32
bd
0.05
0.10
0.18
0.05
0.38
0.48
bd
bd
0.19
0.05
Gd
11.82
1.52
3.85
2.96
4.45
3.53
4.18
2.31
1.86
2.19
1.36
1.23
3.52
0.99
2.53
0.83
1.09
2.94
3.07
1.87
1.36
0.66
2.53
3.16
2.84
2.06
16.19
1.57
0.70
1.88
2.08
3.76
0.38
bd
1.10
1.20
0.53
0.78
0.53
0.17
1.50
1.36
1.07
0.28
0.16
bd
0.20
0.35
0.63
1.07
0.21
bd
0.98
0.70
Tb
1.65
0.54
0.36
0.57
0.78
0.33
0.45
0.57
0.24
0.68
0.35
0.64
0.50
0.16
0.30
0.42
0.37
0.55
0.28
0.47
0.42
0.35
0.32
0.27
0.60
0.47
0.29
0.19
bd
0.36
0.10
0.14
0.05
0.05
0.13
0.05
0.06
0.03
0.08
0.10
0.15
0.08
0.16
0.13
0.10
0.06
0.05
0.06
bd
0.06
0.23
0.14
0.08
0.02
Dy
12.08
5.95
5.37
3.73
5.03
3.46
4.30
3.77
2.83
2.69
3.35
4.94
5.98
1.93
2.76
3.45
2.52
2.88
2.74
2.29
2.95
1.29
3.43
2.99
2.68
1.43
3.37
3.96
0.95
1.50
0.85
0.48
0.38
1.44
0.67
0.29
0.65
0.51
1.04
0.77
0.94
1.33
0.78
0.41
0.98
0.49
0.39
0.77
0.41
0.78
0.52
0.89
1.12
0.44
Ho
3.25
1.30
0.94
1.18
1.30
1.17
0.95
1.48
0.64
0.58
0.97
1.11
1.15
0.36
0.57
0.76
0.70
1.17
0.84
0.73
0.64
0.58
0.71
0.94
1.25
1.20
0.49
0.46
0.30
0.37
0.28
0.14
0.14
0.26
0.07
0.20
0.23
0.03
0.22
0.17
0.26
0.36
0.26
0.10
0.20
0.10
0.07
0.21
0.44
0.13
0.18
0.07
0.14
0.24
Er
11.15
4.70
3.82
2.99
4.38
2.75
3.54
5.39
3.41
3.74
2.33
4.50
4.30
2.66
1.68
2.01
1.43
3.17
2.04
2.42
3.97
1.42
2.51
2.56
3.53
3.71
3.23
3.39
0.38
0.76
1.12
0.53
0.41
0.45
0.74
0.75
1.29
0.56
0.38
1.03
1.50
1.10
0.86
0.15
0.72
0.89
0.75
0.56
0.45
1.15
0.69
0.33
1.05
0.29
Tm
1.03
0.71
0.61
0.82
0.79
0.46
0.58
0.52
0.33
0.21
0.32
0.80
0.46
0.28
0.27
0.36
0.53
0.63
0.36
0.33
0.32
0.13
0.43
0.32
0.56
0.36
0.25
0.41
0.18
0.27
0.10
0.14
0.11
0.12
0.13
0.12
0.12
0.03
0.02
0.08
0.17
0.29
0.34
0.13
0.17
0.10
0.07
0.06
0.12
0.25
0.15
0.05
0.06
0.08
Yb
4.19
4.30
3.31
4.08
3.71
4.18
3.25
2.32
1.72
2.72
3.88
3.48
2.83
1.26
1.79
2.06
2.10
2.78
1.53
2.12
2.48
1.75
3.86
2.89
4.19
2.32
1.50
1.81
1.00
1.33
0.62
1.26
0.68
0.30
0.19
0.57
0.95
1.11
0.88
0.86
0.76
1.13
0.38
1.00
1.41
0.47
0.14
0.62
1.49
0.76
1.51
1.72
0.69
1.14
Lu
0.77
0.40
0.40
0.87
0.55
0.38
0.34
0.38
0.32
0.52
0.39
0.42
0.55
0.44
0.10
0.41
0.33
0.70
0.35
0.44
0.53
0.34
0.28
0.18
0.40
0.27
0.60
0.36
0.23
0.21
0.25
0.21
0.07
0.11
0.18
0.23
0.49
0.03
0.12
0.29
0.25
0.30
0.14
0.07
0.17
0.02
0.08
0.02
0.08
0.17
0.25
0.05
0.15
0.07
Th
0.20
0.08
0.02
bd
0.04
0.06
0.06
bd
bd
0.04
0.02
0.05
bd
0.02
bd
bd
bd
0.02
bd
0.04
0.02
bd
bd
bd
bd
0.03
0.03
0.02
bd
0.09
bd
bd
0.06
0.02
0.03
bd
bd
bd
bd
bd
0.02
0.02
bd
0.03
bd
bd
bd
bd
bd
bd
bd
0.08
0.05
bd
U
ƩREE
9.01
166
8.05
95
4.18
98
5.87
91
3.91
92
4.58
88
5.48
103
6.28
106
4.25
81
3.76
55
3.85
55
5.39
76
2.37
72
1.25
37
4.81
42
7.44
39
2.97
44
5.05
78
3.56
44
4.70
53
7.33
56
3.89
48
3.22
48
4.63
49
6.04
66
5.13
47
3.11
60
8.67
42
1.90
21
1.68
35
1.51
20
2.36
14
1.32
13
0.62
19
2.51
16
0.77
12
1.23
14
1.25
11
7.25
11
4.06
17
4.36
19
2.82
19
4.11
17
5.29
10
5.59
12
1.66
9
4.66
9
4.31
10
2.25
11
1.18
12
3.48
11
4.53
11
4.91
12
3.62
8
Ce/Ce*
-0.50
-0.26
0.30
-0.18
-0.20
0.21
-0.05
0.09
0.42
0.10
-0.18
0.42
-0.08
0.03
0.61
0.25
0.10
0.76
0.11
0.05
0.58
0.72
-0.12
-0.17
0.33
-0.20
-0.11
-0.40
0.36
0.83
0.50
-0.51
-0.28
1.53
0.69
0.24
0.72
1.01
0.25
1.88
-0.37
0.35
0.82
0.05
0.74
-0.32
0.21
0.08
-0.45
-0.31
-0.07
0.52
-0.25
-0.05
Ce/Ce**
0.26
0.75
1.90
0.70
1.22
1.17
0.98
0.84
1.39
3.08
1.13
24.05
0.72
1.14
13.61
1.10
0.95
2.10
1.12
4.89
2.71
1.04
0.73
5.95
1.42
0.49
1.02
0.42
4.22
1.49
3.16
0.35
0.40
1.48
3.71
2.30
5.33
-2.34
0.92
2.77
3.17
1.07
3.79
3.21
6.89
0.95
1.70
-3.51
0.40
1.07
0.59
39.81
0.55
0.88
La/La*
Y/Ho
-0.71
27.6
0.03
50.1
0.93
49.9
-0.24
40.3
1.06
49.2
-0.07
46.2
0.06
66.9
-0.37
39.3
-0.03
76.1
17.33
71.0
0.78
55.5
-3.57
47.9
-0.34
64.0
0.20
72.5
-4.74
57.7
-0.20
37.6
-0.20
43.9
0.37
36.4
0.02
42.9
-11.06
63.7
3.16
53.5
-0.57
34.9
-0.28
51.2
-6.59
38.4
0.12
36.5
-0.57
33.3
0.25
80.5
-0.46
90.5
-21.13
61.6
-0.29
53.8
2.59
48.3
-0.40
83.0
-0.65 120.5
-0.56
26.6
4.44 270.1
2.45
50.1
9.26
51.6
-1.86 224.7
-0.41
47.9
-0.05
65.1
-6.43
90.6
-0.33
47.7
5.74
63.4
9.06 117.2
32.65
48.3
0.73 123.5
0.76 150.1
-2.43
52.3
-0.44
23.9
1.29
98.2
-0.50
42.0
-3.77 166.6
-0.40
89.4
-0.11
37.6
409
mm from
bone rim
5.04
5.08
5.11
5.15
5.18
5.22
5.25
5.29
5.32
5.36
5.39
5.42
5.46
5.49
5.53
5.56
5.60
5.63
5.67
5.70
5.74
5.77
5.80
5.84
5.87
5.91
5.94
5.98
6.01
6.05
6.08
6.12
6.15
6.18
6.22
6.25
6.29
6.32
6.36
6.39
6.43
6.46
6.50
6.53
6.56
6.60
6.63
6.67
6.70
6.74
6.77
6.81
6.84
6.88
Sc
3.78
3.14
2.39
3.50
4.72
3.30
4.93
2.80
2.19
2.64
2.74
3.91
4.48
3.70
2.86
3.34
3.15
2.83
2.36
2.52
3.23
2.41
2.12
1.66
3.19
2.79
1.35
2.25
0.92
1.22
1.27
1.94
1.69
3.47
1.60
0.97
2.41
2.20
2.51
1.72
1.38
1.48
1.17
1.55
0.92
1.65
2.16
1.04
1.39
1.39
2.07
1.59
2.14
1.31
Mn
0.18
0.22
0.13
0.35
0.21
0.17
0.16
0.22
0.18
0.15
0.13
0.18
0.83
0.23
0.29
0.28
0.18
0.18
0.16
0.18
0.17
0.32
0.20
0.18
0.40
0.22
0.21
0.17
0.14
0.33
0.19
0.21
0.21
0.30
0.74
0.16
0.21
2.90
5.04
0.41
0.47
0.48
0.36
1.14
0.43
0.27
1.00
0.41
0.30
0.43
0.30
0.27
0.27
0.13
SRHS-DU-126 Femur (continued)
Fe
1.15
0.86
0.81
1.58
1.30
1.51
1.32
1.34
1.13
0.76
1.12
1.26
1.51
2.37
1.25
1.60
1.20
1.18
0.96
1.52
1.33
0.90
1.22
0.85
1.46
1.09
1.33
1.31
1.37
1.05
2.08
0.90
1.19
1.71
1.05
1.24
1.36
6.33
4.23
1.67
1.77
1.92
1.35
1.11
2.35
1.95
1.17
1.03
2.25
2.21
1.44
3.60
6.75
2.57
Sr
3500.36
3216.23
3846.89
3292.95
2842.62
3181.20
2708.34
4336.24
3488.47
1414.17
2932.47
3231.04
3878.16
2592.32
3077.32
3918.12
2616.21
2631.48
2557.19
2846.74
2142.06
2795.18
3310.65
3699.07
3664.59
2938.07
2198.16
2522.59
2037.29
3997.50
3166.02
1911.41
3201.06
3612.84
2379.58
2360.38
2312.60
13912.73
7520.88
6029.45
3871.38
4292.89
3801.46
2965.48
3881.33
3806.77
3664.12
3895.61
3109.21
3268.56
3851.69
4750.94
3825.59
3301.06
Y
11.21
6.82
10.13
9.02
9.89
8.44
7.49
8.28
5.61
4.66
6.95
7.16
10.06
7.42
5.99
10.14
5.84
5.96
6.66
5.88
5.77
6.01
6.72
4.92
5.00
4.23
4.32
3.34
1.80
3.39
3.61
4.40
5.80
4.86
3.99
3.82
3.68
6.81
11.92
4.16
3.11
2.82
4.96
3.12
2.42
4.45
5.78
1.91
1.86
2.81
3.35
5.43
6.73
4.91
Ba
1729.21
2407.13
2207.41
1604.85
1890.29
1491.82
1520.45
1661.90
nd
661.64
1388.68
1871.39
1841.25
2295.22
1572.87
2587.44
1432.78
1449.90
1545.00
1075.37
nd
1035.95
1620.79
1385.26
2207.16
2287.57
1443.60
1502.19
1668.99
1704.71
1457.86
1046.72
1281.67
1765.76
1350.10
1299.81
1712.56
nd
8097.86
4555.49
nd
nd
2062.47
nd
1938.48
nd
3654.60
1988.34
1953.20
2578.36
2156.47
2436.19
2623.29
1292.75
La
3.36
1.87
2.27
0.76
2.22
2.27
1.50
2.26
1.65
0.75
1.32
1.12
1.29
1.29
2.29
2.28
2.27
0.83
1.64
1.70
1.59
1.55
1.67
1.37
1.24
0.72
1.63
1.25
0.24
0.60
0.89
1.27
1.76
1.38
0.70
0.63
1.69
2.16
3.06
2.03
0.47
0.50
1.24
0.63
0.56
1.20
1.22
0.94
0.16
0.54
1.09
2.40
2.48
1.53
Ce
5.21
2.82
4.30
1.38
2.61
3.17
2.42
2.91
1.90
1.33
2.24
2.86
2.36
3.50
2.74
2.31
2.22
1.73
1.88
1.92
1.96
1.76
1.38
1.33
1.28
1.18
0.83
0.69
0.90
1.63
1.34
1.30
1.48
1.42
0.70
0.44
1.72
1.22
2.34
1.23
1.04
0.84
0.95
0.95
0.51
1.93
1.38
0.56
1.37
1.08
1.16
2.49
1.74
2.29
Pr
0.34
0.17
0.54
0.25
0.20
0.29
0.06
0.39
0.08
0.14
0.05
0.17
0.25
0.22
0.24
0.11
0.10
0.35
0.21
0.25
0.26
0.27
0.56
0.12
0.04
0.26
0.20
0.17
0.03
0.31
0.08
0.24
0.04
0.28
0.04
0.16
0.03
0.18
0.16
0.08
bd
0.06
0.07
bd
0.04
0.04
0.07
0.14
0.07
0.06
0.09
0.17
0.31
0.15
Nd
0.54
0.49
0.45
1.04
0.48
0.37
0.19
1.71
0.63
bd
0.89
0.15
bd
0.44
bd
0.63
1.58
0.75
0.47
0.48
0.34
0.36
0.71
0.51
0.94
bd
0.33
0.69
0.17
0.30
bd
0.31
0.92
0.23
0.22
0.18
0.18
0.18
2.58
0.70
bd
bd
0.20
0.22
bd
bd
0.58
bd
0.80
bd
bd
bd
bd
0.14
Sm
0.22
0.20
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.42
bd
bd
bd
bd
0.59
0.21
bd
bd
bd
bd
0.23
0.20
bd
bd
bd
1.07
0.19
bd
bd
bd
bd
bd
bd
0.39
0.85
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.21
bd
0.58
bd
bd
Eu
0.06
bd
0.08
bd
bd
0.07
0.07
0.27
0.11
bd
0.05
bd
bd
0.08
bd
0.22
0.28
bd
0.11
0.23
bd
bd
0.51
0.06
0.17
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.13
0.13
1.80
bd
bd
0.06
0.07
bd
bd
bd
0.07
0.07
bd
0.07
bd
bd
bd
bd
bd
bd
bd
0.53
bd
bd
0.44
bd
bd
1.70
bd
0.53
bd
0.23
bd
0.83
0.24
bd
0.66
bd
1.55
bd
0.42
bd
bd
bd
bd
0.39
bd
bd
0.34
0.52
bd
bd
1.12
bd
bd
1.07
0.20
1.15
bd
0.42
bd
bd
1.87
bd
0.24
bd
0.24
0.23
bd
bd
0.57
bd
bd
Gd
Tb
0.08
0.02
bd
0.03
0.07
0.03
0.08
bd
0.05
0.06
0.06
0.11
bd
0.03
0.05
bd
0.06
bd
0.27
0.02
0.02
0.08
0.10
bd
bd
bd
bd
bd
bd
0.04
bd
bd
bd
bd
0.03
bd
0.18
0.05
bd
bd
0.08
0.05
bd
0.10
bd
0.03
bd
0.06
bd
bd
0.03
bd
0.06
bd
Dy
0.64
0.10
0.67
0.12
0.28
0.22
0.57
0.45
0.46
0.16
0.18
0.26
bd
0.26
0.10
0.74
0.23
1.10
0.55
0.29
0.61
0.42
0.28
0.70
0.28
0.45
0.68
0.10
0.20
bd
0.13
bd
2.04
bd
0.26
bd
0.10
bd
0.19
0.14
0.10
bd
0.61
bd
0.15
0.25
bd
bd
0.24
bd
0.11
0.14
0.36
0.26
Ho
0.13
0.14
0.26
0.28
0.28
bd
0.14
bd
0.02
0.06
0.11
0.15
0.03
0.13
0.10
0.25
0.44
0.19
0.09
0.12
0.07
0.29
0.03
0.15
0.21
bd
0.05
0.02
0.10
0.04
0.06
bd
0.07
bd
0.06
0.05
0.05
0.13
0.09
0.03
0.08
bd
0.03
0.03
0.04
0.03
0.06
0.12
bd
0.13
0.03
0.14
0.06
0.02
Er
0.71
0.85
1.17
0.95
0.31
0.49
0.62
0.25
0.41
0.36
0.39
0.29
0.40
0.57
0.79
0.27
0.77
1.21
0.30
0.21
0.56
0.58
0.31
0.22
0.46
bd
0.32
0.67
0.11
bd
0.29
0.20
0.15
1.07
0.14
0.24
0.12
0.23
1.05
0.15
0.12
0.12
bd
0.73
0.16
0.14
0.13
0.41
0.13
bd
0.12
0.16
0.65
0.19
Tm
0.03
0.07
0.13
0.09
0.17
0.13
0.05
0.19
bd
0.04
0.02
0.10
0.14
0.03
0.10
0.03
0.14
0.05
0.07
0.07
0.02
0.20
0.03
bd
0.03
0.08
0.07
bd
0.02
bd
bd
bd
bd
0.03
bd
0.13
0.05
bd
0.05
0.07
bd
bd
0.06
bd
bd
0.06
0.05
0.06
bd
0.03
0.05
0.10
bd
bd
Yb
0.92
1.39
0.57
1.60
0.82
0.96
0.32
1.30
0.13
0.47
0.76
0.25
1.05
0.37
0.44
0.35
1.01
0.15
0.26
0.27
0.73
0.30
0.40
0.14
0.20
bd
0.56
0.14
0.29
0.25
0.37
0.81
1.17
0.60
0.18
0.62
0.15
0.15
2.48
0.19
bd
bd
0.17
0.19
0.64
0.36
bd
bd
0.17
0.15
0.30
1.03
bd
0.12
Lu
0.03
0.15
0.11
0.23
0.38
0.24
bd
0.12
0.22
0.04
0.16
0.07
0.10
0.07
0.19
0.13
0.12
0.03
0.12
0.10
0.03
0.08
0.07
0.08
0.15
0.30
0.10
0.03
0.14
0.09
0.03
0.12
0.18
0.07
0.14
0.06
0.14
0.17
0.05
bd
0.11
0.03
0.06
bd
0.08
0.10
bd
bd
bd
bd
0.09
0.19
0.09
0.07
bd
bd
bd
0.02
bd
bd
0.02
bd
bd
bd
bd
bd
bd
bd
0.21
0.05
bd
0.04
0.02
0.08
bd
0.13
bd
0.53
0.06
0.02
bd
0.02
0.02
0.14
bd
bd
0.03
0.03
0.03
bd
bd
bd
bd
bd
bd
bd
0.05
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.02
bd
Th
U
ƩREE
4.15
12
3.00
8
3.99
11
4.51
7
5.31
8
3.60
9
2.49
6
3.15
10
2.48
7
2.32
3
4.03
7
2.80
6
5.65
6
2.52
7
7.27
8
4.92
8
2.78
9
2.25
7
2.10
6
4.52
8
2.12
6
1.82
6
2.83
6
1.23
5
3.07
5
1.73
3
1.49
5
1.66
4
0.74
2
0.88
4
1.47
5
2.39
4
2.87
8
0.89
6
1.17
2
0.86
3
4.03
6
2.33
6
3.73
14
2.02
5
1.59
2
1.18
2
1.86
3
0.77
5
0.95
2
4.83
4
2.21
4
1.25
3
1.91
3
1.19
2
2.69
3
5.44
8
5.14
6
1.70
5
Ce/Ce*
0.04
0.04
-0.08
-0.25
-0.20
-0.13
0.29
-0.28
-0.10
-0.05
0.38
0.47
-0.02
0.50
-0.21
-0.20
-0.22
-0.27
-0.29
-0.33
-0.30
-0.37
-0.67
-0.32
-0.14
-0.37
-0.68
-0.67
1.35
-0.16
0.05
-0.45
-0.28
-0.47
-0.23
-0.67
-0.11
-0.60
-0.41
-0.51
0.29
0.04
-0.42
0.03
-0.35
0.34
-0.13
-0.66
1.98
0.29
-0.25
-0.24
-0.56
0.01
Ce/Ce**
1.18
1.74
0.54
0.84
1.14
0.80
3.82
1.22
-10.85
2.57
-1.71
1.10
0.69
1.29
1.01
8.37
-1.04
0.42
0.77
0.64
0.55
0.47
0.18
1.87
-0.79
0.42
0.33
0.54
11.94
0.37
2.54
0.39
-0.94
0.34
7.35
0.20
22.05
0.46
-0.67
-3.36
9.05
-72.78
1.40
2.31
-1.95
-5.14
-4.53
0.73
-1.71
-8.87
2.87
1.52
0.43
1.06
La/La*
Y/Ho
0.21
84.5
1.19
47.6
-0.57
38.3
0.33
32.7
0.68
35.1
-0.11
44.3
3.47
53.5
2.22 152.2
-4.44 250.9
-11.84
77.7
-1.93
63.8
-0.35
47.5
-0.42 342.8
-0.22
57.6
0.43
58.6
-15.08
41.3
-1.95
13.4
-0.66
31.1
0.13
73.0
-0.07
49.5
-0.32
77.0
-0.36
20.8
-0.67 199.9
5.50
33.0
-1.74
24.1
-0.55
57.1
0.04
90.1
1.44 136.6
-6.51
17.8
-0.79
79.5
3.58
56.0
-0.41
71.6
-2.08
87.1
-0.50
75.1
-13.60
63.1
-0.56
72.1
-38.01
71.1
0.24
51.9
-1.78 127.2
-4.11 124.4
-3.64
39.8
-2.88 104.5
2.44 169.2
2.94
97.8
-2.36
67.2
-3.45 146.8
-3.24 102.1
5.88
15.4
-1.16
18.4
-2.53
21.4
71.08 130.5
1.73
38.2
-0.04 115.2
0.07 236.6
410
mm from
bone rim
6.91
6.94
6.98
7.01
7.05
7.08
7.12
7.15
7.19
7.22
7.26
7.29
7.32
7.36
7.39
7.43
7.46
7.50
7.53
7.57
7.60
7.64
7.67
7.70
7.74
7.77
7.81
7.84
7.88
7.91
7.95
7.98
8.02
8.05
8.08
8.12
8.15
8.19
8.22
8.26
8.29
8.33
8.36
8.40
8.43
8.46
8.50
8.53
8.57
8.60
8.64
8.67
8.71
8.74
Sc
1.51
0.74
1.35
1.03
0.89
1.33
0.69
2.68
1.59
1.52
1.17
2.06
1.84
1.82
1.81
0.84
1.20
0.27
0.97
0.52
1.38
1.80
1.39
2.28
2.01
1.57
1.60
1.88
1.78
1.69
1.18
1.87
2.50
2.43
0.78
1.64
1.65
0.99
1.97
1.69
3.11
0.79
2.14
0.62
1.80
0.76
0.86
0.85
1.19
1.99
1.92
1.70
2.23
1.00
Mn
0.16
0.13
0.21
0.33
0.16
0.27
0.20
0.21
0.24
0.30
0.28
0.12
0.30
0.16
0.14
0.19
0.26
0.25
0.24
0.23
0.15
0.18
0.09
0.16
0.22
0.16
0.25
0.14
0.52
0.17
0.16
0.23
0.16
0.26
0.21
0.17
0.22
0.20
0.29
0.29
0.27
0.19
0.24
0.23
0.15
0.21
0.14
0.20
0.27
0.19
0.58
0.19
0.27
0.43
SRHS-DU-126 Femur (continued)
Fe
1.41
2.09
1.64
1.35
0.97
1.50
1.41
0.93
1.76
1.34
1.25
1.21
1.14
1.71
1.91
0.93
1.06
1.17
1.75
1.30
1.32
2.34
3.71
2.57
1.73
1.50
1.33
1.56
1.60
1.23
1.63
1.45
0.83
1.07
0.95
1.38
0.80
1.05
1.23
1.06
1.63
bd
2.05
0.81
1.14
1.23
1.18
1.02
1.46
1.32
1.43
1.65
2.06
1.30
Sr
2073.64
1820.20
2784.90
2660.84
1801.87
4819.27
3367.96
3413.31
3114.92
3790.17
2527.47
2769.89
2792.01
3255.70
3047.18
1878.30
2234.89
2646.88
3695.79
3983.99
2961.05
7103.22
24541.13
7272.13
5372.24
4583.30
26445.15
2353.47
3576.58
12447.17
4063.93
3315.75
3262.41
3809.71
2252.92
2643.89
3377.27
2187.55
2952.97
3449.89
3733.49
2211.70
2847.80
2997.07
3323.17
3621.80
2132.58
2660.13
2647.76
3027.06
4116.98
2650.07
2779.05
3116.08
Y
2.52
4.41
3.46
3.30
1.98
2.56
3.77
5.38
3.13
4.74
3.25
3.11
5.46
4.12
4.63
1.70
1.46
3.00
2.34
2.87
3.28
5.56
9.76
8.88
8.77
4.09
5.10
3.40
5.13
4.58
2.82
3.41
4.25
3.30
3.94
2.41
2.51
1.80
3.55
4.46
3.75
2.72
3.53
2.71
2.46
2.87
1.31
1.81
3.06
5.08
6.07
3.87
4.06
7.52
Ba
1219.40
1578.33
2576.03
1268.63
1735.87
2168.94
2278.34
1423.52
1682.76
1898.65
1558.73
1079.20
1481.63
1146.88
1371.21
1154.27
1718.12
1279.19
2577.64
1881.74
1668.77
nd
nd
nd
nd
nd
4659.84
nd
nd
2004.56
nd
2983.45
nd
1972.90
1505.58
2529.49
1058.54
nd
1292.20
1578.89
nd
1045.25
1497.35
1689.80
1758.67
1912.43
1115.02
1775.57
2003.01
1871.17
1725.79
2023.73
1952.05
2069.80
La
0.37
1.05
1.22
0.36
0.49
1.03
1.72
1.65
1.00
1.41
0.74
0.89
1.55
1.02
0.27
0.44
0.42
0.59
0.36
2.15
1.04
2.12
1.17
1.39
2.46
1.03
2.00
1.03
2.16
1.27
0.72
1.89
0.97
1.09
0.94
0.39
0.89
0.68
0.76
1.53
1.34
0.55
0.81
0.27
1.26
0.75
0.36
0.50
1.03
1.21
1.37
1.13
0.59
1.41
Ce
0.42
0.76
1.88
0.91
0.52
0.94
1.51
2.23
0.91
0.89
0.84
1.11
1.28
0.65
0.49
0.32
0.21
0.36
0.60
0.89
1.04
1.53
0.76
1.26
0.99
0.92
0.98
2.22
1.60
1.43
1.34
2.37
0.94
1.89
1.02
2.35
0.50
0.91
1.04
0.96
1.61
1.05
0.74
0.58
0.58
0.60
18.86
0.68
1.54
1.41
4.98
1.88
0.74
2.33
Pr
0.07
0.14
0.12
0.03
0.02
0.08
0.06
0.09
0.04
0.28
0.04
0.05
0.09
0.10
0.11
0.07
bd
bd
0.05
0.04
0.20
0.09
0.12
0.34
0.11
0.05
0.16
0.14
0.07
0.10
0.06
0.10
0.36
0.03
0.07
0.05
0.10
0.10
0.09
0.08
0.06
0.02
0.05
bd
0.06
0.09
0.08
0.09
0.22
0.03
0.25
0.11
0.03
0.19
Nd
0.13
0.12
0.55
bd
0.39
0.46
0.34
0.36
1.29
bd
0.26
bd
0.26
bd
0.44
bd
bd
bd
0.30
bd
bd
2.71
0.68
0.44
bd
bd
0.69
0.34
bd
1.18
0.51
0.40
0.64
bd
0.41
0.16
0.38
0.19
0.17
0.33
bd
0.41
bd
0.34
0.51
0.74
bd
bd
0.36
0.19
1.76
0.62
0.78
1.14
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.31
bd
0.32
bd
bd
bd
bd
bd
bd
bd
0.48
0.20
bd
bd
bd
bd
bd
bd
0.24
0.47
bd
bd
0.19
bd
bd
bd
bd
bd
bd
0.20
0.23
0.33
0.37
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
Sm
Eu
0.05
bd
0.20
bd
bd
0.08
bd
bd
0.08
bd
0.09
0.22
bd
bd
bd
bd
bd
bd
bd
bd
0.07
0.30
4.04
0.16
0.23
bd
0.08
0.12
0.35
bd
0.55
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.13
bd
bd
0.06
bd
0.13
bd
0.14
bd
bd
bd
0.22
0.21
0.06
bd
0.28
bd
bd
0.15
0.54
0.19
bd
0.25
bd
0.61
0.75
bd
1.45
bd
0.17
0.24
bd
0.34
0.30
bd
1.01
0.81
0.52
bd
0.85
0.82
0.19
0.47
0.46
0.19
0.23
bd
bd
0.32
bd
bd
0.21
bd
bd
0.67
bd
bd
0.19
0.81
bd
bd
0.62
0.21
bd
0.33
0.74
0.69
0.18
Gd
Tb
0.04
bd
bd
0.08
bd
0.03
0.02
0.03
0.03
bd
bd
bd
0.11
bd
bd
bd
bd
bd
bd
0.04
bd
0.02
0.04
0.06
0.06
bd
bd
0.02
0.03
bd
0.05
0.09
bd
bd
0.10
0.05
bd
bd
bd
bd
bd
bd
bd
0.02
0.02
0.03
bd
bd
bd
0.03
0.13
0.03
0.06
0.09
bd
0.43
0.54
bd
0.30
bd
0.10
0.21
0.51
0.14
0.15
0.19
bd
0.24
0.13
bd
bd
bd
0.18
bd
0.12
0.30
0.16
0.13
0.63
bd
0.27
bd
0.23
bd
0.10
0.24
0.19
bd
bd
bd
0.23
bd
0.61
0.19
0.22
bd
0.27
bd
0.20
0.66
0.09
bd
0.43
bd
bd
bd
0.34
0.29
Dy
Ho
0.02
bd
0.05
bd
0.04
0.03
bd
0.08
0.09
0.14
0.04
0.02
bd
0.03
0.06
bd
0.03
0.07
0.13
0.08
0.17
0.12
0.10
bd
0.09
0.02
0.03
0.02
0.17
bd
bd
0.20
bd
0.05
0.04
bd
0.06
0.03
0.05
0.07
0.20
0.04
0.02
bd
0.07
0.03
0.09
0.06
0.16
0.06
0.09
0.03
0.06
0.10
Er
0.17
0.08
0.48
bd
bd
bd
bd
0.12
0.56
bd
0.17
0.20
0.86
0.66
0.14
0.09
bd
0.29
bd
bd
0.13
0.11
0.18
0.58
bd
bd
0.15
bd
bd
0.13
0.33
bd
bd
0.12
0.18
0.52
0.25
bd
bd
bd
0.12
0.27
bd
bd
0.33
0.12
bd
0.34
0.59
0.38
0.57
0.41
0.25
0.21
Tm
0.04
0.03
bd
0.03
bd
bd
0.02
bd
0.03
0.07
0.04
0.04
0.04
0.03
bd
bd
0.06
bd
bd
0.11
bd
0.02
bd
0.06
0.03
bd
0.06
0.02
bd
0.08
bd
bd
0.07
bd
0.02
bd
bd
0.03
0.02
bd
bd
0.04
0.02
0.02
0.10
bd
bd
0.04
0.08
bd
0.12
0.03
bd
bd
bd
0.72
0.15
bd
bd
0.19
0.14
0.15
bd
0.39
bd
bd
bd
0.34
0.56
0.12
0.35
0.19
0.25
0.66
0.33
0.14
0.23
0.76
0.18
0.36
0.19
0.72
0.50
bd
0.14
0.51
0.27
0.77
0.23
0.13
bd
bd
0.29
0.14
0.65
0.47
bd
0.14
0.14
0.15
0.38
0.22
0.31
0.83
0.24
bd
0.16
0.69
Yb
Lu
0.04
0.02
bd
0.03
0.10
0.07
0.19
0.11
0.03
0.07
0.08
0.07
0.04
0.06
0.17
0.07
0.07
bd
bd
bd
bd
0.08
0.09
0.03
0.13
0.04
0.11
0.08
bd
0.12
0.13
0.03
0.05
0.06
0.11
bd
0.09
0.06
bd
0.03
0.06
0.04
0.07
bd
0.03
0.03
0.02
0.04
0.06
0.06
0.09
0.07
0.12
0.03
bd
0.04
bd
bd
0.03
bd
bd
bd
bd
bd
0.25
0.04
bd
bd
bd
0.07
bd
bd
bd
bd
bd
0.04
0.02
bd
bd
bd
bd
bd
bd
0.05
0.08
0.02
bd
bd
0.07
bd
bd
bd
bd
bd
bd
0.02
bd
0.02
0.02
bd
0.04
bd
bd
bd
0.07
bd
bd
bd
Th
U
ƩREE
0.97
1
1.49
4
1.23
5
0.62
1
0.91
2
2.07
3
2.62
4
1.49
5
2.54
5
2.35
3
2.90
3
0.61
4
2.34
5
1.83
5
1.21
2
0.57
1
0.53
1
0.42
1
0.81
2
1.88
4
3.15
4
4.80
9
1.65
8
2.30
6
1.86
5
1.15
3
2.09
6
2.78
5
2.08
6
1.55
5
1.20
4
1.99
6
1.79
4
1.65
4
1.74
3
0.64
4
2.14
2
3.08
2
3.64
3
1.98
4
1.44
5
2.41
3
0.78
2
0.75
2
0.71
4
1.31
3
0.36
20
0.67
3
1.85
5
1.78
4
1.82
10
3.98
5
3.12
4
3.73
7
Ce/Ce*
-0.38
-0.56
0.03
0.75
-0.16
-0.35
-0.28
0.03
-0.26
-0.67
-0.14
-0.06
-0.37
-0.57
-0.36
-0.59
-0.71
-0.60
0.00
-0.64
-0.47
-0.42
-0.56
-0.57
-0.68
-0.30
-0.65
0.30
-0.39
-0.20
0.31
-0.04
-0.63
0.45
-0.22
2.65
-0.63
-0.20
-0.13
-0.52
-0.06
0.52
-0.32
0.11
-0.64
-0.50
25.46
-0.25
-0.24
-0.02
0.97
0.13
-0.03
0.00
Ce/Ce**
0.52
0.35
2.44
-1.46
-0.91
4.57
10.05
3.27
-0.36
0.32
7.35
4.13
1.46
0.73
0.59
0.89
1.32
2.26
4.59
-0.31
-4.32
-0.30
2.55
0.27
2.16
-1.62
1.01
1.37
-2.25
-1.22
-5.04
3.16
0.21
-2.46
5.63
4.43
0.70
0.78
0.97
1.55
8.60
-1.72
-24.44
5.58
-2.20
-2.89
-354.17
4.69
0.55
16.54
-82.74
6.84
-0.56
4.63
La/La*
Y/Ho
-0.25 134.6
-0.27
99.8
4.36
65.1
-1.52
59.1
-1.80
53.0
-9.62
77.4
-20.59
72.6
5.05
67.7
-1.40
33.2
-0.07
34.7
-12.02
87.6
21.28 138.6
2.33 140.7
1.42 142.7
-0.19
72.1
8.41
60.5
-5.35
48.8
-7.06
46.0
-5.72
17.9
-1.74
38.0
-2.02
18.8
-1.41
44.8
-7.72
98.3
-0.54
96.0
-2358.96
93.6
-2.44 201.9
5.99 155.0
0.09 140.7
-3.33
29.4
-1.85
23.0
-2.52
23.0
5.32
16.7
-0.65
39.9
-2.30
63.1
-9.87
99.1
0.38
72.1
2.09
45.0
-0.04
67.2
0.18
71.1
5.19
61.7
-17.85
19.2
-1.84
68.1
-4.45 161.1
-3.30
97.1
-3.68
33.2
-2.32 108.0
-2.03
14.9
-3.34
31.8
-0.41
19.2
-25.41
90.1
-2.31
71.1
-8.04 130.5
-1.43
72.1
-5.80
78.9
411
mm from
bone rim
8.78
8.81
8.84
8.88
8.91
8.95
8.98
9.02
9.05
9.09
9.12
9.16
9.19
9.22
9.26
9.29
9.33
9.36
9.40
9.43
9.47
9.50
9.54
9.57
9.61
9.64
9.67
9.71
9.74
9.74
9.78
9.81
9.85
9.88
9.92
9.95
9.99
10.02
10.05
10.09
10.12
10.16
10.19
10.23
10.26
10.30
10.33
10.37
10.40
10.43
10.47
10.50
10.54
10.57
Sc
2.16
1.90
0.80
1.41
0.64
1.08
1.61
1.59
3.23
1.49
1.48
1.45
0.64
1.65
2.31
2.55
4.40
1.64
1.27
2.58
3.67
1.63
1.69
1.76
2.05
3.52
2.89
2.52
2.76
1.33
1.24
1.37
1.05
0.88
4.77
2.36
2.88
1.75
2.66
0.71
0.84
1.17
1.85
1.78
1.19
1.41
6.90
3.33
5.24
3.24
3.14
3.23
2.35
4.65
Mn
0.14
0.14
0.20
0.14
0.19
0.22
0.21
0.20
0.20
0.13
0.20
0.17
0.44
0.17
0.20
0.31
0.34
0.24
0.30
0.24
0.87
0.19
0.26
0.21
0.21
0.15
0.21
0.22
0.58
0.16
0.16
0.18
0.40
0.18
2.38
0.89
0.36
0.48
0.27
0.21
0.13
0.14
0.14
0.16
0.33
3.95
4.07
0.63
0.87
1.24
0.80
0.50
0.88
0.35
Fe
1.36
0.96
2.12
0.81
0.63
0.73
1.72
1.41
1.01
0.93
1.04
1.01
1.00
1.02
1.21
2.19
1.53
1.15
1.20
bd
2.53
1.38
1.29
0.92
1.31
1.08
1.18
1.49
4.16
1.11
1.49
1.12
0.68
1.13
10.96
3.14
1.67
1.73
2.44
0.96
0.92
1.21
1.31
0.83
2.24
7.02
3.78
2.53
2.40
3.22
2.03
2.23
1.69
3.24
SRHS-DU-126 Femur (continued)
Sr
3253.13
3333.55
2376.84
2746.86
2891.15
2542.47
3592.76
3182.05
3229.66
2559.78
2307.60
3482.02
2456.53
2814.49
3152.74
6285.20
4126.05
2456.58
3496.97
3443.57
2762.31
3122.36
3406.66
3408.94
2236.52
4458.75
3449.27
3558.13
4208.20
1651.89
2729.81
3274.19
2122.65
3216.64
2675.83
3037.43
3000.84
3777.37
3668.09
3794.30
2891.21
2613.89
2800.56
1958.67
2045.34
2948.07
4843.93
2735.73
3265.46
4194.69
2688.79
2431.54
2323.20
2981.32
Y
2.69
3.08
2.40
2.68
2.96
3.40
6.00
2.77
3.11
2.53
3.15
1.73
1.93
2.54
4.23
7.16
6.47
3.40
5.28
7.78
6.74
6.08
4.94
4.21
5.49
8.90
6.21
4.23
5.43
2.01
3.00
1.38
1.73
4.93
8.07
9.80
4.90
4.22
6.65
3.86
2.45
1.26
2.92
4.07
4.96
9.43
13.46
10.04
8.06
10.99
5.08
5.59
7.58
7.34
Ba
1536.13
1024.57
1517.54
1380.91
1172.51
1209.22
2260.08
1554.51
1956.61
1262.14
1121.46
1697.73
1741.98
1627.07
1649.92
2685.47
2489.09
1132.37
1975.77
2659.12
2140.55
1985.60
1104.09
1132.35
1364.05
2045.79
2107.98
1574.14
nd
1444.50
1820.53
2022.04
1486.26
1519.53
2930.71
1514.86
1269.12
1633.03
2100.11
1620.88
1327.49
1202.32
1081.00
1226.60
nd
2826.87
3203.31
1358.03
1864.80
2461.95
1350.61
998.67
1801.76
1262.75
La
0.60
0.73
0.91
0.67
1.03
0.79
0.71
0.85
0.68
0.73
0.36
1.01
0.54
1.06
0.55
2.46
1.68
0.45
1.33
1.76
2.13
1.53
0.91
0.60
0.78
1.73
1.29
1.05
2.06
0.55
0.65
0.40
0.40
1.05
3.32
1.17
0.81
0.48
0.66
0.35
0.45
0.33
1.11
0.62
1.72
1.30
3.27
1.96
0.83
0.50
0.90
0.69
2.00
1.77
Ce
0.89
0.47
0.44
0.69
1.11
1.44
0.95
0.75
0.74
0.59
0.89
1.61
0.57
1.06
0.88
3.00
1.84
1.12
0.87
1.51
2.02
1.97
1.63
1.37
1.04
3.14
1.86
0.83
3.34
1.21
0.85
0.64
0.64
1.05
2.90
2.42
1.29
0.97
0.80
0.90
0.74
0.58
0.72
0.84
1.79
4.27
3.53
1.58
1.19
1.40
1.39
1.11
1.42
1.77
Pr
0.07
bd
0.17
bd
0.20
0.05
0.10
bd
0.03
0.02
0.08
0.06
0.08
0.06
0.19
0.18
bd
0.06
0.18
0.10
0.13
0.07
bd
bd
0.06
bd
0.07
0.10
0.23
0.04
0.03
0.03
0.27
0.28
0.17
0.07
0.18
bd
bd
0.13
0.11
0.03
0.10
0.06
0.19
bd
1.07
0.05
bd
0.34
bd
0.04
0.21
0.44
Nd
0.28
0.50
bd
bd
0.59
bd
bd
bd
0.17
0.44
0.49
bd
bd
0.70
0.55
1.08
0.27
0.22
bd
bd
0.53
bd
bd
0.30
0.84
1.07
bd
bd
0.19
0.26
0.57
0.20
bd
bd
1.03
0.77
bd
bd
0.36
bd
0.32
0.36
0.38
0.73
0.37
bd
bd
bd
bd
bd
0.79
0.79
bd
0.43
bd
bd
0.24
0.33
0.24
0.19
bd
bd
bd
bd
bd
bd
bd
0.21
bd
bd
bd
0.27
bd
bd
bd
0.48
bd
bd
bd
bd
bd
bd
0.46
bd
bd
bd
bd
bd
bd
bd
bd
0.65
bd
bd
bd
bd
0.46
bd
bd
bd
0.75
bd
bd
bd
bd
bd
bd
bd
Sm
Eu
0.05
bd
bd
bd
0.21
bd
bd
bd
bd
bd
bd
0.06
0.11
0.12
bd
bd
0.09
0.08
bd
bd
bd
bd
bd
0.05
0.24
bd
0.39
0.06
0.07
bd
0.27
bd
bd
bd
bd
bd
0.15
bd
bd
0.07
0.17
bd
0.07
bd
bd
bd
bd
bd
bd
bd
0.09
bd
bd
bd
Gd
0.33
bd
0.46
0.49
1.41
bd
bd
0.18
0.80
bd
bd
bd
bd
bd
1.09
0.63
bd
0.13
bd
bd
bd
bd
0.15
0.88
bd
0.31
1.05
0.44
bd
bd
bd
bd
bd
0.65
0.40
bd
0.51
0.64
bd
bd
bd
bd
0.22
0.65
bd
0.69
bd
0.37
bd
1.18
bd
bd
0.98
bd
bd
bd
bd
bd
0.06
bd
bd
bd
0.05
bd
bd
bd
bd
bd
0.05
bd
0.04
0.02
0.02
0.09
0.11
bd
0.08
bd
0.02
0.04
0.03
bd
0.08
0.02
bd
bd
bd
0.04
0.05
0.06
bd
0.04
bd
bd
0.07
bd
bd
0.05
bd
bd
bd
bd
bd
bd
bd
0.08
0.06
0.06
Tb
bd
0.39
0.35
0.16
0.12
bd
0.23
0.09
bd
bd
0.19
bd
0.28
0.31
bd
0.48
bd
0.26
0.31
0.36
0.31
0.59
0.08
bd
0.30
0.16
bd
0.44
0.23
0.15
0.11
0.23
bd
bd
bd
1.60
0.13
bd
0.64
bd
0.09
0.11
0.56
0.54
bd
0.70
bd
0.56
bd
0.59
bd
0.15
0.24
0.38
Dy
Ho
0.02
0.02
0.03
0.02
0.03
0.05
bd
bd
0.15
0.04
bd
0.14
0.02
bd
0.19
bd
0.04
bd
0.05
0.09
bd
0.20
0.08
0.02
0.12
0.04
0.13
0.14
0.11
0.02
0.03
0.06
0.06
0.04
0.30
0.23
0.13
0.04
0.11
0.03
bd
0.05
0.11
0.05
0.27
bd
0.18
0.23
0.10
bd
0.08
0.12
0.06
0.06
Er
0.37
bd
bd
0.09
bd
0.10
0.13
bd
bd
0.38
0.21
0.12
bd
bd
0.24
0.35
bd
0.14
0.34
0.92
0.34
0.52
0.26
bd
0.11
0.87
1.29
bd
0.50
0.08
bd
bd
0.13
0.53
0.44
0.25
0.14
0.17
0.23
0.25
0.10
0.12
0.12
bd
0.72
bd
1.22
0.41
bd
0.32
bd
bd
0.27
0.70
Tm
0.02
0.02
bd
0.04
bd
bd
0.06
0.11
0.07
bd
bd
0.08
bd
bd
0.03
0.08
bd
0.02
0.12
0.06
0.15
0.14
0.04
bd
0.02
0.08
0.03
0.05
0.19
0.02
0.03
bd
0.08
bd
0.14
0.16
0.03
0.04
0.05
0.05
0.04
0.08
0.05
0.08
0.05
bd
0.26
bd
0.05
0.07
0.04
0.11
0.17
0.15
Yb
0.12
0.42
bd
0.35
bd
0.13
bd
0.41
bd
0.12
0.14
bd
0.13
0.30
0.15
0.92
0.91
0.09
0.29
0.52
0.44
1.02
0.34
0.25
0.43
0.45
1.13
0.31
0.49
0.45
bd
0.34
bd
0.23
1.76
1.33
0.55
0.46
bd
0.17
0.27
bd
0.16
0.31
bd
0.50
1.07
0.27
0.59
0.42
bd
bd
1.42
0.18
Lu
0.07
bd
bd
bd
0.19
0.15
0.15
0.05
0.11
0.11
0.03
0.09
0.05
0.06
0.09
0.13
0.13
0.02
0.14
0.19
0.17
bd
0.06
0.02
0.08
0.08
0.14
0.06
0.06
0.02
0.09
0.06
0.06
bd
0.11
0.18
0.07
0.04
bd
bd
bd
bd
0.15
bd
0.06
0.37
0.69
0.05
0.11
0.31
0.08
bd
0.13
0.27
Th
0.05
0.02
0.05
bd
0.02
bd
bd
0.02
0.02
bd
bd
bd
bd
bd
0.02
bd
bd
bd
bd
0.02
bd
bd
bd
0.02
0.04
bd
bd
0.02
bd
0.02
bd
bd
bd
0.06
0.04
0.04
0.05
bd
bd
0.02
0.02
bd
bd
0.04
bd
bd
bd
bd
0.04
0.12
0.03
0.16
0.05
0.05
U
ƩREE
2.88
3
1.11
3
1.57
3
0.93
3
1.05
5
0.77
3
1.84
2
1.17
2
1.53
3
0.89
2
0.64
2
0.88
3
0.66
2
1.10
4
3.19
4
4.32
9
4.54
5
1.88
3
4.04
4
6.06
6
4.10
6
3.56
7
1.70
4
2.07
3
3.11
4
3.10
8
1.99
7
3.32
3
3.22
8
0.79
3
0.40
3
1.36
2
1.31
2
3.27
4
6.84
11
4.18
8
1.79
4
2.48
4
2.47
3
1.08
2
0.71
2
0.71
2
2.26
4
1.70
4
2.95
5
4.01
8
5.11
12
2.30
5
2.65
3
4.27
5
2.33
3
1.68
3
3.21
7
4.63
6
Ce/Ce*
-0.07
-0.64
-0.74
-0.54
-0.43
0.35
-0.20
-0.37
-0.12
-0.34
0.20
0.19
-0.38
-0.24
-0.36
-0.12
-0.20
0.55
-0.60
-0.35
-0.29
0.02
0.32
0.52
-0.03
0.47
0.10
-0.46
0.05
0.55
0.01
0.12
-0.59
-0.54
-0.32
0.58
-0.21
-0.18
-0.41
-0.04
-0.21
0.22
-0.55
-0.09
-0.32
0.06
-0.56
-0.32
-0.31
-0.29
-0.22
0.20
-0.53
-0.53
Ce/Ce**
1.66
0.57
0.29
0.39
0.57
-59.53
1.22
4.43
10.10
-0.91
4.11
-4.20
-6.55
-1.51
0.49
6.27
1.32
2.68
0.42
1.80
2.03
13.68
31.57
4.13
-0.97
-2.09
-6.76
11.86
0.98
10.51
-1.00
7.35
0.21
0.32
6.39
-3.12
0.76
0.76
0.45
0.64
0.70
-1.61
1.02
-1.16
0.78
0.47
0.21
-3.05
0.63
0.33
1.06
-0.95
0.68
0.28
La/La*
Y/Ho
1.82 132.5
1.48 130.5
0.22
85.6
-0.29 136.6
0.00 106.0
-4.40
75.1
1.16
48.1
-9.85
48.1
-16.75
21.1
-2.05
60.1
-3.87
36.4
-2.67
12.7
-2.36
85.6
-2.20
54.1
-0.42
22.6
-9.79
95.9
1.05 169.2
1.69 137.2
0.07 105.2
3.70
87.6
4.38
58.7
-12.54
29.7
-5.64
63.5
8.24 199.9
-1.63
44.8
-2.04 232.5
-3.34
48.1
-4.40
30.9
-0.09
48.1
-9.20 105.4
-1.71 107.4
-8.83
23.7
-0.78
29.7
-0.45 123.2
-13.50
26.7
-2.19
42.9
-0.05
39.0
-0.15 107.4
-0.37
62.3
-0.56 135.2
-0.20
79.5
-1.71
23.7
2.89
26.1
-1.68
76.2
0.23
18.1
-0.79
45.7
-0.71
73.2
-3.83
43.4
-0.16
79.1
-0.82
72.2
0.95
65.3
-1.54
48.1
0.79 125.2
-0.58 116.7
412
mm from
bone rim
10.61
10.64
10.68
10.71
10.75
10.78
10.81
10.85
10.88
10.92
10.95
10.99
11.02
11.06
11.09
11.13
11.16
11.19
11.23
11.26
11.30
11.33
11.37
11.40
11.44
11.47
11.51
11.54
11.57
11.61
11.64
11.68
11.71
11.75
11.78
11.82
11.85
11.89
11.92
11.95
11.99
12.02
12.06
12.09
12.13
12.16
12.20
12.23
12.27
12.30
12.33
12.37
12.40
12.44
Sc
3.04
2.51
2.10
1.59
2.78
3.59
2.87
1.95
4.02
0.92
1.52
1.12
1.13
0.63
1.74
2.09
2.01
1.90
1.87
2.36
1.56
2.03
2.28
3.81
1.73
1.25
0.84
1.36
0.92
1.38
0.78
2.98
2.34
2.28
1.26
1.64
3.29
2.41
1.71
1.99
2.23
2.60
2.24
2.20
1.47
2.30
1.47
1.41
2.74
2.71
2.37
1.25
3.67
2.26
Mn
0.25
0.17
0.26
0.22
0.25
0.35
0.27
0.22
0.23
0.18
0.42
0.37
0.27
0.25
0.20
0.41
0.46
0.24
0.14
0.20
0.78
0.40
0.69
0.60
0.46
0.30
0.15
0.35
0.21
0.70
0.26
0.52
0.43
0.28
0.26
0.22
0.21
0.24
0.22
0.24
0.41
0.32
0.18
0.25
0.15
0.32
0.20
0.13
0.30
0.76
2.48
0.39
0.42
0.25
SRHS-DU-126 Femur (continued)
Fe
1.35
1.18
1.90
1.70
1.79
1.06
1.29
1.14
1.45
bd
1.86
bd
1.83
1.24
1.28
1.40
0.98
1.59
1.17
1.31
1.19
1.92
2.06
2.98
1.40
1.51
1.32
0.90
1.22
1.25
0.88
2.11
1.61
1.17
1.24
1.47
1.32
2.32
1.44
1.92
2.35
2.16
0.99
1.18
0.86
1.29
0.77
1.48
3.53
7.72
4.24
2.43
2.38
2.32
Sr
2847.42
2182.22
3050.84
2757.48
3689.67
3944.99
3114.84
3724.90
3542.91
2577.05
4302.48
3855.68
3946.62
4163.23
2750.84
3763.74
3002.67
3212.10
2473.14
2324.17
3294.76
4413.67
2455.15
4053.01
2792.75
3037.76
2071.80
2431.74
2516.54
4208.18
2519.54
4097.86
3649.01
4681.85
2968.43
3765.54
4541.96
4873.48
3510.26
4839.21
3875.71
3770.20
3226.78
3047.65
2259.63
2906.03
1956.76
2117.47
2706.39
2978.17
7776.71
2941.02
2417.31
3146.33
Y
6.38
4.98
3.87
3.80
4.79
3.12
8.44
6.68
4.80
3.40
5.67
4.41
3.85
4.37
5.52
6.91
4.61
4.92
7.01
4.76
4.88
7.62
6.29
10.12
6.42
5.11
3.57
4.06
3.12
2.66
5.24
5.11
5.17
4.08
3.62
4.63
5.30
4.52
5.93
8.90
15.05
12.18
7.57
6.58
6.14
5.35
4.25
4.71
7.48
17.31
15.30
5.43
9.33
10.17
Ba
1320.31
1275.67
1633.96
1353.50
1717.86
2392.33
1848.65
1518.67
1923.40
1025.26
3390.21
1251.17
1229.77
1676.84
2153.44
3675.60
1232.13
2235.55
1263.85
1628.61
1514.39
1898.66
1501.06
2142.21
1573.43
1103.98
1034.16
1621.89
1071.27
1914.48
1369.66
1956.91
2274.86
2019.11
1305.65
1140.12
1657.41
2324.46
1855.19
1684.58
1638.99
2470.13
1470.65
2517.88
817.71
1540.92
1158.55
1815.29
1109.99
2258.17
2119.52
1480.75
1569.35
nd
La
1.39
0.89
0.69
0.64
1.24
1.47
1.64
1.55
1.03
0.78
0.81
0.29
0.67
1.63
0.94
3.16
1.10
1.19
1.54
1.56
0.55
1.37
1.33
1.48
1.37
0.99
0.80
0.84
0.08
0.47
1.13
1.52
1.11
1.22
0.70
0.67
3.39
1.19
0.74
1.03
2.82
1.89
2.03
1.24
1.05
1.55
0.93
1.72
1.46
2.11
2.86
1.03
2.27
1.73
Ce
1.42
1.58
1.25
1.39
1.33
2.95
2.75
1.35
1.48
1.15
0.75
0.49
1.37
2.62
0.94
2.94
1.76
1.11
0.95
1.74
1.17
2.48
1.16
3.85
1.64
1.44
1.32
0.67
0.75
1.26
1.25
2.23
1.48
1.06
0.92
2.25
11.21
2.23
1.54
4.47
3.77
2.02
4.41
1.66
2.15
2.38
1.36
1.50
2.20
1.63
4.21
2.02
2.77
4.96
Pr
0.12
0.03
bd
0.06
0.03
0.25
0.13
0.24
bd
bd
0.05
0.03
0.03
bd
0.10
0.32
0.06
0.04
0.03
0.08
0.09
0.09
0.17
0.17
0.20
bd
0.09
bd
0.11
0.18
bd
0.14
0.17
0.16
0.05
0.16
0.32
0.28
0.12
0.42
0.15
0.17
0.18
0.16
0.08
0.26
0.03
0.06
0.19
0.16
0.21
0.06
0.13
0.18
Nd
0.18
bd
0.21
0.18
0.41
0.24
1.14
0.56
0.22
0.13
bd
bd
bd
0.67
0.77
1.62
0.36
0.42
bd
0.76
bd
bd
1.35
0.73
0.85
bd
bd
0.42
bd
bd
bd
bd
0.20
0.16
bd
0.47
0.71
0.71
0.70
0.44
2.18
0.67
0.44
bd
0.74
0.75
0.16
0.18
0.84
0.47
bd
0.17
0.57
0.35
bd
0.19
bd
bd
0.25
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.47
bd
bd
bd
0.37
bd
bd
0.31
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.38
bd
bd
0.28
bd
bd
0.27
0.22
0.20
bd
bd
0.15
bd
0.20
bd
0.34
bd
bd
bd
bd
0.14
Sm
bd
bd
bd
bd
bd
bd
bd
0.05
0.08
bd
0.29
bd
bd
0.89
0.07
bd
bd
0.15
0.05
0.16
0.33
0.37
bd
bd
0.12
bd
bd
bd
0.07
bd
bd
0.09
bd
bd
0.05
bd
bd
bd
0.06
0.24
0.13
bd
0.21
bd
0.27
bd
0.06
bd
0.20
bd
0.14
0.18
0.07
0.17
Eu
Gd
0.43
bd
bd
bd
0.49
0.28
0.68
0.33
0.53
bd
0.96
bd
0.41
bd
0.23
3.58
0.21
1.01
bd
0.36
0.21
0.31
bd
1.17
0.20
bd
bd
bd
bd
0.30
0.23
0.31
bd
0.19
0.32
bd
bd
0.56
bd
bd
bd
bd
bd
bd
0.60
0.22
0.99
0.21
0.66
0.55
bd
0.20
0.68
0.14
Tb
0.05
0.02
bd
bd
bd
0.07
0.03
0.06
bd
0.02
bd
bd
0.02
bd
bd
bd
bd
0.03
0.07
bd
bd
bd
0.12
0.04
bd
bd
0.02
bd
bd
0.04
bd
bd
0.06
0.07
0.06
0.07
0.10
bd
bd
bd
0.05
0.02
0.11
0.05
0.02
0.08
0.07
bd
bd
bd
bd
bd
0.11
0.08
Dy
0.21
0.19
0.38
0.21
0.12
0.43
0.45
0.17
0.26
0.31
bd
0.09
bd
0.13
bd
bd
0.11
0.12
0.18
bd
0.54
bd
0.10
0.87
0.40
0.36
bd
bd
0.12
0.15
0.23
0.32
0.36
bd
0.08
bd
0.28
0.70
0.41
0.39
0.86
0.69
0.70
0.19
0.22
0.56
bd
0.11
0.50
0.84
0.49
0.20
0.79
0.28
Ho
0.19
0.05
0.09
0.03
0.06
0.22
0.22
0.06
0.07
0.02
0.04
bd
0.03
bd
0.09
0.08
0.11
0.09
0.09
0.07
0.21
0.23
0.17
0.11
0.02
0.03
0.05
bd
0.03
0.23
0.03
0.16
0.12
0.02
0.04
0.32
bd
0.07
0.21
0.13
0.08
0.30
0.07
0.12
0.09
0.17
0.05
0.19
0.25
0.35
0.06
0.10
0.03
0.07
Er
0.12
0.10
0.84
0.23
0.27
bd
1.23
bd
0.14
0.09
0.52
bd
0.11
0.44
0.13
bd
0.36
0.83
0.20
0.49
0.36
0.17
0.66
0.80
0.22
0.27
0.11
bd
0.13
0.34
1.13
0.17
0.40
0.10
0.09
0.15
0.46
0.15
0.23
1.73
0.59
0.33
0.48
0.51
0.65
0.24
0.32
0.47
0.91
0.31
1.36
0.33
0.50
0.31
Tm
0.05
0.07
0.03
0.05
bd
0.10
0.11
bd
bd
0.02
bd
0.02
0.12
0.03
0.03
0.11
bd
0.09
bd
0.04
0.03
0.04
0.05
bd
0.02
0.06
0.05
bd
0.06
0.11
0.11
0.04
0.03
0.07
0.02
0.03
0.10
bd
0.10
0.03
0.03
0.09
0.10
0.07
0.09
0.03
bd
0.18
0.08
0.34
0.12
bd
0.05
0.10
Yb
0.47
bd
0.55
0.61
0.53
0.84
0.32
0.36
0.38
0.11
0.46
0.41
0.15
1.35
0.50
0.46
0.15
1.09
0.26
0.13
0.31
0.67
0.58
0.21
0.29
0.88
0.15
bd
bd
1.12
bd
0.46
0.53
0.14
0.23
bd
0.40
0.61
0.75
0.57
0.78
0.72
0.13
0.41
0.21
0.32
0.42
0.15
1.20
1.63
1.07
0.29
2.13
0.90
Lu
0.03
0.12
0.03
bd
0.16
0.08
0.36
0.22
bd
0.04
0.13
bd
0.03
0.04
0.09
0.04
bd
0.17
bd
0.02
0.03
bd
0.11
0.31
0.05
0.10
0.08
bd
bd
0.04
0.03
0.13
0.23
0.05
0.04
0.04
0.34
0.07
0.16
0.10
0.03
0.13
0.09
0.10
0.12
0.03
0.05
0.14
0.18
0.07
0.07
0.05
0.12
0.09
bd
bd
bd
bd
0.02
bd
0.02
bd
bd
0.05
bd
0.04
bd
bd
bd
bd
bd
bd
0.51
bd
bd
0.06
0.02
bd
bd
0.02
bd
0.02
bd
bd
bd
bd
0.02
0.02
bd
0.03
0.03
0.08
bd
0.16
0.04
bd
bd
bd
bd
0.02
bd
bd
bd
bd
0.05
bd
0.07
0.04
Th
U
ƩREE
1.79
5
1.76
3
1.62
4
1.09
3
1.12
5
5.94
7
2.15
9
2.16
5
1.43
4
0.78
3
1.12
4
1.59
1
1.90
3
1.41
8
2.54
4
2.66
12
1.32
4
4.18
6
1.65
4
1.14
5
1.09
4
3.74
6
2.46
6
2.49
10
2.07
5
1.73
4
1.74
3
1.00
2
0.58
1
0.57
4
1.18
4
2.18
6
1.00
5
1.04
4
1.09
3
0.99
4
0.54
18
1.16
7
0.97
5
2.04
10
2.44
12
5.49
7
1.77
9
4.70
4
1.55
6
1.54
7
1.14
5
2.52
5
3.40
9
3.19
8
22.79
11
2.57
5
2.14
10
2.39
9
Ce/Ce*
-0.29
0.49
0.36
0.48
-0.10
0.12
0.19
-0.49
-0.13
-0.20
-0.29
0.14
0.63
0.30
-0.34
-0.38
0.22
-0.23
-0.46
-0.13
0.20
0.34
-0.46
0.68
-0.29
-0.14
0.08
-0.49
0.41
0.00
-0.34
0.01
-0.23
-0.47
-0.03
0.61
1.24
-0.09
0.20
0.56
0.03
-0.26
0.51
-0.18
0.45
-0.13
0.22
-0.29
-0.07
-0.45
0.06
0.50
-0.07
0.90
Ce/Ce**
0.86
-53.89
5.88
2.37
-3.22
0.82
-4.70
0.51
0.80
0.56
-3.47
-0.94
-2.83
-4.73
-4.34
1.97
10.97
-2.62
-0.95
-3.23
-1.18
-2.33
-3.07
3.74
1.22
1.58
-27.50
1.08
0.73
0.56
0.65
1.42
0.61
0.45
-415.09
1.42
3.02
0.74
5.01
0.75
-1.40
1.61
2.33
1.29
-5.61
0.96
18.83
2.49
1.87
1.03
1.49
3.58
3.45
2.28
La/La*
Y/Ho
0.32
34.1
-7.72 107.8
23.43
40.8
1.06 147.1
-3.39
79.1
-0.38
14.5
-2.56
37.7
0.00 108.0
-0.12
73.2
-0.44 175.0
-3.12 145.1
-1.49 148.1
-2.18 151.1
-3.12 107.8
-2.58
64.5
23.99
87.0
-12.73
42.9
-3.23
52.7
-2.49
78.0
-2.93
71.1
-1.42
22.7
-2.02
32.9
-2.29
36.1
3.87
93.5
1.96 258.5
2.52 171.0
-3.04
70.2
3.21
86.8
-0.85 103.4
-0.66
11.5
-0.03 184.9
0.64
32.1
-0.30
42.9
-0.22 175.0
-4.87
92.0
-0.20
14.7
0.54
40.0
-0.31
65.3
-5.09
28.9
-0.74
68.1
-1.90 187.7
2.79
41.1
0.89 115.9
1.22
56.4
-2.52
67.1
0.18
32.3
-23.00
88.0
4.38
25.1
3.22
30.3
1.52
49.3
0.60 250.5
2.43
54.3
8.58 334.1
0.30 147.1
413
mm from
bone rim
12.47
12.51
12.54
12.58
12.61
12.65
12.68
12.71
12.75
12.78
12.82
12.85
12.89
12.92
12.96
12.99
13.03
13.06
13.09
13.13
13.16
13.20
13.23
13.27
13.30
13.34
13.37
13.41
13.44
13.47
13.51
13.54
13.58
13.61
13.65
13.68
13.72
13.75
13.79
13.82
13.85
13.89
13.92
13.96
13.99
14.03
14.06
14.10
14.13
14.17
14.20
14.23
14.27
14.30
Sc
2.95
1.60
2.60
2.89
3.36
1.84
2.54
2.99
3.41
2.73
1.79
2.42
3.21
3.24
2.63
2.26
2.49
2.94
2.22
1.96
3.04
2.65
1.51
2.11
3.24
1.40
1.68
2.07
1.61
2.79
2.77
4.03
3.87
1.66
1.65
3.11
2.01
1.64
2.33
2.81
2.70
1.25
1.35
3.93
1.51
0.81
1.39
1.25
0.94
1.53
1.68
3.61
2.08
2.75
Mn
0.29
0.19
0.28
0.49
0.39
0.26
0.17
0.33
0.31
0.21
0.50
0.28
0.30
0.24
0.13
0.33
0.47
0.18
0.23
0.23
0.23
0.15
0.24
0.24
0.14
0.19
0.18
0.24
0.45
0.41
0.39
0.23
0.16
0.18
0.15
0.32
0.28
0.27
0.41
0.97
0.76
0.32
0.30
0.27
0.26
0.26
0.24
0.25
0.18
0.25
0.20
0.23
0.20
0.32
SRHS-DU-126 Femur (continued)
Fe
bd
1.53
1.33
1.63
bd
1.73
1.31
1.72
1.54
1.21
0.97
0.91
1.63
1.86
1.73
bd
2.57
1.27
1.73
1.62
1.74
1.60
1.23
1.67
0.86
0.85
1.17
1.53
1.79
2.81
1.92
1.32
1.22
1.33
0.77
2.63
1.23
1.06
2.41
3.92
4.12
1.62
2.01
3.52
2.26
1.17
1.75
1.09
1.03
1.24
1.16
1.23
1.02
1.51
Sr
3270.13
2407.70
2862.78
4196.45
3937.28
3659.00
3687.24
2816.40
3233.97
3194.42
3312.50
3013.39
4287.17
3153.98
2771.66
2978.94
3634.27
2987.40
3359.39
3017.49
2494.46
3130.17
2671.73
3689.58
2759.56
2710.43
2623.88
3423.61
4145.46
4247.13
3209.24
4098.70
3316.91
3674.79
2428.97
5145.48
2482.33
2098.23
4212.96
2613.36
3232.80
2495.00
4475.98
6733.34
4097.45
2590.09
3532.97
3418.88
2473.99
3093.29
3410.42
3663.47
2341.77
4399.25
Y
9.31
6.93
7.75
9.32
11.73
9.88
8.82
9.10
13.42
10.54
8.97
7.36
10.42
11.58
8.78
8.92
8.17
8.91
8.39
7.59
6.64
4.75
6.06
6.99
6.98
6.45
5.88
6.68
5.57
9.69
7.93
11.20
8.59
8.56
5.93
12.90
6.01
6.68
9.90
12.70
9.05
5.88
7.99
12.98
7.20
5.76
4.63
5.58
5.44
7.80
4.72
10.93
9.39
7.89
Ba
2482.65
nd
nd
nd
1509.95
2042.70
1631.54
1816.56
1947.67
1689.72
1719.11
1022.02
1666.86
1301.31
2141.51
1513.91
1765.28
1441.19
1530.73
1183.31
1438.33
1592.65
1189.74
1496.02
1627.13
1484.35
1211.68
2393.50
1691.86
2167.98
974.62
2205.13
1973.66
1927.09
1467.64
3342.62
1717.44
1282.09
1626.70
1266.07
1519.11
1170.31
nd
nd
nd
nd
nd
2166.11
2336.61
2506.00
2298.92
1919.93
1892.64
2344.04
La
1.79
1.08
1.58
3.37
1.76
1.03
2.26
1.80
1.82
1.63
1.73
2.43
2.18
2.85
2.23
2.10
2.78
2.52
1.89
1.25
1.30
0.75
1.22
2.05
2.68
1.35
1.56
1.32
0.93
2.11
2.57
3.68
1.95
1.98
1.01
1.95
1.84
1.62
1.36
2.69
3.41
1.47
2.14
2.18
1.07
0.87
1.34
1.33
1.11
1.89
1.04
3.92
1.16
2.03
Ce
5.65
2.78
2.43
3.09
2.38
3.40
3.38
2.54
3.02
1.39
2.78
1.23
2.13
1.95
2.19
3.22
2.35
3.35
2.83
1.54
1.00
1.12
1.62
2.23
3.09
1.04
2.45
1.85
2.00
2.85
2.93
3.27
1.14
1.35
1.34
2.51
1.34
3.11
2.37
4.03
3.21
1.13
2.85
2.37
2.15
1.47
0.65
1.20
0.90
2.61
1.44
4.42
4.00
2.89
Pr
0.19
0.15
0.47
0.31
0.31
0.10
0.26
0.10
0.20
0.20
0.03
0.17
0.36
0.16
0.14
0.40
0.45
0.06
0.29
0.24
0.25
0.09
0.03
0.06
0.03
0.42
0.03
0.04
0.26
0.18
0.17
0.49
0.28
0.20
0.19
0.18
0.13
0.33
0.15
0.19
0.13
0.12
0.18
0.04
0.08
0.06
0.34
0.25
0.06
0.06
0.15
0.69
0.12
0.34
Nd
0.57
0.24
0.37
3.43
1.54
0.39
0.78
1.02
bd
0.48
0.51
1.02
0.21
0.77
0.80
0.42
bd
0.38
0.19
0.35
0.25
0.56
0.17
0.18
0.79
0.76
0.33
0.72
bd
0.52
1.19
0.87
0.47
0.24
1.29
0.34
0.24
0.70
1.55
0.95
0.73
1.19
1.46
0.72
0.46
0.50
bd
0.48
0.53
0.37
0.18
1.51
0.68
0.45
bd
bd
bd
0.24
0.31
0.24
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.21
bd
bd
bd
0.22
bd
bd
0.20
bd
bd
bd
bd
bd
bd
bd
0.59
0.42
bd
bd
0.21
0.23
bd
bd
bd
bd
0.28
bd
bd
bd
bd
bd
0.21
bd
bd
bd
Sm
Eu
0.07
0.09
0.04
bd
0.09
bd
0.11
0.14
bd
0.17
0.12
bd
bd
0.07
0.43
0.07
bd
bd
0.06
0.13
bd
bd
bd
0.13
bd
0.07
0.18
bd
0.79
bd
bd
bd
bd
bd
0.11
bd
bd
0.06
0.06
0.13
bd
bd
0.22
bd
0.16
0.42
bd
bd
bd
bd
bd
bd
bd
bd
Gd
0.68
0.29
bd
4.13
0.92
0.94
1.12
0.24
0.28
bd
0.20
0.98
1.02
0.69
0.48
bd
0.95
0.22
0.22
bd
bd
0.22
bd
bd
bd
bd
bd
bd
0.52
bd
0.23
1.04
bd
0.28
0.58
1.24
0.29
bd
0.62
0.91
bd
0.40
0.75
0.28
0.27
bd
0.48
bd
bd
0.67
0.21
bd
0.20
bd
Tb
0.08
0.05
bd
0.03
0.04
0.11
0.11
bd
0.07
bd
bd
0.09
0.06
0.08
bd
0.09
0.08
bd
0.05
0.03
0.07
0.05
bd
0.13
bd
bd
bd
0.07
0.03
0.19
bd
0.42
0.03
0.17
0.02
bd
0.07
0.08
0.10
0.14
0.04
0.05
0.09
0.21
0.03
bd
bd
bd
bd
bd
bd
bd
0.02
0.03
Dy
1.12
0.07
0.52
0.36
0.76
0.12
0.18
0.12
0.28
0.14
0.40
0.24
0.63
0.11
0.12
0.25
0.31
0.45
0.78
0.21
0.29
bd
0.10
0.33
0.56
0.68
0.29
0.57
1.30
0.47
0.35
0.34
0.14
bd
bd
1.03
bd
0.41
1.13
0.34
0.58
0.20
0.62
0.28
0.41
0.10
0.12
0.19
0.21
bd
0.21
0.15
0.40
1.19
Ho
0.11
0.04
0.13
0.33
bd
0.26
0.07
0.09
0.07
0.18
0.15
0.12
0.19
0.11
0.06
0.06
0.04
0.08
0.14
0.08
0.18
0.08
0.15
0.08
0.16
0.06
0.12
0.11
0.06
0.23
0.09
0.30
0.10
0.18
0.07
0.05
0.07
0.03
0.23
0.17
0.22
0.13
0.03
0.07
0.03
0.20
0.06
0.07
0.18
0.19
bd
0.30
0.28
0.20
Er
1.36
0.80
0.49
0.52
0.33
0.64
0.51
0.53
0.46
0.78
0.66
0.40
0.83
0.50
0.39
0.69
1.21
0.12
1.10
0.35
0.32
0.36
0.44
0.12
0.72
0.37
0.21
0.16
0.57
0.17
0.39
1.32
1.08
bd
0.63
0.90
0.64
0.11
0.67
0.87
1.75
0.33
0.13
0.47
0.75
0.11
0.26
0.31
0.11
0.12
0.58
0.82
0.22
0.44
Tm
0.08
0.07
0.07
0.17
0.14
0.11
0.07
0.26
bd
0.07
0.07
0.03
0.15
0.03
0.06
0.03
0.04
0.08
bd
0.02
bd
0.03
bd
0.10
0.07
0.22
0.07
0.10
bd
0.18
0.06
0.24
0.03
0.03
0.05
0.10
bd
0.07
0.10
0.16
0.07
bd
0.12
0.07
0.03
0.09
0.06
0.07
0.05
0.08
0.10
0.07
0.10
0.06
Yb
0.49
0.21
0.43
0.86
0.22
0.84
0.80
1.22
0.82
1.63
0.43
0.52
1.63
0.66
1.38
0.73
0.23
0.97
0.16
0.46
bd
0.16
0.14
1.11
0.81
0.33
0.70
0.83
0.75
0.22
0.34
1.49
0.20
0.41
0.14
0.29
1.69
0.30
0.59
0.33
0.21
0.14
bd
0.41
0.20
bd
0.52
0.28
0.76
0.80
0.31
2.59
0.29
bd
Lu
0.06
0.12
0.22
0.19
0.20
0.37
0.07
0.13
0.15
0.30
0.16
0.19
0.13
bd
0.29
0.03
0.25
0.30
0.09
0.11
bd
bd
0.11
0.17
0.10
0.09
0.08
0.08
0.03
0.25
0.16
0.09
0.07
0.08
bd
bd
0.04
0.14
0.24
0.09
0.15
0.11
0.20
0.04
0.07
0.24
0.13
0.08
0.28
0.24
0.08
0.24
0.11
0.11
bd
bd
0.03
bd
0.03
bd
bd
0.02
0.03
bd
bd
0.10
0.02
0.05
0.07
0.02
bd
bd
bd
bd
bd
bd
bd
bd
0.04
bd
0.04
bd
0.05
0.06
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.02
bd
0.03
bd
bd
Th
U
ƩREE
2.86
12
1.68
6
2.46
7
3.11
17
2.02
9
6.54
9
2.01
10
3.11
8
2.09
7
4.58
7
2.21
7
1.65
7
2.89
10
2.43
8
3.00
9
2.01
8
4.76
9
1.52
9
1.92
8
1.30
5
0.91
4
1.36
3
0.98
4
1.90
7
0.59
9
1.16
5
0.81
6
1.95
6
2.26
7
2.25
7
5.08
8
3.77
14
1.78
6
1.23
5
0.27
6
1.34
9
1.67
6
1.56
7
3.85
9
1.44
11
1.72
10
1.64
5
2.36
9
2.06
7
1.14
6
2.83
4
0.88
4
1.67
4
0.95
4
0.21
7
0.75
5
1.11
15
1.44
8
1.93
8
Ce/Ce*
1.06
0.57
-0.34
-0.37
-0.25
1.23
-0.04
0.07
0.08
-0.47
0.41
-0.63
-0.45
-0.48
-0.26
-0.18
-0.52
0.13
-0.13
-0.35
-0.59
-0.07
0.14
-0.09
0.04
-0.68
0.37
0.17
-0.05
-0.06
-0.16
-0.46
-0.65
-0.55
-0.30
-0.12
-0.46
-0.01
0.14
0.09
-0.23
-0.45
-0.06
-0.05
0.45
0.26
-0.77
-0.51
-0.38
0.14
-0.18
-0.38
1.31
-0.20
Ce/Ce**
3.00
1.49
0.35
-0.99
1.68
4.60
1.31
-3.51
1.88
0.61
-3.72
2.73
0.38
2.17
6.16
0.56
0.35
20.11
0.64
0.48
0.27
4.56
22.05
3.64
-2.10
0.20
-7.45
-1.72
0.69
1.64
-71.91
0.53
0.32
0.47
12.65
1.17
0.88
0.81
-1.82
4.18
9.89
-1.20
-5.18
-2.22
10.51
-5.69
0.14
0.40
-3.23
15.77
0.67
0.56
13.34
0.61
La/La*
Y/Ho
0.80
83.4
-0.07 192.9
-0.66
60.4
-1.82
28.5
13.64
33.2
2.49
37.9
0.66 128.4
-2.67 101.4
1.60 191.9
0.24
60.0
-3.14
60.2
-10.21
61.2
-0.42
55.6
13.98 101.7
-11.74 148.4
-0.44 142.4
-0.37 210.7
-26.84 106.7
-0.36
60.8
-0.39
96.8
-0.47
36.3
-6.20
57.9
-29.31
40.8
5.30
85.6
-2.81
42.9
-0.59 114.7
-4.74
48.5
-2.13
62.5
-0.45
86.1
1.29
41.8
-4.64
90.2
-0.05
37.5
-0.13
82.3
0.06
48.5
-2.53
83.0
0.49 254.5
0.97
83.1
-0.29 260.5
-1.76
43.2
19.05
75.4
-18.98
41.8
-2.11
46.9
-2.77 262.5
-2.89 184.0
-9.99 212.7
-2.88
29.4
-0.54
78.1
-0.27
78.3
-3.24
29.6
-20.57
40.3
-0.25
38.5
-0.16
36.8
-7.63
34.1
-0.33
39.8
414
mm from
bone rim
14.34
14.37
14.41
14.44
14.48
14.51
14.55
14.55
14.58
14.61
14.65
14.68
14.72
14.75
14.79
14.82
14.86
14.89
14.93
14.96
14.99
15.03
15.06
15.10
15.13
15.17
15.20
15.24
15.27
15.31
15.34
15.37
15.41
15.44
15.48
15.51
15.55
15.58
15.62
15.65
15.69
15.72
15.75
15.79
15.82
15.86
15.89
15.93
15.96
16.00
16.03
16.07
16.10
16.13
Sc
2.57
3.35
2.70
1.90
2.16
3.31
1.03
2.57
2.35
2.79
1.38
3.57
2.45
3.43
3.91
3.87
1.84
2.59
2.54
2.35
1.65
3.79
2.89
1.94
0.99
1.51
1.05
1.83
2.25
1.30
1.73
3.06
2.19
2.00
1.92
2.87
2.12
2.45
1.93
4.22
3.52
2.46
3.88
3.64
2.99
2.62
3.11
1.70
1.84
1.83
0.54
2.80
2.12
1.40
Mn
0.37
0.23
0.28
1.51
0.37
0.44
0.27
0.25
0.19
0.22
0.17
0.43
0.46
0.35
1.99
0.69
0.31
0.26
0.31
0.27
0.22
0.25
0.15
0.22
0.23
0.45
0.76
0.39
0.21
0.11
0.27
0.33
0.17
0.19
0.18
0.14
0.18
0.22
0.19
0.26
0.16
0.44
0.17
0.14
0.19
0.17
0.25
0.19
0.21
0.26
0.21
0.17
0.23
0.24
SRHS-DU-126 Femur (continued)
Fe
1.46
0.90
1.03
1.21
1.44
0.93
1.42
0.93
1.41
0.99
1.06
2.10
1.67
bd
2.35
1.54
0.84
1.52
1.17
1.34
0.89
1.29
1.00
1.46
0.85
1.38
1.92
2.43
0.97
0.95
0.70
0.90
1.30
0.94
0.67
0.88
0.97
1.35
1.00
0.75
1.20
1.80
1.19
1.85
1.55
1.38
1.60
1.19
1.67
1.24
0.73
0.99
1.88
0.91
Sr
3965.64
3151.99
3305.04
2997.92
4453.17
2269.00
4972.22
4036.26
2329.16
3762.23
3400.28
4678.83
2880.94
3202.40
2826.53
3620.93
3176.76
2217.36
3414.91
2101.32
4113.97
2942.32
2163.53
4103.38
2596.38
3566.56
3505.14
4510.41
2967.72
2305.57
1882.50
3304.14
2483.03
1947.21
1821.76
2499.54
2150.80
3517.85
2350.07
2417.27
3423.92
2936.88
3064.39
2441.60
3603.76
2634.81
3516.25
3425.33
4186.73
3860.11
2528.12
2788.27
3781.67
3253.32
Y
9.53
8.99
8.75
6.85
7.12
7.90
7.78
10.15
10.43
11.98
7.41
15.62
8.10
12.03
16.25
14.51
8.37
8.44
10.02
7.82
9.88
9.09
7.77
9.93
4.12
6.48
8.31
7.53
7.95
5.40
6.61
7.67
6.90
6.35
7.43
5.41
5.20
9.84
9.07
13.50
13.71
9.91
14.16
15.98
15.19
9.37
8.36
9.15
9.30
8.16
5.83
10.52
8.23
9.63
Ba
2286.86
nd
1967.32
1356.53
2751.42
1799.64
1955.60
1347.15
1423.73
1243.11
2984.08
2990.46
1415.63
2298.04
1518.81
2282.13
910.58
1311.60
1469.98
1301.20
1407.07
1821.84
1256.24
1901.28
1984.46
2338.46
1509.35
1925.87
1173.46
1019.93
1215.73
1596.76
1817.19
1256.06
1326.79
1121.55
1170.02
1535.66
1403.14
1365.59
2852.15
1458.26
1356.36
1461.88
2485.21
2061.62
2861.62
1827.16
1821.46
2071.93
913.81
1207.62
1084.24
1180.05
La
2.00
1.47
2.29
1.91
2.62
1.99
1.30
2.65
1.86
1.48
1.09
5.19
3.11
3.38
4.19
6.04
3.39
2.12
2.61
1.81
0.72
1.56
1.60
1.05
0.98
1.25
1.21
2.46
2.11
0.86
0.91
1.68
1.35
1.06
1.79
2.19
0.66
2.23
3.01
2.97
5.85
2.11
5.81
3.50
5.22
1.75
1.74
1.89
2.32
1.76
1.73
2.46
2.66
1.65
Ce
3.83
1.94
2.58
1.71
3.97
2.72
3.65
3.09
1.30
1.90
2.45
4.25
1.73
6.41
6.79
7.99
3.95
4.52
4.07
3.15
1.39
0.96
2.31
2.63
1.71
2.45
1.62
4.07
2.79
1.18
1.22
2.39
3.29
1.34
1.99
1.04
1.39
2.23
5.57
3.26
9.35
11.44
8.55
7.90
8.42
2.07
2.32
1.98
2.86
4.67
4.21
4.66
5.34
2.38
Pr
0.06
0.06
0.35
0.02
0.03
0.34
0.07
0.25
0.16
0.13
0.10
0.48
0.15
0.49
0.38
0.40
0.41
0.29
0.66
0.16
0.04
0.51
0.30
0.16
0.10
0.13
0.26
0.17
0.10
0.06
0.29
0.04
0.23
0.12
0.91
0.03
bd
0.16
0.28
0.03
0.75
0.36
0.35
0.50
0.18
0.04
0.14
0.12
0.31
0.28
0.23
0.21
0.30
0.40
Nd
1.22
0.54
1.03
0.28
1.09
0.36
0.43
0.18
bd
0.26
bd
0.77
2.14
1.43
0.56
1.05
0.87
0.49
bd
0.23
0.71
bd
0.88
0.24
bd
0.99
0.78
1.25
0.19
0.37
0.79
0.88
1.12
0.17
0.81
0.37
0.19
0.46
0.47
0.84
1.47
0.58
1.25
0.23
1.56
1.14
0.62
0.98
1.57
0.61
0.84
1.06
bd
0.43
Sm
0.42
0.44
bd
bd
bd
0.87
bd
0.22
bd
bd
bd
0.31
bd
bd
0.68
bd
bd
0.29
bd
0.55
bd
0.30
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.26
0.27
0.21
0.19
0.22
bd
bd
bd
bd
0.29
0.23
0.84
bd
bd
0.83
0.99
bd
bd
0.24
bd
0.18
bd
bd
bd
bd
bd
0.05
bd
bd
bd
bd
bd
bd
bd
0.09
bd
0.08
0.10
0.28
0.06
bd
0.09
0.16
bd
bd
bd
bd
bd
bd
0.09
0.62
bd
bd
0.09
0.23
bd
0.12
0.06
0.06
0.07
bd
bd
0.22
0.26
bd
0.05
0.08
0.09
bd
bd
bd
0.08
0.14
0.06
bd
bd
0.15
Eu
Gd
0.41
0.21
0.24
4.25
bd
bd
0.50
0.44
1.10
bd
0.96
1.85
0.51
1.44
0.33
2.85
0.41
bd
bd
bd
0.57
bd
bd
bd
bd
bd
0.30
0.59
bd
bd
bd
0.26
bd
0.20
0.38
bd
0.23
bd
0.85
0.50
1.48
bd
0.67
0.27
0.62
0.27
1.48
bd
bd
0.98
0.40
0.36
0.47
0.25
Tb
0.10
0.16
bd
0.08
0.45
0.03
bd
0.08
0.03
bd
0.11
0.19
0.09
0.17
0.16
bd
bd
bd
0.07
0.03
0.03
bd
0.06
0.03
bd
bd
0.04
0.07
bd
bd
bd
0.03
bd
bd
0.05
0.11
bd
0.07
bd
0.12
0.18
0.06
0.12
0.20
0.04
0.03
0.03
0.04
0.06
0.06
0.07
0.02
bd
0.03
Dy
0.10
0.32
0.12
0.17
0.32
0.64
0.25
0.11
0.14
0.31
0.47
0.61
0.51
0.14
0.33
0.31
0.31
bd
1.23
0.41
0.56
0.15
0.13
0.28
0.48
0.29
0.92
1.03
0.45
0.14
0.08
0.65
0.26
0.21
0.48
0.33
0.23
0.68
0.42
0.37
1.31
0.69
0.74
1.08
0.93
0.54
0.24
0.14
0.13
bd
0.40
0.45
0.71
0.13
Ho
0.23
0.11
0.03
0.10
0.05
0.08
0.25
0.11
0.20
0.08
0.26
0.23
0.13
0.14
0.12
0.23
0.10
0.11
bd
0.20
0.10
0.04
0.03
0.14
0.12
bd
0.04
0.15
0.03
0.05
0.08
0.10
0.10
0.08
0.05
0.08
0.11
0.27
0.10
0.19
0.40
0.20
0.10
0.27
0.15
0.24
0.06
0.11
0.10
0.06
0.07
0.07
0.06
0.29
Er
0.68
0.35
0.27
0.37
0.24
0.12
0.56
0.12
0.75
1.54
bd
0.67
1.11
0.47
0.55
1.20
0.68
0.48
0.51
0.60
1.39
0.49
bd
0.62
0.26
bd
0.51
1.62
0.25
0.16
0.09
1.14
0.44
0.45
0.10
0.36
0.63
0.30
0.62
0.82
0.64
0.76
0.63
1.04
0.51
0.45
0.40
0.64
bd
0.40
0.11
0.49
0.26
1.26
Tm
0.07
0.03
0.03
0.06
0.15
0.10
0.06
0.05
0.06
bd
0.11
0.29
0.21
0.17
0.24
0.04
0.10
0.03
0.07
0.13
0.03
0.07
0.03
0.27
0.06
0.03
0.18
0.07
0.11
0.07
0.07
0.03
0.06
0.10
0.09
0.08
0.05
0.10
0.03
0.12
0.10
0.11
0.08
0.16
0.04
0.06
bd
0.14
0.09
0.06
0.02
0.09
0.03
0.24
Yb
0.75
0.47
0.53
0.36
0.16
1.08
0.74
1.11
0.39
0.22
0.68
1.32
0.18
0.61
0.72
1.13
0.59
0.63
0.89
bd
0.20
bd
bd
1.22
0.52
0.21
0.67
0.21
0.98
bd
bd
0.56
0.38
1.05
0.55
0.47
0.16
1.18
0.61
0.54
2.31
0.66
0.60
1.76
1.12
0.39
0.35
0.84
0.96
bd
0.58
0.39
0.68
1.10
Lu
0.14
0.06
0.19
0.16
0.17
0.06
bd
0.12
0.14
0.17
0.16
0.08
0.24
0.15
0.09
0.04
0.33
bd
bd
0.04
0.11
bd
bd
0.04
0.06
0.23
0.33
0.08
0.15
0.04
bd
0.17
0.14
0.05
0.03
0.17
0.09
0.14
0.07
0.26
0.35
0.03
0.15
0.07
0.12
bd
0.03
0.15
0.11
0.10
0.11
0.19
0.09
0.30
Th
0.02
bd
0.02
bd
bd
bd
bd
bd
bd
bd
0.02
bd
0.03
bd
0.07
bd
bd
0.06
0.03
0.03
0.03
bd
0.03
bd
bd
bd
0.03
bd
bd
0.01
bd
bd
bd
bd
bd
0.04
bd
0.03
0.03
0.03
bd
0.02
bd
bd
bd
bd
bd
bd
0.03
bd
bd
bd
bd
bd
U
ƩREE
1.33
10
1.03
6
1.19
8
1.42
10
1.15
9
1.19
8
1.21
8
1.20
9
1.47
6
0.75
6
3.04
6
6.73
16
0.68
10
5.46
15
2.89
15
0.91
22
1.44
11
2.36
9
1.61
10
0.97
7
0.55
6
3.63
4
0.63
5
0.50
7
0.43
4
0.52
6
0.57
7
1.28
12
0.78
7
1.17
3
1.21
4
0.62
8
0.59
8
0.92
5
0.85
7
0.27
6
0.32
4
0.44
8
1.69
12
1.08
10
2.19
25
2.26
17
0.92
20
1.13
17
1.29
19
1.75
8
0.39
8
1.65
7
0.45
9
0.34
9
0.83
9
0.90
11
0.75
11
1.72
9
Ce/Ce*
0.60
0.06
-0.35
-0.20
0.35
-0.24
1.14
-0.21
-0.51
-0.12
0.54
-0.44
-0.56
0.13
0.11
-0.02
-0.27
0.29
-0.27
0.21
0.48
-0.75
-0.23
0.45
0.15
0.31
-0.33
0.21
0.05
0.00
-0.44
0.22
0.36
-0.18
-0.65
-0.58
0.27
-0.27
0.26
-0.02
-0.01
2.02
0.11
0.34
0.33
0.02
-0.06
-0.22
-0.24
0.53
0.49
0.33
0.29
-0.31
Ce/Ce**
-1.95
-6.86
0.75
-6.04
-1.85
0.56
19.29
0.81
0.62
1.18
5.44
0.68
-0.62
1.35
1.34
1.89
0.81
1.22
0.40
1.52
-1.30
0.14
0.79
1.23
7.14
-8.39
0.63
-22.24
2.40
7.66
0.41
-1.57
2.94
0.85
0.15
-2.73
1.26
1.47
1.55
-2.24
1.03
2.43
2.90
0.99
-10.24
-0.97
2.72
-6.85
2.15
1.47
2.32
5.18
1.60
0.41
La/La*
Y/Ho
-1.97
41.2
-3.89
83.9
0.26 290.3
-6.34
65.9
-2.23 132.6
-0.37
99.4
-12.77
30.6
0.04
93.2
0.39
51.3
0.51 155.3
47.29
28.0
0.32
68.8
-1.99
64.1
0.35
85.3
0.30 131.0
1.56
62.5
0.17
81.9
-0.09
78.3
-0.63
58.4
0.37
38.5
-1.62
94.1
-0.63 248.5
0.04 240.5
-0.23
71.0
-6.45
34.5
-2.63 126.6
-0.11 218.6
-3.95
51.3
1.97 286.2
-9.64 100.0
-0.45
84.8
-2.08
79.0
8.16
69.8
0.05
82.3
-0.80 156.3
-5.63
66.5
-0.01
45.9
1.79
36.3
0.34
86.9
-2.98
72.8
0.06
34.4
-0.29
49.6
3.31 138.1
-0.36
59.5
-4.57
98.7
-1.82
39.8
6.07 138.5
-3.48
84.2
61.13
93.5
-0.06 136.5
1.19
78.3
96.47 156.7
0.39 140.4
-0.56
33.8
415
mm from
bone rim
16.17
16.20
16.24
16.27
16.31
16.34
16.38
16.41
16.45
16.48
16.52
16.55
16.58
16.62
16.65
16.69
16.72
16.76
16.79
16.83
16.86
16.90
16.93
16.96
17.00
17.03
17.07
17.10
17.14
17.17
17.21
17.24
17.28
17.31
17.34
17.38
17.41
17.45
17.48
17.52
17.55
17.59
17.62
17.66
17.69
17.72
17.76
17.79
17.83
17.86
17.90
17.93
17.97
18.00
Sc
2.12
3.67
1.41
1.08
3.70
1.88
1.26
2.03
2.00
2.76
1.87
3.15
3.68
3.72
5.44
3.38
1.98
3.15
1.96
2.23
2.06
2.65
0.71
0.83
1.43
2.38
2.65
1.56
1.30
1.92
2.53
1.57
2.59
2.67
1.59
2.55
1.56
0.74
1.77
1.08
1.00
1.78
0.47
1.12
1.08
0.93
1.23
1.22
0.40
0.98
1.69
0.94
1.54
0.93
Mn
0.21
0.25
0.17
0.30
0.21
0.29
0.22
0.22
0.17
0.57
0.88
1.42
1.08
2.60
1.47
1.29
0.44
0.37
0.27
0.38
0.26
0.25
0.19
2.19
0.29
0.32
0.26
0.26
0.30
0.26
0.39
0.57
0.15
0.33
0.24
0.25
0.29
0.22
0.58
0.24
0.38
0.29
0.52
0.34
0.29
0.31
0.21
0.44
0.83
0.23
0.51
0.21
0.40
0.14
SRHS-DU-126 Femur (continued)
Fe
bd
1.50
1.42
1.12
2.51
1.20
1.56
1.97
1.84
bd
3.41
3.63
2.87
5.61
4.58
4.40
2.12
1.60
1.22
1.73
1.32
1.49
0.93
0.85
1.38
1.24
1.83
1.32
1.53
1.08
1.26
1.23
0.73
1.41
1.08
1.24
1.64
1.31
1.56
1.03
1.27
1.31
1.52
1.63
1.72
1.42
2.17
1.03
1.11
0.79
1.07
0.88
1.05
bd
Sr
2953.03
3453.09
2724.33
2589.51
3249.64
2759.62
4185.75
3334.91
2997.68
3196.36
6324.18
8164.00
3353.63
3377.29
4664.84
9739.51
23011.84
4492.33
2667.85
4057.89
6811.77
4319.36
12228.42
2691.61
2872.59
3547.58
2464.50
2695.73
2849.19
2936.77
2407.67
2967.37
2550.42
4199.40
2078.78
3620.27
3080.30
1829.73
3786.59
2982.89
2754.15
3579.57
3460.60
2684.62
3651.93
4228.28
2948.61
3643.78
2214.16
2331.28
2973.69
2933.65
3481.03
2709.82
Y
7.44
7.97
8.46
10.94
12.80
6.99
6.41
6.55
8.76
11.61
17.84
18.09
18.61
24.75
22.34
21.37
7.37
8.82
9.82
7.26
8.67
6.66
8.71
13.53
5.31
9.68
5.73
4.60
5.14
5.55
4.54
3.88
2.98
6.22
5.49
7.79
3.60
2.21
6.74
3.68
4.29
3.89
5.21
3.13
4.71
6.47
3.26
5.16
3.02
2.88
1.49
2.87
4.01
3.16
Ba
2040.61
1380.57
1278.57
1295.67
1613.68
2395.50
1568.68
2508.26
2171.26
nd
nd
nd
nd
nd
nd
4060.06
1936.12
2115.38
1787.91
3081.33
776.20
nd
1284.44
1907.81
1123.02
2552.71
nd
1562.11
2952.90
1910.22
1465.32
1839.44
1172.12
2117.38
1276.40
2013.91
1827.50
1832.73
2731.46
1480.27
nd
1738.21
nd
1966.57
1976.11
1563.62
1722.07
2691.05
1273.14
1023.22
1003.00
1095.62
1023.68
904.38
La
2.24
1.81
1.47
2.14
2.52
2.26
1.31
1.81
3.07
1.92
6.25
7.60
4.15
5.63
8.18
8.67
1.87
2.38
1.71
2.15
1.80
1.76
1.52
1.42
1.79
1.76
1.36
1.26
1.28
1.53
1.20
1.65
1.76
1.63
1.18
1.47
1.14
3.01
1.40
2.32
1.21
0.91
1.07
1.15
0.76
0.75
1.21
1.33
0.55
0.86
0.43
0.66
0.87
0.59
Ce
1.94
3.75
2.31
3.97
3.25
3.07
2.15
2.08
3.73
3.03
5.31
13.85
4.84
6.68
9.73
12.08
3.86
3.28
2.15
3.56
1.60
3.56
1.69
1.31
1.86
5.43
2.04
2.20
1.21
1.79
1.14
2.28
1.14
3.47
1.40
2.45
1.17
1.41
3.10
2.13
1.59
0.91
2.26
1.62
2.73
2.88
1.85
2.61
1.58
1.16
3.69
0.79
1.64
0.99
Pr
0.25
1.13
0.18
0.23
0.21
0.34
0.36
0.36
0.37
0.23
0.63
0.91
0.30
0.65
0.99
0.77
0.75
0.38
bd
0.22
0.08
0.34
0.21
0.11
0.06
0.16
0.13
0.35
0.09
0.18
0.27
bd
0.11
0.13
0.11
0.06
0.34
0.10
0.26
0.22
0.12
0.24
0.13
0.29
bd
0.24
0.08
0.14
bd
0.09
bd
bd
0.09
0.05
Nd
0.59
0.18
1.09
1.33
1.22
0.40
0.32
1.33
1.27
1.04
1.72
1.18
2.03
2.64
2.59
1.13
1.10
1.12
0.43
0.52
0.24
1.00
0.35
0.13
0.33
0.97
0.26
0.17
0.35
bd
1.62
bd
0.22
bd
1.09
0.69
bd
bd
0.43
1.47
0.17
bd
0.39
0.63
0.44
1.06
bd
1.59
0.28
0.13
bd
0.33
bd
0.31
bd
0.21
0.22
0.53
bd
bd
bd
bd
0.22
bd
1.39
bd
0.17
bd
bd
bd
bd
0.22
bd
bd
bd
bd
bd
0.15
bd
0.29
bd
bd
bd
0.63
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.18
bd
bd
bd
bd
bd
bd
0.20
bd
bd
bd
bd
bd
bd
bd
Sm
Eu
0.10
bd
0.13
0.16
0.08
0.14
0.06
0.07
0.32
0.25
0.82
0.21
0.15
0.42
0.46
0.26
0.31
0.13
0.07
bd
0.34
0.53
0.06
0.04
0.06
0.26
bd
bd
0.06
bd
0.09
0.32
bd
bd
bd
bd
0.06
bd
bd
bd
0.12
0.31
bd
bd
0.08
0.06
bd
bd
bd
bd
bd
bd
0.09
0.05
Gd
0.53
0.43
0.21
0.26
bd
0.23
0.39
0.22
bd
0.41
0.68
bd
0.34
1.41
1.56
0.90
bd
0.67
bd
0.93
bd
bd
bd
0.30
bd
0.28
bd
0.83
bd
2.84
1.29
0.27
0.52
0.31
0.25
0.83
bd
0.36
1.30
0.71
bd
0.20
0.47
0.76
0.53
0.21
0.40
bd
bd
0.32
0.19
bd
bd
bd
bd
bd
bd
bd
0.11
0.12
bd
0.03
0.05
0.05
0.12
0.09
bd
0.13
0.19
0.11
bd
0.13
0.06
0.07
0.03
0.04
0.03
bd
0.05
0.07
bd
0.05
bd
0.04
bd
0.10
0.03
bd
bd
0.05
0.03
bd
bd
0.04
0.13
bd
bd
bd
bd
bd
0.02
0.03
0.08
0.04
bd
bd
bd
0.02
Tb
Dy
0.26
0.32
0.11
0.92
0.29
0.24
0.10
0.23
0.86
0.31
0.51
2.98
1.46
1.04
1.34
0.89
0.78
bd
0.13
0.31
bd
0.44
0.31
0.30
0.40
0.43
0.31
bd
bd
bd
0.16
bd
0.26
bd
bd
bd
bd
0.27
bd
0.09
0.31
bd
0.23
0.12
0.13
0.42
0.30
bd
0.08
0.08
0.10
0.10
bd
bd
Ho
0.09
0.11
0.05
0.10
0.04
0.06
0.24
0.03
0.24
0.15
0.25
0.48
0.15
0.13
0.48
0.22
bd
0.08
0.10
0.04
0.04
0.22
0.10
0.02
0.07
0.14
0.08
0.08
0.05
0.04
0.12
0.10
0.03
0.08
bd
0.10
0.11
0.02
bd
0.11
0.03
0.15
0.09
bd
0.03
bd
0.10
0.06
0.02
0.06
0.05
bd
0.04
0.04
Er
0.96
0.47
0.24
0.29
0.48
0.65
0.10
0.62
0.35
0.67
0.56
0.58
0.75
2.10
2.32
0.98
0.14
0.73
0.42
0.51
bd
0.16
0.80
0.42
0.87
0.16
bd
bd
0.57
bd
0.17
bd
0.14
0.17
bd
0.45
0.36
0.30
0.56
0.38
0.34
0.23
0.38
0.27
bd
0.11
0.11
0.52
0.28
0.17
0.32
0.32
0.35
0.30
Tm
0.02
0.10
0.13
0.06
0.03
0.03
0.07
bd
0.13
0.12
0.12
0.08
0.10
0.17
0.23
0.05
0.19
0.05
0.06
0.04
0.14
0.03
0.07
0.05
0.05
bd
bd
0.12
bd
0.07
0.04
0.06
bd
bd
0.03
0.10
bd
0.02
0.15
bd
bd
bd
0.03
0.03
0.03
bd
0.02
0.06
0.04
bd
0.07
bd
0.08
bd
Yb
0.25
0.61
0.93
0.57
1.26
0.51
0.83
0.33
0.78
0.44
0.24
2.03
1.74
2.26
1.66
2.26
bd
0.96
0.19
0.44
0.20
0.43
0.90
0.33
0.86
0.83
0.44
0.60
0.30
bd
1.16
bd
0.19
bd
0.56
0.30
0.15
0.13
0.56
0.25
bd
0.15
0.17
0.36
0.57
bd
bd
0.68
bd
0.11
bd
0.14
0.46
0.13
Lu
0.05
0.08
0.26
0.03
0.08
0.06
0.15
0.09
0.14
0.08
0.14
0.33
0.05
0.14
0.26
0.18
0.17
0.03
0.07
0.12
0.08
0.08
0.11
bd
0.11
0.11
0.12
0.03
0.11
0.08
0.13
0.11
0.03
0.16
0.20
0.22
0.03
bd
0.20
bd
0.03
bd
0.15
0.20
0.21
0.03
0.03
0.09
0.07
0.06
bd
bd
bd
0.02
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.02
bd
0.07
0.14
0.18
bd
bd
0.03
bd
bd
0.03
bd
bd
0.04
bd
0.02
bd
bd
bd
bd
0.09
bd
bd
bd
bd
bd
bd
bd
0.02
0.05
bd
bd
bd
bd
bd
0.05
bd
0.06
bd
bd
0.05
bd
0.02
0.03
bd
Th
U
ƩREE
0.50
7
0.72
9
0.90
7
0.77
11
0.39
10
0.78
8
0.73
6
0.70
7
1.87
12
3.49
9
8.17
19
6.36
30
4.57
16
7.71
23
6.00
30
3.96
29
1.48
9
1.42
10
0.98
5
2.46
9
1.92
5
0.63
9
1.29
6
0.47
5
1.00
6
0.94
11
2.34
5
1.39
6
0.48
4
0.99
7
0.48
7
1.05
5
0.34
4
0.99
6
0.32
5
0.80
7
0.48
3
0.35
6
1.21
8
0.57
8
1.04
4
0.59
3
1.68
5
1.04
5
0.51
6
0.43
6
2.07
4
0.75
7
0.46
3
0.35
3
0.30
5
0.19
2
1.05
4
0.32
3
Ce/Ce*
-0.44
-0.44
-0.02
0.22
-0.09
-0.21
-0.26
-0.40
-0.23
-0.01
-0.43
0.16
-0.15
-0.24
-0.25
-0.04
-0.25
-0.21
-0.31
0.10
-0.29
0.07
-0.32
-0.34
-0.14
1.10
0.01
-0.23
-0.31
-0.25
-0.53
-0.11
-0.51
0.50
-0.19
0.35
-0.56
-0.61
0.20
-0.38
-0.11
-0.54
0.32
-0.34
0.41
0.59
0.12
0.31
0.49
-0.11
3.36
-0.27
0.24
0.17
Ce/Ce**
0.69
0.20
4.91
6.93
6.19
0.64
0.41
0.75
1.18
2.10
0.82
1.11
92.37
1.48
0.93
1.18
0.39
0.88
0.53
1.45
2.04
1.08
0.64
0.86
13.52
13.11
1.28
0.40
1.85
3.00
1.64
2.24
0.85
5.36
-1.78
-3.42
0.27
3.81
0.94
9.82
1.00
0.28
1.74
0.49
0.81
1.95
-1.03
-1.63
1.30
0.96
3.80
1.08
2.14
7.87
La/La*
Y/Ho
0.38
85.3
-0.86
75.5
-6.07 158.2
-7.09 111.9
-8.71 357.8
-0.27 118.7
-0.63
26.8
0.53 234.5
1.07
36.4
3.55
76.0
0.74
70.4
-0.05
37.6
-4.73 124.7
2.38 191.0
0.40
46.8
0.33
96.2
-0.71 101.4
0.21 106.6
-0.33 102.0
0.51 190.8
3.35 246.5
0.01
30.3
-0.09
84.4
0.43 724.0
-20.15
71.7
-7.75
67.6
0.41
75.1
-0.67
59.9
3.99
98.9
-11.93 145.0
-3.79
38.2
7.52
38.8
1.16
93.4
18.74
81.1
-2.02
78.6
-2.65
76.1
-0.59
33.5
-50.67
99.3
-0.32
66.6
-4.39
33.9
0.19 166.9
-0.58
25.3
0.57
59.9
-0.41 102.5
-0.64 145.0
0.74
89.0
-1.60
33.0
-1.66
88.0
-0.21 145.0
0.12
48.7
-0.21
30.6
1.02
66.0
1.46 101.3
-7.86
70.2
416
Sc
2.65
2.04
1.54
1.60
1.25
2.55
2.03
0.39
1.50
1.76
1.58
1.25
1.61
0.79
1.98
1.91
2.92
1.15
1.94
2.03
2.43
1.71
0.86
1.93
1.30
1.62
1.34
1.67
Mn
0.34
0.16
0.17
0.42
0.11
0.12
0.23
0.13
0.15
0.12
0.12
0.14
0.39
0.11
0.15
0.19
0.16
0.16
0.18
0.13
0.31
0.11
0.15
0.18
0.12
0.13
0.11
0.16
Fe
1.29
1.29
1.24
1.00
1.28
1.34
1.73
0.98
0.85
1.07
1.06
1.01
1.12
1.60
1.77
1.85
1.68
1.75
2.81
2.10
2.32
2.80
2.38
2.25
1.73
2.44
1.81
2.06
mm from
bone rim
0.00
0.03
0.07
0.10
0.14
0.17
0.21
0.24
0.28
0.31
0.35
0.38
0.41
0.45
0.48
0.52
0.55
0.59
0.62
0.66
0.69
0.73
Sc
29.70
29.08
19.90
20.83
23.48
22.10
19.93
17.25
17.31
17.35
16.56
16.27
15.79
12.93
16.37
17.76
13.78
16.21
14.97
12.88
15.66
15.87
Mn
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
Fe
1.15
0.91
0.94
0.97
1.22
1.27
2.26
1.13
1.70
0.00
1.11
0.00
1.53
2.17
2.06
1.59
1.25
1.44
1.01
0.75
1.04
0.00
SRHS-DU-192 Metatarsal (Transect 1)
mm from
bone rim
18.04
18.07
18.10
18.14
18.17
18.21
18.24
18.28
18.31
18.35
18.38
18.42
18.45
18.48
18.52
18.55
18.59
18.62
18.66
18.69
18.73
18.76
18.80
18.83
18.86
18.90
18.93
18.97
SRHS-DU-126 Femur (continued)
Sr
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
Sr
3458.81
3902.67
1900.32
4228.81
2734.54
2112.28
2905.12
2646.43
3031.04
2060.62
3301.87
3051.71
2173.01
3212.75
2847.58
2901.82
2795.25
2314.03
2791.77
3015.40
3917.33
4599.17
2738.12
3517.87
2784.60
3417.78
2410.05
2241.93
Y
165.57
215.53
127.99
128.68
132.08
143.26
124.59
123.69
111.58
71.23
79.60
68.03
74.68
63.71
82.02
73.74
63.71
78.89
74.40
53.80
46.60
50.05
Y
9.20
10.45
3.68
7.01
4.69
3.33
6.71
4.64
7.51
5.21
6.71
7.74
8.49
9.79
9.25
8.17
7.74
5.87
6.67
7.45
6.95
6.50
5.23
6.68
4.94
8.14
6.56
6.91
Ba
1337.94
1756.98
1484.06
1446.33
1157.19
1993.24
2125.43
2337.92
nd
2406.32
nd
nd
nd
4180.64
nd
3099.73
nd
nd
1982.41
1458.50
nd
1821.34
Ba
1812.63
1068.29
726.07
2409.72
988.03
627.78
1563.22
611.90
656.91
792.48
1168.93
1410.00
1040.22
1152.28
1191.69
719.76
686.04
663.93
2570.39
1101.71
533.87
1270.79
561.15
823.02
617.84
733.41
579.17
379.05
La
231.13
258.73
163.06
172.00
127.97
142.30
152.48
142.31
116.20
76.99
75.09
69.15
76.98
64.78
58.64
65.72
53.90
66.04
53.62
37.17
35.75
38.50
La
3.97
3.31
0.66
2.03
1.19
1.12
1.47
1.16
1.20
1.81
1.82
1.87
2.87
3.60
2.27
2.67
1.17
1.51
1.47
3.04
2.66
3.49
2.01
1.31
1.29
2.28
1.77
1.79
Ce
428.89
454.50
475.72
322.56
257.23
nd
260.65
286.05
262.16
122.18
233.38
119.05
75.47
101.55
92.68
105.49
92.04
111.24
72.35
49.76
47.47
43.87
Ce
12.80
15.37
1.09
1.59
1.96
2.73
1.70
1.36
2.40
1.00
0.95
2.26
5.61
3.19
2.92
3.06
1.65
1.55
2.36
3.39
1.89
2.22
0.95
1.81
1.59
1.80
3.47
2.50
Pr
33.46
38.99
30.75
30.42
21.60
23.03
22.96
19.56
16.71
13.01
11.81
9.74
8.52
6.19
8.62
6.64
6.22
7.95
6.92
4.18
3.80
5.53
Pr
0.28
0.20
0.11
0.37
0.13
bd
bd
0.04
0.29
0.10
0.06
0.52
0.39
0.15
0.13
0.43
0.17
0.03
0.11
0.22
0.19
0.30
0.25
0.38
0.21
0.20
0.21
0.06
Nd
101.66
123.72
88.54
73.70
56.89
77.02
72.38
59.62
51.20
35.53
36.42
29.60
34.42
25.06
28.94
20.14
21.06
22.62
16.55
15.88
13.30
13.03
Nd
2.16
1.17
0.75
bd
1.53
bd
bd
0.25
0.28
bd
0.78
bd
0.45
1.07
0.62
0.67
0.33
0.42
bd
1.28
0.19
0.17
0.16
bd
0.74
0.59
1.10
0.18
Sm
15.68
17.43
16.93
14.86
10.46
10.97
8.94
10.42
8.18
8.75
2.36
5.33
4.97
2.88
4.76
3.60
3.36
3.03
4.71
2.77
2.21
1.68
bd
0.89
bd
bd
bd
bd
bd
0.30
bd
bd
bd
bd
bd
bd
0.15
0.61
0.13
bd
bd
0.19
0.23
bd
bd
0.30
bd
0.96
1.13
bd
Sm
Eu
3.52
3.82
4.49
4.54
2.55
3.44
2.52
2.35
1.48
1.51
1.43
1.52
1.82
1.80
1.47
0.97
1.58
1.15
1.27
0.94
1.04
0.87
Eu
0.08
0.10
0.04
bd
bd
0.37
bd
bd
bd
0.22
0.13
0.13
bd
0.25
0.09
bd
0.08
0.04
bd
0.11
0.20
0.06
bd
bd
bd
0.07
0.05
bd
Gd
23.33
24.95
17.99
15.81
13.74
12.01
12.77
18.09
9.19
8.68
4.83
7.20
4.19
4.92
5.51
6.40
3.69
5.89
4.67
2.85
15.78
5.71
Gd
0.28
0.35
0.15
0.42
bd
0.41
0.45
bd
bd
bd
bd
bd
0.73
0.21
0.14
0.20
0.26
0.12
bd
bd
0.22
0.42
0.78
bd
bd
0.47
0.56
bd
Tb
2.31
3.49
2.04
1.92
1.52
1.88
1.39
1.54
1.11
1.06
0.76
1.02
0.93
0.74
0.67
0.85
0.64
0.61
0.64
0.30
0.59
0.45
Tb
0.03
0.06
0.04
0.05
0.15
bd
bd
bd
0.04
bd
0.11
bd
0.02
0.05
0.05
bd
0.03
0.07
bd
0.07
0.05
bd
0.02
0.04
0.07
0.03
0.02
bd
Dy
14.93
23.88
14.20
16.36
8.86
12.61
9.42
13.85
8.23
8.29
5.51
6.66
6.19
6.91
4.41
4.06
5.56
5.07
4.97
3.45
4.91
4.61
Dy
0.71
0.52
0.15
0.21
bd
0.20
0.91
0.15
0.67
bd
bd
0.46
bd
0.21
0.37
0.40
0.39
0.43
0.19
0.38
0.45
0.52
0.29
0.44
0.87
0.12
0.28
0.21
Ho
2.97
5.07
3.53
2.80
1.97
2.56
2.72
2.77
1.99
1.31
1.14
1.52
0.92
0.96
1.21
1.20
1.61
1.27
1.32
0.84
1.05
0.97
Ho
0.04
0.09
0.02
0.11
bd
bd
0.06
0.04
0.08
0.09
0.06
0.11
0.16
0.42
0.20
0.25
0.15
0.05
0.12
0.14
0.14
0.03
0.10
0.07
0.29
0.12
0.05
0.16
Er
8.90
14.99
9.95
8.05
7.64
6.93
6.08
7.75
5.28
4.88
3.54
5.51
4.62
3.68
2.67
3.82
4.96
3.82
4.74
3.17
3.67
2.53
Er
0.62
0.57
0.16
0.23
0.17
0.90
bd
0.32
0.74
0.80
1.02
bd
1.08
0.35
0.89
0.76
0.28
0.34
0.31
0.62
0.25
0.11
0.11
bd
0.64
0.65
0.51
0.23
Tm
1.27
1.88
1.05
1.25
0.66
1.02
0.86
1.12
0.94
0.65
0.59
0.61
0.69
0.78
0.61
0.62
0.83
0.57
0.66
0.49
0.64
0.65
Tm
0.07
0.06
0.02
0.05
bd
bd
bd
0.07
0.08
0.04
bd
bd
0.02
0.23
0.14
bd
0.12
0.06
bd
bd
0.16
0.07
0.02
0.14
bd
0.06
bd
bd
Yb
5.87
11.80
8.54
7.98
4.72
6.04
4.72
6.75
3.41
5.69
3.48
5.56
4.49
3.85
2.66
3.44
4.91
4.74
4.48
2.73
2.76
3.61
Yb
0.20
0.63
0.11
1.85
1.10
0.59
bd
0.43
bd
0.79
bd
0.33
0.78
0.61
0.64
0.29
0.19
0.36
1.08
0.14
0.16
1.35
0.84
0.43
1.27
0.34
1.48
bd
Lu
1.32
2.43
0.99
1.51
0.78
1.33
0.88
1.22
0.76
0.57
0.79
0.90
0.66
0.78
0.72
0.72
0.59
0.62
0.76
0.40
0.65
0.71
Lu
0.08
0.09
0.06
0.06
0.08
0.05
0.24
0.04
0.13
0.10
0.12
bd
0.07
0.17
0.16
0.16
0.09
0.07
0.02
0.08
0.03
0.08
0.15
0.31
bd
0.03
0.12
0.17
Th
0.17
0.11
0.18
0.12
0.03
0.02
0.11
0.09
0.08
0.07
0.04
0.04
0.01
0.02
0.04
0.07
0.02
0.01
0.02
bd
0.01
0.01
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.05
bd
0.02
bd
bd
0.02
bd
0.15
Th
U
ƩREE
22.40
875
45.72
986
23.65
838
21.36
674
12.65
517
19.71
301
11.00
559
16.47
573
13.96
487
8.37
289
6.41
381
12.66
263
8.39
225
7.92
225
7.72
214
8.74
224
14.51
201
14.78
235
10.52
178
5.04
125
6.55
134
7.75
123
U
ƩREE
2.70
21
0.66
23
0.41
3
0.87
7
0.11
6
0.47
6
1.37
5
0.47
4
4.36
6
2.53
5
4.82
5
29.46
6
7.80
12
23.91
11
15.22
9
22.63
9
14.13
5
18.12
5
16.81
6
18.51
10
14.91
7
15.77
9
9.48
6
10.03
5
13.58
7
15.99
8
8.67
11
8.42
5
Ce/Ce*
0.10
0.03
0.56
0.03
0.13
0.04
0.00
0.22
0.34
-0.11
0.79
0.03
-0.36
0.06
-0.07
0.07
0.10
0.07
-0.17
-0.13
-0.13
-0.32
Ce/Ce*
1.35
2.50
-0.06
-0.57
0.08
0.75
-0.12
-0.04
-0.04
-0.58
-0.57
-0.47
0.19
-0.29
-0.02
-0.34
-0.16
-0.12
0.16
-0.19
-0.49
-0.56
-0.70
-0.40
-0.30
-0.45
0.24
0.15
Ce/Ce**
1.35
1.27
1.57
0.97
1.14
1.29
1.23
1.54
1.66
0.92
2.11
1.29
1.26
2.33
1.23
1.67
1.71
1.40
0.95
1.56
1.50
0.71
Ce/Ce**
-28.90
30.19
-32.49
0.47
-1.27
-3.77
-2.35
14.44
0.57
2.17
-1.17
0.31
1.04
-67.27
4.71
0.55
0.82
-3.67
-9.26
6.09
0.67
0.48
0.25
0.34
0.92
0.92
3.75
4.33
La/La*
Y/Ho
0.41
55.7
0.44
42.5
0.01
36.2
-0.10
46.0
0.02
67.1
0.46
56.0
0.43
45.8
0.49
44.7
0.43
56.0
0.05
54.2
0.32
69.7
0.45
44.7
2.42
81.5
2.99
66.2
0.62
67.6
1.01
61.7
1.11
39.6
0.55
62.3
0.21
56.4
1.80
64.4
1.44
44.4
0.08
51.8
La/La*
Y/Ho
-3.59 262.4
-11.72 120.9
-2.46 200.7
0.18
66.2
-1.61
92.7
-2.11
92.7
-2.46 119.2
-16.49 127.1
-0.57
90.0
89.13
57.3
-2.80 117.2
-0.61
68.2
-0.19
54.4
-6.63
23.3
26.79
46.1
-0.24
33.1
-0.05
53.3
-3.84 127.7
-3.23
57.2
-10.00
52.7
0.43
49.3
0.12 254.4
-0.22
54.3
-0.62
91.0
0.63
17.0
1.21
69.5
67.22 142.4
4.88
44.1
417
mm from
bone rim
0.76
0.79
0.83
0.86
0.90
0.93
0.97
1.00
1.04
1.07
1.11
1.14
1.17
1.21
1.24
1.28
1.31
1.35
1.38
1.42
1.45
1.49
1.52
1.55
1.59
1.62
1.66
1.69
1.73
1.76
1.80
1.83
1.87
1.90
1.93
1.97
2.00
2.04
2.07
2.11
2.14
2.18
2.21
2.25
2.28
2.31
2.35
2.38
2.42
2.45
2.49
2.52
2.56
2.59
Sc
15.43
14.65
12.29
11.58
12.98
13.64
13.92
12.42
12.89
13.48
11.24
12.82
12.27
11.14
8.18
9.10
8.73
8.38
11.01
8.50
10.22
12.98
9.21
9.40
9.31
8.51
8.77
10.56
7.76
5.76
9.29
10.71
7.52
9.86
7.49
10.21
8.03
6.14
5.91
6.62
6.71
5.75
7.13
5.93
6.29
6.11
5.20
8.66
5.96
6.56
5.10
4.71
5.36
5.55
Mn
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
Fe
2.04
1.28
1.04
0.95
0.97
1.05
1.28
1.37
0.93
1.32
1.13
0.00
1.42
0.98
0.85
0.85
0.92
1.10
1.06
0.92
0.89
0.00
0.80
1.04
0.99
1.23
0.94
2.87
1.74
1.40
1.18
1.73
0.90
1.33
1.09
1.26
0.95
1.08
0.00
1.16
1.09
1.10
1.26
0.91
1.34
1.23
0.90
1.16
1.17
1.12
1.46
0.94
1.81
0.95
Sr
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
SRHS-DU-192 Metatarsal (Transect 1) (continued)
Y
62.30
57.08
47.71
47.47
43.00
50.13
47.38
60.67
43.71
44.95
35.71
35.22
42.64
36.56
29.50
29.67
26.95
31.33
28.71
30.72
30.34
32.78
17.78
37.54
28.97
27.07
26.47
30.99
24.46
17.78
22.15
24.19
18.90
21.91
20.31
29.84
19.24
22.34
17.94
16.60
18.12
16.33
20.71
16.98
16.65
14.59
13.98
16.28
15.10
12.18
13.56
10.82
13.05
13.40
Ba
1680.46
1671.80
1239.78
1299.22
1645.60
1465.25
1978.65
1924.96
1303.29
1858.50
1502.18
1555.62
1723.51
1757.63
1103.43
1231.41
1267.98
2169.34
1466.81
3075.86
1873.25
1423.45
824.34
1619.27
1323.29
1820.93
1304.52
2413.95
1995.73
nd
1545.36
nd
1741.41
1728.15
1484.02
2159.55
1812.50
1449.63
1804.54
1445.12
1300.09
1564.16
1989.70
1670.32
1372.00
1094.65
1679.06
2396.02
1362.97
nd
nd
nd
1756.43
1469.19
La
42.17
44.95
28.07
33.38
30.35
31.47
30.01
37.33
28.67
26.97
20.07
20.33
24.35
23.68
16.88
13.60
12.67
13.99
11.91
15.72
13.21
14.59
7.41
13.64
10.31
10.87
7.53
12.17
6.33
5.98
8.64
10.48
7.28
9.15
7.70
9.49
6.37
9.03
6.80
5.92
4.87
5.07
6.20
5.68
6.02
4.89
4.48
5.16
4.39
3.72
3.82
3.15
4.20
4.46
Ce
63.57
58.11
70.14
26.59
44.16
45.58
50.01
53.31
28.34
29.77
43.51
23.79
24.41
23.13
12.35
12.68
bd
13.28
12.05
17.03
11.13
13.44
6.87
11.95
7.34
10.05
5.84
10.27
7.15
11.39
7.04
11.55
4.65
8.09
7.35
10.42
7.00
7.19
6.07
6.19
5.19
4.44
5.70
5.02
5.14
4.70
4.48
5.84
5.75
4.04
3.35
2.87
4.40
3.34
Pr
4.25
4.90
3.67
2.55
2.87
2.92
2.16
2.59
2.41
2.33
2.23
1.06
1.53
1.69
1.48
1.04
1.02
1.02
0.86
1.29
1.19
1.09
0.55
1.21
0.57
0.69
0.69
1.05
0.52
0.48
0.61
0.58
0.61
0.90
0.60
0.47
0.69
0.73
0.65
0.26
0.33
0.51
0.63
0.33
0.34
0.33
0.46
0.38
0.50
0.23
0.36
0.22
0.11
0.15
Nd
17.58
16.03
10.96
10.27
9.67
9.86
8.80
16.43
8.52
6.90
3.83
4.38
5.81
6.37
3.61
2.90
3.05
3.46
3.61
5.15
3.41
3.45
1.84
3.11
2.05
1.70
2.33
2.41
1.64
1.51
2.79
2.13
2.79
2.94
1.08
1.79
1.76
1.23
2.12
0.36
1.96
2.02
1.24
1.64
2.12
0.83
1.10
0.59
0.99
0.92
0.22
1.03
1.10
0.50
Sm
2.28
2.64
1.31
2.48
2.55
1.94
1.56
2.13
0.25
1.94
0.34
1.20
1.14
0.93
0.56
0.58
0.61
0.77
0.35
0.53
0.27
1.04
0.20
0.81
0.00
0.47
0.27
0.17
0.23
0.68
0.22
0.34
1.18
0.71
0.39
0.33
0.13
0.34
0.36
0.11
0.14
0.81
0.13
0.26
0.49
0.22
0.41
0.28
0.13
0.00
0.13
0.10
0.26
0.24
Eu
0.91
0.63
0.77
0.31
0.43
0.80
0.17
0.43
0.40
0.53
0.46
0.35
0.48
0.23
0.16
0.03
0.14
0.18
0.10
0.16
0.40
0.46
0.03
0.19
0.04
0.09
0.00
0.45
0.38
0.20
0.00
0.10
0.05
0.00
0.00
0.00
0.04
0.13
0.07
0.06
0.20
0.68
0.28
0.08
0.11
0.10
0.03
0.17
0.19
0.15
0.04
0.00
0.04
0.07
Gd
4.93
2.98
3.66
3.51
2.39
1.41
2.81
3.09
1.60
3.03
1.12
1.91
2.26
1.31
0.44
0.81
0.73
0.77
1.21
1.59
1.50
1.42
0.80
3.07
0.43
1.88
0.53
1.52
0.92
0.34
1.33
1.19
0.17
0.88
2.20
0.99
0.79
0.57
0.97
0.98
0.97
0.54
0.00
0.13
0.72
0.22
0.00
0.85
0.26
0.37
0.00
0.00
0.26
0.48
Tb
0.59
0.44
0.31
0.31
0.33
0.41
0.35
0.39
0.44
0.39
0.25
0.18
0.27
0.30
0.12
0.26
0.23
0.16
0.08
0.13
0.16
0.20
0.05
0.19
0.14
0.04
0.17
0.24
0.08
0.09
0.17
0.22
0.22
0.31
0.06
0.08
0.06
0.07
0.20
0.04
0.08
0.06
0.08
0.12
0.12
0.12
0.04
0.08
0.02
0.13
0.08
0.05
0.02
0.04
Dy
3.44
2.90
3.62
2.80
2.91
3.69
2.46
4.27
2.69
2.82
2.45
1.97
1.89
2.05
1.78
1.24
1.54
1.42
1.77
1.54
1.13
1.76
0.68
2.20
0.70
0.84
0.65
2.31
0.84
0.88
0.70
0.58
0.73
1.03
0.82
0.32
1.28
0.66
0.71
0.42
0.87
0.92
0.79
1.15
0.76
0.81
0.50
0.76
0.77
0.54
0.65
0.10
0.38
0.41
Ho
1.04
0.99
0.82
0.83
1.02
0.83
0.91
0.85
0.84
0.89
0.50
0.39
0.67
0.80
0.39
0.34
0.49
0.28
0.61
0.64
0.45
0.41
0.29
0.51
0.37
0.34
0.29
0.64
0.31
0.29
0.56
0.27
0.18
0.34
0.46
0.44
0.26
0.26
0.35
0.22
0.20
0.13
0.26
0.18
0.25
0.17
0.16
0.09
0.16
0.19
0.24
0.06
0.13
0.04
Er
4.49
3.32
3.60
2.76
2.56
2.61
3.68
3.57
2.43
3.39
1.14
2.49
1.91
2.25
1.01
1.11
1.89
1.48
1.39
1.51
1.09
1.38
0.70
1.47
1.31
1.09
1.77
1.45
0.87
1.40
1.07
1.37
0.80
1.32
0.28
0.88
1.06
1.09
0.97
0.52
0.37
0.43
1.01
1.26
1.36
1.06
0.76
0.98
0.56
0.66
0.57
0.33
0.63
1.59
Tm
0.54
0.47
0.40
0.39
0.54
0.55
0.33
0.38
0.29
0.61
0.45
0.33
0.36
0.56
0.50
0.21
0.28
0.23
0.18
0.31
0.33
0.30
0.10
0.30
0.15
0.15
0.14
0.16
0.12
0.14
0.31
0.12
0.23
0.25
0.15
0.17
0.12
0.10
0.24
0.11
0.24
0.12
0.11
0.17
0.11
0.08
0.15
0.07
0.15
0.06
0.19
0.07
0.05
0.22
Yb
4.29
3.59
3.06
2.95
3.16
3.50
2.55
2.96
2.24
1.93
2.35
2.42
3.17
2.30
2.56
1.13
0.94
1.18
1.57
1.97
1.62
2.80
0.42
2.04
2.12
1.65
1.30
1.54
1.13
0.79
1.48
1.79
1.40
2.84
1.27
0.92
0.64
0.32
0.93
0.99
1.45
1.79
0.66
0.55
0.93
0.77
0.71
1.88
1.20
0.17
0.84
0.43
1.01
1.08
Lu
0.82
0.84
0.42
0.31
0.54
0.89
0.62
0.66
0.59
0.54
0.44
0.19
0.40
0.59
0.49
0.29
0.29
0.20
0.36
0.46
0.41
0.34
0.17
0.38
0.30
0.57
0.36
0.49
0.17
0.40
0.15
0.11
0.28
0.48
0.22
0.30
0.40
0.27
0.38
0.21
0.13
0.23
0.40
0.09
0.25
0.20
0.19
0.30
0.14
0.16
0.16
0.09
0.12
0.23
bd
0.05
0.02
0.02
bd
0.03
0.03
0.07
0.01
0.06
0.01
bd
0.02
0.03
0.02
0.02
bd
bd
bd
0.02
0.01
0.14
bd
0.02
bd
bd
0.01
bd
0.03
0.01
0.07
bd
0.03
0.02
0.01
bd
0.01
bd
bd
bd
bd
bd
bd
bd
0.01
bd
0.06
bd
bd
bd
bd
0.02
bd
bd
Th
U
ƩREE
9.95
151
10.83
143
8.01
131
9.47
89
9.40
103
10.20
106
8.92
106
10.02
128
9.60
80
12.69
82
9.00
79
8.87
61
7.13
69
6.00
66
6.03
42
4.04
36
4.01
24
4.89
38
8.33
36
9.86
48
6.46
36
7.06
43
3.07
20
3.73
41
2.67
26
2.55
30
3.14
22
9.37
35
2.52
21
2.71
25
3.57
25
1.93
31
4.17
21
4.90
29
2.21
23
6.66
27
4.38
21
1.99
22
2.45
21
1.31
16
1.27
17
1.24
18
1.67
17
1.47
17
2.30
19
2.01
15
1.41
13
1.62
17
1.79
15
1.27
11
1.51
11
1.35
9
2.38
13
3.40
13
Ce/Ce*
0.01
-0.16
0.54
-0.43
-0.01
-0.01
0.21
0.05
-0.31
-0.23
0.41
-0.09
-0.25
-0.29
-0.49
-0.33
-0.27
-0.31
-0.26
-0.24
-0.42
-0.34
-0.33
-0.39
-0.45
-0.31
-0.47
-0.41
-0.20
0.35
-0.41
-0.15
-0.55
-0.41
-0.32
-0.14
-0.28
-0.44
-0.39
-0.17
-0.22
-0.42
-0.39
-0.33
-0.35
-0.29
-0.34
-0.18
-0.16
-0.18
-0.40
-0.33
-0.12
-0.38
Ce/Ce**
2.19
1.33
1.99
1.48
1.77
1.80
3.32
14.04
1.42
1.32
1.54
3.29
2.09
1.78
0.76
1.20
1.34
1.52
2.13
1.83
0.94
1.33
1.43
0.93
1.58
1.35
0.97
0.86
1.48
2.58
1.98
2.54
1.31
1.02
0.97
2.98
0.96
0.76
1.05
1.76
6.30
1.19
0.75
3.09
8.55
1.34
0.88
1.18
0.95
2.59
0.61
2.45
-5.55
2.48
La/La*
Y/Ho
3.10
60.0
1.09
57.8
0.52
58.2
3.94
57.4
1.53
42.1
1.61
60.5
4.41
52.3
-6.60
71.3
2.14
52.2
1.27
50.6
0.14
70.9
6.89
89.8
3.98
63.6
3.31
45.7
0.80
75.5
1.36
87.8
1.50
55.0
2.36 111.9
5.27
47.0
3.39
47.7
1.09
67.8
1.87
80.2
2.18
60.9
0.88
73.4
3.95
78.5
1.56
78.8
1.60
91.1
0.75
48.4
1.59
79.0
1.68
61.3
8.52
39.9
4.33
89.9
7.02 103.3
1.35
63.8
0.65
44.4
5.62
67.6
0.54
75.1
0.53
85.4
1.39
50.8
1.63
73.9
-10.06
89.8
2.46 124.7
0.35
79.1
26.76
96.8
-8.69
66.5
1.46
83.5
0.54
86.9
0.65 189.4
0.19
94.3
5.56
62.6
0.03
55.8
12.47 172.3
-4.57 102.2
5.77 308.3
418
mm from
bone rim
2.63
2.66
2.69
2.73
2.76
2.80
2.83
2.87
2.90
2.94
2.97
3.01
3.04
3.07
3.11
3.14
3.18
3.21
3.25
3.28
3.32
3.35
3.39
3.42
3.46
3.49
3.52
3.56
3.59
3.63
3.66
3.70
3.73
3.77
3.80
3.84
3.87
3.90
3.94
3.97
4.01
4.04
4.08
4.11
4.15
4.18
4.22
4.25
4.28
4.32
4.35
4.39
4.42
4.46
Sc
6.38
5.37
7.38
6.10
3.51
5.63
5.01
5.59
5.50
5.83
5.18
6.26
4.61
3.99
6.52
5.55
4.58
4.39
4.95
6.26
4.77
5.48
6.13
4.74
5.07
5.16
2.80
3.11
2.92
4.13
3.52
4.03
2.84
3.35
3.74
6.08
4.01
3.48
3.11
4.07
4.64
3.35
4.11
5.12
4.56
4.41
4.83
6.68
6.20
5.58
4.90
5.40
6.08
4.58
Mn
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
Fe
0.91
1.25
0.00
1.24
1.26
1.48
1.17
1.45
0.93
1.07
1.09
1.48
1.08
1.22
1.45
1.50
1.05
1.43
1.29
1.10
1.03
1.03
1.19
1.13
1.14
1.02
1.30
1.34
1.18
1.35
1.04
1.38
0.00
1.32
1.22
0.00
1.26
1.03
0.98
1.16
0.99
0.74
1.43
1.57
0.00
1.47
1.32
1.35
0.00
1.04
1.20
1.13
1.09
1.20
Sr
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
SRHS-DU-192 Metatarsal (Transect 1) (continued)
Y
14.01
12.11
13.00
12.29
8.20
12.79
10.05
12.88
11.97
14.60
10.13
12.11
10.52
12.66
12.12
10.45
10.78
10.72
11.68
10.77
10.09
10.06
9.74
12.51
9.71
9.42
6.86
7.62
7.02
7.83
8.06
9.30
6.96
7.87
7.01
8.02
7.35
6.74
8.22
9.58
8.02
6.83
10.32
11.49
11.02
7.93
9.14
14.98
10.70
9.46
14.12
12.52
11.87
9.89
Ba
1479.97
1383.64
1520.85
1399.03
992.90
1802.11
1296.64
1351.67
1187.50
1784.68
1986.11
1526.48
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
2888.34
3429.67
2003.58
nd
1872.26
1899.62
2310.55
1747.74
nd
2006.57
1959.58
1756.67
1704.27
1827.32
1517.01
1559.16
1073.48
nd
1505.52
1820.30
nd
3373.70
nd
2251.67
nd
2682.36
1706.27
1853.49
2260.76
2124.13
1288.52
1137.47
La
3.25
3.55
2.90
2.42
2.14
4.65
3.03
3.39
2.37
3.21
2.75
2.56
2.29
3.44
2.49
3.52
3.34
2.13
2.95
2.96
2.36
2.74
2.03
2.16
1.88
2.05
1.45
2.13
1.91
1.84
2.17
2.16
1.92
1.37
1.25
1.74
1.79
2.08
2.51
2.39
1.40
1.50
2.06
2.95
2.40
1.89
2.11
2.57
1.82
1.79
2.26
2.93
2.89
1.67
Ce
3.33
2.75
3.13
2.98
2.63
2.71
1.46
3.37
3.77
2.51
6.36
2.46
2.45
2.93
3.83
4.30
2.19
2.52
3.20
2.19
2.79
1.64
1.87
1.96
1.83
1.43
1.12
1.44
2.57
2.62
2.17
24.90
5.02
0.76
14.40
4.76
1.47
2.02
8.04
1.91
1.40
1.75
3.77
2.13
1.83
7.21
2.67
2.48
2.97
1.60
2.05
6.57
3.87
1.87
Pr
0.21
0.12
0.35
0.47
0.18
0.20
0.07
0.40
0.13
0.33
0.32
0.28
0.18
0.22
0.44
0.43
0.32
0.14
0.24
0.07
0.22
0.18
0.26
0.15
0.12
0.17
0.74
0.14
0.71
0.31
0.13
0.10
0.08
0.13
0.09
0.13
0.20
0.08
0.15
0.18
0.06
0.12
0.20
0.23
0.19
0.18
0.17
0.16
0.16
0.24
0.29
0.26
0.53
0.33
Nd
0.72
0.20
1.35
0.47
0.63
1.46
0.51
1.06
1.07
1.75
0.51
0.26
0.94
0.88
1.66
1.27
1.15
0.82
0.48
1.28
1.13
0.36
0.20
0.23
0.46
0.22
0.99
0.12
0.62
0.82
1.91
0.48
0.20
0.87
0.18
0.44
bd
0.27
0.50
0.54
0.75
0.08
1.29
0.39
0.41
0.38
1.07
0.69
0.54
0.76
0.21
1.33
0.36
0.59
Sm
0.12
0.12
0.00
0.42
0.22
0.16
0.00
0.43
0.23
0.14
0.37
0.00
0.00
0.00
0.00
0.00
0.12
0.37
0.58
0.24
0.57
0.11
0.37
0.00
0.22
0.00
0.00
0.00
0.15
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.56
0.11
0.00
0.18
0.00
0.09
0.00
0.00
0.37
0.18
0.28
0.18
0.18
0.39
0.13
0.11
0.00
0.31
Eu
0.07
0.11
0.00
0.00
0.03
0.05
0.00
0.08
0.00
0.00
0.00
0.00
1.33
0.40
0.65
1.65
0.18
0.25
0.20
0.28
0.03
0.06
0.00
0.04
0.06
0.16
0.00
0.04
0.09
0.00
0.06
0.08
0.10
0.04
0.03
0.12
0.03
0.00
0.12
0.08
0.07
0.00
0.16
0.00
0.14
0.08
0.05
0.05
0.08
0.04
0.00
0.10
0.28
0.03
Gd
0.62
0.00
0.37
0.14
0.65
0.00
0.36
0.42
0.70
0.14
0.00
0.77
0.87
1.47
28.03
0.76
4.75
0.12
0.69
0.00
0.22
0.00
0.12
13.92
0.11
0.27
0.13
0.14
0.15
0.44
0.00
0.00
0.00
0.00
0.11
0.00
0.33
0.55
0.20
0.55
0.08
0.56
0.66
0.12
0.37
0.18
0.00
0.46
0.37
0.00
0.52
0.68
0.75
0.51
Tb
0.07
0.04
0.09
0.02
0.01
0.02
0.03
0.07
0.04
0.03
0.07
0.04
0.06
0.06
0.08
0.09
0.06
0.03
0.08
0.03
0.03
0.08
0.01
0.06
0.00
0.16
0.03
0.10
0.02
0.05
0.02
0.00
0.00
0.00
0.14
0.00
0.03
0.06
0.05
0.03
0.00
0.04
0.05
0.03
0.07
0.09
0.04
0.05
0.02
0.03
0.05
0.01
0.05
0.01
Dy
0.30
0.60
0.30
0.54
0.10
0.62
0.24
0.62
0.68
0.47
0.83
0.00
0.36
0.26
0.43
0.25
0.43
0.42
0.78
0.52
0.66
0.21
0.36
0.40
0.37
0.26
0.32
0.14
0.22
0.16
0.39
0.42
0.17
0.06
0.11
0.25
0.11
0.27
0.19
0.31
0.20
0.27
0.48
0.51
0.53
0.22
0.36
0.31
0.31
0.25
0.25
0.50
0.21
0.25
Ho
0.17
0.12
0.08
0.17
0.04
0.10
0.07
0.10
0.10
0.10
0.16
0.17
0.20
0.10
0.05
0.15
0.12
0.07
0.15
0.10
0.11
0.07
0.10
0.25
0.13
0.07
0.06
0.09
0.07
0.16
0.07
0.05
0.09
0.06
0.11
0.13
0.05
0.11
0.10
0.10
0.09
0.07
0.07
0.21
0.16
0.13
0.06
0.09
0.10
0.13
0.13
0.17
0.14
0.02
Er
0.79
0.39
0.46
0.82
0.52
0.34
0.33
0.53
0.50
0.67
0.58
0.74
0.27
0.51
0.77
0.68
0.33
0.46
0.25
0.25
1.14
0.52
0.72
0.66
0.12
0.57
0.35
0.15
0.40
0.12
0.32
0.69
0.31
0.83
0.29
0.63
0.35
0.17
0.69
0.59
0.61
0.15
0.59
0.62
0.26
0.20
0.98
0.64
0.34
0.90
0.69
0.73
1.03
0.43
Tm
0.09
0.11
0.01
0.08
0.04
0.20
0.07
0.02
0.11
0.10
0.10
0.20
0.10
0.11
0.06
0.25
0.09
0.10
0.19
0.01
0.07
0.06
0.07
0.08
0.09
0.02
0.09
0.10
0.22
0.08
0.09
0.02
0.04
0.08
0.04
0.08
0.05
0.03
0.12
0.12
0.06
0.11
0.06
0.11
0.08
0.02
0.11
0.15
0.10
0.20
0.03
0.13
0.05
0.07
Yb
0.86
0.95
0.96
0.29
0.45
0.67
1.02
1.48
0.65
0.98
1.19
1.18
0.79
0.81
0.69
0.44
0.52
0.95
0.80
0.58
1.18
0.30
0.86
0.95
0.84
0.37
0.83
0.40
0.93
0.53
0.42
0.10
0.33
0.55
0.38
0.00
0.23
0.61
0.42
1.35
0.17
0.79
0.62
0.98
0.77
1.15
1.09
1.22
0.77
0.36
1.72
1.27
2.17
0.49
Lu
0.11
0.13
0.19
0.04
0.06
0.08
0.13
0.17
0.14
0.27
0.06
0.10
0.10
0.14
0.19
0.13
0.20
0.08
0.23
0.11
0.12
0.06
0.19
0.12
0.06
0.17
0.05
0.09
0.19
0.13
0.10
0.11
0.08
0.12
0.13
0.12
0.06
0.21
0.10
0.16
0.13
0.13
0.16
0.14
0.14
0.14
0.11
0.17
0.08
0.22
0.29
0.15
0.34
0.09
bd
bd
0.01
0.06
0.01
bd
0.01
0.11
bd
0.04
bd
bd
0.02
bd
0.04
bd
0.02
0.04
0.03
0.02
0.01
0.01
0.01
0.03
bd
0.03
0.07
0.01
0.01
bd
0.01
0.01
bd
bd
bd
0.03
bd
bd
bd
0.03
bd
0.06
0.02
0.03
0.01
bd
0.01
0.06
0.05
bd
0.01
0.01
0.01
0.02
Th
U
ƩREE
2.72
11
1.89
9
1.87
10
1.71
9
1.18
8
1.08
11
1.94
7
2.23
12
1.42
10
2.04
11
2.15
13
2.40
9
2.31
10
3.10
11
3.12
39
2.96
14
1.83
14
2.06
8
1.93
11
1.54
9
1.29
11
1.37
6
1.56
7
1.87
21
1.17
6
0.90
6
0.83
6
0.91
5
1.21
8
0.97
7
1.26
8
1.08
29
0.55
8
0.80
5
1.09
17
1.45
8
0.90
5
1.46
7
1.45
13
2.31
8
0.80
5
2.23
6
2.18
10
8.08
8
1.39
8
1.26
12
2.34
9
3.25
9
2.00
8
2.36
7
4.73
9
3.21
15
2.87
13
1.21
7
Ce/Ce*
-0.24
-0.36
-0.32
-0.35
-0.14
-0.54
-0.59
-0.37
0.22
-0.48
0.47
-0.38
-0.23
-0.37
-0.15
-0.23
-0.56
-0.12
-0.24
-0.37
-0.20
-0.56
-0.43
-0.34
-0.28
-0.51
-0.76
-0.50
-0.49
-0.20
-0.24
8.06
1.08
-0.62
7.34
0.98
-0.47
-0.21
1.40
-0.43
-0.20
-0.17
0.23
-0.48
-0.46
1.59
-0.10
-0.27
0.14
-0.45
-0.44
0.55
-0.27
-0.41
Ce/Ce**
1.88
1.77
1.19
0.44
1.69
-18.51
-18.91
0.81
-9.79
1.80
1.50
0.59
3.55
1.81
1.15
1.03
0.85
7.32
1.09
-1.10
2.77
0.75
0.48
0.96
1.88
0.61
0.11
0.69
0.24
0.82
-0.86
45.63
5.43
14.05
12.98
4.28
0.58
3.18
5.74
1.09
-1.64
0.96
13.57
0.73
0.83
3.40
11.59
2.62
2.25
0.74
0.46
5.98
0.48
0.46
La/La*
Y/Ho
2.92
84.8
2.67 101.2
1.69 172.0
-0.46
72.4
1.95 208.1
-5.99 132.0
-9.84 135.5
0.48 125.1
-3.71 120.7
-257.02 143.5
0.02
62.5
-0.07
72.1
-48.37
53.3
4.41 123.8
0.79 225.7
0.60
67.6
1.92
88.6
-10.49 143.3
0.66
75.9
-2.39 107.1
34.20
92.3
1.06 154.1
-0.22
93.0
0.66
50.2
3.46
72.8
0.37 144.8
-0.78 107.0
0.54
88.3
-0.73
97.3
0.04
49.2
-1.76 111.2
18.87 177.0
2.59
81.1
-4.00 124.4
0.85
66.3
2.27
63.2
0.13 137.0
6.17
63.4
2.61
84.7
1.58
95.3
-2.37
89.7
0.22
99.8
-4.84 153.7
0.61
54.1
0.83
67.4
0.49
59.4
-5.73 163.8
8.55 167.9
1.95 106.3
0.65
75.1
-0.23 112.4
184.91
75.6
-0.47
82.9
-0.34 403.0
419
mm from
bone rim
4.49
4.53
4.56
4.60
4.63
4.66
4.70
4.73
4.77
4.80
4.84
4.87
4.91
4.94
4.98
4.98
5.01
5.04
5.08
5.11
5.15
5.18
5.22
5.25
5.29
5.32
5.36
5.39
5.42
5.46
5.49
5.53
5.56
5.60
5.63
5.67
5.70
5.74
5.77
5.80
5.84
5.87
5.91
5.94
5.98
6.01
6.05
6.08
6.12
6.15
6.18
6.22
6.25
6.29
Sc
4.10
2.72
4.82
5.01
3.74
2.88
5.00
5.52
4.16
3.34
3.73
4.94
3.02
3.51
3.32
4.06
4.30
5.17
4.28
5.53
5.38
6.67
8.50
4.65
5.53
6.89
5.23
4.86
5.80
3.74
3.97
3.20
3.62
3.46
5.17
5.86
4.13
2.82
2.77
2.31
2.83
1.76
2.36
1.93
2.19
3.70
3.02
2.63
3.36
4.29
5.18
4.60
4.03
4.74
Mn
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.16
0.13
0.20
0.18
0.18
0.18
bd
0.18
0.15
bd
bd
0.16
0.17
0.17
0.15
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
Fe
1.27
1.43
0.95
1.18
0.00
1.11
0.89
1.20
0.92
1.24
1.12
1.33
0.00
1.26
0.88
0.99
0.67
0.97
0.96
1.05
1.12
0.92
0.90
0.90
0.94
-0.01
0.93
0.87
0.93
0.89
1.01
1.16
1.12
1.06
1.39
1.23
1.42
1.14
0.94
0.89
0.95
1.15
1.06
0.95
1.13
0.00
1.18
0.92
0.79
1.27
1.55
0.00
1.11
1.00
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
3342.14
nd
nd
nd
2922.58
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
Sr
SRHS-DU-192 Metatarsal (Transect 1) (continued)
Y
9.15
9.13
6.69
8.06
8.61
7.12
12.10
10.58
5.70
7.71
6.57
6.51
4.54
6.03
4.42
11.97
9.48
11.59
12.12
10.09
13.93
14.90
13.67
13.30
13.63
10.16
9.78
9.39
12.09
6.69
10.20
10.40
11.50
7.98
10.52
7.94
7.90
7.35
8.02
4.64
6.28
9.37
5.71
3.90
5.55
9.18
9.60
4.83
7.96
11.13
13.55
12.95
13.31
10.62
Ba
1965.16
nd
1346.16
2009.41
1503.10
1121.49
1830.89
nd
1409.37
nd
1234.54
1588.45
1576.41
1845.18
962.77
1000.60
1021.43
1111.24
2094.64
1277.37
1280.77
1234.68
1301.36
1315.14
1950.28
1278.06
1685.36
1133.84
1387.85
1179.61
1515.42
1687.79
1658.40
1592.61
nd
1830.46
nd
1468.89
1055.17
1436.55
1468.58
1587.65
1040.19
1284.85
1344.72
nd
1480.72
1301.02
1661.17
1544.05
1952.69
1434.89
1381.92
1482.94
La
2.63
1.57
1.20
2.40
1.57
1.81
1.91
2.37
1.75
1.35
1.36
2.59
0.93
1.39
0.96
2.27
0.77
1.07
1.51
1.76
1.96
2.55
2.14
1.98
1.76
1.60
1.97
1.40
1.57
0.41
0.74
1.96
1.23
1.13
2.07
1.43
0.70
1.56
0.44
2.37
1.23
1.31
0.65
0.63
1.40
1.39
2.33
0.99
0.90
1.61
2.66
2.10
3.45
23.22
Ce
2.79
2.69
1.17
11.65
2.35
1.57
1.89
3.14
1.18
1.21
1.61
2.01
0.81
1.42
5.43
1.48
1.06
1.16
1.26
1.15
1.10
2.06
1.91
1.26
1.31
0.92
0.92
0.83
0.74
0.54
0.85
2.23
0.99
1.74
4.02
1.12
0.94
0.78
0.88
1.86
1.75
3.16
2.33
1.55
1.90
2.87
2.92
1.93
1.96
1.38
2.43
4.09
6.94
7.54
Pr
0.13
0.30
0.30
0.24
0.17
0.17
0.10
0.33
0.22
0.74
0.06
0.24
0.10
0.09
0.39
0.15
0.08
0.19
0.16
0.09
0.17
0.07
0.10
0.05
0.21
0.12
0.16
0.03
0.08
0.08
0.16
0.27
0.16
0.27
0.15
0.17
0.11
0.02
0.06
0.09
0.16
0.03
0.05
0.10
0.29
0.11
0.10
0.09
0.12
0.16
0.17
0.54
0.96
0.79
Nd
0.43
0.89
1.53
1.43
0.95
bd
0.48
0.83
0.35
0.62
bd
0.18
0.81
0.32
0.16
0.49
0.21
0.19
0.90
bd
0.96
0.59
0.25
0.86
bd
0.89
0.20
0.38
0.20
0.61
0.26
0.44
0.38
0.47
0.42
0.48
0.52
0.23
0.47
0.20
0.58
1.07
0.65
0.41
0.29
0.65
0.21
0.41
0.18
0.27
1.11
2.11
1.61
3.49
Sm
0.00
0.21
0.00
0.17
0.10
0.00
0.00
0.11
0.00
0.00
0.11
0.00
0.00
0.00
0.00
0.21
0.58
0.27
0.00
0.66
0.00
0.00
0.00
0.00
0.00
0.00
0.55
0.00
0.00
0.00
0.33
0.00
0.00
0.00
0.26
0.12
0.65
0.00
0.00
0.00
0.14
0.19
0.00
0.00
0.00
0.11
0.27
0.00
0.00
0.23
0.68
0.28
1.72
0.38
Eu
0.12
0.00
0.00
0.00
0.00
0.08
0.07
0.10
0.16
0.07
0.07
0.06
0.00
0.00
0.12
0.12
0.16
bd
bd
bd
0.06
0.29
0.09
bd
bd
bd
bd
bd
bd
0.00
0.09
0.04
0.00
0.04
0.07
0.00
0.38
0.09
0.03
0.00
0.17
0.11
0.03
0.00
0.03
0.06
0.16
0.11
0.03
0.00
0.00
0.21
1.58
0.15
Gd
0.10
0.43
0.00
0.34
0.86
0.09
0.11
0.44
0.21
0.12
0.34
0.21
0.28
0.13
0.39
0.00
0.00
0.27
1.51
0.33
0.23
0.24
0.34
0.36
0.30
0.55
0.27
0.00
0.00
0.00
0.16
0.14
0.16
0.29
0.00
0.00
0.16
0.15
0.23
0.13
0.29
0.19
0.11
0.20
0.73
0.11
0.00
2.01
0.35
0.11
1.36
0.28
0.24
0.64
Tb
0.04
0.01
0.05
0.10
0.02
0.01
0.03
0.03
0.04
0.04
0.03
0.10
0.07
0.03
0.00
0.05
0.03
0.00
0.04
0.08
0.03
0.06
0.04
0.00
0.00
0.00
0.03
0.09
0.00
0.00
0.04
0.05
0.08
0.09
0.06
0.00
0.04
0.04
0.03
0.02
0.03
0.02
0.00
0.01
0.00
0.04
0.05
0.01
0.11
0.04
0.06
0.05
0.10
0.12
Dy
0.76
0.83
0.45
0.50
0.56
1.21
0.39
0.21
0.21
0.18
0.28
0.31
0.27
0.31
0.00
0.60
0.14
0.65
0.92
0.16
1.37
0.12
0.51
0.52
0.44
0.13
0.13
0.24
0.13
0.28
0.40
0.13
0.16
0.50
0.70
0.52
0.31
0.29
0.39
0.19
0.14
0.46
0.28
0.10
0.47
0.72
0.40
0.43
0.46
0.73
0.83
0.21
0.89
0.74
Ho
0.03
0.12
0.15
0.15
0.16
0.09
0.29
0.11
0.06
0.02
0.10
0.03
0.10
0.20
bd
0.02
0.18
0.13
0.18
0.12
0.34
0.21
0.13
0.31
0.26
0.20
0.03
0.03
0.10
bd
0.16
0.07
0.16
0.16
0.16
0.11
0.06
bd
0.03
0.11
0.05
0.18
0.06
0.04
0.07
0.17
0.18
0.21
0.10
0.20
0.37
0.16
0.13
0.26
Er
0.06
0.74
0.33
0.46
0.66
0.39
0.73
0.29
0.17
0.33
0.43
0.92
0.30
0.14
0.21
0.55
0.15
0.43
0.61
0.70
1.64
1.06
0.56
1.15
0.64
0.59
1.62
0.66
0.59
0.51
0.88
0.74
0.69
0.55
0.35
0.50
0.26
0.16
0.31
0.27
0.31
0.50
0.43
0.27
0.19
0.37
0.87
0.40
0.31
0.43
1.54
0.76
0.33
0.75
Tm
0.13
0.05
0.07
0.08
0.06
0.06
0.12
0.06
0.15
0.03
0.04
0.10
0.08
0.06
0.00
0.09
0.00
0.03
0.08
0.04
0.11
0.03
0.24
0.04
0.10
0.09
0.19
0.06
0.06
0.06
0.06
0.06
0.05
0.14
0.07
0.09
0.13
0.05
0.05
0.09
0.03
0.04
0.03
0.02
0.07
0.04
0.03
0.01
0.04
0.09
0.14
0.11
0.07
0.15
Yb
0.51
0.82
0.32
0.84
0.67
0.19
0.96
0.54
0.44
0.61
0.64
1.21
0.58
0.09
0.00
0.42
1.81
0.36
2.10
0.68
1.80
1.20
1.20
1.99
1.25
0.37
bd
0.33
1.34
0.92
0.45
0.38
0.44
0.10
1.00
0.98
0.78
0.52
0.40
0.17
bd
0.65
0.15
0.55
0.76
1.03
1.13
0.43
1.31
0.72
0.94
0.98
1.02
1.24
Lu
0.22
0.24
0.28
0.09
0.07
0.24
0.19
0.09
0.11
0.02
0.11
0.06
0.04
0.10
0.08
0.08
0.23
0.24
0.20
0.22
0.40
0.19
0.09
0.28
0.16
0.11
0.29
0.10
0.29
0.30
0.11
0.16
0.06
0.15
0.09
0.06
0.19
0.08
0.05
0.03
0.04
0.07
0.04
0.08
0.10
0.12
0.07
0.10
0.20
0.09
0.24
0.26
0.21
0.12
Th
0.02
0.02
bd
0.02
bd
bd
0.01
bd
bd
bd
0.01
bd
0.10
bd
bd
bd
bd
bd
bd
0.07
0.02
bd
bd
bd
bd
bd
bd
0.02
bd
bd
0.07
bd
bd
0.03
bd
bd
0.02
bd
0.01
0.12
bd
0.08
0.05
0.05
bd
0.02
bd
0.01
0.04
0.02
0.12
0.10
0.05
0.13
U
ƩREE
1.21
8
0.86
9
1.31
6
2.16
18
1.17
8
1.11
6
2.43
7
2.02
9
0.67
5
0.74
5
0.44
5
1.13
8
0.72
4
0.79
4
0.37
8
0.31
7
0.46
5
0.22
5
0.61
9
0.64
6
1.47
10
1.18
9
1.78
8
1.10
9
1.13
6
0.82
6
1.17
6
0.33
4
0.45
5
1.04
4
0.86
5
2.07
7
1.87
5
1.44
6
1.51
9
1.63
6
1.60
5
1.23
4
0.97
3
0.70
6
0.53
5
1.01
8
1.13
5
0.53
4
1.69
6
4.49
8
3.19
9
0.86
7
0.78
6
0.67
6
1.51
13
0.98
12
0.60
19
0.97
40
Ce/Ce*
-0.18
-0.09
-0.54
2.24
-0.03
-0.41
-0.23
-0.20
-0.58
-0.74
-0.07
-0.47
-0.42
-0.24
1.03
-0.52
-0.09
-0.40
-0.45
-0.49
-0.61
-0.32
-0.29
-0.46
-0.53
-0.59
-0.67
-0.50
-0.63
-0.31
-0.43
-0.31
-0.50
-0.26
0.41
-0.50
-0.23
-0.56
0.18
-0.36
-0.12
1.08
1.59
0.42
-0.30
0.46
0.01
0.35
0.35
-0.43
-0.32
-0.10
-0.11
-0.73
Ce/Ce**
2.38
0.92
0.85
19.42
3.74
1.41
4.01
0.90
0.40
0.11
13.89
0.55
-2.54
1.92
0.88
1.17
1.22
0.43
2.51
-1.66
2.30
-7.88
1.82
-1.02
0.89
-4.72
0.43
-2.37
0.88
-4.01
0.40
0.63
0.57
0.51
2.74
0.68
1.43
-3.67
-21.62
1.78
1.33
-1.46
-2.99
2.29
0.45
9.22
2.64
3.77
1.29
0.67
20.62
1.03
0.56
1.56
La/La*
Y/Ho
3.60 363.2
0.02
77.9
12.13
45.0
-7.13
55.3
-16.40
53.0
3.90
79.4
31.71
41.4
0.20
98.8
-0.05
88.3
-0.82 511.2
-10.25
67.3
0.05 249.7
-2.36
44.6
3.15
30.1
-0.77 255.0
2.77 479.9
0.56
53.8
-0.40
89.1
-10.43
65.8
-2.73
84.0
-10.45
40.5
-5.94
70.8
2.62 107.9
-2.46
43.4
2.31
53.1
-3.51
50.7
0.42 294.5
-4.04 314.0
2.33 119.5
-1.93
91.6
-0.45
63.7
-0.11 154.9
0.23
73.6
-0.47
49.5
1.64
66.0
0.63
69.2
3.26 135.0
-6.54 211.2
-2.50 287.3
2.85
42.6
1.07 119.5
-1.62
51.3
-1.71 102.6
1.59 107.2
-0.50
75.1
-10.10
55.2
2.57
52.8
6.71
22.5
-0.06
79.7
0.25
56.7
-5.84
36.5
0.33
83.5
-0.55
99.9
15.51
40.3
420
mm from
bone rim
6.32
6.36
6.39
6.43
6.46
6.50
6.53
6.56
6.60
6.63
6.67
6.70
6.74
6.77
6.81
6.84
6.88
6.91
6.94
6.98
7.01
7.05
7.08
7.12
7.15
7.19
7.22
7.26
7.29
7.32
7.36
7.39
7.43
7.46
7.50
7.53
7.57
7.60
7.64
7.67
7.70
7.74
7.77
7.81
7.84
7.88
7.91
7.95
7.98
8.02
8.05
8.08
8.12
8.15
Sc
5.93
4.77
2.99
4.38
3.02
3.16
4.12
3.12
2.80
3.21
4.15
3.66
3.68
2.64
2.90
3.71
3.92
2.88
4.36
3.73
4.19
3.96
3.86
3.22
2.49
4.10
3.01
1.92
3.59
3.10
3.46
4.79
3.88
4.54
2.68
5.69
2.58
3.53
3.09
8.27
6.18
6.04
3.20
3.26
4.15
4.11
4.28
3.76
4.66
5.60
5.10
3.98
6.56
6.82
Mn
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
0.20
bd
bd
bd
bd
bd
bd
bd
bd
0.16
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
bd
Fe
1.03
1.34
1.02
1.04
1.03
1.03
1.33
1.52
0.93
0.95
1.33
1.05
1.10
1.00
0.75
1.17
1.10
1.25
0.98
1.11
1.28
1.13
0.90
1.46
1.03
1.02
0.90
1.03
1.02
0.77
0.78
0.84
0.90
1.16
1.09
1.36
0.98
1.07
1.02
2.44
2.97
4.36
1.38
0.92
1.10
1.42
1.26
1.36
1.25
1.05
1.24
1.09
1.09
1.80
Sr
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
SRHS-DU-192 Metatarsal (Transect 1) (continued)
Y
11.62
10.89
6.26
9.33
8.30
6.39
11.11
8.73
7.25
9.11
8.04
9.03
8.46
9.20
7.18
8.45
8.31
8.72
6.88
9.94
9.69
5.04
7.81
9.35
7.93
9.60
6.13
6.44
6.32
8.09
5.45
14.57
9.39
9.66
13.92
11.32
10.29
5.61
7.70
27.31
24.80
25.98
10.28
6.87
9.43
10.39
11.75
11.96
11.21
18.04
16.11
12.09
17.05
17.76
Ba
1559.31
1800.38
1231.85
nd
1068.93
1127.18
2133.97
1678.89
1482.14
1351.92
1644.19
1590.96
1628.83
1573.94
1527.47
1342.96
1372.75
1358.91
1359.88
1366.73
1501.60
1530.43
1653.56
1526.43
1404.63
1435.59
1285.32
1172.92
1384.70
1479.12
1389.65
1683.62
1505.76
1667.92
2071.24
1573.50
1361.39
1185.97
886.46
1387.78
1373.53
nd
1574.88
1354.29
1345.35
1669.88
nd
1816.24
1236.78
1959.98
2084.16
1959.66
1839.56
1530.91
La
3.02
2.81
1.40
2.72
1.51
2.02
3.00
1.56
1.88
2.00
0.95
1.20
1.30
2.03
1.33
1.76
1.72
1.44
1.33
1.88
1.50
0.81
1.18
1.61
1.06
1.18
1.08
2.03
1.57
1.46
0.87
3.39
6.17
1.26
2.37
3.43
1.74
1.07
2.92
5.09
5.93
6.36
2.30
1.27
1.87
2.17
1.91
2.70
2.50
3.28
2.40
2.48
3.77
3.66
Ce
6.08
4.16
3.35
14.54
3.35
2.21
2.92
2.00
2.15
2.54
2.41
1.92
2.81
2.89
1.84
1.61
1.55
1.86
2.26
2.14
1.38
1.81
1.29
2.26
1.34
3.05
1.73
1.99
1.13
1.90
5.24
4.31
3.39
1.46
1.96
3.31
1.74
1.47
1.79
5.69
9.43
5.01
2.79
1.38
2.68
4.31
2.84
2.94
4.27
3.15
3.51
4.45
4.01
6.37
Pr
0.37
0.21
0.12
0.32
0.30
0.27
0.34
0.29
0.28
0.74
0.12
0.18
0.21
0.09
0.18
0.16
0.30
0.20
0.24
0.11
0.05
0.16
0.12
0.38
0.06
0.28
0.34
0.21
0.09
0.19
0.22
0.35
0.29
0.19
0.18
0.38
0.20
0.15
0.28
0.90
0.86
1.10
0.29
0.09
0.32
0.24
0.38
0.23
0.21
0.30
0.14
0.25
0.55
1.69
Nd
1.34
3.77
0.45
0.45
0.38
0.30
1.47
1.48
0.67
0.28
0.29
0.82
1.21
0.12
0.83
0.6

Similar documents