Basic Principles of IRT And Application to Practical
Transcription
Basic Principles of IRT And Application to Practical
Basic Principles of IRT And Application to Practical Testing & Assessment By Dr. V. Natarajan 1 About The Author Dr. V. Natarajan Professor Emeritus at MeritTrac Services. An engineer and D.Litt. in Educational Evaluation and Administration, guides the Test Development and Research teams in MeritTrac. The author of 72 books, including an e-book available free download at www.merittracblog.blogspots.com on Basic Principles of IRT and Applications to Practical Testing and over 60 original papers published in Indian and International Journals of repute, is a pioneer in the area of education assessments in India. Also a visiting faculty at ETS, Princeton, USA, and has been a member of the Association of Indian Universities for over three decades. He also is a member of Board of Governors of IACAT from the last 5 years and member of the Governing body of Chitkara University. He is a holder of 4 patents (IPRs) in Engineering Design and in statistics for assessment. You can write to the Dr. V. Natarajan at drvnatarajan@gmail.com Copyright © Dr. V. Natarajan 2009 All Rights Reserved. This book is self-published by the author, has been released only in an electronic format and is accessible to MeritTracers, participants of 2008 IAEA conference and participants in the three annual IACAT conferences held at Amsterdam, Asilomar (US), and the third one at Sydney (Australia) conference been held in the near future. The author has allowed readers to freely distribute the book provided no modifications are made to the book in the distribution and the authors are acknowledged in all distributions. Please write to drvnatarajan@gmail.com for more information regarding distribution of this book. The author is grateful to Mr. Mohan Kannegal, co-founder MeritTrac Services and presently Chief Technology Officer, Manipal Education Malaysia Sdn Bhd for rendering this word document into Amazon website for and on behalf of MeritTrac Services. 2 Acknowledgement It gives me immense pleasure to make my humble acknowledgements to all those who have been instrumental in my getting knowledge and skills in the matter of IRT and greatly indebted to my teacher Prof. Fred Lord, father of IRT, of ETS, who taught me the basics and nuances of IRT and its applications to practical testing through a course “Applications of IRT to Practical Testing” at ETS. To Dr. D.H.Lawley the whole praise be given to have initiated the concept of item characteristic curve as early as 1943. He triggered the great minds of researchers like Rasch, Birnbaum and Fred Lord for their single, two and three parameter models. I have used most of what I learnt and was inspired by the work of Benjamin Wright of Chicago, Frank Baker, Professor Emeritus who pioneered the first e-book made available free of cost and his BIRT software. I had used this software in our R&D work and included it in the appendix because no one should miss an access to it and learn from it. I acknowledge profusely Lawrence Rudner, Vice President of GMAC and a Consortium partner of MeritTrac for making available a tutorial for computer adaptive testing that is very unique and brings forth adaptive testing in its full perspective. My friends in NFER in U.K., Dr. Skurnik and Dr. Nuttall from whose book I learnt all about Rasch Model. I am deeply indebted to all of these and my own students who influenced me and this e-book could not have been made possible to all interested. Finally, I would like to gratefully acknowledge the part played by both my Senior Research Associates; Ms. Neha Jain for a lion’s share and Ms. Ruchika Girdhar for helping to organize this revised version. I may conclude that they are deemed as coauthors. Dr. V. Natarajan Prof. Emeritus MeritTrac Services (P) Ltd. 3 CONTENTS Introduction to Modern Testing ......................... Classical Test Theory to Item Response Theory ............... Contributions in the Area of IRT ........................................... IRT over CTT ........................................................................... Basic Concepts of IRT ............................................................ Plotting Ability versus Probability .......................................... Examples .................................................................................. Exercises .................................................................................. Item Characteristic Curve Models .................... Rasch’s Single Parameter Model ......................................... Example For Rasch Model .................................................... Birnbaum’s Two Parameter Model ....................................... Example For Birnbaum’s Model ............................................ Fred Lord’s Three Parameter Model .................................... Examples .................................................................................. Interpretation of Item Parameters ......................................... Item Information Function ................................. Item Information Function of Single Parameter Model ...... Item Information Function of Two Parameter Model ......... Item Information Function of Three Parameter Model ...... Examples .................................................................................. Test Characteristic Curve (Test Response Function) ....... Examples .................................................................................. Test Information Function ...................................................... Interpreting the Test Information Function .......................... Test Information Function of Single Parameter Model ...... Test Information Function of Two Parameter Model ......... Test Information Function of Three Parameter Model ...... Estimating Parameters ..................................... Procedure for Estimating Parameters .................................. Examples .................................................................................. Group Invariance of Item Parameters .................................. Note ........................................................................................... Examples .................................................................................. Estimating a Test Taker’s Ability........................................... Ability Estimation Parameters ............................................... Item Invariance of a Test Taker’s Ability Estimate ............. Test Calibration ................................................ Test Calibration Process ......................................................... The Metric Problem ................................................................. Summary of the Test Calibration Process ............................ 4 The Likelihood Function .......................................................... The Maximum Likelihood Estimate of Ability....................... IRT Test & Item Analysis Using Software ........... Examples ................................................................................... Application Of IRT To Item Banking ................... Application of IRT to Adaptive or Tailored Testing..... Examples .................................................................................. Future of Item Response Theory in India ............ APPENDIX........................................................ 5 6 Introduction to Modern Testing Classical Test Theory to Item Response Theory Classical Test Theory, popularly known as CTT, started off as majority of practices developed during the 1920’s. This theory has component theories like Theory of Validity, Theory of Reliability, Theory of Objectivity, Theory of Test Analysis, Theory of Item Analysis etc. Most of the practices were initially confined to psychological tests and later on extended to educational testing. However, a new test theory had been developing over the past fifty years that was conceptually more powerful than CTT. It is based upon items rather than test scores. This new approach was known as Item Response Theory (IRT). While the basic concepts of IRT were, and are, straightforward, the underlying mathematics was somewhat advanced compared to that of CTT. It was difficult to examine some of these concepts without performing a large number of calculations to obtain usable information using computer technology; the advancement in one influenced the other considerably. CTT is best suited for traditional testing situations, either in group or individual settings, in which all the members of a target population are administered the same or parallel sets of test items, for instance, test takers seeking admission in a college or recruitment to a job. These item sets can be presented to the test taker in either a paper-and-pencil or a computer format. Regardless of the format, it is important for the measurement of individual ability that the items in each item set have “difficulties” that match the range of ability or proficiency in the population. In addition, precise estimation of individual ability requires the administration of a “large enough” number of items whose difficulty levels narrowly match the individual’s level of ability or proficiency. For heterogeneous populations, these requirements of the “finite length” test result in inefficient and wasteful testing situations that are certainly frustrating to the test taker and not very valid and reliable from test administrator’s and analyst’s point of view. Models for mental tests began to appear, as early as 1950’s. These addressed the problems with CTT and exploited the emergence of computing technology. In fact, a powerful feature of these newer testing models was the ability to choose test items appropriate to the test taker’s level of proficiency during the testing session, i.e. to tailor the test to the individual in real time. Today, the more popular and well developed of these models make up the family of mathematical characterizations of a test taker’s test responses known as IRT. Although difficult to implement in practice, IRT is the formulation of choice for modern testing. Despite its popularity, CTT has a number of shortcomings that limit its usefulness as a foundation for modern testing. The emerging role of computing technology in mental testing highlights some of these limitations of CTT. 7 Contributions in the Area of IRT Over the past century, many persons have contributed to the development of IRT. Three persons deserve special mention and recognition. D.N. Lawley of the University of Edinburgh published a paper in 1943 showing that many of the constructs of CTT could be expressed in terms of parameters of the item characteristic curve that he talked about. This paper marks the beginning of IRT as a measurement theory. The work of Dr. F.M. Lord of the Educational Testing Service has been the driving force behind both the development of the theory and its application for the past 50 years. Dr. Lord systematically defined, expanded and explored the theory as well as developed computer programs needed to put the theory into practice. In the late 1960s, Dr. Benjamin D. Wright of the University of Chicago recognized the importance of the measurement work by the Danish mathematician Georg Rasch. Since that time, he has played a key role in bringing item response theory, the Rasch model in particular, to the attention of practitioners. Without the work of these three individuals, the level of development of IRT would not be where it is today. Frank Baker came out with an e-book on IRT in 1985. IRT was an upstart whose popular acceptance lagged partly because the underlying statistical calculations were quite complex. Baker’s contribution was to write a well written introductory text on IRT with software for the then state-of-the art Apple II and IBM personal computers. This program freed the readers from the tedious statistical calculations. At about the same time, Dr. Natarajan (India, 1984) came up with a text on Sample free item analysis and addressed all three models of Rasch, Birnbaum & Fred Lord. Fred Lord taught Dr. Natarajan through an international course, on Applications of Item Response Theory to Practical Testing held in Princeton, ETS for a period of 10 days wherein Dr. Natarajan came in to appreciate all the nuances of his three parameter logistic model. More or less at the same time, Dr. Natarajan probed relentlessly the three models and submitted a thesis on “Applications of Item Response Theory to finer discrimination in Achievement Testing” and was awarded a D.Litt by Pune University in India. Much has changed since 1985. IRT now powers the work of major U.S. test publishers and is used as the basis for developing the National Assessment of Educational Progress, as well as numerous state and local tests. In the UK the National Foundation for Educational Research brought out a publication entitled “The Objective Interpretation Of Test Performance” and it dealt with Rasch model and its applications. Ever since it has gained acceptance in the UK, many testing organizations in the UK are adopting IRT and particularly the Rasch model for item calibration and item analysis. Given its widespread acceptance, test administrators and developers need just a basic understanding of the IRT model. Now more than 525 organizations including business, education and training are widely using IRT models for their work. In India there are several leaders making use of IRT analysis for their merit lists in admission tests (MIBE, AIIMS, CMC, REC to name only a few). 8 IRT over CTT The IRT is gaining in acceptance in psychological and educational testing because it provides more adaptable and effective methods of test construction, analysis and scoring than those derived from CTT. The source of its greater power is in the relationships it establishes between properties of the items and the operating characteristics of the test made up of the items. These relationships can be valid for actual tests of any length whereas any comparable results in Classical Theory hold only for hypothetical test consisting of indefinitely many items. The provision in IRT for treating the items or small sets of similar items, as the exchangeable units of test construction and scoring has lead to numerous innovations in testing practice especially item banking and adaptive testing (tailored testing). The former can appreciably reduce the time and cost of producing a high quality operational test. The latter, either in the form of computerized adaptive testing or two stage testing using paper and pencil instruments enables testing time to be reduced to a half or a third of that required for a conventional test of the same precision. Equally important for long term testing and assessment programs is the ability to retire and replace items in an operational test without altering the interpretation of the test scale. Because IRT scale scores are functions of estimated item parameters, the scoring absorbs possible differences in the characteristics (difficulty, discriminating power etc.) between the retired items and the replacements. In this way, the need to find new items with the same difficulty and discriminating power as the old items or for an equating study of the revised test separate from its operational use, as required in Classical Theory, is eliminated. Another property unique to IRT is the location of items and the test takers on the same scale. The response models on which IRT models are based, enable the analyst to state the probability that a test taker at a particular score level will answer a given item correctly. This permits the “content referencing” of the scale scores. Typical items that test takers can answer correctly with an assigned probability (for instance, 50% or 80%) illustrate the meaning of various points on the scale in terms of task content. Under CTT, the test taker’s raw test score would be the sum of the scores received on the items in the test. Under IRT, the primary interest is in whether a test taker got each individual item correct or not, rather than in the raw test scores. This is because the basic concepts of IRT rest upon the individual items of a test rather than upon some aggregate of the item responses such as a test score. Thus, it is clear that in CTT the whole test and the whole group of test takers are considered together and all statistical quantities worked out. But in IRT, the concern is the individual item and the individual test taker. An attempt is made to relate the individual item characteristic to the individual’s ability which of course has a different and a definite definition. 9 Basic Concepts Ability In academic areas, one can use descriptive terms such as reading ability and arithmetic ability. Each of these is what psychometricians refer to as an unobservable, or latent, trait. Although such a variable is easily described, and knowledgeable test takers can list its attributes, it cannot be measured directly as can height or weight, for example, since the variable is a concept rather than a physical dimension. A primary goal of educational and psychological measurement is the determination of how much of such a latent trait a test taker possesses at a given point of time. Since most of the research has dealt with variables such as scholastic, reading, mathematical, and arithmetic abilities, the generic term “ability” is used within IRT to refer to such latent traits. To measure how much of this latent trait a test taker has, it is necessary to have a scale of measurement. IRT is also known as probabilistic theory since it deals with probability of possible response to a test item. It derives the probability of each of these responses as a function of ability and item parameters. Traditionally, the number right score on a multiple choice test seems to indicate ability. But in IRT, the probability of the correct response to an item is summed for all items answered correctly in a test indicating, the ability of the person taking the test. Immaterial of the fact that the test taker answered correctly or wrongly To measure an ability of a test taker, a test can be developed under IRT consisting of a number of multiple choice items. Each of these items measures some facet of the particular ability of interest. The test marker scoring the test must then decide whether the response he is giving to the item is correct or not. When the item response is determined to be correct, the test taker receives a score of one; an incorrect answer receives a score of zero i.e., the item is dichotomously scored. Items scored dichotomously are often referred to as binary items. Difficulty A test based on IRT consists of items that are calibrated for its parameters. Therefore, different items in a test will have different parameters. The most common parameter for an item is its difficulty (item difficulty). The probability of getting a correct response by a test taker with extremely low ability (-∞, -4 or -3) is 0 or almost 0, the probability of getting a correct response by a test taker with extremely high ability (+∞, +4 or +3) will be almost 1, tending towards 1 but not equal to 1. The ability corresponding to a probability of 0.5 is defined as the item difficulty of the item. Thus, the item difficulty of an item and the ability of the test taker are on the same scale. This is the unique characteristic of IRT models that provide a true relationship between test items and true scores of test takers. For Rasch model, 10 it is invariably taken as the middle point of the item characteristic curve where the curve shows a tendency of contra flexure that is bending in the opposite directions (there is a common tangent that can be drawn at this point, which is the point of inflexion). True Score In the Classical Test Theory (CTT), the number right score, is taken to represent the level, whereas the true score (if any, such exists) is the mean of great number of several such scores of the test taker over the same or equivalent tests. One can easily realize that such a true score, which is the mean of all such scores, is impractical or impossible to obtain. The next best thing in CTT is to estimate a Standard Error of Measurement (SEM) and specify the limits of any number right score. For example, if a test taker’s number right score is 72 and SEM of the test is 7, the test taker’s score can range between 65 (72-7) to 79 (72+7) for 2/3rd probability. This vitiates all arithmetical value judgments made and used of number right scores. IRT enables the estimation of True Score (TS) from a test taker’s ability, with a low percent of error (usually of the order of 0 .1 percent] The probability of getting a correct answer by a test taker is indicative of the maximum mean of the test takers scores if he takes the item a great number of times let it be .75 [ let his scores be successively 1,1,0,1,0,0,1,1,1,1,1,1,1; the average works out to .75] The true score for an estimated ability of a test taker (θ) is the sum total of probability of a correct response of all the items (with different item difficulty values), that is, TS (θ ) = ∑ of individual probability of correct answers (D.H Lawley) This presupposes that test taker abilities of various test takers, taking a test of items of various item difficulties are estimated in a given situation and that for an estimated given value of test taker ability, the true score can be estimated. True scores for test takers once determined are invariants and they are “item-free”. Similarly, item parameters like item difficulty, item discrimination and guessing are all invariants for a given item and are “test taker free”. The graph shown below depicts the ICC of a single item: 11 If an item with an invariant item difficulty is administered to group2 of very high ability, responses will be all correct responses. The probability of such responses of the order of 0.5 and above nearing 1, the part of item characteristic curve that will be plotted belongs to the higher end of the curve as shown below: 12 On the other hand, if the same item is administered to group1 of low ability, the probability of correct responses will be much lower than 0.5 (that is, most of the test takers might get the item wrong) and the lower end of the item characteristic curve as shown below: 13 Plotting Ability versus Probability This ability score is denoted by the Greek letter theta, θ. At each ability level, there is a certain probability that a test taker with that ability will give a correct answer to the item. This probability is denoted by P (θ). A response to a binary test item “i” is indicated by the item score Xi which can take the following forms: X i = 1: If the test taker answers it correctly X i = 0: If the test taker answers it incorrectly By convention, the ability of the test taker is indicated by θ (theta) and probability of a correct response to the item “i” is represented by: P( X i = 1/ θ ) = Pi (θ ) And the probability of an incorrect answer is given by P( X i = 0 / θ ) =1− Pi (θ ) For instance, an item says “What is the area of a circle with radius 3cm?” The options are 9cm2, 18.85cm2 and 28.28cm2. The first option is very naïve, second is wrong but implies 14 advanced knowledge and third is the correct one. Let’s assume that this item has been calibrated and its psychometric properties look as shown in the graph for partial credit model. In this example, there is one correct answer and two wrong answers. The probabilities of the correct and the wrong answers are indicated in Figure 1-1 of the partial credit model: Figure 1-1: The Partial Credit Model The black curve is for the 1st response, blue one for the 2nd response and red one for the 3rd response. The person’s ability, denoted byθ, is plotted along the horizontal axis. The probability for each response, denoted by P (θ), is plotted along the vertical axis. The sum of 3 probabilities at each value of θ is 1. For the 1st response, which is totally irrelevant, the probability is very high at low ability and drops down as the ability increases and the person becomes more knowledgeable. The probability of 2nd response rises with ability to a certain point and then drops down. The probability of the 3rd and correct response is small at low ability levels but rises as ability increases. But, at any ability level the person still have a nonzero probability of selecting any response. This can be simplified by lumping together the 2 wrong options so that we have a wrong and a correct response (dichotomous item) as shown in Figure 1-2: 15 Figure 1-2 The black curve is for the wrong option and the red one for the correct option. As ability increases the probability of a correct option increases but the probability of the wrong option decreases. At any value of θ the sum of the 2 probabilities is 1. Therefore, the probability of the wrong option is 1- P (θ). Item Characteristic Curves (ICC) In the case of a typical test item, at any value of the ability, the probability of the correct option that is P (θ) will be small for test takers of low ability and large for test takers of high ability. If one plotted P (θ) as a function of ability, the result would be a smooth S-shaped curve such as shown in Figure 1-3: 16 Figure 1-3 : A typical item characteristic curve The probability of correct response is near zero at the lowest levels of ability. It increases until at the highest levels of ability, the probability of correct response approaches 1. This S-shaped curve describes the relationship between the probability of correct response to an item and the ability scale. In IRT, it is known as the item characteristic curve (ICC). This is also called Item Response Function (IRF). Each item in a test will have its own ICC since every item in a test has a different difficulty value. The ICC is the basic building block of item response theory; all the other constructs of the theory depend upon this curve. There are two technical properties of an ICC that are used to describe it. The first is the difficulty of the item. Under IRT, the difficulty of an item describes where the item functions along the ability scale. For example, an easy item functions among the low-ability test takers and a hard item functions among the high-ability test takers; thus, difficulty is a location index. The second technical property is discrimination, which describes how well an item can differentiate between examinees having abilities below the item location and those having abilities above the item location. This property essentially reflects the steepness of the ICC in its middle section. The steeper the curve, the better the item can discriminate. The flatter the curve, the less the item is able to discriminate since the probability of correct response at low ability levels is nearly the same as it is at high ability levels. Using these two descriptors, one can describe the general form of the ICC. These descriptors are also used to discuss the technical properties of an item. But these two properties say nothing about whether the item really measures some facet of the underlying ability or not; that is a question of validity. These two properties simply describe the form of the ICC. It was mentioned elsewhere that validity of a test item is something that depends on the consideration that whether this particular item is constructed to reflect and provide an evidence of achievement of an objective/outcome of learning the content. This process is 17 known as building in validity at the micro level. An item is valid since it is made to measure exactly what it is meant to measure. In Figure 1-4, three ICC’s are presented on the same graph. All have the same level of discrimination but differ with respect to difficulty. The left-hand curve represents an easy item because the probability of correct response is high for low-ability test takers and approaches 1 for high-ability test takers. The center curve represents an item of medium difficulty because the probability of correct response is low at the lowest ability levels, around .5 in the middle of the ability scale and near 1 at the highest ability levels. The right-hand curve represents a hard item. The probability of correct response is low for most of the ability scale and increases only when the higher ability levels are reached. Even at the highest ability level shown (+3), the probability of correct response is only .8 for the most difficult item as shown in Figure 1-4: Figure 1-4 : Three item characteristic curves with the same discrimination but different levels of difficulty The concept of discrimination is illustrated in Figure 1-5. The figure contains three item characteristic curves having the same difficulty level but differing with respect to discrimination. The upper curve has a high level of discrimination since the curve is quite steep in the middle where the probability of correct response changes very rapidly as ability increases. Just a short distance to the left of the middle of the curve, the probability of correct response is much less than 0.5, and a short distance to the right the probability is much greater than 0.5. The middle curve represents an item with a moderate level of discrimination. The slope of this curve is much less than the previous curve and the probability of correct response changes less dramatically than the previous curve as the ability level increases. However, the probability of correct response is near zero for the lowest-ability examinees and near 1 for the highest ability examinees. The third curve represents an item with low discrimination. The curve has a very small slope and the probability of correct response 18 changes slowly over the full range of abilities shown. Even at low ability levels, the probability of correct response is reasonably large, and it increases only slightly when high ability levels are reached. (Although the figures only show a range of ability from -3 to +3, the theoretical range of ability is from negative infinity to positive infinity.) However, Dr. Natarajan (1984) recommended -4 to +4 as the limits since these will include 99.9% of observations. Thus, all the item characteristic curves of the type used here actually become asymptotic to a probability of zero at one tail and to 1.0 at the other tail as shown in Figure 1-5: Figure 1-5 : Three item characteristic curves with the same difficulty but with different levels of discrimination Item characteristic curve of an item with a perfect discrimination is illustrated in Figure 1-6. The item characteristic curve of such an item is a vertical line at some point along the ability scale. To the left of the vertical line at θ = 1.5, the probability of correct response is zero; to the right of the line, the probability of correct response is 1. Thus, the item discriminates perfectly between examinees whose abilities are above and below an ability score of 1.5. Such items would be ideal for distinguishing between examinees with abilities just above and below 1.5. However, such an item neither makes distinction among those examinees with abilities above 1.5 nor among those examinees with abilities below 1.5 as shown in Figure 1-6: 19 Figure 1-6 : An item that discriminates perfectly at θ=1.5 Examples Some graphical examples (taken out through BIRT software) are shown below that illustrate the relation of ICC with difficulty and discrimination. In these examples difficulty has the following five different levels: • • • • • Very easy Easy Medium Hard Very hard And discrimination has the following five different levels: • • • • • None Low Moderate High Perfect 1. This example shows an item characteristic curve of an item with an easy difficulty and high discrimination. As seen here, when item discrimination is greater than moderate, the curve is S-shaped and rather steep in the middle. 20 2. This example shows an item characteristic curve of an item with hard difficulty and low discrimination. As seen here, when item difficulty is greater than medium, most of the curve has a probability of correct response that is less than 0.5. 3. This example shows an item characteristic curve of an item with medium difficulty and low discrimination. As seen here, when item discrimination is less than moderate the curve is nearly linear and appears rather flat. 21 4. This example shows an item characteristic curve of an item with medium difficulty and moderate discrimination. 5. This example shows an item characteristic curve of an item with very easy difficulty and moderate discrimination. As seen here, when item difficulty is less than medium, most of the curve has a probability of correct response greater than 0.5. 22 6. This example shows an item characteristic curve of an item with no discrimination. As seen here, no discrimination with any choice of difficulty level yields a horizontal line at a value of P(θ)=0.5. This is because the value of the item difficulty for an item with no discrimination is undefined. 23 Thus, regardless of the item discrimination, item difficulty of an item locates the item along the ability scale. Therefore, item difficulty and discrimination are independent of each other. Exercise Using the BIRT software, find and plot the ICC for the following combination of item difficulty and item discrimination: 1. Very easy difficulty and discrimination level as – Low High Perfect 2. Easy difficulty and discrimination level as – None Low Moderate Perfect 3. Moderate difficulty and discrimination level as – None High Perfect 4. High difficulty and discrimination level as None Moderate High Perfect 5. Perfect difficulty with discrimination level as – None Low Moderate High Perfect 24 Item Characteristic Curve Models The central features of IRT are the three Item Characteristic Curve models for the item characteristic curve. They are: • • • Rasch (Single Parameter) Model Birnbaum (Two Parameter) Model Fred Lord (three Parameter Model) These models provide a mathematical equation for the relation of the probability of correct response to ability. These mathematical expressions give the probability of a correct response to a test item as a function of the ability. The models employ one or more parameters whose numerical values define a particular item characteristic curve. They provide a vehicle for communicating information about an item’s technical properties. • • • Single Parameter – Rasch Model Two Parameter – Birnbaum Model - Item difficulty ‘b’ Item difficulty ‘b’ Item discrimination ‘a’ Three Parameter – Fred Lord Model - Item difficulty ‘b’ Item discrimination ‘a’ Item guessing ‘c’ Every item has invariant item parameters. All the three models together integrated in a single graph are shown below: 25 Pi (θ) (probability of getting +1.0 answer right on any item I with ability θ) 1-c 0.5 α tan α = a c Item Difficulty ‘b’ -∞ -4 -3 +∞ +4 +3 Rasch’s Single Parameter Model Pi (θ ) = e a (θ −b ) /1 + e a (θ −b ) Where e=2.718, base of a natural log a=scale constant determining the units of θ (For Rasch it is 1) b=location parameter related to the difficulty of the item i (also referred threshold) to as item The modified equation for Rasch model after rationalizing the numerator and the denominator by multiplying with e-a(θ-b) Pi (θ ) = 1/(1 + e −1(θ −b ) ) Note: The items with larger values of bi are more difficult; those with smaller values are comparatively easier. 26 Pi (θ) (probability of getting answer +1.0 right on any item I with ability θ) 0.5 c Item Difficulty ‘b’ Example 1. Let us look at an item with item difficulty as -2.40 and a person with ability as +1.0. This person will have a probability = 0.968. Calculation for the same is shown below: a value for Rasch is 1 Pi (θ = +1.0) = 1/(1 + e −1(1−( −2.4)) ) = 1/(1 + e −1(1+ 2.4) ) = 1/(1 + e −3.4 ) = 0.968 Similarly, the calculations are carried out for all values of θ=(-3, -2, -1, 0, +1, +2, +3). 27 -( θ-b) LOGIT calculated above is taken as θ-b and EXP(-L) is e below: . The ICC for this item is given 2. Let us look at another item with item difficulty as 0 and test takers with varying ability like -3, -2.9………….+3 at intervals of 0.1.[ Note; ability 0 is not 0 ability but on scale of -3 to +3 it is an average ability]. The format given in the table below helps in easy calculations: 28 θi b (θi-b)=L e-L 1+e-L 1/(1+e-L) -3.0 0.0 [-3-(-0)]=-3 e3 1+e3 1/(1+e3)= -2.9 0.0 [-2.9-(-0)]=-2.9 e2.9 1+e2.9 1/(1+e2.9 )= +3.0 0.0 [3-(-0)]=3 e-3 1+e-3 1/(1+e-3)= The above table of calculations can be easily performed on an excel sheet. Birnbaum’s Two Parameter Model In the Two Parameter model, at the point of contra flexure (inflexion) corresponding to 0.5 probability value, a common tangent is drawn and the slope of the tangent is designated as “item discrimination” and this value is indicated by the letter “a”. The “b” and “a” value are estimated for the given items. The equation to the curve is: Pi (θ ) = e a (θ −b ) /(1 + e a (θ −b ) ) Where Pi(θ) = Probability of getting the correct answer to item i of a person with ability θ θ = Person ability b = Item difficulty a = Item Discrimination The modified equation for Birnbaum model after rationalizing the numerator and the denominator by multiplying with e-a(θ-b) 29 Pi (θ ) = 1/(1 + e − a (θ −b ) ) Pi (θ) (probability of getting answer +1.0 right on any item I with ability θ) 0.5 α tan α = a c Item Difficulty ‘b’ Example 1. Let us look at an item with item difficulty as 0 and a=1.25, ability as +1.0. This person will have a probability = 0.777. Calculation for the same is shown below: Pi (θ ) = 1/(1 + e − a (θ −b ) ) = 1/(1 + e −1.25(1−0) ) = 1/(1 + e −1.25 ) = 0.777 Similarly, the calculations are carried out for all values of θ=(-3, -2, -1, 0, +1, +2, +3). 30 -( θ-b) LOGIT calculated above is taken as θ-b and EXP(-L) is e below: . The ICC for this item is given 2. Let us look at another item with item difficulty as 0, a=1.25 and test takers with varying ability like -3, -2.9………….+3 at intervals of 0.1. 31 θi b=0.0 a=1.25 a(θi-b)=L e-L 1+e-L 1/(1+e-L)= Piθi -3.0 0.0, 1.25 1.25[-3-(0.0)]= -3.75 e3.75 1+e3.75 1/(1+e3.75)= 0 0.0 1.25 1.25[0-0]=0 e0 1+e0=2 ½=0.5 +3.0 0.0, 1.25 1.25[3-0]=3.75 e-3.75 1+e-3.75 1/(1+e-3.75)= The above table of calculations can be easily performed on an excel sheet. FredLord’s Three Parameter Model In the Three Parameter model, there is in addition, a third parameter called guessing for the item and is designated by the letter “c”. This is given by the intercept of the probability axis that indicates the probability of guessing the right answer. The guessing parameter is unique to the item and is independent of test taker ability. Thus the guessing parameter remains a constant for all test takers of various abilities. The equation for the curve is: Pi (θ ) = c + (1 − c)[e a (θ −b ) /1 + e a (θ −b ) ] 32 Where Pi(θ) = Probability of getting the correct answer to item person with ability θ θ = Person ability b = Item difficulty a = Item Discrimination c = Guessing Parameter i of a The modified equation for Birnbaum model after rationalizing the numerator and the denominator by multiplying with e-a(θ-b): Pi (θ ) = c + (1 − c)[1/1 + e − a (θ −b ) ] The dotted line curve given below is for the Three Parameter (Lord’s) model: Pi (θ) (probability of getting answer +1.0 right on any item I with ability θ) 0.5 α tan α = a c Item Difficulty ‘b’ Example 1. Let us look at an item with item difficulty as b= 0 , a=1.25,and c=0.25, withability as +1.0. This person will have a probability=0.832. Calculation for the same is shown below: Pi (θ ) = c + (1 − c)[1/1 + e − a (θ −b ) ] = 0.25 + (1 − 0.25) *[1/1 + e −1.25(1−0) ] 33 = 0.832 Similarly, the calculations are carried out for all values of θ=(-3, -2, -1, 0, +1, +2, +3). -( θ-b) LOGIT calculated above is taken as θ-b and EXP(-L) is e below: . The ICC for this item is given 34 2. Let us look at another item with item difficulty as 0, a=0.75, c=0.15 and test takers with varying ability like -3, -2.9………….+3 at intervals of 0.1. θi a=0.75 b=0.0 c=0.15 a(θi-b)=L e-L (1-c)/ 1+e-L c+(1-c)/ (1+e-L) -3.0 0.75, 0.0, 0.15 0.75[-3-0]=-2.25 e2.25 1-0.15/ 1+e2.25 0.15+0.85/ (1+e2.75)= 0 0.75, 0.0, 0.15 0.75[0]=0 e0 0.85/ 1+1 0.15+0.85/ (1+1)= +3.0 0.75, 0.0, 0.15 e-2.25 0.85/ 1+e-2.25 0.15+0.85/ (1+e-2.25)= 0.75[3-0]=-2.25 The above table of calculations can be easily performed on an excel sheet. The Three Parameter (Fred Lord’s) model estimates are more accurate than the Two Parameter (Birnbaum’s) model while the Single Parameter (Rasch’s) model is least accurate. 35 Interpretation of Item Parameters Instead of verbal labels used earlier in describing the technical properties of an ICC, item parameters can be used to do the same. These parameters have numerical values that have intrinsic meaning. Interpreting these values and conveying this interpretation to a nontechnical audience is the next task to be carried out. The verbal labels used to describe an item’s discrimination can be related to ranges of values of the parameter as follows: Verbal Label None Very low Low Moderate High Very high Perfect Range of Values 0 0.01 to 0.34 0.35 to 0.64 0.65 to 1.34 1.35 to 1.69 > 1.70 + infinity These relations hold when one interprets the values of the discrimination parameter under a logistic model for the ICC. If interpretation of the discrimination parameter under a normal ogive model is required then these values need to be divided by 1.7. Establishing an equivalent table for the values of the item difficulty parameter poses some problems. The drawback of item difficulty, as defined under CTT, was that it was defined relative to a group of test takers. Thus, the same item could be easy for one group and hard for another group. Under IRT, an item’s difficulty is a point on the ability scale where the probability of correct response is .5 for Single and Two Parameter models and (1 + c)/2 for a Three Parameter model. Because of this, the verbal labels used earlier have meaning only with respect to the midpoint of the ability scale. The proper way to interpret a numerical value of the item difficulty parameter is in terms of where the item functions on the ability scale. The discrimination parameter can be used to add meaning to this interpretation. The slope of the ICC is at a maximum at an ability level corresponding to the item difficulty. Thus, the item is doing its best in distinguishing between test takers in the neighborhood of this ability level. Because of this, one can speak of the item functioning at this ability level. For example, an item whose difficulty is -1 functions among the lower ability test takers. A value of +1 denotes an item that functions among higher ability test takers. Again, the underlying concept is that the item difficulty is a location parameter. Under a Three Parameter model, the numerical value of the guessing parameter c is interpreted directly since it is a probability. For example, c=0.12 simply means that at all ability levels, the probability of getting the item correct by guessing alone is 0.12. 36 Item Information Function Any item in a test provides some information about the ability of the examinee, but the amount of this information depends on how closely the difficulty of the item matches the ability of the person. Item Information Function of Single Parameter Model In the case of the Single Parameter model, the item information function depends upon how closely the difficulty of the item matches the ability of the person, while in other models it combines with other factors. The item information function of this model is shown below: I i (θ , bi ) = Pi (θ , bi ) * Qi (θ , bi ) It is easy to see that the maximum value of the item information function is 0.25. It occurs at the point where the probabilities of a correct and of an incorrect response are both equal to 0.5. Any item in this model is most informative for examinees whose ability is equal to the difficulty of the item. As ability becomes either smaller or greater than the item difficulty, the item information decreases. This is shown in Figure 2-1 below: The most important practical implication of this is that we need items of different difficulty if we are to achieve good measurement for people having all sorts of different abilities. 37 Item Information Function of Two Parameter Model The item information function for the Two Parameter model is as shown below: I i (θ , bi , ai ) = ai2 Pi (θ , bi ) * Qi (θ , bi ) The discrimination parameter ai is the second parameter that has quite a strong influence because it appears in the formula as a square. This means that discrimination parameters below 1 can decrease the information function rather dramatically, while discrimination parameters above one will increase it substantially. The item response functions are plotted with dotted lines and matched in color with the corresponding item information functions, as shown in the above graph. The item information functions still attain their maxima at item difficulty. However, their shapes and the values of the maxima depend strongly on the discrimination parameter. When discrimination is high (and the item response function is steep), the item provides more information on ability, and the information is concentrated around item difficulty. Items with low discrimination parameters are less informative, and the information is scattered along a greater part of the ability range. 38 Item Information Function of Three Parameter Model The item information function of the Three Parameter model is a bit more complicated as compared to the Single Parameter or Two Parameter model. The item information functions of the three models are shown below: Single Parameter Model : Two Parameter Model : Three Parameter Model : I i (θ , bi ) = Pi (θ , bi ) * Qi (θ , bi ) I i (θ , bi , ai ) = ai2 Pi (θ , bi ) * Qi (θ , bi ) 2 [ P ( θ − c )] Q ( θ ) I (θ , a, b, c) = a 2 P (θ ) (1 − c) The graph shown above has been plotted with two items. The item with the black lines has a=1, b=-1, and c=0.1, while the item with the red lines has a=1, b=+1, and c=0.3. The b parameter shifts the item information function to the left or to the right but does not affect its shape. The two items have the same a=1 but differ in c. Hence, a higher c leads to an overall decrease in item information. A further complication is that the item information function no longer peaks at θ=b. 39 Examples Let us look at the following items. The parameter values and the ICCs according to the Two Parameter model (BILOG output) for the same are given below: 1. For Item #1, a=1.42, b=1.50, c=0. At the b value of 1.50 the probability of getting the right answer Pi(θ) is 0.5. The information function at this point is calculated as shown below: (1.42 * 1.42) * (0.5 * 0.5) = 0.5041. This shows that the peak of the information function as shown in the graph. This means that this particular item gives maximum information at this ability of the test taker and difficulty of the item. For any other ability, ranging from +1 to +2.5 this item can be supposed to give average information. The graphs shown in green color hereinafter are those outputs of using BILOG 3 software: Item Response Function and Item Information Subtest 1: SAMP1 ; a = 1.42; b = 1.50; Item 1: 0001 c = 0.00; 2 1.0 0.9 0.8 0.6 0.5 1 0.4 Information... PROB (Correct) 0.7 0.3 0.2 0.1 0 -3 b -2 -1 0 Scale Score 1 2 3 0 Metric Type Normal 40 However, using BILOG-MG 3, the latest software from Scientific Software International Inc., the following ICC and Information curves are generated for all the three parameters. 1 Parameter Model ItemInformation Curve: ITEM0001 ItemCharacteristic Curve: ITEM0001 a = 0.713 b = -1.020 0.14 1.0 0.12 0.8 In fo r m atio n P r o b ab ility 0.10 0.6 0.4 0.08 0.06 0.04 0.2 0.02 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 1-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 1 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 41 2 Parameter Model Item Information Curve: ITEM0002 Item Characteristic Curve: ITEM0002 a = 1.555 b = 0.351 1.0 1.0 0.9 0.8 0.8 In fo rmatio n Pro b ab ility 0.7 0.6 0.4 0.6 0.5 0.4 0.3 0.2 0.2 b 0 -3 -2 -1 0.1 0 1 2 0 -3 3 -2 -1 0 1 2 3 Scale Score Ability 2-Parameter Model, Logistic Metric Item: 1 The parameter a is the item dis c riminating power, the rec iproc al (1/a) is the item dis pers ion, and the parameter b is an item loc ation parameter. 3 Parameter Model Item Characteristic Curve: ITEM0002 a = 7.980 b = 0.713 ItemInformation Curve: ITEM0002 c = 0.201 1.0 12 10 0.8 In fo r m atio n Pr o b ab ility 8 0.6 0.4 c 6 4 0.2 2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 1 The parameter a is the item dis c riminating power, the rec iproc al (1/a) is the item dis pers ion, b is an item loc ation parameter and c the gues s ing parameter. 42 2. For Item #2, a=1.42, b=0.42, c=0. At the b value of 0.42 the probability of getting the right answer Pi(θ) is 0.5. The information function at this point is (1.42 * 1.42) * (0.5 * 0.5) that is 0.5041. This shows that the peak of the information function as shown in the graph. This means that this particular item gives maximum information at this ability of the test taker and difficulty of the item. For any another ability, ranging from 0.5 to +1.5 this item can be supposed to give average information. Item Response Function and Item Information Subtest 1: SAMP1 ; a = 1.42; b = 0.42; Item 2: 0002 c = 0.00; 2 1.0 0.9 0.8 0.6 1 0.5 0.4 Information... PROB (Correct) 0.7 0.3 0.2 0.1 0 -3 b -2 -1 0 Scale Score 1 2 3 0 Metric Type Normal 43 1 Parameter Model Item Characteristic Curve: ITEM0002 a = 0.713 Item Information Curve: ITEM0002 b = 0.534 0.14 1.0 0.12 0.8 Information 0.4 0.08 0.06 0.04 0.2 0.02 b 0 -3 -2 -1 0 1 2 0 -3 3 -2 -1 0 Ability 1 2 3 Scale Score 1-Parameter Model, Logistic Metric Item: 2 The parameter a is the item dis c riminating pow er, the rec iproc al (1/a) is the item dis pers ion, and the parameter b is an item loc ation parameter. 2 Parameter Model Item Information Curve: ITEM0002 Item Characteristic Curve: ITEM0002 a = 1.555 b = 0.351 1.0 1.0 0.9 0.8 0.8 In fo rmatio n 0.7 Pro b ab ility Probability 0.10 0.6 0.6 0.4 0.6 0.5 0.4 0.3 0.2 0.2 b 0 -3 -2 -1 0 0.1 1 2 3 0 -3 -2 -1 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 1 The parameter a is the item dis c riminating power, the rec iproc al (1/a) is the item dis pers ion, and the parameter b is an item loc ation parameter. 44 3 Parameter Model Item Characteristic Curve: ITEM0002 a = 7.980 b = 0.713 ItemInformation Curve: ITEM0002 c = 0.201 1.0 12 10 0.8 In fo r m atio n Pr o b ab ility 8 0.6 0.4 c 6 4 0.2 2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 1 The parameter a is the item dis c riminating power, the rec iproc al (1/a) is the item dis pers ion, b is an item loc ation parameter and c the gues s ing parameter. 3. For Item #3, a=1.42, b=2.29, c=0. At the b value of 2.29 the probability of getting the right answer Pi(θ) is 0.5. The information function at this point is (1.42 * 1.42) * (0.5 * 0.5) that is 0.5041. This shows that the peak of the information function as shown in the graph. This means that this particular item gives maximum information at this ability of the test taker and difficulty of the item. For any another ability, ranging from +1.5 to +3 this item can be supposed to give average information. 45 Item Response Function and Item Information Subtest 1: SAMP1 ; a = 1.42; b = 2.29; Item 3: 0003 c = 0.00; 2 1.0 0.9 0.8 0.6 0.5 1 0.4 Information... PROB (Correct) 0.7 0.3 0.2 0.1 b 0 -3 -2 -1 0 Scale Score 1 2 3 0 Metric Type Normal 1 Parameter Model Item Characteristic Curve: ITEM0003 a = 0.713 Item Information Curve: ITEM0003 b = 0.557 0.14 1.0 0.12 0.8 0.10 Information Probability 0.6 0.4 0.08 0.06 0.04 0.2 0.02 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 A bility 1-Parameter Model, Logistic Metric 0 1 2 3 S cale S cor e Item: 3 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 46 2 Parameter Model Item Characteristic Curve: ITEM0003 a = 1.555 Item Information Curve: ITEM0003 b = 0.351 1.0 1.0 0.9 0.8 0.8 0.7 Information Probability 0.6 0.4 0.6 0.5 0.4 0.3 0.2 0.2 b 0 -3 -2 -1 0.1 0 1 2 0 3 -3 -2 -1 0 A bility 1 2 3 S cale S cor e 2-Parameter Model, Logistic Metric Item: 2 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 3 Parameter Model Item Information Curve: ITEM0003 Item Characteristic Curve: ITEM0003 a = 8.105 b = 0.899 c = 0.203 12 1.0 10 0.8 8 Information Probability 0.6 0.4 c 6 4 0.2 2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 S cale S cor e A bility Item: 2 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 47 4. For Item #4, a=1.42, b=0.92, c=0. At the b value of 0.92 the probability of getting the right answer Pi(θ) is 0.5. The information function at this point is (1.42 * 1.42) * (0.5 * 0.5) that is 0.5041. This shows that the peak of the information function as shown in the graph. This means that this particular item gives maximum information at this ability of the test taker and difficulty of the item. For any another ability, ranging from 0 to +2 this item can be supposed to give average information. Item Response Function and Item Information Subtest 1: SAMP1 ; a = 1.42; b = 0.92; Item 4: 0004 c = 0.00; 2 1.0 0.9 0.8 0.6 0.5 1 0.4 Information... PROB (Correct) 0.7 0.3 0.2 0.1 0 -3 b -2 -1 0 Scale Score 1 2 3 0 Metric Type Normal 48 1 Parameter model Item Characteristic Curve: ITEM0004 a = 0.713 Item Information Curve: ITEM0004 b = 1.082 0.14 1.0 0.12 0.8 0.10 Information Probability 0.6 0.4 0.08 0.06 0.04 0.2 0.02 b 0 -3 -2 -1 0 1 2 0 3 -3 -2 -1 0 A bility 1 2 3 S cale S cor e 1-Parameter Model, Logistic Metric Item: 4 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 2 Parameter Model Item Characteristic Curve: ITEM0004 a = 1.938 Item Information Curve: ITEM0004 b = 0.665 1.0 1.0 0.9 0.8 0.8 0.7 Information Probability 0.6 0.4 0.6 0.5 0.4 0.3 0.2 0.2 b 0 -3 -2 -1 0 0.1 1 2 3 0 -3 -2 -1 2-Parameter Model, Logistic Metric 0 1 2 3 S cale S cor e A bility Item: 3 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 49 3 Parameter Model Item Characteristic Curve: ITEM0004 a = 8.195 b = 0.834 Item Information Curve: ITEM0004 c = 0.163 1.0 12 10 0.8 8 Information Probability 0.6 0.4 6 4 c 0.2 2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 S cale S cor e A bility Item: 3 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 5. For Item #5, a=1.42, b=-0.28, c=0. At the b value of -0.28 the probability of getting the right answer Pi(θ) is 0.5. The information function at this point is (1.42 * 1.42) * (0.5 * 0.5) that is 0.5041. This shows that the peak of the information function as shown in the graph. This means that this particular item gives maximum information at this ability of the test taker and difficulty of the item. For any another ability, ranging from -1 to +1 this item can be supposed to give average information. 50 Item Response Function and Item Information Subtest 1: SAMP1 ; a = 1.42; b = -0.28; Item 5: 0005 c = 0.00; 2 1.0 0.9 0.8 Information... PROB (Correct) 0.7 0.6 0.5 1 0.4 0.3 0.2 0.1 b 0 -3 -2 -1 0 Scale Score 1 2 3 0 Metric Type Normal 1 Parameter Model Item Characteristic Curve: ITEM0005 a = 0.713 Item Information Curve: ITEM0005 b = -0.504 0.14 1.0 0.12 0.8 0.10 Information Probability 0.6 0.4 0.08 0.06 0.04 0.2 0.02 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 1-Parameter Model, Logistic Metric 0 1 2 3 S cale S cor e A bility Item: 5 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 51 2 Parameter Model Item Characteristic Curve: ITEM0005 a = 1.844 Item Information Curve: ITEM0005 b = -0.338 1.0 1.0 0.9 0.8 0.8 0.7 Information Probability 0.6 0.4 0.6 0.5 0.4 0.3 0.2 0.2 b 0 -3 -2 0.1 -1 0 1 2 0 3 -3 -2 -1 A bility 0 1 2 3 S cale S cor e 2-Parameter Model, Logistic Metric Item: 4 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 3 Parameter Model Item Characteristic Curve: ITEM0005 a = 8.057 b = -0.012 Item Information Curve: ITEM0005 c = 0.186 1.0 12 10 0.8 8 Information Probability 0.6 0.4 6 4 c 0.2 2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 S cale S cor e A bility Item: 4 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 52 In general terms, for a Two Parameter ICC model, the item information function is defined as shown below: I i (θ ) = ai2 Pi (θ )Qi (θ ) Where ai is the discrimination parameter for item i Pi(θ) = 1/ (1+ EXP (-ai (θ - bi))) Qi(θ) =1 - Pi (θ) θ is the ability level of test taker The amount of item information will be computed at seven ability levels for an item having parameter values of b=1.0 and a=1.5 as shown below in the table: θ L EXP(-L) -3 -2 -1 0 1 2 3 -6 -4.5 -3.0 -1.5 0.00 1.5 3.0 403.43 90.02 20.09 4.48 1.0 0.22 0.05 1/1+ (e-L)= Pi(θ) 0.00 0.01 0.05 0.18 0.50 0.82 0.95 Qi(θ) Pi(θ) * Qi(θ) a2 Ii(θ) 1.00 0.99 0.95 0.82 0.50 0.18 0.05 0.00 0.01 0.05 0.15 0.25 0.15 0.05 2.25 2.25 2.25 2.25 2.25 2.25 2.25 0.00 0.02 0.11 0.34 0.56 0.34 0.11 Calculation of item information function under a Two Parameter model for an item b=1.0, a=1.5 This item information function increases rather smoothly as ability increases and reaches a maximum value of .56 at an ability of 1.0. After this point, it decreases. The obtained item information function is symmetrical about the value of the item’s difficulty parameter. Such symmetry holds for all item information functions under Single and Two Parameter models. When only a single item is involved and the discrimination parameter has a moderate value, the magnitude of the amount of item information is quite small. Similar calculations can be carried out for item information function under Single and Three Parameter models. The equations to item information function under these models are given below: 53 I i (θ ) = Pi (θ )Qi (θ ) 2 Q ( θ ) P ( θ ) − c I i (θ ) = a 2 [ i ][ i ] 2 Pi (θ ) (1 − c ) Where Pi(θ) = c+(1-c)(1/(1+ EXP (-L))) L = a(θ-b) Qi =1 - Pi (θ) Exercise 1.Given an item with item difficulty b=-2,calculate the item information function ordinates for a single parameter(Rasch Model) ,at various ability levels of -3,-2,-1,0,1,2,3 using BIRT software and the appropriate formula for the item information function. Also plot the item information curve. 2. Given an item with item difficulty b=-2,and item discrimination a=1.42,calculate the item information function ordinates for a 2 parameter(Birnbaum Model) ,at various ability levels of 3,-2,-1,0,1,2,3 using BIRT software and the appropriate formula for the item information function. Also plot the item information curve. 3.Given an item with item difficulty b=-2, item discrimination a=1.42,and guessing parameter c=0.2 ,calculate the item information function ordinates for a 3 parameter(Fred Lord Model) ,at various ability levels of -3,-2,-1,0,1,2,3 using BIRT software and the appropriate formula for the item information function. Also plot the item information curve. Test Characteristic Curve (Test Response Function) IRT is based upon the individual items of a test, and up to this point, we have dealt with the items one at a time. Now, attention will be given to dealing with all the items in a test all at once. When scoring a test, the response made by a test taker to each item is dichotomously scored. A correct response is given a score of 1, and an incorrect response a score of 0; the test taker’s raw test score is obtained by adding up the item scores. This raw test score will always be an integer number and will range from 0 to N (N is the number of items in the test). If test takers were to take the test again, assuming they did not remember how they 54 previously answered the items, a different raw test score would be obtained. Hypothetically, a test taker could take the test a great many times and obtain a variety of test scores. One would anticipate that these scores would cluster themselves around some average value. In CTT, this value is known as the true score . In IRT however, the definition of a true score according to D.N. Lawley is used. The formula for a true score is as shown below: N TS j = ∑ Pi (θ j ) i =1 Where TSj is the true score for examinee with ability θj i is an item Pi(θj) depends upon the particular ICC model employed In order to calculate the true scores of these test takers at a given ability level, we assume an ability of b=+1 and let us find the probability of this test taker of ability=+1 for a correct response using BIRT software. 1. For the first item, b=1.5, a=1.42. For an ability of +1 the probability of getting the correct answer from BIRT software can be read as follows: 55 According to the table given above, Pi(θ) at θ =+1 is 0.330. The calculation for the same is given below: Pi (θ ) = 1 1 + e − a*(θ −b ) = 1 1 + e −1.42*(1−1.5) 1 = = 0.329 1 + e0.71 2. For the second item, b=0.42, a=1.42. For an ability of +1 the probability of getting the correct answer is as shown below: According to the table given above, Pi(θ) at θ =+1 is 0.695. The calculation for the same is given below: Pi (θ ) = 1 1 + e − a*(θ −b ) = 1 1 + e −1.42*(1−0.42) = 1 = 0.695 −0.82 1+ e 56 3. For the third item, b=2.29, a=1.42. For an ability of +1 the probability of getting the correct answer is as shown below: According to the table given above, Pi(θ) at θ =+1 is 0.138. The calculation for the same is given below: Pi (θ ) = 1 1 + e − a*(θ −b ) = 1 1 + e −1.42*(1−2.29) = 1 = 0.138 1.83 1+ e 4. For the forth item, b=0.92, a=1.42. For an ability of +1 the probability of getting the correct answer is as shown below: 57 According to the table given above, Pi(θ) at θ =+1 is 0.528. The calculation for the same is given below: Pi (θ ) = 1 1 + e − a*(θ −b ) = 1 1 + e −1.42*(1−0.92) = 1 = 0.528 −0.11 1+ e 5. For the fifth item, b=-0.28, a=1.42. For an ability of +1 the probability of getting the correct answer is as shown below: 58 According to the table given above, Pi(θ) at θ =+1 is 0.860. The calculation for the same is given below: Pi (θ ) = 1 1 + e − a*(θ −b ) = 1 1 + e −1.42*(1+0.28) = 1 = 0.860 −1.81 1+ e Thus, test score of a test taker of ability=1 is obtained. The test taker score at this ability for all the five items is the sum of all the individual Pi(θ) as sown below: = 0.329+0.695+0.138+0.528+0.860 = 2.551 Thus, for a test taker of ability=1 the true score for the test is 2.55. Similarly, we may obtain the test scores at all ability levels from -3 to +3 as indicated in the table below: Ability Level Item1 Item2 Item3 Item4 Item5 Total -3 -2 -1 0 +1 +2 0.002 0.007 0.028 0.106 0.330 0.670 0.008 0.031 0.117 0.355 0.695 0.904 0.001 0.002 0.009 0.037 0.138 0.398 0.004 0.016 0.061 0.213 0.528 0.823 0.021 0.080 0.265 0.598 0.860 0.962 0.036 0.136 0.48 1.309 2.551 3.757 +3 0.894 0.974 0.733 0.950 0.991 4.542 The table below shows the ability levels and the total Pi(θ) of all these ability levels added up. A plot of ability along the X-axis and test score along the Y-axis for each of these test takers of ability ranging from -3 to +3 will generate a test characteristic curve as shown below: 59 Ability Level Total -3 -2 -1 0 +1 +2 +3 0.036 0.136 0.48 1.309 2.551 3.757 4.542 Figure: Items response function and test response function for five items The procedure used to work out the test characteristic curve for Two Parameter model can be similarly used to work out the curves for the Single and Three Parameter models. An important concept for the test characteristic curve is that it concerns a particular test and the test characteristic curves for different tests would be different. When a Single or Two Parameter model is used for N items in a test, the left tail of the test characteristic curve approaches zero as the ability score approaches negative infinity; its upper tail approaches the number of items in the test as the ability score approaches positive infinity. The implication of this is that under these two models, a true score of zero corresponds to an ability score of negative infinity, and a true score of N corresponds to an ability level of positive infinity. When a Three Parameter model is used for N items in a test, the lower tail of the test characteristic curve approaches the sum of the guessing parameters for the test items rather than zero. This reflects the fact that under this model, very low-ability test takers can get a test score simply by guessing. The upper tail of the test characteristic curve still approaches the number of items in the test. Hence, a true score of N corresponds to an ability of positive infinity under all the three ICC models. The primary role of the test characteristic curve in IRT is to provide a means of transforming ability scores to true scores. This becomes of interest in practical situations where the user of the test may not be able to interpret an ability score. By transforming the ability score into a true score, the user is given a number that relates to the number of items in the test. This number is in a more familiar frame of reference and the user is able to interpret it. However, those familiar with IRT can interpret the ability score directly. The test characteristic curve also plays an important role in the procedures for equating tests. 60 The general form of the test characteristic curve is that of a monotonically increasing function. In some cases, it has a rather smooth S-shape similar to an ICC. In other cases, it will increase smoothly, and then have a small plateau before increasing again. However, in all cases, it will be asymptotic to a value of N in the upper tail. The shape of the test characteristic curve depends upon a number of factors, including the number of items, the ICC model employed, and the values of the item parameters. Test Information Function The test information function is an extremely useful feature of IRT. It indicates how well the test is doing in estimating ability over the whole range of ability scores. Since a test is used to estimate the ability of a test taker, the amount of information yielded by the test at any ability level can also be obtained. A test is a set of items; therefore, the test information at a given ability level is simply the sum of the item information at that level. Since the test information is obtained by summing the item information at a given ability level, the amount of information is defined at the item level. Consequently, the test information function is defined as shown below: N I (θ ) = ∑ I i (θ ) i =1 Where I(θ)is the amount of test information at any ability level θ Ii(θ) is the amount of information for item I at any ability level θ N is the number of items in a test The most important thing about the test information function is that it predicts the accuracy to which we can measure any value of the latent ability. The general level of the test information function will be much higher than that for a single item information function. Thus, a test measures ability more precisely than does a single item. Hence, more the items in a test, greater the amount of information. Longer tests will measure a test taker’s ability with greater precision than will shorter tests. Plotting the amount of test information against ability yields a graph of the test information function for a ten-item test as shown below: 61 Figure: A test information function Note: The Y-axis in the above graph should be read as 0 to 5 instead of 0 to 10. The maximum value of the test information function as seen above is modest and the amount of information decreases rather steadily as the ability level differs from that corresponding to the maximum. Thus, ability is estimated with some precision near the center of the ability scale. However, as the ability level approaches the extremes of the scale, the amount of test information decreases significantly. While the ideal test information function often may be a horizontal line, it may not be the best for a specific purpose. For example, if we were interested in constructing a test to award scholarships, this ideal might not be optimal. In this situation, we should measure ability with considerable precision at ability levels near the ability used to separate those who will receive the scholarship from those who do not. The best test information function in this case would have a peak at the cutoff score. Other specialized uses of tests could require other forms of the test information function. While an information function can be obtained for each item in a test, this is rarely done. The amount of information yielded by each item is rather small, and we typically do not attempt to estimate a test taker’s ability with a single item. Consequently, the amount of test information at an ability level and the test information function are of primary interest. The mathematical definition of the amount of item information depends upon the particular ICC model employed. Therefore, it is necessary to examine these definitions under each model. Let us look into a test of five items administered on ten test takers, analyzed through a Two Parameter model. The item parameters values are as shown below: 62 Item b a 1 2 3 4 5 1.5 0.42 2.29 0.92 -0.28 1.42 1.42 1.42 1.42 1.42 The amount of item information and the test information will be computed for the same seven ability levels as shown below: 1. For the first item, b=1.5, a=1.42. For an ability of +1, Pi(θ) is 0.330 as calculated in the example for item information. Thus, the Ii(θ) will be calculated as shown below: Pi (θ ) = 0.330 Qi (θ ) = 1 − Pi (θ ) = 1 − 0.330 = 0.670 I i (θ ) = a 2 * Pi (θ ) * Qi (θ ) = 1.42 *1.42 * 0.330 * 0.670 I i (θ ) = 0.445 2. For the second item, b=0.42, a=1.42. For an ability of +1, Pi(θ) is 0.695 as calculated in the example for item information. Thus, the Ii(θ) will be calculated as shown below: Pi (θ ) = 0.695 Qi (θ ) = 1 − Pi (θ ) = 1 − 0.695 = 0.305 I i (θ ) = a 2 * Pi (θ ) * Qi (θ ) = 1.42*1.42*0.695*0.305 I i (θ ) = 0.427 3. For the third item, b=2.29, a=1.42. For an ability of +1, Pi(θ) is 0.138 as calculated in the example for item information. Thus, the Ii(θ) will be calculated as shown below: 63 Pi (θ ) = 0.138 Qi (θ ) = 1 − Pi (θ ) = 1 − 0.138 = 0.862 I i (θ ) = a 2 * Pi (θ ) * Qi (θ ) = 1.42 *1.42 * 0.138* 0.862 I i (θ ) = 0.239 4. For the fourth b=0.9, a=1.42. For an ability of +1, Pi(θ) is 0.528 as calculated in the example for item information. Thus, the Ii(θ) will be calculated as shown below: Pi (θ ) = 0.528 Qi (θ ) = 1 − Pi (θ ) = 1 − 0.528 = 0.427 I i (θ ) = a 2 * Pi (θ ) * Qi (θ ) = 1.42 *1.42 * 0.528* 0.427 I i (θ ) = 0.502 5. For the fifth, b=-0.28, a=1.42. For an ability of +1, Pi(θ) is 0.860 as calculated in the example for item information. Thus, the Ii(θ) will be calculated as shown below: Pi (θ ) = 0.860 Qi (θ ) = 1 − Pi (θ ) = 1 − 0.860 = 0.140 I i (θ ) = a 2 * Pi (θ ) * Qi (θ ) = 1.42 *1.42 * 0.860 * 0.140 I i (θ ) = 0.242 The Pi(θ) and Qi(θ) values for all the five items are calculated as shown in the table below: 64 Ability Item1 Item2 Item3 Level P Q=1-P P Q=1-P P Q=1-P -3 -2 -1 0 +1 +2 +3 0.00 2 0.00 7 0.02 8 0.10 6 0.33 0 0.67 0 0.89 4 P Item4 Q=1-P P Item5 Q=1-P 0.998 0.008 0.992 0.001 0.999 0.004 0.996 0.021 0.979 0.993 0.031 0.969 0.002 0.998 0.016 0.984 0.080 0.920 0.972 0.117 0.883 0.009 0.991 0.061 0.939 0.265 0.835 0.894 0.355 0.645 0.037 0.963 0.213 0.787 0.598 0.402 0.670 0.695 0.305 0.138 0.862 0.528 0.472 0.860 0.14 0.330 0.904 0.196 0.398 0.602 0.823 0.167 0.962 0.038 0.106 0.974 0.026 0.733 0.267 0.950 0.05 0.991 0.009 The Ii(θ) values for all the five items are calculated. The test information at any ability level is the sum of all Ii(θ) values at that level for all the five items as shown in the table below: Ability Level Item1 a2PQ = I(θ) Item2 a2PQ = I(θ) Item3 a2PQ = I(θ) Item4 a2PQ = I(θ) Item5 a2PQ = I(θ) Test Information Function -3 0.004 0.016 0.002 0.008 0.0415 0.07153 -2 0.014 0.0606 0.004 0.0317 0.1484 0.258765 -1 0.055 0.2083 0.018 0.1155 0.4462 0.842855 0 0.191 0.4617 0.0718 0.338 0.4847 1.547379 +1 0.446 0.4274 0.2399 0.5025 0.2428 1.858409 +2 0.446 0.3573 0.4831 0.2771 0.0737 1.637069 +3 0.191 0.0511 0.3946 0.0958 0.018 0.75054 The table below gives ability levels and the test information function at each of these levels. A plot of ability against test information function is shown below. It may be observed that test information curve is the sum of item information curves of the five items as indicated below: 65 Ability Level Test Information Function -3 -2 -1 0 +1 +2 +3 0.07153 0.258765 0.842855 1.547379 1.858409 1.637069 0.75054 Figure: Item information function and test information function of five items Interpreting the test information function While the shape of the desired test information function depends upon the purpose for which a test is designed, some general interpretations can be made. A test information function that is peaked at some point on the ability scale, measures ability with unequal precision, along the ability scale. Such a test would be best for estimating the ability of test taker whose abilities fall near the peak of the test information function. In some tests, the test information function is rather flat over some region of the ability scale. Such tests estimate some range of ability scores with nearly equal precision and outside this range with less precision. Thus, the test would be a desirable one for those test takers whose ability falls in the given range. When interpreting a test information function, it is important to keep in mind the reciprocal relationship between the amount of information and the variability of the ability estimates. To translate the amount of information into a standard error of estimation, we need to take the reciprocal of the square root of the amount of test information as shown below: S .E (θ ) = 1 I (θ ) Test Information Function of Single Parameter Model The test information function relates to the item information function in a way that it is equal to the sum of item information functions. The test information under Single Parameter model is shown below: 66 I j (θ j ) = ∑ i I ij (θ j , bi ) Figure: Item information functions and test information function for five items In the above graph, although the test information function is plotted on the same scale as the item information functions, a separate axis is added to emphasize the difference. The test as a whole is far more informative than each item alone, and it spreads the information over a wider ability range. The information provided by each item is, in contrast, concentrated around ability levels that are close to its difficulty. Using BILOG-MG 3.0, test information curve is obtained as: 67 Subtest: TEST0001 0.6 2.16 0.5 1.72 0.4 Information 0.3 Standard Error 1.29 0.86 0.2 0.43 0.1 0 -3 -2 -1 0 1 2 3 0 S cale S cor e Test infor m ation cur ve: solid line S tandar d er r or cur ve: dotted line The total test information for a specific scale score is read from the left vertical axis. The standard error for a specific scale score is read from the right vertical axis. Test Information Function of Two Parameter Model The formula for the test information function under Two Parameter model is shown below: Ij (θj) = Σi Iij (θj , bi , ai) = Σi a2i P(θ , bi , ai) * Q(θ , bi , ai) Because the item information functions in the Two Parameter model depend so strongly on the discrimination parameters ai, the shape of the test information function can become rather curvy and unpredictable—especially in tests with very few items like our examples. In practice, we should have a test information function that is high and reasonably smooth over the relevant ability range — say, (-3; +3). This could be ideally attained with a large number of items having large discrimination parameters and difficulties evenly distributed over the ability range. Items with very low discrimination parameters are usually discarded from practical use. Using BILOG-MG 3.0, test information curve is obtained as: 68 Subtest: TEST0001 0.6 2.16 0.5 1.72 0.4 Information 0.3 Standard Error 1.29 0.86 0.2 0.43 0.1 0 -3 -2 -1 0 1 2 3 0 S cale S cor e Test infor m ation cur ve: solid line S tandar d er r or cur ve: dotted line The total test information for a specific scale score is read from the left vertical axis. The standard error for a specific scale score is read from the right vertical axis. Test Information Function of Three Parameter Model The test information function of the Three Parameter model is the sum of the item information functions over the items in a test. The formula for the test information function of Three Parameter model is shown below: Q (θ ) [ P (θ ) − c]2 I j (θ j ) = ∑ i I ij (θ j , bi , ai , ci ) = ∑ i a P (θ ) (1 − c) 2 As seen earlier that the item information function depends strongly on the discrimination parameters ai. In the Three Parameter model, there is the additional influence of the ‘guessing parameters’ ci. Larger ci decrease the item information and shift its maximum away from bi. In practical applications, we should have a test information function that is high and reasonably smooth over the relevant ability range — say, (-3; +3). Using BILOG-MG 3.0, test information curve is obtained as: 69 Subtest: TEST0001 0.6 2.16 0.5 1.72 0.4 Information 0.3 Standard Error 1.29 0.86 0.2 0.43 0.1 0 -3 -2 -1 0 1 2 3 0 S cale S cor e Test infor m ation cur ve: solid line S tandar d er r or cur ve: dotted line The total test information for a specific scale score is read from the left vertical axis. The standard error for a specific scale score is read from the right vertical axis. Estimating Parameters As seen earlier the ability and item parameters were assumed known and hence it was easy to plot, examine and modify the IRF. If the item parameters are known then the ability can be estimated easily. Alternatively, the estimation of item parameters will become easy if the true abilities of the test takers were known. Since the actual values of the item parameters in a test are unknown, one of the important tasks to be performed when a test is analyzed under IRT is to estimate these parameters. The estimates thus obtained yield information about the technical properties of the test items. For understanding estimation, an individual item is taken and item difficulty, item discrimination, item guessing parameters for this item will be estimated wherever relevant in the three models. Procedure for Estimating Parameters 70 Let us look into the case of a typical test. This test of N number of items is administered to M number of test takers. The ability scores of these test takers will be distributed over a range of ability levels on the ability scale. These test takers are divided into J number of groups along the scale so that all the test takers within a given group have the same ability level θj and there will be mj test takers within group j, where j = 1, 2, 3. . . . J. Within a particular ability score group, rj test takers answer the given item correctly. Thus, at an ability level of θj, the observed proportion of correct response is p(θj) = rj/mj , which is an estimate of the probability of correct response at that ability level. Now the value of rj can be obtained and p(θj) computed for each of the j ability levels established along the ability scale. If the observed proportions of correct response in each ability group are plotted, the result will be something like that shown in Figure 3-1: The next task is to find the ICC that best fits the observed proportions of correct response. To do so, a model needs to be selected for the curve to be fitted. Although any of the three models could be used, the two-parameter model is employed here. The procedure used to fit the curve is based upon maximum likelihood estimation. Under this approach, initial values for the item parameters, such as b=0.0, a=1.0, are established a priori. Then, using these estimates, the value of P(θj) is computed at each ability level via the equation for the ICC model. The agreement of the observed value of p(θj) and computed value P(θj) is determined across all ability groups. Then, adjustments to the estimated item parameters are found, that result in better agreement between the ICC defined by the estimated values of the parameters and the observed proportions of correct response. This process of adjusting the estimates is continued until the adjustments get so small that little improvement in the agreement is possible. At this point, the estimation procedure is terminated and the current values of b and a are the item parameter estimates. Given these values, the equation for the ICC is used to 71 compute the probability of correct response P(θj) at each ability level and the ICC can be plotted. The resulting curve is the ICC that best fits the response data for that item. Figure 3-2 shows an ICC fitted to the observed proportions of correct response shown in Figure 3-1. The estimated values of the item parameters were b = -.37 and a = 1.25. An important consideration within IRT is whether a particular ICC model fits the item response data for an item. The agreement of the observed proportions of correct response and those yielded by the fitted ICC for an item is measured by the chi-square goodness-of-fit index. This index is defined as follows: J [ p (θ j ) − P (θ j )]2 j =1 P (θ j ) * Q(θ j ) X 2 = ∑ mj Where J is the number of ability groups. θj is the ability level of group j. mj is the number of examinees having ability θj. p(θj) is the observed proportion of correct response for group j. P(θj) is the probability of correct response for group j computed from the ICC model using the item parameter estimates. 72 If the value of the obtained index is greater than a criterion value, the ICC specified by the values of the item parameter estimates does not fit the data. This can be caused by two things. First, the wrong ICC model may have been employed. Second, the values of the observed proportions of correct response are so widely scattered that a good fit, regardless of model, cannot be obtained. In most tests, a few items will yield large values of the chi-square index due to the second reason. However, if many items fail to yield well-fitting ICCs there may be reason to suspect that the wrong model has been employed. In such cases, reanalyzing the test under an alternative model, say the Three Parameter model rather than a Single Parameter model, may yield better results. In the case of the item shown in Figure 3-2, the obtained value of the chi-square index was 28.88 and the criterion value was 45.91. Thus, the Two Parameter model with b=-.37 and a=1.25 was a good fit to the observed proportions of correct response. Unfortunately, not all of the test analysis computer programs provide goodness-of-fit indices for each item in the test. The actual maximum likelihood estimation (MLE) procedure is rather complex mathematically and entails very laborious computations that must be performed for every item in a test. In fact, until computers became widely available, IRT was not practical because of its heavy computational demands. For present purposes, it is not necessary to go into the details of this procedure. It is sufficient to know that the curve-fitting procedure exists, that it involves a lot of computing, and that the goodness-of-fit of the obtained ICC can be measured. Because test analysis is done by computer, the computational demands of the item parameter estimation process do not present a major problem today. Examples 1. Let’s look at an illustrative numerical example for item parameter estimation. The model used for this example is Rasch’s Single Parameter model for easy purpose of illustration and easy understanding. Therefore, a single parameter namely item difficulty is to be estimated. Let us take an example of an objective type test of 20 items given on 76 test takers. The following table illustrates the data of number right scores and the number of test takers obtaining every score: Number Right Score Number of Test Takers Obtaining This Score 18 17 16 15 14 13 4 4 5 12 7 10 73 12 11 10 9 8 7 6 8 11 5 6 2 1 1 Descriptive Statistics of Number Right Scores of 76 Test Takers for 20 Items Case Processing Summary Cases Missing N Percent 0 .0% Valid N VAR00001 76 Percent 100.0% Total N 76 Percent 100.0% Descriptives VAR00001 Mean 95% Confidence Interval for Mean Lower Bound Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Statistic 12.8684 12.2271 Std. Error .3219 13.5097 12.8977 13.0000 7.876 2.8064 6.00 18.00 12.00 4.0000 -.122 -.554 .276 .545 VAR00001 VAR00001 Stem-and-Leaf Plot Frequency .00 2.00 8.00 16.00 18.00 19.00 9.00 4.00 Stem & 0 0 0 1 1 1 1 1 . . . . . . . . Leaf 67 88999999 0000011111111111 222222223333333333 4444444555555555555 666667777 8888 74 Stem width: Each leaf: 10.00 1 case(s) Let us look at the 5th item for purpose of parameter estimation. The correct answer to this item is B. The various responses of the above groups of test takers are given below: Number Right Score Number of Test Takers Obtaining This Score Number Scoring Right Answer Proportion of Right Answers (Probability) 18 17 16 15 14 13 12 11 10 9 8 7 6 4 4 5 12 7 10 8 11 5 6 2 1 1 4 4 2 5 1 6 2 1 1 0 1 1 0 4/4=1.0 4/4=1.0 2/5=0.4 5/12=0.41 1/7=0.14 6/10=0.6 2/8=0.25 1/11=0.09 1/5=0.2 0/6=0 ½=0.5 1/1=1 0/1=0 For the proportion of right answers and number right score groups given above, graph is plotted with an approximate ICC as shown below: a Graph: ICC – Proportion of Right Answers/Number Right Score 75 A rough graphical representation of the proportion of right answers at every number right score plotted against the number right score is obtained by trial and error method in curve fitting. The rough representation is given in the graph. It can be seen that the curve’s point of contraflexure is seen at a number right score of 15 corresponding to a rough estimate of 15 number right score and corresponding +1.5 on the ability scale as indicated in the graph. Let us assume the first estimate of item difficulty b, of these items to be 1.5. For a single parameter b=1.5, the ICC or IRF is obtained by using BIRT software as shown below: 76 The BIRT curve proportions of Pi(θ) at all value from -3 to +3 can be compared now with the obtained proportions of right answers at the number right score levels at the corresponding assumed ability levels as shown in the table below: Number Observed Ability Pi(0) at this 77 Right Score proportion of right answers at this score levels level 18 17 16 15 14 13 12 11 10 9 8 7 6 1.0 1.0 0.4 0.41 0.14 0.6 0.25 0.09 0.2 0 0.5 1 +3 +2.5 +2 +1.5 +1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 0.894 0.805 0.67 0.5 0.33 0.195 0.106 0.055 0.028 0.014 0.007 0.003 0 Benjamin Wright’s Mathematical Formulation of Rasch Model Steps: 1. Number of persons who got ith item right. i=1 to 5 i=1 n1=6 i=2 n2=3 i=3 n3=3 i=4 n4=2 i=5 n5=5 2. Number of persons who got ith item wrong. I=1 to 5 i=1 n1=3 i=2 n2=6 i=3 n3=6 i=4 n4=7 i=5 n5=4 3. 1. 2. 3. 4. 5. Calculate log ratio of wrong to right as follows: ln(3/6) ln(6/3) ln(6/3) ln(7/2) ln(4/5) X1=ln(3/6)= - 0.69315 X2=ln(6/3)= + 0.69315 X3=ln(6/3)= + 0.69315 78 X4=ln(7/2)= 1.25276 X5=ln(4/5)= - 0.22314 4. Calculate mean of Xi over L items (here 5) as follows: 5 X= ∑ X i / 5 = 1.72277 / 5 = 0.344554 1 5. Calculate variance of Xi over L items as follows: 2 U= ∑ ( X − X i ) / L − 1 Xi X1= -0.69315 X2= 0.69315 X3= 0.69315 X4= 1.25276 X5= -0.22314 (X- Xi) (X- Xi)2 [0.34455-(-0.69315)] (-1.03770)2 1.07682 [0.34455-0.69315] (-0.34860)2 0.12152 [0.34455-0.69315] (-0.34860)2 0.12152 [0.34455-1.25276] (-0.9082)2 -0.82482 [0.34455-(-0.22314)] (0.56769)2 0.32227 Sum= 2.46697 U=2.46697/4=0.616745 6. Calculate Nr as the number of persons who got r items right for r=1 to r=4. 1 item right - 3 persons 2 items right - 3 persons 3 items right - 2 persons 4 items right - 1 person 7. Calculate the log ratio of right to wrong answers over L items as follows: Yr=ln(r/L-r) Y1=ln(3/5-3)=ln(3/2)= Y2=ln(3/5-3)=ln(3/2)= Y3=ln(2/5-2)=ln(2/3)= Y4=ln(1/5-1)=ln(1/4)= 0.405465 0.405465 -0.405465 -1.38629 8. Calculate the mean Y of Yr over N persons as follows: 79 Y= ∑ N r Yr / N Nr N1=3 N2=3 N3=2 N4=1 Yr Y1= 0.405465 Y2= 0.405465 Y3= -0.405465 Y4= -1.38629 NrYr 1.216395 1.216395 -0.81093 -1.38629 Sum = 0.23557 Y=0.23557/4=0.058893 9. Calculate the variance of Yr. ∑N V= r (Yr − Y ) 2 ( N − 1) N-1=4 N1(Y1 - Y)2 + N2(Y2 - Y)2 + N3(Y3 - Y)2 + N4(Y4 - Y)2 = 0.239531 10. Calculate the expansion factor due to variation in item difficulty as follows: Ed= [1 + (U / 2.89)] = 1.235261 [1 − (VU / 8.35)] 11. Calculate the expansion factor due to variation in person ability as follows: Ea= [1 + (V / 2.89)] = 1.102386 [1 − (VU / 8.35)] 12. Calculate the difficulty of item i as follows: Di= E a ( X i − E d ) 80 Item No. 1 2 3 4 5 Difficulty Di -2.12585 -0.59762 -0.59762 0.019294 -1.60773 Remark Easiest item Most difficulty item 13. Plot ICC for each of these items using Rasch Model. Item Difficulty =b Pi(θ)= 1 1 + e − (θ −b) Vary θ as -3.00, -2.95, ………………… 2.95, 3.00 b=-2.12585 θ (θ-b) e − (θ − b ) + 0 .8 7 4 1 5 -3.0 [-3.0(-2.12585)] e -2.95 [-2.95(-2.12585)] e +0.82415 =2.3968 =2.2799 1+ e − (θ − b ) 1/(1+ e − (θ − b ) ) Pi 1+2.3968= 3.3968 1/3.3968 0.294392 1+2.2799= 3.2799 1/3.2799 0.30488 And so on.. Assume b=-2.13 θ (θ-b) e − (θ − b ) 1+ e − (θ − b ) 1/(1+ e − (θ − b ) ) Pi -3.0 [-3.0(-2.13)] e + 0 .8 7 = 1+2.3869= 3.3869 1/3.3869 0.295254 -2.95 [-2.95(-2.13)] e +0.82 = 2.2705 1+2.2705= 3.2705 1/3.2705 0.305764 -2.0 [-2.0(-2.13)] e −0.13 = 1+0.8780= 1.8780 1/1.8780 0.532454 2.3869 81 0.8780 -1.0 [-1.0(-2.13)] e −1.13 = 0 [0(-2.13)] e −2.13 = +1.0 [1.0(-2.13)] e −3.13 = +2.0 [2.0(-2.13)] e −4.13 = +3.0 [3.0(-2.13)] e −5.13 = 0.3230 0.1188 0.0437 0.0160 0.0059 1+0.3230= 1.3230 1/1.3230 0.755839 1+0.1188= 1.1188 1/1.1188 0.893785 1+0.0437= 1.0437 1/1.0437 0.958113 1+0.0160= 1.0160 1/1.0160 0.984172 1+0.0059= 1.0059 1/1.0059 0.994118 14. Similarly, draw ICCs for items 2, 3, 4 & 5. 15. Alternatively, use BILOG. Responses and correct responses of 10 test takers for 5 items. • • • Rasch’s Single Parameter model Birnbaum’s Two Parameter model FredLord’s Three Parameter model Taking the eighth item and using the number right scores of 22, 21, ………………. 6 the number of test takers obtaining each score and amongst them the number who got the eighth item right, can be ascertained. The data for the same is given below: SCORE HAG 22 21 20 19 18 17 16 15 CORRES ZSCORE 3.338509 3.02795 2.717391 2.406832 2.096273 1.785714 1.475155 1.164596 NUMBER GETTING THIS SCORE 2 3 10 24 40 79 151 185 NUMBER GETTING THIS QN. RIGHT 2 3 10 22 36 72 141 171 PROPORTION GETTING THE RIGHT ANSWER 1 1 1 0.916666667 0.9 0.911392405 0.933774834 0.924324324 82 LAG 14 13 9 8 7 6 5 4 3 2 1 0.854037 0.543478 -0.69876 -1.00932 -1.31988 -1.63043 -1.94099 -2.25155 -2.56211 -2.87267 -3.18323 309 90 228 276 160 98 71 27 22 10 3 264 78 138 162 76 45 23 5 1 0 0 0.854368932 0.866666667 0.605263158 0.586956522 0.475 0.459183673 0.323943662 0.185185185 0.045454545 0 0 Interpretation of the Best Curve Fit to Q.8 using HAG and LAG to determine its Item Difficulty If we try to find the best fit for the statistics of Q.8 provided by the data, we get the model as MMF model which is: Y=(a*b+c*xd)/(b+xd) Where a=-.0015206493, b=144.46167, c=1.04367, d=2.5051428 X=total scores achieved by test takers and y=proportion of test takers getting Q.8 right when their score is x. Checking the model at x=22, we get y=0.981023, which is very close to the actual value. Hence it can be concluded that the model is very accurate. The correlation coefficient is 0.9986173 and the standard error is 0.0195901. Also checking against y=0.5 we get x=7.04913. The corresponding Z score is –1.3046, which denotes the item difficulty of Q.8. Interpretation of the Inverse Exponential Curve Fit to Q.8 to determine its Item Difficulty If we try to fit exponential model to the statistics of Q.8 provided by the data, we get the model as follows: Y=a*(1-exp(-b*x)) 83 Where a=1.53636, b=0.0528 X=total scores achieved by test takers and y=proportion of test takers getting Q.8 right when their score is x. Checking the model at x=22, we get y=1.055, which is very close to the actual value but still it is not as close as the previous model. Hence it can be concluded that the model is moderately accurate. The correlation coefficient is 0.991 and the standard error is 0.05514. Also checking against y=0.5 we get x=7.45586. The corresponding Z score is -1.1783 which denotes the item difficulty of Q.8. Note: The number right scores have also been converted into Z scores and the proportion of right answers for eighth item at each of these scores is also given in the table. A plot of this is attempted through Curve Expert software and the best fit (MMF Model) is arrived at. From this graph reading at 0.5 the difficulty of this item is estimated. Note that this is on a different metric scale. Group Invariance of Item Parameters 84 The group invariance of the item parameters is a very powerful feature of IRT. It says that the values of the item parameters are a property of the item, not of the group that responded to the item. These item parameters can be estimated from any segment of the item response curve. This means that these parameters can be estimated from any group of test takers. The term group invariance refers to this independence of the item parameter estimates from the distribution of ability. Thus, the item parameters are known to be group invariant. Unlike IRT, under CTT the item difficulty is the overall proportion of incorrect response to an item for a group of test takers. Thus, if an item with b=0 were responded to by a low-ability group, few of the test takers would get it correct. The item difficulty index under CTT would yield a low value say 0.3, as the item difficulty for this group. If the same item were responded to by a high ability group, most of the test takers would get it correct. The item difficulty index under CTT would yield a high value, say 0.8, indicating that the item was easy for this group. Thus, the value of the item difficulty index under CTT is not group invariant. Because of this, item difficulty as defined under IRT is easier to interpret because it has a consistent meaning that is independent of the group used to obtain its value. Note: Even though the item parameters are group invariant, this does not mean that the numerical values of the item parameter estimates yielded by the maximum likelihood estimation procedure for two groups of test takers taking the same items will always be identical. The obtained numerical values will be subject to variation due to sample size, how well-structured the data is, and the goodness-of-fit of the curve to the data. In addition, the item must be used to measure the same latent trait for both groups. An item’s parameters do not retain group invariance when taken out of context, i.e., when used to measure a different latent trait or with test takers from a population for which the test is inappropriate. Examples 1. Let us assume that two groups of test takers are chosen from a population of test takers. The first group has a range of ability scores from -3 to -1, with a mean of -2. The second group has a range of ability scores from +1 to +3 with a mean of +2. The observed proportion of correct response to a given item is computed from the item response data for every ability level within each of the two groups. These proportions of correct response are plotted as shown below: 85 Figure 3-3: Observed proportions of correct response for group 1 The maximum likelihood procedure is then used to fit an ICC to the data and numerical values of the item parameter estimates, b(1)=-.39 and a(1)=1.27, were obtained [b(1) indicates the value of b for group 1 and a(1) indicates the value of a for group 1]. The ICC defined by these estimates is then plotted over the range of ability encompassed by the first group as shown below: Figure 3-4: The ICC fitted to group 1 data 86 The process is repeated for the second group. The observed proportions of response for group 2 are shown below: correct Figure 3-5: Observed proportions of correct response for group 2 The maximum likelihood procedure is then used to fit an ICC to the data and numerical values of the item parameter estimates, b(2)=-.39 and a(2)=1.27, were obtained [b(1) indicates the value of b for group 1 and a(1) indicates the value of a for group 1]. The ICC defined by these estimates is then plotted over the range of ability encompassed by the second group as shown below: 87 Figure 3-6: The ICC fitted to group 2 data An important point of observation here is that, under these conditions when b(1)=b(2) and a(1)=a(2), the two groups yield the same values of the item parameters. Hence, the item parameters are group invariant. While this result may seem a bit unusual, its validity can be demonstrated easily by considering the process used to fit an ICC to the observed proportions of correct response. Since the first group had a low average ability (-2), the ability levels spanned by group 1 will encompass only a section of the curve, in this case, the lower left tail of the curve. Consequently, the observed proportions of correct response will range from very small to moderate values. When fitting a curve to this data, only the lower tail of the ICC is involved. Let us see Figure 3-3 for an example. Since group 2 had a high average ability (+2), it’s observed proportions of correct response range from moderate to very near 1. When fitting an ICC to this data, only the upper right-hand tail of the curve is involved, as shown in Figure 3-6. Since the same item was administered to both groups, the two curve-fitting processes were dealing with the same underlying ICC. Consequently, the item parameters yielded by the two analyses should be the same. The output shown below integrates the two groups into a single representation showing how the same ICC fits the two sets of proportions of correct response: Figure 3-7: The ICC fitted to the pooled data, b=-0.39 and a=1.27 2. Let us illustrate the use of BIRT software to prove group invariance. We are choosing upper bound and lower bound groups, upper bound from +3 to +1 and lower bound 88 from -1 to -3. Separate ICCs are drawn for these two groups and then a combined ICC is also shown: The output shown below indicates the Lower Bound and Upper Bound values for the two groups of abilities: The output shown below indicates the plots of the lower bound group of abilities: 89 The output shown below indicates the plots of the upper bound group of abilities: The output shown below indicates the ICC of the item for lower bound group of abilities: 90 The output shown below indicates the ICC of the item for upper bound group of abilities: The output shown below indicates the combined ICC of the item for the two groups of abilities (item has same item difficulty for the two groups of abilities): 91 It is observed that the individual ICCs and the combined ICC give rise to the same b values. For a sample of 25 items administered on 1000 test takers, item #5 has been taken to illustrate group invariance. Three methods are followed and they are as follows: 1. Higher Ability Group (HAG) of top 27% and Lower Ability Group (LAG) of bottom 27% of the total group are considered as two groups. For item #5 the proportion of right answers of score sets in HAG and LAG are taken out and the same are given below: HAG LAG SCORE CORRES ZSCORE NUMBER GETTING THIS SCORE 22 21 20 19 18 17 16 15 14 13 9 3.338509 3.02795 2.717391 2.406832 2.096273 1.785714 1.475155 1.164596 0.854037 0.543478 -0.69876 2 3 10 24 40 79 151 185 309 90 228 NO. OF PEOPLE GETTING THIS QN. RIGHT 2 3 8 20 33 60 116 123 196 59 96 PROPORTION GETTING THE RIGHT ANSWER 1 1 0.8 0.833333333 0.825 0.759493671 0.768211921 0.664864865 0.634304207 0.655555556 0.421052632 92 8 7 6 5 4 3 2 1 -1.00932 -1.31988 -1.63043 -1.94099 -2.25155 -2.56211 -2.87267 -3.18323 276 160 98 71 27 22 10 3 84 56 26 19 4 2 1 0 0.304347826 0.35 0.265306122 0.267605634 0.148148148 0.090909091 0.1 0 Interpretation of the Best Curve Fit to Q.5 to determine Item Difficulty using HAG and LAG If we try to find the best fit for the statistics of HAG of Q.5, provided by get the model as LINEAR model which is: the data, we Y=(a+b*x) Where a=0.10769,b=0.40946 x=total scores achieved by test takers and y=proportion of test takers right when their score is x. getting Q.5 Checking the model at x=22, we get y=1.00851, which is very close to value. Hence it can be concluded that the model is very accurate. the actual The correlation coefficient is 0.92574 and the standard error is 0.10724. against y=0.5, we get x=9.581. Also checking If we try to find the best fit for the statistics of LAG of Q.5, provided by get the model as LINEAR model which is: the data, we Y=(a+b*x) Where a=-.01833,b=0.04734 x=total scores achieved by test takers and y=proportion of test takers right when their score is x. getting Q.5 Checking the model at x=22, we get y=1.02334, which is not very close to the actual value, but still acceptable. Hence it can be concluded that the model is moderately accurate. 93 The correlation coefficient is 0.97291 and the standard error is 0.036129. Also checking against y=0.5 we get x=10.9471. Incidentally, the Z scores for these number right scores are also worked out. A plot of number right scores in each of the groups and the proportion of test takers getting the right answers in the group is plotted separately for HAG and LAG. Using the Curve Expert software, the best fit for both are found out. They seem to be in agreement with the total group of proportions of right answers. At proportion equal to 0.5 (its taken to correspond to approximately probability of getting the right answer as 0.5), the number right score (approximately indicating the ability) in each of these groups is calculated. These scores compare very well within limits of standard error, number right score of the total group with a proportion of 0.5. These values are 8.81 for the whole group, 9.030 for HAG and 9.047 for LAG. The graphs for LAG, HAG and the whole data are respectively shown below: 94 95 2. The top half and the bottom half of total population of test takers are taken as two groups following the same procedure. The results and the graphs are shown below: 96 TOP Half BOTTOM Half SCORE CORRES ZSCORE NUMBER GETTING THIS SCORE 22 21 20 19 18 17 16 15 14 13 12 3.338509 3.02795 2.717391 2.406832 2.096273 1.785714 1.475155 1.164596 0.854037 0.543478 0.232919 2 3 10 24 40 79 151 185 311 384 384 NUMBER GETTING THIS QN. RIGHT 2 3 8 20 33 60 116 123 196 230 206 11 -0.07764 409 194 0.474327628 10 9 8 7 6 5 4 3 2 1 -0.3882 -0.69876 -1.00932 -1.31988 -1.63043 -1.94099 -2.25155 -2.56211 -2.87267 -3.18323 355 308 276 160 98 71 27 22 10 3 160 119 84 56 26 19 4 2 1 0 0.450704225 0.386363636 0.304347826 0.35 0.265306122 0.267605634 0.148148148 0.090909091 0.1 0 PROPORTION GETTING THE RIGHT ANSWER 1 1 0.8 0.833333333 0.825 0.759493671 0.768211921 0.664864865 0.63022508 0.598958333 0.536458333 Interpretation of the Best Curve Fit to Q.5 to determine Difficulty using Top and Bottom Half Data Item If we try to find the best fit for the statistics of TOP half of Q.5 provided we get the model as LINEAR model which is: by the data, Y=(a+b*x) Where a=0.00523, b=0.04467 x=total scores achieved by test takers and y=proportion of test getting Q.5 right when their score is x. Checking the model at x=22, we get y=0.98802, which is very close to value. Hence it can be concluded that the model is very accurate. takers the actual 97 The correlation coefficient is 0.989188 and the standard error is 0.04055. Also checking against y=0.5 we get x=11.0754. If we try to find the best fit for the statistics of BOTTOM half of Q.5 the data, we get the model as LINEAR model which is: provided by Y=(a+b*x) Where a=-0.01254,b=0.04527 x=total scores achieved by test takers and y=proportion of test takers getting Q .5 right when their score is x. Checking the model at x=22, we get y=1.05504, which is not very close to the actual value, still acceptable. Hence it can be concluded that the model is moderately accurate. The correlation coefficient is 0.98353 and the standard error is 0.03247. against y=0.5 we get x=11.3204. The graphs for the top and bottom half data are respectively shown Also checking below: 98 3. Out of the total population of test takers, those who secure odd-numbered scores and those who secure even-numbered scores are taken as two distinctive groups. The same procedure follows for the groups. The values are shown below: 99 EVEN Scores ODD Scores SCORE CORRES Z-SCORE NUMBER GETTING THIS SCORE NUMBER GETTING THIS QN. RIGHT PROPORTION GETTING THE RIGHT ANSWER 6 -1.6304348 98 26 0.265306122 8 10 12 14 16 18 20 22 -1.0093168 -0.3881988 0.23291925 0.85403727 1.47515528 2.09627329 2.7173913 3.33850932 276 355 384 311 151 40 10 2 84 160 206 196 116 33 8 2 0.304347826 0.450704225 0.536458333 0.63022508 0.768211921 0.825 0.8 1 7 -1.3198758 160 56 0.35 9 11 13 15 17 19 21 -0.6987578 -0.0776398 0.54347826 1.16459627 1.78571429 2.4068323 3.02795031 308 409 384 185 79 24 3 119 194 230 123 60 20 3 0.386363636 0.474327628 0.598958333 0.664864865 0.759493671 0.833333333 1 Interpretation of the Best Curve Fit to Q.5 to determine Difficulty using Even and Odd Data Item If we try to find the best fit for the statistics of Q.5, according to even provided by the data, we get the model as LINEAR model which is: scores Y=a+b*x Where a=-0.00554, b=0.04472 x=total scores achieved by test takers and y=proportion of test takers right when their score is x. Checking the model at x=22, we get y=0.978463, which is very close to value. Hence it can be concluded that the model is very accurate. getting Q .5 the actual The correlation coefficient is 0.991148 and the standard error is 0.04322. Also checking against y=0.5 we get x=11.3027.. 100 If we try to find the best fit for the statistics of Q.5, according to odd scores provided by the data, we get the model as RATIONAL FUNCTION model which is: Y=(a+b*x)/(1+c*x+d*x2) Where a=0.000305,b=0.06334,c=0.062575,d=-0.00219 x=total scores achieved by test takers and y=proportion of test takers right when their score is x. Checking the model at x=22, we get y=1.06015, which is very close to value. Hence it can be concluded that the model is very accurate. getting Q .5 the actual The correlation coefficient is 0.99791 and the standard error is 0.024406. Also checking against y=0.5 we get x=11.2546. The graphs for even and odd scores are respectively shown below: 101 Estimating a Test Taker’s Ability The primary purpose of administering a test to a test taker, under IRT, is to locate the test taker on the ability scale. By performing this process the test taker can be evaluated in terms of how much underlying ability he or she possesses. Following this, comparisons among test takers can be made to assign grades, award scholarships etc. In this chapter we will focus 102 upon the test takers and the procedures for estimating an ability score (parameter) for a test taker. The test used to measure an unknown latent trait will consist of N items, each of which measures some facet of the trait. We have earlier dealt with item parameters and their estimation and while doing that we assumed that the ability parameter of each test taker was known. Conversely, to estimate a test taker’s unknown ability parameter, we will assume that the numerical values of the item parameters are known. A direct consequence of this assumption is that the metric of the ability scale will be the same as the metric of the known item parameters. As seen earlier, when the test is taken, a test taker responds to each of the N items in the test, and the responses will be dichotomously scored. The result will be a score of either a 1 or a zero for each item in the test. This set of 1’s and 0’s for the N items is called the test taker’s item response vector. The item response vector thus obtained and the known item parameters will then be used to estimate the test taker’s unknown ability parameter. Ability Estimation Parameters In IRT maximum likelihood procedures are used to estimate a test taker’s ability. This procedure is an iterative process as in the case of estimating item parameters. It begins with some a priori value for the ability of the test taker and the known values of the item parameters. These are used to compute the probability of correct response to each item for that test taker. Then an adjustment to the ability estimate is obtained that improves the agreement of the computed probabilities with the test taker’s item response vector. The process is repeated until the adjustment becomes small enough that the change in the estimated ability is negligible. The result is an estimate of the test taker’s ability parameter. This process is then repeated separately for each test taker taking the test. The estimation equation is as shown below: N ∧ ∧ θ s +1 = θ s + ∑ a [u i =1 N i i ∧ − Pi (θ s )] ∧ ∑ a P (θ 2 i =1 i ∧ s )Qi (θ s ) Where ^ θs = is the estimated ability of a test taker within iteration s 103 ai = is the discrimination parameter of item i where i=1,2,3……N ui = is the response made by the test taker to an item i = 1 for a correct response = 0 for an incorrect response ^ Pi(θs) = is the probability of a correct response to an item i, under the given ^ ICC model at ability level θ within iteration s ^ ^ Qi(θs) = 1 - Pi(θs) is the probability of an incorrect response to an item i, ^ under the given ICC model at ability level θ within iterations ^ Initially, θs on the right hand side of the equal to sign is set to some arbitrary value, such as 1. The probability of correct response to each of the N items in the test is calculated at this ability level using the known item parameters in the given ICC model. Then the second term to the right of the equal sign is evaluated. AD, is the adjustment term and the adjusted factor is ^ denoted by ADθ. The value of θs+1 ^ ^ on the left side of the equal sign is obtained by adding ADθ to θs. This value θs+1 ^ becomes θs in the next iteration. The numerator of the adjustment term contains ^ the essence of the procedure. It should be noted that (ui - Pi(θs)) is the difference between the test taker’s item response and the probability of correct ^ response at an ability level of θs. As the ability estimate gets closer to the test ^ taker’s ability, the sum of the differences between ui and Pi(θs) gets smaller. ^ Thus, the goal is to find the ability estimate yielding values of Pi(θs) for all items simultaneously that minimizes this sum. When this happens, the ADθ term ^ becomes as small as possible and the value of θs+1 will not change from ^ 104 iteration to iteration. This final value of θs+1 is then used as the test taker’s estimated ability. The ability estimate will be in the same metric as the numerical values of the item parameters. A point to be noted here is that the estimation equation given above can be used with all three ICC models, although the Three Parameter model requires a slight modification. Let us illustrate the ability estimation process by looking into a test of 5 items administered under Two Parameter model on 10 test takers. Under this model the known item parameters are as shown in the table below: b a +1.499 +0.424 +2.292 +0.920 -0.279 1.42 1.42 1.42 1.42 1.42 The test taker’s responses are given in the table below: Item1 Item2 Item3 Item4 Item5 Test Taker1 Test Taker2 Test Taker3 Test Taker4 Test Taker5 Test Taker6 Test Taker7 Test Taker8 Test Taker9 Test Taker10 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 Let us look at test taker 3. The ui values are given below: 105 Item1 Item2 Item3 Item4 Item5 Test Taker3 0 ui =0 1 ui=1 0 ui =0 1 ui =1 1 ui =1 ^ The a priori estimate of ability for test taker #3 is set to θs=1.0. First iteration is as shown below: Next Estimate ^ a ^ θs -a(θb) 1.42 1 0 0 1.42 1.42 1 1 1 1.42 1 1 1.42 1 0.71 0.8236 1.8318 0.1136 1.8176 Item No b u 1 1.50 1 2 3 0.42 2.29 4 0.92 0.28 5 p=1/(1+ea(θ-b) ) q=1-p a(u-p) Correction a *p*q Factor 2.033991 0.329599 0.670401 0.95197 0.44555 0.438849 6.245118 0.695 0.138024 0.305 0.861976 -0.9869 -0.19599 0.42743 0.2399 0.892615 0.528369 0.471631 0.669715 0.50248 0.162415 0.860278 0.139722 0.198405 0.24237 0.637196 1.85772 e-a(θ-b) θs+1 2 0.343 1.3429985 Next Estimate ^ Item No 1 2 3 4 5 b u a ^ θs q=1-p a(u-p) 1.50 0.42 2.29 0.92 0.28 1 0 0 1 1.42 1.42 1.42 1.42 1.343 1.343 1.343 1.343 0.22294 -1.3107 1.34474 -0.6007 1.249746 0.269642 3.837189 0.54845 0.444495 0.787624 0.206732 0.645807 0.555505 0.212376 0.793268 0.354193 0.788818 -1.11843 -0.29356 0.502954 0.49789 0.33729 0.33068 0.46123 1 1.42 1.343 -2.3047 0.099793 0.909262 0.090738 0.128848 0.16636 0.008634 1.79345 -a(θb) -a(θ-b) e p=1/(1+ea(θ-b) ) Correction a *p*q Factor θs+1 2 0.00481 106 1.3478144 Next Estimate ^ Item No 1 2 3 4 5 b u a ^ θs q=1-p a(u-p) 1.50 0.42 2.29 0.92 0.28 1 0 0 1 1.42 1.42 1.42 1.42 1.348 1.348 1.348 1.348 0.21584 -1.3178 1.33764 -0.6078 1.240904 0.267734 3.810041 0.544569 0.446249 0.788809 0.207898 0.64743 0.553751 0.211191 0.792102 0.35257 0.786327 -1.12011 -0.29522 0.50065 0.49827 0.33591 0.33205 0.46027 1 1.42 1.348 -2.3118 0.099087 0.909846 0.090154 0.128018 0.1654 -0.00033 1.79191 -a(θb) p=1/(1+ea(θ-b) ) -a(θ-b) e Correction a *p*q Factor -0.00018 At this point, the procedure is terminated because the value of the adjustment 0.002 is very small. Thus, the test taker’s estimated ability is 1.348. So, the best way to do that is estimate it. However, this does not prevent us from conceptualizing such a parameter. Fortunately, one can obtain a standard error of the estimated ability that provides some indication of the precision of the estimate. The underlying principle is that a test taker, hypothetically, could take the same test a large number of times, assuming that he does not remember ^ how he answered the previous test items. An ability estimate θ would be obtained from each testing. The standard error is a measure of the variability of ^ the values of θ around the test taker’s unknown parameter value θ. For other scores of test takers namely 4, 2 & 1(in separate worksheets) same procedure is adopted. In the present case, an estimated standard error can be computed using the equation given below: ∧ S .E (θ ) = 1 N ∧ ∧ ∑ a P(θ )Q(θ ) 2 θs+1 2 i =1 In the equation given above, the term under the square root sign is the denominator of the estimation equation. As a result, the estimated standard error can be obtained as a side product of estimating the test taker’s ability. In the illustrated example given above, it will be calculated as shown below: 107 1.3478164 ∧ S .E (θ ) = 1 = 0.746 1.793 Thus, the test taker’s ability is not estimated very precisely because the standard error 0.746 is very large. This is primarily due to the fact that only five items were used here and one would not expect a very good estimate. Looking into the PH3 output of BILOG, test taker #3 has an ability of 1.266 as against 1.347. There are two cases for which the maximum likelihood estimation procedure fails to yield an ability estimate. First, when a test taker answers none of the items correctly, the corresponding ability estimate is negative infinity. Second, when a test taker answers all the items in the test correctly, the corresponding ability estimate is positive infinity. In both of these cases it is impossible to obtain an ability estimate for the test taker (the computer literally cannot compute a number as big as infinity). Consequently, the computer programs used to estimate ability must protect themselves against these two conditions. When they detect either a test score of zero or a perfect test score, they will eliminate the test taker from further analysis and set the estimated ability to some symbol such as ****** to indicate what has happened. Item Invariance of a Test Taker’s Ability Estimate Another basic principle of IRT is that the test taker’s ability is invariant with respect to the items used to determine it. This principle rests upon two conditions: first, all the items measure the same underlying latent trait; second, the values of all the item parameters are in a common metric. To illustrate this principle, assume that a test taker has an ability score of zero, which places him at the middle of the ability scale. Now, if a set of ten items having an average difficulty of -2 were administered to this test taker, the item ^ responses could be used to estimate the examinee’s ability, yielding θ1 for this test. Then if a second set of ten items having an average difficulty of +1 were administered to this test taker, these item responses could be used to estimate ^ the test taker’s ability, yielding θ2 for this second test. Under the item invariance ^ ^ 108 principle, θ1= θ2; that is the two sets of items should yield the same ability estimate, within sampling variation, for the test taker. In addition, there is no requirement that the discrimination parameters be the same for the two sets of items. This principle is just a reflection of the fact that the ICC spans the whole ability scale. Just as any sub-range of the ability scale can be used in the estimation of item parameters, the corresponding segments of several ICCs can be used to estimate a test taker’s ability. Items with a high average difficulty will have a point on their ICCs that corresponds to the ability of interest. Similarly, items with a low average difficulty will have a point on their ICCs that corresponds to the ability of interest. Consequently, either set of items can be used to estimate the ability of test takers at that point. In each set, a different part of the ICC is involved, but that is acceptable. The practical implication of this principle is that a test located anywhere along the ability scale can be used to estimate a test taker’s ability. For instance, a test taker could take a test that is “easy” or a test that is “hard” and obtain, on the average, the same estimated ability. This is in sharp contrast to CTT, where such a test taker would get a high test score on the easy test, a low score on the hard test, and there would be no way of ascertaining the test taker’s underlying ability. Under IRT, the test taker’s ability is fixed and invariant with respect to the items used to measure it. A word of caution here with respect to the meaning of the word “fixed” is that a test taker’s ability is fixed only in the sense that it has a particular value in a given context. For example, if a test taker took the same test several times assuming he does not remember the items or the responses from test to test then the test taker’s ability would be fixed. However, if the test taker received remedial instruction between the tests or if there were carryover effects, the test taker’s underlying ability level would be different for each testing. Thus, the test taker’s underlying ability level is not immutable. There are a number of applications of IRT that depend upon a test taker’s ability level changing as a function of changes in the educational context. The item invariance of a test taker’s ability and the group invariance of an item’s parameters are two facets of the invariance principle of IRT. This principle is the basis for a number of practical applications of the theory. A twenty-item test administered to 76 test takers yielded the following true scores for each one of them. Let us look at a test taker having a score of 15. His true score works out to be 10.41. In terms of percentage, this is equal to 10.41/20 = 52.05%. When the same test taker takes only the test with odd numbered items, the true score comes out to be 5.28. Similarly, his true score on the even numbered items comes out to be 5.13. In terms of percentages, they will be 5.28/10=52.8% and 5.13/10=51.3% respectively. The error in the estimate of the percentage for the same test taker, if he takes only odd or even numbered items, works out to 52.8-52.05=0.75%. And for odd, the error is 52.05-51.3=0.75%. This is negligible and can be accounted for a small sample. Thus, item invariance is proved from this example. Hence, a test taker’s true score is not dependent on the items he takes. 109 Test Taker No Tried No Right Ability 1 20 18 1.4636 2 20 18 1.4636 3 20 18 1.4636 4 20 18 1.4636 5 20 17 1.1712 6 20 17 1.1712 7 20 17 1.1712 8 20 17 1.1712 9 20 16 0.8881 10 20 16 0.8881 11 20 16 0.8881 12 20 16 0.8881 13 20 16 0.8881 14 20 15 0.6133 15 20 15 0.6133 16 20 15 0.6133 17 20 15 0.6133 18 20 15 0.6133 19 20 15 0.6133 20 20 15 0.6133 21 20 15 0.6133 22 20 15 0.6133 23 20 15 0.6133 24 20 15 0.6133 25 20 15 0.6133 26 20 14 0.3456 True Score Odd TS Even TS 11.77 5.82 5.95 11.77 5.82 5.95 11.77 5.82 5.95 11.77 5.82 5.95 11.31 5.58 5.72 11.31 5.58 5.72 11.31 5.58 5.72 11.31 5.58 5.72 10.85 5.35 5.50 10.85 5.35 5.50 10.85 5.35 5.50 10.85 5.35 5.50 10.85 5.35 5.50 10.41 5.13 5.28 10.41 5.13 5.28 10.41 5.13 5.28 10.41 5.13 5.28 10.41 5.13 5.28 10.41 5.13 5.28 10.41 5.13 5.28 10.41 5.13 5.28 10.41 5.13 5.28 10.41 5.13 5.28 10.41 5.13 5.28 10.41 5.13 5.28 110 27 20 14 0.3456 28 20 14 0.3456 29 20 14 0.3456 30 20 14 0.3456 31 20 14 0.3456 32 20 14 0.3456 33 20 13 0.0839 34 20 13 0.0839 35 20 13 0.0839 36 20 13 0.0839 37 20 13 0.0839 38 20 13 0.0839 39 20 13 0.0839 40 20 13 0.0839 41 20 13 0.0839 42 20 13 0.0839 43 20 13 0.0839 44 20 12 -0.1726 45 20 12 -0.1726 46 20 12 -0.1726 47 20 12 -0.1726 48 20 12 -0.1726 49 20 12 -0.1726 50 20 12 -0.1726 51 20 11 -0.4247 52 20 11 -0.4247 9.97 4.91 5.06 9.97 4.91 5.06 9.97 4.91 5.06 9.97 4.91 5.06 9.97 4.91 5.06 9.97 4.91 5.06 9.97 4.91 5.06 9.54 4.70 4.85 9.54 4.70 4.85 9.54 4.70 4.85 9.54 4.70 4.85 9.54 4.70 4.85 9.54 4.70 4.85 9.54 4.70 4.85 9.54 4.70 4.85 9.54 4.70 4.85 9.54 4.70 4.85 9.54 4.70 4.85 9.13 4.49 4.64 9.13 4.49 4.64 9.13 4.49 4.64 9.13 4.49 4.64 9.13 4.49 4.64 9.13 4.49 4.64 9.13 4.49 4.64 8.72 4.29 4.44 8.72 4.29 4.44 111 53 20 11 -0.4247 54 20 11 -0.4247 55 20 11 -0.4247 56 20 11 -0.4247 57 20 11 -0.4247 58 20 11 -0.4247 59 20 11 -0.4247 60 20 11 -0.4247 61 20 11 -0.4247 62 20 10 -0.6736 63 20 10 -0.6736 64 20 10 -0.6736 65 20 10 -0.6736 66 20 10 -0.6736 67 20 9 -0.9203 68 20 9 -0.9203 69 20 9 -0.9203 70 20 9 -0.9203 71 20 9 -0.9203 72 20 9 -0.9203 73 20 8 -1.1654 74 20 8 -1.1654 75 20 7 -1.4095 76 20 6 -1.6539 8.72 4.29 4.44 8.72 4.29 4.44 8.72 4.29 4.44 8.72 4.29 4.44 8.72 4.29 4.44 8.72 4.29 4.44 8.72 4.29 4.44 8.72 4.29 4.44 8.72 4.29 4.44 8.33 4.09 4.24 8.33 4.09 4.24 8.33 4.09 4.24 8.33 4.09 4.24 8.33 4.09 4.24 7.94 3.90 4.04 7.94 3.90 4.04 7.94 3.90 4.04 7.94 3.90 4.04 7.94 3.90 4.04 7.94 3.90 4.04 7.56 3.71 3.85 7.56 3.71 3.85 7.19 3.52 3.67 6.83 3.34 3.48 112 Test Calibration While assuming the metric scale to be known, the numerical values of the item parameters and the test taker’s ability parameters can be expressed in this metric. Test constructors while writing an item, know what trait they want the item to measure and whether the item is designed to function among low, medium or high ability test takers. But it is not possible to determine the values of the item’s parameters a priori. In addition, when a test is administered to a group of test takers, it is not known in advance how much of the latent trait each of the test takers possesses. As a result, a major task is to determine the values of the item parameters and test taker’s ability in a metric for the underlying latent trait. In IRT, this task is called test calibration, and it provides a frame of reference for interpreting test results. Test calibration is accomplished by administering a test to a group of M examinees and dichotomously scoring the test taker’s responses to the N items. Then mathematical procedures are applied to the item response data in order to create an ability scale that is unique to the particular combination of test items and test takers. Then the values of the item parameter estimates and the test taker’s estimated abilities are expressed in this metric. Once this is accomplished, the test has been calibrated, and the test results can be interpreted through the constructs of IRT. Test Calibration Process The procedure used to calibrate a test was proposed by Birnbaum in 1968 and has been implemented in widely used computer programs such as BICAL (Wright and Mead, 1976) and LOGIST (Wingersky, Barton and Lord, 1982). The Birnbaum paradigm is an iterative procedure employing two stages of maximum likelihood estimation. In one stage, the parameters of the N items in the test are estimated, and in the second stage, the ability parameters of the M test takers are estimated. The two stages are performed iteratively until stable sets of parameter estimates are obtained. At this point, the test has been calibrated and an ability scale metric defined. Within the first stage of the Birnbaum paradigm, the estimated ability of each test taker is treated as if it is expressed in the true metric of the latent trait. Then the parameters of each item in the test are estimated via the maximum likelihood procedure. This is done one item at a time, because an underlying assumption is that the items are independent of each other. The result is a set of values for the estimates of the parameters of the items in the test. The second stage assumes that the item parameter estimates yielded by the first stage are actually the values of the item parameters. Then, the ability of each test taker is estimated using the maximum likelihood procedure. It is assumed that the ability of each test taker is independent of all other test takers. Hence, the ability estimates are obtained one test taker at 113 a time. The two-stage process is repeated until some suitable convergence criterion is met. The overall effect is that the parameters of the N test items and the ability levels of the M test takers have been estimated simultaneously, even though they were done one at a time. This clever paradigm reduces a very complex estimation problem to one that can be implemented on a computer. The Metric Problem An unfortunate feature of the Birnbaum paradigm is that it does not yield a unique metric for the ability scale. This means that the midpoint and the unit of measurement of the obtained ability scale are indeterminate implying that many different values work equally well. In technical terms, the metric is unique up to a linear transformation. As a result, it is necessary to “anchor” the metric via arbitrary rules for determining the midpoint and unit of measurement of the ability scale. How this is done is up to the persons implementing the Birnbaum paradigm in a computer program. In the BICAL computer program, this anchoring process is performed after the first stage is completed. Thus, each of two stages within iteration is performed using a slightly different ability scale metric. As the overall iterative process converges, the metric of the ability scale also converges to a particular midpoint and unit of measurement. The crucial feature of this process is that the resulting ability scale metric depends upon the specific set of items constituting the test and the responses of a particular group of test takers to that test. It is not possible to obtain estimates of the test taker’s ability and of the item parameters in the true metric of the underlying latent trait. The best we can do is obtaining a metric that depends upon a particular combination of test takers and test items. Summary of the Test Calibration Process To obtain calibrated items, one has to: • • • Write them, Estimate their parameters, and Make sure that the estimates are on the same scale. The end product of the test calibration process is the definition of an ability scale metric. Under the Rasch model, this scale has a unit of measurement of 1 and a midpoint of zero. Superficially this looks exactly the same as the ability scale metric used in previous chapters. However, it is not the metric of the underlying latent trait. The obtained metric depends upon the item responses yielded by a particular combination of test takers and test items being subjected to the Birnbaum paradigm. Since the true metric of the underlying latent trait 114 cannot be determined, the metric yielded by the Birnbaum paradigm is used as if it were the true metric. The obtained item difficulty values and the test taker’s ability are interpreted in this metric. Thus, the test has been calibrated. The outcome of the test calibration procedure is to locate each test taker and item along the obtained ability scale. In the present example, item 5 had a difficulty of -1 and test taker 10 had an ability estimate of -0.91. Therefore, the probability of test taker 10 answering item 5 correctly is approximately 0.5. The capability to locate items and test takers along a common scale is a powerful feature of item response theory. This feature allows one to interpret the results of a test calibration within a single framework and provides meaning to the values of the parameter estimates. The Likelihood Function A test taker taking a test under Single Parameter model, with k items can obtain one of k + 1 observed scores (0, 1, , , , , k). However, the number of the possible responses to the test (the response patterns) is much larger: 2k. For a test of 5 items, there are 32 distinct response patterns. Each of them has a certain probability. Because every test taker must have some response pattern and the response patterns are mutually exclusive, their probabilities will sum to 1. This is true for the data set as a whole, and it is also true at any specific level of ability. Let us look at how to calculate the probability that a test taker of ability θj will respond to the test with a certain pattern, e.g. (True, True, False, True, False). We already know how to calculate the probability of each response in the pattern separately: P (θj, b1), P (θj, b2). . . Q (θj, b5), but what is their joint probability? IRT makes the important assumption of local independence. This means that the responses given to the separate items in a test are mutually independent, when ability is given. The actually observed responses may be correlated, even strongly correlated — but this is only because the responses of test takers with widely different abilities have been put together, ignoring ability. If we consider only test takers having the same latent ability, the correlations between the responses are supposed to vanish. Now, because P (θj, b1), P(θj, b2), . . . , Q(θj, b5) are functions of θj, we can multiply them to obtain the probability of the whole pattern. This follows from the assumption of conditional independence, according to which the responses given to the individual items in a test are mutually independent given θ. The function is as shown below: L(θ ) = ∏ Pi (θ , bi ) Qi (θ , bi )1−ui ui i 115 Where ui ε (0, 1) is the score on item i, is called the likelihood function. It is the probability of a response pattern given the ability θ and of course, the item parameters. There is one likelihood function for each response pattern, and the sum of all such functions equals 1 at any value of θ. The likelihood is in fact a probability. The subtle difference between the two concepts has more to do with how we use them than with what they really are. Probabilities usually point from a theoretically assumed quantity to the data that may be expected to emerge: thus, the IRT model predicts the probability of any response to a test given the true ability of the test taker. The likelihood works in the opposite direction: it is used by the same IRT model to predict latent ability from the observed responses. The Maximum Likelihood Estimate of Ability Let us look at a more conventional approach to ability estimation, which is based on the ^ principle of maximum likelihood. The ability, say θ, which has the highest likelihood given the observed pattern (and the item parameters), will become the ability estimate. Figure: Finding the ability estimates by maximum likelihood In the figure above, the likelihood inunctions shown in blue for the response patterns (T,F,F,F,F), (T,T,F,F,F), (T,T,T,F,F), and (T,T,T,T,F). It is easy to see that the likelihood functions peak exactly at the ability estimates found earlier. Hence, maximum likelihood will produce the same estimates of ability as the previous method. In the Single Parameter model, 116 the ability estimate depends only on how many items were answered correctly, not on which items got the correct responses. This does not mean that the likelihood functions are invariant to the response pattern; it only means that the likelihood functions for patterns having the same number of correct responses peak at the same ability level. Figure : Likelihood functions for various response patterns having the same total score of 1 The above figure shows the likelihood functions for the five response patterns having the same total score of 1. All five functions lead to the same ability estimate even if they are not the same functions. It is easy to see why the likelihood functions are different: when a test taker can only get one item right, we expect this to be the easiest item, and we would be somewhat surprised if it turns out to be the most difficult item instead. The accompanying applet lets you manipulate the item difficulties and choose different response patterns simultaneously. To finish with the Single Parameter model, there is yet another applet that brings together most of what we have learnt so far: the item response functions, the test response function, the likelihood function, and two alternative ways to estimate ability, the test information function, and the standard error of measurement. Test and Item Analysis through IRT using Application Software 117 It was mentioned that IRT enables fairly accurate test and item analysis. Traditional test analyses will yield all CTT characteristics like Mean/Median/Mode, S.D, Variance, S.E of Mean, Range of Scores, Quartiles, Skewness and Kurtosis. These are exactly the descriptive statistics. The first output from application software through IRT yields all the above and a proportion of the correct responses to every item, item test, score correlation, point biserial to give discrimination. But, important outputs follow namely that of item characteristic estimates of parameters. Depending upon either a One, Two or Three Parameter models, the output will give threshold (b=item difficulty), slope (a=discrimination) and asymptote (c=guessing parameter). This can be to any decimal of accuracy needed but in the maximum likelihood estimates using successive approximation the last two trials will be made not to differ more than 0.001 or 0.002 etc. S.E of each of these estimates is also a part of the output; so is the Chi-square confirming this goodness of fit of the exponential curve to the data. It must be noted that the numerical values of these estimates are on a metric from -3 to +3 or -4 to +4 and actual values may be different for these items of different models. Thus, the values for item characteristics and test taker ability are specific to the model chosen. These are the location and shape parameters. While calibrating the test items, it is essential to specify a model namely Rasch, Birnbaum or Fred Lord. Based on this specification items (item characteristics) can be further used for these characteristics. There are several software available in the market for securing a license to use. They are namely, BICAL (Benjamin Wright), BILOG (Scientific Software International) and MULTILOG etc. In addition, Frank Baker has provided a software along with an eBook which enables the understanding of various concepts and principles (otherwise very difficult to prove mathematically) underlying IRT. This is very valuable software available free on the Net. This eBook also has BIRT software (Basics of IRT by Baker). The readers are encouraged to use this software to understand, verify and clarify such difficult concepts through practical exercises. The BICAL software has been illustrated through an example given earlier as Benjamin Wright’s Mathematical Formulation. The detailed procedure for using the BIRT software is given in the Appendix. Examples Following are two examples of tests run through BILOG: 1. Test of 5 items administered on 10 test takers • A complete report illustrating both CTT and IRT and their outputs can be seen by clicking here. 2. Test of 20 items administered on 76 test takers A complete set of outputs adopting all three models illustrating IRT can be seen by clicking on 118 Outputs for a Single Parameter model are: 1 BILOG-MG V3.0 REV 19990104.1300 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL DISTRIBUTED BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 7383 N. LINCOLN AVENUE, SUITE 100 CHICAGO, IL 60646 (800) 247-6113 (847) 675-0720 WWW: http:://www.ssicentral.com PROGRAM COPYRIGHT HELD BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 2002 DISTRIBUTION OR USE UNAUTHORIZED BY SSI, INC. IS PROHIBITED 1 *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 1 *** sample 20 by 76 >GLOBAL DFName = 'C:\drvn\ss.dat', NPArm = 1, LOGistic, 119 SAVe; FILE ASSIGNMENT AND DISPOSITION =============================== SUBJECT DATA INPUT FILE C:\DRVN\SS.DAT BILOG-MG MASTER DATA FILE MF.DAT WILL BE CREATED FROM DATA FILE CALIBRATION DATA FILE CF.DAT WILL BE CREATED FROM DATA FILE ITEM PARAMETERS FILE IF.DAT WILL BE CREATED THIS RUN CASE SCALE-SCORE FILE CASE WEIGHTING SF.DAT NONE EMPLOYED ITEM RESPONSE MODEL 1 PARAMETER LOGISTIC LOGIT METRIC (I.E., D = 1.0) >SAVE MASter = 'ruchi.MAS', CALib = 'ruchi.CAL', PARm = 'ruchi.PAR', SCOre = 'ruchi.SCO', COVariance = 'ruchi.COV', TSTat = 'ruchi.TST', 120 ISTat = 'ruchi.IST'; BILOG-MG SAVE FILES [OUTPUT FILES] BILOG-MG MASTER BINARY DATA RUCHI.MAS CALIBRATION BINARY DATA FILERUCHI.CAL CLASSICAL ITEM STATISTICS RUCHI.IST ITEM PARAMETERS FILE RUCHI.PAR CASE SCALE-SCORE FILE RUCHI.SCO ESTIMATED COVARIANCE FILE RUCHI.COV TEST INFORMATION FILE RUCHI.TST >LENGTH NITems = (20); TEST LENGTH SPECIFICATIONS ========================== MAIN TEST LENGTHS: 20 >INPUT NTOtal = 20, NALt = 3, 121 NIDchar = 10; DATA INPUT SPECIFICATIONS ========================= NUMBER OF FORMAT LINES 1 NUMBER OF ITEMS IN INPUT STREAM 20 NUMBER OF RESPONSE ALTERNATIVES 3 NUMBER OF SUBJECT ID CHARACTERS 10 NUMBER OF GROUPS 1 NUMBER OF TEST FORMS 1 TYPE OF DATA SINGLE-SUBJECT DATA, NO CASE WEIGHTS MAXIMUM SAMPLE SIZE FOR ITEM CALIBRATION 10000000 ALL SUBJECTS INCLUDED IN RUN >ITEMS ; TEST SPECIFICATIONS =================== >TEST1 TNAme = 'TEST0001', INUmber = (1(1)20); TEST NUMBER: 1 TEST NAME: TEST0001 NUMBER OF ITEMS: 20 ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM 122 NUMBER NAME NUMBER NAME NUMBER NAME NUMBER NAME ----------------------------------------------------------------------1 ITEM0001 7 ITEM0007 13 ITEM0013 19 ITEM0019 2 ITEM0002 8 ITEM0008 14 ITEM0014 20 ITEM0020 3 ITEM0003 9 ITEM0009 15 ITEM0015 4 ITEM0004 10 ITEM0010 16 ITEM0016 5 ITEM0005 11 ITEM0011 17 ITEM0017 6 ITEM0006 12 ITEM0012 18 ITEM0018 ----------------------------------------------------------------------- FORM SPECIFICATIONS =================== ITEMS READ ACCORDING TO SPECIFICATIONS ON THE ITEMS COMMAND FORMAT FOR DATA INPUT IS: (10A1, 20A1) OBSERVATION # 1 WEIGHT: 1.0000 ID : Examinee01 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 20.000 18.000 123 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 OBSERVATION # 2 WEIGHT: 1.0000 ID : Examinee02 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 20.000 18.000 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 76 OBSERVATIONS READ FROM FILE: C:\DRVN\SS.DAT 76 OBSERVATIONS WRITTEN TO FILE: RUCHI.MAS ITEM STATISTICS FOR SUBTEST TEST0001 ITEM*TEST CORRELATION 124 ITEM NAME #TRIED #RIGHT PCT LOGIT PEARSON BISERIAL ------------------------------------------------------------------------1 ITEM0001 76.0 43.0 56.6 -0.26 0.366 0.462 2 ITEM0002 76.0 66.0 86.8 -1.89 0.116 0.184 3 ITEM0003 76.0 56.0 73.7 -1.03 0.212 0.286 4 ITEM0004 76.0 60.0 78.9 -1.32 0.089 0.125 5 ITEM0005 76.0 28.0 36.8 0.54 0.213 0.272 6 ITEM0006 76.0 61.0 80.3 -1.40 0.238 0.341 7 ITEM0007 76.0 64.0 84.2 -1.67 0.222 0.335 8 ITEM0008 76.0 47.0 61.8 -0.48 0.320 0.408 9 ITEM0009 76.0 41.0 53.9 -0.16 -0.019 -0.024 10 ITEM0010 76.0 35.0 46.1 0.16 0.430 0.539 11 ITEM0011 76.0 34.0 44.7 0.21 0.341 0.429 12 ITEM0012 76.0 46.0 60.5 -0.43 0.303 0.385 13 ITEM0013 76.0 63.0 82.9 -1.58 0.099 0.146 14 ITEM0014 76.0 39.0 51.3 -0.05 0.074 0.093 15 ITEM0015 76.0 57.0 75.0 -1.10 0.141 0.192 16 ITEM0016 76.0 54.0 71.1 -0.90 0.019 0.025 17 ITEM0017 76.0 70.0 92.1 -2.46 0.049 0.089 18 ITEM0018 76.0 59.0 77.6 -1.24 0.009 0.013 19 ITEM0019 76.0 52.0 68.4 -0.77 0.039 0.051 20 ITEM0020 76.0 4.0 5.3 2.89 0.187 0.388 ------------------------------------------------------------------------- 296 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-1 2216 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-1 11/01/2011 15:59:46 PH1 PH2 1 125 BILOG-MG V3.0 REV 19990329.1300 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 2 *** sample 20 by 76 >CALIB ACCel = 1.0000; CALIBRATION PARAMETERS ====================== MAXIMUM NUMBER OF EM CYCLES: 20 MAXIMUM NUMBER OF NEWTON CYCLES: CONVERGENCE CRITERION: 0.0100 ACCELERATION CONSTANT: 1.0000 2 LATENT DISTRIBUTION: NORMAL PRIOR FOR EACH GROUP PLOT EMPIRICAL VS. FITTED ICC'S: NO DATA HANDLING: DATA ON SCRATCH FILE CONSTRAINT DISTRIBUTION ON SLOPES: NO CONSTRAINT DISTRIBUTION ON THRESHOLDS: NO 1 -------------------------------------------------------------------------------- ****************************** 126 CALIBRATION OF MAINTEST TEST0001 ****************************** METHOD OF SOLUTION: EM CYCLES (MAXIMUM OF 20) FOLLOWED BY NEWTON-RAPHSON STEPS (MAXIMUM OF 2) QUADRATURE POINTS AND PRIOR WEIGHTS: 1 2 3 4 5 POINT -0.4000E+01 -0.3429E+01 -0.2857E+01 -0.2286E+01 -0.1714E+01 WEIGHT 0.7648E-04 0.6387E-03 0.3848E-02 0.1673E-01 0.5245E-01 6 7 8 9 10 POINT -0.1143E+01 -0.5714E+00 -0.8882E-15 0.5714E+00 0.1143E+01 WEIGHT 0.1186E+00 0.1936E+00 0.2280E+00 0.1936E+00 0.1186E+00 11 12 13 14 15 POINT 0.1714E+01 0.2286E+01 0.2857E+01 0.3429E+01 0.4000E+01 WEIGHT 0.5245E-01 0.1673E-01 0.3848E-02 0.6387E-03 0.7648E-04 [E-M CYCLES] 127 -2 LOG LIKELIHOOD = CYCLE 1; LARGEST CHANGE= 0.11064 -2 LOG LIKELIHOOD = CYCLE 1660.494 5; LARGEST CHANGE= 0.01009 -2 LOG LIKELIHOOD = CYCLE 1660.713 4; LARGEST CHANGE= 0.04881 -2 LOG LIKELIHOOD = CYCLE 1661.284 3; LARGEST CHANGE= 0.03698 -2 LOG LIKELIHOOD = CYCLE 1663.262 2; LARGEST CHANGE= 0.06737 -2 LOG LIKELIHOOD = CYCLE 1669.105 1660.485 6; LARGEST CHANGE= 0.00441 [NEWTON CYCLES] -2 LOG LIKELIHOOD: 1660.4845 128 CYCLE 7; LARGEST CHANGE= 0.00298 INTERVAL COUNTS FOR COMPUTATION OF ITEM CHI-SQUARES ---------------------------------------------------------------------------0. 2. 8. 16. 18. 7. 17. 4. 4. ---------------------------------------------------------------------------INTERVAL AVERAGE THETAS ---------------------------------------------------------------------------******* -2.123 -1.433 -0.805 -0.141 0.366 0.861 1.538 1.947 ---------------------------------------------------------------------------1 SUBTEST TEST0001; ITEM PARAMETERS AFTER CYCLE 7 ITEM CHISQ INTERCEPT SLOPE THRESHOLD LOADING ASYMPTOTE DF S.E. S.E. S.E. S.E. S.E. (PROB) ------------------------------------------------------------------------------ITEM0001 | 0.287 | 0.577 | -0.497 | 0.500 | 0.000 | 3.2 5.0 | 0.253* | 0.087* | 0.439* | 0.075* | 0.000* | (0.6644) | | | | | | ITEM0002 | 2.008 | 0.577 | -3.479 | 0.500 | 0.000 | 1.0 2.0 | 0.347* | 0.087* | 0.601* | 0.075* | 0.000* | (0.5997) | | | | | | ITEM0003 | 1.107 | 0.577 | -1.917 | 0.500 | 0.000 | 0.5 4.0 | 0.274* | 0.087* | 0.475* | 0.075* | 0.000* | (0.9779) | | | | | | ITEM0004 | 1.416 | 0.577 | -2.453 | 0.500 | 0.000 | 3.0 4.0 | 0.289* | 0.087* | 0.501* | 0.075* | 0.000* | (0.5635) | | | | | | ITEM0005 | -0.581 | 0.577 | 1.006 | 0.500 | 0.000 | 3.4 3.0 | 0.253* | 0.087* | 0.438* | 0.075* | 0.000* | (0.3403) | | | | | | ITEM0006 | 1.501 | 0.577 | -2.601 | 0.500 | 0.000 | 1.1 3.0 | 0.303* | 0.087* | 0.525* | 0.075* | 0.000* | (0.7653) | | | | | | ITEM0007 | 1.786 | 0.577 | -3.094 | 0.500 | 0.000 | 1.0 4.0 129 | 0.329* | 0.087* | 0.571* | 0.075* | 0.000* | (0.9088) | | | | | | ITEM0008 | 0.522 | 0.577 | -0.904 | 0.500 | 0.000 | 8.8 | 0.256* | 0.087* | 0.443* | 0.075* | 0.000* | (0.1178) | | | | | | ITEM0009 | 0.172 | 0.577 | -0.297 | 0.500 | 0.000 | 4.8 | 0.233* | 0.087* | 0.403* | 0.075* | 0.000* | (0.3136) | | | | | | ITEM0010 | -0.170 | 0.577 | 0.295 | 0.500 | 0.000 | 6.2 | 0.256* | 0.087* | 0.443* | 0.075* | 0.000* | (0.1863) | | | | | | ITEM0011 | -0.227 | 0.577 | 0.394 | 0.500 | 0.000 | 4.0 | 0.251* | 0.087* | 0.436* | 0.075* | 0.000* | (0.4074) | | | | | | ITEM0012 | 0.462 | 0.577 | -0.800 | 0.500 | 0.000 | 4.8 | 0.254* | 0.087* | 0.439* | 0.075* | 0.000* | (0.3057) | | | | | | ITEM0013 | 1.686 | 0.577 | -2.920 | 0.500 | 0.000 | 2.6 | 0.311* | 0.087* | 0.539* | 0.075* | 0.000* | (0.4497) | | | | | | ITEM0014 | 0.058 | 0.577 | -0.100 | 0.500 | 0.000 | 3.1 | 0.237* | 0.087* | 0.411* | 0.075* | 0.000* | (0.7944) | | | | | | ITEM0015 | 1.180 | 0.577 | -2.044 | 0.500 | 0.000 | 5.6 | 0.274* | 0.087* | 0.476* | 0.075* | 0.000* | (0.2303) | | | | | | ITEM0016 | 0.966 | 0.577 | -1.674 | 0.500 | 0.000 | 3.6 | 0.257* | 0.087* | 0.446* | 0.075* | 0.000* | (0.4635) | | | | | | ITEM0017 | 2.596 | 0.577 | -4.498 | 0.500 | 0.000 | 0.1 | 0.432* | 0.087* | 0.749* | 0.075* | 0.000* | (0.9358) | | | | | | ITEM0018 | 1.334 | 0.577 | -2.312 | 0.500 | 0.000 | 5.1 | 0.280* | 0.087* | 0.485* | 0.075* | 0.000* | (0.2797) | | | | | | ITEM0019 | 0.833 | 0.577 | -1.443 | 0.500 | 0.000 | 2.7 | 0.252* | 0.087* | 0.437* | 0.075* | 0.000* | (0.6171) | | | | | | ITEM0020 | -3.042 | 0.577 | 5.271 | 0.500 | 0.000 | 0.4 | 0.526* | 0.087* | 0.911* | 0.075* | 0.000* | (0.0000) 5.0 4.0 4.0 4.0 4.0 3.0 6.0 4.0 4.0 2.0 4.0 4.0 0.0 130 ------------------------------------------------------------------------------* STANDARD ERROR LARGEST CHANGE = 0.002976 65.0 73.0 (0.7375) ------------------------------------------------------------------------------- PARAMETER MEAN STN DEV ----------------------------------THRESHOLD -1.203 2.092 QUADRATURE POINTS, POSTERIOR WEIGHTS, MEAN AND S.D.: 1 2 3 4 5 POINT -0.4056E+01 -0.3477E+01 -0.2897E+01 -0.2318E+01 -0.1739E+01 POSTERIOR 0.1800E-04 0.2912E-03 0.2699E-02 0.1509E-01 0.5355E-01 6 7 8 9 10 POINT -0.1159E+01 -0.5798E+00 -0.3433E-03 0.5791E+00 0.1158E+01 POSTERIOR 0.1247E+00 0.1973E+00 0.2232E+00 0.1879E+00 0.1181E+00 11 12 13 14 15 POINT 0.1738E+01 0.2317E+01 0.2897E+01 0.3476E+01 0.4056E+01 POSTERIOR 0.5447E-01 0.1790E-01 0.4051E-02 0.6145E-03 0.6174E-04 MEAN S.D. 0.00000 1.00000 25612 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-2 2672 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-2 131 11/01/2011 15:59:47 PH3 1 BILOG-MG V3.0 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** LOGISTIC MODEL ITEM ANALYSER *** *** PHASE 3 *** sample 20 by 76 >SCORE ; PARAMETERS FOR SCORING, RESCALING, AND TEST AND ITEM INFORMATION METHOD OF SCORING SUBJECTS: EXPECTATION A POSTERIORI (EAP; BAYES ESTIMATION) TYPE OF PRIOR: NORMAL SCORES WRITTEN TO FILE RUCHI.SCO SCORES WRITTEN TO FILE TYPE OF RESCALING: ruchi.PH3 NONE REQUESTED 132 ITEM AND TEST INFORMATION: DOMAIN SCORE ESTIMATION: NONE REQUESTED NONE REQUESTED QUAD TEST NAME POINTS ----------------------1 TEST0001 10 ----------------------1 ****************************** SCORING ****************************** PRIOR DISTRIBUTION(S) ===================== EAP SUBJECT ESTIMATION, TEST: TEST0001 QUADRATURE POINTS AND PRIOR WEIGHTS, MEAN AND S.D.: 1 2 3 4 5 POINT -0.4000E+01 -0.3111E+01 -0.2222E+01 -0.1333E+01 -0.4444E+00 WEIGHT 0.1190E-03 0.2805E-02 0.3002E-01 0.1458E+00 0.3213E+00 6 7 8 9 10 POINT 0.4444E+00 0.1333E+01 0.2222E+01 0.3111E+01 0.4000E+01 133 WEIGHT 0.3213E+00 0.1458E+00 0.3002E-01 0.2805E-02 0.1190E-03 MEAN S.D. 1 0.0000 1.0000 GROUP SUBJECT IDENTIFICATION MARGINAL WEIGHT TEST TRIED RIGHT PERCENT ABILITY S.E. PROB -------------------------------------------------------------------------1 Examinee01 | | 1.00 TEST0001 20 18 90.00 | 1.4211 0.7288 | 0.001212 1 Examinee02 | | 1.00 TEST0001 20 18 90.00 | 1.4211 0.7288 | 0.000467 1 Examinee03 | | 1.00 TEST0001 20 18 90.00 | 1.4211 0.7288 | 0.000836 1 Examinee04 | | 1.00 TEST0001 20 18 90.00 | 1.4211 0.7288 | 0.001620 1 Examinee05 | | 1.00 TEST0001 20 17 85.00 | 1.1201 0.7156 | 0.000013 1 Examinee06 | | 1.00 TEST0001 20 17 85.00 | 1.1201 0.7156 | 0.000689 1 Examinee07 | | 1.00 TEST0001 20 17 85.00 | 1.1201 0.7156 | 0.000001 1 Examinee08 | | 1.00 TEST0001 20 17 85.00 | 1.1201 0.7156 | 0.000296 1 Examinee09 | | 1.00 TEST0001 20 16 80.00 | 0.8295 0.7035 | 0.000229 1 Examinee10 | | 1.00 TEST0001 20 16 80.00 | 0.8295 0.7035 | 0.000000 1 Examinee11 | | 1.00 TEST0001 20 16 80.00 | 0.8295 0.7035 | 0.000311 1 Examinee12 | | 1.00 TEST0001 20 16 80.00 | 0.8295 0.7035 | 0.000887 1 Examinee13 | | 1.00 TEST0001 20 16 80.00 | 0.8295 0.7035 | 0.000386 1 Examinee14 | | 1.00 TEST0001 20 15 75.00 | 0.5484 0.6926 | 0.000034 1 Examinee15 | | 1.00 TEST0001 20 15 75.00 | 0.5484 0.6926 | 0.000021 1 Examinee16 | | 134 1.00 TEST0001 1 Examinee17 1.00 TEST0001 1 Examinee18 1.00 TEST0001 1 Examinee19 1.00 TEST0001 1 Examinee20 1.00 TEST0001 1 Examinee21 1.00 TEST0001 1 Examinee22 1.00 TEST0001 1 Examinee23 1.00 TEST0001 1 Examinee24 1.00 TEST0001 1 Examinee25 1.00 TEST0001 1 Examinee26 1.00 TEST0001 1 Examinee27 1.00 TEST0001 1 Examinee28 1.00 TEST0001 1 Examinee29 1.00 TEST0001 1 Examinee30 1.00 TEST0001 1 Examinee31 1.00 TEST0001 1 Examinee32 1.00 TEST0001 1 Examinee33 1.00 TEST0001 1 Examinee34 1.00 TEST0001 1 Examinee35 1.00 TEST0001 1 Examinee36 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 15 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 13 20 13 20 13 75.00 | | 75.00 | | 75.00 | | 75.00 | | 75.00 | | 75.00 | | 75.00 | | 75.00 | | 75.00 | | 75.00 | | 70.00 | | 70.00 | | 70.00 | | 70.00 | | 70.00 | | 70.00 | | 70.00 | | 65.00 | | 65.00 | | 65.00 | | 0.5484 | 0.5484 | 0.5484 | 0.5484 | 0.5484 | 0.5484 | 0.5484 | 0.5484 | 0.5484 | 0.5484 | 0.2753 | 0.2753 | 0.2753 | 0.2753 | 0.2753 | 0.2753 | 0.2753 | 0.0088 | 0.0088 | 0.0088 | 0.6926 | 0.000313 0.6926 | 0.000082 0.6926 | 0.000033 0.6926 | 0.000032 0.6926 | 0.000091 0.6926 | 0.000061 0.6926 | 0.000174 0.6926 | 0.000889 0.6926 | 0.000088 0.6926 | 0.000050 0.6835 | 0.000078 0.6835 | 0.000021 0.6835 | 0.000013 0.6835 | 0.000166 0.6835 | 0.000000 0.6835 | 0.000207 0.6835 | 0.000040 0.6756 | 0.000048 0.6756 | 0.000057 0.6756 | 0.000008 135 1.00 TEST0001 1 Examinee37 1.00 TEST0001 1 Examinee38 1.00 TEST0001 1 Examinee39 1.00 TEST0001 1 Examinee40 1.00 TEST0001 1 Examinee41 1.00 TEST0001 1 Examinee42 1.00 TEST0001 1 Examinee43 1.00 TEST0001 1 Examinee44 1.00 TEST0001 1 Examinee45 1.00 TEST0001 1 Examinee46 1.00 TEST0001 1 Examinee47 1.00 TEST0001 1 Examinee48 1.00 TEST0001 1 Examinee49 1.00 TEST0001 1 Examinee50 1.00 TEST0001 1 Examinee51 1.00 TEST0001 1 Examinee52 1.00 TEST0001 1 Examinee53 1.00 TEST0001 1 Examinee54 1.00 TEST0001 1 Examinee55 1.00 TEST0001 1 Examinee56 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 13 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 11 20 11 20 11 20 11 20 11 65.00 | | 65.00 | | 65.00 | | 65.00 | | 65.00 | | 65.00 | | 65.00 | | 65.00 | | 60.00 | | 60.00 | | 60.00 | | 60.00 | | 60.00 | | 60.00 | | 60.00 | | 55.00 | | 55.00 | | 55.00 | | 55.00 | | 55.00 | | 0.0088 | 0.0088 | 0.0088 | 0.0088 | 0.0088 | 0.0088 | 0.0088 | 0.0088 | -0.2518 | -0.2518 | -0.2518 | -0.2518 | -0.2518 | -0.2518 | -0.2518 | -0.5074 | -0.5074 | -0.5074 | -0.5074 | -0.5074 | 0.6756 | 0.000003 0.6756 | 0.000006 0.6756 | 0.000015 0.6756 | 0.000050 0.6756 | 0.000004 0.6756 | 0.000035 0.6756 | 0.000002 0.6756 | 0.000019 0.6684 | 0.000001 0.6684 | 0.000022 0.6684 | 0.000004 0.6684 | 0.000027 0.6684 | 0.000014 0.6684 | 0.000008 0.6684 | 0.000006 0.6630 | 0.000012 0.6630 | 0.000006 0.6630 | 0.000204 0.6630 | 0.000005 0.6630 | 0.000001 136 1.00 TEST0001 1 Examinee57 1.00 TEST0001 1 Examinee58 1.00 TEST0001 1 Examinee59 1.00 TEST0001 1 Examinee60 1.00 TEST0001 1 Examinee61 1.00 TEST0001 1 Examinee62 1.00 TEST0001 1 Examinee63 1.00 TEST0001 1 Examinee64 1.00 TEST0001 1 Examinee65 1.00 TEST0001 1 Examinee66 1.00 TEST0001 1 Examinee67 1.00 TEST0001 1 Examinee68 1.00 TEST0001 1 Examinee69 1.00 TEST0001 1 Examinee70 1.00 TEST0001 1 Examinee71 1.00 TEST0001 1 Examinee72 1.00 TEST0001 1 Examinee73 1.00 TEST0001 1 Examinee74 1.00 TEST0001 1 Examinee75 1.00 TEST0001 1 Examinee76 20 11 20 11 20 11 20 11 20 11 20 11 20 10 20 10 20 10 20 10 20 10 20 9 20 9 20 9 20 9 20 9 20 9 20 8 20 8 20 7 55.00 | | 55.00 | | 55.00 | | 55.00 | | 55.00 | | 55.00 | | 50.00 | | 50.00 | | 50.00 | | 50.00 | | 50.00 | | 45.00 | | 45.00 | | 45.00 | | 45.00 | | 45.00 | | 45.00 | | 40.00 | | 40.00 | | 35.00 | | -0.5074 | -0.5074 | -0.5074 | -0.5074 | -0.5074 | -0.5074 | -0.7596 | -0.7596 | -0.7596 | -0.7596 | -0.7596 | -1.0093 | -1.0093 | -1.0093 | -1.0093 | -1.0093 | -1.0093 | -1.2569 | -1.2569 | -1.5033 | 0.6630 | 0.000023 0.6630 | 0.000003 0.6630 | 0.000007 0.6630 | 0.000082 0.6630 | 0.000001 0.6630 | 0.000004 0.6593 | 0.000011 0.6593 | 0.000008 0.6593 | 0.000001 0.6593 | 0.000000 0.6593 | 0.000017 0.6562 | 0.000081 0.6562 | 0.000002 0.6562 | 0.000081 0.6562 | 0.000081 0.6562 | 0.000012 0.6562 | 0.000000 0.6538 | 0.000000 0.6538 | 0.000002 0.6534 | 0.000000 137 1.00 TEST0001 20 6 30.00 | -1.7501 0.6545 | 0.000001 -------------------------------------------------------------------------- SUMMARY STATISTICS FOR SCORE ESTIMATES ====================================== CORRELATIONS AMONG TEST SCORES TEST0001 TEST0001 1.0000 MEANS, STANDARD DEVIATIONS, AND VARIANCES OF SCORE ESTIMATES TEST: TEST0001 MEAN: -0.0006 S.D.: 0.7384 VARIANCE: 0.5452 ROOT-MEAN-SQUARE POSTERIOR STANDARD DEVIATIONS TEST: TEST0001 RMS: 0.6798 VARIANCE: 0.4622 EMPIRICAL RELIABILITY: 0.5412 MARGINAL LATENT DISTRIBUTION(S) =============================== MARGINAL LATENT DISTRIBUTION FOR TEST TEST0001 138 MEAN = -0.001 S.D. = 0.977 1 2 3 4 5 POINT -0.4000E+01 -0.3111E+01 -0.2222E+01 -0.1333E+01 -0.4444E+00 WEIGHT 0.3130E-04 0.1760E-02 0.2824E-01 0.1536E+00 0.3229E+00 6 7 8 9 10 POINT 0.4444E+00 0.1333E+01 0.2222E+01 0.3111E+01 0.4000E+01 WEIGHT 0.3106E+00 0.1474E+00 0.3240E-01 0.2929E-02 0.9992E-04 44 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-3 2752 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-3 Outputs for 2 Parameter model are: PH1 1 BILOG-MG V3.0 REV 19990104.1300 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL DISTRIBUTED BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 7383 N. LINCOLN AVENUE, SUITE 100 CHICAGO, IL 60646 (800) 247-6113 (847) 675-0720 139 WWW: http:://www.ssicentral.com PROGRAM COPYRIGHT HELD BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 2002 DISTRIBUTION OR USE UNAUTHORIZED BY SSI, INC. IS PROHIBITED 1 *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 1 *** sample 20 by 76 >GLOBAL DFName = 'C:\drvn\new.dat', NPArm = 2, LOGistic, SAVe; FILE ASSIGNMENT AND DISPOSITION =============================== SUBJECT DATA INPUT FILE C:\DRVN\NEW.DAT BILOG-MG MASTER DATA FILE MF.DAT WILL BE CREATED FROM DATA FILE CALIBRATION DATA FILE CF.DAT WILL BE CREATED FROM DATA FILE ITEM PARAMETERS FILE IF.DAT 140 WILL BE CREATED THIS RUN CASE SCALE-SCORE FILE CASE WEIGHTING SF.DAT NONE EMPLOYED ITEM RESPONSE MODEL 2 PARAMETER LOGISTIC LOGIT METRIC (I.E., D = 1.0) >SAVE MASter = 'new.MAS', CALib = 'new.CAL', PARm = 'new.PAR', SCOre = 'new.SCO', COVariance = 'new.COV', TSTat = 'new.TST', ISTat = 'new.IST'; BILOG-MG SAVE FILES [OUTPUT FILES] BILOG-MG MASTER BINARY DATA NEW.MAS CALIBRATION BINARY DATA FILENEW.CAL CLASSICAL ITEM STATISTICS NEW.IST ITEM PARAMETERS FILE NEW.PAR CASE SCALE-SCORE FILE NEW.SCO ESTIMATED COVARIANCE FILE NEW.COV 141 TEST INFORMATION FILE NEW.TST >LENGTH NITems = (20); TEST LENGTH SPECIFICATIONS ========================== MAIN TEST LENGTHS: 20 >INPUT NTOtal = 20, NALt = 3, NIDchar = 4; DATA INPUT SPECIFICATIONS ========================= NUMBER OF FORMAT LINES 1 NUMBER OF ITEMS IN INPUT STREAM 20 NUMBER OF RESPONSE ALTERNATIVES 3 NUMBER OF SUBJECT ID CHARACTERS 4 NUMBER OF GROUPS 1 NUMBER OF TEST FORMS 1 TYPE OF DATA SINGLE-SUBJECT DATA, NO CASE WEIGHTS MAXIMUM SAMPLE SIZE FOR ITEM CALIBRATION 10000000 ALL SUBJECTS INCLUDED IN RUN 142 >ITEMS ; TEST SPECIFICATIONS =================== >TEST1 TNAme = 'TEST0001', INUmber = (1(1)20); TEST NUMBER: 1 TEST NAME: TEST0001 NUMBER OF ITEMS: 20 ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM NUMBER NAME NUMBER NAME NUMBER NAME NUMBER NAME ----------------------------------------------------------------------1 ITEM0001 7 ITEM0007 13 ITEM0013 19 ITEM0019 2 ITEM0002 8 ITEM0008 14 ITEM0014 20 ITEM0020 3 ITEM0003 9 ITEM0009 15 ITEM0015 4 ITEM0004 10 ITEM0010 16 ITEM0016 5 ITEM0005 11 ITEM0011 17 ITEM0017 6 ITEM0006 12 ITEM0012 18 ITEM0018 ----------------------------------------------------------------------- FORM SPECIFICATIONS 143 =================== ITEMS READ ACCORDING TO SPECIFICATIONS ON THE ITEMS COMMAND FORMAT FOR DATA INPUT IS: (4A1, 20A1) OBSERVATION # 1 WEIGHT: 1.0000 ID : Ex01 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 20.000 18.000 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 OBSERVATION # 2 WEIGHT: 1.0000 ID : Ex02 SUBTEST #: 1 TEST0001 GROUP #: 1 144 TRIED RIGHT 20.000 18.000 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 76 OBSERVATIONS READ FROM FILE: C:\DRVN\NEW.DAT 76 OBSERVATIONS WRITTEN TO FILE: NEW.MAS ITEM STATISTICS FOR SUBTEST TEST0001 ITEM*TEST CORRELATION ITEM NAME #TRIED #RIGHT PCT LOGIT PEARSON BISERIAL ------------------------------------------------------------------------1 ITEM0001 76.0 43.0 56.6 -0.26 0.366 0.462 2 ITEM0002 76.0 66.0 86.8 -1.89 0.116 0.184 3 ITEM0003 76.0 56.0 73.7 -1.03 0.212 0.286 4 ITEM0004 76.0 60.0 78.9 -1.32 0.089 0.125 5 ITEM0005 76.0 28.0 36.8 0.54 0.213 0.272 6 ITEM0006 76.0 61.0 80.3 -1.40 0.238 0.341 7 ITEM0007 76.0 64.0 84.2 -1.67 0.222 0.335 8 ITEM0008 76.0 47.0 61.8 -0.48 0.320 0.408 9 ITEM0009 76.0 41.0 53.9 -0.16 -0.019 -0.024 10 ITEM0010 76.0 35.0 46.1 0.16 0.430 0.539 11 ITEM0011 76.0 34.0 44.7 0.21 0.341 0.429 12 ITEM0012 76.0 46.0 60.5 -0.43 0.303 0.385 13 ITEM0013 76.0 63.0 82.9 -1.58 0.099 0.146 14 ITEM0014 76.0 39.0 51.3 -0.05 0.074 0.093 15 ITEM0015 76.0 57.0 75.0 -1.10 0.141 0.192 145 16 ITEM0016 76.0 54.0 71.1 -0.90 0.019 0.025 17 ITEM0017 76.0 70.0 92.1 -2.46 0.049 0.089 18 ITEM0018 76.0 59.0 77.6 -1.24 0.009 0.013 19 ITEM0019 76.0 52.0 68.4 -0.77 0.039 0.051 20 ITEM0020 76.0 4.0 5.3 2.89 0.187 0.388 ------------------------------------------------------------------------- 296 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-1 2192 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-1 11/01/2011 11:36:29 PH2 1 BILOG-MG V3.0 REV 19990329.1300 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 2 *** sample 20 by 76 146 >CALIB ACCel = 1.0000, TPRior; CALIBRATION PARAMETERS ====================== MAXIMUM NUMBER OF EM CYCLES: 20 MAXIMUM NUMBER OF NEWTON CYCLES: CONVERGENCE CRITERION: 0.0100 ACCELERATION CONSTANT: 1.0000 2 LATENT DISTRIBUTION: NORMAL PRIOR FOR EACH GROUP PLOT EMPIRICAL VS. FITTED ICC'S: NO DATA HANDLING: DATA ON SCRATCH FILE CONSTRAINT DISTRIBUTION ON SLOPES: YES CONSTRAINT DISTRIBUTION ON THRESHOLDS: YES SOURCE OF ITEM CONSTRAINT DISTIBUTION MEANS AND STANDARD DEVIATIONS: PROGRAM DEFAULTS 1 -------------------------------------------------------------------------------- ****************************** CALIBRATION OF MAINTEST TEST0001 ****************************** METHOD OF SOLUTION: 147 EM CYCLES (MAXIMUM OF 20) FOLLOWED BY NEWTON-RAPHSON STEPS (MAXIMUM OF 2) QUADRATURE POINTS AND PRIOR WEIGHTS: 1 2 3 4 5 POINT -0.4000E+01 -0.3429E+01 -0.2857E+01 -0.2286E+01 -0.1714E+01 WEIGHT 0.7648E-04 0.6387E-03 0.3848E-02 0.1673E-01 0.5245E-01 6 7 8 9 10 POINT -0.1143E+01 -0.5714E+00 -0.8882E-15 0.5714E+00 0.1143E+01 WEIGHT 0.1186E+00 0.1936E+00 0.2280E+00 0.1936E+00 0.1186E+00 11 12 13 14 15 POINT 0.1714E+01 0.2286E+01 0.2857E+01 0.3429E+01 0.4000E+01 WEIGHT 0.5245E-01 0.1673E-01 0.3848E-02 0.6387E-03 0.7648E-04 CONSTRAINT DISTRIBUTIONS ON ITEM PARAMETERS (THRESHOLDS, NORMAL; SLOPES, LOG-NORMAL; GUESSING, BETA) THRESHOLDS SLOPES ASYMPTOTES ITEM MU SIGMA MU SIGMA ALPHA BETA ---------------------------------------------------------------------ITEM0001 0.000 2.000 1.000 1.649 ITEM0002 0.000 2.000 1.000 1.649 ITEM0003 0.000 2.000 1.000 1.649 ITEM0004 0.000 2.000 1.000 1.649 ITEM0005 0.000 2.000 1.000 1.649 ITEM0006 0.000 2.000 1.000 1.649 ITEM0007 0.000 2.000 1.000 1.649 ITEM0008 0.000 2.000 1.000 1.649 ITEM0009 0.000 2.000 1.000 1.649 ITEM0010 0.000 2.000 1.000 1.649 ITEM0011 0.000 2.000 1.000 1.649 148 ITEM0012 0.000 2.000 1.000 1.649 ITEM0013 0.000 2.000 1.000 1.649 ITEM0014 0.000 2.000 1.000 1.649 ITEM0015 0.000 2.000 1.000 1.649 ITEM0016 0.000 2.000 1.000 1.649 ITEM0017 0.000 2.000 1.000 1.649 ITEM0018 0.000 2.000 1.000 1.649 ITEM0019 0.000 2.000 1.000 1.649 ITEM0020 0.000 2.000 1.000 1.649 ---------------------------------------------------------------------- [E-M CYCLES] -2 LOG LIKELIHOOD = CYCLE 1; LARGEST CHANGE= 1.23505 -2 LOG LIKELIHOOD = CYCLE 1642.233 3; LARGEST CHANGE= 0.17220 -2 LOG LIKELIHOOD = CYCLE 1674.291 2; LARGEST CHANGE= 0.91293 -2 LOG LIKELIHOOD = CYCLE 1634.645 1641.935 4; LARGEST CHANGE= 0.10332 -2 LOG LIKELIHOOD = 1641.618 149 CYCLE 5; LARGEST CHANGE= 0.01660 -2 LOG LIKELIHOOD = CYCLE 6; LARGEST CHANGE= 0.01642 -2 LOG LIKELIHOOD = CYCLE 1641.252 7; LARGEST CHANGE= 0.02642 -2 LOG LIKELIHOOD = CYCLE 1641.432 1641.169 8; LARGEST CHANGE= 0.00793 [NEWTON CYCLES] -2 LOG LIKELIHOOD: CYCLE 1641.0781 9; LARGEST CHANGE= 0.00438 INTERVAL COUNTS FOR COMPUTATION OF ITEM CHI-SQUARES ---------------------------------------------------------------------------2. 7. 11. 17. 9. 10. 11. 5. 4. ---------------------------------------------------------------------------INTERVAL AVERAGE THETAS ----------------------------------------------------------------------------1.880 -1.351 -0.961 -0.497 0.086 0.502 0.995 1.577 1.904 150 ---------------------------------------------------------------------------1 SUBTEST TEST0001; ITEM PARAMETERS AFTER CYCLE 9 ITEM CHISQ INTERCEPT SLOPE THRESHOLD LOADING ASYMPTOTE DF S.E. S.E. S.E. S.E. S.E. (PROB) ------------------------------------------------------------------------------ITEM0001 | 0.343 | 1.118 | -0.307 | 0.745 | 0.000 | 2.2 3.0 | 0.278* | 0.373* | 0.247* | 0.249* | 0.000* | (0.5261) | | | | | | ITEM0002 | 1.955 | 0.677 | -2.887 | 0.561 | 0.000 | 0.3 3.0 | 0.347* | 0.256* | 1.072* | 0.212* | 0.000* | (0.9514) | | | | | | ITEM0003 | 1.107 | 0.691 | -1.602 | 0.568 | 0.000 | 3.7 5.0 | 0.272* | 0.246* | 0.614* | 0.202* | 0.000* | (0.5962) | | | | | | ITEM0004 | 1.343 | 0.558 | -2.409 | 0.487 | 0.000 | 4.1 4.0 | 0.278* | 0.192* | 0.921* | 0.168* | 0.000* | (0.3933) | | | | | | ITEM0005 | -0.571 | 0.639 | 0.893 | 0.539 | 0.000 | 6.5 5.0 | 0.246* | 0.205* | 0.475* | 0.173* | 0.000* | (0.2583) | | | | | | ITEM0006 | 1.564 | 0.839 | -1.865 | 0.643 | 0.000 | 1.7 4.0 | 0.330* | 0.325* | 0.649* | 0.249* | 0.000* | (0.7993) | | | | | | ITEM0007 | 1.898 | 0.922 | -2.058 | 0.678 | 0.000 | 0.7 4.0 | 0.377* | 0.363* | 0.698* | 0.267* | 0.000* | (0.9486) | | | | | | ITEM0008 | 0.567 | 0.901 | -0.629 | 0.669 | 0.000 | 2.6 5.0 | 0.267* | 0.295* | 0.313* | 0.219* | 0.000* | (0.7603) | | | | | | ITEM0009 | 0.158 | 0.431 | -0.368 | 0.396 | 0.000 | 11.8 7.0 | 0.223* | 0.140* | 0.532* | 0.129* | 0.000* | (0.1070) | | | | | | ITEM0010 | -0.204 | 1.549 | 0.132 | 0.840 | 0.000 | 2.9 3.0 | 0.318* | 0.578* | 0.206* | 0.313* | 0.000* | (0.4110) | | | | | | ITEM0011 | -0.265 | 1.299 | 0.204 | 0.792 | 0.000 | 2.1 4.0 151 | 0.296* | 0.447* | 0.228* | 0.273* | 0.000* | (0.7260) | | | | | | ITEM0012 | 0.543 | 1.110 | -0.490 | 0.743 | 0.000 | 5.4 | 0.282* | 0.338* | 0.262* | 0.226* | 0.000* | (0.2498) | | | | | | ITEM0013 | 1.642 | 0.650 | -2.526 | 0.545 | 0.000 | 5.8 | 0.311* | 0.241* | 0.929* | 0.202* | 0.000* | (0.1237) | | | | | | ITEM0014 | 0.057 | 0.548 | -0.104 | 0.480 | 0.000 | 3.6 | 0.231* | 0.175* | 0.422* | 0.154* | 0.000* | (0.8206) | | | | | | ITEM0015 | 1.176 | 0.685 | -1.717 | 0.565 | 0.000 | 7.4 | 0.279* | 0.252* | 0.640* | 0.208* | 0.000* | (0.1933) | | | | | | ITEM0016 | 0.909 | 0.510 | -1.780 | 0.455 | 0.000 | 3.4 | 0.249* | 0.168* | 0.745* | 0.150* | 0.000* | (0.7539) | | | | | | ITEM0017 | 2.434 | 0.645 | -3.776 | 0.542 | 0.000 | 0.2 | 0.416* | 0.221* | 1.391* | 0.186* | 0.000* | (0.9083) | | | | | | ITEM0018 | 1.229 | 0.479 | -2.567 | 0.432 | 0.000 | 9.1 | 0.267* | 0.158* | 1.022* | 0.143* | 0.000* | (0.1060) | | | | | | ITEM0019 | 0.776 | 0.481 | -1.613 | 0.433 | 0.000 | 11.5 | 0.242* | 0.158* | 0.729* | 0.143* | 0.000* | (0.0742) | | | | | | ITEM0020 | -3.171 | 0.994 | 3.188 | 0.705 | 0.000 | 0.1 | 0.766* | 0.476* | 1.145* | 0.337* | 0.000* | (0.0000) ------------------------------------------------------------------------------* STANDARD ERROR 4.0 3.0 7.0 5.0 6.0 2.0 5.0 6.0 0.0 LARGEST CHANGE = 0.004376 85.1 85.0 (0.4763) ------------------------------------------------------------------------------- PARAMETER MEAN STN DEV ----------------------------------SLOPE 0.786 0.302 LOG(SLOPE) -0.304 0.358 152 THRESHOLD -1.114 1.580 QUADRATURE POINTS, POSTERIOR WEIGHTS, MEAN AND S.D.: 1 2 3 4 5 POINT -0.4604E+01 -0.3957E+01 -0.3309E+01 -0.2662E+01 -0.2015E+01 POSTERIOR 0.3774E-06 0.1769E-04 0.4155E-03 0.4964E-02 0.3156E-01 6 7 8 9 10 POINT -0.1367E+01 -0.7202E+00 -0.7292E-01 0.5743E+00 0.1222E+01 POSTERIOR 0.1115E+00 0.2162E+00 0.2448E+00 0.2006E+00 0.1219E+00 11 12 13 14 15 POINT 0.1869E+01 0.2516E+01 0.3163E+01 0.3811E+01 0.4458E+01 POSTERIOR 0.5125E-01 0.1415E-01 0.2420E-02 0.2512E-03 0.1603E-04 MEAN S.D. 0.00000 1.00000 27404 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-2 3628 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-2 11/01/2011 11:36:29 PH3 1 BILOG-MG V3.0 153 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** LOGISTIC MODEL ITEM ANALYSER *** *** PHASE 3 *** sample 20 by 76 >SCORE ; PARAMETERS FOR SCORING, RESCALING, AND TEST AND ITEM INFORMATION METHOD OF SCORING SUBJECTS: EXPECTATION A POSTERIORI (EAP; BAYES ESTIMATION) TYPE OF PRIOR: NORMAL SCORES WRITTEN TO FILE NEW.SCO SCORES WRITTEN TO FILE TYPE OF RESCALING: ITEM AND TEST INFORMATION: DOMAIN SCORE ESTIMATION: new.PH3 NONE REQUESTED NONE REQUESTED NONE REQUESTED QUAD TEST NAME POINTS ----------------------1 TEST0001 10 ----------------------1 154 ****************************** SCORING ****************************** PRIOR DISTRIBUTION(S) ===================== EAP SUBJECT ESTIMATION, TEST: TEST0001 QUADRATURE POINTS AND PRIOR WEIGHTS, MEAN AND S.D.: 1 2 3 4 5 POINT -0.4000E+01 -0.3111E+01 -0.2222E+01 -0.1333E+01 -0.4444E+00 WEIGHT 0.1190E-03 0.2805E-02 0.3002E-01 0.1458E+00 0.3213E+00 6 7 8 9 10 POINT 0.4444E+00 0.1333E+01 0.2222E+01 0.3111E+01 0.4000E+01 WEIGHT 0.3213E+00 0.1458E+00 0.3002E-01 0.2805E-02 0.1190E-03 MEAN S.D. 1 0.0000 1.0000 GROUP SUBJECT IDENTIFICATION MARGINAL WEIGHT TEST TRIED RIGHT PERCENT ABILITY S.E. PROB -------------------------------------------------------------------------1 Ex01 | | 1.00 TEST0001 20 18 90.00 | 1.2232 0.6097 | 0.001092 155 1 Ex02 1.00 TEST0001 1 Ex03 1.00 TEST0001 1 Ex04 1.00 TEST0001 1 Ex05 1.00 TEST0001 1 Ex06 1.00 TEST0001 1 Ex07 1.00 TEST0001 1 Ex08 1.00 TEST0001 1 Ex09 1.00 TEST0001 1 Ex10 1.00 TEST0001 1 Ex11 1.00 TEST0001 1 Ex12 1.00 TEST0001 1 Ex13 1.00 TEST0001 1 Ex14 1.00 TEST0001 1 Ex15 1.00 TEST0001 1 Ex16 1.00 TEST0001 1 Ex17 1.00 TEST0001 1 Ex18 1.00 TEST0001 1 Ex19 1.00 TEST0001 1 Ex20 1.00 TEST0001 1 Ex21 1.00 TEST0001 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | 18 | 18 | 18 | 17 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 90.00 | 90.00 | 90.00 | 85.00 | 85.00 | 85.00 | 85.00 | 80.00 | 80.00 | 80.00 | 80.00 | 80.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | | 1.4344 | 1.4647 | 1.4846 | 1.4594 | 0.8394 | 1.3879 | 1.2864 | 0.7548 | 1.1436 | 0.7687 | 0.5703 | 1.0215 | 0.2137 | 0.7928 | 0.1484 | 0.6674 | 0.4682 | 0.9277 | 0.3240 | 0.8965 0.6275 | 0.001022 0.6303 | 0.002013 0.6321 | 0.004018 0.6298 | 0.000059 0.5754 | 0.000453 0.6234 | 0.000003 0.6148 | 0.000799 0.5662 | 0.000240 0.6033 | 0.000000 0.5677 | 0.000348 0.5475 | 0.000550 0.5931 | 0.000774 0.5383 | 0.000020 0.5703 | 0.000038 0.5390 | 0.000175 0.5567 | 0.000094 0.5407 | 0.000028 0.5844 | 0.000084 0.5374 | 0.000059 0.5813 | 0.000145 156 1 Ex22 1.00 TEST0001 1 Ex23 1.00 TEST0001 1 Ex24 1.00 TEST0001 1 Ex25 1.00 TEST0001 1 Ex26 1.00 TEST0001 1 Ex27 1.00 TEST0001 1 Ex28 1.00 TEST0001 1 Ex29 1.00 TEST0001 1 Ex30 1.00 TEST0001 1 Ex31 1.00 TEST0001 1 Ex32 1.00 TEST0001 1 Ex33 1.00 TEST0001 1 Ex34 1.00 TEST0001 1 Ex35 1.00 TEST0001 1 Ex36 1.00 TEST0001 1 Ex37 1.00 TEST0001 1 Ex38 1.00 TEST0001 1 Ex39 1.00 TEST0001 1 Ex40 1.00 TEST0001 1 Ex41 1.00 TEST0001 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | 15 | 15 | 15 | 15 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 75.00 | 75.00 | 75.00 | 75.00 | 70.00 | 70.00 | 70.00 | 70.00 | 70.00 | 70.00 | 70.00 | 65.00 | 65.00 | 65.00 | 65.00 | 65.00 | 65.00 | 65.00 | 65.00 | 65.00 | | 0.6887 | 0.2848 | 0.8859 | 0.3557 | 0.5247 | 0.6647 | 0.6393 | -0.1402 | 0.5608 | 0.1184 | 0.4719 | 0.0630 | -0.3679 | 0.1148 | -0.0654 | 0.1582 | -0.2354 | -0.3040 | -0.1995 | 0.1748 0.5590 | 0.000211 0.5376 | 0.000591 0.5802 | 0.000194 0.5376 | 0.000026 0.5440 | 0.000083 0.5565 | 0.000035 0.5539 | 0.000020 0.5311 | 0.000112 0.5467 | 0.000000 0.5391 | 0.000157 0.5409 | 0.000040 0.5389 | 0.000037 0.5177 | 0.000048 0.5391 | 0.000007 0.5352 | 0.000002 0.5389 | 0.000005 0.5247 | 0.000014 0.5205 | 0.000043 0.5272 | 0.000003 0.5388 | 0.000031 157 1 Ex42 1.00 TEST0001 1 Ex43 1.00 TEST0001 1 Ex44 1.00 TEST0001 1 Ex45 1.00 TEST0001 1 Ex46 1.00 TEST0001 1 Ex47 1.00 TEST0001 1 Ex48 1.00 TEST0001 1 Ex49 1.00 TEST0001 1 Ex50 1.00 TEST0001 1 Ex51 1.00 TEST0001 1 Ex52 1.00 TEST0001 1 Ex53 1.00 TEST0001 1 Ex54 1.00 TEST0001 1 Ex55 1.00 TEST0001 1 Ex56 1.00 TEST0001 1 Ex57 1.00 TEST0001 1 Ex58 1.00 TEST0001 1 Ex59 1.00 TEST0001 1 Ex60 1.00 TEST0001 1 Ex61 1.00 TEST0001 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | 13 | 13 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 65.00 | 65.00 | 60.00 | 60.00 | 60.00 | 60.00 | 60.00 | 60.00 | 60.00 | 55.00 | 55.00 | 55.00 | 55.00 | 55.00 | 55.00 | 55.00 | 55.00 | 55.00 | 55.00 | 55.00 | | -0.2231 | 0.0039 | 0.3065 | -0.5852 | -0.4774 | -0.4110 | -0.3277 | -0.4108 | 0.2843 | -0.7692 | -0.3068 | -0.7090 | -0.4841 | -0.5375 | -0.5135 | -0.3147 | -0.4706 | -0.6986 | -0.3693 | -0.5523 0.5256 | 0.000001 0.5378 | 0.000015 0.5375 | 0.000001 0.5216 | 0.000026 0.5170 | 0.000005 0.5167 | 0.000027 0.5193 | 0.000011 0.5167 | 0.000008 0.5376 | 0.000006 0.5352 | 0.000016 0.5204 | 0.000004 0.5307 | 0.000258 0.5171 | 0.000004 0.5190 | 0.000001 0.5180 | 0.000024 0.5199 | 0.000002 0.5168 | 0.000006 0.5299 | 0.000107 0.5176 | 0.000001 0.5197 | 0.000003 158 1 Ex62 | | 1.00 TEST0001 20 10 50.00 | -0.9106 0.5428 | 0.000017 1 Ex63 | | 1.00 TEST0001 20 10 50.00 | -0.7928 0.5368 | 0.000011 1 Ex64 | | 1.00 TEST0001 20 10 50.00 | -0.7962 0.5370 | 0.000001 1 Ex65 | | 1.00 TEST0001 20 10 50.00 | -0.4776 0.5170 | 0.000000 1 Ex66 | | 1.00 TEST0001 20 10 50.00 | -0.7374 0.5329 | 0.000020 1 Ex67 | | 1.00 TEST0001 20 9 45.00 | -0.9975 0.5450 | 0.000111 1 Ex68 | | 1.00 TEST0001 20 9 45.00 | -1.0636 0.5456 | 0.000003 1 Ex69 | | 1.00 TEST0001 20 9 45.00 | -0.9975 0.5450 | 0.000111 1 Ex70 | | 1.00 TEST0001 20 9 45.00 | -0.9975 0.5450 | 0.000111 1 Ex71 | | 1.00 TEST0001 20 9 45.00 | -0.9909 0.5449 | 0.000015 1 Ex72 | | 1.00 TEST0001 20 9 45.00 | -0.9520 0.5441 | 0.000000 1 Ex73 | | 1.00 TEST0001 20 8 40.00 | -1.2361 0.5459 | 0.000001 1 Ex74 | | 1.00 TEST0001 20 8 40.00 | -1.2186 0.5458 | 0.000004 1 Ex75 | | 1.00 TEST0001 20 7 35.00 | -1.6000 0.5634 | 0.000001 1 Ex76 | | 1.00 TEST0001 20 6 30.00 | -1.4811 0.5550 | 0.000001 -------------------------------------------------------------------------- SUMMARY STATISTICS FOR SCORE ESTIMATES ====================================== CORRELATIONS AMONG TEST SCORES 159 TEST0001 TEST0001 1.0000 MEANS, STANDARD DEVIATIONS, AND VARIANCES OF SCORE ESTIMATES TEST: TEST0001 MEAN: 0.0113 S.D.: 0.7775 VARIANCE: 0.6045 ROOT-MEAN-SQUARE POSTERIOR STANDARD DEVIATIONS TEST: TEST0001 RMS: 0.5495 VARIANCE: 0.3019 EMPIRICAL RELIABILITY: 0.6669 MARGINAL LATENT DISTRIBUTION(S) =============================== MARGINAL LATENT DISTRIBUTION FOR TEST TEST0001 MEAN = 0.011 S.D. = 0.924 1 2 3 4 5 POINT -0.4000E+01 -0.3111E+01 -0.2222E+01 -0.1333E+01 -0.4444E+00 WEIGHT 0.3965E-05 0.5503E-03 0.1765E-01 0.1480E+00 0.3457E+00 6 7 8 9 10 POINT 0.4444E+00 0.1333E+01 0.2222E+01 0.3111E+01 0.4000E+01 WEIGHT 0.3111E+00 0.1464E+00 0.2863E-01 0.1943E-02 0.4271E-04 160 44 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-3 2728 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-3 Outputs for 3 Parameter model are: PH1 1 BILOG-MG V3.0 REV 19990104.1300 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL DISTRIBUTED BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 7383 N. LINCOLN AVENUE, SUITE 100 CHICAGO, IL 60646 (800) 247-6113 (847) 675-0720 WWW: http:://www.ssicentral.com PROGRAM COPYRIGHT HELD BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 2002 DISTRIBUTION OR USE UNAUTHORIZED BY SSI, INC. IS PROHIBITED 1 *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 1 *** 161 sample 20 by 76 >GLOBAL DFName = 'C:\drvn\test2.dat', NPArm = 3, LOGistic, SAVe; FILE ASSIGNMENT AND DISPOSITION =============================== SUBJECT DATA INPUT FILE C:\DRVN\TEST2.DAT BILOG-MG MASTER DATA FILE MF.DAT WILL BE CREATED FROM DATA FILE CALIBRATION DATA FILE CF.DAT WILL BE CREATED FROM DATA FILE ITEM PARAMETERS FILE IF.DAT WILL BE CREATED THIS RUN CASE SCALE-SCORE FILE CASE WEIGHTING SF.DAT NONE EMPLOYED ITEM RESPONSE MODEL 3 PARAMETER LOGISTIC LOGIT METRIC (I.E., D = 1.0) >SAVE MASter = 'neha.MAS', 162 CALib = 'neha.CAL', PARm = 'neha.PAR', SCOre = 'neha.SCO', COVariance = 'neha.COV', TSTat = 'neha.TST', ISTat = 'neha.IST'; BILOG-MG SAVE FILES [OUTPUT FILES] BILOG-MG MASTER BINARY DATA NEHA.MAS CALIBRATION BINARY DATA FILENEHA.CAL CLASSICAL ITEM STATISTICS NEHA.IST ITEM PARAMETERS FILE NEHA.PAR CASE SCALE-SCORE FILE NEHA.SCO ESTIMATED COVARIANCE FILE NEHA.COV TEST INFORMATION FILE NEHA.TST >LENGTH NITems = (20); TEST LENGTH SPECIFICATIONS ========================== 163 MAIN TEST LENGTHS: 20 >INPUT NTOtal = 20, NALt = 3, NIDchar = 10; DATA INPUT SPECIFICATIONS ========================= NUMBER OF FORMAT LINES 1 NUMBER OF ITEMS IN INPUT STREAM 20 NUMBER OF RESPONSE ALTERNATIVES 3 NUMBER OF SUBJECT ID CHARACTERS 10 NUMBER OF GROUPS 1 NUMBER OF TEST FORMS 1 TYPE OF DATA SINGLE-SUBJECT DATA, NO CASE WEIGHTS MAXIMUM SAMPLE SIZE FOR ITEM CALIBRATION 10000000 ALL SUBJECTS INCLUDED IN RUN >ITEMS ; TEST SPECIFICATIONS =================== 164 >TEST1 TNAme = 'TEST0001', INUmber = (1(1)20); TEST NUMBER: 1 TEST NAME: TEST0001 NUMBER OF ITEMS: 20 ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM NUMBER NAME NUMBER NAME NUMBER NAME NUMBER NAME ----------------------------------------------------------------------1 ITEM0001 7 ITEM0007 13 ITEM0013 19 ITEM0019 2 ITEM0002 8 ITEM0008 14 ITEM0014 20 ITEM0020 3 ITEM0003 9 ITEM0009 15 ITEM0015 4 ITEM0004 10 ITEM0010 16 ITEM0016 5 ITEM0005 11 ITEM0011 17 ITEM0017 6 ITEM0006 12 ITEM0012 18 ITEM0018 ----------------------------------------------------------------------- FORM SPECIFICATIONS =================== ITEMS READ ACCORDING TO SPECIFICATIONS ON THE ITEMS COMMAND FORMAT FOR DATA INPUT IS: (10A1, 20A1) 165 OBSERVATION # 1 WEIGHT: 1.0000 ID : Examinee01 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 20.000 18.000 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 OBSERVATION # 2 WEIGHT: 1.0000 ID : Examinee02 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 20.000 18.000 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 166 RIGHT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 76 OBSERVATIONS READ FROM FILE: C:\DRVN\TEST2.DAT 76 OBSERVATIONS WRITTEN TO FILE: NEHA.MAS ITEM STATISTICS FOR SUBTEST TEST0001 ITEM*TEST CORRELATION ITEM NAME #TRIED #RIGHT PCT LOGIT PEARSON BISERIAL ------------------------------------------------------------------------1 ITEM0001 76.0 43.0 56.6 -0.26 0.366 0.462 2 ITEM0002 76.0 66.0 86.8 -1.89 0.116 0.184 3 ITEM0003 76.0 56.0 73.7 -1.03 0.212 0.286 4 ITEM0004 76.0 60.0 78.9 -1.32 0.089 0.125 5 ITEM0005 76.0 28.0 36.8 0.54 0.213 0.272 6 ITEM0006 76.0 61.0 80.3 -1.40 0.238 0.341 7 ITEM0007 76.0 64.0 84.2 -1.67 0.222 0.335 8 ITEM0008 76.0 47.0 61.8 -0.48 0.320 0.408 9 ITEM0009 76.0 41.0 53.9 -0.16 -0.019 -0.024 10 ITEM0010 76.0 35.0 46.1 0.16 0.430 0.539 11 ITEM0011 76.0 34.0 44.7 0.21 0.341 0.429 12 ITEM0012 76.0 46.0 60.5 -0.43 0.303 0.385 13 ITEM0013 76.0 63.0 82.9 -1.58 0.099 0.146 14 ITEM0014 76.0 39.0 51.3 -0.05 0.074 0.093 15 ITEM0015 76.0 57.0 75.0 -1.10 0.141 0.192 16 ITEM0016 76.0 54.0 71.1 -0.90 0.019 0.025 17 ITEM0017 76.0 70.0 92.1 -2.46 0.049 0.089 18 ITEM0018 76.0 59.0 77.6 -1.24 0.009 0.013 19 ITEM0019 76.0 52.0 68.4 -0.77 0.039 0.051 20 ITEM0020 76.0 4.0 5.3 2.89 0.187 0.388 ------------------------------------------------------------------------- 296 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-1 167 2216 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-1 11/01/2011 12:51:42 PH2 1 BILOG-MG V3.0 REV 19990329.1300 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 2 *** sample 20 by 76 >CALIB ACCel = 1.0000, TPRior, GPRior; CALIBRATION PARAMETERS ====================== 168 MAXIMUM NUMBER OF EM CYCLES: 20 MAXIMUM NUMBER OF NEWTON CYCLES: CONVERGENCE CRITERION: 0.0100 ACCELERATION CONSTANT: 1.0000 2 LATENT DISTRIBUTION: NORMAL PRIOR FOR EACH GROUP PLOT EMPIRICAL VS. FITTED ICC'S: NO DATA HANDLING: DATA ON SCRATCH FILE CONSTRAINT DISTRIBUTION ON ASYMPTOTES: YES CONSTRAINT DISTRIBUTION ON SLOPES: YES CONSTRAINT DISTRIBUTION ON THRESHOLDS: YES SOURCE OF ITEM CONSTRAINT DISTIBUTION MEANS AND STANDARD DEVIATIONS: PROGRAM DEFAULTS 1 -------------------------------------------------------------------------------- ****************************** CALIBRATION OF MAINTEST TEST0001 ****************************** METHOD OF SOLUTION: EM CYCLES (MAXIMUM OF 20) FOLLOWED BY NEWTON-RAPHSON STEPS (MAXIMUM OF 2) QUADRATURE POINTS AND PRIOR WEIGHTS: 1 2 3 4 5 169 POINT -0.4000E+01 -0.3429E+01 -0.2857E+01 -0.2286E+01 -0.1714E+01 WEIGHT 0.7648E-04 0.6387E-03 0.3848E-02 0.1673E-01 0.5245E-01 6 7 8 9 10 POINT -0.1143E+01 -0.5714E+00 -0.8882E-15 0.5714E+00 0.1143E+01 WEIGHT 0.1186E+00 0.1936E+00 0.2280E+00 0.1936E+00 0.1186E+00 11 12 13 14 15 POINT 0.1714E+01 0.2286E+01 0.2857E+01 0.3429E+01 0.4000E+01 WEIGHT 0.5245E-01 0.1673E-01 0.3848E-02 0.6387E-03 0.7648E-04 CONSTRAINT DISTRIBUTIONS ON ITEM PARAMETERS (THRESHOLDS, NORMAL; SLOPES, LOG-NORMAL; GUESSING, BETA) THRESHOLDS SLOPES ASYMPTOTES ITEM MU SIGMA MU SIGMA ALPHA BETA ---------------------------------------------------------------------ITEM0001 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0002 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0003 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0004 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0005 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0006 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0007 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0008 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0009 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0010 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0011 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0012 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0013 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0014 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0015 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0016 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0017 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0018 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0019 0.000 2.000 1.000 1.649 7.67 14.33 170 ITEM0020 0.000 2.000 1.000 1.649 7.67 14.33 ---------------------------------------------------------------------- [E-M CYCLES] -2 LOG LIKELIHOOD = CYCLE 1; LARGEST CHANGE= 1.93400 -2 LOG LIKELIHOOD = CYCLE 1644.191 5; LARGEST CHANGE= 0.04528 -2 LOG LIKELIHOOD = CYCLE 1643.897 4; LARGEST CHANGE= 0.14309 -2 LOG LIKELIHOOD = CYCLE 1643.966 3; LARGEST CHANGE= 0.20876 -2 LOG LIKELIHOOD = CYCLE 1648.773 2; LARGEST CHANGE= 0.81194 -2 LOG LIKELIHOOD = CYCLE 1682.402 1643.838 6; LARGEST CHANGE= 0.05028 171 -2 LOG LIKELIHOOD = CYCLE 7; LARGEST CHANGE= 0.02639 -2 LOG LIKELIHOOD = CYCLE 1643.870 9; LARGEST CHANGE= 0.02461 -2 LOG LIKELIHOOD = CYCLE 1643.905 8; LARGEST CHANGE= 0.01976 -2 LOG LIKELIHOOD = CYCLE 1644.061 1643.867 10; LARGEST CHANGE= 0.00787 [NEWTON CYCLES] -2 LOG LIKELIHOOD: 1643.8586 CYCLE 11; LARGEST CHANGE= 0.00306 INTERVAL COUNTS FOR COMPUTATION OF ITEM CHI-SQUARES ---------------------------------------------------------------------------0. 2. 8. 17. 14. 12. 10. 7. 6. ---------------------------------------------------------------------------INTERVAL AVERAGE THETAS 172 ---------------------------------------------------------------------------******* -1.947 -1.308 -0.777 -0.334 0.271 0.879 1.292 1.861 ---------------------------------------------------------------------------1 SUBTEST TEST0001; ITEM PARAMETERS AFTER CYCLE 11 ITEM CHISQ INTERCEPT SLOPE THRESHOLD LOADING ASYMPTOTE DF S.E. S.E. S.E. S.E. S.E. (PROB) ------------------------------------------------------------------------------ITEM0001 | -0.570 | 1.455 | 0.392 | 0.824 | 0.295 | 2.3 5.0 | 0.649* | 0.690* | 0.402* | 0.391* | 0.090* | (0.8053) | | | | | | ITEM0002 | 1.462 | 0.830 | -1.762 | 0.639 | 0.352 | 0.9 3.0 | 0.458* | 0.329* | 0.791* | 0.254* | 0.107* | (0.8347) | | | | | | ITEM0003 | 0.466 | 0.888 | -0.525 | 0.664 | 0.339 | 12.1 5.0 | 0.450* | 0.348* | 0.554* | 0.261* | 0.103* | (0.0337) | | | | | | ITEM0004 | 0.699 | 0.651 | -1.075 | 0.545 | 0.361 | 3.2 4.0 | 0.419* | 0.234* | 0.768* | 0.196* | 0.106* | (0.5292) | | | | | | ITEM0005 | -2.009 | 1.090 | 1.844 | 0.737 | 0.271 | 9.6 5.0 | 0.928* | 0.513* | 0.828* | 0.347* | 0.073* | (0.0867) | | | | | | ITEM0006 | 1.164 | 1.282 | -0.908 | 0.788 | 0.327 | 1.4 3.0 | 0.542* | 0.612* | 0.460* | 0.376* | 0.103* | (0.7154) | | | | | | ITEM0007 | 1.417 | 1.096 | -1.292 | 0.739 | 0.335 | 2.1 3.0 | 0.502* | 0.466* | 0.577* | 0.314* | 0.105* | (0.5547) | | | | | | ITEM0008 | -0.201 | 1.417 | 0.142 | 0.817 | 0.305 | 3.7 5.0 | 0.579* | 0.646* | 0.395* | 0.372* | 0.094* | (0.5960) | | | | | | ITEM0009 | -1.136 | 0.587 | 1.936 | 0.506 | 0.374 | 6.0 6.0 | 0.658* | 0.223* | 1.195* | 0.192* | 0.091* | (0.4187) | | | | | | ITEM0010 | -1.143 | 1.894 | 0.603 | 0.884 | 0.236 | 2.8 4.0 | 0.861* | 1.085* | 0.333* | 0.507* | 0.076* | (0.5896) 173 | | | | | | ITEM0011 | -1.205 | 1.704 | 0.707 | 0.862 | 0.237 | 2.7 | 0.820* | 0.903* | 0.359* | 0.457* | 0.076* | (0.7520) | | | | | | ITEM0012 | -0.332 | 1.316 | 0.253 | 0.796 | 0.310 | 4.9 | 0.595* | 0.533* | 0.424* | 0.323* | 0.094* | (0.4257) | | | | | | ITEM0013 | 1.107 | 0.853 | -1.297 | 0.649 | 0.353 | 1.1 | 0.449* | 0.339* | 0.670* | 0.258* | 0.107* | (0.8939) | | | | | | ITEM0014 | -1.106 | 0.870 | 1.272 | 0.656 | 0.331 | 6.4 | 0.684* | 0.357* | 0.750* | 0.270* | 0.090* | (0.3793) | | | | | | ITEM0015 | 0.544 | 1.000 | -0.544 | 0.707 | 0.347 | 3.3 | 0.476* | 0.416* | 0.514* | 0.294* | 0.105* | (0.5025) | | | | | | ITEM0016 | 0.113 | 0.604 | -0.188 | 0.517 | 0.369 | 3.8 | 0.451* | 0.217* | 0.760* | 0.185* | 0.104* | (0.5783) | | | | | | ITEM0017 | 1.980 | 0.723 | -2.737 | 0.586 | 0.353 | 0.3 | 0.486* | 0.258* | 1.148* | 0.209* | 0.107* | (0.8562) | | | | | | ITEM0018 | 0.600 | 0.587 | -1.021 | 0.507 | 0.359 | 4.4 | 0.410* | 0.206* | 0.821* | 0.178* | 0.106* | (0.3492) | | | | | | ITEM0019 | -0.074 | 0.554 | 0.133 | 0.485 | 0.371 | 6.2 | 0.461* | 0.197* | 0.825* | 0.172* | 0.103* | (0.4032) | | | | | | ITEM0020 | -3.711 | 0.886 | 4.190 | 0.663 | 0.097 | 5.3 | 1.227* | 0.409* | 2.078* | 0.306* | 0.034* | (0.0000) ------------------------------------------------------------------------------* STANDARD ERROR 5.0 5.0 4.0 6.0 4.0 5.0 2.0 4.0 6.0 0.0 LARGEST CHANGE = 0.003062 82.4 84.0 (0.5275) ------------------------------------------------------------------------------- PARAMETER MEAN STN DEV ----------------------------------174 ASYMPTOTE 0.316 0.066 SLOPE 1.014 0.388 LOG(SLOPE) -0.052 0.371 THRESHOLD 0.006 1.539 QUADRATURE POINTS, POSTERIOR WEIGHTS, MEAN AND S.D.: 1 2 3 4 5 POINT -0.4111E+01 -0.3524E+01 -0.2937E+01 -0.2349E+01 -0.1762E+01 POSTERIOR 0.4869E-04 0.4659E-03 0.3089E-02 0.1450E-01 0.4928E-01 6 7 8 9 10 POINT -0.1175E+01 -0.5872E+00 0.1730E-03 0.5876E+00 0.1175E+01 POSTERIOR 0.1221E+00 0.2064E+00 0.2232E+00 0.1845E+00 0.1221E+00 11 12 13 14 15 POINT 0.1762E+01 0.2350E+01 0.2937E+01 0.3524E+01 0.4112E+01 POSTERIOR 0.5450E-01 0.1610E-01 0.3128E-02 0.3896E-03 0.3071E-04 MEAN S.D. 0.00000 1.00000 32392 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-2 3652 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-2 11/01/2011 12:51:42 PH3 1 175 BILOG-MG V3.0 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** LOGISTIC MODEL ITEM ANALYSER *** *** PHASE 3 *** sample 20 by 76 >SCORE ; PARAMETERS FOR SCORING, RESCALING, AND TEST AND ITEM INFORMATION METHOD OF SCORING SUBJECTS: EXPECTATION A POSTERIORI (EAP; BAYES ESTIMATION) TYPE OF PRIOR: NORMAL SCORES WRITTEN TO FILE NEHA.SCO SCORES WRITTEN TO FILE TYPE OF RESCALING: ITEM AND TEST INFORMATION: DOMAIN SCORE ESTIMATION: neha.PH3 NONE REQUESTED NONE REQUESTED NONE REQUESTED QUAD TEST NAME POINTS ----------------------176 1 TEST0001 10 ----------------------1 ****************************** SCORING ****************************** PRIOR DISTRIBUTION(S) ===================== EAP SUBJECT ESTIMATION, TEST: TEST0001 QUADRATURE POINTS AND PRIOR WEIGHTS, MEAN AND S.D.: 1 2 3 4 5 POINT -0.4000E+01 -0.3111E+01 -0.2222E+01 -0.1333E+01 -0.4444E+00 WEIGHT 0.1190E-03 0.2805E-02 0.3002E-01 0.1458E+00 0.3213E+00 6 7 8 9 10 POINT 0.4444E+00 0.1333E+01 0.2222E+01 0.3111E+01 0.4000E+01 WEIGHT 0.3213E+00 0.1458E+00 0.3002E-01 0.2805E-02 0.1190E-03 MEAN S.D. 1 0.0000 1.0000 GROUP SUBJECT IDENTIFICATION WEIGHT TEST TRIED RIGHT PERCENT MARGINAL ABILITY S.E. PROB 177 -------------------------------------------------------------------------1 Examinee01 | | 1.00 TEST0001 20 18 90.00 | 1.3195 0.6098 | 0.001078 1 Examinee02 | | 1.00 TEST0001 20 18 90.00 | 1.5528 0.6315 | 0.000934 1 Examinee03 | | 1.00 TEST0001 20 18 90.00 | 1.6072 0.6332 | 0.002110 1 Examinee04 | | 1.00 TEST0001 20 18 90.00 | 1.6352 0.6304 | 0.004593 1 Examinee05 | | 1.00 TEST0001 20 17 85.00 | 1.3368 0.6183 | 0.000085 1 Examinee06 | | 1.00 TEST0001 20 17 85.00 | 0.7711 0.5812 | 0.000317 1 Examinee07 | | 1.00 TEST0001 20 17 85.00 | 1.2016 0.6307 | 0.000003 1 Examinee08 | | 1.00 TEST0001 20 17 85.00 | 1.4298 0.6138 | 0.000902 1 Examinee09 | | 1.00 TEST0001 20 16 80.00 | 0.8595 0.5835 | 0.000267 1 Examinee10 | | 1.00 TEST0001 20 16 80.00 | 0.8747 0.6472 | 0.000000 1 Examinee11 | | 1.00 TEST0001 20 16 80.00 | 0.8124 0.5733 | 0.000307 1 Examinee12 | | 1.00 TEST0001 20 16 80.00 | 0.6021 0.5502 | 0.000539 1 Examinee13 | | 1.00 TEST0001 20 16 80.00 | 1.1091 0.5790 | 0.000806 1 Examinee14 | | 1.00 TEST0001 20 15 75.00 | 0.2114 0.5729 | 0.000018 1 Examinee15 | | 1.00 TEST0001 20 15 75.00 | 0.8054 0.6002 | 0.000029 1 Examinee16 | | 1.00 TEST0001 20 15 75.00 | 0.2354 0.5341 | 0.000190 1 Examinee17 | | 1.00 TEST0001 20 15 75.00 | 0.7558 0.5897 | 0.000104 1 Examinee18 | | 1.00 TEST0001 20 15 75.00 | 0.3469 0.5883 | 0.000023 1 Examinee19 | | 1.00 TEST0001 20 15 75.00 | 1.0268 0.6009 | 0.000087 1 Examinee20 | | 178 1.00 TEST0001 1 Examinee21 1.00 TEST0001 1 Examinee22 1.00 TEST0001 1 Examinee23 1.00 TEST0001 1 Examinee24 1.00 TEST0001 1 Examinee25 1.00 TEST0001 1 Examinee26 1.00 TEST0001 1 Examinee27 1.00 TEST0001 1 Examinee28 1.00 TEST0001 1 Examinee29 1.00 TEST0001 1 Examinee30 1.00 TEST0001 1 Examinee31 1.00 TEST0001 1 Examinee32 1.00 TEST0001 1 Examinee33 1.00 TEST0001 1 Examinee34 1.00 TEST0001 1 Examinee35 1.00 TEST0001 1 Examinee36 1.00 TEST0001 1 Examinee37 1.00 TEST0001 1 Examinee38 1.00 TEST0001 1 Examinee39 1.00 TEST0001 1 Examinee40 20 15 20 15 20 15 20 15 20 15 20 15 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 13 20 13 20 13 20 13 20 13 20 13 20 13 75.00 | | 75.00 | | 75.00 | | 75.00 | | 75.00 | | 75.00 | | 70.00 | | 70.00 | | 70.00 | | 70.00 | | 70.00 | | 70.00 | | 70.00 | | 65.00 | | 65.00 | | 65.00 | | 65.00 | | 65.00 | | 65.00 | | 65.00 | | 0.2787 | 1.0147 | 0.7744 | 0.3820 | 1.0212 | 0.3172 | 0.4626 | 0.7006 | 0.6856 | 0.0081 | -0.0043 | 0.2261 | 0.4884 | 0.0464 | -0.3784 | -0.0417 | -0.3141 | -0.0286 | -0.2634 | -0.3076 | 0.5630 | 0.000057 0.5893 | 0.000155 0.5802 | 0.000238 0.5165 | 0.000611 0.5870 | 0.000229 0.5952 | 0.000026 0.5858 | 0.000073 0.6039 | 0.000033 0.6088 | 0.000020 0.5471 | 0.000120 0.6800 | 0.000000 0.5395 | 0.000156 0.5897 | 0.000042 0.5826 | 0.000039 0.5610 | 0.000042 0.6291 | 0.000006 0.6351 | 0.000003 0.6220 | 0.000005 0.5840 | 0.000013 0.5547 | 0.000044 179 1.00 TEST0001 1 Examinee41 1.00 TEST0001 1 Examinee42 1.00 TEST0001 1 Examinee43 1.00 TEST0001 1 Examinee44 1.00 TEST0001 1 Examinee45 1.00 TEST0001 1 Examinee46 1.00 TEST0001 1 Examinee47 1.00 TEST0001 1 Examinee48 1.00 TEST0001 1 Examinee49 1.00 TEST0001 1 Examinee50 1.00 TEST0001 1 Examinee51 1.00 TEST0001 1 Examinee52 1.00 TEST0001 1 Examinee53 1.00 TEST0001 1 Examinee54 1.00 TEST0001 1 Examinee55 1.00 TEST0001 1 Examinee56 1.00 TEST0001 1 Examinee57 1.00 TEST0001 1 Examinee58 1.00 TEST0001 1 Examinee59 1.00 TEST0001 1 Examinee60 20 13 20 13 20 13 20 13 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 11 65.00 | | 65.00 | | 65.00 | | 65.00 | | 60.00 | | 60.00 | | 60.00 | | 60.00 | | 60.00 | | 60.00 | | 60.00 | | 55.00 | | 55.00 | | 55.00 | | 55.00 | | 55.00 | | 55.00 | | 55.00 | | 55.00 | | 55.00 | | -0.4053 | 0.2244 | -0.4945 | 0.0518 | 0.2068 | -0.4505 | -0.4045 | -0.2474 | -0.3041 | -0.4160 | 0.2030 | -0.7794 | -0.4358 | -0.4539 | -0.6466 | -0.8256 | -0.3883 | -0.6270 | -0.4612 | -0.4731 | 0.6106 | 0.000003 0.5755 | 0.000032 0.6475 | 0.000001 0.5898 | 0.000016 0.6733 | 0.000001 0.5682 | 0.000020 0.5801 | 0.000004 0.5664 | 0.000027 0.6019 | 0.000012 0.5926 | 0.000007 0.6213 | 0.000006 0.5830 | 0.000013 0.6184 | 0.000005 0.5201 | 0.000178 0.6155 | 0.000005 0.6263 | 0.000001 0.5776 | 0.000020 0.6613 | 0.000002 0.6121 | 0.000006 0.5313 | 0.000077 180 1.00 TEST0001 20 11 55.00 | -0.9057 0.6687 | 0.000001 1 Examinee61 | | 1.00 TEST0001 20 11 55.00 | -0.6860 0.6222 | 0.000004 1 Examinee62 | | 1.00 TEST0001 20 10 50.00 | -0.7320 0.5875 | 0.000010 1 Examinee63 | | 1.00 TEST0001 20 10 50.00 | -0.7341 0.5850 | 0.000009 1 Examinee64 | | 1.00 TEST0001 20 10 50.00 | -0.9089 0.6251 | 0.000001 1 Examinee65 | | 1.00 TEST0001 20 10 50.00 | -1.1283 0.6851 | 0.000000 1 Examinee66 | | 1.00 TEST0001 20 10 50.00 | -0.6220 0.5673 | 0.000016 1 Examinee67 | | 1.00 TEST0001 20 9 45.00 | -0.6641 0.5397 | 0.000056 1 Examinee68 | | 1.00 TEST0001 20 9 45.00 | -0.9952 0.6214 | 0.000002 1 Examinee69 | | 1.00 TEST0001 20 9 45.00 | -0.6641 0.5397 | 0.000056 1 Examinee70 | | 1.00 TEST0001 20 9 45.00 | -0.6641 0.5397 | 0.000056 1 Examinee71 | | 1.00 TEST0001 20 9 45.00 | -0.9159 0.5938 | 0.000011 1 Examinee72 | | 1.00 TEST0001 20 9 45.00 | -1.3222 0.6850 | 0.000000 1 Examinee73 | | 1.00 TEST0001 20 8 40.00 | -1.1706 0.6255 | 0.000001 1 Examinee74 | | 1.00 TEST0001 20 8 40.00 | -1.0727 0.6381 | 0.000002 1 Examinee75 | | 1.00 TEST0001 20 7 35.00 | -1.5746 0.6272 | 0.000000 1 Examinee76 | | 1.00 TEST0001 20 6 30.00 | -1.5867 0.6572 | 0.000001 -------------------------------------------------------------------------- SUMMARY STATISTICS FOR SCORE ESTIMATES ====================================== 181 CORRELATIONS AMONG TEST SCORES TEST0001 TEST0001 1.0000 MEANS, STANDARD DEVIATIONS, AND VARIANCES OF SCORE ESTIMATES TEST: TEST0001 MEAN: 0.0011 S.D.: 0.7947 VARIANCE: 0.6315 ROOT-MEAN-SQUARE POSTERIOR STANDARD DEVIATIONS TEST: TEST0001 RMS: 0.6000 VARIANCE: 0.3600 EMPIRICAL RELIABILITY: 0.6369 MARGINAL LATENT DISTRIBUTION(S) =============================== MARGINAL LATENT DISTRIBUTION FOR TEST TEST0001 MEAN = 0.001 S.D. = 0.969 1 2 3 4 5 POINT -0.4000E+01 -0.3111E+01 -0.2222E+01 -0.1333E+01 -0.4444E+00 WEIGHT 0.8552E-04 0.2271E-02 0.2701E-01 0.1472E+00 0.3358E+00 6 7 8 9 10 182 POINT 0.4444E+00 0.1333E+01 0.2222E+01 0.3111E+01 0.4000E+01 WEIGHT 0.3007E+00 0.1540E+00 0.3061E-01 0.2219E-02 0.5505E-04 44 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-3 2752 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-3 2PM BILOG CURVES ItemCharacteristic Curve: ITEM0001 a = 1.118 ItemInformation Curve: ITEM0001 b = -0.307 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 1 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 183 ItemInformation Curve: ITEM0002 ItemCharacteristic Curve: ITEM0002 a = 0.677 b = -2.887 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 2 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 184 ItemInformation Curve: ITEM0003 ItemCharacteristic Curve: ITEM0003 a = 0.691 b = -1.602 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 1 2 3 Scale Score Ability 2-Parameter Model, Logistic Metric 0 Item: 3 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 185 Item Information Curve: ITEM0004 Item Characteristic Curve: ITEM0004 a = 0.558 b = -2.409 1.0 0.6 0.5 0.8 Info rmatio n Pro bab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 4 The parameter a is the item dis c riminating power, the rec iproc al (1/a) is the item dis pers ion, and the parameter b is an item loc ation parameter. 186 ItemCharacteristic Curve: ITEM0005 a = 0.639 ItemInformation Curve: ITEM0005 b = 0.893 1.0 0.6 0.5 0.8 In fo r m a tio n P r o b a b ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 5 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 187 ItemCharacteristic Curve: ITEM0006 a = 0.839 ItemInformation Curve: ITEM0006 b = -1.865 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 6 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 188 ItemCharacteristic Curve: ITEM0007 a = 0.922 ItemInformation Curve: ITEM0007 b = -2.058 1.0 0.6 0.5 0.8 In fo r m a tio n P r o b a b ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 7 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 189 ItemCharacteristic Curve: ITEM0008 a = 0.901 ItemInformation Curve: ITEM0008 b = -0.629 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 8 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 190 ItemInformation Curve: ITEM0009 ItemCharacteristic Curve: ITEM0009 a = 0.431 b = -0.368 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 9 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 191 ItemCharacteristic Curve: ITEM0010 a = 1.549 ItemInformation Curve: ITEM0010 b = 0.132 1.0 0.6 0.5 0.8 In fo r m atio n P r o b a b ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 10 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 192 ItemCharacteristic Curve: ITEM0011 a = 1.299 ItemInformation Curve: ITEM0011 b = 0.204 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 11 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 193 ItemCharacteristic Curve: ITEM0012 a = 1.110 ItemInformation Curve: ITEM0012 b = -0.490 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 12 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 194 ItemCharacteristic Curve: ITEM0013 a = 0.650 Item Information Curve: ITEM0013 b = -2.526 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 13 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 195 ItemCharacteristic Curve: ITEM0014 a = 0.548 ItemInformation Curve: ITEM0014 b = -0.104 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 14 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 196 ItemCharacteristic Curve: ITEM0015 a = 0.685 ItemInformation Curve: ITEM0015 b = -1.717 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 15 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 197 Item Characteristic Curve: ITEM0016 a = 0.510 ItemInformation Curve: ITEM0016 b = -1.780 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 16 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 198 ItemCharacteristic Curve: ITEM0017 a = 0.645 ItemInformation Curve: ITEM0017 b = -3.776 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 0 -3 -2 -1 0 1 2 0 -3 3 -2 -1 0 Ability 1 2 3 Scale Score 2-Parameter Model, Logistic Metric Item: 17 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. ItemInformation Curve: ITEM0018 ItemCharacteristic Curve: ITEM0018 a = 0.479 b = -2.567 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 18 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 199 ItemCharacteristic Curve: ITEM0019 a = 0.481 ItemInformation Curve: ITEM0019 b = -1.613 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 19 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. 200 Item Characteristic Curve: ITEM0020 a = 0.994 ItemInformation Curve: ITEM0020 b = 3.188 1.0 0.6 0.5 0.8 In fo r m atio n P r o b ab ility 0.4 0.6 0.4 0.3 0.2 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 2-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 20 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, and the parameter b is an item location parameter. Test of 25 items administered on random sample of 1000 test takers in the domain of Analytical Ability Outputs for a Single Parameter model are: PH1 1 BILOG-MG V3.0 REV 19990104.1300 201 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL DISTRIBUTED BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 7383 N. LINCOLN AVENUE, SUITE 100 CHICAGO, IL 60646 (800) 247-6113 (847) 675-0720 WWW: http:://www.ssicentral.com PROGRAM COPYRIGHT HELD BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 2002 DISTRIBUTION OR USE UNAUTHORIZED BY SSI, INC. IS PROHIBITED 1 *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 1 *** 25 by 1000 ---> FIND WARNING: 2 RECORDS NOT CONTAINING > IN COLUMN 1 HAVE BEEN SKIPPED >GLOBAL DFName = 'C:\25by1000\RG.dat', NPArm = 1, LOGistic, 202 SAVe; FILE ASSIGNMENT AND DISPOSITION =============================== SUBJECT DATA INPUT FILE C:\25BY1000\RG.DAT BILOG-MG MASTER DATA FILE MF.DAT WILL BE CREATED FROM DATA FILE CALIBRATION DATA FILE CF.DAT WILL BE CREATED FROM DATA FILE ITEM PARAMETERS FILE IF.DAT WILL BE CREATED THIS RUN CASE SCALE-SCORE FILE CASE WEIGHTING SF.DAT NONE EMPLOYED ITEM RESPONSE MODEL 1 PARAMETER LOGISTIC LOGIT METRIC (I.E., D = 1.0) >SAVE MASter = 'RG1PM.MAS', CALib = 'RG1PM.CAL', PARm = 'RG1PM.PAR', SCOre = 'RG1PM.SCO', COVariance = 'RG1PM.COV', TSTat = 'RG1PM.TST', ISTat = 'RG1PM.IST'; 203 BILOG-MG SAVE FILES [OUTPUT FILES] BILOG-MG MASTER BINARY DATA RG1PM.MAS CALIBRATION BINARY DATA FILERG1PM.CAL CLASSICAL ITEM STATISTICS RG1PM.IST ITEM PARAMETERS FILE RG1PM.PAR CASE SCALE-SCORE FILE RG1PM.SCO ESTIMATED COVARIANCE FILE RG1PM.COV TEST INFORMATION FILE RG1PM.TST >LENGTH NITems = (25); TEST LENGTH SPECIFICATIONS ========================== MAIN TEST LENGTHS: 25 >INPUT NTOtal = 25, NALt = 3, NIDchar = 11; 204 DATA INPUT SPECIFICATIONS ========================= NUMBER OF FORMAT LINES 1 NUMBER OF ITEMS IN INPUT STREAM 25 NUMBER OF RESPONSE ALTERNATIVES 3 NUMBER OF SUBJECT ID CHARACTERS 11 NUMBER OF GROUPS 1 NUMBER OF TEST FORMS 1 TYPE OF DATA SINGLE-SUBJECT DATA, NO CASE WEIGHTS MAXIMUM SAMPLE SIZE FOR ITEM CALIBRATION 10000000 ALL SUBJECTS INCLUDED IN RUN >ITEMS ; TEST SPECIFICATIONS =================== >TEST1 TNAme = 'TEST0001', INUmber = (1(1)25); TEST NUMBER: 1 TEST NAME: TEST0001 NUMBER OF ITEMS: 25 ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM 205 NUMBER NAME NUMBER NAME NUMBER NAME NUMBER NAME ----------------------------------------------------------------------1 ITEM0001 9 ITEM0009 17 ITEM0017 25 ITEM0025 2 ITEM0002 10 ITEM0010 18 ITEM0018 3 ITEM0003 11 ITEM0011 19 ITEM0019 4 ITEM0004 12 ITEM0012 20 ITEM0020 5 ITEM0005 13 ITEM0013 21 ITEM0021 6 ITEM0006 14 ITEM0014 22 ITEM0022 7 ITEM0007 15 ITEM0015 23 ITEM0023 8 ITEM0008 16 ITEM0016 24 ITEM0024 ----------------------------------------------------------------------- FORM SPECIFICATIONS =================== ITEMS READ ACCORDING TO SPECIFICATIONS ON THE ITEMS COMMAND FORMAT FOR DATA INPUT IS: (11A1, 25A1) OBSERVATION # 1 WEIGHT: 1.0000 ID : Examinee001 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 25.000 7.000 206 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 ITEM 21 22 23 24 25 TRIED 1.0 1.0 1.0 1.0 1.0 RIGHT 0.0 0.0 0.0 0.0 0.0 OBSERVATION # 2 WEIGHT: 1.0000 ID : Examinee002 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 25.000 11.000 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 ITEM 21 22 23 24 25 207 TRIED 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 0.0 0.0 1.0 999 OBSERVATIONS READ FROM FILE: C:\25BY1000\RG.DAT 999 OBSERVATIONS WRITTEN TO FILE: RG1PM.MAS ITEM STATISTICS FOR SUBTEST TEST0001 ITEM*TEST CORRELATION ITEM NAME #TRIED #RIGHT PCT LOGIT PEARSON BISERIAL ------------------------------------------------------------------------1 ITEM0001 999.0 694.0 69.5 -0.82 0.246 0.324 2 ITEM0002 999.0 477.0 47.7 0.09 0.155 0.194 3 ITEM0003 999.0 579.0 58.0 -0.32 0.237 0.300 4 ITEM0004 999.0 571.0 57.2 -0.29 0.218 0.275 5 ITEM0005 999.0 461.0 46.1 0.15 0.159 0.199 6 ITEM0006 999.0 801.0 80.2 -1.40 0.266 0.380 7 ITEM0007 999.0 516.0 51.7 -0.07 0.236 0.295 8 ITEM0008 999.0 703.0 70.4 -0.86 0.219 0.289 9 ITEM0009 999.0 390.0 39.0 0.45 0.225 0.286 10 ITEM0010 999.0 560.0 56.1 -0.24 0.268 0.338 11 ITEM0011 999.0 264.0 26.4 1.02 0.022 0.030 12 ITEM0012 999.0 511.0 51.2 -0.05 0.256 0.321 13 ITEM0013 999.0 500.0 50.1 0.00 0.092 0.115 14 ITEM0014 999.0 743.0 74.4 -1.07 0.200 0.271 15 ITEM0015 999.0 195.0 19.5 1.42 0.091 0.130 16 ITEM0016 999.0 210.0 21.0 1.32 0.071 0.100 17 ITEM0017 999.0 281.0 28.1 0.94 0.047 0.062 18 ITEM0018 999.0 401.0 40.1 0.40 0.101 0.129 19 ITEM0019 999.0 284.0 28.4 0.92 0.128 0.170 20 ITEM0020 999.0 271.0 27.1 0.99 0.031 0.042 21 ITEM0021 999.0 290.0 29.0 0.89 0.108 0.144 22 ITEM0022 999.0 374.0 37.4 0.51 0.173 0.221 23 ITEM0023 999.0 198.0 19.8 1.40 0.043 0.061 24 ITEM0024 999.0 251.0 25.1 1.09 0.068 0.093 25 ITEM0025 999.0 187.0 18.7 1.47 0.069 0.100 ------------------------------------------------------------------------208 356 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-1 2720 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-1 11/29/2011 15:08:45 PH2 1 BILOG-MG V3.0 REV 19990329.1300 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 2 *** 25 by 1000 >CALIB ACCel = 1.0000, TPRior, 209 FLOat; CALIBRATION PARAMETERS ====================== MAXIMUM NUMBER OF EM CYCLES: 20 MAXIMUM NUMBER OF NEWTON CYCLES: CONVERGENCE CRITERION: 0.0100 ACCELERATION CONSTANT: 1.0000 2 LATENT DISTRIBUTION: NORMAL PRIOR FOR EACH GROUP PLOT EMPIRICAL VS. FITTED ICC'S: NO DATA HANDLING: DATA ON SCRATCH FILE CONSTRAINT DISTRIBUTION ON SLOPES: NO CONSTRAINT DISTRIBUTION ON THRESHOLDS: YES SOURCE OF ITEM CONSTRAINT DISTIBUTION MEANS AND STANDARD DEVIATIONS: PROGRAM DEFAULTS ITEM CONSTRAINTS IF PRESENT WILL BE UPDATED EACH CYCLE 1 -------------------------------------------------------------------------------- ****************************** CALIBRATION OF MAINTEST TEST0001 ****************************** METHOD OF SOLUTION: EM CYCLES (MAXIMUM OF 20) 210 FOLLOWED BY NEWTON-RAPHSON STEPS (MAXIMUM OF 2) QUADRATURE POINTS AND PRIOR WEIGHTS: 1 2 3 4 5 POINT -0.4000E+01 -0.3429E+01 -0.2857E+01 -0.2286E+01 -0.1714E+01 WEIGHT 0.7648E-04 0.6387E-03 0.3848E-02 0.1673E-01 0.5245E-01 6 7 8 9 10 POINT -0.1143E+01 -0.5714E+00 -0.8882E-15 0.5714E+00 0.1143E+01 WEIGHT 0.1186E+00 0.1936E+00 0.2280E+00 0.1936E+00 0.1186E+00 11 12 13 14 15 POINT 0.1714E+01 0.2286E+01 0.2857E+01 0.3429E+01 0.4000E+01 WEIGHT 0.5245E-01 0.1673E-01 0.3848E-02 0.6387E-03 0.7648E-04 CONSTRAINT DISTRIBUTIONS ON ITEM PARAMETERS (THRESHOLDS, NORMAL; SLOPES, LOG-NORMAL; GUESSING, BETA) THRESHOLDS SLOPES ASYMPTOTES ITEM MU SIGMA MU SIGMA ALPHA BETA ---------------------------------------------------------------------ITEM0001 0.000 2.000 ITEM0002 0.000 2.000 ITEM0003 0.000 2.000 ITEM0004 0.000 2.000 ITEM0005 0.000 2.000 ITEM0006 0.000 2.000 ITEM0007 0.000 2.000 ITEM0008 0.000 2.000 ITEM0009 0.000 2.000 ITEM0010 0.000 2.000 ITEM0011 0.000 2.000 ITEM0012 0.000 2.000 211 ITEM0013 0.000 2.000 ITEM0014 0.000 2.000 ITEM0015 0.000 2.000 ITEM0016 0.000 2.000 ITEM0017 0.000 2.000 ITEM0018 0.000 2.000 ITEM0019 0.000 2.000 ITEM0020 0.000 2.000 ITEM0021 0.000 2.000 ITEM0022 0.000 2.000 ITEM0023 0.000 2.000 ITEM0024 0.000 2.000 ITEM0025 0.000 2.000 ---------------------------------------------------------------------- [E-M CYCLES] -2 LOG LIKELIHOOD = CYCLE 30330.381 1; LARGEST CHANGE= 0.08427 -2 LOG LIKELIHOOD = 30268.635 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE 0.86349 2.00000 2; LARGEST CHANGE= 0.05050 -2 LOG LIKELIHOOD = 30246.118 212 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE 0.73469 2.00000 0.69411 2.00000 0.69971 2.00000 30239.836 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 4; LARGEST CHANGE= 0.03209 -2 LOG LIKELIHOOD = 30237.320 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE 2.00000 3; LARGEST CHANGE= 0.02707 -2 LOG LIKELIHOOD = CYCLE 0.77382 5; LARGEST CHANGE= 0.00397 [NEWTON CYCLES] UPDATED PRIOR ON THRESHOLDS; MEAN & SD = -2 LOG LIKELIHOOD: CYCLE 30237.2725 6; LARGEST CHANGE= 0.00136 213 INTERVAL COUNTS FOR COMPUTATION OF ITEM CHI-SQUARES ---------------------------------------------------------------------------18. 41. 39. 155. 220. 221. 191. 75. 39. ---------------------------------------------------------------------------INTERVAL AVERAGE THETAS ----------------------------------------------------------------------------2.628 -1.890 -1.453 -0.935 -0.331 0.258 0.806 1.415 2.098 ---------------------------------------------------------------------------1 SUBTEST TEST0001; ITEM PARAMETERS AFTER CYCLE 6 ITEM CHISQ INTERCEPT SLOPE THRESHOLD LOADING ASYMPTOTE DF S.E. S.E. S.E. S.E. S.E. (PROB) ------------------------------------------------------------------------------ITEM0001 | 0.858 | 0.469 | -1.828 | 0.425 | 0.000 | 34.8 7.0 | 0.072* | 0.020* | 0.153* | 0.018* | 0.000* | (0.0000) | | | | | | ITEM0002 | -0.096 | 0.469 | 0.206 | 0.425 | 0.000 | 15.0 8.0 | 0.066* | 0.020* | 0.140* | 0.018* | 0.000* | (0.0583) | | | | | | ITEM0003 | 0.335 | 0.469 | -0.713 | 0.425 | 0.000 | 35.8 9.0 | 0.067* | 0.020* | 0.143* | 0.018* | 0.000* | (0.0000) | | | | | | ITEM0004 | 0.300 | 0.469 | -0.640 | 0.425 | 0.000 | 32.7 9.0 | 0.067* | 0.020* | 0.143* | 0.018* | 0.000* | (0.0001) | | | | | | ITEM0005 | -0.164 | 0.469 | 0.349 | 0.425 | 0.000 | 13.2 9.0 | 0.066* | 0.020* | 0.140* | 0.018* | 0.000* | (0.1554) | | | | | | ITEM0006 | 1.451 | 0.469 | -3.092 | 0.425 | 0.000 | 55.0 9.0 | 0.083* | 0.020* | 0.177* | 0.018* | 0.000* | (0.0000) | | | | | | ITEM0007 | 0.067 | 0.469 | -0.144 | 0.425 | 0.000 | 32.5 8.0 | 0.066* | 0.020* | 0.142* | 0.018* | 0.000* | (0.0001) | | | | | | ITEM0008 | 0.902 | 0.469 | -1.923 | 0.425 | 0.000 | 42.6 8.0 214 | 0.072* | 0.020* | 0.154* | 0.018* | 0.000* | (0.0000) | | | | | | ITEM0009 | -0.469 | 0.469 | 0.999 | 0.425 | 0.000 | 27.7 | 0.068* | 0.020* | 0.145* | 0.018* | 0.000* | (0.0005) | | | | | | ITEM0010 | 0.253 | 0.469 | -0.540 | 0.425 | 0.000 | 48.8 | 0.067* | 0.020* | 0.143* | 0.018* | 0.000* | (0.0000) | | | | | | ITEM0011 | -1.071 | 0.469 | 2.282 | 0.425 | 0.000 | 6.5 | 0.072* | 0.020* | 0.154* | 0.018* | 0.000* | (0.5861) | | | | | | ITEM0012 | 0.046 | 0.469 | -0.099 | 0.425 | 0.000 | 43.7 | 0.067* | 0.020* | 0.142* | 0.018* | 0.000* | (0.0000) | | | | | | ITEM0013 | 0.000 | 0.469 | -0.001 | 0.425 | 0.000 | 5.4 | 0.065* | 0.020* | 0.138* | 0.018* | 0.000* | (0.8002) | | | | | | ITEM0014 | 1.110 | 0.469 | -2.365 | 0.425 | 0.000 | 25.4 | 0.075* | 0.020* | 0.160* | 0.018* | 0.000* | (0.0013) | | | | | | ITEM0015 | -1.475 | 0.469 | 3.143 | 0.425 | 0.000 | 5.2 | 0.081* | 0.020* | 0.173* | 0.018* | 0.000* | (0.7338) | | | | | | ITEM0016 | -1.380 | 0.469 | 2.940 | 0.425 | 0.000 | 6.7 | 0.079* | 0.020* | 0.168* | 0.018* | 0.000* | (0.5747) | | | | | | ITEM0017 | -0.982 | 0.469 | 2.093 | 0.425 | 0.000 | 3.6 | 0.071* | 0.020* | 0.152* | 0.018* | 0.000* | (0.8928) | | | | | | ITEM0018 | -0.421 | 0.469 | 0.897 | 0.425 | 0.000 | 8.8 | 0.066* | 0.020* | 0.141* | 0.018* | 0.000* | (0.3562) | | | | | | ITEM0019 | -0.967 | 0.469 | 2.060 | 0.425 | 0.000 | 15.0 | 0.072* | 0.020* | 0.154* | 0.018* | 0.000* | (0.0588) | | | | | | ITEM0020 | -1.034 | 0.469 | 2.203 | 0.425 | 0.000 | 14.7 | 0.072* | 0.020* | 0.153* | 0.018* | 0.000* | (0.0647) | | | | | | ITEM0021 | -0.936 | 0.469 | 1.995 | 0.425 | 0.000 | 9.6 | 0.071* | 0.020* | 0.152* | 0.018* | 0.000* | (0.2929) 8.0 9.0 8.0 8.0 9.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 215 | | | | | | ITEM0022 | -0.540 | 0.469 | 1.150 | 0.425 | 0.000 | 12.5 | 0.068* | 0.020* | 0.145* | 0.018* | 0.000* | (0.1303) | | | | | | ITEM0023 | -1.455 | 0.469 | 3.102 | 0.425 | 0.000 | 14.8 | 0.080* | 0.020* | 0.171* | 0.018* | 0.000* | (0.0629) | | | | | | ITEM0024 | -1.141 | 0.469 | 2.432 | 0.425 | 0.000 | 10.3 | 0.074* | 0.020* | 0.158* | 0.018* | 0.000* | (0.2470) | | | | | | ITEM0025 | -1.528 | 0.469 | 3.256 | 0.425 | 0.000 | 4.1 | 0.082* | 0.020* | 0.175* | 0.018* | 0.000* | (0.8451) ------------------------------------------------------------------------------* STANDARD ERROR 8.0 8.0 8.0 8.0 LARGEST CHANGE = 0.001358 524.4 205.0 (0.0000) ------------------------------------------------------------------------------- PARAMETER MEAN STN DEV ----------------------------------THRESHOLD 0.711 1.842 QUADRATURE POINTS, POSTERIOR WEIGHTS, MEAN AND S.D.: 1 2 3 4 5 POINT -0.4056E+01 -0.3477E+01 -0.2897E+01 -0.2318E+01 -0.1738E+01 POSTERIOR 0.1229E-03 0.9073E-03 0.4701E-02 0.1787E-01 0.5182E-01 6 7 8 9 10 POINT -0.1159E+01 -0.5791E+00 0.3812E-03 0.5799E+00 0.1159E+01 POSTERIOR 0.1149E+00 0.1904E+00 0.2299E+00 0.1983E+00 0.1201E+00 POINT 11 12 13 14 15 0.1739E+01 0.2318E+01 0.2898E+01 0.3477E+01 0.4057E+01 216 POSTERIOR 0.5118E-01 0.1565E-01 0.3513E-02 0.5879E-03 0.7299E-04 MEAN S.D. 0.00000 1.00000 31900 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-2 3936 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-2 11/29/2011 15:08:45 PH3 1 BILOG-MG V3.0 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** LOGISTIC MODEL ITEM ANALYSER *** *** PHASE 3 *** 25 by 1000 >SCORE METhod = 1; PARAMETERS FOR SCORING, RESCALING, AND TEST AND ITEM INFORMATION 217 METHOD OF SCORING SUBJECTS: SCORES WRITTEN TO FILE MAXIMUM LIKELIHOOD RG1PM.SCO SCORES WRITTEN TO FILE RG1PM.PH3 TYPE OF RESCALING: ITEM AND TEST INFORMATION: DOMAIN SCORE ESTIMATION: ----------------------1 NONE REQUESTED NONE REQUESTED NONE REQUESTED ****************************** SCORING ****************************** 1 GROUP SUBJECT IDENTIFICATION WEIGHT TEST TRIED RIGHT PERCENT ABILITY ---------------------------------------------------------------1 Examinee001 | | 1.00 TEST0001 25 7 28.00 | -1.6043 1.0190 | 1 Examinee002 | | 1.00 TEST0001 25 11 44.00 | 0.1408 0.9291 | 1 Examinee003 | | 1.00 TEST0001 25 11 44.00 | 0.1408 0.9291 | 1 Examinee004 | | 1.00 TEST0001 25 12 48.00 | 0.5426 0.9226 | 1 Examinee005 | | 1.00 TEST0001 25 10 40.00 | -0.2690 0.9410 | 1 Examinee006 | | 1.00 TEST0001 25 9 36.00 | -0.6919 0.9590 | 1 Examinee007 | | 1.00 TEST0001 25 10 40.00 | -0.2690 0.9410 | S.E. 218 1 Examinee008 1.00 TEST0001 1 Examinee009 1.00 TEST0001 1 Examinee010 1.00 TEST0001 1 Examinee011 1.00 TEST0001 1 Examinee012 1.00 TEST0001 1 Examinee013 1.00 TEST0001 1 Examinee014 1.00 TEST0001 1 Examinee015 1.00 TEST0001 1 Examinee016 1.00 TEST0001 1 Examinee017 1.00 TEST0001 1 Examinee018 1.00 TEST0001 1 Examinee019 1.00 TEST0001 1 Examinee020 1.00 TEST0001 1 Examinee021 1.00 TEST0001 1 Examinee022 1.00 TEST0001 1 Examinee023 1.00 TEST0001 1 Examinee024 1.00 TEST0001 1 Examinee025 1.00 TEST0001 1 Examinee026 1.00 TEST0001 1 Examinee027 1.00 TEST0001 25 11 25 14 25 9 25 12 25 13 25 16 25 15 25 10 25 13 25 16 25 8 25 5 25 12 25 11 25 11 25 14 25 13 25 7 25 10 25 15 | 44.00 | | 56.00 | | 36.00 | | 48.00 | | 52.00 | | 64.00 | | 60.00 | | 40.00 | | 52.00 | | 64.00 | | 32.00 | | 20.00 | | 48.00 | | 44.00 | | 44.00 | | 56.00 | | 52.00 | | 28.00 | | 40.00 | | 60.00 | | 0.1408 | 1.3406 | -0.6919 | 0.5426 | 0.9411 | 2.1619 | 1.7458 | -0.2690 | 0.9411 | 2.1619 | -1.1343 | -2.6776 | 0.5426 | 0.1408 | 0.1408 | 1.3406 | 0.9411 | -1.6043 | -0.2690 | 1.7458 0.9291 | 0.9252 | 0.9590 | 0.9226 | 0.9213 | 0.9500 | 0.9345 | 0.9410 | 0.9213 | 0.9500 | 0.9844 | 1.1311 | 0.9226 | 0.9291 | 0.9291 | 0.9252 | 0.9213 | 1.0190 | 0.9410 | 0.9345 | 219 1 Examinee028 1.00 TEST0001 1 Examinee029 1.00 TEST0001 1 Examinee030 1.00 TEST0001 1 Examinee031 1.00 TEST0001 1 Examinee032 1.00 TEST0001 1 Examinee033 1.00 TEST0001 1 Examinee034 1.00 TEST0001 1 Examinee035 1.00 TEST0001 1 Examinee036 1.00 TEST0001 1 Examinee037 1.00 TEST0001 1 Examinee038 1.00 TEST0001 1 Examinee039 1.00 TEST0001 1 Examinee040 1.00 TEST0001 1 Examinee041 1.00 TEST0001 1 Examinee042 1.00 TEST0001 1 Examinee043 1.00 TEST0001 1 Examinee044 1.00 TEST0001 1 Examinee045 1.00 TEST0001 1 Examinee046 1.00 TEST0001 1 Examinee047 1.00 TEST0001 25 10 25 13 25 16 25 16 25 13 25 11 25 18 25 12 25 8 25 10 25 14 25 10 25 14 25 13 25 7 25 13 25 11 25 11 25 13 25 8 | 40.00 | | 52.00 | | 64.00 | | 64.00 | | 52.00 | | 44.00 | | 72.00 | | 48.00 | | 32.00 | | 40.00 | | 56.00 | | 40.00 | | 56.00 | | 52.00 | | 28.00 | | 52.00 | | 44.00 | | 44.00 | | 52.00 | | 32.00 | | -0.2690 | 0.9411 | 2.1619 | 2.1619 | 0.9411 | 0.1408 | 3.0533 | 0.5426 | -1.1343 | -0.2690 | 1.3406 | -0.2690 | 1.3406 | 0.9411 | -1.6043 | 0.9411 | 0.1408 | 0.1408 | 0.9411 | -1.1343 0.9410 | 0.9213 | 0.9500 | 0.9500 | 0.9213 | 0.9291 | 1.0052 | 0.9226 | 0.9844 | 0.9410 | 0.9252 | 0.9410 | 0.9252 | 0.9213 | 1.0190 | 0.9213 | 0.9291 | 0.9291 | 0.9213 | 0.9844 | 220 1 Examinee048 1.00 TEST0001 1 Examinee049 1.00 TEST0001 1 Examinee050 1.00 TEST0001 1 Examinee051 1.00 TEST0001 1 Examinee052 1.00 TEST0001 1 Examinee053 1.00 TEST0001 1 Examinee054 1.00 TEST0001 1 Examinee055 1.00 TEST0001 1 Examinee056 1.00 TEST0001 1 Examinee057 1.00 TEST0001 1 Examinee058 1.00 TEST0001 1 Examinee059 1.00 TEST0001 1 Examinee060 1.00 TEST0001 1 Examinee061 1.00 TEST0001 1 Examinee062 1.00 TEST0001 1 Examinee063 1.00 TEST0001 1 Examinee064 1.00 TEST0001 1 Examinee065 1.00 TEST0001 1 Examinee066 1.00 TEST0001 1 Examinee067 1.00 TEST0001 25 11 25 13 25 13 25 9 25 13 25 11 25 9 25 8 25 13 25 16 25 16 25 8 25 10 25 11 25 8 25 13 25 12 25 11 25 13 25 13 | 44.00 | | 52.00 | | 52.00 | | 36.00 | | 52.00 | | 44.00 | | 36.00 | | 32.00 | | 52.00 | | 64.00 | | 64.00 | | 32.00 | | 40.00 | | 44.00 | | 32.00 | | 52.00 | | 48.00 | | 44.00 | | 52.00 | | 52.00 | | 0.1408 | 0.9411 | 0.9411 | -0.6919 | 0.9411 | 0.1408 | -0.6919 | -1.1343 | 0.9411 | 2.1619 | 2.1619 | -1.1343 | -0.2690 | 0.1408 | -1.1343 | 0.9411 | 0.5426 | 0.1408 | 0.9411 | 0.9411 0.9291 | 0.9213 | 0.9213 | 0.9590 | 0.9213 | 0.9291 | 0.9590 | 0.9844 | 0.9213 | 0.9500 | 0.9500 | 0.9844 | 0.9410 | 0.9291 | 0.9844 | 0.9213 | 0.9226 | 0.9291 | 0.9213 | 0.9213 | 221 1 Examinee068 1.00 TEST0001 1 Examinee069 1.00 TEST0001 1 Examinee070 1.00 TEST0001 1 Examinee071 1.00 TEST0001 1 Examinee072 1.00 TEST0001 1 Examinee073 1.00 TEST0001 1 Examinee074 1.00 TEST0001 1 Examinee075 1.00 TEST0001 1 Examinee076 1.00 TEST0001 1 Examinee077 1.00 TEST0001 1 Examinee078 1.00 TEST0001 1 Examinee079 1.00 TEST0001 1 Examinee080 1.00 TEST0001 1 Examinee081 1.00 TEST0001 1 Examinee082 1.00 TEST0001 1 Examinee083 1.00 TEST0001 1 Examinee084 1.00 TEST0001 1 Examinee085 1.00 TEST0001 1 Examinee086 1.00 TEST0001 1 Examinee087 1.00 TEST0001 25 13 25 9 25 15 25 11 25 16 25 13 25 13 25 16 25 18 25 15 25 7 25 14 25 17 25 16 25 8 25 11 25 10 25 11 25 14 25 13 | 52.00 | | 36.00 | | 60.00 | | 44.00 | | 64.00 | | 52.00 | | 52.00 | | 64.00 | | 72.00 | | 60.00 | | 28.00 | | 56.00 | | 68.00 | | 64.00 | | 32.00 | | 44.00 | | 40.00 | | 44.00 | | 56.00 | | 52.00 | | 0.9411 | -0.6919 | 1.7458 | 0.1408 | 2.1619 | 0.9411 | 0.9411 | 2.1619 | 3.0533 | 1.7458 | -1.6043 | 1.3406 | 2.5950 | 2.1619 | -1.1343 | 0.1408 | -0.2690 | 0.1408 | 1.3406 | 0.9411 0.9213 | 0.9590 | 0.9345 | 0.9291 | 0.9500 | 0.9213 | 0.9213 | 0.9500 | 1.0052 | 0.9345 | 1.0190 | 0.9252 | 0.9729 | 0.9500 | 0.9844 | 0.9291 | 0.9410 | 0.9291 | 0.9252 | 0.9213 | 222 1 Examinee088 1.00 TEST0001 1 Examinee089 1.00 TEST0001 1 Examinee090 1.00 TEST0001 1 Examinee091 1.00 TEST0001 1 Examinee092 1.00 TEST0001 1 Examinee093 1.00 TEST0001 1 Examinee094 1.00 TEST0001 1 Examinee095 1.00 TEST0001 1 Examinee096 1.00 TEST0001 1 Examinee097 1.00 TEST0001 1 Examinee098 1.00 TEST0001 1 Examinee099 1.00 TEST0001 1 Examinee100 1.00 TEST0001 1 Examinee101 1.00 TEST0001 1 Examinee102 1.00 TEST0001 1 Examinee103 1.00 TEST0001 1 Examinee104 1.00 TEST0001 1 Examinee105 1.00 TEST0001 1 Examinee106 1.00 TEST0001 1 Examinee107 1.00 TEST0001 25 11 25 10 25 13 25 12 25 10 25 13 25 8 25 13 25 11 25 17 25 12 25 18 25 11 25 9 25 10 25 11 25 15 25 11 25 14 25 11 | 44.00 | | 40.00 | | 52.00 | | 48.00 | | 40.00 | | 52.00 | | 32.00 | | 52.00 | | 44.00 | | 68.00 | | 48.00 | | 72.00 | | 44.00 | | 36.00 | | 40.00 | | 44.00 | | 60.00 | | 44.00 | | 56.00 | | 44.00 | | 0.1408 | -0.2690 | 0.9411 | 0.5426 | -0.2690 | 0.9411 | -1.1343 | 0.9411 | 0.1408 | 2.5950 | 0.5426 | 3.0533 | 0.1408 | -0.6919 | -0.2690 | 0.1408 | 1.7458 | 0.1408 | 1.3406 | 0.1408 0.9291 | 0.9410 | 0.9213 | 0.9226 | 0.9410 | 0.9213 | 0.9844 | 0.9213 | 0.9291 | 0.9729 | 0.9226 | 1.0052 | 0.9291 | 0.9590 | 0.9410 | 0.9291 | 0.9345 | 0.9291 | 0.9252 | 0.9291 | 223 1 Examinee108 1.00 TEST0001 1 Examinee109 1.00 TEST0001 1 Examinee110 1.00 TEST0001 1 Examinee111 1.00 TEST0001 1 Examinee112 1.00 TEST0001 1 Examinee113 1.00 TEST0001 1 Examinee114 1.00 TEST0001 1 Examinee115 1.00 TEST0001 1 Examinee116 1.00 TEST0001 1 Examinee117 1.00 TEST0001 1 Examinee118 1.00 TEST0001 1 Examinee119 1.00 TEST0001 1 Examinee120 1.00 TEST0001 1 Examinee121 1.00 TEST0001 1 Examinee122 1.00 TEST0001 1 Examinee123 1.00 TEST0001 1 Examinee124 1.00 TEST0001 1 Examinee125 1.00 TEST0001 1 Examinee126 1.00 TEST0001 1 Examinee127 1.00 TEST0001 25 8 25 7 25 10 25 12 25 12 25 10 25 7 25 9 25 13 25 9 25 15 25 10 25 9 25 8 25 7 25 8 25 11 25 11 25 12 25 14 | 32.00 | | 28.00 | | 40.00 | | 48.00 | | 48.00 | | 40.00 | | 28.00 | | 36.00 | | 52.00 | | 36.00 | | 60.00 | | 40.00 | | 36.00 | | 32.00 | | 28.00 | | 32.00 | | 44.00 | | 44.00 | | 48.00 | | 56.00 | | -1.1343 | -1.6043 | -0.2690 | 0.5426 | 0.5426 | -0.2690 | -1.6043 | -0.6919 | 0.9411 | -0.6919 | 1.7458 | -0.2690 | -0.6919 | -1.1343 | -1.6043 | -1.1343 | 0.1408 | 0.1408 | 0.5426 | 1.3406 0.9844 | 1.0190 | 0.9410 | 0.9226 | 0.9226 | 0.9410 | 1.0190 | 0.9590 | 0.9213 | 0.9590 | 0.9345 | 0.9410 | 0.9590 | 0.9844 | 1.0190 | 0.9844 | 0.9291 | 0.9291 | 0.9226 | 0.9252 | 224 1 Examinee128 1.00 TEST0001 1 Examinee129 1.00 TEST0001 1 Examinee130 1.00 TEST0001 1 Examinee131 1.00 TEST0001 1 Examinee132 1.00 TEST0001 1 Examinee133 1.00 TEST0001 1 Examinee134 1.00 TEST0001 1 Examinee135 1.00 TEST0001 1 Examinee136 1.00 TEST0001 1 Examinee137 1.00 TEST0001 1 Examinee138 1.00 TEST0001 1 Examinee139 1.00 TEST0001 1 Examinee140 1.00 TEST0001 1 Examinee141 1.00 TEST0001 1 Examinee142 1.00 TEST0001 1 Examinee143 1.00 TEST0001 1 Examinee144 1.00 TEST0001 1 Examinee145 1.00 TEST0001 1 Examinee146 1.00 TEST0001 1 Examinee147 1.00 TEST0001 25 11 25 6 25 5 25 9 25 14 25 12 25 4 25 9 25 10 25 10 25 14 25 7 25 8 25 17 25 8 25 7 25 10 25 12 25 8 25 10 | 44.00 | | 24.00 | | 20.00 | | 36.00 | | 56.00 | | 48.00 | | 16.00 | | 36.00 | | 40.00 | | 40.00 | | 56.00 | | 28.00 | | 32.00 | | 68.00 | | 32.00 | | 28.00 | | 40.00 | | 48.00 | | 32.00 | | 40.00 | | 0.1408 | -2.1131 | -2.6776 | -0.6919 | 1.3406 | 0.5426 | -3.3255 | -0.6919 | -0.2690 | -0.2690 | 1.3406 | -1.6043 | -1.1343 | 2.5950 | -1.1343 | -1.6043 | -0.2690 | 0.5426 | -1.1343 | -0.2690 0.9291 | 1.0661 | 1.1311 | 0.9590 | 0.9252 | 0.9226 | 1.2245 | 0.9590 | 0.9410 | 0.9410 | 0.9252 | 1.0190 | 0.9844 | 0.9729 | 0.9844 | 1.0190 | 0.9410 | 0.9226 | 0.9844 | 0.9410 | 225 1 Examinee148 1.00 TEST0001 1 Examinee149 1.00 TEST0001 1 Examinee150 1.00 TEST0001 1 Examinee151 1.00 TEST0001 1 Examinee152 1.00 TEST0001 1 Examinee153 1.00 TEST0001 1 Examinee154 1.00 TEST0001 1 Examinee155 1.00 TEST0001 1 Examinee156 1.00 TEST0001 1 Examinee157 1.00 TEST0001 1 Examinee158 1.00 TEST0001 1 Examinee159 1.00 TEST0001 1 Examinee160 1.00 TEST0001 1 Examinee161 1.00 TEST0001 1 Examinee162 1.00 TEST0001 1 Examinee163 1.00 TEST0001 1 Examinee164 1.00 TEST0001 1 Examinee165 1.00 TEST0001 1 Examinee166 1.00 TEST0001 1 Examinee167 1.00 TEST0001 25 8 25 7 25 12 25 12 25 11 25 16 25 16 25 10 25 10 25 16 25 15 25 19 25 16 25 17 25 5 25 10 25 17 25 7 25 12 25 8 | 32.00 | | 28.00 | | 48.00 | | 48.00 | | 44.00 | | 64.00 | | 64.00 | | 40.00 | | 40.00 | | 64.00 | | 60.00 | | 76.00 | | 64.00 | | 68.00 | | 20.00 | | 40.00 | | 68.00 | | 28.00 | | 48.00 | | 32.00 | | -1.1343 | -1.6043 | 0.5426 | 0.5426 | 0.1408 | 2.1619 | 2.1619 | -0.2690 | -0.2690 | 2.1619 | 1.7458 | 3.5477 | 2.1619 | 2.5950 | -2.6776 | -0.2690 | 2.5950 | -1.6043 | 0.5426 | -1.1343 0.9844 | 1.0190 | 0.9226 | 0.9226 | 0.9291 | 0.9500 | 0.9500 | 0.9410 | 0.9410 | 0.9500 | 0.9345 | 1.0503 | 0.9500 | 0.9729 | 1.1311 | 0.9410 | 0.9729 | 1.0190 | 0.9226 | 0.9844 | 226 1 Examinee168 1.00 TEST0001 1 Examinee169 1.00 TEST0001 1 Examinee170 1.00 TEST0001 1 Examinee171 1.00 TEST0001 1 Examinee172 1.00 TEST0001 1 Examinee173 1.00 TEST0001 1 Examinee174 1.00 TEST0001 1 Examinee175 1.00 TEST0001 1 Examinee176 1.00 TEST0001 1 Examinee177 1.00 TEST0001 1 Examinee178 1.00 TEST0001 1 Examinee179 1.00 TEST0001 1 Examinee180 1.00 TEST0001 1 Examinee181 1.00 TEST0001 1 Examinee182 1.00 TEST0001 1 Examinee183 1.00 TEST0001 1 Examinee184 1.00 TEST0001 1 Examinee185 1.00 TEST0001 1 Examinee186 1.00 TEST0001 1 Examinee187 1.00 TEST0001 25 13 25 16 25 9 25 7 25 14 25 10 25 17 25 17 25 14 25 8 25 12 25 9 25 11 25 13 25 13 25 9 25 12 25 9 25 11 25 10 | 52.00 | | 64.00 | | 36.00 | | 28.00 | | 56.00 | | 40.00 | | 68.00 | | 68.00 | | 56.00 | | 32.00 | | 48.00 | | 36.00 | | 44.00 | | 52.00 | | 52.00 | | 36.00 | | 48.00 | | 36.00 | | 44.00 | | 40.00 | | 0.9411 | 2.1619 | -0.6919 | -1.6043 | 1.3406 | -0.2690 | 2.5950 | 2.5950 | 1.3406 | -1.1343 | 0.5426 | -0.6919 | 0.1408 | 0.9411 | 0.9411 | -0.6919 | 0.5426 | -0.6919 | 0.1408 | -0.2690 0.9213 | 0.9500 | 0.9590 | 1.0190 | 0.9252 | 0.9410 | 0.9729 | 0.9729 | 0.9252 | 0.9844 | 0.9226 | 0.9590 | 0.9291 | 0.9213 | 0.9213 | 0.9590 | 0.9226 | 0.9590 | 0.9291 | 0.9410 | 227 1 Examinee188 1.00 TEST0001 1 Examinee189 1.00 TEST0001 1 Examinee190 1.00 TEST0001 1 Examinee191 1.00 TEST0001 1 Examinee192 1.00 TEST0001 1 Examinee193 1.00 TEST0001 1 Examinee194 1.00 TEST0001 1 Examinee195 1.00 TEST0001 1 Examinee196 1.00 TEST0001 1 Examinee197 1.00 TEST0001 1 Examinee198 1.00 TEST0001 1 Examinee199 1.00 TEST0001 1 Examinee200 1.00 TEST0001 1 Examinee201 1.00 TEST0001 1 Examinee202 1.00 TEST0001 1 Examinee203 1.00 TEST0001 1 Examinee204 1.00 TEST0001 1 Examinee205 1.00 TEST0001 1 Examinee206 1.00 TEST0001 1 Examinee207 1.00 TEST0001 25 12 25 12 25 8 25 11 25 8 25 12 25 12 25 15 25 20 25 13 25 15 25 10 25 11 25 12 25 14 25 16 25 12 25 11 25 11 25 9 | 48.00 | | 48.00 | | 32.00 | | 44.00 | | 32.00 | | 48.00 | | 48.00 | | 60.00 | | 80.00 | | 52.00 | | 60.00 | | 40.00 | | 44.00 | | 48.00 | | 56.00 | | 64.00 | | 48.00 | | 44.00 | | 44.00 | | 36.00 | | 0.5426 | 0.5426 | -1.1343 | 0.1408 | -1.1343 | 0.5426 | 0.5426 | 1.7458 | 4.0000 | 0.9411 | 1.7458 | -0.2690 | 0.1408 | 0.5426 | 1.3406 | 2.1619 | 0.5426 | 0.1408 | 0.1408 | -0.6919 0.9226 | 0.9226 | 0.9844 | 0.9291 | 0.9844 | 0.9226 | 0.9226 | 0.9345 | 999.0000 | 0.9213 | 0.9345 | 0.9410 | 0.9291 | 0.9226 | 0.9252 | 0.9500 | 0.9226 | 0.9291 | 0.9291 | 0.9590 | 228 1 Examinee208 1.00 TEST0001 1 Examinee209 1.00 TEST0001 1 Examinee210 1.00 TEST0001 1 Examinee211 1.00 TEST0001 1 Examinee212 1.00 TEST0001 1 Examinee213 1.00 TEST0001 1 Examinee214 1.00 TEST0001 1 Examinee215 1.00 TEST0001 1 Examinee216 1.00 TEST0001 1 Examinee217 1.00 TEST0001 1 Examinee218 1.00 TEST0001 1 Examinee219 1.00 TEST0001 1 Examinee220 1.00 TEST0001 1 Examinee221 1.00 TEST0001 1 Examinee222 1.00 TEST0001 1 Examinee223 1.00 TEST0001 1 Examinee224 1.00 TEST0001 1 Examinee225 1.00 TEST0001 1 Examinee226 1.00 TEST0001 1 Examinee227 1.00 TEST0001 25 11 25 12 25 12 25 10 25 7 25 7 25 8 25 15 25 12 25 17 25 15 25 17 25 8 25 22 25 14 25 12 25 16 25 16 25 19 25 20 | 44.00 | | 48.00 | | 48.00 | | 40.00 | | 28.00 | | 28.00 | | 32.00 | | 60.00 | | 48.00 | | 68.00 | | 60.00 | | 68.00 | | 32.00 | | 88.00 | | 56.00 | | 48.00 | | 64.00 | | 64.00 | | 76.00 | | 80.00 | | 0.1408 | 0.5426 | 0.5426 | -0.2690 | -1.6043 | -1.6043 | -1.1343 | 1.7458 | 0.5426 | 2.5950 | 1.7458 | 2.5950 | -1.1343 | 4.0000 | 1.3406 | 0.5426 | 2.1619 | 2.1619 | 3.5477 | 4.0000 0.9291 | 0.9226 | 0.9226 | 0.9410 | 1.0190 | 1.0190 | 0.9844 | 0.9345 | 0.9226 | 0.9729 | 0.9345 | 0.9729 | 0.9844 | 999.0000 | 0.9252 | 0.9226 | 0.9500 | 0.9500 | 1.0503 | 999.0000 | 229 1 Examinee228 1.00 TEST0001 1 Examinee229 1.00 TEST0001 1 Examinee230 1.00 TEST0001 1 Examinee231 1.00 TEST0001 1 Examinee232 1.00 TEST0001 1 Examinee233 1.00 TEST0001 1 Examinee234 1.00 TEST0001 1 Examinee235 1.00 TEST0001 1 Examinee236 1.00 TEST0001 1 Examinee237 1.00 TEST0001 1 Examinee238 1.00 TEST0001 1 Examinee239 1.00 TEST0001 1 Examinee240 1.00 TEST0001 1 Examinee241 1.00 TEST0001 1 Examinee242 1.00 TEST0001 1 Examinee243 1.00 TEST0001 1 Examinee244 1.00 TEST0001 1 Examinee245 1.00 TEST0001 1 Examinee246 1.00 TEST0001 1 Examinee247 1.00 TEST0001 25 11 25 9 25 13 25 10 25 8 25 9 25 16 25 9 25 12 25 11 25 11 25 16 25 10 25 13 25 14 25 9 25 10 25 8 25 12 25 7 | 44.00 | | 36.00 | | 52.00 | | 40.00 | | 32.00 | | 36.00 | | 64.00 | | 36.00 | | 48.00 | | 44.00 | | 44.00 | | 64.00 | | 40.00 | | 52.00 | | 56.00 | | 36.00 | | 40.00 | | 32.00 | | 48.00 | | 28.00 | | 0.1408 | -0.6919 | 0.9411 | -0.2690 | -1.1343 | -0.6919 | 2.1619 | -0.6919 | 0.5426 | 0.1408 | 0.1408 | 2.1619 | -0.2690 | 0.9411 | 1.3406 | -0.6919 | -0.2690 | -1.1343 | 0.5426 | -1.6043 0.9291 | 0.9590 | 0.9213 | 0.9410 | 0.9844 | 0.9590 | 0.9500 | 0.9590 | 0.9226 | 0.9291 | 0.9291 | 0.9500 | 0.9410 | 0.9213 | 0.9252 | 0.9590 | 0.9410 | 0.9844 | 0.9226 | 1.0190 | 230 1 Examinee248 1.00 TEST0001 1 Examinee249 1.00 TEST0001 1 Examinee250 1.00 TEST0001 1 Examinee251 1.00 TEST0001 1 Examinee252 1.00 TEST0001 1 Examinee253 1.00 TEST0001 1 Examinee254 1.00 TEST0001 1 Examinee255 1.00 TEST0001 1 Examinee256 1.00 TEST0001 1 Examinee257 1.00 TEST0001 1 Examinee258 1.00 TEST0001 1 Examinee259 1.00 TEST0001 1 Examinee260 1.00 TEST0001 1 Examinee261 1.00 TEST0001 1 Examinee262 1.00 TEST0001 1 Examinee263 1.00 TEST0001 1 Examinee264 1.00 TEST0001 1 Examinee265 1.00 TEST0001 1 Examinee266 1.00 TEST0001 1 Examinee267 1.00 TEST0001 25 12 25 8 25 8 25 10 25 12 25 5 25 12 25 9 25 17 25 9 25 16 25 14 25 12 25 15 25 12 25 9 25 9 25 6 25 7 25 5 | 48.00 | | 32.00 | | 32.00 | | 40.00 | | 48.00 | | 20.00 | | 48.00 | | 36.00 | | 68.00 | | 36.00 | | 64.00 | | 56.00 | | 48.00 | | 60.00 | | 48.00 | | 36.00 | | 36.00 | | 24.00 | | 28.00 | | 20.00 | | 0.5426 | -1.1343 | -1.1343 | -0.2690 | 0.5426 | -2.6776 | 0.5426 | -0.6919 | 2.5950 | -0.6919 | 2.1619 | 1.3406 | 0.5426 | 1.7458 | 0.5426 | -0.6919 | -0.6919 | -2.1131 | -1.6043 | -2.6776 0.9226 | 0.9844 | 0.9844 | 0.9410 | 0.9226 | 1.1311 | 0.9226 | 0.9590 | 0.9729 | 0.9590 | 0.9500 | 0.9252 | 0.9226 | 0.9345 | 0.9226 | 0.9590 | 0.9590 | 1.0661 | 1.0190 | 1.1311 | 231 1 Examinee268 1.00 TEST0001 1 Examinee269 1.00 TEST0001 1 Examinee270 1.00 TEST0001 1 Examinee271 1.00 TEST0001 1 Examinee272 1.00 TEST0001 1 Examinee273 1.00 TEST0001 1 Examinee274 1.00 TEST0001 1 Examinee275 1.00 TEST0001 1 Examinee276 1.00 TEST0001 1 Examinee277 1.00 TEST0001 1 Examinee278 1.00 TEST0001 1 Examinee279 1.00 TEST0001 1 Examinee280 1.00 TEST0001 1 Examinee281 1.00 TEST0001 1 Examinee282 1.00 TEST0001 1 Examinee283 1.00 TEST0001 1 Examinee284 1.00 TEST0001 1 Examinee285 1.00 TEST0001 1 Examinee286 1.00 TEST0001 1 Examinee287 1.00 TEST0001 25 14 25 6 25 11 25 8 25 7 25 9 25 14 25 13 25 13 25 12 25 10 25 11 25 13 25 9 25 13 25 13 25 10 25 10 25 9 25 14 | 56.00 | | 24.00 | | 44.00 | | 32.00 | | 28.00 | | 36.00 | | 56.00 | | 52.00 | | 52.00 | | 48.00 | | 40.00 | | 44.00 | | 52.00 | | 36.00 | | 52.00 | | 52.00 | | 40.00 | | 40.00 | | 36.00 | | 56.00 | | 1.3406 | -2.1131 | 0.1408 | -1.1343 | -1.6043 | -0.6919 | 1.3406 | 0.9411 | 0.9411 | 0.5426 | -0.2690 | 0.1408 | 0.9411 | -0.6919 | 0.9411 | 0.9411 | -0.2690 | -0.2690 | -0.6919 | 1.3406 0.9252 | 1.0661 | 0.9291 | 0.9844 | 1.0190 | 0.9590 | 0.9252 | 0.9213 | 0.9213 | 0.9226 | 0.9410 | 0.9291 | 0.9213 | 0.9590 | 0.9213 | 0.9213 | 0.9410 | 0.9410 | 0.9590 | 0.9252 | 232 1 Examinee288 1.00 TEST0001 1 Examinee289 1.00 TEST0001 1 Examinee290 1.00 TEST0001 1 Examinee291 1.00 TEST0001 1 Examinee292 1.00 TEST0001 1 Examinee293 1.00 TEST0001 1 Examinee294 1.00 TEST0001 1 Examinee295 1.00 TEST0001 1 Examinee296 1.00 TEST0001 1 Examinee297 1.00 TEST0001 1 Examinee298 1.00 TEST0001 1 Examinee299 1.00 TEST0001 1 Examinee300 1.00 TEST0001 1 Examinee301 1.00 TEST0001 1 Examinee302 1.00 TEST0001 1 Examinee303 1.00 TEST0001 1 Examinee304 1.00 TEST0001 1 Examinee305 1.00 TEST0001 1 Examinee306 1.00 TEST0001 1 Examinee307 1.00 TEST0001 25 11 25 10 25 12 25 8 25 12 25 9 25 10 25 13 25 13 25 10 25 13 25 10 25 9 25 13 25 10 25 5 25 10 25 14 25 6 25 13 | 44.00 | | 40.00 | | 48.00 | | 32.00 | | 48.00 | | 36.00 | | 40.00 | | 52.00 | | 52.00 | | 40.00 | | 52.00 | | 40.00 | | 36.00 | | 52.00 | | 40.00 | | 20.00 | | 40.00 | | 56.00 | | 24.00 | | 52.00 | | 0.1408 | -0.2690 | 0.5426 | -1.1343 | 0.5426 | -0.6919 | -0.2690 | 0.9411 | 0.9411 | -0.2690 | 0.9411 | -0.2690 | -0.6919 | 0.9411 | -0.2690 | -2.6776 | -0.2690 | 1.3406 | -2.1131 | 0.9411 0.9291 | 0.9410 | 0.9226 | 0.9844 | 0.9226 | 0.9590 | 0.9410 | 0.9213 | 0.9213 | 0.9410 | 0.9213 | 0.9410 | 0.9590 | 0.9213 | 0.9410 | 1.1311 | 0.9410 | 0.9252 | 1.0661 | 0.9213 | 233 1 Examinee308 1.00 TEST0001 1 Examinee309 1.00 TEST0001 1 Examinee310 1.00 TEST0001 1 Examinee311 1.00 TEST0001 1 Examinee312 1.00 TEST0001 1 Examinee313 1.00 TEST0001 1 Examinee314 1.00 TEST0001 1 Examinee315 1.00 TEST0001 1 Examinee316 1.00 TEST0001 1 Examinee317 1.00 TEST0001 1 Examinee318 1.00 TEST0001 1 Examinee319 1.00 TEST0001 1 Examinee320 1.00 TEST0001 1 Examinee321 1.00 TEST0001 1 Examinee322 1.00 TEST0001 1 Examinee323 1.00 TEST0001 1 Examinee324 1.00 TEST0001 1 Examinee325 1.00 TEST0001 1 Examinee326 1.00 TEST0001 1 Examinee327 1.00 TEST0001 25 12 25 14 25 14 25 9 25 9 25 5 25 7 25 4 25 7 25 15 25 11 25 8 25 8 25 8 25 19 25 15 25 12 25 12 25 11 25 8 | 48.00 | | 56.00 | | 56.00 | | 36.00 | | 36.00 | | 20.00 | | 28.00 | | 16.00 | | 28.00 | | 60.00 | | 44.00 | | 32.00 | | 32.00 | | 32.00 | | 76.00 | | 60.00 | | 48.00 | | 48.00 | | 44.00 | | 32.00 | | 0.5426 | 1.3406 | 1.3406 | -0.6919 | -0.6919 | -2.6776 | -1.6043 | -3.3255 | -1.6043 | 1.7458 | 0.1408 | -1.1343 | -1.1343 | -1.1343 | 3.5477 | 1.7458 | 0.5426 | 0.5426 | 0.1408 | -1.1343 0.9226 | 0.9252 | 0.9252 | 0.9590 | 0.9590 | 1.1311 | 1.0190 | 1.2245 | 1.0190 | 0.9345 | 0.9291 | 0.9844 | 0.9844 | 0.9844 | 1.0503 | 0.9345 | 0.9226 | 0.9226 | 0.9291 | 0.9844 | 234 1 Examinee328 1.00 TEST0001 1 Examinee329 1.00 TEST0001 1 Examinee330 1.00 TEST0001 1 Examinee331 1.00 TEST0001 1 Examinee332 1.00 TEST0001 1 Examinee333 1.00 TEST0001 1 Examinee334 1.00 TEST0001 1 Examinee335 1.00 TEST0001 1 Examinee336 1.00 TEST0001 1 Examinee337 1.00 TEST0001 1 Examinee338 1.00 TEST0001 1 Examinee339 1.00 TEST0001 1 Examinee340 1.00 TEST0001 1 Examinee341 1.00 TEST0001 1 Examinee342 1.00 TEST0001 1 Examinee343 1.00 TEST0001 1 Examinee344 1.00 TEST0001 1 Examinee345 1.00 TEST0001 1 Examinee346 1.00 TEST0001 1 Examinee347 1.00 TEST0001 25 12 25 12 25 14 25 14 25 13 25 8 25 14 25 9 25 12 25 13 25 14 25 13 25 12 25 13 25 11 25 8 25 6 25 12 25 7 25 11 | 48.00 | | 48.00 | | 56.00 | | 56.00 | | 52.00 | | 32.00 | | 56.00 | | 36.00 | | 48.00 | | 52.00 | | 56.00 | | 52.00 | | 48.00 | | 52.00 | | 44.00 | | 32.00 | | 24.00 | | 48.00 | | 28.00 | | 44.00 | | 0.5426 | 0.5426 | 1.3406 | 1.3406 | 0.9411 | -1.1343 | 1.3406 | -0.6919 | 0.5426 | 0.9411 | 1.3406 | 0.9411 | 0.5426 | 0.9411 | 0.1408 | -1.1343 | -2.1131 | 0.5426 | -1.6043 | 0.1408 0.9226 | 0.9226 | 0.9252 | 0.9252 | 0.9213 | 0.9844 | 0.9252 | 0.9590 | 0.9226 | 0.9213 | 0.9252 | 0.9213 | 0.9226 | 0.9213 | 0.9291 | 0.9844 | 1.0661 | 0.9226 | 1.0190 | 0.9291 | 235 1 Examinee348 1.00 TEST0001 1 Examinee349 1.00 TEST0001 1 Examinee350 1.00 TEST0001 1 Examinee351 1.00 TEST0001 1 Examinee352 1.00 TEST0001 1 Examinee353 1.00 TEST0001 1 Examinee354 1.00 TEST0001 1 Examinee355 1.00 TEST0001 1 Examinee356 1.00 TEST0001 1 Examinee357 1.00 TEST0001 1 Examinee358 1.00 TEST0001 1 Examinee359 1.00 TEST0001 1 Examinee360 1.00 TEST0001 1 Examinee361 1.00 TEST0001 1 Examinee362 1.00 TEST0001 1 Examinee363 1.00 TEST0001 1 Examinee364 1.00 TEST0001 1 Examinee365 1.00 TEST0001 1 Examinee366 1.00 TEST0001 1 Examinee367 1.00 TEST0001 25 14 25 11 25 6 25 9 25 14 25 10 25 10 25 12 25 11 25 8 25 13 25 15 25 11 25 12 25 10 25 9 25 13 25 9 25 6 25 13 | 56.00 | | 44.00 | | 24.00 | | 36.00 | | 56.00 | | 40.00 | | 40.00 | | 48.00 | | 44.00 | | 32.00 | | 52.00 | | 60.00 | | 44.00 | | 48.00 | | 40.00 | | 36.00 | | 52.00 | | 36.00 | | 24.00 | | 52.00 | | 1.3406 | 0.1408 | -2.1131 | -0.6919 | 1.3406 | -0.2690 | -0.2690 | 0.5426 | 0.1408 | -1.1343 | 0.9411 | 1.7458 | 0.1408 | 0.5426 | -0.2690 | -0.6919 | 0.9411 | -0.6919 | -2.1131 | 0.9411 0.9252 | 0.9291 | 1.0661 | 0.9590 | 0.9252 | 0.9410 | 0.9410 | 0.9226 | 0.9291 | 0.9844 | 0.9213 | 0.9345 | 0.9291 | 0.9226 | 0.9410 | 0.9590 | 0.9213 | 0.9590 | 1.0661 | 0.9213 | 236 1 Examinee368 1.00 TEST0001 1 Examinee369 1.00 TEST0001 1 Examinee370 1.00 TEST0001 1 Examinee371 1.00 TEST0001 1 Examinee372 1.00 TEST0001 1 Examinee373 1.00 TEST0001 1 Examinee374 1.00 TEST0001 1 Examinee375 1.00 TEST0001 1 Examinee376 1.00 TEST0001 1 Examinee377 1.00 TEST0001 1 Examinee378 1.00 TEST0001 1 Examinee379 1.00 TEST0001 1 Examinee380 1.00 TEST0001 1 Examinee381 1.00 TEST0001 1 Examinee382 1.00 TEST0001 1 Examinee383 1.00 TEST0001 1 Examinee384 1.00 TEST0001 1 Examinee385 1.00 TEST0001 1 Examinee386 1.00 TEST0001 1 Examinee387 1.00 TEST0001 25 12 25 13 25 8 25 10 25 11 25 8 25 9 25 10 25 11 25 12 25 3 25 7 25 8 25 13 25 7 25 11 25 13 25 15 25 10 25 9 | 48.00 | | 52.00 | | 32.00 | | 40.00 | | 44.00 | | 32.00 | | 36.00 | | 40.00 | | 44.00 | | 48.00 | | 12.00 | | 28.00 | | 32.00 | | 52.00 | | 28.00 | | 44.00 | | 52.00 | | 60.00 | | 40.00 | | 36.00 | | 0.5426 0.9226 | | 0.9411 0.9213 | | -1.1343 0.9844 | | -0.2690 0.9410 | | 0.1408 0.9291 | | -1.1343 0.9844 | | -0.6919 0.9590 | | -0.2690 0.9410 | | 0.1408 0.9291 | | 0.5426 0.9226 | | -4.0000 999.0000 | | -1.6043 1.0190 | | -1.1343 0.9844 | | 0.9411 0.9213 | | -1.6043 1.0190 | | 0.1408 0.9291 | | 0.9411 0.9213 | | 1.7458 0.9345 | | -0.2690 0.9410 | | -0.6919 0.9590 | 237 1 Examinee388 1.00 TEST0001 1 Examinee389 1.00 TEST0001 1 Examinee390 1.00 TEST0001 1 Examinee391 1.00 TEST0001 1 Examinee392 1.00 TEST0001 1 Examinee393 1.00 TEST0001 1 Examinee394 1.00 TEST0001 1 Examinee395 1.00 TEST0001 1 Examinee396 1.00 TEST0001 1 Examinee397 1.00 TEST0001 1 Examinee398 1.00 TEST0001 1 Examinee399 1.00 TEST0001 1 Examinee400 1.00 TEST0001 1 Examinee401 1.00 TEST0001 1 Examinee402 1.00 TEST0001 1 Examinee403 1.00 TEST0001 1 Examinee404 1.00 TEST0001 1 Examinee405 1.00 TEST0001 1 Examinee406 1.00 TEST0001 1 Examinee407 1.00 TEST0001 25 11 25 8 25 6 25 11 25 12 25 12 25 10 25 10 25 7 25 7 25 9 25 12 25 11 25 11 25 11 25 12 25 17 25 11 25 10 25 11 | 44.00 | | 32.00 | | 24.00 | | 44.00 | | 48.00 | | 48.00 | | 40.00 | | 40.00 | | 28.00 | | 28.00 | | 36.00 | | 48.00 | | 44.00 | | 44.00 | | 44.00 | | 48.00 | | 68.00 | | 44.00 | | 40.00 | | 44.00 | | 0.1408 | -1.1343 | -2.1131 | 0.1408 | 0.5426 | 0.5426 | -0.2690 | -0.2690 | -1.6043 | -1.6043 | -0.6919 | 0.5426 | 0.1408 | 0.1408 | 0.1408 | 0.5426 | 2.5950 | 0.1408 | -0.2690 | 0.1408 0.9291 | 0.9844 | 1.0661 | 0.9291 | 0.9226 | 0.9226 | 0.9410 | 0.9410 | 1.0190 | 1.0190 | 0.9590 | 0.9226 | 0.9291 | 0.9291 | 0.9291 | 0.9226 | 0.9729 | 0.9291 | 0.9410 | 0.9291 | 238 1 Examinee408 1.00 TEST0001 1 Examinee409 1.00 TEST0001 1 Examinee410 1.00 TEST0001 1 Examinee411 1.00 TEST0001 1 Examinee412 1.00 TEST0001 1 Examinee413 1.00 TEST0001 1 Examinee414 1.00 TEST0001 1 Examinee415 1.00 TEST0001 1 Examinee416 1.00 TEST0001 1 Examinee417 1.00 TEST0001 1 Examinee418 1.00 TEST0001 1 Examinee419 1.00 TEST0001 1 Examinee420 1.00 TEST0001 1 Examinee421 1.00 TEST0001 1 Examinee422 1.00 TEST0001 1 Examinee423 1.00 TEST0001 1 Examinee424 1.00 TEST0001 1 Examinee425 1.00 TEST0001 1 Examinee426 1.00 TEST0001 1 Examinee427 1.00 TEST0001 25 6 25 12 25 12 25 9 25 6 25 9 25 12 25 13 25 12 25 7 25 16 25 9 25 13 25 6 25 14 25 7 25 8 25 13 25 13 25 7 | 24.00 | | 48.00 | | 48.00 | | 36.00 | | 24.00 | | 36.00 | | 48.00 | | 52.00 | | 48.00 | | 28.00 | | 64.00 | | 36.00 | | 52.00 | | 24.00 | | 56.00 | | 28.00 | | 32.00 | | 52.00 | | 52.00 | | 28.00 | | -2.1131 | 0.5426 | 0.5426 | -0.6919 | -2.1131 | -0.6919 | 0.5426 | 0.9411 | 0.5426 | -1.6043 | 2.1619 | -0.6919 | 0.9411 | -2.1131 | 1.3406 | -1.6043 | -1.1343 | 0.9411 | 0.9411 | -1.6043 1.0661 | 0.9226 | 0.9226 | 0.9590 | 1.0661 | 0.9590 | 0.9226 | 0.9213 | 0.9226 | 1.0190 | 0.9500 | 0.9590 | 0.9213 | 1.0661 | 0.9252 | 1.0190 | 0.9844 | 0.9213 | 0.9213 | 1.0190 | 239 1 Examinee428 1.00 TEST0001 1 Examinee429 1.00 TEST0001 1 Examinee430 1.00 TEST0001 1 Examinee431 1.00 TEST0001 1 Examinee432 1.00 TEST0001 1 Examinee433 1.00 TEST0001 1 Examinee434 1.00 TEST0001 1 Examinee435 1.00 TEST0001 1 Examinee436 1.00 TEST0001 1 Examinee437 1.00 TEST0001 1 Examinee438 1.00 TEST0001 1 Examinee439 1.00 TEST0001 1 Examinee440 1.00 TEST0001 1 Examinee441 1.00 TEST0001 1 Examinee442 1.00 TEST0001 1 Examinee443 1.00 TEST0001 1 Examinee444 1.00 TEST0001 1 Examinee445 1.00 TEST0001 1 Examinee446 1.00 TEST0001 1 Examinee447 1.00 TEST0001 25 10 25 8 25 10 25 13 25 12 25 8 25 14 25 15 25 6 25 12 25 9 25 7 25 7 25 13 25 11 25 8 25 13 25 7 25 11 25 12 | 40.00 | | 32.00 | | 40.00 | | 52.00 | | 48.00 | | 32.00 | | 56.00 | | 60.00 | | 24.00 | | 48.00 | | 36.00 | | 28.00 | | 28.00 | | 52.00 | | 44.00 | | 32.00 | | 52.00 | | 28.00 | | 44.00 | | 48.00 | | -0.2690 | -1.1343 | -0.2690 | 0.9411 | 0.5426 | -1.1343 | 1.3406 | 1.7458 | -2.1131 | 0.5426 | -0.6919 | -1.6043 | -1.6043 | 0.9411 | 0.1408 | -1.1343 | 0.9411 | -1.6043 | 0.1408 | 0.5426 0.9410 | 0.9844 | 0.9410 | 0.9213 | 0.9226 | 0.9844 | 0.9252 | 0.9345 | 1.0661 | 0.9226 | 0.9590 | 1.0190 | 1.0190 | 0.9213 | 0.9291 | 0.9844 | 0.9213 | 1.0190 | 0.9291 | 0.9226 | 240 1 Examinee448 1.00 TEST0001 1 Examinee449 1.00 TEST0001 1 Examinee450 1.00 TEST0001 1 Examinee451 1.00 TEST0001 1 Examinee452 1.00 TEST0001 1 Examinee453 1.00 TEST0001 1 Examinee454 1.00 TEST0001 1 Examinee455 1.00 TEST0001 1 Examinee456 1.00 TEST0001 1 Examinee457 1.00 TEST0001 1 Examinee458 1.00 TEST0001 1 Examinee459 1.00 TEST0001 1 Examinee460 1.00 TEST0001 1 Examinee461 1.00 TEST0001 1 Examinee462 1.00 TEST0001 1 Examinee463 1.00 TEST0001 1 Examinee464 1.00 TEST0001 1 Examinee465 1.00 TEST0001 1 Examinee466 1.00 TEST0001 1 Examinee467 1.00 TEST0001 25 9 25 12 25 10 25 9 25 13 25 14 25 14 25 9 25 11 25 11 25 10 25 13 25 16 25 11 25 8 25 12 25 9 25 7 25 7 25 11 | 36.00 | | 48.00 | | 40.00 | | 36.00 | | 52.00 | | 56.00 | | 56.00 | | 36.00 | | 44.00 | | 44.00 | | 40.00 | | 52.00 | | 64.00 | | 44.00 | | 32.00 | | 48.00 | | 36.00 | | 28.00 | | 28.00 | | 44.00 | | -0.6919 | 0.5426 | -0.2690 | -0.6919 | 0.9411 | 1.3406 | 1.3406 | -0.6919 | 0.1408 | 0.1408 | -0.2690 | 0.9411 | 2.1619 | 0.1408 | -1.1343 | 0.5426 | -0.6919 | -1.6043 | -1.6043 | 0.1408 0.9590 | 0.9226 | 0.9410 | 0.9590 | 0.9213 | 0.9252 | 0.9252 | 0.9590 | 0.9291 | 0.9291 | 0.9410 | 0.9213 | 0.9500 | 0.9291 | 0.9844 | 0.9226 | 0.9590 | 1.0190 | 1.0190 | 0.9291 | 241 1 Examinee468 1.00 TEST0001 1 Examinee469 1.00 TEST0001 1 Examinee470 1.00 TEST0001 1 Examinee471 1.00 TEST0001 1 Examinee472 1.00 TEST0001 1 Examinee473 1.00 TEST0001 1 Examinee474 1.00 TEST0001 1 Examinee475 1.00 TEST0001 1 Examinee476 1.00 TEST0001 1 Examinee477 1.00 TEST0001 1 Examinee478 1.00 TEST0001 1 Examinee479 1.00 TEST0001 1 Examinee480 1.00 TEST0001 1 Examinee481 1.00 TEST0001 1 Examinee482 1.00 TEST0001 1 Examinee483 1.00 TEST0001 1 Examinee484 1.00 TEST0001 1 Examinee485 1.00 TEST0001 1 Examinee486 1.00 TEST0001 1 Examinee487 1.00 TEST0001 25 18 25 10 25 8 25 12 25 10 25 10 25 10 25 9 25 11 25 8 25 12 25 8 25 9 25 10 25 11 25 10 25 12 25 16 25 10 25 11 | 72.00 | | 40.00 | | 32.00 | | 48.00 | | 40.00 | | 40.00 | | 40.00 | | 36.00 | | 44.00 | | 32.00 | | 48.00 | | 32.00 | | 36.00 | | 40.00 | | 44.00 | | 40.00 | | 48.00 | | 64.00 | | 40.00 | | 44.00 | | 3.0533 | -0.2690 | -1.1343 | 0.5426 | -0.2690 | -0.2690 | -0.2690 | -0.6919 | 0.1408 | -1.1343 | 0.5426 | -1.1343 | -0.6919 | -0.2690 | 0.1408 | -0.2690 | 0.5426 | 2.1619 | -0.2690 | 0.1408 1.0052 | 0.9410 | 0.9844 | 0.9226 | 0.9410 | 0.9410 | 0.9410 | 0.9590 | 0.9291 | 0.9844 | 0.9226 | 0.9844 | 0.9590 | 0.9410 | 0.9291 | 0.9410 | 0.9226 | 0.9500 | 0.9410 | 0.9291 | 242 1 Examinee488 1.00 TEST0001 1 Examinee489 1.00 TEST0001 1 Examinee490 1.00 TEST0001 1 Examinee491 1.00 TEST0001 1 Examinee492 1.00 TEST0001 1 Examinee493 1.00 TEST0001 1 Examinee494 1.00 TEST0001 1 Examinee495 1.00 TEST0001 1 Examinee496 1.00 TEST0001 1 Examinee497 1.00 TEST0001 1 Examinee498 1.00 TEST0001 1 Examinee499 1.00 TEST0001 1 Examinee500 1.00 TEST0001 1 Examinee501 1.00 TEST0001 1 Examinee502 1.00 TEST0001 1 Examinee503 1.00 TEST0001 1 Examinee504 1.00 TEST0001 1 Examinee505 1.00 TEST0001 1 Examinee506 1.00 TEST0001 1 Examinee507 1.00 TEST0001 25 9 25 14 25 13 25 14 25 14 25 17 25 13 25 6 25 16 25 12 25 7 25 13 25 10 25 12 25 10 25 6 25 9 25 19 25 14 25 15 | 36.00 | | 56.00 | | 52.00 | | 56.00 | | 56.00 | | 68.00 | | 52.00 | | 24.00 | | 64.00 | | 48.00 | | 28.00 | | 52.00 | | 40.00 | | 48.00 | | 40.00 | | 24.00 | | 36.00 | | 76.00 | | 56.00 | | 60.00 | | -0.6919 | 1.3406 | 0.9411 | 1.3406 | 1.3406 | 2.5950 | 0.9411 | -2.1131 | 2.1619 | 0.5426 | -1.6043 | 0.9411 | -0.2690 | 0.5426 | -0.2690 | -2.1131 | -0.6919 | 3.5477 | 1.3406 | 1.7458 0.9590 | 0.9252 | 0.9213 | 0.9252 | 0.9252 | 0.9729 | 0.9213 | 1.0661 | 0.9500 | 0.9226 | 1.0190 | 0.9213 | 0.9410 | 0.9226 | 0.9410 | 1.0661 | 0.9590 | 1.0503 | 0.9252 | 0.9345 | 243 1 Examinee508 1.00 TEST0001 1 Examinee509 1.00 TEST0001 1 Examinee510 1.00 TEST0001 1 Examinee511 1.00 TEST0001 1 Examinee512 1.00 TEST0001 1 Examinee513 1.00 TEST0001 1 Examinee514 1.00 TEST0001 1 Examinee515 1.00 TEST0001 1 Examinee516 1.00 TEST0001 1 Examinee517 1.00 TEST0001 1 Examinee518 1.00 TEST0001 1 Examinee519 1.00 TEST0001 1 Examinee520 1.00 TEST0001 1 Examinee521 1.00 TEST0001 1 Examinee522 1.00 TEST0001 1 Examinee523 1.00 TEST0001 1 Examinee524 1.00 TEST0001 1 Examinee525 1.00 TEST0001 1 Examinee526 1.00 TEST0001 1 Examinee527 1.00 TEST0001 25 15 25 12 25 13 25 12 25 12 25 12 25 12 25 12 25 6 25 14 25 13 25 10 25 10 25 11 25 8 25 13 25 13 25 17 25 9 25 8 | 60.00 | | 48.00 | | 52.00 | | 48.00 | | 48.00 | | 48.00 | | 48.00 | | 48.00 | | 24.00 | | 56.00 | | 52.00 | | 40.00 | | 40.00 | | 44.00 | | 32.00 | | 52.00 | | 52.00 | | 68.00 | | 36.00 | | 32.00 | | 1.7458 | 0.5426 | 0.9411 | 0.5426 | 0.5426 | 0.5426 | 0.5426 | 0.5426 | -2.1131 | 1.3406 | 0.9411 | -0.2690 | -0.2690 | 0.1408 | -1.1343 | 0.9411 | 0.9411 | 2.5950 | -0.6919 | -1.1343 0.9345 | 0.9226 | 0.9213 | 0.9226 | 0.9226 | 0.9226 | 0.9226 | 0.9226 | 1.0661 | 0.9252 | 0.9213 | 0.9410 | 0.9410 | 0.9291 | 0.9844 | 0.9213 | 0.9213 | 0.9729 | 0.9590 | 0.9844 | 244 1 Examinee528 1.00 TEST0001 1 Examinee529 1.00 TEST0001 1 Examinee530 1.00 TEST0001 1 Examinee531 1.00 TEST0001 1 Examinee532 1.00 TEST0001 1 Examinee533 1.00 TEST0001 1 Examinee534 1.00 TEST0001 1 Examinee535 1.00 TEST0001 1 Examinee536 1.00 TEST0001 1 Examinee537 1.00 TEST0001 1 Examinee538 1.00 TEST0001 1 Examinee539 1.00 TEST0001 1 Examinee540 1.00 TEST0001 1 Examinee541 1.00 TEST0001 1 Examinee542 1.00 TEST0001 1 Examinee543 1.00 TEST0001 1 Examinee544 1.00 TEST0001 1 Examinee545 1.00 TEST0001 1 Examinee546 1.00 TEST0001 1 Examinee547 1.00 TEST0001 25 10 25 8 25 9 25 5 25 11 25 11 25 9 25 12 25 9 25 12 25 8 25 13 25 7 25 15 25 16 25 9 25 10 25 10 25 13 25 7 | 40.00 | | 32.00 | | 36.00 | | 20.00 | | 44.00 | | 44.00 | | 36.00 | | 48.00 | | 36.00 | | 48.00 | | 32.00 | | 52.00 | | 28.00 | | 60.00 | | 64.00 | | 36.00 | | 40.00 | | 40.00 | | 52.00 | | 28.00 | | -0.2690 | -1.1343 | -0.6919 | -2.6776 | 0.1408 | 0.1408 | -0.6919 | 0.5426 | -0.6919 | 0.5426 | -1.1343 | 0.9411 | -1.6043 | 1.7458 | 2.1619 | -0.6919 | -0.2690 | -0.2690 | 0.9411 | -1.6043 0.9410 | 0.9844 | 0.9590 | 1.1311 | 0.9291 | 0.9291 | 0.9590 | 0.9226 | 0.9590 | 0.9226 | 0.9844 | 0.9213 | 1.0190 | 0.9345 | 0.9500 | 0.9590 | 0.9410 | 0.9410 | 0.9213 | 1.0190 | 245 1 Examinee548 1.00 TEST0001 1 Examinee549 1.00 TEST0001 1 Examinee550 1.00 TEST0001 1 Examinee551 1.00 TEST0001 1 Examinee552 1.00 TEST0001 1 Examinee553 1.00 TEST0001 1 Examinee554 1.00 TEST0001 1 Examinee555 1.00 TEST0001 1 Examinee556 1.00 TEST0001 1 Examinee557 1.00 TEST0001 1 Examinee558 1.00 TEST0001 1 Examinee559 1.00 TEST0001 1 Examinee560 1.00 TEST0001 1 Examinee561 1.00 TEST0001 1 Examinee562 1.00 TEST0001 1 Examinee563 1.00 TEST0001 1 Examinee564 1.00 TEST0001 1 Examinee565 1.00 TEST0001 1 Examinee566 1.00 TEST0001 1 Examinee567 1.00 TEST0001 25 5 25 10 25 4 25 4 25 6 25 6 25 5 25 7 25 7 25 2 25 3 25 6 25 2 25 5 25 8 25 7 25 8 25 9 25 8 25 9 | | 20.00 | -2.6776 1.1311 | | | 40.00 | -0.2690 0.9410 | | | 16.00 | -3.3255 1.2245 | | | 16.00 | -3.3255 1.2245 | | | 24.00 | -2.1131 1.0661 | | | 24.00 | -2.1131 1.0661 | | | 20.00 | -2.6776 1.1311 | | | 28.00 | -1.6043 1.0190 | | | 28.00 | -1.6043 1.0190 | | | 8.00 | -4.0000 999.0000 | | | 12.00 | -4.0000 999.0000 | | | 24.00 | -2.1131 1.0661 | | | 8.00 | -4.0000 999.0000 | | | 20.00 | -2.6776 1.1311 | | | 32.00 | -1.1343 0.9844 | | | 28.00 | -1.6043 1.0190 | | | 32.00 | -1.1343 0.9844 | | | 36.00 | -0.6919 0.9590 | | | 32.00 | -1.1343 0.9844 | | | 36.00 | -0.6919 0.9590 | 246 1 Examinee568 1.00 TEST0001 1 Examinee569 1.00 TEST0001 1 Examinee570 1.00 TEST0001 1 Examinee571 1.00 TEST0001 1 Examinee572 1.00 TEST0001 1 Examinee573 1.00 TEST0001 1 Examinee574 1.00 TEST0001 1 Examinee575 1.00 TEST0001 1 Examinee576 1.00 TEST0001 1 Examinee577 1.00 TEST0001 1 Examinee578 1.00 TEST0001 1 Examinee579 1.00 TEST0001 1 Examinee580 1.00 TEST0001 1 Examinee581 1.00 TEST0001 1 Examinee582 1.00 TEST0001 1 Examinee583 1.00 TEST0001 1 Examinee584 1.00 TEST0001 1 Examinee585 1.00 TEST0001 1 Examinee586 1.00 TEST0001 1 Examinee587 1.00 TEST0001 25 3 25 4 25 7 25 5 25 3 25 6 25 4 25 8 25 2 25 3 25 10 25 1 25 10 25 8 25 12 25 8 25 10 25 14 25 9 25 12 | | 12.00 | -4.0000 999.0000 | | | 16.00 | -3.3255 1.2245 | | | 28.00 | -1.6043 1.0190 | | | 20.00 | -2.6776 1.1311 | | | 12.00 | -4.0000 999.0000 | | | 24.00 | -2.1131 1.0661 | | | 16.00 | -3.3255 1.2245 | | | 32.00 | -1.1343 0.9844 | | | 8.00 | -4.0000 999.0000 | | | 12.00 | -4.0000 999.0000 | | | 40.00 | -0.2690 0.9410 | | | 4.00 | -4.0000 999.0000 | | | 40.00 | -0.2690 0.9410 | | | 32.00 | -1.1343 0.9844 | | | 48.00 | 0.5426 0.9226 | | | 32.00 | -1.1343 0.9844 | | | 40.00 | -0.2690 0.9410 | | | 56.00 | 1.3406 0.9252 | | | 36.00 | -0.6919 0.9590 | | | 48.00 | 0.5426 0.9226 | 247 1 Examinee588 1.00 TEST0001 1 Examinee589 1.00 TEST0001 1 Examinee590 1.00 TEST0001 1 Examinee591 1.00 TEST0001 1 Examinee592 1.00 TEST0001 1 Examinee593 1.00 TEST0001 1 Examinee594 1.00 TEST0001 1 Examinee595 1.00 TEST0001 1 Examinee596 1.00 TEST0001 1 Examinee597 1.00 TEST0001 1 Examinee598 1.00 TEST0001 1 Examinee599 1.00 TEST0001 1 Examinee600 1.00 TEST0001 1 Examinee601 1.00 TEST0001 1 Examinee602 1.00 TEST0001 1 Examinee603 1.00 TEST0001 1 Examinee604 1.00 TEST0001 1 Examinee605 1.00 TEST0001 1 Examinee606 1.00 TEST0001 1 Examinee607 1.00 TEST0001 25 12 25 14 25 8 25 13 25 7 25 15 25 12 25 12 25 8 25 14 25 7 25 8 25 11 25 9 25 12 25 9 25 12 25 8 25 7 25 10 | 48.00 | | 56.00 | | 32.00 | | 52.00 | | 28.00 | | 60.00 | | 48.00 | | 48.00 | | 32.00 | | 56.00 | | 28.00 | | 32.00 | | 44.00 | | 36.00 | | 48.00 | | 36.00 | | 48.00 | | 32.00 | | 28.00 | | 40.00 | | 0.5426 | 1.3406 | -1.1343 | 0.9411 | -1.6043 | 1.7458 | 0.5426 | 0.5426 | -1.1343 | 1.3406 | -1.6043 | -1.1343 | 0.1408 | -0.6919 | 0.5426 | -0.6919 | 0.5426 | -1.1343 | -1.6043 | -0.2690 0.9226 | 0.9252 | 0.9844 | 0.9213 | 1.0190 | 0.9345 | 0.9226 | 0.9226 | 0.9844 | 0.9252 | 1.0190 | 0.9844 | 0.9291 | 0.9590 | 0.9226 | 0.9590 | 0.9226 | 0.9844 | 1.0190 | 0.9410 | 248 1 Examinee608 1.00 TEST0001 1 Examinee609 1.00 TEST0001 1 Examinee610 1.00 TEST0001 1 Examinee611 1.00 TEST0001 1 Examinee612 1.00 TEST0001 1 Examinee613 1.00 TEST0001 1 Examinee614 1.00 TEST0001 1 Examinee615 1.00 TEST0001 1 Examinee616 1.00 TEST0001 1 Examinee617 1.00 TEST0001 1 Examinee618 1.00 TEST0001 1 Examinee619 1.00 TEST0001 1 Examinee620 1.00 TEST0001 1 Examinee621 1.00 TEST0001 1 Examinee622 1.00 TEST0001 1 Examinee623 1.00 TEST0001 1 Examinee624 1.00 TEST0001 1 Examinee625 1.00 TEST0001 1 Examinee626 1.00 TEST0001 1 Examinee627 1.00 TEST0001 25 6 25 13 25 9 25 13 25 2 25 13 25 11 25 12 25 8 25 13 25 15 25 10 25 8 25 8 25 10 25 9 25 14 25 11 25 11 25 16 | | 24.00 | -2.1131 1.0661 | | | 52.00 | 0.9411 0.9213 | | | 36.00 | -0.6919 0.9590 | | | 52.00 | 0.9411 0.9213 | | | 8.00 | -4.0000 999.0000 | | | 52.00 | 0.9411 0.9213 | | | 44.00 | 0.1408 0.9291 | | | 48.00 | 0.5426 0.9226 | | | 32.00 | -1.1343 0.9844 | | | 52.00 | 0.9411 0.9213 | | | 60.00 | 1.7458 0.9345 | | | 40.00 | -0.2690 0.9410 | | | 32.00 | -1.1343 0.9844 | | | 32.00 | -1.1343 0.9844 | | | 40.00 | -0.2690 0.9410 | | | 36.00 | -0.6919 0.9590 | | | 56.00 | 1.3406 0.9252 | | | 44.00 | 0.1408 0.9291 | | | 44.00 | 0.1408 0.9291 | | | 64.00 | 2.1619 0.9500 | 249 1 Examinee628 1.00 TEST0001 1 Examinee629 1.00 TEST0001 1 Examinee630 1.00 TEST0001 1 Examinee631 1.00 TEST0001 1 Examinee632 1.00 TEST0001 1 Examinee633 1.00 TEST0001 1 Examinee634 1.00 TEST0001 1 Examinee635 1.00 TEST0001 1 Examinee636 1.00 TEST0001 1 Examinee637 1.00 TEST0001 1 Examinee638 1.00 TEST0001 1 Examinee639 1.00 TEST0001 1 Examinee640 1.00 TEST0001 1 Examinee641 1.00 TEST0001 1 Examinee642 1.00 TEST0001 1 Examinee643 1.00 TEST0001 1 Examinee644 1.00 TEST0001 1 Examinee645 1.00 TEST0001 1 Examinee646 1.00 TEST0001 1 Examinee647 1.00 TEST0001 25 10 25 6 25 9 25 14 25 11 25 15 25 8 25 12 25 12 25 13 25 18 25 10 25 11 25 12 25 9 25 6 25 15 25 8 25 6 25 7 | 40.00 | | 24.00 | | 36.00 | | 56.00 | | 44.00 | | 60.00 | | 32.00 | | 48.00 | | 48.00 | | 52.00 | | 72.00 | | 40.00 | | 44.00 | | 48.00 | | 36.00 | | 24.00 | | 60.00 | | 32.00 | | 24.00 | | 28.00 | | -0.2690 | -2.1131 | -0.6919 | 1.3406 | 0.1408 | 1.7458 | -1.1343 | 0.5426 | 0.5426 | 0.9411 | 3.0533 | -0.2690 | 0.1408 | 0.5426 | -0.6919 | -2.1131 | 1.7458 | -1.1343 | -2.1131 | -1.6043 0.9410 | 1.0661 | 0.9590 | 0.9252 | 0.9291 | 0.9345 | 0.9844 | 0.9226 | 0.9226 | 0.9213 | 1.0052 | 0.9410 | 0.9291 | 0.9226 | 0.9590 | 1.0661 | 0.9345 | 0.9844 | 1.0661 | 1.0190 | 250 1 Examinee648 1.00 TEST0001 1 Examinee649 1.00 TEST0001 1 Examinee650 1.00 TEST0001 1 Examinee651 1.00 TEST0001 1 Examinee652 1.00 TEST0001 1 Examinee653 1.00 TEST0001 1 Examinee654 1.00 TEST0001 1 Examinee655 1.00 TEST0001 1 Examinee656 1.00 TEST0001 1 Examinee657 1.00 TEST0001 1 Examinee658 1.00 TEST0001 1 Examinee659 1.00 TEST0001 1 Examinee660 1.00 TEST0001 1 Examinee661 1.00 TEST0001 1 Examinee662 1.00 TEST0001 1 Examinee663 1.00 TEST0001 1 Examinee664 1.00 TEST0001 1 Examinee665 1.00 TEST0001 1 Examinee666 1.00 TEST0001 1 Examinee667 1.00 TEST0001 25 8 25 13 25 9 25 15 25 8 25 17 25 19 25 6 25 8 25 10 25 13 25 6 25 14 25 8 25 9 25 8 25 12 25 6 25 10 25 9 | 32.00 | | 52.00 | | 36.00 | | 60.00 | | 32.00 | | 68.00 | | 76.00 | | 24.00 | | 32.00 | | 40.00 | | 52.00 | | 24.00 | | 56.00 | | 32.00 | | 36.00 | | 32.00 | | 48.00 | | 24.00 | | 40.00 | | 36.00 | | -1.1343 | 0.9411 | -0.6919 | 1.7458 | -1.1343 | 2.5950 | 3.5477 | -2.1131 | -1.1343 | -0.2690 | 0.9411 | -2.1131 | 1.3406 | -1.1343 | -0.6919 | -1.1343 | 0.5426 | -2.1131 | -0.2690 | -0.6919 0.9844 | 0.9213 | 0.9590 | 0.9345 | 0.9844 | 0.9729 | 1.0503 | 1.0661 | 0.9844 | 0.9410 | 0.9213 | 1.0661 | 0.9252 | 0.9844 | 0.9590 | 0.9844 | 0.9226 | 1.0661 | 0.9410 | 0.9590 | 251 1 Examinee668 1.00 TEST0001 1 Examinee669 1.00 TEST0001 1 Examinee670 1.00 TEST0001 1 Examinee671 1.00 TEST0001 1 Examinee672 1.00 TEST0001 1 Examinee673 1.00 TEST0001 1 Examinee674 1.00 TEST0001 1 Examinee675 1.00 TEST0001 1 Examinee676 1.00 TEST0001 1 Examinee677 1.00 TEST0001 1 Examinee678 1.00 TEST0001 1 Examinee679 1.00 TEST0001 1 Examinee680 1.00 TEST0001 1 Examinee681 1.00 TEST0001 1 Examinee682 1.00 TEST0001 1 Examinee683 1.00 TEST0001 1 Examinee684 1.00 TEST0001 1 Examinee685 1.00 TEST0001 1 Examinee686 1.00 TEST0001 1 Examinee687 1.00 TEST0001 25 12 25 9 25 13 25 17 25 13 25 16 25 11 25 10 25 15 25 12 25 13 25 10 25 15 25 6 25 14 25 10 25 14 25 13 25 5 25 9 | 48.00 | | 36.00 | | 52.00 | | 68.00 | | 52.00 | | 64.00 | | 44.00 | | 40.00 | | 60.00 | | 48.00 | | 52.00 | | 40.00 | | 60.00 | | 24.00 | | 56.00 | | 40.00 | | 56.00 | | 52.00 | | 20.00 | | 36.00 | | 0.5426 | -0.6919 | 0.9411 | 2.5950 | 0.9411 | 2.1619 | 0.1408 | -0.2690 | 1.7458 | 0.5426 | 0.9411 | -0.2690 | 1.7458 | -2.1131 | 1.3406 | -0.2690 | 1.3406 | 0.9411 | -2.6776 | -0.6919 0.9226 | 0.9590 | 0.9213 | 0.9729 | 0.9213 | 0.9500 | 0.9291 | 0.9410 | 0.9345 | 0.9226 | 0.9213 | 0.9410 | 0.9345 | 1.0661 | 0.9252 | 0.9410 | 0.9252 | 0.9213 | 1.1311 | 0.9590 | 252 1 Examinee688 1.00 TEST0001 1 Examinee689 1.00 TEST0001 1 Examinee690 1.00 TEST0001 1 Examinee691 1.00 TEST0001 1 Examinee692 1.00 TEST0001 1 Examinee693 1.00 TEST0001 1 Examinee694 1.00 TEST0001 1 Examinee695 1.00 TEST0001 1 Examinee696 1.00 TEST0001 1 Examinee697 1.00 TEST0001 1 Examinee698 1.00 TEST0001 1 Examinee699 1.00 TEST0001 1 Examinee700 1.00 TEST0001 1 Examinee701 1.00 TEST0001 1 Examinee702 1.00 TEST0001 1 Examinee703 1.00 TEST0001 1 Examinee704 1.00 TEST0001 1 Examinee705 1.00 TEST0001 1 Examinee706 1.00 TEST0001 1 Examinee707 1.00 TEST0001 25 16 25 8 25 16 25 13 25 8 25 11 25 10 25 14 25 8 25 9 25 11 25 7 25 7 25 13 25 10 25 7 25 10 25 8 25 11 25 11 | 64.00 | | 32.00 | | 64.00 | | 52.00 | | 32.00 | | 44.00 | | 40.00 | | 56.00 | | 32.00 | | 36.00 | | 44.00 | | 28.00 | | 28.00 | | 52.00 | | 40.00 | | 28.00 | | 40.00 | | 32.00 | | 44.00 | | 44.00 | | 2.1619 | -1.1343 | 2.1619 | 0.9411 | -1.1343 | 0.1408 | -0.2690 | 1.3406 | -1.1343 | -0.6919 | 0.1408 | -1.6043 | -1.6043 | 0.9411 | -0.2690 | -1.6043 | -0.2690 | -1.1343 | 0.1408 | 0.1408 0.9500 | 0.9844 | 0.9500 | 0.9213 | 0.9844 | 0.9291 | 0.9410 | 0.9252 | 0.9844 | 0.9590 | 0.9291 | 1.0190 | 1.0190 | 0.9213 | 0.9410 | 1.0190 | 0.9410 | 0.9844 | 0.9291 | 0.9291 | 253 1 Examinee708 1.00 TEST0001 1 Examinee709 1.00 TEST0001 1 Examinee710 1.00 TEST0001 1 Examinee711 1.00 TEST0001 1 Examinee712 1.00 TEST0001 1 Examinee713 1.00 TEST0001 1 Examinee714 1.00 TEST0001 1 Examinee715 1.00 TEST0001 1 Examinee716 1.00 TEST0001 1 Examinee717 1.00 TEST0001 1 Examinee718 1.00 TEST0001 1 Examinee719 1.00 TEST0001 1 Examinee720 1.00 TEST0001 1 Examinee721 1.00 TEST0001 1 Examinee722 1.00 TEST0001 1 Examinee723 1.00 TEST0001 1 Examinee724 1.00 TEST0001 1 Examinee725 1.00 TEST0001 1 Examinee726 1.00 TEST0001 1 Examinee727 1.00 TEST0001 25 15 25 13 25 14 25 13 25 10 25 14 25 9 25 11 25 10 25 10 25 13 25 11 25 11 25 17 25 9 25 11 25 13 25 5 25 12 25 10 | 60.00 | | 52.00 | | 56.00 | | 52.00 | | 40.00 | | 56.00 | | 36.00 | | 44.00 | | 40.00 | | 40.00 | | 52.00 | | 44.00 | | 44.00 | | 68.00 | | 36.00 | | 44.00 | | 52.00 | | 20.00 | | 48.00 | | 40.00 | | 1.7458 | 0.9411 | 1.3406 | 0.9411 | -0.2690 | 1.3406 | -0.6919 | 0.1408 | -0.2690 | -0.2690 | 0.9411 | 0.1408 | 0.1408 | 2.5950 | -0.6919 | 0.1408 | 0.9411 | -2.6776 | 0.5426 | -0.2690 0.9345 | 0.9213 | 0.9252 | 0.9213 | 0.9410 | 0.9252 | 0.9590 | 0.9291 | 0.9410 | 0.9410 | 0.9213 | 0.9291 | 0.9291 | 0.9729 | 0.9590 | 0.9291 | 0.9213 | 1.1311 | 0.9226 | 0.9410 | 254 1 Examinee728 1.00 TEST0001 1 Examinee729 1.00 TEST0001 1 Examinee730 1.00 TEST0001 1 Examinee731 1.00 TEST0001 1 Examinee732 1.00 TEST0001 1 Examinee733 1.00 TEST0001 1 Examinee734 1.00 TEST0001 1 Examinee735 1.00 TEST0001 1 Examinee736 1.00 TEST0001 1 Examinee737 1.00 TEST0001 1 Examinee738 1.00 TEST0001 1 Examinee739 1.00 TEST0001 1 Examinee740 1.00 TEST0001 1 Examinee741 1.00 TEST0001 1 Examinee742 1.00 TEST0001 1 Examinee743 1.00 TEST0001 1 Examinee744 1.00 TEST0001 1 Examinee745 1.00 TEST0001 1 Examinee746 1.00 TEST0001 1 Examinee747 1.00 TEST0001 25 11 25 11 25 7 25 13 25 14 25 12 25 12 25 12 25 9 25 13 25 7 25 13 25 9 25 11 25 8 25 12 25 14 25 14 25 11 25 11 | 44.00 | | 44.00 | | 28.00 | | 52.00 | | 56.00 | | 48.00 | | 48.00 | | 48.00 | | 36.00 | | 52.00 | | 28.00 | | 52.00 | | 36.00 | | 44.00 | | 32.00 | | 48.00 | | 56.00 | | 56.00 | | 44.00 | | 44.00 | | 0.1408 | 0.1408 | -1.6043 | 0.9411 | 1.3406 | 0.5426 | 0.5426 | 0.5426 | -0.6919 | 0.9411 | -1.6043 | 0.9411 | -0.6919 | 0.1408 | -1.1343 | 0.5426 | 1.3406 | 1.3406 | 0.1408 | 0.1408 0.9291 | 0.9291 | 1.0190 | 0.9213 | 0.9252 | 0.9226 | 0.9226 | 0.9226 | 0.9590 | 0.9213 | 1.0190 | 0.9213 | 0.9590 | 0.9291 | 0.9844 | 0.9226 | 0.9252 | 0.9252 | 0.9291 | 0.9291 | 255 1 Examinee748 1.00 TEST0001 1 Examinee749 1.00 TEST0001 1 Examinee750 1.00 TEST0001 1 Examinee751 1.00 TEST0001 1 Examinee752 1.00 TEST0001 1 Examinee753 1.00 TEST0001 1 Examinee754 1.00 TEST0001 1 Examinee755 1.00 TEST0001 1 Examinee756 1.00 TEST0001 1 Examinee757 1.00 TEST0001 1 Examinee758 1.00 TEST0001 1 Examinee759 1.00 TEST0001 1 Examinee760 1.00 TEST0001 1 Examinee761 1.00 TEST0001 1 Examinee762 1.00 TEST0001 1 Examinee763 1.00 TEST0001 1 Examinee764 1.00 TEST0001 1 Examinee765 1.00 TEST0001 1 Examinee766 1.00 TEST0001 1 Examinee767 1.00 TEST0001 25 10 25 9 25 12 25 4 25 12 25 5 25 11 25 9 25 13 25 5 25 13 25 11 25 4 25 13 25 9 25 10 25 8 25 8 25 11 25 10 | 40.00 | | 36.00 | | 48.00 | | 16.00 | | 48.00 | | 20.00 | | 44.00 | | 36.00 | | 52.00 | | 20.00 | | 52.00 | | 44.00 | | 16.00 | | 52.00 | | 36.00 | | 40.00 | | 32.00 | | 32.00 | | 44.00 | | 40.00 | | -0.2690 | -0.6919 | 0.5426 | -3.3255 | 0.5426 | -2.6776 | 0.1408 | -0.6919 | 0.9411 | -2.6776 | 0.9411 | 0.1408 | -3.3255 | 0.9411 | -0.6919 | -0.2690 | -1.1343 | -1.1343 | 0.1408 | -0.2690 0.9410 | 0.9590 | 0.9226 | 1.2245 | 0.9226 | 1.1311 | 0.9291 | 0.9590 | 0.9213 | 1.1311 | 0.9213 | 0.9291 | 1.2245 | 0.9213 | 0.9590 | 0.9410 | 0.9844 | 0.9844 | 0.9291 | 0.9410 | 256 1 Examinee768 1.00 TEST0001 1 Examinee769 1.00 TEST0001 1 Examinee770 1.00 TEST0001 1 Examinee771 1.00 TEST0001 1 Examinee772 1.00 TEST0001 1 Examinee773 1.00 TEST0001 1 Examinee774 1.00 TEST0001 1 Examinee775 1.00 TEST0001 1 Examinee776 1.00 TEST0001 1 Examinee777 1.00 TEST0001 1 Examinee778 1.00 TEST0001 1 Examinee779 1.00 TEST0001 1 Examinee780 1.00 TEST0001 1 Examinee781 1.00 TEST0001 1 Examinee782 1.00 TEST0001 1 Examinee783 1.00 TEST0001 1 Examinee784 1.00 TEST0001 1 Examinee785 1.00 TEST0001 1 Examinee786 1.00 TEST0001 1 Examinee787 1.00 TEST0001 25 6 25 10 25 19 25 14 25 19 25 13 25 11 25 11 25 12 25 15 25 11 25 14 25 14 25 5 25 10 25 15 25 9 25 4 25 7 25 10 | 24.00 | | 40.00 | | 76.00 | | 56.00 | | 76.00 | | 52.00 | | 44.00 | | 44.00 | | 48.00 | | 60.00 | | 44.00 | | 56.00 | | 56.00 | | 20.00 | | 40.00 | | 60.00 | | 36.00 | | 16.00 | | 28.00 | | 40.00 | | -2.1131 | -0.2690 | 3.5477 | 1.3406 | 3.5477 | 0.9411 | 0.1408 | 0.1408 | 0.5426 | 1.7458 | 0.1408 | 1.3406 | 1.3406 | -2.6776 | -0.2690 | 1.7458 | -0.6919 | -3.3255 | -1.6043 | -0.2690 1.0661 | 0.9410 | 1.0503 | 0.9252 | 1.0503 | 0.9213 | 0.9291 | 0.9291 | 0.9226 | 0.9345 | 0.9291 | 0.9252 | 0.9252 | 1.1311 | 0.9410 | 0.9345 | 0.9590 | 1.2245 | 1.0190 | 0.9410 | 257 1 Examinee788 1.00 TEST0001 1 Examinee789 1.00 TEST0001 1 Examinee790 1.00 TEST0001 1 Examinee791 1.00 TEST0001 1 Examinee792 1.00 TEST0001 1 Examinee793 1.00 TEST0001 1 Examinee794 1.00 TEST0001 1 Examinee795 1.00 TEST0001 1 Examinee796 1.00 TEST0001 1 Examinee797 1.00 TEST0001 1 Examinee798 1.00 TEST0001 1 Examinee799 1.00 TEST0001 1 Examinee800 1.00 TEST0001 1 Examinee801 1.00 TEST0001 1 Examinee802 1.00 TEST0001 1 Examinee803 1.00 TEST0001 1 Examinee804 1.00 TEST0001 1 Examinee805 1.00 TEST0001 1 Examinee806 1.00 TEST0001 1 Examinee807 1.00 TEST0001 25 14 25 16 25 12 25 14 25 9 25 7 25 12 25 9 25 9 25 12 25 9 25 10 25 14 25 12 25 16 25 14 25 14 25 17 25 17 25 17 | 56.00 | | 64.00 | | 48.00 | | 56.00 | | 36.00 | | 28.00 | | 48.00 | | 36.00 | | 36.00 | | 48.00 | | 36.00 | | 40.00 | | 56.00 | | 48.00 | | 64.00 | | 56.00 | | 56.00 | | 68.00 | | 68.00 | | 68.00 | | 1.3406 | 2.1619 | 0.5426 | 1.3406 | -0.6919 | -1.6043 | 0.5426 | -0.6919 | -0.6919 | 0.5426 | -0.6919 | -0.2690 | 1.3406 | 0.5426 | 2.1619 | 1.3406 | 1.3406 | 2.5950 | 2.5950 | 2.5950 0.9252 | 0.9500 | 0.9226 | 0.9252 | 0.9590 | 1.0190 | 0.9226 | 0.9590 | 0.9590 | 0.9226 | 0.9590 | 0.9410 | 0.9252 | 0.9226 | 0.9500 | 0.9252 | 0.9252 | 0.9729 | 0.9729 | 0.9729 | 258 1 Examinee808 1.00 TEST0001 1 Examinee809 1.00 TEST0001 1 Examinee810 1.00 TEST0001 1 Examinee811 1.00 TEST0001 1 Examinee812 1.00 TEST0001 1 Examinee813 1.00 TEST0001 1 Examinee814 1.00 TEST0001 1 Examinee815 1.00 TEST0001 1 Examinee816 1.00 TEST0001 1 Examinee817 1.00 TEST0001 1 Examinee818 1.00 TEST0001 1 Examinee819 1.00 TEST0001 1 Examinee820 1.00 TEST0001 1 Examinee821 1.00 TEST0001 1 Examinee822 1.00 TEST0001 1 Examinee823 1.00 TEST0001 1 Examinee824 1.00 TEST0001 1 Examinee825 1.00 TEST0001 1 Examinee826 1.00 TEST0001 1 Examinee827 1.00 TEST0001 25 5 25 14 25 14 25 19 25 3 25 15 25 14 25 8 25 9 25 2 25 7 25 3 25 3 25 5 25 9 25 7 25 8 25 6 25 6 25 4 | | 20.00 | -2.6776 1.1311 | | | 56.00 | 1.3406 0.9252 | | | 56.00 | 1.3406 0.9252 | | | 76.00 | 3.5477 1.0503 | | | 12.00 | -4.0000 999.0000 | | | 60.00 | 1.7458 0.9345 | | | 56.00 | 1.3406 0.9252 | | | 32.00 | -1.1343 0.9844 | | | 36.00 | -0.6919 0.9590 | | | 8.00 | -4.0000 999.0000 | | | 28.00 | -1.6043 1.0190 | | | 12.00 | -4.0000 999.0000 | | | 12.00 | -4.0000 999.0000 | | | 20.00 | -2.6776 1.1311 | | | 36.00 | -0.6919 0.9590 | | | 28.00 | -1.6043 1.0190 | | | 32.00 | -1.1343 0.9844 | | | 24.00 | -2.1131 1.0661 | | | 24.00 | -2.1131 1.0661 | | | 16.00 | -3.3255 1.2245 | 259 1 Examinee828 1.00 TEST0001 1 Examinee829 1.00 TEST0001 1 Examinee830 1.00 TEST0001 1 Examinee831 1.00 TEST0001 1 Examinee832 1.00 TEST0001 1 Examinee833 1.00 TEST0001 1 Examinee834 1.00 TEST0001 1 Examinee835 1.00 TEST0001 1 Examinee836 1.00 TEST0001 1 Examinee837 1.00 TEST0001 1 Examinee838 1.00 TEST0001 1 Examinee839 1.00 TEST0001 1 Examinee840 1.00 TEST0001 1 Examinee841 1.00 TEST0001 1 Examinee842 1.00 TEST0001 1 Examinee843 1.00 TEST0001 1 Examinee844 1.00 TEST0001 1 Examinee845 1.00 TEST0001 1 Examinee846 1.00 TEST0001 1 Examinee847 1.00 TEST0001 25 6 25 5 25 6 25 5 25 3 25 7 25 5 25 8 25 10 25 11 25 5 25 4 25 8 25 5 25 5 25 9 25 17 25 17 25 15 25 13 | 24.00 | | 20.00 | | 24.00 | | 20.00 | | 12.00 | | 28.00 | | 20.00 | | 32.00 | | 40.00 | | 44.00 | | 20.00 | | 16.00 | | 32.00 | | 20.00 | | 20.00 | | 36.00 | | 68.00 | | 68.00 | | 60.00 | | 52.00 | | -2.1131 1.0661 | | -2.6776 1.1311 | | -2.1131 1.0661 | | -2.6776 1.1311 | | -4.0000 999.0000 | | -1.6043 1.0190 | | -2.6776 1.1311 | | -1.1343 0.9844 | | -0.2690 0.9410 | | 0.1408 0.9291 | | -2.6776 1.1311 | | -3.3255 1.2245 | | -1.1343 0.9844 | | -2.6776 1.1311 | | -2.6776 1.1311 | | -0.6919 0.9590 | | 2.5950 0.9729 | | 2.5950 0.9729 | | 1.7458 0.9345 | | 0.9411 0.9213 | 260 1 Examinee848 1.00 TEST0001 1 Examinee849 1.00 TEST0001 1 Examinee850 1.00 TEST0001 1 Examinee851 1.00 TEST0001 1 Examinee852 1.00 TEST0001 1 Examinee853 1.00 TEST0001 1 Examinee854 1.00 TEST0001 1 Examinee855 1.00 TEST0001 1 Examinee856 1.00 TEST0001 1 Examinee857 1.00 TEST0001 1 Examinee858 1.00 TEST0001 1 Examinee859 1.00 TEST0001 1 Examinee860 1.00 TEST0001 1 Examinee861 1.00 TEST0001 1 Examinee862 1.00 TEST0001 1 Examinee863 1.00 TEST0001 1 Examinee864 1.00 TEST0001 1 Examinee865 1.00 TEST0001 1 Examinee866 1.00 TEST0001 1 Examinee867 1.00 TEST0001 25 12 25 8 25 14 25 10 25 13 25 16 25 11 25 13 25 11 25 13 25 17 25 12 25 10 25 7 25 12 25 8 25 10 25 14 25 8 25 3 | 48.00 | | 32.00 | | 56.00 | | 40.00 | | 52.00 | | 64.00 | | 44.00 | | 52.00 | | 44.00 | | 52.00 | | 68.00 | | 48.00 | | 40.00 | | 28.00 | | 48.00 | | 32.00 | | 40.00 | | 56.00 | | 32.00 | | 12.00 | | 0.5426 0.9226 | | -1.1343 0.9844 | | 1.3406 0.9252 | | -0.2690 0.9410 | | 0.9411 0.9213 | | 2.1619 0.9500 | | 0.1408 0.9291 | | 0.9411 0.9213 | | 0.1408 0.9291 | | 0.9411 0.9213 | | 2.5950 0.9729 | | 0.5426 0.9226 | | -0.2690 0.9410 | | -1.6043 1.0190 | | 0.5426 0.9226 | | -1.1343 0.9844 | | -0.2690 0.9410 | | 1.3406 0.9252 | | -1.1343 0.9844 | | -4.0000 999.0000 | 261 1 Examinee868 1.00 TEST0001 1 Examinee869 1.00 TEST0001 1 Examinee870 1.00 TEST0001 1 Examinee871 1.00 TEST0001 1 Examinee872 1.00 TEST0001 1 Examinee873 1.00 TEST0001 1 Examinee874 1.00 TEST0001 1 Examinee875 1.00 TEST0001 1 Examinee876 1.00 TEST0001 1 Examinee877 1.00 TEST0001 1 Examinee878 1.00 TEST0001 1 Examinee879 1.00 TEST0001 1 Examinee880 1.00 TEST0001 1 Examinee881 1.00 TEST0001 1 Examinee882 1.00 TEST0001 1 Examinee883 1.00 TEST0001 1 Examinee884 1.00 TEST0001 1 Examinee885 1.00 TEST0001 1 Examinee886 1.00 TEST0001 1 Examinee887 1.00 TEST0001 25 5 25 5 25 15 25 10 25 6 25 10 25 9 25 13 25 9 25 10 25 5 25 13 25 10 25 7 25 5 25 14 25 11 25 9 25 11 25 9 | 20.00 | | 20.00 | | 60.00 | | 40.00 | | 24.00 | | 40.00 | | 36.00 | | 52.00 | | 36.00 | | 40.00 | | 20.00 | | 52.00 | | 40.00 | | 28.00 | | 20.00 | | 56.00 | | 44.00 | | 36.00 | | 44.00 | | 36.00 | | -2.6776 | -2.6776 | 1.7458 | -0.2690 | -2.1131 | -0.2690 | -0.6919 | 0.9411 | -0.6919 | -0.2690 | -2.6776 | 0.9411 | -0.2690 | -1.6043 | -2.6776 | 1.3406 | 0.1408 | -0.6919 | 0.1408 | -0.6919 1.1311 | 1.1311 | 0.9345 | 0.9410 | 1.0661 | 0.9410 | 0.9590 | 0.9213 | 0.9590 | 0.9410 | 1.1311 | 0.9213 | 0.9410 | 1.0190 | 1.1311 | 0.9252 | 0.9291 | 0.9590 | 0.9291 | 0.9590 | 262 1 Examinee888 1.00 TEST0001 1 Examinee889 1.00 TEST0001 1 Examinee890 1.00 TEST0001 1 Examinee891 1.00 TEST0001 1 Examinee892 1.00 TEST0001 1 Examinee893 1.00 TEST0001 1 Examinee894 1.00 TEST0001 1 Examinee895 1.00 TEST0001 1 Examinee896 1.00 TEST0001 1 Examinee897 1.00 TEST0001 1 Examinee898 1.00 TEST0001 1 Examinee899 1.00 TEST0001 1 Examinee900 1.00 TEST0001 1 Examinee901 1.00 TEST0001 1 Examinee902 1.00 TEST0001 1 Examinee903 1.00 TEST0001 1 Examinee904 1.00 TEST0001 1 Examinee905 1.00 TEST0001 1 Examinee906 1.00 TEST0001 1 Examinee907 1.00 TEST0001 25 7 25 10 25 13 25 14 25 7 25 13 25 10 25 12 25 9 25 14 25 13 25 11 25 7 25 8 25 3 25 8 25 13 25 10 25 11 25 10 | 28.00 | | 40.00 | | 52.00 | | 56.00 | | 28.00 | | 52.00 | | 40.00 | | 48.00 | | 36.00 | | 56.00 | | 52.00 | | 44.00 | | 28.00 | | 32.00 | | 12.00 | | 32.00 | | 52.00 | | 40.00 | | 44.00 | | 40.00 | | -1.6043 1.0190 | | -0.2690 0.9410 | | 0.9411 0.9213 | | 1.3406 0.9252 | | -1.6043 1.0190 | | 0.9411 0.9213 | | -0.2690 0.9410 | | 0.5426 0.9226 | | -0.6919 0.9590 | | 1.3406 0.9252 | | 0.9411 0.9213 | | 0.1408 0.9291 | | -1.6043 1.0190 | | -1.1343 0.9844 | | -4.0000 999.0000 | | -1.1343 0.9844 | | 0.9411 0.9213 | | -0.2690 0.9410 | | 0.1408 0.9291 | | -0.2690 0.9410 | 263 1 Examinee908 1.00 TEST0001 1 Examinee909 1.00 TEST0001 1 Examinee910 1.00 TEST0001 1 Examinee911 1.00 TEST0001 1 Examinee912 1.00 TEST0001 1 Examinee913 1.00 TEST0001 1 Examinee914 1.00 TEST0001 1 Examinee915 1.00 TEST0001 1 Examinee916 1.00 TEST0001 1 Examinee917 1.00 TEST0001 1 Examinee918 1.00 TEST0001 1 Examinee919 1.00 TEST0001 1 Examinee920 1.00 TEST0001 1 Examinee921 1.00 TEST0001 1 Examinee922 1.00 TEST0001 1 Examinee923 1.00 TEST0001 1 Examinee924 1.00 TEST0001 1 Examinee925 1.00 TEST0001 1 Examinee926 1.00 TEST0001 1 Examinee927 1.00 TEST0001 25 13 25 14 25 10 25 13 25 15 25 16 25 11 25 13 25 13 25 3 25 7 25 11 25 13 25 6 25 9 25 8 25 6 25 15 25 15 25 10 | 52.00 | | 56.00 | | 40.00 | | 52.00 | | 60.00 | | 64.00 | | 44.00 | | 52.00 | | 52.00 | | 12.00 | | 28.00 | | 44.00 | | 52.00 | | 24.00 | | 36.00 | | 32.00 | | 24.00 | | 60.00 | | 60.00 | | 40.00 | | 0.9411 0.9213 | | 1.3406 0.9252 | | -0.2690 0.9410 | | 0.9411 0.9213 | | 1.7458 0.9345 | | 2.1619 0.9500 | | 0.1408 0.9291 | | 0.9411 0.9213 | | 0.9411 0.9213 | | -4.0000 999.0000 | | -1.6043 1.0190 | | 0.1408 0.9291 | | 0.9411 0.9213 | | -2.1131 1.0661 | | -0.6919 0.9590 | | -1.1343 0.9844 | | -2.1131 1.0661 | | 1.7458 0.9345 | | 1.7458 0.9345 | | -0.2690 0.9410 | 264 1 Examinee928 1.00 TEST0001 1 Examinee929 1.00 TEST0001 1 Examinee930 1.00 TEST0001 1 Examinee931 1.00 TEST0001 1 Examinee932 1.00 TEST0001 1 Examinee933 1.00 TEST0001 1 Examinee934 1.00 TEST0001 1 Examinee935 1.00 TEST0001 1 Examinee936 1.00 TEST0001 1 Examinee937 1.00 TEST0001 1 Examinee938 1.00 TEST0001 1 Examinee939 1.00 TEST0001 1 Examinee940 1.00 TEST0001 1 Examinee941 1.00 TEST0001 1 Examinee942 1.00 TEST0001 1 Examinee943 1.00 TEST0001 1 Examinee944 1.00 TEST0001 1 Examinee945 1.00 TEST0001 1 Examinee946 1.00 TEST0001 1 Examinee947 1.00 TEST0001 25 8 25 9 25 6 25 9 25 17 25 13 25 9 25 12 25 12 25 11 25 8 25 10 25 7 25 16 25 13 25 15 25 12 25 9 25 11 25 15 | 32.00 | | 36.00 | | 24.00 | | 36.00 | | 68.00 | | 52.00 | | 36.00 | | 48.00 | | 48.00 | | 44.00 | | 32.00 | | 40.00 | | 28.00 | | 64.00 | | 52.00 | | 60.00 | | 48.00 | | 36.00 | | 44.00 | | 60.00 | | -1.1343 | -0.6919 | -2.1131 | -0.6919 | 2.5950 | 0.9411 | -0.6919 | 0.5426 | 0.5426 | 0.1408 | -1.1343 | -0.2690 | -1.6043 | 2.1619 | 0.9411 | 1.7458 | 0.5426 | -0.6919 | 0.1408 | 1.7458 0.9844 | 0.9590 | 1.0661 | 0.9590 | 0.9729 | 0.9213 | 0.9590 | 0.9226 | 0.9226 | 0.9291 | 0.9844 | 0.9410 | 1.0190 | 0.9500 | 0.9213 | 0.9345 | 0.9226 | 0.9590 | 0.9291 | 0.9345 | 265 1 Examinee948 1.00 TEST0001 1 Examinee949 1.00 TEST0001 1 Examinee950 1.00 TEST0001 1 Examinee951 1.00 TEST0001 1 Examinee952 1.00 TEST0001 1 Examinee953 1.00 TEST0001 1 Examinee954 1.00 TEST0001 1 Examinee955 1.00 TEST0001 1 Examinee956 1.00 TEST0001 1 Examinee957 1.00 TEST0001 1 Examinee958 1.00 TEST0001 1 Examinee959 1.00 TEST0001 1 Examinee960 1.00 TEST0001 1 Examinee961 1.00 TEST0001 1 Examinee962 1.00 TEST0001 1 Examinee963 1.00 TEST0001 1 Examinee964 1.00 TEST0001 1 Examinee965 1.00 TEST0001 1 Examinee966 1.00 TEST0001 1 Examinee967 1.00 TEST0001 25 12 25 4 25 14 25 8 25 14 25 14 25 13 25 10 25 12 25 13 25 6 25 9 25 6 25 8 25 16 25 7 25 6 25 12 25 13 25 13 | 48.00 | | 16.00 | | 56.00 | | 32.00 | | 56.00 | | 56.00 | | 52.00 | | 40.00 | | 48.00 | | 52.00 | | 24.00 | | 36.00 | | 24.00 | | 32.00 | | 64.00 | | 28.00 | | 24.00 | | 48.00 | | 52.00 | | 52.00 | | 0.5426 | -3.3255 | 1.3406 | -1.1343 | 1.3406 | 1.3406 | 0.9411 | -0.2690 | 0.5426 | 0.9411 | -2.1131 | -0.6919 | -2.1131 | -1.1343 | 2.1619 | -1.6043 | -2.1131 | 0.5426 | 0.9411 | 0.9411 0.9226 | 1.2245 | 0.9252 | 0.9844 | 0.9252 | 0.9252 | 0.9213 | 0.9410 | 0.9226 | 0.9213 | 1.0661 | 0.9590 | 1.0661 | 0.9844 | 0.9500 | 1.0190 | 1.0661 | 0.9226 | 0.9213 | 0.9213 | 266 1 Examinee968 1.00 TEST0001 1 Examinee969 1.00 TEST0001 1 Examinee970 1.00 TEST0001 1 Examinee971 1.00 TEST0001 1 Examinee972 1.00 TEST0001 1 Examinee973 1.00 TEST0001 1 Examinee974 1.00 TEST0001 1 Examinee975 1.00 TEST0001 1 Examinee976 1.00 TEST0001 1 Examinee977 1.00 TEST0001 1 Examinee978 1.00 TEST0001 1 Examinee979 1.00 TEST0001 1 Examinee980 1.00 TEST0001 1 Examinee981 1.00 TEST0001 1 Examinee982 1.00 TEST0001 1 Examinee983 1.00 TEST0001 1 Examinee984 1.00 TEST0001 1 Examinee985 1.00 TEST0001 1 Examinee986 1.00 TEST0001 1 Examinee987 1.00 TEST0001 25 10 25 12 25 13 25 10 25 10 25 10 25 10 25 10 25 9 25 10 25 11 25 11 25 10 25 9 25 9 25 10 25 8 25 11 25 14 25 10 | 40.00 | | 48.00 | | 52.00 | | 40.00 | | 40.00 | | 40.00 | | 40.00 | | 40.00 | | 36.00 | | 40.00 | | 44.00 | | 44.00 | | 40.00 | | 36.00 | | 36.00 | | 40.00 | | 32.00 | | 44.00 | | 56.00 | | 40.00 | | -0.2690 | 0.5426 | 0.9411 | -0.2690 | -0.2690 | -0.2690 | -0.2690 | -0.2690 | -0.6919 | -0.2690 | 0.1408 | 0.1408 | -0.2690 | -0.6919 | -0.6919 | -0.2690 | -1.1343 | 0.1408 | 1.3406 | -0.2690 0.9410 | 0.9226 | 0.9213 | 0.9410 | 0.9410 | 0.9410 | 0.9410 | 0.9410 | 0.9590 | 0.9410 | 0.9291 | 0.9291 | 0.9410 | 0.9590 | 0.9590 | 0.9410 | 0.9844 | 0.9291 | 0.9252 | 0.9410 | 267 1 Examinee988 | | 1.00 TEST0001 25 13 52.00 | 0.9411 0.9213 | 1 Examinee989 | | 1.00 TEST0001 25 12 48.00 | 0.5426 0.9226 | 1 Examinee990 | | 1.00 TEST0001 25 8 32.00 | -1.1343 0.9844 | 1 Examinee991 | | 1.00 TEST0001 25 16 64.00 | 2.1619 0.9500 | 1 Examinee992 | | 1.00 TEST0001 25 13 52.00 | 0.9411 0.9213 | 1 Examinee993 | | 1.00 TEST0001 25 7 28.00 | -1.6043 1.0190 | 1 Examinee994 | | 1.00 TEST0001 25 14 56.00 | 1.3406 0.9252 | 1 Examinee995 | | 1.00 TEST0001 25 14 56.00 | 1.3406 0.9252 | 1 Examinee996 | | 1.00 TEST0001 25 14 56.00 | 1.3406 0.9252 | 1 Examinee997 | | 1.00 TEST0001 25 12 48.00 | 0.5426 0.9226 | 1 Examinee998 | | 1.00 TEST0001 25 9 36.00 | -0.6919 0.9590 | 1 Examinee999 | | 1.00 TEST0001 25 16 64.00 | 2.1619 0.9500 | ---------------------------------------------------------------- SUMMARY STATISTICS FOR SCORE ESTIMATES ====================================== CORRELATIONS AMONG TEST SCORES TEST0001 TEST0001 1.0000 MEANS, STANDARD DEVIATIONS, AND VARIANCES OF SCORE ESTIMATES 268 TEST: TEST0001 MEAN: 0.0306 S.D.: 1.3238 VARIANCE: 1.7523 HARMONIC ROOT-MEAN-SQUARE STANDARD ERRORS OF THE ML ESTIMATES TEST: TEST0001 RMS: 0.9569 VARIANCE: 0.9157 EMPIRICAL RELIABILITY: 0.4775 44 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-3 592 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-3 Outputs for 2 Parameter model are: PH1 1 BILOG-MG V3.0 REV 19990104.1300 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL DISTRIBUTED BY 269 SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 7383 N. LINCOLN AVENUE, SUITE 100 CHICAGO, IL 60646 (800) 247-6113 (847) 675-0720 WWW: http:://www.ssicentral.com PROGRAM COPYRIGHT HELD BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 2002 DISTRIBUTION OR USE UNAUTHORIZED BY SSI, INC. IS PROHIBITED 1 *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 1 *** 25 by 1000 ---> FIND WARNING: 2 RECORDS NOT CONTAINING > IN COLUMN 1 HAVE BEEN SKIPPED >GLOBAL DFName = 'C:\25by1000\RG.dat', NPArm = 2, LOGistic, SAVe; FILE ASSIGNMENT AND DISPOSITION =============================== 270 SUBJECT DATA INPUT FILE C:\25BY1000\RG.DAT BILOG-MG MASTER DATA FILE MF.DAT WILL BE CREATED FROM DATA FILE CALIBRATION DATA FILE CF.DAT WILL BE CREATED FROM DATA FILE ITEM PARAMETERS FILE IF.DAT WILL BE CREATED THIS RUN CASE SCALE-SCORE FILE CASE WEIGHTING SF.DAT NONE EMPLOYED ITEM RESPONSE MODEL 2 PARAMETER LOGISTIC LOGIT METRIC (I.E., D = 1.0) >SAVE MASter = 'RG1.MAS', CALib = 'RG1.CAL', PARm = 'RG1.PAR', SCOre = 'RG1.SCO', COVariance = 'RG1.COV', TSTat = 'RG1.TST', ISTat = 'RG1.IST'; BILOG-MG SAVE FILES [OUTPUT FILES] BILOG-MG MASTER BINARY DATA RG1.MAS 271 CALIBRATION BINARY DATA FILERG1.CAL CLASSICAL ITEM STATISTICS RG1.IST ITEM PARAMETERS FILE RG1.PAR CASE SCALE-SCORE FILE RG1.SCO ESTIMATED COVARIANCE FILE RG1.COV TEST INFORMATION FILE RG1.TST >LENGTH NITems = (25); TEST LENGTH SPECIFICATIONS ========================== MAIN TEST LENGTHS: 25 >INPUT NTOtal = 25, NALt = 3, NIDchar = 11; DATA INPUT SPECIFICATIONS ========================= 272 NUMBER OF FORMAT LINES 1 NUMBER OF ITEMS IN INPUT STREAM 25 NUMBER OF RESPONSE ALTERNATIVES 3 NUMBER OF SUBJECT ID CHARACTERS 11 NUMBER OF GROUPS 1 NUMBER OF TEST FORMS 1 TYPE OF DATA SINGLE-SUBJECT DATA, NO CASE WEIGHTS MAXIMUM SAMPLE SIZE FOR ITEM CALIBRATION 10000000 ALL SUBJECTS INCLUDED IN RUN >ITEMS ; TEST SPECIFICATIONS =================== >TEST1 TNAme = 'TEST0001', INUmber = (1(1)25); TEST NUMBER: 1 TEST NAME: TEST0001 NUMBER OF ITEMS: 25 ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM NUMBER NAME NUMBER NAME NUMBER NAME NUMBER NAME ----------------------------------------------------------------------1 ITEM0001 9 ITEM0009 17 ITEM0017 25 ITEM0025 2 ITEM0002 10 ITEM0010 18 ITEM0018 3 ITEM0003 11 ITEM0011 19 ITEM0019 4 ITEM0004 12 ITEM0012 20 ITEM0020 273 5 ITEM0005 13 ITEM0013 21 ITEM0021 6 ITEM0006 14 ITEM0014 22 ITEM0022 7 ITEM0007 15 ITEM0015 23 ITEM0023 8 ITEM0008 16 ITEM0016 24 ITEM0024 ----------------------------------------------------------------------- FORM SPECIFICATIONS =================== ITEMS READ ACCORDING TO SPECIFICATIONS ON THE ITEMS COMMAND FORMAT FOR DATA INPUT IS: (11A1, 25A1) OBSERVATION # 1 WEIGHT: 1.0000 ID : Examinee001 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 25.000 7.000 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 274 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 ITEM 21 22 23 24 25 TRIED 1.0 1.0 1.0 1.0 1.0 RIGHT 0.0 0.0 0.0 0.0 0.0 OBSERVATION # 2 WEIGHT: 1.0000 ID : Examinee002 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 25.000 11.000 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 ITEM 21 22 23 24 25 TRIED 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 0.0 0.0 1.0 999 OBSERVATIONS READ FROM FILE: C:\25BY1000\RG.DAT 999 OBSERVATIONS WRITTEN TO FILE: RG1.MAS 275 ITEM STATISTICS FOR SUBTEST TEST0001 ITEM*TEST CORRELATION ITEM NAME #TRIED #RIGHT PCT LOGIT PEARSON BISERIAL ------------------------------------------------------------------------1 ITEM0001 999.0 694.0 69.5 -0.82 0.246 0.324 2 ITEM0002 999.0 477.0 47.7 0.09 0.155 0.194 3 ITEM0003 999.0 579.0 58.0 -0.32 0.237 0.300 4 ITEM0004 999.0 571.0 57.2 -0.29 0.218 0.275 5 ITEM0005 999.0 461.0 46.1 0.15 0.159 0.199 6 ITEM0006 999.0 801.0 80.2 -1.40 0.266 0.380 7 ITEM0007 999.0 516.0 51.7 -0.07 0.236 0.295 8 ITEM0008 999.0 703.0 70.4 -0.86 0.219 0.289 9 ITEM0009 999.0 390.0 39.0 0.45 0.225 0.286 10 ITEM0010 999.0 560.0 56.1 -0.24 0.268 0.338 11 ITEM0011 999.0 264.0 26.4 1.02 0.022 0.030 12 ITEM0012 999.0 511.0 51.2 -0.05 0.256 0.321 13 ITEM0013 999.0 500.0 50.1 0.00 0.092 0.115 14 ITEM0014 999.0 743.0 74.4 -1.07 0.200 0.271 15 ITEM0015 999.0 195.0 19.5 1.42 0.091 0.130 16 ITEM0016 999.0 210.0 21.0 1.32 0.071 0.100 17 ITEM0017 999.0 281.0 28.1 0.94 0.047 0.062 18 ITEM0018 999.0 401.0 40.1 0.40 0.101 0.129 19 ITEM0019 999.0 284.0 28.4 0.92 0.128 0.170 20 ITEM0020 999.0 271.0 27.1 0.99 0.031 0.042 21 ITEM0021 999.0 290.0 29.0 0.89 0.108 0.144 22 ITEM0022 999.0 374.0 37.4 0.51 0.173 0.221 23 ITEM0023 999.0 198.0 19.8 1.40 0.043 0.061 24 ITEM0024 999.0 251.0 25.1 1.09 0.068 0.093 25 ITEM0025 999.0 187.0 18.7 1.47 0.069 0.100 ------------------------------------------------------------------------- 356 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-1 276 2720 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-1 11/29/2011 14:59:59 PH2 1 BILOG-MG V3.0 REV 19990329.1300 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 2 *** 25 by 1000 >CALIB ACCel = 1.0000, TPRior, FLOat; CALIBRATION PARAMETERS ====================== 277 MAXIMUM NUMBER OF EM CYCLES: 20 MAXIMUM NUMBER OF NEWTON CYCLES: CONVERGENCE CRITERION: 0.0100 ACCELERATION CONSTANT: 1.0000 2 LATENT DISTRIBUTION: NORMAL PRIOR FOR EACH GROUP PLOT EMPIRICAL VS. FITTED ICC'S: NO DATA HANDLING: DATA ON SCRATCH FILE CONSTRAINT DISTRIBUTION ON SLOPES: YES CONSTRAINT DISTRIBUTION ON THRESHOLDS: YES SOURCE OF ITEM CONSTRAINT DISTIBUTION MEANS AND STANDARD DEVIATIONS: PROGRAM DEFAULTS ITEM CONSTRAINTS IF PRESENT WILL BE UPDATED EACH CYCLE 1 -------------------------------------------------------------------------------- ****************************** CALIBRATION OF MAINTEST TEST0001 ****************************** METHOD OF SOLUTION: EM CYCLES (MAXIMUM OF 20) FOLLOWED BY NEWTON-RAPHSON STEPS (MAXIMUM OF 2) QUADRATURE POINTS AND PRIOR WEIGHTS: 278 1 2 3 4 5 POINT -0.4000E+01 -0.3429E+01 -0.2857E+01 -0.2286E+01 -0.1714E+01 WEIGHT 0.7648E-04 0.6387E-03 0.3848E-02 0.1673E-01 0.5245E-01 6 7 8 9 10 POINT -0.1143E+01 -0.5714E+00 -0.8882E-15 0.5714E+00 0.1143E+01 WEIGHT 0.1186E+00 0.1936E+00 0.2280E+00 0.1936E+00 0.1186E+00 11 12 13 14 15 POINT 0.1714E+01 0.2286E+01 0.2857E+01 0.3429E+01 0.4000E+01 WEIGHT 0.5245E-01 0.1673E-01 0.3848E-02 0.6387E-03 0.7648E-04 CONSTRAINT DISTRIBUTIONS ON ITEM PARAMETERS (THRESHOLDS, NORMAL; SLOPES, LOG-NORMAL; GUESSING, BETA) THRESHOLDS SLOPES ASYMPTOTES ITEM MU SIGMA MU SIGMA ALPHA BETA ---------------------------------------------------------------------ITEM0001 0.000 2.000 1.000 1.649 ITEM0002 0.000 2.000 1.000 1.649 ITEM0003 0.000 2.000 1.000 1.649 ITEM0004 0.000 2.000 1.000 1.649 ITEM0005 0.000 2.000 1.000 1.649 ITEM0006 0.000 2.000 1.000 1.649 ITEM0007 0.000 2.000 1.000 1.649 ITEM0008 0.000 2.000 1.000 1.649 ITEM0009 0.000 2.000 1.000 1.649 ITEM0010 0.000 2.000 1.000 1.649 ITEM0011 0.000 2.000 1.000 1.649 ITEM0012 0.000 2.000 1.000 1.649 ITEM0013 0.000 2.000 1.000 1.649 ITEM0014 0.000 2.000 1.000 1.649 ITEM0015 0.000 2.000 1.000 1.649 ITEM0016 0.000 2.000 1.000 1.649 ITEM0017 0.000 2.000 1.000 1.649 ITEM0018 0.000 2.000 1.000 1.649 279 ITEM0019 0.000 2.000 1.000 1.649 ITEM0020 0.000 2.000 1.000 1.649 ITEM0021 0.000 2.000 1.000 1.649 ITEM0022 0.000 2.000 1.000 1.649 ITEM0023 0.000 2.000 1.000 1.649 ITEM0024 0.000 2.000 1.000 1.649 ITEM0025 0.000 2.000 1.000 1.649 ---------------------------------------------------------------------- [E-M CYCLES] -2 LOG LIKELIHOOD = CYCLE 30101.534 1; LARGEST CHANGE= 0.25878 -2 LOG LIKELIHOOD = 30058.360 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE 2; LARGEST CHANGE= 0.13663 -2 LOG LIKELIHOOD = 30024.150 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE -0.89236 0.50000 1.56309 2.00000 -0.88145 0.50000 1.77732 2.00000 3; LARGEST CHANGE= 0.08268 280 -2 LOG LIKELIHOOD = 30016.841 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE 4; LARGEST CHANGE= 0.13636 -2 LOG LIKELIHOOD = 30010.186 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE 30009.910 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = UPDATED PRIOR ON THRESHOLDS; MEAN & SD = -0.86727 0.50000 1.89405 2.00000 6; LARGEST CHANGE= 0.01182 -2 LOG LIKELIHOOD = 30009.651 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE -0.86812 0.50000 1.89702 2.00000 5; LARGEST CHANGE= 0.02562 -2 LOG LIKELIHOOD = CYCLE -0.87683 0.50000 1.83852 2.00000 -0.87111 0.50000 1.90345 2.00000 7; LARGEST CHANGE= 0.01337 281 -2 LOG LIKELIHOOD = 30009.455 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE -0.87153 0.50000 1.90696 2.00000 8; LARGEST CHANGE= 0.00246 [NEWTON CYCLES] UPDATED PRIOR ON LOG SLOPES; MEAN & SD = UPDATED PRIOR ON THRESHOLDS; MEAN & SD = -2 LOG LIKELIHOOD: CYCLE -0.87274 0.50000 1.90914 2.00000 30009.4514 9; LARGEST CHANGE= 0.00160 INTERVAL COUNTS FOR COMPUTATION OF ITEM CHI-SQUARES ---------------------------------------------------------------------------27. 42. 62. 144. 200. 229. 155. 99. 41. ---------------------------------------------------------------------------INTERVAL AVERAGE THETAS ----------------------------------------------------------------------------2.487 -1.935 -1.325 -0.762 -0.263 0.261 0.794 1.302 1.975 ---------------------------------------------------------------------------1 282 SUBTEST TEST0001; ITEM PARAMETERS AFTER CYCLE 9 ITEM CHISQ INTERCEPT SLOPE THRESHOLD LOADING ASYMPTOTE DF S.E. S.E. S.E. S.E. S.E. (PROB) ------------------------------------------------------------------------------ITEM0001 | 0.919 | 0.757 | -1.214 | 0.604 | 0.000 | 25.3 8.0 | 0.079* | 0.113* | 0.176* | 0.090* | 0.000* | (0.0014) | | | | | | ITEM0002 | -0.099 | 0.462 | 0.214 | 0.420 | 0.000 | 18.1 9.0 | 0.065* | 0.084* | 0.146* | 0.076* | 0.000* | (0.0343) | | | | | | ITEM0003 | 0.351 | 0.691 | -0.508 | 0.569 | 0.000 | 14.2 9.0 | 0.069* | 0.100* | 0.118* | 0.082* | 0.000* | (0.1163) | | | | | | ITEM0004 | 0.312 | 0.653 | -0.478 | 0.547 | 0.000 | 18.5 9.0 | 0.069* | 0.096* | 0.119* | 0.080* | 0.000* | (0.0296) | | | | | | ITEM0005 | -0.164 | 0.392 | 0.419 | 0.365 | 0.000 | 16.7 9.0 | 0.065* | 0.078* | 0.184* | 0.072* | 0.000* | (0.0533) | | | | | | ITEM0006 | 1.821 | 1.306 | -1.394 | 0.794 | 0.000 | 26.8 7.0 | 0.123* | 0.159* | 0.132* | 0.096* | 0.000* | (0.0004) | | | | | | ITEM0007 | 0.073 | 0.877 | -0.083 | 0.659 | 0.000 | 21.9 8.0 | 0.071* | 0.113* | 0.082* | 0.085* | 0.000* | (0.0051) | | | | | | ITEM0008 | 1.024 | 0.959 | -1.067 | 0.692 | 0.000 | 24.2 7.0 | 0.085* | 0.125* | 0.133* | 0.090* | 0.000* | (0.0010) | | | | | | ITEM0009 | -0.520 | 0.854 | 0.609 | 0.649 | 0.000 | 27.6 8.0 | 0.074* | 0.116* | 0.104* | 0.088* | 0.000* | (0.0006) | | | | | | ITEM0010 | 0.275 | 0.822 | -0.335 | 0.635 | 0.000 | 19.9 9.0 | 0.071* | 0.108* | 0.093* | 0.084* | 0.000* | (0.0185) | | | | | | ITEM0011 | -1.018 | 0.213 | 4.787 | 0.208 | 0.000 | 9.9 9.0 | 0.071* | 0.062* | 1.412* | 0.061* | 0.000* | (0.3582) | | | | | | 283 ITEM0012 | 0.049 | 0.822 | -0.059 | 0.635 | 0.000 | 24.6 | 0.070* | 0.114* | 0.086* | 0.088* | 0.000* | (0.0009) | | | | | | ITEM0013 | -0.005 | 0.287 | 0.016 | 0.276 | 0.000 | 16.1 | 0.064* | 0.068* | 0.222* | 0.065* | 0.000* | (0.0643) | | | | | | ITEM0014 | 1.150 | 0.631 | -1.821 | 0.534 | 0.000 | 8.6 | 0.081* | 0.101* | 0.277* | 0.085* | 0.000* | (0.3792) | | | | | | ITEM0015 | -1.426 | 0.289 | 4.933 | 0.278 | 0.000 | 4.0 | 0.081* | 0.079* | 1.329* | 0.076* | 0.000* | (0.9098) | | | | | | ITEM0016 | -1.315 | 0.230 | 5.713 | 0.224 | 0.000 | 1.5 | 0.077* | 0.068* | 1.683* | 0.066* | 0.000* | (0.9971) | | | | | | ITEM0017 | -0.934 | 0.211 | 4.423 | 0.207 | 0.000 | 2.1 | 0.070* | 0.061* | 1.296* | 0.059* | 0.000* | (0.9898) | | | | | | ITEM0018 | -0.408 | 0.257 | 1.584 | 0.249 | 0.000 | 3.1 | 0.065* | 0.066* | 0.465* | 0.064* | 0.000* | (0.9589) | | | | | | ITEM0019 | -0.931 | 0.265 | 3.516 | 0.256 | 0.000 | 13.3 | 0.070* | 0.068* | 0.919* | 0.066* | 0.000* | (0.1515) | | | | | | ITEM0020 | -0.969 | 0.173 | 5.606 | 0.170 | 0.000 | 21.5 | 0.070* | 0.052* | 1.711* | 0.051* | 0.000* | (0.0107) | | | | | | ITEM0021 | -0.898 | 0.245 | 3.663 | 0.238 | 0.000 | 19.5 | 0.070* | 0.065* | 0.993* | 0.063* | 0.000* | (0.0209) | | | | | | ITEM0022 | -0.535 | 0.395 | 1.352 | 0.368 | 0.000 | 10.0 | 0.067* | 0.082* | 0.313* | 0.077* | 0.000* | (0.3494) | | | | | | ITEM0023 | -1.366 | 0.189 | 7.240 | 0.185 | 0.000 | 12.0 | 0.078* | 0.056* | 2.179* | 0.055* | 0.000* | (0.2139) | | | | | | ITEM0024 | -1.087 | 0.222 | 4.906 | 0.216 | 0.000 | 6.0 | 0.072* | 0.062* | 1.402* | 0.061* | 0.000* | (0.7400) | | | | | | ITEM0025 | -1.453 | 0.225 | 6.444 | 0.220 | 0.000 | 14.5 7.0 9.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 284 | 0.080* | 0.067* | 1.917* | 0.065* | 0.000* | (0.1065) ------------------------------------------------------------------------------* STANDARD ERROR LARGEST CHANGE = 0.001596 379.9 215.0 (0.0000) ------------------------------------------------------------------------------- PARAMETER MEAN STN DEV ----------------------------------SLOPE 0.497 0.314 LOG(SLOPE) -0.888 0.627 THRESHOLD 1.939 2.844 QUADRATURE POINTS, POSTERIOR WEIGHTS, MEAN AND S.D.: 1 2 3 4 5 POINT -0.4057E+01 -0.3477E+01 -0.2898E+01 -0.2318E+01 -0.1738E+01 POSTERIOR 0.1128E-03 0.8939E-03 0.4912E-02 0.1853E-01 0.5066E-01 6 7 8 9 10 POINT -0.1159E+01 -0.5794E+00 0.1756E-03 0.5797E+00 0.1159E+01 POSTERIOR 0.1116E+00 0.1928E+00 0.2347E+00 0.1970E+00 0.1173E+00 11 12 13 14 15 POINT 0.1739E+01 0.2318E+01 0.2898E+01 0.3478E+01 0.4057E+01 POSTERIOR 0.5060E-01 0.1614E-01 0.3902E-02 0.7258E-03 0.1023E-03 MEAN S.D. 0.00000 1.00000 33924 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-2 285 3936 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-2 11/29/2011 15:00:00 PH3 1 BILOG-MG V3.0 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** LOGISTIC MODEL ITEM ANALYSER *** *** PHASE 3 *** 25 by 1000 >SCORE METhod = 1; PARAMETERS FOR SCORING, RESCALING, AND TEST AND ITEM INFORMATION METHOD OF SCORING SUBJECTS: SCORES WRITTEN TO FILE MAXIMUM LIKELIHOOD RG1.SCO SCORES WRITTEN TO FILE RG1.PH3 TYPE OF RESCALING: NONE REQUESTED 286 ITEM AND TEST INFORMATION: DOMAIN SCORE ESTIMATION: ----------------------1 NONE REQUESTED NONE REQUESTED ****************************** SCORING ****************************** 1 GROUP SUBJECT IDENTIFICATION WEIGHT TEST TRIED RIGHT PERCENT ABILITY ---------------------------------------------------------------1 Examinee001 | | 1.00 TEST0001 25 7 28.00 | -0.9254 0.7237 | 1 Examinee002 | | 1.00 TEST0001 25 11 44.00 | -0.5564 0.7277 | 1 Examinee003 | | 1.00 TEST0001 25 11 44.00 | 0.4903 0.7999 | 1 Examinee004 | | 1.00 TEST0001 25 12 48.00 | 0.2702 0.7780 | 1 Examinee005 | | 1.00 TEST0001 25 10 40.00 | -0.0753 0.7508 | 1 Examinee006 | | 1.00 TEST0001 25 9 36.00 | -0.0936 0.7496 | 1 Examinee007 | | 1.00 TEST0001 25 10 40.00 | -0.2556 0.7400 | 1 Examinee008 | | 1.00 TEST0001 25 11 44.00 | 0.1856 0.7706 | 1 Examinee009 | | 1.00 TEST0001 25 14 56.00 | 1.0105 0.8655 | 1 Examinee010 | | 1.00 TEST0001 25 9 36.00 | -0.1689 0.7449 | 1 Examinee011 | | 1.00 TEST0001 25 12 48.00 | 0.1879 0.7708 | S.E. 287 1 Examinee012 1.00 TEST0001 1 Examinee013 1.00 TEST0001 1 Examinee014 1.00 TEST0001 1 Examinee015 1.00 TEST0001 1 Examinee016 1.00 TEST0001 1 Examinee017 1.00 TEST0001 1 Examinee018 1.00 TEST0001 1 Examinee019 1.00 TEST0001 1 Examinee020 1.00 TEST0001 1 Examinee021 1.00 TEST0001 1 Examinee022 1.00 TEST0001 1 Examinee023 1.00 TEST0001 1 Examinee024 1.00 TEST0001 1 Examinee025 1.00 TEST0001 1 Examinee026 1.00 TEST0001 1 Examinee027 1.00 TEST0001 1 Examinee028 1.00 TEST0001 1 Examinee029 1.00 TEST0001 1 Examinee030 1.00 TEST0001 1 Examinee031 1.00 TEST0001 25 13 25 16 25 15 25 10 25 13 25 16 25 8 25 5 25 12 25 11 25 11 25 14 25 13 25 7 25 10 25 15 25 10 25 13 25 16 25 16 | 52.00 | | 64.00 | | 60.00 | | 40.00 | | 52.00 | | 64.00 | | 32.00 | | 20.00 | | 48.00 | | 44.00 | | 44.00 | | 56.00 | | 52.00 | | 28.00 | | 40.00 | | 60.00 | | 40.00 | | 52.00 | | 64.00 | | 64.00 | | 1.4873 | 1.7416 | 2.1319 | 0.3908 | 2.1557 | 1.3930 | -0.8593 | -2.2596 | 1.0448 | 0.3164 | -0.0688 | 0.9554 | 0.5139 | -0.8327 | -0.0933 | 1.8563 | -0.6170 | 1.0285 | 1.9520 | 2.4897 0.9438 | 0.9926 | 1.0765 | 0.7896 | 1.0819 | 0.9269 | 0.7234 | 0.8521 | 0.8706 | 0.7823 | 0.7512 | 0.8576 | 0.8024 | 0.7234 | 0.7496 | 1.0161 | 0.7261 | 0.8682 | 1.0365 | 1.1619 | 288 1 Examinee032 1.00 TEST0001 1 Examinee033 1.00 TEST0001 1 Examinee034 1.00 TEST0001 1 Examinee035 1.00 TEST0001 1 Examinee036 1.00 TEST0001 1 Examinee037 1.00 TEST0001 1 Examinee038 1.00 TEST0001 1 Examinee039 1.00 TEST0001 1 Examinee040 1.00 TEST0001 1 Examinee041 1.00 TEST0001 1 Examinee042 1.00 TEST0001 1 Examinee043 1.00 TEST0001 1 Examinee044 1.00 TEST0001 1 Examinee045 1.00 TEST0001 1 Examinee046 1.00 TEST0001 1 Examinee047 1.00 TEST0001 1 Examinee048 1.00 TEST0001 1 Examinee049 1.00 TEST0001 1 Examinee050 1.00 TEST0001 1 Examinee051 1.00 TEST0001 25 13 25 11 25 18 25 12 25 8 25 10 25 14 25 10 25 14 25 13 25 7 25 13 25 11 25 11 25 13 25 8 25 11 25 13 25 13 25 9 | 52.00 | | 44.00 | | 72.00 | | 48.00 | | 32.00 | | 40.00 | | 56.00 | | 40.00 | | 56.00 | | 52.00 | | 28.00 | | 52.00 | | 44.00 | | 44.00 | | 52.00 | | 32.00 | | 44.00 | | 52.00 | | 52.00 | | 36.00 | | -0.1292 | 0.0896 | 4.0000 | 0.6408 | -0.3980 | -0.1817 | 1.2014 | -0.5565 | 2.4761 | 1.8408 | -1.6826 | 0.2842 | 0.4277 | 0.2619 | 1.5480 | -1.4296 | 0.3986 | 1.5013 | 1.1887 | -0.3747 0.7473 | 0.7627 | 999.0000 | 0.8168 | 0.7333 | 0.7441 | 0.8948 | 0.7277 | 1.1585 | 1.0129 | 0.7653 | 0.7793 | 0.7933 | 0.7773 | 0.9550 | 0.7429 | 0.7903 | 0.9463 | 0.8927 | 0.7343 | 289 1 Examinee052 1.00 TEST0001 1 Examinee053 1.00 TEST0001 1 Examinee054 1.00 TEST0001 1 Examinee055 1.00 TEST0001 1 Examinee056 1.00 TEST0001 1 Examinee057 1.00 TEST0001 1 Examinee058 1.00 TEST0001 1 Examinee059 1.00 TEST0001 1 Examinee060 1.00 TEST0001 1 Examinee061 1.00 TEST0001 1 Examinee062 1.00 TEST0001 1 Examinee063 1.00 TEST0001 1 Examinee064 1.00 TEST0001 1 Examinee065 1.00 TEST0001 1 Examinee066 1.00 TEST0001 1 Examinee067 1.00 TEST0001 1 Examinee068 1.00 TEST0001 1 Examinee069 1.00 TEST0001 1 Examinee070 1.00 TEST0001 1 Examinee071 1.00 TEST0001 25 13 25 11 25 9 25 8 25 13 25 16 25 16 25 8 25 10 25 11 25 8 25 13 25 12 25 11 25 13 25 13 25 13 25 9 25 15 25 11 | 52.00 | | 44.00 | | 36.00 | | 32.00 | | 52.00 | | 64.00 | | 64.00 | | 32.00 | | 40.00 | | 44.00 | | 32.00 | | 52.00 | | 48.00 | | 44.00 | | 52.00 | | 52.00 | | 52.00 | | 36.00 | | 60.00 | | 44.00 | | 0.0433 | 0.5966 | -0.5767 | -0.8013 | 1.0484 | 2.9740 | 2.2855 | -1.1468 | -0.8190 | -0.2685 | -0.9401 | 0.3628 | 0.4234 | 0.3433 | 0.2761 | 1.7975 | 0.7473 | -1.0452 | 1.2995 | -0.2360 0.7592 | 0.8117 | 0.7271 | 0.7235 | 0.8711 | 1.2876 | 1.1122 | 0.7282 | 0.7234 | 0.7393 | 0.7238 | 0.7868 | 0.7929 | 0.7849 | 0.7786 | 1.0039 | 0.8298 | 0.7254 | 0.9109 | 0.7411 | 290 1 Examinee072 1.00 TEST0001 1 Examinee073 1.00 TEST0001 1 Examinee074 1.00 TEST0001 1 Examinee075 1.00 TEST0001 1 Examinee076 1.00 TEST0001 1 Examinee077 1.00 TEST0001 1 Examinee078 1.00 TEST0001 1 Examinee079 1.00 TEST0001 1 Examinee080 1.00 TEST0001 1 Examinee081 1.00 TEST0001 1 Examinee082 1.00 TEST0001 1 Examinee083 1.00 TEST0001 1 Examinee084 1.00 TEST0001 1 Examinee085 1.00 TEST0001 1 Examinee086 1.00 TEST0001 1 Examinee087 1.00 TEST0001 1 Examinee088 1.00 TEST0001 1 Examinee089 1.00 TEST0001 1 Examinee090 1.00 TEST0001 1 Examinee091 1.00 TEST0001 25 16 25 13 25 13 25 16 25 18 25 15 25 7 25 14 25 17 25 16 25 8 25 11 25 10 25 11 25 14 25 13 25 11 25 10 25 13 25 12 | 64.00 | | 52.00 | | 52.00 | | 64.00 | | 72.00 | | 60.00 | | 28.00 | | 56.00 | | 68.00 | | 64.00 | | 32.00 | | 44.00 | | 40.00 | | 44.00 | | 56.00 | | 52.00 | | 44.00 | | 40.00 | | 52.00 | | 48.00 | | 1.8410 | 0.4547 | -0.2520 | 1.6076 | 3.1138 | 0.8076 | -1.4075 | 1.4728 | 3.8200 | 2.5881 | -0.8707 | -0.1028 | -0.3389 | -0.6603 | 0.5156 | 0.7176 | -0.6547 | -0.3918 | 1.7121 | 1.0458 1.0129 | 0.7961 | 0.7402 | 0.9663 | 1.3255 | 0.8375 | 0.7413 | 0.9411 | 1.5215 | 1.1866 | 0.7234 | 0.7490 | 0.7359 | 0.7252 | 0.8026 | 0.8261 | 0.7253 | 0.7335 | 0.9866 | 0.8707 | 291 1 Examinee092 1.00 TEST0001 1 Examinee093 1.00 TEST0001 1 Examinee094 1.00 TEST0001 1 Examinee095 1.00 TEST0001 1 Examinee096 1.00 TEST0001 1 Examinee097 1.00 TEST0001 1 Examinee098 1.00 TEST0001 1 Examinee099 1.00 TEST0001 1 Examinee100 1.00 TEST0001 1 Examinee101 1.00 TEST0001 1 Examinee102 1.00 TEST0001 1 Examinee103 1.00 TEST0001 1 Examinee104 1.00 TEST0001 1 Examinee105 1.00 TEST0001 1 Examinee106 1.00 TEST0001 1 Examinee107 1.00 TEST0001 1 Examinee108 1.00 TEST0001 1 Examinee109 1.00 TEST0001 1 Examinee110 1.00 TEST0001 1 Examinee111 1.00 TEST0001 25 10 25 13 25 8 25 13 25 11 25 17 25 12 25 18 25 11 25 9 25 10 25 11 25 15 25 11 25 14 25 11 25 8 25 7 25 10 25 12 | 40.00 | | 52.00 | | 32.00 | | 52.00 | | 44.00 | | 68.00 | | 48.00 | | 72.00 | | 44.00 | | 36.00 | | 40.00 | | 44.00 | | 60.00 | | 44.00 | | 56.00 | | 44.00 | | 32.00 | | 28.00 | | 40.00 | | 48.00 | | -0.2423 | 0.5694 | -0.5330 | 0.8922 | 0.0608 | 2.9270 | 0.8808 | 3.2052 | 0.7259 | -0.6032 | -0.4676 | 0.5936 | 1.3341 | 0.2473 | 0.4410 | 0.6447 | -1.0053 | -2.0888 | 0.0577 | 0.9138 0.7407 | 0.8085 | 0.7284 | 0.8488 | 0.7605 | 1.2750 | 0.8473 | 1.3505 | 0.8271 | 0.7265 | 0.7306 | 0.8113 | 0.9167 | 0.7760 | 0.7947 | 0.8173 | 0.7247 | 0.8212 | 0.7603 | 0.8518 | 292 1 Examinee112 1.00 TEST0001 1 Examinee113 1.00 TEST0001 1 Examinee114 1.00 TEST0001 1 Examinee115 1.00 TEST0001 1 Examinee116 1.00 TEST0001 1 Examinee117 1.00 TEST0001 1 Examinee118 1.00 TEST0001 1 Examinee119 1.00 TEST0001 1 Examinee120 1.00 TEST0001 1 Examinee121 1.00 TEST0001 1 Examinee122 1.00 TEST0001 1 Examinee123 1.00 TEST0001 1 Examinee124 1.00 TEST0001 1 Examinee125 1.00 TEST0001 1 Examinee126 1.00 TEST0001 1 Examinee127 1.00 TEST0001 1 Examinee128 1.00 TEST0001 1 Examinee129 1.00 TEST0001 1 Examinee130 1.00 TEST0001 1 Examinee131 1.00 TEST0001 25 12 25 10 25 7 25 9 25 13 25 9 25 15 25 10 25 9 25 8 25 7 25 8 25 11 25 11 25 12 25 14 25 11 25 6 25 5 25 9 | 48.00 | | 40.00 | | 28.00 | | 36.00 | | 52.00 | | 36.00 | | 60.00 | | 40.00 | | 36.00 | | 32.00 | | 28.00 | | 32.00 | | 44.00 | | 44.00 | | 48.00 | | 56.00 | | 44.00 | | 24.00 | | 20.00 | | 36.00 | | 0.6008 | -0.1702 | -0.8975 | -0.8235 | 1.3945 | -0.6497 | 1.7090 | -0.4521 | -0.7954 | -1.0109 | -1.7924 | -0.1700 | 0.4274 | 0.4501 | 1.1383 | 1.9557 | 0.1478 | -1.9028 | -1.3811 | -0.7593 0.8121 | 0.7448 | 0.7235 | 0.7234 | 0.9272 | 0.7254 | 0.9860 | 0.7311 | 0.7235 | 0.7248 | 0.7780 | 0.7448 | 0.7933 | 0.7956 | 0.8848 | 1.0373 | 0.7674 | 0.7925 | 0.7396 | 0.7238 | 293 1 Examinee132 1.00 TEST0001 1 Examinee133 1.00 TEST0001 1 Examinee134 1.00 TEST0001 1 Examinee135 1.00 TEST0001 1 Examinee136 1.00 TEST0001 1 Examinee137 1.00 TEST0001 1 Examinee138 1.00 TEST0001 1 Examinee139 1.00 TEST0001 1 Examinee140 1.00 TEST0001 1 Examinee141 1.00 TEST0001 1 Examinee142 1.00 TEST0001 1 Examinee143 1.00 TEST0001 1 Examinee144 1.00 TEST0001 1 Examinee145 1.00 TEST0001 1 Examinee146 1.00 TEST0001 1 Examinee147 1.00 TEST0001 1 Examinee148 1.00 TEST0001 1 Examinee149 1.00 TEST0001 1 Examinee150 1.00 TEST0001 1 Examinee151 1.00 TEST0001 25 14 25 12 25 4 25 9 25 10 25 10 25 14 25 7 25 8 25 17 25 8 25 7 25 10 25 12 25 8 25 10 25 8 25 7 25 12 25 12 | 56.00 | | 48.00 | | 16.00 | | 36.00 | | 40.00 | | 40.00 | | 56.00 | | 28.00 | | 32.00 | | 68.00 | | 32.00 | | 28.00 | | 40.00 | | 48.00 | | 32.00 | | 40.00 | | 32.00 | | 28.00 | | 48.00 | | 48.00 | | 0.5038 | 0.0622 | -2.7116 | -0.3425 | 0.1613 | -0.3157 | 1.3165 | -0.3294 | -0.6807 | 2.8680 | -0.9500 | -0.4011 | -0.3575 | 0.3513 | -0.8814 | -0.4245 | -0.9695 | -0.9603 | 1.3678 | 0.9364 0.8013 | 0.7606 | 0.9541 | 0.7357 | 0.7685 | 0.7370 | 0.9137 | 0.7363 | 0.7249 | 1.2593 | 0.7239 | 0.7331 | 0.7350 | 0.7857 | 0.7234 | 0.7322 | 0.7241 | 0.7240 | 0.9225 | 0.8549 | 294 1 Examinee152 1.00 TEST0001 1 Examinee153 1.00 TEST0001 1 Examinee154 1.00 TEST0001 1 Examinee155 1.00 TEST0001 1 Examinee156 1.00 TEST0001 1 Examinee157 1.00 TEST0001 1 Examinee158 1.00 TEST0001 1 Examinee159 1.00 TEST0001 1 Examinee160 1.00 TEST0001 1 Examinee161 1.00 TEST0001 1 Examinee162 1.00 TEST0001 1 Examinee163 1.00 TEST0001 1 Examinee164 1.00 TEST0001 1 Examinee165 1.00 TEST0001 1 Examinee166 1.00 TEST0001 1 Examinee167 1.00 TEST0001 1 Examinee168 1.00 TEST0001 1 Examinee169 1.00 TEST0001 1 Examinee170 1.00 TEST0001 1 Examinee171 1.00 TEST0001 25 11 25 16 25 16 25 10 25 10 25 16 25 15 25 19 25 16 25 17 25 5 25 10 25 17 25 7 25 12 25 8 25 13 25 16 25 9 25 7 | 44.00 | | 64.00 | | 64.00 | | 40.00 | | 40.00 | | 64.00 | | 60.00 | | 76.00 | | 64.00 | | 68.00 | | 20.00 | | 40.00 | | 68.00 | | 28.00 | | 48.00 | | 32.00 | | 52.00 | | 64.00 | | 36.00 | | 28.00 | | 0.1122 | 1.6951 | 2.4342 | 0.1276 | -0.2875 | 2.0381 | 1.7038 | 3.8322 | 1.5176 | 2.0416 | -2.6800 | 0.5538 | 1.6993 | -0.8240 | 0.0224 | -0.7830 | 0.8953 | 2.4467 | -0.7981 | -1.1765 0.7645 | 0.9833 | 1.1482 | 0.7658 | 0.7384 | 1.0554 | 0.9850 | 1.5249 | 0.9493 | 1.0561 | 0.9461 | 0.8068 | 0.9841 | 0.7234 | 0.7576 | 0.7236 | 0.8492 | 1.1512 | 0.7235 | 0.7293 | 295 1 Examinee172 1.00 TEST0001 1 Examinee173 1.00 TEST0001 1 Examinee174 1.00 TEST0001 1 Examinee175 1.00 TEST0001 1 Examinee176 1.00 TEST0001 1 Examinee177 1.00 TEST0001 1 Examinee178 1.00 TEST0001 1 Examinee179 1.00 TEST0001 1 Examinee180 1.00 TEST0001 1 Examinee181 1.00 TEST0001 1 Examinee182 1.00 TEST0001 1 Examinee183 1.00 TEST0001 1 Examinee184 1.00 TEST0001 1 Examinee185 1.00 TEST0001 1 Examinee186 1.00 TEST0001 1 Examinee187 1.00 TEST0001 1 Examinee188 1.00 TEST0001 1 Examinee189 1.00 TEST0001 1 Examinee190 1.00 TEST0001 1 Examinee191 1.00 TEST0001 25 14 25 10 25 17 25 17 25 14 25 8 25 12 25 9 25 11 25 13 25 13 25 9 25 12 25 9 25 11 25 10 25 12 25 12 25 8 25 11 | 56.00 | | 40.00 | | 68.00 | | 68.00 | | 56.00 | | 32.00 | | 48.00 | | 36.00 | | 44.00 | | 52.00 | | 52.00 | | 36.00 | | 48.00 | | 36.00 | | 44.00 | | 40.00 | | 48.00 | | 48.00 | | 32.00 | | 44.00 | | 1.6326 | 0.0973 | 1.6870 | 3.1206 | 0.9913 | -0.5514 | 1.2772 | -0.1607 | -0.0619 | 0.1859 | 0.5326 | -0.8687 | 0.2206 | -1.2102 | 1.2694 | 0.4252 | -0.0500 | 0.0315 | -1.2793 | -0.3199 0.9711 | 0.7633 | 0.9817 | 1.3273 | 0.8627 | 0.7278 | 0.9071 | 0.7454 | 0.7517 | 0.7706 | 0.8045 | 0.7234 | 0.7736 | 0.7306 | 0.9059 | 0.7930 | 0.7525 | 0.7583 | 0.7338 | 0.7368 | 296 1 Examinee192 1.00 TEST0001 1 Examinee193 1.00 TEST0001 1 Examinee194 1.00 TEST0001 1 Examinee195 1.00 TEST0001 1 Examinee196 1.00 TEST0001 1 Examinee197 1.00 TEST0001 1 Examinee198 1.00 TEST0001 1 Examinee199 1.00 TEST0001 1 Examinee200 1.00 TEST0001 1 Examinee201 1.00 TEST0001 1 Examinee202 1.00 TEST0001 1 Examinee203 1.00 TEST0001 1 Examinee204 1.00 TEST0001 1 Examinee205 1.00 TEST0001 1 Examinee206 1.00 TEST0001 1 Examinee207 1.00 TEST0001 1 Examinee208 1.00 TEST0001 1 Examinee209 1.00 TEST0001 1 Examinee210 1.00 TEST0001 1 Examinee211 1.00 TEST0001 25 8 25 12 25 12 25 15 25 20 25 13 25 15 25 10 25 11 25 12 25 14 25 16 25 12 25 11 25 11 25 9 25 11 25 12 25 12 25 10 | 32.00 | | 48.00 | | 48.00 | | 60.00 | | 80.00 | | 52.00 | | 60.00 | | 40.00 | | 44.00 | | 48.00 | | 56.00 | | 64.00 | | 48.00 | | 44.00 | | 44.00 | | 36.00 | | 44.00 | | 48.00 | | 48.00 | | 40.00 | | -1.1321 | 0.5073 | 0.4849 | 1.9756 | 4.0000 | 2.0753 | 0.3939 | -0.0016 | 1.2150 | 0.0092 | 0.7755 | 2.6572 | -0.1965 | 0.5423 | -0.2980 | -0.9749 | 0.6613 | 0.6757 | 0.5505 | -0.6202 0.7277 | 0.8017 | 0.7993 | 1.0416 | 999.0000 | 1.0637 | 0.7899 | 0.7559 | 0.8970 | 0.7567 | 0.8334 | 1.2042 | 0.7433 | 0.8055 | 0.7378 | 0.7242 | 0.8192 | 0.8210 | 0.8064 | 0.7261 | 297 1 Examinee212 1.00 TEST0001 1 Examinee213 1.00 TEST0001 1 Examinee214 1.00 TEST0001 1 Examinee215 1.00 TEST0001 1 Examinee216 1.00 TEST0001 1 Examinee217 1.00 TEST0001 1 Examinee218 1.00 TEST0001 1 Examinee219 1.00 TEST0001 1 Examinee220 1.00 TEST0001 1 Examinee221 1.00 TEST0001 1 Examinee222 1.00 TEST0001 1 Examinee223 1.00 TEST0001 1 Examinee224 1.00 TEST0001 1 Examinee225 1.00 TEST0001 1 Examinee226 1.00 TEST0001 1 Examinee227 1.00 TEST0001 1 Examinee228 1.00 TEST0001 1 Examinee229 1.00 TEST0001 1 Examinee230 1.00 TEST0001 1 Examinee231 1.00 TEST0001 25 7 25 7 25 8 25 15 25 12 25 17 25 15 25 17 25 8 25 22 25 14 25 12 25 16 25 16 25 19 25 20 25 11 25 9 25 13 25 10 | 28.00 | | 28.00 | | 32.00 | | 60.00 | | 48.00 | | 68.00 | | 60.00 | | 68.00 | | 32.00 | | 88.00 | | 56.00 | | 48.00 | | 64.00 | | 64.00 | | 76.00 | | 80.00 | | 44.00 | | 36.00 | | 52.00 | | 40.00 | | -0.5640 | -0.8048 | -0.3699 | 1.2766 | 0.1940 | 2.2294 | 2.7071 | 3.3578 | -0.1910 | 4.0000 | 2.4662 | 0.0244 | 2.5957 | 2.0978 | 3.3485 | 4.0000 | 0.5611 | -0.7349 | 1.6029 | 0.1533 0.7275 | 0.7235 | 0.7345 | 0.9071 | 0.7713 | 1.0990 | 1.2171 | 1.3926 | 0.7436 | 999.0000 | 1.1561 | 0.7578 | 1.1885 | 1.0687 | 1.3900 | 999.0000 | 0.8076 | 0.7241 | 0.9654 | 0.7679 | 298 1 Examinee232 1.00 TEST0001 1 Examinee233 1.00 TEST0001 1 Examinee234 1.00 TEST0001 1 Examinee235 1.00 TEST0001 1 Examinee236 1.00 TEST0001 1 Examinee237 1.00 TEST0001 1 Examinee238 1.00 TEST0001 1 Examinee239 1.00 TEST0001 1 Examinee240 1.00 TEST0001 1 Examinee241 1.00 TEST0001 1 Examinee242 1.00 TEST0001 1 Examinee243 1.00 TEST0001 1 Examinee244 1.00 TEST0001 1 Examinee245 1.00 TEST0001 1 Examinee246 1.00 TEST0001 1 Examinee247 1.00 TEST0001 1 Examinee248 1.00 TEST0001 1 Examinee249 1.00 TEST0001 1 Examinee250 1.00 TEST0001 1 Examinee251 1.00 TEST0001 25 8 25 9 25 16 25 9 25 12 25 11 25 11 25 16 25 10 25 13 25 14 25 9 25 10 25 8 25 12 25 7 25 12 25 8 25 8 25 10 | 32.00 | | 36.00 | | 64.00 | | 36.00 | | 48.00 | | 44.00 | | 44.00 | | 64.00 | | 40.00 | | 52.00 | | 56.00 | | 36.00 | | 40.00 | | 32.00 | | 48.00 | | 28.00 | | 48.00 | | 32.00 | | 32.00 | | 40.00 | | -0.8455 | 0.0827 | 1.8934 | -0.4982 | 0.4260 | -0.8964 | 1.5268 | 1.9829 | 0.5093 | 0.7330 | 1.0875 | -0.5188 | -0.7148 | -0.4103 | 0.1502 | -0.8308 | 0.1307 | -0.7781 | -0.1949 | -0.4820 0.7234 | 0.7622 | 1.0240 | 0.7295 | 0.7931 | 0.7235 | 0.9510 | 1.0432 | 0.8019 | 0.8280 | 0.8770 | 0.7288 | 0.7243 | 0.7328 | 0.7676 | 0.7234 | 0.7660 | 0.7237 | 0.7434 | 0.7300 | 299 1 Examinee252 1.00 TEST0001 1 Examinee253 1.00 TEST0001 1 Examinee254 1.00 TEST0001 1 Examinee255 1.00 TEST0001 1 Examinee256 1.00 TEST0001 1 Examinee257 1.00 TEST0001 1 Examinee258 1.00 TEST0001 1 Examinee259 1.00 TEST0001 1 Examinee260 1.00 TEST0001 1 Examinee261 1.00 TEST0001 1 Examinee262 1.00 TEST0001 1 Examinee263 1.00 TEST0001 1 Examinee264 1.00 TEST0001 1 Examinee265 1.00 TEST0001 1 Examinee266 1.00 TEST0001 1 Examinee267 1.00 TEST0001 1 Examinee268 1.00 TEST0001 1 Examinee269 1.00 TEST0001 1 Examinee270 1.00 TEST0001 1 Examinee271 1.00 TEST0001 25 12 25 5 25 12 25 9 25 17 25 9 25 16 25 14 25 12 25 15 25 12 25 9 25 9 25 6 25 7 25 5 25 14 25 6 25 11 25 8 | 48.00 | | 20.00 | | 48.00 | | 36.00 | | 68.00 | | 36.00 | | 64.00 | | 56.00 | | 48.00 | | 60.00 | | 48.00 | | 36.00 | | 36.00 | | 24.00 | | 28.00 | | 20.00 | | 56.00 | | 24.00 | | 44.00 | | 32.00 | | 0.8746 | -2.6247 | 0.4389 | -0.7433 | 3.0433 | -0.4791 | 3.2100 | 1.8406 | 0.4783 | 1.9427 | 0.8285 | 0.1851 | -0.2531 | -1.4407 | -1.3410 | -3.6422 | 2.3808 | -0.8150 | 0.0238 | -0.9328 0.8464 | 0.9323 | 0.7945 | 0.7240 | 1.3063 | 0.7301 | 1.3518 | 1.0128 | 0.7986 | 1.0345 | 0.8403 | 0.7705 | 0.7402 | 0.7437 | 0.7371 | 1.2477 | 1.1351 | 0.7235 | 0.7577 | 0.7237 | 300 1 Examinee272 1.00 TEST0001 1 Examinee273 1.00 TEST0001 1 Examinee274 1.00 TEST0001 1 Examinee275 1.00 TEST0001 1 Examinee276 1.00 TEST0001 1 Examinee277 1.00 TEST0001 1 Examinee278 1.00 TEST0001 1 Examinee279 1.00 TEST0001 1 Examinee280 1.00 TEST0001 1 Examinee281 1.00 TEST0001 1 Examinee282 1.00 TEST0001 1 Examinee283 1.00 TEST0001 1 Examinee284 1.00 TEST0001 1 Examinee285 1.00 TEST0001 1 Examinee286 1.00 TEST0001 1 Examinee287 1.00 TEST0001 1 Examinee288 1.00 TEST0001 1 Examinee289 1.00 TEST0001 1 Examinee290 1.00 TEST0001 1 Examinee291 1.00 TEST0001 25 7 25 9 25 14 25 13 25 13 25 12 25 10 25 11 25 13 25 9 25 13 25 13 25 10 25 10 25 9 25 14 25 11 25 10 25 12 25 8 | 28.00 | | 36.00 | | 56.00 | | 52.00 | | 52.00 | | 48.00 | | 40.00 | | 44.00 | | 52.00 | | 36.00 | | 52.00 | | 52.00 | | 40.00 | | 40.00 | | 36.00 | | 56.00 | | 44.00 | | 40.00 | | 48.00 | | 32.00 | | -1.0512 | 0.0373 | 0.8249 | 0.3102 | 0.6762 | 0.6704 | -0.6661 | -0.9086 | 1.2492 | 0.3008 | 0.7402 | 0.7325 | 0.2639 | -0.2871 | -0.4322 | 1.6055 | 0.3305 | 0.3333 | 0.1877 | -1.4659 0.7255 | 0.7587 | 0.8398 | 0.7818 | 0.8210 | 0.8203 | 0.7251 | 0.7236 | 0.9025 | 0.7809 | 0.8289 | 0.8279 | 0.7775 | 0.7384 | 0.7319 | 0.9659 | 0.7837 | 0.7839 | 0.7708 | 0.7455 | 301 1 Examinee292 1.00 TEST0001 1 Examinee293 1.00 TEST0001 1 Examinee294 1.00 TEST0001 1 Examinee295 1.00 TEST0001 1 Examinee296 1.00 TEST0001 1 Examinee297 1.00 TEST0001 1 Examinee298 1.00 TEST0001 1 Examinee299 1.00 TEST0001 1 Examinee300 1.00 TEST0001 1 Examinee301 1.00 TEST0001 1 Examinee302 1.00 TEST0001 1 Examinee303 1.00 TEST0001 1 Examinee304 1.00 TEST0001 1 Examinee305 1.00 TEST0001 1 Examinee306 1.00 TEST0001 1 Examinee307 1.00 TEST0001 1 Examinee308 1.00 TEST0001 1 Examinee309 1.00 TEST0001 1 Examinee310 1.00 TEST0001 1 Examinee311 1.00 TEST0001 25 12 25 9 25 10 25 13 25 13 25 10 25 13 25 10 25 9 25 13 25 10 25 5 25 10 25 14 25 6 25 13 25 12 25 14 25 14 25 9 | 48.00 | | 36.00 | | 40.00 | | 52.00 | | 52.00 | | 40.00 | | 52.00 | | 40.00 | | 36.00 | | 52.00 | | 40.00 | | 20.00 | | 40.00 | | 56.00 | | 24.00 | | 52.00 | | 48.00 | | 56.00 | | 56.00 | | 36.00 | | 0.5444 | -1.0261 | 0.2578 | -0.1282 | 0.1273 | -0.0879 | 0.0916 | 0.1504 | -0.6608 | 0.3192 | 0.0066 | -1.5887 | -0.6050 | 1.7245 | -1.2900 | 0.5113 | 0.1338 | 0.3197 | 1.3058 | -0.8002 0.8058 | 0.7250 | 0.7769 | 0.7474 | 0.7657 | 0.7500 | 0.7629 | 0.7676 | 0.7252 | 0.7826 | 0.7565 | 0.7559 | 0.7264 | 0.9891 | 0.7343 | 0.8021 | 0.7663 | 0.7826 | 0.9119 | 0.7235 | 302 1 Examinee312 1.00 TEST0001 1 Examinee313 1.00 TEST0001 1 Examinee314 1.00 TEST0001 1 Examinee315 1.00 TEST0001 1 Examinee316 1.00 TEST0001 1 Examinee317 1.00 TEST0001 1 Examinee318 1.00 TEST0001 1 Examinee319 1.00 TEST0001 1 Examinee320 1.00 TEST0001 1 Examinee321 1.00 TEST0001 1 Examinee322 1.00 TEST0001 1 Examinee323 1.00 TEST0001 1 Examinee324 1.00 TEST0001 1 Examinee325 1.00 TEST0001 1 Examinee326 1.00 TEST0001 1 Examinee327 1.00 TEST0001 1 Examinee328 1.00 TEST0001 1 Examinee329 1.00 TEST0001 1 Examinee330 1.00 TEST0001 1 Examinee331 1.00 TEST0001 25 9 25 5 25 7 25 4 25 7 25 15 25 11 25 8 25 8 25 8 25 19 25 15 25 12 25 12 25 11 25 8 25 12 25 12 25 14 25 14 | 36.00 | | 20.00 | | 28.00 | | 16.00 | | 28.00 | | 60.00 | | 44.00 | | 32.00 | | 32.00 | | 32.00 | | 76.00 | | 60.00 | | 48.00 | | 48.00 | | 44.00 | | 32.00 | | 48.00 | | 48.00 | | 56.00 | | 56.00 | | -0.7113 | -1.9180 | -0.9213 | -1.8810 | -1.2115 | 1.7734 | 1.1647 | 0.0181 | -1.2621 | -0.6280 | 4.0000 | 1.5189 | 0.9735 | 0.1539 | -0.4549 | -0.7877 | -0.3026 | 0.7101 | 1.7863 | 0.7168 0.7244 | 0.7947 | 0.7236 | 0.7895 | 0.7306 | 0.9990 | 0.8889 | 0.7573 | 0.7329 | 0.7259 | 999.0000 | 0.9496 | 0.8602 | 0.7679 | 0.7310 | 0.7236 | 0.7376 | 0.8252 | 1.0016 | 0.8260 | 303 1 Examinee332 1.00 TEST0001 1 Examinee333 1.00 TEST0001 1 Examinee334 1.00 TEST0001 1 Examinee335 1.00 TEST0001 1 Examinee336 1.00 TEST0001 1 Examinee337 1.00 TEST0001 1 Examinee338 1.00 TEST0001 1 Examinee339 1.00 TEST0001 1 Examinee340 1.00 TEST0001 1 Examinee341 1.00 TEST0001 1 Examinee342 1.00 TEST0001 1 Examinee343 1.00 TEST0001 1 Examinee344 1.00 TEST0001 1 Examinee345 1.00 TEST0001 1 Examinee346 1.00 TEST0001 1 Examinee347 1.00 TEST0001 1 Examinee348 1.00 TEST0001 1 Examinee349 1.00 TEST0001 1 Examinee350 1.00 TEST0001 1 Examinee351 1.00 TEST0001 25 13 25 8 25 14 25 9 25 12 25 13 25 14 25 13 25 12 25 13 25 11 25 8 25 6 25 12 25 7 25 11 25 14 25 11 25 6 25 9 | 52.00 | | 32.00 | | 56.00 | | 36.00 | | 48.00 | | 52.00 | | 56.00 | | 52.00 | | 48.00 | | 52.00 | | 44.00 | | 32.00 | | 24.00 | | 48.00 | | 28.00 | | 44.00 | | 56.00 | | 44.00 | | 24.00 | | 36.00 | | 0.5437 | -0.8084 | 1.5994 | -0.3874 | 0.5124 | 0.8459 | 0.8895 | 0.9990 | -0.6719 | 1.5593 | 0.7254 | -1.0234 | -2.1439 | 0.5677 | -1.6342 | 0.6612 | 1.4301 | 0.2934 | -0.6973 | -0.8360 0.8057 | 0.7235 | 0.9647 | 0.7337 | 0.8022 | 0.8426 | 0.8484 | 0.8639 | 0.7250 | 0.9571 | 0.8270 | 0.7250 | 0.8307 | 0.8084 | 0.7603 | 0.8192 | 0.9335 | 0.7802 | 0.7246 | 0.7234 | 304 1 Examinee352 1.00 TEST0001 1 Examinee353 1.00 TEST0001 1 Examinee354 1.00 TEST0001 1 Examinee355 1.00 TEST0001 1 Examinee356 1.00 TEST0001 1 Examinee357 1.00 TEST0001 1 Examinee358 1.00 TEST0001 1 Examinee359 1.00 TEST0001 1 Examinee360 1.00 TEST0001 1 Examinee361 1.00 TEST0001 1 Examinee362 1.00 TEST0001 1 Examinee363 1.00 TEST0001 1 Examinee364 1.00 TEST0001 1 Examinee365 1.00 TEST0001 1 Examinee366 1.00 TEST0001 1 Examinee367 1.00 TEST0001 1 Examinee368 1.00 TEST0001 1 Examinee369 1.00 TEST0001 1 Examinee370 1.00 TEST0001 1 Examinee371 1.00 TEST0001 25 14 25 10 25 10 25 12 25 11 25 8 25 13 25 15 25 11 25 12 25 10 25 9 25 13 25 9 25 6 25 13 25 12 25 13 25 8 25 10 | 56.00 | | 40.00 | | 40.00 | | 48.00 | | 44.00 | | 32.00 | | 52.00 | | 60.00 | | 44.00 | | 48.00 | | 40.00 | | 36.00 | | 52.00 | | 36.00 | | 24.00 | | 52.00 | | 48.00 | | 52.00 | | 32.00 | | 40.00 | | 2.2501 | -1.0075 | -0.4035 | -0.2630 | -0.7244 | -0.4175 | 1.1790 | 1.7479 | 0.0407 | 0.6657 | -0.7461 | 0.0704 | 0.1841 | -0.7539 | -1.8565 | 0.9898 | 1.1712 | 0.3474 | -0.3127 | -0.6142 1.1039 | 0.7247 | 0.7330 | 0.7396 | 0.7242 | 0.7325 | 0.8912 | 0.9938 | 0.7590 | 0.8198 | 0.7240 | 0.7612 | 0.7705 | 0.7239 | 0.7862 | 0.8625 | 0.8900 | 0.7853 | 0.7371 | 0.7262 | 305 1 Examinee372 1.00 TEST0001 1 Examinee373 1.00 TEST0001 1 Examinee374 1.00 TEST0001 1 Examinee375 1.00 TEST0001 1 Examinee376 1.00 TEST0001 1 Examinee377 1.00 TEST0001 1 Examinee378 1.00 TEST0001 1 Examinee379 1.00 TEST0001 1 Examinee380 1.00 TEST0001 1 Examinee381 1.00 TEST0001 1 Examinee382 1.00 TEST0001 1 Examinee383 1.00 TEST0001 1 Examinee384 1.00 TEST0001 1 Examinee385 1.00 TEST0001 1 Examinee386 1.00 TEST0001 1 Examinee387 1.00 TEST0001 1 Examinee388 1.00 TEST0001 1 Examinee389 1.00 TEST0001 1 Examinee390 1.00 TEST0001 1 Examinee391 1.00 TEST0001 25 11 25 8 25 9 25 10 25 11 25 12 25 3 25 7 25 8 25 13 25 7 25 11 25 13 25 15 25 10 25 9 25 11 25 8 25 6 25 11 | 44.00 | | 32.00 | | 36.00 | | 40.00 | | 44.00 | | 48.00 | | 12.00 | | 28.00 | | 32.00 | | 52.00 | | 28.00 | | 44.00 | | 52.00 | | 60.00 | | 40.00 | | 36.00 | | 44.00 | | 32.00 | | 24.00 | | 44.00 | | -0.6770 | -0.8820 | -0.8209 | -1.1222 | 0.1973 | 0.4575 | -2.2392 | -1.3633 | -0.3282 | 0.6898 | -1.4489 | -0.0510 | 0.3623 | 1.4798 | -1.2008 | 0.0616 | -0.0162 | -0.8245 | -0.6780 | 0.3478 0.7249 | 0.7234 | 0.7234 | 0.7274 | 0.7716 | 0.7964 | 0.8482 | 0.7385 | 0.7364 | 0.8227 | 0.7443 | 0.7524 | 0.7868 | 0.9424 | 0.7302 | 0.7606 | 0.7548 | 0.7234 | 0.7249 | 0.7853 | 306 1 Examinee392 1.00 TEST0001 1 Examinee393 1.00 TEST0001 1 Examinee394 1.00 TEST0001 1 Examinee395 1.00 TEST0001 1 Examinee396 1.00 TEST0001 1 Examinee397 1.00 TEST0001 1 Examinee398 1.00 TEST0001 1 Examinee399 1.00 TEST0001 1 Examinee400 1.00 TEST0001 1 Examinee401 1.00 TEST0001 1 Examinee402 1.00 TEST0001 1 Examinee403 1.00 TEST0001 1 Examinee404 1.00 TEST0001 1 Examinee405 1.00 TEST0001 1 Examinee406 1.00 TEST0001 1 Examinee407 1.00 TEST0001 1 Examinee408 1.00 TEST0001 1 Examinee409 1.00 TEST0001 1 Examinee410 1.00 TEST0001 1 Examinee411 1.00 TEST0001 25 12 25 12 25 10 25 10 25 7 25 7 25 9 25 12 25 11 25 11 25 11 25 12 25 17 25 11 25 10 25 11 25 6 25 12 25 12 25 9 | 48.00 | | 48.00 | | 40.00 | | 40.00 | | 28.00 | | 28.00 | | 36.00 | | 48.00 | | 44.00 | | 44.00 | | 44.00 | | 48.00 | | 68.00 | | 44.00 | | 40.00 | | 44.00 | | 24.00 | | 48.00 | | 48.00 | | 36.00 | | 0.6302 | 0.3894 | -0.0354 | 0.5748 | -1.2150 | -1.0060 | -1.1932 | 0.1956 | -0.3555 | 0.0749 | 0.5078 | 1.4564 | 2.5140 | 0.3276 | -0.6886 | -0.3835 | -1.9343 | -0.0837 | -0.6994 | -1.5099 0.8155 | 0.7894 | 0.7535 | 0.8092 | 0.7308 | 0.7247 | 0.7299 | 0.7714 | 0.7351 | 0.7616 | 0.8017 | 0.9382 | 1.1680 | 0.7834 | 0.7247 | 0.7339 | 0.7970 | 0.7502 | 0.7246 | 0.7490 | 307 1 Examinee412 1.00 TEST0001 1 Examinee413 1.00 TEST0001 1 Examinee414 1.00 TEST0001 1 Examinee415 1.00 TEST0001 1 Examinee416 1.00 TEST0001 1 Examinee417 1.00 TEST0001 1 Examinee418 1.00 TEST0001 1 Examinee419 1.00 TEST0001 1 Examinee420 1.00 TEST0001 1 Examinee421 1.00 TEST0001 1 Examinee422 1.00 TEST0001 1 Examinee423 1.00 TEST0001 1 Examinee424 1.00 TEST0001 1 Examinee425 1.00 TEST0001 1 Examinee426 1.00 TEST0001 1 Examinee427 1.00 TEST0001 1 Examinee428 1.00 TEST0001 1 Examinee429 1.00 TEST0001 1 Examinee430 1.00 TEST0001 1 Examinee431 1.00 TEST0001 25 6 25 9 25 12 25 13 25 12 25 7 25 16 25 9 25 13 25 6 25 14 25 7 25 8 25 13 25 13 25 7 25 10 25 8 25 10 25 13 | 24.00 | | 36.00 | | 48.00 | | 52.00 | | 48.00 | | 28.00 | | 64.00 | | 36.00 | | 52.00 | | 24.00 | | 56.00 | | 28.00 | | 32.00 | | 52.00 | | 52.00 | | 28.00 | | 40.00 | | 32.00 | | 40.00 | | 52.00 | | -1.7485 | -0.0617 | 0.3285 | 1.1075 | -0.5876 | -1.1643 | 2.1126 | -0.1290 | 0.4680 | -1.3811 | 1.0052 | -1.9155 | -0.7290 | 0.1898 | 1.2164 | -2.6695 | 0.1466 | -0.1961 | -0.5271 | -0.2868 0.7727 | 0.7517 | 0.7835 | 0.8800 | 0.7269 | 0.7288 | 1.0721 | 0.7473 | 0.7975 | 0.7396 | 0.8648 | 0.7943 | 0.7242 | 0.7709 | 0.8972 | 0.9434 | 0.7673 | 0.7433 | 0.7286 | 0.7384 | 308 1 Examinee432 1.00 TEST0001 1 Examinee433 1.00 TEST0001 1 Examinee434 1.00 TEST0001 1 Examinee435 1.00 TEST0001 1 Examinee436 1.00 TEST0001 1 Examinee437 1.00 TEST0001 1 Examinee438 1.00 TEST0001 1 Examinee439 1.00 TEST0001 1 Examinee440 1.00 TEST0001 1 Examinee441 1.00 TEST0001 1 Examinee442 1.00 TEST0001 1 Examinee443 1.00 TEST0001 1 Examinee444 1.00 TEST0001 1 Examinee445 1.00 TEST0001 1 Examinee446 1.00 TEST0001 1 Examinee447 1.00 TEST0001 1 Examinee448 1.00 TEST0001 1 Examinee449 1.00 TEST0001 1 Examinee450 1.00 TEST0001 1 Examinee451 1.00 TEST0001 25 12 25 8 25 14 25 15 25 6 25 12 25 9 25 7 25 7 25 13 25 11 25 8 25 13 25 7 25 11 25 12 25 9 25 12 25 10 25 9 | 48.00 | | 32.00 | | 56.00 | | 60.00 | | 24.00 | | 48.00 | | 36.00 | | 28.00 | | 28.00 | | 52.00 | | 44.00 | | 32.00 | | 52.00 | | 28.00 | | 44.00 | | 48.00 | | 36.00 | | 48.00 | | 40.00 | | 36.00 | | -0.0775 | -0.7139 | 1.1774 | 1.5744 | -1.6042 | -0.1001 | 0.5189 | -1.3529 | -1.3815 | -0.2511 | 0.4682 | -0.7820 | 1.0793 | -0.2582 | 0.3691 | 0.7818 | 0.2264 | 0.6735 | 0.0288 | -0.5553 0.7506 | 0.7244 | 0.8909 | 0.9599 | 0.7574 | 0.7492 | 0.8029 | 0.7378 | 0.7396 | 0.7403 | 0.7975 | 0.7236 | 0.8757 | 0.7399 | 0.7874 | 0.8342 | 0.7741 | 0.8207 | 0.7581 | 0.7277 | 309 1 Examinee452 1.00 TEST0001 1 Examinee453 1.00 TEST0001 1 Examinee454 1.00 TEST0001 1 Examinee455 1.00 TEST0001 1 Examinee456 1.00 TEST0001 1 Examinee457 1.00 TEST0001 1 Examinee458 1.00 TEST0001 1 Examinee459 1.00 TEST0001 1 Examinee460 1.00 TEST0001 1 Examinee461 1.00 TEST0001 1 Examinee462 1.00 TEST0001 1 Examinee463 1.00 TEST0001 1 Examinee464 1.00 TEST0001 1 Examinee465 1.00 TEST0001 1 Examinee466 1.00 TEST0001 1 Examinee467 1.00 TEST0001 1 Examinee468 1.00 TEST0001 1 Examinee469 1.00 TEST0001 1 Examinee470 1.00 TEST0001 1 Examinee471 1.00 TEST0001 25 13 25 14 25 14 25 9 25 11 25 11 25 10 25 13 25 16 25 11 25 8 25 12 25 9 25 7 25 7 25 11 25 18 25 10 25 8 25 12 | 52.00 | | 56.00 | | 56.00 | | 36.00 | | 44.00 | | 44.00 | | 40.00 | | 52.00 | | 64.00 | | 44.00 | | 32.00 | | 48.00 | | 36.00 | | 28.00 | | 28.00 | | 44.00 | | 72.00 | | 40.00 | | 32.00 | | 48.00 | | -0.7026 | 1.4824 | 1.2894 | -0.3498 | -0.6435 | -0.3012 | 0.7815 | 0.6784 | 2.7180 | -0.6220 | -1.0372 | 0.0983 | -0.3811 | -0.6267 | -1.3039 | -0.3007 | 3.1004 | 0.1347 | -0.8379 | 0.5067 0.7245 | 0.9429 | 0.9092 | 0.7354 | 0.7256 | 0.7377 | 0.8341 | 0.8213 | 1.2199 | 0.7260 | 0.7252 | 0.7634 | 0.7340 | 0.7259 | 0.7351 | 0.7377 | 1.3218 | 0.7663 | 0.7234 | 0.8016 | 310 1 Examinee472 1.00 TEST0001 1 Examinee473 1.00 TEST0001 1 Examinee474 1.00 TEST0001 1 Examinee475 1.00 TEST0001 1 Examinee476 1.00 TEST0001 1 Examinee477 1.00 TEST0001 1 Examinee478 1.00 TEST0001 1 Examinee479 1.00 TEST0001 1 Examinee480 1.00 TEST0001 1 Examinee481 1.00 TEST0001 1 Examinee482 1.00 TEST0001 1 Examinee483 1.00 TEST0001 1 Examinee484 1.00 TEST0001 1 Examinee485 1.00 TEST0001 1 Examinee486 1.00 TEST0001 1 Examinee487 1.00 TEST0001 1 Examinee488 1.00 TEST0001 1 Examinee489 1.00 TEST0001 1 Examinee490 1.00 TEST0001 1 Examinee491 1.00 TEST0001 25 10 25 10 25 10 25 9 25 11 25 8 25 12 25 8 25 9 25 10 25 11 25 10 25 12 25 16 25 10 25 11 25 9 25 14 25 13 25 14 | 40.00 | | 40.00 | | 40.00 | | 36.00 | | 44.00 | | 32.00 | | 48.00 | | 32.00 | | 36.00 | | 40.00 | | 44.00 | | 40.00 | | 48.00 | | 64.00 | | 40.00 | | 44.00 | | 36.00 | | 56.00 | | 52.00 | | 56.00 | | 0.2588 | -0.0358 | 0.0132 | -0.7536 | 0.1010 | -0.3403 | 0.2150 | -0.5003 | 0.0268 | 0.2578 | -0.6851 | 0.2304 | 0.0491 | 1.9842 | -0.0695 | 0.2082 | 0.1277 | 0.5767 | 1.6101 | 1.1492 0.7770 | 0.7535 | 0.7570 | 0.7239 | 0.7636 | 0.7358 | 0.7731 | 0.7294 | 0.7580 | 0.7769 | 0.7248 | 0.7745 | 0.7596 | 1.0435 | 0.7512 | 0.7725 | 0.7658 | 0.8094 | 0.9667 | 0.8865 | 311 1 Examinee492 1.00 TEST0001 1 Examinee493 1.00 TEST0001 1 Examinee494 1.00 TEST0001 1 Examinee495 1.00 TEST0001 1 Examinee496 1.00 TEST0001 1 Examinee497 1.00 TEST0001 1 Examinee498 1.00 TEST0001 1 Examinee499 1.00 TEST0001 1 Examinee500 1.00 TEST0001 1 Examinee501 1.00 TEST0001 1 Examinee502 1.00 TEST0001 1 Examinee503 1.00 TEST0001 1 Examinee504 1.00 TEST0001 1 Examinee505 1.00 TEST0001 1 Examinee506 1.00 TEST0001 1 Examinee507 1.00 TEST0001 1 Examinee508 1.00 TEST0001 1 Examinee509 1.00 TEST0001 1 Examinee510 1.00 TEST0001 1 Examinee511 1.00 TEST0001 25 14 25 17 25 13 25 6 25 16 25 12 25 7 25 13 25 10 25 12 25 10 25 6 25 9 25 19 25 14 25 15 25 15 25 12 25 13 25 12 | 56.00 | | 68.00 | | 52.00 | | 24.00 | | 64.00 | | 48.00 | | 28.00 | | 52.00 | | 40.00 | | 48.00 | | 40.00 | | 24.00 | | 36.00 | | 76.00 | | 56.00 | | 60.00 | | 60.00 | | 48.00 | | 52.00 | | 48.00 | | 0.6555 | 1.9439 | 0.0018 | -1.2602 | 1.0227 | 0.5076 | -1.7800 | 0.7231 | -0.5105 | -0.0973 | 0.1888 | -1.1966 | 0.1256 | 3.6812 | 1.6144 | 1.5559 | 1.2729 | 0.3413 | 0.5782 | 0.1205 0.8185 | 1.0348 | 0.7561 | 0.7328 | 0.8673 | 0.8017 | 0.7765 | 0.8268 | 0.7291 | 0.7493 | 0.7709 | 0.7300 | 0.7656 | 1.4828 | 0.9675 | 0.9565 | 0.9064 | 0.7847 | 0.8096 | 0.7652 | 312 1 Examinee512 1.00 TEST0001 1 Examinee513 1.00 TEST0001 1 Examinee514 1.00 TEST0001 1 Examinee515 1.00 TEST0001 1 Examinee516 1.00 TEST0001 1 Examinee517 1.00 TEST0001 1 Examinee518 1.00 TEST0001 1 Examinee519 1.00 TEST0001 1 Examinee520 1.00 TEST0001 1 Examinee521 1.00 TEST0001 1 Examinee522 1.00 TEST0001 1 Examinee523 1.00 TEST0001 1 Examinee524 1.00 TEST0001 1 Examinee525 1.00 TEST0001 1 Examinee526 1.00 TEST0001 1 Examinee527 1.00 TEST0001 1 Examinee528 1.00 TEST0001 1 Examinee529 1.00 TEST0001 1 Examinee530 1.00 TEST0001 1 Examinee531 1.00 TEST0001 25 12 25 12 25 12 25 12 25 6 25 14 25 13 25 10 25 10 25 11 25 8 25 13 25 13 25 17 25 9 25 8 25 10 25 8 25 9 25 5 | 48.00 | | 48.00 | | 48.00 | | 48.00 | | 24.00 | | 56.00 | | 52.00 | | 40.00 | | 40.00 | | 44.00 | | 32.00 | | 52.00 | | 52.00 | | 68.00 | | 36.00 | | 32.00 | | 40.00 | | 32.00 | | 36.00 | | 20.00 | | 1.1811 | -0.0645 | 0.9849 | 0.7743 | -0.8998 | 1.3749 | -0.0446 | 0.7466 | -0.2663 | 0.2900 | -0.7794 | 0.4286 | 1.1434 | 2.7367 | -0.7171 | -0.4916 | -0.4517 | -0.7000 | -0.4158 | -2.2095 0.8915 | 0.7515 | 0.8618 | 0.8332 | 0.7235 | 0.9238 | 0.7529 | 0.8297 | 0.7395 | 0.7799 | 0.7237 | 0.7934 | 0.8856 | 1.2248 | 0.7243 | 0.7297 | 0.7311 | 0.7246 | 0.7325 | 0.8426 | 313 1 Examinee532 1.00 TEST0001 1 Examinee533 1.00 TEST0001 1 Examinee534 1.00 TEST0001 1 Examinee535 1.00 TEST0001 1 Examinee536 1.00 TEST0001 1 Examinee537 1.00 TEST0001 1 Examinee538 1.00 TEST0001 1 Examinee539 1.00 TEST0001 1 Examinee540 1.00 TEST0001 1 Examinee541 1.00 TEST0001 1 Examinee542 1.00 TEST0001 1 Examinee543 1.00 TEST0001 1 Examinee544 1.00 TEST0001 1 Examinee545 1.00 TEST0001 1 Examinee546 1.00 TEST0001 1 Examinee547 1.00 TEST0001 1 Examinee548 1.00 TEST0001 1 Examinee549 1.00 TEST0001 1 Examinee550 1.00 TEST0001 1 Examinee551 1.00 TEST0001 25 11 25 11 25 9 25 12 25 9 25 12 25 8 25 13 25 7 25 15 25 16 25 9 25 10 25 10 25 13 25 7 25 5 25 10 25 4 25 4 | 44.00 | | 44.00 | | 36.00 | | 48.00 | | 36.00 | | 48.00 | | 32.00 | | 52.00 | | 28.00 | | 60.00 | | 64.00 | | 36.00 | | 40.00 | | 40.00 | | 52.00 | | 28.00 | | 20.00 | | 40.00 | | 16.00 | | 16.00 | | -0.0310 | 1.0579 | -0.5624 | 0.6236 | -0.4125 | 1.7356 | -0.9099 | 0.9162 | -1.4614 | 2.8972 | 3.0336 | -0.7161 | -0.6319 | 0.0981 | 1.0480 | -2.2058 | -2.8293 | -0.2260 | -2.9880 | -3.8413 0.7538 | 0.8725 | 0.7275 | 0.8148 | 0.7327 | 0.9913 | 0.7236 | 0.8521 | 0.7452 | 1.2671 | 1.3037 | 0.7243 | 0.7258 | 0.7634 | 0.8711 | 0.8419 | 0.9853 | 0.7416 | 1.0303 | 1.3235 | 314 1 Examinee552 1.00 TEST0001 1 Examinee553 1.00 TEST0001 1 Examinee554 1.00 TEST0001 1 Examinee555 1.00 TEST0001 1 Examinee556 1.00 TEST0001 1 Examinee557 1.00 TEST0001 1 Examinee558 1.00 TEST0001 1 Examinee559 1.00 TEST0001 1 Examinee560 1.00 TEST0001 1 Examinee561 1.00 TEST0001 1 Examinee562 1.00 TEST0001 1 Examinee563 1.00 TEST0001 1 Examinee564 1.00 TEST0001 1 Examinee565 1.00 TEST0001 1 Examinee566 1.00 TEST0001 1 Examinee567 1.00 TEST0001 1 Examinee568 1.00 TEST0001 1 Examinee569 1.00 TEST0001 1 Examinee570 1.00 TEST0001 1 Examinee571 1.00 TEST0001 25 6 25 6 25 5 25 7 25 7 25 2 25 3 25 6 25 2 25 5 25 8 25 7 25 8 25 9 25 8 25 9 25 3 25 4 25 7 25 5 | 24.00 | | 24.00 | | 20.00 | | 28.00 | | 28.00 | | 8.00 | | 12.00 | | 24.00 | | 8.00 | | 20.00 | | 32.00 | | 28.00 | | 32.00 | | 36.00 | | 32.00 | | 36.00 | | 12.00 | | 16.00 | | 28.00 | | 20.00 | | -2.4225 0.8855 | | -2.2577 0.8517 | | -2.6303 0.9337 | | -3.0049 1.0352 | | -1.6672 0.7637 | | -3.9785 1.3782 | | -3.8758 1.3370 | | -2.6670 0.9428 | | -4.0000 999.0000 | | -3.5564 1.2164 | | -1.7400 0.7717 | | -1.2491 0.7323 | | -2.1046 0.8239 | | -0.9775 0.7242 | | -1.8741 0.7886 | | -2.2119 0.8430 | | -2.9499 1.0192 | | -2.4395 0.8892 | | -2.3207 0.8642 | | -2.7762 0.9711 | 315 1 Examinee572 1.00 TEST0001 1 Examinee573 1.00 TEST0001 1 Examinee574 1.00 TEST0001 1 Examinee575 1.00 TEST0001 1 Examinee576 1.00 TEST0001 1 Examinee577 1.00 TEST0001 1 Examinee578 1.00 TEST0001 1 Examinee579 1.00 TEST0001 1 Examinee580 1.00 TEST0001 1 Examinee581 1.00 TEST0001 1 Examinee582 1.00 TEST0001 1 Examinee583 1.00 TEST0001 1 Examinee584 1.00 TEST0001 1 Examinee585 1.00 TEST0001 1 Examinee586 1.00 TEST0001 1 Examinee587 1.00 TEST0001 1 Examinee588 1.00 TEST0001 1 Examinee589 1.00 TEST0001 1 Examinee590 1.00 TEST0001 1 Examinee591 1.00 TEST0001 25 3 25 6 25 4 25 8 25 2 25 3 25 10 25 1 25 10 25 8 25 12 25 8 25 10 25 14 25 9 25 12 25 12 25 14 25 8 25 13 | | 12.00 | -4.0000 999.0000 | | | 24.00 | -3.0282 1.0421 | | | 16.00 | -2.9176 1.0099 | | | 32.00 | -1.7232 0.7698 | | | 8.00 | -4.0000 999.0000 | | | 12.00 | -3.5921 1.2293 | | | 40.00 | -1.2938 0.7345 | | | 4.00 | -4.0000 999.0000 | | | 40.00 | 0.4647 0.7971 | | | 32.00 | 0.0153 0.7571 | | | 48.00 | 0.4129 0.7918 | | | 32.00 | -0.8320 0.7234 | | | 40.00 | 0.2092 0.7726 | | | 56.00 | 0.5850 0.8103 | | | 36.00 | -0.7056 0.7245 | | | 48.00 | 0.7506 0.8302 | | | 48.00 | 0.3695 0.7875 | | | 56.00 | 1.7928 1.0029 | | | 32.00 | -0.9692 0.7241 | | | 52.00 | 0.4963 0.8005 | 316 1 Examinee592 1.00 TEST0001 1 Examinee593 1.00 TEST0001 1 Examinee594 1.00 TEST0001 1 Examinee595 1.00 TEST0001 1 Examinee596 1.00 TEST0001 1 Examinee597 1.00 TEST0001 1 Examinee598 1.00 TEST0001 1 Examinee599 1.00 TEST0001 1 Examinee600 1.00 TEST0001 1 Examinee601 1.00 TEST0001 1 Examinee602 1.00 TEST0001 1 Examinee603 1.00 TEST0001 1 Examinee604 1.00 TEST0001 1 Examinee605 1.00 TEST0001 1 Examinee606 1.00 TEST0001 1 Examinee607 1.00 TEST0001 1 Examinee608 1.00 TEST0001 1 Examinee609 1.00 TEST0001 1 Examinee610 1.00 TEST0001 1 Examinee611 1.00 TEST0001 25 7 25 15 25 12 25 12 25 8 25 14 25 7 25 8 25 11 25 9 25 12 25 9 25 12 25 8 25 7 25 10 25 6 25 13 25 9 25 13 | 28.00 | | 60.00 | | 48.00 | | 48.00 | | 32.00 | | 56.00 | | 28.00 | | 32.00 | | 44.00 | | 36.00 | | 48.00 | | 36.00 | | 48.00 | | 32.00 | | 28.00 | | 40.00 | | 24.00 | | 52.00 | | 36.00 | | 52.00 | | -0.9429 | 0.8084 | -0.1917 | -0.1394 | -1.4313 | 1.3773 | -1.5387 | -0.8045 | 0.7621 | -1.0728 | -0.3907 | -1.1211 | 0.3508 | -1.6562 | -1.3523 | -0.1650 | -1.1743 | 1.2481 | -0.3082 | -0.3713 0.7238 | 0.8376 | 0.7436 | 0.7467 | 0.7430 | 0.9242 | 0.7514 | 0.7235 | 0.8317 | 0.7261 | 0.7336 | 0.7274 | 0.7856 | 0.7626 | 0.7378 | 0.7451 | 0.7292 | 0.9023 | 0.7373 | 0.7344 | 317 1 Examinee612 1.00 TEST0001 1 Examinee613 1.00 TEST0001 1 Examinee614 1.00 TEST0001 1 Examinee615 1.00 TEST0001 1 Examinee616 1.00 TEST0001 1 Examinee617 1.00 TEST0001 1 Examinee618 1.00 TEST0001 1 Examinee619 1.00 TEST0001 1 Examinee620 1.00 TEST0001 1 Examinee621 1.00 TEST0001 1 Examinee622 1.00 TEST0001 1 Examinee623 1.00 TEST0001 1 Examinee624 1.00 TEST0001 1 Examinee625 1.00 TEST0001 1 Examinee626 1.00 TEST0001 1 Examinee627 1.00 TEST0001 1 Examinee628 1.00 TEST0001 1 Examinee629 1.00 TEST0001 1 Examinee630 1.00 TEST0001 1 Examinee631 1.00 TEST0001 25 2 25 13 25 11 25 12 25 8 25 13 25 15 25 10 25 8 25 8 25 10 25 9 25 14 25 11 25 11 25 16 25 10 25 6 25 9 25 14 | | 8.00 | -3.1172 | | 52.00 | 1.1633 | | 44.00 | 0.1380 | | 48.00 | 0.7531 | | 32.00 | -1.2515 | | 52.00 | 0.3954 | | 60.00 | 1.9523 | | 40.00 | 0.0625 | | 32.00 | -1.1930 | | 32.00 | -0.9511 | | 40.00 | 0.5528 | | 36.00 | -1.1961 | | 56.00 | 1.9160 | | 44.00 | 0.5728 | | 44.00 | 0.1694 | | 64.00 | 2.0427 | | 40.00 | -0.0199 | | 24.00 | -1.2906 | | 36.00 | -0.3973 | | 56.00 | 1.5390 1.0691 | 0.8887 | 0.7666 | 0.8305 | 0.7324 | 0.7900 | 1.0366 | 0.7606 | 0.7299 | 0.7239 | 0.8067 | 0.7300 | 1.0288 | 0.8089 | 0.7692 | 1.0564 | 0.7546 | 0.7344 | 0.7333 | 0.9533 | 318 1 Examinee632 1.00 TEST0001 1 Examinee633 1.00 TEST0001 1 Examinee634 1.00 TEST0001 1 Examinee635 1.00 TEST0001 1 Examinee636 1.00 TEST0001 1 Examinee637 1.00 TEST0001 1 Examinee638 1.00 TEST0001 1 Examinee639 1.00 TEST0001 1 Examinee640 1.00 TEST0001 1 Examinee641 1.00 TEST0001 1 Examinee642 1.00 TEST0001 1 Examinee643 1.00 TEST0001 1 Examinee644 1.00 TEST0001 1 Examinee645 1.00 TEST0001 1 Examinee646 1.00 TEST0001 1 Examinee647 1.00 TEST0001 1 Examinee648 1.00 TEST0001 1 Examinee649 1.00 TEST0001 1 Examinee650 1.00 TEST0001 1 Examinee651 1.00 TEST0001 25 11 25 15 25 8 25 12 25 12 25 13 25 18 25 10 25 11 25 12 25 9 25 6 25 15 25 8 25 6 25 7 25 8 25 13 25 9 25 15 | 44.00 | | 60.00 | | 32.00 | | 48.00 | | 48.00 | | 52.00 | | 72.00 | | 40.00 | | 44.00 | | 48.00 | | 36.00 | | 24.00 | | 60.00 | | 32.00 | | 24.00 | | 28.00 | | 32.00 | | 52.00 | | 36.00 | | 60.00 | | -0.2352 | 2.1714 | -1.3901 | 0.4843 | 0.4669 | 0.7037 | 4.0000 | 0.0221 | -0.4909 | 0.6264 | -0.5322 | -1.1780 | 0.0539 | -0.8710 | -1.5848 | -1.0474 | -0.7792 | 0.7717 | -0.4365 | 1.6466 0.7411 | 1.0855 | 0.7402 | 0.7992 | 0.7974 | 0.8244 | 999.0000 | 0.7576 | 0.7297 | 0.8151 | 0.7284 | 0.7293 | 0.7600 | 0.7234 | 0.7556 | 0.7255 | 0.7237 | 0.8329 | 0.7317 | 0.9738 | 319 1 Examinee652 1.00 TEST0001 1 Examinee653 1.00 TEST0001 1 Examinee654 1.00 TEST0001 1 Examinee655 1.00 TEST0001 1 Examinee656 1.00 TEST0001 1 Examinee657 1.00 TEST0001 1 Examinee658 1.00 TEST0001 1 Examinee659 1.00 TEST0001 1 Examinee660 1.00 TEST0001 1 Examinee661 1.00 TEST0001 1 Examinee662 1.00 TEST0001 1 Examinee663 1.00 TEST0001 1 Examinee664 1.00 TEST0001 1 Examinee665 1.00 TEST0001 1 Examinee666 1.00 TEST0001 1 Examinee667 1.00 TEST0001 1 Examinee668 1.00 TEST0001 1 Examinee669 1.00 TEST0001 1 Examinee670 1.00 TEST0001 1 Examinee671 1.00 TEST0001 25 8 25 17 25 19 25 6 25 8 25 10 25 13 25 6 25 14 25 8 25 9 25 8 25 12 25 6 25 10 25 9 25 12 25 9 25 13 25 17 | 32.00 | | 68.00 | | 76.00 | | 24.00 | | 32.00 | | 40.00 | | 52.00 | | 24.00 | | 56.00 | | 32.00 | | 36.00 | | 32.00 | | 48.00 | | 24.00 | | 40.00 | | 36.00 | | 48.00 | | 36.00 | | 52.00 | | 68.00 | | -0.0778 | 3.5894 | 4.0000 | -1.0241 | -1.2359 | 0.5148 | 1.0968 | -1.8585 | 1.7186 | -0.6300 | -0.5124 | -0.1584 | -0.1604 | -1.6714 | -0.0242 | -0.4402 | 0.1124 | -0.2317 | 1.1533 | 2.1664 0.7506 | 1.4571 | 999.0000 | 0.7250 | 0.7317 | 0.8025 | 0.8784 | 0.7865 | 0.9879 | 0.7259 | 0.7290 | 0.7455 | 0.7454 | 0.7642 | 0.7543 | 0.7316 | 0.7645 | 0.7413 | 0.8871 | 1.0844 | 320 1 Examinee672 1.00 TEST0001 1 Examinee673 1.00 TEST0001 1 Examinee674 1.00 TEST0001 1 Examinee675 1.00 TEST0001 1 Examinee676 1.00 TEST0001 1 Examinee677 1.00 TEST0001 1 Examinee678 1.00 TEST0001 1 Examinee679 1.00 TEST0001 1 Examinee680 1.00 TEST0001 1 Examinee681 1.00 TEST0001 1 Examinee682 1.00 TEST0001 1 Examinee683 1.00 TEST0001 1 Examinee684 1.00 TEST0001 1 Examinee685 1.00 TEST0001 1 Examinee686 1.00 TEST0001 1 Examinee687 1.00 TEST0001 1 Examinee688 1.00 TEST0001 1 Examinee689 1.00 TEST0001 1 Examinee690 1.00 TEST0001 1 Examinee691 1.00 TEST0001 25 13 25 16 25 11 25 10 25 15 25 12 25 13 25 10 25 15 25 6 25 14 25 10 25 14 25 13 25 5 25 9 25 16 25 8 25 16 25 13 | 52.00 | | 64.00 | | 44.00 | | 40.00 | | 60.00 | | 48.00 | | 52.00 | | 40.00 | | 60.00 | | 24.00 | | 56.00 | | 40.00 | | 56.00 | | 52.00 | | 20.00 | | 36.00 | | 64.00 | | 32.00 | | 64.00 | | 52.00 | | 1.4975 | 1.4668 | -0.2582 | 0.2959 | 1.7752 | -0.3631 | 0.5807 | -0.5801 | 1.4493 | -2.3415 | 1.6295 | 0.1079 | 1.3900 | 1.6668 | -1.7525 | -0.2334 | 1.7807 | -0.6546 | 2.2823 | 1.1749 0.9456 | 0.9401 | 0.7399 | 0.7804 | 0.9994 | 0.7348 | 0.8098 | 0.7270 | 0.9369 | 0.8684 | 0.9705 | 0.7642 | 0.9264 | 0.9777 | 0.7732 | 0.7412 | 1.0005 | 0.7253 | 1.1115 | 0.8905 | 321 1 Examinee692 1.00 TEST0001 1 Examinee693 1.00 TEST0001 1 Examinee694 1.00 TEST0001 1 Examinee695 1.00 TEST0001 1 Examinee696 1.00 TEST0001 1 Examinee697 1.00 TEST0001 1 Examinee698 1.00 TEST0001 1 Examinee699 1.00 TEST0001 1 Examinee700 1.00 TEST0001 1 Examinee701 1.00 TEST0001 1 Examinee702 1.00 TEST0001 1 Examinee703 1.00 TEST0001 1 Examinee704 1.00 TEST0001 1 Examinee705 1.00 TEST0001 1 Examinee706 1.00 TEST0001 1 Examinee707 1.00 TEST0001 1 Examinee708 1.00 TEST0001 1 Examinee709 1.00 TEST0001 1 Examinee710 1.00 TEST0001 1 Examinee711 1.00 TEST0001 25 8 25 11 25 10 25 14 25 8 25 9 25 11 25 7 25 7 25 13 25 10 25 7 25 10 25 8 25 11 25 11 25 15 25 13 25 14 25 13 | 32.00 | | 44.00 | | 40.00 | | 56.00 | | 32.00 | | 36.00 | | 44.00 | | 28.00 | | 28.00 | | 52.00 | | 40.00 | | 28.00 | | 40.00 | | 32.00 | | 44.00 | | 44.00 | | 60.00 | | 52.00 | | 56.00 | | 52.00 | | -0.9418 | -0.2668 | 0.3899 | 2.5505 | -0.4397 | -1.1243 | 0.1933 | -1.0558 | -1.5791 | 0.9976 | -0.4563 | -0.8582 | -1.6301 | -0.2378 | -0.4591 | -0.3578 | 2.2477 | 1.9177 | 0.8618 | 1.6240 0.7238 | 0.7394 | 0.7895 | 1.1771 | 0.7316 | 0.7275 | 0.7712 | 0.7257 | 0.7550 | 0.8637 | 0.7310 | 0.7234 | 0.7599 | 0.7410 | 0.7309 | 0.7350 | 1.1033 | 1.0291 | 0.8447 | 0.9694 | 322 1 Examinee712 1.00 TEST0001 1 Examinee713 1.00 TEST0001 1 Examinee714 1.00 TEST0001 1 Examinee715 1.00 TEST0001 1 Examinee716 1.00 TEST0001 1 Examinee717 1.00 TEST0001 1 Examinee718 1.00 TEST0001 1 Examinee719 1.00 TEST0001 1 Examinee720 1.00 TEST0001 1 Examinee721 1.00 TEST0001 1 Examinee722 1.00 TEST0001 1 Examinee723 1.00 TEST0001 1 Examinee724 1.00 TEST0001 1 Examinee725 1.00 TEST0001 1 Examinee726 1.00 TEST0001 1 Examinee727 1.00 TEST0001 1 Examinee728 1.00 TEST0001 1 Examinee729 1.00 TEST0001 1 Examinee730 1.00 TEST0001 1 Examinee731 1.00 TEST0001 25 10 25 14 25 9 25 11 25 10 25 10 25 13 25 11 25 11 25 17 25 9 25 11 25 13 25 5 25 12 25 10 25 11 25 11 25 7 25 13 | 40.00 | | 56.00 | | 36.00 | | 44.00 | | 40.00 | | 40.00 | | 52.00 | | 44.00 | | 44.00 | | 68.00 | | 36.00 | | 44.00 | | 52.00 | | 20.00 | | 48.00 | | 40.00 | | 44.00 | | 44.00 | | 28.00 | | 52.00 | | -0.2022 | 0.8670 | -0.1908 | 0.2167 | -0.6660 | -0.6822 | 0.7458 | -0.8724 | -0.3430 | 2.7316 | -0.7964 | -0.1443 | 0.0743 | -1.6835 | 1.0282 | -0.2661 | 0.4109 | 1.0023 | -1.0186 | 1.9608 0.7430 | 0.8454 | 0.7436 | 0.7733 | 0.7251 | 0.7248 | 0.8296 | 0.7234 | 0.7357 | 1.2235 | 0.7235 | 0.7464 | 0.7615 | 0.7654 | 0.8681 | 0.7395 | 0.7916 | 0.8643 | 0.7249 | 1.0384 | 323 1 Examinee732 1.00 TEST0001 1 Examinee733 1.00 TEST0001 1 Examinee734 1.00 TEST0001 1 Examinee735 1.00 TEST0001 1 Examinee736 1.00 TEST0001 1 Examinee737 1.00 TEST0001 1 Examinee738 1.00 TEST0001 1 Examinee739 1.00 TEST0001 1 Examinee740 1.00 TEST0001 1 Examinee741 1.00 TEST0001 1 Examinee742 1.00 TEST0001 1 Examinee743 1.00 TEST0001 1 Examinee744 1.00 TEST0001 1 Examinee745 1.00 TEST0001 1 Examinee746 1.00 TEST0001 1 Examinee747 1.00 TEST0001 1 Examinee748 1.00 TEST0001 1 Examinee749 1.00 TEST0001 1 Examinee750 1.00 TEST0001 1 Examinee751 1.00 TEST0001 25 14 25 12 25 12 25 12 25 9 25 13 25 7 25 13 25 9 25 11 25 8 25 12 25 14 25 14 25 11 25 11 25 10 25 9 25 12 25 4 | 56.00 | | 48.00 | | 48.00 | | 48.00 | | 36.00 | | 52.00 | | 28.00 | | 52.00 | | 36.00 | | 44.00 | | 32.00 | | 48.00 | | 56.00 | | 56.00 | | 44.00 | | 44.00 | | 40.00 | | 36.00 | | 48.00 | | 16.00 | | 1.0197 | 0.7845 | 0.1065 | 1.2164 | -0.4878 | 1.8328 | -1.6160 | 0.9918 | 0.0862 | -0.3351 | -0.9384 | 1.0118 | 0.4767 | 1.7039 | 0.1764 | 0.0393 | -1.4741 | -0.2008 | 0.5249 | -3.0961 0.8669 | 0.8345 | 0.7641 | 0.8972 | 0.7298 | 1.0112 | 0.7585 | 0.8628 | 0.7625 | 0.7361 | 0.7238 | 0.8657 | 0.7984 | 0.9850 | 0.7698 | 0.7589 | 0.7462 | 0.7430 | 0.8036 | 1.0626 | 324 1 Examinee752 1.00 TEST0001 1 Examinee753 1.00 TEST0001 1 Examinee754 1.00 TEST0001 1 Examinee755 1.00 TEST0001 1 Examinee756 1.00 TEST0001 1 Examinee757 1.00 TEST0001 1 Examinee758 1.00 TEST0001 1 Examinee759 1.00 TEST0001 1 Examinee760 1.00 TEST0001 1 Examinee761 1.00 TEST0001 1 Examinee762 1.00 TEST0001 1 Examinee763 1.00 TEST0001 1 Examinee764 1.00 TEST0001 1 Examinee765 1.00 TEST0001 1 Examinee766 1.00 TEST0001 1 Examinee767 1.00 TEST0001 1 Examinee768 1.00 TEST0001 1 Examinee769 1.00 TEST0001 1 Examinee770 1.00 TEST0001 1 Examinee771 1.00 TEST0001 25 12 25 5 25 11 25 9 25 13 25 5 25 13 25 11 25 4 25 13 25 9 25 10 25 8 25 8 25 11 25 10 25 6 25 10 25 19 25 14 | 48.00 | | 20.00 | | 44.00 | | 36.00 | | 52.00 | | 20.00 | | 52.00 | | 44.00 | | 16.00 | | 52.00 | | 36.00 | | 40.00 | | 32.00 | | 32.00 | | 44.00 | | 40.00 | | 24.00 | | 40.00 | | 76.00 | | 56.00 | | 0.4456 | -1.6749 | -0.1024 | -1.3522 | 0.4311 | -1.1259 | 1.0660 | 0.6967 | -2.4664 | 1.0439 | -0.6589 | -0.2632 | -0.3239 | -1.3722 | -0.0668 | -0.2104 | -0.7543 | -0.2376 | 4.0000 | 1.6136 0.7951 | 0.7645 | 0.7490 | 0.7378 | 0.7936 | 0.7275 | 0.8737 | 0.8235 | 0.8952 | 0.8704 | 0.7253 | 0.7396 | 0.7366 | 0.7390 | 0.7514 | 0.7425 | 0.7239 | 0.7410 | 999.0000 | 0.9674 | 325 1 Examinee772 1.00 TEST0001 1 Examinee773 1.00 TEST0001 1 Examinee774 1.00 TEST0001 1 Examinee775 1.00 TEST0001 1 Examinee776 1.00 TEST0001 1 Examinee777 1.00 TEST0001 1 Examinee778 1.00 TEST0001 1 Examinee779 1.00 TEST0001 1 Examinee780 1.00 TEST0001 1 Examinee781 1.00 TEST0001 1 Examinee782 1.00 TEST0001 1 Examinee783 1.00 TEST0001 1 Examinee784 1.00 TEST0001 1 Examinee785 1.00 TEST0001 1 Examinee786 1.00 TEST0001 1 Examinee787 1.00 TEST0001 1 Examinee788 1.00 TEST0001 1 Examinee789 1.00 TEST0001 1 Examinee790 1.00 TEST0001 1 Examinee791 1.00 TEST0001 25 19 25 13 25 11 25 11 25 12 25 15 25 11 25 14 25 14 25 5 25 10 25 15 25 9 25 4 25 7 25 10 25 14 25 16 25 12 25 14 | 76.00 | | 52.00 | | 44.00 | | 44.00 | | 48.00 | | 60.00 | | 44.00 | | 56.00 | | 56.00 | | 20.00 | | 40.00 | | 60.00 | | 36.00 | | 16.00 | | 28.00 | | 40.00 | | 56.00 | | 64.00 | | 48.00 | | 56.00 | | 4.0000 | 0.3329 | 0.6836 | -0.4636 | 0.0354 | 1.8732 | -0.3909 | 0.8272 | 0.1731 | -2.7002 | 0.0827 | 2.2407 | -0.6876 | -2.5127 | -1.1507 | -0.1843 | 1.2227 | 3.3731 | 0.2257 | 0.3031 999.0000 | 0.7839 | 0.8219 | 0.7307 | 0.7586 | 1.0197 | 0.7336 | 0.8401 | 0.7695 | 0.9512 | 0.7622 | 1.1017 | 0.7248 | 0.9057 | 0.7283 | 0.7440 | 0.8982 | 1.3969 | 0.7741 | 0.7811 | 326 1 Examinee792 1.00 TEST0001 1 Examinee793 1.00 TEST0001 1 Examinee794 1.00 TEST0001 1 Examinee795 1.00 TEST0001 1 Examinee796 1.00 TEST0001 1 Examinee797 1.00 TEST0001 1 Examinee798 1.00 TEST0001 1 Examinee799 1.00 TEST0001 1 Examinee800 1.00 TEST0001 1 Examinee801 1.00 TEST0001 1 Examinee802 1.00 TEST0001 1 Examinee803 1.00 TEST0001 1 Examinee804 1.00 TEST0001 1 Examinee805 1.00 TEST0001 1 Examinee806 1.00 TEST0001 1 Examinee807 1.00 TEST0001 1 Examinee808 1.00 TEST0001 1 Examinee809 1.00 TEST0001 1 Examinee810 1.00 TEST0001 1 Examinee811 1.00 TEST0001 25 9 25 7 25 12 25 9 25 9 25 12 25 9 25 10 25 14 25 12 25 16 25 14 25 14 25 17 25 17 25 17 25 5 25 14 25 14 25 19 | 36.00 | | 28.00 | | 48.00 | | 36.00 | | 36.00 | | 48.00 | | 36.00 | | 40.00 | | 56.00 | | 48.00 | | 64.00 | | 56.00 | | 56.00 | | 68.00 | | 68.00 | | 68.00 | | 20.00 | | 56.00 | | 56.00 | | 76.00 | | 0.0012 | -0.9904 | -0.6108 | -0.4376 | -0.8084 | 1.0132 | 0.1212 | -0.0642 | 2.0422 | -0.2314 | 2.4846 | 0.9907 | -0.0081 | 0.7905 | 2.6100 | 3.2354 | -2.4783 | 1.8859 | 1.7998 | 4.0000 0.7561 | 0.7244 | 0.7263 | 0.7317 | 0.7235 | 0.8659 | 0.7652 | 0.7515 | 1.0563 | 0.7413 | 1.1606 | 0.8627 | 0.7554 | 0.8353 | 1.1922 | 1.3588 | 0.8978 | 1.0224 | 1.0044 | 999.0000 | 327 1 Examinee812 1.00 TEST0001 1 Examinee813 1.00 TEST0001 1 Examinee814 1.00 TEST0001 1 Examinee815 1.00 TEST0001 1 Examinee816 1.00 TEST0001 1 Examinee817 1.00 TEST0001 1 Examinee818 1.00 TEST0001 1 Examinee819 1.00 TEST0001 1 Examinee820 1.00 TEST0001 1 Examinee821 1.00 TEST0001 1 Examinee822 1.00 TEST0001 1 Examinee823 1.00 TEST0001 1 Examinee824 1.00 TEST0001 1 Examinee825 1.00 TEST0001 1 Examinee826 1.00 TEST0001 1 Examinee827 1.00 TEST0001 1 Examinee828 1.00 TEST0001 1 Examinee829 1.00 TEST0001 1 Examinee830 1.00 TEST0001 1 Examinee831 1.00 TEST0001 25 3 25 15 25 14 25 8 25 9 25 2 25 7 25 3 25 3 25 5 25 9 25 7 25 8 25 6 25 6 25 4 25 6 25 5 25 6 25 5 | | 12.00 | -3.0242 | | 60.00 | 1.2853 | | 56.00 | 1.2815 | | 32.00 | -1.9720 | | 36.00 | -1.9289 | | 8.00 | -3.8327 | | 28.00 | -1.6143 | | 12.00 | -3.7929 | | 12.00 | -3.3656 | | 20.00 | -2.8368 | | 36.00 | -1.2270 | | 28.00 | -2.5899 | | 32.00 | -1.8395 | | 24.00 | -2.3315 | | 24.00 | -2.4184 | | 16.00 | -2.9884 | | 24.00 | -2.8242 | | 20.00 | -2.5842 | | 24.00 | -2.0362 | | 20.00 | -3.1552 1.0409 | 0.9085 | 0.9079 | 0.8026 | 0.7963 | 1.3201 | 0.7584 | 1.3047 | 1.1497 | 0.9874 | 0.7313 | 0.9238 | 0.7840 | 0.8664 | 0.8846 | 1.0304 | 0.9839 | 0.9225 | 0.8126 | 1.0810 | 328 1 Examinee832 1.00 TEST0001 1 Examinee833 1.00 TEST0001 1 Examinee834 1.00 TEST0001 1 Examinee835 1.00 TEST0001 1 Examinee836 1.00 TEST0001 1 Examinee837 1.00 TEST0001 1 Examinee838 1.00 TEST0001 1 Examinee839 1.00 TEST0001 1 Examinee840 1.00 TEST0001 1 Examinee841 1.00 TEST0001 1 Examinee842 1.00 TEST0001 1 Examinee843 1.00 TEST0001 1 Examinee844 1.00 TEST0001 1 Examinee845 1.00 TEST0001 1 Examinee846 1.00 TEST0001 1 Examinee847 1.00 TEST0001 1 Examinee848 1.00 TEST0001 1 Examinee849 1.00 TEST0001 1 Examinee850 1.00 TEST0001 1 Examinee851 1.00 TEST0001 25 3 25 7 25 5 25 8 25 10 25 11 25 5 25 4 25 8 25 5 25 5 25 9 25 17 25 17 25 15 25 13 25 12 25 8 25 14 25 10 | 12.00 | | 28.00 | | 20.00 | | 32.00 | | 40.00 | | 44.00 | | 20.00 | | 16.00 | | 32.00 | | 20.00 | | 20.00 | | 36.00 | | 68.00 | | 68.00 | | 60.00 | | 52.00 | | 48.00 | | 32.00 | | 56.00 | | 40.00 | | -4.0000 999.0000 | | -2.5480 0.9139 | | -2.7016 0.9516 | | -1.6893 0.7661 | | -1.4330 0.7431 | | -1.0204 0.7249 | | -2.3037 0.8607 | | -2.8036 0.9784 | | -1.2424 0.7320 | | -2.4496 0.8914 | | -2.0181 0.8097 | | -0.6674 0.7251 | | 1.5087 0.9477 | | 1.9996 1.0469 | | 3.1387 1.3323 | | 0.2047 0.7722 | | 0.5350 0.8047 | | -1.8533 0.7858 | | 0.9817 0.8614 | | -0.3003 0.7377 | 329 1 Examinee852 1.00 TEST0001 1 Examinee853 1.00 TEST0001 1 Examinee854 1.00 TEST0001 1 Examinee855 1.00 TEST0001 1 Examinee856 1.00 TEST0001 1 Examinee857 1.00 TEST0001 1 Examinee858 1.00 TEST0001 1 Examinee859 1.00 TEST0001 1 Examinee860 1.00 TEST0001 1 Examinee861 1.00 TEST0001 1 Examinee862 1.00 TEST0001 1 Examinee863 1.00 TEST0001 1 Examinee864 1.00 TEST0001 1 Examinee865 1.00 TEST0001 1 Examinee866 1.00 TEST0001 1 Examinee867 1.00 TEST0001 1 Examinee868 1.00 TEST0001 1 Examinee869 1.00 TEST0001 1 Examinee870 1.00 TEST0001 1 Examinee871 1.00 TEST0001 25 13 25 16 25 11 25 13 25 11 25 13 25 17 25 12 25 10 25 7 25 12 25 8 25 10 25 14 25 8 25 3 25 5 25 5 25 15 25 10 | 52.00 | | 64.00 | | 44.00 | | 52.00 | | 44.00 | | 52.00 | | 68.00 | | 48.00 | | 40.00 | | 28.00 | | 48.00 | | 32.00 | | 40.00 | | 56.00 | | 32.00 | | 12.00 | | 20.00 | | 20.00 | | 60.00 | | 40.00 | | 0.1488 | 3.1561 | -0.6892 | 1.2589 | 0.3793 | 0.0831 | 1.8228 | 0.1146 | -0.8014 | -0.8277 | 0.0977 | -1.0568 | 0.0054 | 1.0543 | -0.6808 | -2.4435 | -1.1410 | -2.6043 | 0.9923 | 0.4451 0.7675 | 1.3371 | 0.7247 | 0.9041 | 0.7884 | 0.7622 | 1.0091 | 0.7647 | 0.7235 | 0.7234 | 0.7634 | 0.7257 | 0.7564 | 0.8720 | 0.7249 | 0.8901 | 0.7280 | 0.9273 | 0.8629 | 0.7951 | 330 1 Examinee872 1.00 TEST0001 1 Examinee873 1.00 TEST0001 1 Examinee874 1.00 TEST0001 1 Examinee875 1.00 TEST0001 1 Examinee876 1.00 TEST0001 1 Examinee877 1.00 TEST0001 1 Examinee878 1.00 TEST0001 1 Examinee879 1.00 TEST0001 1 Examinee880 1.00 TEST0001 1 Examinee881 1.00 TEST0001 1 Examinee882 1.00 TEST0001 1 Examinee883 1.00 TEST0001 1 Examinee884 1.00 TEST0001 1 Examinee885 1.00 TEST0001 1 Examinee886 1.00 TEST0001 1 Examinee887 1.00 TEST0001 1 Examinee888 1.00 TEST0001 1 Examinee889 1.00 TEST0001 1 Examinee890 1.00 TEST0001 1 Examinee891 1.00 TEST0001 25 6 25 10 25 9 25 13 25 9 25 10 25 5 25 13 25 10 25 7 25 5 25 14 25 11 25 9 25 11 25 9 25 7 25 10 25 13 25 14 | 24.00 | | 40.00 | | 36.00 | | 52.00 | | 36.00 | | 40.00 | | 20.00 | | 52.00 | | 40.00 | | 28.00 | | 20.00 | | 56.00 | | 44.00 | | 36.00 | | 44.00 | | 36.00 | | 28.00 | | 40.00 | | 52.00 | | 56.00 | | -1.3596 | -0.5653 | -0.0521 | 0.4765 | -0.1765 | 0.1721 | -2.3869 | 1.6313 | -0.0073 | -1.4316 | -1.9269 | 1.5013 | 0.7298 | -0.6194 | 0.5733 | -0.8930 | -0.8014 | -0.4083 | 0.4572 | 0.8958 0.7383 | 0.7274 | 0.7524 | 0.7984 | 0.7444 | 0.7694 | 0.8779 | 0.9708 | 0.7555 | 0.7430 | 0.7960 | 0.9463 | 0.8276 | 0.7261 | 0.8090 | 0.7235 | 0.7235 | 0.7328 | 0.7964 | 0.8493 | 331 1 Examinee892 1.00 TEST0001 1 Examinee893 1.00 TEST0001 1 Examinee894 1.00 TEST0001 1 Examinee895 1.00 TEST0001 1 Examinee896 1.00 TEST0001 1 Examinee897 1.00 TEST0001 1 Examinee898 1.00 TEST0001 1 Examinee899 1.00 TEST0001 1 Examinee900 1.00 TEST0001 1 Examinee901 1.00 TEST0001 1 Examinee902 1.00 TEST0001 1 Examinee903 1.00 TEST0001 1 Examinee904 1.00 TEST0001 1 Examinee905 1.00 TEST0001 1 Examinee906 1.00 TEST0001 1 Examinee907 1.00 TEST0001 1 Examinee908 1.00 TEST0001 1 Examinee909 1.00 TEST0001 1 Examinee910 1.00 TEST0001 1 Examinee911 1.00 TEST0001 25 7 25 13 25 10 25 12 25 9 25 14 25 13 25 11 25 7 25 8 25 3 25 8 25 13 25 10 25 11 25 10 25 13 25 14 25 10 25 13 | 28.00 | | 52.00 | | 40.00 | | 48.00 | | 36.00 | | 56.00 | | 52.00 | | 44.00 | | 28.00 | | 32.00 | | 12.00 | | 32.00 | | 52.00 | | 40.00 | | 44.00 | | 40.00 | | 52.00 | | 56.00 | | 40.00 | | 52.00 | | -1.4591 0.7450 | | 0.9276 0.8537 | | -0.3940 0.7334 | | 0.3510 0.7856 | | -0.2923 0.7381 | | 1.6188 0.9684 | | 1.3791 0.9245 | | -0.6321 0.7258 | | -0.7960 0.7235 | | -0.7897 0.7236 | | -4.0000 999.0000 | | -1.0385 0.7253 | | 0.9276 0.8537 | | -0.4042 0.7330 | | 0.3358 0.7842 | | -0.2971 0.7379 | | 1.4758 0.9417 | | 2.2136 1.0953 | | -0.1783 0.7443 | | -0.2818 0.7387 | 332 1 Examinee912 1.00 TEST0001 1 Examinee913 1.00 TEST0001 1 Examinee914 1.00 TEST0001 1 Examinee915 1.00 TEST0001 1 Examinee916 1.00 TEST0001 1 Examinee917 1.00 TEST0001 1 Examinee918 1.00 TEST0001 1 Examinee919 1.00 TEST0001 1 Examinee920 1.00 TEST0001 1 Examinee921 1.00 TEST0001 1 Examinee922 1.00 TEST0001 1 Examinee923 1.00 TEST0001 1 Examinee924 1.00 TEST0001 1 Examinee925 1.00 TEST0001 1 Examinee926 1.00 TEST0001 1 Examinee927 1.00 TEST0001 1 Examinee928 1.00 TEST0001 1 Examinee929 1.00 TEST0001 1 Examinee930 1.00 TEST0001 1 Examinee931 1.00 TEST0001 25 15 25 16 25 11 25 13 25 13 25 3 25 7 25 11 25 13 25 6 25 9 25 8 25 6 25 15 25 15 25 10 25 8 25 9 25 6 25 9 | 60.00 | | 64.00 | | 44.00 | | 52.00 | | 52.00 | | 12.00 | | 28.00 | | 44.00 | | 52.00 | | 24.00 | | 36.00 | | 32.00 | | 24.00 | | 60.00 | | 60.00 | | 40.00 | | 32.00 | | 36.00 | | 24.00 | | 36.00 | | 1.2296 | 3.5439 | 0.3821 | 1.0672 | 1.0077 | -2.5805 | -1.2575 | 0.1988 | -0.1239 | -2.0169 | -0.3741 | -1.5296 | -1.1377 | 1.3672 | 1.4897 | 0.1604 | -0.5317 | -1.1552 | -1.0059 | -1.7466 0.8993 | 1.4444 | 0.7887 | 0.8739 | 0.8651 | 0.9216 | 0.7327 | 0.7717 | 0.7476 | 0.8095 | 0.7343 | 0.7507 | 0.7279 | 0.9224 | 0.9442 | 0.7685 | 0.7284 | 0.7285 | 0.7247 | 0.7725 | 333 1 Examinee932 1.00 TEST0001 1 Examinee933 1.00 TEST0001 1 Examinee934 1.00 TEST0001 1 Examinee935 1.00 TEST0001 1 Examinee936 1.00 TEST0001 1 Examinee937 1.00 TEST0001 1 Examinee938 1.00 TEST0001 1 Examinee939 1.00 TEST0001 1 Examinee940 1.00 TEST0001 1 Examinee941 1.00 TEST0001 1 Examinee942 1.00 TEST0001 1 Examinee943 1.00 TEST0001 1 Examinee944 1.00 TEST0001 1 Examinee945 1.00 TEST0001 1 Examinee946 1.00 TEST0001 1 Examinee947 1.00 TEST0001 1 Examinee948 1.00 TEST0001 1 Examinee949 1.00 TEST0001 1 Examinee950 1.00 TEST0001 1 Examinee951 1.00 TEST0001 25 17 25 13 25 9 25 12 25 12 25 11 25 8 25 10 25 7 25 16 25 13 25 15 25 12 25 9 25 11 25 15 25 12 25 4 25 14 25 8 | 68.00 | | 52.00 | | 36.00 | | 48.00 | | 48.00 | | 44.00 | | 32.00 | | 40.00 | | 28.00 | | 64.00 | | 52.00 | | 60.00 | | 48.00 | | 36.00 | | 44.00 | | 60.00 | | 48.00 | | 16.00 | | 56.00 | | 32.00 | | 1.6296 | 1.4227 | 0.6667 | 0.4317 | 0.2107 | -0.0402 | -0.5107 | -0.3018 | -1.6266 | 2.9139 | 0.6739 | 1.2107 | 1.3757 | -0.8376 | 0.6447 | 1.1715 | 0.8417 | -1.6088 | 2.3189 | -0.7966 0.9705 | 0.9322 | 0.8199 | 0.7937 | 0.7727 | 0.7532 | 0.7291 | 0.7377 | 0.7596 | 1.2715 | 0.8207 | 0.8963 | 0.9239 | 0.7234 | 0.8173 | 0.8900 | 0.8420 | 0.7578 | 1.1202 | 0.7235 | 334 1 Examinee952 1.00 TEST0001 1 Examinee953 1.00 TEST0001 1 Examinee954 1.00 TEST0001 1 Examinee955 1.00 TEST0001 1 Examinee956 1.00 TEST0001 1 Examinee957 1.00 TEST0001 1 Examinee958 1.00 TEST0001 1 Examinee959 1.00 TEST0001 1 Examinee960 1.00 TEST0001 1 Examinee961 1.00 TEST0001 1 Examinee962 1.00 TEST0001 1 Examinee963 1.00 TEST0001 1 Examinee964 1.00 TEST0001 1 Examinee965 1.00 TEST0001 1 Examinee966 1.00 TEST0001 1 Examinee967 1.00 TEST0001 1 Examinee968 1.00 TEST0001 1 Examinee969 1.00 TEST0001 1 Examinee970 1.00 TEST0001 1 Examinee971 1.00 TEST0001 25 14 25 14 25 13 25 10 25 12 25 13 25 6 25 9 25 6 25 8 25 16 25 7 25 6 25 12 25 13 25 13 25 10 25 12 25 13 25 10 | 56.00 | | 56.00 | | 52.00 | | 40.00 | | 48.00 | | 52.00 | | 24.00 | | 36.00 | | 24.00 | | 32.00 | | 64.00 | | 28.00 | | 24.00 | | 48.00 | | 52.00 | | 52.00 | | 40.00 | | 48.00 | | 52.00 | | 40.00 | | 1.1182 | 1.6602 | 1.2142 | -1.1072 | 0.8432 | 0.8765 | -1.1222 | 0.0916 | -1.1824 | -0.6802 | 1.5577 | -0.9009 | -2.8083 | -0.2835 | 1.0540 | 0.7994 | -0.3096 | 0.8457 | 0.6234 | 0.5485 0.8817 | 0.9764 | 0.8968 | 0.7270 | 0.8422 | 0.8467 | 0.7274 | 0.7629 | 0.7295 | 0.7249 | 0.9568 | 0.7235 | 0.9796 | 0.7386 | 0.8720 | 0.8364 | 0.7373 | 0.8425 | 0.8147 | 0.8062 | 335 1 Examinee972 1.00 TEST0001 1 Examinee973 1.00 TEST0001 1 Examinee974 1.00 TEST0001 1 Examinee975 1.00 TEST0001 1 Examinee976 1.00 TEST0001 1 Examinee977 1.00 TEST0001 1 Examinee978 1.00 TEST0001 1 Examinee979 1.00 TEST0001 1 Examinee980 1.00 TEST0001 1 Examinee981 1.00 TEST0001 1 Examinee982 1.00 TEST0001 1 Examinee983 1.00 TEST0001 1 Examinee984 1.00 TEST0001 1 Examinee985 1.00 TEST0001 1 Examinee986 1.00 TEST0001 1 Examinee987 1.00 TEST0001 1 Examinee988 1.00 TEST0001 1 Examinee989 1.00 TEST0001 1 Examinee990 1.00 TEST0001 1 Examinee991 1.00 TEST0001 25 10 25 10 25 10 25 10 25 9 25 10 25 11 25 11 25 10 25 9 25 9 25 10 25 8 25 11 25 14 25 10 25 13 25 12 25 8 25 16 | 40.00 | | 40.00 | | 40.00 | | 40.00 | | 36.00 | | 40.00 | | 44.00 | | 44.00 | | 40.00 | | 36.00 | | 36.00 | | 40.00 | | 32.00 | | 44.00 | | 56.00 | | 40.00 | | 52.00 | | 48.00 | | 32.00 | | 64.00 | | 0.2510 | -0.4586 | -0.7187 | -0.0947 | 0.1864 | 0.4598 | 0.1427 | -0.1456 | -0.0716 | -0.6283 | -0.9073 | 0.0337 | -0.3268 | 1.1594 | 1.0251 | -0.4141 | 1.0476 | 0.3478 | -1.0070 | 1.8300 0.7763 | 0.7309 | 0.7243 | 0.7495 | 0.7707 | 0.7966 | 0.7670 | 0.7463 | 0.7510 | 0.7259 | 0.7235 | 0.7585 | 0.7364 | 0.8881 | 0.8677 | 0.7326 | 0.8710 | 0.7853 | 0.7247 | 1.0106 | 336 1 Examinee992 | | 1.00 TEST0001 25 13 52.00 | 0.5020 0.8011 | 1 Examinee993 | | 1.00 TEST0001 25 7 28.00 | -0.7761 0.7237 | 1 Examinee994 | | 1.00 TEST0001 25 14 56.00 | 0.7304 0.8277 | 1 Examinee995 | | 1.00 TEST0001 25 14 56.00 | 1.0354 0.8692 | 1 Examinee996 | | 1.00 TEST0001 25 14 56.00 | 1.0770 0.8754 | 1 Examinee997 | | 1.00 TEST0001 25 12 48.00 | 0.8216 0.8393 | 1 Examinee998 | | 1.00 TEST0001 25 9 36.00 | -0.8840 0.7234 | 1 Examinee999 | | 1.00 TEST0001 25 16 64.00 | 2.2421 1.1020 | ---------------------------------------------------------------- SUMMARY STATISTICS FOR SCORE ESTIMATES ====================================== CORRELATIONS AMONG TEST SCORES TEST0001 TEST0001 1.0000 MEANS, STANDARD DEVIATIONS, AND VARIANCES OF SCORE ESTIMATES TEST: TEST0001 MEAN: 0.0273 S.D.: 1.3074 VARIANCE: 1.7093 337 HARMONIC ROOT-MEAN-SQUARE STANDARD ERRORS OF THE ML ESTIMATES TEST: TEST0001 RMS: 0.8058 VARIANCE: 0.6492 EMPIRICAL RELIABILITY: 0.6202 44 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-3 592 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-3 Outputs for 3 Parameter model are: PH1 1 BILOG-MG V3.0 REV 19990104.1300 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL DISTRIBUTED BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 7383 N. LINCOLN AVENUE, SUITE 100 CHICAGO, IL 60646 (800) 247-6113 (847) 675-0720 WWW: http:://www.ssicentral.com 338 PROGRAM COPYRIGHT HELD BY SCIENTIFIC SOFTWARE INTERNATIONAL, INC. 2002 DISTRIBUTION OR USE UNAUTHORIZED BY SSI, INC. IS PROHIBITED 1 *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 1 *** sample 25 by 999 >GLOBAL DFName = 'C:\25by1000\RG.dat', NPArm = 3, LOGistic, SAVe; FILE ASSIGNMENT AND DISPOSITION =============================== SUBJECT DATA INPUT FILE C:\25BY1000\RG.DAT BILOG-MG MASTER DATA FILE MF.DAT WILL BE CREATED FROM DATA FILE CALIBRATION DATA FILE CF.DAT WILL BE CREATED FROM DATA FILE ITEM PARAMETERS FILE IF.DAT WILL BE CREATED THIS RUN 339 CASE SCALE-SCORE FILE CASE WEIGHTING SF.DAT NONE EMPLOYED ITEM RESPONSE MODEL 3 PARAMETER LOGISTIC LOGIT METRIC (I.E., D = 1.0) >SAVE MASter = 'RG.MAS', CALib = 'RG.CAL', PARm = 'RG.PAR', SCOre = 'RG.SCO', COVariance = 'RG.COV', TSTat = 'RG.TST', ISTat = 'RG.IST'; BILOG-MG SAVE FILES [OUTPUT FILES] BILOG-MG MASTER BINARY DATA RG.MAS CALIBRATION BINARY DATA FILERG.CAL CLASSICAL ITEM STATISTICS RG.IST ITEM PARAMETERS FILE RG.PAR CASE SCALE-SCORE FILE RG.SCO ESTIMATED COVARIANCE FILE RG.COV TEST INFORMATION FILE RG.TST 340 >LENGTH NITems = (25); TEST LENGTH SPECIFICATIONS ========================== MAIN TEST LENGTHS: 25 >INPUT NTOtal = 25, NALt = 3, NIDchar = 11; DATA INPUT SPECIFICATIONS ========================= NUMBER OF FORMAT LINES 1 NUMBER OF ITEMS IN INPUT STREAM 25 NUMBER OF RESPONSE ALTERNATIVES 3 NUMBER OF SUBJECT ID CHARACTERS 11 NUMBER OF GROUPS 1 NUMBER OF TEST FORMS 1 TYPE OF DATA SINGLE-SUBJECT DATA, NO CASE WEIGHTS MAXIMUM SAMPLE SIZE FOR ITEM CALIBRATION 10000000 ALL SUBJECTS INCLUDED IN RUN 341 >ITEMS ; TEST SPECIFICATIONS =================== >TEST1 TNAme = 'TEST0001', INUmber = (1(1)25); TEST NUMBER: 1 TEST NAME: TEST0001 NUMBER OF ITEMS: 25 ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM NUMBER NAME NUMBER NAME NUMBER NAME NUMBER NAME ----------------------------------------------------------------------1 ITEM0001 9 ITEM0009 17 ITEM0017 25 ITEM0025 2 ITEM0002 10 ITEM0010 18 ITEM0018 3 ITEM0003 11 ITEM0011 19 ITEM0019 4 ITEM0004 12 ITEM0012 20 ITEM0020 5 ITEM0005 13 ITEM0013 21 ITEM0021 6 ITEM0006 14 ITEM0014 22 ITEM0022 7 ITEM0007 15 ITEM0015 23 ITEM0023 8 ITEM0008 16 ITEM0016 24 ITEM0024 ----------------------------------------------------------------------- FORM SPECIFICATIONS 342 =================== ITEMS READ ACCORDING TO SPECIFICATIONS ON THE ITEMS COMMAND FORMAT FOR DATA INPUT IS: (11A1, 25A1) OBSERVATION # 1 WEIGHT: 1.0000 ID : Examinee001 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 25.000 7.000 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 ITEM 21 22 23 24 25 TRIED 1.0 1.0 1.0 1.0 1.0 RIGHT 0.0 0.0 0.0 0.0 0.0 OBSERVATION # 2 WEIGHT: 1.0000 ID : Examinee002 343 SUBTEST #: 1 TEST0001 GROUP #: 1 TRIED RIGHT 25.000 11.000 ITEM 1 2 3 4 5 6 7 8 9 10 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 ITEM 11 12 13 14 15 16 17 18 19 20 TRIED 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 ITEM 21 22 23 24 25 TRIED 1.0 1.0 1.0 1.0 1.0 RIGHT 1.0 0.0 0.0 0.0 1.0 999 OBSERVATIONS READ FROM FILE: C:\25BY1000\RG.DAT 999 OBSERVATIONS WRITTEN TO FILE: RG.MAS ITEM STATISTICS FOR SUBTEST TEST0001 ITEM*TEST CORRELATION ITEM NAME #TRIED #RIGHT PCT LOGIT PEARSON BISERIAL ------------------------------------------------------------------------1 ITEM0001 999.0 694.0 69.5 -0.82 0.246 0.324 2 ITEM0002 999.0 477.0 47.7 0.09 0.155 0.194 3 ITEM0003 999.0 579.0 58.0 -0.32 0.237 0.300 4 ITEM0004 999.0 571.0 57.2 -0.29 0.218 0.275 5 ITEM0005 999.0 461.0 46.1 0.15 0.159 0.199 344 6 ITEM0006 999.0 801.0 80.2 -1.40 0.266 0.380 7 ITEM0007 999.0 516.0 51.7 -0.07 0.236 0.295 8 ITEM0008 999.0 703.0 70.4 -0.86 0.219 0.289 9 ITEM0009 999.0 390.0 39.0 0.45 0.225 0.286 10 ITEM0010 999.0 560.0 56.1 -0.24 0.268 0.338 11 ITEM0011 999.0 264.0 26.4 1.02 0.022 0.030 12 ITEM0012 999.0 511.0 51.2 -0.05 0.256 0.321 13 ITEM0013 999.0 500.0 50.1 0.00 0.092 0.115 14 ITEM0014 999.0 743.0 74.4 -1.07 0.200 0.271 15 ITEM0015 999.0 195.0 19.5 1.42 0.091 0.130 16 ITEM0016 999.0 210.0 21.0 1.32 0.071 0.100 17 ITEM0017 999.0 281.0 28.1 0.94 0.047 0.062 18 ITEM0018 999.0 401.0 40.1 0.40 0.101 0.129 19 ITEM0019 999.0 284.0 28.4 0.92 0.128 0.170 20 ITEM0020 999.0 271.0 27.1 0.99 0.031 0.042 21 ITEM0021 999.0 290.0 29.0 0.89 0.108 0.144 22 ITEM0022 999.0 374.0 37.4 0.51 0.173 0.221 23 ITEM0023 999.0 198.0 19.8 1.40 0.043 0.061 24 ITEM0024 999.0 251.0 25.1 1.09 0.068 0.093 25 ITEM0025 999.0 187.0 18.7 1.47 0.069 0.100 ------------------------------------------------------------------------- 356 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-1 2720 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-1 11/29/2011 14:55:24 PH2 1 BILOG-MG V3.0 REV 19990329.1300 345 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** BILOG-MG ITEM MAINTENANCE PROGRAM *** *** PHASE 2 *** sample 25 by 999 >CALIB ACCel = 1.0000, TPRior, GPRior, FLOat; CALIBRATION PARAMETERS ====================== MAXIMUM NUMBER OF EM CYCLES: 20 MAXIMUM NUMBER OF NEWTON CYCLES: CONVERGENCE CRITERION: 0.0100 ACCELERATION CONSTANT: 1.0000 2 LATENT DISTRIBUTION: NORMAL PRIOR FOR EACH GROUP PLOT EMPIRICAL VS. FITTED ICC'S: NO DATA HANDLING: DATA ON SCRATCH FILE CONSTRAINT DISTRIBUTION ON ASYMPTOTES: YES 346 CONSTRAINT DISTRIBUTION ON SLOPES: YES CONSTRAINT DISTRIBUTION ON THRESHOLDS: YES SOURCE OF ITEM CONSTRAINT DISTIBUTION MEANS AND STANDARD DEVIATIONS: PROGRAM DEFAULTS ITEM CONSTRAINTS IF PRESENT WILL BE UPDATED EACH CYCLE 1 -------------------------------------------------------------------------------- ****************************** CALIBRATION OF MAINTEST TEST0001 ****************************** METHOD OF SOLUTION: EM CYCLES (MAXIMUM OF 20) FOLLOWED BY NEWTON-RAPHSON STEPS (MAXIMUM OF 2) QUADRATURE POINTS AND PRIOR WEIGHTS: 1 2 3 4 5 POINT -0.4000E+01 -0.3429E+01 -0.2857E+01 -0.2286E+01 -0.1714E+01 WEIGHT 0.7648E-04 0.6387E-03 0.3848E-02 0.1673E-01 0.5245E-01 6 7 8 9 10 POINT -0.1143E+01 -0.5714E+00 -0.8882E-15 0.5714E+00 0.1143E+01 WEIGHT 0.1186E+00 0.1936E+00 0.2280E+00 0.1936E+00 0.1186E+00 347 11 12 13 14 15 POINT 0.1714E+01 0.2286E+01 0.2857E+01 0.3429E+01 0.4000E+01 WEIGHT 0.5245E-01 0.1673E-01 0.3848E-02 0.6387E-03 0.7648E-04 CONSTRAINT DISTRIBUTIONS ON ITEM PARAMETERS (THRESHOLDS, NORMAL; SLOPES, LOG-NORMAL; GUESSING, BETA) THRESHOLDS SLOPES ASYMPTOTES ITEM MU SIGMA MU SIGMA ALPHA BETA ---------------------------------------------------------------------ITEM0001 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0002 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0003 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0004 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0005 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0006 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0007 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0008 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0009 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0010 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0011 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0012 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0013 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0014 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0015 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0016 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0017 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0018 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0019 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0020 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0021 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0022 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0023 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0024 0.000 2.000 1.000 1.649 7.67 14.33 ITEM0025 0.000 2.000 1.000 1.649 7.67 14.33 ---------------------------------------------------------------------- 348 [E-M CYCLES] -2 LOG LIKELIHOOD = CYCLE 31138.675 1; LARGEST CHANGE= 1.50371 -2 LOG LIKELIHOOD = 30072.228 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 5.50451 16.49549 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.44832 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 2.52821 2.00000 CYCLE 2; LARGEST CHANGE= 0.54632 -2 LOG LIKELIHOOD = 30024.721 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 4.82285 17.17715 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.40636 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 2.28999 2.00000 CYCLE 3; LARGEST CHANGE= 0.21385 -2 LOG LIKELIHOOD = 30009.892 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 4.45587 17.54413 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.38788 0.50000 349 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE 2.15727 2.00000 4; LARGEST CHANGE= 0.40608 -2 LOG LIKELIHOOD = 30007.423 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 4.24774 17.75226 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.37098 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 2.01604 2.00000 CYCLE 5; LARGEST CHANGE= 0.15020 -2 LOG LIKELIHOOD = 30002.319 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 4.12463 17.87537 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.36372 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.98178 2.00000 CYCLE 6; LARGEST CHANGE= 0.21603 -2 LOG LIKELIHOOD = 30003.215 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 4.05452 17.94548 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.36865 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.94561 2.00000 CYCLE 7; LARGEST CHANGE= 0.19947 -2 LOG LIKELIHOOD = 30000.695 350 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.99545 18.00455 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.37494 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.93545 2.00000 CYCLE 8; LARGEST CHANGE= 0.18259 -2 LOG LIKELIHOOD = 29998.985 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.94413 18.05587 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.38060 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.97164 2.00000 CYCLE 9; LARGEST CHANGE= 0.45271 -2 LOG LIKELIHOOD = 30002.404 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.91264 18.08736 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.39422 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.94835 2.00000 CYCLE 10; LARGEST CHANGE= 0.17593 -2 LOG LIKELIHOOD = 30000.469 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.86457 18.13543 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.40239 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.96612 2.00000 351 CYCLE 11; LARGEST CHANGE= 0.05980 -2 LOG LIKELIHOOD = 29999.904 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.82503 18.17497 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.41031 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.98310 2.00000 CYCLE 12; LARGEST CHANGE= 0.14126 -2 LOG LIKELIHOOD = 30000.656 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.79222 18.20778 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.41953 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.98170 2.00000 CYCLE 13; LARGEST CHANGE= 0.07883 -2 LOG LIKELIHOOD = 30001.560 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.75468 18.24532 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.42843 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.97228 2.00000 CYCLE 14; LARGEST CHANGE= 0.04590 -2 LOG LIKELIHOOD = 30000.565 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.71523 18.28477 352 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = UPDATED PRIOR ON THRESHOLDS; MEAN & SD = CYCLE -0.43633 0.50000 2.00134 2.00000 15; LARGEST CHANGE= 0.10017 -2 LOG LIKELIHOOD = 30002.558 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.68230 18.31770 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.44497 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.97563 2.00000 CYCLE 16; LARGEST CHANGE= 0.13299 -2 LOG LIKELIHOOD = 30002.523 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.64158 18.35842 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.45614 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 1.99080 2.00000 CYCLE 17; LARGEST CHANGE= 0.10511 -2 LOG LIKELIHOOD = 30002.366 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.59850 18.40150 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.46753 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 2.02269 2.00000 CYCLE 18; LARGEST CHANGE= 0.29388 -2 LOG LIKELIHOOD = 30005.187 353 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.55974 18.44026 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.48069 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 2.00783 2.00000 CYCLE 19; LARGEST CHANGE= 0.22438 -2 LOG LIKELIHOOD = 30005.521 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.50536 18.49464 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.49547 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 2.01135 2.00000 CYCLE 20; LARGEST CHANGE= 0.08206 ====> NOTE: CONVERGENCE HAS NOT BEEN REACHED TO CRITERION = 0.01000 [NEWTON CYCLES] UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.44603 18.55397 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.50747 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 2.06556 2.00000 354 -2 LOG LIKELIHOOD: 30003.2350 CYCLE 21; LARGEST CHANGE= 0.12547 UPDATED PRIOR ON ASYMPTOTES; ALPHA & BETA = 3.39243 18.60757 UPDATED PRIOR ON LOG SLOPES; MEAN & SD = -0.51748 0.50000 UPDATED PRIOR ON THRESHOLDS; MEAN & SD = 2.04068 2.00000 -2 LOG LIKELIHOOD: 30004.3749 CYCLE 22; LARGEST CHANGE= 0.05324 ====> NOTE: CONVERGENCE HAS NOT BEEN REACHED TO CRITERION = 0.01000 INTERVAL COUNTS FOR COMPUTATION OF ITEM CHI-SQUARES ---------------------------------------------------------------------------27. 43. 61. 144. 201. 235. 149. 96. 43. ---------------------------------------------------------------------------INTERVAL AVERAGE THETAS ----------------------------------------------------------------------------2.411 -1.938 -1.328 -0.762 -0.262 0.265 0.798 1.288 2.024 ---------------------------------------------------------------------------1 SUBTEST TEST0001; ITEM PARAMETERS AFTER CYCLE 22 ITEM CHISQ INTERCEPT SLOPE THRESHOLD LOADING ASYMPTOTE DF S.E. S.E. S.E. S.E. S.E. (PROB) ------------------------------------------------------------------------------355 ITEM0001 | 0.749 | 0.829 | -0.904 | 0.638 | 0.107 | 31.8 | 0.143* | 0.133* | 0.238* | 0.102* | 0.065* | (0.0001) | | | | | | ITEM0002 | -0.484 | 0.605 | 0.800 | 0.518 | 0.141 | 14.1 | 0.264* | 0.139* | 0.354* | 0.119* | 0.075* | (0.1191) | | | | | | ITEM0003 | 0.154 | 0.770 | -0.200 | 0.610 | 0.097 | 16.0 | 0.155* | 0.125* | 0.215* | 0.099* | 0.059* | (0.0667) | | | | | | ITEM0004 | 0.047 | 0.775 | -0.061 | 0.613 | 0.123 | 16.2 | 0.194* | 0.137* | 0.256* | 0.108* | 0.070* | (0.0636) | | | | | | ITEM0005 | -0.614 | 0.539 | 1.139 | 0.475 | 0.157 | 13.0 | 0.296* | 0.135* | 0.431* | 0.119* | 0.078* | (0.1618) | | | | | | ITEM0006 | 1.731 | 1.377 | -1.257 | 0.809 | 0.080 | 32.5 | 0.144* | 0.177* | 0.152* | 0.104* | 0.050* | (0.0000) | | | | | | ITEM0007 | -0.121 | 0.979 | 0.123 | 0.699 | 0.079 | 23.3 | 0.154* | 0.152* | 0.149* | 0.108* | 0.047* | (0.0030) | | | | | | ITEM0008 | 0.887 | 1.014 | -0.875 | 0.712 | 0.087 | 28.5 | 0.127* | 0.140* | 0.176* | 0.099* | 0.054* | (0.0002) | | | | | | ITEM0009 | -0.760 | 0.985 | 0.772 | 0.702 | 0.067 | 24.7 | 0.189* | 0.172* | 0.145* | 0.122* | 0.040* | (0.0018) | | | | | | ITEM0010 | 0.081 | 0.913 | -0.089 | 0.674 | 0.089 | 22.9 | 0.154* | 0.140* | 0.174* | 0.103* | 0.054* | (0.0065) | | | | | | ITEM0011 | -1.544 | 0.307 | 5.033 | 0.293 | 0.105 | 10.4 | 0.321* | 0.096* | 1.543* | 0.092* | 0.049* | (0.3215) | | | | | | ITEM0012 | -0.141 | 0.917 | 0.154 | 0.676 | 0.078 | 29.7 | 0.152* | 0.148* | 0.156* | 0.109* | 0.047* | (0.0005) | | | | | | ITEM0013 | -0.489 | 0.407 | 1.203 | 0.377 | 0.186 | 15.4 | 0.301* | 0.108* | 0.642* | 0.100* | 0.087* | (0.0799) | | | | | | ITEM0014 | 0.977 | 0.677 | -1.443 | 0.561 | 0.118 | 15.2 8.0 9.0 9.0 9.0 9.0 7.0 8.0 7.0 8.0 9.0 9.0 9.0 9.0 8.0 356 | 0.144* | 0.110* | 0.325* | 0.091* | 0.071* | (0.0554) | | | | | | ITEM0015 | -2.195 | 0.494 | 4.440 | 0.443 | 0.098 | 4.8 | 0.455* | 0.177* | 1.220* | 0.158* | 0.039* | (0.8502) | | | | | | ITEM0016 | -1.903 | 0.345 | 5.514 | 0.326 | 0.090 | 1.7 | 0.358* | 0.113* | 1.675* | 0.107* | 0.041* | (0.9955) | | | | | | ITEM0017 | -1.464 | 0.304 | 4.808 | 0.291 | 0.113 | 3.6 | 0.321* | 0.095* | 1.479* | 0.091* | 0.052* | (0.9337) | | | | | | ITEM0018 | -0.822 | 0.324 | 2.534 | 0.309 | 0.133 | 6.5 | 0.269* | 0.090* | 0.852* | 0.086* | 0.067* | (0.6898) | | | | | | ITEM0019 | -2.131 | 0.648 | 3.291 | 0.544 | 0.184 | 9.2 | 0.590* | 0.260* | 0.828* | 0.218* | 0.048* | (0.4169) | | | | | | ITEM0020 | -1.473 | 0.254 | 5.805 | 0.246 | 0.105 | 12.9 | 0.297* | 0.078* | 1.857* | 0.076* | 0.048* | (0.1692) | | | | | | ITEM0021 | -2.795 | 0.973 | 2.872 | 0.697 | 0.225 | 16.1 | 0.894* | 0.472* | 0.718* | 0.338* | 0.037* | (0.0654) | | | | | | ITEM0022 | -1.007 | 0.550 | 1.832 | 0.482 | 0.130 | 6.1 | 0.318* | 0.148* | 0.445* | 0.130* | 0.066* | (0.6410) | | | | | | ITEM0023 | -2.226 | 0.364 | 6.116 | 0.342 | 0.110 | 11.9 | 0.443* | 0.127* | 1.943* | 0.120* | 0.038* | (0.2211) | | | | | | ITEM0024 | -1.941 | 0.411 | 4.718 | 0.380 | 0.138 | 4.9 | 0.451* | 0.144* | 1.392* | 0.133* | 0.048* | (0.8390) | | | | | | ITEM0025 | -2.181 | 0.382 | 5.715 | 0.357 | 0.093 | 12.3 | 0.418* | 0.131* | 1.752* | 0.123* | 0.038* | (0.1982) ------------------------------------------------------------------------------* STANDARD ERROR 9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.0 9.0 9.0 9.0 LARGEST CHANGE = 0.053243 383.4 216.0 (0.0000) ------------------------------------------------------------------------------357 PARAMETER MEAN STN DEV ----------------------------------ASYMPTOTE 0.117 0.038 SLOPE 0.646 0.296 LOG(SLOPE) -0.542 0.475 THRESHOLD 2.082 2.537 QUADRATURE POINTS, POSTERIOR WEIGHTS, MEAN AND S.D.: 1 2 3 4 5 POINT -0.4058E+01 -0.3478E+01 -0.2899E+01 -0.2319E+01 -0.1739E+01 POSTERIOR 0.1219E-03 0.9495E-03 0.5112E-02 0.1899E-01 0.5104E-01 6 7 8 9 10 POINT -0.1159E+01 -0.5790E+00 0.9339E-03 0.5808E+00 0.1161E+01 POSTERIOR 0.1102E+00 0.1906E+00 0.2358E+00 0.1997E+00 0.1177E+00 11 12 13 14 15 POINT 0.1741E+01 0.2321E+01 0.2900E+01 0.3480E+01 0.4060E+01 POSTERIOR 0.4955E-01 0.1549E-01 0.3834E-02 0.7817E-03 0.1276E-03 MEAN S.D. 0.00000 1.00000 40152 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-2 3936 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-2 11/29/2011 14:55:25 358 PH3 1 BILOG-MG V3.0 BILOG-MG ITEM MAINTENANCE PROGRAM: LOGISTIC ITEM RESPONSE MODEL *** LOGISTIC MODEL ITEM ANALYSER *** *** PHASE 3 *** sample 25 by 999 >SCORE METhod = 1; PARAMETERS FOR SCORING, RESCALING, AND TEST AND ITEM INFORMATION METHOD OF SCORING SUBJECTS: SCORES WRITTEN TO FILE MAXIMUM LIKELIHOOD RG.SCO SCORES WRITTEN TO FILE RG.PH3 TYPE OF RESCALING: ITEM AND TEST INFORMATION: DOMAIN SCORE ESTIMATION: ----------------------1 NONE REQUESTED NONE REQUESTED NONE REQUESTED 359 ****************************** SCORING ****************************** 1 GROUP SUBJECT IDENTIFICATION WEIGHT TEST TRIED RIGHT PERCENT ABILITY ---------------------------------------------------------------1 Examinee001 | | 1.00 TEST0001 25 7 28.00 | -0.8475 0.7581 | 1 Examinee002 | | 1.00 TEST0001 25 11 44.00 | -0.6235 0.7445 | 1 Examinee003 | | 1.00 TEST0001 25 11 44.00 | 0.4690 0.7535 | 1 Examinee004 | | 1.00 TEST0001 25 12 48.00 | 0.2823 0.7450 | 1 Examinee005 | | 1.00 TEST0001 25 10 40.00 | -0.0223 0.7367 | 1 Examinee006 | | 1.00 TEST0001 25 9 36.00 | -0.0618 0.7362 | 1 Examinee007 | | 1.00 TEST0001 25 10 40.00 | -0.2247 0.7354 | 1 Examinee008 | | 1.00 TEST0001 25 11 44.00 | 0.1946 0.7418 | 1 Examinee009 | | 1.00 TEST0001 25 14 56.00 | 1.0642 0.7970 | 1 Examinee010 | | 1.00 TEST0001 25 9 36.00 | -0.1127 0.7357 | 1 Examinee011 | | 1.00 TEST0001 25 12 48.00 | 0.2394 0.7433 | 1 Examinee012 | | 1.00 TEST0001 25 13 52.00 | 1.3258 0.8228 | 1 Examinee013 | | 1.00 TEST0001 25 16 64.00 | 1.8460 0.8822 | 1 Examinee014 | | 1.00 TEST0001 25 15 60.00 | 2.1006 0.9135 | S.E. 360 1 Examinee015 1.00 TEST0001 1 Examinee016 1.00 TEST0001 1 Examinee017 1.00 TEST0001 1 Examinee018 1.00 TEST0001 1 Examinee019 1.00 TEST0001 1 Examinee020 1.00 TEST0001 1 Examinee021 1.00 TEST0001 1 Examinee022 1.00 TEST0001 1 Examinee023 1.00 TEST0001 1 Examinee024 1.00 TEST0001 1 Examinee025 1.00 TEST0001 1 Examinee026 1.00 TEST0001 1 Examinee027 1.00 TEST0001 1 Examinee028 1.00 TEST0001 1 Examinee029 1.00 TEST0001 1 Examinee030 1.00 TEST0001 1 Examinee031 1.00 TEST0001 1 Examinee032 1.00 TEST0001 1 Examinee033 1.00 TEST0001 1 Examinee034 1.00 TEST0001 25 10 25 13 25 16 25 8 25 5 25 12 25 11 25 11 25 14 25 13 25 7 25 10 25 15 25 10 25 13 25 16 25 16 25 13 25 11 25 18 | 40.00 | | 52.00 | | 64.00 | | 32.00 | | 20.00 | | 48.00 | | 44.00 | | 44.00 | | 56.00 | | 52.00 | | 28.00 | | 40.00 | | 60.00 | | 40.00 | | 52.00 | | 64.00 | | 64.00 | | 52.00 | | 44.00 | | 72.00 | | 0.4011 | 1.8065 | 1.3476 | -0.8184 | -2.3037 | 0.9782 | 0.3532 | -0.0557 | 0.9054 | 0.5501 | -0.8194 | -0.0640 | 1.6010 | -0.5835 | 0.9541 | 2.0950 | 2.5156 | -0.1141 | 0.1326 | 3.7707 0.7501 | 0.8775 | 0.8251 | 0.7559 | 1.1322 | 0.7893 | 0.7479 | 0.7362 | 0.7831 | 0.7580 | 0.7560 | 0.7361 | 0.8532 | 0.7428 | 0.7872 | 0.9128 | 0.9659 | 0.7357 | 0.7400 | 1.1461 | 361 1 Examinee035 1.00 TEST0001 1 Examinee036 1.00 TEST0001 1 Examinee037 1.00 TEST0001 1 Examinee038 1.00 TEST0001 1 Examinee039 1.00 TEST0001 1 Examinee040 1.00 TEST0001 1 Examinee041 1.00 TEST0001 1 Examinee042 1.00 TEST0001 1 Examinee043 1.00 TEST0001 1 Examinee044 1.00 TEST0001 1 Examinee045 1.00 TEST0001 1 Examinee046 1.00 TEST0001 1 Examinee047 1.00 TEST0001 1 Examinee048 1.00 TEST0001 1 Examinee049 1.00 TEST0001 1 Examinee050 1.00 TEST0001 1 Examinee051 1.00 TEST0001 1 Examinee052 1.00 TEST0001 1 Examinee053 1.00 TEST0001 1 Examinee054 1.00 TEST0001 25 12 25 8 25 10 25 14 25 10 25 14 25 13 25 7 25 13 25 11 25 11 25 13 25 8 25 11 25 13 25 13 25 9 25 13 25 11 25 9 | 48.00 | | 32.00 | | 40.00 | | 56.00 | | 40.00 | | 56.00 | | 52.00 | | 28.00 | | 52.00 | | 44.00 | | 44.00 | | 52.00 | | 32.00 | | 44.00 | | 52.00 | | 52.00 | | 36.00 | | 52.00 | | 44.00 | | 36.00 | | 0.6384 | -0.3336 | -0.1418 | 1.1875 | -0.5540 | 1.9981 | 1.5587 | -1.9122 | 0.3239 | 0.4533 | 0.2608 | 1.4055 | -1.3823 | 0.4294 | 1.3482 | 1.1171 | -0.2947 | 0.0404 | 0.5803 | -0.5181 0.7635 | 0.7362 | 0.7355 | 0.8087 | 0.7416 | 0.9008 | 0.8484 | 0.9653 | 0.7466 | 0.7527 | 0.7441 | 0.8313 | 0.8261 | 0.7515 | 0.8252 | 0.8019 | 0.7358 | 0.7378 | 0.7598 | 0.7404 | 362 1 Examinee055 1.00 TEST0001 1 Examinee056 1.00 TEST0001 1 Examinee057 1.00 TEST0001 1 Examinee058 1.00 TEST0001 1 Examinee059 1.00 TEST0001 1 Examinee060 1.00 TEST0001 1 Examinee061 1.00 TEST0001 1 Examinee062 1.00 TEST0001 1 Examinee063 1.00 TEST0001 1 Examinee064 1.00 TEST0001 1 Examinee065 1.00 TEST0001 1 Examinee066 1.00 TEST0001 1 Examinee067 1.00 TEST0001 1 Examinee068 1.00 TEST0001 1 Examinee069 1.00 TEST0001 1 Examinee070 1.00 TEST0001 1 Examinee071 1.00 TEST0001 1 Examinee072 1.00 TEST0001 1 Examinee073 1.00 TEST0001 1 Examinee074 1.00 TEST0001 25 8 25 13 25 16 25 16 25 8 25 10 25 11 25 8 25 13 25 12 25 11 25 13 25 13 25 13 25 9 25 15 25 11 25 16 25 13 25 13 | 32.00 | | 52.00 | | 64.00 | | 64.00 | | 32.00 | | 40.00 | | 44.00 | | 32.00 | | 52.00 | | 48.00 | | 44.00 | | 52.00 | | 52.00 | | 52.00 | | 36.00 | | 60.00 | | 44.00 | | 64.00 | | 52.00 | | 52.00 | | -0.7480 | 0.9714 | 2.8121 | 1.9357 | -1.1460 | -0.8846 | -0.2077 | -0.9158 | 0.3689 | 0.4255 | 0.3741 | 0.2793 | 1.5420 | 0.7521 | -1.0253 | 1.2629 | -0.2172 | 1.9727 | 0.4567 | -0.2782 0.7512 | 0.7887 | 1.0045 | 0.8932 | 0.7888 | 0.7611 | 0.7354 | 0.7637 | 0.7486 | 0.7513 | 0.7488 | 0.7448 | 0.8465 | 0.7713 | 0.7744 | 0.8163 | 0.7354 | 0.8977 | 0.7529 | 0.7357 | 363 1 Examinee075 1.00 TEST0001 1 Examinee076 1.00 TEST0001 1 Examinee077 1.00 TEST0001 1 Examinee078 1.00 TEST0001 1 Examinee079 1.00 TEST0001 1 Examinee080 1.00 TEST0001 1 Examinee081 1.00 TEST0001 1 Examinee082 1.00 TEST0001 1 Examinee083 1.00 TEST0001 1 Examinee084 1.00 TEST0001 1 Examinee085 1.00 TEST0001 1 Examinee086 1.00 TEST0001 1 Examinee087 1.00 TEST0001 1 Examinee088 1.00 TEST0001 1 Examinee089 1.00 TEST0001 1 Examinee090 1.00 TEST0001 1 Examinee091 1.00 TEST0001 1 Examinee092 1.00 TEST0001 1 Examinee093 1.00 TEST0001 1 Examinee094 1.00 TEST0001 25 16 25 18 25 15 25 7 25 14 25 17 25 16 25 8 25 11 25 10 25 11 25 14 25 13 25 11 25 10 25 13 25 12 25 10 25 13 25 8 | 64.00 | | 72.00 | | 60.00 | | 28.00 | | 56.00 | | 68.00 | | 64.00 | | 32.00 | | 44.00 | | 40.00 | | 44.00 | | 56.00 | | 52.00 | | 44.00 | | 40.00 | | 52.00 | | 48.00 | | 40.00 | | 52.00 | | 32.00 | | 1.6639 | 3.1678 | 0.8686 | -1.3473 | 1.3518 | 2.9530 | 2.1257 | -0.8800 | -0.0777 | -0.2839 | -0.6419 | 0.5245 | 0.7245 | -0.7277 | -0.3241 | 1.6508 | 0.9458 | -0.2020 | 0.6231 | -0.4454 0.8605 | 1.0532 | 0.7802 | 0.8198 | 0.8256 | 1.0234 | 0.9167 | 0.7607 | 0.7360 | 0.7357 | 0.7454 | 0.7566 | 0.7693 | 0.7499 | 0.7361 | 0.8590 | 0.7865 | 0.7354 | 0.7625 | 0.7383 | 364 1 Examinee095 1.00 TEST0001 1 Examinee096 1.00 TEST0001 1 Examinee097 1.00 TEST0001 1 Examinee098 1.00 TEST0001 1 Examinee099 1.00 TEST0001 1 Examinee100 1.00 TEST0001 1 Examinee101 1.00 TEST0001 1 Examinee102 1.00 TEST0001 1 Examinee103 1.00 TEST0001 1 Examinee104 1.00 TEST0001 1 Examinee105 1.00 TEST0001 1 Examinee106 1.00 TEST0001 1 Examinee107 1.00 TEST0001 1 Examinee108 1.00 TEST0001 1 Examinee109 1.00 TEST0001 1 Examinee110 1.00 TEST0001 1 Examinee111 1.00 TEST0001 1 Examinee112 1.00 TEST0001 1 Examinee113 1.00 TEST0001 1 Examinee114 1.00 TEST0001 25 13 25 11 25 17 25 12 25 18 25 11 25 9 25 10 25 11 25 15 25 11 25 14 25 11 25 8 25 7 25 10 25 12 25 12 25 10 25 7 | 52.00 | | 44.00 | | 68.00 | | 48.00 | | 72.00 | | 44.00 | | 36.00 | | 40.00 | | 44.00 | | 60.00 | | 44.00 | | 56.00 | | 44.00 | | 32.00 | | 28.00 | | 40.00 | | 48.00 | | 48.00 | | 40.00 | | 28.00 | | 0.8436 | 0.1145 | 2.7522 | 0.9252 | 3.0017 | 0.6986 | -0.5793 | -0.4542 | 0.5901 | 1.4704 | 0.2780 | 0.5299 | 0.6278 | -1.0229 | -2.1494 | 0.1006 | 0.9262 | 0.5557 | -0.1136 | -0.8151 0.7782 | 0.7395 | 0.9966 | 0.7848 | 1.0301 | 0.7675 | 0.7426 | 0.7385 | 0.7604 | 0.8385 | 0.7448 | 0.7569 | 0.7628 | 0.7742 | 1.0589 | 0.7391 | 0.7849 | 0.7584 | 0.7357 | 0.7557 | 365 1 Examinee115 1.00 TEST0001 1 Examinee116 1.00 TEST0001 1 Examinee117 1.00 TEST0001 1 Examinee118 1.00 TEST0001 1 Examinee119 1.00 TEST0001 1 Examinee120 1.00 TEST0001 1 Examinee121 1.00 TEST0001 1 Examinee122 1.00 TEST0001 1 Examinee123 1.00 TEST0001 1 Examinee124 1.00 TEST0001 1 Examinee125 1.00 TEST0001 1 Examinee126 1.00 TEST0001 1 Examinee127 1.00 TEST0001 1 Examinee128 1.00 TEST0001 1 Examinee129 1.00 TEST0001 1 Examinee130 1.00 TEST0001 1 Examinee131 1.00 TEST0001 1 Examinee132 1.00 TEST0001 1 Examinee133 1.00 TEST0001 1 Examinee134 1.00 TEST0001 25 9 25 13 25 9 25 15 25 10 25 9 25 8 25 7 25 8 25 11 25 11 25 12 25 14 25 11 25 6 25 5 25 9 25 14 25 12 25 4 | 36.00 | | 52.00 | | 36.00 | | 60.00 | | 40.00 | | 36.00 | | 32.00 | | 28.00 | | 32.00 | | 44.00 | | 44.00 | | 48.00 | | 56.00 | | 44.00 | | 24.00 | | 20.00 | | 36.00 | | 56.00 | | 48.00 | | 16.00 | | -0.7600 | 1.3106 | -0.5649 | 1.6283 | -0.4313 | -0.7259 | -0.9365 | -2.1096 | -0.1227 | 0.4514 | 0.4640 | 1.0232 | 1.7345 | 0.1957 | -1.8561 | -1.2777 | -0.7190 | 0.5107 | 0.0932 | -2.9623 0.7519 | 0.8212 | 0.7421 | 0.8564 | 0.7380 | 0.7498 | 0.7656 | 1.0416 | 0.7356 | 0.7526 | 0.7533 | 0.7933 | 0.8689 | 0.7419 | 0.9463 | 0.8080 | 0.7494 | 0.7558 | 0.7390 | 1.5767 | 366 1 Examinee135 1.00 TEST0001 1 Examinee136 1.00 TEST0001 1 Examinee137 1.00 TEST0001 1 Examinee138 1.00 TEST0001 1 Examinee139 1.00 TEST0001 1 Examinee140 1.00 TEST0001 1 Examinee141 1.00 TEST0001 1 Examinee142 1.00 TEST0001 1 Examinee143 1.00 TEST0001 1 Examinee144 1.00 TEST0001 1 Examinee145 1.00 TEST0001 1 Examinee146 1.00 TEST0001 1 Examinee147 1.00 TEST0001 1 Examinee148 1.00 TEST0001 1 Examinee149 1.00 TEST0001 1 Examinee150 1.00 TEST0001 1 Examinee151 1.00 TEST0001 1 Examinee152 1.00 TEST0001 1 Examinee153 1.00 TEST0001 1 Examinee154 1.00 TEST0001 25 9 25 10 25 10 25 14 25 7 25 8 25 17 25 8 25 7 25 10 25 12 25 8 25 10 25 8 25 7 25 12 25 12 25 11 25 16 25 16 | 36.00 | | 40.00 | | 40.00 | | 56.00 | | 28.00 | | 32.00 | | 68.00 | | 32.00 | | 28.00 | | 40.00 | | 48.00 | | 32.00 | | 40.00 | | 32.00 | | 28.00 | | 48.00 | | 48.00 | | 44.00 | | 64.00 | | 64.00 | | -0.2965 | 0.1857 | -0.3498 | 1.2391 | -0.2588 | -0.6343 | 2.4058 | -0.8730 | -0.3485 | -0.3178 | 0.3847 | -0.7908 | -0.3475 | -0.8766 | -0.9333 | 1.3694 | 0.8818 | 0.1368 | 1.8154 | 2.3855 0.7358 | 0.7415 | 0.7365 | 0.8139 | 0.7355 | 0.7450 | 0.9519 | 0.7601 | 0.7364 | 0.7360 | 0.7493 | 0.7540 | 0.7364 | 0.7604 | 0.7653 | 0.8274 | 0.7812 | 0.7401 | 0.8785 | 0.9494 | 367 1 Examinee155 1.00 TEST0001 1 Examinee156 1.00 TEST0001 1 Examinee157 1.00 TEST0001 1 Examinee158 1.00 TEST0001 1 Examinee159 1.00 TEST0001 1 Examinee160 1.00 TEST0001 1 Examinee161 1.00 TEST0001 1 Examinee162 1.00 TEST0001 1 Examinee163 1.00 TEST0001 1 Examinee164 1.00 TEST0001 1 Examinee165 1.00 TEST0001 1 Examinee166 1.00 TEST0001 1 Examinee167 1.00 TEST0001 1 Examinee168 1.00 TEST0001 1 Examinee169 1.00 TEST0001 1 Examinee170 1.00 TEST0001 1 Examinee171 1.00 TEST0001 1 Examinee172 1.00 TEST0001 1 Examinee173 1.00 TEST0001 1 Examinee174 1.00 TEST0001 25 10 25 10 25 16 25 15 25 19 25 16 25 17 25 5 25 10 25 17 25 7 25 12 25 8 25 13 25 16 25 9 25 7 25 14 25 10 25 17 | 40.00 | | 40.00 | | 64.00 | | 60.00 | | 76.00 | | 64.00 | | 68.00 | | 20.00 | | 40.00 | | 68.00 | | 28.00 | | 48.00 | | 32.00 | | 52.00 | | 64.00 | | 36.00 | | 28.00 | | 56.00 | | 40.00 | | 68.00 | | 0.1461 | -0.2509 | 1.9823 | 1.5767 | 3.7143 | 1.4299 | 2.1084 | -2.8766 | 0.5369 | 1.7806 | -0.7161 | 0.0354 | -0.7354 | 0.9126 | 2.1675 | -0.8012 | -1.0812 | 1.4300 | 0.1346 | 1.5642 0.7404 | 0.7355 | 0.8989 | 0.8504 | 1.1367 | 0.8340 | 0.9145 | 1.5056 | 0.7573 | 0.8744 | 0.7493 | 0.7377 | 0.7504 | 0.7837 | 0.9219 | 0.7547 | 0.7807 | 0.8340 | 0.7400 | 0.8490 | 368 1 Examinee175 1.00 TEST0001 1 Examinee176 1.00 TEST0001 1 Examinee177 1.00 TEST0001 1 Examinee178 1.00 TEST0001 1 Examinee179 1.00 TEST0001 1 Examinee180 1.00 TEST0001 1 Examinee181 1.00 TEST0001 1 Examinee182 1.00 TEST0001 1 Examinee183 1.00 TEST0001 1 Examinee184 1.00 TEST0001 1 Examinee185 1.00 TEST0001 1 Examinee186 1.00 TEST0001 1 Examinee187 1.00 TEST0001 1 Examinee188 1.00 TEST0001 1 Examinee189 1.00 TEST0001 1 Examinee190 1.00 TEST0001 1 Examinee191 1.00 TEST0001 1 Examinee192 1.00 TEST0001 1 Examinee193 1.00 TEST0001 1 Examinee194 1.00 TEST0001 25 17 25 14 25 8 25 12 25 9 25 11 25 13 25 13 25 9 25 12 25 9 25 11 25 10 25 12 25 12 25 8 25 11 25 8 25 12 25 12 | 68.00 | | 56.00 | | 32.00 | | 48.00 | | 36.00 | | 44.00 | | 52.00 | | 52.00 | | 36.00 | | 48.00 | | 36.00 | | 44.00 | | 40.00 | | 48.00 | | 48.00 | | 32.00 | | 44.00 | | 32.00 | | 48.00 | | 48.00 | | 2.4931 | 1.0541 | -0.4693 | 1.1315 | -0.1264 | -0.0256 | 0.2137 | 0.5827 | -0.8552 | 0.2568 | -1.2275 | 1.1620 | 0.4524 | 0.0030 | 0.0639 | -1.2137 | -0.3163 | -1.1375 | 0.4839 | 0.5026 0.9631 | 0.7961 | 0.7389 | 0.8033 | 0.7356 | 0.7366 | 0.7425 | 0.7600 | 0.7587 | 0.7440 | 0.8002 | 0.8063 | 0.7527 | 0.7371 | 0.7383 | 0.7982 | 0.7360 | 0.7877 | 0.7543 | 0.7553 | 369 1 Examinee195 1.00 TEST0001 1 Examinee196 1.00 TEST0001 1 Examinee197 1.00 TEST0001 1 Examinee198 1.00 TEST0001 1 Examinee199 1.00 TEST0001 1 Examinee200 1.00 TEST0001 1 Examinee201 1.00 TEST0001 1 Examinee202 1.00 TEST0001 1 Examinee203 1.00 TEST0001 1 Examinee204 1.00 TEST0001 1 Examinee205 1.00 TEST0001 1 Examinee206 1.00 TEST0001 1 Examinee207 1.00 TEST0001 1 Examinee208 1.00 TEST0001 1 Examinee209 1.00 TEST0001 1 Examinee210 1.00 TEST0001 1 Examinee211 1.00 TEST0001 1 Examinee212 1.00 TEST0001 1 Examinee213 1.00 TEST0001 1 Examinee214 1.00 TEST0001 25 15 25 20 25 13 25 15 25 10 25 11 25 12 25 14 25 16 25 12 25 11 25 11 25 9 25 11 25 12 25 12 25 10 25 7 25 7 25 8 | 60.00 | | 80.00 | | 52.00 | | 60.00 | | 40.00 | | 44.00 | | 48.00 | | 56.00 | | 64.00 | | 48.00 | | 44.00 | | 44.00 | | 36.00 | | 44.00 | | 48.00 | | 48.00 | | 40.00 | | 28.00 | | 28.00 | | 32.00 | | 1.7679 | 4.0000 | 1.7165 | 0.4377 | 0.0324 | 1.0925 | 0.0218 | 0.8155 | 2.7423 | -0.1669 | 0.5237 | -0.2945 | -1.0231 | 0.6543 | 0.6562 | 0.5676 | -0.6187 | -0.5004 | -0.6894 | -0.3215 0.8728 | 999.0000 | 0.8667 | 0.7519 | 0.7376 | 0.7996 | 0.7374 | 0.7760 | 0.9953 | 0.7354 | 0.7565 | 0.7358 | 0.7742 | 0.7645 | 0.7646 | 0.7591 | 0.7443 | 0.7398 | 0.7478 | 0.7361 | 370 1 Examinee215 1.00 TEST0001 1 Examinee216 1.00 TEST0001 1 Examinee217 1.00 TEST0001 1 Examinee218 1.00 TEST0001 1 Examinee219 1.00 TEST0001 1 Examinee220 1.00 TEST0001 1 Examinee221 1.00 TEST0001 1 Examinee222 1.00 TEST0001 1 Examinee223 1.00 TEST0001 1 Examinee224 1.00 TEST0001 1 Examinee225 1.00 TEST0001 1 Examinee226 1.00 TEST0001 1 Examinee227 1.00 TEST0001 1 Examinee228 1.00 TEST0001 1 Examinee229 1.00 TEST0001 1 Examinee230 1.00 TEST0001 1 Examinee231 1.00 TEST0001 1 Examinee232 1.00 TEST0001 1 Examinee233 1.00 TEST0001 1 Examinee234 1.00 TEST0001 25 15 25 12 25 17 25 15 25 17 25 8 25 22 25 14 25 12 25 16 25 16 25 19 25 20 25 11 25 9 25 13 25 10 25 8 25 9 25 16 | 60.00 | | 48.00 | | 68.00 | | 60.00 | | 68.00 | | 32.00 | | 88.00 | | 56.00 | | 48.00 | | 64.00 | | 64.00 | | 76.00 | | 80.00 | | 44.00 | | 36.00 | | 52.00 | | 40.00 | | 32.00 | | 36.00 | | 64.00 | | 1.3992 | 0.2248 | 2.0206 | 2.4960 | 3.2274 | -0.1128 | 4.0000 | 1.9688 | 0.0696 | 2.6756 | 2.0953 | 3.2939 | 4.0000 | 0.5864 | -0.8447 | 1.3993 | 0.1750 | -0.8320 | 0.1183 | 1.9429 0.8306 | 0.7428 | 0.9036 | 0.9634 | 1.0618 | 0.7357 | 999.0000 | 0.8972 | 0.7384 | 0.9866 | 0.9129 | 1.0714 | 999.0000 | 0.7602 | 0.7579 | 0.8307 | 0.7412 | 0.7569 | 0.7396 | 0.8940 | 371 1 Examinee235 1.00 TEST0001 1 Examinee236 1.00 TEST0001 1 Examinee237 1.00 TEST0001 1 Examinee238 1.00 TEST0001 1 Examinee239 1.00 TEST0001 1 Examinee240 1.00 TEST0001 1 Examinee241 1.00 TEST0001 1 Examinee242 1.00 TEST0001 1 Examinee243 1.00 TEST0001 1 Examinee244 1.00 TEST0001 1 Examinee245 1.00 TEST0001 1 Examinee246 1.00 TEST0001 1 Examinee247 1.00 TEST0001 1 Examinee248 1.00 TEST0001 1 Examinee249 1.00 TEST0001 1 Examinee250 1.00 TEST0001 1 Examinee251 1.00 TEST0001 1 Examinee252 1.00 TEST0001 1 Examinee253 1.00 TEST0001 1 Examinee254 1.00 TEST0001 25 9 25 12 25 11 25 11 25 16 25 10 25 13 25 14 25 9 25 10 25 8 25 12 25 7 25 12 25 8 25 8 25 10 25 12 25 5 25 12 | 36.00 | | 48.00 | | 44.00 | | 44.00 | | 64.00 | | 40.00 | | 52.00 | | 56.00 | | 36.00 | | 40.00 | | 32.00 | | 48.00 | | 28.00 | | 48.00 | | 32.00 | | 32.00 | | 40.00 | | 48.00 | | 20.00 | | 48.00 | | -0.4840 | 0.4503 | -1.0013 | 1.3259 | 1.8636 | 0.5081 | 0.7205 | 1.0338 | -0.4459 | -0.7120 | -0.3328 | 0.1674 | -0.7864 | 0.1769 | -0.7488 | -0.1672 | -0.5189 | 0.8382 | -2.9969 | 0.4754 0.7394 | 0.7525 | 0.7719 | 0.8228 | 0.8844 | 0.7556 | 0.7690 | 0.7942 | 0.7383 | 0.7490 | 0.7362 | 0.7410 | 0.7537 | 0.7413 | 0.7512 | 0.7354 | 0.7404 | 0.7778 | 1.6072 | 0.7539 | 372 1 Examinee255 1.00 TEST0001 1 Examinee256 1.00 TEST0001 1 Examinee257 1.00 TEST0001 1 Examinee258 1.00 TEST0001 1 Examinee259 1.00 TEST0001 1 Examinee260 1.00 TEST0001 1 Examinee261 1.00 TEST0001 1 Examinee262 1.00 TEST0001 1 Examinee263 1.00 TEST0001 1 Examinee264 1.00 TEST0001 1 Examinee265 1.00 TEST0001 1 Examinee266 1.00 TEST0001 1 Examinee267 1.00 TEST0001 1 Examinee268 1.00 TEST0001 1 Examinee269 1.00 TEST0001 1 Examinee270 1.00 TEST0001 1 Examinee271 1.00 TEST0001 1 Examinee272 1.00 TEST0001 1 Examinee273 1.00 TEST0001 1 Examinee274 1.00 TEST0001 25 9 25 17 25 9 25 16 25 14 25 12 25 15 25 12 25 9 25 9 25 6 25 7 25 5 25 14 25 6 25 11 25 8 25 7 25 9 25 14 | 36.00 | | 68.00 | | 36.00 | | 64.00 | | 56.00 | | 48.00 | | 60.00 | | 48.00 | | 36.00 | | 36.00 | | 24.00 | | 28.00 | | 20.00 | | 56.00 | | 24.00 | | 44.00 | | 32.00 | | 28.00 | | 36.00 | | 56.00 | | -0.7222 | 2.3499 | -0.4170 | 2.4830 | 1.5972 | 0.4982 | 1.9216 | 0.8527 | 0.2027 | -0.1792 | -1.4382 | -1.3447 | -4.0000 | 1.9728 | -0.7025 | 0.0851 | -0.8494 | -0.9834 | 0.0505 | 0.7923 0.7496 | 0.9449 | 0.7377 | 0.9618 | 0.8528 | 0.7551 | 0.8914 | 0.7789 | 0.7421 | 0.7354 | 0.8369 | 0.8193 | 999.0000 | 0.8977 | 0.7485 | 0.7388 | 0.7582 | 0.7701 | 0.7380 | 0.7742 | 373 1 Examinee275 1.00 TEST0001 1 Examinee276 1.00 TEST0001 1 Examinee277 1.00 TEST0001 1 Examinee278 1.00 TEST0001 1 Examinee279 1.00 TEST0001 1 Examinee280 1.00 TEST0001 1 Examinee281 1.00 TEST0001 1 Examinee282 1.00 TEST0001 1 Examinee283 1.00 TEST0001 1 Examinee284 1.00 TEST0001 1 Examinee285 1.00 TEST0001 1 Examinee286 1.00 TEST0001 1 Examinee287 1.00 TEST0001 1 Examinee288 1.00 TEST0001 1 Examinee289 1.00 TEST0001 1 Examinee290 1.00 TEST0001 1 Examinee291 1.00 TEST0001 1 Examinee292 1.00 TEST0001 1 Examinee293 1.00 TEST0001 1 Examinee294 1.00 TEST0001 25 13 25 13 25 12 25 10 25 11 25 13 25 9 25 13 25 13 25 10 25 10 25 9 25 14 25 11 25 10 25 12 25 8 25 12 25 9 25 10 | 52.00 | | 52.00 | | 48.00 | | 40.00 | | 44.00 | | 52.00 | | 36.00 | | 52.00 | | 52.00 | | 40.00 | | 40.00 | | 36.00 | | 56.00 | | 44.00 | | 40.00 | | 48.00 | | 32.00 | | 48.00 | | 36.00 | | 40.00 | | 0.3124 | 0.7381 | 0.6447 | -0.6476 | -0.9532 | 1.3159 | 0.3447 | 0.7037 | 0.6848 | 0.2906 | -0.2627 | -0.3578 | 1.4357 | 0.3489 | 0.3399 | 0.1836 | -1.6239 | 0.5392 | -1.1456 | 0.2684 0.7462 | 0.7703 | 0.7639 | 0.7456 | 0.7671 | 0.8218 | 0.7475 | 0.7678 | 0.7665 | 0.7453 | 0.7356 | 0.7366 | 0.8346 | 0.7477 | 0.7473 | 0.7415 | 0.8789 | 0.7574 | 0.7888 | 0.7444 | 374 1 Examinee295 1.00 TEST0001 1 Examinee296 1.00 TEST0001 1 Examinee297 1.00 TEST0001 1 Examinee298 1.00 TEST0001 1 Examinee299 1.00 TEST0001 1 Examinee300 1.00 TEST0001 1 Examinee301 1.00 TEST0001 1 Examinee302 1.00 TEST0001 1 Examinee303 1.00 TEST0001 1 Examinee304 1.00 TEST0001 1 Examinee305 1.00 TEST0001 1 Examinee306 1.00 TEST0001 1 Examinee307 1.00 TEST0001 1 Examinee308 1.00 TEST0001 1 Examinee309 1.00 TEST0001 1 Examinee310 1.00 TEST0001 1 Examinee311 1.00 TEST0001 1 Examinee312 1.00 TEST0001 1 Examinee313 1.00 TEST0001 1 Examinee314 1.00 TEST0001 25 13 25 13 25 10 25 13 25 10 25 9 25 13 25 10 25 5 25 10 25 14 25 6 25 13 25 12 25 14 25 14 25 9 25 9 25 5 25 7 | 52.00 | | 52.00 | | 40.00 | | 52.00 | | 40.00 | | 36.00 | | 52.00 | | 40.00 | | 20.00 | | 40.00 | | 56.00 | | 24.00 | | 52.00 | | 48.00 | | 56.00 | | 56.00 | | 36.00 | | 36.00 | | 20.00 | | 28.00 | | -0.0862 | 0.1485 | -0.0794 | 0.1166 | 0.1808 | -0.6047 | 0.3334 | 0.0425 | -1.4780 | -0.5990 | 1.4871 | -1.2399 | 0.5024 | 0.1573 | 0.3507 | 1.2250 | -0.7819 | -0.6147 | -1.9815 | -0.8217 0.7359 | 0.7404 | 0.7360 | 0.7395 | 0.7414 | 0.7437 | 0.7470 | 0.7378 | 0.8451 | 0.7434 | 0.8403 | 0.8021 | 0.7553 | 0.7407 | 0.7478 | 0.8125 | 0.7534 | 0.7441 | 0.9904 | 0.7561 | 375 1 Examinee315 1.00 TEST0001 1 Examinee316 1.00 TEST0001 1 Examinee317 1.00 TEST0001 1 Examinee318 1.00 TEST0001 1 Examinee319 1.00 TEST0001 1 Examinee320 1.00 TEST0001 1 Examinee321 1.00 TEST0001 1 Examinee322 1.00 TEST0001 1 Examinee323 1.00 TEST0001 1 Examinee324 1.00 TEST0001 1 Examinee325 1.00 TEST0001 1 Examinee326 1.00 TEST0001 1 Examinee327 1.00 TEST0001 1 Examinee328 1.00 TEST0001 1 Examinee329 1.00 TEST0001 1 Examinee330 1.00 TEST0001 1 Examinee331 1.00 TEST0001 1 Examinee332 1.00 TEST0001 1 Examinee333 1.00 TEST0001 1 Examinee334 1.00 TEST0001 25 4 25 7 25 15 25 11 25 8 25 8 25 8 25 19 25 15 25 12 25 12 25 11 25 8 25 12 25 12 25 14 25 14 25 13 25 8 25 14 | 16.00 | | 28.00 | | 60.00 | | 44.00 | | 32.00 | | 32.00 | | 32.00 | | 76.00 | | 60.00 | | 48.00 | | 48.00 | | 44.00 | | 32.00 | | 48.00 | | 48.00 | | 56.00 | | 56.00 | | 52.00 | | 32.00 | | 56.00 | | -1.8643 | -1.0981 | 1.6737 | 1.0778 | 0.0596 | -1.2400 | -0.5678 | 3.9714 | 1.3523 | 0.9189 | 0.1558 | -0.4765 | -0.7360 | -0.2879 | 0.7576 | 1.5338 | 0.7492 | 0.5439 | -0.7353 | 1.7395 0.9491 | 0.7828 | 0.8617 | 0.7983 | 0.7382 | 0.8021 | 0.7422 | 1.1804 | 0.8256 | 0.7843 | 0.7406 | 0.7391 | 0.7504 | 0.7357 | 0.7717 | 0.8456 | 0.7711 | 0.7577 | 0.7504 | 0.8695 | 376 1 Examinee335 1.00 TEST0001 1 Examinee336 1.00 TEST0001 1 Examinee337 1.00 TEST0001 1 Examinee338 1.00 TEST0001 1 Examinee339 1.00 TEST0001 1 Examinee340 1.00 TEST0001 1 Examinee341 1.00 TEST0001 1 Examinee342 1.00 TEST0001 1 Examinee343 1.00 TEST0001 1 Examinee344 1.00 TEST0001 1 Examinee345 1.00 TEST0001 1 Examinee346 1.00 TEST0001 1 Examinee347 1.00 TEST0001 1 Examinee348 1.00 TEST0001 1 Examinee349 1.00 TEST0001 1 Examinee350 1.00 TEST0001 1 Examinee351 1.00 TEST0001 1 Examinee352 1.00 TEST0001 1 Examinee353 1.00 TEST0001 1 Examinee354 1.00 TEST0001 25 9 25 12 25 13 25 14 25 13 25 12 25 13 25 11 25 8 25 6 25 12 25 7 25 11 25 14 25 11 25 6 25 9 25 14 25 10 25 10 | 36.00 | | 48.00 | | 52.00 | | 56.00 | | 52.00 | | 48.00 | | 52.00 | | 44.00 | | 32.00 | | 24.00 | | 48.00 | | 28.00 | | 44.00 | | 56.00 | | 44.00 | | 24.00 | | 36.00 | | 56.00 | | 40.00 | | 40.00 | | -0.3485 | 0.5114 | 0.8208 | 0.9036 | 0.9366 | -0.6630 | 1.5691 | 0.6771 | -0.9701 | -2.8755 | 0.5826 | -1.5366 | 0.6665 | 1.3041 | 0.3087 | -0.6055 | -0.8529 | 1.9414 | -1.0711 | -0.3234 0.7364 | 0.7558 | 0.7764 | 0.7830 | 0.7858 | 0.7464 | 0.8496 | 0.7660 | 0.7688 | 1.5046 | 0.7600 | 0.8580 | 0.7653 | 0.8206 | 0.7460 | 0.7437 | 0.7585 | 0.8939 | 0.7796 | 0.7361 | 377 1 Examinee355 1.00 TEST0001 1 Examinee356 1.00 TEST0001 1 Examinee357 1.00 TEST0001 1 Examinee358 1.00 TEST0001 1 Examinee359 1.00 TEST0001 1 Examinee360 1.00 TEST0001 1 Examinee361 1.00 TEST0001 1 Examinee362 1.00 TEST0001 1 Examinee363 1.00 TEST0001 1 Examinee364 1.00 TEST0001 1 Examinee365 1.00 TEST0001 1 Examinee366 1.00 TEST0001 1 Examinee367 1.00 TEST0001 1 Examinee368 1.00 TEST0001 1 Examinee369 1.00 TEST0001 1 Examinee370 1.00 TEST0001 1 Examinee371 1.00 TEST0001 1 Examinee372 1.00 TEST0001 1 Examinee373 1.00 TEST0001 1 Examinee374 1.00 TEST0001 25 12 25 11 25 8 25 13 25 15 25 11 25 12 25 10 25 9 25 13 25 9 25 6 25 13 25 12 25 13 25 8 25 10 25 11 25 8 25 9 | 48.00 | | 44.00 | | 32.00 | | 52.00 | | 60.00 | | 44.00 | | 48.00 | | 40.00 | | 36.00 | | 52.00 | | 36.00 | | 24.00 | | 52.00 | | 48.00 | | 52.00 | | 32.00 | | 40.00 | | 44.00 | | 32.00 | | 36.00 | | -0.2761 | -0.8021 | -0.3720 | 1.2318 | 1.5379 | 0.0470 | 0.6215 | -0.7460 | 0.1371 | 0.2040 | -0.7759 | -1.9509 | 0.9447 | 1.0608 | 0.3518 | -0.2346 | -0.5628 | -0.7695 | -0.8341 | -0.7411 0.7356 | 0.7547 | 0.7368 | 0.8131 | 0.8460 | 0.7379 | 0.7624 | 0.7510 | 0.7401 | 0.7421 | 0.7530 | 0.9791 | 0.7864 | 0.7967 | 0.7478 | 0.7354 | 0.7420 | 0.7525 | 0.7571 | 0.7507 | 378 1 Examinee375 1.00 TEST0001 1 Examinee376 1.00 TEST0001 1 Examinee377 1.00 TEST0001 1 Examinee378 1.00 TEST0001 1 Examinee379 1.00 TEST0001 1 Examinee380 1.00 TEST0001 1 Examinee381 1.00 TEST0001 1 Examinee382 1.00 TEST0001 1 Examinee383 1.00 TEST0001 1 Examinee384 1.00 TEST0001 1 Examinee385 1.00 TEST0001 1 Examinee386 1.00 TEST0001 1 Examinee387 1.00 TEST0001 1 Examinee388 1.00 TEST0001 1 Examinee389 1.00 TEST0001 1 Examinee390 1.00 TEST0001 1 Examinee391 1.00 TEST0001 1 Examinee392 1.00 TEST0001 1 Examinee393 1.00 TEST0001 1 Examinee394 1.00 TEST0001 25 10 25 11 25 12 25 3 25 7 25 8 25 13 25 7 25 11 25 13 25 15 25 10 25 9 25 11 25 8 25 6 25 11 25 12 25 12 25 10 | 40.00 | | 44.00 | | 48.00 | | 12.00 | | 28.00 | | 32.00 | | 52.00 | | 28.00 | | 44.00 | | 52.00 | | 60.00 | | 40.00 | | 36.00 | | 44.00 | | 32.00 | | 24.00 | | 44.00 | | 48.00 | | 48.00 | | 40.00 | | -1.1689 | 0.2258 | 0.4518 | -2.2968 | -1.4387 | -0.2622 | 0.6567 | -1.4310 | -0.0318 | 0.3615 | 1.5899 | -1.2145 | 0.0880 | -0.0259 | -0.8657 | -0.6113 | 0.3610 | 0.6283 | 0.4251 | 0.0168 0.7919 | 0.7429 | 0.7526 | 1.1287 | 0.8370 | 0.7356 | 0.7647 | 0.8355 | 0.7365 | 0.7483 | 0.8519 | 0.7983 | 0.7388 | 0.7366 | 0.7595 | 0.7440 | 0.7482 | 0.7628 | 0.7513 | 0.7373 | 379 1 Examinee395 1.00 TEST0001 1 Examinee396 1.00 TEST0001 1 Examinee397 1.00 TEST0001 1 Examinee398 1.00 TEST0001 1 Examinee399 1.00 TEST0001 1 Examinee400 1.00 TEST0001 1 Examinee401 1.00 TEST0001 1 Examinee402 1.00 TEST0001 1 Examinee403 1.00 TEST0001 1 Examinee404 1.00 TEST0001 1 Examinee405 1.00 TEST0001 1 Examinee406 1.00 TEST0001 1 Examinee407 1.00 TEST0001 1 Examinee408 1.00 TEST0001 1 Examinee409 1.00 TEST0001 1 Examinee410 1.00 TEST0001 1 Examinee411 1.00 TEST0001 1 Examinee412 1.00 TEST0001 1 Examinee413 1.00 TEST0001 1 Examinee414 1.00 TEST0001 25 10 25 7 25 7 25 9 25 12 25 11 25 11 25 11 25 12 25 17 25 11 25 10 25 11 25 6 25 12 25 12 25 9 25 6 25 9 25 12 | 40.00 | | 28.00 | | 28.00 | | 36.00 | | 48.00 | | 44.00 | | 44.00 | | 44.00 | | 48.00 | | 68.00 | | 44.00 | | 40.00 | | 44.00 | | 24.00 | | 48.00 | | 48.00 | | 36.00 | | 24.00 | | 36.00 | | 48.00 | | 0.5886 | -1.1819 | -0.9518 | -1.1873 | 0.2010 | -0.3572 | 0.0798 | 0.5000 | 1.3204 | 2.1653 | 0.3541 | -0.6347 | -0.4154 | -2.0249 | -0.0921 | -0.7554 | -1.6881 | -1.7891 | -0.0104 | 0.3313 0.7603 | 0.7937 | 0.7670 | 0.7944 | 0.7420 | 0.7366 | 0.7386 | 0.7552 | 0.8223 | 0.9216 | 0.7479 | 0.7450 | 0.7376 | 1.0070 | 0.7358 | 0.7516 | 0.8958 | 0.9250 | 0.7369 | 0.7469 | 380 1 Examinee415 1.00 TEST0001 1 Examinee416 1.00 TEST0001 1 Examinee417 1.00 TEST0001 1 Examinee418 1.00 TEST0001 1 Examinee419 1.00 TEST0001 1 Examinee420 1.00 TEST0001 1 Examinee421 1.00 TEST0001 1 Examinee422 1.00 TEST0001 1 Examinee423 1.00 TEST0001 1 Examinee424 1.00 TEST0001 1 Examinee425 1.00 TEST0001 1 Examinee426 1.00 TEST0001 1 Examinee427 1.00 TEST0001 1 Examinee428 1.00 TEST0001 1 Examinee429 1.00 TEST0001 1 Examinee430 1.00 TEST0001 1 Examinee431 1.00 TEST0001 1 Examinee432 1.00 TEST0001 1 Examinee433 1.00 TEST0001 1 Examinee434 1.00 TEST0001 25 13 25 12 25 7 25 16 25 9 25 13 25 6 25 14 25 7 25 8 25 13 25 13 25 7 25 10 25 8 25 10 25 13 25 12 25 8 25 14 | 52.00 | | 48.00 | | 28.00 | | 64.00 | | 36.00 | | 52.00 | | 24.00 | | 56.00 | | 28.00 | | 32.00 | | 52.00 | | 52.00 | | 28.00 | | 40.00 | | 32.00 | | 40.00 | | 52.00 | | 48.00 | | 32.00 | | 56.00 | | 1.0315 | -0.5490 | -1.0974 | 2.1284 | -0.0779 | 0.4648 | -1.2682 | 1.0609 | -2.0850 | -0.6443 | 0.1737 | 1.1337 | -2.7697 | 0.2101 | -0.1369 | -0.4816 | -0.3379 | -0.0431 | -0.7141 | 1.2673 0.7940 | 0.7415 | 0.7827 | 0.9170 | 0.7360 | 0.7533 | 0.8065 | 0.7967 | 1.0313 | 0.7455 | 0.7412 | 0.8035 | 1.4224 | 0.7423 | 0.7355 | 0.7393 | 0.7363 | 0.7364 | 0.7491 | 0.8167 | 381 1 Examinee435 1.00 TEST0001 1 Examinee436 1.00 TEST0001 1 Examinee437 1.00 TEST0001 1 Examinee438 1.00 TEST0001 1 Examinee439 1.00 TEST0001 1 Examinee440 1.00 TEST0001 1 Examinee441 1.00 TEST0001 1 Examinee442 1.00 TEST0001 1 Examinee443 1.00 TEST0001 1 Examinee444 1.00 TEST0001 1 Examinee445 1.00 TEST0001 1 Examinee446 1.00 TEST0001 1 Examinee447 1.00 TEST0001 1 Examinee448 1.00 TEST0001 1 Examinee449 1.00 TEST0001 1 Examinee450 1.00 TEST0001 1 Examinee451 1.00 TEST0001 1 Examinee452 1.00 TEST0001 1 Examinee453 1.00 TEST0001 1 Examinee454 1.00 TEST0001 25 15 25 6 25 12 25 9 25 7 25 7 25 13 25 11 25 8 25 13 25 7 25 11 25 12 25 9 25 12 25 10 25 9 25 13 25 14 25 14 | 60.00 | | 24.00 | | 48.00 | | 36.00 | | 28.00 | | 28.00 | | 52.00 | | 44.00 | | 32.00 | | 52.00 | | 28.00 | | 44.00 | | 48.00 | | 36.00 | | 48.00 | | 40.00 | | 36.00 | | 52.00 | | 56.00 | | 56.00 | | 1.4892 | -1.6325 | -0.0614 | 0.5064 | -1.3256 | -1.5769 | -0.2950 | 0.4814 | -0.7533 | 1.0506 | -0.1948 | 0.3729 | 0.7694 | 0.2389 | 0.6399 | 0.0634 | -0.4922 | -0.8171 | 1.5470 | 1.2265 0.8406 | 0.8811 | 0.7362 | 0.7555 | 0.8160 | 0.8673 | 0.7358 | 0.7542 | 0.7515 | 0.7958 | 0.7354 | 0.7488 | 0.7725 | 0.7433 | 0.7636 | 0.7383 | 0.7396 | 0.7558 | 0.8471 | 0.8126 | 382 1 Examinee455 1.00 TEST0001 1 Examinee456 1.00 TEST0001 1 Examinee457 1.00 TEST0001 1 Examinee458 1.00 TEST0001 1 Examinee459 1.00 TEST0001 1 Examinee460 1.00 TEST0001 1 Examinee461 1.00 TEST0001 1 Examinee462 1.00 TEST0001 1 Examinee463 1.00 TEST0001 1 Examinee464 1.00 TEST0001 1 Examinee465 1.00 TEST0001 1 Examinee466 1.00 TEST0001 1 Examinee467 1.00 TEST0001 1 Examinee468 1.00 TEST0001 1 Examinee469 1.00 TEST0001 1 Examinee470 1.00 TEST0001 1 Examinee471 1.00 TEST0001 1 Examinee472 1.00 TEST0001 1 Examinee473 1.00 TEST0001 1 Examinee474 1.00 TEST0001 25 9 25 11 25 11 25 10 25 13 25 16 25 11 25 8 25 12 25 9 25 7 25 7 25 11 25 18 25 10 25 8 25 12 25 10 25 10 25 10 | 36.00 | | 44.00 | | 44.00 | | 40.00 | | 52.00 | | 64.00 | | 44.00 | | 32.00 | | 48.00 | | 36.00 | | 28.00 | | 28.00 | | 44.00 | | 72.00 | | 40.00 | | 32.00 | | 48.00 | | 40.00 | | 40.00 | | 40.00 | | -0.3140 | -0.7280 | -0.3188 | 0.7441 | 0.6346 | 2.6927 | -0.6003 | -0.9574 | 0.0882 | -0.3052 | -0.5703 | -1.3286 | -0.2564 | 3.1645 | 0.1734 | -0.8100 | 0.5121 | 0.2980 | -0.0031 | 0.0868 0.7360 | 0.7500 | 0.7361 | 0.7707 | 0.7632 | 0.9888 | 0.7435 | 0.7675 | 0.7388 | 0.7359 | 0.7423 | 0.8165 | 0.7355 | 1.0527 | 0.7412 | 0.7553 | 0.7559 | 0.7456 | 0.7370 | 0.7388 | 383 1 Examinee475 1.00 TEST0001 1 Examinee476 1.00 TEST0001 1 Examinee477 1.00 TEST0001 1 Examinee478 1.00 TEST0001 1 Examinee479 1.00 TEST0001 1 Examinee480 1.00 TEST0001 1 Examinee481 1.00 TEST0001 1 Examinee482 1.00 TEST0001 1 Examinee483 1.00 TEST0001 1 Examinee484 1.00 TEST0001 1 Examinee485 1.00 TEST0001 1 Examinee486 1.00 TEST0001 1 Examinee487 1.00 TEST0001 1 Examinee488 1.00 TEST0001 1 Examinee489 1.00 TEST0001 1 Examinee490 1.00 TEST0001 1 Examinee491 1.00 TEST0001 1 Examinee492 1.00 TEST0001 1 Examinee493 1.00 TEST0001 1 Examinee494 1.00 TEST0001 25 9 25 11 25 8 25 12 25 8 25 9 25 10 25 11 25 10 25 12 25 16 25 10 25 11 25 9 25 14 25 13 25 14 25 14 25 17 25 13 | 36.00 | | 44.00 | | 32.00 | | 48.00 | | 32.00 | | 36.00 | | 40.00 | | 44.00 | | 40.00 | | 48.00 | | 64.00 | | 40.00 | | 44.00 | | 36.00 | | 56.00 | | 52.00 | | 56.00 | | 56.00 | | 68.00 | | 52.00 | | -0.7600 | 0.1140 | -0.2667 | 0.2571 | -0.4707 | 0.0817 | 0.2741 | -0.6283 | 0.2674 | 0.0512 | 2.0163 | -0.0299 | 0.2300 | 0.1559 | 0.5696 | 1.4964 | 1.2382 | 0.6263 | 1.8714 | 0.0113 0.7519 | 0.7395 | 0.7356 | 0.7440 | 0.7390 | 0.7387 | 0.7446 | 0.7447 | 0.7444 | 0.7380 | 0.9031 | 0.7366 | 0.7430 | 0.7406 | 0.7592 | 0.8414 | 0.8138 | 0.7627 | 0.8853 | 0.7372 | 384 1 Examinee495 1.00 TEST0001 1 Examinee496 1.00 TEST0001 1 Examinee497 1.00 TEST0001 1 Examinee498 1.00 TEST0001 1 Examinee499 1.00 TEST0001 1 Examinee500 1.00 TEST0001 1 Examinee501 1.00 TEST0001 1 Examinee502 1.00 TEST0001 1 Examinee503 1.00 TEST0001 1 Examinee504 1.00 TEST0001 1 Examinee505 1.00 TEST0001 1 Examinee506 1.00 TEST0001 1 Examinee507 1.00 TEST0001 1 Examinee508 1.00 TEST0001 1 Examinee509 1.00 TEST0001 1 Examinee510 1.00 TEST0001 1 Examinee511 1.00 TEST0001 1 Examinee512 1.00 TEST0001 1 Examinee513 1.00 TEST0001 1 Examinee514 1.00 TEST0001 25 6 25 16 25 12 25 7 25 13 25 10 25 12 25 10 25 6 25 9 25 19 25 14 25 15 25 15 25 12 25 13 25 12 25 12 25 12 25 12 | 24.00 | | 64.00 | | 48.00 | | 28.00 | | 52.00 | | 40.00 | | 48.00 | | 40.00 | | 24.00 | | 36.00 | | 76.00 | | 56.00 | | 60.00 | | 60.00 | | 48.00 | | 52.00 | | 48.00 | | 48.00 | | 48.00 | | 48.00 | | -1.1911 | 0.9964 | 0.5627 | -1.9313 | 0.7143 | -0.4937 | -0.0866 | 0.2228 | -1.0593 | 0.1551 | 3.4405 | 1.4070 | 1.4852 | 1.1945 | 0.3828 | 0.5484 | 0.1448 | 1.0626 | -0.0145 | 0.8964 0.7950 | 0.7909 | 0.7588 | 0.9721 | 0.7686 | 0.7396 | 0.7359 | 0.7428 | 0.7782 | 0.7406 | 1.0934 | 0.8315 | 0.8401 | 0.8094 | 0.7492 | 0.7579 | 0.7403 | 0.7969 | 0.7368 | 0.7824 | 385 1 Examinee515 1.00 TEST0001 1 Examinee516 1.00 TEST0001 1 Examinee517 1.00 TEST0001 1 Examinee518 1.00 TEST0001 1 Examinee519 1.00 TEST0001 1 Examinee520 1.00 TEST0001 1 Examinee521 1.00 TEST0001 1 Examinee522 1.00 TEST0001 1 Examinee523 1.00 TEST0001 1 Examinee524 1.00 TEST0001 1 Examinee525 1.00 TEST0001 1 Examinee526 1.00 TEST0001 1 Examinee527 1.00 TEST0001 1 Examinee528 1.00 TEST0001 1 Examinee529 1.00 TEST0001 1 Examinee530 1.00 TEST0001 1 Examinee531 1.00 TEST0001 1 Examinee532 1.00 TEST0001 1 Examinee533 1.00 TEST0001 1 Examinee534 1.00 TEST0001 25 12 25 6 25 14 25 13 25 10 25 10 25 11 25 8 25 13 25 13 25 17 25 9 25 8 25 10 25 8 25 9 25 5 25 11 25 11 25 9 | 48.00 | | 24.00 | | 56.00 | | 52.00 | | 40.00 | | 40.00 | | 44.00 | | 32.00 | | 52.00 | | 52.00 | | 68.00 | | 36.00 | | 32.00 | | 40.00 | | 32.00 | | 36.00 | | 20.00 | | 44.00 | | 44.00 | | 36.00 | | 0.7334 | -0.8534 | 1.4455 | -0.0223 | 0.7223 | -0.2289 | 0.2943 | -0.7301 | 0.4741 | 1.0281 | 2.6467 | -0.6984 | -0.3939 | -0.4427 | -0.6490 | -0.3943 | -2.9951 | 0.0043 | 0.9790 | -0.5080 0.7699 | 0.7585 | 0.8357 | 0.7367 | 0.7691 | 0.7354 | 0.7454 | 0.7501 | 0.7538 | 0.7937 | 0.9828 | 0.7483 | 0.7372 | 0.7383 | 0.7457 | 0.7372 | 1.6051 | 0.7371 | 0.7894 | 0.7401 | 386 1 Examinee535 1.00 TEST0001 1 Examinee536 1.00 TEST0001 1 Examinee537 1.00 TEST0001 1 Examinee538 1.00 TEST0001 1 Examinee539 1.00 TEST0001 1 Examinee540 1.00 TEST0001 1 Examinee541 1.00 TEST0001 1 Examinee542 1.00 TEST0001 1 Examinee543 1.00 TEST0001 1 Examinee544 1.00 TEST0001 1 Examinee545 1.00 TEST0001 1 Examinee546 1.00 TEST0001 1 Examinee547 1.00 TEST0001 1 Examinee548 1.00 TEST0001 1 Examinee549 1.00 TEST0001 1 Examinee550 1.00 TEST0001 1 Examinee551 1.00 TEST0001 1 Examinee552 1.00 TEST0001 1 Examinee553 1.00 TEST0001 1 Examinee554 1.00 TEST0001 25 12 25 9 25 12 25 8 25 13 25 7 25 15 25 16 25 9 25 10 25 10 25 13 25 7 25 5 25 10 25 4 25 4 25 6 25 6 25 5 | 48.00 | | 36.00 | | 48.00 | | 32.00 | | 52.00 | | 28.00 | | 60.00 | | 64.00 | | 36.00 | | 40.00 | | 40.00 | | 52.00 | | 28.00 | | 20.00 | | 40.00 | | 16.00 | | 16.00 | | 24.00 | | 24.00 | | 20.00 | | 0.6138 0.7619 | | -0.3725 0.7368 | | 1.4902 0.8407 | | -0.9142 0.7636 | | 0.9875 0.7901 | | -1.4576 0.8409 | | 2.6498 0.9832 | | 2.4701 0.9601 | | -0.6858 0.7476 | | -0.6405 0.7453 | | 0.1277 0.7398 | | 1.0608 0.7967 | | -2.7009 1.3725 | | -3.2572 1.8567 | | -0.1610 0.7354 | | -3.2190 1.8173 | | -4.0000 999.0000 | | -2.6912 1.3657 | | -2.5816 1.2919 | | -3.2865 1.8878 | 387 1 Examinee555 1.00 TEST0001 1 Examinee556 1.00 TEST0001 1 Examinee557 1.00 TEST0001 1 Examinee558 1.00 TEST0001 1 Examinee559 1.00 TEST0001 1 Examinee560 1.00 TEST0001 1 Examinee561 1.00 TEST0001 1 Examinee562 1.00 TEST0001 1 Examinee563 1.00 TEST0001 1 Examinee564 1.00 TEST0001 1 Examinee565 1.00 TEST0001 1 Examinee566 1.00 TEST0001 1 Examinee567 1.00 TEST0001 1 Examinee568 1.00 TEST0001 1 Examinee569 1.00 TEST0001 1 Examinee570 1.00 TEST0001 1 Examinee571 1.00 TEST0001 1 Examinee572 1.00 TEST0001 1 Examinee573 1.00 TEST0001 1 Examinee574 1.00 TEST0001 25 7 25 7 25 2 25 3 25 6 25 2 25 5 25 8 25 7 25 8 25 9 25 8 25 9 25 3 25 4 25 7 25 5 25 3 25 6 25 4 | 28.00 | | 28.00 | | 8.00 | | 12.00 | | 24.00 | | 8.00 | | 20.00 | | 32.00 | | 28.00 | | 32.00 | | 36.00 | | 32.00 | | 36.00 | | 12.00 | | 16.00 | | 28.00 | | 20.00 | | 12.00 | | 24.00 | | 16.00 | | -3.7333 2.4435 | | -1.8887 0.9572 | | -4.0000 999.0000 | | -4.0000 999.0000 | | -3.4974 2.1279 | | -4.0000 999.0000 | | -4.0000 999.0000 | | -1.8450 0.9427 | | -1.2477 0.8033 | | -2.2845 1.1225 | | -0.9680 0.7686 | | -2.0146 1.0031 | | -2.6094 1.3103 | | -4.0000 999.0000 | | -2.7631 1.4177 | | -2.9890 1.5998 | | -4.0000 999.0000 | | -4.0000 999.0000 | | -4.0000 999.0000 | | -4.0000 999.0000 | 388 1 Examinee575 1.00 TEST0001 1 Examinee576 1.00 TEST0001 1 Examinee577 1.00 TEST0001 1 Examinee578 1.00 TEST0001 1 Examinee579 1.00 TEST0001 1 Examinee580 1.00 TEST0001 1 Examinee581 1.00 TEST0001 1 Examinee582 1.00 TEST0001 1 Examinee583 1.00 TEST0001 1 Examinee584 1.00 TEST0001 1 Examinee585 1.00 TEST0001 1 Examinee586 1.00 TEST0001 1 Examinee587 1.00 TEST0001 1 Examinee588 1.00 TEST0001 1 Examinee589 1.00 TEST0001 1 Examinee590 1.00 TEST0001 1 Examinee591 1.00 TEST0001 1 Examinee592 1.00 TEST0001 1 Examinee593 1.00 TEST0001 1 Examinee594 1.00 TEST0001 25 8 25 2 25 3 25 10 25 1 25 10 25 8 25 12 25 8 25 10 25 14 25 9 25 12 25 12 25 14 25 8 25 13 25 7 25 15 25 12 | | 32.00 | -1.7802 0.9223 | | | 8.00 | -4.0000 999.0000 | | | 12.00 | -4.0000 999.0000 | | | 40.00 | -1.3214 0.8153 | | | 4.00 | -4.0000 999.0000 | | | 40.00 | 0.4671 0.7534 | | | 32.00 | 0.0504 0.7380 | | | 48.00 | 0.3888 0.7495 | | | 32.00 | -0.7513 0.7514 | | | 40.00 | 0.2426 0.7435 | | | 56.00 | 0.6005 0.7611 | | | 36.00 | -0.7449 0.7510 | | | 48.00 | 0.7462 0.7708 | | | 48.00 | 0.3988 0.7500 | | | 56.00 | 1.5866 0.8516 | | | 32.00 | -0.9158 0.7637 | | | 52.00 | 0.5054 0.7555 | | | 28.00 | -0.9182 0.7639 | | | 60.00 | 0.8342 0.7774 | | | 48.00 | -0.2237 0.7354 | 389 1 Examinee595 1.00 TEST0001 1 Examinee596 1.00 TEST0001 1 Examinee597 1.00 TEST0001 1 Examinee598 1.00 TEST0001 1 Examinee599 1.00 TEST0001 1 Examinee600 1.00 TEST0001 1 Examinee601 1.00 TEST0001 1 Examinee602 1.00 TEST0001 1 Examinee603 1.00 TEST0001 1 Examinee604 1.00 TEST0001 1 Examinee605 1.00 TEST0001 1 Examinee606 1.00 TEST0001 1 Examinee607 1.00 TEST0001 1 Examinee608 1.00 TEST0001 1 Examinee609 1.00 TEST0001 1 Examinee610 1.00 TEST0001 1 Examinee611 1.00 TEST0001 1 Examinee612 1.00 TEST0001 1 Examinee613 1.00 TEST0001 1 Examinee614 1.00 TEST0001 25 12 25 8 25 14 25 7 25 8 25 11 25 9 25 12 25 9 25 12 25 8 25 7 25 10 25 6 25 13 25 9 25 13 25 2 25 13 25 11 | | 48.00 | -0.1319 0.7355 | | | 32.00 | -1.3625 0.8225 | | | 56.00 | 1.2692 0.8170 | | | 28.00 | -1.4555 0.8404 | | | 32.00 | -0.7182 0.7494 | | | 44.00 | 0.7238 0.7693 | | | 36.00 | -1.1790 0.7933 | | | 48.00 | -0.3798 0.7369 | | | 36.00 | -1.1918 0.7951 | | | 48.00 | 0.3870 0.7494 | | | 32.00 | -1.8786 0.9537 | | | 28.00 | -1.2697 0.8067 | | | 40.00 | -0.1283 0.7356 | | | 24.00 | -1.1141 0.7847 | | | 52.00 | 1.1347 0.8036 | | | 36.00 | -0.2496 0.7355 | | | 52.00 | -0.4470 0.7384 | | | 8.00 | -4.0000 999.0000 | | | 52.00 | 1.1948 0.8095 | | | 44.00 | 0.1720 0.7411 | 390 1 Examinee615 1.00 TEST0001 1 Examinee616 1.00 TEST0001 1 Examinee617 1.00 TEST0001 1 Examinee618 1.00 TEST0001 1 Examinee619 1.00 TEST0001 1 Examinee620 1.00 TEST0001 1 Examinee621 1.00 TEST0001 1 Examinee622 1.00 TEST0001 1 Examinee623 1.00 TEST0001 1 Examinee624 1.00 TEST0001 1 Examinee625 1.00 TEST0001 1 Examinee626 1.00 TEST0001 1 Examinee627 1.00 TEST0001 1 Examinee628 1.00 TEST0001 1 Examinee629 1.00 TEST0001 1 Examinee630 1.00 TEST0001 1 Examinee631 1.00 TEST0001 1 Examinee632 1.00 TEST0001 1 Examinee633 1.00 TEST0001 1 Examinee634 1.00 TEST0001 25 12 25 8 25 13 25 15 25 10 25 8 25 8 25 10 25 9 25 14 25 11 25 11 25 16 25 10 25 6 25 9 25 14 25 11 25 15 25 8 | 48.00 | | 32.00 | | 52.00 | | 60.00 | | 40.00 | | 32.00 | | 32.00 | | 40.00 | | 36.00 | | 56.00 | | 44.00 | | 44.00 | | 64.00 | | 40.00 | | 24.00 | | 36.00 | | 56.00 | | 44.00 | | 60.00 | | 32.00 | | 0.7236 | -1.2977 | 0.3967 | 1.9204 | 0.0921 | -1.1857 | -0.9052 | 0.5566 | -1.3831 | 1.6851 | 0.5698 | 0.2103 | 1.8821 | 0.0338 | -1.1782 | -0.3562 | 1.4298 | -0.1813 | 2.0658 | -1.5211 0.7692 | 0.8113 | 0.7499 | 0.8913 | 0.7389 | 0.7942 | 0.7628 | 0.7584 | 0.8263 | 0.8630 | 0.7592 | 0.7423 | 0.8866 | 0.7376 | 0.7932 | 0.7366 | 0.8340 | 0.7354 | 0.9092 | 0.8544 | 391 1 Examinee635 1.00 TEST0001 1 Examinee636 1.00 TEST0001 1 Examinee637 1.00 TEST0001 1 Examinee638 1.00 TEST0001 1 Examinee639 1.00 TEST0001 1 Examinee640 1.00 TEST0001 1 Examinee641 1.00 TEST0001 1 Examinee642 1.00 TEST0001 1 Examinee643 1.00 TEST0001 1 Examinee644 1.00 TEST0001 1 Examinee645 1.00 TEST0001 1 Examinee646 1.00 TEST0001 1 Examinee647 1.00 TEST0001 1 Examinee648 1.00 TEST0001 1 Examinee649 1.00 TEST0001 1 Examinee650 1.00 TEST0001 1 Examinee651 1.00 TEST0001 1 Examinee652 1.00 TEST0001 1 Examinee653 1.00 TEST0001 1 Examinee654 1.00 TEST0001 25 12 25 12 25 13 25 18 25 10 25 11 25 12 25 9 25 6 25 15 25 8 25 6 25 7 25 8 25 13 25 9 25 15 25 8 25 17 25 19 | 48.00 | | 48.00 | | 52.00 | | 72.00 | | 40.00 | | 44.00 | | 48.00 | | 36.00 | | 24.00 | | 60.00 | | 32.00 | | 24.00 | | 28.00 | | 32.00 | | 52.00 | | 36.00 | | 60.00 | | 32.00 | | 68.00 | | 76.00 | | 0.4759 | 0.4725 | 0.7982 | 3.3749 | 0.0727 | -0.5540 | 0.5804 | -0.5173 | -1.0835 | 0.0557 | -0.8362 | -1.5293 | -1.0949 | -0.7213 | 0.8295 | -0.4102 | 1.5034 | -0.0166 | 3.1495 | 4.0000 0.7539 | 0.7537 | 0.7747 | 1.0834 | 0.7385 | 0.7416 | 0.7598 | 0.7404 | 0.7810 | 0.7381 | 0.7572 | 0.8563 | 0.7824 | 0.7496 | 0.7771 | 0.7375 | 0.8421 | 0.7368 | 1.0507 | 999.0000 | 392 1 Examinee655 1.00 TEST0001 1 Examinee656 1.00 TEST0001 1 Examinee657 1.00 TEST0001 1 Examinee658 1.00 TEST0001 1 Examinee659 1.00 TEST0001 1 Examinee660 1.00 TEST0001 1 Examinee661 1.00 TEST0001 1 Examinee662 1.00 TEST0001 1 Examinee663 1.00 TEST0001 1 Examinee664 1.00 TEST0001 1 Examinee665 1.00 TEST0001 1 Examinee666 1.00 TEST0001 1 Examinee667 1.00 TEST0001 1 Examinee668 1.00 TEST0001 1 Examinee669 1.00 TEST0001 1 Examinee670 1.00 TEST0001 1 Examinee671 1.00 TEST0001 1 Examinee672 1.00 TEST0001 1 Examinee673 1.00 TEST0001 1 Examinee674 1.00 TEST0001 25 6 25 8 25 10 25 13 25 6 25 14 25 8 25 9 25 8 25 12 25 6 25 10 25 9 25 12 25 9 25 13 25 17 25 13 25 16 25 11 | 24.00 | | 32.00 | | 40.00 | | 52.00 | | 24.00 | | 56.00 | | 32.00 | | 36.00 | | 32.00 | | 48.00 | | 24.00 | | 40.00 | | 36.00 | | 48.00 | | 36.00 | | 52.00 | | 68.00 | | 52.00 | | 64.00 | | 44.00 | | -0.9456 | -1.1686 | 0.5307 | 1.0264 | -1.8753 | 1.6879 | -0.5868 | -0.4324 | -0.1035 | -0.2085 | -1.7097 | 0.0030 | -0.3805 | 0.1299 | -0.2404 | 1.0888 | 2.1709 | 1.3992 | 1.3687 | -0.2473 0.7664 | 0.7919 | 0.7569 | 0.7936 | 0.9527 | 0.8634 | 0.7429 | 0.7380 | 0.7357 | 0.7354 | 0.9018 | 0.7371 | 0.7370 | 0.7399 | 0.7354 | 0.7993 | 0.9223 | 0.8307 | 0.8274 | 0.7355 | 393 1 Examinee675 1.00 TEST0001 1 Examinee676 1.00 TEST0001 1 Examinee677 1.00 TEST0001 1 Examinee678 1.00 TEST0001 1 Examinee679 1.00 TEST0001 1 Examinee680 1.00 TEST0001 1 Examinee681 1.00 TEST0001 1 Examinee682 1.00 TEST0001 1 Examinee683 1.00 TEST0001 1 Examinee684 1.00 TEST0001 1 Examinee685 1.00 TEST0001 1 Examinee686 1.00 TEST0001 1 Examinee687 1.00 TEST0001 1 Examinee688 1.00 TEST0001 1 Examinee689 1.00 TEST0001 1 Examinee690 1.00 TEST0001 1 Examinee691 1.00 TEST0001 1 Examinee692 1.00 TEST0001 1 Examinee693 1.00 TEST0001 1 Examinee694 1.00 TEST0001 25 10 25 15 25 12 25 13 25 10 25 15 25 6 25 14 25 10 25 14 25 13 25 5 25 9 25 16 25 8 25 16 25 13 25 8 25 11 25 10 | 40.00 | | 60.00 | | 48.00 | | 52.00 | | 40.00 | | 60.00 | | 24.00 | | 56.00 | | 40.00 | | 56.00 | | 52.00 | | 20.00 | | 36.00 | | 64.00 | | 32.00 | | 64.00 | | 52.00 | | 32.00 | | 44.00 | | 40.00 | | 0.3054 | 1.7790 | -0.4098 | 0.5764 | -0.5431 | 1.5430 | -2.4357 | 1.4617 | 0.1855 | 1.4131 | 1.5045 | -1.8089 | -0.1956 | 1.5677 | -0.5994 | 2.3319 | 1.1586 | -0.8369 | -0.2808 | 0.4006 0.7459 | 0.8742 | 0.7375 | 0.7596 | 0.7413 | 0.8466 | 1.2035 | 0.8375 | 0.7415 | 0.8322 | 0.8423 | 0.9311 | 0.7354 | 0.8494 | 0.7434 | 0.9426 | 0.8059 | 0.7573 | 0.7357 | 0.7501 | 394 1 Examinee695 1.00 TEST0001 1 Examinee696 1.00 TEST0001 1 Examinee697 1.00 TEST0001 1 Examinee698 1.00 TEST0001 1 Examinee699 1.00 TEST0001 1 Examinee700 1.00 TEST0001 1 Examinee701 1.00 TEST0001 1 Examinee702 1.00 TEST0001 1 Examinee703 1.00 TEST0001 1 Examinee704 1.00 TEST0001 1 Examinee705 1.00 TEST0001 1 Examinee706 1.00 TEST0001 1 Examinee707 1.00 TEST0001 1 Examinee708 1.00 TEST0001 1 Examinee709 1.00 TEST0001 1 Examinee710 1.00 TEST0001 1 Examinee711 1.00 TEST0001 1 Examinee712 1.00 TEST0001 1 Examinee713 1.00 TEST0001 1 Examinee714 1.00 TEST0001 25 14 25 8 25 9 25 11 25 7 25 7 25 13 25 10 25 7 25 10 25 8 25 11 25 11 25 15 25 13 25 14 25 13 25 10 25 14 25 9 | 56.00 | | 32.00 | | 36.00 | | 44.00 | | 28.00 | | 28.00 | | 52.00 | | 40.00 | | 28.00 | | 40.00 | | 32.00 | | 44.00 | | 44.00 | | 60.00 | | 52.00 | | 56.00 | | 52.00 | | 40.00 | | 56.00 | | 36.00 | | 2.3688 | -0.3980 | -1.1113 | 0.2400 | -0.9441 | -1.5331 | 0.9206 | -0.4010 | -0.7900 | -1.9360 | -0.1563 | -0.5066 | -0.4053 | 1.8859 | 1.7257 | 0.8416 | 1.6268 | -0.1506 | 0.8581 | -0.1479 0.9472 | 0.7373 | 0.7844 | 0.7434 | 0.7663 | 0.8571 | 0.7844 | 0.7373 | 0.7539 | 0.9738 | 0.7354 | 0.7400 | 0.7374 | 0.8871 | 0.8678 | 0.7780 | 0.8562 | 0.7354 | 0.7793 | 0.7355 | 395 1 Examinee715 1.00 TEST0001 1 Examinee716 1.00 TEST0001 1 Examinee717 1.00 TEST0001 1 Examinee718 1.00 TEST0001 1 Examinee719 1.00 TEST0001 1 Examinee720 1.00 TEST0001 1 Examinee721 1.00 TEST0001 1 Examinee722 1.00 TEST0001 1 Examinee723 1.00 TEST0001 1 Examinee724 1.00 TEST0001 1 Examinee725 1.00 TEST0001 1 Examinee726 1.00 TEST0001 1 Examinee727 1.00 TEST0001 1 Examinee728 1.00 TEST0001 1 Examinee729 1.00 TEST0001 1 Examinee730 1.00 TEST0001 1 Examinee731 1.00 TEST0001 1 Examinee732 1.00 TEST0001 1 Examinee733 1.00 TEST0001 1 Examinee734 1.00 TEST0001 25 11 25 10 25 10 25 13 25 11 25 11 25 17 25 9 25 11 25 13 25 5 25 12 25 10 25 11 25 11 25 7 25 13 25 14 25 12 25 12 | 44.00 | | 40.00 | | 40.00 | | 52.00 | | 44.00 | | 44.00 | | 68.00 | | 36.00 | | 44.00 | | 52.00 | | 20.00 | | 48.00 | | 40.00 | | 44.00 | | 44.00 | | 28.00 | | 52.00 | | 56.00 | | 48.00 | | 48.00 | | 0.2047 | -0.6121 | -0.6589 | 0.7422 | -0.9988 | -0.2915 | 2.2873 | -0.7378 | -0.1058 | 0.0834 | -1.6178 | 1.0196 | -0.2530 | 0.4219 | 0.9709 | -0.9436 | 1.9651 | 0.9389 | 0.7521 | 0.1197 0.7422 | 0.7440 | 0.7462 | 0.7706 | 0.7716 | 0.7358 | 0.9369 | 0.7505 | 0.7357 | 0.7387 | 0.8774 | 0.7930 | 0.7355 | 0.7511 | 0.7887 | 0.7662 | 0.8968 | 0.7859 | 0.7713 | 0.7396 | 396 1 Examinee735 1.00 TEST0001 1 Examinee736 1.00 TEST0001 1 Examinee737 1.00 TEST0001 1 Examinee738 1.00 TEST0001 1 Examinee739 1.00 TEST0001 1 Examinee740 1.00 TEST0001 1 Examinee741 1.00 TEST0001 1 Examinee742 1.00 TEST0001 1 Examinee743 1.00 TEST0001 1 Examinee744 1.00 TEST0001 1 Examinee745 1.00 TEST0001 1 Examinee746 1.00 TEST0001 1 Examinee747 1.00 TEST0001 1 Examinee748 1.00 TEST0001 1 Examinee749 1.00 TEST0001 1 Examinee750 1.00 TEST0001 1 Examinee751 1.00 TEST0001 1 Examinee752 1.00 TEST0001 1 Examinee753 1.00 TEST0001 1 Examinee754 1.00 TEST0001 25 12 25 9 25 13 25 7 25 13 25 9 25 11 25 8 25 12 25 14 25 14 25 11 25 11 25 10 25 9 25 12 25 4 25 12 25 5 25 11 | 48.00 | | 36.00 | | 52.00 | | 28.00 | | 52.00 | | 36.00 | | 44.00 | | 32.00 | | 48.00 | | 56.00 | | 56.00 | | 44.00 | | 44.00 | | 40.00 | | 36.00 | | 48.00 | | 16.00 | | 48.00 | | 20.00 | | 44.00 | | 1.1924 | -0.4495 | 1.5910 | -1.7241 | 0.9314 | 0.1460 | -0.2899 | -0.8946 | 0.9697 | 0.5175 | 1.4710 | 0.2258 | 0.0875 | -1.7588 | -0.1219 | 0.5537 | -3.3131 | 0.4728 | -1.6898 | -0.0919 0.8092 | 0.7384 | 0.8521 | 0.9058 | 0.7853 | 0.7403 | 0.7358 | 0.7619 | 0.7886 | 0.7562 | 0.8385 | 0.7429 | 0.7388 | 0.9159 | 0.7356 | 0.7582 | 1.9162 | 0.7537 | 0.8963 | 0.7358 | 397 1 Examinee755 1.00 TEST0001 1 Examinee756 1.00 TEST0001 1 Examinee757 1.00 TEST0001 1 Examinee758 1.00 TEST0001 1 Examinee759 1.00 TEST0001 1 Examinee760 1.00 TEST0001 1 Examinee761 1.00 TEST0001 1 Examinee762 1.00 TEST0001 1 Examinee763 1.00 TEST0001 1 Examinee764 1.00 TEST0001 1 Examinee765 1.00 TEST0001 1 Examinee766 1.00 TEST0001 1 Examinee767 1.00 TEST0001 1 Examinee768 1.00 TEST0001 1 Examinee769 1.00 TEST0001 1 Examinee770 1.00 TEST0001 1 Examinee771 1.00 TEST0001 1 Examinee772 1.00 TEST0001 1 Examinee773 1.00 TEST0001 1 Examinee774 1.00 TEST0001 25 9 25 13 25 5 25 13 25 11 25 4 25 13 25 9 25 10 25 8 25 8 25 11 25 10 25 6 25 10 25 19 25 14 25 19 25 13 25 11 | 36.00 | | 52.00 | | 20.00 | | 52.00 | | 44.00 | | 16.00 | | 52.00 | | 36.00 | | 40.00 | | 32.00 | | 32.00 | | 44.00 | | 40.00 | | 24.00 | | 40.00 | | 76.00 | | 56.00 | | 76.00 | | 52.00 | | 44.00 | | -1.3690 | 0.4287 | -1.0150 | 0.9502 | 0.6908 | -2.4463 | 1.0338 | -0.6294 | -0.1833 | -0.2814 | -1.3091 | -0.0543 | -0.1519 | -0.6550 | -0.1960 | 3.4219 | 1.6550 | 4.0000 | 0.3540 | 0.6581 0.8237 | 0.7514 | 0.7733 | 0.7869 | 0.7670 | 1.2095 | 0.7942 | 0.7448 | 0.7354 | 0.7357 | 0.8132 | 0.7362 | 0.7354 | 0.7460 | 0.7354 | 1.0906 | 0.8595 | 999.0000 | 0.7479 | 0.7648 | 398 1 Examinee775 1.00 TEST0001 1 Examinee776 1.00 TEST0001 1 Examinee777 1.00 TEST0001 1 Examinee778 1.00 TEST0001 1 Examinee779 1.00 TEST0001 1 Examinee780 1.00 TEST0001 1 Examinee781 1.00 TEST0001 1 Examinee782 1.00 TEST0001 1 Examinee783 1.00 TEST0001 1 Examinee784 1.00 TEST0001 1 Examinee785 1.00 TEST0001 1 Examinee786 1.00 TEST0001 1 Examinee787 1.00 TEST0001 1 Examinee788 1.00 TEST0001 1 Examinee789 1.00 TEST0001 1 Examinee790 1.00 TEST0001 1 Examinee791 1.00 TEST0001 1 Examinee792 1.00 TEST0001 1 Examinee793 1.00 TEST0001 1 Examinee794 1.00 TEST0001 25 11 25 12 25 15 25 11 25 14 25 14 25 5 25 10 25 15 25 9 25 4 25 7 25 10 25 14 25 16 25 12 25 14 25 9 25 7 25 12 | 44.00 | | 48.00 | | 60.00 | | 44.00 | | 56.00 | | 56.00 | | 20.00 | | 40.00 | | 60.00 | | 36.00 | | 16.00 | | 28.00 | | 40.00 | | 56.00 | | 64.00 | | 48.00 | | 56.00 | | 36.00 | | 28.00 | | 48.00 | | -0.5115 | 0.0586 | 1.6912 | -0.3148 | 0.8302 | 0.1562 | -3.2307 | 0.1360 | 1.9031 | -0.6561 | -3.7463 | -1.0997 | -0.1675 | 1.2631 | 2.6853 | 0.2484 | 0.3324 | 0.0197 | -0.9164 | -0.6458 0.7402 | 0.7382 | 0.8638 | 0.7360 | 0.7771 | 0.7406 | 1.8294 | 0.7401 | 0.8892 | 0.7460 | 2.4448 | 0.7830 | 0.7354 | 0.8163 | 0.9879 | 0.7437 | 0.7470 | 0.7374 | 0.7638 | 0.7455 | 399 1 Examinee795 1.00 TEST0001 1 Examinee796 1.00 TEST0001 1 Examinee797 1.00 TEST0001 1 Examinee798 1.00 TEST0001 1 Examinee799 1.00 TEST0001 1 Examinee800 1.00 TEST0001 1 Examinee801 1.00 TEST0001 1 Examinee802 1.00 TEST0001 1 Examinee803 1.00 TEST0001 1 Examinee804 1.00 TEST0001 1 Examinee805 1.00 TEST0001 1 Examinee806 1.00 TEST0001 1 Examinee807 1.00 TEST0001 1 Examinee808 1.00 TEST0001 1 Examinee809 1.00 TEST0001 1 Examinee810 1.00 TEST0001 1 Examinee811 1.00 TEST0001 1 Examinee812 1.00 TEST0001 1 Examinee813 1.00 TEST0001 1 Examinee814 1.00 TEST0001 25 9 25 9 25 12 25 9 25 10 25 14 25 12 25 16 25 14 25 14 25 17 25 17 25 17 25 5 25 14 25 14 25 19 25 3 25 15 25 14 | 36.00 | | 36.00 | | 48.00 | | 36.00 | | 40.00 | | 56.00 | | 48.00 | | 64.00 | | 56.00 | | 56.00 | | 68.00 | | 68.00 | | 68.00 | | 20.00 | | 56.00 | | 56.00 | | 76.00 | | 12.00 | | 60.00 | | 56.00 | | -0.4337 0.7380 | | -0.7280 0.7500 | | 0.9548 0.7873 | | 0.1805 0.7414 | | -0.0217 0.7367 | | 1.7189 0.8670 | | -0.2073 0.7354 | | 2.0657 0.9092 | | 0.9608 0.7878 | | -0.0036 0.7370 | | 0.8897 0.7819 | | 2.2645 0.9341 | | 2.5441 0.9696 | | -2.6575 1.3425 | | 1.7353 0.8690 | | 1.6578 0.8598 | | 4.0000 999.0000 | | -4.0000 999.0000 | | 1.2983 0.8200 | | 1.2917 0.8193 | 400 1 Examinee815 1.00 TEST0001 1 Examinee816 1.00 TEST0001 1 Examinee817 1.00 TEST0001 1 Examinee818 1.00 TEST0001 1 Examinee819 1.00 TEST0001 1 Examinee820 1.00 TEST0001 1 Examinee821 1.00 TEST0001 1 Examinee822 1.00 TEST0001 1 Examinee823 1.00 TEST0001 1 Examinee824 1.00 TEST0001 1 Examinee825 1.00 TEST0001 1 Examinee826 1.00 TEST0001 1 Examinee827 1.00 TEST0001 1 Examinee828 1.00 TEST0001 1 Examinee829 1.00 TEST0001 1 Examinee830 1.00 TEST0001 1 Examinee831 1.00 TEST0001 1 Examinee832 1.00 TEST0001 1 Examinee833 1.00 TEST0001 1 Examinee834 1.00 TEST0001 25 8 25 9 25 2 25 7 25 3 25 3 25 5 25 9 25 7 25 8 25 6 25 6 25 4 25 6 25 5 25 6 25 5 25 3 25 7 25 5 | 32.00 | | 36.00 | | 8.00 | | 28.00 | | 12.00 | | 12.00 | | 20.00 | | 36.00 | | 28.00 | | 32.00 | | 24.00 | | 24.00 | | 16.00 | | 24.00 | | 20.00 | | 24.00 | | 20.00 | | 12.00 | | 28.00 | | 20.00 | | -2.2124 1.0876 | | -2.5445 1.2684 | | -4.0000 999.0000 | | -1.8312 0.9382 | | -4.0000 999.0000 | | -3.8124 2.5455 | | -3.2545 1.8539 | | -1.4493 0.8392 | | -3.0058 1.6146 | | -2.1129 1.0431 | | -2.5728 1.2863 | | -3.0383 1.6440 | | -4.0000 999.0000 | | -3.2535 1.8530 | | -3.6295 2.2932 | | -2.3807 1.1727 | | -3.5320 2.1248 | | -4.0000 999.0000 | | -3.1904 1.7885 | | -3.4561 2.0782 | 401 1 Examinee835 1.00 TEST0001 1 Examinee836 1.00 TEST0001 1 Examinee837 1.00 TEST0001 1 Examinee838 1.00 TEST0001 1 Examinee839 1.00 TEST0001 1 Examinee840 1.00 TEST0001 1 Examinee841 1.00 TEST0001 1 Examinee842 1.00 TEST0001 1 Examinee843 1.00 TEST0001 1 Examinee844 1.00 TEST0001 1 Examinee845 1.00 TEST0001 1 Examinee846 1.00 TEST0001 1 Examinee847 1.00 TEST0001 1 Examinee848 1.00 TEST0001 1 Examinee849 1.00 TEST0001 1 Examinee850 1.00 TEST0001 1 Examinee851 1.00 TEST0001 1 Examinee852 1.00 TEST0001 1 Examinee853 1.00 TEST0001 1 Examinee854 1.00 TEST0001 25 8 25 10 25 11 25 5 25 4 25 8 25 5 25 5 25 9 25 17 25 17 25 15 25 13 25 12 25 8 25 14 25 10 25 13 25 16 25 11 | 32.00 | | 40.00 | | 44.00 | | 20.00 | | 16.00 | | 32.00 | | 20.00 | | 20.00 | | 36.00 | | 68.00 | | 68.00 | | 60.00 | | 52.00 | | 48.00 | | 32.00 | | 56.00 | | 40.00 | | 52.00 | | 64.00 | | 44.00 | | -1.8401 0.9411 | | -1.5357 0.8577 | | -1.1488 0.7892 | | -2.4285 1.1995 | | -4.0000 999.0000 | | -1.2276 0.8003 | | -2.6081 1.3094 | | -2.2147 1.0887 | | -0.6295 0.7448 | | 1.4772 0.8392 | | 2.1143 0.9152 | | 2.4292 0.9549 | | 0.1742 0.7412 | | 0.6172 0.7621 | | -2.0576 1.0202 | | 0.9314 0.7853 | | -0.2389 0.7354 | | 0.1520 0.7405 | | 2.7944 1.0022 | | -0.6128 0.7440 | 402 1 Examinee855 1.00 TEST0001 1 Examinee856 1.00 TEST0001 1 Examinee857 1.00 TEST0001 1 Examinee858 1.00 TEST0001 1 Examinee859 1.00 TEST0001 1 Examinee860 1.00 TEST0001 1 Examinee861 1.00 TEST0001 1 Examinee862 1.00 TEST0001 1 Examinee863 1.00 TEST0001 1 Examinee864 1.00 TEST0001 1 Examinee865 1.00 TEST0001 1 Examinee866 1.00 TEST0001 1 Examinee867 1.00 TEST0001 1 Examinee868 1.00 TEST0001 1 Examinee869 1.00 TEST0001 1 Examinee870 1.00 TEST0001 1 Examinee871 1.00 TEST0001 1 Examinee872 1.00 TEST0001 1 Examinee873 1.00 TEST0001 1 Examinee874 1.00 TEST0001 25 13 25 11 25 13 25 17 25 12 25 10 25 7 25 12 25 8 25 10 25 14 25 8 25 3 25 5 25 5 25 15 25 10 25 6 25 10 25 9 | 52.00 | | 44.00 | | 52.00 | | 68.00 | | 48.00 | | 40.00 | | 28.00 | | 48.00 | | 32.00 | | 40.00 | | 56.00 | | 32.00 | | 12.00 | | 20.00 | | 20.00 | | 60.00 | | 40.00 | | 24.00 | | 40.00 | | 36.00 | | 1.2987 | 0.3784 | 0.0925 | 1.6895 | 0.1544 | -0.7448 | -0.7575 | 0.1298 | -1.1294 | 0.0423 | 1.0954 | -0.6364 | -2.6210 | -1.0586 | -3.8499 | 0.9933 | 0.4612 | -1.3151 | -0.5021 | 0.0019 0.8200 | 0.7490 | 0.7389 | 0.8636 | 0.7406 | 0.7510 | 0.7518 | 0.7399 | 0.7867 | 0.7378 | 0.7999 | 0.7451 | 1.3177 | 0.7781 | 2.5994 | 0.7906 | 0.7531 | 0.8142 | 0.7399 | 0.7371 | 403 1 Examinee875 1.00 TEST0001 1 Examinee876 1.00 TEST0001 1 Examinee877 1.00 TEST0001 1 Examinee878 1.00 TEST0001 1 Examinee879 1.00 TEST0001 1 Examinee880 1.00 TEST0001 1 Examinee881 1.00 TEST0001 1 Examinee882 1.00 TEST0001 1 Examinee883 1.00 TEST0001 1 Examinee884 1.00 TEST0001 1 Examinee885 1.00 TEST0001 1 Examinee886 1.00 TEST0001 1 Examinee887 1.00 TEST0001 1 Examinee888 1.00 TEST0001 1 Examinee889 1.00 TEST0001 1 Examinee890 1.00 TEST0001 1 Examinee891 1.00 TEST0001 1 Examinee892 1.00 TEST0001 1 Examinee893 1.00 TEST0001 1 Examinee894 1.00 TEST0001 25 13 25 9 25 10 25 5 25 13 25 10 25 7 25 5 25 14 25 11 25 9 25 11 25 9 25 7 25 10 25 13 25 14 25 7 25 13 25 10 | 52.00 | | 36.00 | | 40.00 | | 20.00 | | 52.00 | | 40.00 | | 28.00 | | 20.00 | | 56.00 | | 44.00 | | 36.00 | | 44.00 | | 36.00 | | 28.00 | | 40.00 | | 52.00 | | 56.00 | | 28.00 | | 52.00 | | 40.00 | | 0.4961 | -0.1394 | 0.2131 | -2.8338 | 1.6157 | 0.0476 | -1.3977 | -1.8876 | 1.3178 | 0.7011 | -0.6432 | 0.5626 | -0.8673 | -0.7654 | -0.3802 | 0.4757 | 0.9154 | -1.4721 | 0.9271 | -0.3315 0.7550 | 0.7355 | 0.7424 | 1.4715 | 0.8549 | 0.7379 | 0.8290 | 0.9569 | 0.8220 | 0.7677 | 0.7454 | 0.7588 | 0.7596 | 0.7523 | 0.7369 | 0.7539 | 0.7840 | 0.8439 | 0.7850 | 0.7362 | 404 1 Examinee895 1.00 TEST0001 1 Examinee896 1.00 TEST0001 1 Examinee897 1.00 TEST0001 1 Examinee898 1.00 TEST0001 1 Examinee899 1.00 TEST0001 1 Examinee900 1.00 TEST0001 1 Examinee901 1.00 TEST0001 1 Examinee902 1.00 TEST0001 1 Examinee903 1.00 TEST0001 1 Examinee904 1.00 TEST0001 1 Examinee905 1.00 TEST0001 1 Examinee906 1.00 TEST0001 1 Examinee907 1.00 TEST0001 1 Examinee908 1.00 TEST0001 1 Examinee909 1.00 TEST0001 1 Examinee910 1.00 TEST0001 1 Examinee911 1.00 TEST0001 1 Examinee912 1.00 TEST0001 1 Examinee913 1.00 TEST0001 1 Examinee914 1.00 TEST0001 25 12 25 9 25 14 25 13 25 11 25 7 25 8 25 3 25 8 25 13 25 10 25 11 25 10 25 13 25 14 25 10 25 13 25 15 25 16 25 11 | 48.00 | | 36.00 | | 56.00 | | 52.00 | | 44.00 | | 28.00 | | 32.00 | | 12.00 | | 32.00 | | 52.00 | | 40.00 | | 44.00 | | 40.00 | | 52.00 | | 56.00 | | 40.00 | | 52.00 | | 60.00 | | 64.00 | | 44.00 | | 0.3518 0.7478 | | -0.2421 0.7355 | | 1.4633 0.8377 | | 1.2194 0.8119 | | -0.5967 0.7433 | | -0.6894 0.7478 | | -0.7211 0.7495 | | -4.0000 999.0000 | | -1.0053 0.7723 | | 0.9271 0.7850 | | -0.3499 0.7365 | | 0.3660 0.7485 | | -0.2570 0.7355 | | 1.4574 0.8370 | | 1.8149 0.8785 | | -0.1303 0.7355 | | -0.3065 0.7359 | | 1.2763 0.8177 | | 3.2871 1.0705 | | 0.4116 0.7506 | 405 1 Examinee915 1.00 TEST0001 1 Examinee916 1.00 TEST0001 1 Examinee917 1.00 TEST0001 1 Examinee918 1.00 TEST0001 1 Examinee919 1.00 TEST0001 1 Examinee920 1.00 TEST0001 1 Examinee921 1.00 TEST0001 1 Examinee922 1.00 TEST0001 1 Examinee923 1.00 TEST0001 1 Examinee924 1.00 TEST0001 1 Examinee925 1.00 TEST0001 1 Examinee926 1.00 TEST0001 1 Examinee927 1.00 TEST0001 1 Examinee928 1.00 TEST0001 1 Examinee929 1.00 TEST0001 1 Examinee930 1.00 TEST0001 1 Examinee931 1.00 TEST0001 1 Examinee932 1.00 TEST0001 1 Examinee933 1.00 TEST0001 1 Examinee934 1.00 TEST0001 25 13 25 13 25 3 25 7 25 11 25 13 25 6 25 9 25 8 25 6 25 15 25 15 25 10 25 8 25 9 25 6 25 9 25 17 25 13 25 9 | 52.00 | | 52.00 | | 12.00 | | 28.00 | | 44.00 | | 52.00 | | 24.00 | | 36.00 | | 32.00 | | 24.00 | | 60.00 | | 60.00 | | 40.00 | | 32.00 | | 36.00 | | 24.00 | | 36.00 | | 68.00 | | 52.00 | | 36.00 | | 1.0025 | 1.0180 | -3.0096 | -1.2813 | 0.2514 | -0.0982 | -2.0975 | -0.2981 | -1.6008 | -1.1705 | 1.2450 | 1.6171 | 0.1992 | -0.4702 | -1.1208 | -1.0385 | -1.8802 | 1.7782 | 1.2642 | 0.6167 0.7914 | 0.7928 | 1.6174 | 0.8086 | 0.7438 | 0.7358 | 1.0365 | 0.7358 | 0.8732 | 0.7921 | 0.8145 | 0.8551 | 0.7420 | 0.7390 | 0.7856 | 0.7759 | 0.9543 | 0.8741 | 0.8164 | 0.7621 | 406 1 Examinee935 1.00 TEST0001 1 Examinee936 1.00 TEST0001 1 Examinee937 1.00 TEST0001 1 Examinee938 1.00 TEST0001 1 Examinee939 1.00 TEST0001 1 Examinee940 1.00 TEST0001 1 Examinee941 1.00 TEST0001 1 Examinee942 1.00 TEST0001 1 Examinee943 1.00 TEST0001 1 Examinee944 1.00 TEST0001 1 Examinee945 1.00 TEST0001 1 Examinee946 1.00 TEST0001 1 Examinee947 1.00 TEST0001 1 Examinee948 1.00 TEST0001 1 Examinee949 1.00 TEST0001 1 Examinee950 1.00 TEST0001 1 Examinee951 1.00 TEST0001 1 Examinee952 1.00 TEST0001 1 Examinee953 1.00 TEST0001 1 Examinee954 1.00 TEST0001 25 12 25 12 25 11 25 8 25 10 25 7 25 16 25 13 25 15 25 12 25 9 25 11 25 15 25 12 25 4 25 14 25 8 25 14 25 14 25 13 | 48.00 | | 48.00 | | 44.00 | | 32.00 | | 40.00 | | 28.00 | | 64.00 | | 52.00 | | 60.00 | | 48.00 | | 36.00 | | 44.00 | | 60.00 | | 48.00 | | 16.00 | | 56.00 | | 32.00 | | 56.00 | | 56.00 | | 52.00 | | 0.4677 | 0.2713 | -0.0462 | -0.4907 | -0.2477 | -1.7398 | 2.7350 | 0.6678 | 1.3256 | 1.2422 | -0.7979 | 0.6278 | 1.2087 | 0.8730 | -1.4519 | 1.9090 | -0.7709 | 1.0844 | 1.5935 | 1.1248 0.7534 | 0.7445 | 0.7363 | 0.7395 | 0.7355 | 0.9103 | 0.9943 | 0.7654 | 0.8228 | 0.8142 | 0.7545 | 0.7628 | 0.8108 | 0.7805 | 0.8397 | 0.8899 | 0.7526 | 0.7989 | 0.8524 | 0.8027 | 407 1 Examinee955 1.00 TEST0001 1 Examinee956 1.00 TEST0001 1 Examinee957 1.00 TEST0001 1 Examinee958 1.00 TEST0001 1 Examinee959 1.00 TEST0001 1 Examinee960 1.00 TEST0001 1 Examinee961 1.00 TEST0001 1 Examinee962 1.00 TEST0001 1 Examinee963 1.00 TEST0001 1 Examinee964 1.00 TEST0001 1 Examinee965 1.00 TEST0001 1 Examinee966 1.00 TEST0001 1 Examinee967 1.00 TEST0001 1 Examinee968 1.00 TEST0001 1 Examinee969 1.00 TEST0001 1 Examinee970 1.00 TEST0001 1 Examinee971 1.00 TEST0001 1 Examinee972 1.00 TEST0001 1 Examinee973 1.00 TEST0001 1 Examinee974 1.00 TEST0001 25 10 25 12 25 13 25 6 25 9 25 6 25 8 25 16 25 7 25 6 25 12 25 13 25 13 25 10 25 12 25 13 25 10 25 10 25 10 25 10 | 40.00 | | 48.00 | | 52.00 | | 24.00 | | 36.00 | | 24.00 | | 32.00 | | 64.00 | | 28.00 | | 24.00 | | 48.00 | | 52.00 | | 52.00 | | 40.00 | | 48.00 | | 52.00 | | 40.00 | | 40.00 | | 40.00 | | 40.00 | | -1.2469 | 0.7812 | 0.8620 | -1.1804 | 0.1204 | -1.1208 | -0.6018 | 1.6953 | -0.8837 | -3.4867 | -0.2894 | 0.9898 | 0.8144 | -0.2757 | 0.8019 | 0.6029 | 0.5260 | 0.2782 | -0.4830 | -0.7835 0.8032 | 0.7734 | 0.7796 | 0.7935 | 0.7396 | 0.7856 | 0.7435 | 0.8642 | 0.7610 | 2.1144 | 0.7358 | 0.7903 | 0.7759 | 0.7356 | 0.7750 | 0.7612 | 0.7566 | 0.7448 | 0.7393 | 0.7535 | 408 1 Examinee975 1.00 TEST0001 1 Examinee976 1.00 TEST0001 1 Examinee977 1.00 TEST0001 1 Examinee978 1.00 TEST0001 1 Examinee979 1.00 TEST0001 1 Examinee980 1.00 TEST0001 1 Examinee981 1.00 TEST0001 1 Examinee982 1.00 TEST0001 1 Examinee983 1.00 TEST0001 1 Examinee984 1.00 TEST0001 1 Examinee985 1.00 TEST0001 1 Examinee986 1.00 TEST0001 1 Examinee987 1.00 TEST0001 1 Examinee988 1.00 TEST0001 1 Examinee989 1.00 TEST0001 1 Examinee990 1.00 TEST0001 1 Examinee991 1.00 TEST0001 1 Examinee992 1.00 TEST0001 1 Examinee993 1.00 TEST0001 1 Examinee994 1.00 TEST0001 25 10 25 9 25 10 25 11 25 11 25 10 25 9 25 9 25 10 25 8 25 11 25 14 25 10 25 13 25 12 25 8 25 16 25 13 25 7 25 14 | 40.00 | | 36.00 | | 40.00 | | 44.00 | | 44.00 | | 40.00 | | 36.00 | | 36.00 | | 40.00 | | 32.00 | | 44.00 | | 56.00 | | 40.00 | | 52.00 | | 48.00 | | 32.00 | | 64.00 | | 52.00 | | 28.00 | | 56.00 | | -0.0653 | 0.2351 | 0.4459 | 0.1910 | -0.0980 | -0.0196 | -0.5933 | -0.8895 | 0.0964 | -0.2521 | 1.0487 | 1.0673 | -0.3811 | 0.9704 | 0.4056 | -0.9731 | 1.7260 | 0.4953 | -0.6908 | 0.7896 0.7361 | 0.7432 | 0.7523 | 0.7417 | 0.7358 | 0.7367 | 0.7432 | 0.7615 | 0.7390 | 0.7355 | 0.7956 | 0.7973 | 0.7370 | 0.7886 | 0.7503 | 0.7691 | 0.8679 | 0.7549 | 0.7479 | 0.7740 | 409 1 Examinee995 | | 1.00 TEST0001 25 14 56.00 | 1.0226 0.7932 | 1 Examinee996 | | 1.00 TEST0001 25 14 56.00 | 1.1665 0.8067 | 1 Examinee997 | | 1.00 TEST0001 25 12 48.00 | 0.7999 0.7748 | 1 Examinee998 | | 1.00 TEST0001 25 9 36.00 | -0.9544 0.7672 | 1 Examinee999 | | 1.00 TEST0001 25 16 64.00 | 2.3418 0.9438 | ---------------------------------------------------------------- SUMMARY STATISTICS FOR SCORE ESTIMATES ====================================== CORRELATIONS AMONG TEST SCORES TEST0001 TEST0001 1.0000 MEANS, STANDARD DEVIATIONS, AND VARIANCES OF SCORE ESTIMATES TEST: TEST0001 MEAN: 0.0605 S.D.: 1.2660 VARIANCE: 1.6028 HARMONIC ROOT-MEAN-SQUARE STANDARD ERRORS OF THE ML ESTIMATES TEST: TEST0001 RMS: 0.7962 VARIANCE: 0.6339 410 EMPIRICAL RELIABILITY: 0.6045 44 BYTES OF NUMERICAL WORKSPACE USED OF 8192000 AVAILABLE IN PHASE-3 592 BYTES OF CHARACTER WORKSPACE USED OF 2048000 AVAILABLE IN PHASE-3 3PM BILOG CURVES Item Characteristic Curv e: ITE M0001 a = 0.829 b = -0.904 Item Information Curv e: ITE M0001 c = 0.107 0.5 0.8 0.4 0.6 0.3 Probability Information 1.0 0.4 0.2 c 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-P arameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 1 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 411 Item Characteristic Curv e: ITEM0002 a = 0.605 b = 0.800 Item Information Curv e: ITEM0002 c = 0.141 0.5 0.8 0.4 0.6 0.3 P robability Information 1.0 0.4 0.2 c 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-P arameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 2 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 412 Item Information Curv e: ITEM0003 Item Characteristic Curv e: ITEM0003 a = 0.770 b = -0.200 c = 0.097 0.5 0.8 0.4 0.6 0.3 P robability Inform ation 1.0 0.2 0.4 c 0.1 0.2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 3 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 413 Item Information Curv e: ITEM0004 Item Characteristic Curv e: ITEM0004 a = 0.775 b = -0.061 c = 0.123 0.5 0.8 0.4 0.6 0.3 P robability Inform ation 1.0 0.2 0.4 c 0.1 0.2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 4 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 414 Item Characteristic Curv e: ITEM0005 a = 0.539 b = 1.139 Item Information Curv e: ITEM0005 c = 0.157 0.5 0.8 0.4 0.6 0.3 P roba bilit y Inf orm a t ion 1.0 0.4 0.2 c 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 5 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 415 Item Information Curv e: ITEM0006 Item Characteristic Curv e: ITEM0006 a = 1.377 b = -1.257 c = 0.080 0.5 0.8 0.4 0.6 0.3 P robability Inform ation 1.0 0.4 0.2 0.2 c 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 6 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 416 Item Information Curv e: ITEM0007 Item Characteristic Curv e: ITEM0007 a = 0.979 b = 0.123 c = 0.079 0.5 0.8 0.4 0.6 0.3 P roba bilit y Inf orm a t ion 1.0 0.4 0.2 0.2 c 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 7 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 417 Item Information Curv e: ITEM0008 Item Characteristic Curv e: ITEM0008 a = 1.014 b = -0.875 c = 0.087 0.5 0.8 0.4 0.6 0.3 P robability Inform ation 1.0 0.2 0.4 0.2 c 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 8 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 418 Item Information Curv e: ITEM0009 Item Characteristic Curv e: ITEM0009 a = 0.985 b = 0.772 c = 0.067 0.5 0.8 0.4 0.6 0.3 P rob a b ilit y Inf orm a t ion 1.0 0.4 0.2 0.2 c 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 9 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 419 Item Characteristic Curv e: ITEM0010 a = 0.913 b = -0.089 Item Information Curv e: ITEM0010 c = 0.089 0.5 0.8 0.4 0.6 0.3 P ro ba bilit y Inf o rm a t ion 1.0 0.4 0.2 0.2 c 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 10 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 420 Item Information Curv e: ITEM0011 Item Characteristic Curv e: ITEM0011 a = 0.307 b = 5.033 c = 0.105 0.5 0.8 0.4 0.6 0.3 P robability Inform ation 1.0 0.2 0.4 c 0.1 0.2 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 11 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 421 Item Information Curv e: ITEM0012 Item Characteristic Curv e: ITEM0012 a = 0.917 b = 0.154 c = 0.078 0.5 0.8 0.4 0.6 0.3 P roba bilit y Inf orm a t ion 1.0 0.4 0.2 0.2 c 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 12 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 422 Item Characteristic Curv e: ITEM0013 a = 0.407 b = 1.203 Item Information Curv e: ITEM0013 c = 0.186 0.5 0.8 0.4 0.6 0.3 P ro b a b ilit y In f o rm a t io n 1.0 0.4 0.2 c 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 13 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 423 Item Information Curv e: ITEM0014 Item Characteristic Curv e: ITEM0014 a = 0.677 b = -1.443 c = 0.118 0.5 0.8 0.4 0.6 0.3 P robability Inform ation 1.0 0.2 0.4 c 0.1 0.2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 14 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 424 Item Characteristic Curv e: ITEM0015 a = 0.494 b = 4.440 Item Information Curv e: ITEM0015 c = 0.098 0.5 0.8 0.4 0.6 0.3 P robability Inform ation 1.0 0.4 0.2 c 0.2 0 -3 0.1 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 15 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 425 Item Information Curv e: ITEM0016 Item Characteristic Curv e: ITEM0016 a = 0.345 b = 5.514 c = 0.090 0.5 0.8 0.4 0.6 0.3 P roba bilit y Inf orm a t ion 1.0 0.2 0.4 0.2 0 -3 c 0.1 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 16 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 426 Item Characteristic Curv e: ITEM0017 a = 0.304 b = 4.808 Item Information Curv e: ITEM0017 c = 0.113 0.5 0.8 0.4 0.6 0.3 P robability Inform ation 1.0 0.4 0.2 c 0.2 0 -3 0.1 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 17 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 427 Item Characteristic Curv e: ITEM0018 a = 0.324 b = 2.534 Item Information Curv e: ITEM0018 c = 0.133 0.5 0.8 0.4 0.6 0.3 P roba bilit y Inf orm a t ion 1.0 0.4 0.2 c 0.2 0.1 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 18 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 428 Item Information Curv e: ITEM0019 Item Characteristic Curv e: ITEM0019 a = 0.648 b = 3.291 c = 0.184 0.5 0.8 0.4 0.6 0.3 P r o b a b ilit y In f o r m a t io n 1.0 0.2 0.4 c 0.1 0.2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 19 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 429 Item Information Curv e: ITE M0020 Item Characteristic Curv e: ITE M0020 a = 0.254 b = 5.805 c = 0.105 0.5 0.8 0.4 0.6 0.3 Probability Information 1.0 0.2 0.4 c 0.1 0.2 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-P arameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 20 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 430 Item Information Curv e: ITEM0021 Item Characteristic Curv e: ITEM0021 a = 0.973 b = 2.872 c = 0.225 0.5 0.8 0.4 0.6 0.3 P robability Inform a t ion 1.0 0.2 0.4 c 0.1 0.2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 21 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 431 Item Information Curv e: ITE M0022 Item Characteristic Curv e: ITEM0022 a = 0.550 b = 1.832 c = 0.130 0.5 0.8 0.4 0.6 0.3 Probability Information 1.0 0.2 0.4 c 0.1 0.2 b 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-P arameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 22 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 432 Item Characteristic Curv e: ITEM0023 a = 0.364 b = 6.116 Item Information Curv e: ITEM0023 c = 0.110 0.5 0.8 0.4 0.6 0.3 P ro b a b ilit y In f o rm a t io n 1.0 0.4 0.2 c 0.2 0 -3 0.1 -2 -1 0 1 2 3 0 -3 -2 -1 Ability 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Item: 23 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. 433 Item Information Curv e: ITEM0024 Item Characteristic Curv e: ITEM0024 a = 0.411 b = 4.718 c = 0.138 0.5 0.8 0.4 0.6 0.3 P robability Inform ation 1.0 0.2 0.4 c 0.1 0.2 0 -3 -2 -1 0 1 2 3 0 -3 -2 -1 3-Parameter Model, Logistic Metric 0 1 2 3 Scale Score Ability Item: 24 The parameter a is the item discriminating power, the reciprocal (1/a) is the item dispersion, b is an item location parameter and c the guessing parameter. Application of IRT to Item Banking It was indicated earlier that one of the most important applications of IRT is in the domain of item banking. HMSO definition of question banking/item banking is as follows: “A bank of items (questions) of known technical values can be built up for future use. It might, in practice, prove of value to arrange for item construction to be a more or less continuous process. The construction of written papers can then become a matter of judging the suitability of items of known technical values from a bank of items. Items can be weeded out as out of date over a period of time. Further it can be said that new questions should be tried out and statistical evidences for its facility, discrimination ascertained it is absolutely necessary that the banks would have to be large to be of value". 434 This definition is a universally adopted one and in order to apply this to the MeritTrac item bank (that is already available) will involve: 1. Examining and pre-validating all the individual items in the bank in several domains to check content and format accuracy. The procedure for pre-validation is explained below: Pre-validation is a process by which a judgment is made about an individual item with respect to satisfying certain criteria both looking at content and format accuracy. A checklist of criteria is given below in terms of general and specific criteria for multiple choice items and similarly for other types: General Is the item measuring an important outcome or objective agreed to be included in the test? Is the item measuring an important content area or expansion of content area? Is the item pitched at an acceptable difficulty level (0.1 to 0.9)? Is the item capable of being answered right by a majority of more able and more proficient test takers (HAG)? Is the item likely to be answered wrong by a majority of less able and less proficient test takers (LAG)? Is the item capable of restructuring? Does the item have one and only one correct answer? Specific Is the stem clear and unambiguous for a majority of test takers? Is the stem devoid of double negatives? If a single negative is unavoidable, does it get highlighted in the stem? Are the distractors plausible ie the usual mistakes, misconceptions and misunderstandings? Is the key unarguably and unequivocally correct? If there are multiple answers, does the format take this into account? Is the item using an efficient format? Does the item avoid “window dressing”? At the end of applying this checklist for every individual item, a decision whether to include item in the bank, reject the item or improve the item to include in the bank, shall be taken. 2. Once an item is decided to be included in the bank there are some technical values to be added to the item. Some of these are: 435 Content ID This is coded as C1, C11, C12 and so on. It indicates the major content topic and sub topics that are expansions of the content. Ability/Skill Tested ID This is coded as A1, A2, A3 and so on that are clusters of Bloom Level Objectives/outcomes; for instance A1 may include Knowledge (recall), Comprehension (interpret, detect mistakes), Application (solve, predict) and Evaluation (judge) etc. A1 KCAE. Item ID A combination of content/ability/difficulty; for instance C11 A1 KCAE d001, the last digits gives the number of identify. In content C11, we may have C11 A1 KC d2 004 or C11 A1 KCA d3 003 or C11 A1 KCAE d4 005 and so on. Item Writer ID It is the code given by MeritTrac to every item writer. Difficulty Level Difficulty levels are d1, d2, d3, d4, d5. d1 – 0 to 0.2 Very Easy d2 – 0.2 to 0.4 Easy d3 – 0.4 to 0.6 Average d4 – 0.6 to 0.8 Difficult d5 – 0.8 to 1.0 Very Difficult Time for answering This is invariably decided by the item writer. If it is a simple MC item it can be 1 min, if the stem is lengthy as in the case of a passage or data, time will be decided accordingly. Correct or key answer This should be hidden from the bank. Type of Item MC1 – Multiple Choice 1 in n (n=3, 4 or 5) MC2 – Multiple Completion (multiple answers combination) MC3 – Multiple T/F MC4 – Multiple Facet (a no. of MC items in a topic together) MC5 – Assertion Reason Allotted Marks Marks are to be allotted for the right answer. Invariably 1 mark is to be allotted. If scoring weight is available as a result of a large number of test takers in the past and if CTT analysis is done earlier then the scoring weight can be indicated. The index of difficulty and scoring weights may be given. If IRT analysis has been done earlier using any of the three models (preferably a Two Parameter model to start with and then graduated to Three Parameter model later) then the item difficulty and scoring weights correspondingly may be added. 436 An illustrative example in C++ is shown below: Merittrac’s Current 2-Dimensional Template C++ Test Outline Classification Of Topics Debugging Skills / Implementing OOPS in C++ Questions of Each Difficulty Level 2 3 4 1 Total 1 Debugging Skills / Pointers 1 1 Logic / Files & Streams 3 3 2 4 Logic / Implementing OOPS in C++ 2 2 Logic / User Defined Datatypes 1 1 Programming Concepts / Files & Streams 1 1 Logic / Fundamentals Programming Concepts / Friend Functions & Classes 2 1 1 437 Programming Concepts / Fundamentals 4 Programming Concepts / Implementing OOPS in C++ 2 1 3 Programming Concepts / Late Binding 2 1 3 1 1 Programming Concepts / User Defined Datatypes 4 Software / Advanced C Programming / Debugging Skills / Templates 1 1 Software / Advanced C Programming / Logic / Templates 1 3 4 Software / Advanced C Programming / Programming Concepts / Exceptions 3 3 6 2 2 4 40 Software / Advanced C Programming / Programming Concepts / Templates Total (No of Questions) Total Time in Minutes 45 Modified Content Template Content C1 Debugging C2 Logic C3 Programming C4 Software & Advanced Programming Content Expansion C11 - Implementing OOPS C12 - Skills & Pointers C21 - Files & Streams C22 - Fundamentals C23 - User Defined Datatypes C24 - Implementing OOPS C31 - Files & Streams C32 - Friend Functions & Classes C33 - Fundamentals C34 - Implementing OOPS C35 - Late Binding C36 - User Defined Datatypes C41 - Debugging Skills & Templates C42 - Logic & Templates C43 - Programming Concepts & Exceptions Ability Cluster A1 - KCE A2 – KCAn A3 – KCApE A4 - KCAp Difficulty Level KC – d2 (easy) KCE – d3 (average) No. of Items 1 1 KC E- d3 KC – d2 KCAn – d3 KC– d2 KCAn – d3 3 2 2 1 KCAp– d3 (difficult) KC – d2 KC – d2 KC – d2 KCApE – d3 KC – d2 KCApE – d3 KCApE – d3 1 1 4 2 1 2 1 KCAp – d4 KC – d3 KCAp d4 KC – d3 KCAp – d4 1 1 3 3 3 Total 2 10 2 13 1 15 438 C44 - Programming Concepts & Templates • • • • • • KC – d3 KCAp – d4 2 2 A1 – KCE means Knowledge Comprehension Evaluation (a simple judgment). A2 – KCAn means Knowledge Comprehension Analysis A3 – KCApE means Knowledge Comprehension Application Evaluation d2 – easy d3 – average d4 – difficult It is evident from the above that in the case of existing item bank, the present 2Dimensional content template can be modified and used to add Item ID to every individual item. Item IDs used for C++ are given below: Sample Paper Duration in minutes:40 Item No Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 No of Question:40 Section 1 - C++ Programming Item ID C23A2KCEd1001 C23A2KCEd1002 C32A3Kd1003 C32A3Kd1004 C32A3KEd1005 C32A3Kd1006 C32A3KCEd1007 C33A3KCEd1008 C33A3Kd1009 C33A3KCEd1010 C34A3KCEd1011 C31A3KCAd2012 C31A3KCAd2013 C31A3KCAd2014 C32A3KCAd2015 C32A3KCAd3016 C32A3KCAd2017 C36A3KCAd2018 C36A3KCAd2019 C36A3KCAd2020 C11A1KCAd4021 C32A3Kd4022 439 Application of IRT to Adaptive or Tailored Testing A very significant application of IRT is in the area of adaptive or tailored testing. For decades, attempts have been made to introduce adaptive or tailored testing out of necessity to reduce the number of test items and at the same time increase the accuracy of measurement. It is imperative that clients who are increasingly demanding a shorter duration test and a more accurate measurement and assessment will increasingly accept adaptive or tailored testing modules. It should be noted here that there are some pre-requisites before an adaptive testing module is designed. The first step is therefore to have a sufficiently large bank of items and administered over a fairly large population of test takers. The number of items in the bank may not be of the same number of items that we store in a normal item bank used for creating a paper and pencil test. For instance, if the analytical ability test has at the moment 25 items, the normal item bank should have a minimum of 15 times this number when it is used for creating paper and pencil tests. But, for adaptive testing module the item bank can be anything up to 10 times. However, the calibration of these items using IRT in adopting any of the three models is to be initially done for a population of test takers (anything between 200 to 500 test takers). The adaptive testing module will thus normally have 200 items distributed over desired contents and with the help of 3-d building block blueprint these items after administration will be analyzed through any of the models and the item parameters (1, 2 or 3) shall be ascertained. Also the ICCs and item information function curves will be plotted and stored with preferably test characteristics curve and test information function. Then the parent test is ready for use. Once this is done the module is ready for use. All the calibrated items in the bank are to be re-arranged in terms of increasing difficulty. Then it is possible to administer an adaptive test to test takers individually and ascertain their true score by finding the true ability and calculating true score as if he has taken the parent test. A test taker now can be administered with an item selected on the basis of an assumption relating to his ability. This is invariably his/her own judgment about his ability indicated by his position on the Z scale (-3 to +3) or on a scaled score available to him by way of standard scales like TOEFL, GRE, GMAT etc. The reader may refer to Rudner’s Computer Adaptive Testing tutorial that is attached to the appendix of this book. This is an interesting and self learning computer adaptive testing tutorial meant for testing an average level of arithmetic ability with a bank of 200 items. A test taker is shown the first item matched to the difficulty level at the ability of a test taker that is judged by himself/herself. Once the test taker answers it correctly it automatically goes to the next item which is of a 440 higher difficulty than the first item. In case he answers this item also correctly the process is repeated till the test taker answers an item wrong. This is where the test can be terminated. There are several rules for termination as stated below out of which any one can be adopted according to convenience: • • • The time at the disposal of test taker and administrator By a fixed number of items like 5 to 10 Till a consistent estimate of his ability at successive trials during the process. The final ability of the test taker is determined and a corresponding true score can be determined taking this final ability estimate and applying it over all the items in the parent test. Thus a replacement of the parent test is done by a short duration adaptive testing module having a very small number of items. Illustrations 1. A test of 5 items administered on 10 test takers is converted into an adaptive or tailored testing module. At this stage a test taker X will be assumed to have taken 2 items namely 5 and 2 and his response pattern is Correct & Incorrect. The test is terminated at this point. An ability estimate can be made working out an initial estimate of 0.3 since item #5 and #2 have difficulty values of -0.28 and 0.42 respectively. Test Taker X taking an Adaptive Test with 2 Items (Item #5, #2) Item No B U 5 0.28 1 2 0.42 0 Item No B U 5 0.28 1 2 0.42 0 p=1/(1+e(θ-b) ) q=1p 0.560 0.641 0.359 1.127 0.470 0.530 θ -(θb) e-(θ- 0.3 -0.58 0.12 b) p=1/(1+e(θ-b) ) q=1p 0.652 0.605 0.395 1.313 0.432 0.568 θ -(θb) e-(θ- 0.15 -0.43 0.27 b) u-p p*q 0.359 0.470 0.111 0.230 Correction Next Factor Estimate -0.152 0.148 0.502 0.732 u-p p*q 0.395 0.432 0.038 0.239 Correction Next Factor Estimate -0.078 0.070 0.245 0.484 441 Item No B U θ -(θb) 5 0.28 1 0.07 0.350 2 0.42 0 0.350 p=1/(1+e(θ-b) ) q=1p 0.705 0.587 0.413 1.419 0.413 0.587 e-(θb) u-p p*q 0.413 0.413 0.000 0.242 Correction Next Factor Estimate 0.000 0.070 0.242 0.485 Let us take another test taker Y who is assumed to have taken the items #4, #1 & #3. The response pattern is Correct, Correct and Incorrect. The test is terminated at this point. The final ability can be estimated by using an initial estimate of 1.5. This assumption is made on the basis that he answered item #4 correct with difficulty value of 0.92 and also answered item #1 correct with difficulty value of 1.5. He answered item #3 incorrect with difficulty value of 2.29. His final estimate is worked out as follows: Test Taker X taking an Adaptive Test with 3 Items (Item #4, #1,#3) p=1/(1+e(θ-b) ) q=1p 0.560 1.000 0.641 0.500 0.359 0.500 0.79 2.203 0.312 0.688 -(θb) e-(θ- p=1/(1+e(θ-b) ) q=1p -1.37 -0.79 0.255 0.455 0.797 0.687 0.203 0.313 -(θb) e-(θ- -0.58 0.00 0 Item No b U θ 4 1 0.92 1.50 1 1 1.5 3 2.29 b) Item No b U θ 4 1 0.92 1.50 1 1 2.287 3 2.29 0 0.00 1.003 0.499 0.501 -(θb) e-(θ- p=1/(1+e(θ-b) ) q=1p -1.39 -0.81 0.248 0.443 0.801 0.693 0.199 0.307 -0.02 0.976 0.506 0.494 Item No b U θ 4 1 0.92 1.50 1 1 2.314 3 2.29 0 b) b) u-p p*q 0.359 0.500 0.312 0.547 0.230 0.250 0.215 0.695 u-p p*q 0.203 0.313 0.499 0.017 0.162 0.215 0.250 0.627 u-p p*q 0.199 0.307 0.506 0.000 0.159 0.213 Correction Factor Next Estimate 0.787 2.287 Correction Factor Next Estimate 0.027 2.314 Correction Factor Next Estimate 0.000 2.314 0.250 0.622 442 Thus, the ability of the test taker X and that of test taker Y are calculated as 0.070 and 2.314 respectively after administering the adaptive test to them. Their true scores can be calculated by taking these final ability values to the parent test of 5 items. The calculations are shown below: Calculation of True Scores of Test Takers X & Y Ability Test Taker X Test Taker Y True Score Item 1 Item2 b value Item3 1.5 0.42 2.29 0.92 -0.28 0.07 0.193099 0.443517 0.136286 0.31352 0.644172 1.73059428 2.314 0.692961 0.56782 0.151591 0.316823 0.644929 2.374123965 Item4 Item5 2. An Analytical Ability test of 25 items administered on 1000 test takers. This is our parent test and calibration is done on this test. The initial IRT calibration is done and the ICCs of all the items are plotted and stored. A program segment will re-arrange the item difficulty values of these items in an ascending order and keep it ready for administering an adaptive test. For any test taker, his initial ability is assumed and accordingly an item easier than his own ability indicator is administered. The process of choosing more difficult items successively will be continued till he answers any one or two items incorrect. The test can be terminated at this point and the ability estimated as indicated above. For details of this sample click the following hyperlinks: • Introduction 443 Analytical Ability Adaptive Test Module Introduction The Analytical Ability Test (Set : 1675 ver 1.0) of 25 items on a total population of 1000 test takers is taken for purposes of creating an adaptive test manual for future use. It’s imperative that the test response data should be analyzed through BILOG to generate outputs like Phase1, Phase2 & Phase3 together with a plot of Item Characteristics Curves (ICC). To constitute an adaptive test module the pre-requisites are: 1. A modified and re-arranged Ph2 giving item difficulty values with increasing difficulty values which will form the order in which the items will be administered in the adaptive test module to future test takers. 2. A set of ICC (Item Response Function together with Item Information Function for all the 25 items). 3. A program module which will enable registration details of a test taker and an initial assumption on his ability to give a starting point. The program module should also make a choice of the first item to be administered in accordance with the assumption made. The response of the test taker to this initial item is registered with a decision of right or wrong answer. If the answer is right, an initial first estimate of his ability is made as indicated in this forthcoming article. The next item to be administered to the same test taker is to be chosen as the next more difficult item. And the response again registered. If the response is again correct, proceed further with successive items with increasing difficulty values. The test will be terminated at an item for which the response is incorrect. The final estimate of his ability is arrived at successively. A test characteristic curve giving ability and true scores as two parameters is already available and this can be used to infer the estimated true score for the final estimate of the ability of the test taker. • Question Paper 3. Set: 1675 ver 1.0 4. 5. Section 1 - Analytical Ability No of Questions: 25 Duration in Minutes: 30 6. 7. 1) During a visit to a foreign country, delegates to a seminar found communication among themselves to be a big problem. In a group of 1000 delegates, 250 could speak only English and 600 could speak only French. How many delegates could speak French in the group? 8. 9. A) 1000 B) 750 C) 600 D) 250 444 10. 11. 2) In a survey conducted among some friends attending a school re-union, it was found that 10 friends still met for movies, 20 friends met for picnics and 5 friends met for games. 4 friends met for movies and picnics but not for games while 2 met for movies and games but not for picnic. None of the friends met for picnics and games. 2 friends met for movies, picnics and games. How many students participated in the survey? 12. A) 11 13. D) 35 B) 16 C) 25 3) At an international conference, 100 delegates spoke English, 40 spoke French, and 20 spoke both English and French. How many delegates could speak at least one of these two languages? 14. 15. A) 110 D) 120 B) 100 C) 140 4) A restaurant has a bar and a separate section for teetotalers. Moreover, smokers can visit the bar but not the area for teetotalers. On a particular day, some drinkers, smokers and teetotalers visit the restaurant. Out of the 2500 guests, 1600 were drinkers, 1250 were smokers and 750 were smokers and drinkers. Find the number of teetotalers who were present. 16. 17. A) 300 B) 350 C) 400 D) 450 18. 5) On a particular day in a restaurant, 2/3 of the regular customers had lunch, 12 had dinner and 10 customers had both lunch and dinner while 6 did not have either lunch or dinner but visited the restaurant with friends. How many customers visited the place? 19. 20. A) 6 B) 12 C) 24 D) 36 21. 22. Directions for Questions 6-9: 23. 24. 6 couples are meeting at a dinner. The husbands are A, B, C, D, E and F. The wives are P, Q, R, S, T and U, but not necessarily in that order. B is married to Q but he is neither an engineer nor a computer professional. R’s husband is not an architect. F is not a doctor. C is not married to R, S or U. P’s husband is a computer professional. A, C and D are an engineer, architect or lawyer. U’s husband is a doctor. One of the men is a chartered accountant. 25. 6) Who is married to C? 26. A) R B) S 27. 7) Who is the chartered accountant? 28. 29. A) A B) B 30. 8) Who is U’s husband? 31. 32. A) B B) C 33. 9) Who is F’s wife? 34. 35. A) P B) Q 36. C) T D) U C) D D) F C) E D) F C) R D) T 445 37. 38. 39. 40. 41. Directions for Questions 10-14: 42. 43. Follow the directions given below to answer the questions that follow Your answer for each question below would be 1, if the question can be answered with the help of statement I alone. 2, if the question can be answered with the help of statement II alone. 3, if the question can be answered with the help of both statement I and II, but not with the help of either of them independently. 4, if the question cannot be answered at all. 44. 45. 10) A chemical composition contains only chemical A and chemical B. What is the ratio of the two chemicals? 46. 47. I. 2.2 grams of chemical A is present in x kilogram of the composition. 48. II. 1.3 grams of chemical A is present in 2kilograms of the composition. 49. 50. A) 1 B) 2 C) 3 D) 4 51. 52. 11) Sarthak is a worker in a factory and is required to pack balls in a container. At what time did he finish the assigned work on a particular day? 53. I. He started work at 8 am. II. By 9.30 am, he had done half the work and by 10.10 am, he had done 5/6th of the work. 54. 55. A) 1 56. B) 2 C) 3 D) 4 57. 12) Did the price of wheat increase by more than 5% last year? 58. I. The production of wheat increased by 5%. II. Wheat exports increased by 10%. 59. 60. A) 1 B) 2 61. 62. 13) Manish is friendly. Is Manish a joker? 63. 64. I. All graduates are friendly 65. II. No graduate is a joker. 66. 67. A) 1 B) 2 68. C) 3 D) 4 C) 3 D) 4 446 69. 14) What is the value of (A + B)? 70. 71. I. A = 1 + 3 + 5 + …. + 17 72. II. B = 9 + 11 + …. + 17 73. 74. A) 1 B) 2 75. C) 3 D) 4 76. 15) Pipe A takes 3 minutes longer to fill a bucket than pipe B does. It would take them 6 minutes 40 seconds to fill the bucket together. How much time will it take for pipe B to fill the bucket? 77. 78. A) 3 minutes B) 6 minutes C) 10 minutes D) 12 minutes 79. 80. Directions for Questions 16-20: 81. 82. In a certain code, the symbol for 0 (zero) is * and that for 1 is $. The numbers greater than 1 are to be written only by using the two symbols given above. The value of the symbol for 1 doubles itself every time it shifts one place to the left (for example, 4 is written as $*; and; 3 is written as $$) 83. 84. 85. 16) The LCM of 23, 32, and 55 is represented as: 86. A) $*$*$* $**$$$$***$***** B) $$**$$*$* C) $*$*$*$*$*$* D) 87. 88. 17) The value of 89. (9^2 – 2^2) + (8^2 – 3 ^2) + (7^2 – 4^2) is represented as: 90. 91. Replace ^ with raised to power. 92. 93. A) $$**$$** B) $*$**$*$ $**$**$$ 94. 95. 96. C) $*$*$*$* D) 18) The product of ($$*$*) and ($**$**) is represented as : 97. A) $$$***$$ B) $$**$$**$$ $*$*$*$*$* 98. 19) The number 345 is represented as: 99. 100. A) $$**$$**$ B) $*$*$$**$ D) $****$$$$ 101. 102. 103. 20) The value of 7x10-2x3-3x4-4x5-5x6 is 104. A) $* D) $$**$ B) $$* C) $$$*$*$*** D) C) $*****$$$ C) $*$* 447 105. 106. Directions for Questions 21-25: 107. 108. During a visit through a national sanctuary, 8 tourists are seated in 2 jeeps. Each jeep has 2 seats in the front and 2 behind them. After every one hour, the jeeps are stopped and the tourists change their seats so that every one has a view of all sides. The tourists Jay, Kim, Laine, Mary, Neil, Oliver, Pam and Quiver must follow the following instructions. The tourist who acts as a guide on the trip must always sit on the left side of the front seat. Quiver and Pam cannot sit in the same jeep. Jay must sit directly behind Neil in the same jeep. 109. 110. 21) If Kim sits on the front in one jeep with Quiver as the guide, and Oliver is the guide for the other jeep, all of the following must be true except: 111. 112. A) Oliver sits in front of Pam 113. B) Quiver sits in front of Laine 114. C) Pam sits next to Jay 115. D) Mary sits next to Laine 116. 22) If Pam sits behind Oliver and Quiver sits next to Mary, which of the following must be TRUE? 117. 118. A) Kim sits behind Quiver 119. B) Laine sits behind Mary 120. C) Kim sits next to Laine 121. D) Jay sits next to Kim 122. 23) If Kim sits behind Pam in a jeep, in which Mary is the guide, then all of the following could be true except: 123. 124. A) Laine sits next to Oliver 125. B) Oliver sits next to Jay 126. C) Oliver sits next to Neil 127. D) Laine sits behind Mary 128. 24) If Kim and Mary are the two guides, then which of the following must be TRUE? 129. 130. A) Laine sits next to either Kim or Oliver 131. B) Jay sits next to either Pam or Quiver 132. C) Kim sits next to either Laine or Oliver 133. D) Oliver sits behind either Pam or Quiver 134. 135. 25) If Pam sits next to Neil and Kim sits next to Laine, then which of the following must be TRUE? 136. 137. 138. 139. 140. 141. A) Quiver sits behind Kim B) Mary sits behind Laine C) Quiver and Mary are in different jeeps. D) Oliver and Mary are in different jeeps. 448 142. 144. • Answer Key and Test Taker Responses 143. Answer Keys 1. B 2. C 3. D 4. C 5. C 6. C 7. B 8. C 9. A 10. B 11. B 12. D 13. D 14. C 15. D 16. D 17. B 18. C 19. B 20. A 21. B 22. C 23. A 24. B 25 D 145. 146. 147. 449 148. 149. 150. 151. Test Takers Response Data with Answer Key as 1st Row 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 1675-00000 BCDCCCBCABBDDCDDBCBABCABD 1675-10914 1675-10947 1675-10917 1675-10906 1675-10915 1675-10913 1675-10912 1675-10904 1675-10918 1675-10903 1675-10911 1675-10920 1675-10902 1675-10916 1675-10919 1675-10943 1675-10905 1675-10909 1675-10908 1675-10944 1675-10945 1675-10948 1675-10950 1675-10946 1675-10941 1675-10942 1675-10907 1675-10949 1675-10991 1675-10993 1675-10923 1675-10928 1675-10936 1675-10935 1675-10929 1675-10973 1675-10974 1675-10975 1675-10934 1675-10931 XDDCACBCDXCCXABAACXAXXXXX BBCCCBBCBBBBCBBBBBBBBDDAD BBDCBCBCAACAACDCBBCBCDCBB BDDCCCDACBCDCCDDACABBDCEB BCECCCEAABCDBBBABDABADDAD BBDDDCXCXBCDCCXCCCCCDXBXD CCCCCCBCCCCCCCCCCCCCBCCCC BDDBDCBDABCCCCCBBBACDCABC BDDCCCBCCDCDCCACBBBABBBBB DCBCCCDCCBCDCCDAABABCDBCC DCDCCXBAABCDDCBABCDXCXXXA BCDCDCBCXBCDCCAXXXAXXCADD BCDCCCDCCBDDCCBDXCBABCBCC BCDCCCACABCDDCDBCCADBBBCA CADCDCBCABBCDCAAXXAXXXXXX BCDCCCBCABCDCCCXXXXXCABBA BCDCCABCDBADDCDDXXCXCCAAD BCCBDCDCCDCBDCCBCACBBCCDA DABAACABCACBCCBBACBACBBCX BCDBCCBCABCCDCCBBDABCADCC BCDCBDBCCBCDDCCBBDABCDXAB CCDCDCBCCCCCCCAABCCBBBBBB BCDBCXBCABDDCCBBBCAACBCBC BCDBCCBCCDCBDCBCDCCBBCXDD BCDBABBEADCDCCXXXXXXCXXXX CCCDCDBCABCDCCCBACCBACDCA BCDCBCDCABBDDCDBDCAACBDCB BCXBDCBCCXXADBXDXABACXAXB BBDCCCBCABBBBDCCCCCCCDCBD BCDCCCDCABBDCBACCCBABCCCC BCDCCCBDABDDDCDDDAABBCCAA CDDCCBCCDBCDDCXDACBACDBCD CCDCDCBCCDBDDBBCCCBCCDCCC BCDCCCBCABCDCCDDCAAABCAAA CCDCCCDCCBCDCCDCCCCCCCDCC CXCBXCBCCBBDDCAXXXXXDAXXX BCECBCDCCABDCCDCABCBCBCBC BBDDDCBCCBDDDCBCBBCBBCCBD BCDACCDCCDCADDDDDDDDBDBAB BDDCCCBCABCDDCCCACCCACDCB 450 195. 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 1675-10988 1675-10971 1675-10922 1675-10939 1675-10981 1675-10925 1675-10921 1675-10990 1675-10932 1675-10930 1675-10927 1675-10972 1675-10937 1675-10979 1675-10978 1675-10938 1675-10977 1675-10953 1675-10954 1675-10958 1675-10965 1675-10961 1675-10966 1675-10955 1675-10963 1675-10992 1675-10968 1675-10951 1675-10957 1675-10962 1675-10970 1675-10994 1675-10967 1675-10960 1675-10933 1675-10976 1675-10989 1675-10952 1675-10910 1675-10926 1675-10940 1675-20710 1675-20709 1675-20708 1675-20705 1675-20706 1675-20704 1675-20701 1675-20707 BXDCDCBCABBDDCDBXXXXXXXXX CXDBDDDCDBCBDACBDCBDBDXCC ACDCCCDBDBCDCCDBAACCBCABC BCBCDCDCCBCDDCBCCCCCDCCCC BDDDDCBCCBBECCCBCCAACCCCC BCDCCCDCABCDDCCBCAACCBDBB BCDCCXXXXDBBCCCXADAAADCXX BCDXCCBBXBCDDCXCCCCCDDDDX BCDCCCBCADBDCCCCCBABCDACC BCDCCCCCCBCDDCCCCCCCCCCCC BXDCCCXXXBCDDXBDXXXXDBDXX BDDBCBBCXCBDCCBDACBXDCCBC BCDCDCDCCBCDCCDBCDCBCBBBC BCCBCCDCCDCDABADCCCCCCCCC BXDCXCDBADCCDDBXBXADACBCC BCDCCCDCCBBDCCDCCCCCDXXXB BCDCDCBCABCDCCCCBCBDBDBCD BCDCACDCABBDDCCCACCBCCCBD BDDCBADDDBCACCDCCCCCDCCCC CADBBCDCCDBACCCBCDBCBCACD BCDCCADBABABDCABBBCBCCXXX CDDCACDCDDCCCCBDAXAABXXXX BCDCCCACBBDACBDBBCDCDDCBD BCDCDCDCCADDDCDDCCCCCBBXB CDDCCCCCCBCDDCCCCCCCACCCC CDDBCCBCBBCCDCDCBAXABDCBC BCDDCCBCABCDDCBAXCCBABCCC BXBXXCBCXBCDDCDXXXXXBCCBD CADBBCDCCDCACCADBABAAACBC BCDCBCBECBBDCCBDCBBBCCBBD CCDDDCBACBCBDCDAADBCCCAAA BCDCBCDCABBDDBACCCBABCCCC BXDDCCBCCDBDCBDBXXXXBCCBD BCCBCBCCDBBDCCXBBCDXBAAAD CCDCCCDCABDDDCACBDCABBACD BCDCCCBDABDDDCCDACBABCBCB BCDCDCDDDBBDDCCDDDDDBCABC BBDDCCCDCDBCBDCCCCCCACDCC CCBCCCBCABDDDCBDCCCBCDCBC BCDCCCBCABDDDCDDXDBADAXXX BCDCCCBCAACDDCCDBCABCCBDB BCCDBCCCDDDCBCABDBBDBCBXA CDDCCCBDBBBDBBCADDBBCBAAD BBBBCCDCDBDBDCABBBBBXCDCC BADBCBDBCBCDDCABBBDXDCADD BCDBCCDCCABDDCCCECBDCACBD BCDACCCCCBCDDCCBBBBBCAACB CBDCCBADCBDDDCBDCABDBCBDA BCXCXCDCCDBCDCCXXDBXCCXXC 451 244. 245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. 270. 271. 272. 273. 274. 275. 276. 277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 287. 288. 289. 290. 291. 292. 1675-20702 1675-20820 1675-20818 1675-20817 1675-20807 1675-20808 1675-20814 1675-20802 1675-20801 1675-20803 1675-20804 1675-20805 1675-20809 1675-20810 1675-20811 1675-20812 1675-20816 1675-20815 1675-20785 1675-20779 1675-20782 1675-20770 1675-20761 1675-20766 1675-20764 1675-20792 1675-20780 1675-20788 1675-20767 1675-20784 1675-20768 1675-20751 1675-20758 1675-20755 1675-20757 1675-20765 1675-20763 1675-20799 1675-20793 1675-20773 1675-20800 1675-20752 1675-20781 1675-20787 1675-20786 1675-20762 1675-20769 1675-20783 1675-20790 BCDDCCBCABBDCCBADDCBBDCAC BADCDCDCABBDDCCCCCCCCDBCA BCBCCCDCCBCBBACCBACBBCBCC BCBCCCBCAAAAAAACCCCCBCADD BCBCBCDABBDDCCCCBBCDCBBCB CCDBBCBCADBDDCDCCCCCCCCCC BCBCBCCCCCBDDCCCACACCCCDC BCDCCCBCCBCDDCCDCCCCBCCBC BCDCCCXCXBDDDCCXXXXXBXXXX BCDCCCBCCBBDDCCCBBCCBCCBD CDDCCCBCCBCDCCCCCCCCDCCAA CDDCCCDCCCCCACCCCCCCBCCCC CXDXXCXCAXXXDCXBCBBAXCDXD BDDCCCDCCBCDDCDBCBCCCBDCB BCCCCCBCCBCDBBABBCBBBCADB BCDBBCBADBCDDCCDCDAACBCDA BCDCCAAAABCDDCAAAAAABCACC BDDCCCDCCBCDCCCCCCACCCCCC BXDBXCCCCXXXXXXXXXXXBCABA BXCXCXXEXAXXDCXBXXDXDCACD BCDBCCBCACACABCACABADBBAC BCDCDCBCDBCDCDCBCCACBBCBC BBDCDCACBBDDCCDCBCDCCDCBC BBDBCCBCCCCBDCBCBDADDDCBB DDCBBCDCDBCDCCABDCDAAXBAC BCDDCCDBCCBDCXACBCDCCBDCB BDDCCCBCDBCDDCCACBBDADDBC BXDBCCXCEACCDCXDXDEBDAADX BCBCCCBCCBCDDCCBBBBBCCACC BCDDBCDBDBBDDABCBDACBXXXX BCCBACDCCCBBCCADBBDBCCBDA BCBCCCDACBCCCBABDAAACDAAB BCCBCABACABCCBBBDAXCBCBAC CXDCDCBCAADDCBABCADAABDCB BCCCECACABCDDACBACAACDBAC BCDACCDCCBCDDCCCDCCBCDBAA DDDCBCBCABBDDCBCCCCCXXXXX CCDCDCBCABCDDCDCCBCBDCCBC CCCCCCBCACBCDCCACCCCCBCCC CACDDCDCCDBCDDABDBXADBCAD CDCBACBCBCDADCBADADBCBDCA CDBCACDCADBBCCCBDCAACAACA CDDBCCDCDBCDDCBDBCCBBCCBB BBDCCBDCABCADCBDBCDBDBCDA CCDXDXXXXACXCCDBXXXXXDXXC BDDBDCBCCCBDCDACAAAACABBB BADAACBCAXCDDDXAAAAACDAXX BCBXXDBCAACDCCDXXXXABXXXX BCDCCCDCCBCDDCCCCBCCDCACD 452 293. 294. 295. 296. 297. 298. 299. 300. 301. 302. 303. 304. 305. 306. 307. 308. 309. 310. 311. 312. 313. 314. 315. 316. 317. 318. 319. 320. 321. 322. 323. 324. 325. 326. 327. 328. 329. 330. 331. 332. 333. 334. 335. 336. 337. 338. 339. 340. 341. 1675-20794 1675-20795 1675-20797 1675-20777 1675-20775 1675-20772 1675-20753 1675-20791 1675-20771 1675-20778 1675-20776 1675-20796 1675-20756 1675-20760 1675-20774 1675-20759 1675-20754 1675-20798 1675-20703 1675-20813 1675-20819 1675-20806 1675-20789 1675-18047 1675-10554 1675-10558 1675-10557 1675-10551 1675-10561 1675-10563 1675-10562 1675-10540 1675-10538 1675-10556 1675-10555 1675-10552 1675-10537 1675-10559 1675-10560 1675-10539 1675-10565 1675-10571 1675-10534 1675-10564 1675-10572 1675-10533 1675-10503 1675-10550 1675-10545 BBDDACBCCCCDCCBXXXXXADCCX ADBXXCBCAABCDCACXCABCACXX BCDDDCBCABCDDCBCCCBACCACD BCDCCCDADABCBACAABDBACBEB CCBBACBCADDDBCACXXXXXXXXX CCCBDCBCADBADCADCBAACDBCC BDDCCAACABCDDCAAAAAAAAAAA BBDDCCCCCDBCDXCBCDCBCCCCC BCCADCDCCBBBDCAXXCXAXXCAB BCDCCAACBAACDCBCXDCBABDCC CDDBACBBCBCBCCABXCBXCXDCC BCDCDCBCACDDCCCXXXXXBCXXX BCDCXCBCCBDDDACBBCDBCBCDA BBDCBCDCCBCCDCBBCCCCBBCBB BBDCXCBCABBCDBACBCBCBCCBX BCDCCCBCABBCCCABCDABBCACD BBCCACBCABCCBDABBBCABBBCA CXDCBCDCCDCDDCDCCCCCDDDDD BCDCCBBCABDDDCDCCBBCACAAC BCBCCCBCCBBDCCCCBCBXCCBCB BDDBCCBCABDDDCDCBCBDBCACD BCDCCCBDACCDDCDDBBAACAADB BCDCCCBCADBCDCBCBDCBBCACD BDCBXBDBCDABDCBCDXDCBBACA BCDXXCBCABXXCCXBDAXBAXAAC BDDCCCBDABDCDCCDACDABCDBD BCBXACDCDBCXCCBBAAAACBDAC BBDDBCDDBBCDDCDCDDBBCCABA BBCDDCDACBCDCCCDABABCCBCD BCDCDCDCCBCDCCDCCBCCBXABA BCDCCCDCABBDDCCBCDBACCDCB BCDDABDCACDCACBCDACCDCABB BCDCDADCDDCCDCBCDBACDBCCB BCDCBCBCCBCDACCCBDCAACAAC DCDCXCBCBBCACCCDCBDADBCAA BCDCDCDCDBBDDCDDACBAXAAAA BDDCCCBCABBDCCCDXCBACBCBA BCDBCCDCCBCDCCCBDCBABCDCB BADCXCBCCABCCABBXXAAXXXXA BBACDCBCABCDBCACBCCCCCCCC BDDBXCDBABCDCCBBBCCCCBBCC DDDCCCCDABDDDDBCBBBDDDDDD BCCCBCDBBBBDCCBDBABCDCADB BADCCCBCCCDADCCDCBBDBBBBB CBDDBCDCCDBDDDCCCCBBDABCD CCDXCCBAABCCDCCCACDBBAACB BCDDDACBCABDDCDBCDDBCDBCD BCCCCCBCABDDCCCCCDCCCDDCC BCBDCCBCABCCDCBCCDXXXXXXX 453 342. 343. 344. 345. 346. 347. 348. 349. 350. 351. 352. 353. 354. 355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365. 366. 367. 368. 369. 370. 371. 372. 373. 374. 375. 376. 377. 378. 379. 380. 381. 382. 383. 384. 385. 386. 387. 388. 389. 390. 1675-10505 1675-10547 1675-10526 1675-10546 1675-10527 1675-10528 1675-10531 1675-10529 1675-10549 1675-10532 1675-10548 1675-10501 1675-10502 1675-10543 1675-10517 1675-10504 1675-10506 1675-10512 1675-10542 1675-10507 1675-10541 1675-10522 1675-10510 1675-10524 1675-10523 1675-10525 1675-10509 1675-10508 1675-10519 1675-10514 1675-10530 1675-10511 1675-10513 1675-10516 1675-10521 1675-10544 1675-10535 1675-10553 1675-10520 1675-10515 1675-20283 1675-20282 1675-20281 1675-20263 1675-20262 1675-20260 1675-20259 1675-20261 1675-20269 BCDCCBCBABDDDACBABCBCCACD BDDCCBBBBBDDCCDAAAAAACAAA BCCDBCDACBECDAEDBDCACADCA BDCBCCDAABCDCAADBCABCDABB BBBBCCDCDDCBADCABCADBCCCC CBDDDCBCABBADCCDBDCBACBDA BCDCBCDCCBCBDCDBCBDBCCADA BDDCCCBCDBCDDCCCCCBACCCCC BCDCCCBCABBDDCBBCDBABCXBD BCDCDCBCABCDDCACCCCCCDBCB BCDCCCDCBACCDEDACCBADCABB BCDABCDCCBDDCDBDABCBDCACB BCDXXCBCABCDDCBXXXXXXXXXX BDCBACBADBCDDCCDACBACADCD CBDCCCBCCBDXDCCADCAABCAAA BCBCCCBCABBDDCDBCDBXBXXXX BCDCCCAACDDDDBACCCCCBDAAD DBDCACBCCBCDDCCBCCDDCDCDD BBBCCCBACDBDBBBDBAADBCBCB BCDCACDBCACXCADDCBXCBDAXX BCDCBCDCABCADCDCCBCBDACCC CCDACCBCCBDDDCCCCCCCDDDDD BBDCBCBABBCDDCCBBBBBABBBB DBDACABCCBCDDBACBDBAADBCC CBDDBCBCAADCDCBBDAACCDDCX BBDCXCCBCBCADCBCDBACCBCAC CBCBACBCEBCDDCABDXBBDBBDA BCDCDCBBBBDDDCDBBBBBBDBCD BCDDCCDACBCDCCBBBCACCCBBB BCBADCBCABDDCCDDDCBACCABX BCDCBCBCABBDDCDBCBCBBDBAC BCDCBCBCABCDDCBBBBBBBAABB BDDCXCDCCBCDDACXXXXXXXXXX BCDCCCBCABDDDCDDCBBABCABD BCDCCCBCABBDCCCBACACABDCA BDDCCCDCXDCBDCCBCAAABCACA BCDCCCBCCBDDDCCBCBBCBCBCD BBDBBCBCABDDDCADACBABBBBB BCDCDCBCCBDDDCCDACBABCAAD BCDCCCBCABDDDCDBBBBBBCABB BCDCCCBCADBCBBABCBDBCCBDA XXCXDCDCABCACADBDACBBCABC BCCCBCBCABCDDCXDDCAXXXXDC BCCADCBCACDDCDACBCCBCCDCC CDCBCCBCACBBCDCCBCCDDBCDC CDDCCCBCABDBCBCBCACDCBBCD BXDCXCBCACBDDCCXXCBABBDBX BDDBBDBCBBCDDBDBCADCAADDD BDDCCCBCADCBDBACBAAACAACC 454 391. 392. 393. 394. 395. 396. 397. 398. 399. 400. 401. 402. 403. 404. 405. 406. 407. 408. 409. 410. 411. 412. 413. 414. 415. 416. 417. 418. 419. 420. 421. 422. 423. 424. 425. 426. 427. 428. 429. 430. 431. 432. 433. 434. 435. 436. 437. 438. 439. 1675-20257 1675-20266 1675-20270 1675-20267 1675-20251 1675-20252 1675-20253 1675-20256 1675-20255 1675-20254 1675-20268 1675-20258 1675-20284 1675-20285 1675-20639 1675-20640 1675-20638 1675-20637 1675-20696 1675-20699 1675-20264 1675-20382 1675-20698 1675-20700 1675-20265 1675-20380 1675-20379 1675-20378 1675-20377 1675-20381 1675-20400 1675-20399 1675-20398 1675-20397 1675-20396 1675-20395 1675-20394 1675-20393 1675-20392 1675-20391 1675-20695 1675-20312 1675-20324 1675-20322 1675-20321 1675-20323 1675-20325 1675-20305 1675-20315 BCBCBBBBCCCCDCCBBBBBBCAAC BCDCXCBCABCDCCXADBCBCACDB BCBCCCDCABCDDCBABCBBACBBC BCDCBCBCADCBCCDBCACBCBBDB BCDDACBCBDCDCCDCABBAACAAC BDDCCCBCAACCACBDBCBCDACBC BXDCCCCXXCBDCCXXXXXXXACCD BXDCBACXABBXACBDBCABCDDXC BXDCCCBACCCDCABXXXXXACBDB ACDBDCBBABBADCADXCBBDBDCB CDCBACBCBBBACCDACBDCAAXAB BCBCCCDADBCDDCDDBXABADCDA BADBACDCCCBBCCBACBABBCBCA BBDBDCBCCBACACCBDACBBACDA BACDDCBDACDBACCABCCDBCBCD BABCDCBCABCCDCDBXBXCACADB CDBCCBDABCCBCCBDCBBDCDDCB CCDCCCDCCBBDCCBCABCABBCDB CDDCBCDCCDBCCCDCDCBCDBCDC BDDCCCBCABCDDCADBBCAADACD BCBCDCDCCBDCDADDCDCCDDCCB BDDCCCBCABBDDCDCDBCDCCDCD BCDCCCBCABCBDCBABCCDCDBDC CCEBCCBCADCDDCBBDCDBCCADB BBDCCCBCAABDCCDBCAAABCCCC BDDCBCBCABCCCDABCDCABCBBC CCBDBCBCABCDACBACDACCBDBA BCDBXCBCCDBCDCBXXXXXCBDAC BBCCDDBEDCBDBCABCDCBABDCA DCBADCBACACCACDBDADACCDCC CDCDCDADBACBBDBDBCABCBACA BCDCBCBCABCDDCDCDBABCADBC BBBCDCDCCDCDCCABCDABADDAC BCDCCCDCCCDCCCACDCCACCDCB BCCBDCDCCCCBDCDABBABAACCA CCCBXCBCCCACCCBDBBACCDXAC BDCBDCBCABACACBDCBBDCABDC BCDCCCDCCBBCCCADBDDDACDCD CCDADCACBBBDDCXACCBBAACBD BCDACCBAABCBCCBCDCBABACDC BCBBCCBCACBDBCBDCBABCBDBC CCDBCCDCCACBBCACDCBDCBDBD BCBCABBBBDABDCABBCAABCCCC BCDCCCBCADCCDCBBCBXDBCXXC CCCCCCBCABCDBDCXXXXXAACCB BDDBCCBCCACDDCADDCADACCBC CDDDDCBCABCADCDBACDBACCBD CCBCDCBCADCDCCACDCBDADBDC BDDDBCDCCDCDCCAABCBCAABBA 455 440. 441. 442. 443. 444. 445. 446. 447. 448. 449. 450. 451. 452. 453. 454. 455. 456. 457. 458. 459. 460. 461. 462. 463. 464. 465. 466. 467. 468. 469. 470. 471. 472. 473. 474. 475. 476. 477. 478. 479. 480. 481. 482. 483. 484. 485. 486. 487. 488. 1675-20311 1675-20308 1675-20250 1675-20231 1675-20232 1675-20234 1675-20233 1675-20227 1675-20236 1675-20248 1675-20228 1675-20240 1675-20229 1675-20239 1675-20238 1675-20235 1675-20237 1675-20245 1675-20242 1675-20243 1675-20244 1675-20247 1675-20249 1675-20246 1675-20273 1675-20280 1675-20687 1675-20693 1675-20692 1675-20691 1675-20690 1675-20689 1675-20688 1675-20686 1675-20279 1675-20278 1675-20276 1675-20277 1675-20275 1675-20274 1675-20272 1675-20271 1675-20694 1675-20610 1675-20287 1675-20286 1675-20288 1675-20605 1675-20607 BBCCBCDCCBDCDCABCDBACBDAC CBDCBCBCABBDDCBCABDBACABC BCBCDCBCCDCDCCCCDCCCBDCCD CCDABCDCABCDCCCBCCCCACCCC BCBDACDCXBCDBCBDDCBBAACBD CCDBADDCBCDBCCCADCBCBCBCA BDDBCCBCACBDADCCADBAABDAD CDCBCCDCDBCACADCCCBBBBAAA BDDCDCDCADCDCCADCBDADXXXX BCDDCCDACBBADCCCABBADBABC BCBDCCBCBCBCCCACBCAAACBBA BDDCDCDBABCACCACDCBCBDCCB CBDCCDBCCBCDDAABCCAABCDBC CDDCDCBCDBCDDBCBACACADBBC CDBCDCDCCDCDCCCACCAACCDCD BCCBDCCBABCDCCACBCBACCDBC BEACDCBCDDBDACACXCDACXXXX BXEBXCXBDACDACXXXXXAXXXXX CDCCCCDCCCCDDDCCBCCCBCCDC BCCCXCBCABCDCCCDDCABDDACD CDDABCBCCACBADCBDAAAADCBB BBDACCBBDBCDCCDDBDBCADACA BCCDACBEABDADCADBCAACBXXX BCCCDCAAABBBDCACBDAACCADD BCDCCCDCCBBDDCBCDBCDCCADC CCDDCCECCCCBBCBCBCCCBBBCC BXDCCCDAXDBBDCCCCXCCCCCCC CXDXDXXXXBCDCCXXXXXAXXXXX CXDDBCBCXACBDCBXXXXAXXXXX BXBXBCBDCDCBADCAXCXXXXXXX BCBCCCDBCCCACCBBDBAAAADAC BCDACCBCABCBDCBBCDBACCEBC BCDCCCBCABCCCCXXXXXDCBXAC BCCXXCBCACCDCCAXXXXXXXXXX CBCDBCDCCBDCDAAABCBADBCDA BDCCDCBXXBCBBCXXADBAXXXXX BCDCCCBCABBDBBCBBBBBBCABD BCBCDCBCCBBDDCCBBCAACCBCC BCBCCCBCABCBECCDBBCBCBDCB CDDBDCACABCADCCAXCBCBCADX BDDBCCDBDBBABCCDACBCBDXXX BCDCDBACADCCBCCCDBCAADBAC BCCDCCDCCACDDACBBCDABBCBA BCBCCCDCABCADCACCDBCDCDCB BCDCDCBCABDBCCBDBCDDACDCB BADCCCDCADCBCCDCDACABCBBD CDDCCCBCACDACCADBCABBACAD BDCDCCDCDBCBDDACDBCCACDBC BCCCCCBCABBDDAABCBBCBBCCC 456 489. 490. 491. 492. 493. 494. 495. 496. 497. 498. 499. 500. 501. 502. 503. 504. 505. 506. 507. 508. 509. 510. 511. 512. 513. 514. 515. 516. 517. 518. 519. 520. 521. 522. 523. 524. 525. 526. 527. 528. 529. 530. 531. 532. 533. 534. 535. 536. 537. 1675-20604 1675-20602 1675-20603 1675-20606 1675-20608 1675-20609 1675-20682 1675-20683 1675-20684 1675-20685 1675-20661 1675-20663 1675-20664 1675-20665 1675-20666 1675-20667 1675-20681 1675-20668 1675-20669 1675-20670 1675-20671 1675-20672 1675-20673 1675-20674 1675-20675 1675-20676 1675-20677 1675-20678 1675-20679 1675-20680 1675-20220 1675-20221 1675-20208 1675-20219 1675-20217 1675-20218 1675-20212 1675-20213 1675-20216 1675-20211 1675-20214 1675-20215 1675-20225 1675-20224 1675-20202 1675-20203 1675-20204 1675-20206 1675-20207 CDDBDCBCCBBCCCACBDCBCABCD BCCCDCBCACCADCADBCACDABCC BCCAECBCADBDDCDBACBBCABDC BCCCADBCABCDDCBBCCBAABCBB BCDCACDCCBBDCCDBADCBCCAAC BCADCBCADBBDDCBCABDADCDBD BDDCCCBCAACDDCCXXXXXBCBXX BCDDDCBCABCBCCBCCCXXDBADC CDDCACDADBBCCCBXXXXXDDACD CDCDBBCDCBCDDBABCDACBCDCD BCCCCCDCCBCDDCABCCADAACBC BACBACAACDCADCBDABDAADCAD BCADCCBCDBCDDCAAABCBACCDC BDCDCCBCABBDDCABCDACCCABC BDCCXCBCDBCAACBCBCBCDCBCC BBBBDCBCCCCDCCCBXXXXCXXXX BBDCXDXXXBCDXCACXXBDXDXBD BBDCCCBCABCDDCCBBBBBCDCCC CDBACCDCCCBCDCDXABBABDDCB CCBCCCDCCDCDDCBBDBAACDDBC CDDCCCDAADCCDCAAACBDBCAXX DDDBBCDDCBCBBCDDBCABBCDBA BDXXXCACADCDDCAACDBCAXXXX BCDCCCDCCBCDDCEBCDCCBCBCA BCDCDCBDABBDDCCABCABAADAD BDDCDCDCACBBACAAABCABDCCD BDDCDCDCCBBDCCCCBCCDCCCCC BDDCDCDADDCACCDDBABDDDBCD BCDCBCDCDBCDDBACADCBCBDCA CBBCCCDCCBCDDCCDBBAABDDBC BDCCDCDAADCACCBDADAABCCDC BDCCCBDCBCCECBCCBABBCBDCA BDCCCCBCABCBCCCDACBADXXXX BDDCBCBCCBBDDCCBCAACACBCC BBDDCCDCBBCCBCDCBCBCBCBCB BCDCCCDCAXXXXXXXXXXXXXXXX BDCCDCDCCDCABCCCDBCACCABD CDDCDCDCCDCBCDDBCXBABCADD CDCDCCBCCDBBACACDBACCCBCD BCDBDCDCCCBBDAADBACBADCDC CDCBDCBDCABCACDCBDAACCDBD BDCECCBCAACDDDBCBABCBDCAB BBCBDCBCABCCDCADACAABADAC CBABBCDCBAABCACBCDCBCCBCA BCCBABBDAACCDCBCABACCDCDD BCCBCCAAABCDBCBCDDADABCCC ACDDDCBCABCAACADCCBACXBCD CDDBCDDCCBCCBCBDBDCCDDCDC BDDCCCCCAECBCDCDCCDBCACBD 457 538. 539. 540. 541. 542. 543. 544. 545. 546. 547. 548. 549. 550. 551. 552. 553. 554. 555. 556. 557. 558. 559. 560. 561. 562. 563. 564. 565. 566. 567. 568. 569. 570. 571. 572. 573. 574. 575. 576. 577. 578. 579. 580. 581. 582. 583. 584. 585. 586. 1675-20210 1675-20205 1675-20201 1675-20222 1675-20209 1675-20329 1675-20327 1675-20339 1675-20371 1675-20352 1675-20353 1675-20355 1675-20356 1675-20354 1675-20358 1675-20351 1675-20357 1675-20360 1675-20359 1675-20364 1675-20369 1675-20370 1675-20363 1675-20367 1675-20365 1675-20366 1675-20372 1675-20373 1675-20374 1675-20375 1675-20368 1675-20362 1675-20361 1675-20306 1675-20318 1675-20304 1675-20319 1675-20309 1675-20301 1675-20302 1675-20303 1675-20320 1675-20317 1675-20307 1675-20310 1675-20314 1675-20316 1675-20313 1675-20660 DBDBCCDCCBCDDCDBCCAACCBBC BDDCCCBCADCCDCBBBCBCBCDAB BCDCBBCBBCBCCCDDBCDBCBCAA CDDBCCBCADCDXCACBBACABBDC CDDBDCBCABBBADCBBBBBABABA CDCDDCDAABCDACBAACDABADCB BADBECDCABDABBBBXXXXCDXAX BCDABCBCCBCBDCCCCCCAABCDC CDDCECBCAABDCCABCDACBBACD CCDBCCDCCBCDDCABDCBCACDCB BBDCXCDCCDCDDCBCBCCCCACCB CBBCCCBCABCDCCBACDBBCBCDA BBBCCCDACBDCAABBCDBAABCXC BDDBBCDCCCCAACBCCDAABABCA BCBDADDBCBCDDCBDCAAACDCAD CDDDCCBCCBCBDCDDDBBCCDBBB CADBCCBEAABBCCCBCBCBCCABD CBBDCCBCAACDCCCDDCBACABDC BCBDACBCADCDCCABDBADCCAAD BBACCCBCABCDDCBXXXXXCCCCC BDDCCCBCDBCDCCDDBCBAACDCB BCCCDCBCDDCDDCAABBCCCDBAD BDCCBCDCCABACCBDDBAAABCBD BBCBBCBCCABCCCBCBCBBBBBBB ADCCCBDCDCBBACBBCDBCABCDB CCDBCCBEABBBAAABAABABAAAA BDCBCCDCCDBBDBCDBCBDBDBCD CBBDABDCADDCDCDBADCACBABD BCCCDBDCCCCBCAAADAACACAAB BDDCBCBCCCCBBCCCCCCCCCCCC BDDABCDCCBCDDCABCCBAABCBC BDBCCCBCCBCDDCBCCCCACCCCC CCDCCCXBBCBADCBDACBACXXXX CABCDCDCCBACDBCABDCCDABCD BDDCBCBCDBBDDCCDACBDBCDAA BDBCXCBCCDCDCCCDXXXAXXXXX BDDDBCDAABCDCCDBCABACCABA BDBCBCDCCCBAABBCABAAABDAB CCCCCCBCABCADCCDCCACBBBBB BCBBBBDCBACBDBAABAABBBCBB BADBXCDCCCBDDBCBDCCCABCCB DBDBCCBCADBAACADCBDACXABD BBDCDCBCCBCDDCBABBBCCDACC CBBACDABCDDACCBDBCDADACCD BCBCCCBCBBCCABABCDBCACCCB BBDCDCBCCBCACBABCDACAADBC BCDACBDCDBCDDBCBDCDCADBCD CDCCDCBCCABXDXDDCCADBCABB BCDCDCDABBBCDCBCBDABBACBA 458 587. 588. 589. 590. 591. 592. 593. 594. 595. 596. 597. 598. 599. 600. 601. 602. 603. 604. 605. 606. 607. 608. 609. 610. 611. 612. 613. 614. 615. 616. 617. 618. 619. 620. 621. 622. 623. 624. 625. 626. 627. 628. 629. 630. 631. 632. 633. 634. 635. 1675-20631 1675-20632 1675-20634 1675-20633 1675-20635 1675-20641 1675-20643 1675-20644 1675-20646 1675-20648 1675-20655 1675-20654 1675-20647 1675-20656 1675-20657 1675-20658 1675-20651 1675-20642 1675-20652 1675-20645 1675-20653 1675-20659 1675-20649 1675-20337 1675-20336 1675-20335 1675-20334 1675-20333 1675-20341 1675-20343 1675-20332 1675-20331 1675-20349 1675-20350 1675-20342 1675-20344 1675-20345 1675-20346 1675-20347 1675-20340 1675-20348 1675-20338 1675-20326 1675-20328 1675-20330 1675-20622 1675-20293 1675-20619 1675-20611 BDBDDCDCADCCBCCBDAAABCBCB BDDCACBCACCBDCDABBBCBCDAB BCDCCCBCACBAACBCACBAACDCC BDCBDCDACCCDDACBCABCABBCD BCCCCCBADABDDABCCCCCBAAAA BADCDCDCABCDBCABCBCBCDBCB CDBCCCDDCDCDDDBCCCCCACDAC CBACDDDCADCDDAAACBBCADCBA BCDACBCBCBCDCCCACCBCBCDBD CDBCBCBCABCDCBABCCCCBCDAD BXCDBCDCCBBAACBCDCABBACCB BBCCCCBCADCDCCACBDBAACBDC BBCDDCBCCBCDCCAADBABAABAA BBCBBCBCCBBDDCACCADBCCADB BBDCCCBCADBBCCDBDBBCCADCA CDDCDCBCABAABCADAAABCDCAC BDCBCCBCABCACCDCDCADACADC BABCDCDCABCBDCABCBDABDCCA CBDCBCDBCBCDDCACABABCBABB BCBBDADCACCBDBDDACBADCACD BCBCCCBCABCDBXCCDBCDBAABD DDDCBCBCABCDCABCBCBCCCCBD CDCCACBCBBABCCDCBCACAABCC BDCCCDACAADBCCCDBCBDBDBDA BXBCCCXXXBCDCBDXXXXXBCAXD BDDCCCDCABCDBCABCDABADBCB BXDBCCBCACBXXCBDACCAXCBXA BCBCCCBCABCDCCDBCBCCBCABC CDCBDCDCCBCADCBABCBACCACB CDBBDCDCDBCBDCBDBCABCBDCC BXDCDCDCADCCCDDCBCXXBCADB CCBBCCBCDBCCDCCABADCABDCB CCDACCDCABCCCAXXXDCXCXXCX DBCBCCDCACBCCACCDCABCDCBA CCCCCCDCCBBCCCCBBBDDDDDBD BCDCDCBCACCDDCDBACBABCADA BCBCDCBCCBBACCXXXXXXAXADB CABBCCBCCAACACABCCBBACCXX BCBCCCBCCBBCCCCDABAACBCDA CDDBCCBDABCDDCBCCAABCCBDC BDDCECBCCADBCCADBCADCADCB BCDCDCBDCBCBDCCAAAAADBXDC BCCABCDCDDCDADCBBCACBDBCD CBDCDCBCCBDBCCADBCDACBDCB BDCCCCBCDCCDCACCCCACABCCC BCDCCCBCCDACBDBABCBAABDAB DDDAXCDCABCCCCDBDADAXXXXX BCDCACDCBBADCACABDABCBDCA BDCBCCBCAABDCCABDBBBCBDDC 459 636. 637. 638. 639. 640. 641. 642. 643. 644. 645. 646. 647. 648. 649. 650. 651. 652. 653. 654. 655. 656. 657. 658. 659. 660. 661. 662. 663. 664. 665. 666. 667. 668. 669. 670. 671. 672. 673. 674. 675. 676. 677. 678. 679. 680. 681. 682. 683. 684. 1675-20614 1675-20629 1675-20612 1675-20628 1675-20615 1675-20613 1675-20620 1675-20291 1675-20623 1675-20626 1675-20627 1675-20625 1675-20624 1675-20292 1675-20616 1675-20617 1675-20630 1675-20618 1675-20294 1675-20223 1675-20376 1675-20697 1675-20662 1675-20241 1675-20226 1675-20636 1675-18732 1675-18735 1675-18724 1675-18740 1675-18736 1675-18741 1675-18742 1675-18731 1675-18730 1675-18734 1675-18728 1675-18722 1675-18721 1675-18726 1675-18309 1675-18310 1675-18737 1675-18729 1675-18723 1675-18750 1675-18738 1675-18739 1675-18725 BCECBCDABCBCDCABDCACDCACD CCDBCCBDABCDBCAXAAAACBCXX CBDCACACCBBADCDDABCBBCBCA BCBCCCBCADCDDCACXCAABCBCD BCBDDCCCAXCDDCXBBXAXCXXXD CDDCCCDCCBCDCCBDCDBCCDBBA BCBDACBCABCABCABCAADCDACC CCBBBCBCABBCDCDCACBACDADC BCDCCCBCCBDDDCCAABBCAABDB CDDCACBCABCCDCBBBBBBBCAAA CDDCCCBCCCBDDCCDBCAACBCAA BCDCCCDAABBDDCADDCBCACBBA BCBCDCDCCCBDDBCBDCBCBBAAD BCBCDDECCCCDCCABCBCBEDBCC BCDCCCDCCBCABCADBCBAABABC BCBCDCBCDBBBDCCACBBDBDBCA CDCBDCDBCBBACDBBCBBADCACB BCBCCCBCCBCCDCCBDCAACABCD BBBDBCDCCBCBDCBDBCCDBDXXX BBBCCBBCABCADABAACCABBAAA CDDBCCBCDBCDDCBCDBAAADDDB BCCBDCDCCDCADCACABCCDABAC BACCDCBCABCCCDBDCDABACBDB BCDCCCBCACCDDCBDBDCCBCABD BXDCCCBCACBDDCBDCCCCCDCCC BCDCBCDCABBDCDCBACBDACABC BCDCDCDCCBCDCCDDDCBACBBBB BDBCBCBAABBCDCABABAABCCCA CDDDACDCABDDDCDDACBAADCAC BADCBCEDDBDDDCDCDBCAAAAAD BDDCCCBCABDBBCBCCCCCDDDDD BCDCCCDACACDCCCBXACACBABD BDDCDCBCABCACCBCDDAADBCBD CCDCDCACABCDCCCDCBCDCDCBD BXCXXCBCAXBXBBCXXXXXXXXXX BBDBCCBCABCDDBBCBABABBCCA BDDCBCCCCDBCDCEDBDAACACBD BCDBXCBCABCDDBABCBDCCBCDC BDDCBCBCCACEDAACBECABACDB BDDCDCBCCABDADCDCBDBCCBCD CCBBCCDCCBDDCBBBBBABCDBBA BCDCCCBCCDCADABCBACADCADB BDDCBCDCABBDDCACBDAADBBDA BCDCCCDCABCDCCCDACCBBCABC CDCACCDCAABDDAACCCCCDDDDD CBDCCCDCCBCBDCABABCBAADCB BDDDCCCDADCCDCACCCACBCCCC BBCDBCDCCBCBACABBBBBCCCCA BCADACBBADCDDADDCAABCBCDA 460 685. 686. 687. 688. 689. 690. 691. 692. 693. 694. 695. 696. 697. 698. 699. 700. 701. 702. 703. 704. 705. 706. 707. 708. 709. 710. 711. 712. 713. 714. 715. 716. 717. 718. 719. 720. 721. 722. 723. 724. 725. 726. 727. 728. 729. 730. 731. 732. 733. 1675-18749 1675-18744 1675-18745 1675-18746 1675-18747 1675-18748 1675-18101 1675-18743 1675-18727 1675-18771 1675-18776 1675-18774 1675-18777 1675-18775 1675-18778 1675-18765 1675-18764 1675-18444 1675-18456 1675-18376 1675-18464 1675-18452 1675-18453 1675-18457 1675-18460 1675-18617 1675-18462 1675-18450 1675-18449 1675-18442 1675-18441 1675-18451 1675-18459 1675-18374 1675-18614 1675-18615 1675-18446 1675-18445 1675-18618 1675-18448 1675-18443 1675-18375 1675-18619 1675-18616 1675-18447 1675-18455 1675-18463 1675-18454 1675-18620 DDCBDABCDCDBADACCBADBCBCD BBDCCCBCBDBBADBCBCBCXXXXX BCDCDCBCCBCDDCBBDADBDXCAX CCDCDBDCCBCDCCAAAAAACCCCC BDDCBCBCACBABCBABCDCBDBDC CCBBCCDCDBDDCCCDDBBCCBCCX BCDCBCBCABCDCCBBCBDBCDCBB BDDXDXXCDBCDBBDCBXXCCCDXX BCCCCCBCCBCCDCDCCBCDBCCCA CDCADBDCCBADDCBADBAADACBA BCDCCCBCABCDCCDDABDCBBDAC BEDCCCBCABDDDCDCBCBCXXXXX CBCCCCDAABBBCCBBCCDDDAAAA CCDCCDBDCBCDADDABCABCBDCB BDDBACBCBDCDDCBBBBBBDBCCC BCDCCCBDACCDDCCCDCBDCBDCC DBBBBBBBBDBBACDBBBBBABBBB CBBCDDCDBADACCCCBABBAAAAA BCDCDCDCCCCADCXAABBCABCBA CBBCDBDACAACDCBCDBCBADCBC CCCABBDBCAACDABCDBDBAAABA ADBCCBDBCCCADCCADBBDCAAAA ADCBABDBACACDCCABCCCCCCCC ACCBDBDCCAAACABACCBCCBCBA ABCBCBABCABCDBBADABADDBBD BCCCCBDBCBACCABCCADCBBBBB CBDACBDBCDCBADCBCADCDABCA AACBDADBDAACDCBBDBADAACBA ABACCADBCCABDBDCACACBADCB ABBBBBDBCCACDABCCADCCDADA AABDCDCADDCADDBCBCCBABACA BCBCBBDBCADADCBCCACABDCBA CCCCCCCCCAACDABBCADCBBCDA BBBBBBDBCDACDCDDCBBAAABBA BCCABBDCCBADDABDDCABAACBA BCCACBDBCDBADCBCCXDCBACBA ABAACBABCCABDCCEBCBEBBABE ABCBBCCBCDDCADBBCCBCABCDA ABCCBBDDCBCCBCDAEACCCABDB CDDCADDABDCABBDCACACBBACD ACBDXDDXXDDDDAXCDBCDBBACA ACCDEBDBCADABBBABDXCBXBCC CBCCBBDBCABBCBCDABBACDCBB BCADBBDBCDCACBBXDAACBCBDB BCDBABDBCDAADCAABBAABBCCA AAADBBDBCDCCDXXCCXDCCBACX CACBBBDBCBDCADBBCBBDABBCD BCACCBDBCDAACCDBBCDACCCCC AAADBBDBCDCABXXXXXXXDDADA 461 734. 735. 736. 737. 738. 739. 740. 741. 742. 743. 744. 745. 746. 747. 748. 749. 750. 751. 752. 753. 754. 755. 756. 757. 758. 759. 760. 761. 762. 763. 764. 765. 766. 767. 768. 769. 770. 771. 772. 773. 774. 775. 776. 777. 778. 779. 780. 781. 782. 1675-18871 1675-18911 1675-18872 1675-18799 1675-18798 1675-18791 1675-18874 1675-18796 1675-18873 1675-18885 1675-18889 1675-18888 1675-18887 1675-18881 1675-18793 1675-18797 1675-18882 1675-18883 1675-18800 1675-18794 1675-18886 1675-18879 1675-18913 1675-18877 1675-18878 1675-18875 1675-18792 1675-18876 1675-18795 1675-18912 1675-18884 1675-18856 1675-18927 1675-18855 1675-18928 1675-18929 1675-18854 1675-18853 1675-18852 1675-18850 1675-18867 1675-18868 1675-18066 1675-18145 1675-18080 1675-18081 1675-18070 1675-18077 1675-18073 BDDCCCBCADCBCCDCABCCDBCCB CXCACCBCABDDCCXXXXXXXXXXX BDDACCDCBBADCCDCBADBCADBD CCDACCACCACCACCCCCCCCCCCC CCCDDCBCABCDDBBABBCBDCBAB CCDBCCDCCBBDCCCABCABBCACC CACBACDCABABDDACBCACBCBCB BDDCCCDCCBCDDCABCCBCCBCCA CBDCCCDCCBCDDCCADCBACBBAB BCDCACBCABCDCADCBAXXXXABX BDCCBCDCEADCDACBBBBCCCCXX CCDCECBDCBDDCCDCBCBACDBCB BBCXACBBXACDACBCDXBDDABCD BDDCCCXCCCCDDCDCCCCBBDABD BDCBCCCCDBCACCDCCCCCBDABD BCDCBBBCADDCCDCDBCBACDBCB CCDXXCDBCDXXDCXDXAAAXXACC BCDCCCBCCBCBDCCCCCCACCCCC BDCBCCDADCCAACCBBCCCABBBB BDCCDCCCDDCCCCCBDCCCACADA BCDDXCBCABBCDCBXXXXXXXXXX BDDXDDDABBCDCCXDDABABABAB BDBCCBBBCBCDDBCDCCBAACBDC BBDCBABDDCDAACBABCCCBBBBA BCBCCCBCACBCDBCABCCBDACCB AAAAAAAAABCCDCAAAAAACCABA BXXDCCXCBDCACDBDBCABXXXXC BCDCDBCCDBDDCCDCCCCXXXXXX BXAADCBDEBXXDBCCCXXXACXXX BCDDCCBCABBBDCACACABADCDC BXCCDCDCXBBDDDBAAABXABBDX BBDBBXDCCDDDDCDDCABABCCBX DDCAXBDXACDDAXXXXXXXXXXXX BCDCCCBCDBCCCCACBBABBCBDC BCBBDCDCABBCDCAADBCBDCAAB BDDCDCBCABCCDDCDDDABCDABA CCBBCCDBCDCDCCCDBBABBBBCB AAABCCBCABAACCBBBBBACCADD BCDCCCACABBDDCCADBDABDCAC BXDXDCDCDBBDDCXBDCCCAXXXX BCCCBBDCBDCDCDCCABAADCACB BCCCDBDCBDDDCCACABADDCACB BCDCXCDCABCDCBCBDACBCBDBA BBCXBXBECBACDCDDAABBBXCXX BCDCCCBCADDDCCBABDABACDBA BBDCCCCCCBDDDCCCCCCBCDBCC BCCBCCBCCDBDDCBBCBACABCBA BCDCCCBCCBDDDBCDCCBACCCCC CCDCCCACACCCCCCCCCCCCCCCC 462 783. 784. 785. 786. 787. 788. 789. 790. 791. 792. 793. 794. 795. 796. 797. 798. 799. 800. 801. 802. 803. 804. 805. 806. 807. 808. 809. 810. 811. 812. 813. 814. 815. 816. 817. 818. 819. 820. 821. 822. 823. 824. 825. 826. 827. 828. 829. 830. 831. 1675-18068 1675-18067 1675-18076 1675-18088 1675-18084 1675-18069 1675-18074 1675-18075 1675-18087 1675-18079 1675-18085 1675-18083 1675-18082 1675-18065 1675-18064 1675-18063 1675-18062 1675-18061 1675-18086 1675-18072 1675-18071 1675-18078 1675-18089 1675-18090 1675-18828 1675-18827 1675-18829 1675-18825 1675-18823 1675-18812 1675-18811 1675-18813 1675-18821 1675-18822 1675-18814 1675-18818 1675-18647 1675-18815 1675-18819 1675-18816 1675-18817 1675-18820 1675-18826 1675-18824 1675-18830 1675-18802 1675-18803 1675-18804 1675-18806 BADCDCDADCDAACCBCBACDBADC BXXCXCXXXBDDDCXXXXXXBCXXX BCBCCCBCABDCDCXDCDDCCCDBC CCDCCCDCADBADBCBBBCCAAACC BCCCCCBCABBDCCBABCACBABCA CDBBDCBABDCBDCABBBBBBBBBB CCBCACBCADADCCACDCDAAACBD CDBCBCBCAACDCCABCCCCBCACD CDDCCCBBABCDCACDCBBDBCBBC BCDCCCBCABBDCCDCCCBACCCCC BCBCCCDCABBBBBBCCCCBCDCAC CACBCBBCAACDDCCDACADBAADA ABDCBCBCCBCDCCADACADCDABC BCCBDCDCCDCDCCCBCCABBDCAD BBDBBCDADDCDCCBDCBABCBBCC BCABCCDACBCCDCDDACBBCCABD BCCDCABADBCDCCBCACABABBDX BXCXXCBDCDCBDAXBBCABXXXXX CDCEDCXCABACBDBACCBCCBDBA BDBBCCBABBCBACBBCBACDBABC BCDDCCBCAACACCBBBBBBBBBBB CCDCDCCBBBBDCCCCCDDDBBBCC BCCCBCBCACDDDCDBCCDBACADD BCBCDCBCADCCCCABCBCBAABCB BBDCCCBCABBDDCDCCADABCCCC BCDCCCBCABBDDCCCCBCCBCABD CDCDDCDCCBCDCCACDBCDCDADA CDDBACDXBBCCDCCDCAAAAAACB CCDCBCBCDBCDCCBAABBBAADCA BBDCCCBCCBDADCDCCCCCCCCCC BDDBCBDCCCBCXXACXBXDDXXBX BCDCBCBCACBDCCXBCBDABCDXX CDDCDCBDDCCDCCDCBXXCXBXXX CDECCCCCCDCDDCACCCCCCCCCC BAXXXCBAABCDDCCXXXXXXXXXX BBABACBAAACDDADABCCDBBDBD BDDCCBDBCBDCCBADCBCCCDDAA BXDXXCDCCBDDCCXXBBCADDBBC BDDXXCBCCXBCACXDXXAACXBAA BCBCACBCCCCACCBDBCBCDBBBC XXXXXCXCABDDCCXXXXXXBCACX BCBCCCDCABCDDCBCCCCCCDACC DCDDDCBCABBDDCCCCCCCBCABD DCDCBCBCABADDCBACDBAAADDC CXDCCCBCDBBDDCCDACBACDACC BCCADCDADBCDDCABDADCBCBBD BADCBCBCADCCCCCBDBCBCDABB BCDACCBCABADBADBCCDABAADA BBDCDBCBDBBDCCADCCBCBCDCA 463 832. 833. 834. 835. 836. 837. 838. 839. 840. 841. 842. 843. 844. 845. 846. 847. 848. 849. 850. 851. 852. 853. 854. 855. 856. 857. 858. 859. 860. 861. 862. 863. 864. 865. 866. 867. 868. 869. 870. 871. 872. 873. 874. 875. 876. 877. 878. 879. 880. 1675-18807 1675-18808 1675-18904 1675-18902 1675-18717 1675-18720 1675-18898 1675-18903 1675-18711 1675-18712 1675-18713 1675-18714 1675-18716 1675-18901 1675-18891 1675-18707 1675-18706 1675-18704 1675-18701 1675-18897 1675-18718 1675-18719 1675-18896 1675-18703 1675-18705 1675-18708 1675-18709 1675-18895 1675-18894 1675-18893 1675-18892 1675-18715 1675-18581 1675-18625 1675-18785 1675-18790 1675-18582 1675-18786 1675-18585 1675-18589 1675-18781 1675-18628 1675-18583 1675-18626 1675-18580 1675-18782 1675-18783 1675-18579 1675-18629 BDDCCCDCDBBADCBCCCCBCCDAD BCBDDCBDBBBCDBADABCCCCDAD BCDCCCBCACBCACADBBBBBBXXX CBDBBBDCCDCBCAADBCAACDDCB BCCACCBCABDDCCBBCCDDCCABC BCDCCCEACBCDDCBBXBCXCDXCB BCBCBCBCABCBDCCCACDABCDDA BXDBCCBCABBDCCBCABBCCCCXX CDCEACBBBBCAAAADCBAACBDAC BDBBCCBCADBCCCBDCEEBABEAA BCBCCCBCCBBDDCBDBCCBCBCBA BCDCABBCDABDBBCBCDABCBCDB BCDBCCBCABCDDDDXXXCABCBBC BBDBCCBCAADDACADCCACBCCCC BXCCDCDBDACDDCBCCCXACXXCX CABCCCBEABCBCDBDBAAABCCDB DDDCACBCABCBDCACBACBAACAA BCDCCCBCABCDDCXXXXXXBXXXX BBDABCBCAACACDCBDBCACACBA ABBCCBACDACDDCACBACDCCADC BXCCXCBXCBCDDCCXXXXABCBDB BXCCDCDXXBBXDCXBXBDXAXDXX CCBBBCCCCABBDDCCCCCCCBBBB BDBCCCBCCBBDDCBCBCACCBCDA BCDCCCCECCCCCCDDDDDDACCCC CCCCCCBCCCCCBDACCXCXACCXX CCADCBDCCCBADBACADBABCBDD BDDCCCDCCACDCCABCADBXXXXX CCBCDBBCBBDCCCDBBCCCBCDDC CBBDDCBCCDCDCCADCCBABADCD BCDCCCBCCBBDDCCCCCCCCCCCC BCDXCCBCABDDCCXCXXBXCCCCC BBBCCCBCADBCCCADBCBCCCBDB BCDCXCBCAACDDCXBXXCXBCCAA BBBCCCBCCCBACCCDACABCBBAC BDDCCBBCDBCDDCDBBBABCCBBB BDBDCCDCADDDDCDBCBCBDDCAA BBBBBCBCABCABDDBCCBCCCCCD BCCCADCCBDCDDCCCCCCBACADC BADCBCDADDDCCCDCBBCCDCCBD CDCCCCBCCBBDCCDBBBBBCCCCC CEBDCBDCXBCDCCXDXCBABBBBB BCDCCXXXXBBDDCDXXXXXCXXXX BCBCCCBCABBDCCCDBCBADACCC BCBADBCCDBBDDCCBBDCBCBBCA CBDCCCCDCBDDDCDDDCCCCDCCC BDDCADBCBXBDDCDCABDACAAXD CADBBCDCDCCACDBBAAAACCDCC BCDCCCBCCBDDBDCBCBBCABBBB 464 881. 882. 883. 884. 885. 886. 887. 888. 889. 890. 891. 892. 893. 894. 895. 896. 897. 898. 899. 900. 901. 902. 903. 904. 905. 906. 907. 908. 909. 910. 911. 912. 913. 914. 915. 916. 917. 918. 919. 920. 921. 922. 923. 924. 925. 926. 927. 928. 929. 1675-18623 1675-18587 1675-18621 1675-18627 1675-18622 1675-18636 1675-18784 1675-18787 1675-18590 1675-18586 1675-18584 1675-18789 1675-18173 1675-18174 1675-18176 1675-18177 1675-18178 1675-18172 1675-18171 1675-18169 1675-18168 1675-18167 1675-18161 1675-18162 1675-18154 1675-18305 1675-18151 1675-18152 1675-18304 1675-18166 1675-18165 1675-18164 1675-18163 1675-18159 1675-18157 1675-18156 1675-18155 1675-18158 1675-18153 1675-18160 1675-18267 1675-18266 1675-18259 1675-18268 1675-18180 1675-18269 1675-18242 1675-18246 1675-18245 BBDXBCDCBDDDCCDCACXBDXBBD BDDBCCDCADCDDCCDABCCDCDCC BCBCDCBCABCDDDAXXXXXDCCDX BDXXXCEXCBBDCCXXXXXXEXAXX BDDCCCBCABCDCCCCCABBBBCCA BCDCBCDCBBBDDCCDBDCAXXXXX BCDCBCDCAABDDCCCCCCCCBDCC BDDBCCBECBCCDCDCCCBCBDCCC BBCCBCBCABCDDCBBCCDCBBBCB BDDCBCBAADBBCBBCCBCACADAD BCDBDCBCABDDDCDBDDACCCDCB CCBCCBBBBDDABCXDCDCBCCBDC BBDCCCBCADDBDCDCCCCCCADDD BCACDCBCADCBDCCACXXXXXXXX BCDCCCDDCBDCCDDDCCCADBDAC BCBCCCAACACDCADBBAABDADAC BCDCCCBCABCCCDBCBDABAADBC BCDCACDCCDDDDDBDBACDBCABC BBBCXCBCABCDDCCDCCAADCDAC BCDCCCBCCACACACCACCCCCACC CCDCDCBCCDBADCCDCDACDCCDC BCBBCDDDACBCBDDDACBACABCC BDDCBCDCDDCDDCACCDCACBDCA BCBBCCBCABCEBABCEABDCCADD BBBXCBDBCAAADDACACACXXXXX CCDCBCDCCBBDDCDBAAABBADAC CCBADCABADCADCCBDBDBDBDAC CXDCDCACADBBDCBACBDDBCDBC BADXXBCBDBDCDCBDXCBAXXXXX BDDBDCBDABDBDCCCBCBACBDCD BADBACCCCBCAABCBCBCBCDCAB BDDXCCBCABDBCCDDBCCCCDBCB CCDCDCBCABDBDCCBCBACCBCBA CBBBBCDDCCBCCCBCBDCBCBCDB BDDDACBCABBADCCBBDCDBCDAB CBDCACDCDADBDCBBDCABBCBDC CCBCCCCCCBCCDCCCCCCCCCCCC CXBXCCBCADBDCCBXCXXBAACCA BCBDBCCBCDCBCCCDBCACDACBA BBBXCCBCAAAADDACACAXBCACX BCDCACDCBBBAADCCCBDACBDDD BBDCACBCBACBBDBCDBCBDEBCA DCDCBCDCACDBCCBCDCAACACCD BCDCCCBCABCDDCBCBCCADCBBD BCCCCCBCABDDBBCABDCABCBDA BCDCCCBCABCDDCBCBCCABCBBB BBDCCBCCABCADCDCBCABACBCA BCACDCDCABCDBCABACCBCBCBA BCCADCCBABBADXBCADBCBCADB 465 930. 931. 932. 933. 934. 935. 936. 937. 938. 939. 940. 941. 942. 943. 944. 945. 946. 947. 948. 949. 950. 951. 952. 953. 954. 955. 956. 957. 958. 959. 960. 961. 962. 963. 964. 965. 966. 967. 968. 969. 970. 971. 972. 973. 974. 975. 976. 977. 978. 1675-18243 1675-18254 1675-18256 1675-18257 1675-18258 1675-18260 1675-18244 1675-18263 1675-18264 1675-18255 1675-18241 1675-18247 1675-18248 1675-18249 1675-18250 1675-18252 1675-18251 1675-18253 1675-18270 1675-18265 1675-18311 1675-18261 1675-18262 1675-18301 1675-18170 1675-18710 1675-11687 1675-18117 1675-18131 1675-18179 1675-18691 1675-18678 1675-18046 1675-18788 1675-18624 1675-18228 1675-17103 1675-18801 1675-18805 1675-18048 1675-18058 1675-18281 1675-18034 1675-18056 1675-18055 1675-18053 1675-18286 1675-18031 1675-18044 BCDCDCBXXDCBCCDXAXADACABD BBDCCCBCADBDCCDCDCBCCDBCD BCDCCCDABCDCCCCCBCCACCDAB BCBCDCBCAABCDCDBBBBBCAAAC BBDCBBBBBBCDBCDDACBABBBBB DBBBCBDCDXBXCBCCDCBDCBCXB BBDCCCDCCCCDACCBDBAACCDCC BXDCBCBCABCDCCCCBCBXCDACD BCDCDABCDACCDDDAXXXXDCXXX CDBBCBBDBBBBBBBBCBABDDBDB CCBBBCCACBCDCCCCCCCBCDACB CXDBCCBCEBCCCCCBBDCABACDC BCDCXCXCXBCDDCXXXXXXBCXBD BCDCDCBCABXDDCCBCCBCCCCBC DCDCCDBCCBBDCCDCBBCBCBCDC BDDCCCDDCBBCDCDCBCDCBCBXC BDCBDCBCADCDCCBCBDABCBDBA BCDXXCCCDXXXXXBXXXXXDCCBB BBDDDDDDBBCDDCABBBBBCCABD BCADBCDCDDCDCCBAADBBBCBDA BCCBCCDACBCCDCCBACACCBBCD CCBCCCBCABDDCCCCCCCADADCA BCDCACBCADCADAAACBDCDDCXX BCCXDCDCADCDDCBBCCCXAAAXX BCDBXCBCABCDCCDXCCCXACCCD BCBACCDCDCDBDCDCCCBBCCBBB BCDBDCBCABCDDCCCBDACCCABD BCCCCCDCCBBDDCCCCCDDCCCBB BCDCCACBBBCDCCBDACBABBCBA BCDDCADCBBDDDCDDACBABCBBC BCDCDCBCABBCDCBDCDBACCBCD BDDCCCBCABCDDCADBCBAXXXXX DBCBABDBCBAADCBBBDCCCCCCC BBDCCCBCABDDDBDDABBBAABCC BBDCCCBCABCCDCBDCBBCDCBDC BCDCBCBCABCDDCCXBCBXBCABB DDDDBBDBCBACCAACCEDCBDCCA BDDCCCCCCBBDCCCCCCCCBCABC BCDCCCAAABBDDCCCCDBCCCCCC CCCBABDBCBBCDCCAAAAABBBBB CADABBDAADBCCADABCEABBADA ABCBADBXCAACDAAXCADCABBDC ADDBCABCBACACABCCCACBABBA ADCCDBDBCADCXBDCCBCCBDCDX ABBCABDDCDCACCBCCADCAAACA BBBBBBDBCCBCDBDCCDDCCCCCC CDDBCBDCCADDDBDBAABCBCBCA CBCCDDCABACADBBCCCCAACBBD CDDCDBDBCCAACCACBDBABCBDA 466 979. 980. 981. 982. 983. 984. 985. 986. 987. 988. 989. 990. 991. 992. 993. 994. 995. 996. 997. 998. 999. 1000. 1001. 1002. 1003. 1004. 1005. 1006. 1007. 1008. 1009. 1010. 1011. 1012. 1013. 1014. 1015. 1016. 1017. 1018. 1019. 1020. 1021. 1022. 1023. 1024. 1025. 1026. 1027. 1675-18051 1675-18045 1675-18285 1675-18050 1675-18283 1675-18041 1675-18042 1675-18043 1675-18052 1675-18060 1675-18057 1675-18284 1675-18054 1675-18049 1675-18282 1675-18033 1675-18059 1675-18032 1675-18209 1675-18204 1675-18203 1675-18202 1675-18201 1675-18192 1675-18200 1675-18184 1675-18186 1675-18206 1675-18210 1675-18207 1675-18188 1675-18303 1675-18196 1675-18197 1675-18195 1675-18187 1675-18190 1675-18198 1675-18199 1675-18193 1675-18208 1675-18185 1675-18183 1675-18205 1675-18181 1675-18191 1675-18189 1675-18194 1675-18861 DCCCABDBCACCDCBCCCACBBCCC DCCCCBDBCAAACADDABCCCCCCC ABAACABBCAACCBCBDCBCCBDAA BBBBBBDBBCBADABCBBBBAABBB EBACABDBCEBDDXCXCBDCBADCA ACBABAACACDADABBABCACBDBA AAAAABDBCADBDCACCCDCBBBBB CBCACBDBCDACDABACDABDACAD CCCBABDBCAAACCBCBBBDBBCBD BDACBBDBCDAABACBCABCCBABB ACDBABDBCDCDBCDBCDDADBCBD BACCCBDBCCCADCBCBDCABCCBA BCCBCBDBCBCCDCBBDCBCBCCBC ACDDCBDBCXCABCCXDXXCCCBAC ACCADDDCCACCBDDBCABDCADAA ADDBCDBCCCDADCBBCCCCCBBBC BCBABBDBCCCADCBACADCBBCAB DABBBABACBABCCAACCDCACBCA BDCBCCDCCBDCDABCDABDACBCD BCDCCBBCCBBDDCDABCBCDABCD BCDBDCDCABCDDCDDBCBCBDCBC BCDCCCBCABCDDCBCDACBCCBAD BBABDCBCCDDDCCDDBBBABBBBC BCDCCCBBDBCADCAAADACBCBDB BCDXCBDEXCBAAXDCAXBAXXXXX BDDCDCBCADCBDCBDACBADBBCD CXDCCCDCCDBDCCXXXCAAXBXCX BCDBDCBDCBDCCCBDBBBABBBBB BCDCCCBCABBDDCCAXXXABXBXX BDDCDCDACDBBDCACBCDAABADC BCDCDCBCABCABBDCBBCDBCCCC BDDBCCBCADCBDCDDCBCDCBCDB BBDCCBBBBBCDCCBBBBBBBBAAD BDDCCCCCCBBDDCDDACBACCCCC CCCCCABCDBDDDCDCCBCBBCDCC BCDCCBBBBCCCDCADADAAXXXXX DDCXXCBCCCCDDCBBCADXCDDBA BCBCCCBAXBBCBCXXXXXXBADBD BBDBBBBBBBCDCBBBBBBBDBBBB BDDBCCBCADCCDABBCCBBCBCDB BCDCBCDCCBBDCCBBBBBBBDDDD DCBCBCBCDDCACCCDCDBBCBBCB XXDXCCDACDXBXACXXXXXXXXXX BEEBBCDCACCXXCCXXXXXXXXXX CBBCABDBCBCADABCCXXCBBACC BCDDACDCABBCCCCACCCABCACD BBDCBCBCDBCCDCAXABAXCCXDB AXBCDCDACBCDDBXXBXXXXXXXX BCDBDCACCDBACCBBDAAACDABC 467 1028. 1029. 1030. 1031. 1032. 1033. 1034. 1035. 1036. 1037. 1038. 1039. 1040. 1041. 1042. 1043. 1044. 1045. 1046. 1047. 1048. 1049. 1050. 1051. 1052. 1053. 1054. 1055. 1056. 1057. 1058. 1059. 1060. 1061. 1062. 1063. 1064. 1065. 1066. 1067. 1068. 1069. 1070. 1071. 1072. 1073. 1074. 1075. 1076. 1675-18870 1675-18862 1675-18859 1675-18851 1675-18865 1675-18849 1675-18863 1675-18921 1675-18864 1675-18923 1675-18858 1675-18857 1675-18869 1675-18866 1675-18924 1675-18922 1675-18925 1675-18848 1675-18926 1675-18835 1675-18847 1675-18846 1675-18845 1675-18844 1675-18843 1675-18841 1675-18831 1675-18842 1675-18832 1675-18833 1675-18834 1675-18836 1675-18837 1675-18838 1675-18839 1675-18840 1675-18143 1675-18300 1675-18299 1675-18037 1675-18040 1675-18038 1675-18039 1675-18017 1675-18015 1675-18016 1675-18014 1675-18013 1675-18011 CDDCCCBCCBBBCCBBCACBXXXXX BBDCDCBCADBBDAABCBDABDACD BXDCBCXXXBDDCCXXXXXXBCXXX BXCCDCBCCCCDDCBCCBCCBCBCC BDAACBCAADDBDBABAAAACBDCB BCDCDCBCABBDDXXXXXXXBAXDC BCDCDCBDCBBACCCCBBADDADCC BCDXCXXXXBBCCCXXXXXXCXDXX BDDCCXXXXDCCCCBXXXXBXXXXX BDDCCCBCABDACCCABCDACBDBC BCDADCDCABCDDCAXXXXXCDCBA BBDCBBDCCBCDDACBAABCBBCAA BDCCDCBCABCBDCBCBBCCCBCBC BCBCXADCCDCDCCXBXCBACACCC CCCBDCDAABCDCCCBCCABCXCXX BDCDCCCBADCDDCCACDBDCCACC BCDDCCDCCBCBCCDCDDCDBCBBD BCDCCBBCCBCDDCCCCCBADDCDC BCDDDDCCCCCAACBBABAABBCAA BCDCDCBACBCDDCDDABBDCDDCC BCBXBCDCBCBDDCXDCCADXBDDC BDDCBCDCBBDACCDCCCCCBCBBC CBBCBCBCBDCDCCABBCCBCCDCA BDDCBCBCDBDDDCACBCBDCCBCA BDDCCCBCCBDDDCAABCABCABCA DCDCCCAAADBBDBCBACAACAAAC BCCCDCDCDADCBCCBADCBCCDAB BBCBBCBCCCBCBCABBBCCCBBBC CDCBDBDACCCCCCBDCAAADBCDC BCBDDCADCDBDCCDBCDCBCABBC BCDCDCBACBCDDCDDABBDCDDCC BDDCBCXBDBBBACBBBBCCDCCDD CDDCCCBCCBDBBCCBBBBBCCCCC CDCCCDBCBBCDDCCBDABCACCCB BCDCBCBCABDCCCDDCDCBBBDAB BCDCDCBCABDDCCBDBADBCBCBC BBBACCBCCBBCCCABCACACBADC BECBCBBBDBBDDCECBCADBCCBC BCBCCCBCDBCCDCBDBCDCBCBCB BCDCCCBCABBDCCBBCBBCBCCDB BCDCBCBCACCBDDBCBDCCDDCBB BCDCCCBCDBCADCCDBBCBDBBAC BBCBBCBCABCDCCCDBBBBBBBBB CBDXBCDDXCCABBABCXACCBCDD CDDCBCDCBCBCBACBCBCBBBCBC BCDCDCDACBCDCCBXDXBACCCCC CCDCACDEACBBDCCDDCBADCDAB BCDDCAABBCACDABACAACACBCA BDDCCCBBCCCCCCACCCCCCCCCC 468 1077. 1078. 1079. 1080. 1081. 1082. 1083. 1084. 1085. 1086. 1087. 1088. 1089. 1090. 1091. 1092. 1093. 1094. 1095. 1096. 1097. 1098. 1099. 1100. 1101. 1102. 1103. 1104. 1105. 1106. 1107. 1108. 1109. 1110. 1111. 1112. 1113. 1114. 1115. 1116. 1117. 1118. 1119. 1120. 1121. 1122. 1123. 1124. 1125. 1675-18144 1675-18020 1675-18142 1675-18019 1675-18223 1675-18240 1675-18221 1675-18231 1675-18234 1675-18237 1675-18238 1675-18226 1675-18218 1675-18219 1675-18216 1675-18232 1675-18233 1675-18235 1675-18220 1675-18230 1675-18239 1675-18236 1675-18227 1675-18222 1675-18211 1675-18224 1675-18225 1675-18212 1675-18213 1675-18214 1675-18215 1675-18217 1675-18229 1675-18631 1675-18665 1675-18667 1675-18633 1675-18670 1675-18659 1675-18646 1675-18635 1675-18656 1675-18669 1675-18664 1675-18634 1675-18657 1675-18653 1675-18666 1675-18658 CCBCCACBCADDDCDCDCCBADBCC BBBBCCDCAXXXXBXXXXXXBDCCC BCDCCCDCDBBDDCACBCADCBACB BCDCCCDCCBCDDCDCBBBBBBBXB BDBCACBCCDCDDCABADXXCCDCD CDDBXCBDDBCDDCADXAADDADCA BDCCBCDACDBACCCBDCBACABCD CDDBBCBDCBCDCDABCAACBDCCA CCCDCDBABCACCCABBCAACDACD BBDCCCBDEBDDCCCBBCBABCXBD BBDCCCBCAACDDCBDDCDCDBDDC BDDBXCBCABCDCCXXXXXXXXXXX BCBDCBBCABCDDCXDCABXCBBCX BCCCCCCDCBBDDCCBCCDBCCDCC CABCDCBCADBACCCCBDACBCDBC DBBCBCBCCDBDBCAAADCDBBBCC CDDCDCBCDDCBDCACBCABCDCBA CCDCDBBBBCDBDDACCCCCDCCCC BCDBCCBCABCDDCDABXCCBCCCA CDDBCCBCABBBDCBBBBBBCBBBB BBDCCCBDEBDDCCCCBDBABCCBB BCDCCCBCCBCDCCDCCBDCCBDCC BDDBCBDCBBCDCBBCBCDACBCAC BBDCCCCCCBCDCCCCCCCCCCCCC BCCDBCBCDBDDCCCDBCBABCCAB BBBCCCBCCBCDDCCCDDDDBBBBB BXXXACDCCXCBBCXXXDXXXXXXX BCDCBCBCABDDDCDACBCADBCCA BDBCDBDCBBCDCCDDDADCCDDCC BCBCCCBCAXCCDCDCCCCCDCCCD BCBCBCBCABCDDDDDADBDACDDC BCDCCCBCACADABCBBCCDABCCD BBDABDBDADABDBBCACBADBABC BDDDCCBCCBCDDCCAXCDADDDAC BCDBCCDCABBDCBBCCCBBDBBBB CADBDBDCABADABBCDACDACBDA BCDDACBCADCCBCCAACABABCCC CDBBCCXCADCCDCCCCDCCAXDDC BDBCDCCABBCDBCBBABAACDCBA DCDBCCBCADBDDCBCBCBCBCBCB CBDBACDCAADACCCBDCBCEBDAC CXBCCXXXXXXXXXXDACBAXXXXX BDCBACBABACDCCADACBAACADD BBDCCCCCCBCDDCDCCCCCCCCCC BDDCDCBBCBBDCCDCBBDDBCCDB DCBDACBDDBCDDCDCCBCBDCAXX BCDCCCDCCBCDCCCBCCDBCBCAD BDCCCCBCCCBDDCDCBCDCCABCC BCDDACBCCBBDBCABCDABCBCDB 469 1126. 1127. 1128. 1129. 1130. 1131. 1132. 1133. 1134. 1135. 1136. 1137. 1138. 1139. 1140. 1141. 1142. 1143. 1144. 1145. 1146. 1147. 1148. 1149. 1150. 1151. 1152. 1153. 1154. 1675-18632 1675-18654 1675-18645 1675-18655 1675-18663 1675-18649 1675-18644 1675-18643 1675-18642 1675-18650 1675-18662 1675-18660 1675-18641 1675-18651 1675-18652 1675-18668 1675-18272 1675-18276 1675-18273 1675-18120 1675-18280 1675-18119 1675-18100 1675-18277 1675-18274 1675-18096 1675-18095 1675-18275 BACBCCBCBBCDDCCCBACCCACDA DDDCBBBCADCCDCABBBABBCBCA CBDBAABCBBCAECAABCDEBCBBB CDDBDCBCACCBDCCXBCACACBDC CCBCCCBCABCACCCBCXADCACAC CDCCDCBCABCDCCBCCCCCAABBC BCDCDCDACBCDDCCDDBCBCBBBB BCCCDCBADBBCCCBABCDBCDACA BDDCDCBADDCDDCBBABBBDABBC BDDBBCDCCCCCDCACBDCCBCDCC BBCBBCBBCDCBDCCBBBBBCCCBB BCDCCCDCCACDADACCCCCCCCCC BCCCDCBCCABDBDCBAXXBXAXXC BDDBCCBCABCDDCCCCBABCBDDA BCDBCCBCDDCDDCBCABCABCBAD CCBCDCACAADCDCDCCCCCCDADC BBDBCCBCABCACCADBCBDAABDA BADCCCDACBCDDCCCADCBBCDBC BBCBCCDCBCBBBCCBDCCBBBCCB BCDCCCBCDACDDCABACBACCDBA BADBDCBDAABDDCCBDACBACABD BCDBACBACCCDDDABCBADCBDCB BCDCCCCDDBCDDCDDDDDDBDDDD BCCBCCBCABDCDCBCBBBCCBACD BCBACCBCADADBCDCBBBBBBBBB BDDCCCBCDBCCDCBBDDCAACCDB CDBBCCBDDBCACCDCBBCCBXCBC BBBCDCBCABBDCCDBBBBCBCBBB 1155. A test taker x is administered the adaptive test. His initial ability is assumed as 2.0. Accordingly, he is given the first items #5 with difficulty value of 0.340. He answers it correct and the next item administered is of difficulty level 0.880. The process is continued till he answers an item with difficulty value of 1.970 as incorrect. The test is terminated and his final ability is estimated at 2.531 as shown below. 470 Test Taker X administered with the Adaptive Test Item No B u θ 5 18 9 22 0.340 0.880 0.990 1.130 1 1 1 1 2.0000 21 1.970 0 Item No B u θ 5 18 9 22 0.340 0.880 0.990 1.130 1 1 1 1 2.473 21 1.970 0 Item No B u θ 5 18 9 22 0.340 0.880 0.990 1.130 1 1 1 1 2.529 21 1.970 0 Item No B u θ 5 18 9 22 0.340 0.880 0.990 1.130 1 1 1 1 2.530 21 1.970 0 p=1/(1+e(θ-b) ) q=1p 0.190 0.326 0.364 0.419 0.8402 0.7540 0.7330 0.7047 0.160 0.246 0.267 0.295 0.970 0.5075 0.493 e-(θ- p=1/(1+e(θ-b) ) q=1p 0.118 0.203 0.227 0.261 0.8941 0.8310 0.8150 0.7930 0.106 0.169 0.185 0.207 0.605 0.6232 0.377 e-(θb) b) p=1/(1+e(θ-b) ) q=1p 0.112 0.192 0.215 0.247 0.899 0.839 0.823 0.802 0.101 0.161 0.177 0.198 0.572 0.64 0.364 e-(θ- p=1/(1+e(θ-b) ) q=1p 0.112 0.192 0.215 0.247 0.899 0.839 0.823 0.802 0.101 0.161 0.177 0.198 0.572 0.64 0.364 e-(θb) b) u-p p*q 0.160 0.246 0.267 0.295 0.507 0.461 0.134 0.185 0.196 0.208 Correction Factor Next Estimate 0.473 2.473 Correction Factor Next Estimate 0.056 2.529 Correction Factor Next Estimate 0.001 2.530 Correction Factor Next Estimate 0.001 2.531 0.250 0.973 u-p p*q 0.106 0.169 0.185 0.207 0.623 0.095 0.140 0.151 0.164 0.044 0.785 0.235 u-p p*q 0.101 0.161 0.177 0.198 0.636 0.001 0.091 0.135 0.145 0.159 0.231 0.762 u-p p*q 0.101 0.161 0.177 0.198 0.636 0.001 0.091 0.135 0.145 0.159 0.231 0.762 471 Given below is the set of calculations for an adaptive test 25 by 999 by 1 Parameter Rasch Model. The b values are arranged in 6 categories as indicated and adaptive testing modules are created and sample calculations of final ability and true scores for a set of responses from a test taker. Illustration of an adaptive test for a parent test of 25 by 999 after analyzing through BILOGMG single parameter model with b values and consequent adaptive testing modules and an illustration of calculating final ability and true scores as if the test taker has taken the parent test. Click Here An alternate method of estimating the final ability through Prior and Posterior Distributions is also illustrated here. Click Here The author takes the opportunity of a new learning along with his team; Ruchika Girdhar, Neha Jain and Prachi Tyagi, that the use of Benjamin Wright mathematical formulation illustrated above with iterations to arrive at a final ability is perhaps the easiest way to build a CAT ability estimate algorithm. With the provision below that the second incorrect response may be used as a termination criteria for terminal rule for CAT and the Benjamin method indicates the true ability estimate within a couple of iterations or a consistent limit of the correction factor of 0.001. Future of Item Response Theory in India Many testing, Assessment, Councils and National Bodies in US including Educational Testing Service (ETS), College Entrance Board (CEB), American Psychological Association (APA), US Civil Service Commission and other recruitment agencies have been using IRT for the last few decades. In Particular Rasch Model of Analysis have found applications in other domains other than Testing and Assessment like Medicine, Textile, Aeronautics and Manufacturing Industries where very accurate results are required. There is evidence that nearly 525 organizations in the US, UK, Germany, Japan and China are actively using IRT methods of analysis for extremely accurate results. The 3 parameter Logistic model has been in use for several decades in Educational and Training Institutions and IRT continues to be a domain of research for Scholars in Measurement, Evaluation and Assessment. In India, the author and several of his Doctoral Students are using IRT in Admission, Entrance and Advance Placement Tests. In recruitment test MeritTrac is the pioneer in using IRT particularly Adaptive Testing Modules, primarily driven by clients and customers who increasingly demand quick and more accurate results. There are several domains in which IRT can influence a future of Testing and Assessment in India. Some of these are: 472 1. 2. 3. 4. 5. 6. Achievement Testing Recruitment Testing Adaptive Testing Mastery Testing Scholarships and other Award Testing Diagnostive Testing These applications in these domains are explored below. Achievement Testing Following increasing demand for very accurate measurement, evaluation and assessment, School Boards, Universities and other Certifying Organizations are driven to the use of smaller length test and increased accuracy and efficiency test. Many organizations mentioned above are using Question /Item bank for constituting for both formative class room test and for final end examinations. Various Question/ Item bank questions and items are calibrated using IRT and ascertaining invariant Item parameters and incorporated in the Question/Item bank for future use. A healthy trend is being seen in Universities and Institutions of Higher and School learning and increasingly being utilized for mass scale examinations. Recruitment Testing Recruiting Agencies in India are being compelled to make use of smaller length and shorter duration test and at the same time yielding better, accurate results. And they are increasingly introducing computer aided Adaptive Testing Modules and other online instruments. Even though its application in India from recruitment has just begin, there is increasing opportunities for recruitment in BPO and ITES sectors where a very large number of aspirants compete with the smaller number of positions. The time at the disposal of several Industrial and Training Organizations is very limited for conducting test for assessment of Knowledge, Skills and Attitudes required for the various positions in the industry. IRT can find applications in Classical Test of Recruitment with calibrated item characteristics to yield accurate results wherever and whenever, timeline is not restricting factor. As reiterated earlier where the time at the disposal are very short and more accurate results are needed, IRT driven computer aided Adaptive Testing Modules and Instruments can be effectively put into use. 473 Adaptive Testing This particular application of IRT is extremely promising. In Recruitment, Admission, Entrance and Awards Testing for the simple reasons that it calls for a smaller length test for very short duration (MeritTrac is contemplating to use a module of 6 items and 8-10 minutes duration). The author has devised a simple procedure to conduct Adaptive Testing in offline/ paper-pencil test. According to him a sufficient number of calibrated number through IRT are coded and stored in an Item Bank on a computer and classified into groups or categories of items of different item difficulty ranges(-3 to -2,-2 to -1,-1 to 0,0 to1,1 to 2,2 to3) yielding 6 groups. For any test taker wanting to take an Adaptive Test is prescribed to take 1 item from each group which enables that test taker of any ability level to miss 1, 2, 3 or 4 items of the test. The author has classified those missing 4 of the 6 items, 3 of the 6 items, 2 of the 6 items and 1 of the 6 items as being taken as “Below Average”, “Average”, “Good” and “Par excellence” of their initial ability level before taking the test. Accordingly in the estimation of test takers final ability an initial assumed value for the test taker for successive ,approximation of ability estimation are respectively taken as -0.5,0,1 and 1.5. Benjamin Wright’s final approximation using maximum Likelihood estimate is made use of as elaborately discussed elsewhere in the e-book. Mastery Testing It is found in many assessment scenarios that in Certification or Categorization of achievers in a dichotomous fashion like traditional Pass/ Fail, Selected/ Rejected and Maser/ Non Master, Mastery testing is resorted to. This is a result of Carroll and Bloom’s research work for years that yielded the concept of Mastery Testing and Mastery Learning. This is a particular case of an achiever who can be certified as a Master or Non master. A usual level of Mastery is prescribed as 90/90 which indicates 90% of test takers will secure 90% in the test. There are also situations where 100/100 is insisted, particularly in Nurses Certification Test where 100% Mastery is eminent and required (example, nurse is to be certified for distinguishing between Poisonous/Non Poisonous materials). Scholarships and other Award Testing IRT calibrated items in relation to item characteristics related to item difficulty, item discrimination and item guessing provide a platform to constitute a special test for award of Scholarship for any other Excellence awards. It has to be understood that items in a bank calibrated with IRT parameters will enable sorting out the items and the order of increasing difficulty and discrimination and as far as possible we can sort out items with high difficulty values ranging from 2 to 2.5 with very high to perfect discrimination so that they can serve the requirements for a scholarship test. Those who perform very well on these and their ability estimates and true scores are beyond the accepted cut off for award or Scholarship may be 474 selected for such awards. IRT thus provides a test with items all of them aimed at a cut off of difficulty and discrimination required for such awards. This is an application which is worth attempting for such awards as Award of Foreign Scholarships, NIIT’s “Bhavishya Jyoti Scholarship” and the like. Diagnostive Testing Educationists and Trainers all over the World are now a days increasingly providing feedback to Students and Trainees on the strengths and weaknesses of their performances in terms of content areas, Abilities and Skills tested and levels of difficulty of items. It is therefore possible with IRT calibration and coding adopted for items in terms of content, ability cluster and difficulty levels to sort out items from different content areas, from different clusters and from different levels of difficulty. It shall then be possible to generate a feedback that will list strengths and weaknesses in respect of selected contents, selected clusters and selected levels of difficulty. Thus weaknesses in these areas can be diagnosed and on the basis of these remedial steps can be recommended. This is an area of application that needs to be tried at all levels of Education and Training. In particular by teachers and trainers on a continuous basis. Future of IRT in MeritTrac MeritTrac has already started using an adaptive test module for traits like analytical ability verbal ability attention to details etc. Making use of a single parameter Rasch model. Maximum likelihood estimates as propounded by BenjaminWright is made use of. After a few years of experience the two parameters and three parameters model will be made use of. At the same time items in the item bank will be coded with IRT item parameters for future use. 475 476 APPENDIX BIRT Software http://echo.edres.org:8080/irt/baker/software.htm Adaptive Testing Tutorial http://echo.edres.org:8080/scripts/cat/catdemo.htm Applets for use 1. Applet1( for illustration) http://www.metheval.uni-jena.de/irt/ptb.html 2. Applet2 http://www.metheval.uni-jena.de/irt/ii1pl.html 3. Applet3 http://www.metheval.uni-jena.de/irt/trf1pl.html 4. Applet4 http://www.metheval.uni-jena.de/irt/sem1pl.html 5. Applet5 http://www.metheval.uni-jena.de/irt/abi1pl.html 6. Applet6 http://www.metheval.uni-jena.de/irt/MLE.html 7. Applet7 http://www.metheval.uni-jena.de/irt/Finale.html 477 8. Applet8 http://www.metheval.uni-jena.de/irt/bbit.html 9. Applet9 http://www.metheval.uni-jena.de/irt/trf2pl.html 10. Applet10 http://www.metheval.uni-jena.de/irt/iif2pl.html 11. Applet11 http://www.metheval.uni-jena.de/irt/tif2pl.html 12. Applet12 http://www.metheval.uni-jena.de/irt/sem2pl.html 13. Applet13 http://www.metheval.uni-jena.de/irt/ml2.html 14 Applet14 http://www.metheval.uni-jena.de/irt/all2pl.html 15 Applet15 http://www.metheval.uni-jena.de/irt/irf3pl.html 478