Rutile: a new petrogenetic tool to investigate old subduction zones

Transcription

Rutile: a new petrogenetic tool to investigate old subduction zones
Rutile: a new petrogenetic tool to
investigate old subduction zones
Cornelia Florentina Enea
Doctor of Philosophy
2012
Rutile: a new petrogenetic tool to
investigate old subduction zones
CORNELIA FLORENTINA ENEA
The thesis is submitted as a partial fulfilment of the requirements for the award of the degree of
Doctor of Philosophy of the University of Portsmouth
School of Earth and Environmental Sciences
United Kingdom
September, 2012
Abstract
The timing of onset of modern plate tectonics is currently in conflict. Some
believe that it began in the Archaean whereas others prefer a Neoproterozoic onset.
At issue is the lack of reliable recorders of changing styles of subduction. Whilst
high-pressure rocks (eclogite and high-P granulites) are present in the rock record
from Archaean times, low-temperature, high-pressure and ultrahigh-pressure rocks
only appear in the Neoproterozoic. This latter association is the hallmark of steep
subduction of cold oceanic crust and is central to the argument. Their disappearance
from the rock record older than c.600 Ma may be real or it may be a matter of
preservation potential. The scope of this project is to investigate this question by the
novel use of detrital rutile, which shows great potential as a provenance indicator for
high-pressure metamorphism and tectonic settings.
The best recorders of subduction are blueschists, which are present in the
rock record only to ca. 600 Ma ago. Rutiles in blueschist-facies mafic rocks from
Syros and pelitic samples from the Sesia Lanzo Zone have been investigated and
results show that the Nb vs. Cr diagram is a reliable tool for high-pressure/lowtemperature conditions, regardless of the lithology of the source rock. Further, rutiles
in ultrahigh-pressure/high temperature rocks from the Dora Maira Massif and the
Western Gneiss Complex have been analysed. Grains from the first location plot on
the correct area of the chart, but do not correlate with the detrital record, whereas
grains from the second location show a mixed Nb/Cr signatures, with eclogites
plotting along the metamafic – metapelitic borderline, or even on the pelitic region.
This indicates that the discrimination diagram requires special care when using it on
high grade rutiles.
Provenance studies on Syros and the Sesia Lanzo showed a good host rock –
detrital record correlation. Moreover, in the Western Alps, Po River contains a
higher percentage of low-temperature rutiles (97 %) compared to high temperature
grains (3 %), that might suggest that the rivers could control this concentration or
most likely that the source rocks supply more rutile thus biasing the final population.
i
These results further demonstrate the capability of detrital rutile to provenance highpressure/low-temperature source rocks, mafic or pelitic, in large riverine systems.
The Zr-in-rutile thermometer gives values consistent with previous
estimations for both Syros and the Sesia Lanzo samples, using the calibration with a
silica activity of 1. The pressure-dependant calibration has a too big correction for
lower pressure and temperature conditions. Moreover, quartz-bearing rocks give
almost identical temperatures with quartz-free rocks, suggesting that the silica
activity does not have a major effect on the thermometer. This latter thermometer has
been used for ultrahigh-pressure/high temperature rutiles from Dora Maira and the
Western Gneiss Complex, giving slightly lower results for the first location and
considerable higher values for most of the samples from the second location. In the
first case, a partial re-setting of the zirconium concentration could be the
explanation, whereas in the second case, the study concludes that the Zr-in-rutile
thermometer gives more consistent results than any exchange geothermometers.
Therefore, this thermometer can be safely applied to rocks from blueschist- to
granulite-facies rocks, giving good estimations where diffusion did not took place.
ii
Contents
Abstract......................................................................................................................i-ii
Contents.................................................................................................................iii-vii
Declaration................................................................................................................viii
List of Tables...........................................................................................................ix-x
List of Figures.....................................................................................................xi-xviii
Abbreviations..............................................................................................................xi
Acknowledgements..............................................................................................xx-xxi
Dissemination...........................................................................................................xxii
Chapter 1. Introduction.................................................................................................1
1.1. History of Research....................................................................1-6
1.2. Objectives of Current Study.................... ..................................6-7
1.3. Importance of Rutile......................................................................7
1.3.1. General Description....................................................7-8
1.3.2. Crystallography...........................................................8-9
1.3.3. Chemical composition.............................................10-11
1.3.4. Rutile in metamorphic rocks...................................11-13
1.3.5. Provenance indicator...............................................13-16
1.3.6. The Zr-in-rutile thermometer..................................16-19
1.3.7. Oxygen Isotopes......................................................19-20
1.4. Investigated Locations.................................................................20
1.4.1 Syros (Greece)..........................................................20-21
1.4.2 Western Alps (Italy).................................................21-23
1.4.3 Western Gneiss Region (Norway)...........................23-25
1.5. Summary of Thesis...............................................................25-28
Chapter 2. Methodology...........................................................................................29
iii
2.1. Sample Preparation……………………………………….……29
2.2. Electron Microprobe (EMP)………………………………. 29-30
2.3. Laser Ablation – Inductively Coupled Mass
Spectrometer (LA – ICPMS)……………………………….30-32
2.4. Secondary Ion Mass Spectrometry (SIMS)…………………32-33
Chapter 3. Trace-element characteristics of rutile in blueschist- to low-T eclogite
facies mafic-ultramafic high-P mélange zones (Syros, Greece)………..34
3.1. Abstract…………………………………………………………34
3.2. Introduction………………………………………………....35-37
3.3. Geological Setting……………………………….………….38-39
3.4. Sample Description…………………………………………39-43
3.5. Methodology…………………………………………………...43
3.6. Results………………………………………………………….44
3.6.1. Source rock rutile geochemical data............................44
3.6.2. Zr-in-Rutile thermometry........................................45-49
3.6.3. Metamorphic vs. metasomatic rutile.......................50-53
3.6.4. Rutile in a metamorphic facies perspective............54-55
3.7. Discussion....................................................................................55
3.7.1. Source rock rutile geochemical data.......................55-56
3.7.2. Zr-in-Rutile thermometry........................................56-58
3.7.3. Metamorphic vs. metasomatic rutile.......................58-60
3.7.4. Rutile in a metamorphic facies perspective..................60
3.8. Conclusions…………………………………………………60-61
Chapter 4. An evaluation of the potential of detrital rutile to document the highpressure metamorphic history of an orogenic belt (Western Alps)...........62
4.1. Abstract……………………………………………………..62-63
4.2. Introduction…………………………………………………63-64
4.3. Geological Setting…………………………………………..64-67
4.4. Sample Description…………………………………………68-70
4.5. Methodology……………………………………………………70
iv
4.6. Results………………………………………………………….71
4.6.1. Source rock rutile geochemical data.............................71
4.6.1.1. Sesia Lanzo..............................................71-73
4.6.1.2. Dora Maira.....................................................74
4.6.1.3. Po River....................................................74-76
4.6.2. Zr-in-Rutile thermometry........................................77-79
4.6.3. Trace element budgets............................................80-81
4.7. Discussion....................................................................................82
4.7.1. Source rock rutile geochemical data.............................82
4.6.1.1. Sesia Lanzo..............................................82-83
4.6.1.2. Dora Maira.....................................................84
4.6.1.3. Po River....................................................85-86
4.7.2. Zr-in-Rutile thermometry........................................86-90
4.7.3. Trace element budgets..................................................91
4.8. Conclusions…………………………………………………92-93
Chapter 5. Trace-element characteristics of rutile in HP-UHP rocks in the Western
Gneiss Complex, Norway: implications for Zr-in-rutile thermometry and
provenance studies………………………………………………………94
5.1. Abstract……………………………………………………..94-95
5.2. Introduction…………………………………………………95-97
5.3. Geological Setting…………………………………………97-100
5.4. Sample Description………………………………………100-104
5.5. Methodology………………………………………………….105
5.6. Results………………………………………………………...105
5.6.1. Source rock rutile geochemical data...................105-109
5.6.2. Zr-in-Rutile thermometry....................................109-117
5.6.3. Metamorphic vs. metasomatic rutile..........................117
5.6.4. Rutile formed by the breakdown of titanomagnetite vs.
rutile formed by the breakdown of ilmenite......117-118
5.6.5. Rutile in a HP/LT omphacite vein vs. rutile in an
UHP/HT omphacite vein……………………...118-119
5.6.6. Trace element profiles………………………………120
5.7. Discussion................................................................................120
5.7.1. Source rock rutile geochemical data...................120-125
5.7.2. Zr-in-Rutile thermometry...................................125-128
5.7.3. Metamorphic vs. metasomatic rutile..................129-130
5.7.4. Rutile formed by the breakdown of titanomagnetite vs.
rutile formed by the breakdown of ilmenite.....130-131
v
5.7.5. Rutile in a HP/LT omphacite vein vs. rutile in an
UHP/HT omphacite vein……………………...131-132
5.7.6. Trace element profiles………………………….132-133
5.8. Conclusions………………………………………………134-135
Chapter 6. Discussions and Conclusions.................................................................136
6.1. The Nb vs. Cr diagram…………………………………...136-139
6.2. The Zr-in-Rutile thermometer……………………………139-142
6.3. Rutile in the plate tectonics context……………………...142-144
6.4. Other trace element considerations………………………145-146
6.5. Future perspectives……………………………………………146
6.5.1. Possible rutile barometers………………….......146-149
6.5.2. A new discrimination diagram?.................................150
References…………………………………………………………………….151-187
Appendices...............................................................................................................188
A1. Sample Description............................................................188-190
A2. Sample Preparation............................................................191-193
A3. Long-term NIST 610 analyses...........................................194-204
A4. Long-term R10 analyses....................................................205-209
A5. Oxygen Isotopes – Method Description............................210-211
A6. Trace elements data and temperature measurements for the
metamorphic samples from Syros............................................212
A7. Trace elements data and temperature measurements for the
metasomatic samples from Syros......................................213-216
A8. Trace elements data and temperature measurements for the
detrital samples from Syros...............................................217-219
A9. Trace elements data and temperature measurements for the
metamorphic samples from the Sesia Lanzo Zone............220-222
A10. Trace elements data and temperature measurements for the
metamorphic samples from the Dora Maira Massif........223-227
A11. Trace elements data and temperature measurements for the
detrital samples from the Western Alps..........................228-237
vi
A12. Trace elements data and temperature measurements for the
metamorphic samples from the Western Gneiss Complex
.........................................................................................238-249
A13. EPMA whole rock data for A299 and A347g from the Western
Gneiss Complex.......................................................................250
A14. A complete list of P/T calculations using the EPMA whole rock
data for A299 and A347g.................................................251-253
A15. Investigating the Use of Oxygen Isotopes on Rutile in HP/UHP
Rocks................................................................................254-270
A16. EPMA data for Oxygen isotopes standards (KAG and PAK)
.................................................................................................271
A17. EPMA data for samples used for oxygen isotopes analysis
.........................................................................................272-273
A18. Abstract - Testing the Use of Detrital Rutile to Detect Eroded
HP Rocks, MSG 2010……………………....274-275
A19. Abstract - Rutile Geochemistry and its Potential Use as a
Petrogenetic Tool, EGU 2011.......................276-277
A20. Abstract - Testing the use of detrital rutile to investigate
HP/UHP rocks, IEC 2011...............................278-279
A21. Abstract - Testing the use of detrital rutile to investigate
HP/UHP rocks, Goldschmidt2011..................280-281
vii
Declaration
Whilst registered as a candidate for the above degree, I have not been registered for
any other research award. The results and conclusions embodied in this thesis are the
work of the named candidate and have not been submitted for any other academic
award.
Florentina Enea, September 2012
viii
List of Tables
Chapter 1
TABLE 1: Petrotectonic assemblages’ characteristic of plate tectonics (after
Condie and Kröner, 2008)
TABLE 2. Other indicators of plate tectonics (after Condie and Kröner,
2008)
Chapter 2
Table 1: Standard analyses for NIST 610 and R10 (made by LA – ICPMS):
known concentrations and long term average concentrations together with
their respective standard deviations.
Chapter 3
TABLE 1: Mineralogical description of the investigated source rocks:
samples 1-5 were analysed for metamorphic rutiles, samples 6-14 for
metasomatic rutiles.
TABLE 2: Summary of relevant trace element data for the investigated
samples (with STDEV).
Chapter 4
TABLE 1: Mineralogical description of the investigated source rocks:
samples 1-8 are from the Sesia Lanzo Zone and samples 9-12 are from the
Dora Maira Massif. Modal abundances are given in percentages. *Please
refer to Grevel et al., 2009 and Schertl & Schreyer, 2008 for a detailed
mineralogical description of this sample.
ix
TABLE 2: LA-ICPMS trace element data (including mean concentration
with standard deviation) for the SLZ, DMM and sand specimens.
Chapter 5
TABLE 1: Mineralogical description of the investigated source rocks:
samples 1 – 7 were analysed for metamorphic rutiles and 8-11 for
metasomatic rutiles.
TABLE 2: LA-ICPMS trace element data for all investigated samples
including mean concentration with standard deviation).
TABLE 3: Minimum and maximum pressure values used for Zr-in-rutile
thermometry calculations (including errors). Calculations have been done
using the Tomkins et al. (2007) calibration.
x
List of Figures
Chapter 1
FIGURE 1: Rutile’s crystallographic structure with one Ti4+ ion being
surrounded by 6 oxygens (after Baur, 2007; Meinhold, 2010).
FIGURE 2: Experimentally determined formation of rutile, titanite and
ilmenite for a mid- ocean ridge basalt–H2O system (after Liou et al., 1998;
Meinhold, 2010).
FIGURE 3: Diagram showing which elements could substitute Ti4+, based
on charge versus ionic radius (Shannon, 1976)
FIGURE 4: Small, scattered rutile grains in blueschist-facies from Syros
(Greece); they appear as inclusions in garnet and also in the matrix (scale bar
of 1 mm in both pictures).
FIGURE 5: Rutile in various textural relationships in high-grade eclogites
from the Western Gneiss Region (the visible yellow scale bar is 1 mm): a. as
inclusions in garnet and in the matrix; b. as polycrystalline aggregates in
association with amphibole.
FIGURE 6: Nb versus Cr discrimination diagrams for rutile from different
metamorphic lithologies: a. according to Zack et al., 2004b; b. according to
Triebold et al., 2007; c. according to Meinhold et al., 2008 (after Meinhold,
2010).
FIGURE 7: Comparison of Zr-in-rutile thermometers of Zack et al., 2004a,
Watson et al., 2006, and Tomkins et al., 2007 (after Meinhold, 2010).
Chapter 2
FIGURE 1: Time-resolved analysis spectra for LA ICPMS: a and b are
NIST 610 grains, whereas c, d, e and f represent analysed unknowns.
xi
Chapter 3
FIGURE 1: Geological map of the Greek Island of Syros, with a small insert
illustrating the island’s location within the Aegean Sea. The white rectangles
represent beach sediments and the gray rectangles represent the source rocks
that were collected for this study (map modified after Marschall et al., 2006).
FIGURE 2: Microphotographs of thick (~ 100 µm) sections for significant
samples (a scale bar of 1 mm is visible in all images): a. Sample SY412
showing metasomatic rutile in a chlorite-omphacite matrix; b. SY425G is a
metagabbro with metamorphic rutile in a glaucophane matrix; c. SY521
shows a cm-size metasomatic rutile in an actinolite-chlorite matrix; d. SY545
is a garnet-glaucophane schist with metamorphic rutile as part of the matrix
and as inclusions in garnets; e. SY522-100 is a metasomatised eclogite with
rutile as inclusions in garnets and in the omphacite-glaucophane matrix; f.
SY522-10 shows rutile in a metasomatised eclogite.
FIGURE 3: Provenance study plot: Nb vs. Cr showing the metamafic and
metapelitic areas according to Meinhold et al., 2008 (after Zack et al.,
2004b). Almost all grains are part of the metamafic group, as expected. The
metamorphic and metasomatic rutiles overlap with the detrital grains.
FIGURE 4: Longitudinal profile through a sketch of a metasomatic rutile
grain showing no relevant Zr zonation. Analyses were performed using a 50
µm spot size, every 250 µm (by LA-ICPMS).
FIGURE 5: a. Thermometry calculations for metamorphic (1.5 and 2.0
GPa), metasomatic (0.6 and 1.2 GPa) and detrital rutiles (0.6, 1.2, 1.5 and 2.0
GPa) calculated using the Tomkins et al., 2007, calibration. The results are
shown together with the standard deviation and are fairly coherent with each
other. However, the values are generally higher that previous estimations (see
text for discussion); b. Temperatures calculated for quartz-free and quartzbearing rocks; the chart shows that silica undersaturation has little effect on
the results.
xii
FIGURE 6: Trace element plots for metamorphic (blue diamonds) and
metasomatic (red squares) rutiles (Nb concentration is represented on the yaxis): a. V vs. Nb; b. Mo vs. Nb; c. Sn vs. Nb; d. Sb vs. Nb; d. Sb vs. Nb; e.
Hf vs. Nb; f. W vs. Nb.
FIGURE 7: V vs. Mo diagram showing two groups of source rocks:
metabasalts and metagabbros.
FIGURE 8: Spider diagram showing the rutile data normalised to R10; Ta,
Nb and Cr have a bigger affinity for metasomatic grains, while V and Sb
have a higher preference for metamorphic rutile; W, Sn, U, Hf and Zr show
no preference.
FIGURE 9: Nb vs. Cr diagram compiling data for rutiles from various
facies/tectonic settings; rutiles from the metasomatised mantle peridotites
form a separate cluster from the rest of the groups; granulite- and eclogitefacies rutiles partially overlap the upper part of the blueschist-facies rutiles.
Chapter 4
FIGURE 1: (a) Geological map of the Western Alps showing the location of
five sand samples: SL 10/12, 13, 15, 16, and 17 (modified after Beltrando et
al., 2010 and Garzanti et al., 2004). The two detailed maps are of: (b) The
Sesia Lanzo Zone (modified after Konrad-Schmolke et al., 2006) with
positions for the other two sand samples (SL 10/4 and SL 10/10) and the hard
rocks (black star); (c) The Dora Maira Massif (modified after Grevel et al.,
2009) showing the location of the Parigi/Case Ramello samples (A) and of
the Tapina sample (B).
xiii
FIGURE 2: Nb vs. Cr discrimination diagrams (after Meinhold et al., 2008;
see also Zack et al., 2004b) showing metamorphic vs. detrital rutiles from: a.
Sesia Lanzo Zone with Rio delle Balme and Chiusella 1 – a good correlation
can be made between the source rocks and detrital material; b. The IvreaVerbano Zone (data from Luvizotto and Zack, 2009), the Sesia Lanzo Zone,
and Torrente Chiusella 2 with Dora Baltea – both locations with
metamorphic rutile overlap with the two rivers, indicating a coherent
reciprocity ; c. Dora Maira Massif with Varaita and Maira – no relationship
can be established between the metamorphic rocks and detrital rutile, as they
plot on different areas of the diagram; d. The Ivrea-Verbano Zone, the Sesia
Lanzo Zone, Dora Maira and Po River – the SLZ and IVZ pelitic signature
can still be linked to the eroded material; a large fraction of the river’s
material has a metamafic source.
FIGURE 3: Simplified map of Po’s drainage system (after Garzanti et al.,
2004) showing the sand samples’ locations and their associated [Zr]
frequency diagram: (a) Rio delle Balme and Torrente Chiusella 1 – main
peaks show [Zr] typical for LT rocks, as found in the SLZ; (b) Torrente
Chiusella 2 and Dora Baltea – this diagram indicates that, besides an
important LT fraction, there is a new high [Zr] group present that could be
source from the IVZ; further evidence for this hypothesis is that the high [Zr]
fraction is mostly pelitic, also typical for the IVZ (see text for discussion); (c)
Varaita River – limited range of [Zr], indicating a small number of medium
to high-T source rocks; (d) Maira River – several [Zr] peaks suggesting
multiple sources, such as the Monviso Massif and the UHP and country rocks
from DMM; (e) Po River – 97 % of the detrital load is represented by low
[Zr], corresponding to LT source rocks; the rest 3 % indicate HT sources.
FIGURE 4: Trace elements budget plots for metamorphic rutiles from the
SLZ (samples labelled MK) and DMM (the rest): a. V shows a coherent
behaviour for the HP samples, and a more complex behaviour for the UHP
xiv
specimens; b. Cr – its budget is mainly controlled by the presence of garnet;
as the SLZ samples have very similar compositions, this relationship is more
poignant in the DMM rocks, where garnet can be found from 10 to 40 %;
more garnet will incorporate a larger fraction of the available Cr, leavening
less for Rt; c. Zr – this budget is mainly controlled by Zrc, therefore
explaining the low percentages; d. Nb – as rutile is the main carrier of this
element, its composition reflects the rutile abundance in the host rock.
FIGURE 5: Multi-trace element diagram containing rutile compositions
normalised to R10; the green field is represented by the range of
compositions for metamorphic rutiles from the IVZ (data collected from
Luvizotto and Zack, 2009); the grey field corresponds to detrital grains from
the Torrente Chiusella 2 and Dora Baltea; the good overlap between the two
groups further suggests a source rock –sediments relationship (please see text
for discussion)
FIGURE 6: Multi-trace element diagram containing rutile compositions
normalised to R10; the grey field represent the range of composition for the
SLZ rocks, while the individual points represent Po River detrital rutiles; this
diagram shows that at least 19 grains (from 121 grains) from the sediments
can be linked back to their source rocks from the SLZ.
Chapter 5
FIGURE 1: Geological map of the WGC between Sognfjord and Molde,
showing sample locations. Geological units after Kildal, 1970; Robinson,
1995; Tveten, 1995; Tveten and Lutro, 1995a, b. Eclogite localities from
Krogh, 1980, 1982; Cuthbert, 1985; Griffin et al., 1985; Smith, 1988; Bailey,
1989; Chauvet et al., 1992; Krabbendam and Wain, 1997 (including
xv
additional unpublished data of the authors). All rights reserved to Simon
Cuthbert for map editing (after Cuthbert et al., 2000).
FIGURE 2: Microphotographs of thick (~ 100 µm) sections for significant
samples (a scale bar of 1 mm is visible in all images): a. Sample 4-1A
(Raudkleivane site) showing metamorphic rutile in an eclogite; b. N 28 is a
PCQ-bearing eclogite from Vetrhuset with metamorphic rutile grains; c. N 36
shows a cm-size metasomatic rutile in a white mica matrix; d. N 38 is a
Gusdal Quarry Ti-rich eclogite with rutile forming clusters together with an
Amp at the Omp-Grt limit; e. N 40 is another Gusdal Quarry Ti-rich eclogite
with rutile forming clusters together with an Amp inside a garnet; f. N 55
shows metasomatic rutile in Omp+Chl vein.
FIGURE 3: Provenance study plots: a. Nb vs. Cr showing the metamafic and
pelitic areas according to Meinhold et al., 2008 (after Zack et al., 2004b). The
metapelitic samples (N 31 and N 36) plot in the correct area of the diagram,
whereas the metamafic eclogites and omphacite veins are highly variable,
with some behaving "normally" (4-1A, N 19, N 29 and N 35), two of them
plotting along the empirical pelite/mafic field boundary (N 27 and N 28), and
three other plotting in the pelitic region (N 38, N 40 and N 55); b. Nb vs. Cr
for metamorphic, metasomatic and detrital rutiles (detrital data was used
from Morton and Chenery, 2009) – this diagram shows a good overlap of the
three groups of rutile with only sample 4-1A and N 38 plotting outside the
detrital area.
FIGURE 4: Multi-element diagram for metamorphic, metasomatic and
detrital rutiles. The two vertical segments represent element concentration for
detrital grains. This chart shows a good overlap of the detrital with the other
two groups of rutiles. It also emphasises the difference in trace element
composition between metamorphic (higher Ta, Nb, W, Sn, V, Cr, U, Hf and
Zr) and metasomatic (higher Sb and Mo) grains.
xvi
FIGURE 5: Trace element profiles in five investigated samples: a. N 19
(Nausdal) – Cr, W and U are relatively variable; b. N 29 (Vetrhuset) – here,
Zr, Hf, Sb and U are quite heterogeneous; c. N 36 (Flatraket) – most trace
elements have a flat profile, with a few exceptions: Sb, Mo, W and U; d. N
40 (Gusdal Quarry) – Ta and Nb exhibit strong variabilities, with higher
compositions in the core of the grain; e. N 55 (Arsheimneset) – Zr, Hf and U
have irregular abundances.
FIGURE 6: Zr concentration histograms for samples: a. N 38; B. N 31; c. N
35; d. N 28; e. 4-1A; f. N 27
FIGURE 7: Trace element compositions for different groups of rutiles: a.
rutile formed by the breakdown of ilmenite vs. rutile formed by the
breakdown of titanomagnetite – the first class exhibits the extreme range of
concentrations for Ta, Nb (at the high end) and U (at the low end); b. rutile
from an omphacite vein (N 19) vs. rutile from a kyanite-quartz vein (N 36) –
both groups show quite different composition ranges.
FIGURE 8: Nb vs. Cr diagram for the Ti-rich Gusdal eclogites compared to
zircon- and diamond-bearing eclogites xenoliths from Jericho (data from
Heaman et al., 2006): both types of eclogites have Ti-rich rutiles; however,
the Gusdal samples have much higher concentrations in Cr than the other
sample.
FIGURE 9: Temperature vs. pressure diagram for all investigated samples
(with error bars). The minimum and maximum pressure values have been
used for Zr-in-rutile thermometry calculations.
Chapter 6
FIGURE 1: Niobium vs. Cr diagram compiling data for rutiles from various
facies/tectonic settings; rutiles from the metasomatised mantle peridotites
xvii
form a separate cluster from the rest of the groups; granulite- and eclogitefacies rutiles partially overlap the upper part of the blueschist-facies rutiles.
FIGURE 2: a. Zr vs. Al2O3 diagram showing a minor positive correlation;
b. Zr vs. SiO2 diagram with no obvious correlation.
FIGURE 3: a. Mo vs. Zr diagram for all WGC samples, showing a strong
positive correlation; b. Zr vs. Mo diagram for samples from all locations
indicating different groups based on P/T conditions.
FIGURE 4: Sn vs. W diagram for samples from Syros, Sesia Lanzo and
Dora Maira forming two distinct groups based on the lithology of the source
rock (metamafic vs. metapelitic).
xviii
List of Abbreviations
1. ACCC
Attic-Cycladic Crystalline Complex
2. a (SiO2)
silica activity
3. DMM
Dora Maira Massif
4. EPMA
Electron-probe Microanalysis
5. LA-ICP-MS Laser-Ablation Inductively-Coupled Plasma Mass
Spectrometry
6. HFSE
high field strength elements
7. HP
high pressure
8. HT
high temperature
9. IVZ
Ivrea Verbano Zone
10. NIST SRM
National Institute of Standards and Technology Standard
Reference
11. UHP
ultrahigh pressure
12. UHT
ultrahigh temperature
13. SIMS
Secondary Ion Mass Spectrometry
14. SLZ
Sesia Lanzo Zone
15. VSMOW
Vienna Standard Mean Ocean Water
16. WGR
Western Gneiss Region
xix
Acknowledgements
I’d like to start my acknowledgements by mentioning the technical staff I have
worked very closely with. They played a major role in the acquisition of my data and
always ensured smooth, uneventful sessions. These are John Craven and Richard
Hinton from the Grant Institute, University of Edinburgh, where I have done my
oxygen isotopes and U/Pb analysis. They were very dedicated and interested in my
project and have been an inspiration for me.
Next in line is Stuart Kearns from the University of Bristol who’s been very patient
with me when I seemed (and probably was) a bit confused about the whole data
acquisition process. I’d also like to mention Simon Cragg and Christine Hughes from
the Biology Department, University of Portsmouth whom so kindly helped me with
my SEM imaging.
But the sample preparation step is fundamental for good quality data, and I give my
special thanks to Geoff Long from our department. I won’t even know what things to
mention first, as he’s been absolutely brilliant with everything I’ve asked him to do,
including impossible samples to get thick-sectioned, re-adjusting their size, helping
me with the epoxy mounts, last minute, “the laser is on and I need the standards to be
polished!!!”. In a nutshell, he’s done the unbelievable and done it the best way
possible.
Emilie Bruand, a wonderful scientist and friend who’s always had the patience to
listen to my project dilemmas and provided excellent advice. We had very fruitful
conversations over lots of coffees or French, amazing tea! Not to mention the afterhours amazing cheese and wine sessions!
I’d also like to thank Hans –Peter Schertl from the University of Ruhr, Germany,
who’s provided the Dora Maira samples and discussed them with me. Another
“sample-provider “ I’d like to give my thanks to is Matthias-Konrad Schmolke from
the University of Potsdam, who’s also been my field guide for the Western Alps trip.
Next, I thank my office colleagues, who had to put up with “cranky and unsociable”
me at times. They’ve been a good companion and had many good laughs with them!
My wonderful supervisors! Horst Marschall has always been so prompt and critical,
full of fresh ideas, new perspectives and lots and lots of corrections!! With Simon
Cuthbert I’ve had long and detailed discussions on the metamorphic history of the
Western Gneiss Complex that I’m sure many, many more Ph.D projects could arise
from them.
Of course, this whole project would not have been possible without my main
supervisor, Craig Storey! I have many things to thank him for, amongst whom readproofing my drafts overnight when he was impossible busy with other things,
xx
helping me with pretty much every step of the project and more importantly for
being open to my ideas and suggestions, I really appreciated that!
In the end of my acknowledgments goes my family. My biggest thank you to my
parents and sister for carefully and patiently listening me babbling about rutile’s
geochemical properties and plate tectonics without understanding much about.
They’ve been a great support and always been there for me.
Oh yes, and there is my partner, what on Earth would I have done without him?! I
cannot express in words how much he means to me and will never, never understand
how he’s been capable of putting up with my moodswings and terrorised mind after
long nights and days of staying in the lab. He’s always been capable of calming me
down when panic emerged and say just the right thing I needed to hear. And even
more importantly, for believing in me! Lots of love!
xxi
Dissemination
1. Oral Presentation at the Metamorphic Studies Group Annual Research in Progress
Meeting 2011, 23rd March, Department of Earth Sciences, Cambridge, UK: Testing
the use of Detrital Rutile to Detect Eroded HP Rocks.
2. Poster Presentation at the European Geosciences Union General Assembly 2011,
Vienna, Austria, 03 – 08 April 2011: Rutile Geochemistry and its Potential Use as a
Petrogenetic Tool.
3. Poster Presentation at the 9th International Eclogite Conference 2011, Mariánské
Lázně, Czech Republic: Testing the use of detrital rutile to investigate HP/UHP
rocks.
4. Poster Presentation at Goldschmidt2011, August 14-19, 2011 in Prague, Czech
Republic: Testing the use of detrital rutile to investigate HP/UHP rocks.
xxii
Chapter 1
Introduction
1.1. HISTORY OF RESEARCH
For a better understanding of our planet we must elucidate the controversy
about when modern-style plate tectonics began. Earth’s tectonic regime requires very
special conditions for this mode of planetary heat loss, being the only known planet
with subduction zones (Stevenson, 2003). Plate tectonics is most likely to be the
result of convective cooling of the mantle, although other explanations such as the
gravitational pull of subducted slabs driving plate motions have been suggested
(Conrad and Lithgrow-Bertelloni, 2002). Due to the fact that the early thermal
history of the mantle is not fully understood, exactly when plates became negatively
buoyant is not yet clear.
The aim of this study is to investigate a new method with which to address
this major geologic question by the novel use of rutile. Here, grains from rocks that
could provide direct evidence of modern-style plate tectonics (i.e. blueschists and
ultrahigh-pressure rocks), and detrital grains in sediments eroded from orogenic
belts, are investigated for trace elements and oxygen isotopes and correlations
between them and their source rocks have been made.
The distinctive petrotectonic association of low temperature-high pressure
(LT–HP) and ultrahigh pressure metamorphism (UHP) necessitates cold, deep and
steep subduction, a geodynamic fingerprint of Earth’s modern tectonic style, also
known as “subduction tectonics” (Stern, 2004). Blueschists are metamorphosed
mafic rocks or metasediments containing sodic amphibole, which is stable under
high-pressure and low-temperature conditions (Maruyama et al., 1996; Ernst, 2003).
The conclusion that blueschists form only in subduction zones is based on their
association with ancient mélanges and is confirmed by studies of active subduction
zones (Abers et al., 2006; Maekawa et al., 1995; Zhang et al., 2004).
Ultrahigh pressure metamorphic terrains are another important indicator of
cold and ultra deep subduction. They form when continental crust is subducted to
depths > 100 km and then returns to the surface.
1
Chapter 1
The onset of subduction-driven plate tectonics is very controversial among
earth scientists: some argue that it began early, around 3 Ga (Parman et al., 2001;
Smithies et al., 2003; Condie and Kröner, 2008; Shirey, 2008, Foley, 2008; Polat et
al., 2008; Wyman et al., 2008) and others argue that subduction began in the second
half of Earth history during the Neoproterozoic to Phanerozoic (Davies, 1992;
Hamilton, 2003; Stern, 2005; Brown, 2008).
Condie and Kröner (2008) consider that investigating separate pieces of
evidence for early modern-style plate tectonics is not the best approach, as this could
allow explanations by alternative tectonic mechanisms. A combination of all these
factors sustains, in fact, the existence of modern-style plate tectonic processes since
the late Archean.
On the other hand, Stern (2005) argues for a non-uniformitarian approach to
the question, “When did plate tectonics begin on planet Earth?” He advocates a preNeoproterozoic “proto-plate tectonic” mechanism that lacks plate subduction. He
concludes that this period in Earth’s history is followed by the development of
modern-style plate tectonics in the Neoproterozoic.
The temporal distribution of blueschists and UHP terranes is consistent with
the hypothesis that the modern episode of subduction tectonics began in the
Neoproterozoic. Moreover, there are other types of evidence listed in Tables 1 and 2.
It is important to point out at the beginning that “single lines of evidence” (including
single petrotectonic assemblages) may not be definitive of modern-style plate
tectonics, but it is the convergence of evidence at any period of time that is most
useful in tracking plate tectonics into the past.
Most plate-tectonic indicators given in Tables 1 and 2 suggest that modern
plate tectonics was operational, at least in some places on the planet, from around 3
Ga and that it became widespread by 2.7 Ga. However, we are faced with some
indicators (ophiolites, UHP metamorphism and blueschists) that suggest a much later
starting date of <1.0 Ga.
2
Chapter 1
Assemblage
Widespread Distribution
First Appearance
(Ga)
(Ga)
Ophiolites
≤ 1.0
3.8
Arc-Back arc
2.7
3.1
Accretionary prisms and
≤ 1.0
2.7 (3.8?)
Forearc basins
≤ 2.0
2.7 (3.25?)
Blueschists and UHP rocks
≤ 0.1
0.85 (1.0?)
Passive margins
≤ 2.0
2.7 (2.9?)
Continental rift
≤ 2.0
3.0
Metallic mineral deposits
≤ 2.7
3.5-3.4
OPS*
*OPS, ocean plate stratigraphy
TABLE 1: Petrotectonic assemblages’ characteristic of plate tectonics (after Condie
and Kröner, 2008)
Indicator
Widespread Distribution
First Appearance
(Ga)
(Ga)
UHP metamorphism
≤ 0.1
0.6
Paired metamorphic belts
≤ 2.7
3.3
Transcurrent faults & sutures ≤ 2.7
3.6 (?)
Collisional orogens
≤ 2.0
2.2
Accretionary orogens
≤ 2.7
3.8-3.7 (?)
Paleomagnetism
≤ 2.7
≥ 3.2 (?)
Geochemistry
≤ 2.7
3.1
Isotopes
≤ 3.0
≥ 4.0
Continents
≤ 2.7
≥ 3.0 (?)
TABLE 2. Other indicators of plate tectonics (after Condie and Kröner, 2008)
However, the lack of blueschists and UHP metamorphic rocks older than
Neoproterozoic could be related to preservation potential. Blueschists and ultrahighpressure rocks are notoriously difficult to preserve. They are highly metastable both
3
Chapter 1
mineralogically, and in terms of their exhumation setting in orogenic belts where
they are prone to rapid erosion. Robust minerals, particularly rutile, tourmaline and
zircon from within these rocks, however have a much larger preservation potential
where they are eroded and deposited as detritus in later sediments.
Accessory minerals are of great importance for the understanding of trace
elements in the lithosphere, as they dominate the rocks’ budgets of important trace
elements, such as HFSE and REE, in many cases and are invaluable archives of the
geochemical history of a rock. The goal of this research is to interpret the chemical
and isotopic composition of rutile in the context of their host metamorphic rocks,
and employ them as accurate monitors of the P-T-X histories of the systems. Once
this connection is established, heavy minerals in sediments can be employed to
reconstruct geodynamic processes for episodes where the crystalline rock record is
sparse.
The mineral rutile (tetragonal TiO2) has gained increasing attention recently,
due to the establishment of the new Zr-in-rutile thermometer (Zack et al., 2004a;
Watson et al., 2006; Tomkins et al., 2007; Ferry and Watson, 2007) and in-situ U-Pb
dating by LA-ICPMS (e.g. Mezger et al., 1989, 1991; Möller et al., 2000; Vry and
Baker, 2006; Luvizotto et al., 2009b). Progress has also been made in linking certain
trace and minor element signatures in rutile to its host rock composition. High Cr
and low Nb abundances are found in rutile from mafic rocks, while low Cr/Nb ratios
are characteristic of metapelitic rutile (Zack et al., 2004b, Triebold et al., 2007,
Meinhold et al., 2008). Rutile is robust during diagenesis and low-grade
metamorphism. Lead closure is considered to be around 650 °C (Cherniak, 2000;
Vry & Baker, 2006) and Zr similar (Cherniak et al., 2007). It implies that any low
temperature, high-pressure metamorphism (< 600 °C) would not suffer from
diffusional resetting and the signatures would remain robust, unless they have
subsequently suffered high temperature metamorphism.
Rutile generally appears during prograde metamorphism in both
metasedimentary and metabasic rocks, where it forms from Fe-Ti oxides (usually
ilmenite) or from titanite, typically at pressures between 1.2 and 1.5 GPa (Liou et al.,
1998; John et al., 2011). Hence, in common crustal rock parageneses, rutile is only
4
Chapter 1
stable at depths >35 km, and the maximum pressure conditions in stable continental
crust are too low to produce rutile.
Therefore, the occurrence of rutile is concentrated to rocks involved in major
plate-tectonic processes, such as subduction of oceanic and continental crust or
crustal thickening in the course of continental collision.
The intimate link between rutile formation and plate tectonics calls for a
closer investigation of rutile geochemistry, including minor and trace-element
compositions and isotopic signatures. Research now focuses on relating geochemical
signatures of rutile to the P-T-X conditions of its host rock and, hence, to the plate
tectonic setting of its formation. Guided by the improved geochronologic constraints
(e.g. Mezger et al., 1989, 1991; Möller et al., 2000; Vry and Baker, 2006; Luvizotto
et al., 2009b), rutile can then be used to recognise tectonic processes through time
from the Archaean and perhaps earlier and to investigate secular changes in these
processes.
One category of typical protolith that produce rutile is oceanic crust (i.e.
basalts and gabbros, where rutile is formed during subduction. In modern subduction
zones along a very low P/T gradient, rutile forms at ~1.3 GPa and 400–500 ºC in the
blueschist facies. Modern continental subduction will produce medium to high-T
eclogite with rutile equilibrated at 600–800 ºC, while the collision of large
continental blocks generates medium to high-P granulites formed at 800–1000 ºC.
The Zr-in-rutile thermometer (Zack et al., 2002, 2004a; Watson et al., 2006;
Tomkins et al., 2007; Ferry and Watson, 2007) has already been used to distinguish
between these regimes, and provenance studies on detrital rutile have demonstrated
the applicability of the thermometer to detrital rutile (e.g., Triebold et al., 2007).
Further distinctions can be made between metasedimentary and metabasic rutile
using Cr/Nb ratios (Zack et al., 2004b, Triebold et al., 2007, Meinhold et al., 2008),
so that subducted igneous crust can be distinguished from subducted terrestrial
sediments.
Some models conclude that early Archean tectonic and crustal differentiation
processes were dominated by the collision of oceanic plateaux, i.e., blocks of
5
Chapter 1
thickened basaltic crust colliding with each other, leading to high-P metamorphism
and rutile eclogite formation in these collision zones (Clemens et al., 2006).
Distinction between (1) eclogites formed in subducted mafic crust and (2) eclogite
formed at the base of thickened basaltic plateaux would help to distinguish between
these processes. The modern oceanic crust is characterised by significant
hydrothermal alteration produced by interaction with seawater. Oxygen isotope
ratios are strongly altered with heavy O being enriched in low-T altered basalts and
depleted in the high-T altered gabbros (Alt, 2003; Gao et al., 2006). In contrast,
lower-crustal granulites and eclogites, having had no contact to the hydrosphere, will
have mantle-like O isotope ratios and produce rutile in equilibrium with those
values.
Hence, detrital rutile has the potential to unravel the secular record of various
plate tectonic processes, such as cold and warm oceanic subduction, continental
collision and Archean-style collision of oceanic plateaux.
1.2 OBJECTIVES OF CURRENT STUDY
The use of trace-element chemistry in detrital rutile to distinguish between
eroded blueschist and low-T eclogite in the Precambrian requires further
investigation and ground truthing before using it on very old rocks. This project
focuses on the trace-element composition of rutile in blueschist-facies rocks, and
comparison with rutile from eclogites and granulites and from hydrothermal veins.
These different lithologies and settings are the major provider of crustal rutile and
hence detritus in sediments.
Trace element characterisation has been used to fingerprint the specific
geochemical signature of rutile grains in various rocks from a wide range of P-T-X
conditions. The Nb vs. Cr diagram has been used on blueschist- to eclogite- and
granulite-facies metamorphic rocks. This allowed for observations on its reliability at
higher metamorphic conditions to be made.
Outcrops with well-characterised protoliths, composition and P-T history
have been sampled from subducted and exhumed continental and oceanic crust.
6
Chapter 1
Moreover, sand samples from corresponding sedimentary basins that contain detrital
rutile grains, have been investigated and compared with metamorphic grains from
the potential source rocks.
The Zr-in-rutile thermometer is examined to check how well it records the
known temperature regimes and what is the possible influence of silica
undersaturation. This has been applied on low- to high-temperatures rocks, in order
to verify if the thermometer is still reliable at eclogite- to granulite-facies conditions.
Moreover, rutile in different vein-fills has been investigated and trace
element compositions have been used to describe it (HP mafic and pelitic veins, lowto high-T veins). A distinction between metamorphic and metasomatic grains has
been attempted, that could further help recognising each group in the sedimentary
basin.
Oxygen isotopes on rutiles from a number of locations have been analysed
for the first time. This method has been used in order to assess rutile’s potential of
providing information on the type of protolith: crustal origin versus mantle material.
This research will set the base for future research to tackle the main debates
and controversies surrounding the timing of modern-style plate tectonic onset. The
overarching aim is to use detrital rutile as a tool for investigating long-eroded
orogenic belts to reconstruct their tectonic evolution.
1.3 IMPORTANCE OF RUTILE
1.3.1 General Description
Titanium is the ninth most abundant element of the Earth's continental crust
(Rudnick and Fountain, 1995), with mafic to intermediate igneous rocks being the
most important source of Ti (Force, 1991). Ilmenite (FeTiO3) is generally the stable
Ti-oxide, with rutile being a less common mineral.
The name rutile was first coined by Werner (Ludwig, 1803), who called it
“red schorl”. Description of this mineral was made, however, a few decades before
7
Chapter 1
by von Born (1772) and Romé l’Isle (1783). “Red schorl” was also used to describe
the element titanium (Klaproth, 1795), which was named after the Titans of the
Greek mythology.
Papp (2007) showed that the typical locality of rutile is Revúca, in Slovakia.
Until recently, it was believed that the type locality was Horcajuelo, in Spain.
The name “rutile” comes from rutilus in Latin, which makes references to its
specific dark red colour. Other colours, which often mirror variations in its chemical
compositions, are yellowish and brownish, less frequent even blue (Meinhold, 2010).
As rutile’s density ranges between 4.23 and 5.50 g cm – 3 (Deer et al., 1992),
it is part of the heavy mineral group that includes minerals with densities higher than
2.8 g cm – 3. Rutile does not have magnetic properties (diamagnetic), being easily
separated from paramagnetic and ferromagnetic (weakly magnetic and strongly
magnetic, respectively), by using the Franz isodynamic separator (Buist, 1963a,
Meinhold, 2010). Nevertheless, studies (Buist, 1963a; Hassan, 1994) have shown
that rutile can actually retain a small fraction of iron in its structure, therefore
becoming diamagnetic.
1.3.2 Crystallography
The three main TiO2 polymorphs found in nature are rutile, anatase and
brookite. Rutile is the most common phase, crystallising in the tetragonal space
group P42/mnm (Baur, 1956). As natural occurring rutile can contain numerous trace
elements in its structure, its unit parameters will differ considerably from the normal
size characteristic to pure rutile – a = 4.594 Å and c = 2.959 Å (Baur, 1956).
Rutile’s original structure (Fig. 1) contains, in each unit cell, one Ti4+ ion that
is surrounded by six oxygens at the corners of a moderately distorted, regular
octahedron, with every oxygen surrounded by three Ti4+ ions (Deer et al., 1992;
Baur, 2007).
8
Chapter 1
FIGURE 1: Rutile’s crystallographic
structure with one Ti4+ ion being
surrounded by 6 oxygens (after Baur,
2007; Meinhold, 2010).
In metamorphic rocks, rutile is the high-pressure and high-temperature
polymorph. Anatase (tetragonal) and brookite (orthorhombic) are the lowtemperature polymorphs of TiO2 (Fig. 2).
Analytical methods that determine geochemical compositions will not be
enough to distinguish between these polymorphs, as they have similar compositions.
Their identification is made based on their crystalline structure, using
methods such as X-ray diffraction (Spurr and Myers, 1957; Raman and Jackson,
1965) and reflected microscopy (Mader, 1980). However, the best method, used
widely nowadays, is micro-Raman spectroscopy, as each polymorph produces
different Raman bands.
FIGURE 2: Experimentally
determined formation of rutile,
titanite and ilmenite for a midocean ridge basalt–H2O system
(after Liu et al., 1998; Meinhold,
2010).
9
Chapter 1
1.3.3. Chemical composition
Titanium occurring in rutile’s composition is Ti4+. This element appears in
three more oxidation states: Ti3+, Ti2+ and Ti0 (MacChesney and Muan, 1959). The
elements that represent possible substitutions for Ti4+ appear in several oxidation
states, such as:
•
Hexavalent: W6+ and U6+;
•
Pentavalent: Nb5+, Sb5+ and Ta5+;
•
Tetravalent: Zr4+, Mo4+, Sn4+, Hf4+and U4+;
•
Trivalent: Al3+, Sc3+, V3+, Cr3+, Fe3+and Y3+;
•
Divalent: Fe2+, Mg2+, Mn2+and Zn2+
(Graham and Morris, 1973; Brenan et al., 1994; Hassan, 1994; Fett, 1995; Murad et
al., 1995; Smith and Perseil, 1997; Rice et al., 1998; Zack et al., 2002; Bromiley and
Hilairet, 2005; Scott, 2005; Carruzzo et al., 2006; Meinhold, 2010). Element
substitution in rutile’s structure is based on ionic radius and ionic charge (Fig. 3).
Rutile is an important carrier of HFSE (e.g. Foley et al., 2000; Kalfoun et al.,
2002; Zack et al., 2002). In eclogites, one modal percentage of rutile can carry more
than 90% of the whole-rock content for Ti, Nb, Sb, Ta and W and substantial
amounts (5–45% of the whole-rock content) of V, Cr, Mo and Sn (Rudnick et al.,
2000; Zack et al., 2002).
FIGURE 3: Diagram showing
which elements could substitute
Ti4+, based on charge versus
ionic radius (Shannon, 1976)
10
Chapter 1
Another reason why rutile has received so much attention is because it is a
major host mineral for Nb and Ta, which are broadly used as geochemical
fingerprints of geological processes such as magma evolution and subduction zone
metamorphism (e.g. Foley et al., 2000; Rudnick et al., 2000). The Nb and Ta
concentrations and Nb/Ta values of crustal and mantle rocks have been used to
investigate Earth’s hidden suprachondritic Nb/Ta reservoir (e.g. Green, 1995; Foley
et al., 2000; Rudnick et al., 2000; Kalfoun et al., 2002; Zack et al., 2002; Xiao et al.,
2006; Miller et al., 2007; Aulbach et al., 2008; Baier et al., 2008; Bromiley and
Redfern, 2008; Schmidt et al., 2009).
Some analytical techniques used to determine rutile’s chemical composition
are: electron microprobe (EPMA), proton microprobe (PIXE), laser-ablation
inductively coupled mass spectrometry (LA-ICPMS) and secondary ion mass
spectrometry (SIMS). The LA-ICPMS is a moderately destructive method, as it
generally leaves a crater of several tens of micrometers in diameter. However, it has
a much better detection limit, compared to the EPMA, which is very useful for rare
and trace elements. SIMS is widely used for isotope geochemistry and U/Pb dating.
1.3.4. Rutile in metamorphic rocks
Rutile forms under various conditions, being an important accessory mineral
in metamorphic rocks ranging from greenschist to eclogite and granulite facies but is
also present in igneous rocks, mantle xenoliths, lunar rocks and meteorites, and
importantly as a detrital mineral in clastic sediments. In metasomatic or highpressure metamorphic processes, ilmenite is broken down and iron is transported
away by hydrothermal fluids, or enters other minerals (e.g. garnet – Korneliussen et
al., 2000b).
In low- to medium-grade metamorphic rocks (Fig. 4a and b), rutile normally
appears as small grains or in polycrystalline aggregates (Meinhold, 2010). The grains
are generally needle-like, which has been explained by Banfield and Veblen (1991)
as an indicator of their metamorphic origin, rather than a detrital origin.
11
Chapter 1
a
b
FIGURE 4: Small, scattered rutile grains in blueschist-facies from Syros (Greece);
they appear as inclusions in garnet and also in the matrix (scale bar of 1 mm in both
pictures).
Luvizotto et al. (2009a) has studied prograde rutile in low- to medium grade
metasedimentary rocks from Erzgebirge (Germany). The authors concluded that the
rutile polycrystalline aggregates found in association with chlorite formed by the
breakdown of Ilmenite during prograde metamorphism:
Ilmenite + Silicates + H2O → Rutile + Chlorite
In high-grade metamorphic rocks, such as eclogites and granulites, rutile can occur
as inclusions in different mineral phases (e.g., garnet, omphacite, amphibole, etc), in
the matrix (Fig. 5a), but also as polycrystalline aggregates (Fig. 5b). The grains vary
considerably in size – from a few microns to a few millimetres, and also in shape –
from idioblastic to xenoblastic, and from oval to irregular (Hills and Haggerty, 1989;
Brenan et al., 1994; Zack et al., 2002; Huang et al., 2006; Xiao et al., 2006;
Janousek et al., 2007; Chen and Li, 2008; Meinhold, 2010).
12
Chapter 1
a
b
FIGURE 5: Rutile in various textural relationships in high-grade eclogites from the
Western Gneiss Region (the visible yellow scale bar is 1 mm): a. as inclusions in
garnet and in the matrix; b. as polycrystalline aggregates in association with
amphibole.
The stability of any TiO2 polymorph depends on a sum of factors, such as
whole-rock composition, pressure and temperature (e.g. Zhang et al., 2003; Klemme
et al., 2005; Bromiley and Redfern, 2008 – Fig. 2).
1.3.5. Provenance indicator
The ability of rutile to encompass a range of trace elements into its structure
presents an opportunity to determine the lithology of a source rock of a detrital rutile
(Zack et al., 2004b). Banfield and Veblen (1991) was probably the first to suggest
that rutile’s geochemistry might be used for provenance purposes. However, ten
years later, only a few studies were conducted to determine rutile’s application in
determining the provenance of its source (Götze, 1996; Preston et al., 1998, 2002).
Zack et al. (Fig. 6a – 2002b, 2004b) established the Nb vs. Cr discrimination
diagram for rutile as an indicator to whether the source rock was a metapelite (e.g.
mica-schists, paragneisses and felsic granulites) or metabasite (e.g. eclogites and
mafic granulites). The log (Cr/Nb) was introduced by Triebold et al. (2007) for
simplification, a method that can be applied to distinguish between metamafic and
metapelitic source rocks, but not for low concentrations of these two elements (Fig.
6b). Zack et al. (Fig. 6a – 2002b, 2004b) established the lower limit of Nb for
13
Chapter 1
metapelites at 900 µg/g and the upper limit at 2700 µg/g, using literature data
available on specific Nb/TiO2 ratios of whole rock for metapelites. Meinhold et al.
(2008) used reference data in addition and lowered the minimum concentration limit
of Nb in metapelites at 800 µg/g.
c
FIGURE 6: Nb versus Cr
discrimination diagrams for rutile
from different metamorphic
lithologies: a. according to Zack et
al., 2004b; b. according to Triebold
et al., 2007; c. according to Meinhold
et al., 2008 (after Meinhold, 2010).
Provenance characterisation is the next step in using the Nb vs. Cr diagram
(Fig. 6a, b and c). Combining geochemical studies of whole rock and specific detrital
minerals, the obtained results are important for exploration of mineral resources,
basin analysis and palaeotectonic reconstructions. Other heavy minerals, such as
zircon, tourmaline, garnet and chrome spinel have long been used as provenance
indicators by merit of their geochemical and isotope signatures (e.g. Morton, 1991;
von Eynatten and Gaupp, 1999; Morton et al., 2004, 2005; Mange and Morton,
2007). The exception is rutile, which received little attention until recently (Götze,
1996; Preston et al., 1998, 2002).
Since the pioneering work of Zack et al. (2002b, 2004b), several studies have
been conducted on rutile’s potential to be a provenance indicator. One study was
focused on alluvial and fluvial sediments from the Yaoundé region in Cameroon
14
Chapter 1
(Stendal et al., 2006). The authors concluded that the detrital rutile originated from
Neoproterozoic micaschists of the Yaoundé Group.
In the following year, two more studies analysed detrital rutile from river
sediments in Erzgebirge, Germany (Triebold et al., 2007) and from alluvial deposits
in SW Slovakia (Uher et al., 2007). The first paper deduced that the detrital rutile
grains were sourced from the surrounding country rocks, whereas the second paper
concluded the grains were mirroring the chemical composition of granitic pegmatites
from the Bratislava Granitic Massif.
Meinhold et al. (2008) and Morton and Chenery (2009) have also
investigated detrital rutile from sandstones of Chios Island (Greece) and hydrocarbon
wells in the Norwegian Sea, respectively. The first publication observed a change in
the lithology of the source rocks from the Carboniferous with a preponderant mafic
origin for detrital rutile to the Early Triassic with a more pelitic origin. In the second
study, based on the detrital rutile data, the authors demonstrated that there are five
distinct sand types sourced from distinct parts of the Western Gneiss Complex.
Meinhold et al. (2011) also studied detrital rutile from the Norwegian Sea and
concluded that 85 % is of pelitic origin.
All the above publications have demonstrated the applicability of the Nb vs.
Cr discrimination diagram for provenance signature. This is possible because of
rutile’s robust nature in both diagenetic and surficial weathering conditions
(Pettijohn, 1941; Hubert, 1962; Morton and Hallsworth, 1999, 2007; Meinhold,
2010).
However, there are a few papers on granulite-facies rocks that show caution
is needed when using the discrimination diagram on rutiles formed at hightemperature conditions (Baldwin and Brown, 2008; Harley, 2008; Luvizotto and
Zack, 2009; Meyer et al., 2011; Kooijman et al., 2012). Meyer et al. (2011) presents
a study that focuses on UHT metapelitic and metamafic rocks from the Epupa
Complex in NW Namibia. The authors note that the protolith signature of
metamorphic rutile could get disturbed during prograde metamomorphic evolution.
Kooijman et al. (2012) also analysed granulite-facies rocks, from the Archaean
Pikwitonei Granulite Domain (Manitoba, Canada). They observed that the Nb vs. Cr
signature of rutile overlaps with ranges of both metamafic and metapelitic
15
Chapter 1
provenance. Considering the fact that the investigated rocks are only metapelitic,
they show the diagram must be used with care in areas having undergone similar
metamorphic conditions.
Earlier studies (Bakun-Czubarow et al., 2005; Massone and Czambor, 2007)
also underlined the volatility of this provenance tool for the Sudetes Fe-Ti-rich
eclogites and for the Saidenbach eclogites that have high Nb/Ti ratios, respectively.
In both cases rutile plots in the metapelitic field.
1.3.6. The Zr-in-rutile thermometer
The application of a Zr-in-rutile thermometer was initially undertaken by
Zack et al., (2004a). It was recognised that the temperature of peak metamorphism
can be recorded using the Zr concentration, as rutile grows or equilibrates in the
presence of zircon and quartz (Zack et al., 2004a). The temperature equation is:
T (°C) = 127.8 * ln (Zrµg/g) – 10.
This mathematical expression has been calculated using a sample set of 31
metamorphic rocks, all containing rutile, quartz and zircon, formed in a wide range
of temperature conditions: from 430 to 1100 °C.
Watson et al. (2006) presented a modified version of the Zr-in-rutile
thermometer, by adding experimental data to the available data on natural rocks.
Experiments were conducted at a pressure of 1 GPa. The equation is:
T (°C) = [4470/(7.36 – log10 (Zrµg/g)] – 273.15.
A diagram showing a comparison of the available calibrations for the Zr-inrutile thermometer (Fig. 7), indicates that the Zack et al. (2004a) and Watson et al.
(2006) calibrations intersect at a temperature of 540 °C, but behave differently at
lower and higher temperatures. This was interpreted by Watson et al. (2006) as a
possible pressure effect and underlined the need for further research.
16
Chapter 1
FIGURE 7: Comparison of Zr-inrutile thermometers of Zack et al.,
2004a, Watson et al., 2006, and
Tomkins et al., 2007 (after
Meinhold, 2010).
Ferry and Watson (2007) introduced a silica activity factor in the formula, as
they noted, from their experimental work, the Zr concentration in rutile is not only
temperature-dependant, but also sensitive to the activity of SiO2. This was the first
study to consider this factor, therefore, both undersaturated and saturated rocks could
be analysed using the Zr-in-rutile thermometer. Theoretically, the first two
calibrations (Zack et al., 2004a and Watson et al., 2006) could not be applied on
quartz-free rocks. The new equation is:
T (°C) = [4530/(7.42 – logaSiO2)] – log (Zrµg/g)] – 273.15.
The authors concluded that the maximum uncertainty for unconstrained rocks
would be around 60 – 70 °C at 750 °C.
Another attempt for a more accurate thermometer was made by Tomkins et
al. (2007) who studied the pressure effect using experimental investigations. They
introduced a new calibration for the Zr-in-rutile thermometer, which includes a
pressure factor, as they observed that high-pressure, and more importantly ultrahighpressure, does have an important consequence on the thermometer. The new
equations are for the α-quartz field:
T (°C) = [(83.9 + 0.41 ∗ P)/(0.1428 – R ∗ ln (Zrµg/g)] – 273.15,
for the β-quartz field:
T (°C) = [(85.7 + 0.473 ∗ P)/(0.1453 – R ∗ ln (Zrµg/g)] – 273.15,
and in the coesite field:
17
Chapter 1
T (°C) = [(88.1 + 0.206 ∗ P)/(0.1412 – R ∗ ln (Zrµg/g)] – 273.15,
with P in kbar, and R being the gas constant (R = 0.0083144 kJ/K).
Initially, it has been suggested by Zack et al. (2004a) that the thermometer is
only applicable to rutile originating from metapelitic rocks, but further studies
showed it can be used for rutile from metamafic rocks too (e.g. Zack and Luvizotto,
2006; Triebold et al., 2007) and also for detrital metamafic rutile (e.g. Meinhold et
al., 2008; Morton and Chenery, 2009).
Spear et al. (2006) used the Watson et al. (2006) calibration on blueschistfacies rocks from Sifnos (Greece) and suggested that the obtained temperatures
reflect the temperature of rutile crystallisation. Also, Miller et al. (2007) applied the
Zack et al. (2004a) and Watson et al. (2006) calibration on the Koralpe, Saualpe and
Pohorje eclogites from the Eastern Alps and noted that the Zr-in-rutile thermometer
gives the peak metamorphic conditions.
A recent study by Chen and Li (2008) on eclogites from the Dabie UHP
metamorphic zone has shown that the calibration introduced by Watson et al. (2006)
gives lower temperatures by approximately 70 °C compared to the calibration of
Tomkins et al. (2007). They suggested that this is a clear indication of the pressure
effect on the Zr-in-rutile thermometer. Moreover, Zhang et al. (2010) applied all four
calibrations (Zack et al., 2004a; Watson et al., 2006; Tomkins et al., 2007; Ferry and
Watson, 2007) to HP-UHP eclogites from western China. They concluded that for
HP-UHP conditions, Tomkins et al. (2007) gives the most consistent results.
Luvizotto et al. (2009) used the Tomkins et al. (2007) calibration on
medium-grade metasedimentary rocks from Erzgebrige (Germany) and noted that
some low-T obtained for some grains may reflect crystallisation during the prograde
path, before the rocks reached peak metamorphic conditions.
A few publications that applied the Zr-in-rutile thermometer on granulitefacies rocks have suggested that diffusion of Zr in rutile can take place during
retrograde re-equilibration (Baldwin and Brown, 2008; Harley, 2008; Luvizotto and
Zack, 2009; Meyer et al., 2011). This will provide an underestimation of the peak
temperature, a situation that can also be determined by the absence of zircon.
Overestimation of temperature with the Zr-in-rutile thermometer can only happen
18
Chapter 1
where the rock is quartz-free (Zack et al., 2004a; Baldwin and Brown, 2008; Harley,
2008; Luvizotto and Zack, 2009).
Several studies have already shown that Zr-in-rutile thermometry is a reliable
method to calculate temperatures of high-grade and ultrahigh-grade metamorphic
rocks (e.g. Spear et al., 2006; Zack and Luvizotto, 2006; Miller et al., 2007; Baldwin
and Brown, 2008; Luvizotto and Zack, 2009; Zhang et al., 2010).
1.3.7. Oxygen Isotopes
Studies have shown that oxygen isotopes can provide information regarding
the degree and type of fluid-mineral interactions and also the temperature of
crystallisation or alteration (e.g. Matthews et al., 1979; Agrinier, 1991; Zheng, 1991;
Chacko et al., 1996; Moore et al., 1998; Zheng et al., 1999, 2003). Oxygen isotopes
studies have shown that rutile can significantly contribute to unravelling the source
of its host lithologies, such as a crustal origin or mantle material (e.g. Mojzsis et al.,
2001; Wilde et al., 2001; Valley, 2003; Valley et al., 2005).
Data acquisition is generally made by SIMS techniques (e.g., Valley, 2003)
or by other types of laser methods (e.g., Li et al., 2003; Valley, 2003; Zhang et al.,
2006). The two isotopes measured, 18O and 16O, are ratioed and reported in delta
notation (δ18O) relative to VSMOW (Vienna Standard Mean Ocean Water), which
has an 18O/16O value of (2005.2±0.45)×10−6 (Gononfiantini, 1978). The analogous
equation is as follows:
δ18O = [(18O/16O) sample/(18O/16O) VSMOW – 1] ∗ 103
with δ18O values in per mil (‰).
Variation in typical δ18O values (lower for oceanic crust and mantle material
and elevated for the continental crust) has been explained by various processes:
-High-pressure fractional crystallisation (Garlick et al., 1971);
-Isotopic exchange with (meta)sedimentary rocks (Vogel and Garlick, 1970;
Desmons and O’Neil, 1978);
-Interaction with meteoric waters (Vogel and Garlick, 1970).
19
Chapter 1
However, isotope studies of oceanic lithosphere and ophiolites (e.g.,
Muehlenbachs and Clayton, 1972a, b; Spooner et al., 1974; Gregory and Taylor,
1981), allowed for a better interpretation of some anomalities, concluding that they
generally result from metamorphism of hydrothermally altered oceanic crust
(Gregory and Taylor, 1986; MacGregor and Manton, 1986; Ongley et al., 1987).
Moore et al. (1998) have shown that the closure temperature for oxygen
diffusion in rutile is high, around 650 °C for a crystal with a 100 µm radius and a
cooling rate of 10 °C Ma-1. Lead closure is considered to be around the same closure
temperature (Cherniak, 2000; Vry & Baker, 2006) and Zr similar (Cherniak et al.,
2007). It holds that any low temperature, high-pressure metamorphism (< 600 oC)
would not suffer from diffusional resetting and the signatures would remain robust,
unless they have subsequently suffered high temperature metamorphism.
It has been shown that several minerals fractionate the oxygen isotopes.
Quartz, calcite and albite fractionate 18O more strongly, whereas zircon, diopside,
hornblende, almandine and rutile fractionate 16O preferentially (Matthews et al.,
1979; Chacko et al., 1996; Moore et al., 1998; Meinhold, 2010). Studies where
oxygen isotopes on rutile have been determined, indicate that they range from – 8.9
to + 7.1 ‰, with values from 3.6 to 8.0 ‰ for oxygen isotope fractionation between
rutile and quartz Vogel and Garlick (1970), Desmons and O'Neil (1978), Matthews
et al. (1979), Agrinier et al. (1985), Zheng et al. (1999), Li et al. (2003) and Gao et
al. (2006).
1.4 INVESTIGATED LOCATIONS
1.4.1 Syros (Greece)
The Island of Syros is famous for its blueschist- and eclogite-facies rocks and
it is one of the best-preserved areas in Europe to study subduction zone processes
(Keiter et al., 2003), making it the ideal locality to study detrital rutile. The
blueschist- to-eclogite facies rocks on Syros, due to its exposures and well-preserved
geological history, have therefore been the focus of many studies.
20
Chapter 1
Blueschist- to eclogite-facies peak metamorphic conditions have been
estimated at ~ 470 – 520 oC and 1.5 – 2.0 GPa (e.g. Okrush and Brocker, 1990;
Trotet et al., 2001; Bröcker and Keasling, 2006). This provides a framework for a
comparison to be made with the results of Zr-in-rutile thermometry. Furthermore,
Syros is an area where detrital rutile exists in beach sands, alongside their source
rocks, all of which are blueschist- to eclogite-facies and formed during subduction
zone processes with no previous metamorphism recorded. Hence, there is no
possibility of contamination of these detrital rutiles by rutiles formed in other
tectonic settings.
The sample-set from Syros (Chapter 2, Table 1) contains metasomatic rutile
in addition to high-P metamorphic grains and trace element studies on these two
types of rutiles are discussed with the purpose of identifying geochemical tracers that
could distinguish between them.
Eroded detrital rutile grains found within beach sands on Syros, (Chapter 2,
Figure 1), were studied along with metamorphic and metasomatic rutiles from
equilibrated high-pressure rocks. Outcrops with well-known protoliths, composition
and P-T history have been sampled.
1.4.2 Western Alps (Italy)
The second case-study is focused only on metapelitic source rocks, therefore,
in contrast to the Syros study, which discusses only metamafic source rocks.
The Western Alps (Chapter 3, Fig. 1) formed by the continent-continent
collision of Europe and Adria-Africa plates that started in the Cretaceous (Dewey et
al., 1989; Rosenbaum et al., 2002).
The Sesia Lanzo Zone (SLZ – Chapter 3, Fig. 1b), part of the Austroalpine
units, is the first place where eclogites-facies metamorphism of granitic rocks was
identified (e.g., Bearth, 1959; Compagnoni and Maffeo, 1974) and interpreted as
subducted continental lithosphere (Ernst, 1971). The SLZ HP event reached its peak
around 65 Ma ago (Rubatto et al., 1999). The Mombarone unit has undergone
eclogite-facies metamorphic conditions that reached 500 – 600 °C and 1.5 – 2.0 GPa
(Pognante, 1989; Tropper et al., 1999; Zucali et al., 2002). Rutile has been found in
21
Chapter 1
both HP felsic and basic rocks from the Mombarone Unit (Konrad-Schmolke et al.,
2011; Venturini, 1995).
The Dora Maira Massif (DMM - Chapter 3, Fig. 1c), part of the Penninic
units, was the first direct evidence that continental crust can be subducted to depths
of at least 100 km (Chopin, 1984. Based on different geothermobarometers and
water activity, the P-T estimates for DM are various (Schertl et al., 1991;
Compagnoni et al., 1995; Chopin and Schertl, 2000; Rubatto and Hermann, 2001;
Hermann, 2003; Groppo et al., 2006). This study will use for thermometry
calculations the peak metamorphic conditions of Schertl et al. (1991) which are 3.7
GPa at about 800 °C. Rutile has been reported in all investigated samples (pyrope
megablasts and jadeite quartzite from Parigi/Case Ramello and pyrope megablasts
from Tapina) by Schertl et al. (2008) both as inclusions in garnet and in the matrix.
The Western Alps offer an opportunity to investigate rutile geochemistry in
more detail by studying grains from high-pressure (Sesia Lanzo) and ultra highpressure (Dora Maira) metapelites and other metasediments. Moreover, sand samples
from the Po River and its tributaries that contain detrital rutile grains have been
investigated and compared with metamorphic grains from the potential source rocks
(Sesia Lanzo and Dora Maira).
Trace element signatures in rutile from blueschist- to HP and UHP eclogitefacies subducted continental crust are characterised and used to fingerprint particular
geochemical signatures for metamorphic rutile. The Zr-in-rutile thermometer is
examined to check how well it fits with other published geothermometry data, with
the aim of assessing how reliable this thermometer is in subduction systems.
The key aspect of this study is to investigate the probability of finding detrital
rutile eroded from blueschists and eclogites that formed in collisional orogens, and
ultimately end up in large sedimentary basins.
The Po basin is a Pliocene marine gulf between the Alps and the Apennines
that has been filled gradually from west to east during the Pliocene (Garzanti et al.,
2011). The fluvial sediments are largely derived from the Alps that underwent
22
Chapter 1
accelerated sedimentation with the onset of the major glaciations (Muttoni et al.,
2003). Torrente Chiusella (Chapter 3, Fig. 1a) drains mostly HP metapelites and
metabasic rocks from the Sesia Lanzo Zone. It then joins Dora Baltea which is the
catchment area for the Ivrea Verbano Zone as well. Varaita and Maira are the two
rivers situated in the vicinity of the Dora Maira Massif and Monviso. All these rivers
drain into the Po River, which therefore contains detritus from the current erosion of
the Western Alps. Samples from these rivers have been collected and used for
provenance studies and thermometry calculations.
1.4.3 Western Gneiss Region (Norway)
The Western Gneiss Region (the outcrop area – Chapter 4, Fig. 1) is often
described as a large basement window that was overlain by a series of Caledonian
nappe units (i.e. the lower, middle, upper and uppermost allochthons) by 435 – 400
Ma. The predominant lithology of the Western Gneiss Complex (WGC - the
lithotectonic assemblage) is Proterozoic granodiorite-tonalitic gneisses (Bt ± Hbl ±
Grt) with granitic leucosomes. Other lithologies are anorthosites, ultramafic rocks,
metasediments and mafic rocks (Bryhni, 1966).
The Scandian Phase of the Caledonian Orogeny and the associated ultrahighpressure metamorphic event took place 420-400 Ma ago (Griffin and Brueckner,
1980, 1985; Gebauer et al., 1985; Mørk and Mearns, 1986). It reached 3.6 GPa and
800°C (Lappin and Smith, 1978; Cuthbert et al, 2000; Terry et al., 2000b; summary
in Hacker, 2006) and possibly as high as 4.5 GPa (Vrijmoed et al., 2006; Carswell et
al., 2006).
The famous UHP metamorphic rocks (Coleman and Wang, 1995) described
in the WGC include, in addition to coesite eclogites (Smith, 1984, 1988; Wain,
1997), opx eclogites (Lapin and Smith, 1978, 1981; Carswell et al., 1985; Carswell
et al., 2006), garnet peridotites (O’Hara and Mercy, 1963; Bryni, 1966; Carswell,
1968, 1973, 1986; Lapin, 1973, 1974; Brueckner, 1977; Medaris, 1980, 1984;
Jamtveit, 1984; Brueckner et al., 2010; Beyer et al., 2004, 2012), coesite gneiss
(Smith, 1984; Wain, 1997; Cuthbert et al., 2000; Terry et al., 2000b) and diamond-
23
Chapter 1
bearing gneiss (Dobrzhinetskaya et al., 1995; and diamond-bearing ultramafites: Van
Roermund et al., 2002; Vrijmoed et al., 2008).
They are divided in two groups, based on the association with the
surrounding rock: as boudins within gneisses – “country rock eclogites” or “external
eclogites” and within orogenic peridotites – “internal eclogites” (Brueckner et al.,
2010). The external eclogites have reached HP-UHP and HT conditions, as indicated
by coesite (Smith, 1984; Wain, 1997; Cuthbert et al., 2000; Terry et al., 2000b).
Estimations regarding P-T conditions are 2.4-6.0 GPa and 650-900 °C (Cuthbert et
al., 2000; Carswell et al., 2006; Van Roermund 2009a). The internal eclogites have a
less understood evolution, see, for example, Griffin & Qvale, 1985 and Medaris et
al., 2005.
The largest of the orogenic peridotites is the Almklovdalen Ultramafic body,
located in the southern WGR (Chapter 4 – Fig. 1), part of the UHP metamorphic
zone (see review by Carswell et al., 1999). It is made of several ultramafic bodies
located around a central gneiss area (Grønlie and Rost, 1974). Chlorite-poor dunite
or harzburgite is the main rock type with chlorite-rich peridotites, garnet lherzolites,
wehrlites and eclogites less present (Beyer et al., 2006). At Raudkleivane, Fe-rich
eclogite pods can be found, that consist of Na-rich omphacite + almandine-grossularpyrope garnet + rutile + apatite (Griffin and Qvale, 1985). They have been described
as “layers in garnet peridotites” (Lapin, 1974). The Gusdal Quarry is another
important ultramafic body found at Almklovdalen, consisting mainly of fresh,
anhydrous dunite, which is relatively free of chlorite and serpentine. Internal Ti-rich
eclogite boudins can be found, as well as pyroxenites and garnet peridotites (Medaris
and Brueckner, 2003).
In this study, trace element patterns of rutile in low- and medium-T eclogites
(after the definitions of Carswell, 1990) and eclogites derived from granulites are
characterised and used to fingerprint different geochemical compositions for
metasomatic and metamorphic rutile. The Zr-in-rutile thermometer (Zack et al.,
2004a; Watson et al., 2006; Tomkins et al., 2007; Ferry and Watson, 2007) is
evaluated to check how well it correlates with the known temperature regimes.
24
Chapter 1
This terrain was chosen for the overall study as it extends the range of P and
T that previously covered the work on Syros and Western Alps rocks, and focuses
more on UHP rocks. Also, the WGC is a continental subduction zone that could
potentially have its own characteristic rutile signature; evidence for UHP and deep
continental subduction did not happen before the Neoproterozoic (e.g. Brown, 2006),
but detrital rutiles could be a way of testing this.
1.5. SUMMARY OF THESIS
The first part of Chapter 1 is a short introduction to modern-style plate
tectonics and specifically to its main indicators: blueschists and UHP metamorphic
rocks. Ultimately, rutile is investigated in these types of rocks in order to assess
whether it is a good marker for subduction-related tectonics.
The chapter continues with the physical and chemical description of rutile. Its
occurrence in metamorphic rocks and sediments is also discussed. Finally, the main
tools that make rutile an important determinant of metamorphic facies and lithology
of the source rock are presented (Nb vs. Cr discrimination diagram and the Zr-inrutile thermometer), with a short literature review on the studies that have been
published so far. Oxygen isotopes on rutile are also discussed.
Chapter 2 presents a study of the HP metamafic rocks from Syros, Greece
and their corresponding sediments from adjacent sediments. A number of
metamorphic samples representing the main rock types from Syros (blueschist,
eclogite and metagabbro) have been investigated for their trace elements. The Nb vs.
Cr diagram indicates all rutiles have a metamafic origin, as expected. Moreover, the
Zr-in-rutile thermometer has been applied using two calibrations: Tomkins et al.
(2007) and Ferry and Watson (2007). The second calibration gives more consistent
results. Moreover, qtz-bearing vs. qtz-free rocks have been compared and results
indicate that silica activity has little if no effect on the thermometer. This is also
obvious from the Ferry and Watson (2007) calibration which has more satisfying
results for a (SiO2) = 1. Temperatures vary by 60 – 70 °C for undersatured rocks
25
Chapter 1
using the same thermometer. Considering the fact that the study just demonstrated
that the presence or absence of quartz cannot influence the final temperature results
too much, these high variabilities can only be explained by an overestimation of the
silica activity parameter in the Ferry and Watson (2007) calibration.
Metasomatic rutiles have also been analysed and an attempt to distinguish
them from the metamorphic rutiles based on trace element contents has been made.
Lastly, correlations between metamorphic and metasomatic rutiles with
detrital rutiles have been made, primarily using the Nb vs. Cr diagram.
The main conclusion of this study is that rutile is a useful tool to investigate
metamafic rocks from HP-LT tectonic environments, such as subduction zones.
Chapter 3 presents a case study on the Western Alps, Italy, with
metamorphic rocks from the Sesia Lanzo Zone and the Dora Maira Massif. This
study complements the previous one, with rocks from similar P-T conditions (Sesia
Lanzo and Syros – 500 – 600 °C, 1.5 – 2.0 GPa) but from the second major lithology
type – metapelitic and metasedimentary (compared to the metamafic rocks from
Syros). Moreover, sediment specimens have been sampled close to the source of the
metamorphic samples in addition to one sample from Po River, where the sampled
rivers drain. Provenance and thermometry studies on the Sesia Lanzo Zone samples
proved that the Nb vs. Cr diagram and Zr-in-rutile thermometer are reliable tools for
metapelitic rocks in HP-LT environments. Moreover, metamorphic rutiles overlap
with detrital rutiles from Torrente Chiusella and Dora Baltea, further sustaining
rutile’s applicability in similar tectonic conditions.
The Dora Maira Massif UHP rutiles plot on the metapelitic region of the Nb
vs. Cr diagram, as expected, but do not correlate at all with detrital rutiles from the
closest catchment area (Varaita and Maira Rivers). The Zr-in-rutile thermometer
indicates a high-T peak of 694 °C for the metamorphic grains, which could be
correlated with a group of detrital rutile that has a similar T value. However, these
results are considerably lower compared with previous temperature estimations for
26
Chapter 1
the Dora Maira Massif (800 °C), and would suggest that the UHP rocks are not
draining into these rivers. These results indicate special care is needed in using the
Nb vs. Cr diagram and the Zr-in-rutile thermometer on UHP/HT rocks, as the
pristine trace element signal could have been affected.
Furthermore, discussions on the possibility of sampling the granulite-facies
rutile from the Ivrea Verbano Zone are included. Also, trace element budget plots for
the Sesia Lanzo and Dora Maira are investigated.
Finally, the Po River sediment load seems to include more HP rutiles
compared to UHP grains and mostly from a metapelitic source.
In Chapter 4 the Western Gneiss Region, Norway, is discussed. This study
increases the P-T condition range, which, so far in the present thesis has been mainly
focused on HP-LT rocks (with the exception of the UHP rocks from the Dora
Maira). Rocks in this region are HP to UHP and LT to HT, both mafic and pelitic.
Metamorphic rutile from these rocks has been analysed and the trace element
signature has been used to fingerprint specific concentrations in high-grade rocks.
Moreover, comparisons between different groups of rutiles have been made:
metamorphic vs. metasomatic; rutile formed by the breakdown of ilmenite vs. rutile
formed by the breakdown of titanomagnetite; rutile in an omphacite vein vs. rutile in
a Qtz-Ky vein.
The Nb vs. Cr diagram shows that at up to 650 °C, this discrimination is
reliable to be used for provenance studies. Rutile that formed at higher temperatures,
however, could have had its original composition altered and thus have a biased
composition. This is indicated by rutile from metamafic rocks that plot on the
metapelitic region or along the mafic – pelitic boundary.
The Zr-in-rutile thermometer generally gives higher values (by 80 – 100 °C)
compared to previous calculations. These results are, nonetheless, more reliable that
any exchange thermometers that are more sensitive to temperature variations than
the Zr-in-rutile thermometer.
27
Chapter 1
Using detrital rutile data from other research studies (Morton and Chenery,
2009), this study shows that the metamorphic/metasomatic rutiles overlap with them,
indicating a good correlation between source rocks and sediments.
Chapter 5 summarises all findings and discusses them in a larger
perspective.
It has been demonstrated that the Nb vs. Cr diagram can be successfully
applied on HP/LT rocks, both mafic and pelitic. Also, at higher grade conditions,
UHP/HT, trace element mixing is possible, therefore affecting the pristine
composition of rutile. The applicability limit of the discrimination diagram seems to
be at temperatures lower than 650 °C, the temperature at which phengite breaks
down and affects the chemical composition of the surrounding eclogites.
Also, it has been shown the applicability of the Zr-in-rutile thermometer in a
high range of metamorphic facies conditions, ranging from blueschist- to granulite –
facies. The Ferry and Watson (2007) calibration with a (SiO2) = 1 is the preferred
equation for HP/LT rocks, as it gives most consistent results. For higher grade
conditions, the Tomkins et al. (2007) calibration is a trustworthy tool even at
granulite-facies conditions, giving more reliable temperatures than any exchange
geothermometers.
Finally, the possibility of developing a rutile geobarometer is discussed and
also an apparent new discrimination diagram.
28
Chapter 2
Methodology
2.1. SAMPLE PREPARATION
Two types of sample preparations have been used for quantitative analysis:
polished thick sections and epoxy resin mounts. The thick sections were made from
hand specimens, with a thickness of approximately 100 µm. Thick sections for
samples from Syros, Sesia Lanzo, Dora Maira and the Western Gneiss Region have
been prepared. These were used for trace element analysis using LA–ICPMS (Laser
Ablation – Inductively Coupled Mass Spectrometry).
Epoxy resin mounts were mainly prepared for sand specimens. Prior to this,
samples have been through several stages of separation (gold pans, Wilfley Table,
Franz Magnetic Separator, heavy liquids and hand – picking under a microscope).
Epoxy resin mounts were also prepared for hand specimens, after crushing
them. These samples were prepared mainly for oxygen isotopes analysis that were
made using SIMS (Secondary Ion Mass Spectrometry).
For a more detailed description of sample preparation, please see Appendix
A2.
2.2. ELECTRON MICROPROBE (EMP)
Electron microprobe studies on all samples from Syros, Sesia Lanzo, Dora
Maira and the Western Gneiss Region were carried out at the Earth Sciences
Department, University of Bristol using a CAMECA SX100.
Prior to analysis, samples were cleaned with alcohol and carbon – coated for
60 – 90 min. The analysis of rutiles was carried out with a 20 kV acceleration
29
Chapter 2
voltage, 100 nA beam current and a 1µm beam diameter. The following elements
were analysed: Si, Al, Mg, P, Cr, Ca, Fe, Zr, Nb, Sn, Ta and W. Titanium was not
analysed, as the concentration was assumed by difference.
2.3.
LASER
ABLATION
–
INDUCTIVELY
COUPLED
MASS
SPECTROMETER (LA – ICPMS)
Thick sections (~100 µm) were analysed at the School of Earth and
Environmental Sciences, University of Portsmouth, using a New Wave UP-213 laser
ablation system (solid state Nd:YAG laser operating at 213 nm, aperture imaged and
with a pulse width of 2–3 ns), combined with an Agilent 7500cs ICP mass
spectrometer. Prior to analysis, samples were first put in a sonic bath for 10 minutes
with 5 % HCl. Afterwards, the samples were washed carefully with purified H2O
and alcohol and prepared for analysis. High-resolution photo scans were made for
each section and used as maps for LA-ICPMS analysis.
The majority of the grains were ablated using spot sizes of 30–55 µm in
diameter at a laser fluence of ~4–5 Jcm-2 and at a repetition rate of 10 Hz. Samples
were ablated for 60 s per spot after measuring the gas blank for 30 s prior to the
ablation. A He–Ar mixture was used as carrier gas, at levels of 0.65 Lmin-1 and
1.3 Lmin-1 respectively. Plasma torch conditions were tuned for sensitivity across
the mass range and low oxides by monitoring Th/ThO+ (masses 232 and 248 (Th +
O), which were kept below 0.5%.
Analyses were calibrated against the NIST SRM 610 glass (GeoReM
preferred values: http://georem.mpch-mainz.gwdg.de/), in addition to rutile standard
R10 (Luvizotto et al., 2009b). Element spectra were reduced using the software
‘LAMTRACE’ (Simon Jackson, Geological Survey of Canada). Data were collected
online at 1 point per peak in time resolved mode and processed offline by
LAMTRACE. The measurements included the following isotopes: 26Mg, 27Al, 29Si,
31
P, 43Ca, 45Sc, 49Ti, 51V, 52Cr, 55Mn, 59Co, 66Zn, 69Ga, 72Ge, 85Rb, 88Sr, 89Y, 90Zr,
30
Chapter 2
93
Nb, 95Mo, 118Sn, 121Sb, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb,
163
Dy, 165Ho, 167Er, 169Tm, 173Yb, 175Lu, 177Hf, 181Ta, 182W, 208Pb, 232Th, 238U. It
should be mentioned that, unless necessary, the REEs should not be analysed, as
they have low detection limits caused by a small number of counts.
The large number of analysed elements restricted the size of the used spot size
(minimum 30 µm). This affected the investigations by not being able to analyse
smaller grains due to the large diameter of the spot size. It is recommended that, in
order to optimise future analytical protocols, a smaller number of elements to be
measured, where possible. This would permit a smaller spot size for the laser that
would allow smaller rutile grains to be analysed.
During LA-ICP-MS analysis, reference material R10 (Luvizotto et al.,
2009b) was used to check the accuracy of the calibration between the NIST SRM
610 glass standard and the element concentrations being obtained for the rutile
grains studied. Throughout the duration of the project, a number of 624 analyses
were made for SRM610 and 282 analyses for R10.
Results for relevant trace elements were compared to published
concentrations and their associated uncertainties (Pearce et a., 1996 for NIST 610
and Luvizotto et al., 2009 for R10) as shown in Table 1 (for a complete set of
analyses, please refer to Appendices A3 and 4). For R10, V and Nb are within ±
5 %. Zirconium, Mo, Hf and Ta variations are within ±10 %. The good agreement
between the Zr data is relevant, as the Zr incorporation in rutile is used as a
thermometer (Zack et al., 2004a; Watson et al., 2006; Tomkins et al., 2007).
Antimony shows a slightly higher variation (overall variation within ± 20 %).
Overall, the data indicate a good correlation between analysed standards and
published values, with slightly higher standard deviations for low-concentration
elements.
Figure 1 shows time-resolved data for standards (a and b) and unknowns (c,
d, e and f). It can be noticed that most unknowns are relatively free of inclusions,
which allowed for a complete signal to be selected during the data reduction step.
31
Chapter 2
However, in some cases (as seen in Fig. 1d), the laser would hit a mineral inclusion
causing spikes in various investigated elements. In such situations, the signal would
be selected so it would not include the inclusion.
Standard
No of
Analyses
NIST 610
624
R10
282
Known concentration(Pearce et al., 1996)
STDEV
Long term Average
Long term STDEV
Long term RSD
Known concentration (Luvizotto et al., 2009)
STDEV
Long term Average
Long term STDEV
Long term RSD
V
Zr
Nb
Mo
Sb
Hf
Ta
W
Pb
Th
U
442
42.7
441
7.4
1.7
1279
53
1234
60
4.9
440
7.8
440
8.0
1.8
759
8.0
784
45.5
5.8
419
58
419
7.5
1.8
2845
38.0
2803
118
4.2
377
45.0
377
7.4
2.0
11.2
0.09
11.1
0.8
7.6
369
27.5
368
7.7
2.1
2.1
0.1
1.9
0.3
16.3
418
28.2
417
8.1
1.9
37.2
0.2
37.6
2.6
6.9
377
78
376
7.0
1.9
384
19.0
432
39.0
9.0
445
25
445
8.7
2.0
61
3.6
74
15.7
21.3
413
15.4
413
8.3
2.0
0.1
0.0
0.3
0.5
175
451
27.8
450
8.5
1.9
<0.0035
0.1
0.5
501
457
13.6
457
8.2
1.8
44.1
1.2
45.8
3.2
6.9
Table 1: Standard analyses for NIST 610 and R10 (made by LA – ICPMS): known
concentrations and long term average concentrations together with their respective
standard deviations.
2.4. SECONDARY ION MASS SPECTROMETRY (SIMS)
The Oxygen isotope data were acquired at the University of Edinburgh with
a Cameca ims 1270, using a ~5 nA primary 133Cs+ beam. Samples were coated with
a thin layer of Au (10-30nm). Secondary ions were extracted at 10 kV, and 16O(~2.0 x109cps) and 18O- (~3.0 x106 cps) were monitored simultaneously on dual
Faraday cups (L’2 and H’2). Each analysis involved a pre-sputtering time of 30
seconds, followed by automatic secondary beam and entrance slit centering and
finally data collection in two blocks of ten cycles, amounting to a total count time of
100 seconds. The internal precision of each analysis is < 0.2 per mil.
To correct for instrumental mass fractionation (IMF), all data were
normalised to an internal standard, rutile standard (KAG), which was assumed to be
homogeneous and was measured throughout the analytical sessions. The internal
precision of each analysis is +/- 0.2 per mil. For a more detailed method description,
please see Appendix A5.
32
Chapter 2
A.
B.
ap12b01
ap12b02
seq # 01
seq # 02
10,000,000
10, 000,000
100
100,000
100,000
10,000
10
Signal
Background
S IGNAL (CPS )
1, 000,000
S IGNAL (CPS )
1, 000,000
10,000
1,000
1,000
100
100
10
10
20
30
40
50
60
70
80
90
10
Signal
Background
10
1
0
100
1
0
100
10
20
30
40
S ECONDS
T i 49
S r 88
W 18 2
S EL ECT ED
T i 49
S r 88
W 182
V 51
Y 89
U 2 38
S i 29
V 51
Y 89
U 2 38
Ca 43
Cr 52
Zr 90
Cr 52
Zr 90
ap12b05
10,000,000
100
10
Signal
Background
S IGNAL (CPS )
100,000
S IGNAL (CPS )
100,000
10,000
1,000
1,000
100
100
10
1
40
50
60
70
80
90
100
10
Signal
Background
10
100
1
0
10
20
30
40
SECONDS
S EL ECT ED
T i 49
S r 88
W 18 2
S i 29
V 51
Y 89
U 2 38
S i 29
V 51
Y 89
U 2 38
Ca 43
Cr 52
Zr 90
Ca 43
Cr 52
Zr 90
F.
100, 000
100, 000
10
Signal
Background
S IGNAL (CPS )
S IGNAL (CPS )
10,000,000
1,000,000
10,000
1,000
1,000
100
100
10
1
40
50
100
ap13e10
1,000,000
30
90
seq # 10
100
20
80
S ECONDS
W 18 2
10,000,000
10
70
S r 88
seq # 09
0
60
T i 49
ap13e09
10,000
50
S EL ECT ED
E.
100
se q # 09
1,000,000
30
90
10,000,000
1,000,000
20
80
ap12b09
D.
se q # 05
10
70
S i 29
C.
0
60
S ELECT ED
Ca 43
10,000
50
S ECONDS
60
70
80
90
100
100
10
Signal
Background
10
1
0
10
20
30
40
S ECONDS
50
60
70
80
90
100
SECONDS
S ELECT ED
T i 49
Sr 88
W 182
S ELECT ED
T i 49
Sr 88
W 182
S i 29
V 51
Y 89
U 238
S i 29
V 51
Y 89
U 238
Ca 43
Cr 52
Zr 90
Ca 43
Cr 52
Zr 90
FIGURE 1: Time-resolved analysis spectra for LA ICPMS: a and b are
NIST 610 grains, whereas c, d, e and f represent analysed unknowns.
33
Chapter 3
Trace-element characteristics of
rutile in blueschist- to low-T eclogite
facies mafic-ultramafic high-P
mélange zones (Syros, Greece)
3.1. ABSTRACT
Rutile is a robust accessory mineral that has been shown to yield valuable
information on the source rock lithologies when studied as detrital grains in
sedimentary basins and also peak metamorphic temperatures using the Zr-in-rutile
thermometer. The Island of Syros, Greece, offers a great case study to test the
veracity of these observations in a HP/LT environment and further characterise the
relevant trace element characteristics of rutile (V, Cr, Zr, Nb, Ta, Sb, Sn, W, Hf and
Mo) in metasomatic settings. Moreover, an empirical discrimination between
metasomatic and metamorphic rutiles has been attempted and results indicate they
have quite similar geochemical signatures in this setting. No intra-grain variations or
textural dependence was observed for Zr concentration in the investigated rutiles,
which is used for thermometry calculations. Calculated temperatures, using the
pressure – dependant calibration, are generally higher compared with previous
studies using other geothermometers, by 48 °C. The silica activity – dependant
calibration gives better results, concordant with previous estimations, at a (SiO2) =1.
Niobium-Cr provenance classification indicates a good geochemical correlation
between source rocks and sediments (detrital grains) with most of the analysed
samples suggesting a metamafic source, consistent with the rock outcrop in the
catchment area on Syros. This study also characterises trace element compositions
for metamorphic and metasomatic rutiles. The V vs. Mo diagram is used to
distinguish different types of source rocks (metagabbros and metabasalts), with
useful results.
34
Chapter 3
3.2. INTRODUCTION
Blueschists and ultrahigh-pressure rocks are notoriously difficult to preserve,
as they are highly metastable. Robust minerals such as rutile from within these rocks,
however, have a much higher preservation potential where they are eroded and
deposited as detritus in sediments.
This situation can be exploited by the use of detrital rutile, which shows great
potential as a provenance indicator for high-pressure metamorphism and its
associated tectonic settings. Rutile can be linked back to potential high/ultrahighpressure parental rocks through mineral chemistry (including trace element
geochemistry and geothermobarometry - Zack et al., 2004a and b, Watson et al.,
2006, Tomkins et al., 2007 and Ferry and Watson, 2007, Triebold et al., 2007,
Meinhold et al., 2008).
The Zr-in-rutile thermometer (Zack et al., 2004b, Watson et al., 2006,
Tomkins et al., 2007 and Ferry and Watson, 2007) has already been used to
distinguish between different temperature regimes, and provenance studies have
demonstrated that the grade of metamorphism in the catchment area can be estimated
by applying the thermometer to detrital grains in rivers (Zack et al., 2004a). Further
distinctions can be made between metasedimentary and metabasic rutile using Cr
and Nb concentrations (Zack et al., 2004a, Triebold et al., 2007, Meinhold et al.,
2008).
Rutile generally appears during prograde metamorphism in both
metasedimentary and metabasic rocks, where it forms from Fe-Ti oxides (usually
ilmenite) or from titanite, typically at pressures between 1.2 and 1.5 GPa (Liou et al.,
1998; John et al., 2011). Hence, in common crustal rock parageneses, rutile is only
stable at depth >35 km. Stable continental crust will, consequently, not produce
rutile. Therefore, the occurrence of rutile is concentrated in rocks involved in major
plate-tectonic processes, such as subduction of oceanic and continental crust or
crustal thickening in the course of continental collision.
35
Chapter 3
The intimate link between rutile formation and tectonic processes calls for a
closer investigation of rutile geochemistry, including minor and trace element
compositions. In situ analysis by laser-ablation inductively-coupled plasma mass
spectrometry (LA-ICP-MS) is ideal due to the spatial control of analysis (laser spot
typically 40-50µm), low detection limits, analytical precision (typically 5-10%),
speed of analysis and the avoidance of mineral inclusions, zones of alteration and
overgrowths compared with single grain dissolution techniques.
One of the other major causes of rutile growth in the crust, besides
metamorphism, is metasomatism and, therefore, a method to distinguish
metasomatic rutile from metamorphic rutile is required. Our sample-set from Syros
(Greek Cyclades, Fig. 1) contains metasomatic rutile in addition to high-P
metamorphic grains and here we present trace element studies on this type of rutiles
to identify geochemical tracer proxies that could potentially distinguish between
them.
We aim to investigate rutile geochemistry in more detail by studying grains
within equilibrated high-pressure rocks from Syros. Outcrops with wellcharacterised protoliths, bulk rock geochemistry and P-T history have been sampled
from a section of subducted and exhumed oceanic crust exposed on Syros.
In this study, trace element characteristics of rutile in blueschist-facies
subducted oceanic crust are used to fingerprint different geochemical compositions
for metasomatic and metamorphic rutile. The Zr-in-rutile thermometer is examined
to assess how well it agrees with the known temperature regime and what the
possible influence of silica undersaturation is. As different tectonic settings will
produce different types of metamorphism, this will help assess how reliable this
thermometer is in subduction and collision systems. High P-low T regimes (where
blueschists and low T eclogites form) are exclusively produced during modern,
steep, deep and cold subduction.
36
Chapter 3
This study seeks to further aid the identification of the tectonic setting of
high-pressure metamorphism. The overarching aim is to use detrital rutile as a tool
for investigating long-eroded orogenic belts to reconstruct their tectonic evolution.
FIGURE 1: Geological map of the Greek Island of Syros, with a small insert
illustrating the island’s location within the Aegean Sea. The white rectangles
represent beach sediments and the gray rectangles represent the source rocks that
were collected for this study (map modified after Marschall et al., 2006).
37
Chapter 3
3.3. GEOLOGICAL SETTING
The Island of Syros is part of the “Attic-Cycladic Crystalline Complex” or
ACCC (Fig. 1), preserving high-pressure metamorphic assemblages. Many studies
on the petrology, geochronology, and the structural and tectono-metamorphic
evolution of Syros have been completed (e.g. Dixon, 1968; Ridley, 1984;
Rosenbaum et al., 2002; Brady et al., 2004; Keiter et al., 2004; Foster and Lister,
2005; Bröcker and Keasling, 2006; Lagos et al., 2007; Marschall et al., 2008; Miller
et al., 2009). Syros consists of alternating marbles and schists that, together with a
high-P mélange, underwent an Eocene (and possibly an additional Cretaceous) HP
event, resulting in blueschist- to eclogite-facies metamorphism. The peak pressure
and temperature conditions have been estimated (using garnet, pyroxene, paragonite
and/or epidote, phengite, glaucophane, titanite and rutile) to be ~470-520 °C and 1520 kbar (Dixon, 1968; Ridley, 1984; Maluski et al., 1987; Okrusch and Bröcker,
1990; Trotet et al., 2001; Rosenbaum et al., 2002; Tomaschek et al., 2003; Keiter et
al., 2004; Bröcker and Keasling, 2006). Mélange formations exposed in various part
of the island (Fig.1) are composed of eclogites, metagabbros, serpentinites,
metaplagiogranites, metasediments and glaucophane-rich schists, which preserve the
blueschist- to eclogite-facies mineralogy with only partial retrogression in restricted
domains (Hecht, 1984; Seck et al., 1996, Keiter et al., 2004). A variable fluid flow
incursion around peak metamorphic conditions (Bröcker and Enders, 2001; Breeding
et al., 2004; Ague, 2007) and during exhumation (Trotet et al., 2001; Marschall et
al., 2006a) has been documented. The contact between different metamorphosed
rocks within this mélange (metasedimentary and meta-igneous rocks with
serpentinite matrix) is characterised by reaction zones (blackwalls) rich in chlorite,
sodic and/or calcic amphibole, clinozoizite and/or phengite in parageneses with
omphacite, albite and/or tourmaline. The P-T conditions for these hybrid rocks have
been reported to be 6-12 kbar and 400-550 °C (Breeding et al., 2004; Marschall et
al., 2006a, Miller et al., 2009).
In some parts of the island, a greenschist-facies overprint has been recorded
that is attributed to near-isothermal decompression at 400 °C, with a preservation of
the HP assemblages in many parts of the island, but variable rehydration during
exhumation (Trotet et al., 2001; Putlitz et al., 2005; Marschall et al., 2006a). Rutile
38
Chapter 3
occurs in three different types of source rocks: group 1 comprised of near
isochemically metamorphosed rocks dominantly found in the cores of blocks; group
2 representing cryptically metasomatised rocks, which have been slightly
metasomatised, but are still more or less preserving the initial major element
composition and metamorphically formed mineralogy, and for which a likely
protolith can be identified; and group 3 which are the blackwall rocks: hybrid,
metasomatised rocks having formed through mechanical mixing and diffusional
exchange in addition to metasomatism.
3.4. SAMPLE DESCRIPTION
A total of 19 samples (Fig. 1) have been investigated, as follows: 5 for
metamorphic rutile grains, 9 for metasomatic grains and 5 for detrital grains. The
samples containing metamorphic rutiles (Table 1, sample number 1-5) cover most of
the block rocks found on the island: glaucophane schists (SY545), eclogites (SY500
and SY522-175) and metagabbros (SY504, SY425G). SY545 (Fig 2b) is a metaigneous glaucophane schist where rutile occurs as small (50-150µm in diameter)
inclusions in garnet and in the matrix (2-3 % modal abundance). The eclogites
consist of garnet, omphacite, glaucophane ± epidote ± quartz and are probably
metamorphosed basalts. A variable degree of fluid-rock interaction and alteration is
manifested by the presence of amphibole, chlorite and epidote. The abundance of
rutile (1–5 mm in diameter) is modally between 3 % and 8 % and it also occurs
within both garnets and matrix.
39
Chapter 3
TABLE 1: Mineralogical description of the investigated source rocks: samples 1-5
were analysed for metamorphic rutiles, samples 6-14 for metasomatic rutiles.
40
Chapter 3
The coarse-grained epidote-omphacite-garnet-glaucophane felses (an
isotropic metamorphic rock – SY504, SY425G) with relic igneous texture have
generally been interpreted to represent HP metamorphosed gabbros based on texture
and geochemistry (Marschall, 2005). Rutile grains (50-80 µm in diameter) are
mainly found in the rocks’ matrices, but also as small inclusions in garnets, and are
less abundant (1–2 modal %) compared to the other rock types.
Sample series SY522 was taken from an eclogite block enclosed by
serpentinite. The block is almost entirely exposed on the surface and accessible in
three dimensions with a diameter of ~5 m. It represents the transition from
metamorphic to metasomatic rutile. The core of the block comprises an eclogitic
assemblage of garnet, omphacite, quartz, phengite, glaucophane and rutile, while the
contact with the surrounding serpentinite is composed of chlorite, talc and Caamphibole. In the transitional zone between the eclogite and talc-chlorite
assemblages, the block is dominated by glaucophane and garnet. Samples were taken
at various distances from the chlorite-talc schist at the block’s edge, i.e., at 10 cm,
100 cm and 175 cm, respectively. The profile sample sequence SY522 has
metamorphic rutile close to the block’s core (e.g. SY522-175 - eclogite) and rutile
that replaced titanite at the other end (e.g. SY522-10 - very close to the contact with
serpentinite). The intermediate zone (SY522-100) represents an eclogite slightly
overprinted by a blueschist-facies assemblage, which was likely influenced by fluids
that fluxed through the surrounding serpentinite. Sample SY522-175 is composed of
idioblastic, poikiloblastic garnet, large omphacite and glaucophane grains (3-4 mm
in length), white mica, quartz, chlorite (in small quantities), epidote and rutile.
SY522-100 (Fig. 2e) is more fine-grained than the previous sample, has less
glaucophane and relatively more omphacite and garnet. The strongly metasomatised
eclogite (SY522-10 – Fig 2f) is coarse-grained with slightly more glaucophane and
less omphacite than SY522-100.
Sample SY412 has a more complex mineralogy, being a metagabbro that
mostly retains the eclogite-facies assemblage (Grt and Omp), but has local signs of
the exhumation-related fluid-influx (Gln+Ab+Phe+Tur). Rutile (0.1-0.2 cm in
diameter) occurs in the matrix and has an average abundance of 3-4 modal% (Fig.
2a).
41
Chapter 3
The large grains, interpreted to be metasomatic, are part of HP metasomatic
zones (as suggested by the mineralogical assemblage seen in Table 1, numbers 6-14)
and are probably related to metasomatism during exhumation of the rocks (Marschall
et al., 2006a).
A
B
C
D
E
F
FIGURE 2: Microphotographs of thick (~ 100 µm) sections for significant samples
(a scale bar of 1 mm is visible in all images): a. Sample SY412 showing
metasomatic rutile in a chlorite-omphacite matrix; b. SY425G is a metagabbro with
metamorphic rutile in a glaucophane matrix; c. SY521 shows a cm-size metasomatic
rutile in an actinolite-chlorite matrix; d. SY545 is a garnet-glaucophane schist with
metamorphic rutile as part of the matrix and as inclusions in garnets; e. SY522-100
is a metasomatised eclogite with rutile as inclusions in garnets and in the omphaciteglaucophane matrix; f. SY522-10 shows rutile in a metasomatised eclogite.
42
Chapter 3
Rutiles occur in fine-grained omphacite – glaucophane felses (± chlorite ±
epidote - Fig. 2c).
It is also worth noting that metasomatic rutiles are morphologically different
from the metamorphic ones. They are generally cm-size and are long-prismatic.
Some of them have fibrous terminations (Fig. 2c), but some are idioblastic prisms
that can easily be recognised in hand specimens.
All 5 sand samples (SY503, SY506, SY525, SY526 and SY535), each
consisting of 69-93 individually picked and epoxy-mounted detrital rutile grains,
were collected from beach sands around the island. The sands are sourced from wellknown catchment areas that exhibit the described high-pressure, low-temperature
metamorphic rocks including the metasomatised zones (Fig. 1).
3.5. METHODOLOGY
Thick sections and epoxy resins have been prepared for investigations.
Analysis was conducted using a New Wave UP-213 laser ablation system (solid state
Nd:YAG laser operating at 213 nm, aperture imaged and with a pulse width of 2–
3 ns), combined with an Agilent 7500cs ICP mass spectrometer.
Analyses were calibrated against the NIST SRM 610 glass (GeoReM
preferred values: http://georem.mpch-mainz.gwdg.de/), in addition to rutile standard
R10 (Luvizotto et al., 2009). Element spectra were reduced using the software
‘LAMTRACE’ (Simon Jackson, Geological Survey of Canada). Data were collected
online at 1 point per peak in time resolved mode and processed offline by
LAMTRACE. The measurements included the following isotopes: 26Mg, 27Al, 29Si,
31
P, 43Ca, 45Sc, 49Ti, 51V, 52Cr, 55Mn, 59Co, 66Zn, 69Ga, 72Ge, 85Rb, 88Sr, 89Y, 90Zr,
93
Nb, 95Mo, 118Sn, 121Sb, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb,
163
Dy, 165Ho, 167Er, 169Tm, 173Yb, 175Lu, 177Hf, 181Ta, 182W, 208Pb, 232Th, 238U.
For more details, please refer to Chapter 2.
43
Chapter 3
3.6. RESULTS
3.6.1. Source rock rutile geochemical data
The Nb concentration for the investigated rutiles is generally less than
1000 µg/g, while Cr has a wider range between 2–3 µg/g and 10000 µg/g (= 0.01 wt
% - Table 2). On the Nb vs. Cr plot (Fig. 3), most of the analyses plot in the field of
rutile from meta-mafic rocks as identified by previous studies (Zack et al., 2004b;
Triebold et al., 2007; Meinhold et al., 2008). An interesting observation is that
metamorphic and metasomatic grains cover large parts of the compositional field of
detrital rutiles, although that field extends to higher Cr and Nb concentrations.
FIGURE 3: Provenance study plot: Nb vs. Cr showing the metamafic and
metapelitic areas according to Meinhold et al., 2008 (after Zack et al., 2004b).
Almost all grains are part of the metamafic group, as expected. The metamorphic
and metasomatic rutiles overlap with the detrital grains.
44
Chapter 3
3.6.2. Zr-in-Rutile Thermometry
Rutile appears in various textural positions: inclusions in garnet as
metamorphic grains (Fig. 2d) and in the rock matrix as metamorphic (Fig. 2b and d)
and metasomatic grains (Fig. 2a, c, e and f). In-situ LA-ICP-MS analyses were
performed on both types and revealed similar Zr concentrations amongst the
investigated samples (see Table 2 for reference). Also, longitudinal and latitudinal
trace element concentration profiles on porphyroblastic (grain size 0.5–1 cm in
length) and metasomatic (grain size 2–3 cm in length) rutile grains have been
analysed. Figure 4 shows a uniform distribution of Zr across the grain. Both methods
clearly show there is no textural dependence or zonation for the Zr content in rutile,
as previous studies have also demonstrated (Spear et al., 2006; Miller et al., 2007;
Luvizotto and Zack, 2009).
FIGURE 4: Longitudinal profile through a sketch of a metasomatic rutile grain
showing no relevant Zr zonation. Analyses were performed using a 50 µm spot size,
every 250 µm (by LA-ICPMS).
45
Chapter 3
TABLE 2: Summary of relevant trace element data for the investigated samples
(with STDEV).
46
Chapter 3
Zack et al., 2004a, developed an empirical thermometer based on
rutile+zircon+quartz assemblages. Subsequently, Watson et al., 2006, Tomkins et
al., 2007 and Ferry and Watson, 2007 refined the thermometer resulting in more
accurate calculations over a wider temperature and pressure range. This study uses
two calibrations: Tomkins et al. (2007) and Ferry and Watson (2007), as they
include corrections related to the type of rock. Tomkins et al. (2007) calibration
includes a pressure correction:
T (°C) = [(83.9 + 0.410P) / (0.1428-Rln[Zr]Rt)]-273.15,
where P is the pressure (GPa), [Zr]Rt is the concentration of Zr in rutile (µg/g) and R
is the universal gas constant (in kJ/mol/K). Ferry and Watson (2007) has a silica
activity correction:
T (°C) = [(4530 ± 111) / (7.420 ± 0.105 – logaSiO2)] – log (Zrµg/g in Rt)273.15,
where a (SiO2) is the silica activity.
All grains containing high-Si and high-Ca analyses, that probably represent
quartz, sphene and zircon inclusions, were removed and therefore not used in the
calculations and plots. All remaining grains with zirconium concentrations derived
by LA-ICP-MS analysis have been used for Zr-in-rutile thermometry. The zirconium
concentrations found for the detrital rutiles are dominantly below 80 µg/g (71 % of
314 grains; median = 64 µg/g), but some grains show significantly higher
concentrations. High Zr may represent rutile grains containing zircon or baddeleyite
inclusions. Identification of these grains is possible from analysis of the timeresolved laser ablation signal and have been removed from the diagrams. Although
this observation could potentially be explained by the presence of zircon inclusions
within rutile, there is little additional evidence in support of this. High zirconium
concentrations should be accompanied by high silica and Hf concentrations if the
inclusions were zircon; however there is little correlation between the two elements,
therefore indicating it may be baddeleyite in some cases.
Metamorphic peak pressure for Syros was estimated to be 1.5–2.0 GPa
(Dixon 1968; Ridley 1984; Okrush and Bröker 1990, Grutter, 1993; Trotet et al.,
2001; Rosenbaum et al., 2002; Keiter et al., 2004; Schumacher et al. 2008),
47
Chapter 3
therefore two values were used for the metamorphic rutile thermometry: 1.5 and 2.0
GPa. The metasomatic rutiles have lower pressure estimates, between 0.6 and 1 2
GPa (Breeding et al., 2004; Marschall et al., 2006a; Miller et al., 2009), therefore
these values have been used for thermometry calculations. For the detrital grains,
four pressure approximations have been used, that reflect different conditions on the
investigated rutiles: 0.6, 1.2, 1.5 and 2.0 GPa.
The first thermometry calculations have been made using the Tomkins et al.
(2007) calibration, taking into consideration the specific pressure estimations. At 0.6
GPa, the detrital grains have a median temperature of 518 °C with an increase to 540
°C at 1.2 GPa, 551 °C at 1.5 GPa and 570 °C at 2.0 GPa. The metamorphic rutiles
have a lower average temperature, 539 °C at 1.5 GPa and 558 °C at 2.0 GPa. The
metasomatic grains indicate 520 °C for 0.6 GPa and 542 °C for 1.2 GPa. The results
from the three sample groups are coherent and indistinguishable within uncertainty
(Fig. 5a).
Using the same calibration, temperatures have been calculated for quartzbearing and quartz-free rocks. Figure 5b shows the results, with uncertainties, for all
pressure estimations. This has been done to assess the effect that silica activity has
on thermometry calculations. The diagram indicates similar temperatures for both
groups.
Silica activity for quartz-free rocks from Syros has been estimated at 0.5 by
Marschall et al. (2006). The Ferry and Watson (2007) calibration has been used to
calculate temperatures for silica-undersaturated rocks (silica activity at 0.5) and
silica-saturated rocks (silica activity at 1). For the metamorphic samples, the average
temperature for a (SiO2) = 0.5 is 472 °C and 522 °C for a (SiO2) = 1. For the silicaundersaturated metasomatic samples, the calculated temperature is 489 °C, whereas
for silica-saturated rocks the temperature is 522 °C. For the detrital rutile,
temperature values do not vary too much: between 486 °C and 526 °C.
48
Chapter 3
2.5
Mtm Rt
A
Mts Rt
2
Detrital Rt
1.5
P (GPa)
1
0.5
0
500
520
540
560
580
600
T (ºC)
2.5
B
Rt in Qtz-bearing rocks
Rt in Qtz-free rocks
2
1.5
P (GPa)
1
0.5
0
500
520
540
560
580
T (ºC)
FIGURE 5: a. Thermometry calculations for metamorphic (1.5 and 2.0 GPa),
metasomatic (0.6 and 1.2 GPa) and detrital rutiles (0.6, 1.2, 1.5 and 2.0 GPa)
calculated using the Tomkins et al., 2007, calibration. The results are shown together
with the standard deviation and are fairly coherent with each other. However, the
values are generally higher that previous estimations (see text for discussion); b.
Temperatures calculated for quartz-free and quartz-bearing rocks; the chart shows
that silica undersaturation has little effect on the results.
49
Chapter 3
3.6.3. Metamorphic vs. metasomatic rutile
A distinction between metamorphic and metasomatic rutile grains can be
made based on their trace element compositions. Niobium, Cr and Ta tend to have a
higher concentration in metasomatic grains (with an average of 226 µg/g, 143 µg/g
and 14 µg/g respectively) compared to the metamorphic grains (average of 110 µg/g,
81µg/g and 6 µg/g respectively). Vanadium and Sb are more abundant in the
metamorphic rutiles (average 1574 and 8 µg/g respectively, compared to the
metasomatic average of 1412 µg/g and 2.5 µg/g. Similar concentration ranges were
found for both types for Mo (0.3-10 µg/g), Sn (3-45 µg/g), Hf (1-7 µg/g) and W
(0.04-167 µg/g). Zirconium has slightly higher values in metasomatic rutile (average
of 60 µg/g) than the metamorphic grains (average of 49 µg/g), but they overlap
within 2 standard deviations of the mean (see Table 2).
Trace element plots (V, Mo, Sn, Sb, Hf and W vs. Nb – Fig. 6a-f) show how
the investigated types of rutiles have similar geochemical signatures. In all diagrams,
metamorphic rutiles overlap with the metasomatic grains, with some positive
correlation trends for: Sn-Nb, W-Nb, Sn-W, and a negative correlation between V
and Nb. However, the V vs. Mo diagram (Fig. 7) sub-divides the metamorphic
rutiles into two classes, based on the type of their host rock: metagabbro and
metabasalt. For a full perspective of the specific geochemical signature for each of
these three rutile groups, a spider chart has been compiled showing the main trace
elements and their relative abundances (normalized to R10) sorted by decreasing
rutile/whole rock budget ratio (Fig. 8). With a few exceptions, the two trends are
very similar to each other. The metasomatic grains have a higher abundance for a
few elements such as Ta, Nb and Cr, while the metamorphic grains have a higher
abundance of V and Sb. Almost identical abundances were observed for Mo, Sn, Hf
and W.
50
Chapter 3
51
Chapter 3
FIGURE 6: Trace element plots for metamorphic (blue diamonds) and metasomatic
(red squares) rutiles (Nb concentration is represented on the y-axis): a. V vs. Nb; b.
Mo vs. Nb; c. Sn vs. Nb; d. Sb vs. Nb; d. Sb vs. Nb; e. Hf vs. Nb; f. W vs. Nb.
52
Chapter 3
FIGURE 7: V vs. Mo diagram showing two groups of source rocks: metabasalts and
metagabbros.
FIGURE 8: Spider diagram showing the rutile data normalised to R10; Ta,
Nb and Cr have a bigger affinity for metasomatic grains, while V and Sb
have a higher preference for metamorphic rutile; W, Sn, U, Hf and Zr show
no preference.
53
Chapter 3
3.6.4. Rutile in a metamorphic facies perspective
As the main purpose of this study is to characterise the trace element
signature of blueschist-facies rutiles from metamafic source rocks, data for rutile
from mafic granulite- and eclogite-facies rocks were compared to Syros rutile.
Figure 9 shows the Nb vs. Cr chart for the Syros rutiles along with a number of
localities: the Epupa Complex, Namibia (Meyer et al., 2011), Chinese Continental
Scientific Driling, CCSD-MH (Gao et al., 2010), SE Siberia (Kalfoun et al., 2002)
and Trescolmen, Central Alps (Zack et al., 2002). The first locality is comprised of
granulite-facies garnet-orthopyroxene granulites that reached peak metamorphism at
970 ± 40 °C at 0.95 ± 0.2 GPa (Brandt et al., 2003). The CCSD samples are UHP
eclogites that reached 700-890 °C at 3-4 GPa (Zhang et al., 1994, 1995; Banno et al.,
2000). The Siberian specimens are metasomatised peridotite xenoliths in basalts. The
samples from the last locality are eclogites that underwent eclogite-facies
metamorphism at peak pressure conditions of 2.4 GPa, 600 °C (Meyre et al., 1997,
1999).
The diagram shows most of the grains plotting on the metamafic area of the
chart. Granulite- and eclogite-facies rutiles partly overlap the blueschist-facies grains
on the upper part of the cluster. In contrast, rutiles from the metasomatised mantle
peridotites form a separate group with high Nb and Cr concentrations (> 1000 µg/g
and >10000 µg/g, respectively).
54
Chapter 3
FIGURE 9: Niobium vs. Cr diagram compiling data for rutiles from various
facies/tectonic settings; rutiles from the metasomatised mantle peridotites form a
separate cluster from the rest of the groups; granulite- and eclogite-facies rutiles
partially overlap the upper part of the blueschist-facies rutiles.
3.7. DISCUSSION
3.7.1. Source rock rutile geochemical data
A geochemical correlation between source rocks and sediments is assessed
here based on the HFSE budget. Also investigated are rutiles from near
isochemically metamorphosed rocks, dominantly found in the cores of blocks, and
metasomatic rutiles.
Within eclogites, Nb is dominantly hosted by rutile, while Cr tends to be
shared with omphacite and garnet (Zack et al., 2002). The Nb abundance of rutile is
therefore controlled by the Nb/Ti ratio of the respective host rock. Previous studies
have demonstrated that the Nb vs. Cr plot is indicative of the source rock of rutile
(Zack et al., 2004, Triebold et al., 2008, Meinhold et al., 2008). The current study is
55
Chapter 3
in conformity with this observation (Fig. 3), indicating a metamafic source for
almost all of the analysed grains, consistent with the rutile-bearing lithologies on
Syros that is dominated by rocks with mafic protoliths. In fact, no metapelites have
been described from Syros, and the metasedimentary rocks are mostly volcanosedimentary in origin or rare quartzites that lack rutile. An interesting aspect of this
study is that the geochemical signature of metamorphic and metasomatic grains
overlaps with the detrital analyses indicating that some of the dominant sources of
rutile in the sediments on Syros were identified in the high-P mélange. However,
there is a group of rutile characterised by high Nb and Cr abundances for which no
possible source rock was identified among the investigated rock samples.
Nevertheless, it can be speculated, based on their trends, that detrital grains with a
higher Nb/Cr ratio are most probably metasomatic, whereas rutiles with a lower
Nb/Cr ratio might be metamorphic.
3.7.2. Zr-in-Rutile Thermometry
Zr-in-rutile thermometry was employed to test the degree of constraint by
source rock lithology, pressure and silica activity. Figure 5a is a plot illustrating the
range of temperatures determined for each class of rutile (metamorphic, metasomatic
and detrital) using the Tomkins et al. (2007) calibration and four pressure estimates
(0.6, 1.2, 1.5 and 2.0 GPa). Also, the thermometer was employed on qtz-bearing
rocks vs. qtz-free rocks to assess the influence of silica activity. The calculated
temperatures are indistinguishable (Figure 5b) suggesting that the silica activity has
little or no influence on them. The Zr concentration is relatively uniform across all
investigated rutiles and indicates it is not dependant on source rock lithology.
The thermometer produces a limited spread of data, with a narrow
distribution. The results are generally not coherent with published temperatures of
peak metamorphic conditions, of between 480–520 ºC, 1.5–2.0 GPa for near
isochemically metamorphosed rocks (Dixon, 1968; Ridley 1984, Okrusch &
Brocker, 1990; Trotet et al., 2001b; Rosenbaum et al., 2002; Keiter et al., 2004;
Schumacher et al. 2008) and 400-550 ºC, 0.6–1.2 GPa, for the metasomatic rocks
(Breeding et al., 2004; Marschall et al., 2006a). The calculated temperature range for
56
Chapter 3
metamorphic rutiles (539-558 ºC at 1.5 and 2.0 GPa, respectively) therefore is
approximately 48 ºC higher than previous estimations. Moreover, the peak
temperature value for metasomatic rutiles at 0.6 GPa is 120 ºC higher than previous
calculations (520 ºC compared to 400 ºC). However, at 1.2 GPa, our results match
the previous thermometry calculations (550 ºC compared to 546 ºC).
With an average combined uncertainty of Zr analyses by LA-ICPMS of ±10
% (reproducibility, accuracy and precision; see Methodology, Chapter 2), the
precision on the Zr-in-rutile thermometer at ~500 ºC is ± 6 ºC, while the calibration
accuracy of the thermometer between 400 and 900 ºC is estimated at ±15 ºC (Watson
et al., 2006). Consequently this cannot explain the discrepancy of >50 ºC between
our Zr-in-rutile temperatures and published peak P-T estimates for Syros. Also, as
shown before, silica undersaturation does not have a significant effect on the Zr-inrutile thermometer calculations for the range of silica activities present in our
samples (Fig. 5b). This could suggest that the Tomkins et al. (2007) calibration has a
pressure correction that is too high for lower P/T conditions. Tomkins et al. (2007) is
based solely on experimental work in piston cylinders at temperatures between 1000
ºC and 1400 ºC, where the pressure dependence was investigated. Watson et al.
(2006) also suggest that an extrapolation of the pressure correction to low
temperatures (e.g. 500 ºC) introduces more uncertainty than is possibly gained from
doing the pressure correction. The Ferry and Watson (2007) calibration, who based
their thermometer in part on samples that equilibrated <500 ºC, also includes
blueschist-facies and low-temperature eclogite-facies rocks, therefore being a better
option for the Syros samples. Also, their experiments were run at 1.0 GPa and their
natural rocks were equilibrated at roughly the same pressure (1.0 ± 0.5 GPa).
Nevertheless, it is worth noting that the Tomkins et al. (2007) calibration allows for
a good correlation to be made between detrital and metamorphic/metasomatic rutiles.
The Ferry and Watson (2007) calibration is the only one that takes into
consideration the silica activity effect on the Zr-in-rutile thermometer. Zack et al.
(2004b), Watson et al. (2006) and Tomkins et al. (2007) only comment on silica
saturated systems, therefore, strictly speaking, their calibrations cannot be used on
undersaturated rocks. Using the Ferry and Watson (2007) calibration, temperatures
57
Chapter 3
were calculated for the two groups of rutile, using the silica activity estimation for
quartz-free rocks from Marschall et al. (2006) – 0.5. For samples where a (SiO2) =1
was considered, temperatures are almost identical, with an average value of 522 ºC
for metamorphic and metasomatic samples, and 526 ºC for detrital rutiles. These
estimations are much lower that the values obtained using the Tomkins et al. (2007)
calibration, and in agreement with previous peak temperature calculated for Syros –
520 ºC at 2.0 GPa. However, at a (SiO2)=0.5, the Ferry and Watson (2007)
calibrations gives values that are with an average of 37 ºC lower compared to silicasaturated systems: 472, 489 and 486 ºC for metamorphic, metasomatic and detrital
samples, respectively. The Ferry and Watson (2007) calibration predicts
temperatures that are ~35 ºC lower at a (SiO2) = 0.5 compared to a (SiO2) = 1, or at
the same equilibration temperature for both rocks, it predicts significantly higher Zr
in rutile. Considering the fact that all types of rutiles have similar Zr concentrations
(~65 µg/g), these low values are in contradiction with our data. Also, as discussed
above, using the Tomkins et al. (2007) calibration, quartz-free vs. quartz-bearing
rocks show identical temperatures (Fig. 5b), equivalent to ~520 ºC. Ferry and
Watson (2007) included silica activity in their calibration, without actually testing it.
Their arguments are based on thermodynamic reasoning and assume that the affect is
very strong. Our data on natural rocks show that the affect is not detectable. We
conclude that Ferry and Watson (2007) calibration strongly overestimates the effect
of a (SiO2), being really negligible, at least in LT rocks for a (SiO2) between 0.5 and
1. This allows calculating temperatures for detrital rutile without the uncertainties
introduced by the lack of rock context.
Recalculating peak temperatures using the Ferry and Watson (2007)
calibration with a (SiO2)=1, we obtain 515, 529 and 526 ºC for metamorphic,
metasomatic and detrital samples, respectively, which are in agreement with
previous T estimates on Syros (Trotet et al., 2001).
3.7.3. Metamorphic and metasomatic rutiles
A first order of discrimination between metamorphic and metasomatic rutiles
is based on their morphology. Metasomatic grains are considerably larger in size (up
to 3 cm in length) and are generally long-prismatic. Some of them have fibrous
58
Chapter 3
terminations (Fig. 2c), but some are idioblastic prisms that can easily be recognised
in hand specimens.
However, a geochemical signature is needed when investigating detrital
rutiles that have been reworked in a sedimentary environment. The current study
shows that some trace elements are more abundant in metasomatic grains, such as
Ta, Nb and Cr. Vanadium and Sb, on the other hand, have the opposite behaviour,
with a higher content in the metamorphic grains.
However, the trace element plots (Fig. 6a-f) show that metamorphic and
metasomatic rutiles have a similar geochemical signature. The groups overlap with
no clear distinction between them. This might be because some samples represent a
transition between metamorphic and metasomatised rocks. Some of the samples are
fresh metamorphic rocks (e.g. SY522-175), others are partly metasomatised (e.g.
SY522-100) and some are completely metasomatised (e.g. SY522-10). This is
reflected in the geochemical composition of the investigated rutiles. Nevertheless,
the V vs. Mo diagram (Fig. 7) indicates a relatively good distinction between rutile
from metagrabbros and metabasalts, therefore showing that rutile can be used to
distinguish between different types of source rocks.
The spider diagram (Fig. 8) confirms the earlier comments on rutile trace
element characteristics, while offering a bigger perspective of rutile’s geochemical
signature. Tantalum, Nb and Cr have a higher affinity for metasomatic grains,
whereas V and Sb show a stronger preference for metamorphic rutile. Molybdenum
is only slightly enriched in metamorphic rutile. The rest of the elements (Sn, W, U,
Hf and Zr) do not exhibit any particular preference for any type of rutile.
However, special care is needed when assessing rutile grains coming from
different tectonic settings. The observations in this study are relevant to similar
tectonic settings (HP/LT) and lithologies. Nevertheless, if low-T rutile with
relatively high Cr-Nb is only formed in blueschists and eclogites, this indicates the
same tectonic setting, i.e., cold subduction of mafic crust. Element enrichments in
the metasomatic grains may vary with the composition and sources of the
metasomatic fluids (salinity, pH, T, P, fO2, etc). The P-T conditions of blueschists
and eclogites do not vary immensely from place to place, and the fluids are generally
buffered by the same mineral assemblages. Hence, it can be expected that fluids that
59
Chapter 3
migrate through high-pressure mélange zones or sequences of subducted crust at
high P have similar composition and trace-element transport capacity. Hence, the
results obtained from Syros are probably relevant for subduction settings in general,
and the metasomatic grains are characteristic for blueschist-facies high-P mélange
zones.
3.7.4. Rutile in a metamorphic facies perspective
The Nb vs. Cr plot (Fig. 9) is a compilation of the available data on rutile
from mafic rocks formed in different facies/tectonic conditions (granulite, eclogite
and metasomatised mantle peridotite) compared to our blueschist-facies data. The
diagram shows rutile from metasomatised mantle peridotites having a very particular
Nb-Cr signature, forming a separate cluster from the rest of the groups. Granuliteand eclogite-facies rutiles have quite a similar composition, partially overlapping the
blueschist-facies rutile. However, a higher Nb-Cr concentration could indicate higher
P/T conditions. Niobium concentrations in the Syros samples are quite similar to
hotter localities (excluding the mantle xenoliths), but Syros samples seem to extend
towards much lower Cr contents (many of the detrital grains are below 1 µg/g detection limit). One hypothesis is that at low temperatures more Cr is stored by
glaucophane, while co-existing garnet and omphacite do not have the same affinity
for Cr as glaucophane, hence rutile might take more of the Cr at higher temperatures.
Due to the limited availability of data, other trace elements cannot currently
be investigated. Nevertheless, rutile shows promising trace element particularities
that could be linked back to different facies settings.
3.8. CONCLUSIONS
1. The Cr vs. Nb plot indicates almost exclusively metamafic source rocks for
rutile from the Island of Syros and confirms that rutile can be used as a
petrogenetic tool in HP/LT environments, such as subduction zones
2. No textural-dependence or Zr zonation has been observed in the investigated
rutiles
60
Chapter 3
3. Silica undersaturation has little if no effect on the Zr-in-rutile thermometer
4. Zr-in-rutile thermometer shows higher temperatures (48 °C) compared to
previous estimations; this could suggest that the Tomkins calibration has a
pressure correction that is too big for lower P/T conditions
5. The Ferry and Watson (2007) calibration gives consistent results for
a (SiO2)=1, with an average temperature of 522 °C; this study concludes that
this calibration has a too high correction for undersaturated rocks at LT
conditions
6.
Trace element plots show that metamorphic and metasomatic rutiles have a
relatively similar geochemical composition, with no clear distinction between
the groups; however, Ta, Nb and Cr tend to have a higher affinity for
metasomatic rutiles, while V and Sb for metamorphic grains
7. Vanadium vs. Mo indicates different types of source rocks, such as
metagabbros and metabasalts; however, this could be specific only for this
case study and should be explored by future studies for different protoliths
8. The Nb vs. Cr diagram has a poor applicability to assess rutile formed in
different facies/tectonic settings, but very low Cr abundances (<10 µg/g) in
low-Nb rutile (<150 µg/g) may be restricted to blueschist-facies rutile from
metabasites
61
Chapter 4
An evaluation of the potential of
detrital rutile to document the highpressure metamorphic history of an
orogenic belt (Western Alps)
4.1 ABSTRACT
Laser Ablation Inductively-Coupled Mass Spectrometry has been used to analyse
rutile grains from high-pressure metamorphic rocks and as detritus in river sediments
and associations based on their trace element signature have been made. The HP/LT
micaschists from the Sesia Lanzo Zone indicate a strong correlation with sediments
from the main catchment areas (Rio delle Balme, Torrente Chiusella). Most of the
detrital grains are from a meta-pelitic protolith, as expected. Using the Zr-in-rutile
thermometer, one peak temperature at 541 °C was obtained, that corresponds to the
peak temperature calculated for the Sesia Lanzo Zone samples – 538 °C, and with
previous estimations (500 – 600 °C). This demonstrates the applicability of the Zrin-rutile thermometer and the Nb vs. Cr discrimination diagram in blueschist-facies
settings. The Dora Maira UHP metapelites show no overlap with sediments from the
closest catchment areas (Varaita and Maira Rivers) on the Nb vs. Cr diagram.
However, the Zr-in-Rutile thermometer clearly indicates the presence of a HT
signature with one temperature peak of 728 °C in the Maira River that is close to the
average value for the metamorphic rutiles – 694 °C. This might suggest that these
rivers are not the catchment area of the UHP rocks from the Dora Maira Massif, or
that the discrimination diagram has a limited applicability for the HT rocks. This
study also examines the potential presence of HT granulite-facies metapelitic rutiles
from the Ivrea-Verbano Zone in river sediments and of the Dora Maira gneisses and
Monviso metapelites and metagabbros in order to provide better constrains on the
main source rocks. Finally, detrital rutiles from the Po River, downstream from the
confluence of all other examined streams, implies that blueschist-facies rutiles are
predominant compared to (U)HP-HT grains. In turn, this may indicate that HP-LT
metamorphic rocks have a lower preservation potential than their (U)HP-HT
62
Chapter 4
equivalents. In this case, records of HP-LT metamorphism in older orogens may best
be sought in sediments eroded from that orogen and containing detrital rutile grains.
4.2 INTRODUCTION
Rutile is a robust accessory mineral that has received growing attention in the
past decade. Its chemical signature can be linked to its host rock bulk composition
and the temperature of metamorphic equilibration. Zack et al. (2004a) first
demonstrated the applicability of detrital rutile to determine different lithologies by
using the Nb vs. Cr plot. Further studies (Triebold et al., 2008, Meinhold et al.,
2008) have refined this discrimination diagram. Zack et al. (2004b) have also
developed an empirical thermometer based on the Zr concentration in rutile. Other
authors (Watson et al., 2006, Tomkins et al., 2007 and Ferry and Watson, 2007)
have subsequently modified the thermometer and re-enforced its applicability in
calculating peak metamorphic temperatures. Some studies (Tomkins et al., 2007 and
Ferry and Watson, 2007) also introduced different variables in the formula (pressure
and silica activity), allowing for more precise calculations.
As rutile has many interesting geochemical features that could allow for a
good insight into its source rock metamorphic history, this could further be
investigated for possibilies of correlations between the source rock and its associated
tectonic setting. Studies have shown that rutile usually forms in prograde
metamorphism, in metasedimentary and metamafic rocks, at pressures between 1.2
and 1.5 GPa (Liou et al., 1998; John et al., 2011). These values correspond to depths
higher than 35 km, therefore rutile will not form in stable continental crust.
Consequently, rutile will form in rocks involved in key plate-tectonic processes, such
as cold subduction of oceanic crust or crustal thickening.
Trace elements in rutile are investigated here using laser-ablation
inductively-coupled plasma mass spectrometry (LA-ICPMS). Results are used to
address the possible correlation between rutile geochemistry and tectonic processes.
The Western Alps offer an opportunity to investigate rutile geochemistry in
more detail by studying grains from high-pressure (Sesia Lanzo) and ultra highpressure (Dora Maira) metapelites. Outcrops with well-defined protoliths, bulk-rock
and P-T history have been sampled from subducted and exhumed continental crust.
63
Chapter 4
Moreover, sand samples from the River Po and its tributaries that contain detrital
rutile grains have been investigated and compared with metamorphic grains from the
potential source rocks (Sesia Lanzo and Dora Maira).
Trace element signatures in rutile from blueschist- to HP and UHP eclogitefacies subducted continental crust are characterised and used to fingerprint particular
geochemical signatures for metamorphic rutile. The Zr-in-rutile thermometer is
analysed to check how well it fits with other published geothermometry with the aim
of assessing how reliable this thermometer is in subduction systems. Also, trace
elements budgets (V, Cr, Zr and Nb) are discussed for metamorphic rutiles from the
Sesia Lanzo Zone and Dora Maira Massif.
The key aspect of this study is to investigate the probability of finding detrital
rutile eroded from blueschists and eclogites that formed in collisional orogens, in
large sedimentary basins. Our results show that, compared with rutile from hightemperature settings, blueschist-facies rutile is predominant. The overarching aim is
to use detrital rutile as a tool for investigating long-eroded orogenic belts to
reconstruct their tectonic evolution.
4.3 GEOLOGICAL SETTING
The Western Alps formed by the continent-continent collision of Europe and AdriaAfrica plates that started in the Cretaceous (Dewey et al., 1989; Rosenbaum et al.,
2002). Based on the lithological associations, type of sedimentary cover and/or
Alpine metamorphism (e.g., Dal Piaz et al., 2003; Schmidt et al., 2004), the Western
Alps can be divided in three major domains (Fig. 1a): (a) the Southern Alps
representing the continental Adriatic plate covered by Permian volcanic and
Meso/Cenozoic sediments that show a minor Alpine metamorphic overprint; (b) the
Axial
Belt,
that
underwent
greenschist-
to
UHP
eclogite-facies
Alpine
metamorphism, is further sub-divided into the Austroalpine Units made of Adriatic
continental components and the Penninic Units consisting of European continental
crust and oceanic units derived from the Piemonte-Liguria Ocean; (c) the External
Zone representing a nappe stack resting upon the European plate that underwent
anchizone to greenschist-facies metamorphism.
64
Chapter 4
FIGURE 1: (a) Geological map of the Western Alps showing the location of five
sand samples: SL 10/12, 13, 15, 16, and 17 (modified after Beltrando et al., 2010 and
Garzanti et al., 2004). The two detailed maps are of: (b) The Sesia Lanzo Zone
(modified after Konrad-Schmolke et al., 2006) with positions for the other two sand
samples (SL 10/4 and SL 10/10) and the hard rocks (black star); (c) The Dora Maira
Massif (modified after Grevel et al., 2009) showing the location of the Parigi/Case
Ramello samples (A) and of the Tapina sample (B).
65
Chapter 4
The Ivrea-Verbano Zone (IVZ) is a sub-division of the Southern Alps that
preserves a section through the lower continental crust that underwent two episodes
of orogeny (Caledonian and Variscan) and a mafic magma underplating event in the
Permian (Handy et al., 1999). From southeast to northwest the metamorphic
conditions increase from amphibolite to granulite-facies (Zingg et al., 1990). The
IVZ has large areas of metabasic amphibolites, but these contain titanite (±ilmenite e.g., Sills & Tarney, 1984). Studies have shown that rutile is only present in the
granulite facies paragneisses (Luvizotto and Zack, 2009; Zingg et al., 1980). Henk et
al. (1997) has calculated the peak P-T conditions to be 810 °C and 0.83 GPa.
However, Luvizotto and Zack (2009), using the Zr-in-rutile thermometer, obtained
much higher temperatures up to 930 ºC.
The Sesia Lanzo Zone (SLZ – Fig. 1b), part of the Austroalpine units, is the
first place where eclogites-facies metamorphism of granitic rocks was identified
(e.g., Bearth, 1959; Compagnoni and Maffeo, 1973) and interpreted as subducted
continental lithosphere (Ernst, 1971). Based on various parameters such as the
metamorphic grade and the lithological compositions, the SLZ is sub-divided into
four units (Babist et al., 2006; Venturini et al., 1994): (1) the Bard nappe made of
fine-grained gneisses (the ‘gneiss minuti complex’ as described by Compagnoni et
al., 1977); (2) the Mombarone unit consisting of the best-preserved HP eclogitefacies felsic rocks (the ‘Eclogitic Micaschist Complex’ as described by Compagnoni
et al., 1977); (3) the Bonze unit comprised of metabasic rocks interpreted to be of an
oceanic-continental origin (e.g., Venturini et al., 1994); (4) the II DK unit made of
pre-Alpine granulite and amphibolite-facies schists and gneisses (Carraro et al.,
1970; Dal Piaz et al., 1971; Lardeaux et al., 1982).
The SLZ HP event reached its peak around 65 Ma ago (Rubatto et al., 1999).
The Mombarone unit has undergone eclogite-facies metamorphic conditions that
reached 500-600 °C and 1.5–2.0 GPa (Pognante, 1989; Tropper et al., 1999; Zucali
et al., 2002). Rutile has been found in both HP felsic and basic rocks from the
Mombarone Unit (Konrad-Schmolke et al., 2011; Venturini, 1994).
The Dora Maira Massif (DMM - Fig. 1c), part of the Penninic units, was the
first direct evidence that continental crust can be subducted to depths of at least 100
km (Chopin, 1984). It consists of Pre-Alpine basement rocks and Permian granitoids
66
Chapter 4
(with a detached Mesozoic cover) that underwent UHP metamorphism in Eocene
times (e.g., Chopin, 1987; Compagnoni & Hirajima, 2001; Gebauer et al., 1997;
Groppo et al., 2006; Hermann, 2003; Schertl et al., 1991; further references in
Schertl & Schreyer, 2008). Based on different geothermobarometers and water
activity, the P-T estimates for DM are various (Schertl et al., 1991; Compagnoni et
al., 1994; Chopin and Schertl, 2000; Rubatto and Hermann, 2001; Hermann, 2003;
Groppo et al., 2006). This study will use for thermometry calculations the peak
metamorphic conditions of Schertl et al. (1991) which are 3.7 GPa at about 800 °C.
Rutile has been reported in all investigated samples (pyrope megablasts and jadeite
quartzite from Parigi/Case Ramello and pyrope megablasts from Tapina) by Schertl
et al. (2008) both as inclusions in garnet and in the matrix.
The Monviso ophiolitic domain is part of the Piemonte Zone that formed by
subduction and exhumation of the Tethyan ocean in the late Cretaceous (Lagabrielle
& Cannat, 1990; Lagabrielle & Lemoine, 1997). It contains calcschists, pillow lavas,
banded metabasalts, diabases, metagabbros and serpentinites (Lombardo et al.,
1978). Angiboust et al. (2012) has estimated the P-T conditions to be ~550 °C and
2.6-2.7 GPa. Rubatto and Hermann (2003) have found rutile in eclogites (5%) and
metamorphic veins (1%) from the Lago Superiore Unit.
The Po basin is a Pliocene marine gulf between the Alps and the Apennines
that has been filled gradually from west to east during the Pliocene (Garzanti el al.,
2011). The fluvial sediments are largely derived from the Alps that underwent an
accelerated sedimentation with the onset of the major glaciations (Muttoni et al.,
2003). Torrente Chiusella (Fig. 1a) drains mostly HP metapelites and metabasic
rocks from the Sesia Lanzo Zone. It then joins Dora Baltea which is the catchment
area for the Ivrea Verbano Zone as well. Varaita and Maira are the two rivers
situated in the vicinity of the Dora Maira Massif and Monviso. All these rivers drain
into the Po River which contains all detritus from current erosion of the Western
Alps.
67
Chapter 4
4.4 SAMPLE DESCRIPTION
A total of 19 samples have been investigated: 8 HP metapelites from Sesia
Lanzo, 4 UHP metapelites from Dora Maira and 7 from river sediments. The mineral
assemblages for the metamorphic samples can be found in Table 1, along with rock
type and metamorphic unit descriptions. The Sesia Lanzo samples are from the
Mombarone Unit (as seen in Fig. 1b) and are mainly glaucophane-white mica
(phengite?) micaschists, with pelitic or semipelitic protoliths (Reference - Table 1).
They generally are moderately foliated with a foliation defined by Gln + White mica.
Also, the Sesia Lanzo samples are relatively homogeneous and medium- to finegrained. They all preserve the HP mineral assemblage which consists of Grt
+ Gln + Omp + Phe (?) + Rt. A variable degree of retrogression is manifested by the
presence of amphibole, chlorite and epidote. Rutile (0.5-2 mm in diameter) is found
in the matrix and as inclusions in garnets. It is commonly rimmed by titanite and/or
ilmenite.
Three specimens from Dora Maira (Table 1) were taken from the classical
coesite locality (Chopin, 1984) near Parigi (Fig 1c – location A), introduced as Case
Ramello by Compagnoni et al. (1994). Sample 15623a comes from the
polymetamorphic complex, whereas 20254 was sampled from alluvial deposits.
Specimen 19464 is part of the Pinerolo Unit, from the graphite-rich schists and
metaclastics. The fourth sample, 19296a, comes from Case Tapina, near Vallone di
Gilba (Fig 1c – location B), being part of the monometamorphic complex. A detailed
description of the UHP-localities from Dora Maira and a petrological description of
the investigated samples are given by Grevel et al., 2009 (for samples 15623a and
19464) and by Schertl & Schreyer, 2008 (for samples 15623a, 19296a and 20254,
which comes from the same block as 19470, described in the paper). Rutile (0.5 - 4
mm in diameter) is frequently found as inclusions in garnet and in the matrix.
68
MK 51 Mombarone Omp-Grt micaschist
MK 126 Mombarone
Grt micaschist
MK 162.3 Mombarone
Grt micaschist
MK 195 Mombarone
Grt micaschist
MK 197 Mombarone Omp-White mica schist
MK 541 Mombarone
Omp micaschist
15623a Brossasco–Isasca Pyrope Megablasts
19296a Brossasco–Isasca Pyrope Megablasts
20254 Brossasco–Isasca
Jd quartzite
19464
Pinerolo
Pyrope quartzite
Micaschist
3
4
5
6
7
8
9
10
11
12
Mombarone
Gln micaschist
Mombarone
MK 35
Rock Type
Unit
2
Sample
Sample
No.
1
MK 30
15
20
20
20
20
15
40
20
10
30
7
10
Grt
20
30
22
-
-
-
Omp
5
15
5
7
5
-
-
25
40
30
40
40
30
35
20 (phe)
35
25
20
25
5
-
-
-
Gln White Mica Ky
10
10
15
5
-
25
-
Chl
5
5
5
-
5
5
Ep
20
30
-
-
-
Tlc
10
12
20
30
10
15
50
40
10
30
Qtz
Rt-5
Amp-5, Ab-5, Opaques-5,
Rt-3
Opaques-6, Rt-4
Carb-8, Rt-5
Opaques-7, Rt-3
Rt-3
Rt-5
Rt-3
Rt-1, Others*-9
Rt-2, Others*-8
Jd-17, Rt-5, Others*-8
Rt-4, Others*-6
Others
Chapter 4
TABLE 1: Mineralogical description of the investigated source rocks: samples 1-8
are from the Sesia Lanzo Zone and samples 9-12 are from the Dora Maira Massif.
Modal abundances are given in percentages. *Please refer to Grevel et al., 2009 and
Schertl & Schreyer, 2008 for a detailed mineralogical description of this sample.
69
Chapter 4
Seven river sand samples were collected from the river banks close to the
source rocks described above and downstream towards the Po plain (Fig. 1a).
Specimens SL 10/04 and SL 10/10 have been sampled within the Sesia Lanzo Zone
(Rio delle Balme and Torrente Chiusella 1), whereas SL 10/12 and SL 10/13 were
taken further downstream in the Ivrea-Verbano Zone to check for the influence on
the rutile budget with an IVZ geochemical signature (Torrente Chiusella 2 and Dora
Baltea). Samples SL 10/16 and SL 10/17 (Varaita and Maira Rivers) were collected
near the UHP unit of the Dora Maira Massif. Finally, sample SL 10/15 was taken
from the Po River at Casale Monferrato, downstream from the confluence of all the
aforementioned rivers. Detrital rutile grains are typically between 50 and 300 µm in
diameter and generally well rounded.
4.5. METHODOLOGY
Thick sections and epoxy resins have been prepared for investigations.
Analysis was conducted using a New Wave UP-213 laser ablation system (solid state
Nd:YAG laser operating at 213 nm, aperture imaged and with a pulse width of 2–
3 ns), combined with an Agilent 7500cs ICP mass spectrometer.
Analyses were calibrated against the NIST SRM 610 glass (GeoReM
preferred values: http://georem.mpch-mainz.gwdg.de/), in addition to rutile standard
R10 (Luvizotto et al., 2009). Element spectra were reduced using the software
‘LAMTRACE’ (Simon Jackson, Geological Survey of Canada). Data were collected
online at 1 point per peak in time resolved mode and processed offline by
LAMTRACE. The measurements included the following isotopes: 26Mg, 27Al, 29Si,
31
P, 43Ca, 45Sc, 49Ti, 51V, 52Cr, 55Mn, 59Co, 66Zn, 69Ga, 72Ge, 85Rb, 88Sr, 89Y, 90Zr,
93
Nb, 95Mo, 118Sn, 121Sb, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb,
163
Dy, 165Ho, 167Er, 169Tm, 173Yb, 175Lu, 177Hf, 181Ta, 182W, 208Pb, 232Th, 238U. For
more details, please refer to Chapter 2.
70
Chapter 4
4.6. RESULTS
4.6.1. Source rock rutile geochemistry data
4.6.1.1. Sesia Lanzo
Figure 2a shows the Nb vs. Cr analyses for metamorphic rutiles from the
Sesia Lanzo Zone and for the two rivers that were sampled to characterise the
proximal detrital rutile geochemical signatures (Rio delle Balme and Torrente
Chiusella 1 – Fig. 1b). According to previous provenance studies, (Zack et al.,
2004b; Triebold et al., 2007; Meinhold et al., 2008) all the metamorphic rutiles plot
in the pelitic area of the chart. Both river samples are strongly dominated by rutile
from pelitic source rocks (85-90 %), with minor contributions of rutile from mafic
source rocks. Torrente Chiusella 1 detrital rutile in particular shows a very good
reflection of the metapelitic source rocks.
Specimens SL 10/12 and SL 10/13 (Torrente Chiusella 2 and Dora Baltea –
see Fig. 1b) were investigated for two purposes: 1) to detect rutiles from the SLZ and
2) to investigate a potential IVZ detrital signature. Based on the Nb vs. Cr plot (Fig.
2b), the rutile populations in both rivers are dominated by pelitic source rocks (85-90
%), but also show minor contributions from mafic source rocks. The diagram also
shows analyses of metamorphic rutile from the SLZ and the IVZ. These partially
overlap with detrital rutiles from the two rivers, on the pelitic area of the diagram.
71
Chapter 4
72
Chapter 4
d
FIGURE 2: Nb vs. Cr discrimination diagrams (after Meinhold et al., 2008; see also
Zack et al., 2004b) showing metamorphic vs. detrital rutiles from: a. Sesia Lanzo
Zone with Rio delle Balme and Chiusella 1 – a good correlation can be made
between the source rocks and detrital material; b. The Ivrea-Verbano Zone (data
from Luvizotto and Zack, 2009), the Sesia Lanzo Zone, and Torrente Chiusella 2
with Dora Baltea – both locations with metamorphic rutile overlap with the two
rivers, indicating a coherent reciprocity ; c. Dora Maira Massif with Varaita and
Maira – no relationship can be established between the metamorphic rocks and
detrital rutile, as they plot on different areas of the diagram; d. The Ivrea-Verbano
Zone, the Sesia Lanzo Zone, Dora Maira and Po River – the SLZ and IVZ pelitic
signature can still be linked to the eroded material; a large fraction of the river’s
material has a metamafic source.
73
Chapter 4
4.6.1.2. Dora Maira
The Nb-Cr diagram for the samples from the UHP unit from Dora Maira (Fig
2c) indicates that the metamorphic rutiles have a pelitic source whereas the detrital
rutiles from the river sand samples (Maira and Varaita – Fig. 1a and c) contain a
broader range of host rock compositions with both mafic and pelitic sources. The
metamorphic rutiles are significantly higher in Nb and lower in Cr, a composition
that is not reflected in the detrital population in either of the rivers.
4.6.1.3. Po River
As expected, the Nb-Cr diagram for the Po River sample (SL 10/15 – Fig. 1a)
displays a large spread of concentrations for these elements as it has multiple sources
for its sediments (Fig. 2d). The metamorphic Sesia Lanzo and Ivrea-Verbano rutiles
overlap with the entire pelitic detrital fraction, indicating that they might represent
the main pelitic sources for Po’s sediments. In contrast, the Dora Maira rutile
compositions are not represented by the Po river sediments. Most of the detrital
rutiles from Po River have a mafic origin (75 %), based on the Nb-Cr diagram.
All trace element compositions can be found in Table 2.
74
Chapter 4
75
Chapter 4
TABLE 2: LA-ICPMS trace element data (including mean concentration with
standard deviation) for the SLZ, DMM and sand specimens.
76
Chapter 4
4.6.2. Zr-in-Rutile Thermometry
Zack et al., 2004a, developed an empirical thermometer based on rutile +
zircon + quartz assemblages to which Watson et al., 2006, Tomkins et al., 2007 and
Ferry and Watson, 2007 made enhancements. This study uses the Ferry and Watson
(2007) calibration, as it has been demonstrated (see Chapter 3 “Trace-element
characteristics of rutile in blueschist- to low-T eclogite facies mafic-ultramafic highP mélange zones - Syros, Greece) to give the most accurate temperature estimations
at a (SiO2)=1, for blueschist-facies and low-temperature eclogite-facies rocks:
T (°C) = [(4530 ± 111) / (7.420 ± 0.105 – logaSiO2)] – log (Zrµg/g in Rt) 273.15,
where a(SiO2) is the silica activity.
For the UHP rocks from the DMM, the Tomkins et al. (2007) calibration has
been applied too (for the coesite field), as previous studies (Zhang et al., 2010)
concluded that this is the most suitable for HP-UHP rocks because it has a pressure
factor in its formula:
T (°C) = [(88.1 + 0.206 * P) / (0.1412 - Rln[Zr]Rt)] - 273.15,
where P is the pressure (GPa), [Zr]Rt is the concentration of Zr in rutile (µg/g) and R
is the universal gas constant (in kJ/mol/K).
The Ferry and Watson (2007) calibration predicts an average temperature for
the metamorphic rutiles from the SLZ of 538 °C. The same calibration indicates a
peak temperature for the DMM samples of 595 °C. However, this calibration
considers an average pressure of 1.0 GPa, which is too low for the estimated peak
pressure in the DMM (3.7 GPa – from Schertl et al., 1991). Therefore, an additional
calibration which includes a pressure correction has been applied (Tomkins et al.,
2007). The average peak temperature obtained with the second calibration is much
higher, with a value of 694 °C.
77
Chapter 4
Histograms containing Zr concentrations in detrital samples have been
plotted (Fig. 3), with statistical maximums being determined using Isoplot 4.1 (K.R.
Ludgwig, Isoplot/Ex 3.75, A geochronological toolkit for Microsoft Excel, Berkley
Geochronology Centre, 2012). The Rio delle Balme/Chiusella 1 diagram (Fig. 3a)
has three main peaks, with statistical maximums at 44 ± 2 µg/g (30 %), 72 ± 3 µg/g
(30 %) and 124 ± 5 µg/g (40 %). Associated calculated temperatures are 511, 541
and 577 °C (please refer to Appendix 10). The Chiusella 2/Dora Baltea plot (Fig. 3b)
has a more homogeneous distribution, with peaks at 35 ± 2 (12 %), 63 ± 4 (27 %)
and 116 ± 4 µg/g (61 %) for Chiusella 2 and 51 ± 1 (93 %), 734 ± 80 (3 %) and 1179
± 20 µg/g (4 %) for Dora Baltea. Calculated temperatures for these Zr concentrations
are 498, 533 and 573 °C for Chiusella 2 and 520, 722 and 769 °C for Dora Baltea.
Torrente Chiusella 2 has two HT grains (out of 101 grains; 2.0 %), with temperatures
≥700 °C, while Dora Baltea has 9 rutile grains (out of 120; 7.5 %).
Varaita River (Fig. 3c) has one main peak at 138 ± 5 µg/g (91 %) and a
secondary one at 10 ± 1 µg/g (9 %). Equivalent temperatures are 432 and 585 °C.
Maira River (Fig. 3d) has a more homogeneous distribution, with several peaks:
3 µg/g (39 %), 59 ± 3 µg/g (23 %), 191 ± 10 (17 %) and 784 ± 38 (20 %).
Corresponding temperatures are 379, 529, 608 and 728 °C.
The Zr concentration frequency plot for Po River has two main peaks at 20 ±
0.5 µg/g (72 %) and 86 ± 3.5 µg/g (25 %), and two secondary ones at 856 ± 140
(2 %) and 1050 ± 220 (1 %). Calculated temperatures are: 467 and 553 °C for the
main peaks, and 736 and 757 °C for the secondary peaks (Fig. 3e).
78
Chapter 4
FIGURE 3: Simplified map of Po’s drainage system (after Garzanti et al., 2004)
showing the sand samples’ locations and their associated [Zr] frequency diagram: (a)
Rio delle Balme and Torrente Chiusella 1 – main peaks show [Zr] typical for LT
rocks, as found in the SLZ; (b) Torrente Chiusella 2 and Dora Baltea – this diagram
indicates that, besides an important LT fraction, there is a new high [Zr] group
present that could be source from the IVZ; further evidence for this hypothesis is that
the high [Zr] fraction is mostly pelitic, also typical for the IVZ (see text for
discussion); (c) Varaita River – limited range of [Zr], indicating a small number of
medium to high-T source rocks; (d) Maira River – several [Zr] peaks suggesting
multiple sources, such as the Monviso Massif and the UHP and country rocks from
DMM; (e) Po River – 97 % of the detrital load is represented by low [Zr],
corresponding to LT source rocks; the rest 3 % indicate HT sources.
79
Chapter 4
4.6.3. Trace element budgets
Budgets for some trace elements in rutile (V, Cr, Zr and Nb) were calculated
for Sesia Lanzo and Dora Maira samples (Fig. 4), using the concentration of the
element in rutile and in the whole rock. These calculations show how much of a
rocks’ element x is stored in rutile. Fig. 4a-d shows the percentage of four different
elements (V, Cr, Nb and Zr), stored in rutile, in the whole rock. Vanadium ranges
from 2.5 to 8.1 % in the SLZ samples, with much higher values in the DMM
samples: 18.4-37 % in the pyrope megablasts and quartzite and 7 % in the Jd
quartzite. Chromium has quite a similar behaviour, with values from 1.8 to 5.7 % in
the SLZ specimens, and a much higher variability in the UHP rocks: 1.3 to 17.2 %.
As expected, Zr has very low concentrations, all values ranging from 0.08 to 0.42 %.
Niobium has the highest affinity for rutile, from these trace elements, and has
slightly higher values in the HP rocks (57-181 %) than in the UHP rocks (12-152
%).
a
80
Chapter 4
b
c
d
FIGURE 4: Trace elements budget plots for metamorphic rutiles from the SLZ
(samples labelled MK) and DMM (the rest): a. V shows a coherent behaviour for the
HP samples, and a more complex behaviour for the UHP specimens; b. Cr – its
budget is mainly controlled by the presence of garnet; as the SLZ samples have very
similar compositions, this relationship is more poignant in the DMM rocks, where
garnet can be found from 10 to 40 %; more garnet will incorporate a larger fraction
of the available Cr, leavening less for Rt; c. Zr – this budget is mainly controlled by
Zrc, therefore explaining the low percentages; d. Nb – as rutile is the main carrier of
this element, its composition reflects the rutile abundance in the host rock.
81
Chapter 4
4.7. DISCUSSION
4.7.1. Source rock rutile geochemistry data
4.7.1.1. Sesia Lanzo
A geochemical correlation between source rocks and sediments has been
assessed based on their HFSE budget (see Table 2 for trace element compositions
with standard deviations). Within eclogites, Nb is dominantly hosted by rutile, while
Cr tends to be more compatible with omphacite and garnet (Zack et al., 2002). The
Nb abundance is, therefore, controlled by the Nb/Ti ratio of the host rock, and thus
by the host rock composition. Previous studies have demonstrated that the Nb vs. Cr
plot can be employed to characterise the host rock of the detrital rutiles (Zack et al.,
2004a, Triebold et al., 2008, Meinhold et al., 2008).
The Nb vs. Cr diagram (Fig. 2a) shows that the metamorphic rutiles from the
Sesia Lanzo Zone have a metapelitic origin and that rutiles from Rio delle Balme and
Torrente Chiusella 1 indicate mafic and pelitic source rocks, with a higher
abundance of the latter. The Torrente Chiusella 1 grains are more consistent with the
metamorphic rutiles indicating it largely receives its sediments from the HP unit of
the Sesia Lanzo Zone (SLZ). Detrital grains from Rio delle Balme have a more
scattered geochemical composition suggesting various sources that has not been
captured fully in this sample collection of potential host rocks. However, Venturini
(1995) has shown that there are blueschist-facies mafic rocks in the SLZ that might
contribute to the detrital rutile budget.
Torrente Chiusella 2 and Dora Baltea contain detrital rutiles derived from
metapelitic source rocks (Fig. 2b). This is not surprising, as the main potential source
rocks are of pelitic origin: micaschists from the SLZ and metasedimentary gneisses
from the IVZ. Previous studies (Luvizotto and Zack, 2009) reported that in the IVZ,
rutile is only present in granulite-facies paragneisses that reached temperatures of up
to 930 ºC. Moreover, metamorphic rutiles from the IVZ have been investigated and
show a large spread in Zr concentration ranging from 700 to 5000 µg/g (Luvizotto
and Zack, 2009). This shows that high-Zr rutile is typical for the IVZ granulites and
the occurrence of such rutiles in the Torrente Chiusella 2 and Dora Baltea samples
(see sub-chapter 4.5.2 for discussion) are, therefore, in agreement with the catchment
82
Chapter 4
area of the river. The Zr concentration histogram (Fig. 3b) for detrital rutiles from
these two rivers shows that most of the high-Zr rutiles have a pelitic source,
therefore further suggesting the IVZ as a possible source. Moreover, the multielement plot (Fig. 5) showing metamorphic rutiles from the IVZ (from Luvizotto and
Zack, 2009) and high-Zr detrital rutile from Torrente Chiusella 2 and Dora Baltea,
further supports this observation. Dora Baltea is particularly richer in high-Zr detrital
rutiles, probably because its source is within the IVZ. Also, an important observation
is that Torrente Chiusella joins the Dora Baltea as a tributary downstream.
Therefore, metamorphic rutiles from the SLZ and detrital rutiles from rivers
draining this area have a very similar geochemical signature indicating a good
representation of the source rocks by sediments in HP/LT proximal tectonic
environments. Furthermore, the high-T, detrital rutiles from pelitic source rocks that
suggest the IVZ as a possible source might indicate a good applicability of the
discrimination diagram for granulite-facies rocks. This will additionally be discussed
in the following section (5.1.2).
FIGURE 5: Multi-trace element diagram containing rutile compositions normalised
to R10; the green field is represented by the range of compositions for metamorphic
rutiles from the IVZ (data collected from Luvizotto and Zack, 2009); the grey field
corresponds to detrital grains from the Torrente Chiusella 2 and Dora Baltea; the
good overlap between the two groups further suggests a source rock –sediments
relationship (please see text for discussion)
83
Chapter 4
4.7.1.2. Dora Maira
The Nb-Cr diagram for metamorphic grains from the UHP unit of Dora
Maira (Fig. 2c) is consistent with the pelitic lithology of these rutiles, whereas the
detrital rutiles from the river sand samples (Maira and Varaita – Fig. 1a and c)
contain a broader range of host rock compositions with both mafic and pelitic
sources. There is no overlap in composition between the metamorphic and detrital
rutiles, which indicates that the sampled detritus in the Maira and Varaita rivers do
not represent the Dora Maira UHP rocks. The country rocks from the DMM are
composed of greenschist-facies gneisses that are largely retrogressed. Schertl et al.
(1991) have reported that these rocks might have experienced HP conditions based
on the presence of coarse-grained phengite and the presence of the assemblage
grossular + rutile. The country rocks could, therefore, be the provider of at least part
of the detrital rutile from pelitic host rocks. The Maira and Varaita rivers also drain
the Monviso massif (Fig. 1). It is therefore highly likely that part of the rutile is
derived from the Monviso Massif. The Monviso ophiolitic complex lies on top of the
continental eclogitic unit from Dora Maira and reached HP to UHP conditions
(~550 °C and 2.6–2.7 GPa - Angiboust et al., 2012). The Lago Maggiore Unit
contains HP metapelites with small amounts of rutile and eclogite-facies Fe-Ti
metagabbros with a larger concentration of rutile (Angiboust et al., 2012). This
could, therefore, represent both a pelitic and a mafic source for the Varaita and Maira
detrital rutile. Rubatto and Hermann (2003) have reported that eclogites from the
same unit contain up to 5 % rutile. They also analysed the Nb concentration of these
rutiles and found concentrations that are lower compared to the low-Nb detrital
grains (65 compared to >100 µg/g).
All these observations help us conclude that Varaita and Maira Rivers might
not be receiving any detrital signature from the Dora Maira Massif presently.
However, the small number of rock samples analysed does not permit us to make
any conclusive remarks. Clearly, more studies are needed in order to better
characterise the potential source lithologies and their rutile geochemical signatures.
84
Chapter 4
4.7.1.3. Po River
The Nb-Cr diagram for the Po River sample (SL 10/15 – Fig. 1a) displays a
large spread of concentration for these elements as it probably has multiple sources
for its sediments (Fig. 3e). The metamorphic Sesia Lanzo rutiles overlap with almost
the entire pelitic detrital fraction, indicating that it might represent the main source of
rutile from metapelitic rocks found in the Po’s recent sediments. To further
investigate if the pelitic fraction of the detrital rutiles from Po River are drained from
the SLZ, a multi-element diagram from both groups of rutile grains has been made
(Fig. 6). The grey area represents the SLZ samples and the individual points
represent detrital grains from Po River. This chart clearly shows that at least 20
detrital grains (out of 122) have a very similar geochemical signature with
metamorphic rutiles from the SLZ. In contrast, the Dora Maira rutiles are not
represented in the detrital record. Most of the detrital rutiles from Po River have a
mafic origin, based on the Nb-Cr diagram. Therefore, this discrimination diagram
can be used for HP-LT tectonic settings on large source-rock-to-sediment distances
too. The Po River sample appears to contain more detritus from the SLZ than other
sources and this might imply that more of that material has been eroded than the
other sources so potentially this source is being preferentially weathered.
85
Chapter 4
Symbols – Rt grains from Po River
Grey shaded area – trace element composition range for Rt from the SLZ
FIGURE 6: Multi-trace element diagram containing rutile compositions normalised
to R10; the grey field represent the range of composition for the SLZ rocks, while
the individual points represent Po River detrital rutiles; this diagram shows that at
least 19 grains (from 121 grains) from the sediments can be linked back to their
source rocks from the SLZ.
4.7.2. Zr-in-Rutile Thermometry
Figure 3 shows Po’s hydrographical structure including the locations of the
sampled rivers. It also shows the Zr concentration frequency diagrams for the
different areas (Rio delle Balme, Chiusella 1 and 2, Dora Baltea, Varaita, Maira and
Po) that were calculated using two calibrations: Ferry and Watson (2007) and
Tomkins et al. (2007). The rest of the potential source rocks (Monviso, the country
rocks from the DMM and the IVZ) are discussed separately.
86
Chapter 4
The Rio delle Balme/Chiusella 1 diagram (Fig. 3a) has two main peaks
corresponding to low-temperatures – 511 and 541 °C. They make up 60 % of the
detrital rutiles load, with the rest clustering around a peak of 577 °C. The average
calculated temperature for metamorphic rutiles coincides with the second Zr peak
(538 °C). The estimated peak temperature for the HP unit of the SLZ is 500-600 °C
(Pognante, 1989; Tropper et al., 1999; Zucali et al., 2002), therefore, in agreement
with our results. Moreover, Desmons and O’Neil (1978) have calculated the average
formation temperature for the Eastern Sesia Lanzo Zone, using oxygen isotope
fractionations between quartz and rutile and between quartz and white mica, to be
540 °C.
The Chiusella 2/Dora Baltea plot (Fig. 3b) has a similar distribution but with
a few more HT rutiles. The 577 °C peak from Rio delle Balme/Chiusella 1 shows up
in the Torrente Chiusella 2 River too, increasing from 40 % to 61 % from the total
detrital load. Another significant peak is the 533 °C, which is probably the one from
Rio delle Balme/Chiusella 1 corresponding to the SLZ metamorphic rutile. The
lowest T peak, 498 °C, from the first diagram is present here too. The highest
percentage of detrital rutile in the Dora Baltea River (91 %) is represented by grains
with an average temperature of 520 °C, which might be interpreted as the
correspondent of the lowest T peak from the former two diagrams. The rest of the
detrital load of the river is represented by HT rutiles, clustering around two peaks at
722 and 769 °C. Considering that the estimated peak temperature for the Ivrea Zone,
using the Zr-in-rutile thermometer, is 930 °C (Luvizotto and Zack, 2009), these HT
values could be sourced from this granulite-facies massif. Also, the HT fraction has a
metapelitic source, as shown by Fig. 3b, in agreement with the lithology of the rocks
that contain rutile from the IVZ (Luvizotto and Zack, 2009). This is further
demonstrated by Fig. 5 which shows that the trace element signature of metamorphic
rutile from the IVZ (Luvizotto and Zack, 2009) overlaps with the geochemical
signature of the HT detrital rutiles from Torrente Chiusella 2/Dora Baltea.
These interpretations illustrate that the Zr-in-Rutile thermometer is a reliable
tool for the HP-LT rocks from Sesia Lanzo where the catchment area is in the
proximity of the source rocks. Also, the high temperature grains suggest that the
87
Chapter 4
detrital rutiles are a good provenance tool for granulite facies terranes using this
thermometer/calibration.
The detrital rutiles from Varaita and Maira were investigated for three
possible source rocks: (1) the biotite-phengite gneiss country rocks; (2) the UHP
rocks from the DMM; (3) the Monviso metapelites and metagabbros. The main peak
in the Varaita River (Fig. 3c - 91 %) is at 585 °C. This value is very close to the peak
temperature estimated for the Monviso rocks, which is 550 °C, at ~2.6 GPa
(Angiboust et al., 2012). The secondary peak, at 432 °C could have multiple origins,
which cannot be further discussed due to lack of information. Maira River (Fig. 3d)
has quite a large spread of Zr concentrations, with the main peak at 379 °C. Again,
this value is very difficult to interpret, as there are multiple sources of rutile close to
the catchment area of these two rivers (Fig. 1). However, a secondary peak is at a
value very close to the peak T estimate for Monviso, which is 529 °C. Furthermore, a
third peak at 608 °C could be correlated to the country rocks from the Dora Maira
Massif. It has been suggested that these rocks might have reached 630 °C at about
1.5 GPa (Schertl et al., 1991). The last important peak in the Maira River is at
784 °C, a value very similar to the peak T estimate for the DMM – 800 °C (Schertl et
al., 1991). Using the Ferry and Watson (2007) calibration (for silica-saturated rocks),
the Zr-in-rutile thermometer indicates an average temperature of 595 °C for the
metamorphic rutiles from the DMM. As this calibration considers an approximate
peak pressure of 1.0 GPa, the obtained temperature will be much lower for rocks
formed at higher pressure conditions. For the DMM, Schertl et al. (1991) has
calculated a peak pressure of 3.7 GPa. Tomkins et al. (2007) calibration uses a
pressure correction in its formula, being a better option for HP-UHP rocks (Zhang et
al., 2010). This calibration indicates a peak temperature of 694 °C, which is more
still considerably lower than the estimated peak T in the DMM (800 °C - Schertl et
al., 1991). However, Groppo et al. (2007) calculated a pressure of 3.8 GPa at
730 °C, within the diamond stability field. Schertl et al. (1991) found evidence for
3.7 GPa at 800°C but already discussed that due to a slightly lower water activity the
reaction curve tc + ky = pyp + coe + water (given for pure phases and a water
activity of 1) has to shift to lower temperatures which also automatically means that
you enter the diamond stability field. Therefore, the obtained temperature for the
DMM is quite similar to measurements made by Groppo et al. (2007).
88
Chapter 4
The Nb vs. Cr diagram (Fig. 2c) showed no correlation of the detrital rutiles
with the metamorphic grains from the DMM. Another important aspect to consider is
that the DMM is the only HT source of rutile in this part of the Western Alps. Also,
Maira and Varaita Rivers are the closest catchment areas to the DMM, which would
imply that any eroded material would drain into these two rivers. Also, it is worth
mentioning that thermometry calculations for the detrital sand samples have been
made using the Ferry and Watson (2007) equation, whereas for the DMM rutiles, the
coesite-field equation from Tomkins et al. (2007) has been used. Therefore, the latter
equation will produce lower temperatures than the former, for the same Zr
concentrations. This would partially explain the discordances between the HT
detrital rutiles from Maira and the metamorphic rutiles from the DMM.
Nevertheless, the limited amounts of samples do not permit any conclusive
remarks. Future studies on mineral inclusions in the HT detrital rutiles would be
useful to further investigate these observations.
These observations do not allow any unequivocal interpretation regarding the
reliability of the Zr-in-Rutile thermometer to be used on UHP-HT pelitic source
rocks.
In the Po River (Fig. 3e), 97 % of its detrital rutile load has two lowtemperature peaks, at 467 and 553 °C. The second peak temperature estimation is
very close to the peak metamorphic temperature estimated for the SLZ. Moreover,
the Nb vs. Cr diagram shows that most of the pelitic fraction of the Po River
overlaps with the SLZ metamorphic rutiles. Furthermore, Fig. 6 shows the
composition in several trace elements for metamorphic rutiles from the SLZ (grey
field) and 19 individual detrital grains from the Po River overlapping the
geochemical signature. All this clearly indicates that a large fraction of the SLZ can
be found in the Po River, which is even more impressive considering the large
distance between the source and the sampled sediment. Regarding the mafic rutile
fraction within the Po River, Monviso is a possible source, considering the peak
temperature estimated for this massif (550 °C). Moreover, the Eclogitic and
Blueschist Piemonte Units from the Penninic Domain (Fig. 1a) and/or metabasites
89
Chapter 4
from the Mombarone and Bard Units in the SLZ (Fig. 1b) could be other possible
sources of rutile from mafic source rocks.
The two secondary peaks making up the rest 3 % of the Po River sample are
HT, with values at 736 and 757 °C, coincide more or less with the HT detrital rutiles
found in Maira River (728 °C) and in Torrente Chiusella 2/Dora Baltea (769 773 °C), respectively. This study has already demonstrated that the IVZ is draining
into Torrente Chiusella 2 and Dora Baltea Rivers, based on petrogenetic and
thermometry studies, therefore the granulite-facies signature is being preserved in
Po’s sediments as well. Regarding the HT rutiles found in Maira River, the only
possible source that this study has considered is the DMM, but the Nb vs. Cr
diagram indicates that there is no correlation between the metamorphic and detrital
rutiles. Therefore, this problem remains open to discussion and future studies of
mineral inclusions in the detrital rutiles might help resolve it.
The most important conclusion of all these observations is that the blueschistfacies signature is much higher compared to HT eclogite- to granulite-facies rocks.
The biggest contributors of rutile in the Po River are the SLZ for the LT pelitic
fraction, and, probably, the Monviso Massif, for the LT mafic fraction. This is even
more impressive considering the large distance between the eroded rocks and the
sediment’s location (~70 km).
These results further demonstrate the capability of detrital rutile to
provenance HP-LT source rocks, mafic or pelitic, in large riverine systems. It is a
different situation for the HT rocks as they constitute a much smaller fraction of the
detrital grains in the Po River. If in the proximity of the catchment area they have a
major contribution to the sediment load, as the distance between the source and the
sediments grows, they significantly decrease in abundance. It could be that the LT
source rocks supply more rutile thus biasing the final population.
90
Chapter 4
4.7.3. Trace element budgets
Budgets for four trace elements in rutile (V, Cr, Zr and Nb) were calculated
for Sesia Lanzo and Dora Maira samples (Fig. 4a-d). Vanadium and Cr are known to
have the same ionic charge and very similar ionic radii (0.64 and 0.61 Å,
respectively), therefore, they will have comparable geochemical behaviour. This can
be seen better in the SLZ samples, where both elements have similar percentages –
less than 10 %. In the DMM samples, however, Cr has a more predictable behaviour,
with the highest concentration in the jadeite quartzite. This might be explained by the
fact that this sample has the smallest amount of garnet, therefore, Cr accommodates
better in rutile. At the other end, the lowest Cr percentage is found in sample 15623a
which has the highest abundance of garnet. It has been shown that rutile has a
preference for clinopyroxene and garnet, and a weaker affinity for rutile (Zack et al.,
2002b). Vanadium, on the other hand, does not seem to be controlled too much by
the amount of garnet, rather it is governed by the Fe-bearing silicates in general
(Klemme et al., 2005). Hence, changes in V concentration in rutile may be related to
changes in the paragenesis at constant whole-rock V concentration. This could
indicate that at higher pressure conditions, V decouples from Cr, and has a more
complex behaviour.
The Zr budget is mainly controlled by zircon, therefore, the low percentages
(all <1 %) is in agreement with this observation. At the other end, rutile is known to
be the dominant carrier of Nb – up to 90 % (Zack et al., 2002b), which is reflected in
our results too. Samples with the highest percentage of rutile (5 %) display,
proportionally, the highest abundances of Nb: MK 30, MK 126 from the SLZ and
20254 and 19464 from the DMM. While at the lower end, are samples with a rutile
concentration of 1-3 %.
91
Chapter 4
4.8. CONCLUSIONS
1. Provenance studies on the Sesia Lanzo Zone have demonstrated the
applicability of rutile as a petrogenetic tool for pelitic rocks in HP/LT
tectonic settings
2. The Zr-in-Rutile thermometer is a reliable method for HP metapelitic rocks
with a good correlation between metamorphic and detrital rutiles; calculated
temperatures are in agreement with previous studies (538 °C for the SLZ
metamorphic rutiles)
3. The geochemical signature of the source rocks is unaltered in rutiles even
over long distances (Po River) for HP-LT rocks (SLZ)
4. The Dora Baltea River contains some high-temperature rutiles that could be
linked back to the granulite-facies metapelites from the IVZ; this is
strengthened by similar trace element compositions and Nb vs. Cr
observations on the detrital and metamorphic rutiles
5. The Nb vs. Cr discrimination diagram for the Dora Maira Massif has shown
no correlation between metamorphic and detrital rutiles; this might suggest
that the eroded material is not drained into the Varaita and Maira Rivers, or
that the Nb vs. Cr diagram has a limited applicability at UHP/HT conditions
6. Rutile thermometry on the UHP-HT samples indicates that the Tomkins et al.
(2007) calibration is a better fit for these rocks, than the Ferry and Watson
(2007) calibrations, because it contains a pressure correction; a peak
temperature of 694 °C is considerably lower than previous estimations on the
DMM (800 °C), considering a potential resetting of Zr during cooling /
retrogression
7.
Several T peaks in the Varaita and Maira Rivers can be linked with
temperature estimations from the Monviso Massif, the DMM country rocks
and the UHP rocks from Dora Maira
92
Chapter 4
8. The Po River contains a higher percentage of LT rutiles (97 %) compared to
HT grains (3 %); this might suggest that the rivers could control this
concentration or most likely that the source rocks supply more rutile thus
biasing the final population
9. The pelitic fraction of the LT detrital rutiles from the Po River can be linked
back to the SLZ, also using trace elements; moreover, the metamafic fraction
could possibly be sourced by the Monviso Massif; lastly, no definitive
conclusions have been made regarding the HT detrital rutiles, but the IVZ
and DMM are two potential sources.
10. Pelitic rocks formed at HP/LT conditions could represent the weakest HP
material during erosion in mountain belts, which could account for their
paucity in ancient exhumed orogenic belts
93
Chapter 5
Trace-element characteristics of
rutile in HP-UHP rocks in the
Western Gneiss Complex, Norway:
implications for Zr-in-rutile
thermometry and provenance
studies
5.1. ABSTRACT
Rutile is widely distributed in metamorphic rocks ranging from greenschist to
granulite facies. It has been demonstrated to be a key mineral in provenance studies,
property reflected by its Nb and Cr concentration. Moreover, the Zr content
incorporated in its structure during crystallisation provides the temperature at which
rutile formed. These features are further investigated in high-pressure (HP) to
ultrahigh-pressure (UHP) rocks from the Western Gneiss Complex. Trace element
characterisation (V, Cr, Zr, Nb, Mo, Sn, Sb, Hf, Ta, W and U) is used to fingerprint
the geochemical features of rutile in both metamafic and metapelitic source rocks.
The Nb vs. Cr diagram suggests trace element mixing above 650 °C, with mafic HT
rocks plotting along the mafic-pelitic boundary and some in the pelitic area. The LT
samples behave coherently, plotting in the correct region of the diagram. The Zr-inrutile thermometer suggests peak temperatures that are generally higher with ~40 –
100 °C than previous estimations. These are argued to be more reliable than the
exchange geothermometers used for former calculations. Extremely high Nb
compositions (up to 118 000 µg/g) in two internal eclogites, hosted by a mantlederived, orogenic peridotite, suggest some Nb-rich external source. Trace element
comparison between metasomatic and metamorphic rutiles is not conclusive for their
discrimination. However, published detrital rutile data from the Norwegian Sea
indicates a good correlation with them using trace element compositions.
Observations regarding rutile formed by the breakdown of ilmenite and
titanomagnetite have been made. Moreover, trace element characterisation has been
94
Chapter 5
used to fingerprint distinct geochemical compositions for rutile in a HP/LT Omp
vein and rutile in a UHP/HT Omp vein. Trace element profiles in rutile grains from 5
different samples have been described.
5.2. INTRODUCTION
Rocks exposed at the surface of the Earth are prone to weathering and
erosion, including metastable rocks formed in high-pressure or ultrahigh-pressure
tectonic settings. The clastic sediments that derive from these rocks generally contain
heavy minerals (e.g. zircon, titanite, tourmaline, garnet, chrome spine and rutile) that
keep the geochemical signature of the source rocks. Heavy mineral analysis and
geochemical description are useful tools for exploration of mineral resources, basin
analysis and palaeotectonic reconstructions.
Rutile has been shown to be a key mineral for provenance information and
metamorphic facies characterisation (Zack et al., 2004a and b, Watson et al., 2006,
Tomkins et al., 2007 and Ferry and Watson, 2007, Triebold et al., 2007, Meinhold et
al., 2008). This study investigates the geochemical parameters of rutile in HP-UHP
rocks from the Western Gneiss Complex (WGC) a continental ultra-high pressure
terrain in the Scandinavian Caledonides, by using the Nb vs. Cr discrimination
diagram, the Zr-in-rutile thermometer and trace element characterisation (V, Cr, Zr,
Nb, Mo, Sn, Sb, Hf, Ta, W and U). This will further aid in assessing rutile’s ability
to reflect an UHP signature in the detrital record of old subduction systems.
In the southern Baltic Shield, titanium deposits are of three categories:
igneous (ilmenite, magnetite and apatite), metasomatic (Proterozoic scapolitised and
albilised rocks) and metamorphic (such as rutile-bearing eclogite-facies rocks –
Korneliussen et al., 2000a). During the Caledonian orogeny, high-pressure
metamorphism and eclogitisation transformed mafic rocks with ilmenite into rutilebearing rocks in which iron from ilmenite entered garnet and titanium formed rutile
(Korneliussen et al., 2000b). Also, metasomatic alteration of Ti-rich gabbros and
amphibolites is another process by which later rutile deposits formed (Korneliussen
et al., 2000b).
95
Chapter 5
As rutile forms at pressures between 1.2 and 1.5 GPa (Liou et al., 1998; John,
2010), its occurrence is concentrated in rocks involved in major convergent platetectonic processes, such as subduction of oceanic and continental crust or crustal
thickening in the course of continental collision.
The close connection between rutile formation and convergent tectonic
processes calls for a closer examination of rutile geochemistry, including minor and
trace element compositions. This could help the investigation of ancient settings,
where a fresh record does not allow a more comprehensive study. In situ analysis by
laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) is ideal
due to the speed of analyses and the identification of contaminating mineral
inclusions compared to single grain dissolution techniques.
In this paper we characterise trace element patterns of rutile in low- and
medium-T eclogites (after definitions of Carswell, 1990), eclogite-facies pelites
including eclogites derived from granulites and fingerprint different geochemical
compositions for metasomatic and metamorphic rutile. We evaluate the Zr-in-rutile
thermometer (Zack et al., 2004a; Watson et al., 2006; Tomkins et al., 2007; Ferry
and Watson, 2007) to evaluate how well it fits the known temperature regime and to
study the possible influence of silica undersaturation. As different tectonic settings
will produce different types of metamorphism, this will help assess how reliable is
this thermometer in subduction systems. Low T-high P regimes (where blueschists
and low T eclogites form) are exclusively produced during modern, fast subduction
(e.g. Piatt, 1975; England and Thompson, 1984; Cloos, 1985). This terrain was
chosen for the overall study as it extends the range of P and T that previously
covered in the work on Syros and Western Alps rocks (see Chapters 3.3 and 4.3) and
focuses more on UHP rocks. Also, the WGC is a continental subduction zone that
could potentially have its own characteristic rutile signature; evidence for UHP and
deep continental subduction did not happen before the Neoproterozoic (e.g. Brown,
2006), but detrital rutiles could be a way of testing this.
One of the other major causes of rutile growth in the crust is due to
metasomatism and therefore we need to determine how to distinguish metasomatic
rutile from metamorphic rutile. Our sample-set from the Western Gneiss Complex
96
Chapter 5
(Fig. 1) contains metasomatic rutile in addition to HP-UHP metamorphic grains and
here we present trace element studies on these two types of rutiles to identify
geochemical tracers that distinguish between them.
This study will further aid the identification of the tectonic setting of the
high-pressure to ultrahigh-pressure metamorphism by using trace element
characteristics of rutile. The overarching aim is to use detrital rutile as a tool for
investigating long-eroded orogenic belts to reconstruct their tectonic evolution.
5.3. GEOLOGICAL SETTING
The Scandian phase of the Caledonian Orogeny was initiated by the closure
of the Iapetus Ocean that started about 435 Ma ago (Griffin & Brueckner, 1980,
1985; Gebauer et al. 1985; Roberts and Gee, 1985; Mørk & Mearns, 1985;
Krabbendam et al., 2000; Hacker and Gans, 2005). The continental collision resulted
in the margin of the Baltic craton being subducted northwestwards below Laurentia
(Root et al., 2004). The Western Gneiss Complex (the outcrop area - Fig. 1) is a
large basement window exposing reworked Baltic craton that was overlain by a
series of Caledonian nappe units (i.e. the lower, Middle, Upper and Uppermost
Allochthons) by 435-400 Ma. The predominant lithology of the Western Gneiss
Complex (WGC - the lithotectonic assemblage) is Proterozoic granodiorite-tonalitic
gneisses with granitic leucosomes. Other lithologies are anorthosites, ultramafic
rocks, metasediments and mafic rocks (Bryhni, 1966). Eclogites are ubiquitous in all
but the extreme SE of the WGC, but are particularly common in belts of
metasediments and anorthosites (Bryhni, 1966; Carswell, 1968). They cover around
25 000 km2 (Griffin et al., 1985) with UHP eclogites (coesite-bearing) located in the
NW (Root et al., 2005).
The Scandian Phase of the Caledonian Orogeny and the associated ultrahighpressure metamorphic event took place 420-400 Ma ago (Griffin and Brueckner,
1980, 1985; Gebauer et al., 1985; Mørk and Mearns, 1986). It reached 3.6 GPa and
800 °C (Lappin and Smith, 1978; Cuthbert et al, 2000; Terry et al., 2000b; summary
in Hacker, 2006) and possibly as high as 4.5 GPa (Vrijmoed et al., 2006; Carswell et
al., 2006). The Scandian eclogite facies metamorphic grade increases from ≤ 600 °C
97
Chapter 5
(in the SE) to ≥ 750 °C in the NW – (Krogh, 1977; Griffin and Brueckner, 1980;
Krogh and Carswell, 1985; Cuthbert et al., 2000; Kylander-Clark et al., 2009).
Coesite-bearing eclogites and gneisses are found in three antiformal culminations
between Nordfjord and Modlfjord (Fig. 1), of which the northernmost one centred on
the
Nordoyane
is
known
to
contain
metamorphic
microdiamond
(e.g.
Dobrzhinetskaya et al., 1995).
Exhumation took place by E-W extension with a relatively rapid rate between
410-385 Ma (e.g. Wilks & Cuthbert, 1994; Berry et al., 1994; Andersen, 1998;
Fossen and Dallmeyer, 1998; Root et al., 2004), at amphibolites-facies conditions
(Hacker, 2007) associated with extensive anatectic migmatisation in the
northwestern part of the WGC (Cuthbert, 1995; Labrousse, 2002).
The famous UHP metamorphic rocks (Coleman and Wang, 1995) described
in the WGC include, in addition to normal coesite eclogites (Smith, 1984, 1988;
Wain, 1997b), opx eclogites (Lapin and Smith, 1978; Carswell et al., 1985; Carswell
et al., 2006), garnet peridotites (Bryni, 1966; Carswell, 1974, 1986; Lapin, 1974;
Brueckner, 1977; Medaris, 1980, 1984; Jamtveit, 1984; Brueckner et al., 2010;
Beyer et al., 2004), coesite gneiss (Smith, 1984; Wain, 1997b; Cuthbert et al., 2000;
Terry et al., 2000b) and diamond-bearing gneiss (Dobrzhinetskaya et al., 1995; and
diamond-bearing ultramafites: Van Roermund et al., 2002; Vrijmoed et al.,
2008).They are divided in two groups, based on the association with the surrounding
rock: as boudins within gneisses – “country rock eclogites” or “external eclogites”
and within orogenic peridotites massifs known as “internal eclogites” (Brueckner et
al., 2010). The external eclogites have reached HP-UHP and HT conditions, as
indicated by coesite (Smith, 1984; Wain, 1997b; Cuthbert et al., 2000; Terry et al.,
2000b). Estimations regarding P-T conditions are 2.4 – 6.0 GPa and 650 – 900 °C
(Cuthbert et al., 2000; Carswell et al., 2006; Van Roermund 2009a).
98
Chapter 5
FIGURE 1: Geological map of the WGC between Sognfjord and Molde, showing
sample locations. Geological units after Kildal, 1970; Robinson, 1995; Tveten, 1995;
Tveten and Lutro, 1995a, b. Eclogite localities from Krogh, 1980, 1982; Cuthbert,
1985; Griffin et al., 1985; Smith, 1988; Bailey, 1989; Chauvet et al., 1992;
Krabbendam and Wain, 1997 (including additional unpublished data of the authors).
All rights reserved to Simon Cuthbert for map editing (after Cuthbert et al., 2000).
99
Chapter 5
The UHP eclogite zones contain numerous highly magnesian dunite bodies
with local development of garnet peridotite and olivine-garnet websterites, as well as
the “internal” eclogites. These “orogenic peridotites” are considered to be fragments
of the Laurentian subcontinental mantle that were incorporated into the top of the
subducting Baltica slab (Beyer et al., 2012 and refs within). Most of the garnetbearing parageneses in the peridotites appear to be Proterozoic in age, long predating
Scandian collision (Brueckner et al., 2010) and in the sampling area of this study no
Scandian garnet is known in the peridotites. However, some of the internal eclogites
with Fe-Ti-rich compositions hosted within the orogenic peridotite have enigmatic
“early Caledonian” ages (Mehta & Brueckner, 2003; Medaris et al., 2005) and may
be related to the metamorphism of the external eclogites, but this remains uncertain.
The largest of the orogenic peridotites is the Almklovdalen Ultramafic body, located
in the southern WGC (Fig. 1), part of the UHP metamorphic zone (see review by
Carswell et al., 1999). It is made of several ultramafic bodies located around a
central gneiss area (Grønlie and Rost, 1974). Chlorite-poor dunite or harzburgite is
the main rock type with chlorite-rich peridotites, garnet lherzolites, wehrlites and
eclogites less abundant (Beyer et al., 2006). At Raudkleivane, Fe-rich eclogite pods
can be found (sample N 55), that consist of Na-rich omphacite + almandinegrossular-pyrope garnet + rutile + apatite (Griffin and Qvale, 1985). They have been
described as “layers in garnet peridotites” (Lappin, 1974). The Gusdal Quarry is
another important ultramafic body found at Almklovdalen, consisting mainly of
fresh, anhydrous dunite, which is relatively free of chlorite and serpentine. Internal
Ti-rich eclogite boudins can be found (samples N 38 and N 40), as well as
pyroxenites and garnet peridotites (Medaris and Brueckner, 2003).
5.4. SAMPLE DESCRIPTION
A total of 11 samples (Fig. 1) have been investigated, 8 for metamorphic
rutile grains and 3 for metasomatic grains. Samples containing metamorphic rutiles
(Table 1) are from the Western Gneiss Complex (N 27, N 28, N 29, N 31 and N 35)
and from the Almklovdalen Ultramafic body (4-1A, N 38 and N 40). The Nybo
eclogite, previously described by Lappin & Smith (1981) is a bimineralic, fresh
eclogite with xenoblastic, coarse-grained garnets and prismatic omphacite defining a
100
Chapter 5
moderate linear shape fabric (N 27). Rutile appears as relatively small subhedral
grains, ranging from 30 to 200 µm, as inclusions in garnet and in the matrix.
The Vetrhuset eclogites are part of a swarm of pods within a
metasedimentary unit sandwiched between orthogneisses (Carswell et al., 2003).
They are known to be coesite-bearing (Wain, 1997a; Cuthbert et al., 2000), being
surrounded by eclogite facies schist and gneiss with prograde zoned garnets (Wain,
1998). The coesite-bearing eclogite (N 28) is made of large, subidioblastic garnets
with omphacite defining a linear shape fabric. Rutile grains are subhedral, 30-300
µm and developed along the foliation. They can be found as inclusions in garnet, in
the core and in the rim, and in the matrix. Eclogite N 29 contains large, xenoblastic
garnets. Rutile grains are anhedral, 2-3 cm in size and form dense aggregates. The
UHP pelitic garnet-kyanite-phengite schist (N 31) is slightly retrograded with biotite
+ plagioclase replacing phengite and fine-grained white mica replacing kyanite.
Garnets are subhedral, containing quartz and rutile as mineral inclusions. Carswell &
Cuthbert (2003) found PCQ after coesite in a garnet rim. Small, subhedral rutile
grains are found in the matrix as well (30-80 µm).
101
Chapter 5
TABLE 1: Mineralogical description of the investigated source rocks: samples 1-7
were analysed for metamorphic rutiles and 8-11 for metasomatic rutiles.
102
Chapter 5
The eclogite from Flatraket Bekke (N 35) is composed of coarse-grained,
xenoblastic garnet, with a moderately developed foliation given by omphacite and
white mica. Rutile is parallel to this foliation, exhibiting a subhedral crystal shape. It
is 30-300 µm long and appears as inclusion in garnet and in the matrix. The eclogite
was recrystallized from a mafic (metagabbroic?) layer in a protolith of granulitefacies anorthosite (Wain, 2001).
The samples from Gusdal mine in the Almklovdalen peridotite massif (N 38
and N 40) are bimineralic, Fe- and Ti-rich eclogites that form large pods within
chlorite and garnet peridotites and garnet websterites with large, subidioblastic
garnets. Rutile appears as small grains (0.1-0.2 mm) in the matrix and in association
with amphibole (hornblende or barroisite), forming clusters and aggregates,
surrounding garnets (0.1-25 mm). The last investigated metamorphic sample is a Feand Ti-rich eclogite from Raudkleivane (Griffin & Qvale, 1985; Mehta & Brueckner,
2003) with a medium-grained texture made of omphacite, garnet, rutile and apatite
(these features are also characteristic for the Almklovdalen peridotite massif
samples) . Garnets from these “superferrian” internal eclogites have garnets with
strong “prograde” colour zoning with darker cores and paler rims, having inclusions
of aluminous amphibole in the cores (Griffin & Qvale, 1985). Some paler garnet
enclosing rutiles is recrystallized into bands of polygonal garnet subgrains.
Retrogression is indicated by the presence of secondary amphibole and the
breakdown of omphacite to symplectite. Rutile is present as small grains, 30-100 µm
in size, in the matrix and as inclusion in garnets.
Two metasomatic samples (N 19 and N 55) are omphacite veins with large
aggregates of rutile. Sample N 19 from Naustdal, a Ti-rich eclogite with a locallypreserved gabbroic protolith that lies in the lowest-T part of the WGC (Fig. 1), is
made of a layer of small grains of idioblastic garnets with stretched-out quartz veins,
perpendicular to the garnet layer, a layer of omphacite and one of amphibole. Rutile
appears as small, subhedral grains in association with garnet and quartz (0.1-0.2 mm)
and as long, prismatic grains (0.2-25 mm), in association with the omphacite and
amphibole layers. The last metasomatic sample (N 36) is an eclogite facies vein-fill,
from within the Flatraket anorthosite mass (Fig. 1), mostly made of quartz, white
103
Chapter 5
mica (phengite?), kyanite and rutile. Rutile grains are long prismatic and 1-2 cm in
size. Microphotographs for relevant samples are presented in Figure 2a-f.
a
b
c
d
e
f
FIGURE 2: Microphotographs of thick (~ 100 µm) sections for significant samples
(a scale bar of 1 mm is visible in all images): a. Sample 4-1A (Raudkleivane site)
showing metamorphic rutile in an eclogite; b. N 28 is a PCQ-bearing eclogite from
Vetrhuset with metamorphic rutile grains; c. N 36 shows a cm-size metasomatic
rutile in a white mica matrix; d. N 38 is a Gusdal Quarry Ti-rich eclogite with rutile
forming clusters together with an Amp at the Omp-Grt limit; e. N 40 is another
Gusdal Quarry Ti-rich eclogite with rutile forming clusters together with an Amp
inside a garnet; f. N 55 shows metasomatic rutile in Omp+Chl vein.
104
Chapter 5
5.5. METHODOLOGY
Thick sections and epoxy resins have been prepared for investigations.
Analysis was conducted using a New Wave UP-213 laser ablation system (solid state
Nd:YAG laser operating at 213 nm, aperture imaged and with a pulse width of 2–
3 ns), combined with an Agilent 7500cs ICP mass spectrometer.
Analyses were calibrated against the NIST SRM 610 glass (GeoReM
preferred values: http://georem.mpch-mainz.gwdg.de/), in addition to rutile standard
R10 (Luvizotto et al., 2009b). Element spectra were reduced using the software
‘LAMTRACE’ (Simon Jackson, Geological Survey of Canada). Data were collected
online at 1 point per peak in time resolved mode and processed offline by
LAMTRACE. The measurements included the following isotopes: 26Mg, 27Al, 29Si,
31
P, 43Ca, 45Sc, 49Ti, 51V, 52Cr, 55Mn, 59Co, 66Zn, 69Ga, 72Ge, 85Rb, 88Sr, 89Y, 90Zr,
93
Nb, 95Mo, 118Sn, 121Sb, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb,
163
Dy, 165Ho, 167Er, 169Tm, 173Yb, 175Lu, 177Hf, 181Ta, 182W, 208Pb, 232Th, 238U.
For more details, please refer to Chapter 2.
5.6. RESULTS
5.6.1. Source rock rutile geochemistry data
The Gusdal and Raudkleivane eclogites from the Almklovdalen peridotite are
treated separately, as they severely bias the average compositions.
The metamorphic rutile has a large spread of Nb concentration, from 11 to
5280 µg/g, with an average of 658 µg/g. The metasomatic rutile has a more narrow
distribution with values between 41 and 1560 µg/g and an average of 1560 µg/g.
Chromium varies from 40 to 786 µg/g in metamorphic rutiles and from 5 to 142
µg/g, in metasomatic rutiles. The average Cr composition in metamorphic grains is
244 µg/g and 72 µg/g in metasomatic grains.
105
Chapter 5
The Almklovdalen eclogites have much higher Nb and Cr concentrations,
ranging from 1280 to 118 000 µg/g and 746 to 2020 µg/g, respectively. The average
Nb composition is 36984 µg/g and the average Cr concentrations is 1231 µg/g.
On the Nb vs. Cr plot (Fig. 3a), the investigated samples are part of both
groups of the diagram, metamafic and metapelitic, groups identified by previous
studies (Zack et al., 2004b; Triebold et al., 2007; Meinhold et al., 2008). Samples
that plot on the metamafic region of the diagram are 4-1A, N 19, N 29 and N 35,
with Nb concentration <800 µg/g. Samples with Nb > 800 µg/g, plotting on the
metapelitic area of the diagram, are N 38, N 40, N 31 and N 36. The first two are
internal eclogites, the third is a true pelite and N 36 is a hydrothermal segregation.
The rest of the samples – N 27, N 28 and N 55, have Nb compositions along
the metamafic-metapelitic limit, with rutile grains plotting in both groups: 761-959
µg/g, 114-1100 µg/g and 758-1560 µg/g, respectively. A very interesting observation
is that the Nb concentration for the internal eclogites from the Gusdal Quarry goes
up to 118 000 µg/g (0.118 wt %).
Figure 3b contains the investigated metamorphic and metasomatic rutile
groups plotted against detrital data from the Norwegian Sea (Morton and Chenery,
2009). The Almklovdalen internal eclogites are treated as a separate band on the
diagram as they bias the main eclogite band. The diagram shows that there is a good
correlation between the metamorphic and metasomatic samples, with the sample
from Naustdal (N 19) plotting outside the detrital field. More importantly, the
Almklovdalen internal eclogites partially overlap with the geochemical signature of
the detrital rutiles. Moreover, the multi-element diagram (Fig. 4), from which the
Almklovdalen internal eclogites have been taken out, further sustains this
observation, with overlapping compositions across the range of samples. The detrital
grains have a higher Nb, Mo, U and Zr composition range.
106
Chapter 5
10000
4-1A
Mafic
1000
N 19
Cr (µg/g)
N 27
N 28
Pelitic
100
N 29
N 31
N 35
10
N 36
N 38
N 40
N 55
1
1
10
100
1000
10000
100000
1000000
Nb (µg/g)
Metamorphic Rt
Metasomatic Rt
Almklovdalen internal eclogites
Detrital Rt (Morton et al., 2009)
10000
Cr (µg/g)
1000
100
10
1
1
10
100
1000
10000
100000
1000000
Nb (µg/g)
FIGURE 3: Provenance study plots: a. Nb vs. Cr showing the metamafic and pelitic
areas according to Meinhold et al., 2008 (after Zack et al., 2004b). The metapelitic
samples (N 31 and N 36) plot in the correct area of the diagram, whereas the
metamafic eclogites and omphacite veins are highly variable, with some behaving
"normally" (4-1A, N 19, N 29 and N 35), two of them plotting along the empirical
pelite/mafic field boundary (N 27 and N 28), and three other plotting in the pelitic
region (N 38, N 40 and N 55); b. Nb vs. Cr for metamorphic, metasomatic and
detrital rutiles (detrital data was used from Morton and Chenery, 2009) – this
diagram shows a good overlap of the three groups of rutile with only sample 4-1A
and N 38 plotting outside the detrital area.
107
Chapter 5
TABLE 2: LA ICPMS trace element data for all investigated samples (including
mean concentration with standard deviation)
108
Chapter 5
FIGURE 4: Multi-element diagram for metamorphic, metasomatic and detrital
rutiles. The two vertical segments represent element concentration for detrital grains.
This chart shows a good overlap of the detrital with the other two groups of rutiles. It
also emphasises the difference in trace element composition between metamorphic
(higher Ta, Nb, W, Sn, V, Cr, U, Hf and Zr) and metasomatic (higher Sb and Mo)
grains.
5.6.2. Zr-in-Rutile Thermometry
Rutile grains form various textural relationships with the surrounding
minerals: inclusion in garnet, in the matrix and at the contact between the garnet and
the matrix. There are also two main types of rutiles: metamorphic and metasomatic
(Fig. 2a-f). In-situ LA-ICP-MS analyses were performed on all types and
observations regarding Zr concentrations have been made (see Table 2 for
reference). Also, longitudinal and latitudinal trace element concentration profiles on
coarsest matrix (grain size 0.5–1 cm) and metasomatic (grain size 2–3 cm) rutile
grains have been analysed.
Trace element profiles that include Zr concentrations are presented in Fig. 5ae. Two metasomatic samples, N 19 and N 36, have the lowest concentrations of Zr
with an average of 77 and 110 µg/g, respectively (Table 2). Rutile in specimen N 36
has a higher Zr content, with an average value of 237 µg/g. Sample N 19 contains
rutile in two textural positions: associated with garnet + quartz and associated with
omphacite + amphibole.
109
Chapter 5
a
b
110
Chapter 5
c
d
111
Chapter 5
e
FIGURE 5: Trace element profiles in five investigated samples: a. N 19 (Nausdal) –
Cr, W and U are relatively variable; b. N 29 (Vetrhuset) – here, Zr, Hf, Sb and U are
quite heterogeneous; c. N 36 (Flatraket) – most trace elements have a flat profile,
with a few exceptions: Sb, Mo, W and U; d. N 40 (Gusdal Quarry) – Ta and Nb
exhibit strong variabilities, with higher compositions in the core of the grain; e. N 55
(Arsheimneset) – Zr, Hf and U have irregular abundances.
In the first relationship, the Zr concentration in rutile varies from 60 to 100
µg/g (Fig. 5a), whereas in the second association the Zr abundance is quite constant
– 70-77 µg/g. Rutile in N 36 has a constant Zr concentration - 105-114 µg/g (Fig.
5c). Zirconium concentration profiles in metasomatic rutiles from N 55 indicate a
considerate variability from 160 to 260 µg/g in a ~ 5mm long crystal (Fig. 5e).
Regarding the “internal” eclogites in a mantle Peridotite, from the
metamorphic rutiles, samples with the highest modal rutile have the highest
concentration of Zr: an average of 555 µg/g in N 40 and 706 µg/g in N 38. Profiles
in rutile grains from N 40 show a Zr variability of ~ 80 µg/g in a 2.5 cm long crystal
(e.g. 527-608 µg/g - Fig. 5d). Zirconium in rutiles from N 38 ranges from 400 to
1100 µg/g, forming three distinct groups: 400-600 µg/g, 600-800 µg/g and 850-1100
112
Chapter 5
µg/g (Fig. 6a). The first group is formed by rutile localised at the contact between
garnet and the matrix, whereas the other two groups is represented by grains found in
the matrix.
Another sample where the Zr concentration in rutile varies importantly is the
UHP gneiss, N 31, where values from 120 to 250 µg/g are found in grains from the
matrix (Fig. 6b). Also, in sample N 29, profiles on rutile crystals shows a variable
Zr abundance, from 110 to 190 µg/g in a 2.5 cm long grain (Fig. 5b). Rutile in N 35
has a Zr concentration ranging from 125 to 200 µg/g (Fig. 6c). The analyses were all
made on rutile grains found in the matrix. Within one grain, Zr varies from 130 to
160 µg/g (1 mm long). N 28 shows a smaller Zr variability, with values from 220 to
280 µg/g (rutile was analysed in the matrix and at the garnet-matrix contact - Fig.
6d). Within one grain in the matrix, Zr varies from 225 to 275 µg/g (1 mm long).
Specimens 4-1A and N 27 contain rutiles with approximately homogenous Zr
concentrations: 170 and 296 µg/g, respectively (Fig. 6e and f).
Zack et al., 2004a, developed an empirical thermometer based on
rutile+zircon+quartz assemblages. Subsequently, Watson et al., 2006, Tomkins et
al., 2007 and Ferry and Watson., 2007 refined the thermometer resulting in more
accurate calculations over a wider temperature and pressure range. This study uses
the Tomkins et al. (2007) calibration for most samples, which includes a pressure
correction. For the Nausdal sample, the β-quartz equation has been applied:
T (°C) = [(85.7 + 4.73P)/(0.1453-Rln[Zr]Rt)] – 273.15,
where P is the pressure (GPa), [Zr]Rt is the concentration of Zr in rutile (µg/g) and R
is the universal gas constant.
For the rest of the sample, the coesite-field equation has been used for
thermometry calculations:
T (°C) = [(88.1 + 0.206 ∗ P)/(0.1412 – R ∗ ln (Zrµg/g)] – 273.15.
Pressure and temperature conditions for the investigated samples have been
taken from Cuthbert et al. (2000), favouring the ‘max gros’ (maximum grossular)
113
Chapter 5
values, as they tend to maximize pressure and give better consistency with the
occurrence of coesite. As some sample locations do not correspond exactly with the
available P/T information, we used the closest locations to our samples.
For the Nausdal sample (N 19), the P estimations for Kvineset, Inner
Sunnfjord, are being used: 1.6-2.0 GPa. For the Vetrhuset specimens (N 28, N 29
and N 31), geothermobarometry calculations have been done, using microprobe data
for the same rock body. The Ravna and Terry (2004) Grt-Cpx-Ky-SiO2
thermobarometer has been employed and the following values have been obtained:
2.2-2.5 GPa and 814-868 °C. As sample N 31 is an UHP gneiss, it does not contain
Cpx, so the Grt-Cpx-Ky-SiO2 thermobarometry values could not theoretically be
used for this rock. However, the UHP eclogites (N 28 and N 29) are embedded in
this UHP gneiss, therefore the P and T estimations could be extrapolated to the
pelitic sample.
For the Flatraket Bekk samples (N 35 and N 36), conditions have been
selected from Cuthbert et al. (2000): 1.8-2.5 GPa. Pressure estimations from Hornet,
sample UHM-60 (same reference), have been considered for the Almklovdalen
Ultramafic body samples (4-1A, N 38 and N 40): 2.5-2.7 GPa.
Geothermobarometers have been employed for sample Arsheimneset (N 55) using
microprobe data from the same location. The minimum pressure estimate was
calculated at 3.7 GPa and is given by similar results using the Harley and Green
(1984), Carswell (1989) and Brey and Köhler (1990) grt-opx geobarometers. The
maximum value of 5.5 GPa was obtained using the Brey et al. (1986) barometer.
114
Chapter 5
a
b
c
115
Chapter 5
d
e
f
FIGURE 6: Zr concentration histograms for samples: a. N 38; B. N 31; c. N
35; d. N 28; e. 4-1A; f. N 27
116
Chapter 5
For the last sample from Nybø (N 27), the P values are from the same
locality (Nybø, Sørpollen): between 3.8 and 4.8 GPa.
Thermometry calculations (using sample averages) have been made with the
above mentioned calibration and the respective pressure estimations. Table 4
contains the results with their associated errors.
For a complete set of trace element data and temperature measurements using
the Zr-in-rutile thermometer, please refer to Appendix 12. For the EPMA whole rock
data used for geothermobarometry calculations, please see Appendix 13. Lastly, for a
comprehensive list of P/T results obtained using the EPMA data, please see
Appendix 14.
5.6.3. Metamorphic vs. metasomatic rutile
Distinguishing metamorphic from metasomatic rutile is an important aspect
of this study because it will further evaluate rutile’s properties as a petrogenetic tool.
A first order of discrimination between metamorphic and metasomatic rutile
is morphology: the first type generally appears as small prisms, whereas the second
type is long-prismatic (Fig. 2a-f).
Trace element concentrations are a second order of discrimination (Fig. 4).
Most elements (Ta, Nb, W, Sn, Cr, U, Hf and Zr) tend to have higher concentrations
in metamorphic rutile, whereas Sb and Mo have slightly higher concentrations in
metasomatic grains. Moreover, the Nb vs. Cr diagram seems to differentiate between
the two groups (Fig. 3b), with higher Nb/Cr ratios for metamorphic grains.
5.6.4. Rutile formed by the breakdown of titanomagnetite vs. rutile formed by
the breakdown of ilmenite
For the discrimination of these two types of rutile, we have used the
morphological description in Korneliussen (2000b). The Almklovdalen samples have
not been included in this grouping, as they represent a special category.
117
Chapter 5
Rutiles most likely formed by the breakdown of titanomagnetite are usually
small grains (Fig. 2a and b), mainly found in garnets as inclusions, while rutile
presumably formed by the breakdown of ilmenite forms large aggregates or clusters,
sometimes associated with chlorite (Fig. 2d and e).
Figure 7a shows that, with the exception of V, all elements are more
compatible with rutile formed by the breakdown of titanomagnetite. Rutile in the
second group seems to have a much lower U concentration range.
5.6.5. Rutile in a HP/LT omphacite vein vs. rutile in an UHP/HT omphacite
vein
Figure 7b contains trace element compositions of rutiles, sorted by
decreasing rutile/whole rock budget. There are two omphacite veins in the sample
set, a HP/LT one (N 19) and a UHP/HT one (N 55). The comparison of two similar
veins from different P-T regimes may be valuable, for constrains on trace element
mixing.
This figure shows that the composition range profiles cover almost entirely
distinct areas of the chart. N 55 generally has much higher trace element
concentrations, than N 19. The compositions overlap for V, U, Hf and Zr.
118
Chapter 5
a
b
FIGURE 7: Trace element compositions for different groups of rutiles: a. rutile
formed by the breakdown of ilmenite vs. rutile formed by the breakdown of
titanomagnetite – the first class exhibits the extreme range of concentrations for Ta,
Nb (at the high end) and U (at the low end); b. rutile from an omphacite vein (N 19)
vs. rutile from a kyanite-quartz vein (N 36) – both groups show quite different
composition ranges.
119
Chapter 5
5.6.6. Trace element profiles
Trace element profiles in metasomatic rutiles have been made for samples N
19, N 29, N 36, N 40 and N 55. In the Nausdal and Flatraket specimens (N 19 and N
36), analyses were made at an interval of ~250 µm, with 15 and 30 spots,
respectively. For the Vetrhuset and Arsheimneset samples (N 29 and N 55), analyses
were made at an interval of 300 µm, with 41 and 15 spots, respectively. The Gusdal
sample (N 40) has a 14 spots profile, at an interval of 350 µm. All profiles are rimcore-rim, parallel to the longer axis. Errors are not included as they are smaller than
the thickness of the profile line.
Trace element profile for sample N 19 (Fig. 5a) shows that some elements are
highly variable – Cr, W and U, whereas others have a relatively constant
concentration along the grain - V and Zr. The rest of the elements exhibit a milder
inconsistency. With a few exceptions, sample N 29 (Fig. 5b) has quite a flat trace
element profile. Only Zr, Hf, Sb and U look quite heterogeneous with Nb, Ta, Hf and
Mo less poignant. Very similar to this profile is the one for sample N 36 (Fig. 5c),
with less variabilities: Sb, Mo, W and U. The last two samples show high
heterogeneities for almost the entire range of elements. Niobium and Ta have higher
concentrations in the core of the grain, in sample N 40 (Fig. 5d), than at the rims.
Amongst the variable elements in N 55 (Fig. 5e), Zr is an important one, tracked by
Hf. Vanadium and Cr are the only constant trace elements.
5.7. DISCUSSION
5.7.1. Source rock rutile geochemistry data
A geochemical description, using the Nb vs. Cr diagram, is being assessed
here, in order to investigate rutile’s potential use as a petrogenetic tool in UHP and
HT tectonic settings.
Within eclogites, Nb is dominantly hosted by rutile, while Cr tends to be
shared with omphacite and garnet (Zack et al., 2002b). The Nb abundance of rutile is
120
Chapter 5
therefore controlled by the Nb/Ti ratio of the respective host rock. However, when
other Ti-bearing micas, such as biotite and phengite, are present, rutile will not
mirror the Nb/Ti ratio of the rock. This is important, as many investigated samples
contain phengite.
Previous studies have demonstrated that the Nb vs. Cr plot is indicative of
the source rock of rutile (Zack et al., 2004b, Triebold et al., 2008, Meinhold et al.,
2008). Metapelitic and metamafic rocks have been analysed and compared to
Meinhold et al. (2008) diagram (Fig. 3a).
The metapelitic sample (N 31) and the Ky-Qtz hydrothermal segregation (N
36) plot in the correct area of the diagram, whereas the metamafic eclogites and
omphacite veins are highly variable, with some behaving "normally" (4-1A, N 19, N
29 and N 35), two of them plotting along the empirical pelite/mafic field boundary
(N 27 and N 28), and three other plotting in the pelitic region (N 38, N 40 and N 55).
However, care is needed when considering the exact location of the vertical field
boundary, as it must have quite a large uncertainty in Nb, and it might allow some
Nb values for mafic rocks to be as high as 1000 µg/g. Zack et al. (2002b, 2004b) set
up the lower limit for metapelites at 900 µg/g and the upper limit at 2700 µg/g. Even
so, Nb concentrations for some metamafic samples go up to 1560 µg/g (N 55),
therefore, the Nb boundary is not the only factor worth taking into account.
One interesting aspect is that one Vetrhuset sample gives a tight cluster in the
mafic field (N 29) and the other shows a scatter starting from similar Nb values and
extending towards the pelitic gneiss (N 31) values for the same site, which does
suggest some "mixing".
The Naustdal (N 19) sample behaves as expected for a mafic rock, even
though it is a vein. This is the only sample from the coldest part of the Western
Gneiss Complex (472-509 °C – from Cuthbert et al., 2000). If we assume that a
121
Chapter 5
possible source of fluids is dehydration of phengite in pelites and other mica-rich
felsic rocks, then the experimental data seem to show that this will start to be
effective during subduction at around 675 °C (see, e.g. Spandler et al., 2007) close
to the solidus at around 2.2 GPa. Naustdal seems to have been cooler than that, while
the other investigated eclogites were probably hotter (see discussion in the
Thermometry sub-chapter), so this might provide an explanation for the mixed
Nb/Cr concentrations. The fluid that generated the vein at Naustdal probably had
some other source (perhaps internal, from the breakdown of amphibole in a
precursor amphibolite at the amphibolite-eclogite facies boundary). Therefore,
external fluid availability could be controlled by the stability of phengite, which
either undergoes melting and generates distinct aqueous fluid and melt phases, or, at
ultrahigh-pressures, undergoes dissolution to form a supercritical "melt" (i.e. a very
water-rich silicate liquid). There is some Sr isotope data on eclogite Cpx from the
UHP part of the WGC (Griffin and Brueckner, 1980, 1985) that shows high and
unsupported radiogenic Sr values (i.e. the rocks are poor in Rb); this suggests that a
fluid bearing radiogenic Sr sourced from old, felsic rocks had penetrated the eclogite
either before or during eclogite facies metamorphism. This supports the idea that
fluids generated in the host gneisses have flushed the eclogites. It is worth noting
that both samples that plot along the mafic-pelitic boundary (N 27 and N 28) form
distinct ‘enclaves’ in predominantly granitoid gneisses (Carswell et al., 2003).
Wain et al. (2001) shows that transformation of anorthosites and gabbros in
the Flatraket enclave required the action of an aqueous fluid (as a catalyst or aid to
ionic mobility), and when such a fluid was lacking the old granulite facies
mineralogy survived unaltered in spite of a high pressure overstep. The investigated
kyanite vein (N 36) from Flatraket supports the idea that such fluids were sourced
from the surrounding gneisses.
The Gusdal Nb values (samples N 38 and N 40) fall outside the upper limit
(2700 µg/g) established by Zack et al. (2002b, 2004b), with values up to 118 000
µg/g. Nevertheless, they are not too far in Cr values from the upper field boundary,
and, given the uncertainty of placing this boundary, being greatly extrapolated, they
122
Chapter 5
may lie within error of the field boundary line. High-Nb rutiles (up to 57 600 µg/g)
have been described before in zircon- and diamond-bearing eclogite xenoliths
entrained in the Jericho kimberlite, Canada (Fig. 8). These rocks are thought to have
undergone at least two episodes of metasomatism of rich-HFSE fluids or melts
(Heaman et al., 2006). The Cr concentration is lower compared to the Gusdal Quarry
samples (average of 150 µg/g compared to 1231 µg/g).
FIGURE 8: Nb vs. Cr diagram for the Ti-rich Gusdal eclogites compared to zirconand diamond-bearing eclogites xenoliths from Jericho (data from Heaman et al.,
2006): both types of eclogites have Ti-rich rutiles; however, the Gusdal samples
have much higher concentrations in Cr than the other sample.
The high Nb values could have several reasons:
1) These eclogites lie within a large slice of sub-continental mantle thought to
have been sourced from Laurentian lithosphere (the hanging-wall to the Scandian
subduction zone - see Beyer et al., 2012). They could, therefore, have been
metasomatised by fluids from the Iapetus oceanic crust subduction or the subducted
Baltica continental margin during final collision;
123
Chapter 5
2) The Raudkleivane rutiles, which have ordinary mafic values for Nb, are
virtually identical to the Gusdal eclogites; but the Gusdal eclogites form a string of
pods within a few metres of the margin of their host peridotite against the countryrock gneisses, so they could have been fluxed with fluids from the local gneisses
after the peridotite was emplaced into the Baltica crust during the Scandian collision;
the Raudkleivane eclogite could have escaped this metasomatism;
3) The Nb values for Gusdal extend up to extremely high values; perhaps the
cause is some other type of metasomatism, for example by carbonatite or highly
alkaline magma; this could have been at any time after the late Archaean, but before
the Scandian collision (the crystallisation date for these eclogites are not known;
however, the associated garnets in the peridotites are entirely Proterozoic so the
eclogites could be as well).
Considering all the above observations and arguments, we conclude that
prudence is needed in interpreting detrital rutiles with borderline Nb values as they
may have been subject to metasomatism by high-Nb fluids from associated pelites.
Based on the reasoning regarding the stability of phengite, only rutiles with T <650
°C are likely to reliably indicate an unmodified mafic Nb/Cr signature. Additionally,
the WGC "borderline" rutiles could be used to indicate the action of an external fluid
source of pelitic character at T >650 °C, which is consistent with other available
geochemical data. Other studies on hotter samples (UHT granulite-facies rocks Meyer et al., 2011; Kooijman et al., 2012) have also demonstrated that the Nb vs. Cr
discrimination diagram should be used with care, as the trace element signature,
which defines the provenance, might have been disturbed during retrograde
metamorphism.
The extreme values from Gusdal may either indicate a local source of Nb in
adjacent gneisses, or may be due to pre-collisional metasomatism in the mantle.
Several studies on UHT granulite-facies rutiles (Jiao et al., 2011; Meyer et al., 2011;
Kooijman et al., 2012) have shown that the Nb concentration can go up to 16 000
124
Chapter 5
µg/g in rocks where rutile formed by the breakdown of Ti-rich biotite, as suggested
by Luvizotto and Zack (2009). The same study also proposed that a large spread of
Nb indicates that the element’s concentration has not reached equilibrium.
Figure 3b shows a good relationship between metamorphic/metasomatic
samples and the detrital grains analysed by Morton and Chenery (2009). The detrital
pattern is consistent with sources from the modern coastal parts of the WGC where
eclogite temperatures were higher than inland in inner Sunnfjord (e.g. Naustdal).
This would explain the dominance of detrital data points at the mafic-pelite boundary
and into the pelite field. It is worth mentioning that most of the rocks in the WGC
are felsic, not mafic and most are granitoid and not pelitic.
5.7.2. Zr-in-rutile thermometry
Zr-in-rutile thermometry was employed to test the degree of constraint by
source rock lithology, pressure and silica activity. The Tomkins et al. (2007)
calibration has been used for all samples, with the β-quartz equation for the nausdal
sample, and the coesite-field equation for the rest of the samples. Figure 9 is a plot
illustrating the range of temperatures determined for each sample, using their
specific pressure estimates. Table 3 contains the minimum and maximum pressure
values for all specimens, and the calculated temperatures using the Zr-in-rutile
thermometer.
The Almklovdalen Orogenic Peridotite Massif samples – N 38, N 40 and 41A, have quite different temperature estimations: much hotter for the Gusdal Quarry
rutiles compared to the Raudkleivane ultramafic body grains. With average
temperatures of 802 and 780 °C, the Gusdal samples are with more than 100 °C
hotter than the third sample, which has a medium peak temperature of 683 °C.
Cuthbert et al. (2000) obtained 621 – 630 °C for a coesite eclogite that lies just south
of the Almklovdalen Peridotite. With an average standard deviation of 10 %, the
error is ± 6 oC, consequently not explaining the big difference. However, Griffin and
Qvale (1985) have calculated the P/T conditions for the Raudkleivane basic body,
125
Chapter 5
using the Grt – Cpx Fe – Mg thermometer and obtained 700 – 750 °C at 1.5 – 1.8
GPa. This is probably the minimum pressure, as there was no kyanite or phengite in
their mineralogical assemblages. Therefore, our results agree with these estimations,
considering that at higher pressure conditions, temperature will increase accordingly.
FIGURE 9: Temperature vs. pressure diagram for all investigated samples (with
error bars). The minimum and maximum pressure values have been used for Zr-inrutile thermometry calculations.
Sample
4-1A
N 19
N 27
N 28
N 29
N 31
N 35
N 36
N 38
N 40
N 55
min P (GPa)
2.5
1.6
3.8
2.2
2.2
2.2
1.8
1.8
2.5
2.5
3.7
max P (GPa)
2.7
2
4.8
2.5
2.5
2.5
2.5
2.5
2.7
2.7
5.5
min T (°C)
673
581
748
701
661
683
651
626
799
778
726
max T (°C)
694
598
770
708
667
690
666
640
804
783
765
STDEV
12
7
7
5
11
16
10
2
30
9
11
TABLE 3: Minimum and maximum pressure values used for Zr-in-rutile
thermometry calculations (including errors). Calculations have been done using the
Tomkins et al. (2007) calibration.
126
Chapter 5
The Nausdal sample also indicates a much higher average peak temperature –
590 °C – compared to previous estimations: 472 – 509 °C by Cuthbert et al. (2000)
and 509 °C by Ravna and Terry (2004).
The pressures considered for the Nybø specimen (N 27) have a huge range
due to uncertainties arising from the very low concentrations of Al in Opx. The
nearby Lyngenes Opx eclogite sample (from Cuthbert et al., 2000) gives P=3.4 GPa
and T=707 °C, so the lower end of the pressure range is probably more realistic. At
3.8 GPa, the obtained temperature is 748 °C, which is with 40 °C hotter than
previous studies have indicated.
For the Vetrhuset samples (N 28, N 29 and N 31), the Grt-Cpx-Ky-SiO2
geothermobarometer (Kravna and Terry, 2004) was employed on the same rock
body, giving 2.2 – 2.5 GPa and 814 – 868 °C. An important observation is that the
temperature values are much higher than P/T studies on a close coesite-bearing rock
body, Flatraket Harbour, that give 700 – 718 °C at 2.4 – 2.7 GPa (Cuthbert et al.,
2000). Moreover, the lack of migmatite in the pelites here suggests that this is too
high, because such high T would be likely to cause partial melting of a pelite. The
Zr-in-rutile thermometer indicates temperatures of 661 – 708 °C for the Vetrhuset
rutiles, which actually agree with the estimated conditions on the Flatraket Harbour
body.
The temperatures for the Flatraket Bekk samples (N 35 and N 36) – 626 –
666 °C - are in conformity with estimations made by Cuthbert et al. (2000) – 619 –
630 °C - and by Wain et al. (1997b) – 668 °C at 2.2 GPa.
The Grt – Opx geothermometers (Mori & Green 1978; Harley, 1984; Lee and
Ganguly 1988; Carswell, 1989; Lavrentyeva and Perchuk 1989; Brey & Köhler,
1990; Bhattacharaya et al., 1991) were used to calculate peak temperature conditions
for the Arsheimneset (N 55) sample, using microprobe data on the same rock body
and obtained values >800 °C (806 – 994 °C) for five calibrations and ~ 700 °C for
the other two (Mori & Green 1978; Brey & Köhler, 1990). Using the same data, the
grt-opx geobarometers (Harley and Green, 1984; Carswell, 1989; Brey and Köhler,
1990) gave pressure values of 3.7 – 5.5 GPa, that were used for thermometry: the
127
Chapter 5
obtained temperature range is 760 – 845 °C .Carswell (1989) – 732 – 775 °C, gives
similar minimum and maximum peak temperature conditions to our results: 726 –
765 °C.
Therefore, our thermometry results can be divided into two categories:
samples with peak temperatures that confirm previous estimations and samples with
temperatures much higher than former calculations (~40 – 100 °C). This implies that
no diffusional resetting took place that would be reflected in an underestimation of
peak temperatures. This is enforced by a fast exhumation rate that can be seen in the
compositional variation in garnets from the Nordfjord area (Konrad-Schmolke et al.,
2008b). It is worth mentioning that under dry conditions, Zr is even more robust
even in slow cooling rates, as demonstrated by Kooijman et al. (2012).
An important observation is that overestimation of temperatures has been
reported to be possible only in quartz-free rocks (Zack et al., 2044a; Harley, 2008).
However, in Chapter 3 – Trace-element characteristics of rutile in blueschist- to lowT eclogite facies mafic-ultramafic high-P mélange zones - Syros, Greece), the Zr-inRutile thermometer has been applied to quartz-free and quartz-bearing rocks and
showed identical values. This implies that silica saturation has no effect on this
thermometer. Also, previous studies on granulite-facies rocks (Luvizotto and Zack,
2009; Kooijman et al., 2012) have reported higher temperatures using the Zr-inrutile thermometer, compared to estimates using an exchange geothermometer. Even
if the results are with ~ 100 °C higher, they are more reliable and considered the
minimum peak temperature because of possible sub-unity Zr-activity. As all our
reference geothermometers are of the same type, we conclude that our results are
more robust and generally indicate hotter conditions for the Nordfjord – Stadlandet
area. It is also worth considering the error magnitude when comparing the two types
of thermometers: ± 50 °C for exchange geothermometers and ± 6 °C for the Zr-inrutile one.
128
Chapter 5
5.7.3. Metamorphic vs. metasomatic rutile
A first order of discrimination between metamorphic and metasomatic rutiles
is based on their morphology. Metasomatic grains are considerable larger in size (up
to 3 cm) and are generally long-prismatic. They form nice prisms that can easily be
recognised in hand specimens.
However, a geochemical signature is needed when investigating detrital
rutiles. The discrimination diagram (Fig. 3b) shows that the Nb and Cr compositions
help distinguish metasomatic from metamorphic grains. Further constrains can be
made using the rest of the trace elements (Fig. 4) and their specific composition
range. Tantalum and Nb compositions in metamorphic rutiles expand over a high
range, from the minimum to the maximum of the chart. The Gusdal Quarry samples
(N 38 and N 40) have not been included in this diagram, as they have an anomalous
high concentration in these elements. Zirconium, tracked by Hf, and Cr, tracked by
V, also show higher concentrations in metamorphic rutiles. The first pair can be
associated with higher peak temperatures, as Zr and Hf are temperature-dependant.
Korneliussen (2000b) observed that an important difference between the
metasomatic and metamorphic rutile deposits in the WGC is that rutile grains from
eclogites usually have lower trace element compositions, particularly U. The lowest
composition in U in this sample set is indeed represented by metamorphic rutiles.
However, the highest concentration of U can be found in the UHP gneiss from
Vetrhuset (N 31 – average of 49 µg/g) and in the Nybo eclogite (N 27 – average of
87 µg/g), therefore, in metamorphic rutiles.
The limited amount of samples does not permit any relevant conclusions but
only observations. This is also due to possible element mixing that was discussed in
the provenance sub-chapter (5.1). Therefore, as at UHP-HT conditions trace element
mixing is possible, it is very difficult to draw any conclusions regarding different
geochemical signatures for metasomatic and metamorphic rutiles. Considering this
study’s results, any investigations of the detrital record of a UHP tectonic setting
129
Chapter 5
would prove to be a difficult challenge. More research is needed in order to improve
our understanding of the UHP rutile.
5.7.4. Rutile formed by the breakdown of titanomagnetite vs. rutile
formed by the breakdown of ilmenite
This grouping has been done solely on textural features, with no chemical
background, using descriptions from previous studies (Korneliussen, 2000b;
Luvizotto et al., 2009a).
Morphologically, Korneliussen (2000) observed that large rutile grains
probably formed by the breakdown of ilmenite (group 1), while small grains,
generally found as inclusions in garnet, formed by the breakdown of titanomagnetite.
Moreover, Luvizotto et al. (2009a) described rutiles that form polycrystalline
aggregates made of fine-grained intergrowths of rutile and chlorite that replaces
ilmenite. The study suggested that rutile has been derived from ilmenite breakdown
due to the following reaction:
Ilmenite + Silicates + H2O → Rutile + Chlorite
Figure 2d and e shows rutile that possibly formed by the breakdown of
ilmenite in association with an amphibole. This later mineral most probably formed
at the expense of chlorite during prograde metamorphism. Konrad-Schmolke (2011)
showed that chlorite was a likely early phase in the metamorphic development of
these rocks, as it is required to explain the chemical zoning in the garnets.
Furthermore, the study also indicated the presence of chlorite as a mineral inclusion
in the garnet. It is worth mentioning that chlorite described in the mineralogical
association is most probably late-stage, therefore not involved in the above reaction.
The current sample set (excluding the ones with metasomatic rutile) has been
divided into these two groups based on these characteristics. The Almklovdalen
eclogites have been excluded from this grouping, due to exceptional trace element
composition.
130
Chapter 5
Figure 7a shows that for most trace elements, the composition ranges
overlap. This makes the task of distinguishing the two groups a difficult one.
Nevertheless, rutile formed by the breakdown of titanomagnetite (group 2) has a
much larger trace element composition range than the second group.
A few elements tend to be preferentially partitioned into rutile from group 2:
Ta, Nb, W, Sb, Sn, Mo, Cr and U. For group 1, U has a very limited range of
composition, being the lowest point on the chart and probably reflecting the original
concentration in the mafic protolith. It has been shown that ilmenite could be the
source for Zr in zircon growth during conversion of mafic granulites and gabbros
into eclogites, indicating that ilmenite precursor had substantial Zr (Bingen et al.,
2001). Vanadium, Hf and Zr have similar concentrations in both groups.
Another thing to consider here is if the protoliths of these rocks were, indeed,
gabbros or similar coarse-grained mafic rocks. This is least certain in the “internal”
eclogites like Gusdal, the metasomatic veins and obviously the pelitic schist.
Evidence from zoning and inclusions in garnets (Konrad-Schmolke, 2011) indicates
that for many WGC eclogites the precursor was an amphibolite, not an igneous
gabbro, therefore further complicating the investigation.
5.7.5. Rutile in a HP/LT omphacite vein vs. rutile in an UHP/HT
omphacite vein
This comparison is being made in order to fingerprint different geochemical
signatures of rutiles from a HP/LT (N 19) and UHP/HT omphacite veins (N 36)
veins. As the Nb vs. Cr diagram (Fig. 3a) shows that some possible trace element
mixing took place, altering the original composition of the vein, this investigation
might support the fluid-mediated mixing of Nb.
The discrimination diagram clearly indicates the fact that the HP/LT
omphacite vein has a “correct” Nb/Cr signature, plotting on the metamafic region
(Fig. 3a). In contrast, the UHP/HT sample plots along the metamafic – metapelitic
boundary, probably indicating some kind of fluid-mediated mixing.
131
Chapter 5
Besides using the Nb vs. Cr discrimination diagram for both veins, the
composition range of trace elements is used here to further compare them. A general
observation is that both samples have a very distinct trace element signature, with N
55 being enriched in most elements, compared to N 19. Zirconium and Hf are known
to be temperature-dependant (Zack et al., 2004a), therefore, the higher concentration
in N 55 will mirror higher peak temperature conditions. Uranium content is expected
to reflect the original concentration of the protolith, therefore this is quite similar for
both samples. Korneliussen et al., 2000b) observed that the mafic igneous protolith
of a Caledonian eclogite had a low concentration in U (< 2 µg/g), which was
reflected in the eclogite. This is in agreement with these results that show a low
content in U in both samples (< 4 µg/g). Tantalum, Nb, W, Sb, Sn, Mo and Cr show
a particular high concentration in the UHP/HT specimen, further suggesting an
external HFSE-rich source. These elements could be indicative of the type of the
source vein. Vanadium does not have a preferential behaviour, having similar
composition ranges in both samples.
5.7.6. Trace element profiles
Trace element profiles are used here to describe variations in their
compositions that will help with the understanding of their geochemical behaviour
for provenance and thermometry observations. The profile in the HP/LT specimen
from Nausdal (N 19 – Fig. 5a) shows a strong variability in Cr, decreasing from one
end to the other. Texturally, the rim with higher Cr content is closer to an area
abundant in amphibole + chlorite veinlets, whereas the other rim is surrounded
mainly by omphacite. As omphacite can contain important quantities of Cr (Zack et
al., 2002?), this could suggest some element diffusion towards the clinopyroxene. On
the other hand, Cr may be inherited from a primary igneous phase like cpx or spinel,
that was heterogeneous originally. An element that seems to track Cr, but with the
opposite behaviour, is W which increases towards the omphacite matrix. This could
imply some trace element exchange where Cr goes to omphacite and W to rutile.
Some other elements exhibit a moderate heterogeneity, such as Nb, Ta, Sn, Mo and
U.
132
Chapter 5
The rutile profile in the Vetrhuset eclogite (N 29 – Fig. 5b) shows most
elements with flat profiles, with a few exceptions. This suggests that no diffusion
processes took place that could end in trace element migration. The Zr and Hf
variation might be controlled by perturbations in the equilibrium with coexisting
zircon. Temperature variation seems unlikely as it would give a more symmetrical
pattern. It is possible that zircon has undergone some dissolution at certain times
during rutile growth. Uranium and Sb have a more significant variation. The shape
of their variations is typical for a mineral inclusion that might have been too small to
be noticed.
The third profile (the Ky-Qtz vein - Fig. 5c) is generally flat with most
elements having homogeneous compositions. Molybdenum and Sb vary slightly and
irregularly. This might imply that their variation is not related to diffusion processes,
as there is no clear trend, but rather to trace element availability as the rutile grain
grew.
As expected, the rutile from the Gusdal Quarry (N 40 – Fig. 5d) shows strong
variations in Nb, tracked by Ta. The content is slightly higher in the core compared
to the rims. The Nb vs. Cr diagram (Fig. 3a) showed that the Gusdal samples have an
anomalous concentration in Nb, which suggested an external source. This is now
enforced by this element’s heterogeneity within a single grain. Chromium (followed
by V), on the other hand, varies only slightly, but mimics the shape of Nb’s and Ta’s
profiles. This suggests that the Nb and Ta-rich external source enriched the Gusdal
rutiles in Cr and V too, but to a lesser extent. Another aspect worth considering is
that the recrystallization of garnet in these rocks also locally affects the rutile, so the
variation could be due to metamorphic re-equilibration
Rutile in sample N 55 (Arsheimneset - Fig. 5e) has a Zr and Hf variation,
with lower concentrations close to the grain’s core. The moderate symmetry of these
profiles suggests these are variations in peak temperature that happened during rutile
growth. The lower content of Zr in the core of the grain and the relatively higher
concentration at the rims indicate that rutile grew during prograde metamorphism,
probably during subduction. Uranium, Sb and W also have moderately
heterogeneous composition profiles.
133
Chapter 5
5.8. CONCLUSIONS
1. The Nb vs. Cr diagram suggests that above 650 °C trace element mixing
takes place, altering the pristine composition of the rutile grains; therefore,
special care is needed when using this discrimination diagram on HT rocks
2. The LT samples plot on the correct area of the Nb vs. Cr diagram, whereas
the HT mafic ones plot along the mafic-pelitic boundary or in the pelitic area
3. Because trace element mixing takes place before metamorphic and vein
rutiles become detrital grains, a good correlation between these groups is still
possible; this is reflected in all investigated trace elements (Nb, Cr, V, Mo, U
and Zr)
4. Metamorphic and vein rutiles have very alike geochemical signatures, with
moderate enrichments in W, Sn and U in the first group; the rest of the
elements (Ta, Nb, Cr, Hf and Zr) only mirror the source rock and peak
temperature conditions
5. Trace element profiles show that: some elements migrate amongst mineral
phases (N 19 - Cr from rutile to omphacite), others are dependent on
perturbations in other minerals (N 29 – Zr dependant on Zrc availability), or
others that suggest an external source (N 40 – strong variation in Ta and Nb);
the profile on N 55 has information on variation in peak temperature during
rutile growth, suggesting a prograde metamorphism with lower Zr content I
the core, and higher at the rims
6. Rutile formed by the breakdown of titanomagnetite has higher compositions
in Ta, Nb, W, Sb, Sn, Mo, Cr and U compared to rutile formed by the
breakdown of ilmenite
7. Rutile in a UHP/HT Omp vein (N 55) shows a particularly high enrichment
in Ta, Nb, W, Sb, Sn, Mo, and Cr compared to a HP/LT Omp vein (N 19),
134
Chapter 5
suggesting an external HFSE-rich fluid source that has biased the original
composition
8. The Zr-in-rutile thermometry calculations are generally much higher than
previous estimations, with some exceptions; it has been demonstrated that
our results are probably more robust, due to the fact that exchange
geothermometers have been shown to be less reliable (Luvizotto and Zack,
2009); therefore, peak temperatures in the WGC, in the Nordfjord-Stadlandet
region are probably ~80-100 °C higher than previous calculations have
indicated.
135
Chapter 6
Discussions and Conclusions
The overall aim of my project was to investigate new methods with which to
test current conflicting models for the timing of onset of modern plate tectonics. One
indisputable characteristic of modern plate tectonics is subduction within a highpressure, low-temperature thermal regime. The best recorders of those processes are
blueschists, which are present in the rock record only to ca. 600 Ma ago. This could,
however, be related to the preservation potential of these rocks. Using trace element
characteristics would allow the detrital record of blueschists within rutile to be tested
for the first time.
6.1. The Nb vs. Cr diagram
Blueschists, along with other mafic rocks from Syros have been analysed and
trace element abundances have been described in Chapter 3. The Nb vs. Cr diagram
indicates that all metamorphic rocks are metamafic, as expected. Moreover, the
geochemical signature overlaps with the Nb/Cr concentrations from the detrital
record. This enforces the idea that this discrimination diagram can be applied
successfully to HP/LT tectonic settings on metamafic rocks.
Further, the next case study in this project is represented by the Western
Alps, where only metapelitic and some other metasedimentary metamorphic rocks
have been investigated. The Sesia Lanzo rocks have similar P/T conditions to the
rocks from Syros (1.5 – 2.0 GPa and ~ 500 – 550 °C), therefore allowing an
assessment of rutile’s petrogenetic properties in similar tectonic settings, but for
rocks with a different composition. Results show that all samples are
metapelitic/metasedimentary, as anticipated. Moreover, the detrital rutiles from the
closest catchment areas have almost identical Nb/Cr concentrations, therefore
suggesting the Sesia Lanzo Zone as the sediment source. Consequently, the Nb vs.
Cr diagram can be applied effectively on HP/LT rocks from a metapelitic source.
136
Chapter 6
In conclusion, rutile seems to be an excellent petrogenetic tool to use in
HP/LT tectonic settings, such as subduction zones.
The following step was to analyse rutile in rocks formed in eclogite- to
granulite-facies conditions, to check if the Nb vs. Cr discrimination diagram is still a
reliable instrument under higher-grade conditions. For this purpose, rocks from the
UHP-HT massif from the Dora Maira and HP to UHP and HT rocks from the
Western Gneiss Complex have been considered suitable.
The Dora Maira metapelitic samples do plot on the correct area of the
diagram, but they do not correlate with the detrital record. One explanation would be
that the Dora Maira rutiles are not eroded in the sampled rivers (Varaita and Maira).
However, they are the closest catchment area of the Dora Maira Massif and any
weathered material would probably be transported in these rivers. The second
possibility is that the Nb/Cr signature has been biased due to the UHP/HT conditions
(3.7 GPa and ~ 800 °C). Consequently, no definitive conclusion can be drawn from
this case study. A mineral inclusions study could help elucidate this dilemma.
The Western Gneiss Complex samples show a more complicated behaviour
under higher-grade conditions. The UHP gneiss and the Ky-Qtz vein plot “correctly”
on the metapelitic area of the diagram. However, some eclogites plot on the
metamafic – metapelitc borderline, whereas others plot in the metapelitic area of the
chart. These are all formed under HP to UHP/HT conditions. The only HP/LT
sample, an omphacite vein from Nausdal, has a normal behaviour, plotting in the
metamafic region. It is also worth considering that another omphacite vein that
indicates UHP/HT peak metamorphic conditions, plots on the metamafic –
metapelitc borderline, therefore suggesting some fluid-mediated mixing.
Eclogites in the WGC are generally found as boudins enclosed in UHP
gneisses or in peridotites. In the first case, the breakdown of phengite from the
surrounding gneiss, at temperatures around 650 °C, could be the source of
contamination of the borderline Nb concentration.
137
Chapter 6
The Gusdal Quarry specimens, that are part of the second type of eclogites
(enclosed in peridotites), exhibit extremely high Nb concentrations, that have never
been recorded elsewhere. Carbonatite metasomatism could be one explanation for
these findings, but no firm evidence has been found to support this assumption.
In conclusion, it seems that at UHP/HT conditions, the Nb/Cr signature in
rutile from metamafic rocks is biased by different external factors, therefore showing
no reliability of being effectively applied on these types of rocks.
It has been shown throughout this study that the Nb vs. Cr diagram can be
successfully applied on HP/LT rocks, both mafic and pelitic. Also, at higher grade
conditions, UHP/HT, trace element mixing is possible, therefore affecting the
pristine composition of rutile. The applicability limit of the discrimination diagram
seems to be at temperatures lower than 650 °C, the temperature at which phengite
breaks down and affects the chemical composition of the surrounding eclogites.
An important observation to make is that the borderline Nb concentrations in
rutile could be indicative of a subduction zone setting where a considerable amount
of continental material has been involved, or of a continental subduction zone. Even
more importantly, this project demonstrates the fact that modern-style plate tectonics
can be addressed by the use of detrital rutile. The trace element composition of rutile
from HP/LT tectonic settings is not affected by any external causes and, therefore,
maintains the pristine composition of the source rock formed in blueschist – facies
metamorphic conditions.
The provenance study from the Western Alps that included samples from the
Po River indicates that this river contains a higher percentage of LT rutiles (97 %)
compared to HT grains (3 %). This might suggest that the rivers could control this
concentration or most likely that the source rocks supply more rutile thus biasing the
final population. Moreover, the pelitic fraction of the LT detrital rutiles from the Po
River can be linked back to the SLZ, also using trace elements.
138
Chapter 6
The most important conclusion of all these observations is that the blueschistfacies signature is much higher compared to HT eclogite- to granulite-facies rocks.
The biggest contributors of rutile in the Po River are the SLZ for the LT pelitic
fraction, and, probably, the Monviso Massif, for the LT mafic fraction. This is even
more impressive considering the large distance between the eroded rocks and the
sediment’s location (~70 km).
These results further demonstrate the capability of detrital rutile to
provenance HP-LT source rocks, mafic or pelitic, in large riverine systems. It is a
different situation for the HT rocks as they constitute a much smaller fraction of the
detrital grains in the Po River. If in the proximity of the catchment area they have a
major contribution to the sediment load, as the distance between the source and the
sediments grows, they significantly decrease in abundance. It could be that the LT
source rocks supply more rutile thus biasing the final population.
Another conclusion of this project is that the Nb vs. Cr diagram has a poor
applicability to assess rutile formed in different facies/tectonic settings, but very low
Cr abundances (<10 µg/g) in low-Nb rutile (<150 µg/g) may be restricted to
blueschist-facies rutile from metabasites.
6.2. The Zr-in-Rutile thermometer
Applications of the Zr-in-rutile thermometer on rocks from various
metamorphic conditions, blueschist- to eclogite- and granulite-facies, have been
made in order to investigate this thermometer’s reliability in rocks formed under
these P/T settings.
The first case study from Syros showed that the Tomkins et al. (2007)
calibration has a too high pressure correction for lower P/T conditions, giving values
almost 50 °C higher than previous estimations. With an average combined
uncertainty of Zr analyses by LA-ICPMS of ±10 % (reproducibility, accuracy and
139
Chapter 6
precision; see Methodology, Chapter 2), the precision on the Zr-in-rutile
thermometer at ~500 ºC is ±6 oC, while the calibration accuracy of the thermometer
between 400 and 900 ºC is estimated at ±15 ºC (Watson et al., 2006). Consequently
this cannot explain the discrepancy of >50 ºC between our Zr-in-rutile temperatures
and published peak P-T estimates for Syros. Also, as shown before, silica
undersaturation does not have a significant effect on the Zr-in-rutile thermometer
calculations for the range of silica activities present in the investigated samples.
Next, the Ferry and Watson (2007) calibration has been used and indicates
that for a (SiO2) = 1, the results are consistent with former findings (average value of
522 °C). This is the only calibration that takes into consideration the silica activity
effect on the Zr-in-rutile thermometer. Zack et al. (2004b), Watson et al. (2006) and
Tomkins et al. (2007) only comment on silica saturated systems, therefore, strictly
speaking, their calibrations cannot be used on undersaturated rocks. A significant
conclusion of this study is that the Ferry and Watson (2007) equation uses a too big
correction for undersaturated rocks, and is, therefore, advisable to use the calibration
considering a silica activity of 1 for all samples. Consequently, this thermometer can
be used for the detrital rutiles, even without knowing the silica saturation of the
source rock.
In the second case study from the Western Alps, the Ferry and Watson
calibration has been further tested and showed good results, in agreement with
previous measurements (538 °C). In conclusion, the Ferry and Watson (2007)
calibration for a (SiO2) = 1 is the most suitable thermometer to be used for HP/LT
rocks, even for sediments where there are no constrains on the silica saturation of the
source rock.
For the Dora Maira samples, the Tomkins et al. (2007) calibration for the
coesite field has been used, as a pressure correction is mandatory at UHP conditions.
The calculated temperature (694 °C) is lower by approximately 36 °C compared to
results from a recent study (Groppo et al., 2007). This could have been caused by a
partial re-setting of the Zr concentration during a late-stage event.
140
Chapter 6
Results for the WGC can generally be divided into two groups: temperatures
that are in agreement with previous studies or temperatures that are considerably
higher (by 40 – 100 °C). An important observation is that overestimation of
temperatures has been reported to be possible only in quartz-free rocks (Zack et al.,
2004a; Harley, 2008). However, in Chapter 3 – Trace-element characteristics of
rutile in blueschist- to low-T eclogite facies mafic-ultramafic high-P mélange zones Syros, Greece), the Zr-in-Rutile thermometer has been applied to quartz-free and
quartz-bearing rocks and showed identical values. This implies that silica saturation
has no effect on this thermometer. Also, previous studies on granulite-facies rocks
(Luvizotto and Zack, 2009; Kooijman et al., 2012) have reported higher
temperatures using the Zr-in-rutile thermometer, compared to estimates using an
exchange geothermometer. Even if the results are ~ 100 °C higher, they are more
reliable and considered the minimum peak temperature because of possible sub-unity
Zr-activity.
Therefore, the temperatures obtained with the Zr-in-rutile thermometer are
more robust and generally indicate hotter conditions for the Nordfjord – Stadlandet
area. It is also worth considering the error magnitude when comparing the two types
of thermometers: ± 50 °C for exchange geothermometers and ± 6 °C for Zr-in-rutile.
This project has demonstrated the applicability of the Zr-in-rutile
thermometer in a high range of metamorphic facies conditions, ranging from
blueschist- to granulite – facies. The Ferry and Watson (2007) calibration with a
(SiO2) = 1 is the preferred equation for HP/LT rocks, as it gives most consistent
results. For higher grade conditions, the Tomkins et al. (2007) calibration is a
trustworthy tool even at granulite-facies conditions, giving more reliable
temperatures than any exchange geothermometers.
The major finding of this project is that these higher-T eclogites and schists
have a distinct trace element signature, especially for Nb vs. Cr, and this may relate
to both the high-T thermal regime of the subduction zone and the interactions of
mafic and felsic rocks at T >650 °C, so in the detrital record such rutiles may
141
Chapter 6
indicate a high-T subduction regime and/or a continental subduction system. Also,
this points to the need for a different, independent discrimination plot for pelites and
mafic eclogites.
6.3. Rutile in the plate tectonics context
The main purpose of this study is to characterise the trace element signature
of blueshist-facies rutiles, in order to distinguish them from non-subduction related
rutiles. Figure 1 shows the Nb vs. Cr chart for the Syros rutiles along with a number
of localities: the Epupa Complex, Namibia (Meyer et al., 2011), Chinese Continental
Scientific Driling, CCSD-MH (Gao et al., 2010), SE Siberia (Kalfoun et al., 2002),
Ivrea-Verbano, Italy (Luvizotto and Zack, 2009), Erzgebirge, Germany (Luvizotto et
al., 2009) and Trescolmen, Central Alps (Zack et al., 2002). The first locality is
comprised of granulite-facies garnet-orthopyroxene granulites that reached peak
metamorphism at 970 ± 40 °C at 0.95 ± 0.2 GPa (Brandt et al., 2003). The CCSD
samples are UHP eclogites that reached 700-890 °C at 3-4 GPa (Zhang et al., 1994,
1995; Banno et al., 2000). The Siberian specimens are metasomatised peridotite
xenoliths in basalts. For the Ivrea-Verbano Zone, Henk et al. (1997) has calculated
the peak PT conditions to be 810 °C and 0.83 kbar. However, Luvizotto and Zack
(2009), using the Zr-in-rutile thermometer, obtained much higher temperatures up to
930 ºC. Rutiles from Germany have PT estimations ranging from 0.2 – 2.4 GPa and
480 – 600 °C, depending on the grade of metamorphism. The samples from the last
locality are eclogites that underwent eclogite-facies metamorphism at peak pressure
conditions of 2.4 GPa, 600 °C (Meyre et al., 1997, 1999).
The diagram shows rutile grains either plotting on the left side of the graph
(with metamafic source-rocks) or on the right-side (with metapeltic source-rocks).
Granulite- and eclogite-facies rutiles partly overlap the blueschist-facies grains on
the upper part of the cluster. In contrast, rutiles from the metasomatised mantle
peridotites form a separate group with high Nb and Cr concentrations (> 1000 µg/g
and >10000 µg/g, respectively).
142
Chapter 6
However, a higher Nb-Cr concentration could indicate higher P/T conditions.
Niobium concentrations in the Syros samples are quite similar to hotter localities
(excluding the mantle xenoliths), but Syros samples seem to extend to much lower
Cr contents (many of the detrital grains are below 1 µg/g - detection limit). One
hypothesis is that at low temperatures more Cr is stored by glaucophane, while coexisting garnet and omphacite do not have the same affinity for Cr as glaucophane,
hence rutile might take more of the Cr at higher temperatures.
An important aspect of the usability of rutile to identify old subduction zones,
and, therefore, a blueschist-facies imprint, is that at HP/LT conditions it maintains its
original trace element composition, as this study has demonstrated. In higher-grade
(e.g. crustal thickening by continental collision) environments the pristine trace
element content is affected by external factors, determining biased compositions.
This can be investigated using the Zr-in-rutile thermometer, knowing that at
temperatures >650 °C the trace element composition has probably been modified. In
this case, records of HP-LT metamorphism in older orogens may best be sought in
sediments eroded from that orogen and containing detrital rutile grains.
As it has been discussed before, this project demonstrates the fact that
modern-style plate tectonics can be addressed by the use of detrital rutile. The trace
element composition of rutile from HP/LT tectonic settings is not affected by any
external causes and, therefore, maintains the pristine composition of the source rock
formed in blueschist – facies metamorphic conditions.
Moreover, distinction between rutile from eclogites formed in subducted
mafic crust and rutile from eclogite formed at the base of thickened basaltic plateaux
can also be addressed by the use of oxygen isotopes. The modern oceanic crust is
characterised by significant hydrothermal alteration produced by interaction with
seawater. Oxygen isotope ratios are strongly altered with heavy O being enriched in
low-T altered basalts and depleted in the high-T altered gabbros (Alt, 2003; Gao et
al., 2006). In contrast, lower-crustal granulites and eclogites, having had no contact
143
Cr (µg/g)
1
10
100
1000
10000
100000
1
Laora, Brazil - Diamond-bearing sediments
10
Central Alp s - M etapelitic - Eclogite Facies
Central Alp s - M etamafic - Eclogite Facies
SE Siberia - metasomatised mantle peridotites
Erzgebirge GEU- metapelitic - Eclogite Facies
Erzgebirge M EU- metap elitic - Amphibolite Facies
Erzgebirge GPU- metapelitic - Greenschist Facies
Ivrea-Verbano - metapelitic - Granulite Facies
CCSD - metamafic - Eclogite Facies
Ep upa Complex - M etamafic - Granulite Facies
Ep upa Complex - M etap elitic - Granulite Facies
Sy ros - Metamafic - Blueschist Facies
100
Nb (µg/g)
1000
10000
100000
Chapter 6
to the hydrosphere, will have mantle-like O isotope ratios and produce rutile in
equilibrium with those values.
FIGURE 1: Niobium vs. Cr diagram compiling data for rutiles from various
facies/tectonic settings; rutiles from the metasomatised mantle peridotites form a
separate cluster from the rest of the groups; granulite- and eclogite-facies rutiles
partially overlap the upper part of the blueschist-facies rutiles.
144
Chapter 6
6.3. Other trace element considerations
Another key aspect of this thesis was to evaluate the possibility of
distinguishing metasomatic rutile from metamorphic rutile in the detrital record. The
sample set from Syros contains metasomatic rutiles, as well as the sample set from
the WGC.
The metasomatic Syros samples showed a moderate enrichment in Ta, Nb
and Cr compared to the metamorphic rutiles. However, no obvious distinction was
achievable. This might be due to the fact that some samples represent a transition
between metamorphic and metasomatised rocks. Some of the samples are fresh
metamorphic rocks (e.g. SY522-175), others are partly metasomatised (e.g.
SY522-100) and some are completely metasomatised (e.g. SY522-10). This is
reflected in the geochemical composition of the investigated rutiles, that shows a
transition from metamorphic to metasomatic.
The metamorphic samples from the WGC show a higher range of trace
element composition compared to the metasomatic group, with minor enrichments in
W, Sn and U. This study also did not indicate an obvious distinction between the two
groups of rutile
Finally, metasomatic and metamorphic rutiles do not have a particular trace
element composition that would allow discriminating one from the other, based on
the investigated sample sets.
An additional observation made from trace element characterisation on the
Syros sample set was that V vs. Mo indicates different types of source rocks, such as
metagabbros and metabasalts. However, this could be specific only for this case
study and should be explored by future studies for different protoliths.
Observations on the trace element compositions of rutile formed by the
breakdown of titanomagnetite vs. rutile formed by the breakdown of ilmenite have
145
Chapter 6
been made. It seems that rutile from the first category has higher compositions in Ta,
Nb, W, Sb, Sn, Mo, Cr and U compared to rutile from the second group.
Moreover, rutile in a UHP/HT Omp vein from the WGC shows a particularly
high enrichment in Ta, Nb, W, Sb, Sn, Mo, and Cr compared to a HP/LT Omp vein
from the same sample set, suggesting an external HFSE-rich fluid source that has
biased the original composition. This further enforces the idea that at UHP/HT
conditions, rutile’s composition suffers alteration caused by external sources,
therefore affecting its pristine composition.
6.4. Future perspectives
6.4.1. Possible rutile barometers
This section contains a few more observations made about rutile’s
geochemical propensities using trace element compositions. These are only meant to
be descriptive, with no interpretative scope with the presently available data.
Escudero et al. (2012a; b) have suggested Al-in-Rutile and Si-in-Rutile as
possible barometers, based on experimental evidence. Therefore, I have investigated
these options by plotting Zr vs. Al2O3 and Zr vs. SiO2 for three samples from the
WGC, that formed at low (Nausdal, 1.6 – 2.0 GPa, 581 – 598 °C), medium
(Vetrhuset, 2.2 – 2.5 GPa, 661 – 708 °C) and high P/T conditions (Nybo, 3.4 – 4.8
GPa, 748 – 770 °C). If these probable barometers are correct, there should be a
positive correlation observed in these diagrams (Fig. 2a and b)
Figure 2a shows that there is a minor positive correlation between Zr and
Al2O3, therefore indicating promising perspectives for this likely barometer. The
second figure (Fig. 2b), however, does not indicate any obvious correlation between
Si and Zr, therefore, with less promise than Zr vs. Al2O3. The average standard
deviation for Al2O3 is 0.02 and for SiO2 it is 0.03.
146
Chapter 6
a
b
FIGURE 1: a. Zr vs. Al2O3 diagram showing a minor positive correlation; b. Zr vs.
SiO2 diagram with no obvious correlation.
As the sample set for this project contained rocks formed in a wide variety of
pressure conditions, I was given the opportunity to search for a possible rutile
barometer. Rocks from the WGC have been plotted on a Zr vs. Mo diagram and
results show a strong positive correlation (Fig. 3a). The Mo content could be T147
Chapter 6
dependant, as it increases with T, but it seems to have a more complex behaviour.
The Mo composition could intriguingly be related to pressure variation too, but this
needs further investigation.
All investigated samples (Syros, Sesia Lanzo, Dora Maora and the WGC)
have been plotted on the same diagram (Fig. 2b). The HP/LT rocks, represented by
Syros, Sesia Lanzo and the Nausdal sample from the WGC, form a separate cluster
in the low Zr/low Mo region of the diagram. The UHP/HT rocks, represented by
Dora Maira and the WGC, also form a separate group in the medium-Zr/high-Mo
area of the chart. The sample extending to high-Zr/high-Mo is sample N 55, who has
the highest P/T estimations from the entire sample set. Therefore, the Zr vs. Mo
diagram could be indicative of different facies conditions, but this also requires more
research.
148
Chapter 6
a
b
FIGURE 3: a. Mo vs. Zr diagram for all WGC samples, showing a strong positive
correlation; b. Zr vs. Mo diagram for samples from all locations indicating different
groups based on P/T conditions.
149
Chapter 6
6.4.2. A new discrimination diagram?
Using the considerable dataset, potential new discrimination diagrams have
been permitted for rutile originating from different lithologies. The Sn vs. W
diagram (Fig. 4) shows samples from Syros, Sesia Lanzo and Dora Maira plotting in
separate groups, based on their chemistry (metamafic vs. metapelitic). The WGC
samples have not been included, as it has been demonstrated that the trace element
signature has most likely been altered by external fluids and rutiles and they have
not, therefore, retained their pristine composition.
The diagram shows that low Sn/W compositions could indicate metamafic
source rocks, whereas high Sn/W abundances could suggest a pelitic source rocks.
For the first group, the Sn composition ranges from 3 to 45 µg/g, whereas W
expands from 0.04 to 167 µg/g. For the second group, the same elements range from
34 to 880 µg/g and 24 to 1180 µg/g, respectively.
FIGURE 4: Sn vs. W diagram for samples from Syros, Sesia Lanzo and Dora Maira
forming two distinct groups based on the lithology of the source rock (metamafic vs.
metapelitic)
150
References
1. Abers, G. A., van Keken, P. E., Keller, E. A., Ferris, A., and Stachnik, J. C.,
2006. The thermal structure of subduction zones constrained by seismic
imaging: Implication for slab dehydration and wedge flow: Earth and
Planetary Science Letters, 241, 387-397.
2. Agrinier, P., 1991. The natural calibration of 18O/16O geothermometers:
application to the quartz–rutile mineral pair. Chemical Geology, 91, 49–64.
3. Ague, J.J., 2007. Models of permeability contrasts in subduction zone
mélange: implications for gradients in fluid fluxes, Syros and Tinos Islands,
Greece. Chemical Geology 239, 217–227.
4. Aulbach, S., O'Reilly, S.Y., Griffin, W.L., Pearson, N.J., 2008.
Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in
eclogites. Nature Geoscience, 1, 468–472.
5. Alt, J.C., 2003. Hydrothermal fluxes at mid-ocean ridges and on ridge flanks.
C. R. Geosci., 335, 853–864.
6. Andersen, T. B., 1998. Extensional tectonics in the Caledonides of southern
Norway, an overview. Tectonophysics, 285, 333–51.
7. Angiboust, S., Langdon, R., Agard, P., Waters, D., Chopin, C., 2011.
Eclogitization of the Monviso ophiolite and implications on subduction
dynamics. Journal of Metamorphic Geology, 30, 37–61.
8. Babist, J., Handy, M.R., Konrad-Schmolke, M., Hammerschmidt, K., 2006.
Precollisional, multistage exhumation of subducted continental crust: the
Sesia Zone, Western Alps. Tectonics, 25.
151
9. Bakun-Czubarow, N., Kusy, D., Fiala, J., 2005. Trace element abundances in
rutile from eclogite–granulite rock series of the Złote mountains in the
Sudetes. Mineralogical Society of Poland, Special Papers, 26, 132–136.
10. Banno, S., Enami, M., Hirajima, T., Ishiwatari, A., Wang, Q.C., 2000.
Decompression P–T path of coesite eclogite to granulite from Weihai, eastern
China. Lithos, 52, 97–108.
11. Baier, J., Audétat, A., Keppler, H., 2008. The origin of the negative niobium
tantalum anomaly in subduction zone magmas. Earth and Planetary Science
Letters, 267, 290–300.
12. Bailey, D.E., 1989. Metamorphic evolution of the crust of southern Norway:
an example from Sognefjord. PhD thesis, University of Oxford.
13. Banfield, J.F., Veblen, D.R., 1991. The structure and origin of Fe-bearing
platelets in metamorphic rutile. American Mineralogist, 76, 113–127.
14. Baur, W.H., 1956. Über die Verfeinerung der Kristallstrukturbestimmung
einiger Vertreter des Rutiletyps: TiO2, SnO2, GeO2 und MgF2. Acta
Crystallographica, 9, 515–520.
15. Baur, W.H., 2007. The rutile type and its derivatives. Crystallography
Reviews, 13, 65–113.
16. Bearth P., 1959, Uber Eklogite, Glaukophanschiefer und metamorphe
Pillowlaven. Schweiz. mineral. petrogr. Mitt., 39, 267-286.
17. Beltrando, M., Compagnoni, R., Lombardo, B., 2010. (Ultra-)high-pressure
metamorphism and orogenesis: an Alpine perspective. Gondwana Research,
18, 147–166.
18. Berry, H. N., Lux, D. R., Andresen, A. & Andersen, T.B. 1994. Argon 40–39
dating of rapidly uplifted high pressure rocks during late-orogenic extension
152
in southwestern Norway. Geological Society of America: Abstracts with
Programs, 25, A–477.
19. Bhattacharya, A., Krishnakumar, K.R., Raith, M., Sen, S.K., 1991. An
improved set of a-X parameters for Fe-Mg-Ca garnets and refinements of the
orthopyroxene-garnet thermometer and the orthopyroxene-garnetplagioclase-quartz barometer. J Petrol, 32, 629–656.
20. Bingen, B., Austrheim, H., Whitehouse, M., 2001. Ilmenite as a source for
zirconium during high-grade metamorphism? Textural evidence from the
Caledonides of W. Norway and implications for zircon geochronology. J
Petrol., 42, 355-375.
21. Beyer, E. E., Brueckner, H. K., Griffin, W. L., O’Reilly, S. Y. & Graham, S.,
2004. Archean mantle fragments in Proterozoic crust, Western Gneiss
Region, Norway. Geology, 32, 609-612.
22. Beyer, E.E., Griffin, W.L., O'Reilly, S.Y., 2006. Transformation of Archaean
lithospheric mantle by refertilization: evidence from exposed peridotites in
the Western Gneiss Region, Norway. Journal of Petrology, 47, 1611–1636.
23. Beyer, E.E., Brueckner, H.K., Griffin, W.L., O’Reilly, S.Y., 2011.
Laurentian provenance of Archean mantle fragments in Proterozoic Baltic
crust of the Norwegian Caledonides. Journal of Petrology, 53, 1357-1383.
24. Brady, J.B., Markley, M.J., Schumacher, J.C., Cheney, J.T., Bianciardi, G.A.,
2004. Aragonite pseudomorphs in high-pressure marbles of Syros, Greece.
Journal of Structural Geology, 26, 3-9.
25. Brandt, S., Klemd, R., Okrusch, M., 2003. Ultrahigh-temperature
metamorphism and multistage evolution of garnet-orthopyroxene granulites
from the Proterozoic Epupa complex, NW Namibia. J Petrol, 44, 1121–1144.
153
26. Breeding, C.M., Ague, J.J., Bröcker, M., 2004. Fluid-metasedimentary rock
interactions in subduction-zone mélange: implications for the chemical
composition of arc magmas. Geology, 2, 1041–1044.
27. Brenan, J.M., Shaw, H.F., Phinney, D.L., Ryerson, F.J., 1994. Rutile–
aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high
field strength element depletions in island-arc basalts. Earth and Planetary
Science Letters, 128, 327–339.
28. Brey, G.P., Nickel, K.G. and Kogarko, L., 1986. Garnet pyroxene
equilibrium in system CaO-MgO--A1203-SiO 2 (CMAS), and prospects for
simplified (T-independent) lherzolite barometry and eclogite-barometer.
Contrib. Mineral. Petrol., 92, 448-453.
29. Brey, G.P. and Kholer, T., 1990. Geothermobarometry in four-phase
lherzolites II. New thermobarometers, and practical assessment of existing
thermobarometers. J. Petrol., 31, 1353-1378.
30. Bromiley, G.D., Hilairet, N., 2005. Hydrogen and minor element
incorporation in synthetic rutile. Mineralogical Magazine, 69, 345–358.
31. Bryhni, I., 1966. Reconnaissance studies of gneisses, ultrabasites, eclogites
and anorthosites in outer Nordfjord, Western Norway. Norges Geologiske
Undersøkelse Bulletin, 241, 1–68.
32. Bröcker, M., Enders, M., 2001. Unusual bulk-rock compositions in eclogitefacies rocks from Syros and Tinos (Cyclades, Greece): implications for U–Pb
zircon geochronology. Chemical Geology, 175, 581–603.
33. Bröcker, M., Keasling, A., 2006. Ionprobe U–Pb zircon ages from the highpressure/lowtemperature mélange of Syros, Greece: age diversity and the
importance of pre-Eocene subduction. Journal of Metamorphic Geology, 24,
615–631.
154
34. Bromiley, G.D., Hilairet, N., 2005. Hydrogen and minor element
incorporation in synthetic rutile. Mineralogical Magazine, 69, 345–358.
35. Bromiley, G.D., Redfern, S.A.T., 2008. The role of TiO2 phases during
melting of subduction-modified crust: implications for deep mantle melting.
Earth and Planetary Science Letters 267, 301–308.
36. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic
of plate tectonics since the Neoarchean. Geology, 34, 961–964.
37. Brown, M., Metamorphic patterns in orogenic systems and the geological
record, 2009. Geological Society, London, Special Publications, 318, 37-74.
38. Brueckner, H.K., 1977. A structural, stratigraphic and petrologic study of
anorthosites, eclogites and ultramafic rocks and their country rocks, Tafjord
area, western South Norway. Norges Geologiske Undersøkelse Bulletin, 241,
1–53.
39. Brueckner, H. K., Carswell, D. A., Griffin,W. L., Medaris, L. G., Jr, Van
Roermund, H. L. M. & Cuthbert, S. J. (2010). The mantle and crustal
evolution of two garnet peridotite suites from the Western Gneiss Region,
Norwegian Caledonides: an isotopic investigation. Lithos, 117, 1019.
40. Buist, D.S., 1963a. The determination of the rutile content of beach sands
from Moana, South Australia, using the Frantz isodynamic separator. Journal
of Sedimentary Research, 33, 799–801.
41. Carraro, F., Dal Piaz, G. V., Sacchi R., 1970. Serie di Valpelline e II Zona
Diorito-Kinzigitica sono i relitti di un ricoprimento proveniente dalla Zona
Ivrea-Verbano. Memorie della Societa Geologica Italiana, 9, 197-224.
155
42. Carruzzo, S., Clarke, D.B., Pelrine, K.M., MacDonald, M.A., 2006. Texture,
composition, and origin of rutile in the South Mountain Batholith, Nova
Scotia. Canadian Mineralogist, 44, 715–729.
43. Carswell, D.A., 1968. Possible primary upper mantle peridotite in Norwegian
basal gneiss. Lithos, 1, 322-355.
44. Carswell, D.A., 1974. Comparative equilibration temperatures and pressures
of garnet lherzolites in Norwegian gneisses and kimberlite. Lithos, 7, 113–
121.
45. Carswell, D.A., Krogh, E.J., Griffin, W.L., 1985. Norwegian orthopyroxene
eclogites: calculated equilibration conditions and petrogenetic implications.
In: Gee, D.G., Sturt, B.A. _Eds.., The Caledonide Orogen — Scandinavia
and Related Areas. Wiley, Chichester, 823–841.
46. Carswell, D.A., 1986. The metamorphic evolution of Mg–Cr-type Norwegian
garnet peridotites. Lithos, 19, 279–297.
47. Carswell, D. A., 1990. Eclogite Facies Rocks. Blackie, Glasgow.
48. Carswell, D.A., Cuthbert, S.J., Krogh Ravna, E.J., 1999. Ultrahigh-pressure
metamorphism in the Western Gneiss Region of the Norwegian caledonides.
International Geology Review, 41, 955–966.
49. Carswell, D.A., Brueckner, H.K., Cuthbert, S.J., Mehta, K., O'Brien, P.J.,
2003. The timing of stabilization and the exhumation rate for ultra-high
pressure rocks in the Western Gneiss Region of Norway. Journal of
Metamorphic Geology, 21, 601–612.
50. Carswell, D.A., Van Roermund, H.L.M., Wigger de Vries, D.F., 2006.
Scandian ultrahighpressure metamorphism of Proterozoic basement rocks on
156
Fjørtof and Otrøy,Western Gneiss Region, Norway. International Geology
Review, 48, 957–977.
51. Chacko, T., Hu, X., Mayeda, T.K., Clayton, R.N., Goldsmith, J.R., 1996.
Oxygen isotope fractionations in muscovite, phlogopite, and rutile.
Geochimica et Cosmochimica Acta, 60, 2595–2608.
52. Chauvet, A., Kienast, J. R., Pinardon, J. L. & Brunel, M., 1992. Petrological
constraints and PT path of Devonian collapse tectonics within the Scandian
mountain belt (Western Gneiss Region, Norway). Journal of the Geological
Society of London, 149, 383–400.
53. Chen, Z.Y., Li, Q.L., 2008. Zr-in-rutile thermometry in eclogite at Jinheqiao
in the Dabie orogen and its geochemical implications. Chinese Science
Bulletin, 53, 768–776.
54. Cherniak, D.J., 2000. Rare earth element diffusion in apatite. Geochim.
Cosmochim. Acta, 64, 3871–3885.
55. Cherniak, D.J., Watson, E.B., 2007. Ti diffusion in zircon. Chem Geol 242,
470–483.
56. Chopin, C., 1984. Coesite and pure pyrope in high-grade blueschists of the
western Alps: a first record and some consequences. Contrib. Mineral.
Petrol., 86, 107–118.
57. Chopin, C., 1987. Very-high-pressure metamorphism in the western Alps:
implications for subduction of continental crust. Phil. Trans. R. Soc. Lond.,
A321, 183–197.
58. Chopin, C. & Schertl, H. P., 2000. The UHP Unit in the Dora-Maira massif,
western Alps. In: Ultra-High Pressure Metamorphism and Geodynamics in
Collision-type Orogenic Belts (eds Ernst, W. G. & Liou, J. G.), 133–148.
157
59. Clemens, J.D., 2006. Melting of the continental crust: fluid regimes, melting
reactions and source-rock fertility. In: Evolution and Differentiation of the
Continental Crust (M. Brown and T. Rushmer, eds), 296–327.
60. Cloos, M., 1985.Thermal evolution of convergent plate margins: thermal
modeling and reevaluation of isotopic Ar-ages for blueschists in the
Franciscan complex of California, Tectonics, 4, 421-433.
61. Coleman, R.G., Wang, X., 1995. Overview of the geology and tectonics of
UHPM. In: Coleman, R.G., Wang, X. _Eds.., Ultrahigh Pressure
Metamorphism. Cambridge Univ. Press, 1–32.
62. Compagnoni, R., Maffeo, B., 1973. Jadeite-bearing metagranites l.s. and
related rocks in the Mount Mucrone area (Sesia-Lanzo Zone, Western Italian
Alps). Schweiz. Mineral. Petrogr. Mitt., 53, 355–378.
63. Compagnoni, R., Dal Piaz, G.V., Hunziker, J.C., Gosso, G., Lombardo, B.,
Williams, P.F., 1977. The Sesia-Lanzo zone, a slice of continental crust with
alpine high pressure– low temperature assemblages in the Western Italian
Alps. Rendiconti della Società Italiana di Mineralogia e Petrologia, 33, 281–
334.
64. Compagnoni, R., Messiga, B., Castelli, D., 1994. High pressure
metamorphism in the Western Alps. 16th General Meeting of the IMA;
Guide book to the field excursion, 148 p.
65. Compagnoni, R. & Hirajima, T., 2001. Superzoned garnets in the coesitebearing Brossasco-Isasca Unit, Dora-Maira massif, W Western Alps, and the
origin of the whiteschists. Lithos, 57, 219–236.
66. Conrad, C. P., and Lithgrow-Bertelloni, C., 2002. How mantle slabs drive
plate tectonics: Science, 298, 207-209.
158
67. Condie, K. C., and Kröner, A., 2008. When did plate tectonics begin?
Evidence from the geologic record, Geological Society of America Special
Papers, 440, 281-294
68. Cuthbert, S.J., 1985. Petrology and tectonic setting of relatively low
temperature eclogites and related rocks in the Dalsfjord area, Sunnfjord, West
Norway. PhD thesis, University of Sheffield.
69. Cuthbert, S.J., 1995. Trondhjemite veins in eclogite from the Western Gneiss
Region, Norwegian Caledonides; evidence for partial melting. Chinese
Science Bulletin, 40, 103–104.
70. Cuthbert, S.J., Carswell, D.A., Krogh-Ravna, E.J., Wain, A., 2000. Eclogites
and eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos,
52, 165–195.
71. Dal Piaz, G.V., Gosso, G., Martinotti, G., 1971. La II Zona Dioritokinzigitica tra la Valsesia e la Valle d'Ayas (Alpi occidentali). Memorie della
Società Geologica Italiana, 10, 257–276
72. Dal Piaz, G.V., Bistacchi, A., Massironi, M., 2003. Geological outline of the
Alps. Episodes 26, 175–180.
73. Davies, G. F., 1992. On the emergence of plate tectonics: Geology, 20, 963966.
74. Deer, W.A., Howie, R., Zussman, J., 1992. An introduction to the rockforming minerals. Harlow, Essex, England. 696p.
75. Desmons, J. and O'Neil, J. R., 1978. Oxygen and hydrogen isotope
compositions of eclogites and associated rocks from the Eastern Sesia Zone
(western Alps, Italy). Contrib. Mineral. Petrol., 67, 79-85.
159
76. Dewey, J. F., M. L. Helman, E. Turco, D. H. Hutton, and S. D. Knott, 1989.
Kinematics of the western Mediterranean, in Alpine Tectonics, Geol. Soc.
Spec. Publ., 45, 265–283.
77. Dixon, J.E., 1968. The metamorphic rocks of Syros, Greece. Ph.D. thesis, St.
John’s College, Cambridge.
78. Dobrzhinetskaya, L.F., Eide, E.A., Larsen, R.B., Sturt, B.A., Trønnes, R.G.,
Taylor, W.R., Posukhova, T.V., 1995. Microdiamonds in high-grade
metamorphic rocks of the Western Gneiss region, Norway. Geology, 23,
597–600.
79. England, P. C, & Thompson, A. B., 1984. Pressure-temperature-time paths of
regional metamorphism. I. Heat transfer during evolution of regions of
thickened continental crust. J. Petrology, 25, 894-928.
80. Ernst, W.G., 1971. Metamorphic zonations on presumably subducted
lithospheric plates from Japan, California and the Alps. Contrib. Mineral.
Petrol., 34, 43–59.
81. Ernst, W. G., 2003, High-pressure and ultrahigh-pressure metamorphic belts
– Subduction, recrystallization, exhumation and significance for ophiolite
studies, in Dilek, Y., and Newcombe, S., eds., Ophiolite Concept and
Evolution of Geological Thought: Geological Society of America Special
Paper, 373, 365-384.
82. Escudero, A., Langenhorst, F., 2012a. Aluminum incorporation in a-PbO2
type TiO2 at pressures up to 20 GPa, 190-191.
83. Escudero, A., Langenhorst, F., 2012b. Incorporation of Si into TiO2 phases at
high pressure, 97, 524-531.
160
84. Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised
calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions
to Mineralogy and Petrology, 154, 429–437.
85. Fett, A., 1995. Elementverteilung zwischen Granat, Klinopyroxen und Rutil
in Eklogiten — Experiment und Natur. Dissertation, University of Mainz,
Germany, 227 pp.
86. Foley, S.F., Barth, M.G., Jenner, G.A., 2000. Rutile/melt partition
coefficients for trace elements and an assessment of the influence of rutile on
the trace element characteristics of subduction zone magmas. Geochimica et
Cosmochimica Acta, 64, 933–938.
87. Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust
controlled by melting of amphibolite in subduction zones. Nature, 417, 837–
840.
88. Foley, S., 2008. A trace element perspective on Archean crust formation and
on the presence or absence of Archean subduction, Geological Society of
America Special Papers, 440, 31-50.
89. Force, E.R., 1991. Geology of titanium-mineral deposits. Geological Society
of America, Special Paper, 259, 1–112.
90. Forster, M.A., Lister, G.S., 2005. Several distinct tectono-metamorphic slices
in the Cycladic eclogite– blueschist belt, Greece. Contributions to
Mineralogy and Petrology, 150, 523–545.
91. Fossen, H. & Dallmeyer, R. D. 1998. 40Ar/39Ar muscovite dates from the
nappe region of southwestern Norway: dating extensional deformation in the
Scandinavian Caledonides. Tectonophysics, 285, 119–33.
161
92. Gao, Y., Hoefs, J., Przybilla, R., Snow, J.E., 2006. A complete oxygen
isotope profile through the lower oceanic crust, ODP Hole 735B. Chem.
Geol., 233, 217–234.
93. Garlick, G. D., MacGregor, I. D., and Vogel, D. E., 1971. Oxygen isotope
ratios in eclogites from kimbedites. Science, 172, 1025- 1027.
94. Garzanti, E., Vezzoli, G., Ando,` S., France-Lanord C., Singh, S. K., and
Foster, G., 2004. Sand petrology and focused erosion in focused erosion in
collision orogens: the Brahmaputra case.
95. Garzanti, E., Vezzoli, G., Andò, S., 2011. Paleogeographic and drainage
changes during Pleistocene glaciations (Po Plain, Northern Italy). Earth
Science Reviews, 105, 25–48.
96. Gao, C. G., Liu, Y. S., Zong, K. Q., et al., 2010. Microgeochemistry of Rutile
and Zircon in Eclogites from the CCSD Main Hole: Implications for the
Fluid Activity and Thermo-history of the UHP Metamorphism. Lithos, 115,
51–64.
97. Gebauer, D., Lappin, M. A., Grunenfelder, M. & Wyttenbach, A. 1985. The
age and origin of some Norwegian eclogites: a U–Pb zircon and REE study.
Chemical Geology, 52, 227–47.
98. Gebauer, D., Schertl, H.-P., Brix, M., Schreyer, W., 1997. 35 Ma old
ultrahigh-pressure metamorphism and evidence for very rapid exhumation in
the Dora Maira massif, Western Alps. Lithos, 41, 5–24.
99. Gonfiantini, R., 1978. Standards for stable isotope measurements in natural
compounds. Nature, 271, 534–536.
100.
Götze, J., 1996. Genetic information of accessory minerals in clastic
sediments. Zentralblatt für Geologie und Paläontologie Teil, 1, 101–118.
162
101.
Graham, J., Morris, R.C., 1973. Tungsten- and antimony-substituted
rutile. Mineralogical Magazine, 39, 470–473.
102.
Green, T.H., 1995. Significance of Nb/Ta as an indicator of
geochemical processes in the crust–mantle system. Chemical Geology, 120,
347–359.
103.
Grevel, C., Schreyer, W., Grevel, K.D., Schertl, H.P., Willner, A.P.,
2009. REE distribution, mobilization and fractionation in the coesite-bearing
“pyrope–quartzite” and related rocks of the Dora Maira Massif, western Alps.
European Journal of Mineralogy, 21, 1213–1224.
104.
Griffin, W. L. & Brueckner, H. K. 1980. Caledonian Sm–Nd ages and
a crustal origin for Norwegian eclogites. Nature, 285, 319–21.
105.
Griffin,W. L. & Brueckner,H.K. 1985. REE, Rb–Sr and Sm–Nd
studies of Norwegian eclogites. Chemical Geology, 52, 249–71.
106.
Griffin, W.L., Austrheim, H., Brastad, K., Bryhni, I., Krill, A.G.,
Krogh, E.J., Mørk, M.B.E., Qvale, H., Tørudbakken, B., 1985. High-pressure
metamorphism in the Scandinavian Cale- donides. In: Gee, D.G., Sturt, B.A.
_Eds.., The Caledonide Orogen — Scandinavia and Related Areas. Wiley,
Chichester, 783–801.
107.
Griffin, W.L., Qvale, H., 1985. Superferrian eclogites and the crustal
origin of garnet peridotites, Almklovdalen, Norway. In: Gee, D.G., Sturt,
B.A. _Eds.., The Caledonide Orogen —Scandinavia and Related Areas.
Wiley, Chichester, 803–812.
108.
Gregory, R. T. and Taylor, H. P., Jr., 1981. An oxygen isotope profile
in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence
for D18O buffering of the oceans by deep (>5 km) seawater- hydrothermal
circulation at mid-ocean ridges. J. Geophys. Res., 86, 2737-2755.
163
109.
Gregory, R. T. and Taylor, H. P., Jr., 1986. Non-equilibrium,
metasomatic 18O/16O effects in upper mantle mineral assemblages. Contrib.
Mineral. Petrol 93, 124-135.
110.
Groppo, C., Castelli, D., Compagnoni, R., 2006, Late chloritoid-
staurolite assemblage in a garnet-kyanite-bearing metapelite from the
ultrahigh-pressure Brossasco-Isasca unit (Dora-Maira Massif, Western Alps):
new petrological constraints for a portion of the decompressional path. in
‘‘Ultrahigh-pressure metamorphism: deep continental subduction’’, B.H.
Hacker, W.C. McClelland, J.G. Liou, eds., Geol. Soc. Am. Spec. Pap., 403,
127–138.
111.
Grønlie, G. & Rost, F., 1974. Gravity investigation and geological
interpretation of the ultramafite complex of A ° heim, Sunnmøre, western
Norway. Norsk Geologisk Tidsskrift, 54, 367–373.
112.
Grutter, H.S., 1993. Structural and metamorphic studies on Ios,
Cyclades, Greece. PhD Thesis, University of Cambridge, 227pp
(Unpublished).
113.
Hacker, B.R., Gans, P.B., 2005. Creation of ultrahigh-pressure
terranes: the Trondelag–Jämtland region of the Scandinavian Caledonides.
Geological Society of America Bulletin, 117, 117–134.
114.
Hacker, B.R., 2006. Pressures and temperatures of ultrahigh-pressure
metamorphism: implications for UHP tectonics and H2O in subducting slabs.
International Geology Review, 48, 1053–1066.
115.
Hacker, B.R., 2007. Ascent of the ultrahigh-pressure Western Gneiss
Region, Norway. In: Cloos, M., Carlson, W.D., Gilbert, M.C., Liou, J.G.,
Sorenson, S.S. (Eds.), Convergent Margin Terranes and Associated Regions:
A Tribute to W.G. Ernst. Geological Society of America Special Paper.
Geological Society of America, Boulder, CO, 171–184.
164
116.
Hamilton, W. B., 2003. An alternative Earth: GSA Today, 13, 4-12.
117.
Handy, M.R., Franz, L., Heller, F., Jannot, B., Zurbroggen, R., 1999.
Multistage accretion and exhumation of the continental crust (Ivrea crustal
section, Italy and Switzerland). Tectonics, 18, 1154–1177.
118.
Harley, S. L., Green, D. H., 1982. Garnet-orthopyroxene barometry
for granulites and peridotites. Nature, 300, 697-701.
119.
Harley, S. L., 1984. An experimental study of the partitioning of Fe
and Mg between garnet and orthopyroxene. Contributions to Mineralogy and
Petrology, 86, 359–373.
120.
Hassan, W.F., 1994. Geochemistry and mineralogy of Ta–Nb rutile
from Peninsular Malaysia. Journal of Southeast Asian Earth Sciences, 10,
11–23.
121.
Hecht, J., 1984. Geological Map of Greece, 1:50000, Syros Island.
Institute of Geology & Mineral Exploration, Athens.
122.
Henk, A., Franz, L., Teufel, S., Oncken, O., 1997. Magmatic
underplating, extension, and crustal reequilibration: insights from a crosssection through the Ivrea Zone and Strona–Ceneri Zone, northern Italy.
Journal of Geology 105, 367–377.
123.
Hermann, J., 2003. Experimental evidence for diamond-facies
metamorphism in the Dora-Maira massif. Lithos, 70, 163–182.
124.
Hills, D.V., Haggerty, S.E., 1989. Petrochemistry of eclogites from
the Koidu Kimberlite Complex, Sierra Leone. Contribution of Mineralogy
and Petrology, 103, 397–422.
165
125.
Huang, J., Ma, D., Liu, C., Chen, H., 2006. The Xiaojiao high-grade
eclogite-type rutile deposit in Jiangsu, China: geology, geochemistry and
metallogenesis. Chinese Journal of Geochemistry, 25, 33–42.
126.
Janoušek, V., Krenn, E., Finger, F., Míková, J., Frýda, J., 2007.
Hyperpotassic granulites from Blanský les Massif (Moldanubian Zone,
Bohemian Massif) revisited. Journal of Geosciences, 52, 73–112.
127.
Jamtveit, B., 1984. High-P metamorphism and deformation of the
Gurskebotn garnet peridotite, Sunnmøre, Western Norway. Norsk Geologisk
Tidsskrift, 64, 97–110.
128.
Jiao, S., Guo, J., Mao, Q., Zhao, R., 2011. Application of Zr-in-rutile
thermometry: a case study from ultrahigh-temperature granulites of the
Khondalite belt, North China Craton. Contributions to Mineralogy and
Petrology.
129.
John, T., Klemd, R., Klemme, S., Pfänder, J.A., Hoffmann, J.E., Gao,
J. 2010. Nb–Ta fractionation by partial melting at the titanite–rutile
transition. Contributions to Mineralogy and Petrology, 161, 35-45.
130.
Kalfoun, F., Ionov, D., Merlet, C., 2002. HFSE residence and Nb/Ta
ratios in metasomatized, rutile-bearing mantle peridotites, Earth Planet. Sci.
Lett., 199 49–65.
131.
Kooijman, E., Smit, M.A., Mezger, K., Berndt, J., 2012. Trace
element systematics in granulite facies rutile: implications for Zr
geothermometry and provenance studies. Journal of Metamorphic Geology,
30, 397-412.
132.
Krabbendam, M., Wain, A.L., 1997. Late-Caledonian structures,
differential retrogression and structural position of _ultra.high pressure rocks
166
in the Norfjord–Stadlandet area, Western Gneiss Region. Norges Geologisk
Undersøkelse Bulletin, 432, 127–139.
133.
Krabbendam, M., Wain, A. & Andersen, T. B., 2000. Pre-Caledonian
granulite and gabbro enclaves in the Western Gneiss Region, Norway:
indications of incomplete transition at high pressure. Geological Magazine,
137, 235–255.
134.
Keiter, M., Piepjohn, K., Ballhaus, C., Bode, M., Lagos, M., 2004.
Structural development of high-pressure metamorphic rocks on Syros island
(Cyclades, Greece). Journal of Structural Geology 26, 1433–1445.
135.
Kildal, E.S., 1970. Geologisk karte over Norge, berggrunnskart
Maloy 1:250 000, Norske Utgave. Norges Geologisk Undersøkelse.
136.
Klaproth, M.H., 1795. Beiträge zur chemischen Kenntniss der
Mineralkörper, Vol. 1. Decker & Compagnie, Posen. 374 pp.
137.
Klemme, S., Prowatke, S., Hametner, K., Gunther, D., 2005.
Partitioning of trace elements between rutile and silicate melts: implications
for subduction zones. Geochim Cosmochim Acta, 69, 2361–2371.
138.
Konrad-Schmolke, M., Babist, J., Handy, M.R., O'Brien, P.J., 2006.
Insight into the physico-chemical properties of a subducted slab from garnet
zonations patterns (Sesia Zone, western Alps). Journal of Petrology, 47,
2123–2148.
139.
Konrad-Schmolke, M., O'Brien, P.J., de Capitani, C., Carswell, D.A.,
2008b. Garnet growth at high- and ultra-high pressure conditions and the
effect of element fractionation on mineral modes and composition. Lithos,
103, 309–332.
167
140.
Konrad-Schmolke, M., O'Brien, P. J., Zack, T., 2011. Fluid migration
above a subducted slab—constraints on amount, pathways and major element
mobility from partially overprinted eclogite-facies rocks (Sesia Zone,
Western Alps). Journal of Petrology, 52, 457-486.
141.
Korneliussen, A., McEnroe, S.A., Nilsson, L.P., Schiellerup, H.,
Gautneb, H., Meyer, G.B., Stbrseth, L.R., 2000a. An overview of titanium
deposits in Norway. Nor. Geol. Surv. Bull., 426, 27– 38.
142.
Korneliussen, A., McLimans, R., Braathen, A., Erambert, M., Lutro,
O. & Ragnhildstveit, J. 2000b: Rutile in eclogites as a mineral resource in the
Sunnfjord region, Western Norway. Norges geologiske undersøkelse
Bulletin, 436, 39-47.
143.
Krogh, E.J., 1977. Evidence for a Precambrian continent–continent
collision in western Norway. Nature, 267, 17–19.
144.
Krogh, E.J., 1980. Geochemistry and petrology of
glaucophanebearing eclogites and associated rocks from Sunnfjord, Western
Norway. Lithos, 13, 355–380.
145.
Krogh, E.J., 1982. Metamorphic evolution of Norwegian countryrock
eclogites, as deduced from mineral inclusions and compositional zoning in
garnets. Lithos, 15, 305–321.
146.
Krogh, E.J., Carswell, D.A., 1995. HP and UHP eclogites and garnet
peridotites in the Scandinavian Caledonides. In: Coleman, R.G., Wang, X.
_Eds.., Ultrahigh Pressure Metamorphism. Cambridge Univ. Press, 244–298.
147.
Kylander-Clark, A.R.C., Hacker, B.R., Johnson, C.M., Beard, B.L.,
Mahlen, N.J., 2009. Slow subduction of a thick ultrahigh-pressure terrane.
Tectonics, 28, 1–14.
168
148.
Labrousse, L., Jolivet, L., Agard, P., Hébert, R., Andersen, T.B.,
2002. Crustal-scale boudinage and migmatization of gneiss during their
exhumation in the UHP Province of Western Norway. Terra Nova, 14, 263–
270.
149.
Lagabrielle, Y. and Cannat, M., 1990. Alpine Jurassic ophiolites
resemble the modern central Atlantic basement. Geology, 18, 319–322.
150.
Lagabrielle, Y. & Lemoine, M., 1997. Alpine, Corsican and Apennine
ophiolites: the slow-spreading ridge model. Comptes Rendus de l_Acade´mie
des Sciences - Series IIA - Earth and Planetary Science, 325, 909–920.
151.
Lagos, M., Scherer, E.E., Tomaschek, F., Münker, C., Keiter, M.,
Berndt, J., Ballhaus J., 2007. High precision Lu-Hf geochronology of Eocene
eclogite-facies rocks from Syros, Cyclades, Greece. Chemical Geology, 243,
16–35.
152.
Lappin, M.A., 1974. Eclogites of the Sunndal Grubse ultramafic
mass, Almklovdalen, Norway and the T – P history of the Almklovdalen
mass. Journal of Petrology, 15, 567–601.
153.
Lappin, M.A., Smith, D.C., 1978. Mantle equilibrated eclogite pods
from the Basal Gneisses in the Selje district, Western Norway. Journal of
Petrology, 19, 530–584.
154.
Lardeaux, J.M., Lombardo, B., Gosso, G., Kienast, J.R., 1982.
Découverte de paragénèses à ferro-omphacite dans les orthogneiss de la zone
Sesia-Lanzo septentrionale (Alpes Italiennes). Comptes Rendus de
l'Académie des Sciences, 296, 453–456.
155.
Lavrenteva, I.V., Perchuk, L.L., 1989. Experimental study of
amphibole-garnet equilibrium (calcium-free system). Dokl. Akad. Nauk
USSR, 306, 173-175.
169
156.
Li, Q., Li, S., Zheng, Y.-F., Li, H., Massonne, H.J., Wang, Q., 2003.
A high precision U–Pb age of metamorphic rutile in coesite-bearing eclogite
from the Dabie Mountains in central China: a new constraint on the cooling
history. Chemical Geology, 200, 255–265.
157.
Lee, H. Y. & Ganguly, J., 1988. Equilibrium compositions of
coexisting garnet and orthopyroxene: Experimental determinations in the
system FeO–MgO–Al2O3–SiO2, and applications. Journal of Petrology, 29,
93–113.
158.
Liou, J.G., Zhang, R., Ernst, W.G., Liu, J., McLimans, R., 1998.
Mineral paragenesis in the Pianpaludo eclogitis body, Gruppo di Voltri,
western Ligurian Alps. Schweizerische Mineralogische und Petrographische
Mitteilungen, 78, 317–335.
159.
Lombardo, B., Nervo, R., Compagnoni, R. et al., 1978. Osservazioni
preliminari sulle ofioliti metamorfiche del Monviso (Alpi occidentali).
Rendiconti Societa Italiana Di Mineralogia e Petrologia, 34, 253–305.
160.
Ludwig, C.F., 1803. Handbuch der Mineralogie nach A. G. Werner.
Vol. 1, Siegfried Lebrecht Crusius, Leipzig, 369 pp.
161.
Ludgwig, K.R., 2012. Isoplot/Ex 3.75, A geochronological toolkit for
Microsoft Excel, Berkley Geochronology Centre.
162.
Luvizotto, G.L., Zack, T., 2009. Nb and Zr behavior in rutile during
high-grade metamorphism and retrogression: an example from the Ivrea
Verbano Zone. Chemical Geology, 261, 303–317.
163.
Luvizotto, G.L., Zack, T., Triebold, S., von Eynatten, H., 2009a.
Rutile occurrence and trace element behavior in medium-grade
metasedimentary rocks: example from the Erzgebirge, Germany. Mineralogy
and Petrology, 97, 233–249.
170
164.
Luvizotto, G.L., Zack, T., Meyer, H.P., Ludwig, T., Triebold, S.,
Kronz, A., Münker, C., Stockli, D.F., Prowatke, S., Klemme, S., Jacob, D.E.,
von Eynatten, H., 2009b. Rutile crystals as potential trace element and
isotope mineral standards for microanalysis. Chemical Geology, 261, 346–
369.
165.
MacChesney, J.N., Muan, A., 1959. Studies in the system iron oxide–
titanium oxide. American Mineralogist, 44, 926–945.
166.
MacGregor, I. D. and Manton, W. I. (1986) Roberts Victor eclogites:
Ancient oceanic crust. J. Geophys. Res., 91, 14063-14079.
167.
Maekawa, H., Fryer, P., and Ozaki, A., 1995: Incipient blueschist-
facies metamorphism in the active subduction zone beneath the Mariana
forearc, in Taylor, B., and Natland, J., eds., Active Margins and Marginal
Basins of the Western Pacific: American Geophysical Union Monograph, 88,
281-289.
168.
Maluski, H., Bonneau, M., Kienast, J.R., 1987. Dating the
metamorphic events in the Cycladic area: 40Ar/39Ar data from metamorphic
rocks of the island of Syros (Greece). Bulletin de la Société Géologique de
France 8, 833–842.
169.
Mange, M.A., Morton, A.C., 2007. Geochemistry of heavy minerals.
In: Mange, M.A., Wright, D.T. (Eds.), Heavy Minerals In Use:
Developments in Sedimentology, 58, 345–391.
170.
Marschall, H.R., 2005. Lithium, beryllium, and boron in highpressure
metamorphic rocks from Syros (Greece). Dr rer nat thesis, Univ Heidelberg,
Germany.
171
171.
Marschall, H.R., Ludwig, T., Altherr, R., Kalt, A., Tonarini, S.,
2006a. Syros metasomatic tourmaline: evidence for very high-∂11B fluids in
subduction zones. Journal of Petrology, 47, 1915–1942.
172.
Marschall, H.R., Altherr, R., Rüpke, R., 2007. Squeezing out the slab
— modelling the release of Li, Be and B during progressive high-pressure
metamorphism. Chemical Geology, 239, 323-335.
173.
Massonne, H.-J., Czambor, A., 2007. Geochemical signatures of
Variscan eclogites from the Saxonian Erzgebirge, central Europe. Chemie der
Erde, 67, 69–83.
174.
Matthews, A., Beckinsale, R.D., Durham, J.J., 1979. Oxygen isotope
fractionation between rutile and water and geothermometry of metamorphic
eclogites. Mineralogical Magazine, 43, 405–413.
175.
Medaris, L.G. Jr., 1980. Petrogenesis of the Lien peridotite and
associated eclogites, Almklovdalen, western Norway. Lithos, 13, 339–353.
176.
Medaris, L.G. Jr., 1984. A geothermobarometric investigation of
garnet peridotites in the Western Gneiss Region of Norway.Contributions to
Mineralogy and Petrology, 87, 72–86.
177.
Medaris, L.G., Brueckner, H.K., 2003. Excursion to the
Almklovdalen Peridotite. In: Guidebook to the Field Excursions in the
Nordfjord-Stadtlandet-Almklovdalen area, Geological Survey of Norway
Publication NGU 2003.56.
178.
Mader, D., 1980. Authigener Rutil im Buntsandstein der Westeifel.
Neues Jahrburch für Mineralogie, Monatshefte, 3, 97–108.
179.
Maruyama, S., Liou, J. G., and Terabayashi, M., 1996, Blueschists
and eclogites of the world and their exhumation: International Geology
Review, 38, 486-594.
172
180.
Meinhold, G., Anders, B., Kostopoulos, D., Reischmann, T., 2008.
Rutile chemistry and thermometry as provenance indicator: an example
from Chios Island, Greece. Sedimentary Geology, 203, 98–111.
181.
Meyer, M., John, T., Brandt, S., Klemd, R., 2011. Trace element
composition of rutile and the application of Zr-in-rutile thermometry to UHT
metamorphism (Epupa Complex, NW Namibia). Lithos, 126, 388–401.
182.
Meyre, C., de Capitani, C. & Partzsch, J. H., 1997. A ternary solid
solution model for omphacite and its application to geothermobarometry of
eclogites from the Middle Adula nappe (Central Alps, Switzerland). Journal
of Metamorphic Geology, 15, 687–700.
183.
Mezger, K., Hanson, G.N., Bohlen, S.R., 1989. High-precision U–Pb
ages of metamorphic rutile: application to the cooling history of high-grade
terranes. Earth and Planetary Science Letters, 96, 106–118.
184.
Mezger, K., Essene, E.J., Vanderpluijm, B.A., Halliday, A.N., 1993.
U–Pb geochronology of the Grenville orogen of Ontario and New York:
constraints on ancient crustal tectonics. Contributions to Mineralogy and
Petrology, 114, 13–26.
185.
Miller, C., Zanetti, A., Thöni, M., Konzett, J., 2007. Eclogitisation of
gabbroic rocks: redistribution of trace elements and Zr in rutile thermometry
in an Eo–Alpine subduction zone (Eastern Alps). Chemical Geology 239,
96–123.
186.
Miller, D.P., Marschall, H.R., Schumacher, J.C., 2009. Metasomatic
formation and petrology of blueschist-facies hybrid rocks from Syros
(Greece): Implications for reactions at the slab–mantle interface. Lithos, 107,
53-67.
173
187.
Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T., 2001. Oxygen-isotope
evidence from ancient zircons for liquid water at the Earth's surface 4,300
Myr ago. Nature, 409, 178–181.
188.
Möller, A., Mezger, K., Schenk, V., 2000. U–Pb dating of
metamorphic minerals: Pan-African metamorphism and prolonged slow
cooling of high pressure granulites in Tanzania, East Africa. Precambrian
Research, 104, 123– 146.
189.
Moore, D.K., Cherniak, D.J., Watson, E.B., 1998. Oxygen diffusion
in rutile from 750 to 1000 °C and 0.1 to 1000 MPa. American Mineralogist,
83, 700–711.
190.
Mørk, M. B. E. & Mearns, E. W. 1985. Sm–Nd isotopic systematics
of a gabbro–eclogite transition. Lithos, 19, 255–67.
191.
Mori, T. & Green, D. H., 1978. Laboratory duplication of phase
equilibria observed in natural garnet lherzolites. Journal of Geology, 86, 8397.
192.
Morton, A.C., 1991. Geochemical studies of detrital heavy minerals
and their application to provenance research. In: Morton, A.C., Todd, S.P.,
Haughton, P.D.W. (Eds.), Developments in Sedimentary Provenance Studies:
Geological Society of London, Special Publication, 57, 31–45.
193.
Morton, A.C., Hallsworth, C.R., 1999. Processes controlling the
composition of heavy mineral assemblages in sandstones. Sedimentary
Geology, 124, 3–29.
194.
Morton, A., Hallsworth, C., Chalton, B., 2004. Garnet compositions
in Scottish and Norwegian basement terrains: a framework for interpretation
of North Sea sandstone provenance. Marine and Petroleum Geology 21, 393–
410.
174
195.
Morton, A.C., Whitham, A.G., Fanning, C.M., 2005. Provenance of
Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian
Sea: integration of heavy mineral, mineral chemical and zircon age data.
Sedimentary Geology, 182, 3–28.
196.
Morton, A.C., Hallsworth, C.R., 2007. Stability of detrital heavy
minerals during burial diagenesis. In: Mange, M., Wright, D.T. (Eds.), Heavy
Minerals In Use: Developments in Sedimentology, 58, 215–245.
197.
Morton, A., Chenery, S., 2009. Detrital rutile geochemistry and
thermometry as guides to provenance of Jurassic–Paleocene sandstones of
the Norwegian Sea. Journal of Sedimentary Research, 79, 540–553.
198.
Muehlenbachs K. and Clayton R. N., 1972a. Oxygen isotope studies
of fresh and weathered submarine basalts. Canadian J. Earth Sci., 9, 172-184.
199.
Muehlenbachs K. and Clayton R. N., 1972b. Oxygen isotope
geochemistry of submarine greenstones. Canadian J. Earth Sci., 9, 471-478.
200.
Murad, E., Cashion, J.D., Noble, C.J., Pilbrow, J.R., 1995. The
chemical state of Fe in rutile from an albitite in Norway. Mineralogical
Magazine, 59, 557–560.
201.
Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini,
R., Rogledi, S., Sciunnach, D., 2003. Onset of major Pleistocene glaciations
in the Alps. Geology, 31, 989–992.
202.
Okrusch, M., Bröcker, M., 1990. Eclogites associated with high-grade
blueschists in the Cyclades archipelago, Greece: a review. European Journal
of Mineralogy, 2, 451–478.
203.
Ongley, J. S., Basu, A. R., and Kyser, T. K., 1987. Oxygen isotopes
in coexisting garnets, clinopyroxenes and phlogopites of Roberts Victor
175
eclogites: implications for petrogenesis and mantle metasomatism. Earth
Planet. Sci. Lett., 83, 80-84.
204.
Papp, G., 2007. On the type locality of rutile (review of contemporary
data about the occurrence of the “Hungarian red schorl”). In: Jancsy, P. (Ed.),
Prvenstvá nerastnej ríše Slovenska — The unique minerals of Slovakia.
Slovenské banské múzeum, Banská Štiavnica, 51–55.
205.
Parman, S.W., Grove, T.L., Dann, J.C., 2001. The production of
Barberton komatiites in an Archean subduction zone. Geophysical Research
Letters, 28, 2513–2516.
206.
Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson,
S.E., Neal, C.R., Cenery, S.P., 1997. A compilation of new and published
major and trace element data for NIST SRM 610 and NIST SRM 612 glass
reference materials. Geostand. Newsl., 21, 115– 144.
207.
Pettijohn, F.J., 1941. Persitence of heavy minerals and geologic age.
Journal of Geology, 49, 610–625.
208.
Piatt, J. P., 1975. Metamorphism and deformational processes in the
Franciscan Complex, California: Some insights from the Catalina Schist
terrane: Geological Society of America Bulletin, 86, 1337-1347.
209.
Pognante, U., 1989. Lawsonite, blueschist and eclogite formation in
the southern Sesia Zone (western Alps, Italy). Eur. J. Mineral., 1, 89–104.
210.
Polat A, Frei R, Appel PWU, Dilek Y, Fryer B, Ordonez-Calderon JC
(2008) The origin and compositions of Mesoarchean oceanic crust: evidence
from the 3075 Ma Ivisaartoq greenstone belt, southern West Greenland.
Lithos, 100, 293-321.
176
211.
Preston, R.J., Hartley, A., Hole, M.J., Buck, S., Bond, J., Mange-
Rajetzky, M., Still, J., 1998. Integrated whole-rock trace element
geochemistry and heavy-mineral chemistry studies: aids to the correlation of
continental red-bed reservoirs in the Beryl Field, U.K. North Sea. Petroleum
Geoscience, 4, 7–16.
212.
Preston, J., Hartley, A., Mange-Rajetzky, M., Hole, M.J., May, G.,
Buck, S., 2002. The provenance of Triassic continental sandstones from the
Beryl Field, northern North Sea: mineralogical, geochemical, and
sedimentological constraints. Journal of Sedimentary Research, 72, 18–29.
213.
40
Putlitz, B., Cosca, M.A., Schumacher, J.C., 2005. Prograde mica
Ar/39Ar growth ages recorded in high pressure rocks (Syros, Cyclades,
Greece). Chemical Geology, 214, 79-98.
214.
Raman, K.V., Jackson, M.L., 1965. Rutile and anatase determination
in soils and sediments. American Mineralogist, 50, 1086–1092.
215.
Ravna, E.J.K., Terry, M.P., 2004. Geothermobarometry of phengite–
kyanite–quartz/coesite eclogites. Journal of Metamorphic Geology, 22, 579–
592.
216.
Rice, C., Darke, K., Still, J., 1998. Tungsten-bearing rutile from the
Kori Kollo gold mine Bolívia. Mineralogical Magazine, 62, 421–429.
217.
Ridley, J. 1984. The significance of deformation associated with
blueschist facies metamorphism on the Aegean island of Syros. In The
Geological Evolution of the Eastern Mediterranean (eds J. E. Dixon and A.
H. F. Robertson), Desmons, J. and O'Neil, J. R., 1978. Oxygen and hydrogen
isotope compositions of eclogites and associated rocks from the Eastern Sesia
Zone (western Alps, Italy). Contrib. Mineral. Petrol., 67, 79-85.
218.
Roberts, D., Gee, D.G., 1985. An introduction to the structure of the
Scandinavian Caledonides. In: Gee, D.G., Sturt, B.A. _Eds.., The Caledonide
Orogen — Scandinavia and Related Areas. Wiley, Chichester, 55–68.
177
219.
Robinson, P., 1995. Extension of Trollheimen tectono-stratigraphic
sequence in deep synclines near Molde and Brattv°ag, Western Gneiss
Region, southern Norway. Norsk Geologisk Tidsskrift, 75, 181–198.
220.
Root, D.B., Hacker, B.R., Mattinson, J.M., Wooden, J.L., 2004.
Zircon geochronology and ca. 400 Ma exhumation of Norwegian ultrahighpressure rocks: an ion microprobe and chemical abrasion study. Earth and
Planetary Science Letters, 228, 325–341.
221.
Romé de l'Isle, J.B.L. de, 1783. Cristallographie, ou description des
formes propres à tous les corps du règne minéral, dans l'état de combinaison
saline, pierreuse, ou métallique. Paris.
222.
Rosenbaum, G., Avigad, D., Sánchez-Gómez, M., 2002. Coaxial
flattening at deep levels of orogenic belts: evidence from blueschists and
eclogites on Syros and Sifnos (Cyclades, Greece). Journal of Structural
Geology, 24, 1451–1462.
223.
Rubatto, D., Gebauer, D., Compagnoni, R., 1999. Dating of eclogite-
facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone
(Western Alps). Earth Planet. Sci. Lett., 167, 141–158.
224.
Rubatto, D., Hermann, J., 2001. Exhumation as fast as subduction?
Geology, 29, 3–6.
225.
Rubatto, D. & Hermann, J., 2003. Zircon formation during fluid
circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf
budget in subduction zones. Geochimica et Cosmochimica Acta, 67, 2173–
2187.
226.
Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the
continental crust: a lower crustal perspective. Reviews of Geophysics, 33,
267–309.
178
227.
Rudnick, R.L., Barth, M., Horn, I., McDonough, W.F., 2000. Rutile-
bearing refractory eclogites:missing linkbetween continents
anddepletedmantle. Science, 287, 278–281.
228.
Schertl, H.-P., Schreyer, W., Chopin, C., 1991. The pyrope-coesite
rocks and their country rocks at Parigi, Dora Maira Massif, Western Alps:
detailed petrography, mineral chemistry and PT-path. Contrib. Mineral.
Petrol., 108, 1–21.
229.
Schertl, H.-P. & Schreyer, W., 2008. Geochemistry of coesite-bearing
‘pyrope quartzite’ and related rocks from the Dora-Maira Massif, Western
Alps. Eur. J. Mineral., 20, 791–809.
230.
Schmid, S.M., Fugenschuh, B., Kissling, E., Schuster, R., 2004.
Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol.
Helv., 97, 93–117.
231.
Schmidt, A., Weyer, S., John, T., Brey, G.P., 2009. HFSE systematics
of rutile-bearing eclogites: new insights into subduction zone processes and
implications for the Earth's HFSE budget. Geochimica et Cosmochimica
Acta, 73, 455–468.
232.
Schumacher, J.C.B., Brady, J., Cheney, J.T., Tonnsen, R.R., 2008.
Glaucophane bearing Marbles on Syros, Greece. Journal of Petrology, 49,
1667–1686.
233.
Scott, K.M., 2005. Rutile geochemistry as a guide to porphyry Cu–Au
mineralization, Northparkes, New South Wales, Australia. Geochemistry:
Exploration, Environment, Analysis, 5, 247–253.
234.
Seck, H.A., Kötz, J., Okrusch, M., Sidel, E., Stosch, H.-G., 1996.
Geochemistry of a metaophiolite suite: an association of metagabbros,
179
eclogites and glaucophanites on the island of Syros, Greece. European
Journal of Mineralogy, 8, 607–623.
235.
Shannon, R.D., 1976. Revised effective ionic radii and systematic
studies of interatomic distances in halides and chalcogenides. Acta
Crystallographica, A32, 751–767.
236.
Shirey, S.B., Kamber, B.S., Whitehouse, M.J., Mueller, P.A., and
Basu, A.R., 2008, A review of the isotopic and trace element evidence for
mantle and crustal processes in the Hadean and Archean: Implications for the
onset of plate tectonic subduction, in Condie, K.C., and Pease, V., eds.,
When Did Plate Tectonics Begin on Planet Earth?: Geological Society of
America Special Paper, 440, 1–29.
237.
Sills, J.D., Tarney, J., 1984. Petrogenesis and tectonic significance of
amphibolites interlayered with meta-sedimentary gneisses in the Ivrea Zone,
Southern Alps, Northwest Italy. Tectonophysics, 107, 187–206.
238.
Smith, D.C., 1984. Coesite in clinopyroxene in the Caledonides and
its implications for geodynamics. Nature, 310, 641–644.
239.
Smith, D.C., 1988. A review of the peculiar mineralogy of the
‘‘Norwegian Coesite Eclogite Province’’, with crystal-chemical, petrological,
geochemical and geodynamical notes and an extensive bibliography. In:
Smith, D.C. _Ed.., Eclogites and Eclogite-Facies Rocks. Elsevier,
Amsterdam, 1–206.
240.
Smith, D., Perseil, E.-A., 1997. Sb-rich rutile in the manganese
concentrations at St. Marcel-Praborna, Aosta Valley, Italy; petrology and
crystal-chemistry. Mineralogical Magazine, 61, 655–669.
241.
Smithies, R. H., Champion, D. C., and Cassidy, K. F., 2003,
Formation of Earth’s Early Archean continental crust: Precambrian Research,
127, 89-101.
180
242.
Spandler, C., Mavrogenes, J., Hermann, J., 2007. Experimental
constraints on element mobility from subducted sediments using high-P
synthetic fluid/melt inclusions. Chem. Geol. 239, 228–249.
243.
Spooner, E. T. C., Beckinsale, R. D., Fyfe, W. S., and Smewing, J.
D., 1974. 180-enriched ophiolitic metabasic rocks from E. Liguria (Italy),
Pindos (Greece), and Troodos (Cyprus). Contrib. Mineral. Petrol., 47, 41-62.
244.
Spurr, R., Myers, H., 1957. Quantitative analysis of anatase-rutile
mixtures with an Xray diffractometer. Analytical Chemistry 29, 760–762.
245.
Stendal, H., Toteu, S.F., Frei, R., Penaye, J., Njel, U.O., Bassahak, J.,
Nni, J., Kankeu, B., Ngako, V., Hell, J.V., 2006. Derivation of detrital rutile
in the Yaoundé region from the Neoproterozoic Pan-African belt in southern
Cameroon (Central Africa). Journal of African Earth Sciences, 44, 443–458.
246.
Stern, R. J., 2004, Subduction initiation: Spontaneous and induced:
Earth and Planetary Science Letters, 226, 275-292.
247.
Stern, R. J., 2005, Evidence from ophiolites, blueschists and
ultrahigh-pressure metamorphic terranes that the modern episode of
subduction tectonics began in Neoproterozoic time: Geology, 33, 557-560
248.
Stevenson, D. J., 2003, Styles of mantle convection and their
influence on planetary evolution: Comptes Rendus Geoscience, 335, 99-111.
249.
Terry, M.P., Robinson, P., Ravna, E.J.K., 2000b. Kyanite eclogite
thermobarometry and evidence for thrusting of UHP over HP metamorphic
rocks, Nordøyane, Western Gneiss Region, Norway. American Mineralogist,
85, 1637–1650.
181
250.
Tomaschek, F., Kennedy, A.K., Villa, I.M., Lagos, M., Ballhaus, C.,
2003. Zircons from Syros,
Cyclades, Greece—recystallization and
mobilization of zircon during high-pressure metamorphism. Journal of
Petrology, 44, 1977–2002.
251.
Tomkins, H.S., Powell, R., Ellis, D.J., 2007. The pressure dependence
of the zirconium-in rutile thermometer. Journal of Metamorphic Geology, 25,
703–713.
252.
Triebold, S., von Eynatten, H., Luvizotto, G.L., Zack, T., 2007.
Deducing source rock lithology from detrital rutile geochemistry: an example
from the Erzgebirge, Germany. Chemical Geology, 244, 421–436.
253.
Tropper, P., Essene, E. J., Sharp, Z. D. & Hunziker, J. C., 1999.
Application of K-feldspar–jadeite–quartz barometry to eclogite facies
metagranites and metapelites in the Sesia Lanzo Zone (Western Alps, Italy).
Journal of Metamorphic Geology, 17, 195–209.
254.
Trotet, F., Jolivet, L., Vidal, O., 2001. Tectono-metamorphic
evolution of Syros and Sifnos islands (Cyclades, Greece). Tectonophysics,
338, 179–206.
255.
Tveten, E., 1995. Regional foliation patterns in gneisses as an aid to
the correlation of metasupracrustal rocks in the Western Gneiss Region,
southern Norway. Norges Geologiske Undersøkelse Bulletin, 427, 29–32.
256.
Tveten, E., Lutro, O., 1995a. Geologisk kart over Norge,
berggrunnskart A° LESUND — 1:250.000. Foreløpige Utgave. Norges
Geologiske Undersøkelse.
257.
Tveten, E., Lutro, O., 1995b. Geologisk kart over Norge,
berggrunnskart ULSTEINVIK — 1:250.000. Foreløpige Utgave. Norges
Geologiske Undersøkelse.
182
258.
Uher, P., Žitňan, P., Ozdín, D., 2007. Pegmatitic Nb–Ta oxide
minerals in alluvial placers from Limbach, Bratislava Massif, Western
Carpathians, Slovakia: compositional variations and evolutionary trend.
Journal of Geosciences, 52, 133–141.
259.
Valley, J.W., 2003. Oxygen isotopes in zircon. In: Hanchar, J.M.,
Hoskin, P.W.O. (Eds.), Zircon: Reviews in Mineralogy and Geochemistry,
53, 343–380.
260.
Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza,
M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M.,
Peck, W.H., Sinha, A.K., Wei, C.S., 2005. 4.4 billion years of crustal
maturation: oxygen isotope ratios of magmaticzircon. Contributions to
Mineralogy and Petrology, 150, 561–580.
261.
Van Roermund, H.L.M., Carswell, D.A., Drury, M.R., Heijboer, T.C.,
2002. Micro-diamonds in a megacrystic garnet-websterite pod from Bardane
on the island of Fjørtoft, western Norway: evidence for diamond-formation in
mantle rocks during deep continental subduction. Geology, 30, 959–962.
262.
Van Roermund, H.L.M., 2009a. Recent progress in Scandian UHPM
in the northernmost domain of the Western Gneiss Complex, SW Norway:
continental subduction down to 180–200 km. Journal of the Geological
Society of London, 166, 1–13.
263.
Venturini, G., Martinotti, G., Armando, G., Barbero, M., Hunziker,
J.C., 1994. The central Sesia Lanzo Zone (western Italian Alps), new field
observations and lithostratigraphic subdivisions. Schweiz. Mineral. Petrogr.
Mitt., 74, 115–125.
264.
Vogel, D. E. and Garlick, G. D., 1970. Oxygen isotope ratios in
metamorphic eclogites. Contrib. Mineral Petrol, 28, 183-191.
183
265.
Von Born, I., 1772. Lithophylacium Bornianum, Index Fossilium,
quae collegit, et in Classes ac Ordines disposuit Ignatius Eques a Born. Vol.
1, Gerle, Prague, 157 pp.
266.
Von Eynatten, H., Gaupp, R., 1999. Provenance of Cretaceous
synorogenic sandstones from the Eastern Alps: constraints from framework
petrography, heavy mineral analysis, and mineral chemistry. Sedimentary
Geology, 124, 81–111.
267.
Vrijmoed, J.C., Van Roermund, H.L.M., Davies, G.R., 2006.
Evidence for diamond-grade ultra-high pressure metamorphism and "uid
interaction in the Svartberget Fe–Ti garnet peridotite–websterite body,
Western Gneiss Region, Norway. Mineralogyand Petrology 88, 381–405.
268.
Vry, J.K., Baker, J.A., 2006. LA-MC-ICP MS Pb–Pb dating of rutile
from slowly cooled granulites: confirmation of the high closure temperature
for Pb diffusion in rutile. Geochimica et Cosmochimica Acta, 70, 1807–
1820.
269.
Vrijmoed, J.C., Smith, D.C., Van Roermund, H.L.M., 2008. Raman
confirmation of microdiamond in the Svartberget Fe–Ti type garnet
peridotite, Western Gneiss Region, Western Norway. Terra Nova, 20, 295–
301.
270.
Wain, A.L., 1997a. Ultrahigh pressure metamorphism in western
Norway: a tectonic or kinetic problem? Terra Nova 9, 94, Abstr. Suppl. 1
_EUG.
271.
Wain, A.L., 1997b. New evidence for coesite in eclogite and gneisses:
defining an ultrahigh pressure province in the Western Gneiss Region of
Norway. Geology, 25, 927–930.
272.
Wain, A.L., 1998. Ultrahigh pressure metamorphism in the Western
Gneiss Region of Norway. PhD thesis, University of Oxford.
184
273.
Wain, A., Waters, D., Austrheim, H., 2001. Metastability of
granulites and processes of eclogitization in the UHP region of western
Norway. Journal of Metamorphic Geology, 19, 609–625.
274.
Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization
thermometers for zircon and rutile. Contributions to Mineralogy and
Petrology, 151, 413–433.
275.
Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001.
Evidence from detrital zircons for the existence of continental crust and
oceans on the Earth 4.4 Gyr ago. Nature, 409, 175–178.
276.
Wilks, W.J., Cuthbert, S.J., 1994. The evolution of the Hornelen
Basin detachment system, western Norway: implications for the style of late
orogenic extension in the southern Scandinavian Caledonides.
Tectonophysics, 238, 1–30.
277.
Wynman, D. A., O’Neill, C., and Ayer, J. A., Evidence for modern-
style subduction to 3.1 Ga: A plateau–adakite–gold (diamond) association
Geological Society of America Special Papers, 2008, 440, 129-148.
278.
Xiao, Y., Sun, W., Hoefs, J., Simon, K., Zhang, Z., Li, S., Hofmann,
A.W., 2006. Making continental crust through slab melting: Constraints from
niobium–tantalum fractionation in UHP metamorphic rutile. Geochimica et
Cosmochimica Acta, 70, 4770–4782.
279.
Zack, T., Foley, S.F., Rivers, T., 2002a. Equilibrium and
disequilibrium trace element partitioning in hydrous eclogites (Trescolmen,
Central Alps). J Petrol., 43, 1947–1974.
280.
Zack, T., Kronz, A., Foley, S.F., Rivers, T., 2002b. Trace element
abundances in rutiles from eclogites and associated garnet mica schists.
Chemical Geology, 97-122.
185
281.
Zack, T., Moraes, R., Kronz, A., 2004a. Temperature dependence of
Zr in rutile: empirical calibration of a rutile thermometer. Contributions to
Mineralogy and Petrology, 148, 471–488.
282.
Zack, T., Eynatten, H.V., Kronz, A., 2004b. Rutile geochemistry and
its potential use in quantitative provenance studies. Sedimentary Geology,
171, 37-58.
283.
Zhang, R.Y., Liou, J.G., 1994. Significance of magnesite paragenesis
in ultrahigh-P metamorphic rocks. Am. Mineral., 79, 397–400.
284.
Zhang, R.Y., Hirajima, T., Banno, S., Cong, B., Liou, J.G., 1995.
Petrology of ultrahigh-pressure rocks from the southern Sulu region, eastern
China. J. Metamorph. Geol., 13, 659–675.
285.
Zhang, R.Y., Zhai, S.M., Fei, Y.W., Liou, J.G., 2003. Titanium
solubility in coexisting garnet and clinopyroxene at very high pressure: the
significance of exsolved rutile in garnet. Earth and Planetary Science Letters,
216, 591–601.
286.
Zhang, Z.M., Liou, J.G., Zhao, X.D., Shi, C., 2006. Petrogenesis of
Maobei rutile eclogites from the southern Sulu ultrahigh-pressure
metamorphic belt, eastern China. Journal of Metamorphic Geology, 24, 727–
741.
287.
Zhang, R.Y., Yang, J.S., Wooden, J.L., Liou, J.G., Li, T.F., 2005. U–
Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP
terrane, China: Implications for mantle metasomatism and subduction-zone
UHP metamorphism. Earth Planet Sci. Lett., 237, 729–743.
288.
Zhang, G.B., Ellis, D., Christy, A., Zhang, L.F., Song, S.G., 2010. Zr-
in-rutile thermometry in HP/UHP eclogites from Western China. Contrib.
Mineral. Petrol., 160, 427–439.
186
289.
Zheng, Y.F., 1991. Calculation of oxygen isotope fractionation in
metal oxides. Geochimica et Cosmochimica Acta, 55, 2299–2307.
290.
Zheng, Y.F., Fu, B., Xiao, Y., Li, Y., Gong, B., 1999. Hydrogen and
oxygen isotope evidence for fluid–rock interactions in the stages of pre- and
post-UHP metamorphism in the Dabie Mountains. Lithos, 46, 677–693.
291.
Zheng, Y.F., Fu, B., Gong, B., Li, L., 2003. Stable isotope
geochemistry of ultrahigh pressure metamorphic rocks from the Dabie–Sulu
orogen in China: implications for geodynamics and fluid regime. EarthScience Reviews, 62, 105–161.
292.
Zingg, A., Hunziker, J.C., 1990. The age of movements along the
Insubric Line west of Locarno (northern Italy and southern Switzerland).
Eclogae Geol. Helv., 83, 629–644.
293.
Zucali, M., Spalla, M. I. & Gosso, G., 2002. Strain partitioning and
fabric evolution as a correlation tool: the example of the Eclogitic
Micaschists Complex in the Sesia–Lanzo Zone (Monte Mucrone– Monte
Mars, Western Alps, Italy). Schweizerische Mineralogische und
Petrographische Mitteilungen, 82, 429–454.
187
Case Study
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Syros
Sample No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Postoulos, Laki bay, N of Galissas
Galissas beach
Lia beach
Finikas Yacht Harbour
Armeos beach
block touching Monolith I on the hill slope between Kambos and Lia
block near Monolith I on the hill slope between Kambos and Lia
Large eclogite block on the summit of Charassonas, near the Cross
(Stavros) overlooking Finikas village
Ghalani (between Finikas and Galissas)
c. 50m W of Campos
Sumit of Charasonas (hill above Finikas, at the cross
Pebble from Lia beach
Large eclogite block on the summit of Charassonas, near the Cross
(Stavros) overlooking Finikas village
Large eclogite block on the summit of Charassonas, near the Cross
(Stavros) overlooking Finikas village
Loose block in wall, valley between Aghriomelio and Ghalani.
Road from San Michalis to Kampos, appr. 100 m from San Michalis
Location
appr. 50 m west of Kampos along the path from Kampos to Lia
beach.
Finikas or from the road between Finikas and Galissas
SY561
SY503
SY506
SY525
SY526
SY539
SY537
SY528
SY522-100
SY522-10
SY545
SY412
SY507
SY521
SY522-175
SY504
SY500
SY425G
Sample
Metasomatic
Beach sand
Beach sand
Beach sand
Beach sand
Metasomatic
Metasomatic
Metasomatic
Metasomatic
Metasomatic
Metamorphic
Metasomatic
Metasomatic
Metasomatic
Metamorphic
Metamorphic
Metamorphic
Metamorphic
Group Type
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Attic-Cycladic Massif
Unit
Qtz segregation (or vein) in eclogite with Rt
-
Omp-Gln rock
Omp-Gln-Phe rock
Ep-Gln-Omp-Grt schist
Omp-Grt-Gln-Rt
Gln-Omp-Grt-Ep-Rt-Phe
Grt-Gln-Qtz-Ep-Rt schist
Chl-Omp fels
Omp-Grt-Chl-Ab-Rt
Op-Chl vein with Rt
Eclogite
Metagabbro
Eclogite
Phe-Ep-Grt-Gln fels(metagabbro)
Rock Type
grain mount
grain mount
grain mount
grain mount
grain mount
grain mount
grain mount
grain mount
thick section
thick section
grain mount/thick section
thick round section
grain mount/thick section
thick section
thick section
thick section
thick section
thick section
Sample Type
no
yes
yes
yes
yes
no
no
no
no
no
yes
no
yes
yes
no
no
no
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
no
no
no
no
no
no
no
no
yes
yes
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
yes
no
no
no
no
no
yes
EPMA LA-ICPMS O Isotopes Whole Rock
Appendix A1
A1.1. Sample description table (Syros)
188
Sample No.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Case Study
Sesia Lanzo
Sesia Lanzo
Sesia Lanzo
Sesia Lanzo
Sesia Lanzo
Sesia Lanzo
Sesia Lanzo
Sesia Lanzo
Dora Maira
Dora Maira
Dora Maira
Dora Maira
Western Alps
Western Alps
Western Alps
Western Alps
Western Alps
Western Alps
Western Alps
Location
between Quincinetto and Mombarone
between Quincinetto and Mombarone
between Quincinetto and Mombarone
between Quincinetto and Mombarone
between Quincinetto and Mombarone
between Quincinetto and Mombarone
between Quincinetto and Mombarone
between Quincinetto and Mombarone
Parigi/Case Ramello
Tapina
Parigi/Case Ramello
Parigi/Case Ramello
Rio delle Balme
Torrente Chiusella 1
Torrente Chiusella 2
Dora Baltea
Varaita
Maira
Po River
Sample
MK 30
MK 35
MK 51
MK 126
MK 162.3
MK 195
MK 197
MK 541
15623a
19296a
20254
19464
SL 10/4
SL 10/10
SL 10/12
SL 10/13
SL 10/16
SL 10/17
SL 10/15
Group Type
Metamorphic
Metamorphic
Metamorphic
Metamorphic
Metamorphic
Metamorphic
Metamorphic
Metamorphic
Metamorphic
Metamorphic
Metamorphic
Metamorphic
River sand
River sand
River sand
River sand
River sand
River sand
River sand
Unit
Mombarone
Mombarone
Mombarone
Mombarone
Mombarone
Mombarone
Mombarone
Mombarone
Brossasco–Isasca
Brossasco–Isasca
Brossasco–Isasca
Pinerolo
-
Rock Type
Gln micaschist
Micaschist
Omp-Grt micaschist
Grt micaschist
Grt micaschist
Grt micaschist
Omp-White mica schist
Omp micaschist
Pyrope Megablasts
Pyrope Megablasts
Jd quartzite
Pyrope quartzite
-
Sample Type
EPMA LA-ICPMS O Isotopes Whole Rock
thin section
no
yes
no
yes
thin section/grain mount yes
yes
yes
yes
grain mount
yes
no
no
yes
thin section
no
yes
no
yes
thin section/grain mount yes
yes
yes
yes
thin section
no
yes
no
no
thin section/grain mount yes
yes
yes
no
thin section
no
yes
no
yes
grain mount/thin section yes
yes
no
yes
grain mount/thin section yes
yes
no
yes
grain mount/thin section yes
yes
yes
yes
grain mount/thin section yes
yes
yes
yes
grain mount
no
yes
no
no
grain mount
no
yes
no
no
grain mount
no
yes
no
no
grain mount
no
yes
no
no
grain mount
no
yes
no
no
grain mount
no
yes
no
no
grain mount
no
yes
no
no
Appendix A1
A1.1.Sample description table (Western Alps)
189
Case Study
Western Gneiss Complex
Western Gneiss Complex
Western Gneiss Complex
Western Gneiss Complex
Western Gneiss Complex
Western Gneiss Complex
Western Gneiss Complex
Western Gneiss Complex
Western Gneiss Complex
Western Gneiss Complex
Western Gneiss Complex
Sample No.
39
40
41
42
43
44
45
46
47
48
49
Arsheimneset
Gusdal mine
Gusdal mine
Flatraket
Flatraket
Vertrhuset
Vertrhuset
Vertrhuset
Nybo
Nausdal
Raudkleivane
Location
N 55
N 40
N 38
N 36
N 35
N 31
N 29
N 28
N 27
N 19
4-1A
Sample
Metasomatic Western Gneiss Complex
Metamorphic
Almklovdalen ultramafic
body
Almklovdalen ultramafic
Metamorphic
body
Metasomatic Western Gneiss Complex
Metamorphic Western Gneiss Complex
Metamorphic Western Gneiss Complex
Metamorphic Western Gneiss Complex
Metamorphic Western Gneiss Complex
Metamorphic Western Gneiss Complex
Metasomatic Western Gneiss Complex
Unit
Almklovdalen ultramafic
Metamorphic
body
Group Type
Omp vein with Rt
Ti-rich eclogite
Ti-rich eclogite
Ky-Qtz vein with Rt
Eclogite
UHP gneiss
Eclogite
PCQ-bearing eclogite
Eclogite
Omp vein
Fe-rich eclogite
Rock Type
thick section
thick section/grain mount
thick section/grain mount
thick section/grain mount
thick section
thick section/grain mount
thick section
thick section
thick section/grain mount
thick section
thick section
Sample Type
no
yes
yes
yes
no
yes
no
no
yes
no
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
yes
yes
yes
no
yes
no
no
yes
no
no
no
no
no
no
no
no
no
no
no
no
no
EPMA LA-ICPMS O Isotopes Whole Rock
Appendix A1
A1.1.Sample description table (Western Gneiss Complex)
190
Appendix A2
Sample Preparation
Two types of sample preparation have been prepared for quantitative analysis:
polished thick sections and epoxy resin mounts. The thick sections were made from hand
specimens, with a thickness of approximately 100 µm. The main reason for having thicker
section than normal ones (30 µm thick) was for the LA-ICPMS analysis, which uses a laser
beam of >30µm that would therefore penetrate through the sample. Thick sections for
samples from Syros, Sesia Lanzo, Dora Maira and the Western Gneiss Region have been
prepared.
Large samples were cut to slices on a Tyslide diamond rimmed slabbing saw. The
chips were cut to size using a Cutangrind saw made by Agate and General. Next, they were
ground down on a converted potter's wheel using different grades of silicon carbide.
The grades in decreasing size order were: 80, 150, 300, 600 and 1000 - the latter two grades
were used on a glass plate rather than the potter's wheel.
Once the chips had a good finish to them, they were bonded to the glass slides using
Devcon 2-ton epoxy resin (a two component mix of resin and hardener in a 50:50 ratio). The
bonding was done at room temperature with the chips subjected to compression in order to
squeeze most of the resin out to give a good parallel bond (i.e. the chip and the glass end up
parallel). They were left overnight, then cut off in the morning after a cure-time of about 20
hours.
The excess material was cut off using a Petrothin thin section-making machine,
manufactured by Buehler. This left about 0.5mm stuck to the glass. The same machine was
then used to grind the remaining material down to about 110 microns (for polished thick
sections).
Any saw /grinding marks from the machine were then ground away using 600 grade
silicon carbide, followed by 1000 grade again, used on a glass plate. At the finished desired
thickness, the slides were cleaned carefully and were polished on MetaServ 3000 Variable
speed grinder-polisher, manufactured by Buehler. Nearly all the samples required 4 x 4
191
Appendix A2
minute cycles using 0.3 micron deagglomerated aluminium oxide powder (supplied by
Buehler) at a speed of 150 rpm using water as a slurry mixer. Some of the harder samples
needed extra 1 - 2 cycles.
Epoxy resin samples were made for detrital rutiles from the Western Alps. Jeanette
Taylor prepared the detrital rutiles from Syros during her MSc at the University of Bristol
with Horst Marschall and provided them for this study. A first order of separation for the
sediment samples was done in the field by using gold pans. Approximately 95 % of the
sample material was discarded at that stage. This was done to separate minerals by density
and eliminate fine-grained silts and clays.
For the next step of separation, samples were first washed and dried in the oven at
about 40 – 50 °C. The Wilfley Table was used afterwards to separate the light fraction from
the dense fraction. The dense fraction (after being dried in the oven at similar temperatures)
was further separated using the Franz Magnetic Separator based on magnetic susceptibility.
This way non-magnetic minerals (such as rutile) were separated from magnetic minerals
(such as magnetite). The 2.5 and 3.0 A fractions were then considered for the next steps. A
large hand magnet was used before this, in order to extract the highly magnetic fraction (i.e.
magnetite) as much as possible.
Heavy liquids were then used to separate minerals with densities lower than 2.8 g/mL
(average density of the continental crust) from minerals with higher densities (such as rutile).
LST Fastfloat (2.8 g/mL) was used for this purpose. At the end of the process, the sample was
dried in the oven and prepared for the final step of the separation procedure.
Hand picking is the process by which rutile grains are chosen using a
stereomicroscope and very fine tweezers. Resin mounts were prepared using Epothin resin
and hardener, made by Buehler. Grains were then mounted on a double sticky tape and mixed
resin and hardener mix was poured on top of them in plastic 25mm diameter moulds. These
were mixed in the ratio 100 parts resin to 39 parts hardener (ie. roughly 5:2). The epoxy resin
was let to dry for 24 hours in a pressure chamber (held at around 2 bar in order to eliminate
bubbles within the resin mount). Next, the resin mounts were put on the polishing machine
and subjected to the same abrasive process as the thick sections (please see above) - but the
192
Appendix A2
surface was checked after every cycle very carefully, to try and minimise any loss of the
smaller grains.
Resin mounts were also prepared for SIMS analysis for all investigated locations. As
these samples were hand specimens, before the complex separation and epoxy resin
preparation described above, samples were first crushed using a rock splitter and jaw crusher.
The resulting rock flakes were then reduced to a fine grain size using an agate planetary ball
mill.
For these specimens, SEM imaging, both secondary electron and backscatter, was
used to investigate for zoning, mineral inclusions and/or fractures/cracks in the rutile grains.
This was done at the Department of Biological Sciences, University of Portsmouth with a
JEOL 6060LV variable vacuum SEM.
193
Appendix A3
Laser Session
jn07a10
jn08a10
jn08b10
jn08c10
jn08d10
jn08e10
jn08f10
mr23b10
mr23c10
mr23d10
mr23e10
mr23f10
mr24a10
mr24b10
mr24c10
V
440
438
444
434
440
439
444
434
437
441
439
440
436
442
437
442
421
457
430
449
438
441
427
451
433
446
438
441
440
443
434
450
439
445
445
439
442
441
436
448
448
436
455
429
458
426
456
427
446
438
438
446
443
440
443
441
442
442
443
441
Zr
441
434
438
437
434
441
445
430
437
438
439
436
436
439
442
433
418
457
431
444
431
444
428
447
433
442
435
440
433
447
426
454
431
449
445
435
426
454
434
446
439
441
454
426
459
421
447
433
448
432
437
443
435
445
448
432
436
444
427
453
Nb
421
414
420
415
413
421
424
410
416
418
418
417
416
418
420
415
398
436
413
422
412
423
405
429
413
421
416
418
412
427
408
431
412
427
421
418
402
437
417
422
419
420
434
405
434
405
428
411
428
411
413
426
417
422
432
407
422
417
409
430
Mo
379
371
377
372
376
374
386
364
374
376
376
374
375
374
376
374
356
393
364
385
370
380
367
383
368
381
375
375
368
386
371
383
370
383
381
373
349
404
373
381
380
374
389
364
390
363
381
373
385
369
375
379
376
378
387
367
381
373
365
389
Sb
374
359
373
360
370
363
380
353
370
363
368
365
371
362
371
363
350
383
363
370
361
373
361
372
365
368
368
366
358
379
363
374
360
377
373
364
347
390
365
372
372
365
380
357
386
351
379
358
377
360
372
366
368
370
381
356
371
366
357
380
Hf
417
414
414
417
415
416
428
403
417
414
420
411
417
414
416
415
397
434
413
418
409
422
405
426
411
420
417
414
415
421
406
430
414
422
412
423
402
434
413
423
422
414
426
410
431
404
430
405
423
413
415
421
408
428
426
410
419
416
415
421
Ta
374
375
374
375
373
376
385
364
375
374
377
373
375
374
375
374
358
391
371
378
369
380
365
384
370
379
373
376
378
375
366
388
374
379
375
379
361
392
374
379
379
375
384
370
387
366
391
363
381
373
377
377
367
387
383
371
378
375
378
375
W
442
444
447
439
442
444
456
429
439
447
446
440
447
439
444
442
424
462
440
446
441
445
435
451
436
450
444
442
443
448
438
453
443
448
441
450
432
458
445
446
448
443
451
439
453
438
462
429
449
442
445
446
438
453
451
440
445
446
443
448
Pb
416
406
419
403
421
401
422
401
413
409
411
412
409
413
417
405
397
426
410
412
413
409
409
413
407
415
415
407
410
417
402
424
410
417
411
415
402
425
412
415
416
411
419
407
422
405
431
396
417
410
416
411
406
421
421
406
413
414
411
416
Table A3.1. Long-term 610 analyses done using the LA-ICPMS
Th
448
449
449
447
446
451
461
436
447
450
449
448
447
450
450
446
429
467
444
453
444
453
438
458
444
452
450
447
441
460
440
462
449
452
450
452
438
463
449
453
456
446
456
446
459
442
468
434
454
448
453
449
444
458
458
444
453
449
453
449
194
U
455
454
453
457
457
452
463
446
453
457
458
452
455
454
451
458
436
473
452
457
452
457
445
464
449
460
453
456
450
465
449
466
453
462
457
458
444
470
455
459
462
453
466
449
466
449
470
444
458
456
454
461
451
464
465
450
458
457
460
454
Appendix A3
Laser Session
mr24d10
mr24e10
mr24f10
mr24g10
mr24h10
mr24i10
mr25a10
mr25b10
mr25c10
mr25d10
mr25e10
mr25f10
mr25g10
mr26a10
mr26b10
V
452
432
441
443
434
449
449
434
440
444
446
437
432
451
470
414
450
434
444
440
442
442
448
435
449
435
442
442
440
443
444
439
440
443
441
443
440
444
448
436
440
444
431
453
461
423
433
450
434
450
443
441
439
445
442
442
436
447
Zr
444
436
438
442
434
446
444
436
434
446
449
431
434
446
467
413
452
428
442
438
440
440
434
446
448
432
442
438
437
443
460
420
437
443
437
443
438
442
450
430
433
447
421
459
457
423
434
446
436
444
442
438
434
446
438
442
429
451
Nb
420
419
422
418
415
424
423
416
410
429
423
416
417
422
440
399
426
413
428
411
422
417
418
421
426
413
424
415
417
422
439
400
415
424
418
421
415
424
425
415
410
429
402
437
434
405
415
424
417
422
420
419
413
426
417
422
409
430
Mo
382
372
374
380
376
377
376
377
375
379
381
373
373
381
387
367
385
369
379
374
378
376
375
379
383
371
379
374
372
381
393
361
370
384
379
374
376
378
388
366
372
382
363
391
387
367
374
380
375
379
388
366
372
382
375
379
369
384
Sb
371
366
363
374
365
372
367
370
359
378
369
368
374
363
392
345
378
360
381
357
368
370
366
371
372
365
371
366
368
369
381
357
361
376
365
373
367
370
379
358
365
372
357
380
385
352
368
369
369
368
378
359
363
374
368
369
359
378
Hf
424
412
411
425
401
435
414
422
413
422
410
426
411
424
441
395
422
414
439
397
430
406
418
418
426
410
426
410
421
415
426
409
423
412
419
417
419
417
432
403
417
418
407
429
437
399
414
422
413
422
439
396
422
414
422
413
405
431
Ta
379
374
371
383
364
389
376
378
371
382
371
382
372
381
396
357
381
372
398
356
385
368
378
375
383
370
382
372
381
372
385
369
379
374
379
374
377
377
390
363
378
375
366
388
397
357
374
379
374
380
392
362
377
376
381
372
364
390
W
455
436
435
456
431
460
443
448
444
446
437
454
436
455
473
418
455
436
469
422
455
435
446
445
454
437
450
441
452
439
453
438
448
443
448
443
445
446
462
429
446
445
431
460
471
420
438
453
438
453
464
427
447
443
451
440
428
463
Table A3.1. Long-term 610 analyses done using the LA-ICPMS
Pb
423
404
404
423
404
423
412
415
410
416
403
424
408
419
439
388
415
411
434
393
426
401
414
413
420
406
417
410
419
408
420
407
416
411
416
410
413
414
427
400
415
411
405
422
432
395
410
417
410
417
431
396
415
412
417
409
400
427
Th
460
442
443
459
438
463
445
456
449
452
446
455
443
459
482
420
459
442
472
430
464
437
454
447
459
443
455
447
457
444
455
446
453
449
454
447
450
451
468
434
449
453
439
463
476
426
444
457
446
456
460
442
451
451
457
444
436
466
195
U
467
447
450
465
448
466
454
460
459
455
451
463
450
465
487
428
466
448
473
441
472
443
462
452
465
450
463
451
465
449
463
451
458
456
463
452
460
454
473
441
459
455
444
470
478
436
451
463
451
463
469
445
457
458
462
452
445
469
Appendix A3
Laser Session
mr26c10
mr26d10
mr26e10
mr26f10
mr26g10
mr26a10
au20a10
au20b10
au20c10
au20d10
au20e10
au24a10
au24b10
au24c10
au24d10
au24e10
V
448
436
438
445
444
439
446
438
441
443
447
437
440
443
436
448
439
445
443
441
439
445
432
447
432
447
429
450
441
437
451
427
444
434
440
439
437
442
441
438
448
431
438
441
445
434
439
440
442
437
444
435
453
425
430
449
441
437
441
437
433
445
Zr
440
440
436
444
441
439
445
435
437
443
448
432
438
442
432
448
449
431
442
438
434
446
428
447
432
443
432
443
433
442
419
456
436
439
436
439
433
442
440
435
452
423
438
437
442
433
436
439
443
432
442
433
452
423
433
442
440
435
438
437
431
445
Nb
421
418
417
422
420
419
424
415
419
420
426
413
420
419
410
429
423
416
420
419
413
426
410
425
412
423
408
426
417
417
420
414
423
411
416
418
412
422
417
418
425
409
418
416
422
412
416
418
421
413
422
412
429
406
412
422
419
415
416
418
408
427
Mo
381
373
377
377
377
377
385
369
378
376
384
370
379
375
364
390
379
375
388
366
372
382
369
381
371
378
370
379
374
376
374
376
378
371
379
370
373
376
376
374
386
364
378
372
380
370
375
375
382
368
375
374
386
364
371
379
377
373
381
369
371
378
Sb
369
368
365
372
370
367
373
364
366
372
377
360
372
365
361
376
369
369
378
359
363
374
360
373
368
365
362
371
365
368
347
386
371
363
369
364
367
366
373
360
382
351
366
367
371
362
366
367
371
362
371
362
380
353
361
372
369
364
369
364
365
368
Hf
423
413
417
419
418
417
424
412
419
416
425
411
419
417
415
420
423
413
439
396
422
414
407
424
412
419
416
415
412
419
400
431
414
417
407
424
418
413
416
415
428
403
417
414
419
412
415
416
425
406
421
410
430
401
414
417
418
413
416
415
418
413
Ta
380
374
377
376
380
373
383
370
376
377
382
371
381
372
378
376
380
374
392
362
377
376
368
381
373
376
373
377
373
376
364
386
373
376
372
377
375
374
374
375
386
363
374
375
377
372
374
375
386
364
381
369
386
363
370
379
376
373
374
375
375
374
W
451
440
447
444
451
439
453
438
450
441
453
438
450
441
450
441
450
441
464
427
447
443
433
452
439
446
439
447
447
439
444
441
451
435
440
446
444
442
442
444
457
429
441
444
445
441
443
443
456
430
450
436
463
423
439
447
444
442
450
436
440
446
Pb
419
408
416
411
417
410
420
407
415
412
419
408
417
410
412
415
412
414
431
396
415
412
403
420
411
411
411
411
409
413
388
435
415
407
413
409
414
408
412
410
429
394
415
408
416
406
411
411
421
401
419
403
429
394
412
410
412
410
418
404
413
409
Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued)
Th
457
445
449
453
454
447
458
444
452
449
459
443
453
449
449
453
455
447
460
442
451
451
439
457
448
448
444
453
446
450
435
462
451
446
446
451
450
446
448
448
466
431
450
446
452
444
447
449
459
438
456
440
461
435
444
453
450
446
450
446
446
450
196
U
469
445
457
458
457
457
460
455
456
458
467
448
460
455
459
456
460
454
469
445
457
458
450
460
449
461
456
453
454
455
473
436
463
447
456
454
454
456
453
456
467
442
453
457
458
452
454
455
466
444
461
449
477
433
445
464
456
453
463
446
456
453
Appendix A3
Laser Session
au25a10
au25b10
au26a10
au26b10
au26c10
au26d10
au26e10
au26f10
au27a10
au27b10
au27c10
no15b10
no16a10
no16b10
no16c10
no16d10
V
442
437
435
444
439
440
445
434
442
436
444
435
443
435
449
430
448
431
437
442
438
441
436
442
438
441
446
433
440
439
432
447
448
431
444
435
440
439
439
439
439
440
447
432
436
448
444
440
448
436
431
452
443
441
442
442
449
435
434
449
Zr
441
434
440
435
436
439
439
436
447
428
437
439
439
436
440
435
446
429
431
444
436
439
433
443
438
437
447
428
442
434
432
443
446
429
438
437
434
441
434
441
437
438
451
424
436
444
441
439
446
434
430
450
441
439
440
440
446
434
432
448
Nb
422
412
420
414
417
418
423
412
429
405
419
415
417
417
422
412
425
410
418
416
418
417
414
420
417
418
424
410
422
412
411
424
427
408
421
413
417
417
418
417
418
417
427
408
416
423
418
421
424
415
413
426
421
418
419
420
425
414
413
426
Mo
380
370
374
376
377
372
381
369
390
359
376
374
376
374
383
367
383
367
372
377
380
370
376
373
375
375
382
368
380
370
368
381
381
369
376
374
379
370
376
374
379
371
380
369
372
382
380
373
383
370
369
385
373
381
379
375
383
370
369
384
Sb
372
362
371
362
365
368
371
363
367
366
377
356
366
367
367
366
374
359
369
364
372
361
365
368
366
367
374
359
376
358
364
369
375
358
370
363
370
363
371
362
366
367
380
353
368
370
366
371
372
365
360
377
372
365
369
369
374
363
357
380
Hf
421
410
424
407
412
419
418
413
436
395
416
415
420
411
418
413
427
404
417
414
411
420
418
413
415
416
425
406
421
410
411
420
426
405
416
415
409
422
418
413
418
413
427
404
413
422
420
415
416
420
413
423
419
416
421
415
426
409
412
424
Ta
381
369
381
369
373
376
379
370
392
357
376
373
378
371
377
372
386
363
376
373
373
376
374
375
374
375
384
365
381
368
370
379
384
365
375
374
369
380
375
374
377
372
383
366
373
380
376
377
377
376
371
382
379
374
379
375
379
374
373
380
W
449
436
446
440
443
443
449
437
469
416
451
435
446
440
450
436
457
429
443
443
442
444
444
442
441
445
451
435
453
433
440
446
451
435
446
440
442
444
444
442
448
438
453
433
441
450
446
445
449
442
438
453
446
445
448
442
451
440
439
452
Pb
416
407
415
408
413
409
416
406
434
388
418
404
411
411
411
411
427
396
412
410
417
405
406
416
410
413
422
401
424
398
411
411
419
403
414
408
416
406
420
403
413
409
426
396
416
411
411
416
410
417
403
424
415
411
421
406
420
407
409
418
Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued)
Th
455
441
457
440
442
454
453
444
471
425
449
448
451
446
452
445
462
434
449
447
446
450
453
443
448
449
457
440
454
442
441
455
456
441
449
447
443
453
449
447
450
446
456
441
446
456
452
449
451
451
445
456
452
449
454
447
458
444
443
459
197
U
464
445
454
455
453
457
458
451
481
428
461
448
458
452
461
449
467
442
460
450
459
450
461
449
453
456
464
445
462
447
450
460
464
445
459
450
453
456
455
455
458
451
466
444
456
459
453
461
457
458
451
464
459
455
462
453
467
448
451
463
Appendix A3
Laser Session
no16e10
no17a10
no17b10
no17c10
no17d10
no18a10
no18b10
no18c10
no19a10
no19b10
no19c10
no19d10
no19e10
no19f10
no22a10
no22b10
V
431
453
437
447
439
445
442
442
437
447
442
441
437
447
435
448
454
430
451
433
447
437
443
440
443
441
440
444
432
452
439
445
442
442
433
451
436
447
443
440
451
433
441
443
442
442
437
446
449
434
444
439
445
439
435
448
439
445
446
437
441
443
448
436
Zr
427
453
435
445
442
438
435
445
434
446
436
444
439
441
430
450
447
433
451
429
445
435
447
433
443
437
438
442
438
442
438
442
439
441
432
448
436
444
443
437
452
428
437
443
437
443
440
440
450
430
439
441
444
436
436
444
434
446
443
437
435
445
442
438
Nb
409
430
414
425
418
421
420
419
414
425
421
418
416
423
416
423
428
411
429
410
427
412
423
416
423
416
416
423
413
426
415
424
418
421
412
427
417
422
424
415
427
412
418
421
421
418
416
424
426
413
421
419
421
418
411
428
414
425
424
415
418
421
427
412
Mo
362
392
371
383
376
378
382
372
374
380
378
375
383
370
372
382
381
373
388
366
384
370
385
369
379
375
373
381
369
385
374
380
375
379
371
383
382
372
378
376
385
368
375
379
375
378
376
378
386
368
378
376
382
371
371
383
374
380
377
376
378
376
380
374
Sb
355
382
366
371
366
371
365
372
365
372
375
362
368
369
368
369
376
361
374
364
377
360
372
366
371
366
369
368
356
381
368
369
369
368
364
374
365
372
378
359
375
363
368
369
367
370
365
372
377
360
367
371
374
364
371
366
368
369
370
368
370
367
371
366
Hf
408
428
410
425
425
411
417
419
411
425
420
415
417
419
414
422
423
412
426
409
423
413
425
411
425
411
418
417
419
417
415
420
417
419
411
425
415
420
424
412
429
407
414
421
417
419
422
414
430
406
422
413
419
417
417
418
415
421
425
411
420
416
421
414
Ta
367
387
371
382
380
374
377
376
372
381
380
374
376
377
373
380
381
372
385
368
384
370
383
371
380
373
378
375
375
378
374
379
378
375
369
384
373
380
381
372
384
369
377
376
378
376
374
379
381
372
381
372
380
374
378
376
377
376
383
370
373
380
382
371
W
431
460
443
448
449
442
447
444
439
452
451
440
440
451
443
448
453
438
459
432
458
433
454
437
450
441
444
447
438
452
445
446
445
446
435
456
446
445
453
438
455
436
442
449
450
441
445
446
455
436
448
443
451
440
443
448
445
445
448
442
445
446
455
436
Pb
397
430
418
409
410
417
411
416
414
413
419
408
415
412
416
410
428
399
426
401
424
403
417
409
411
416
413
414
403
423
406
420
418
409
408
419
418
409
422
405
421
406
411
416
412
415
411
416
427
400
411
416
418
409
416
411
411
416
411
416
413
414
419
408
Th
437
465
448
454
452
449
450
452
449
452
452
449
448
453
444
457
461
441
461
440
459
442
457
445
456
445
453
448
447
455
450
451
447
455
444
458
449
453
456
445
461
441
448
453
450
451
448
454
457
444
454
448
457
445
451
451
449
452
454
447
447
454
462
440
Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued)
U
445
469
451
464
458
457
462
452
450
465
462
452
456
458
453
461
471
444
471
444
466
449
463
451
459
455
456
458
451
463
453
461
459
456
450
464
454
460
465
449
466
448
459
456
455
459
454
461
466
449
461
453
464
450
455
460
457
457
460
455
457
458
468
447
198
Appendix A3
Laser Session
no22c10
no22d10
no22e10
no22f10
no22g10
no23a10
no23b10
no23c10
no23d10
no23e10
no23f10
no23g10
no24a10
no24b10
no24c10
V
441
442
452
431
438
445
447
437
445
438
447
437
435
449
437
447
441
443
452
432
437
447
452
432
436
448
436
447
440
444
442
441
434
450
444
440
426
457
448
436
437
447
434
450
444
440
445
438
437
447
436
447
453
430
442
442
438
445
434
449
Zr
438
442
448
432
436
444
448
432
449
431
443
437
433
447
439
441
440
440
446
434
437
443
447
433
433
447
437
443
438
442
434
446
435
445
447
433
427
453
448
433
441
439
435
445
444
436
441
439
432
448
434
446
447
433
436
444
439
441
430
450
Nb
418
421
426
413
418
421
427
412
427
412
421
418
414
425
419
420
419
420
424
415
416
423
428
411
416
423
417
422
419
420
412
427
416
423
425
414
408
431
428
411
415
424
413
426
421
418
423
416
415
424
416
423
427
412
416
423
419
420
410
429
Mo
380
373
387
367
373
381
378
376
382
372
378
376
369
385
371
383
378
375
388
366
374
380
385
368
369
385
372
382
375
379
373
381
370
383
383
371
364
390
381
373
374
380
369
384
381
373
383
370
375
379
371
383
383
370
370
383
376
378
372
382
Sb
369
368
377
360
364
373
373
364
372
365
375
362
366
371
370
368
369
368
375
362
365
372
373
364
353
384
366
371
370
368
372
365
363
374
373
365
353
384
377
360
363
374
359
378
371
366
375
362
355
382
364
374
371
366
364
374
370
368
365
372
Hf
418
418
426
410
413
422
426
410
428
408
424
411
411
425
417
419
420
416
425
411
415
420
426
410
413
423
417
419
417
419
417
419
412
424
424
411
407
428
426
410
417
419
413
423
417
418
423
413
412
424
411
424
432
404
410
425
418
418
408
427
Ta
375
379
381
372
374
379
383
370
382
372
379
374
372
382
376
377
376
377
387
367
373
380
386
368
369
385
376
378
378
375
375
379
374
379
382
372
366
387
385
369
374
380
373
381
381
373
382
371
374
380
372
381
385
369
375
379
376
377
369
384
W
440
450
454
437
438
453
451
440
450
441
451
440
440
451
444
446
443
448
453
438
441
450
456
435
435
455
439
452
447
444
447
444
442
449
448
443
429
461
458
433
445
446
439
452
449
442
451
440
435
456
438
452
453
438
440
451
445
446
438
453
Pb
412
415
421
406
408
419
419
408
414
413
425
402
405
422
413
414
408
419
414
413
409
418
418
409
398
429
410
417
413
414
416
411
410
417
419
408
394
433
422
405
410
417
407
420
417
410
419
407
407
420
403
424
419
408
407
420
415
412
401
426
Th
449
452
459
442
446
455
461
440
460
441
452
449
443
458
448
453
450
452
463
438
448
454
462
440
444
457
448
453
451
450
446
455
445
456
456
446
436
466
461
440
449
453
448
454
454
447
456
446
451
451
447
455
462
439
445
457
448
454
438
463
199
Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued)
U
451
463
465
449
453
462
464
450
463
451
461
454
453
462
456
458
459
455
465
450
452
462
471
443
446
468
455
459
457
458
458
457
451
464
464
450
446
468
465
449
451
463
455
460
459
455
464
450
450
464
453
462
462
452
453
462
456
458
449
466
Appendix A3
Laser Session
no24d10
no24e10
no25a10
no25b10
no25c10
no25d10
no26a10
no26b10
no26c10
no26d10
no26e10
no26f10
no26g10
no28a10
no28b10
V
449
435
440
444
439
445
438
446
439
445
425
459
444
439
438
446
442
441
447
437
451
433
434
449
442
441
442
442
431
452
448
435
439
445
450
433
444
440
439
444
445
438
441
442
439
444
437
447
447
436
454
429
451
433
447
436
445
439
445
438
Zr
448
432
443
437
442
438
432
448
444
436
421
459
443
437
441
439
438
442
442
438
448
432
431
449
436
444
442
438
437
443
442
438
435
445
445
435
443
437
440
440
442
438
434
446
438
442
439
441
452
428
449
431
442
438
440
440
449
431
448
432
Nb
425
414
423
416
416
423
413
426
425
414
405
434
417
422
419
420
413
426
426
413
428
411
417
422
418
421
423
416
412
427
422
417
417
422
427
412
419
420
417
422
423
416
416
423
417
422
419
420
427
412
430
409
425
414
419
420
423
416
430
409
Mo
383
371
380
374
373
381
368
385
384
370
357
397
377
377
376
378
374
380
382
372
383
371
372
381
367
387
385
369
373
381
382
372
373
381
384
370
374
380
376
377
382
372
376
378
377
377
378
376
385
368
381
373
382
372
375
379
384
370
386
368
Sb
375
362
378
359
371
366
363
374
368
369
347
391
374
364
370
367
366
371
366
371
378
359
367
371
367
370
373
364
361
376
369
368
363
374
378
359
371
367
372
365
375
362
368
369
366
372
366
371
376
361
379
358
371
367
368
369
378
360
375
363
Hf
425
410
425
411
413
422
413
423
421
414
405
430
419
417
418
418
415
420
423
413
425
411
409
427
416
419
414
421
416
420
422
413
417
419
424
411
419
417
413
423
424
412
418
418
417
418
414
421
432
404
428
408
424
411
424
411
422
414
423
413
Ta
385
369
379
374
375
379
374
379
381
373
367
386
379
374
377
377
373
380
380
374
385
368
370
384
375
378
377
376
374
379
382
371
377
377
383
370
376
377
375
379
380
374
376
378
374
380
374
380
390
364
388
365
383
371
382
372
382
371
380
373
W
453
438
448
443
442
449
440
451
447
444
433
458
447
444
442
449
445
446
446
445
454
437
437
454
442
449
451
440
445
446
452
438
443
448
456
435
444
447
442
448
451
439
442
449
442
448
442
449
458
433
459
432
455
436
449
442
448
443
451
440
Pb
423
404
426
401
417
410
405
422
412
415
399
428
421
406
416
411
412
415
419
408
419
408
403
424
408
418
418
409
411
416
424
403
416
411
428
399
411
416
411
416
419
408
416
411
416
411
416
411
418
408
425
402
415
412
420
407
424
403
425
402
Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued)
Th
459
442
457
444
450
451
446
455
454
447
439
463
451
450
451
450
449
453
456
445
460
441
443
459
449
452
450
452
448
453
456
445
447
455
458
443
451
451
450
452
455
447
450
451
451
451
445
456
462
439
467
435
460
441
457
444
460
442
456
446
200
U
464
451
460
455
452
462
453
461
463
452
443
471
456
458
458
457
455
460
462
452
466
448
451
464
454
460
460
455
454
460
464
450
456
459
466
449
457
457
452
462
461
454
459
455
458
456
453
462
465
450
473
442
467
448
462
453
466
448
464
450
Appendix A3
Laser Session
no28c10
oc01a11
oc01b11
oc01c11
oc02a11
oc02b11
oc02c11
oc02d11
oc02e11
oc02f11
oc02g11
oc02h11
oc02i11
oc02j11
se29a11
V
449
435
443
441
429
455
443
441
447
437
444
440
442
442
436
448
445
439
446
437
428
456
437
447
443
440
447
436
445
438
444
440
441
442
438
446
438
445
445
439
441
443
445
439
453
431
438
446
447
437
446
437
448
436
447
436
438
446
441
443
Zr
447
433
439
441
426
454
448
432
439
441
440
440
438
442
436
444
443
437
440
440
422
458
433
447
453
427
448
432
441
439
442
438
438
442
433
447
437
443
446
434
437
443
435
445
456
424
439
441
436
444
449
431
443
437
441
439
436
444
428
452
Nb
427
412
418
421
404
435
426
413
421
418
419
420
414
425
412
427
423
416
423
416
408
431
413
426
432
407
425
414
423
416
420
419
418
421
412
427
415
424
427
412
414
425
415
424
437
402
414
425
420
419
422
417
424
415
420
419
406
433
413
426
Mo
384
370
377
377
364
390
383
371
377
377
380
374
367
386
366
388
377
377
376
377
367
387
370
384
389
365
387
367
377
376
376
378
380
374
372
382
378
376
387
367
370
384
375
379
396
358
385
369
384
370
392
362
375
378
375
379
349
405
370
384
Sb
378
359
370
367
353
384
373
364
366
371
369
368
364
374
362
375
365
372
371
366
353
384
364
373
377
360
378
359
374
363
369
368
375
362
368
370
371
366
382
355
366
371
362
376
382
355
368
369
380
357
382
355
365
372
370
367
370
367
365
372
Hf
425
411
414
422
407
429
426
410
420
415
419
416
415
421
406
429
411
424
421
414
405
431
415
421
422
414
421
414
420
415
422
413
425
411
409
427
418
417
426
410
411
424
417
419
423
412
410
425
419
416
431
405
423
413
426
410
409
426
417
419
Ta
382
371
376
378
367
386
384
369
379
374
382
371
373
381
369
385
375
379
379
374
371
382
376
377
378
375
383
370
378
376
381
372
378
375
372
381
376
377
382
372
376
377
374
380
380
373
378
376
378
376
391
362
375
378
381
372
374
380
374
379
W
446
445
444
447
434
457
455
436
448
443
455
435
438
453
436
455
440
451
443
448
426
465
444
447
447
444
453
438
448
443
448
443
453
438
441
449
449
442
450
441
440
451
448
443
452
439
444
447
445
445
454
436
443
448
453
437
451
440
439
451
Pb
418
409
414
413
401
426
420
406
416
411
419
408
409
418
402
425
405
422
413
414
395
432
413
414
412
415
422
405
416
411
418
409
422
405
411
416
420
407
421
406
404
423
416
411
424
403
408
419
420
407
421
406
404
422
416
411
410
416
413
414
Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued)
Th
457
445
447
454
437
464
457
444
453
449
459
442
446
455
443
459
447
454
449
452
451
451
446
455
446
455
459
442
453
449
456
445
455
446
441
460
455
447
460
441
448
453
447
455
460
442
447
454
453
448
465
436
455
447
452
450
441
461
445
457
201
U
466
449
457
457
445
470
466
448
460
454
461
453
452
463
448
466
453
462
460
455
447
467
448
467
456
458
466
449
463
451
459
456
462
452
449
465
462
453
468
446
459
455
456
458
461
453
460
455
456
458
468
447
458
456
462
453
446
468
459
455
Appendix A3
Laser Session
se29b11
se29c11
se29d11
se29e11
se30a11
se30b11
se30c11
se30d11
se30e11
ap11a11
ap12a11
ap12b11
ap12c11
ap12d11
ap12e11
V
440
444
437
446
459
425
434
450
436
448
457
427
440
444
438
446
443
441
435
449
450
434
449
435
441
443
443
440
442
441
438
446
429
454
434
450
450
434
441
442
441
443
451
432
427
456
454
430
428
456
441
443
428
455
446
437
449
434
434
450
Zr
425
455
438
442
459
421
438
442
425
455
449
431
442
438
438
442
441
439
435
445
446
434
439
441
435
445
446
434
443
437
433
447
427
453
427
453
453
427
442
438
430
450
444
436
428
452
450
430
424
456
439
441
426
454
446
434
442
438
432
448
Nb
411
428
421
418
438
401
418
421
413
426
428
411
420
419
419
420
417
422
412
427
427
412
418
421
421
418
420
419
422
417
415
424
402
437
410
429
433
406
414
425
415
424
424
415
404
435
430
409
401
438
415
424
405
434
424
415
418
421
420
419
Mo
393
360
380
374
380
374
366
387
372
382
384
370
382
372
374
380
379
375
368
385
379
375
375
379
371
382
373
381
382
371
372
382
369
385
367
386
392
362
370
384
371
383
380
374
361
393
386
368
361
393
382
372
368
386
378
376
374
380
371
383
Sb
398
339
365
373
367
371
368
369
359
378
375
362
369
368
368
369
371
367
361
376
373
364
365
372
365
372
365
372
370
367
367
370
358
379
362
375
380
358
366
371
362
375
375
362
353
384
383
354
352
385
368
369
362
375
371
366
371
367
365
372
Hf
402
433
410
426
446
390
412
424
403
433
426
410
411
424
418
418
421
415
420
416
428
408
425
411
422
413
424
412
415
421
421
414
404
431
411
424
431
404
416
419
407
429
427
409
404
432
428
408
411
424
417
418
405
430
427
409
421
415
411
424
Ta
362
391
374
379
401
353
372
381
372
382
388
365
374
380
374
379
377
376
375
378
385
368
381
372
378
375
379
375
378
375
375
378
367
387
365
388
388
365
374
379
367
386
387
366
364
389
383
370
365
389
375
378
370
384
385
368
383
370
372
381
W
461
429
439
451
473
418
446
445
438
453
462
428
440
451
443
448
446
445
444
447
457
434
445
446
456
435
446
445
452
439
443
448
437
453
439
452
458
433
447
444
444
447
450
441
431
459
461
430
433
458
446
445
428
463
453
438
449
442
442
448
Pb
435
392
415
412
424
402
407
420
407
420
429
398
417
410
410
417
415
412
411
416
418
409
416
410
419
408
410
417
417
410
410
417
400
426
407
420
427
400
415
412
402
425
423
404
401
426
419
408
401
425
413
414
402
425
418
409
418
409
403
423
Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued)
Th
435
466
443
458
481
421
447
455
440
461
460
442
460
441
449
453
450
451
448
453
461
441
455
446
458
444
455
446
454
447
447
454
436
465
441
460
469
432
448
453
440
462
464
437
438
463
461
441
439
463
446
455
441
461
464
438
458
443
441
460
202
U
452
463
453
461
480
435
453
461
448
467
473
442
467
448
453
462
456
459
455
460
470
445
465
449
460
455
460
454
452
462
455
459
448
467
451
463
471
444
456
458
447
467
467
448
442
472
468
446
449
466
453
461
450
464
464
450
461
453
450
464
Appendix A3
Laser Session
ap13a11
ap13b11
ap13c11
ap13d11
ap13e11
ap14a11
ap14b11
ap14c11
ap14d11
ap14e11
ap14f11
ap15a11
ap15b11
ap15c11
V
447
436
450
434
450
433
441
443
450
434
444
440
444
439
440
444
433
451
438
446
438
446
427
456
456
427
444
439
461
422
438
445
445
439
433
450
422
462
442
441
439
444
446
438
462
422
440
444
449
435
433
451
427
456
452
431
Zr
446
434
444
436
448
432
441
439
445
435
451
429
439
441
440
440
432
448
443
437
434
446
431
449
455
425
443
437
456
424
438
442
437
443
425
455
425
455
447
433
440
440
442
438
459
421
442
438
448
432
440
440
427
453
445
435
Nb
427
412
425
414
426
413
418
421
424
415
430
409
423
416
421
418
409
430
419
420
418
421
405
434
431
408
422
417
438
401
419
420
416
423
413
426
410
429
431
408
420
419
424
415
439
400
418
421
429
410
420
419
404
435
425
414
Mo
383
371
377
376
381
372
377
376
379
374
382
371
376
378
380
374
369
385
369
384
378
376
368
386
394
360
375
378
392
362
384
370
372
381
366
387
362
392
382
372
378
376
385
369
395
359
376
378
383
371
378
376
373
381
373
380
Sb
381
356
374
364
378
359
370
367
375
362
376
361
366
371
365
372
359
379
359
378
368
369
359
379
381
357
377
360
386
351
371
367
366
371
357
380
354
383
375
362
369
369
369
368
386
351
373
364
378
360
372
365
365
372
363
374
Hf
424
412
424
411
423
412
424
412
421
415
421
415
418
418
416
420
409
427
423
413
416
419
417
419
431
405
417
418
433
403
416
420
414
422
407
428
409
426
423
413
423
412
419
417
431
405
415
421
428
408
411
424
407
429
432
404
Ta
386
368
379
374
385
368
380
373
384
369
378
376
377
376
371
382
368
386
380
374
373
381
371
382
388
366
381
372
395
359
373
380
375
379
366
388
362
391
381
373
383
370
380
374
390
363
379
375
384
369
376
378
362
391
384
370
W
453
438
452
439
451
440
440
450
449
441
451
440
448
443
443
448
433
458
446
445
446
445
433
458
462
428
446
445
461
429
447
444
448
442
430
460
436
454
451
440
450
441
446
445
459
432
445
446
457
434
444
447
427
464
449
442
Pb
425
401
413
413
423
404
416
411
420
407
417
410
413
413
413
414
403
424
409
418
412
415
405
422
427
400
416
411
430
397
416
411
415
412
402
425
395
432
418
409
416
411
412
415
426
401
424
403
421
405
407
419
412
415
418
409
Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued)
Th
461
440
456
445
458
443
457
445
455
447
455
446
455
447
449
452
441
460
454
448
446
456
444
458
466
435
454
448
468
434
442
459
449
452
437
465
436
466
458
443
454
447
458
443
466
435
447
454
463
439
446
456
439
462
467
435
203
U
465
450
462
452
468
446
460
455
462
452
461
454
457
457
452
462
451
464
465
450
458
457
453
461
466
449
465
449
482
433
454
460
460
455
445
470
445
470
466
449
466
449
461
453
473
442
457
458
469
446
455
459
451
464
461
454
Appendix A3
Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued)
Laser Session
ap17a11
ap17b11
mr13a11
mr13e11
mr13f11
mr13g11
V
458
426
437
447
449
435
410
473
449
434
444
439
441
442
443
440
423
461
442
442
448
436
471
413
Zr
456
424
437
443
447
433
405
476
452
428
445
435
440
440
448
432
421
459
439
441
450
430
467
413
Nb
433
406
417
422
426
413
389
450
429
410
424
415
419
420
425
414
403
436
423
416
432
407
450
389
Mo
391
363
377
377
385
369
352
402
383
371
375
379
376
377
382
372
362
392
369
384
384
370
396
357
Sb
380
357
365
372
375
362
341
397
379
358
373
364
368
369
372
365
356
381
369
368
389
348
392
345
Hf
436
400
415
420
420
415
387
448
433
403
423
413
418
418
426
409
400
436
421
415
434
401
446
390
Ta
390
363
376
377
384
369
352
401
385
368
378
375
377
377
381
373
358
395
378
376
387
366
404
349
W
462
429
447
444
451
440
414
476
458
433
443
448
445
446
450
441
425
466
443
448
464
427
484
407
Pb
427
400
410
417
415
412
389
438
424
402
419
407
413
414
416
411
393
434
415
412
429
398
444
383
Th
465
437
450
452
454
448
418
484
464
437
454
448
450
451
455
447
433
469
452
449
470
432
482
420
204
U
472
442
460
454
459
455
426
488
470
444
462
452
457
458
462
453
441
474
460
455
476
438
487
427
Appendix A4
Laser Session
au20a03
au20a04
au20a05
au20a06
au20a07
au20a08
au24e03
au24e04
au24e05
au24e06
au24e07
au24e08
au24e09
au24e10
au24e11
au24e12
mr23a03
mr23a04
mr23a05
mr23a06
mr23b03
mr23b04
mr23b05
mr23b06
mr23c10
mr23c11
mr23d10
mr23d11
mr23e10
mr23e11
mr23f10
mr24a10
mr24b10
mr24c10
mr24d10
mr24e11
mr24f10
mr24g10
mr24h10
mr24i10
mr25a10
mr25b10
mr25c10
mr25d10
mr25e10
mr25f10
mr26a10
mr26b10
mr26c10
jn07a03
jn07a04
jn07a05
jn07a06
jn07a07
jn07a08
jn07a09
jn07a10
jn07a11
jn07a12
jn07a13
jn07a14
jn07a15
jn08a18
jn08b18
04
05
06
03
04
05
06
10
11
10
11
10
11
10
10
10
10
10
11
10
10
10
10
10
10
10
10
10
10
10
10
10
03
04
05
06
07
08
09
10
11
12
13
14
15
18
18
V
1130
1130
1150
1140
1170
1180
1140
1180
1130
1150
1110
1090
1130
1120
1110
1080
886
858
827
827
1280
1270
1280
1300
1270
1270
1240
1260
1250
1240
1290
1250
1240
1300
1260
1280
1290
1240
1310
1280
1260
1260
1290
1280
1440
1250
1270
1240
1220
1249
1265
1259
1264
1232
1263
1284
1246
1220
1245
1212
1294
1237
1251
1262
Zr
906
939
899
869
870
886
816
785
858
839
968
801
1030
961
984
968
655
656
633
623
825
823
827
825
834
832
799
797
783
785
790
797
785
811
807
791
806
762
763
800
795
785
815
788
921
784
788
774
778
774
781
787
784
775
771
784
781
751
775
755
787
769
805
805
Nb
2750
2730
2740
2690
2750
2860
2750
2710
2720
2630
2870
2440
3000
2740
2630
2690
2380
2330
2230
2170
2960
2920
2990
2960
2990
2980
2800
2870
2810
2810
2790
2900
2840
2960
2850
2870
2920
2740
2680
2860
2870
2810
2990
2830
3230
2630
2690
2850
2710
2752
2820
3008
2870
2936
2820
2824
2806
2760
2840
3067
2811
2752
2865
2880
Mo
9.9
11.1
11.6
9.7
10.1
10.4
10.5
10.1
10.8
9.3
11.7
9.5
11.2
10.0
12.6
11.0
8.6
8.8
8.6
9.2
11.6
10.7
12.9
11.6
11.1
11.9
9.8
10.9
10.5
10.9
11.6
11.6
11.7
10.9
11.1
11.7
11.1
11.1
12.0
11.8
11.2
11.5
11.4
11.1
13.0
11.3
12.0
11.9
11.3
11.8
13.0
10.5
11.8
10.8
10.8
10.0
9.6
11.4
13.0
13.5
12.1
12.2
11.2
10.8
Sb
2.0
2.2
1.9
2.1
2.0
1.9
1.7
1.7
1.9
1.7
2.3
1.5
1.9
2.7
4.4
3.3
1.3
1.6
1.4
1.5
1.8
1.8
1.7
1.5
1.7
1.5
1.6
1.9
2.0
1.9
2.0
1.6
1.9
2.0
1.5
2.0
2.0
1.6
2.1
2.0
2.0
1.9
1.9
2.1
2.1
1.5
1.8
1.7
2.0
2.0
2.4
2.1
1.8
1.9
1.7
2.0
1.6
2.8
2.3
2.0
1.9
2.5
2.3
2.0
Hf
42.5
43.7
44
42.8
42.7
44.3
39.9
38.5
42
40.3
43.4
40.1
51.6
49.5
56.1
51.2
32.6
31.8
31.8
29.9
40.1
39.7
39.3
39.3
38.3
38.2
38.4
37.9
38.4
37.6
37.7
38.0
37.6
38.3
37.4
38.6
39.2
36.5
35.6
38.4
37.7
36.1
38.4
36.1
42.4
37.2
38.2
36.9
36.8
37.0
36.7
38.0
37.5
37.1
37.1
37.8
36.4
34.4
36.8
34.0
39.3
35.5
38.7
37.4
Ta
460
424
494
522
518
541
418
395
428
409
405
406
483
453
449
439
456
464
414
449
410
412
418
449
371
365
364
439
400
434
451
416
439
468
368
456
454
397
450
444
454
437
451
446
592
456
468
422
508
437
431
441
436
411
425
428
397
403
432
428
446
471
451
437
W
116
102
133
137
131
140
107
99
100
98
98
97
116
103
114
109
47
49
46
49
62
63
64
69
59
57
57
67
64
74
82
67
75
82
59
78
73
63
83
75
82
77
75
79
107
90
97
71
97
77
74
76
71
66
72
72
65
64
74
75
78
95
75
76
Pb
0.380
0.071
0.211
0.067
0.113
0.092
0.029
0.019
0.045
0.022
0.086
0.085
0.325
0.302
0.727
0.746
0.214
0.495
0.435
0.202
0.928
0.593
0.695
0.405
1.030
0.593
2.180
1.910
0.980
0.780
1.470
0.961
0.722
2.490
0.767
0.745
1.140
0.305
0.299
1.790
2.040
1.370
3.930
0.814
1.350
0.502
0.759
0.475
0.454
0.172
0.170
0.138
0.235
0.113
0.134
0.253
0.374
0.255
0.386
0.329
0.441
0.294
0.118
0.140
Th
0.058
0.093
0.078
0.238
0.061
0.044
0.001
0.016
0.038
0.006
0.039
0.015
0.130
0.156
0.480
0.343
0.067
0.020
0.018
0.031
0.025
0.023
0.020
0.032
0.039
0.021
0.029
0.047
0.047
0.040
0.040
0.025
0.020
0.023
0.024
0.027
0.084
0.028
0.036
0.031
0.015
0.020
0.022
0.023
0.029
0.026
0.021
0.015
0.019
0.127
0.053
0.041
0.050
0.060
0.056
0.149
0.117
0.185
0.135
0.149
0.096
0.101
0.038
0.049
U
51.8
49.8
53.7
53.3
52.9
56.2
52.3
48.9
50.3
48.9
47.3
49.1
54.2
52.5
49.3
51.3
31.8
31.6
30.6
28.9
44.1
43.7
45.7
48.3
42.2
42.7
41.4
48.2
50.3
45.0
45.8
45.8
43.9
47.8
43.8
47.9
49.0
46.4
46.4
46.5
46.8
46.1
46.6
44.4
54.3
43.0
45.3
43.8
46.6
43.9
42.0
48.5
45.6
44.5
43.8
46.4
50.4
41.9
46.6
45.9
51.6
44.8
45.4
44.3
Table A4.1. Long-term R10 analyses done using the LA-ICPMS
205
Appendix A4
Laser Session
jn08c18
jn08d18
jn08e18
jn08f15
no16a11
no16e11
no16d11
no16c11
no16b11
no17b11
no17c11
no18a11
no18b11
no18c11
no19a11
no19c11
no19d11
no19e11
no19f11
no22a11
no22b11
no22c11
no22d11
no22e11
no22f11
no23a11
no23b11
no22g11
no19b11
no23c11
no23d11
no23e11
no23f11
no23g11
no24a11
no24b11
no24c11
no24d11
no24e11
no25a11
no25b11
no25c11
no25d11
no26a11
no26b11
no26c11
no26d11
no26e11
no26f11
no26g11
no28a11
no28b11
no28c11
fe07a03
fe07a04
fe07a05
fe07a06
fe07a07
fe07a08
fe08c11
fe09a11
fe09b11
fe09c11
fe09d11
18
18
18
15
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
03
04
05
06
07
08
11
11
11
11
11
V
1237
1299
1254
1349
1220
1250
1290
1250
1230
1240
1220
1270
1240
1250
1230
1250
1230
1260
1240
1290
1210
1250
1230
1240
1280
1220
1240
1250
1230
1220
1220
1240
1260
1240
1230
1230
1190
1280
1210
1240
1220
1220
1240
1240
1250
1240
1220
1220
1230
1220
1220
1220
1210
1190
1190
1180
1190
1190
1230
1220
1240
1240
1270
1240
Zr
771
820
791
795
772
813
792
786
785
820
766
809
779
814
763
766
773
798
804
819
812
815
786
795
810
783
802
796
783
756
787
789
797
807
785
768
759
832
783
792
772
796
813
787
811
777
767
771
787
752
786
726
756
777
776
772
794
791
795
724
810
749
787
757
Nb
2794
3005
2887
2935
2900
2990
2910
2770
2800
2870
2700
2930
2830
2870
2770
2780
2740
2880
2810
2950
2780
2870
2840
2860
2880
2760
2980
2840
2770
2690
2830
2820
2850
2970
2990
2810
2770
2920
2800
2840
2710
2830
2760
2820
2950
2950
2840
2880
2980
2750
2810
2720
2740
2820
2770
2790
2870
2920
2960
2790
2960
2780
2970
2750
Mo
9.3
12.8
11.3
13.6
10.9
10.6
10.7
11.2
10.7
10.9
10.4
11.5
12.2
10.7
11.7
10.9
10.3
10.9
11.5
11.8
11.0
10.7
10.8
9.6
11.9
10.9
7.3
10.7
9.8
10.0
10.4
11.4
11.6
11.2
11.1
10.2
10.9
10.8
10.0
10.5
11.0
13.3
10.5
11.4
11.4
11.6
11.0
12.1
12.3
10.8
11.7
11.4
10.8
9.4
10.2
10.8
10.8
9.8
12.0
11.0
10.7
10.6
11.1
10.0
Sb
2.2
2.0
2.0
2.3
1.9
2.8
2.0
2.0
1.9
2.3
1.7
2.0
1.9
1.8
2.3
1.7
1.7
1.8
2.0
1.9
1.6
2.0
1.9
2.0
1.9
1.8
2.2
2.0
2.0
1.5
1.9
2.2
1.9
2.0
1.9
2.1
2.1
1.8
2.5
2.1
1.8
2.1
1.7
1.9
1.9
2.2
2.4
1.8
2.0
1.7
1.9
1.9
1.7
1.8
1.2
2.1
1.3
1.6
1.9
2.0
1.8
1.7
1.9
2.0
Hf
36.5
37.8
36.2
37.8
37.3
38.8
39.1
37.4
37
39.2
38.1
39.7
38.3
38.5
36.5
36.9
36.2
39.2
40.1
38.9
39.1
38.4
37.1
38.2
39.2
37.3
40.7
39.4
37.7
36.9
40.7
38.4
38.1
40.2
37.3
36.6
36.3
40.4
37.5
39.8
37.2
37.2
38.9
38.7
37.8
36.5
35.2
32.8
37.8
36.3
36.2
38
38.5
36.1
37.6
37.9
37.9
36.7
38.7
34.6
38.3
36.1
39.3
37
Ta
457
399
416
438
440
450
469
442
419
428
448
473
465
473
453
372
444
460
459
445
429
476
424
461
461
416
434
447
457
452
454
389
434
470
370
442
371
403
367
371
346
370
372
385
470
465
426
390
474
435
451
456
363
375
366
372
382
473
487
391
449
433
469
400
W
85
64
66
72
66
69
70
70
63
63
65
71
69
76
66
59
69
69
66
65
64
69
66
65
68
66
68
65
67
68
68
60
69
72
58
63
61
69
58
57
52
58
59
63
74
72
67
65
72
67
70
70
56
55
54
54
54
71
70
62
66
65
71
64
Pb
0.107
0.189
0.101
0.156
0.115
0.122
0.100
0.077
0.038
0.178
0.272
0.116
0.097
0.103
0.116
0.054
0.062
0.113
0.187
0.096
0.152
0.075
0.081
0.162
2.350
0.124
0.342
0.159
0.127
0.090
0.169
0.118
0.171
0.221
0.221
0.157
0.147
0.196
0.147
0.110
0.124
0.157
0.086
0.119
0.106
0.123
0.218
0.349
0.107
0.137
0.118
0.145
0.084
0.248
0.123
0.153
0.085
0.384
0.115
0.052
0.044
0.049
0.055
0.053
Th
0.063
0.099
0.041
0.041
0.035
0.025
0.055
0.030
0.016
0.046
0.043
0.051
0.057
0.074
0.055
0.027
0.065
0.067
0.031
0.055
0.044
0.067
0.042
0.039
0.051
0.092
0.130
0.073
0.048
0.045
0.063
0.074
0.102
0.055
0.099
0.050
0.069
0.075
0.093
0.085
0.074
1.030
0.032
0.055
0.042
0.037
0.024
0.040
0.068
0.066
0.048
0.055
0.060
0.035
0.014
0.024
0.079
0.046
0.068
0.005
0.013
0.017
0.027
0.039
U
43.8
48.7
44.7
46.9
47.1
46.3
48.4
46.5
46.3
45.9
47.1
46.3
48.2
47.0
45.2
42.9
45.5
47.0
47.9
45.0
45.8
45.8
44.8
47.3
46.2
47.6
48.4
45.2
46.5
45.1
48.5
47.4
47.2
47.3
42.9
46.3
42.9
49.7
44.1
43.2
39.6
41.9
44.2
45.7
47.2
46.1
43.8
45.1
48.5
45.0
47.1
44.4
40.4
40.4
39.4
40.9
43
45.5
43.4
43.5
47.6
46.2
46.0
44.2
Table A4.1. Long-term R10 analyses done using the LA-ICPMS (continued)
206
Appendix A4
Laser Session
fe10a11
fe11a11
fe12h11
fe12a11
fe12b11
fe12c11
fe12d11
fe12e11
fe12g11
fe13a11
fe13b11
fe13c11
fe10b11
fe10c11
fe10d11
fe10e11
fe10f11
fe10g11
fe10h11
fe11b11
fe11c11
fe11d11
fe11e11
fe11f11
fe11g11
mr08a03
mr08a04
mr08a05
mr08a06
mr08a07
mr08a08
mr08c10
mr08c11
mr08b11
mr08d11
mr13a03
mr13a04
mr13a05
mr13a06
mr13a07
mr13a08
mr13b11
mr13c11
mr13d11
mr13e11
mr13f11
mr13g11
ap11a03
ap11a04
ap11a05
ap11a06
ap11a07
ap11a08
ap12c11
ap12b11
ap12a11
ap12d11
ap12e11
ap13a11
ap13b11
ap13c11
ap13d11
ap13e11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
03
04
05
06
07
08
10
11
11
11
03
04
05
06
07
08
11
11
11
11
11
11
03
04
05
06
07
08
11
11
11
11
11
11
11
11
11
11
V
1220
1220
1240
1230
1210
1230
1240
1230
1270
1230
1260
1230
1210
1260
1230
1250
1230
1220
1250
1280
1240
1200
1240
1260
1240
1280
1280
1280
1270
1300
1260
1270
1260
1250
1250
1280
1250
1260
1250
1290
1240
1240
1230
1280
1210
1240
1180
1270
1280
1250
1230
1260
1250
1250
1280
1220
1270
1270
1220
1190
1230
1210
1220
Zr
801
797
795
818
795
785
775
723
831
806
820
779
756
798
804
753
773
792
732
805
790
753
763
778
830
824
796
790
785
790
775
785
770
735
744
801
759
785
782
781
753
799
760
772
774
764
721
768
775
784
761
771
751
792
783
749
786
773
751
768
844
754
776
Nb
2820
2830
2810
2870
2840
2850
2780
2720
2880
2820
2850
2810
2790
2910
3080
2780
2850
2830
2760
2880
2960
2810
2910
2820
2910
2830
2760
2790
2740
2770
2780
2820
2790
2840
2850
2840
2780
2900
2790
2760
2810
2760
2720
2710
2710
2680
2450
2710
2790
2620
2590
2680
2580
2630
2640
2510
2650
2630
2730
2760
2670
2760
2770
Mo
10.0
10.5
11.4
10.6
10.5
11.5
12.0
10.5
11.6
11.9
12.8
11.0
11.1
11.4
11.9
11.2
11.2
11.6
10.3
11.5
11.8
10.4
11.5
10.9
11.5
12.1
11.9
10.8
11.3
11.1
10.9
11.2
11.9
10.0
12.6
11.6
10.9
13.0
10.5
11.7
11.6
12.7
11.3
12.6
11.6
12.1
10.2
11.0
11.9
12.1
11.9
11.3
12.3
11.6
12.2
11.5
12.8
11.7
10.3
10.4
10.5
9.7
11.2
Sb
1.7
1.8
1.6
1.7
1.9
1.6
1.8
1.8
2.2
2.1
1.6
1.8
1.7
1.8
1.9
2.6
1.8
1.8
2.0
1.6
1.8
1.6
1.7
2.0
1.7
2.0
2.2
2.2
1.8
1.9
2.1
2.3
1.7
1.6
1.6
2.1
1.7
2.0
2.0
2.0
1.8
1.9
1.7
2.1
2.4
1.6
1.7
2.1
1.8
2.0
1.9
2.1
1.9
2.2
1.8
1.9
1.8
1.8
1.7
1.8
1.9
1.9
1.8
Hf
39.7
39.7
38.5
38.7
38.5
36.1
37.3
35.9
39.3
37.8
38.1
36.5
36.2
37.4
39.6
36.4
36.3
38.6
35.6
38.7
36.9
37.8
36
38.6
38.1
39.1
37.3
39.3
37.6
37.9
37.7
35.2
36.4
35.5
36.7
39.1
37.2
37
36.9
36.3
35.9
37.6
36.6
38.1
37.9
36.1
33.9
36.3
36.7
36.9
35.9
35
36.8
37.5
35.9
35.2
37.5
37.1
35
37.6
41
35.8
36
Ta
405
410
457
422
386
383
416
417
444
454
396
421
442
430
502
459
410
402
450
394
455
419
432
426
434
440
454
457
452
457
405
458
471
450
437
454
423
457
436
436
378
508
429
581
452
444
484
468
507
492
451
558
463
477
453
438
469
461
433
359
373
449
359
W
63
64
76
64
60
65
67
67
68
75
62
67
64
64
74
66
64
70
68
63
71
63
62
68
70
73
81
76
74
91
66
95
98
68
69
77
70
77
73
78
62
99
81
108
80
88
83
94
104
84
97
104
92
96
84
88
98
91
68
58
91
67
56
Pb
0.057
0.062
0.112
0.059
0.053
0.043
0.046
0.046
0.088
0.083
0.064
0.249
0.051
0.036
0.017
0.026
0.051
0.034
0.049
0.036
0.045
0.053
0.153
0.033
0.063
0.317
0.214
0.147
1.130
0.091
0.246
0.054
0.074
0.063
0.108
0.066
0.104
0.851
0.102
0.072
0.069
0.154
0.101
3.320
0.083
0.082
0.318
0.827
0.229
0.706
0.844
0.122
0.074
0.113
0.125
0.064
0.092
0.108
0.124
0.303
0.047
0.157
0.114
Th
0.028
0.016
0.038
0.032
0.021
0.026
0.037
0.019
0.037
0.018
0.023
0.021
0.028
0.012
0.019
0.008
0.012
0.022
0.032
0.032
0.009
0.014
0.013
0.019
0.027
0.100
0.082
0.149
0.176
0.313
0.132
0.038
0.034
0.047
0.062
0.054
0.059
0.040
0.065
0.090
0.031
0.042
0.026
0.038
0.034
0.037
0.057
0.283
0.094
0.144
7.640
0.537
0.030
0.036
0.073
0.046
0.031
0.030
0.026
0.056
0.047
0.044
0.074
U
47.1
46.2
44.1
45.7
45.4
45.8
46.7
44.3
44.9
45.2
43.9
42.8
45.2
44.2
45.1
42.8
42.8
45.5
46.8
44.3
48.5
46.5
44.0
46.8
44.5
47.2
44.8
45.5
44.7
46.9
45.6
46.8
44.8
44.4
46.9
46.0
48.8
47.1
45.2
45.1
42.8
46.1
46.5
47.5
46.7
45.6
41.4
45.7
49.3
46.6
43.6
45.8
44.4
47.2
44.0
43.7
46.0
44.7
46.4
41.5
51.2
44.3
42.4
Table A4.1. Long-term R10 analyses done using the LA-ICPMS (continued)
207
Appendix A4
Laser Session
ap14a11
ap14b11
ap14c11
ap14d11
ap14e11
ap14f11
ap15a11
ap15b11
ap15c11
ap17a11
ap17b11
my11a03
my11a04
my11a05
my11a06
my11a07
my11a08
my11b11
my12a11
my12b11
my12c11
my12d11
my12e11
my12f11
my12g11
my18a11
my18b11
my19a11
my19b11
my19c11
my19d11
my19e11
my19f11
au22a03
au22a04
au22a05
au22a06
au22a07
au23a11
au24a03
au24a04
au24a05
au24a06
au24a07
au24b11
au25a11
au24c11
au24d11
au24e11
au24f11
au25b11
au25c11
au25e11
au25f11
au26a11
au26c11
au26d11
au28a11
au28b11
se29a03
se29a04
se29a05
se29a06
se29a07
V
11 1240
11 1240
11 1230
11 1270
11 1260
11 1250
11 1240
11 1260
11 1250
11 1240
11 1290
03 1220
04 1230
05 1220
06 1260
07 1240
08 1220
11 1290
11 1250
11 1270
11 1260
11 1240
11 1250
11 1210
11 1270
11 1230
11 1270
11 1220
11 1270
11 1280
11 1250
11 1250
11 1230
03 1210
04 1220
05 1180
06 1210
07 1200
11 1230
03 1280
04 1250
05 1260
06 1240
07 1240
11 1230
11 1250
11 1280
11 1210
11 1210
11 1220
11 1210
11 1230
11 1280
11 1230
11 1240
11 1280
11 1240
11 1200
11 1210
03 1260
04 1260
05 1250
06 1270
07 1240
Zr
783
776
800
782
770
794
765
791
756
771
796
761
761
833
798
747
764
818
795
784
794
789
769
749
773
763
783
747
758
811
794
780
762
759
742
749
762
746
747
738
757
761
773
765
734
758
758
717
746
714
765
767
756
755
791
783
751
737
744
835
827
811
811
814
Nb
2840
2920
2840
2760
2800
2830
2800
2830
2710
2800
2880
2770
2600
2710
2720
2670
2750
2660
2660
2670
2800
2880
2760
2700
2740
2690
2810
2670
2790
2870
2760
2780
2890
2770
2760
2710
2700
2760
2900
2880
2900
2810
2870
2870
2860
2870
2860
2770
2810
2780
2790
2820
2860
2800
2910
2840
2840
2730
2770
2890
2940
2890
2930
2900
Mo
11.7
11.4
11.9
12.2
11.6
10.9
10.6
11.8
11.8
11.9
12.3
11.5
10.5
11.4
11.3
11.0
10.5
10.9
11.0
12.3
10.6
9.9
11.6
11.0
11.9
9.9
11.0
11.4
10.7
11.6
12.4
11.1
10.9
10.1
12.2
10.2
11.7
11.1
11.2
11.6
10.8
11.3
11.3
11.5
11.2
10.3
11.2
10.5
11.1
11.2
11.0
11.5
10.1
10.8
12.1
10.7
11.3
10.3
11.3
11.6
11.6
11.0
11.0
11.3
Sb
1.8
1.8
1.7
1.9
1.8
1.7
1.8
1.8
2.1
1.8
1.7
1.8
1.4
2.0
1.6
1.5
1.5
2.2
1.5
2.1
3.0
2.2
1.6
2.0
1.9
2.0
1.6
1.9
1.7
2.2
1.4
1.9
1.6
1.9
1.8
2.0
1.7
1.7
1.5
1.9
2.1
1.7
1.8
1.6
2.1
2.0
1.8
1.7
1.8
2.2
1.7
1.8
1.9
1.9
1.9
1.9
1.6
1.7
1.7
1.7
1.6
1.9
1.5
1.7
Hf
37.1
35.1
37.7
37
35.8
36.9
36.3
38.6
36
36.5
37.8
36
36.3
38.7
37.9
35.9
37.1
39.2
38.6
37.8
38.4
37
36.3
36.9
37.1
37.3
38.1
36.8
35.8
37.7
37
36.7
37
36.5
34.9
33.4
37.4
33.7
36
36.2
36.7
34.2
36.6
35.7
34.3
35.9
37.4
35.7
35.8
36.3
38
36.4
36.6
36.9
36.4
35.7
37.2
34.7
34.5
39.9
38.2
40.5
39.9
38.4
Ta
419
436
442
490
431
354
409
444
426
438
429
405
343
450
464
351
349
543
493
480
414
365
382
433
424
444
426
390
400
459
389
448
446
430
448
454
539
460
389
443
430
369
390
419
399
423
398
369
418
396
421
384
440
417
407
382
420
422
408
467
455
447
407
430
W
67
68
73
97
71
58
66
76
72
75
73
62
58
123
145
58
57
98
85
91
66
58
64
67
72
71
73
65
64
76
68
90
68
75
88
85
97
86
65
73
71
62
63
70
69
69
67
63
67
72
66
62
82
68
64
63
70
73
82
83
72
70
64
65
Pb
0.290
0.256
0.093
0.095
0.114
0.102
0.140
0.216
3.160
0.061
0.162
0.156
0.099
0.141
0.075
0.061
0.095
0.183
0.179
0.087
0.363
0.349
0.125
0.152
0.343
0.111
0.058
0.088
0.245
0.153
0.204
0.170
0.183
0.262
0.219
0.072
0.180
0.096
0.070
0.152
0.090
0.085
0.059
0.064
0.084
0.111
0.099
0.080
0.130
0.148
0.076
0.117
0.124
0.112
0.161
0.061
0.062
0.080
0.074
0.150
0.145
0.086
0.103
0.083
Th
0.129
0.049
0.054
0.066
0.037
0.035
0.069
0.071
0.053
0.069
0.049
0.037
0.057
0.113
0.041
0.083
0.045
0.079
0.057
0.096
0.050
0.152
0.078
0.065
0.057
0.065
0.058
0.054
0.275
0.118
0.047
0.055
0.043
0.114
0.130
0.051
0.054
0.029
0.036
0.039
0.052
0.060
0.069
0.032
0.076
0.038
0.027
0.047
0.059
0.061
0.042
0.030
0.098
0.037
0.053
0.033
0.028
0.046
0.071
0.078
0.086
0.029
0.125
0.064
U
43.6
44.0
45.8
46.4
42.8
42.1
46.1
44.4
42.9
45.2
46.7
45.8
42.6
54.9
53.3
42.5
42.7
49.5
47.2
46.7
47.3
41.3
47.3
44.2
46.4
47.3
48.1
45.0
46.6
48.2
48.6
46.3
47.7
46.7
46.6
43.6
46.0
47.2
48.0
47.9
46.5
45.0
45.9
44.2
48.0
44.3
46.2
46.2
45.3
43.1
45.3
44.9
46.0
43.3
47.6
45.0
45.5
44.2
45.6
47.7
44.7
46.4
46.3
44.6
Table A4.1. Long-term R10 analyses done using the LA-ICPMS (continued)
208
Appendix A4
Laser Session
se29a08
se29b11
se29c11
se29d11
se29d16
se29d17
se29d18
se29e11
se30a11
se30b11
se30c11
se30d11
se30e11
oc01a11
oc01b11
oc01c11
oc02a11
oc02b11
oc02c11
oc02d11
oc02e11
oc02f11
oc02g11
oc02h11
oc02i11
oc02i18
oc02j11
08
11
11
11
16
17
18
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
18
11
V
1250
1260
1260
1240
1260
1270
1250
1220
1230
1240
1210
1250
1300
1250
1200
1250
1220
1250
1230
1270
1230
1230
1240
1240
1270
1180
1190
Zr
821
771
813
811
775
784
804
805
747
757
772
765
767
766
740
765
733
758
732
742
705
714
735
712
742
708
714
Nb
2850
2750
2830
2810
2830
2820
2880
2840
2770
2810
2810
2830
2830
2890
2750
2810
2790
2940
2840
2890
2780
2690
2810
2730
2790
2670
2720
Mo
12.0
11.0
11.2
11.1
10.7
10.6
11.0
10.3
10.6
10.4
10.0
10.7
10.9
10.9
11.0
10.7
10.1
11.3
11.0
12.0
11.1
10.7
10.7
11.1
11.0
11.0
10.6
Sb
1.8
2.0
2.0
1.9
1.6
1.4
1.7
1.5
1.9
1.6
1.5
1.8
1.7
1.6
1.6
1.8
2.0
2.0
1.7
1.6
1.5
1.7
1.8
1.7
1.5
1.7
1.6
Hf
37.4
37.2
38.8
38.7
37.8
38.4
38.6
39.5
37.3
37.1
36.2
37.2
36.7
36.9
36.7
37.7
34.8
37.4
35.1
35.2
34.9
34.3
35.8
34.6
35.3
33.3
35.1
Ta
434
432
504
465
433
430
423
392
385
406
439
445
448
435
411
431
426
423
428
433
434
425
419
395
368
378
420
W
70
72
92
83
73
67
64
62
62
66
66
71
68
68
62
66
64
64
66
70
67
70
67
64
63
67
66
Pb
0.114
0.257
0.230
0.137
0.118
0.100
0.110
0.122
0.127
0.095
0.183
0.107
0.073
0.113
0.068
0.092
0.068
0.080
0.089
0.166
0.061
0.175
0.077
0.054
0.082
0.208
0.089
Th
0.075
0.068
0.062
0.075
0.035
0.065
0.051
0.046
0.083
0.046
0.081
0.064
0.063
0.048
0.068
0.033
0.035
0.046
0.039
0.017
0.039
0.090
0.042
0.099
0.108
0.105
0.047
U
43.3
43.6
49.9
46.5
45.0
45.3
45.0
47.7
46.5
46.3
46.9
48.2
48.4
47.5
44.6
48.1
47.2
50.0
45.8
46.0
47.3
47.2
45.3
48.9
43.4
44.0
44.4
Table A4.1. Long-term R10 analyses done using the LA-ICPMS (continued)
209
Appendix A5
Stable Oxygen Isotope and Trace
Element Analysis
Oxygen isotope data was acquired on individual rutiles in two polished grain
mounts. Around 10 kg of 13 rock samples (two from Syros, four from the Sesia
Lanzo, two from Dora Maira and five from the WGR) were crushed and rutiles were
separated following standard heavy mineral separation techniques (please see Sample
Preparation – Appendix 2) . Approximately 130 rutile grains (containing 10 rutiles
from each sample) with an average size of 40-100 mm in diameter were mounted in
the resin block in a cross within a 10 mm square in the centre of the mount. A few
chips of two rutile standards (KAG and PAK) were mounted in the same block in the
centre of the epoxy mount. The grain mounts were polished to reveal the maiden
surface of the standards and samples. All mounted grains were examined in a variable
pressure scanning electron microscope (JEOL 6060LV). High-resolution backscattered electron (BSE) images were taken to identify any zoning and fracturing.
Low magnification secondary electron (SE) images were obtained to navigate the
samples while analysing for O isotopes.
Oxygen isotope ratios were measured by Secondary Ion Mass Spectrometry
(SIMS) in a Cameca 1270 at the University of Edinburgh in July 2011. Isotope ratios
are expressed in conventional δ18O notation in per mil relative to Vienna standard
mean ocean water (VSMOW). Before analysing by SIMS the surface of the mounts
was cleaned with isopropanol and coated with ∼100 nm gold. The analytical
procedure is similar to that described by Kemp et al. (2006). A six nA 133Cs+ ion
beam with ∼5 mm diameter was used as a primary beam. A normal incidence electron
gun was used for surface charge neutralisation.
Secondary ions were extracted at a constant 10 kv voltage, and 18O- and 16Owere monitored simultaneously on dual Faraday cups (L’2 and H’2). Each analysis
210
Appendix A5
involved a pre-sputtering time of 30 seconds, followed by automatic secondary beam
and entrance slit centering and finally data collection in two blocks of ten cycles,
amounting to a total count time of 100 seconds. Under these conditions the secondary
18
O yield was typically ~3.0 x 106 counts per second, whereas for 16O- , it was ~2.0 x
109cps. We used in house KAG as a primary standard, and assumed it to be
homogeneous. A third investigated standard, RAPP, did not prove to be homogeneous
enough to be used as standard. A typical analytical session consisted of 10-15
analyses of unknown rutiles bracketed by 5-10 analyses of the primary standard.
During the week-long analytical period in July 2011 the average δ18O for KAG was
1.7 ‰ ± 0.02. PAK was also analysed regularly as a secondary standard to monitor
instrumental drift, having an average δ18O of 2.5‰ ± 0.02. Instrumental mass
fractionation and drift corrections were made using an in-house spreadsheet prepared
by CD Storey. To correct for the instrumental mass fractionation all data were
normalised to KAG (δ18O =1.7 ‰ ± 0.02) by a bracketing standard procedure (for
stable sessions) or by a linear regression method (for the sessions with significant
drift). Relative standard deviation in the 16O/18O ratio of the standard BM 1909 was
about 0.02% within individual analytical sessions.
211
Appendix A6
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SY545-1
SY545-2
SY545-3
SY545-4
SY545-5
SY545-6
SY545-7
SY500-1
SY500-2
SY500-3
SY500-4
SY500-5
SY500-6
SY500-7
SY500-8
SY500-9
SY500-10
SY500-11
SY500-12
SY500-13
SY500-14
SY500-15
SY500-16
SY500-17
SY500-18
SY500-19
SY500-20
SY500-21
SY500-22
SY500-23
SY500-24
SY500-25
SY500-26
SY500-27
SY500-28
SY500-29
SY500-30
SY500-31
SY500-32
SY500-33
SY500-34
SY500-35
SY500-36
SY500-37
SY500-38
SY500-39
SY500-40
SY500-41
SY500-42
SY500-43
SY500-44
SY522-175-1
SY522-175-2
SY522-175-3
SY522-175-4
SY522-175-5
SY522-175-6
SY522-175-7
SY522-175-8
SY522-175-9
SY522-175-10
SY522-175-11
SY522-175-12
SY425-1
SY425-2
SY425-3
SY425-4
SY425-5
SY425-6
SY425-7
SY425-8
SY425-9
SY425-10
SY425-11
SY425-12
SY425-13
SY425-14
SY425-15
SY504-1
SY504-2
SY504-3
SY504-4
SY504-5
SY504-6
SY504-7
SY504-8
SY504-9
SY504-10
SY504-11
SY504-12
SY504-13
SY504-14
SY504-15
0.004
0.032
0.003
0.011
0.008
0.008
0.227
0.002
0.014
0.025
0.026
0.011
0.003
0.029
0.002
0.002
0.002
0.009
0.003
0.013
0.002
0.001
0.010
0.003
0.015
0.009
0.004
0.005
0.004
0.004
0.010
0.005
0.005
0.002
0.004
0.023
0.000
0.001
0.003
0.017
0.003
0.002
0.002
0.003
0.002
0.006
0.007
0.002
0.002
0.002
0.004
0.004
0.003
0.059
0.002
0.012
0.051
0.050
0.002
0.003
0.002
0.017
0.010
0.008
0.009
0.017
0.007
0.006
0.004
0.004
0.005
0.002
0.014
0.004
0.014
0.021
0.018
0.007
0.001
0.017
0.010
0.001
0.002
0.003
0.003
0.001
0.002
0.004
0.002
0.002
0.007
0.008
0.003
0.012
0.045
0.032
0.009
0.040
0.005
0.439
0.010
0.037
0.064
0.068
0.039
0.007
0.147
0.009
0.004
0.004
0.035
0.006
0.061
0.014
0.006
0.054
0.005
0.057
0.067
0.013
0.014
0.020
0.006
0.040
0.008
0.019
0.005
0.010
0.053
0.009
0.011
0.013
0.029
0.012
0.012
0.006
0.013
0.012
0.089
0.021
0.007
0.007
0.016
0.007
0.030
0.011
0.126
0.008
0.027
0.107
0.252
0.008
0.006
0.008
0.037
0.024
0.005
0.022
0.020
0.016
0.010
0.007
0.010
0.019
0.009
0.095
0.013
0.016
0.034
0.107
0.010
0.003
0.016
0.002
0.005
0.004
0.005
0.008
0.004
0.004
0.002
0.004
0.002
0.011
0.007
0.002
0.40
1.17
0.37
0.35
0.98
3.35
1.52
0.16
0.22
0.21
0.35
0.26
0.22
0.39
0.11
0.20
0.13
0.17
0.22
0.18
0.15
0.08
0.17
0.19
0.33
0.26
0.21
0.17
0.21
0.18
0.16
0.51
0.19
0.19
0.27
0.19
0.06
0.07
0.16
0.18
0.17
0.15
0.14
0.19
0.13
0.20
0.18
0.16
0.15
1.51
0.18
0.13
0.13
0.47
0.17
0.18
0.29
0.38
0.10
0.16
0.13
0.18
0.21
0.42
0.57
0.28
0.71
0.29
0.11
0.17
0.17
0.16
0.27
0.32
0.24
0.27
0.39
0.24
0.11
0.32
0.30
0.11
0.12
0.16
0.15
0.09
0.14
0.18
0.25
0.20
0.25
0.14
0.15
1630
1650
1510
1550
2050
1640
1580
2090
1970
2100
1980
2130
1880
1920
1810
1900
1840
2090
1960
1960
1960
1960
1850
2060
1860
2530
2520
1910
2360
2250
1940
2150
2410
1950
2360
2420
2410
2530
1900
1990
2040
1940
2050
2020
1920
2030
1960
1980
1950
1910
2030
1580
1450
1580
1600
1580
1590
1690
1710
1670
1560
1620
1660
659
607
616
571
617
584
585
612
574
568
642
612
603
602
579
988
1050
1090
1020
976
995
1010
1070
1030
1060
1090
1140
1090
1000
1060
115
85
75
114
122
125
118
6
4
5
6
8
6
4
4
5
4
5
5
2
3
2
2
5
6
12
21
12
25
31
17
32
19
14
16
15
3
3
6
4
5
5
4
4
5
5
5
4
4
6
5
6
5
6
5
7
6
6
4
6
6
4
6
300
346
480
410
429
353
394
421
457
492
392
412
392
539
406
5
14
13
2
4
4
2
3
2
6
4
6
5
5
4
34
77
36
74
37
64
41
37
45
41
44
48
58
70
51
63
54
51
67
60
54
43
43
49
38
48
49
62
52
74
49
77
60
63
48
44
42
44
42
44
49
53
39
38
43
44
40
34
34
46
50
41
38
81
80
65
58
60
68
56
68
67
44
43
45
63
49
43
33
43
48
71
55
48
53
52
73
42
30
18
18
38
36
30
36
42
37
39
20
52
22
30
38
126
109
65
119
172
118
97
94
108
94
99
102
68
80
32
66
81
65
82
67
59
54
69
75
77
75
69
76
57
86
70
81
85
78
72
62
66
73
97
85
115
81
91
164
85
107
93
93
76
94
80
129
92
64
39
81
63
43
73
60
92
39
73
253
280
256
294
267
287
304
277
250
217
294
256
270
200
288
57
77
73
60
63
61
55
71
54
63
71
68
65
61
56
3.7
2.0
1.9
2.9
4.9
3.4
2.3
2.2
2.5
1.8
1.2
2.4
2.0
1.6
1.6
1.4
2.3
1.7
2.3
1.4
1.7
1.6
1.3
2.5
1.7
2.7
1.1
2.1
1.4
1.8
1.4
3.5
1.5
2.3
1.9
1.8
1.4
1.7
1.6
1.2
1.9
2.7
2.5
2.7
1.4
1.1
0.9
1.3
2.5
1.5
2.0
1.7
2.9
2.0
0.9
1.6
1.2
1.9
2.5
1.9
2.3
1.6
2.2
6.8
8.0
4.3
6.9
4.2
5.1
2.7
4.1
2.9
4.3
5.7
4.9
6.0
4.3
6.2
3.3
4.8
8.0
3.4
3.7
3.8
3.2
4.0
2.3
5.9
4.6
5.1
3.0
5.6
6.0
13.9
14.5
8.4
15.4
15.2
19.4
12.4
14.4
13.9
14.1
16.6
11.6
10.9
14.4
8.94
10.8
12.9
11.2
12.4
11.2
10.9
11.6
15.2
12.9
12.6
9.75
7.93
17.3
10.6
14.8
12.9
15.4
14.5
16.1
14.3
11.2
9.9
9.6
15.7
12.5
16.1
13.5
13.4
14.4
14.5
11.6
13.1
14.8
14.3
15.1
12.1
15
14.4
21.3
18.5
16.2
15.7
17.8
18.8
17.8
18.1
14.2
18.4
21.8
31.1
25.4
25.3
20.7
30
23.5
22.2
23
20.1
24.3
21.7
23.6
21.3
33
8.54
11.4
5.17
9.17
7.9
9.3
7.4
9.2
9.5
6.7
9.0
6.4
6.8
7.2
7.4
1.0
1.0
0.9
1.1
0.8
1.6
0.7
5.5
4.6
3.7
4.0
5.7
1.1
0.8
2.3
0.7
2.9
2.1
0.9
1.2
1.4
2.5
3.3
3.3
4.8
3.0
2.0
1.1
2.1
3.0
3.2
1.7
1.6
1.0
3.6
3.2
1.4
1.3
3.4
2.8
3.3
1.6
2.7
3.9
3.4
3.5
4.4
5.3
3.7
3.1
1.6
0.4
0.6
0.4
0.5
0.8
0.4
0.4
0.4
0.4
0.7
0.4
0.8
39.6
38.7
39.8
43.0
39.8
31.0
35.0
42.2
43.6
34.3
38.1
40.8
37.9
38.6
37.4
2.1
2.6
3.0
3.0
2.8
3.4
2.1
2.8
2.2
3.0
2.7
4.1
2.8
2.5
1.6
1.8
4.1
2.2
2.3
2.5
4.3
3.0
2.7
3.4
2.8
2.9
2.7
2.9
4.1
2.6
3.5
2.7
3.9
4.8
3.7
2.9
3.1
3.0
3.4
3.4
3.6
2.9
3.2
3.5
4.2
3.1
4.0
4.7
3.9
3.7
3.0
2.5
2.4
2.7
2.9
3.5
3.6
4.2
2.6
2.3
3.1
2.3
1.7
2.6
3.2
2.7
3.4
2.7
6.0
5.3
4.3
4.5
4.4
7.0
5.5
5.2
4.8
6.4
1.7
3.3
2.9
2.6
1.7
1.7
1.3
2.3
4.1
3.6
3.3
2.5
2.7
4.5
4.9
2.2
2.3
2.7
2.2
3.9
3.7
3.3
4.1
3.1
3.4
2.0
3.4
2.4
2.7
2.7
7.9
4.9
3.4
8.9
10.4
7.4
5.4
5.5
7.6
6.2
6.4
6.5
5.5
5.8
2.3
4.4
5.0
4.6
5.6
4.1
3.6
3.3
4.3
5.2
5.4
4.8
3.6
4.3
3.3
3.8
3.8
4.6
4.7
3.9
4.4
2.9
4.1
4.9
6.3
4.9
6.9
4.3
5.7
12.1
5.6
6.2
5.7
4.8
4.0
5.3
4.8
25.4
7.6
5.2
2.8
6.4
5.3
2.5
6.6
4.9
8.7
3.0
5.7
8.5
10.0
9.4
8.1
8.8
11.2
12.2
8.0
7.5
7.5
8.2
8.6
8.1
6.4
10.2
3.3
4.2
4.7
4.5
4.2
4.1
2.8
4.9
3.0
4.4
5.2
4.2
4.8
4.2
2.5
6.6
12.6
32.6
7.8
14.1
6.2
19.6
2.7
3.9
1.8
2.2
2.8
1.0
3.7
0.6
1.0
2.0
2.2
3.6
1.5
0.8
0.4
2.3
4.2
1.6
1.2
2.3
0.9
0.5
4.4
3.2
2.8
3.8
1.5
1.3
1.1
0.8
2.4
5.0
1.1
4.4
1.2
4.1
14.4
2.3
2.9
4.6
3.7
2.0
2.2
2.0
7.3
5.7
0.9
0.2
0.8
0.4
0.5
1.9
2.1
1.7
0.1
1.9
32.2
30.8
42.4
63.7
81.4
40.9
53.4
78.1
55.3
57.1
66.3
63.1
64.7
43.8
63.8
4.5
5.6
6.2
6.1
6.9
7.3
4.3
6.7
4.7
7.7
6.5
5.5
4.6
5.0
3.8
0.10
0.13
0.10
0.45
0.23
0.22
0.17
0.11
0.14
0.13
0.07
0.22
0.14
0.09
0.15
0.11
0.18
0.07
0.13
0.08
0.05
0.05
0.05
0.12
0.11
0.18
0.09
0.08
0.13
0.21
0.09
0.40
0.11
0.14
0.19
0.12
0.06
0.11
0.15
0.08
0.11
0.11
0.13
0.10
0.11
0.17
0.15
0.09
0.08
0.06
0.11
0.08
0.04
0.05
0.04
0.05
0.07
0.05
0.03
0.03
0.03
0.04
0.03
0.61
0.50
0.79
0.92
0.25
0.16
0.29
0.58
0.28
0.68
0.23
0.45
0.39
0.25
0.50
0.14
0.49
0.43
0.14
0.13
0.29
0.22
0.26
0.18
0.16
0.27
0.30
0.12
0.29
0.37
Ts
Tomkins
(1.5GPa)
520
571
524
569
526
558
531
526
537
532
535
541
553
565
545
557
549
544
561
555
548
534
535
542
526
541
542
557
546
568
542
571
555
558
541
535
533
536
532
536
542
547
528
528
534
536
529
521
521
538
543
532
528
574
573
560
552
555
563
550
562
562
536
535
537
558
542
534
518
534
540
566
550
541
547
546
567
533
514
485
484
527
524
513
524
533
525
528
490
546
495
513
527
Ts
Tomkins
(2.0GPa)
538
590
542
588
544
577
549
544
555
550
554
560
572
584
564
576
567
563
580
574
566
553
553
561
544
559
561
576
564
587
561
590
574
577
559
554
552
554
551
554
560
566
546
546
552
554
548
539
539
556
561
550
546
594
592
579
571
574
582
569
581
581
554
553
555
577
560
553
536
552
559
585
569
559
566
564
586
551
532
503
501
545
542
531
543
551
544
546
508
565
512
530
545
Table A6.1.Trace element concentrations and temperature measurements for the
metamorphic samples from Syros
Ts F&W
Qtzbearing
495
546
500
543
502
533
507
507
503
549
548
535
528
530
538
526
537
537
511
510
512
533
517
510
494
509
516
540
525
516
522
521
542
509
Ts F&W
Ts F&W
Qtz-free
a(SiO2)=1
(asio2-0.5)
495
546
500
543
502
533
506
464
502
473
512
469
507
472
511
477
516
488
528
498
540
481
520
492
532
484
524
480
520
495
536
489
530
483
523
471
510
471
510
478
517
464
502
477
516
478
517
491
532
481
521
501
543
478
518
503
545
490
530
492
533
477
516
472
511
470
509
472
511
469
508
473
511
478
517
482
522
465
503
465
503
471
509
472
511
467
505
459
496
459
496
474
513
479
518
507
503
549
548
535
527
530
537
526
537
537
511
510
512
533
517
510
494
509
516
540
525
516
522
521
542
509
453
490
428
462
427
461
465
503
462
500
453
489
462
500
470
508
463
501
465
503
432
467
482
521
436
471
452
489
465
503
212
Appendix A7
Sample
MgO
Al2O3
SiO2
V
Cr
SY528-1
SY528-2
SY528-3
SY528-4
SY528-5
SY528-6
SY528-7
SY528-8
SY528-9
SY528-10
SY528-11
SY528-12
SY528-13
SY528-14
SY528-15
SY528-16
SY528-17
SY528-18
SY528-19
SY528-20
SY528-21
SY528-22
SY528-23
SY528-24
SY528-25
SY528-26
SY528-27
SY528-28
SY528-29
SY528-30
SY528-31
SY528-32
SY528-33
SY528-34
SY537-1
SY537-2
SY537-3
SY537-4
SY537-5
SY537-6
SY537-7
SY537-8
SY537-9
SY537-10
SY537-11
SY537-12
SY537-13
SY537-14
SY537-15
SY537-16
SY537-17
SY537-18
SY537-19
SY537-20
SY537-21
SY537-22
SY537-23
SY537-24
SY539-1
SY539-2
SY539-3
SY539-4
SY539-5
SY539-6
SY539-7
SY539-8
SY539-9
SY539-10
SY539-11
SY539-12
SY539-13
SY539-14
SY539-15
SY539-16
SY539-17
SY539-18
SY539-19
SY539-20
SY539-21
0.001
0.001
0.013
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.003
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.033
0.001
0.001
0.001
0.001
0.218
0.001
0.002
0.001
0.036
0.001
0.001
0.001
0.006
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.001
0.001
0.001
0.003
0.001
0.001
0.001
0.002
0.002
0.001
0.001
0.002
0.002
0.002
0.001
0.002
0.002
0.002
0.001
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.001
0.03
0.01
0.05
0.08
0.06
0.01
0.02
0.01
0.02
0.02
0.01
0.04
0.05
0.03
0.03
0.04
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.02
0.02
0.01
0.01
0.01
0.02
0.02
0.01
0.07
0.02
0.02
0.03
0.03
0.53
0.03
0.02
0.03
0.10
0.02
0.02
0.08
0.04
0.02
0.01
0.03
0.01
0.01
0.03
0.01
0.02
0.02
0.03
0.02
0.05
0.02
0.01
0.01
0.02
0.01
0.01
0.02
0.02
0.01
0.01
0.01
0.01
0.06
0.02
0.01
0.01
0.01
0.02
0.01
0.01
0.02
0.02
0.25
0.25
0.25
0.20
0.22
0.25
0.25
0.19
0.17
0.18
0.19
0.21
0.24
0.17
0.23
0.16
0.18
0.23
0.16
0.21
0.19
0.26
0.19
0.16
0.19
0.20
0.16
0.23
0.17
0.21
0.20
0.30
0.16
0.16
0.21
0.18
0.73
0.19
0.20
0.14
0.23
0.18
0.19
0.18
0.21
0.22
0.21
0.14
0.15
0.20
0.16
0.25
0.22
0.19
0.24
0.23
0.14
0.18
0.11
0.11
0.15
0.14
0.20
0.18
0.23
0.12
0.14
0.24
0.19
0.42
0.21
0.16
0.14
0.14
0.16
0.17
0.20
0.20
0.25
1098
1080
1078
1026
1036
1017
1017
1013
1025
1007
1043
1006
1034
1033
1036
1066
1062
1073
1150
1194
1184
1157
1119
1120
1078
1056
990
1021
1050
985
1011
1016
1030
1011
933
814
762
782
781
754
734
756
742
742
724
673
672
650
637
618
617
643
652
663
802
827
893
947
413
354
517
364
533
541
545
553
522
475
497
429
495
486
544
469
582
577
584
508
522
516
537
488
500
471
472
445
454
551
463
489
481
517
500
559
585
521
611
464
545
543
459
465
444
446
446
484
387
493
597
440
410
509
496
359
405
507
487
462
473
401
349
314
329
377
372
384
412
381
383
382
314
380
375
343
459
647
708
204
196
168
183
191
184
201
177
196
185
183
228
175
174
203
190
210
219
179
233
208
Zr
77
73
75
74
75
74
79
79
82
91
85
83
85
85
82
86
83
81
90
75
69
71
72
79
76
76
75
92
86
84
77
82
76
77
46
52
50
49
50
50
46
44
44
44
48
46
49
49
49
49
49
45
50
44
46
48
49
50
58
60
58
55
61
61
55
56
52
56
60
58
58
56
65
61
69
71
64
57
57
Nb
Mo
372
347
348
341
356
357
351
359
368
515
474
461
470
464
415
385
401
379
562
401
390
387
389
378
385
379
428
559
488
398
389
394
367
363
371
439
624
586
567
580
432
458
452
461
488
468
441
437
411
388
390
412
377
358
435
306
427
400
484
485
476
444
442
421
459
506
450
433
506
467
460
509
460
504
443
462
478
478
471
1.6
1.7
1.8
1.5
1.2
1.7
1.7
1.7
1.8
1.7
1.8
2.0
1.8
1.7
1.7
1.5
1.9
2.0
2.1
1.4
1.6
1.7
1.5
1.7
1.4
1.6
1.5
2.0
2.3
1.6
1.4
1.7
1.5
1.7
0.4
0.4
0.8
0.6
0.7
0.3
0.5
0.4
0.4
0.7
0.9
0.8
0.6
0.7
0.4
0.5
0.8
0.6
0.5
0.6
0.6
0.5
0.7
0.7
2.1
2.6
2.3
2.2
2.5
2.1
1.8
2.0
1.9
2.4
2.1
1.5
2.0
1.6
2.8
1.8
2.2
2.3
2.3
1.1
1.8
Sn
37
35
34
34
33
34
32
33
34
39
35
36
38
39
40
39
40
41
45
43
35
37
39
38
37
38
30
35
35
34
34
33
32
31
12
13
12
11
11
12
10
10
11
11
12
12
12
12
13
13
14
12
13
15
17
15
16
15
34
31
31
31
34
32
31
32
30
34
32
31
33
31
38
33
36
38
36
35
34
Sb
Hf
Ta
W
U
0.4
0.4
0.3
0.6
0.3
1.0
0.4
0.3
0.3
0.8
0.4
0.3
0.3
0.2
0.5
0.4
0.6
0.3
0.4
0.3
9.6
0.5
1.6
1.2
0.2
0.3
0.2
0.5
0.3
0.3
0.3
0.4
0.2
0.2
0.3
0.3
0.2
0.2
0.2
0.3
0.2
0.3
0.2
0.3
0.2
0.3
0.3
0.2
0.3
0.2
0.1
0.3
0.2
0.2
0.2
0.2
0.2
0.3
3.3
3.3
2.8
3.2
3.6
2.9
3.2
3.4
2.9
2.9
3.4
2.5
2.8
3.5
3.0
3.4
3.3
4.3
3.6
3.5
3.7
3.5
3.0
3.4
3.2
3.3
3.5
3.0
3.2
3.5
3.5
3.3
3.4
3.8
4.0
3.4
3.4
3.3
2.9
3.4
2.8
3.1
2.8
3.3
3.6
3.4
3.0
3.0
3.8
3.5
3.4
3.3
3.3
3.0
3.1
2.4
2.8
2.9
2.4
2.5
3.0
2.9
2.7
2.2
2.2
3.0
2.9
2.6
2.6
2.2
2.4
2.8
2.5
2.4
2.6
2.7
2.5
2.5
2.5
2.5
2.8
2.3
2.8
2.5
2.7
2.5
2.1
2.0
2.4
2.6
2.8
2.7
2.2
2.4
2.7
2.9
2.9
2.9
2.5
2.9
24.2
22.3
21.4
21.5
21.0
20.5
21.7
21.7
23.3
35.8
34.3
33.9
33.8
34.0
27.5
29.8
27.4
26.9
35.3
28.7
25.9
25.7
25.6
25.2
25.2
25.1
33.1
37.1
34.9
30.0
25.9
27.7
23.7
23.9
17.8
19.3
32.8
32.0
29.6
30.6
18.0
21.9
22.8
23.1
29.5
28.9
28.0
27.4
27.8
26.7
26.1
25.8
27.4
25.2
30.5
18.0
27.4
28.7
15.8
16.6
17.5
14.4
14.4
13.5
15.6
18.8
16.0
13.1
17.7
13.3
15.3
18.2
12.9
16.6
13.2
14.1
16.4
15.3
17.4
1.3
0.9
1.1
1.1
0.9
1.0
0.8
1.2
1.0
3.4
2.8
2.7
2.7
2.8
2.4
2.1
2.3
2.0
5.3
2.7
1.2
1.0
8.6
6.7
1.3
1.4
2.3
4.6
3.3
2.0
1.1
1.1
1.3
0.9
2.8
6.4
84.4
67.8
36.7
33.7
8.3
7.1
6.3
6.9
10.9
9.3
7.3
5.9
4.7
4.0
3.0
1.9
2.3
2.2
2.7
0.6
1.6
2.0
8.6
7.3
6.5
7.6
7.2
7.0
7.1
16.0
6.1
7.4
6.8
5.5
8.2
7.0
7.7
8.7
9.5
19.1
8.3
5.7
6.7
0.03
0.06
0.06
0.03
0.07
0.03
0.05
0.03
0.04
0.04
0.02
0.03
0.04
0.04
0.06
0.02
0.03
0.02
0.04
0.04
0.03
0.05
0.03
0.04
0.04
0.05
0.03
0.03
0.03
0.04
0.03
0.05
0.08
0.04
0.03
0.05
0.04
0.04
0.04
0.06
0.04
0.04
0.04
0.05
0.04
0.06
0.03
0.04
0.05
0.05
0.04
0.05
0.04
0.04
0.05
0.04
0.02
0.03
0.07
0.05
0.03
0.05
0.04
0.05
0.04
0.05
0.03
0.04
0.05
0.04
0.05
0.03
0.06
0.04
0.06
0.03
0.04
0.03
0.03
Ts
Ts
Tomkins Tomkins
(0.6 GPa) (1.2 GPa)
536
559
533
556
535
558
534
557
535
558
533
556
538
561
538
561
540
563
547
570
542
566
541
564
543
566
543
566
540
563
543
566
541
564
539
562
546
570
535
558
530
553
532
555
532
555
538
561
536
559
535
558
534
557
548
571
543
566
542
565
537
560
540
563
536
559
536
559
505
527
512
534
510
532
509
531
510
532
510
532
505
527
503
525
502
524
502
524
507
530
505
527
509
531
509
531
509
532
509
531
508
531
504
526
510
532
503
525
505
527
507
530
509
531
510
532
519
541
521
543
519
541
515
538
522
545
521
544
516
538
517
539
512
535
517
540
521
543
519
541
519
541
517
540
526
549
522
544
530
553
531
554
525
547
518
541
518
540
Table A7.1.Trace element concentration and temperature measurements for
metasomatic samples from Syros
Ts F&W Ts F&W
QtzQtz-free Ts F&W
bearing (asio2-0.5) a(SiO2)=1
503
545
500
542
502
544
501
543
502
544
501
543
505
547
505
547
507
549
513
556
509
552
508
550
509
552
509
552
507
549
510
553
508
550
506
549
513
556
502
544
497
539
499
541
500
541
505
547
503
545
502
544
502
543
514
557
510
552
508
551
504
546
507
549
503
545
503
546
475
514
481
520
479
519
478
517
479
519
479
518
474
513
473
512
472
510
472
511
477
516
474
513
478
517
478
517
479
518
478
518
478
517
473
512
479
518
472
511
474
513
477
516
478
518
479
518
487
527
489
530
487
527
484
524
490
531
490
530
484
524
485
525
481
521
486
526
489
530
487
528
487
528
486
526
494
535
490
531
498
539
499
540
493
533
487
527
486
527
213
Appendix A7
Sample
MgO
Al2O3
SiO2
V
Cr
SY539-22
SY521-1
SY521-2
SY521-3
SY521-4
SY521-5
SY521-6
SY521-7
SY521-8
SY521-9
SY521-10
SY521-11
SY521-12
SY521-13
SY521-14
SY521-15
SY521-16
SY521-17
SY521-18
SY521-19
SY521-20
SY521-21
SY521-22
SY521-23
SY521-24
SY521-25
SY521-26
SY521-27
SY521-28
SY521-29
SY521-30
SY521-31
SY521-32
SY521-33
SY521-34
SY521-35
SY521-36
SY521-37
SY521-38
SY521-39
SY521-40
SY521-41
SY521-42
SY521-43
SY521-44
SY521-45
SY521-46
SY521-47
SY521-48
SY521-49
SY521-50
SY521-51
SY521-52
SY521-53
SY521-54
SY521-55
SY521-56
SY521-57
SY521-58
SY521-59
SY521-60
SY521-61
SY521-62
SY521-63
SY521-64
SY521-65
SY521-66
SY521-67
SY521-68
SY521-69
SY521-70
SY521-71
SY521-72
SY521-73
SY521-74
SY521-75
SY521-76
SY521-77
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.008
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.004
0.001
0.019
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.040
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.003
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.02
0.01
0.02
0.01
0.02
0.02
0.01
0.01
0.02
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.02
0.01
0.02
0.02
0.02
0.02
0.01
0.02
0.02
0.01
0.03
0.01
0.01
0.01
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.22
0.07
0.11
0.10
0.11
0.09
0.11
0.13
0.13
0.12
0.09
0.14
0.08
0.14
0.11
0.08
0.09
0.09
0.11
0.11
0.09
0.12
0.11
0.15
0.12
0.11
0.08
0.24
0.17
0.13
0.17
0.10
0.14
0.11
0.11
0.13
0.09
0.13
0.11
0.12
0.12
0.10
0.09
0.13
0.15
0.11
0.16
0.13
0.12
0.12
0.08
0.14
0.11
0.12
0.11
0.11
0.09
0.12
0.09
0.10
0.10
0.08
0.09
0.10
0.08
0.11
0.11
0.10
0.06
0.07
0.06
0.11
0.12
0.08
0.10
0.09
0.08
0.10
502
812
929
933
922
966
934
773
935
814
920
950
926
920
896
884
959
962
954
967
941
941
949
980
937
961
951
918
950
796
546
835
953
932
938
965
952
857
977
972
941
589
751
927
965
1030
999
961
983
970
947
945
965
944
919
879
847
608
931
948
951
956
912
753
611
402
754
573
866
949
1000
1030
1010
1010
794
974
1000
939
234
109
115
143
121
134
142
160
133
143
148
143
120
107
93
82
155
118
128
151
146
114
147
125
108
102
127
112
113
112
110
110
160
131
117
140
178
153
116
112
151
156
137
162
183
221
241
166
187
173
177
115
147
104
95
81
80
81
118
109
117
87
81
64
88
72
70
81
172
194
173
183
153
137
121
291
268
81
Zr
56
74
66
78
69
63
72
63
67
68
71
71
63
68
65
68
70
69
68
74
69
66
73
71
67
65
70
70
71
70
67
70
77
73
62
74
77
74
73
69
71
71
70
68
70
69
73
70
75
67
67
67
72
72
71
69
69
71
97
94
97
68
63
59
65
53
63
63
76
82
78
79
91
73
70
77
77
69
Nb
Mo
Sn
495
196
194
188
192
177
185
293
188
190
180
185
192
198
179
197
181
191
183
194
184
182
193
197
182
190
195
188
191
190
195
194
195
195
176
206
185
194
199
195
199
192
184
170
155
156
161
184
174
177
184
187
183
200
191
204
210
213
327
304
318
192
213
316
236
392
268
320
225
249
232
246
282
230
199
116
116
190
2.3
3.1
3.1
3.1
3.5
3.1
3.1
2.3
3.4
2.5
2.8
3.0
3.3
3.3
3.2
3.2
3.1
3.0
2.8
3.5
2.3
2.9
3.0
3.1
3.0
3.5
3.2
3.0
3.0
2.9
2.5
3.2
3.0
2.9
3.1
3.6
3.0
2.6
3.3
2.9
3.2
2.9
3.3
3.1
3.0
2.9
3.2
3.1
2.8
2.5
2.5
2.8
3.3
3.5
3.1
3.4
3.4
3.6
5.8
5.7
5.2
2.7
2.5
2.6
3.0
1.9
2.8
2.5
3.2
3.5
3.4
3.7
3.8
3.3
3.5
3.2
3.6
3.1
35
6
5
6
6
5
6
6
6
5
5
6
5
6
5
6
5
5
5
6
5
5
5
6
5
5
5
5
6
5
6
6
6
5
5
6
6
6
5
6
5
5
5
5
6
6
5
6
6
6
5
6
5
6
5
6
6
6
9
8
8
5
5
5
5
5
5
6
7
7
7
7
8
7
6
5
6
5
Sb
Hf
Ta
W
U
3.8
4.1
3.8
3.7
3.6
3.3
3.5
7.5
3.6
3.2
3.6
3.5
3.6
3.4
3.3
3.2
3.4
3.3
3.2
3.4
3.8
3.2
3.8
4.0
3.0
3.2
3.5
3.5
3.5
3.4
9.0
3.7
4.1
3.7
3.1
4.1
3.6
4.0
3.5
3.4
3.9
3.7
3.6
3.5
3.7
3.8
4.2
3.2
3.8
3.8
3.9
3.5
3.4
3.5
3.5
3.6
3.9
3.4
5.6
5.5
5.7
3.4
4.0
6.9
3.9
10.6
4.6
7.2
5.0
5.6
5.4
5.3
6.0
4.7
4.0
3.7
3.8
3.7
2.8
3.0
2.6
3.4
3.1
2.8
2.9
2.5
2.9
2.8
2.9
2.7
2.7
3.4
2.4
2.8
3.2
3.0
2.7
3.5
2.8
2.8
3.2
3.1
3.2
2.8
3.0
2.5
3.5
3.0
2.6
3.2
3.0
3.2
2.4
3.5
3.0
3.1
3.6
3.3
2.9
3.0
3.0
3.2
3.0
2.9
3.1
3.2
3.6
2.8
2.6
2.8
3.0
3.4
3.1
2.7
3.0
2.7
4.1
3.3
3.6
3.0
2.4
2.4
2.5
1.9
2.4
3.0
3.6
4.0
3.4
3.8
4.4
3.3
3.0
3.3
3.1
3.0
16.6
13.7
12.6
12.4
12.4
12.6
13.5
13.3
12.8
14.2
12.4
12.5
13.4
12.6
10.6
11.9
13.7
13.7
12.1
15.2
14.7
14.0
14.4
15.2
13.7
13.4
14.5
12.3
13.5
12.0
12.0
13.9
13.9
14.2
11.5
13.7
11.5
13.0
12.5
14.1
12.3
13.8
13.2
13.4
11.9
13.1
12.9
13.9
13.9
13.3
14.1
12.1
13.1
13.6
11.6
12.5
12.9
14.1
30.8
30.8
30.7
14.8
19.3
23.5
16.6
21.7
24.7
19.6
21.4
21.8
22.3
23.2
25.6
19.5
14.9
7.3
7.5
12.3
5.8
10.3
10.0
10.3
11.5
9.7
10.5
11.1
10.9
10.5
10.4
11.4
11.3
10.8
10.5
10.5
9.7
10.9
11.0
11.6
10.4
11.0
12.1
10.5
10.0
10.2
10.2
10.4
10.8
10.8
24.5
11.3
12.6
10.9
9.7
11.8
9.7
10.4
12.5
12.1
10.7
11.3
10.7
10.4
9.8
12.4
11.1
12.0
11.1
10.9
11.5
11.4
11.3
11.0
10.5
10.4
10.4
10.4
119.0
91.3
167.0
9.9
10.1
12.6
10.4
10.5
14.6
13.2
42.4
57.4
43.7
50.2
48.3
27.6
12.2
11.6
12.2
9.6
0.04
0.17
0.14
0.12
0.14
0.14
0.14
0.18
0.17
0.18
0.14
0.17
0.16
0.15
0.15
0.14
0.15
0.19
0.12
0.20
0.14
0.15
0.14
0.14
0.12
0.11
0.16
0.16
0.15
0.20
0.22
0.12
0.19
0.18
0.13
0.10
5.20
0.15
0.20
0.16
0.12
0.18
0.16
0.35
0.17
0.21
0.16
0.18
0.26
0.15
0.12
0.13
0.18
0.18
0.11
0.15
0.13
0.18
0.27
0.35
0.30
0.16
0.11
0.14
0.16
0.24
0.09
0.13
0.20
0.49
0.31
0.29
0.34
0.21
0.19
0.19
0.18
0.16
Ts
Ts
Ts F&W Ts F&W
Tomkins Tomkins
QtzQtz-free Ts F&W
(0.6 GPa) (1.2 GPa) bearing (asio2-0.5) a(SiO2)=1
516
539
485
525
534
557
501
543
527
550
495
536
537
560
504
546
530
553
497
539
524
546
492
533
532
555
499
541
524
547
492
533
528
551
496
537
528
551
496
537
531
554
499
540
532
555
499
541
524
546
492
533
528
551
496
537
525
548
493
534
529
552
496
538
530
553
498
539
530
552
497
539
529
551
496
538
534
556
501
543
529
552
497
538
527
549
495
536
533
556
500
542
532
555
499
541
528
550
495
537
526
549
494
535
530
553
498
539
530
553
498
539
532
555
499
541
531
553
498
540
528
551
496
537
530
553
498
539
536
559
503
545
533
556
500
542
523
545
491
532
533
556
501
543
536
559
503
545
533
556
501
543
533
556
500
542
529
552
497
538
531
554
498
540
531
554
499
540
530
553
498
539
528
551
496
537
530
553
498
540
530
553
497
539
533
556
500
542
531
554
498
540
535
558
502
544
527
550
495
536
528
551
496
537
528
550
495
537
532
555
499
541
532
555
499
541
531
554
498
540
530
553
497
539
530
552
497
539
532
554
499
541
551
575
517
561
549
573
515
559
551
574
517
560
528
551
496
537
524
546
492
533
520
543
489
529
526
549
494
535
513
535
482
522
524
546
492
533
524
546
492
533
535
558
503
545
540
563
507
549
537
560
504
546
538
561
505
547
547
570
513
556
533
556
500
542
530
553
498
539
537
560
504
546
536
559
503
545
530
553
497
539
Table A7.1.Trace element concentration and temperature measurements for
metasomatic samples from Syros (continued)
214
Appendix A7
Sample
MgO
Al2O3
SiO2
V
Cr
SY521-78
SY521-79
SY521-80
SY521-81
SY521-82
SY521-83
SY521-84
SY521-85
SY521-86
SY521-87
SY521-88
SY521-89
SY521-90
SY521-91
SY521-92
SY521-93
SY521-94
SY521-95
SY521-96
SY521-97
SY561-1
SY561-2
SY561-3
SY561-4
SY561-5
SY561-6
SY561-7
SY561-8
SY561-9
SY561-10
SY561-11
SY561-12
SY561-13
SY561-14
SY561-15
SY561-16
SY561-17
SY561-18
SY561-19
SY561-20
SY561-21
SY561-22
SY561-23
SY561-24
SY412-1
SY412-2
SY412-3
SY412-4
SY412-5
SY412-6
SY412-7
SY412-8
SY412-9
SY412-10
SY412-11
SY412-12
SY507-1
SY507-2
SY507-3
SY507-4
SY507-5
SY507-6
SY507-7
SY507-8
SY507-9
SY507-10
SY507-11
SY507-12
SY507-13
SY522-10-1
SY522-10-2
SY522-10-3
SY522-10-4
SY522-10-5
SY522-10-6
SY522-10-7
SY522-10-8
SY522-10-9
SY522-10-10
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.003
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.002
0.002
0.001
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.003
0.056
0.003
0.006
0.014
0.002
0.002
0.008
0.003
0.011
0.189
0.003
0.002
0.002
0.003
0.002
0.002
0.002
0.002
0.003
0.003
0.013
0.015
0.002
0.003
0.001
0.001
0.020
0.003
0.002
0.008
0.001
0.001
0.001
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.01
0.03
0.01
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.02
0.08
0.01
0.05
0.05
0.01
0.01
0.03
0.01
0.02
0.40
0.02
0.00
0.00
0.01
0.00
0.01
0.00
0.01
0.00
0.00
0.01
0.02
0.00
0.01
0.01
0.00
0.13
0.02
0.00
0.02
0.01
0.01
0.00
0.09
0.10
0.10
0.11
0.09
0.05
0.10
0.06
0.08
0.06
0.09
0.09
0.08
0.08
0.10
0.09
0.09
0.10
0.09
0.05
0.10
0.12
0.13
0.14
0.10
0.15
0.13
0.19
0.12
0.12
0.12
0.12
0.17
0.23
0.14
0.17
0.22
0.30
0.25
0.24
0.21
0.15
0.20
0.14
0.14
0.14
0.21
0.15
0.14
0.47
0.15
0.27
0.21
0.13
0.12
2.52
0.12
0.13
0.18
0.16
0.12
0.23
0.10
0.16
0.13
0.18
0.22
0.46
0.14
0.19
0.16
0.28
0.59
0.26
0.11
0.19
0.20
0.20
0.17
907
897
740
727
930
922
983
991
986
944
927
899
721
704
651
684
773
847
781
777
761
779
772
809
754
811
757
791
795
754
819
801
1030
1100
846
1140
750
761
827
832
872
808
831
833
1660
1250
1500
689
990
607
855
1070
1060
1050
986
738
2260
1540
1490
2090
1450
1450
1390
1420
1500
1560
1360
1450
1440
2530
2350
2410
2620
2170
2260
2350
2300
2150
2610
97
182
180
117
123
120
200
226
213
203
138
149
115
141
78
82
81
81
87
79
24
26
26
24
25
26
25
25
27
27
25
29
22
20
23
20
21
17
30
37
37
37
37
37
5
4
3
4
4
10
5
3
9
4
4
9
7
12
15
11
18
18
9
13
8
14
9
12
13
2
3
4
9
8
4
4
6
4
5
Zr
91
77
80
82
70
70
77
82
80
74
69
71
70
72
88
96
94
91
92
89
49
51
48
52
51
53
49
49
55
49
51
54
60
59
52
57
51
55
51
53
54
55
54
52
56
45
47
54
61
47
46
35
57
49
50
50
43
39
44
46
41
39
48
49
36
57
43
42
36
75
48
46
63
47
51
49
54
51
50
Nb
Mo
301
242
244
297
188
187
238
250
253
270
181
188
436
259
322
330
328
325
324
337
292
316
292
305
311
323
292
296
330
271
307
333
570
627
304
551
245
251
275
249
266
269
264
254
56
42
95
85
97
84
84
95
83
80
87
69
128
106
132
78
65
77
198
177
175
169
93
145
130
79
80
63
65
83
62
55
49
53
59
4.7
3.2
3.0
3.2
2.8
2.7
3.3
3.6
3.8
3.2
2.9
3.2
3.9
3.2
4.7
4.9
4.5
5.2
5.4
5.9
0.5
0.4
0.5
0.3
0.6
0.5
0.6
0.5
0.6
0.5
0.5
0.4
0.6
0.5
0.7
0.5
0.7
0.5
0.5
0.6
0.5
0.5
0.5
0.4
1.9
1.2
2.2
2.5
2.1
2.5
3.7
1.0
3.4
2.7
2.4
2.9
7.7
8.8
5.9
10.3
6.9
6.0
2.8
3.2
4.6
6.5
6.7
2.6
4.4
2.2
1.6
1.6
2.6
1.8
1.1
1.2
1.1
1.2
1.8
Sn
7
7
7
7
6
5
7
8
8
8
5
6
7
7
7
8
8
8
8
8
17
19
19
19
19
19
19
19
19
19
19
21
21
24
22
23
23
21
23
23
25
22
23
23
8
7
6
8
7
7
7
7
9
7
7
9
13
17
19
13
22
25
5
21
16
21
24
20
26
9
9
9
12
11
9
9
7
9
8
Sb
Hf
Ta
W
U
5.1
5.6
5.9
6.2
3.5
3.1
5.3
6.0
5.4
6.3
3.3
3.4
6.5
5.7
5.0
5.9
5.3
6.0
5.4
6.4
0.1
0.3
0.2
0.3
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.4
0.2
0.7
0.3
0.4
0.3
0.3
0.5
0.6
0.3
0.5
1.6
3.0
3.5
2.4
2.3
2.4
3.2
4.4
4.1
3.0
4.4
2.6
6.3
7.5
8.0
8.0
6.1
10.6
11.7
13.7
12.1
6.8
9.0
12.3
16.2
1.4
1.2
1.7
1.3
1.7
0.9
1.7
0.4
0.9
0.9
3.5
4.1
4.2
3.7
3.0
3.1
3.4
4.7
4.1
3.8
3.1
3.0
3.2
3.5
3.2
3.7
3.5
3.3
3.3
3.1
3.4
3.3
3.0
4.1
3.2
2.9
3.2
3.0
3.1
3.2
3.2
3.3
4.1
4.8
3.9
4.5
3.2
2.8
3.1
3.1
3.2
3.3
3.1
2.8
3.2
2.3
3.8
3.3
3.6
2.6
3.4
2.3
3.2
3.5
3.8
4.1
2.8
3.0
3.7
2.1
2.3
2.4
1.9
4.1
2.7
30.2
20.6
20.7
27.4
14.0
15.1
21.7
22.2
21.8
22.1
13.6
14.5
27.6
21.5
30.2
29.5
29.3
29.4
29.2
28.9
15.2
15.1
15.1
15.7
16.8
18.9
15.3
15.4
19.4
14.7
17.6
19.2
42.4
44.7
19.5
44.1
15.3
16.6
16.3
14.9
17.1
16.2
15.5
14.2
4.2
2.3
7.1
6.8
6.8
6.8
6.7
6.7
7.4
5.3
6.4
3.2
6.8
5.2
7.0
3.8
1.8
2.8
20.8
19.8
23.7
11.9
3.4
11.1
9.1
6.0
5.4
4.6
4.9
6.7
4.4
3.7
3.2
3.3
4.0
72.1
53.9
53.5
41.0
10.0
9.8
53.1
59.0
64.3
66.5
10.2
11.7
25.0
50.7
67.8
69.3
65.2
71.0
70.4
72.5
0.7
0.7
0.7
0.7
1.6
0.6
0.6
0.5
0.7
0.5
0.7
0.7
10.3
16.0
0.6
9.1
0.2
0.5
0.5
0.3
0.3
0.7
0.4
0.3
6.8
11.3
39.7
23.6
30.4
24.1
45.6
27.0
28.5
41.1
23.8
17.0
3.0
4.6
7.4
3.5
7.3
8.2
7.9
11.6
14.1
5.8
7.7
11.1
15.3
1.8
1.5
0.9
0.8
1.2
0.8
0.4
0.2
0.2
0.8
0.50
0.23
0.34
0.19
0.14
0.16
0.25
0.29
0.24
0.26
0.27
0.22
0.23
0.28
0.23
0.25
0.22
0.21
0.24
0.26
0.01
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.02
0.04
0.03
0.07
0.07
0.06
0.03
0.04
0.04
0.06
0.04
0.09
0.05
8.07
0.04
0.05
0.13
0.21
0.14
0.24
0.37
0.28
0.23
0.51
0.39
0.26
0.25
0.54
0.09
0.26
0.11
0.10
0.24
0.18
0.08
0.10
0.15
0.13
0.16
0.10
0.08
0.04
0.07
0.03
0.08
0.04
0.05
0.06
0.04
0.02
0.07
3.1
3.8
1.6
3.9
3.2
2.4
2.8
3.3
2.5
2.4
3.0
2.6
2.7
Ts
Ts
Tomkins Tomkins
(0.6 GPa) (1.2 GPa)
547
570
536
559
539
562
540
563
530
553
530
553
537
560
541
564
538
561
534
557
529
552
531
554
530
553
532
555
545
568
550
574
549
573
547
571
548
571
545
569
508
530
512
534
508
530
513
535
511
533
513
536
508
530
509
531
516
538
509
531
511
534
515
537
521
543
520
542
512
535
518
541
511
533
515
538
512
534
513
536
514
537
516
539
514
536
512
534
517
539
504
526
506
528
515
537
522
545
507
529
505
528
489
511
518
540
508
531
510
533
510
532
501
523
495
517
503
525
505
527
499
521
496
517
507
529
509
531
492
513
517
540
501
523
500
522
491
513
535
558
507
529
505
527
524
547
506
528
511
534
509
531
515
537
511
533
510
533
Ts F&W Ts F&W
QtzQtz-free Ts F&W
bearing (asio2-0.5) a(SiO2)=1
513
556
503
546
506
548
507
549
498
539
498
539
504
546
507
550
505
548
501
543
497
538
499
540
498
539
500
541
511
554
516
560
515
559
513
557
514
557
512
555
517
517
520
520
517
517
522
521
520
520
522
522
517
517
517
517
525
525
517
517
520
520
524
524
530
529
529
528
521
521
527
527
520
519
524
524
520
520
522
522
523
523
525
525
523
523
521
521
485
525
473
512
475
514
484
524
491
531
476
515
475
514
460
498
486
526
478
517
479
519
479
518
471
510
465
503
473
511
475
514
469
507
466
504
477
516
478
518
462
500
486
526
471
510
470
508
462
499
502
544
477
516
474
513
492
533
476
515
480
520
478
518
484
524
480
520
480
519
Table A7.1.Trace element concentration and temperature measurements for metasomatic
samples from Syros (continued)
215
Appendix A7
Sample
SY522-10-11
SY522-10-12
SY522-10-13
SY522-10-14
SY522-10-15
SY522-10-16
SY522-10-17
SY522-10-18
SY522-10-19
SY522-10-20
SY522-10-21
SY522-10-22
SY522-10-23
SY522-10-24
SY522-10-25
SY522-10-26
SY522-10-27
SY522-10-28
SY522-10-29
SY522-10-30
SY522-10-31
SY522-10-32
SY522-10-33
SY522-10-34
SY522-10-35
SY522-10-36
SY522-10-37
SY522-10-38
SY522-10-39
SY522-10-40
SY522-10-41
SY522-10-42
SY522-10-43
SY522-10-44
SY522-10-45
SY522-100-1
SY522-100-2
SY522-100-3
SY522-100-4
SY522-100-5
SY522-100-6
SY522-100-7
SY522-100-8
SY522-100-9
SY522-100-10
SY522-100-11
SY522-100-12
SY522-100-13
SY522-100-14
SY522-100-15
SY522-100-16
SY522-100-17
SY522-100-18
SY522-100-19
SY522-100-20
SY522-100-21
SY522-100-22
SY522-100-23
SY522-100-24
SY522-100-25
SY522-100-26
SY522-100-27
SY522-100-28
SY522-100-29
SY522-100-30
SY522-100-31
SY522-100-32
SY522-100-33
SY522-100-34
SY522-100-35
SY522-100-36
SY522-100-37
SY522-100-38
SY522-100-39
SY522-100-40
SY522-100-41
SY522-100-42
SY522-100-43
SY522-100-44
SY522-100-45
SY522-100-46
SY522-100-47
SY522-100-48
SY522-100-49
SY522-100-50
SY522-100-51
SY522-100-52
MgO
Al2O3
SiO2
V
0.004
0.002
0.002
0.003
0.006
0.005
0.003
0.003
0.002
0.004
0.003
0.032
0.003
0.004
0.030
0.009
0.004
0.003
0.005
0.003
0.028
0.011
0.008
0.006
0.022
0.018
0.051
0.004
0.020
0.011
0.046
0.018
0.019
0.016
0.012
0.001
0.002
0.015
0.009
0.017
0.013
0.015
0.036
0.011
0.001
0.001
0.001
0.001
0.002
0.001
0.007
0.001
0.011
0.002
0.004
0.003
0.005
0.005
0.013
0.014
0.008
0.014
0.002
0.002
0.008
0.003
0.001
0.003
0.002
0.002
0.002
0.002
0.002
0.002
0.001
0.002
0.001
0.011
0.002
0.002
0.001
0.009
0.002
0.002
0.002
0.002
0.001
0.00
0.00
0.00
0.00
0.01
0.01
0.00
0.01
0.00
0.01
0.00
0.08
0.01
0.01
0.05
0.02
0.01
0.00
0.01
0.01
0.08
0.01
0.02
0.01
0.02
0.01
0.08
0.02
0.02
0.02
0.09
0.01
0.01
0.01
0.01
0.01
0.01
0.03
0.00
0.01
0.02
0.01
0.04
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.04
0.01
0.02
0.03
0.02
0.04
0.06
0.03
0.04
0.03
0.01
0.01
0.03
0.01
0.01
0.01
0.00
0.00
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.01
0.06
0.02
0.01
0.01
0.01
0.01
0.27
0.28
0.15
0.22
0.24
0.27
0.19
0.20
0.17
0.33
0.26
0.34
0.31
0.23
0.41
0.34
0.21
0.24
0.30
0.24
0.27
0.81
0.83
0.36
1.27
1.12
1.25
0.44
1.28
0.60
2.83
0.94
1.25
0.92
1.02
0.11
0.13
0.21
0.65
0.87
1.08
1.10
1.90
0.13
0.15
0.12
0.11
0.08
0.16
0.11
0.16
0.13
0.21
0.26
0.25
0.12
0.10
0.13
0.20
0.46
0.19
0.13
0.10
0.15
0.45
0.19
0.10
0.12
0.14
0.10
0.16
0.12
0.25
0.14
0.11
0.12
0.12
0.16
0.14
0.14
0.12
0.26
0.17
0.13
0.12
0.19
0.26
2110
2160
2260
2150
2200
2160
2640
2540
2400
2400
2420
2430
2570
2360
2330
2170
1900
2410
2230
1960
2310
2270
2210
2290
2380
2030
2410
2440
2310
2370
2440
2150
2520
2290
2370
2870
2940
2910
2830
2820
2960
2900
3000
2890
2930
2980
2880
2920
2950
3050
3040
2880
2740
2820
2890
2820
2750
2790
2490
2730
2590
2800
2880
2780
3090
2770
2730
2710
2740
2750
2770
2810
2820
2830
2740
2780
2790
2900
2970
3000
2780
2800
2810
2920
3000
2810
2940
Cr
8
10
6
7
9
10
6
8
6
11
8
10
5
6
13
10
12
9
10
9
9
28
25
15
40
32
48
8
33
25
92
36
44
40
32
6
9
7
21
37
46
31
78
7
6
9
9
9
4
5
5
4
6
4
5
3
5
4
5
4
4
3
9
9
4
6
5
3
4
6
5
6
4
5
3
4
6
5
8
7
4
4
5
4
5
4
6
Zr
55
56
43
48
57
66
46
57
41
62
42
34
37
60
50
54
54
63
60
52
48
36
45
39
65
38
38
46
39
51
57
41
58
54
45
51
45
62
56
59
43
94
46
46
56
48
58
45
55
35
62
52
49
51
48
49
48
50
36
50
49
39
50
47
45
54
54
61
56
59
61
44
44
42
40
34
48
48
30
44
42
37
45
42
39
51
70
Nb
Mo
55
86
80
86
81
62
118
81
109
102
84
67
96
113
66
76
59
63
55
96
97
105
108
100
108
87
103
85
85
73
89
90
70
75
95
40
48
52
41
38
55
55
49
53
49
45
39
54
65
52
81
69
63
49
61
55
52
51
19
76
65
68
74
52
65
44
51
50
53
39
48
55
55
61
64
58
49
49
53
38
66
59
68
48
51
55
46
1.7
1.9
1.9
2.6
1.6
1.3
2.3
0.7
2.5
1.7
1.4
2.3
1.6
1.1
2.5
2.1
1.8
2.0
2.7
1.7
1.9
2.8
3.1
1.5
4.2
3.4
3.4
1.6
4.8
3.1
10.3
1.8
2.1
3.1
4.2
1.0
1.4
1.9
2.0
2.9
5.0
1.7
6.5
0.5
1.3
1.9
1.5
1.3
2.3
2.1
1.3
0.8
1.1
0.8
1.0
0.9
1.2
1.0
4.2
2.2
1.8
2.1
0.4
0.6
2.5
2.0
1.6
1.0
2.1
0.9
1.4
2.3
1.6
2.5
2.5
2.2
1.7
2.5
2.1
1.9
2.7
2.4
2.3
1.8
2.0
2.4
2.0
Sn
10
9
12
11
12
11
14
13
12
14
12
14
14
10
12
13
10
9
11
12
11
14
12
10
12
15
16
10
19
10
20
22
9
15
21
5
5
7
3
11
9
9
13
4
5
7
6
4
5
7
4
5
4
4
5
4
4
4
4
8
6
7
4
3
7
7
7
6
7
6
6
12
7
6
6
6
5
7
7
7
8
6
7
6
7
7
6
Sb
1.0
0.8
1.4
1.3
2.0
0.8
1.8
0.6
3.6
1.2
1.9
3.5
3.0
0.6
3.5
1.7
0.8
0.8
0.5
1.5
1.2
2.1
1.5
1.4
4.9
3.1
2.5
1.8
2.4
1.8
7.1
3.0
2.5
2.9
3.3
0.4
0.5
0.6
1.2
2.7
4.0
2.1
4.2
0.4
0.3
0.4
0.3
0.6
0.2
0.6
0.3
0.3
0.4
0.3
0.2
0.3
0.4
0.3
0.5
0.4
0.5
0.6
0.3
0.4
0.6
0.5
0.3
0.3
0.4
0.5
0.4
0.4
0.8
0.6
0.6
1.1
0.3
0.8
1.0
0.5
0.8
1.0
0.5
0.4
0.7
0.4
0.4
Hf
2.8
3.5
2.4
2.9
2.9
3.2
3.0
2.8
3.1
4.1
3.2
2.2
1.6
3.0
2.5
4.9
3.6
3.9
4.4
3.5
2.9
3.5
2.4
3.0
3.7
5.1
2.7
2.1
3.7
4.1
3.3
3.0
4.0
2.4
5.3
2.9
2.7
4.2
2.4
3.4
5.8
5.1
6.5
2.5
3.2
4.0
2.9
3.6
2.5
2.3
5.4
3.7
2.9
3.2
3.5
2.4
2.8
2.4
1.1
5.3
4.6
2.9
3.0
2.7
3.5
3.2
3.5
3.7
4.3
3.7
3.7
2.8
3.5
3.7
2.6
2.8
2.9
3.8
2.6
3.1
3.4
2.7
3.1
3.2
2.6
3.9
2.8
Ta
3.5
8.3
6.9
7.1
6.7
4.8
6.7
4.1
5.8
5.5
4.4
3.5
6.8
7.9
4.0
5.5
4.2
4.4
3.8
9.3
9.2
7.3
6.9
8.4
7.5
5.9
8.1
5.4
3.6
7.1
5.9
8.4
5.2
5.4
7.1
2.3
2.6
4.3
3.2
3.3
5.2
4.2
2.0
3.2
4.1
3.9
2.7
3.6
5.7
4.0
6.0
4.4
4.5
3.2
4.3
4.2
3.5
3.9
1.9
5.5
5.5
3.9
3.4
3.3
4.9
2.7
4.5
4.5
4.7
2.8
4.7
4.3
3.9
3.5
5.0
4.3
3.0
3.9
4.3
3.2
4.4
4.3
4.2
4.1
4.6
3.5
1.6
W
U
0.6
0.9
2.0
0.9
1.3
2.1
22.2
4.7
3.0
15.3
6.2
0.7
1.5
1.7
0.9
1.4
0.5
0.6
0.7
3.2
1.3
2.0
1.5
1.1
3.5
3.1
1.6
3.2
2.6
0.7
2.8
1.7
1.9
2.8
1.1
0.2
0.1
0.3
1.0
1.0
2.4
0.6
1.1
0.2
0.2
0.1
0.1
0.1
0.1
0.2
0.2
0.7
0.2
0.2
0.2
0.0
0.2
0.1
0.3
0.5
0.3
0.4
0.3
0.2
0.2
0.2
0.2
0.3
0.1
0.1
0.2
0.3
0.3
0.2
0.2
0.7
0.3
0.3
0.3
0.2
0.4
0.6
0.3
0.2
0.2
0.2
0.2
0.06
0.11
0.07
0.08
0.08
0.06
0.07
0.10
0.16
0.14
0.11
0.12
0.07
0.08
0.20
0.13
0.18
0.09
0.16
0.15
0.19
0.34
0.24
0.21
0.26
0.78
0.26
0.09
0.43
0.15
0.77
0.38
0.35
0.21
0.29
0.09
0.04
0.06
0.13
0.36
0.28
0.31
1.36
0.16
0.02
0.03
0.04
0.04
0.03
0.06
0.04
0.05
0.05
0.03
0.03
0.06
0.05
0.02
0.05
0.04
0.04
0.03
0.05
0.04
0.06
0.03
0.06
0.03
0.04
0.05
0.05
0.03
0.05
0.01
0.02
0.04
0.03
0.04
0.03
0.02
0.03
0.04
0.05
0.08
0.06
0.08
0.06
Ts
Tomkins
(0.6 GPa)
516
517
501
507
517
526
505
518
498
523
500
487
493
521
510
515
514
523
521
512
508
490
504
495
525
494
494
505
495
512
518
498
519
515
503
511
504
522
516
520
502
549
504
505
517
508
518
504
516
489
523
513
508
511
508
509
507
510
492
509
508
496
510
506
503
515
514
521
517
520
522
502
502
500
497
487
507
508
481
502
499
492
503
500
496
511
531
Ts
Tomkins
(1.2 GPa)
539
540
524
530
540
549
527
540
520
546
522
509
515
544
532
537
537
546
543
535
530
512
526
517
548
516
516
527
517
534
540
520
541
537
525
534
526
545
539
543
524
573
527
528
540
530
541
526
538
511
546
535
530
533
530
531
529
532
513
532
530
518
533
528
526
537
537
544
539
542
545
524
524
522
519
509
530
530
503
524
521
514
525
522
518
533
553
Ts F&W
Qtzbearing
Ts F&W
Qtz-free Ts F&W
(asio2-0.5) a(SiO2)=1
485
525
486
526
471
510
477
516
486
526
494
535
475
514
487
527
468
506
491
532
470
508
458
495
464
501
489
530
479
519
484
524
483
523
492
532
489
530
481
521
477
516
461
499
474
513
466
504
493
534
465
503
465
503
475
514
466
504
481
520
487
527
468
506
487
527
483
523
473
512
480
520
474
513
491
531
485
525
489
529
472
510
515
559
474
513
475
514
486
526
477
517
487
527
473
512
484
524
460
497
491
532
482
521
478
517
480
519
477
516
478
518
476
516
479
518
462
500
479
518
478
517
466
504
479
519
476
515
473
512
483
523
483
523
490
530
485
525
488
529
490
531
472
511
472
511
470
509
467
506
458
495
477
516
477
516
453
490
472
511
469
508
463
501
473
512
470
508
466
504
480
520
498
540
Table A7.1.Trace element concentration and temperature measurements for metasomatic
samples from Syros (continued)
216
Appendix A8
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SY503-1
SY503-2
SY503-3
SY503-4
SY503-5
SY503-6
SY503-7
SY503-8
SY503-9
SY503-10
SY503-11
SY503-12
SY503-13
SY503-14
SY503-15
SY503-16
SY503-17
SY503-18
SY503-19
SY503-20
SY503-21
SY503-22
SY503-23
SY503-24
SY503-25
SY503-26
SY503-27
SY503-28
SY503-29
SY503-30
SY503-31
SY503-32
SY503-33
SY503-34
SY503-35
SY503-36
SY503-37
SY503-38
SY503-39
SY503-40
SY503-41
SY503-42
SY503-43
SY503-44
SY503-45
SY503-46
SY503-47
SY503-48
SY503-49
SY503-50
SY503-51
SY503-52
SY503-53
SY503-54
SY503-55
SY503-56
SY503-57
SY503-58
SY503-59
SY503-60
SY503-61
SY503-62
SY503-63
SY503-64
SY535-1
SY535-2
SY535-3
SY535-4
SY535-5
SY535-6
SY535-7
SY535-8
SY535-9
SY535-10
SY535-11
SY535-12
SY535-13
SY535-14
SY535-15
0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.01
0.86
0.01
0.01
0.00
0.01
0.00
0.00
0.91
0.00
0.00
0.00
0.00
0.01
0.02
0.01
0.00
0.00
0.01
0.00
0.02
0.00
0.01
0.02
0.01
0.00
0.05
0.00
0.00
0.00
0.01
0.03
0.02
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.00
0.03
0.00
0.01
0.97
0.22
0.01
0.01
0.01
0.04
0.02
0.00
0.01
0.01
0.07
0.03
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.09
0.01
0.04
0.00
0.01
0.01
0.01
0.02
0.01
0.83
0.01
0.01
0.01
0.01
0.01
0.01
0.05
0.01
0.01
0.00
0.01
0.02
0.01
0.01
0.12
0.02
0.01
0.28
0.01
0.01
0.01
0.11
0.05
0.01
0.02
0.02
0.01
0.01
0.01
0.01
0.00
0.01
0.01
0.01
0.04
0.01
0.01
0.01
0.01
0.00
0.01
0.02
0.10
0.00
0.01
0.01
0.03
0.01
0.01
1.17
0.58
0.00
0.15
0.15
0.13
0.00
0.14
0.12
0.12
1.65
0.10
0.12
0.23
0.17
0.00
0.25
0.00
0.13
0.18
0.28
0.26
0.30
0.31
0.29
0.15
0.00
0.14
0.15
4.09
0.14
0.12
0.00
0.10
0.00
0.00
0.00
0.00
0.11
0.26
0.00
0.00
0.12
0.00
0.40
0.15
0.19
0.49
0.00
0.23
0.00
0.54
0.26
0.00
0.17
0.09
0.00
0.00
0.00
0.00
0.00
0.14
0.11
0.11
0.15
0.00
0.20
0.22
0.17
0.00
0.18
0.23
0.73
0.10
0.25
0.00
0.12
0.00
0.00
2.67
1.21
439
3380
2720
2600
3350
1840
2620
2340
3020
1340
2340
2100
3960
213
3260
3530
2370
1790
130
2200
1810
1560
2040
881
471
2120
1620
1380
2240
1920
3360
338
3160
2340
3190
1620
1440
2730
3510
1270
1110
2410
1130
1820
2410
1320
966
2430
2850
674
1930
968
2360
2140
2490
2880
2990
2360
756
2940
1470
1220
3410
2320
567
3220
995
2180
2360
1160
1410
2320
2410
937
906
1180
628
1290
1490
1170
0
52
2
2
4
0
2
2
438
2
6
3
300
4
14
0
103
9
6
1490
0
36
4
864
37
13
66
2
2470
69
937
0
0
0
44
132
48
0
3
205
42
95
73
0
2080
2790
0
343
813
293
1550
5
61
0
25
0
0
2810
3
1020
550
2
1
4520
11
341
184
13
0
216
3
0
2190
8480
5
0
5
1450
76
52
75
69
44
43
57
77
40
39
43
53
69
24
95
61
34
34
80
59
32
47
58
53
31
63
28
47
58
43
52
20
56
61
57
44
21
55
61
82
67
54
21
44
58
39
52
55
34
24
55
32
58
49
41
52
50
56
58
50
70
61
54
57
71
42
55
56
58
80
64
64
51
40
56
69
61
35
38
1810
59
44
87
59
99
93
248
114
5200
68
119
89
479
64
97
170
199
117
83
1960
110
202
320
204
901
122
91
141
252
32
126
53
136
94
88
317
71
55
314
47
150
4530
84
59
2340
281
50
35
1380
28
283
68
66
42
41
68
69
193
56
436
496
28
144
772
34
402
53
46
43
51
79
76
395
1060
181
185
180
2200
0.0
2.2
4.2
2.1
3.0
3.5
1.5
4.5
1.5
1.0
1.4
1.7
3.2
1.3
5.8
2.0
1.8
26.3
7.6
0.0
0.0
2.0
1.8
4.2
4.5
1.8
1.5
5.1
2.4
7.0
2.4
11.7
2.3
4.5
1.8
0.6
1.9
4.3
1.6
4.7
5.9
3.8
0.0
3.8
2.1
0.0
15.4
2.9
1.6
0.0
3.0
0.0
2.3
1.0
4.4
0.0
2.2
2.6
20.9
1.6
2.4
6.8
1.4
2.9
0.8
2.5
6.5
2.7
1.2
1.3
3.0
0.7
1.2
0.0
0.0
8.0
0.0
0.0
0.0
21.6
47.1
16.9
10.8
9.8
7.8
16.1
7.3
38.5
20.1
9.3
12.7
12.0
19.6
9.5
14.0
18.7
61.7
6.8
7.8
79.7
17.2
26.5
29.8
3.7
66.6
31.2
13.1
17.5
181.0
7.5
6.6
10.9
31.4
18.2
5.7
183.0
21.1
26.6
5.8
2.1
39.0
25.0
7.0
10.0
80.1
69.6
4.7
6.4
96.1
3.7
22.9
13.4
5.3
9.8
14.3
11.7
12.8
24.7
8.8
23.5
28.1
14.1
9.9
40.1
12.3
96.4
6.9
8.9
9.1
9.6
4.9
4.1
17.5
38.9
10.4
12.3
7.9
78.8
0.0
2.4
1.1
0.3
1.0
0.5
0.4
0.4
0.7
9.5
0.8
0.4
0.7
46.9
3.4
0.0
0.4
12.2
147.0
0.5
2.7
0.0
0.0
31.0
26.0
14.5
107.0
1.6
2.2
1110.0
3.1
137.0
0.0
0.0
0.0
0.3
30.1
5.9
0.4
0.7
1.4
1.4
7.1
2.1
0.5
8.2
263.0
0.7
1.6
7.1
2.4
47.6
0.2
0.4
0.0
3.1
0.7
0.5
16.2
0.6
0.2
0.4
0.2
0.3
11.2
1.9
7.5
13.3
0.0
0.2
7.8
0.3
1.2
1.0
3.9
21.6
9.6
0.6
5.2
7.0
2.7
3.5
3.8
2.2
2.4
2.9
3.9
4.8
1.8
2.5
3.0
3.3
1.4
3.5
3.5
2.4
2.5
3.3
2.8
1.8
2.7
3.1
3.7
3.7
7.0
2.0
3.0
2.7
2.9
3.1
1.2
4.0
2.7
2.9
2.7
1.3
3.4
2.6
5.5
3.0
3.3
1.1
2.8
3.0
2.2
3.9
2.7
2.5
2.4
2.7
1.7
2.6
3.1
1.9
2.5
3.3
2.5
3.0
2.7
3.5
2.3
3.1
3.5
5.7
3.1
4.2
2.7
3.4
5.5
3.3
3.4
3.0
1.8
3.6
4.0
4.8
3.3
2.6
93.7
3.6
2.7
7.2
4.9
5.6
5.7
12.2
6.7
197.0
4.2
7.7
6.6
36.0
4.0
5.8
8.6
13.1
2.9
5.5
129.0
7.5
10.3
20.5
22.1
47.6
8.6
4.9
10.4
14.6
2.5
8.3
3.6
11.5
7.6
5.0
22.9
4.5
3.6
20.0
3.9
12.1
170.0
6.2
4.2
148.0
15.5
4.3
2.2
108.0
2.2
19.0
5.1
4.3
2.3
2.0
4.7
5.5
9.3
4.0
26.3
34.8
1.7
10.2
50.9
1.8
44.4
4.3
4.9
2.3
4.1
5.0
6.1
18.9
62.7
11.9
7.0
8.0
147.0
6.8
242.0
1.5
10.1
2.0
0.6
1.1
0.9
13.8
207.0
20.9
0.5
46.3
37.7
3.4
1.7
3.9
19.2
155.0
0.5
457.0
0.0
0.6
475.0
931.0
1690.0
415.0
6.4
5.1
4620.0
16.6
28.9
0.6
2.7
2.0
8.4
168.0
4.4
0.5
2.0
1.7
2.7
309.0
5.2
8.5
128.0
2480.0
0.9
0.5
15.7
2.2
121.0
0.5
1.4
0.0
22.3
0.0
1.1
21.6
1.0
4.2
3.8
10.8
1.7
64.9
55.7
50.1
7.1
0.6
1.7
98.6
3.7
0.7
23.9
10.8
1.9
43.9
11.4
143.0
0.13
0.08
0.26
0.03
0.18
0.00
0.16
0.00
0.11
0.00
0.09
0.03
0.16
0.08
0.00
0.00
0.23
0.42
0.00
0.11
0.09
0.00
0.00
0.17
0.00
0.24
0.22
0.00
0.00
6.90
0.06
0.30
0.00
0.00
0.00
0.00
0.45
0.41
0.11
0.00
0.00
0.07
0.51
0.00
0.00
0.47
0.13
0.04
0.00
4.99
0.00
3.83
0.08
0.00
0.00
0.15
0.16
0.03
0.35
0.07
0.00
0.00
0.18
0.24
0.00
0.07
0.17
0.07
0.07
0.00
0.30
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.23
Ts
Ts
Ts
Ts
Ts F&W Ts F&W
Tomkins Tomkins Tomkins Tomkins
a(SiO2)=1 a(SiO2)=0.5
(0.6 GPa) (1.2 GPa) (1.5 GPa) (2.0 GPa)
536
559
570
589
545
503
512
534
545
564
521
481
535
558
569
588
544
502
530
553
564
583
539
497
503
525
536
554
511
473
501
523
534
552
509
471
518
540
552
570
527
486
536
559
571
590
545
503
497
519
530
548
506
467
496
517
528
547
504
466
502
524
535
553
510
471
513
536
547
565
522
482
529
552
563
582
538
497
469
491
501
519
477
442
550
573
585
605
559
516
522
545
556
575
531
490
488
510
521
539
496
459
489
510
521
539
497
459
539
562
574
593
548
506
520
542
554
573
529
488
484
506
516
534
492
455
507
529
540
559
515
476
518
541
552
571
527
487
513
536
547
565
522
482
483
505
515
533
491
454
524
547
558
577
533
492
478
499
510
528
486
449
506
528
540
558
515
476
518
541
552
571
527
487
501
523
534
552
509
471
512
534
546
564
521
481
460
481
491
509
468
433
517
540
551
570
526
486
522
545
556
575
531
490
518
540
552
570
527
486
503
525
536
555
512
473
461
482
493
510
469
434
515
538
549
568
524
484
522
545
556
575
531
490
540
563
575
594
549
507
528
551
562
581
537
495
514
537
548
566
523
483
463
484
494
512
470
435
502
524
535
554
511
472
519
542
553
572
528
488
495
517
528
546
504
466
512
534
545
564
521
481
516
538
550
568
525
484
488
510
521
539
496
459
468
490
500
518
476
441
516
538
549
568
525
484
485
506
517
535
493
456
519
542
553
572
528
488
508
531
542
560
517
478
498
520
531
549
506
468
512
534
545
564
520
481
510
532
544
562
519
479
517
539
551
569
526
485
518
541
552
571
527
487
510
533
544
562
519
479
530
553
564
583
539
498
522
545
556
575
531
490
515
537
548
567
523
483
517
540
551
570
526
486
531
554
566
585
540
499
500
522
533
551
509
470
516
538
550
568
525
484
517
539
550
569
525
485
519
542
553
572
528
488
539
562
574
593
548
506
524
547
558
577
533
492
524
547
559
577
533
492
512
534
545
564
520
481
497
519
530
549
506
467
516
539
550
569
525
485
529
552
564
583
539
497
522
545
556
575
531
490
490
512
523
541
498
461
494
516
527
545
503
465
Table A8.1.Trace element composition and temperature measurements for detrital rutiles
from Syros (sampling and data analysis were done by Jeanette Taylor during her MSc at the
University of Bristol)
217
Appendix A8
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SY535-16
SY535-17
SY535-18
SY535-19
SY535-20
SY535-21
SY535-22
SY535-23
SY535-24
SY535-25
SY535-26
SY535-27
SY535-28
SY535-29
SY535-30
SY535-31
SY535-32
SY535-33
SY535-34
SY535-35
SY535-36
SY535-37
SY535-38
SY535-39
SY535-40
SY535-41
SY535-42
SY535-43
SY535-44
SY535-45
SY535-46
SY535-47
SY535-48
SY535-49
SY535-50
SY535-51
SY535-52
SY535-53
SY535-54
SY525-1
SY525-2
SY525-3
SY525-4
SY525-5
SY525-6
SY525-7
SY525-8
SY525-9
SY525-10
SY525-11
SY525-12
SY525-13
SY525-14
SY525-15
SY525-16
SY525-17
SY525-18
SY525-19
SY525-20
SY525-21
SY525-22
SY525-23
SY525-24
SY525-25
SY525-26
SY525-27
SY525-28
SY525-29
SY525-30
SY525-31
SY525-32
SY525-33
SY525-34
SY525-35
SY525-36
SY525-37
SY525-38
SY525-39
SY525-40
SY525-41
0.00
0.00
0.02
0.00
0.01
0.00
0.00
0.00
0.11
0.02
0.01
0.01
0.01
0.14
0.02
0.00
0.02
0.01
0.00
0.05
0.01
0.00
0.00
0.00
0.00
0.01
0.01
0.05
0.29
0.50
0.01
0.00
0.00
0.03
0.02
0.00
0.00
3.78
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.01
0.00
0.00
0.33
0.00
0.00
0.01
0.00
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.06
0.01
0.02
0.01
0.04
0.00
0.37
0.04
0.02
0.02
0.02
1.12
0.10
0.01
0.06
0.02
0.00
0.21
0.01
0.01
0.00
0.02
0.01
0.45
0.03
0.21
0.11
0.91
0.00
0.01
0.01
0.10
0.01
0.00
0.00
3.34
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.11
0.00
0.01
0.00
0.01
0.01
0.01
0.01
0.01
0.00
0.05
0.01
0.01
0.00
0.00
0.01
0.01
0.53
0.00
0.01
0.01
0.00
0.01
0.01
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.31
0.00
0.00
0.09
0.14
0.00
0.46
0.00
0.00
0.12
0.00
2.65
0.58
0.00
0.00
0.17
0.10
0.42
0.26
0.16
0.00
0.00
0.00
14.60
0.76
0.34
0.76
1.46
0.00
0.22
0.12
0.28
0.00
0.00
0.00
5.25
0.00
0.00
0.00
0.00
0.16
0.00
0.18
0.22
0.00
0.16
0.00
0.00
0.00
0.00
0.16
0.15
0.00
0.00
0.00
0.00
0.00
0.00
0.14
0.13
2.22
0.17
0.14
0.00
0.16
0.00
0.00
0.08
0.00
0.00
0.00
0.00
0.00
0.00
0.15
0.13
0.14
0.00
2100
1040
1370
1450
1520
1850
1530
2860
1480
2400
1130
2230
2110
1280
1260
1430
1550
1720
1570
1250
2050
3850
2420
1210
1030
1750
1170
1390
1130
1320
2590
1470
1780
1770
1360
3150
2700
940
2820
2610
899
1280
953
1900
913
725
1060
1230
1290
2890
2590
1040
1170
2490
1080
1270
2510
1450
844
1410
1860
1170
862
863
1030
2290
1720
1150
657
826
1510
793
1520
1040
1450
1090
1520
2170
1090
1040
37
1400
1270
1510
1120
0
3630
5
1090
564
1260
0
0
2540
2420
0
1210
35
38
2720
0
8
4
6070
2
0
4
986
1490
2650
461
687
3
2700
10600
32
9
9060
5
298
684
658
498
5
87
944
1050
1030
633
108
3
952
50
9
777
1680
164
394
478
474
78
1240
268
344
2270
18
15
590
3310
3
17
52
535
501
732
558
201
20
108
4580
24
47
36
37
34
82
64
67
37
41
22
69
24
34
39
76
34
73
63
39
80
51
65
59
95
41
48
33
65
35
62
64
57
51
52
48
91
69
77
65
58
90
84
76
60
61
66
60
53
49
43
52
97
59
59
176
92
64
43
74
67
116
42
78
68
86
62
77
115
45
65
55
93
51
90
38
58
52
48
71
98
1140
3100
93
2260
48
2530
64
2340
52
1730
155
110
2550
2040
96
2510
91
65
2320
60
110
108
2000
136
76
73
2260
225
2120
82
184
187
1800
1400
22
169
136
97
30
343
428
370
115
125
918
906
595
612
83
82
284
383
76
150
2220
210
490
484
392
174
1450
624
348
231
116
414
368
76
124
166
281
555
299
375
294
118
66
175
202
0.9
0.0
0.0
0.7
0.0
4.6
0.0
3.0
0.0
0.0
0.0
2.8
0.0
0.0
0.0
2.3
0.0
1.5
2.9
0.0
14.3
4.3
4.8
0.0
0.0
1.6
2.2
0.0
1.2
0.0
7.2
0.5
10.4
0.0
0.0
2.2
8.1
1.3
1.4
1.9
2.6
1.4
6.9
1.4
10.4
5.3
0.0
1.4
5.3
2.7
0.0
9.1
5.1
5.9
14.4
0.6
2.9
2.9
9.0
3.7
8.9
5.5
8.7
5.6
6.3
3.1
46.2
0.0
9.9
7.1
0.0
4.0
11.5
2.4
1.3
12.8
0.5
1.3
30.8
1.3
3.3
36.2
74.7
3.6
97.5
4.8
77.3
12.7
87.4
4.6
81.0
10.3
25.6
62.3
75.7
5.8
79.7
8.6
7.7
57.8
11.9
15.0
9.8
64.5
10.4
12.0
6.5
69.5
129.0
68.2
8.1
13.0
7.6
50.0
63.0
3.9
24.3
48.2
6.0
4.1
22.0
20.7
14.6
8.3
6.6
15.4
22.1
25.5
32.9
9.2
17.5
94.4
20.8
10.1
12.8
79.9
7.4
35.3
29.6
37.4
51.3
128.0
22.7
23.0
16.0
16.0
42.7
18.7
94.8
23.7
9.4
92.0
43.6
10.4
56.6
13.2
22.1
8.1
15.2
38.8
8.6
2.7
8.5
0.9
6.0
0.6
1.2
0.3
9.2
2.3
5.7
0.9
10.5
8.3
10.4
1.1
5.8
0.0
1.1
1.3
15.5
10.4
1.2
2.0
0.3
1.4
0.5
4.7
2.1
6.7
12.0
1.3
29.8
2.9
0.0
0.8
2.0
1.0
0.3
0.2
0.6
0.6
0.5
0.2
7.6
3.1
2.9
1.7
1.1
0.4
1.2
5.5
2.6
0.4
11.9
7.2
0.6
0.9
18.8
0.4
3.9
3.3
6.9
1.6
25.5
0.0
9.2
0.9
4.2
7.4
0.0
14.1
0.4
2.4
0.4
9.7
0.3
0.7
16.3
0.7
1.6
3.9
2.1
2.5
1.7
3.9
3.3
2.9
2.2
2.4
1.4
3.4
1.5
1.8
2.3
4.3
2.1
3.2
2.4
2.3
3.5
2.6
3.8
3.4
4.3
3.0
2.9
2.0
3.3
2.2
3.9
3.5
4.6
3.4
1.7
2.5
4.9
6.1
3.6
3.4
3.1
4.0
3.4
5.4
3.2
3.0
3.6
3.3
3.5
3.9
2.4
2.4
6.8
5.0
3.0
6.4
5.8
3.3
2.7
3.3
3.5
6.1
2.4
4.5
3.5
3.5
4.3
3.7
6.2
3.1
3.4
4.0
3.8
2.5
3.7
2.8
3.5
2.3
2.9
5.8
7.3
59.2
188.0
6.5
140.0
4.4
182.0
4.2
141.0
1.6
123.0
10.3
5.6
153.0
128.0
7.1
144.0
6.1
5.4
140.0
4.8
8.2
6.5
159.0
5.3
4.9
6.6
129.0
10.3
120.0
5.9
11.1
11.1
109.0
77.8
1.8
7.9
7.9
6.0
2.4
20.9
26.3
23.6
7.1
7.7
50.3
42.3
30.1
37.8
5.0
6.2
19.4
20.9
5.7
7.8
125.0
12.7
26.6
25.0
24.7
11.4
132.0
40.6
22.0
11.7
6.6
36.7
19.3
4.2
6.5
9.6
12.0
32.4
14.1
24.0
15.7
9.3
5.1
9.5
10.8
42.7
1160.0
386.0
18.2
166.0
0.7
543.0
0.6
337.0
84.0
221.0
2.2
42.7
204.0
206.0
3.2
293.0
128.0
2.2
66.4
1.7
16.9
0.6
331.0
4.2
10.9
0.4
188.0
8.4
90.0
25.1
2.9
4.8
445.0
303.0
29.5
22.4
138.0
2.0
0.4
2.6
10.5
1.5
0.0
4.3
32.4
23.1
15.7
4.5
1.4
3.4
51.6
115.0
0.9
3.2
304.0
4.4
1.2
6.6
1.4
5.8
15.7
2.2
2.7
3.8
4.0
2.2
26.2
6.0
1.2
31.5
0.3
3.1
26.5
1.2
3.3
0.4
0.3
3.3
4.1
0.00
0.00
0.09
0.00
0.50
0.02
0.06
0.00
0.10
0.00
0.18
0.00
0.00
0.12
0.05
0.00
0.09
0.00
0.00
0.40
0.00
0.06
0.03
0.00
0.00
0.00
0.00
0.13
0.17
0.08
0.00
0.00
0.00
0.10
0.27
0.00
0.44
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.48
0.04
0.05
0.00
1.35
0.06
0.08
0.00
0.00
0.00
0.07
0.00
0.00
0.07
0.05
0.00
0.00
0.00
0.03
0.00
0.12
0.03
0.00
0.03
0.00
0.00
0.00
0.03
0.18
Ts
Ts
Ts
Ts
Ts F&W
Ts F&W
Tomkins Tomkins Tomkins Tomkins
a(SiO2)=1 a(SiO2)=0.5
(0.6 GPa) (1.2 GPa) (1.5 GPa) (2.0 GPa)
468
489
499
517
476
440
506
528
539
557
514
475
491
513
524
542
500
462
493
515
526
544
502
464
487
509
520
538
495
458
541
564
575
595
550
507
525
548
559
578
534
493
527
550
561
580
536
495
493
515
525
544
501
463
498
520
531
549
507
468
464
485
496
513
472
437
530
552
564
583
539
497
468
489
500
518
476
441
488
510
521
539
496
459
496
518
529
547
504
466
536
559
570
589
545
503
487
509
520
538
495
458
533
556
567
586
542
500
524
547
558
577
533
492
496
517
528
547
504
466
539
562
574
593
548
506
511
533
544
563
519
480
526
548
560
579
535
493
520
543
554
573
529
488
550
573
585
604
559
515
498
520
531
550
507
468
508
530
541
560
516
477
486
508
519
537
495
457
525
548
560
578
534
493
489
511
522
540
498
460
523
546
557
576
532
491
525
548
559
578
534
493
517
540
551
570
526
486
512
534
545
564
520
480
512
534
545
564
521
481
508
530
541
560
517
477
547
571
582
602
557
513
530
553
564
583
539
497
536
559
571
590
545
503
526
548
560
579
535
494
519
541
553
571
528
487
546
569
581
600
555
512
542
565
577
596
551
508
535
558
570
589
545
502
521
544
555
574
530
489
521
544
555
574
530
490
527
549
561
580
536
494
520
543
554
573
529
489
513
536
547
565
522
482
508
531
542
560
517
478
501
523
534
552
509
470
512
534
545
564
521
481
551
574
586
606
560
517
520
542
553
572
528
488
520
542
554
572
529
488
592
617
629
650
602
554
547
571
583
602
557
513
525
548
559
578
534
493
501
523
534
553
510
471
534
557
569
588
543
501
528
551
562
581
537
495
563
587
599
619
573
528
500
522
533
552
509
470
537
560
572
591
546
504
528
551
563
582
537
496
544
567
579
598
553
510
523
545
557
575
532
491
536
559
571
590
545
503
562
586
598
618
572
527
504
526
537
555
512
473
526
548
560
579
535
494
515
538
549
568
524
484
548
572
583
603
558
514
511
534
545
564
520
480
547
570
582
601
556
513
493
515
526
544
502
464
519
541
553
571
528
487
512
535
546
564
521
481
507
529
540
559
516
476
531
554
566
585
540
499
Table A8.1.Trace element composition and temperature measurements for detrital rutiles
from Syros (continued)
218
Appendix A8
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SY525-42
SY525-43
SY525-44
SY525-45
SY525-46
SY525-47
SY525-48
SY525-49
SY525-50
SY525-51
SY525-52
SY525-53
SY526-1
SY526-2
SY526-3
SY526-4
SY526-5
SY526-6
SY526-7
SY526-8
SY526-9
SY526-10
SY526-11
SY526-12
SY526-13
SY526-14
SY526-15
SY526-16
SY526-17
SY526-18
SY526-19
SY526-20
SY526-21
SY526-22
SY526-23
SY526-24
SY526-25
SY526-26
SY526-27
SY526-28
SY526-29
SY526-30
SY526-31
SY526-32
SY526-33
SY526-34
SY526-35
SY526-36
SY526-37
SY526-38
SY526-39
SY526-40
SY526-41
SY526-42
SY526-43
SY526-44
SY526-45
SY526-46
SY526-47
SY526-48
SY526-49
SY526-50
SY526-51
SY526-52
SY526-53
SY526-54
SY526-55
SY526-56
SY526-57
SY506-1
SY506-2
SY506-3
SY506-4
SY506-5
SY506-6
SY506-7
SY506-8
SY506-9
SY506-10
SY506-11
SY506-12
SY506-13
SY506-14
SY506-15
SY506-16
SY506-17
SY506-18
SY506-19
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.01
0.14
0.01
0.01
0.00
0.02
0.01
0.01
0.00
0.00
0.01
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.01
0.04
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.00
0.00
0.01
0.04
0.05
0.00
0.03
0.00
0.01
0.03
0.01
0.21
0.00
0.01
0.00
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.01
0.01
0.00
0.00
0.01
0.01
0.00
0.01
0.03
0.01
0.01
0.01
0.00
0.00
0.10
0.03
0.04
0.01
0.01
0.01
0.00
0.00
0.00
0.02
0.02
0.01
0.01
0.04
0.02
0.03
0.01
0.01
0.34
0.01
0.00
0.01
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.15
0.01
0.02
0.01
0.01
0.01
0.01
0.04
0.25
0.08
0.02
0.03
0.00
0.00
0.00
0.14
0.39
0.01
0.08
0.04
0.04
0.13
0.01
0.58
0.01
0.22
0.00
0.00
0.00
0.12
0.00
0.00
0.00
0.00
0.00
0.26
0.00
0.12
0.14
0.00
0.00
0.00
0.09
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.21
0.00
0.00
0.00
0.19
0.00
1.00
0.00
0.00
0.42
0.00
0.00
0.00
0.00
0.00
0.18
0.29
0.00
0.00
0.00
0.16
0.17
0.13
0.14
0.80
0.30
0.00
0.14
0.00
0.11
0.10
0.12
0.00
0.00
0.16
0.15
0.09
0.80
0.00
0.11
0.09
0.13
0.00
0.19
1.45
0.59
0.56
0.12
0.16
0.14
0.25
0.66
0.40
0.80
0.16
2.05
0.10
0.98
0.40
0.77
0.91
0.13
1180
2300
1240
1400
1320
826
1460
3940
972
673
1430
960
558
971
683
1420
2020
642
951
2490
2870
685
470
476
542
681
1300
607
721
844
3230
510
860
548
2830
847
564
1180
554
1770
2230
911
693
680
735
936
1350
1340
806
626
757
472
1160
796
923
1980
1800
754
641
412
803
834
661
739
615
929
1160
630
491
3310
1940
1020
1530
1830
1600
2090
1830
2260
1460
1520
988
1350
877
2000
1500
1590
1360
1290
1340
60
264
1070
734
2720
7
281
1190
219
5
768
136
8300
4420
61
48
7600
213
106
10
790
1190
2440
891
320
3980
751
186
2120
5
520
1850
687
2
1590
963
133
697
2060
166
1300
1370
176
2640
638
64
960
784
4330
520
281
3470
992
5960
3
5710
1640
443
447
300
756
609
375
298
1080
736
2160
4780
14
19
2
1670
6450
950
1
1150
6
1690
598
1
1510
4850
7
2130
38
2940
2
53
57
44
64
71
75
52
95
56
75
75
53
92
59
67
68
42
57
76
270
113
34
98
63
44
60
52
73
63
76
65
54
50
72
76
77
54
58
68
99
78
85
69
44
81
60
25
54
79
88
44
64
59
66
94
57
97
89
75
48
71
58
73
79
58
54
59
60
89
53
48
21
39
62
47
83
55
98
39
33
52
35
62
48
37
76
37
44
56
74
72
530
165
908
238
71
972
648
147
333
776
1230
721
139
90
228
637
32
239
483
335
940
315
425
1340
290
411
324
112
321
347
2030
86
334
506
382
302
58
40
648
489
636
508
409
7580
620
317
703
775
367
259
825
78
111
105
849
588
259
346
260
310
1090
549
337
504
725
1220
21
42
197
2040
2740
2530
107
98
54
2360
2210
80
2080
1620
108
2490
157
1910
168
3.7
1.9
4.4
3.0
3.1
12.1
32.3
4.0
4.1
12.2
10.8
0.8
3.7
0.6
3.3
4.1
0.0
3.6
7.2
9.2
3.7
6.2
7.5
7.1
4.7
13.6
0.0
6.1
8.7
5.8
4.2
3.4
6.0
6.3
2.6
13.0
6.6
10.5
6.6
4.6
2.7
1.3
2.2
4.5
3.7
0.0
0.5
0.0
6.6
5.0
8.5
12.1
5.0
3.9
4.1
6.8
4.4
2.7
7.7
5.7
8.1
6.5
6.3
4.5
10.8
10.7
0.7
2.4
3.8
4.4
2.4
1.1
2.2
0.5
0.4
0.9
0.8
6.3
0.7
0.4
1.5
1.0
0.5
1.3
0.6
2.4
0.5
2.4
14.2
9.2
3.8
31.6
45.3
14.9
28.8
21.4
22.2
22.7
23.3
12.6
20.3
22.1
15.0
13.9
10.7
24.6
32.1
17.1
6.4
19.2
12.3
17.3
12.4
17.6
80.0
11.4
11.7
27.4
47.2
16.6
12.5
52.8
14.9
29.6
11.0
18.3
13.2
32.4
3.6
17.6
13.6
17.7
16.5
17.6
89.2
26.1
20.2
15.6
17.2
12.9
45.9
20.5
14.1
19.8
22.5
23.1
22.5
11.2
15.7
15.1
15.6
14.5
14.8
23.0
20.2
17.7
14.5
6.2
5.0
9.0
88.4
77.7
68.0
3.9
6.0
5.9
69.1
77.7
8.0
81.7
47.8
5.5
80.5
10.5
85.8
11.5
21.3
0.2
5.4
1.4
0.8
7.1
10.2
0.0
3.8
4.3
2.8
0.6
1.4
0.7
2.1
0.7
3.1
1.4
1.1
5.8
3.3
29.5
6.9
3.4
11.8
16.9
1.2
6.4
7.3
2.0
1.9
11.9
9.7
5.1
0.0
33.3
11.5
8.9
10.5
7.0
2.6
0.6
1.5
6.2
1.5
0.0
307.0
0.7
28.5
2.5
8.2
6.5
0.5
3.0
6.5
5.8
6.5
2.2
6.6
9.6
10.1
20.6
9.4
3.8
10.1
9.0
0.5
3.4
1.6
0.3
1.1
16.6
12.7
6.6
10.8
0.7
0.4
10.0
6.6
7.9
0.2
8.9
1.1
0.3
8.3
0.8
5.5
29.3
1.9
3.0
2.3
3.5
3.5
5.0
3.9
4.6
4.9
3.6
3.9
2.4
6.5
3.1
2.9
3.8
2.9
2.5
3.1
8.9
4.8
2.4
3.5
3.4
2.7
3.6
3.3
3.3
2.9
3.0
3.9
3.1
2.9
5.6
3.9
4.6
2.6
2.6
3.3
4.1
3.7
3.8
2.9
2.4
3.8
3.0
1.9
2.9
3.9
6.0
2.2
3.0
2.6
4.0
2.7
4.0
3.3
5.8
3.2
2.4
3.2
3.1
3.3
3.7
3.1
2.2
2.9
3.9
3.7
1.9
2.6
1.4
2.2
4.0
2.7
4.0
2.5
9.5
2.3
2.2
2.5
2.3
3.2
2.3
1.9
2.9
2.4
2.8
3.8
4.9
3.2
38.6
11.5
36.7
12.5
3.7
63.2
45.6
10.1
14.4
67.3
68.3
29.1
10.0
6.4
13.6
37.1
1.9
16.6
31.1
21.4
41.5
19.5
22.4
70.9
19.4
22.1
14.7
7.1
22.6
22.1
181.0
5.7
17.5
27.8
26.4
19.5
2.2
2.5
51.4
23.6
38.6
33.4
31.2
393.0
27.7
19.7
51.8
42.1
21.6
20.1
64.6
4.1
4.9
5.4
47.6
37.5
19.7
22.8
17.4
17.6
42.0
28.1
13.3
24.7
47.8
42.4
1.6
3.7
11.8
118.0
169.0
179.0
3.3
5.5
3.7
145.0
131.0
6.1
126.0
90.3
8.9
131.0
9.5
129.0
9.7
157.0
1.2
2.0
19.8
1.5
17.8
3.8
0.5
20.9
3.2
5.0
15.4
13.2
56.4
8.5
4.0
2.9
8.0
3.1
11.3
4.5
4.9
1.2
7.8
3.1
5.2
105.0
4.5
1.2
8.0
4.0
2.6
6.3
98.5
0.6
4.8
3.8
3.3
3.7
10.7
21.0
55.2
2.5
4.8
6.5
2.0
3550.0
129.0
4.1
36.6
4.0
1.8
4.4
58.8
8.1
1.8
8.6
38.5
31.0
2.2
2.4
14.3
2.8
3.8
3.0
0.4
27.6
30.6
69.5
0.5
1.3
48.2
96.2
1380.0
735.0
216.0
1.5
0.9
216.0
224.0
0.4
135.0
72.7
161.0
470.0
50.8
78.3
2.6
0.69
0.00
0.00
0.00
0.00
0.00
0.09
0.00
0.00
0.00
0.09
0.00
0.00
0.04
0.00
0.00
0.00
0.21
0.00
0.00
0.96
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.23
0.19
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.00
5.44
0.30
0.62
0.08
0.00
0.51
0.00
0.21
0.09
0.02
0.00
0.00
0.00
1.16
0.00
2.51
0.01
4.66
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.73
0.00
0.05
0.07
0.13
0.02
0.03
0.03
0.04
0.14
0.10
0.08
0.02
0.29
0.08
0.15
0.19
0.23
0.17
0.02
Ts
Ts
Ts
Ts
Ts F&W
Ts F&W
Tomkins Tomkins Tomkins Tomkins
a(SiO2)=1 a(SiO2)=0.5
(0.6 GPa) (1.2 GPa) (1.5 GPa) (2.0 GPa)
514
536
547
566
522
482
518
540
551
570
526
486
503
525
536
554
511
473
524
547
558
577
533
492
531
554
565
584
540
498
535
558
570
589
544
502
513
535
546
565
521
481
550
573
585
604
559
516
516
539
550
569
525
485
535
558
569
588
544
502
535
558
569
589
544
502
513
536
547
565
522
482
548
571
583
603
557
514
520
542
553
572
528
488
528
551
562
581
537
495
529
551
563
582
538
496
500
522
533
551
509
470
518
540
552
570
527
486
535
558
570
589
545
502
624
650
662
684
635
583
561
585
597
617
571
526
488
510
521
539
497
459
552
575
587
607
561
517
524
547
558
577
533
492
502
524
535
554
511
472
521
543
555
574
530
489
512
535
546
565
521
481
533
556
568
587
542
501
523
546
558
576
532
491
536
559
570
590
545
503
526
549
560
579
535
494
515
537
549
567
524
484
510
532
543
562
518
479
532
555
566
585
541
499
536
559
570
589
545
503
536
559
571
590
545
503
515
537
549
567
524
484
519
542
553
572
528
488
529
552
563
582
538
496
553
576
588
607
562
518
537
560
572
591
546
504
543
566
578
597
552
509
529
552
564
583
538
497
503
525
536
555
512
473
540
563
574
594
549
506
521
543
555
573
529
489
470
491
502
520
478
442
515
537
549
567
524
484
538
561
572
592
547
505
545
568
580
599
554
511
502
524
536
554
511
472
525
547
559
578
533
492
519
542
553
572
528
488
526
549
561
580
535
494
549
573
584
604
559
515
517
540
551
570
526
486
551
575
586
606
560
517
546
569
580
600
555
512
534
557
569
588
543
501
507
529
541
559
516
477
532
555
566
585
541
499
518
541
552
571
527
487
533
556
568
587
542
501
538
561
573
592
547
505
518
541
552
571
527
487
514
537
548
567
523
483
519
542
553
572
528
488
521
543
555
573
530
489
545
569
580
600
555
511
513
536
547
566
522
482
508
530
541
560
517
477
462
483
493
511
469
435
496
518
529
547
504
466
523
546
557
576
532
491
507
529
540
559
515
476
541
564
576
595
550
507
516
538
550
568
525
484
552
575
587
607
561
518
496
518
529
547
505
466
486
507
518
536
494
457
512
534
546
564
521
481
490
512
523
541
498
461
523
545
557
576
532
491
507
530
541
559
516
477
492
514
525
543
500
462
536
559
570
589
545
503
492
514
525
543
501
463
502
524
536
554
511
472
Table A8.1.Trace element composition and temperature measurements for detrital rutiles
from Syros (continued)
219
Appendix A9
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
MK 541-1
MK 541-2
MK 541-3
MK 541-4
MK 541-5
MK 541-6
MK 541-7
MK 541-8
MK 541-9
MK 541-10
MK 541-11
MK 541-12
MK 541-13
MK 541-14
MK 541-15
MK 541-16
MK 541-17
MK 541-18
MK 541-19
MK 541-20
MK 541-21
MK 541-22
MK 30-1
MK 30-2
MK 30-3
MK 30-4
MK 30-5
MK 30-6
MK 30-7
MK 30-8
MK 30-9
MK 30-10
MK 30-11
MK 30-12
MK 30-13
MK 30-14
MK 30-15
MK 30-16
MK 30-17
MK 30-18
MK 30-19
MK 30-20
MK 30-21
MK 30-22
MK 30-23
MK 30-24
MK 51-1
MK 51-2
MK 51-3
MK 51-4
MK 51-5
MK 51-6
MK 51-7
MK 51-8
MK 51-9
MK 51-10
MK 51-11
MK 51-12
MK 51-13
MK 51-14
MK 35-1
MK 35-2
MK 35-3
MK 35-4
MK 35-5
MK 35-6
MK 35-7
MK 35-8
MK 35-9
MK 35-10
MK 35-11
MK 35-12
MK 35-13
MK 35-14
MK 197-1
MK 197-2
MK 197-3
MK 197-4
MK 197-5
0.001
0.001
0.002
0.001
0.001
0.003
0.002
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.007
0.004
0.006
0.004
0.008
0.006
0.005
0.004
0.001
0.001
0.001
0.002
0.002
0.001
0.002
0.001
0.001
0.001
0.024
0.012
0.002
0.004
0.004
0.003
0.003
0.004
0.004
0.004
0.003
0.006
0.006
0.004
0.001
0.004
0.001
0.001
0.000
0.001
0.012
0.002
0.001
0.001
0.000
0.004
0.001
0.000
0.008
0.003
0.100
0.011
0.010
0.002
0.005
0.006
0.002
0.006
0.006
0.011
0.013
0.012
0.001
0.001
0.001
0.001
0.001
0.012
0.016
0.023
0.012
0.015
0.028
0.028
0.015
0.015
0.012
0.012
0.009
0.009
0.018
0.015
0.027
0.017
0.013
0.018
0.118
0.028
0.021
0.022
0.014
0.023
0.021
0.020
0.022
0.014
0.020
0.020
0.010
0.056
0.026
0.017
0.029
0.035
0.004
0.025
0.009
0.013
0.022
0.018
0.009
0.057
0.021
0.024
0.039
0.024
0.023
0.022
0.027
0.043
0.021
0.024
0.017
0.018
0.029
0.023
0.021
0.015
0.011
0.023
0.036
0.009
0.012
0.012
0.011
0.012
0.012
0.015
0.011
0.013
0.024
0.021
0.022
0.014
0.029
0.013
0.041
0.050
0.049
0.074
0.042
0.059
0.057
0.033
0.043
0.027
0.039
0.041
0.032
0.038
0.219
0.124
0.259
0.367
0.215
0.299
0.195
0.186
0.053
0.068
0.033
0.064
0.053
0.042
0.031
0.036
0.057
0.026
0.098
0.049
0.042
0.040
0.167
0.148
0.128
0.221
0.231
0.212
0.171
0.251
0.261
0.208
0.043
0.050
0.041
0.073
0.044
0.062
0.058
0.054
0.037
0.045
0.070
0.045
0.053
0.037
0.343
0.109
4.720
0.268
0.184
0.129
0.116
0.237
0.099
0.267
0.389
0.439
0.447
0.475
0.073
0.112
0.096
0.084
0.066
871
897
882
854
936
889
902
844
917
863
880
859
899
879
882
900
953
887
903
922
811
906
1280
1380
1340
1320
1380
1290
1270
1430
1420
1370
1300
1310
1320
1180
1290
1430
1290
1360
1170
1320
1410
1430
1430
1110
1010
1080
1050
1030
851
933
783
828
742
732
794
721
769
809
451
356
312
396
381
357
365
362
308
304
275
311
309
272
1340
1320
1290
1330
1240
365
413
423
346
397
447
441
403
386
432
411
456
503
500
467
398
480
329
380
423
467
342
453
458
483
503
503
505
532
479
488
484
469
510
526
538
565
467
531
386
506
517
536
521
412
466
521
483
501
423
259
309
324
286
323
334
314
451
421
287
97
162
82
161
147
123
128
151
146
136
133
149
222
240
517
567
638
514
617
104
99
110
109
137
71
90
101
79
93
90
114
133
130
111
127
108
127
144
95
132
129
86
90
97
73
50
97
73
83
107
62
87
94
81
100
89
92
80
64
97
96
64
99
93
91
47
54
59
45
57
76
69
62
57
49
69
59
70
50
42
42
42
43
41
43
42
45
43
40
41
38
39
43
48
83
54
82
68
1660
2020
2030
1630
2030
1810
1920
2030
1820
2520
1860
2080
2010
2040
1810
2830
2050
2280
2160
2630
1960
2370
1570
1610
1580
1680
1610
1610
1590
1610
1570
1540
1590
1700
1650
1680
1400
1570
1480
1530
1720
1700
1560
1710
1900
1580
2000
1990
2050
1940
1990
2250
2230
2200
2140
2160
2120
2290
2320
2100
2480
2500
3070
2570
2420
2410
2330
2580
3050
2680
2870
2770
2710
2760
1790
1700
1730
1810
1830
2.4
2.7
2.3
3.1
2.5
1.1
1.8
2.4
2.6
2.9
3.0
2.9
2.7
2.2
2.8
2.4
3.4
2.8
3.3
3.2
2.0
2.9
0.7
1.1
0.8
0.9
1.3
1.2
1.1
0.7
1.1
0.4
0.7
0.9
1.1
1.2
1.1
1.4
1.7
1.5
2.3
1.9
1.1
3.3
2.8
1.7
0.4
0.8
0.8
0.4
0.5
1.3
0.8
0.6
0.6
0.6
0.8
1.0
0.9
0.8
0.7
0.5
5.8
2.4
2.5
0.9
2.8
2.1
0.6
2.1
3.0
1.9
5.0
6.8
0.7
0.7
0.6
0.9
1.0
43
45
42
44
51
52
51
43
39
43
39
48
50
49
52
53
59
52
52
50
60
48
89
88
90
93
95
87
97
83
95
91
76
82
84
91
82
92
81
91
94
92
95
101
98
96
120
125
124
113
103
119
128
105
113
109
100
119
116
111
165
145
226
202
194
163
208
224
183
203
182
212
225
222
55
59
53
58
57
1.7
1.7
1.9
1.8
1.1
1.8
1.2
2.7
1.7
3.8
2.6
1.1
1.2
1.7
1.1
1.9
1.7
3.3
1.9
2.5
1.2
1.7
0.2
0.3
0.4
0.5
0.9
0.3
0.5
0.4
0.2
0.4
0.2
0.2
0.3
0.2
0.9
0.6
0.7
1.3
1.9
1.4
1.2
1.4
0.8
1.1
8.1
8.2
9.0
7.5
12.0
10.9
9.0
11.5
8.8
8.5
11.7
9.2
10.6
8.0
1.4
1.6
1.2
0.7
0.9
1.4
1.1
1.0
1.6
0.9
1.4
1.9
2.3
3.3
3.2
9.1
2.8
8.8
6.5
4.3
4.4
4.7
4.1
5.7
4.8
4.7
4.2
3.5
2.9
4.0
4.8
6.2
5.8
5.8
5.8
6.3
5.9
7.6
2.1
6.3
3.1
4.8
4.4
5.2
4.5
3.1
4.7
4.3
4.3
5.2
3.9
4.4
4.1
4.8
4.9
2.9
4.5
4.4
3.5
4.8
5.0
4.1
4.5
3.8
4.6
2.6
3.3
3.4
2.8
2.9
3.6
3.8
3.2
2.9
3.8
3.2
3.0
3.9
3.2
2.0
2.6
3.8
1.8
3.2
2.2
2.0
1.8
2.7
2.2
1.9
2.0
2.8
2.6
3.2
4.5
2.8
4.0
3.7
107
240
127
70
132
126
201
107
86
170
124
133
141
143
120
203
135
142
144
169
131
133
105
105
106
119
103
108
109
111
103
103
95
108
116
111
95
102
114
116
116
107
115
119
155
107
134
129
123
119
96
142
147
134
142
161
141
154
158
143
230
214
382
211
168
179
164
179
291
204
291
248
198
227
99
98
98
107
107
126
125
131
120
147
149
131
121
123
132
153
140
127
133
150
150
159
133
138
125
150
143
111
112
120
121
136
118
137
100
126
142
86
93
103
110
74
103
106
132
89
108
122
107
149
115
212
217
296
214
207
207
205
177
229
216
168
246
222
213
163
151
178
190
157
153
166
205
153
162
201
218
159
175
48
52
47
45
49
3.7
1.5
1.2
1.6
0.6
0.9
1.1
1.9
1.4
7.2
4.0
0.6
2.4
1.5
2.8
3.7
0.5
2.0
2.5
0.4
2.5
2.6
1.1
1.4
2.1
0.8
0.8
1.9
1.7
0.9
2.0
0.6
1.9
4.0
1.2
3.6
1.4
1.0
0.9
0.6
1.3
4.4
0.9
0.9
1.1
0.8
1.4
1.5
1.5
1.8
1.3
1.1
0.8
0.9
1.0
1.1
1.3
1.0
1.2
1.6
1.2
1.0
0.8
1.6
0.8
1.5
1.3
1.7
0.6
0.6
8.1
0.5
0.6
1.9
1.6
3.2
2.8
3.7
1.2
Ts
Ts
Ts F&W
Tomkins Tomkins
a(SiO2)=1
(1.5GPa) (2.0GPa)
597
593
601
600
616
571
587
595
579
589
587
603
614
612
601
611
599
611
619
591
613
612
584
587
592
574
550
592
573
582
599
564
585
590
580
594
587
589
580
565
592
591
565
593
589
588
546
554
560
543
558
576
569
563
558
548
570
560
571
549
540
539
539
540
538
541
540
543
540
537
538
534
535
541
548
582
555
581
569
619
615
623
622
639
593
609
617
601
611
609
625
636
635
624
633
622
633
642
613
636
634
606
609
614
595
571
614
595
604
621
585
607
612
602
616
608
611
601
586
614
613
587
615
611
610
566
575
581
564
579
598
591
585
579
569
592
581
592
570
560
560
559
561
558
562
561
564
561
557
558
554
556
561
569
604
576
603
591
Table A9.1.Trace element compositions and temperature measurements for the Sesia Lanzo
samples
220
565
562
569
569
584
540
556
563
548
558
556
572
582
581
570
579
568
579
588
559
582
580
553
556
561
543
519
560
542
551
567
532
553
559
549
563
555
558
548
534
561
560
534
562
558
557
515
523
529
512
527
545
538
532
527
517
539
529
540
518
509
508
508
509
507
510
509
512
509
506
507
503
504
510
517
551
524
550
538
Appendix A9
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
MK 197-6
MK 197-7
MK 197-8
MK 197-9
MK 197-10
MK 197-11
MK 197-12
MK 197-13
MK 197-14
MK 197-15
MK 197-16
MK 197-17
MK 197-18
MK 197-19
MK 197-20
MK 197-21
MK 197-22
MK 197-23
MK 197-24
MK 197-25
MK 197-26
MK 197-27
MK 197-28
MK 197-29
MK 126-1
MK 126-2
MK 126-3
MK 126-4
MK 126-5
MK 126-6
MK 126-7
MK 126-8
MK 126-9
MK 126-10
MK 126-11
MK 126-12
MK 126-13
MK 126-14
MK 126-15
MK 126-16
MK 126-17
MK 126-18
MK 126-19
MK 126-20
MK 126-21
MK 126-22
MK 126-23
MK 126-24
MK 126-25
MK 162.3-1
MK 162.3-2
MK 162.3-3
MK 162.3-4
MK 162.3-5
MK 162.3-6
MK 162.3-7
MK 162.3-8
MK 162.3-9
MK 162.3-10
MK 162.3-11
MK 162.3-12
MK 162.3-13
MK 162.3-14
MK 162.3-15
MK 162.3-16
MK 162.3-17
MK 162.3-18
MK 162.3-19
MK 162.3-20
MK 162.3-21
MK 162.3-22
MK 162.3-23
MK 162.3-24
MK 162.3-25
MK 162.3-26
MK 162.3-27
MK 162.3-28
MK 162.3-29
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.007
0.001
0.001
0.002
0.001
0.000
0.001
0.001
0.001
0.003
0.002
0.002
0.001
0.002
0.001
0.002
0.002
0.002
0.003
0.002
0.007
0.011
0.005
0.008
0.007
0.006
0.005
0.003
0.004
0.008
0.001
0.002
0.002
0.002
0.003
0.004
0.002
0.003
0.003
0.003
0.002
0.001
0.001
0.003
0.003
0.002
0.003
0.004
0.002
0.003
0.005
0.004
0.003
0.003
0.002
0.002
0.003
0.001
0.003
0.013
0.014
0.022
0.022
0.021
0.021
0.015
0.015
0.020
0.013
0.017
0.027
0.020
0.015
0.019
0.021
0.021
0.020
0.024
0.044
0.033
0.016
0.046
0.016
0.009
0.010
0.015
0.029
0.016
0.011
0.009
0.015
0.012
0.010
0.013
0.018
0.015
0.026
0.014
0.017
0.019
0.012
0.008
0.014
0.035
0.013
0.009
0.011
0.009
0.019
0.013
0.065
0.021
0.033
0.037
0.019
0.019
0.018
0.019
0.024
0.021
0.026
0.024
0.028
0.020
0.020
0.020
0.021
0.020
0.027
0.021
0.031
0.019
0.022
0.023
0.018
0.020
0.034
0.103
0.118
0.058
0.103
0.058
0.069
0.095
0.070
0.078
0.083
0.095
0.104
0.098
0.088
0.099
0.120
0.103
0.095
0.071
0.110
0.065
0.086
0.084
0.075
0.059
0.080
0.070
0.099
0.092
0.126
0.108
0.135
0.109
0.092
0.114
0.062
0.101
0.143
0.116
0.326
0.280
0.365
0.327
0.258
0.244
0.168
0.177
0.213
0.113
0.101
0.122
0.123
0.076
0.083
0.154
0.096
0.127
0.084
0.084
0.090
0.091
0.104
0.124
0.093
0.141
0.088
0.068
0.105
0.129
0.146
0.138
0.130
0.109
0.124
0.182
0.096
0.202
0.200
1380
1290
1270
1190
1300
1330
1270
1200
1260
1380
1320
1330
1290
1340
1330
1360
1320
1310
1490
1340
1420
1360
1420
1490
1200
1190
1200
1170
1230
1130
1130
1220
1120
1130
1170
1160
1120
1110
1140
1200
1330
1170
1040
1210
1210
1200
1030
1080
1040
719
730
729
760
716
754
764
729
729
716
704
707
727
695
691
725
731
765
727
715
730
754
717
706
709
720
707
717
708
580
537
543
573
506
617
576
509
525
628
813
710
665
454
643
556
651
590
590
571
614
622
597
668
433
412
386
401
390
403
427
481
454
451
435
524
483
510
441
410
567
486
438
493
399
440
390
450
490
172
302
337
274
286
158
272
224
264
260
250
250
222
255
251
309
300
321
319
291
276
289
282
278
286
267
295
252
234
65
69
43
63
82
56
70
76
66
88
43
54
79
47
48
51
77
46
57
47
73
67
86
79
72
79
63
62
80
74
82
76
78
81
63
82
67
65
65
57
89
84
82
55
85
75
70
77
99
88
46
48
68
43
107
59
72
44
111
96
78
67
52
51
97
61
77
79
101
68
105
74
51
49
49
80
72
101
1790
1760
1770
1660
1750
1780
1760
1780
1810
1760
1740
1690
1760
1210
1570
1410
1700
1620
1850
1750
1820
1800
1770
1780
1540
1530
1680
1590
1570
1650
1640
1660
1610
1390
1520
1490
1580
1630
1580
1420
1500
1620
1230
1800
1590
1470
1460
1560
1710
2080
1960
2190
1990
1930
1960
2060
2190
2200
2370
2230
2170
1920
2140
2050
2400
2210
2420
2280
2140
2050
2200
2040
2170
2160
2170
2160
2240
2080
1.1
1.0
0.5
0.7
0.8
0.9
0.7
1.0
0.7
0.9
0.7
0.4
1.2
0.3
0.4
0.6
0.6
0.5
0.9
0.5
0.9
0.8
1.1
0.9
0.8
1.2
0.9
1.2
1.1
1.5
0.7
1.1
0.8
0.7
1.1
0.8
1.0
1.1
0.8
1.6
3.0
2.4
4.4
3.0
2.5
3.1
1.6
2.9
2.0
2.4
1.0
0.8
1.8
0.8
1.3
1.3
1.6
1.3
1.4
2.0
1.3
1.2
1.4
1.2
1.6
1.0
1.3
1.8
1.0
1.6
3.6
1.1
1.1
1.7
1.2
1.3
1.0
1.5
57
55
49
53
63
49
57
55
60
56
50
55
57
52
54
55
56
52
58
53
59
57
56
61
38
37
36
39
37
36
38
38
35
38
34
34
38
40
36
39
41
40
40
38
35
37
41
38
43
206
202
218
217
165
189
211
218
210
263
236
223
182
220
197
253
223
244
236
221
218
224
219
217
226
224
230
246
216
6.7
5.5
3.8
6.1
8.6
10.1
8.2
10.7
8.0
10.7
3.4
4.1
10.1
2.1
2.6
1.9
9.0
2.4
5.3
3.8
8.1
9.4
10.6
9.7
0.9
2.6
0.8
0.8
1.7
1.1
2.3
0.5
1.0
0.7
3.2
0.8
0.8
0.9
0.8
2.1
2.0
1.3
1.8
4.9
2.3
2.7
2.3
1.4
2.4
0.9
0.9
0.6
0.8
0.3
0.5
0.5
0.5
0.7
0.2
0.4
0.3
0.6
0.4
0.5
0.4
0.7
0.6
0.5
0.7
0.4
0.8
0.6
0.9
0.6
0.5
0.5
0.4
0.5
3.8
3.6
2.7
3.5
4.2
3.3
3.2
3.8
4.4
4.1
3.0
2.7
4.0
2.6
2.6
2.7
4.2
2.3
3.8
3.3
4.1
3.7
4.5
3.8
3.5
3.6
3.3
3.7
3.5
4.2
3.8
4.3
3.3
3.4
3.1
3.2
3.5
3.7
3.6
4.5
3.4
6.0
4.7
3.5
2.8
2.7
2.8
4.6
6.0
4.1
2.8
3.4
3.7
3.8
4.7
3.8
5.1
2.4
5.6
4.9
4.9
4.0
4.0
4.4
5.9
4.3
6.0
6.2
6.0
4.5
4.6
4.8
4.4
3.7
3.9
4.9
4.5
5.6
98
96
101
96
102
108
101
98
103
102
89
85
87
67
77
68
85
81
92
85
87
90
88
84
72
85
90
82
91
82
82
85
75
60
85
73
76
80
72
92
79
89
69
90
85
78
80
87
85
157
113
116
126
134
126
124
137
137
168
164
156
115
153
146
188
166
187
151
130
143
148
116
145
147
147
125
154
145
51
51
54
49
50
24
51
40
50
45
68
54
43
37
45
45
44
58
51
57
47
44
43
46
73
65
69
72
85
77
83
68
57
46
62
54
75
75
76
42
60
76
56
45
86
39
50
54
74
350
302
381
344
366
381
320
420
303
414
387
388
370
351
409
410
364
430
424
434
435
488
379
391
403
410
408
366
428
1.5
2.5
1.9
3.4
2.8
1.6
2.9
2.9
2.6
4.1
2.2
2.7
2.8
3.2
1.8
2.9
2.9
2.3
1.9
2.4
1.8
3.0
3.4
2.5
0.6
2.5
0.6
0.5
1.7
0.8
1.9
0.3
0.4
0.6
2.8
0.5
1.0
0.8
0.4
3.4
0.5
0.5
1.2
3.1
1.9
2.5
1.0
0.8
2.4
1.0
0.3
1.6
0.5
0.8
0.8
0.3
0.3
0.3
1.1
0.5
0.3
0.3
0.3
0.5
0.4
0.3
0.3
0.5
0.5
0.4
0.4
1.7
0.4
0.4
1.1
0.9
0.2
0.8
Ts
Ts
Ts F&W
Tomkins Tomkins
a(SiO2)=1
(1.5GPa) (2.0GPa)
566
570
541
564
581
557
571
576
567
585
541
555
578
547
547
551
577
545
558
545
573
568
584
579
572
578
564
563
579
574
581
576
578
580
564
581
568
566
566
558
586
582
581
555
583
575
571
577
594
586
544
548
569
540
599
560
573
543
601
592
577
568
553
551
592
562
577
578
595
569
597
574
551
549
548
579
572
595
587
592
562
585
602
578
592
598
589
607
562
576
600
568
568
572
599
566
579
566
595
589
606
601
594
600
586
584
601
596
603
598
599
602
585
603
589
587
587
579
608
604
603
576
605
597
592
599
616
608
565
569
590
561
621
582
594
563
624
614
599
589
574
572
614
583
598
600
617
590
620
596
572
570
569
601
594
617
534
539
510
533
549
526
540
545
536
554
510
524
547
516
516
520
546
514
527
514
542
536
553
548
541
547
533
532
548
543
550
545
546
549
532
550
537
534
535
526
555
551
550
524
552
544
540
546
562
554
513
517
538
509
567
529
541
512
570
560
546
536
522
520
560
531
545
547
563
538
566
543
520
518
517
548
541
563
Table A9.1.Trace element compositions and temperature measurements for the Sesia Lanzo
samples (continued)
221
Appendix A9
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
MK 162.3-30
MK 162.3-31
MK 162.3-32
MK 162.3-33
MK 162.3-34
MK 162.3-35
MK 162.3-36
MK 162.3-37
MK 162.3-38
MK 162.3-39
MK 195-1
MK 195-2
MK 195-3
MK 195-4
MK 195-5
MK 195-6
MK 195-7
MK 195-8
MK 195-9
MK 195-10
MK 195-11
MK 195-12
MK 195-13
MK 195-14
MK 195-15
MK 195-16
MK 195-17
MK 195-18
MK 195-19
MK 195-20
MK 195-21
MK 195-22
MK 195-23
MK 195-24
MK 195-25
MK 195-26
MK 195-27
MK 195-28
MK 195-29
MK 195-30
MK 195-31
MK 195-32
MK 195-33
MK 195-34
MK 195-35
MK 195-36
MK 195-37
MK 195-38
0.005
0.008
0.008
0.006
0.006
0.009
0.008
0.005
0.006
0.004
0.001
0.002
0.001
0.001
0.003
0.002
0.002
0.001
0.001
0.012
0.001
0.003
0.001
0.002
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.002
0.002
0.001
0.002
0.002
0.004
0.009
0.006
0.007
0.006
0.005
0.006
0.007
0.021
0.077
0.024
0.023
0.031
0.024
0.028
0.039
0.023
0.021
0.039
0.038
0.017
0.012
0.023
0.022
0.009
0.017
0.018
0.044
0.013
0.013
0.013
0.017
0.015
0.016
0.014
0.014
0.015
0.008
0.013
0.014
0.017
0.020
0.016
0.012
0.015
0.018
0.015
0.014
0.019
0.018
0.015
0.022
0.012
0.013
0.028
0.018
0.065
0.208
0.249
0.251
0.350
0.350
0.337
0.235
0.402
0.261
0.214
0.438
0.088
0.098
0.148
0.084
0.114
0.133
0.096
0.261
0.096
0.131
0.117
0.077
0.068
0.068
0.081
0.092
0.077
0.077
0.083
0.065
0.051
0.177
0.081
0.150
0.132
0.109
0.069
0.049
0.260
0.196
0.198
0.212
0.243
0.450
0.340
0.208
714
527
547
542
510
559
551
573
622
703
736
707
681
738
668
712
656
709
718
701
651
699
673
759
681
695
695
673
686
713
654
721
663
670
746
671
725
672
673
672
749
703
703
694
748
685
833
722
221
244
209
174
177
293
154
200
204
229
240
193
267
266
259
197
308
286
287
247
287
274
283
244
276
299
246
300
291
273
314
219
311
361
199
310
279
291
262
396
329
362
264
277
256
472
314
345
115
97
57
57
100
61
42
92
50
73
63
64
64
69
55
60
45
69
72
65
66
51
68
85
50
49
78
40
58
51
42
79
59
54
70
48
72
62
66
49
46
42
72
79
63
50
47
48
2250
1950
1690
1960
2060
1700
1950
2050
1630
1600
2650
2630
2400
2650
2430
2350
2290
2960
2770
2460
2420
2440
2460
3110
2100
2300
2790
2240
2480
2100
2250
2810
2140
2300
2860
2120
2760
2310
2530
2160
2030
2690
3120
2850
2580
2530
2960
2190
1.9
1.7
1.5
2.3
3.3
2.8
1.3
2.8
3.7
3.0
1.4
1.3
1.4
1.1
2.0
1.6
0.7
2.3
1.8
1.7
0.9
0.9
1.0
2.5
0.8
0.6
0.9
0.7
0.6
1.1
0.8
2.3
1.2
0.5
2.0
0.6
1.6
1.3
1.2
1.5
2.0
2.9
2.7
1.8
1.8
2.4
4.1
2.4
213
245
203
244
278
170
207
261
208
140
68
75
71
81
84
68
111
69
74
78
73
92
75
57
89
108
65
110
91
86
117
63
84
89
65
121
70
85
73
129
125
143
69
71
84
137
166
116
0.6
1.8
1.1
1.2
2.5
1.0
1.6
0.9
1.7
1.3
10.7
14.4
6.9
8.3
2.6
9.0
1.6
6.3
8.9
21.9
4.4
6.7
4.8
12.2
1.3
1.8
16.0
1.5
6.4
1.7
1.1
13.9
2.9
3.8
6.7
0.9
5.2
6.3
13.7
1.1
1.1
2.9
7.7
7.7
9.6
1.6
1.3
1.5
7.0
4.5
6.1
4.5
7.6
5.4
3.6
6.4
3.1
5.4
3.1
2.7
3.2
3.5
2.7
2.8
2.8
3.9
3.7
2.7
3.9
3.0
3.2
3.9
2.8
2.7
3.5
2.2
3.4
2.8
3.0
4.1
3.1
3.1
3.6
2.8
4.2
2.4
2.9
2.5
2.8
4.0
3.7
4.8
2.3
2.4
2.8
2.5
154
273
128
128
182
131
148
163
91
104
249
187
185
225
193
199
139
244
231
171
149
189
175
303
118
125
239
128
218
111
177
229
111
205
285
127
203
171
182
114
160
443
439
238
181
206
531
100
447
497
355
407
425
352
339
319
311
369
305
222
218
232
209
194
168
260
253
382
191
209
217
322
193
181
262
182
260
165
180
337
181
224
280
169
255
149
183
147
168
151
243
216
160
191
138
200
0.3
0.5
0.5
0.5
0.4
0.3
1.0
0.8
0.8
0.3
4.2
2.5
1.6
1.9
0.9
0.9
1.1
1.2
1.6
2.1
1.5
1.2
1.6
4.9
1.5
0.9
7.2
1.0
1.1
1.4
0.6
3.7
1.3
0.8
1.5
1.5
1.6
1.0
1.7
1.3
1.1
0.7
2.0
1.9
1.1
1.8
1.5
1.6
Ts
Ts
Ts F&W
Tomkins Tomkins
a(SiO2)=1
(1.5GPa) (2.0GPa)
604
592
558
558
594
562
540
588
549
574
564
565
565
570
556
561
543
570
572
566
567
552
569
583
550
548
577
537
558
551
540
578
560
554
570
548
572
563
567
548
545
539
573
579
565
549
546
547
626
614
579
579
616
584
560
610
570
595
585
586
586
591
577
583
564
591
594
588
588
573
591
605
571
569
599
557
580
572
560
600
581
575
592
569
594
585
588
569
566
560
594
601
586
570
567
568
572
561
527
527
563
531
509
557
518
542
533
534
534
538
525
530
512
539
541
535
536
520
538
552
519
517
546
506
527
520
509
547
529
523
539
517
541
532
536
517
514
508
542
548
533
518
515
516
Table A9.1.Trace element compositions and temperature measurements for the Sesia Lanzo
samples (continued)
222
Appendix A10
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
19296-1
19296-2
19296-3
19296-4
19296-5
19296-6
19296-7
19296-8
19296-9
19296-10
19296-11
19296-12
19296-13
19296-14
19296-15
19296-16
19296-17
19296-18
19296-19
19296-20
19296-21
19296-22
19296-23
19296-24
19296-25
19296-26
19296-27
19296-28
19296-29
19296-30
19296-31
19296-32
19296-33
19296-34
19296-35
19296-36
19296-37
19296-38
19296-39
19296-40
19296-41
19296-42
19296-43
19296-44
19296-45
19296-46
19296-47
19296-48
19296-49
19296-50
19296-51
19296-52
19296-53
19296-54
19296-55
19296-56
19296-57
19296-58
19296-59
19296-60
19296-61
19296-62
19296-63
19296-64
19296-65
19296-66
19296-67
19296-68
19296-69
19296-70
19296-71
19296-72
19296-73
19296-74
19296-75
19296-76
19296-77
19296-78
19296-79
0.0005
0.0004
0.0004
0.0005
0.0005
0.0004
0.0006
0.0006
0.0005
0.0006
0.0006
0.0011
0.0037
0.0007
0.0005
0.1330
0.0007
0.0004
0.0007
0.0004
0.0005
0.0005
0.0004
0.0004
0.0005
0.0006
0.0005
0.0004
0.0033
0.0450
0.0006
0.0006
0.0005
0.0003
0.0005
0.0004
0.0004
0.0005
0.0004
0.0005
0.0128
0.0077
0.0004
0.0004
0.0004
0.0004
0.0003
0.0005
0.0006
0.0007
0.0011
0.0004
0.0004
0.0004
0.0005
0.0005
0.0005
0.0014
0.0007
0.0007
0.0004
0.0007
0.0005
0.0004
0.0006
0.0010
0.0012
0.0134
0.0006
0.0003
0.0005
0.0006
0.0005
0.0006
0.0005
0.0005
0.0005
0.0007
0.0010
0.07
0.07
0.06
0.05
0.02
0.03
0.07
0.08
0.08
0.08
0.09
0.09
0.07
0.07
0.07
0.62
0.06
0.06
0.03
0.03
0.06
0.06
0.06
0.04
0.03
0.03
0.06
0.06
0.10
0.13
0.08
0.09
0.05
0.06
0.06
0.05
0.06
0.07
0.06
0.07
0.07
0.07
0.04
0.05
0.05
0.06
0.08
0.07
0.07
0.07
0.05
0.06
0.06
0.07
0.03
0.19
0.06
0.08
0.07
0.07
0.07
0.06
0.07
0.07
0.06
0.05
0.05
0.05
0.04
0.04
0.07
0.07
0.03
0.04
0.04
0.06
0.03
0.05
0.09
0.10
0.09
0.05
0.08
0.07
0.09
0.09
0.07
0.08
0.06
0.07
0.07
0.07
0.08
0.08
0.08
0.08
0.06
0.07
0.04
0.05
0.07
0.05
0.05
0.07
0.07
0.06
0.08
0.06
0.18
0.05
0.08
0.06
0.09
0.07
0.06
0.09
0.09
0.09
0.09
0.09
0.08
0.09
0.08
0.08
0.06
0.08
0.07
0.06
0.06
0.10
0.06
0.09
0.06
0.04
0.04
0.06
0.06
0.06
0.05
0.06
0.05
0.07
0.06
0.07
0.12
0.12
0.07
0.07
0.08
0.06
0.07
0.14
0.03
0.07
0.06
0.06
0.07
0.04
2220
2230
2160
2150
2110
2210
2060
2040
2070
2070
2040
2030
2010
2040
2050
2020
1790
1810
1610
1590
2090
2080
2000
1970
1350
1360
1410
1400
1980
2020
2030
2050
2040
2030
2040
2010
1690
1700
2030
2060
2040
2080
1870
1860
2080
2030
2060
2060
1740
1860
1610
1610
2030
2060
1940
1990
2030
2020
2020
2020
1980
1990
2110
2030
2040
2080
1430
1420
1730
1700
1350
1370
2000
1980
1590
1610
1720
1700
2100
170
182
164
166
157
155
165
160
163
159
161
158
120
116
159
161
126
122
166
164
153
152
153
152
150
158
169
170
108
120
160
167
172
166
169
166
168
168
159
155
160
165
172
179
145
130
149
122
158
163
162
161
115
122
120
144
158
147
163
166
100
101
132
111
86
99
113
110
168
168
128
114
169
168
161
162
182
179
170
201
173
173
169
199
179
221
207
185
183
239
229
174
140
202
210
243
233
180
185
155
161
198
194
192
227
231
233
172
133
208
209
199
209
170
172
223
232
197
205
180
157
210
198
209
209
181
189
204
203
199
202
214
201
176
220
203
207
209
212
236
242
198
212
185
197
110
121
211
195
133
137
222
238
223
205
229
240
209
3770
3630
3460
3350
3110
3610
2930
3020
3390
3520
3210
3290
2630
2660
3010
2950
2650
2680
2450
2480
3520
3330
3130
3080
2590
2580
2740
2750
2300
2450
2680
2710
3020
2920
3480
3490
2800
2840
3490
3440
2810
2720
2930
2910
3120
2840
3110
2700
2590
2710
2750
2730
2840
2860
1800
2230
2740
3120
2910
2990
1980
1770
3010
2330
2810
3120
1840
1990
2890
2910
2720
2770
2790
2840
2650
2670
2840
2740
3300
8.9
9.9
6.7
8.3
7.6
15.3
6.7
5.9
9.8
10.9
7.1
7.2
10.7
11.7
6.5
6.9
7.5
6.5
9.8
9.1
12.3
7.8
6.3
6.3
9.0
8.4
6.8
7.5
8.9
10.4
8.7
8.4
6.3
6.6
8.2
8.1
7.4
6.3
10.8
7.6
8.9
9.2
6.7
7.5
6.3
7.3
7.1
7.8
8.0
8.0
7.6
6.9
7.4
7.3
10.3
9.8
8.1
8.2
6.3
6.7
10.6
10.8
7.9
10.1
10.9
10.0
12.3
12.5
7.8
7.0
10.4
9.7
6.8
7.7
6.9
7.3
7.6
6.8
7.7
880
809
768
727
631
863
509
540
770
831
622
642
273
280
610
599
374
459
292
297
812
711
631
641
312
308
381
384
285
279
342
344
639
586
787
794
461
432
739
742
340
304
491
489
608
473
632
525
432
412
487
487
472
514
224
276
315
644
570
586
226
218
611
344
428
517
218
243
420
418
291
274
507
525
373
383
430
403
695
9.4
13.1
13.5
13.3
15.2
25.5
11.4
13.5
15.2
17.2
7.0
8.8
15.4
14.9
12.7
14.7
11.9
14.5
9.3
8.9
18.7
12.2
10.9
14.4
11.6
11.4
10.7
12.0
8.5
9.1
7.7
8.7
11.9
11.2
20.1
17.7
13.0
13.1
11.6
8.8
13.9
12.4
11.6
12.2
13.9
13.1
14.4
14.5
11.6
11.8
12.7
14.0
11.9
12.0
10.5
8.9
10.5
12.3
11.9
12.1
12.3
11.3
9.0
12.7
12.2
11.7
10.8
10.1
12.2
11.4
12.1
11.3
12.0
11.6
12.1
12.7
12.7
9.9
9.5
10.3
8.8
8.5
8.6
9.0
8.5
8.9
9.1
8.9
9.2
7.9
8.1
4.1
4.2
9.2
9.2
8.7
8.4
5.7
6.3
7.6
8.0
8.4
8.7
8.1
7.8
9.0
9.3
4.7
4.6
5.7
6.0
10.3
10.0
8.4
8.4
8.6
8.8
9.0
9.5
5.4
5.2
8.7
7.8
8.9
7.5
8.1
8.6
7.9
8.1
8.6
7.9
8.8
8.1
3.8
5.5
5.1
8.8
9.1
8.7
4.2
4.5
9.0
6.5
6.8
5.4
2.7
4.2
8.1
8.0
4.6
5.1
10.1
9.4
9.4
8.5
8.3
8.0
9.5
362
366
252
228
217
288
235
242
242
254
228
240
171
187
179
217
106
185
143
144
262
248
263
84
183
185
193
197
62
167
168
229
238
191
286
307
232
223
244
268
252
218
202
202
179
146
198
159
190
202
193
207
117
304
21
121
189
177
195
203
25
23
229
55
263
323
21
60
203
193
182
192
156
155
219
211
194
176
272
235
290
288
290
256
367
227
231
305
305
285
293
331
328
235
245
285
271
266
247
308
285
281
279
238
235
240
253
286
287
267
305
294
322
292
300
248
242
290
265
242
237
249
245
242
273
252
298
266
237
239
237
286
282
316
269
208
235
200
214
398
413
259
365
325
282
414
357
237
248
271
329
259
253
241
246
239
224
295
6.0
6.4
6.1
5.7
5.7
4.3
6.0
6.0
5.3
5.3
6.7
6.9
14.1
14.8
5.8
6.1
11.9
11.9
27.4
25.3
4.8
5.6
11.4
11.6
35.2
34.6
28.9
27.5
16.8
20.9
7.1
6.0
6.0
6.2
5.5
5.5
21.0
21.8
6.1
5.7
22.2
24.0
26.3
26.0
22.3
22.6
5.8
6.5
18.4
19.8
10.8
9.8
5.8
5.8
17.1
15.1
5.6
5.1
5.9
6.0
5.9
6.0
5.6
6.0
8.6
8.0
40.2
41.1
45.7
44.1
41.6
40.5
20.5
21.7
30.5
29.6
26.7
28.8
5.7
Ts
Ts F&W
Tomkins
a(SiO2)=1
(3.7 GPa)
747
734
734
732
746
737
755
749
740
739
761
758
735
717
747
750
763
759
738
740
725
728
745
744
743
757
758
759
734
713
750
750
746
750
733
734
755
759
745
748
738
726
750
745
750
750
738
742
748
748
746
747
752
747
736
754
748
749
750
751
760
763
745
751
740
745
699
706
751
744
713
716
755
761
755
748
758
762
750
Table A10. 1. Trace element compositions and temperature measurements for the Dora
Maira samples
223
612
601
601
599
611
604
619
614
606
605
625
622
601
586
613
615
627
623
604
606
593
596
611
610
609
621
623
623
601
582
615
615
611
615
600
601
620
623
611
614
604
594
615
611
615
615
604
608
613
613
611
613
617
612
602
619
613
614
615
616
624
626
611
616
606
611
569
576
616
610
582
584
620
625
620
614
622
626
615
Appendix A10
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
19296-80
19296-81
19296-82
19296-83
19296-84
19296-85
19296-86
19296-87
19296-88
19296-89
19296-90
19296-91
19296-92
19296-93
19296-94
19296-95
19296-96
19296-97
19296-98
19296-99
19296-100
19296-101
19296-102
19296-103
19464-1
19464-2
19464-3
19464-4
19464-5
19464-6
19464-7
19464-8
19464-9
19464-10
19464-11
19464-12
19464-13
19464-14
19464-15
19464-16
19464-17
19464-18
19464-19
19464-20
19464-21
19464-22
19464-23
19464-24
19464-25
19464-26
19464-27
19464-28
19464-29
19464-30
19464-31
19464-32
19464-33
19464-34
19464-35
19464-36
19464-37
19464-38
19464-39
19464-40
19464-41
19464-42
19464-43
19464-44
19464-45
19464-46
19464-47
19464-48
19464-49
19464-50
19464-51
19464-52
19464-53
19464-54
19464-55
0.0005
0.0005
0.0005
0.0005
0.0006
0.0006
0.0005
0.0007
0.0004
0.0003
0.0003
0.0004
0.0005
0.0004
0.0004
0.0004
0.0004
0.0006
0.0025
0.0006
0.0004
0.0006
0.0006
0.0006
0.0007
0.0025
0.0017
0.0020
0.0012
0.0022
0.1310
0.0015
0.0026
0.0016
0.0018
0.0018
0.0017
0.0010
0.1250
0.0015
0.0009
0.0013
0.0032
0.0030
0.0013
0.0006
0.0011
0.0012
0.0020
0.0925
0.0009
0.0008
0.0006
0.0147
0.0017
0.0077
0.0012
0.0010
0.0049
0.0014
0.0007
0.0011
0.0007
0.0018
0.0020
0.0024
0.0026
0.0017
0.0519
0.0005
0.0016
0.0046
0.0020
0.0010
0.0008
0.0008
0.0076
0.0007
0.0008
0.16
0.05
0.09
0.06
0.06
0.06
0.07
0.06
0.06
0.08
0.08
0.04
0.06
0.05
0.07
0.03
0.05
0.08
0.07
0.09
0.06
0.07
0.07
0.06
0.27
0.26
0.38
0.24
0.25
0.30
0.49
0.25
0.33
0.26
0.24
0.24
0.24
0.32
0.59
0.26
0.28
0.32
0.39
0.24
0.25
0.25
0.30
0.28
0.21
0.31
0.22
0.29
0.18
0.41
0.28
0.31
0.23
0.29
0.38
0.30
0.26
0.26
0.26
0.39
0.32
0.34
0.41
0.26
0.33
0.28
0.29
0.34
0.26
0.27
0.24
0.33
0.30
0.30
0.27
0.06
0.07
0.07
0.08
0.06
0.06
0.06
0.06
0.07
0.09
0.10
0.11
0.08
0.09
0.10
0.11
0.11
0.06
0.08
0.08
0.09
0.10
0.08
0.08
0.08
0.13
0.09
0.10
0.06
0.14
0.23
0.08
0.09
0.10
0.06
0.09
0.10
0.10
0.26
0.09
0.09
0.06
0.30
0.07
0.06
0.09
0.10
0.07
0.13
0.18
0.06
0.07
0.07
0.09
0.09
0.13
0.08
0.09
0.10
0.09
0.07
0.08
0.08
0.09
0.07
0.10
0.14
0.10
0.10
0.10
0.07
0.17
0.13
0.09
0.04
0.06
0.19
0.07
0.08
2130
2030
2090
2080
2040
2110
2120
1850
1880
2040
2070
2140
2130
2100
2040
1850
1850
2040
2110
2110
2040
2000
2050
1940
739
740
762
659
671
630
791
747
775
583
404
633
897
709
779
875
785
631
904
751
633
803
771
801
738
737
680
776
711
844
630
847
745
740
718
807
826
809
632
778
887
841
860
657
847
787
722
713
747
841
815
690
629
741
841
165
161
164
160
155
163
157
174
177
159
157
157
157
154
144
160
163
159
161
159
158
164
160
152
169
169
135
135
109
158
252
135
142
186
139
131
185
98
143
96
104
175
127
144
111
135
189
161
143
129
141
121
146
118
93
159
118
194
135
144
125
144
145
87
128
172
152
104
116
123
105
109
103
130
140
161
149
133
186
206
242
253
213
196
181
178
211
178
232
192
185
186
209
214
242
215
182
163
198
206
216
209
236
152
138
143
136
145
151
153
137
146
130
133
128
143
145
152
147
137
128
138
157
136
153
154
149
161
131
137
126
135
144
126
149
141
154
137
148
140
156
151
132
146
149
116
118
134
119
130
138
155
147
136
147
149
127
127
3220
2940
3020
2900
2870
3270
3430
2790
2840
2840
3270
3500
3410
3130
3090
2750
2760
3350
3570
3070
3260
2950
3060
2690
4900
4900
4620
4810
4920
4980
4950
4620
4450
5340
5300
4970
5070
5260
4610
4390
4760
5460
4890
4760
5490
4880
5110
5110
4720
4980
4930
4780
4880
4450
5390
5410
4930
4920
5060
5250
4990
4800
4850
4560
4690
4520
4800
5450
4840
4750
4840
4940
4700
4710
5000
4760
4910
5260
5110
7.5
7.7
9.3
7.0
7.1
11.2
10.3
6.4
6.8
7.0
7.9
13.5
11.6
6.9
6.6
6.9
6.9
7.2
10.7
6.7
7.6
7.2
6.4
7.6
1.8
4.1
11.4
2.0
5.5
4.6
10.1
2.9
13.7
2.9
2.6
2.3
3.0
3.3
6.3
12.8
6.6
1.7
2.6
8.4
2.9
7.7
9.0
9.6
10.2
5.8
5.1
2.3
2.9
19.4
3.2
6.3
4.3
17.6
10.8
5.0
2.2
13.0
5.6
20.3
14.7
13.1
10.0
3.1
8.2
2.6
3.9
4.9
4.1
15.9
3.4
8.2
8.4
4.5
5.8
677
474
464
595
623
764
820
495
528
422
670
744
731
624
614
455
470
729
822
569
603
582
579
382
549
507
504
458
522
501
497
508
579
497
491
512
465
530
600
521
522
417
483
550
618
524
483
549
492
515
568
468
517
553
490
473
480
449
506
520
526
592
525
562
588
575
458
542
525
451
534
469
508
580
477
524
534
489
479
6.8
7.0
8.9
10.3
13.5
15.9
16.0
12.9
12.3
12.6
13.9
26.5
19.5
11.6
12.0
11.9
9.8
14.9
20.4
9.2
9.1
12.0
9.8
11.5
0.5
3.3
1.9
0.9
4.8
1.2
5.6
1.2
9.3
1.4
1.4
0.8
1.0
2.2
1.2
1.3
3.0
0.8
6.6
2.2
1.6
5.8
1.4
0.9
2.2
1.9
2.8
0.5
1.6
8.2
1.6
1.1
2.2
1.1
1.8
3.7
0.5
3.6
5.1
2.7
11.3
2.9
1.7
1.9
3.7
1.0
1.6
1.4
1.9
0.9
1.5
3.0
2.3
0.9
4.8
8.7
8.6
8.2
8.3
9.5
8.5
8.3
8.8
8.2
7.9
9.0
8.7
8.9
9.7
9.4
10.2
9.2
9.2
9.3
8.7
8.1
9.7
8.4
8.2
7.8
7.2
6.9
6.4
6.0
7.3
6.5
7.3
5.3
6.9
6.6
7.0
7.7
8.7
7.3
6.5
6.3
6.8
6.5
7.4
6.3
5.9
7.4
7.5
8.7
6.4
5.7
7.1
6.9
3.5
7.3
7.5
6.6
7.4
7.1
7.0
7.2
6.1
6.0
6.8
5.0
7.0
4.7
6.7
6.4
5.6
6.4
6.5
7.1
6.9
6.6
5.8
7.0
6.8
5.5
269
268
268
179
198
176
193
179
161
251
202
195
189
208
218
226
151
224
263
161
158
183
151
204
479
525
449
456
452
461
558
426
398
570
531
477
482
511
471
345
429
579
408
403
574
432
482
515
441
445
364
409
495
344
546
364
432
472
470
569
490
431
386
460
434
353
453
518
511
466
412
464
440
424
387
416
442
636
404
287
335
426
238
270
285
294
249
256
224
241
351
320
254
261
247
246
265
298
252
231
238
231
236
431
465
431
385
513
399
521
418
1180
409
405
428
379
420
493
478
634
331
574
550
507
636
393
380
386
552
625
408
424
1200
355
488
402
380
535
508
402
794
555
606
751
603
495
425
710
376
493
438
419
402
415
517
401
400
642
5.9
5.4
7.3
6.5
6.2
5.7
6.4
11.9
10.7
6.6
6.4
5.7
5.9
15.3
15.1
29.0
29.5
6.8
6.9
6.0
5.7
8.3
7.2
6.1
2.9
3.3
2.4
5.6
2.6
2.1
2.0
4.4
2.1
5.0
4.0
5.8
4.8
4.7
4.3
2.1
5.2
2.3
2.3
2.1
5.0
2.6
1.2
1.5
5.1
3.2
5.6
3.9
1.3
1.8
11.7
2.1
4.0
2.3
3.8
5.8
8.2
2.9
2.6
2.4
2.3
2.2
3.4
10.6
2.1
3.3
3.6
2.3
2.5
2.2
3.8
2.2
3.8
3.1
1.7
Ts
Ts F&W
Tomkins
a(SiO2)=1
(3.7 GPa)
749
763
766
752
745
738
737
751
737
759
743
740
740
750
752
763
752
738
729
745
749
753
750
760
724
716
719
715
720
723
724
716
721
711
713
710
719
720
724
721
716
710
716
726
715
724
725
722
728
712
716
709
714
720
709
722
718
725
716
722
717
726
723
713
721
722
703
704
714
705
711
716
725
721
715
721
722
710
710
614
626
630
617
610
604
603
616
603
623
609
606
606
615
617
626
617
605
597
611
614
618
615
624
592
585
587
584
588
591
592
584
589
581
582
580
587
588
592
589
584
580
585
594
584
592
593
590
596
581
584
578
583
588
578
590
586
593
584
590
586
594
591
582
589
590
573
574
583
574
581
585
593
589
584
589
590
579
579
Table A10. 1. Trace element compositions and temperature measurements for the Dora
Maira samples (continued)
224
Appendix A10
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
19464-56
19464-57
19464-58
19464-59
19464-60
19464-61
19464-62
19464-63
19464-64
19464-65
19464-66
19464-67
19464-68
19464-69
19464-70
19464-71
19464-72
19464-73
19464-74
19464-75
19464-76
19464-77
19464-78
19464-79
19464-80
19464-81
19464-82
19464-83
19464-84
19464-85
19464-86
19464-87
19464-88
19464-89
19464-90
15623a-1
15623a-2
15623a-3
15623a-4
15623a-5
15623a-6
15623a-7
15623a-8
15623a-9
15623a-10
15623a-11
15623a-12
15623a-13
15623a-14
15623a-15
15623a-16
15623a-17
15623a-18
15623a-19
15623a-20
15623a-21
15623a-22
15623a-23
15623a-24
15623a-25
15623a-26
15623a-27
15623a-28
15623a-29
15623a-30
15623a-31
15623a-32
15623a-33
15623a-34
15623a-35
15623a-36
15623a-37
15623a-38
15623a-39
15623a-40
15623a-41
15623a-42
15623a-43
15623a-44
0.0013
0.0007
0.0008
0.0105
0.0033
0.0021
0.0033
0.0005
0.0006
0.0024
0.0041
0.0065
0.0006
0.0020
0.0008
0.2900
0.0028
0.0019
0.0682
0.0047
0.0008
0.0065
0.0008
0.0010
0.0005
0.0016
0.0011
0.0012
0.0007
0.0168
0.0028
0.0008
0.0017
0.0016
0.0010
0.0058
0.0045
0.0069
0.0043
0.0047
0.0046
0.0042
0.0044
0.0050
0.0044
0.0043
0.0060
0.0057
0.0047
0.0064
0.0050
0.0075
0.0089
0.0082
0.0072
0.0081
0.0076
0.0186
0.0049
0.0055
0.0056
0.0077
0.0083
0.0052
0.0056
0.0050
0.0042
0.0049
0.0050
0.0042
0.0142
0.0046
0.0085
0.0043
0.0035
0.0032
0.0042
0.0043
0.0034
0.23
0.26
0.35
0.37
0.44
0.35
0.28
0.26
0.25
0.30
0.25
0.28
0.30
0.38
0.27
2.48
0.30
0.30
0.34
0.34
0.30
0.34
0.28
0.33
0.28
0.26
0.31
0.27
0.28
0.43
0.26
0.24
0.24
0.25
0.26
0.53
0.54
0.57
0.53
0.52
0.48
0.48
0.54
0.52
0.54
0.51
0.50
0.49
0.49
0.60
0.58
0.61
0.42
0.44
0.46
0.47
0.46
0.51
0.59
0.57
0.56
0.49
0.48
0.52
0.53
0.55
0.49
0.49
0.47
0.50
0.48
0.47
0.49
0.47
0.47
0.45
0.46
0.46
0.59
0.20
0.09
0.07
0.11
0.29
0.07
0.09
0.08
0.06
0.06
0.10
0.14
0.06
0.08
0.06
1.06
0.06
0.05
0.31
0.18
0.07
0.10
0.06
0.06
0.08
0.08
0.07
0.06
0.05
0.08
0.07
0.06
0.06
0.06
0.03
0.07
0.06
0.07
0.07
0.07
0.08
0.04
0.07
0.08
0.06
0.08
0.08
0.07
0.06
0.11
0.08
0.07
0.07
0.06
0.07
0.06
0.05
0.09
0.06
0.07
0.07
0.09
0.08
0.06
0.08
0.05
0.09
0.07
0.05
0.11
0.06
0.07
0.07
0.07
0.08
0.09
0.05
0.06
0.07
603
819
1000
759
707
879
724
852
779
637
686
810
811
764
791
713
769
780
894
696
814
792
813
851
772
865
841
890
789
860
679
822
818
817
754
964
953
984
994
979
949
1000
907
869
884
861
806
823
827
885
874
880
813
836
838
826
849
836
833
841
818
731
691
726
716
747
701
734
687
880
876
835
841
609
617
646
680
670
907
113
130
250
156
172
126
146
136
120
278
115
113
128
114
146
242
144
109
196
133
141
99
149
136
132
185
128
112
162
185
109
137
182
151
143
19
26
23
24
30
30
31
20
17
17
17
33
33
33
52
37
48
25
28
28
26
28
23
17
18
17
14
16
17
16
15
39
43
40
17
13
15
19
18
18
17
18
16
36
135
153
146
146
134
136
135
144
137
136
138
147
139
134
144
190
105
138
169
144
144
150
143
151
143
136
128
143
142
135
148
135
155
149
140
161
168
163
151
148
156
152
153
130
134
142
162
152
147
151
138
142
159
174
178
168
166
154
148
150
149
153
154
164
150
156
171
171
162
158
144
154
168
153
159
153
153
151
146
4920
4700
5450
4780
4100
4690
4960
4550
4370
5020
4900
4480
4980
4710
4670
4450
4230
5240
4570
4810
4890
4880
4710
5450
4780
4350
5470
4400
5220
4420
4770
4660
4640
4970
4850
10600
10700
12100
10500
10400
10000
9990
11100
11000
11100
10900
10300
10500
10200
11800
11200
11600
9600
10400
10500
10400
10400
11000
11500
11700
11600
11400
11100
10400
10100
10100
10400
10300
10300
10200
9660
9670
9970
9320
9320
9300
9250
9250
10900
2.9
9.8
9.7
11.4
5.7
2.7
8.9
12.6
7.4
7.7
6.0
20.0
6.7
11.2
8.7
5.6
15.3
1.9
10.4
2.1
4.2
8.5
6.1
8.0
9.0
14.1
2.5
8.8
3.5
14.3
7.4
4.1
13.3
4.6
5.3
7.2
7.7
8.3
18.8
19.5
16.0
18.4
11.6
9.1
8.7
9.4
25.5
19.8
19.6
27.2
20.2
23.5
9.4
9.5
8.8
10.7
10.2
8.8
32.0
28.4
31.5
12.3
11.3
6.6
6.3
6.7
22.0
25.6
22.1
12.0
10.2
11.0
10.6
7.5
7.6
7.0
6.4
7.5
25.5
464
481
512
570
484
487
473
526
493
452
449
558
456
480
542
561
568
525
515
454
511
554
498
515
536
504
475
579
572
576
496
475
557
543
515
539
494
618
648
552
500
462
520
466
453
483
450
476
434
824
704
769
385
462
455
453
466
573
656
730
686
523
504
420
333
395
427
397
415
577
617
574
540
569
561
552
549
563
684
1.1
1.2
1.3
8.0
5.3
0.7
1.7
1.4
2.9
2.8
0.8
7.3
5.0
5.1
3.1
2.7
8.0
0.9
1.6
1.3
3.5
1.8
3.2
2.1
4.9
3.8
0.9
7.9
1.1
4.2
0.9
1.2
1.9
1.1
1.4
7.5
9.9
5.4
3.7
3.3
3.5
3.5
1.4
2.2
3.3
3.9
0.9
1.6
1.9
6.9
3.3
8.2
3.1
2.7
2.4
1.1
6.3
2.6
1.1
1.8
1.1
2.9
2.7
9.4
4.6
3.9
0.9
0.9
0.7
3.7
3.4
3.4
6.2
9.8
4.8
4.1
1.9
1.7
1.6
7.2
7.2
7.3
4.5
5.6
7.0
6.3
6.3
6.5
6.4
6.5
3.8
5.4
5.4
6.3
8.6
2.8
6.4
7.8
7.3
6.7
6.7
6.5
7.2
6.0
4.7
6.3
4.3
6.9
5.0
6.7
6.2
6.6
6.8
7.5
8.2
7.2
7.0
7.5
6.4
6.9
6.4
7.2
6.3
5.6
6.1
8.3
6.8
6.8
5.8
6.0
5.8
6.1
7.3
7.7
7.3
6.6
7.4
6.9
6.5
6.7
7.1
6.5
6.9
6.7
7.4
8.6
8.2
8.0
6.9
6.5
5.9
6.2
6.8
6.8
6.7
7.5
6.7
5.9
514
440
503
354
363
433
548
380
389
386
483
423
443
377
397
450
335
447
465
481
511
499
465
517
408
308
439
382
399
384
499
445
372
428
439
693
670
854
915
751
757
691
941
917
875
909
851
825
809
900
796
879
641
836
840
783
763
985
820
814
838
928
644
941
888
932
914
893
870
719
786
741
797
650
649
615
627
611
841
358
413
433
775
604
414
562
754
504
571
366
1230
664
667
741
566
844
414
421
370
653
389
524
425
866
730
396
768
425
913
321
386
681
434
438
244
375
202
240
134
206
157
133
135
139
143
167
163
156
301
121
259
180
160
162
159
409
230
185
140
153
194
204
288
150
181
173
160
164
231
204
196
303
310
135
124
68
76
155
6.1
3.6
3.2
1.9
1.0
2.3
0.8
3.5
1.8
0.5
3.0
2.5
1.3
1.4
4.8
2.4
1.8
8.7
2.2
3.2
1.7
2.6
2.1
2.0
1.9
6.4
1.7
2.4
3.3
1.8
1.9
3.2
1.8
2.1
3.8
0.2
0.3
0.2
0.1
0.3
0.1
0.1
2.3
1.8
0.8
0.3
3.5
3.1
4.5
0.1
0.2
0.2
2.4
6.0
5.9
5.4
0.5
0.6
0.2
0.6
1.8
5.6
2.5
0.2
0.2
0.1
3.6
4.8
3.5
0.4
0.4
0.2
0.3
0.5
0.4
0.3
0.3
0.3
3.4
Ts
Ts F&W
Tomkins
a(SiO2)=1
(3.7 GPa)
714
724
721
721
714
715
714
720
716
715
716
721
717
714
720
742
695
716
732
720
720
723
719
723
719
715
710
719
718
714
722
714
725
722
717
728
732
729
723
722
726
724
724
711
714
718
729
724
721
723
716
718
727
735
737
732
731
725
722
723
722
724
725
730
723
726
733
733
729
727
720
725
732
724
727
724
724
723
721
583
592
589
589
583
584
583
588
584
584
585
589
585
583
588
608
566
585
599
588
588
591
587
591
587
584
580
587
587
583
590
583
593
590
586
596
599
597
591
590
594
592
592
581
583
587
596
592
589
591
585
587
595
601
603
599
598
593
590
591
590
592
593
597
591
594
600
600
596
594
588
593
599
592
595
592
592
591
589
Table A10. 1. Trace element compositions and temperature measurements for the Dora
Maira samples (continued)
225
Appendix A10
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
15623a-45
15623a-46
15623a-47
15623a-48
15623a-49
15623a-50
15623a-51
15623a-52
15623a-53
15623a-54
15623a-55
15623a-56
15623a-57
15623a-58
15623a-59
15623a-60
15623a-61
15623a-62
15623a-63
15623a-64
15623a-65
20254-1
20254-2
20254-3
20254-4
20254-5
20254-6
20254-7
20254-8
20254-9
20254-10
20254-11
20254-12
20254-13
20254-14
20254-15
20254-16
20254-17
20254-18
20254-19
20254-20
20254-21
20254-22
20254-23
20254-24
20254-25
20254-26
20254-27
20254-28
20254-29
20254-30
20254-31
20254-32
20254-33
20254-34
20254-35
20254-36
20254-37
20254-38
20254-39
20254-40
20254-41
20254-42
20254-43
20254-44
20254-45
20254-46
20254-47
20254-48
20254-49
20254-50
20254-51
20254-52
20254-53
20254-54
20254-55
20254-56
20254-57
0.0049
0.0044
0.0044
0.0035
0.0066
1.5200
0.0081
0.0033
0.0040
0.0748
0.0042
0.0064
0.0057
0.0058
0.0069
0.0053
0.0235
0.0060
0.0073
0.0077
0.0062
0.0096
0.0007
0.0004
0.0006
0.0112
0.0006
0.0003
0.0225
0.0004
0.0007
0.0004
0.0005
0.0007
0.0005
0.0004
0.0008
0.0007
0.0005
0.0005
0.0006
0.0004
0.0004
0.0006
0.0010
0.0006
0.0006
0.0004
0.0007
0.0007
0.0006
0.0008
0.0003
0.0004
0.0005
0.0006
0.0007
0.0004
0.0004
0.0004
0.0039
0.0016
0.0006
0.0005
0.0006
0.0005
0.0004
0.0004
0.0006
0.0005
0.0005
0.0005
0.0004
0.0006
0.0015
0.0006
0.0005
0.0007
0.62
0.58
0.48
0.48
0.51
1.51
0.51
0.45
0.45
0.66
0.44
0.64
0.66
0.67
0.66
0.62
0.59
0.53
0.53
0.54
0.55
0.06
0.03
0.04
0.03
0.06
0.04
0.04
0.16
0.08
0.08
0.04
0.03
0.04
0.05
0.07
0.06
0.00
0.02
0.08
0.05
0.00
0.00
0.03
0.05
0.06
0.06
0.08
0.00
0.00
0.07
0.07
0.00
0.00
0.03
0.03
0.08
0.07
0.06
0.06
0.10
0.04
0.00
0.00
0.00
0.00
0.05
0.05
0.03
0.04
0.04
0.04
0.18
0.15
0.05
0.05
0.04
0.09
0.08
0.09
0.07
0.06
0.06
1.69
0.06
0.04
0.04
0.10
0.04
0.07
0.07
0.06
0.08
0.06
0.06
0.05
0.06
0.06
0.05
0.12
0.07
0.07
0.05
0.10
0.04
0.06
0.34
0.06
0.07
0.09
0.06
0.07
0.05
0.09
0.06
0.06
0.05
0.08
0.05
0.07
0.06
0.04
0.07
0.05
0.04
0.04
0.08
0.12
0.07
0.08
0.06
0.08
0.07
0.09
0.08
0.09
0.07
0.05
0.17
0.08
0.06
0.07
0.06
0.04
0.07
0.05
0.06
0.06
0.07
0.05
0.06
0.06
0.06
0.06
0.07
0.06
903
909
798
821
908
953
963
612
581
583
608
571
565
573
578
710
713
768
778
770
766
372
372
367
364
405
400
406
407
364
363
375
376
394
385
394
389
367
365
368
363
351
348
391
394
407
408
387
361
363
362
364
342
355
394
398
371
382
339
335
359
354
359
361
367
365
371
375
367
363
398
391
395
392
389
390
382
387
34
34
32
32
27
28
30
14
14
16
14
31
32
30
32
30
28
31
30
33
36
88
92
80
80
90
93
105
107
85
80
86
88
108
107
71
68
76
81
94
97
103
97
102
104
95
97
123
84
87
85
84
78
77
96
99
75
74
68
67
70
68
107
106
88
84
98
93
106
103
108
105
82
82
98
107
114
108
134
140
147
162
140
149
154
152
153
151
149
142
148
146
147
155
149
123
126
133
141
157
165
148
154
150
153
142
142
144
149
157
162
141
147
143
151
155
134
154
158
161
159
147
148
145
152
159
144
139
144
139
164
165
135
141
158
150
146
145
142
160
159
157
146
153
157
159
157
162
153
153
156
159
162
157
152
161
10400
10400
9370
9410
9870
10200
10100
9080
9260
9450
9140
11100
11300
11300
11200
12000
11400
10200
10700
10900
10100
5700
5820
5850
5870
5710
5800
5950
5870
6050
5770
5840
5970
6130
6110
5850
5760
5640
5670
5560
5450
5650
5680
5800
6080
5670
5870
5700
5730
5870
5350
5360
5680
5720
5820
5920
5770
5800
5570
5560
5320
5540
5500
5540
5750
5770
5680
5780
5680
5790
5720
5750
5790
5890
5290
5640
5790
6110
17.2
17.7
7.3
7.5
10.0
14.9
19.6
4.4
3.8
4.2
4.4
29.3
36.1
17.4
36.3
16.5
25.8
13.0
11.2
11.0
12.7
51.5
55.2
34.3
44.6
36.2
44.6
28.7
30.4
26.7
30.9
51.4
55.5
34.1
31.5
23.7
32.8
40.6
29.7
48.7
53.3
46.2
45.3
56.3
49.3
24.5
35.0
43.8
35.6
25.0
47.9
39.7
53.3
56.7
35.9
39.7
41.0
28.7
36.5
35.0
47.8
58.5
47.8
48.4
36.4
44.5
41.5
43.7
46.3
51.5
40.2
35.3
40.6
41.7
55.7
49.5
47.1
43.2
530
444
563
561
496
516
532
426
468
329
350
617
625
618
635
658
619
386
391
410
398
793
720
702
725
701
679
663
657
720
699
810
773
698
717
619
663
746
692
735
760
705
707
786
677
650
690
694
710
690
797
790
714
752
709
714
708
730
756
750
781
853
732
711
704
692
639
758
694
661
726
744
651
647
805
705
668
752
2.2
2.8
1.4
0.9
1.6
2.4
0.4
2.1
2.6
2.6
2.2
1.8
1.9
1.7
1.0
2.6
9.9
2.8
2.3
2.7
1.3
0.7
1.4
2.3
1.4
0.8
1.6
2.7
6.9
1.7
1.5
1.6
1.6
2.9
1.7
1.5
1.2
1.0
1.1
1.5
0.9
1.3
1.7
1.3
2.1
1.3
1.1
1.5
1.2
1.6
1.1
1.3
0.6
1.1
1.6
1.5
1.2
1.5
1.5
1.4
1.6
1.0
1.2
1.2
1.3
1.2
1.7
1.2
1.5
1.5
1.4
1.1
1.5
1.7
0.8
1.1
2.2
2.0
5.9
6.1
6.2
7.3
6.3
6.9
6.9
6.6
7.0
6.6
6.4
6.6
7.0
6.8
6.5
7.1
6.9
5.1
5.6
5.3
6.4
7.7
7.0
7.5
8.4
7.5
7.7
7.5
7.2
7.6
8.0
7.8
7.8
7.7
6.8
7.5
7.7
7.5
6.8
7.9
7.8
7.2
7.7
7.3
7.5
7.4
8.0
7.8
7.3
7.9
7.5
7.1
8.5
8.4
7.3
7.8
8.1
7.5
7.6
7.7
8.0
6.8
7.9
8.2
7.3
7.7
7.3
7.1
7.1
8.0
7.7
7.9
7.1
7.3
8.1
7.6
7.7
7.4
786
850
581
596
676
716
708
609
601
602
574
843
834
838
836
923
863
826
846
821
807
824
571
511
492
762
401
553
559
605
579
379
469
549
551
600
618
724
544
587
542
524
546
651
660
544
523
456
479
541
565
518
713
614
581
552
489
483
636
682
596
803
495
532
575
586
588
557
562
558
483
673
612
606
582
556
579
544
160
192
152
134
154
165
150
77
86
102
83
204
189
200
179
186
321
208
217
199
158
247
310
346
370
263
417
318
331
358
368
421
396
334
333
318
307
339
346
360
351
311
294
366
296
299
310
389
363
359
367
365
338
366
339
349
355
337
370
356
392
350
343
328
316
308
256
279
327
300
368
281
282
298
301
305
336
389
3.3
1.3
5.2
5.2
2.8
1.7
2.9
0.3
0.3
0.5
0.4
1.1
1.1
1.1
1.3
0.8
1.0
0.5
2.1
3.4
3.5
4.2
3.8
2.6
3.0
4.3
4.3
5.4
6.5
4.6
4.4
3.7
4.1
4.0
2.9
3.1
2.5
5.0
4.8
5.1
4.3
4.4
4.3
4.3
6.1
1.7
2.2
3.0
3.5
3.6
4.8
4.9
4.2
3.9
3.0
3.2
3.6
6.5
4.7
5.0
10.0
8.4
4.7
4.5
2.8
2.8
3.1
3.2
2.4
2.5
2.2
3.4
4.2
3.5
3.4
3.6
2.8
3.2
Ts
Ts F&W
Tomkins
a(SiO2)=1
(3.7 GPa)
714
717
721
729
717
722
725
724
724
723
722
718
722
721
721
725
722
707
709
713
718
726
730
722
725
723
724
718
718
720
722
726
729
718
721
719
723
725
714
725
727
728
727
721
722
720
724
727
720
717
720
717
730
730
714
718
727
723
721
720
718
728
727
726
721
724
726
727
726
729
724
724
726
727
729
726
724
728
583
586
589
596
586
590
593
592
592
591
590
587
590
589
589
593
590
577
578
582
586
594
598
590
593
591
592
587
587
588
590
594
596
586
589
587
591
593
583
593
594
596
595
589
590
588
592
595
588
585
588
585
597
598
583
586
594
591
589
588
587
595
595
594
589
592
594
595
594
596
592
592
594
595
596
594
592
596
Table A10. 1. Trace element compositions and temperature measurements for the Dora
Maira samples (continued)
226
Appendix A10
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
20254-58
20254-59
20254-60
20254-61
20254-62
20254-63
20254-64
20254-65
20254-66
20254-67
20254-68
20254-69
20254-70
20254-71
20254-72
20254-73
20254-74
20254-75
20254-76
20254-77
20254-78
20254-79
20254-80
20254-81
20254-82
20254-83
20254-84
20254-85
20254-86
20254-87
20254-88
20254-89
20254-90
20254-91
20254-92
20254-93
20254-94
20254-95
20254-96
20254-97
20254-98
20254-99
20254-100
20254-101
20254-102
20254-103
20254-104
0.0006
0.0004
0.0006
0.0005
0.0006
0.0008
0.0005
0.0006
0.0009
0.0005
0.0005
0.0005
0.0004
0.0005
0.0005
0.0006
0.0007
0.0007
0.0005
0.0005
0.0006
0.0005
0.0005
0.0004
0.0006
0.0007
0.0007
0.0005
0.0004
0.0006
0.0003
0.0004
0.0004
0.0004
0.0006
0.0005
0.0005
0.0005
0.0005
0.0005
0.0003
0.0006
0.0007
0.0006
0.0005
0.0004
0.0003
0.07
0.07
0.02
0.02
0.03
0.03
0.03
0.03
0.00
0.00
0.09
0.07
0.06
0.06
0.01
0.01
0.00
0.00
0.01
0.01
0.02
0.02
0.01
0.01
0.00
0.00
0.07
0.07
0.05
0.06
0.05
0.04
0.00
0.00
0.03
0.03
0.01
0.01
0.00
0.03
0.00
0.03
0.01
0.02
0.02
0.06
0.06
0.07
0.07
0.04
0.05
0.05
0.07
0.06
0.07
0.09
0.07
0.08
0.04
0.05
0.06
0.07
0.05
0.05
0.05
0.05
0.07
0.07
0.04
0.04
0.05
0.04
0.05
0.08
0.04
0.06
0.06
0.05
0.05
0.06
0.04
0.08
0.06
0.07
0.05
0.05
0.07
0.05
0.06
0.04
0.09
0.05
0.06
0.04
342
344
356
363
439
441
381
378
371
366
383
373
383
392
368
366
352
361
390
403
410
410
379
375
375
367
379
389
404
410
403
410
321
320
360
357
343
342
337
358
319
362
338
390
394
391
400
86
89
73
71
77
75
96
95
79
83
89
82
70
75
121
121
114
111
103
97
108
115
109
127
87
92
120
120
122
123
95
96
83
80
90
94
92
102
84
92
81
92
93
101
107
86
90
138
141
137
131
146
144
154
156
150
141
157
157
155
163
142
151
138
148
127
133
157
155
151
145
145
141
154
137
159
155
153
157
147
150
144
149
155
152
146
150
141
152
144
145
150
148
148
5590
5750
5880
5930
6210
5980
5620
5780
5880
5810
5760
5610
5850
5880
5570
5620
5660
5710
5650
5740
5760
5780
5900
5650
5840
5470
5850
5840
5870
5990
5650
5550
5690
5550
5800
5660
5740
5740
5600
5740
5640
5760
5360
5850
5710
5730
5850
39.0
37.1
32.5
33.4
44.9
34.5
43.7
43.7
29.7
29.3
48.7
51.3
53.3
48.1
36.9
44.9
37.9
45.9
32.0
31.7
48.3
41.6
37.9
41.9
50.7
47.1
45.9
36.7
39.9
35.7
55.0
48.2
46.9
46.5
39.0
40.8
49.3
48.6
47.0
44.9
41.9
40.6
47.2
27.7
45.4
38.3
45.8
724
722
731
724
758
678
636
721
731
712
703
721
732
711
680
714
677
729
672
679
670
648
696
694
725
720
666
711
651
679
663
736
673
706
685
670
754
681
690
672
686
667
731
715
706
673
684
1.4
1.1
1.4
1.4
3.3
3.9
1.4
1.6
2.0
1.5
1.7
1.6
1.4
1.8
1.1
1.1
1.2
1.4
3.4
4.0
4.4
1.6
1.7
1.2
1.3
1.3
1.6
1.5
1.7
1.7
1.3
0.9
1.2
1.2
1.4
1.6
1.5
1.4
1.5
1.7
1.2
1.5
1.1
1.4
1.7
1.4
1.7
7.1
7.1
7.0
6.9
7.1
7.7
7.3
6.9
7.7
7.1
7.9
7.2
7.8
7.3
7.0
7.4
7.3
7.4
6.5
6.2
7.2
7.1
7.3
7.4
7.2
7.3
7.3
6.3
7.0
7.3
7.6
7.2
7.2
7.6
7.1
7.4
7.3
7.1
7.0
6.8
7.2
7.4
6.2
7.9
7.1
7.2
6.9
678
590
582
558
603
634
589
561
413
493
451
262
482
405
541
504
547
521
547
521
547
547
564
539
566
668
564
879
510
476
539
707
560
490
481
534
550
535
568
461
529
526
515
504
402
537
531
330
343
339
326
300
298
279
280
395
358
390
456
377
417
318
291
279
287
318
331
271
263
302
305
311
304
303
323
299
368
307
265
305
315
334
331
309
280
293
327
332
330
298
360
349
320
345
3.5
3.4
4.9
5.5
9.1
6.9
3.4
3.3
7.6
6.5
4.2
3.1
6.3
4.0
3.4
3.4
3.6
4.1
2.6
3.5
3.3
3.1
4.8
3.4
4.5
5.0
3.1
2.9
3.5
3.6
2.8
3.0
4.4
3.4
4.0
4.3
4.6
5.9
4.6
3.9
4.4
4.3
5.0
3.4
2.9
3.0
3.7
Ts
Ts F&W
Tomkins
a(SiO2)=1
(3.7 GPa)
716
718
716
712
721
720
725
726
723
718
726
726
725
729
718
723
716
722
710
713
726
725
723
720
720
718
725
716
727
725
724
726
721
723
720
722
725
724
721
723
718
724
720
720
723
722
722
585
586
584
581
589
588
593
594
591
586
594
594
593
597
587
591
585
590
579
582
594
593
591
588
588
586
593
584
595
593
592
594
589
591
588
590
593
592
589
591
586
592
588
588
591
590
590
Table A10. 1. Trace element compositions and temperature measurements for the Dora
Maira samples (continued)
227
Appendix A11
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SL 10/4-1
SL 10/4-2
SL 10/4-3
SL 10/4-4
SL 10/4-5
SL 10/4-6
SL 10/4-7
SL 10/4-8
SL 10/4-9
SL 10/4-10
SL 10/4-11
SL 10/4-12
SL 10/4-13
SL 10/4-14
SL 10/4-15
SL 10/4-16
SL 10/4-17
SL 10/4-18
SL 10/4-19
SL 10/4-20
SL 10/4-21
SL 10/4-22
SL 10/4-23
SL 10/4-24
SL 10/4-25
SL 10/4-26
SL 10/4-27
SL 10/4-28
SL 10/4-29
SL 10/4-30
SL 10/4-31
SL 10/4-32
SL 10/4-33
SL 10/4-34
SL 10/4-35
SL 10/4-36
SL 10/4-37
SL 10/4-38
SL 10/4-39
SL 10/4-40
SL 10/4-41
SL 10/4-42
SL 10/4-43
SL 10/4-44
SL 10/4-45
SL 10/4-46
SL 10/4-47
SL 10/4-48
SL 10/4-49
SL 10/4-50
SL 10/4-51
SL 10/4-52
SL 10/4-53
SL 10/4-54
SL 10/4-55
SL 10/4-56
SL 10/4-57
SL 10/4-58
SL 10/4-59
SL 10/4-60
SL 10/4-61
SL 10/4-62
SL 10/4-63
SL 10/4-64
SL 10/4-65
SL 10/4-66
SL 10/4-67
SL 10/4-68
SL 10/4-69
SL 10/4-70
SL 10/4-71
SL 10/4-72
SL 10/4-73
SL 10/4-74
SL 10/4-75
SL 10/4-76
SL 10/4-77
SL 10/4-78
SL 10/4-79
0.003
0.002
0.016
0.005
0.003
0.004
0.003
0.007
0.004
0.004
0.004
0.006
0.006
0.003
0.002
0.003
0.003
0.004
0.002
0.004
0.003
0.008
0.003
0.033
0.004
0.002
0.003
0.002
0.003
0.002
0.002
0.004
0.016
0.010
0.023
0.002
0.003
0.002
0.002
0.002
0.003
0.002
0.002
0.005
0.004
0.002
0.003
0.050
0.002
0.014
0.013
0.002
0.001
0.002
0.012
0.002
0.033
0.002
0.002
0.004
0.001
0.002
0.019
0.005
0.002
0.002
0.002
0.002
0.002
0.004
0.006
0.003
0.002
0.004
0.002
0.002
0.002
0.002
0.003
0.02
0.03
0.15
0.02
0.00
0.02
0.02
0.02
0.03
0.03
0.01
0.02
0.06
0.00
0.02
0.01
0.01
0.03
0.00
0.03
0.02
0.09
0.02
0.30
0.01
0.04
0.02
0.01
0.01
0.02
0.01
0.03
0.03
0.04
0.03
0.08
0.03
0.01
0.00
0.03
0.01
0.01
0.02
0.00
0.07
0.03
0.01
0.09
0.05
0.14
0.06
0.01
0.03
0.01
0.04
0.01
0.12
0.03
0.03
0.03
0.03
0.01
0.07
0.05
0.02
0.00
0.06
0.02
0.02
0.01
0.00
0.02
0.02
0.01
0.02
0.01
0.01
0.03
0.02
0.13
0.11
0.49
0.22
0.23
0.17
0.19
0.16
0.17
0.16
0.23
0.35
0.30
0.15
0.16
0.15
0.12
0.17
0.22
0.16
0.17
0.21
0.13
0.69
0.19
0.17
0.17
0.11
0.19
0.16
0.12
0.18
0.69
0.13
0.40
0.14
0.13
0.16
0.12
0.11
0.16
0.10
0.12
0.25
0.23
0.21
0.23
0.27
0.10
0.36
0.18
0.11
0.11
0.11
0.19
0.11
0.28
0.11
0.16
0.09
0.11
0.12
0.31
0.18
0.15
0.18
0.15
0.12
0.11
0.27
0.21
0.14
0.12
0.09
0.11
0.14
0.15
0.14
0.19
1750
731
361
2490
2140
1070
1500
777
2060
1520
1850
1770
1400
1340
1110
341
960
955
549
1480
1400
879
1350
1420
1260
1560
1430
1010
1860
1340
835
1070
910
1580
1790
1180
1410
2020
1790
846
1910
1290
1420
2210
1570
1150
1340
888
1040
1210
1500
1020
1260
1160
1290
801
4400
1020
1480
1250
1490
866
763
904
808
613
795
1330
1230
1290
1410
780
1100
1680
1080
995
1070
1530
1600
250
333
484
3840
2140
461
883
78
620
384
515
883
518
889
499
255
4830
373
270
492
604
500
502
426
447
522
483
4200
1010
503
2980
499
3170
538
2180
341
444
1420
3310
215
921
789
1190
1150
504
440
443
396
359
471
1910
82
470
437
1000
1670
561
441
497
407
508
1950
160
319
189
189
340
325
204
1910
846
408
520
838
252
286
461
586
583
64
34
32
45
61
72
62
99
48
33
50
61
75
55
75
55
104
52
64
50
49
93
66
64
61
24
43
61
36
52
45
88
55
42
66
37
75
40
57
46
47
71
56
87
50
86
44
51
76
50
38
49
40
63
49
64
48
47
74
77
41
42
98
57
41
67
59
46
70
53
78
94
65
42
66
41
109
67
72
3320
2690
2340
2450
358
1740
1460
1210
2450
2250
966
830
1980
308
1660
2520
1890
1800
2190
1970
1190
1700
1900
1690
1550
1610
1790
2370
628
1800
2010
2280
1980
1350
321
1530
1840
1030
262
2030
229
1840
806
958
1420
2180
1650
586
1350
2000
1220
648
1780
1160
1260
2310
2190
2700
2530
597
1760
1580
2160
301
1730
1390
1820
1580
654
1970
521
2280
710
1370
1940
2130
371
1770
2560
1.7
1.3
1.8
2.8
2.2
1.8
2.3
1.4
2.6
1.5
2.7
3.7
3.7
2.6
2.1
3.0
2.2
1.9
9.1
1.6
1.9
2.0
1.7
3.9
2.0
1.3
1.1
1.1
1.2
2.2
1.5
2.8
3.6
1.2
3.5
2.1
1.3
1.5
1.1
1.2
6.7
0.8
0.8
2.5
1.0
1.2
1.4
1.5
1.0
1.7
1.4
1.4
0.8
0.8
1.5
2.0
1.3
1.2
2.0
1.6
0.5
0.8
2.3
3.9
1.7
5.3
1.2
1.6
1.6
2.6
2.9
1.7
1.1
1.2
1.2
1.4
8.2
1.6
3.3
45
65
101
94
83
90
64
53
111
68
71
56
73
38
137
123
105
111
94
101
141
125
125
82
82
5
295
179
234
139
82
132
93
47
30
89
59
74
64
322
15
68
64
48
84
169
108
106
203
99
86
31
77
82
120
82
84
85
61
70
59
127
78
84
45
40
170
116
60
72
78
159
71
94
49
156
28
81
99
8.1
0.7
15.3
6.1
3.8
6.1
4.7
24.0
1.3
1.2
3.4
6.8
16.2
214.0
7.3
18.0
20.8
5.0
64.5
3.7
1.9
6.0
19.7
4.5
16.5
0.8
1.0
35.4
29.3
3.8
8.5
3.7
15.9
96.0
20.9
3.6
10.8
1.9
2.7
7.5
104.0
4.2
20.4
43.0
2.9
2.4
4.3
5.6
10.7
5.3
4.1
23.5
1.5
2.2
1.1
152.0
3.4
2.4
8.8
3.6
1.5
5.5
6.0
1.0
4.0
16.6
21.5
1.3
12.7
4.3
11.7
2.7
2.0
0.6
3.9
1.1
60.1
8.7
6.7
3.3
1.6
2.6
3.6
4.0
3.8
2.9
5.5
3.4
1.9
1.9
3.9
4.0
3.7
4.1
4.6
4.9
2.4
2.7
3.1
2.5
4.3
3.3
2.4
2.8
2.2
2.9
4.0
2.7
3.3
3.7
4.4
3.7
2.3
4.2
3.6
3.7
2.4
3.3
2.0
1.8
3.8
3.1
2.7
3.4
4.5
2.2
4.8
3.1
4.1
1.8
3.7
1.6
4.5
3.1
5.3
3.1
3.0
4.5
3.8
2.3
2.7
5.4
2.5
1.2
4.6
3.3
3.0
4.7
3.1
3.9
5.0
4.2
2.6
3.7
2.6
5.1
3.4
3.1
263
163
148
117
23
100
91
82
161
118
67
48
126
13
107
197
88
131
169
128
76
119
105
114
79
68
210
136
35
130
138
117
98
54
14
120
96
62
10
136
14
87
27
57
100
162
110
21
107
122
54
45
87
84
58
148
135
165
124
37
104
138
134
13
96
121
126
100
41
66
27
167
51
82
105
149
20
87
191
136
75
225
230
1690
142
156
387
298
100
57
109
48
322
254
156
321
237
210
96
358
633
183
404
100
16
252
191
535
234
241
160
238
803
351
199
95
227
304
1230
371
96
195
171
81
857
176
356
552
138
1050
437
175
153
192
317
126
110
91
528
142
274
791
40
80
1030
331
109
434
255
269
747
183
543
82
126
125
83
85
2.1
0.1
4.4
0.4
0.2
0.7
0.2
1.3
0.2
0.1
0.2
0.3
3.2
0.6
0.9
0.7
3.6
2.3
3.3
4.4
1.7
1.3
3.8
1.5
3.0
0.1
0.2
0.6
2.7
0.5
0.9
1.8
2.3
0.8
0.5
0.2
2.7
0.6
0.1
1.4
0.5
2.9
0.6
0.6
0.9
2.1
0.3
0.4
2.0
1.5
3.8
3.8
0.2
0.4
0.3
1.2
1.8
0.1
0.3
0.5
1.6
2.4
1.2
0.2
0.1
0.1
2.9
0.3
1.0
0.6
1.6
1.9
0.5
0.3
0.2
0.7
6.4
3.2
0.4
Ts
Ts
Ts
Ts
Ts
Tomkins Tomkins Tomkins Tomkins Tomkins
(3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa)
659
616
612
635
655
668
657
690
640
615
642
655
670
648
670
648
694
645
660
642
641
686
662
659
656
596
632
655
621
644
634
682
648
631
662
623
670
627
651
636
638
666
650
681
642
680
633
643
671
641
624
641
628
658
640
659
639
638
669
672
629
630
690
651
629
662
653
637
665
646
673
687
660
630
662
629
698
662
668
586
547
543
565
583
594
585
615
569
546
571
583
597
577
597
576
619
574
587
570
570
611
589
586
584
528
562
583
551
573
564
607
577
560
589
553
596
557
579
565
567
593
578
607
571
606
562
572
598
570
555
570
557
586
569
587
568
567
596
599
558
560
615
579
559
589
581
566
592
575
599
612
587
560
589
559
622
589
594
565
526
523
544
562
573
563
593
548
526
550
562
575
555
575
555
597
553
565
549
549
589
567
565
562
508
541
562
531
552
543
585
556
540
567
533
575
536
558
544
546
571
557
585
550
584
542
551
576
549
534
549
537
564
548
565
547
546
574
577
538
539
593
558
538
568
559
545
571
554
578
590
566
539
567
538
600
568
573
612
571
568
590
608
620
610
642
594
571
596
608
623
602
622
602
646
599
613
596
595
638
614
612
609
552
586
609
576
598
589
634
602
585
614
578
622
582
604
590
592
619
603
633
596
632
587
597
624
595
579
595
582
611
594
612
593
592
622
625
583
585
642
604
584
615
606
591
618
600
625
638
613
585
614
584
649
615
620
531
494
491
510
528
538
529
558
514
493
516
528
541
522
540
521
561
519
531
516
516
554
533
531
528
476
508
528
498
518
510
550
522
506
533
500
540
503
524
511
512
537
523
550
516
549
508
517
542
516
501
515
504
530
515
531
513
513
540
542
505
506
558
524
505
533
526
512
536
520
543
555
531
506
533
505
564
533
538
Table A11.1. Trace element compositions and temperature measurements for the detrital
samples from the Western Alps
228
Appendix A11
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SL 10/4-80
SL 10/4-81
SL 10/4-82
SL 10/4-83
SL 10/4-84
SL 10/4-85
SL 10/4-86
SL 10/4-87
SL 10/4-88
SL 10/4-89
SL 10/4-90
SL 10/4-91
SL 10/4-92
SL 10/10-1
SL 10/10-2
SL 10/10-3
SL 10/10-4
SL 10/10-5
SL 10/10-6
SL 10/10-7
SL 10/10-8
SL 10/10-9
SL 10/10-10
SL 10/10-11
SL 10/10-12
SL 10/10-13
SL 10/10-14
SL 10/10-15
SL 10/10-16
SL 10/10-17
SL 10/10-18
SL 10/10-19
SL 10/10-20
SL 10/10-21
SL 10/10-22
SL 10/10-23
SL 10/10-24
SL 10/10-25
SL 10/10-26
SL 10/10-27
SL 10/10-28
SL 10/10-29
SL 10/10-30
SL 10/10-31
SL 10/10-32
SL 10/10-33
SL 10/10-34
SL 10/10-35
SL 10/10-36
SL 10/10-37
SL 10/10-38
SL 10/10-39
SL 10/10-40
SL 10/10-41
SL 10/10-42
SL 10/10-43
SL 10/10-44
SL 10/10-45
SL 10/10-46
SL 10/10-47
SL 10/10-48
SL 10/10-49
SL 10/10-50
SL 10/10-51
SL 10/10-52
SL 10/10-53
SL 10/10-54
SL 10/10-55
SL 10/10-56
SL 10/10-57
SL 10/10-58
SL 10/10-59
SL 10/10-60
SL 10/10-61
SL 10/10-62
SL 10/10-63
SL 10/10-64
SL 10/10-65
SL 10/10-66
0.002
0.002
0.003
0.003
0.003
0.002
0.002
0.002
0.003
0.003
0.002
0.006
0.003
0.002
0.068
0.012
0.002
0.002
0.003
0.003
0.003
0.002
0.002
0.003
0.002
0.003
0.003
0.003
0.005
0.002
0.003
0.003
0.003
0.004
0.004
0.003
0.002
0.002
0.003
0.002
0.003
0.004
0.003
0.002
0.002
0.003
0.012
0.004
0.003
0.003
0.003
0.003
0.004
0.003
0.004
0.004
0.003
0.002
0.005
0.005
0.002
0.003
0.003
0.006
0.011
0.003
0.014
0.003
0.005
0.004
0.003
0.006
0.003
0.005
0.003
0.002
0.004
0.006
0.002
0.01
0.01
0.02
0.01
0.02
0.01
0.01
0.00
0.01
0.02
0.01
0.03
0.02
0.02
0.03
0.02
0.02
0.02
0.03
0.03
0.00
0.02
0.00
0.01
0.03
0.02
0.00
0.02
0.01
0.01
0.03
0.04
0.03
0.01
0.02
0.02
0.02
0.00
0.02
0.02
0.01
0.01
0.03
0.03
0.01
0.01
0.04
0.02
0.02
0.03
0.02
0.02
0.02
0.01
0.02
0.02
0.01
0.02
0.04
0.01
0.02
0.02
0.02
0.04
0.01
0.02
0.01
0.02
0.06
0.02
0.03
0.06
0.02
0.03
0.03
0.03
0.04
0.01
0.01
0.11
0.13
0.13
0.14
0.15
0.12
0.09
0.14
0.13
0.14
0.09
0.12
0.14
0.21
0.14
0.13
0.15
0.18
0.12
0.17
0.14
0.13
0.15
0.14
0.12
0.16
0.10
0.12
0.10
0.13
0.16
0.16
0.14
0.12
0.11
0.17
0.13
0.11
0.17
0.13
0.15
0.18
0.16
0.11
0.11
0.14
0.19
0.18
0.13
0.13
0.18
0.16
0.12
0.15
0.18
0.22
0.17
0.11
0.29
0.13
0.11
0.12
0.14
0.15
0.11
0.12
0.16
0.14
0.19
0.15
0.13
1.94
0.14
0.19
0.12
0.11
0.16
0.12
0.15
838
1400
639
1290
1200
1710
729
358
1560
1430
898
1130
1030
1270
1800
1970
1830
1390
984
1130
1020
1220
1580
1770
1570
1400
2520
1870
1740
2090
2290
1420
1270
1690
1440
1840
1310
3090
1270
1500
1180
1200
1030
1070
1450
1250
1440
1340
1040
1430
1270
1500
1430
2490
947
1750
1030
1390
1180
1150
1150
1260
1450
956
1430
1150
1110
1080
1290
1290
1460
1530
1190
1280
1130
724
981
1690
1800
345
468
731
578
269
907
266
252
337
441
365
413
408
564
573
934
61
593
453
435
2130
426
43
212
397
536
58
501
915
455
671
371
449
810
1110
374
368
18
312
445
453
635
464
419
429
497
390
508
616
554
232
406
439
500
566
1340
407
480
383
438
462
468
530
300
3010
443
4000
320
451
447
380
441
410
540
391
326
445
620
634
38
46
52
83
63
35
53
82
56
46
78
60
85
149
41
71
44
95
105
138
68
64
121
53
120
46
106
126
94
124
41
62
142
95
86
53
52
66
161
38
142
57
123
145
119
75
144
130
75
42
74
144
147
48
74
45
73
119
49
106
64
133
143
52
60
152
51
44
76
100
68
88
128
53
119
64
127
75
59
2420
1770
2100
970
1650
1260
1930
2410
973
1840
2020
2290
2280
2030
1760
1250
160
1560
1880
1950
2110
1240
242
521
1400
1890
47
2210
669
1830
1150
1810
1710
1480
1230
1620
2040
9
2030
2110
1920
2040
1970
1900
1390
1730
2000
1800
1870
1930
1240
2060
2370
1800
2430
1530
2860
1850
1600
1980
1760
2010
2420
1720
2210
1820
1860
2150
1800
1810
1920
1950
1650
2020
1640
1790
1880
1360
2260
1.5
1.5
1.9
1.8
2.2
1.1
1.6
4.4
1.6
1.5
1.5
1.6
1.8
2.1
1.3
2.0
8.5
1.1
1.2
1.8
1.5
1.4
13.8
2.3
1.2
2.0
12.7
1.6
1.4
1.8
1.4
1.8
2.4
1.4
1.7
1.8
1.8
9.4
2.1
1.3
1.5
2.3
1.4
1.4
1.2
1.5
1.3
2.2
1.8
1.6
1.2
1.8
2.1
13.6
1.6
2.0
1.6
1.5
3.4
1.9
1.1
2.0
2.2
2.0
1.5
1.7
2.0
1.3
3.9
2.7
1.4
2.8
3.4
1.8
2.4
2.2
2.1
1.5
1.6
92
67
90
69
214
72
48
100
173
115
102
139
161
113
81
111
12
107
128
117
78
57
39
112
80
124
4
98
137
155
18
76
109
70
63
126
86
5
109
146
111
90
121
106
55
100
134
104
105
89
98
118
113
25
86
94
90
111
148
107
95
133
101
115
169
110
135
80
116
109
54
146
111
133
93
57
125
56
85
3.2
5.1
3.7
17.6
7.7
12.2
3.2
636.0
9.2
4.9
22.7
11.3
2.9
0.8
1.7
49.9
42.2
0.8
0.9
0.9
5.1
30.6
17.9
31.7
1.3
0.8
80.9
2.0
2.3
1.3
0.6
4.9
1.0
56.7
11.2
2.7
4.1
128.0
1.2
3.7
0.8
4.4
0.8
2.0
1.4
2.3
0.7
1.9
2.1
1.0
1.1
0.8
1.1
2.8
6.9
1.2
4.3
0.6
2.7
2.0
1.3
1.2
2.7
1.3
13.3
1.1
6.1
2.5
2.2
1.0
7.4
1.2
1.1
1.1
0.9
2.2
1.0
30.7
3.6
3.0
3.3
3.5
3.5
3.1
4.0
2.8
3.8
3.5
2.6
3.7
2.9
3.6
7.5
2.4
4.3
4.0
3.6
5.2
6.5
3.4
3.6
5.5
2.7
6.0
4.0
5.1
5.2
6.8
5.2
2.5
3.1
7.2
4.5
5.0
2.9
4.0
5.0
9.1
2.5
7.2
3.7
7.5
7.3
5.3
5.1
7.3
6.5
6.5
1.7
4.9
6.2
7.2
4.2
4.0
2.4
4.8
6.8
2.5
5.7
5.0
7.9
7.5
3.1
4.9
7.5
3.5
2.8
5.8
4.9
3.6
4.3
6.4
4.6
5.7
5.6
7.5
4.5
2.9
176
106
118
75
144
64
100
176
60
126
110
175
145
151
122
76
6
103
128
127
86
79
15
26
91
133
3
98
30
120
47
110
119
89
73
100
168
1
155
158
162
160
235
133
108
124
128
124
155
105
83
132
151
107
132
97
201
124
108
127
129
124
161
137
138
123
135
129
212
109
99
177
106
132
107
127
126
96
136
182
163
81
228
1240
259
132
319
300
283
446
155
607
194
149
224
50
208
295
209
150
178
45
222
142
163
48
174
284
358
8
186
227
255
47
53
145
27
202
322
201
56
183
239
45
244
333
188
230
133
177
191
206
92
59
370
182
242
59
195
182
294
328
437
719
175
219
158
237
171
59
266
205
212
145
173
254
105
125
0.2
2.9
0.3
0.4
2.1
3.1
0.2
8.7
3.4
1.0
1.5
0.4
2.6
4.8
0.2
2.3
0.1
0.9
3.0
5.9
0.3
0.9
1.6
0.3
0.2
0.1
0.1
7.0
0.1
1.3
0.1
0.4
7.8
3.9
0.6
0.6
0.3
0.1
3.7
0.1
1.5
0.5
5.7
2.1
0.4
0.5
1.8
8.8
1.1
0.2
0.2
4.1
0.8
0.2
1.1
0.2
0.9
0.6
0.2
0.7
0.3
1.4
3.5
0.5
1.1
4.7
0.9
0.6
1.5
0.4
0.2
0.4
3.4
0.2
4.5
1.1
0.9
0.7
0.4
Ts
Ts
Ts
Ts
Ts
Tomkins Tomkins Tomkins Tomkins Tomkins
(3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa)
624
637
645
677
658
619
646
677
649
637
673
655
680
722
630
666
634
688
695
716
663
660
706
646
705
636
696
709
687
708
628
657
718
688
680
647
644
662
728
624
718
651
707
720
705
670
720
711
670
630
669
720
721
639
669
634
668
705
640
696
659
713
719
644
655
724
644
633
671
691
664
682
710
645
705
659
710
670
654
554
566
573
603
585
550
575
603
577
566
599
582
605
645
559
593
563
613
620
639
590
587
630
574
629
565
620
633
612
631
558
584
641
613
606
575
573
589
650
555
641
579
631
643
628
596
642
635
596
560
596
642
644
568
596
564
595
628
569
620
586
636
642
573
583
646
572
562
598
616
591
607
634
574
628
587
633
597
582
533
545
552
581
564
529
554
581
556
545
578
561
584
622
539
571
542
591
597
616
568
565
607
553
607
544
598
610
590
609
537
563
618
591
584
554
552
567
627
534
618
558
608
620
606
575
619
612
575
539
574
619
621
547
574
543
573
606
548
598
565
614
619
552
561
623
551
542
576
594
569
585
611
553
606
565
611
575
560
579
591
598
629
611
574
600
629
603
591
626
608
632
672
584
619
588
639
646
666
616
613
657
599
656
590
647
660
639
658
583
610
668
639
632
600
598
614
678
579
668
604
658
670
655
622
669
662
622
585
622
669
671
593
622
589
621
655
594
647
612
664
669
598
608
674
598
587
624
643
616
633
661
599
655
612
660
622
607
500
512
519
547
530
497
520
546
523
512
543
527
549
585
505
537
509
556
562
580
534
531
571
519
571
511
563
574
555
573
504
529
582
556
549
520
518
533
591
501
582
524
572
584
570
540
583
576
540
506
540
583
584
513
540
510
539
570
515
563
531
578
583
518
527
587
518
508
542
559
535
550
575
519
570
531
575
540
526
Table A11.1. Trace element compositions and temperature measurements for the detrital
samples from the Western Alps (continued)
229
Appendix A11
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SL 10/10-67
SL 10/10-68
SL 10/10-69
SL 10/10-70
SL 10/10-71
SL 10/10-72
SL 10/10-73
SL 10/10-74
SL 10/10-75
SL 10/10-76
SL 10/10-77
SL 10/10-78
SL 10/10-79
SL 10/10-80
SL 10/10-81
SL 10/10-82
SL 10/10-83
SL 10/10-84
SL 10/10-85
SL 10/10-86
SL 10/10-87
SL 10/10-88
SL 10/10-89
SL 10/10-90
SL 10/10-91
SL 10/10-92
SL 10/10-93
SL 10/10-94
SL 10/10-95
SL 10/10-96
SL 10/10-97
SL 10/10-98
SL 10/10-99
SL 10/12-1
SL 10/12-2
SL 10/12-3
SL 10/12-4
SL 10/12-5
SL 10/12-6
SL 10/12-7
SL 10/12-8
SL 10/12-9
SL 10/12-10
SL 10/12-11
SL 10/12-12
SL 10/12-13
SL 10/12-14
SL 10/12-15
SL 10/12-16
SL 10/12-17
SL 10/12-18
SL 10/12-19
SL 10/12-20
SL 10/12-21
SL 10/12-22
SL 10/12-23
SL 10/12-24
SL 10/12-25
SL 10/12-26
SL 10/12-27
SL 10/12-28
SL 10/12-29
SL 10/12-30
SL 10/12-31
SL 10/12-32
SL 10/12-33
SL 10/12-34
SL 10/12-35
SL 10/12-36
SL 10/12-37
SL 10/12-38
SL 10/12-39
SL 10/12-40
SL 10/12-41
SL 10/12-42
SL 10/12-43
SL 10/12-44
SL 10/12-45
0.002
0.004
0.003
0.002
0.003
0.033
0.002
0.004
0.002
0.262
0.004
0.002
0.003
0.002
0.002
0.003
0.003
0.002
0.003
0.003
0.003
0.004
0.002
0.004
0.002
0.004
0.003
0.003
0.011
0.003
0.002
0.004
0.047
0.002
0.003
0.170
0.029
0.002
0.002
0.003
0.002
0.002
0.002
0.002
0.002
0.003
0.002
0.002
0.002
0.003
0.002
0.002
0.003
0.003
0.002
0.003
0.003
0.003
0.004
0.001
0.003
0.002
0.002
0.002
0.003
0.002
0.002
0.003
0.003
0.004
0.002
0.002
0.003
0.001
0.001
0.005
0.001
0.001
0.02
0.01
0.01
0.02
0.02
0.03
0.02
0.03
0.01
0.26
0.03
0.02
0.02
0.03
0.02
0.05
0.02
0.02
0.03
0.02
0.03
0.01
0.08
0.02
0.01
0.01
0.03
0.01
0.03
0.02
0.02
0.01
0.05
0.02
0.04
0.24
0.30
0.02
0.01
0.02
0.01
0.02
0.00
0.03
0.04
0.01
0.00
0.01
0.01
0.02
0.01
0.01
0.03
0.01
0.03
0.02
0.02
0.02
0.06
0.02
0.01
0.02
0.02
0.03
0.04
0.01
0.02
0.01
0.01
0.01
0.01
0.03
0.05
0.02
0.03
0.05
0.03
0.00
0.13
0.15
0.16
0.11
0.12
0.38
0.13
0.20
0.12
1.94
0.26
0.14
0.12
0.21
0.11
0.20
0.18
0.10
0.15
0.18
0.15
0.14
0.15
0.12
0.14
0.22
0.15
0.12
0.47
0.16
0.15
0.17
0.46
0.14
0.18
1.54
0.76
0.15
0.14
0.17
0.13
0.11
0.13
0.13
0.15
0.18
0.11
0.23
0.13
0.19
0.15
0.10
0.17
0.19
0.11
0.17
0.18
0.14
0.84
0.11
0.18
0.10
0.09
0.12
0.16
0.18
0.16
0.19
0.15
0.14
0.14
0.14
0.11
0.10
0.14
0.20
0.22
0.18
1910
1250
1050
1390
937
1690
1250
859
1540
1810
1290
1280
1850
1360
1050
1190
1050
1730
1130
1310
1320
845
979
1250
1250
1190
1150
798
1430
1070
1370
986
1690
927
1370
1230
1200
669
3030
799
1490
1730
1370
1580
1140
5660
1760
3130
2310
1720
2030
910
1360
2830
1130
1210
1410
1090
1370
1330
792
1320
2040
1220
1110
1510
1250
2100
1030
885
1420
1380
2010
984
1390
1280
1780
1150
422
452
961
563
306
839
332
763
304
162
461
530
464
521
371
533
453
1200
418
435
424
78
417
412
537
527
311
524
446
453
471
482
193
514
534
437
149
372
711
316
615
879
5000
476
379
136
4640
4
198
558
509
324
426
37
417
398
455
388
398
437
339
404
365
533
347
500
664
815
388
462
2140
468
652
436
224
406
562
1860
133
145
72
106
54
79
39
87
78
41
114
106
44
125
44
135
115
55
148
40
111
46
53
87
51
158
114
98
136
96
63
80
70
100
149
61
139
92
770
43
53
63
57
229
140
50
42
29
34
93
79
90
106
24
114
104
147
164
136
110
161
79
32
75
123
61
124
40
123
106
76
130
54
145
151
64
92
38
2580
1960
1900
1800
1200
105
1900
2460
1670
239
2300
2170
2260
1480
2150
2040
1620
1860
2160
1660
1800
846
1820
1840
1500
2050
2340
2570
2190
2230
2080
2160
187
1840
2060
443
1050
2290
1810
2410
2030
1830
681
3140
1790
112
854
62
68
1690
1090
1550
1990
74
2060
2150
1480
2060
1050
2050
1670
2000
89
1990
2380
1920
1760
1520
1800
885
891
1870
1590
1980
1360
1470
1770
1030
2.9
3.0
1.8
1.3
1.9
1.6
1.2
1.6
1.3
2.5
1.9
1.9
1.4
2.4
1.0
1.4
1.7
1.3
1.7
2.1
2.9
8.8
1.6
2.1
1.6
1.8
2.4
2.0
4.2
2.3
1.8
2.7
4.9
1.5
2.1
5.6
4.4
1.9
36.8
2.2
1.3
1.6
1.4
3.8
2.9
4.6
1.1
1.4
1.5
1.5
1.4
1.8
1.8
4.1
1.7
1.7
1.6
2.0
1.1
1.5
2.5
1.7
2.1
1.3
1.8
1.3
2.1
1.9
1.9
1.8
1.3
1.7
1.8
1.4
2.4
0.9
1.3
1.2
132
100
69
120
111
32
106
74
77
32
98
102
98
45
244
97
97
75
109
229
110
54
136
115
144
102
129
88
126
146
90
100
35
122
99
107
35
111
12
127
118
72
9
127
103
25
77
6
17
118
100
46
98
73
99
101
90
116
108
109
182
143
19
128
124
84
114
46
102
43
137
141
122
86
82
118
100
102
2.3
1.0
10.3
0.6
4.4
48.2
4.5
0.7
5.2
23.4
1.4
2.5
2.4
4.0
1.8
0.8
0.8
5.6
1.7
3.6
1.2
401.0
6.1
2.2
4.6
1.0
1.0
1.0
2.8
1.1
2.1
3.2
17.5
0.9
0.8
3.1
4.8
1.7
0.8
1.8
1.3
5.8
0.5
0.7
1.4
0.8
2.1
0.6
0.6
12.2
2.3
16.8
1.5
2.1
0.7
0.8
1.6
0.6
0.7
1.3
0.8
0.8
0.4
8.8
0.8
3.0
1.1
0.6
0.9
17.4
9.5
0.7
2.3
1.2
1.2
2.5
1.2
28.8
6.7
6.8
3.8
5.6
4.0
4.7
2.1
6.2
3.7
1.9
6.7
7.6
1.8
5.2
3.5
7.7
5.7
3.0
6.6
2.4
5.6
4.2
5.0
5.8
4.5
7.2
5.7
3.6
8.0
4.4
4.6
4.4
3.2
6.2
7.3
4.7
3.7
5.3
42.9
2.5
3.6
3.0
4.1
10.8
6.8
2.3
1.9
2.3
1.3
4.7
4.9
5.9
5.1
1.6
5.1
6.2
6.5
6.8
7.7
5.6
7.6
4.8
2.0
5.2
6.2
3.4
6.1
2.6
6.8
5.0
4.1
6.6
2.5
6.0
6.8
4.0
5.1
2.8
194
142
112
140
80
6
134
212
101
13
148
150
140
79
127
141
97
110
141
125
107
56
153
155
76
151
158
179
121
142
112
125
11
115
125
15
65
187
53
169
134
109
22
225
118
13
51
5
5
111
74
141
137
2
124
141
119
138
79
131
132
147
5
142
177
137
105
75
116
44
42
120
110
147
81
74
108
87
444
241
152
206
441
393
185
126
170
12
187
232
132
95
90
265
160
108
175
1100
175
436
336
222
419
176
130
126
297
213
142
116
16
285
169
295
31
474
5
284
203
142
46
171
171
121
106
29
1
184
188
231
183
1
181
241
93
270
269
228
197
387
1
311
225
82
332
27
251
143
231
153
202
200
234
133
121
250
1.1
1.2
0.9
1.1
0.6
1.4
1.4
0.4
1.1
0.2
0.6
0.8
0.2
1.0
0.2
1.3
0.8
0.2
1.8
0.5
1.2
0.1
0.3
0.7
0.4
2.2
11.0
0.5
4.0
1.2
2.6
1.1
0.2
0.9
4.2
0.9
1.7
1.0
11.0
0.9
0.4
2.6
0.1
13.1
1.4
0.3
0.2
0.2
0.1
8.4
0.2
1.5
0.5
0.2
2.4
1.1
3.4
3.0
0.5
2.3
4.8
0.3
0.1
0.4
4.7
0.3
0.8
0.3
2.0
3.8
0.8
3.6
56.1
3.4
1.2
0.6
2.1
0.6
Ts
Ts
Ts
Ts
Ts
Tomkins Tomkins Tomkins Tomkins Tomkins
(3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa)
713
720
667
696
647
674
626
681
674
629
701
696
633
708
634
714
702
648
722
627
699
637
646
681
644
727
701
690
715
688
658
675
666
691
722
656
717
685
873
632
646
658
651
758
717
642
630
606
616
686
674
683
696
595
701
694
721
730
715
699
728
674
614
670
707
656
708
627
707
696
671
711
647
720
723
659
685
624
636
643
594
620
575
600
556
607
600
559
625
620
563
632
563
637
626
577
644
557
624
566
575
607
572
649
625
615
638
613
585
601
592
616
645
584
640
610
784
561
574
586
579
677
640
571
560
538
547
611
600
609
620
527
625
619
644
652
638
623
650
600
544
597
631
584
631
557
631
620
597
635
575
643
646
587
610
554
614
620
572
598
554
579
535
585
578
538
603
598
542
609
543
615
604
555
621
537
601
545
554
585
551
626
603
593
615
591
564
579
571
594
622
562
617
588
758
541
553
565
558
654
617
550
539
517
527
589
579
587
598
508
603
597
621
629
615
601
627
578
524
575
608
562
609
536
608
598
576
612
554
620
623
565
588
534
664
670
620
647
600
626
581
633
626
584
652
647
588
659
588
665
653
602
672
582
650
591
600
633
597
677
652
641
665
640
611
627
618
643
672
609
667
637
815
586
599
611
605
706
667
596
585
562
571
637
626
635
647
551
652
646
671
679
665
650
678
626
569
622
658
609
658
581
658
647
623
662
601
670
673
612
637
579
578
584
538
563
520
544
502
550
543
505
567
563
509
573
509
579
568
522
585
504
566
511
520
550
518
589
567
557
579
556
530
544
537
559
585
528
581
553
716
507
519
530
524
616
581
516
506
485
494
554
544
552
563
476
567
561
584
592
579
565
591
543
492
540
572
528
573
503
572
563
541
576
521
584
586
531
553
501
Table A11.1. Trace element compositions and temperature measurements for the detrital
samples from the Western Alps (continued)
230
Appendix A11
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SL 10/12-46
SL 10/12-47
SL 10/12-48
SL 10/12-49
SL 10/12-50
SL 10/12-51
SL 10/12-52
SL 10/12-53
SL 10/12-54
SL 10/12-55
SL 10/12-56
SL 10/12-57
SL 10/12-58
SL 10/12-59
SL 10/12-60
SL 10/12-61
SL 10/12-62
SL 10/12-63
SL 10/12-64
SL 10/12-65
SL 10/12-66
SL 10/12-67
SL 10/12-68
SL 10/12-69
SL 10/12-70
SL 10/12-71
SL 10/12-72
SL 10/12-73
SL 10/12-74
SL 10/12-75
SL 10/12-76
SL 10/12-77
SL 10/12-78
SL 10/12-79
SL 10/12-80
SL 10/12-81
SL 10/12-82
SL 10/12-83
SL 10/12-84
SL 10/12-85
SL 10/12-86
SL 10/12-87
SL 10/12-88
SL 10/12-89
SL 10/12-90
SL 10/12-91
SL 10/12-92
SL 10/12-93
SL 10/12-94
SL 10/12-95
SL 10/12-96
SL 10/12-97
SL 10/12-98
SL 10/12-99
SL 10/12-100
SL 10/12-101
SL 10/13-1
SL 10/13-2
SL 10/13-3
SL 10/13-4
SL 10/13-5
SL 10/13-6
SL 10/13-7
SL 10/13-8
SL 10/13-9
SL 10/13-10
SL 10/13-11
SL 10/13-12
SL 10/13-13
SL 10/13-14
SL 10/13-15
SL 10/13-16
SL 10/13-17
SL 10/13-18
SL 10/13-19
SL 10/13-20
SL 10/13-21
SL 10/13-22
SL 10/13-23
0.008
0.002
0.001
0.001
0.003
0.003
0.002
0.001
0.002
0.002
0.002
0.002
0.002
0.002
0.015
0.002
0.001
0.002
0.002
0.002
0.002
0.001
0.002
0.003
0.002
0.002
0.001
0.002
0.002
0.002
0.002
0.003
0.002
0.003
0.003
0.002
0.002
0.006
0.003
0.001
0.329
0.004
0.002
0.002
0.001
0.002
0.002
0.002
0.002
0.002
0.004
0.002
0.002
0.003
0.001
0.001
0.002
0.002
0.001
0.003
0.003
0.003
0.017
0.002
0.002
0.003
0.002
0.002
0.002
0.003
0.002
0.002
0.002
0.002
0.002
0.002
0.003
0.003
0.002
0.06
0.01
0.02
0.01
0.03
0.02
0.02
0.02
0.03
0.02
0.01
0.02
0.03
0.01
0.06
0.01
0.02
0.01
0.02
0.03
0.02
0.02
0.02
0.03
0.02
0.03
0.02
0.02
0.02
0.03
0.02
0.04
0.02
0.02
0.03
0.01
0.03
0.02
0.02
0.01
0.30
0.01
0.02
0.01
0.02
0.02
0.02
0.02
0.03
0.03
0.02
0.01
0.01
0.02
0.00
0.00
0.01
0.02
0.00
0.00
0.01
0.02
0.04
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.13
0.01
0.02
0.02
0.01
0.00
0.01
0.01
0.02
0.26
0.19
0.09
0.05
0.12
0.18
0.09
0.09
0.16
0.13
0.12
0.11
0.12
0.15
0.20
0.12
0.10
0.34
0.13
0.14
0.13
0.06
0.27
0.16
0.11
0.12
0.10
0.23
0.19
0.12
0.19
0.16
0.13
0.16
0.23
0.13
0.15
0.37
0.16
0.20
2.02
0.16
0.20
0.17
0.10
0.11
0.13
0.18
0.15
0.35
0.30
0.09
0.16
0.14
0.10
0.08
0.18
0.21
0.16
0.14
0.14
0.32
0.40
0.16
0.19
0.22
0.18
0.17
0.17
0.20
5.04
0.15
0.15
0.12
0.26
0.12
0.15
0.15
0.12
945
1120
1050
1470
919
915
1450
849
1180
718
454
1060
1280
1750
741
1180
997
1920
1130
945
1270
1540
1360
1080
963
1290
3800
791
1170
1050
1260
817
435
1760
892
1490
923
1170
1170
872
453
1170
814
1050
987
1160
740
1090
1350
1120
1100
1760
759
1280
1420
2490
636
939
1450
227
2300
1610
1410
939
1400
840
2860
2630
648
1460
1590
1000
1280
1950
996
2370
2520
1260
3350
537
539
440
460
370
336
507
358
533
259
2930
449
445
533
384
369
372
9
422
115
467
475
551
427
637
377
837
469
479
525
332
495
246
642
410
252
679
416
499
471
4420
428
417
413
366
886
467
490
475
470
441
650
362
420
420
201
367
381
136
50
455
1230
656
5090
616
331
4
3
435
665
20
294
383
438
379
3
1020
504
637
121
58
100
65
103
125
43
127
89
135
71
86
55
124
106
138
49
78
105
102
96
132
115
133
141
144
831
148
115
106
134
130
81
100
57
39
47
131
112
123
58
113
121
124
118
91
109
113
75
115
140
41
101
77
70
59
19
73
22
38
866
75
60
23
91
90
34
54
79
70
29
53
67
90
116
34
82
112
1850
2160
774
1700
1710
1750
2070
1550
1850
1980
2600
3490
1700
2150
2310
2480
1780
1520
50
1770
1300
1930
1820
2030
2010
1510
1940
1830
2790
2040
2140
1860
2060
2150
2160
1650
1460
1740
1740
1900
1560
596
1850
2110
1600
1710
806
1740
1550
2220
1840
1790
311
2080
1920
715
49
240
1720
66
3200
1140
1490
953
196
1510
866
51
92
1630
1760
145
1450
1830
1930
1730
49
363
2140
1410
2.0
1.6
1.0
0.6
1.2
1.6
1.1
1.2
1.8
2.6
1.2
1.7
1.7
1.6
2.2
1.7
0.5
9.5
1.4
1.1
1.3
1.7
1.2
3.0
1.6
1.9
35.0
3.6
1.9
1.2
1.3
2.3
2.4
2.7
1.7
1.3
0.9
3.4
2.7
2.0
3.7
2.1
1.7
1.9
1.4
1.4
2.2
1.4
1.4
1.5
1.4
1.0
1.8
1.7
1.7
4.1
4.9
1.5
6.6
5.4
22.8
2.1
2.1
2.7
2.0
2.7
1.9
1.6
1.7
2.8
2.4
7.4
1.5
1.6
1.9
8.1
1.6
2.2
31.9
229
38
91
103
74
68
80
87
112
104
139
103
100
352
295
125
139
10
98
65
122
104
107
104
126
101
11
98
129
111
106
69
112
120
62
76
150
107
101
66
99
107
104
53
95
75
98
60
66
100
113
137
93
115
73
10
41
45
25
83
15
83
45
32
45
136
7
9
44
49
10
62
19
43
77
38
62
120
12
3.2
7.9
0.6
0.6
1.2
4.9
3.4
2.7
1.2
1.1
13.2
0.8
5.5
1.5
1.9
2.1
2.4
69.3
0.9
4.7
1.9
0.5
1.5
1.3
0.9
0.5
0.2
0.7
2.0
0.8
0.8
1.0
1.5
2.5
1.1
3.1
29.5
3.5
1.9
1.3
2.0
1.0
0.9
3.9
0.8
0.8
0.4
2.2
2.8
1.0
0.7
6.8
2.3
0.9
15.5
90.8
3.5
0.6
17.6
7.4
0.5
1.5
2.7
5.8
1.7
16.5
1.3
0.8
1.1
0.6
0.8
213.0
2.2
0.7
2.8
3.3
8.6
0.8
0.8
7.0
4.3
4.8
3.5
6.0
6.2
3.1
5.6
3.6
7.4
6.0
4.7
3.0
6.6
6.3
6.2
2.8
4.5
6.7
5.9
4.7
6.5
5.1
7.4
7.5
7.2
32.8
7.9
5.9
5.9
5.9
7.1
4.0
5.2
4.8
2.9
2.4
6.0
5.6
5.7
3.5
6.6
5.1
5.2
6.4
4.8
5.7
5.4
4.1
4.7
6.4
2.7
4.7
5.0
4.7
5.0
0.9
3.6
1.0
2.1
54.4
3.7
3.3
1.4
5.5
4.9
2.3
1.6
3.9
2.8
1.7
3.8
3.3
4.3
5.5
1.3
4.6
7.1
105.0
151
49
113
113
126
135
102
120
137
157
208
103
113
184
187
117
103
3
111
79
127
127
123
172
143
133
116
200
133
151
133
150
151
141
104
101
140
124
126
112
71
128
136
108
117
39
129
109
141
136
120
14
135
122
37
3
15
102
5
370
11
87
47
28
71
44
4
6
97
105
10
91
91
83
111
1
19
139
69
426
163
161
241
179
117
111
175
177
225
223
145
51
337
585
198
250
104
178
99
216
191
225
170
440
230
87
172
189
225
267
153
216
189
75
242
766
194
210
85
167
195
269
102
138
174
194
72
173
188
419
227
93
139
298
100
4
34
2
56
31
69
92
4
53
337
1
2
69
35
2
362
32
23
191
11
546
243
130
2.6
0.2
1.4
1.0
0.2
1.1
0.1
3.1
0.6
1.3
0.2
0.8
0.5
1.9
2.9
3.2
0.8
0.2
1.1
0.4
0.5
5.6
2.5
0.7
2.7
6.5
9.6
0.7
4.9
1.6
4.3
1.5
2.7
4.2
0.2
0.2
0.9
5.9
1.6
2.1
12.3
4.2
2.3
2.3
1.3
0.3
0.8
1.8
0.4
2.7
4.2
0.2
1.5
0.6
4.3
0.1
0.3
3.3
1.2
0.2
11.4
3.0
0.2
0.1
1.7
7.3
0.1
0.3
1.4
2.6
0.2
0.1
0.8
3.3
4.2
0.1
0.4
0.7
50.1
Ts
Ts
Ts
Ts
Ts
Tomkins Tomkins Tomkins Tomkins Tomkins
(3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa)
706
653
691
661
694
708
631
710
683
714
666
680
649
708
696
716
641
673
695
693
688
713
702
713
718
720
881
722
702
696
714
711
676
691
651
626
638
712
700
707
653
701
706
708
704
684
698
701
670
702
717
629
692
672
666
653
581
668
589
623
886
671
654
592
684
684
616
648
674
665
607
645
662
684
703
617
676
700
974
630
580
616
588
618
632
561
633
608
637
593
606
577
631
620
639
570
599
620
618
613
636
626
636
641
642
791
644
626
620
637
635
602
616
579
556
567
635
624
631
580
625
630
631
628
610
622
625
597
626
640
559
617
598
593
581
514
595
522
553
795
597
582
524
609
609
547
576
600
592
538
574
589
609
627
548
603
624
877
607
559
594
566
596
609
540
611
587
615
572
584
556
609
598
616
549
577
597
595
591
613
604
614
618
619
765
621
604
598
614
612
580
594
557
535
546
613
602
608
559
602
607
609
605
588
600
602
575
604
617
538
595
577
571
560
494
574
502
533
769
575
561
505
587
587
527
555
579
571
518
553
568
587
604
527
581
602
848
657
606
643
614
645
659
586
660
635
665
619
632
602
658
647
666
595
625
646
644
640
663
653
664
668
669
823
672
653
647
664
662
628
643
604
581
592
662
651
658
606
652
657
658
655
636
649
652
623
653
667
584
643
624
618
607
538
621
546
578
827
623
607
548
636
636
571
601
626
618
562
599
615
636
653
572
629
651
911
571
525
559
532
561
573
507
575
551
579
537
549
522
573
563
580
515
543
562
560
556
577
568
578
582
583
723
585
568
563
578
576
545
559
524
503
513
577
566
572
525
567
571
573
570
553
564
567
540
568
581
505
559
542
537
526
463
539
471
500
726
541
527
473
552
552
494
521
544
536
486
519
533
552
568
495
546
566
803
Table A11.1. Trace element compositions and temperature measurements for the detrital
samples from the Western Alps (continued)
231
Appendix A11
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SL 10/13-24
SL 10/13-25
SL 10/13-26
SL 10/13-27
SL 10/13-28
SL 10/13-29
SL 10/13-30
SL 10/13-31
SL 10/13-32
SL 10/13-33
SL 10/13-34
SL 10/13-35
SL 10/13-36
SL 10/13-37
SL 10/13-38
SL 10/13-39
SL 10/13-40
SL 10/13-41
SL 10/13-42
SL 10/13-43
SL 10/13-44
SL 10/13-45
SL 10/13-46
SL 10/13-47
SL 10/13-48
SL 10/13-49
SL 10/13-50
SL 10/13-51
SL 10/13-52
SL 10/13-53
SL 10/13-54
SL 10/13-55
SL 10/13-56
SL 10/13-57
SL 10/13-58
SL 10/13-59
SL 10/13-60
SL 10/13-61
SL 10/13-62
SL 10/13-63
SL 10/13-64
SL 10/13-65
SL 10/13-66
SL 10/13-67
SL 10/13-68
SL 10/13-69
SL 10/13-70
SL 10/13-71
SL 10/13-72
SL 10/13-73
SL 10/13-74
SL 10/13-75
SL 10/13-76
SL 10/13-77
SL 10/13-78
SL 10/13-79
SL 10/13-80
SL 10/13-81
SL 10/13-82
SL 10/13-83
SL 10/13-84
SL 10/13-85
SL 10/13-86
SL 10/13-87
SL 10/13-88
SL 10/13-89
SL 10/13-90
SL 10/13-91
SL 10/13-92
SL 10/13-93
SL 10/13-94
SL 10/13-95
SL 10/13-96
SL 10/13-97
SL 10/13-98
SL 10/13-99
SL 10/13-100
SL 10/13-101
SL 10/13-102
0.002
0.002
0.003
0.054
0.002
0.002
0.002
0.002
0.002
0.003
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.006
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.001
0.002
0.002
0.029
0.004
0.002
0.002
0.002
0.002
0.002
0.002
0.013
0.066
0.002
0.829
0.003
0.002
0.002
0.001
0.002
0.002
0.002
0.001
0.003
0.062
0.002
0.003
0.002
0.003
0.002
0.001
0.002
0.002
0.002
0.002
0.003
0.002
0.001
0.001
0.001
0.002
0.002
0.002
0.011
0.002
0.002
0.001
0.001
0.001
0.02
0.02
0.01
0.13
0.02
0.02
0.00
0.02
0.03
0.02
0.02
0.01
0.01
0.02
0.01
0.00
0.02
0.01
0.04
0.03
0.01
0.02
0.08
0.03
0.02
0.01
0.02
0.03
0.02
0.01
0.01
0.02
0.02
0.02
0.01
0.01
0.02
0.01
0.02
0.02
0.02
0.02
0.01
0.02
0.92
0.02
0.03
0.01
0.01
0.01
0.02
0.01
0.00
0.02
0.66
0.02
0.02
0.02
0.03
0.01
0.02
0.01
0.04
0.02
0.01
0.14
0.02
0.02
0.02
0.02
0.01
0.03
0.01
0.11
0.01
0.01
0.02
0.02
0.01
0.18
0.17
0.12
0.32
0.15
0.17
0.17
0.15
0.25
0.15
0.18
0.16
0.12
0.11
0.14
0.16
0.14
0.17
0.16
0.34
0.22
0.13
0.34
0.14
0.18
0.19
0.20
0.22
0.18
0.21
0.19
0.15
0.13
0.17
0.18
0.18
0.19
0.15
0.19
0.13
0.18
0.15
0.31
0.19
4.03
0.14
0.16
0.13
0.11
0.16
0.13
0.18
0.24
0.20
1.43
0.20
0.16
0.12
0.23
0.14
0.11
0.28
0.14
0.12
0.12
0.13
0.13
0.06
0.10
0.16
0.22
0.13
0.18
0.19
0.17
0.10
0.10
0.12
0.10
1860
2590
3330
1330
1290
1550
1920
1220
1330
1460
2160
1210
2270
1690
1760
2720
1430
1150
1910
942
2490
1580
1270
1680
2000
1740
1340
1410
1280
1510
5120
1080
1660
1740
2060
2010
2020
3560
1330
1880
1820
1880
2370
1680
1580
1960
1100
2400
1840
1290
1600
905
3460
1050
1090
964
2010
1200
2070
1170
1310
1580
1270
2310
3740
1060
1250
2780
968
1780
1360
1300
1380
1410
858
1860
1180
1550
2120
539
583
918
452
683
675
3140
408
1050
150
622
591
664
565
492
506
445
448
605
345
789
425
398
616
575
673
552
531
409
495
1430
406
530
80
590
521
595
31
524
579
539
130
3100
619
2450
601
597
35
616
404
494
386
26
454
335
505
470
408
676
444
340
515
370
617
2090
539
430
696
319
694
512
454
516
508
334
397
579
311
27
45
792
774
61
85
140
98
131
36
54
84
81
74
100
64
197
71
72
59
36
74
79
51
79
95
78
122
147
119
93
599
82
95
34
90
82
77
30
135
89
83
51
86
86
125
88
74
32
93
70
91
123
45
137
85
100
79
93
74
88
87
77
88
73
1090
51
110
1320
81
80
107
63
113
73
98
109
89
81
35
1600
676
1050
1630
1510
1780
848
1840
1970
929
1530
1480
1520
1820
1470
227
1660
1630
1190
2220
1470
1750
1450
1810
1790
1710
2010
1610
1700
1580
2080
1830
1820
282
1740
2050
1690
72
1730
1840
1850
51
1910
2000
163
1810
1690
100
1750
326
1950
1880
45
1810
1940
1620
1870
1960
1780
790
1760
1700
1700
1140
2120
1710
2180
1700
1800
1190
1970
1740
1870
1830
1900
805
1990
1840
80
1.3
41.7
23.8
1.8
1.9
1.8
1.8
1.6
1.4
2.3
1.5
1.9
1.6
1.4
1.3
11.0
2.0
1.9
1.2
1.7
1.8
1.6
1.5
1.9
1.6
1.7
1.5
2.1
1.6
1.0
42.2
8.1
1.4
2.0
1.1
1.9
1.4
1.4
1.3
1.3
1.4
3.7
2.2
2.0
4.2
1.6
1.4
1.7
0.6
1.6
1.6
2.3
1.2
1.8
2.7
1.8
2.1
5.5
1.3
1.1
1.6
1.8
1.1
1.5
62.6
1.3
1.9
25.4
0.6
0.7
1.4
1.3
2.0
1.3
1.3
2.0
1.3
1.2
4.4
18
4
5
101
43
104
60
101
48
7
21
23
67
48
26
17
50
34
17
257
26
65
38
39
60
66
108
106
94
72
11
75
117
35
31
110
33
15
109
54
78
9
150
108
14
71
61
12
92
27
109
110
10
116
74
109
42
143
29
93
91
50
64
25
185
70
117
12
91
36
105
55
68
103
74
214
47
53
10
0.9
0.5
1.0
2.2
0.7
1.0
0.9
0.6
0.6
0.5
1.0
1.9
3.5
0.7
1.0
1.2
0.7
1.6
0.8
2.5
0.6
0.8
1.2
0.7
1.4
1.2
0.9
1.1
1.5
1.1
0.6
5.6
1.4
1.2
1.8
2.8
0.5
2.6
1.5
0.7
12.9
0.7
2.9
1.4
108.0
5.9
0.6
0.6
1.0
1.2
1.7
1.5
0.6
0.8
1.8
1.5
0.8
4.6
1.3
1.8
2.6
0.7
1.4
0.9
1.1
1.0
0.8
0.4
0.6
1.2
0.9
0.6
2.2
2.3
3.1
31.7
1.5
0.6
0.5
2.8
42.6
38.6
3.2
4.4
6.7
6.7
6.3
2.0
1.7
4.6
3.0
3.8
4.5
3.4
6.6
3.0
3.2
3.1
2.5
3.6
3.6
1.9
4.8
4.9
3.8
5.3
6.5
7.2
4.5
37.1
3.7
5.3
1.4
4.3
5.4
4.0
1.6
7.4
4.7
3.3
2.9
5.5
4.5
5.4
5.0
4.0
0.8
4.2
4.6
5.0
6.5
2.8
6.2
3.5
5.3
5.0
4.1
3.4
4.7
4.4
3.7
4.5
3.6
48.2
2.8
5.6
62.9
4.0
4.2
4.8
3.7
6.3
5.2
6.7
4.3
4.8
4.3
1.8
64
21
33
147
98
122
26
123
99
65
64
79
74
101
89
20
71
76
45
149
65
109
83
82
108
105
143
102
109
106
63
97
117
11
85
151
84
5
115
93
100
4
89
112
8
86
93
7
95
20
110
137
3
106
141
111
85
144
103
31
119
84
121
46
132
107
145
69
137
65
139
85
130
152
106
56
96
105
6
57
1
16
140
25
144
261
225
92
10
15
44
34
25
25
7
59
34
39
362
29
31
18
59
179
108
234
140
125
88
17
79
113
1
28
246
21
17
184
35
85
1
124
103
103
83
93
1
150
352
169
325
0
179
62
153
17
145
229
103
100
48
138
27
363
206
418
11
95
52
201
47
197
173
111
565
34
55
0
0.4
10.9
8.3
0.3
0.1
2.4
2.3
4.0
0.3
0.1
1.9
3.0
0.6
5.6
0.3
3.2
0.5
0.7
0.2
0.2
1.8
1.8
1.8
1.2
2.9
2.3
2.8
2.5
0.8
2.0
17.7
22.4
2.7
0.2
1.8
4.8
0.6
0.2
4.2
5.0
2.6
0.2
1.0
0.8
0.8
3.9
1.5
0.1
0.1
2.1
1.9
1.5
0.1
4.7
0.8
0.2
4.4
2.6
3.5
2.6
4.1
0.5
0.3
0.8
225.0
0.1
2.3
18.9
1.6
1.4
2.8
1.6
1.3
0.6
2.1
4.4
1.8
2.8
0.2
Ts
Ts
Ts
Ts
Ts
Tomkins Tomkins Tomkins Tomkins Tomkins
(3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa)
635
876
874
655
679
717
690
712
620
647
679
676
669
691
659
745
667
668
654
620
669
674
644
674
687
673
707
721
705
686
847
677
688
616
684
676
672
610
714
682
677
643
680
680
708
682
669
612
686
665
685
707
635
716
679
691
674
686
669
682
681
672
682
669
911
643
699
933
676
675
696
658
701
669
690
698
682
675
619
564
787
784
583
605
640
615
635
551
576
605
602
596
616
586
666
593
594
582
550
596
600
572
600
613
599
630
644
628
611
760
603
613
547
609
602
598
541
637
608
603
572
606
606
632
607
596
543
611
592
610
631
565
639
605
616
600
611
596
608
607
599
608
595
819
572
623
839
602
601
621
585
625
595
615
622
608
602
550
544
760
758
562
583
617
593
613
530
555
583
580
574
594
565
642
572
573
560
530
574
579
551
579
591
577
608
621
606
589
734
581
591
526
587
581
577
521
615
586
581
551
584
584
609
585
574
523
590
570
588
608
544
616
583
594
578
589
574
586
585
577
586
574
792
551
601
812
580
580
599
564
602
574
592
600
586
580
529
589
818
816
608
631
667
641
662
575
601
631
628
622
642
612
694
619
620
607
575
622
626
597
626
639
625
657
671
655
637
791
629
639
571
635
629
624
565
665
634
629
597
632
632
659
634
622
567
638
618
636
658
590
666
631
642
626
638
621
634
633
625
634
621
851
597
650
872
628
628
648
611
652
621
641
649
634
628
574
510
718
716
528
548
581
557
577
497
521
548
545
540
559
531
605
537
538
526
497
540
544
518
544
555
543
572
584
570
554
693
546
556
494
552
546
542
488
579
551
547
517
549
549
573
550
540
490
554
536
553
572
510
580
548
558
544
554
539
551
550
542
551
539
748
517
565
767
545
545
563
530
567
539
557
564
551
545
497
Table A11.1. Trace element compositions and temperature measurements for the detrital
samples from the Western Alps (continued)
232
Appendix A11
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SL 10/13-103
SL 10/13-104
SL 10/13-105
SL 10/13-106
SL 10/13-107
SL 10/13-108
SL 10/13-109
SL 10/13-110
SL 10/13-111
SL 10/13-112
SL 10/13-113
SL 10/13-114
SL 10/13-115
SL 10/13-116
SL 10/13-117
SL 10/13-118
SL 10/13-119
SL 10/13-120
SL 10/13-121
SL 10/15-1
SL 10/15-2
SL 10/15-3
SL 10/15-4
SL 10/15-5
SL 10/15-6
SL 10/15-7
SL 10/15-8
SL 10/15-9
SL 10/15-10
SL 10/15-11
SL 10/15-12
SL 10/15-13
SL 10/15-14
SL 10/15-15
SL 10/15-16
SL 10/15-17
SL 10/15-18
SL 10/15-19
SL 10/15-20
SL 10/15-21
SL 10/15-22
SL 10/15-23
SL 10/15-24
SL 10/15-25
SL 10/15-26
SL 10/15-27
SL 10/15-28
SL 10/15-29
SL 10/15-30
SL 10/15-31
SL 10/15-32
SL 10/15-33
SL 10/15-34
SL 10/15-35
SL 10/15-36
SL 10/15-37
SL 10/15-38
SL 10/15-39
SL 10/15-40
SL 10/15-41
SL 10/15-42
SL 10/15-43
SL 10/15-44
SL 10/15-45
SL 10/15-46
SL 10/15-47
SL 10/15-48
SL 10/15-49
SL 10/15-50
SL 10/15-51
SL 10/15-52
SL 10/15-53
SL 10/15-54
SL 10/15-55
SL 10/15-56
SL 10/15-57
SL 10/15-58
SL 10/15-59
SL 10/15-60
0.003
0.003
0.001
0.002
0.002
0.002
0.003
0.002
0.001
0.003
0.003
0.002
0.002
0.002
0.003
0.006
0.018
0.003
0.002
0.004
0.003
0.003
0.010
0.009
0.003
0.003
0.005
0.003
0.003
0.144
0.004
0.002
0.004
0.002
0.005
0.006
0.002
0.004
0.003
0.002
0.004
0.005
0.004
0.010
0.009
0.008
0.003
0.002
0.002
0.003
0.003
0.006
0.003
0.003
0.003
0.003
0.003
0.005
0.003
0.022
0.097
0.070
0.002
0.003
0.003
0.005
0.003
0.002
0.002
0.004
0.002
0.003
0.004
0.004
0.004
0.004
0.009
0.004
0.005
0.00
0.01
0.03
0.03
0.01
0.02
0.02
0.07
0.03
0.01
0.04
0.01
0.15
0.00
0.02
0.03
0.05
0.03
0.02
0.02
0.01
0.00
0.03
0.04
0.01
0.01
0.02
0.02
0.02
0.09
0.01
0.01
0.01
0.02
0.01
0.01
0.02
0.02
0.02
0.01
0.02
0.02
0.00
0.01
0.01
0.02
0.01
0.00
0.00
0.02
0.01
0.02
0.00
0.02
0.02
0.02
0.02
0.01
0.00
0.03
0.00
0.01
0.01
0.02
0.01
0.01
0.03
0.01
0.01
0.01
0.00
0.00
0.02
0.01
0.01
0.01
0.02
0.01
0.02
0.14
0.14
0.07
0.13
0.12
0.16
0.23
0.10
0.09
0.15
0.24
0.16
0.24
0.16
0.11
0.22
0.21
0.16
0.15
0.10
0.16
0.11
0.17
0.18
0.12
0.13
0.31
0.15
0.15
0.24
0.15
0.11
0.18
0.08
0.15
0.22
0.16
0.14
0.13
0.14
0.20
0.25
0.26
0.47
0.31
0.37
0.16
0.13
0.13
0.16
0.12
0.21
0.13
0.12
0.13
0.14
0.19
0.27
0.21
0.15
0.32
0.28
0.13
0.14
0.16
0.25
0.16
0.15
0.09
0.22
0.12
0.19
0.20
0.22
0.17
0.20
0.29
0.19
0.21
2320
771
1620
1500
1160
2100
1100
1800
1580
2490
841
292
1070
2180
1740
1120
1290
1510
1630
2140
1730
2440
1290
1860
2330
2200
1220
1730
958
465
1350
637
2080
1590
4190
2730
1550
1460
3700
3240
1850
1460
3250
1860
2470
1380
2320
2920
3440
1790
1740
1230
2130
2660
1240
1540
1230
3220
1840
2730
2820
2150
1350
2810
739
3880
1190
1060
2410
3540
893
1590
1470
1910
3280
4180
4550
2560
2290
653
408
487
553
836
686
398
559
487
694
258
51
475
718
536
435
452
512
445
767
2920
22
666
746
22
136
462
529
467
3530
447
420
185
5
1690
7
559
634
2310
98
17
509
1340
17
14
516
441
82
376
101
3
425
21
36
384
545
424
203
34
4
255
79
709
782
5
876
504
390
60
46
794
1620
372
491
11
141
127
51
12
39
110
74
86
85
91
59
1130
91
93
58
51
121
990
94
41
61
155
62
13
336
28
40
55
33
144
141
85
63
40
94
16
30
12
876
189
45
68
4310
21
25
88
794
19
16
150
33
19
17
24
14
41
27
22
72
97
147
46
27
20
28
23
46
401
24
1130
95
115
20
23
10
17
82
42
25
44
40
30
29
358
837
1680
1900
1040
1610
2320
3370
2020
1280
2100
1360
2000
1800
1900
1560
1880
1890
1540
1600
1280
41
1040
1440
33
230
2040
1940
1830
323
2250
223
107
44
1820
37
1670
1860
337
20
62
2380
1980
41
18
2210
26
34
22
197
29
1940
29
85
1630
1780
1840
28
67
38
23
60
78
1820
137
1390
5050
2040
28
17
251
63
1500
116
53
35
43
28
61
2.0
5.2
0.9
1.7
1.9
1.8
1.4
29.2
1.3
2.2
2.0
4.4
1.7
31.7
1.8
2.5
1.6
1.5
1.4
1.6
2.4
2.5
1.6
6.1
2.0
2.8
3.3
2.3
2.5
5.1
2.1
6.0
6.9
1.8
36.5
2.9
1.7
1.6
33.5
5.9
8.1
2.8
2.2
5.5
3.3
3.8
3.8
2.6
4.0
1.1
2.3
2.9
3.4
1.4
1.7
2.2
2.3
4.7
5.1
1.8
5.8
8.6
2.5
20.0
7.7
42.4
2.1
1.7
4.8
2.5
9.7
5.1
1.7
2.9
5.5
2.2
3.6
2.9
3.7
97
68
43
59
150
37
99
23
80
56
168
56
149
270
143
48
55
106
67
160
56
16
131
27
15
9
96
87
30
106
111
32
8
12
51
7
90
34
722
13
27
144
188
8
8
108
24
23
72
27
9
60
15
67
65
123
122
11
9
3
17
22
13
20
36
28
168
104
8
13
67
41
54
22
21
10
12
10
11
1.2
82.6
0.8
1.5
5.4
1.4
21.3
3.4
0.7
1.0
8.5
3.3
1.4
0.6
1.3
1.6
1.5
1.4
4.2
227.0
0.8
1.0
7.7
1.9
0.9
5.3
3.1
1.3
1.1
4.0
8.5
0.8
1.7
0.4
0.7
1.6
4.2
1.1
13.2
0.8
1.6
2.0
1.7
2.4
2.4
2.2
1.0
0.6
0.6
12.9
0.7
1.9
4.9
0.8
0.8
2.4
1.7
1.8
2.2
1.6
4.7
2.1
6.0
0.8
3.5
2.3
1.5
0.6
0.5
1.2
26.3
1.1
1.6
1.2
2.4
1.5
2.2
0.9
1.5
3.0
5.2
3.6
4.4
4.5
3.8
3.5
52.1
4.8
4.4
3.9
3.3
5.8
30.3
4.8
1.3
3.1
6.9
3.0
0.6
13.4
1.9
2.6
2.0
1.9
5.2
4.9
4.4
3.4
3.6
5.2
0.7
1.6
0.6
43.7
6.3
2.9
3.5
173.0
1.2
1.1
3.9
40.4
2.4
1.7
7.9
1.7
0.8
0.7
1.5
1.3
1.7
1.5
1.7
3.4
6.6
6.7
4.0
1.2
1.5
2.0
1.6
4.1
25.3
1.2
62.6
3.1
5.2
0.9
0.7
0.8
1.5
3.3
2.6
1.8
3.3
2.0
1.8
1.6
37
42
90
103
74
72
153
155
134
73
178
85
135
28
119
85
118
123
103
87
487
2
68
61
2
10
132
96
55
15
134
15
9
4
46
4
99
81
11
1
3
116
248
4
1
155
1
3
2
10
2
113
2
5
115
116
115
2
4
3
3
4
3
92
7
47
831
136
1
1
7
5
62
6
4
2
2
2
4
251
420
48
100
249
21
220
238
68
27
551
170
272
189
208
17
125
180
104
41
212
1
470
26
1
52
180
39
39
8
315
7
1
5
32
1
231
16
6
1
1
115
364
2
2
289
2
0
2
23
1
87
3
1
52
160
189
1
1
1
3
2
42
34
6
41
187
196
1
2
19
1
34
4
1
1
6
1
24
0.8
1.7
1.2
5.0
6.5
2.7
6.3
7.4
2.5
1.2
1.1
0.2
1.6
9.3
5.0
0.4
0.4
4.7
0.4
3.7
3.3
0.2
1.7
0.2
0.7
0.4
2.3
3.5
0.4
1.7
1.6
0.1
0.2
0.2
37.7
0.2
0.2
0.1
308.0
0.2
0.2
0.3
24.3
0.6
0.4
4.9
0.2
0.1
0.2
2.1
0.2
0.5
0.2
0.3
0.4
0.8
5.0
1.2
0.3
0.2
0.3
1.3
0.2
0.2
0.6
21.7
6.4
2.1
0.1
0.1
0.3
0.2
0.8
0.2
1.1
0.3
1.7
0.2
0.2
Ts
Ts
Ts
Ts
Ts
Tomkins Tomkins Tomkins Tomkins Tomkins
(3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa)
625
699
670
681
679
684
653
915
684
686
652
643
706
900
687
630
656
725
657
559
792
605
627
649
615
720
718
679
658
628
687
573
609
555
887
742
634
663
1090
586
598
682
876
582
570
723
614
580
575
595
562
630
602
589
667
689
721
636
602
583
604
594
637
808
596
915
687
702
585
592
542
574
677
630
597
634
627
609
606
555
623
596
606
605
610
581
823
610
611
580
571
630
809
612
559
583
648
585
494
709
536
557
577
546
642
641
605
585
558
612
507
541
490
797
663
564
590
984
519
530
608
787
515
504
645
545
513
509
527
497
559
534
522
594
614
644
565
534
516
536
526
566
724
528
823
613
626
518
524
479
508
603
559
529
563
557
540
537
534
601
575
584
583
588
560
795
588
589
559
550
607
782
590
539
562
625
563
475
684
516
537
556
526
619
618
583
564
537
590
487
520
472
770
639
543
569
953
500
510
586
761
496
485
622
525
494
490
507
478
539
514
502
572
592
621
544
514
496
516
506
545
699
508
795
591
604
499
505
460
488
581
539
509
542
536
520
517
580
650
622
632
631
636
607
855
636
637
606
597
657
841
638
584
609
675
610
517
738
560
582
602
571
669
668
631
611
583
638
530
565
513
829
690
589
616
1021
543
554
634
818
539
527
673
569
537
532
551
520
584
558
545
620
641
671
590
558
540
560
550
591
754
552
855
639
653
542
548
501
531
629
584
553
588
582
565
561
501
565
540
549
548
553
526
752
553
554
525
517
571
739
555
505
528
588
529
445
645
484
504
522
493
583
582
548
530
504
555
456
488
441
727
602
510
534
903
468
478
551
718
464
454
586
492
462
458
476
448
505
482
470
538
557
584
511
482
465
484
474
511
659
476
752
555
568
467
473
430
457
546
506
477
509
503
488
485
Table A11.1. Trace element compositions and temperature measurements for the detrital
samples from the Western Alps (continued)
233
Appendix A11
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
SL 10/15-61
SL 10/15-62
SL 10/15-63
SL 10/15-64
SL 10/15-65
SL 10/15-66
SL 10/15-67
SL 10/15-68
SL 10/15-69
SL 10/15-70
SL 10/15-71
SL 10/15-72
SL 10/15-73
SL 10/15-74
SL 10/15-75
SL 10/15-76
SL 10/15-77
SL 10/15-78
SL 10/15-79
SL 10/15-80
SL 10/15-81
SL 10/15-82
SL 10/15-83
SL 10/15-84
SL 10/15-85
SL 10/15-86
SL 10/15-87
SL 10/15-88
SL 10/15-89
SL 10/15-90
SL 10/15-91
SL 10/15-92
SL 10/15-93
SL 10/15-94
SL 10/15-95
SL 10/15-96
SL 10/15-97
SL 10/15-98
SL 10/15-99
SL 10/15-100
SL 10/15-101
SL 10/15-102
SL 10/15-103
SL 10/15-104
SL 10/15-105
SL 10/15-106
SL 10/15-107
SL 10/15-108
SL 10/15-109
SL 10/15-110
SL 10/15-111
SL 10/15-112
SL 10/15-113
SL 10/15-114
SL 10/15-115
SL 10/15-116
SL 10/15-117
SL 10/15-118
SL 10/15-119
SL 10/15-120
SL 10/15-121
SL 10/15-122
SL 10/17-1
SL 10/17-2
SL 10/17-3
SL 10/17-4
SL 10/17-5
SL 10/17-6
SL 10/17-7
SL 10/17-8
SL 10/17-9
SL 10/17-10
SL 10/17-11
SL 10/17-12
SL 10/17-13
SL 10/17-14
SL 10/17-15
SL 10/17-16
SL 10/17-17
0.003
0.003
0.004
0.006
0.004
0.007
0.026
0.017
0.003
0.016
0.004
0.004
0.002
0.002
0.004
0.003
0.002
0.002
0.003
0.003
0.006
0.004
0.003
0.003
0.003
0.002
0.002
0.005
0.003
0.004
0.005
0.005
0.005
0.033
0.016
0.008
0.004
0.004
0.003
0.006
0.003
0.003
0.003
0.004
0.003
0.002
0.010
0.019
0.008
0.005
0.007
0.010
0.005
0.005
0.003
0.007
0.020
0.004
0.004
0.005
0.008
0.010
0.002
0.003
0.004
0.002
0.003
0.020
0.002
0.002
0.002
0.002
0.001
0.002
0.004
0.012
0.034
0.003
0.003
0.01
0.00
0.02
0.01
0.01
0.01
0.00
0.01
0.01
0.00
0.00
0.01
0.01
0.00
0.01
0.00
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.00
0.01
0.00
0.00
0.03
0.00
0.00
0.01
0.02
0.00
0.06
0.00
0.01
0.01
0.01
0.03
0.01
0.02
0.02
0.00
0.01
0.02
0.00
0.01
0.02
0.01
0.01
0.01
0.01
0.00
0.00
0.03
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.11
0.05
0.03
0.03
0.02
0.05
0.07
0.02
0.00
0.04
0.02
0.00
0.03
0.44
0.57
0.01
0.01
0.14
0.21
0.22
0.23
0.18
0.29
0.26
0.76
0.14
0.88
0.18
0.19
0.10
0.13
0.25
0.21
0.12
0.15
0.13
0.13
0.16
0.27
0.20
0.15
0.21
0.13
0.11
0.29
0.17
0.25
0.30
0.23
0.20
0.60
0.84
0.38
0.22
0.27
0.16
0.26
0.15
0.13
0.13
0.25
0.15
0.14
0.61
1.45
0.40
0.21
0.20
0.82
0.35
0.30
0.19
0.25
0.18
0.30
0.19
0.29
0.33
0.66
0.21
0.22
0.18
0.16
0.20
0.20
0.27
0.15
0.20
0.20
0.12
0.19
0.43
0.73
1.30
0.19
0.21
1780
2700
3580
4140
3360
2110
4000
3400
5190
2760
2510
2330
4120
3170
5720
2240
3150
1410
3480
1330
1870
4810
5380
797
3050
4160
3670
1910
2730
2210
1420
1450
4700
3000
2580
2900
2230
4340
3010
3140
2670
4160
1960
2440
1910
1500
4450
2570
2050
3160
2180
3710
2290
1810
2340
2170
4010
2300
1530
2440
1790
2880
2250
1160
1740
1100
1370
2060
1770
2490
2510
824
2580
2470
850
1050
146
669
1610
494
688
10
18
5
5
12
25
49
555
6
5
4
298
433
5
46
451
4
400
89
6
1320
6
7
378
3
8
3
7
10
564
5
25
34
284
1340
7
236
11
20
195
8
203
502
3
22
48
11
16
174
18
11
17
51
7
287
7
70
27
107
46
480
105
1040
276
1620
118
837
195
1080
1660
649
4710
140
611
17
352
445
124
998
24
18
68
97
23
66
37
79
28
21
39
19
30
25
31
99
46
133
47
49
41
12
23
19
15
20
18
29
19
47
25
313
23
12
63
24
42
12
24
23
18
45
98
24
97
27
29
189
30
25
25
15
17
24
41
17
19
38
40
16
8
102
3
674
2
397
93
320
562
3
1070
19
2560
105
16
7
5
2140
1430
12
37
17
27
40
23
30
33
23
24
6
43
18
76
45
2010
37
2710
73
10
274
161
14
18
73
123
13
53
31
1580
49
31
29
147
914
11
57
25
12
39
79
37
1910
115
41
24
26
809
23
42
60
32
22
52
48
28
122
37
220
19
3720
705
1960
1940
2060
1010
2040
2240
1780
3240
1440
499
14000
1740
756
1510
2180
2.1
13.3
3.1
4.5
2.6
3.4
2.6
8.9
2.9
9.8
5.2
2.7
2.3
2.0
5.8
5.7
2.2
2.0
2.8
1.5
2.0
2.9
13.3
12.8
2.2
2.2
1.0
10.2
1.6
2.3
4.5
1.9
2.3
6.1
7.5
5.1
2.3
3.0
3.9
3.0
2.3
3.6
3.7
2.4
1.4
3.6
7.3
11.3
8.7
2.1
2.5
8.4
6.4
4.9
1.7
3.4
2.4
2.6
6.6
3.1
2.8
5.8
1.4
2.2
2.0
9.8
1.7
13.4
1.8
3.8
4.5
1.8
11.3
1.2
7.4
2.4
21.6
6.7
2.2
119
18
12
14
11
10
13
17
15
14
5
7
5
29
13
9
9
101
10
151
11
11
30
37
2
8
223
28
5
28
10
57
27
5
30
5
45
11
15
8
7
41
27
15
49
17
9
16
40
125
12
11
12
10
8
9
8
11
11
8
56
16
244
132
262
78
151
360
80
115
166
396
81
747
1660
106
7
244
119
Sb
Hf
1.6
6.0
1.1
51.7
1.1
1.9
1.2
1.7
1.2
1.4
2.2
3.0
1.6
1.3
4.7
2.9
1.1
1.3
3.9
4.1
1.2
1.5
0.8
1.1
0.9
2.1
0.6
1.3
3.4
2.3
2.4
1.1
0.7
1.7
6.4
4.3
1.5
2.7
4.4
6.6
1.1
2.2
1.4
1.5
1.5
0.9
13.3
0.7
1.4
1.0
0.3
1.2
0.3
0.6
1.5
1.5
1.0
1.3
1.2
1.5
1.8
2.4
1.5
3.1
1.2
1.2
5.4
8.6
6.4
4.1
1.4
2.0
2.6
3.7
1.5
1.4
1.2
2.5
5.7
1.3
1.3
1.5
0.7
1.8
1.2
1.1
2.2
2.1
1.1
4.7
1.3
1.3
4.2
3.9
8.4
3.8
2.5
1.9
7.3
6.8
1.3
1.9
2.9
3.6
1.9
2.0
1.4
1.7
0.9
0.7
1.5
2.1
1.1
2.5
2.4
1.1
1.2
1.4
1.5
2.0
4.7
1.9
3.0
1.7
68.3
0.4
7.5
4.2
6.6
0.5
11.2
27.0
1.1
0.4
3340.0 25.5
31.6
3.7
4.9
17.1
0.8
25.9
22.4
0.4
0.5
58.9
5410.0 1.4
25.2 106.0
24.5
4.6
1190.0 0.5
358.0
0.6
79.2
0.7
Ta
W
U
149
44
1
4
1
3
3
2
2
3
2
1
1
3
1
7
3
128
4
199
7
0
0
12
1
2
4
8
1
2
2
85
3
2
2
7
66
1
4
2
1
3
7
3
96
5
3
2
2
75
1
3
5
3
2
3
3
2
9
2
19
2
226
47
121
58
99
72
120
235
35
281
90
35
492
114
73
111
159
240
12
1
1
1
1
1
8
17
3
1
1
8
1
1
4
0
197
2
362
1
1
1
5
17
2
1
1
1
1
1
23
1
388
3
2
38
76
1
4
1
2
2
1
35
5
4
6
117
87
27
9
2
1
16
1
4
2
2
1
5
2
30
136
178
84
143
1080
102
223
234
1980
70
527
2060
233
213
403
21
3.4
13.2
0.1
0.3
0.2
0.6
0.2
2.2
0.1
0.6
0.2
0.2
0.2
0.1
0.7
0.2
0.1
5.4
0.1
15.3
0.1
0.3
12.2
1.1
0.2
0.1
1.0
0.4
0.1
0.2
0.5
0.4
0.4
1.1
0.8
0.6
1.3
40.2
0.1
0.2
0.1
0.6
0.1
0.2
4.4
3.8
0.9
1.7
0.3
1.1
0.3
0.7
0.3
0.8
0.2
0.2
0.1
0.2
0.4
0.4
0.3
0.4
2.1
5.9
0.3
9.0
1.2
38.6
6.9
12.7
9.5
0.1
65.6
12.6
113.0
7.1
3.5
0.4
1.0
Ts
Ts
Ts
Ts
Ts
Tomkins Tomkins Tomkins Tomkins Tomkins
(3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa)
708
901
596
579
663
689
592
661
621
674
604
587
625
580
608
598
612
690
636
713
637
640
629
554
592
582
568
584
576
607
580
638
598
785
593
555
658
595
630
557
596
593
576
636
690
595
689
603
606
742
609
598
598
569
573
594
629
576
580
625
628
572
534
693
490
859
467
807
686
787
841
487
909
581
1016
695
572
529
506
631
810
528
513
590
614
525
589
552
600
536
520
555
513
540
530
543
615
565
636
566
569
558
490
525
516
502
517
510
538
514
567
530
703
526
490
585
528
560
492
528
526
510
565
615
527
614
535
538
663
540
530
530
503
507
526
559
510
514
555
557
506
471
618
431
771
409
723
611
705
754
427
817
515
916
620
506
467
446
609
783
508
493
569
592
505
567
531
578
516
500
535
494
519
510
523
593
544
614
546
548
538
471
505
496
483
497
491
518
494
546
510
679
506
472
564
508
539
473
508
506
491
544
593
508
592
514
517
639
520
510
510
484
488
506
538
490
494
534
537
487
453
595
413
745
392
698
589
680
728
410
790
495
886
597
486
448
428
658
842
552
536
616
641
549
614
576
626
560
543
580
537
564
554
567
642
590
664
591
594
583
512
549
539
525
540
534
563
537
592
554
732
549
513
611
552
585
515
552
549
534
590
641
551
640
559
562
690
565
554
554
526
530
550
584
533
537
579
582
529
493
644
452
802
430
753
637
734
785
448
849
538
951
646
529
489
467
573
740
476
462
535
557
473
533
498
544
484
469
502
462
487
478
490
558
511
578
512
515
505
440
473
465
452
466
460
486
463
513
478
640
474
441
530
476
506
443
476
474
460
511
557
476
557
482
485
602
488
478
478
453
457
475
505
459
463
501
504
456
423
560
385
704
365
659
554
641
688
382
747
464
839
562
455
419
399
Table A11.1. Trace element compositions and temperature measurements for the detrital
samples from the Western Alps (continued)
234
Appendix A11
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SL 10/17-18
SL 10/17-19
SL 10/17-20
SL 10/17-21
SL 10/17-22
SL 10/17-23
SL 10/17-24
SL 10/17-25
SL 10/17-26
SL 10/17-27
SL 10/17-28
SL 10/17-29
SL 10/17-30
SL 10/17-31
SL 10/17-32
SL 10/17-33
SL 10/17-34
SL 10/17-35
SL 10/17-36
SL 10/17-37
SL 10/17-38
SL 10/17-39
SL 10/17-40
SL 10/17-41
SL 10/17-42
SL 10/17-43
SL 10/17-44
SL 10/17-45
SL 10/17-46
SL 10/17-47
SL 10/17-48
SL 10/17-49
SL 10/17-50
SL 10/17-51
SL 10/17-52
SL 10/17-53
SL 10/17-54
SL 10/17-55
SL 10/17-56
SL 10/17-57
SL 10/17-58
SL 10/17-59
SL 10/17-60
SL 10/17-61
SL 10/17-62
SL 10/17-63
SL 10/17-64
SL 10/17-65
SL 10/17-66
SL 10/17-67
SL 10/17-68
SL 10/17-69
SL 10/17-70
SL 10/17-71
SL 10/17-72
SL 10/17-73
SL 10/17-74
SL 10/17-75
SL 10/17-76
SL 10/17-77
SL 10/17-78
SL 10/17-79
SL 10/17-80
SL 10/17-81
SL 10/17-82
SL 10/17-83
SL 10/17-84
SL 10/17-85
SL 10/17-86
SL 10/17-87
SL 10/17-88
SL 10/17-89
SL 10/17-90
SL 10/17-91
SL 10/17-92
SL 10/17-93
SL 10/17-94
SL 10/17-95
SL 10/17-96
0.003
0.002
0.003
0.002
0.608
0.006
0.002
0.008
0.002
0.004
0.004
0.002
0.003
0.002
0.002
0.002
0.018
0.014
0.009
0.027
0.003
0.084
0.015
0.079
0.003
0.002
0.003
0.003
0.003
0.005
0.002
0.004
0.002
0.016
0.003
0.002
0.040
0.004
0.002
0.002
0.003
0.006
0.002
0.003
0.058
0.005
0.004
0.003
0.003
0.003
0.029
0.011
0.002
0.030
0.004
0.004
0.011
0.012
0.002
0.003
0.004
0.024
0.002
0.002
0.002
0.668
0.002
0.006
0.027
0.003
0.068
0.014
0.003
0.114
0.002
0.806
0.013
0.059
0.002
0.04
0.02
0.02
0.04
0.94
0.13
0.01
0.05
0.01
0.04
0.01
0.03
0.02
0.02
0.00
0.02
0.42
0.26
0.08
0.17
0.05
0.19
0.02
0.06
0.03
0.01
0.04
0.09
0.01
0.08
0.01
0.03
0.02
0.13
0.01
0.01
0.06
0.01
0.03
0.08
0.00
0.07
0.01
0.03
0.09
0.13
0.00
0.02
0.04
0.04
0.07
0.04
0.06
0.10
0.00
0.08
0.15
0.03
0.00
0.04
0.09
0.04
0.04
0.03
0.03
1.25
0.01
0.05
0.09
0.01
0.04
0.20
0.01
1.52
0.01
0.71
0.05
0.17
0.03
0.24
0.16
0.18
0.18
1.13
0.20
0.18
0.20
0.15
0.20
0.17
0.20
0.16
0.23
0.21
0.20
0.80
0.42
0.36
0.62
0.23
0.58
0.40
0.18
1.07
0.20
0.22
0.17
0.19
0.20
0.18
0.18
0.20
0.23
0.19
0.16
0.26
0.21
0.16
0.35
0.14
0.18
0.10
0.22
0.35
1.11
0.20
0.24
0.20
0.22
0.35
0.25
0.13
0.23
3.40
0.32
0.49
0.17
0.12
0.18
0.65
0.24
0.21
0.19
0.12
2.49
0.13
0.16
0.32
0.22
0.20
1.52
0.15
19.60
0.13
1.19
0.19
0.80
0.13
968
813
1130
1620
1170
1060
1500
1040
986
925
960
2160
1520
1030
1910
764
1980
1720
5720
2620
1110
218
2100
1960
780
2890
644
1250
307
1350
1030
1630
1390
1920
1220
1960
953
1160
2140
1460
2680
898
3210
5180
1210
1850
1520
854
1140
944
786
1520
777
438
789
2020
512
1460
2280
1700
175
796
1630
400
1700
2410
920
1270
1080
855
1100
786
681
1990
737
277
1190
609
1180
496
517
501
380
445
577
271
452
563
355
312
579
420
58
1300
329
759
985
801
1250
505
43
907
137
412
425
575
511
66
587
246
780
572
2590
528
1130
259
263
430
418
935
438
1320
1680
1690
704
486
249
4420
1020
186
364
129
382
86
654
240
451
212
530
49
183
553
373
432
592
488
717
289
329
298
108
194
248
291
42
543
1370
605
922
52
49
576
71
68
60
4
70
5
8
209
2130
159
5
11
259
34
39
1290
5
25
1690
1430
60
845
2
44
12
7
2
12
114
650
6
4
5
228
137
61
587
59
687
1030
1400
704
90
70
429
72
9
3
679
3
286
316
11
130
216
358
146
1020
205
7
99
169
12
7
3
5
3
89
2
80
3
13
116
196
5
6910
907
642
6560
2310
3170
325
1800
2300
2610
2390
2340
866
283
372
2650
738
636
506
779
2520
1900
1190
1020
2070
215
3800
3100
3200
2500
2500
2420
3860
414
1730
413
2130
945
958
1760
3930
1940
5030
1240
821
4860
1710
1360
4070
991
3640
2450
1760
1710
103
3250
1670
3830
2090
4920
5100
273
2750
226
1690
2570
1650
2090
2470
1830
2350
1450
2630
1320
1780
1270
1610
2450
1920
12.6
1.6
1.9
5.1
1.8
2.0
2.0
6.1
1.8
2.6
2.2
2.3
54.5
1.5
2.4
1.7
3.6
2.0
2.3
6.9
1.8
7.6
21.7
10.2
3.1
12.1
2.9
2.2
88.2
2.4
2.0
2.9
1.5
13.8
2.5
3.9
1.8
3.1
1.7
1.8
1.6
2.0
5.7
10.5
5.5
4.4
2.4
2.3
6.3
1.5
1.0
1.6
7.5
2.0
2.3
2.6
3.0
2.4
1.7
4.6
30.7
85.2
2.4
2.1
1.9
1.4
1.8
1.5
1.8
5.3
0.8
3.2
3.1
3.9
1.9
2.8
2.2
3.6
1.6
137
73
131
39
70
142
299
159
94
514
245
83
43
177
216
127
73
350
254
145
244
38
436
458
133
17
136
64
268
305
273
372
71
204
163
339
197
61
126
680
168
105
276
70
315
66
127
144
74
33
150
159
209
12
684
101
23
151
243
156
129
907
147
36
97
2440
145
289
276
233
216
15
252
109
200
141
137
12
210
0.7
77.6
0.8
4.0
11.5
14.2
7.9
308.0
21.1
19.4
385.0
0.6
0.5
10.2
38.0
26.2
1230.0
1520.0
2770.0
1130.0
9.1
39.0
1100.0
597.0
1.6
0.6
2.9
42.7
3870.0
10.0
726.0
162.0
12.8
5420.0
35.8
948.0
30.2
2.7
3.2
13.5
0.6
13.1
0.5
1.7
217.0
168.0
19.8
17.6
529.0
2.8
118.0
58.2
8.6
7.1
24.7
103.0
77.6
17.6
6.0
3.7
2860.0
2030.0
3.2
0.9
20.0
15.4
39.1
6.3
476.0
272.0
225.0
65.5
1060.0
678.0
559.0
49.9
6.0
3.1
7.5
52.6
2.9
4.3
29.1
4.8
4.2
1.7
0.4
3.7
0.5
0.7
9.2
93.7
5.2
0.4
0.8
15.6
2.6
4.6
53.5
0.7
1.1
76.8
70.0
3.5
21.2
0.4
2.3
0.6
0.8
0.5
1.2
5.4
23.8
1.1
0.5
0.6
7.3
6.1
3.5
25.6
4.5
33.9
38.8
67.1
30.2
4.1
3.7
22.1
2.9
0.4
0.6
38.2
0.7
5.8
15.1
0.9
8.6
13.3
15.9
14.2
39.0
11.4
0.6
3.8
5.8
0.6
0.5
0.5
0.6
0.6
3.2
0.6
4.8
0.5
0.6
6.3
12.3
0.5
214
43
51
182
157
215
38
104
128
207
200
146
13
15
19
230
39
47
31
48
151
92
58
89
88
8
288
169
269
166
212
203
441
14
109
19
118
47
81
132
167
120
105
151
71
197
104
80
145
49
331
164
51
129
9
239
129
185
186
227
574
5
92
15
57
134
127
133
198
124
170
69
215
91
135
99
43
97
127
524
277
5
403
290
160
159
183
309
501
617
129
14
743
314
193
259
784
102
332
192
1120
86
403
347
10
3470
327
2550
253
971
191
203
247
89
1070
250
52
171
326
1180
176
2700
144
1980
616
102
99
3090
116
753
101
375
506
70
121
627
965
381
337
2820
1280
179
5
224
354
50
220
558
879
178
86
1400
842
792
504
233
58
167
32.9
0.8
0.1
5.3
7.7
1.7
10.7
2.5
1.2
0.4
10.5
15.6
33.7
6.5
0.5
0.1
87.8
14.5
32.6
144.0
0.5
7.6
73.8
163.0
6.7
8.8
1.0
1.4
9.1
1.2
1.4
4.4
2.7
307.0
5.4
2.1
4.2
0.6
1.4
3.9
5.6
2.1
6.7
26.8
237.0
5.2
10.8
3.4
9.3
0.8
3.7
0.9
37.6
1.3
8.8
9.5
10.8
8.4
16.8
15.3
66.0
693.0
9.1
0.1
12.0
12.8
0.4
0.8
1.5
1.7
2.7
1.3
2.5
9.7
0.1
7.4
6.1
3.9
1.7
Ts
Ts
Ts
Ts
Ts
Tomkins Tomkins Tomkins Tomkins Tomkins
(3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa)
893
645
641
843
666
663
654
502
665
511
535
750
992
727
506
550
768
617
625
931
509
598
963
943
654
883
461
633
554
525
474
554
701
856
520
499
508
757
716
655
845
653
861
905
940
864
684
665
814
667
542
483
860
484
777
786
549
711
753
797
721
904
748
528
691
732
553
523
490
510
477
683
465
675
485
561
703
745
512
802
574
570
756
593
590
582
441
592
450
472
670
893
649
446
486
687
548
555
837
448
530
867
848
582
793
404
562
490
463
416
489
625
768
458
439
447
677
639
583
758
581
773
813
846
775
609
592
730
594
479
424
772
425
695
704
485
635
673
714
643
812
669
466
616
654
488
461
430
449
419
609
408
601
426
496
627
665
451
775
553
549
731
571
569
561
423
570
432
454
647
864
627
428
467
663
527
535
809
430
510
838
820
561
767
387
541
471
445
399
470
603
742
440
421
429
653
616
562
732
560
747
786
818
749
587
570
705
573
460
407
746
408
671
679
466
612
649
690
620
785
645
447
594
631
469
442
413
431
402
587
391
579
408
477
604
642
433
834
599
595
787
619
616
608
463
618
471
494
698
928
677
467
508
716
572
580
870
469
554
901
881
607
825
424
587
512
485
436
512
652
799
480
460
469
705
666
608
789
607
804
845
879
806
636
618
760
620
501
445
803
446
724
733
508
662
701
744
671
844
697
488
642
682
511
482
451
471
440
635
428
627
447
519
653
693
472
732
519
515
690
537
534
527
395
536
403
424
609
818
590
399
437
625
495
502
765
401
478
793
776
527
724
360
508
440
416
371
440
567
700
411
393
401
616
580
528
691
526
705
743
773
707
552
536
665
538
430
379
704
380
633
640
436
576
612
650
584
742
608
418
558
594
439
413
385
403
374
552
364
544
381
446
568
605
404
Table A11.1. Trace element compositions and temperature measurements for the detrital
samples from the Western Alps (continued)
235
Appendix A11
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SL 10/17-97
SL 10/17-98
SL 10/16-1
SL 10/16-2
SL 10/16-3
SL 10/16-4
SL 10/16-5
SL 10/16-6
SL 10/16-7
SL 10/16-8
SL 10/16-9
SL 10/16-10
SL 10/16-11
SL 10/16-12
SL 10/16-13
SL 10/16-14
SL 10/16-15
SL 10/16-16
SL 10/16-17
SL 10/16-18
SL 10/16-19
SL 10/16-20
SL 10/16-21
SL 10/16-22
SL 10/16-23
SL 10/16-24
SL 10/16-25
SL 10/16-26
SL 10/16-27
SL 10/16-28
SL 10/16-29
SL 10/16-30
SL 10/16-31
SL 10/16-32
SL 10/16-33
SL 10/16-34
SL 10/16-35
SL 10/16-36
SL 10/16-37
SL 10/16-38
SL 10/16-39
SL 10/16-40
SL 10/16-41
SL 10/16-42
SL 10/16-43
SL 10/16-44
SL 10/16-45
SL 10/16-46
SL 10/16-47
SL 10/16-48
SL 10/16-49
SL 10/16-50
SL 10/16-51
SL 10/16-52
SL 10/16-53
SL 10/16-54
SL 10/16-55
SL 10/16-56
SL 10/16-57
SL 10/16-58
SL 10/16-59
SL 10/16-60
SL 10/16-61
SL 10/16-62
SL 10/16-63
SL 10/16-64
SL 10/16-65
SL 10/16-66
SL 10/16-67
SL 10/16-68
SL 10/16-69
SL 10/16-70
SL 10/16-71
SL 10/16-72
SL 10/16-73
SL 10/16-74
SL 10/16-75
SL 10/16-76
SL 10/16-77
0.003
0.002
0.002
0.003
0.003
0.005
0.004
0.002
0.004
0.003
0.004
0.003
0.004
0.003
0.004
0.003
0.003
0.004
0.004
0.004
0.001
0.004
0.005
0.015
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.002
0.047
0.003
0.003
0.004
0.003
0.001
0.003
0.001
0.005
0.004
0.004
0.003
0.001
0.001
0.001
0.005
0.004
0.003
0.007
0.006
0.006
0.007
0.001
0.001
0.001
0.001
0.006
0.006
0.001
0.023
0.010
0.005
0.005
0.001
0.004
0.008
0.002
0.003
0.003
0.001
0.001
0.002
0.001
0.001
0.001
0.004
0.00
0.01
0.02
0.03
0.04
0.02
0.03
0.01
0.02
0.02
0.03
0.02
0.04
0.02
0.03
0.04
0.02
0.02
0.01
0.03
0.05
0.02
0.02
0.05
0.04
0.04
0.03
0.01
0.02
0.04
0.03
0.02
0.02
0.05
0.08
0.02
0.02
0.02
0.08
0.13
0.08
0.01
0.02
0.02
0.02
0.01
0.03
0.02
0.04
0.04
0.02
0.03
0.03
0.03
0.02
0.05
0.03
0.03
0.02
0.01
0.03
0.01
0.02
0.06
0.02
0.01
0.01
0.03
0.01
0.03
0.03
0.02
0.04
0.02
0.02
0.03
0.01
0.03
0.03
0.21
0.13
0.15
0.21
0.17
0.29
0.21
0.15
0.23
0.12
0.16
0.17
0.22
0.18
0.18
0.19
0.23
0.24
0.18
0.21
0.17
0.20
0.25
0.22
0.13
0.21
0.15
0.18
0.15
0.16
0.17
0.21
0.18
0.65
0.15
0.19
0.18
0.16
0.08
0.22
0.14
0.25
0.23
0.21
0.18
0.08
0.08
0.09
0.36
0.26
0.21
0.47
0.31
0.30
0.46
0.15
0.12
0.09
0.09
0.24
0.32
0.09
0.16
0.22
0.27
0.12
0.11
0.20
0.11
0.17
0.14
0.09
0.14
0.08
0.19
0.11
0.12
0.11
0.25
514
927
1910
1740
1780
1360
1790
1990
1460
1260
1630
1130
1930
1730
1980
2070
1960
1470
1710
2220
1230
1290
2170
1740
1840
1230
1800
2150
1320
1550
1630
2660
3350
1280
1490
1500
2280
1090
795
1260
1050
1160
1440
1920
1680
2110
1320
2420
1750
1610
1790
1540
1130
943
2190
1720
2080
1860
1450
1900
1710
1710
1100
853
1660
1260
3940
1200
1320
599
1500
1500
1380
1280
963
1400
1490
1530
1290
296
1340
587
523
568
179
466
211
584
217
587
99
238
672
607
635
573
968
520
637
702
1220
82
580
678
346
625
792
489
392
687
124
1150
51
548
535
601
69
69
580
333
1960
235
247
611
804
371
801
957
282
590
597
384
798
725
548
184
672
158
1000
758
439
329
495
558
522
503
1970
103
326
445
103
379
218
460
339
675
751
461
8
1140
185
168
128
153
189
152
164
175
111
205
163
136
178
145
141
127
143
135
54
118
150
135
187
120
146
157
150
155
131
137
124
128
7
145
158
36
73
103
61
178
121
159
116
96
142
206
191
160
146
180
116
121
136
163
138
151
147
171
134
126
23
146
136
26
154
135
196
18
182
178
104
120
132
158
144
114
6
1520
879
1910
2070
2130
1640
2130
410
1930
858
2200
723
673
1700
1790
1970
1750
750
1690
1950
1170
606
559
2000
592
1200
1850
1610
2000
2040
1970
430
1700
2480
2160
2030
1980
845
1640
1930
2030
804
565
478
1810
1770
2600
344
2060
488
1840
2350
2090
742
1980
1970
449
1990
483
1280
609
819
112
1400
2060
169
203
654
675
1170
2090
559
1440
945
1820
1720
546
1960
1890
6.2
5.6
3.9
3.8
3.7
3.1
6.3
3.5
6.4
4.9
2.9
12.7
6.7
3.4
4.5
4.2
5.6
3.7
2.7
4.9
0.8
1.7
3.6
6.5
3.8
2.1
2.8
3.2
4.5
5.1
4.1
56.3
2.1
2.7
1.5
2.1
5.7
3.8
20.4
3.1
0.6
1.5
3.1
3.7
1.8
1.4
5.1
4.6
4.9
5.1
2.9
5.8
2.9
3.1
4.5
5.6
3.3
3.8
4.9
2.3
3.7
0.9
2.1
3.1
5.6
0.8
3.4
1.4
8.3
1.7
6.6
6.4
1.5
1.3
1.7
4.1
1.8
2.2
1.7
273
311
85
105
176
159
163
29
200
27
124
58
63
131
108
129
61
108
70
87
31
86
35
141
63
129
302
190
130
130
84
34
52
108
417
139
140
60
134
141
258
98
155
47
77
56
217
43
120
54
71
238
289
119
126
156
37
105
27
100
64
46
20
242
162
52
49
90
37
72
136
34
75
102
120
101
46
38
237
296.0
629.0
1.6
0.9
1.3
1.7
1.2
1.4
8.1
7.2
16.2
1.4
2.4
1.1
1.0
1.6
1.4
2.8
1.4
1.3
32.5
1.6
2.0
1.3
2.2
4.2
1.4
7.5
1.5
2.0
1.0
3.9
1.2
21.6
22.0
9.5
2.2
1.7
3.8
9.0
0.3
4.1
3.5
1.5
5.4
3.6
2.0
0.6
2.1
2.4
1.8
2.7
2.4
4.5
5.7
0.9
2.3
1.8
1.0
6.6
1.2
1.4
1.7
4.3
1.4
0.5
1.3
3.3
1.1
4.6
1.1
1.1
1.2
1.5
3.1
0.8
1.5
3.0
16.7
0.4
56.6
6.7
8.3
5.9
6.4
8.1
5.9
7.9
6.2
4.1
10.4
6.5
6.0
8.7
7.4
6.2
5.8
8.5
6.3
5.8
5.9
4.8
6.6
6.4
5.3
6.8
6.8
5.6
6.2
6.4
7.5
4.3
4.1
0.7
6.8
6.7
1.9
3.1
4.5
3.6
8.5
4.2
4.1
5.2
4.3
6.3
9.2
8.8
9.1
7.1
10.2
3.5
4.7
7.6
5.3
6.1
6.6
5.8
7.9
4.7
5.7
1.2
6.8
7.3
1.6
7.5
6.0
6.0
1.1
7.4
6.8
4.0
4.8
6.0
7.3
5.9
5.2
0.6
102
64
106
124
128
89
133
22
123
45
135
44
47
92
115
141
103
45
113
115
64
39
36
135
36
73
114
180
141
141
121
34
92
102
154
135
120
51
90
125
129
45
29
30
96
106
155
22
145
45
114
232
267
55
139
138
42
118
31
79
39
42
8
122
150
11
13
44
39
80
153
34
66
62
119
105
37
123
126
376
1800
66
77
143
283
89
23
139
135
131
47
94
95
78
100
56
108
61
111
55
62
38
89
37
105
124
203
98
122
54
27
53
4240
337
90
90
47
71
317
72
106
94
31
136
105
130
32
126
273
49
161
199
90
111
105
24
93
61
135
62
62
2
91
114
16
23
78
101
820
91
62
187
80
188
76
37
68
297
6.3
166.0
5.8
13.7
10.9
1.2
8.6
2.0
1.7
1.4
3.1
4.7
12.4
17.9
4.3
15.7
12.1
2.4
9.1
15.7
0.7
1.4
1.6
10.8
2.4
1.3
11.4
17.5
16.8
20.9
7.2
4.6
5.4
0.5
4.9
14.8
12.1
1.5
2.8
5.1
0.6
1.0
5.2
6.2
3.0
4.4
15.9
1.8
7.8
5.0
9.8
15.3
8.6
0.5
6.3
12.5
2.2
9.5
6.4
14.6
9.0
0.6
0.1
8.1
11.1
0.3
1.6
1.4
9.5
0.5
10.5
2.7
1.0
22.2
0.1
5.7
1.2
2.8
0.4
Ts
Ts
Ts
Ts
Ts
Tomkins Tomkins Tomkins Tomkins Tomkins
(3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa)
533
916
740
732
710
724
742
724
730
735
699
748
729
715
737
720
718
710
719
714
647
704
723
714
741
705
721
726
723
725
712
716
708
710
529
720
727
621
669
694
656
737
706
727
703
688
718
749
742
728
721
738
703
706
715
729
716
723
721
733
714
709
593
721
715
599
725
714
745
579
738
737
694
705
713
727
720
701
519
470
824
661
654
634
647
663
646
652
657
624
669
651
638
658
643
641
633
642
637
576
628
645
637
662
629
643
649
645
648
635
639
631
634
466
643
649
551
595
618
583
658
630
649
627
613
641
669
663
650
643
659
627
630
638
651
639
646
644
655
637
633
526
643
638
531
647
637
665
512
660
658
619
629
636
649
642
625
457
451
796
638
631
611
624
639
623
629
634
601
645
628
615
635
620
618
611
619
615
554
605
622
615
638
607
620
626
622
625
613
616
609
611
448
620
626
531
574
596
562
635
607
627
604
591
618
646
640
627
620
636
604
607
615
628
616
623
621
632
614
610
506
620
615
511
624
615
642
493
636
635
597
607
613
626
619
603
439
492
856
689
681
661
674
690
674
679
684
650
697
679
665
686
670
668
660
669
665
601
655
673
665
690
656
671
676
673
675
662
666
658
661
488
670
677
576
621
645
609
686
657
677
653
640
668
697
691
677
671
687
653
657
665
679
666
673
671
683
664
660
549
671
665
555
675
665
693
536
687
686
646
656
663
677
669
652
479
422
753
601
594
575
587
602
587
592
597
566
608
592
579
598
584
582
575
583
579
521
570
586
579
601
571
584
589
586
588
577
580
573
575
418
584
589
498
539
561
528
598
571
590
568
556
582
608
603
590
584
599
568
571
579
592
580
586
584
595
578
574
474
584
579
479
588
579
605
462
599
598
561
571
577
589
583
567
410
Table A11.1. Trace element compositions and temperature measurements for the detrital
samples from the Western Alps (continued)
236
Appendix A11
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
SL 10/16-78
SL 10/16-79
SL 10/16-80
SL 10/16-81
SL 10/16-82
SL 10/16-83
SL 10/16-84
SL 10/16-85
SL 10/16-86
SL 10/16-87
SL 10/16-88
SL 10/16-89
SL 10/16-90
SL 10/16-91
SL 10/16-92
SL 10/16-93
SL 10/16-94
SL 10/16-95
SL 10/16-96
SL 10/16-97
SL 10/16-98
SL 10/16-99
SL 10/16-100
SL 10/16-101
SL 10/16-102
SL 10/16-103
SL 10/16-104
SL 10/16-105
SL 10/16-106
SL 10/16-107
SL 10/16-108
SL 10/16-109
SL 10/16-110
0.002
0.003
0.002
0.001
0.001
0.001
0.001
0.002
0.003
0.003
0.001
0.002
0.005
0.003
0.006
0.002
0.070
0.001
0.001
0.001
0.001
0.001
0.021
0.003
0.002
0.009
0.001
0.006
0.001
0.001
0.001
0.004
0.003
0.03
0.02
0.03
0.07
0.02
0.03
0.03
0.02
0.02
0.03
0.01
0.01
0.01
0.01
0.16
0.01
0.05
0.04
0.01
0.01
0.02
0.02
0.02
0.04
0.03
0.02
0.02
0.01
0.03
0.05
0.06
0.03
0.01
0.21
0.11
0.09
0.11
0.11
0.08
0.06
0.20
0.13
0.18
0.10
0.14
0.23
0.23
0.13
0.16
0.09
0.08
0.15
0.18
0.19
0.08
0.35
0.18
0.11
0.41
0.09
0.12
0.15
0.12
0.06
0.24
0.24
1720
1940
1790
1850
1140
1380
1940
733
1530
1590
1290
1220
1860
1180
1340
1260
1850
1680
2330
1830
2570
1630
1210
2090
1590
1590
1820
732
1410
1390
1310
1460
1370
618
890
489
131
357
522
631
2920
363
1470
147
856
1310
1340
872
1600
802
573
543
532
907
519
288
77
766
206
120
1830
177
14
2390
1400
92
176
133
207
153
52
109
141
118
157
159
164
107
186
84
160
104
179
156
183
127
133
151
145
148
127
185
181
29
213
165
182
156
181
2110
721
1650
580
1580
633
1940
503
624
795
691
1930
1170
1250
802
2440
1840
2070
499
1820
1920
1960
820
503
1920
572
466
105
489
663
2340
961
674
5.3
1.7
6.6
4.7
0.8
2.7
4.1
1.2
2.8
3.6
6.8
1.6
2.6
2.1
1.7
1.0
5.0
4.4
4.1
2.9
2.2
3.3
4.0
4.2
2.4
3.6
5.3
1.2
6.5
5.9
2.9
3.0
6.0
108
100
92
76
86
113
141
99
60
74
18
180
79
31
93
102
110
193
50
81
66
127
46
44
59
66
33
27
25
63
415
111
31
1.8
2.8
2.8
9.0
6.0
2.2
1.2
3.4
0.8
0.9
1.0
6.3
2.4
1.4
3.3
12.1
0.6
0.7
1.0
11.4
0.8
3.8
2.3
1.4
0.7
3.2
1.4
0.6
1.0
4.1
4.3
4.1
0.9
7.0
5.4
7.8
5.7
3.3
4.9
5.6
5.1
7.3
5.9
6.9
5.1
8.4
3.9
7.7
5.0
5.7
8.6
8.4
5.4
5.9
6.9
6.0
7.1
6.1
11.1
8.2
1.2
6.1
7.6
9.5
8.3
7.1
110
40
86
39
122
32
142
29
45
49
38
97
67
94
45
114
119
137
36
104
114
129
44
34
116
32
30
3
34
42
151
50
45
64
298
65
113
121
93
123
209
43
116
45
279
84
42
342
425
81
148
49
52
158
219
62
52
79
46
41
155
53
89
683
522
64
10.5
0.4
14.0
1.4
0.7
3.9
10.5
2.1
2.9
1.2
3.0
2.6
1.5
4.5
0.2
3.7
13.3
16.0
7.3
1.1
7.8
16.3
6.5
5.0
6.2
0.5
2.4
0.1
10.2
1.6
0.3
0.9
10.2
Ts
Ts
Ts
Ts
Ts
Tomkins Tomkins Tomkins Tomkins Tomkins
(3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa)
736
713
749
724
645
698
718
704
726
727
730
696
740
679
728
694
737
726
739
710
713
723
720
722
710
740
738
606
752
730
738
726
738
657
636
670
647
573
622
641
628
649
649
652
621
661
605
650
619
658
648
660
633
636
646
643
644
633
661
659
537
672
652
660
648
659
634
614
646
624
552
600
618
605
626
627
629
599
638
583
627
597
635
625
637
611
614
623
620
621
611
638
636
517
648
629
636
625
636
685
664
698
674
598
649
668
655
676
677
679
648
689
631
677
646
686
676
688
660
664
673
670
672
660
689
687
561
700
680
687
676
687
597
578
609
587
519
564
582
570
589
590
592
563
601
548
590
561
598
589
600
575
578
586
584
585
575
601
599
485
611
592
599
589
599
Table A11.1. Trace element compositions and temperature measurements for the detrital
samples from the Western Alps (continued)
237
Appendix A12
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
4-1A-1
4-1A-2
4-1A-3
4-1A-4
4-1A-5
4-1A-6
4-1A-7
4-1A-8
4-1A-9
4-1A-10
4-1A-11
4-1A-12
N19-1
N19-2
N19-3
N19-4
N19-5
N19-6
N19-7
N19-8
N19-9
N19-10
N19-11
N19-12
N19-13
N19-14
N19-15
N19-16
N19-17
N19-18
N19-19
N19-20
N19-21
N19-22
N19-23
N19-24
N19-25
N19-26
N19-27
N19-28
N19-29
N19-30
N19-31
N19-32
N19-33
N19-34
N19-35
N19-36
N19-37
N19-38
N19-39
N19-40
N19-41
N19-42
N19-43
N19-44
N19-45
N19-46
N19-47
N19-48
N19-49
N19-50
N19-51
N19-52
N19-53
N19-54
N19-55
N19-56
N19-57
N19-58
N19-59
N19-60
N19-61
N19-62
N19-63
N19-64
N19-65
N19-66
0.006
0.002
0.002
0.002
0.001
0.002
0.002
0.002
0.002
0.002
0.002
0.036
0.001
0.007
0.004
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.003
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.000
0.001
0.001
0.001
0.000
0.017
0.000
0.001
0.000
0.001
0.001
0.001
0.000
0.000
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.005
0.001
0.010
0.143
0.001
0.008
0.001
0.02
0.02
0.03
0.02
0.02
0.02
0.03
0.02
0.03
0.02
0.01
0.01
0.01
0.02
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.03
0.01
0.01
0.01
0.01
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.01
0.01
0.03
0.03
0.04
0.02
0.02
0.01
0.01
0.03
0.05
0.02
0.02
0.01
0.03
0.07
0.03
0.04
0.11
0.10
0.07
0.10
0.13
0.08
0.08
0.10
0.09
0.07
0.10
0.07
0.08
0.13
0.06
0.05
0.06
0.05
0.06
0.08
0.07
0.06
0.07
0.06
0.06
0.06
0.11
0.06
0.07
0.06
0.05
0.07
0.06
0.05
0.06
0.05
0.06
0.06
0.08
0.06
0.07
0.08
0.07
0.07
0.06
0.05
0.06
0.06
0.09
0.07
0.06
0.06
0.07
0.06
0.06
0.11
0.07
0.10
0.07
0.07
0.06
0.07
0.09
0.07
0.07
0.08
0.07
0.07
0.08
0.08
0.08
0.08
0.06
0.05
0.09
0.12
0.09
0.08
940
927
839
912
832
906
892
890
1020
1040
951
941
1670
1670
1690
1660
1640
1670
1640
1650
1630
1640
1610
1630
1630
1630
1590
1620
1680
1630
1600
1640
1630
1600
1590
1580
1520
1570
1560
1560
1580
1490
1640
1650
1620
1630
1650
1660
1630
1650
1600
1620
1620
1600
1630
1600
1590
1860
1790
1820
1840
1700
1680
1720
1690
1710
1690
1690
1730
1800
1790
1690
1710
1740
1680
1850
1790
1670
59
56
41
79
40
78
76
61
76
90
112
112
14
12
10
10
14
12
14
11
8
7
5
7
5
6
7
11
8
8
7
7
7
6
7
8
11
11
11
8
8
7
9
9
7
7
8
9
9
12
16
19
21
28
31
27
19
12
8
14
16
9
9
9
10
9
10
9
10
11
10
11
7
8
9
8
8
8
157
157
153
169
147
176
153
145
179
180
175
250
77
74
73
72
76
72
75
74
72
71
72
70
71
72
73
73
73
75
70
72
73
73
74
76
75
75
82
81
75
74
76
72
75
72
74
75
72
72
72
70
71
71
72
71
73
85
81
82
82
74
57
62
87
74
74
88
71
81
84
86
61
85
95
81
67
89
11
11
14
25
14
20
16
12
15
19
20
22
67
80
61
56
64
62
53
58
63
53
67
56
52
67
66
69
41
56
56
52
69
47
64
60
61
65
65
69
65
53
56
55
54
53
53
57
53
58
54
55
57
65
70
70
76
65
51
56
63
65
52
55
63
63
52
72
60
65
52
61
51
51
65
61
60
64
15
13
15
14
15
17
13
14
13
14
15
17
3
3
4
4
4
4
3
3
4
3
3
4
4
3
3
3
3
4
3
3
3
3
4
4
4
3
4
3
4
3
5
5
4
5
4
5
5
4
5
5
4
4
4
5
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
5
4
4
4
7
4
4
5
6
6
6
3
2
2
3
2
3
3
3
3
2
3
3
3
3
2
3
2
2
2
2
3
3
3
3
3
3
3
4
3
3
3
3
3
2
3
3
3
2
3
3
3
3
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
2
5.1
4.4
3.9
3.9
3.9
4.0
3.8
3.7
4.6
3.5
4.3
4.4
2.9
3.1
3.1
2.9
3.1
2.7
2.9
2.9
3.1
2.8
2.7
3.2
3.0
3.2
3.1
3.1
2.8
3.0
2.9
3.0
2.7
3.3
3.0
2.8
2.9
3.1
2.8
3.2
3.3
2.9
3.6
3.6
4.3
3.7
4.1
4.4
4.0
3.4
3.6
3.2
2.8
2.8
3.2
3.1
3.0
2.9
2.9
2.7
2.8
3.0
2.9
3.1
3.1
3.0
2.7
3.0
2.6
4.5
3.0
2.8
3.0
3.0
3.3
3.3
2.8
3.2
6.0
5.4
5.1
6.4
5.8
6.6
5.5
5.4
6.0
6.2
6.0
8.2
3.5
3.6
3.2
3.5
3.9
3.4
3.6
3.3
3.9
3.1
3.7
3.3
3.7
3.8
3.1
3.6
3.4
3.9
3.1
3.3
3.4
3.6
3.4
3.4
3.6
3.8
4.2
4.0
3.6
3.4
3.6
3.5
3.2
3.6
3.4
3.6
3.3
3.1
3.4
3.4
3.0
3.3
3.5
3.6
3.6
3.6
3.6
3.4
3.7
3.5
2.8
2.9
3.9
3.5
3.6
3.5
3.6
3.1
3.6
3.7
2.7
3.6
3.7
3.4
2.8
3.4
0
0
0
0
0
0
0
0
0
0
0
0
3
4
3
3
3
3
4
3
3
3
3
3
3
4
3
4
2
3
3
3
6
2
4
3
4
3
3
3
4
3
3
3
3
3
3
4
3
4
3
3
3
3
4
3
3
3
3
4
4
5
4
3
5
4
3
5
4
5
3
4
2
1
3
4
4
4
32
34
31
34
31
35
29
34
31
33
32
36
3
3
4
4
3
4
3
5
6
3
8
7
5
3
4
3
2
2
3
2
2
4
3
4
5
5
6
5
6
3
6
7
7
6
7
8
8
7
7
7
7
7
8
8
6
3
3
2
2
2
1
2
2
2
2
3
2
2
2
2
1
2
2
3
2
2
7.0
7.3
10.9
10.8
10.3
9.4
7.5
7.6
7.2
8.4
13.8
9.2
0.9
0.9
0.6
0.8
0.9
0.8
0.9
1.0
1.0
0.8
0.8
0.8
0.9
0.8
0.7
0.9
0.9
1.1
0.9
0.9
1.0
0.7
0.7
0.9
1.0
0.8
0.7
1.1
0.9
0.6
0.8
0.7
1.1
0.8
0.7
0.8
0.8
0.7
0.9
0.7
0.6
0.6
0.8
0.8
0.9
0.9
0.7
0.7
0.6
0.8
0.3
0.3
0.7
0.9
0.7
0.8
1.0
0.6
0.7
0.8
0.2
1.0
1.0
0.7
0.9
0.9
Table A12.1. Trace element compositions in WGC samples
238
Appendix A12
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
N19-67
N19-68
N19-69
N19-70
N19-71
N19-72
N19-73
N19-74
N19-75
N27-1
N27-2
N27-3
N27-4
N27-5
N27-6
N27-7
N27-8
N27-9
N27-10
N27-11
N27-12
N27-13
N27-14
N27-15
N28-1
N28-2
N28-3
N28-4
N28-5
N28-6
N28-7
N28-8
N28-9
N28-10
N28-11
N28-12
N28-13
N28-14
N28-15
N28-16
N28-17
N28-18
N28-19
N28-20
N28-21
N28-22
N28-23
N28-24
N28-25
N28-26
N28-27
N28-28
N28-29
N28-30
N29-1
N29-2
N29-3
N29-4
N29-5
N29-6
N29-7
N29-8
N29-9
N29-10
N29-11
N29-12
N29-13
N29-14
N29-15
N29-16
N29-17
N29-18
N29-19
N29-20
N29-21
N29-22
N29-23
N29-24
N29-25
0.008
0.001
0.048
0.001
0.002
0.001
0.001
0.001
0.002
0.004
0.003
0.002
0.001
0.001
0.002
0.001
0.002
0.002
0.002
0.002
0.002
0.001
0.002
0.003
0.030
0.003
0.002
0.013
0.035
0.001
0.001
0.001
0.003
0.001
0.001
0.002
0.004
0.002
0.002
0.001
0.001
0.002
0.002
0.001
0.003
0.001
0.001
0.037
0.001
0.001
0.011
0.001
0.001
0.002
0.001
0.003
0.001
0.001
0.001
0.001
0.003
0.011
0.001
0.001
0.001
0.011
0.002
0.003
0.001
0.001
0.001
0.002
0.001
0.001
0.000
0.001
0.001
0.004
0.001
0.04
0.02
0.01
0.02
0.04
0.31
0.03
0.02
0.02
0.02
0.05
0.05
0.02
0.03
0.04
0.03
0.04
0.13
0.05
0.03
0.03
0.03
0.03
0.04
0.05
0.02
0.02
0.01
0.01
0.02
0.02
0.01
0.01
0.05
0.01
0.02
0.01
0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.02
0.02
0.01
0.04
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.02
0.04
0.01
0.01
0.02
0.01
0.02
0.01
0.01
0.02
0.01
0.05
0.02
0.01
0.02
0.01
0.01
0.02
0.02
0.01
0.02
0.02
0.11
0.08
0.07
0.04
0.08
0.05
0.06
0.06
0.05
0.07
0.07
0.07
0.11
0.08
0.08
0.08
0.07
0.08
0.06
0.11
0.13
0.12
0.09
0.11
0.23
0.07
0.09
0.12
0.10
0.07
0.06
0.07
0.16
0.16
0.07
0.07
0.06
0.06
0.13
0.10
0.06
0.07
0.14
0.10
0.10
0.09
0.10
0.16
0.10
0.08
0.11
0.07
0.09
0.05
0.08
0.07
0.09
0.08
0.07
0.07
0.06
0.07
0.08
0.09
0.08
0.06
0.08
0.08
0.08
0.07
0.07
0.08
0.07
0.08
0.05
0.07
0.06
0.06
0.07
1760
1720
1680
1750
1710
1760
1990
1930
1980
1180
1200
1230
1230
1210
1240
1210
1240
1180
1210
1130
1170
1110
1140
1140
1460
1240
1720
2170
1750
1600
1540
1640
1650
1620
1670
1690
1680
1590
1660
1580
1590
1600
1710
1760
1580
1430
1510
1480
1630
1590
1660
1670
1720
1530
3910
3950
3850
3900
3910
3850
3910
3820
3880
3870
3820
4100
3970
3940
3900
3910
3730
3720
3830
3850
3680
3840
3670
3690
3730
9
9
10
9
10
8
19
29
10
276
278
435
431
438
528
501
521
504
495
507
505
495
549
559
383
322
485
728
383
360
389
388
402
365
405
419
406
380
392
379
390
382
507
542
475
398
419
380
563
551
579
421
497
423
137
140
134
138
130
129
121
112
111
126
122
121
121
126
128
134
124
119
120
121
117
116
120
124
131
95
91
96
97
90
70
94
89
104
289
304
292
286
284
354
290
353
297
291
274
287
287
280
274
252
262
263
224
269
274
254
251
263
256
247
260
264
228
251
281
259
265
263
227
252
246
268
271
275
258
275
225
270
258
155
145
152
164
190
161
170
180
170
187
162
172
169
156
168
161
170
159
163
163
116
169
122
136
116
68
63
69
65
62
65
61
101
73
869
959
920
914
907
866
823
857
826
761
903
951
879
781
834
981
749
1100
544
1060
822
802
536
870
491
736
864
922
114
704
719
788
996
825
336
618
743
716
868
931
688
734
654
1040
764
99
98
101
96
123
91
102
102
97
99
98
99
102
100
107
119
114
120
116
113
99
97
108
102
102
4
3
3
3
3
3
3
4
3
27
31
27
30
31
30
27
29
32
29
30
31
27
28
31
27
20
20
23
25
26
21
23
23
24
21
24
23
18
23
23
24
21
23
20
19
21
23
20
25
23
20
19
26
20
7
6
6
6
7
6
7
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
6
6
6
3
2
3
3
2
3
2
3
2
48
52
50
50
50
50
46
53
48
45
50
52
50
47
50
38
32
40
30
42
40
36
34
39
33
36
39
40
27
37
38
34
38
41
26
32
33
33
35
36
36
37
31
42
37
42
41
42
42
41
39
44
42
42
43
42
42
41
41
42
42
39
39
39
39
40
39
42
41
41
2.9
2.8
3.2
3.3
3.6
3.6
3.3
4.2
3.5
4.0
4.1
4.4
3.5
3.2
4.8
3.4
4.8
4.5
3.9
3.7
3.5
3.5
3.9
3.7
3.9
4.2
4.0
3.7
4.2
3.9
4.1
4.1
3.8
3.5
4.0
3.4
3.9
3.9
3.6
4.5
4.1
4.0
3.3
4.9
4.2
3.1
4.0
3.9
4.0
4.4
4.3
3.1
4.0
3.7
1.3
1.3
1.1
1.1
1.5
1.2
1.3
1.3
1.4
1.2
1.3
1.3
1.1
1.2
1.2
1.4
1.1
1.6
1.1
1.3
1.5
1.3
1.3
1.3
1.5
3.9
3.7
4.0
3.7
3.9
3.3
3.4
3.5
4.2
15.1
16.0
15.3
14.0
14.5
18.1
13.9
16.8
16.1
14.8
14.0
14.6
14.8
15.1
14.8
9.1
9.7
10.4
8.5
10.3
9.5
9.8
8.6
9.9
8.1
9.2
9.7
9.4
6.2
9.7
9.7
8.9
10.0
9.3
7.7
9.3
9.4
10.0
10.0
10.6
10.6
9.5
8.1
10.2
8.9
6.6
5.8
5.9
6.6
7.8
6.5
6.7
7.5
7.2
7.1
7.0
5.9
7.2
6.9
6.4
6.2
6.9
6.0
6.3
6.5
4.9
6.2
5.5
5.4
4.9
5
3
5
5
4
4
3
6
4
34
43
30
41
28
27
27
21
33
24
43
42
42
27
29
31
43
52
20
49
22
30
25
32
5
42
70
118
0
23
9
47
44
38
16
29
40
16
39
34
36
40
33
29
42
6
6
7
5
7
6
6
5
5
7
6
6
6
5
7
8
7
7
8
8
6
5
7
6
7
2
2
2
2
2
3
4
9
2
29
34
28
30
31
29
32
25
24
23
30
31
26
25
28
40
43
42
30
42
39
46
34
42
25
38
39
42
21
35
39
39
35
38
33
45
28
38
40
38
35
38
30
44
38
17
17
17
16
16
16
17
17
17
16
17
17
16
16
17
16
14
16
16
15
17
16
17
17
17
0.6
0.9
0.7
0.8
0.8
0.7
0.9
0.7
0.8
85.5
92.4
74.1
81.1
79.7
79.6
107.0
55.5
85.3
99.0
83.8
82.6
81.6
109.0
107.0
6.0
6.2
5.7
5.8
5.0
6.1
6.7
6.3
5.9
5.9
5.8
5.7
5.8
5.6
5.6
6.1
6.3
6.0
5.6
7.3
6.4
6.3
5.7
6.1
5.1
5.1
6.1
5.4
5.6
6.0
0.3
0.3
0.3
0.2
0.3
0.3
0.3
0.3
0.3
0.2
0.2
0.3
0.2
0.2
0.3
0.3
0.2
0.2
0.3
0.3
0.3
0.3
0.4
0.2
0.3
Table A12.1. Trace element compositions in WGC samples (continued)
239
Appendix A12
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
N29-26
N29-27
N29-28
N29-29
N29-30
N29-31
N29-32
N29-33
N29-34
N29-35
N29-36
N29-37
N29-38
N29-39
N29-40
N29-41
N29-42
N29-43
N29-44
N29-45
N29-46
N29-47
N29-48
N29-49
N29-50
N29-51
N29-52
N29-53
N29-54
N29-55
N29-56
N29-57
N29-58
N29-59
N29-60
N31-1
N31-2
N31-3
N31-4
N31-5
N31-6
N31-7
N31-8
N31-9
N31-10
N31-11
N31-12
N31-13
N31-14
N35-1
N35-2
N35-3
N35-4
N35-5
N35-6
N35-7
N35-8
N35-9
N35-10
N35-11
N35-12
N35-13
N35-14
N35-15
N35-16
N35-17
N35-18
N35-19
N35-20
N35-21
N35-22
N35-23
N35-24
N35-25
N35-26
N35-27
N35-28
N35-29
N35-30
0.001
0.001
0.001
0.000
0.004
0.001
0.001
0.001
0.000
0.001
0.001
0.000
0.003
0.006
0.001
0.000
0.002
0.001
0.001
0.001
0.001
0.001
0.005
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.009
0.003
0.001
0.000
0.000
0.002
0.001
0.002
0.064
0.052
0.001
0.002
0.020
0.053
0.155
0.139
0.002
0.001
0.001
0.005
0.002
0.002
0.001
0.001
0.001
0.008
0.023
0.002
0.003
0.001
0.003
0.002
0.002
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.001
0.002
0.002
0.001
0.002
0.002
0.001
0.001
0.002
0.03
0.01
0.02
0.01
0.02
0.01
0.02
0.02
0.01
0.04
0.03
0.02
0.01
0.01
0.02
0.01
0.01
0.02
0.01
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.05
0.04
0.02
0.01
0.02
0.01
0.05
0.01
0.02
0.02
0.08
0.01
0.02
0.01
0.02
0.02
0.01
0.02
0.01
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.03
0.01
0.01
0.01
0.01
0.02
0.01
0.01
0.01
0.02
0.02
0.01
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.02
0.01
0.09
0.05
0.07
0.10
0.08
0.06
0.09
0.08
0.09
0.09
0.09
0.09
0.10
0.08
0.08
0.07
0.09
0.05
0.09
0.08
0.08
0.07
0.08
0.08
0.08
0.08
0.07
0.07
0.07
0.07
0.09
0.09
0.07
0.06
0.06
0.06
0.06
0.06
0.17
0.14
0.07
0.06
0.08
0.08
0.09
0.11
0.05
0.08
0.09
0.08
0.10
0.07
0.06
0.06
0.09
0.07
0.11
0.08
0.06
0.03
0.10
0.12
0.10
0.05
0.08
0.10
0.15
0.09
0.07
0.08
0.09
0.09
0.12
0.07
0.11
0.09
0.11
0.11
0.10
3710
3660
3800
3800
3720
3740
3780
3730
3690
3770
3740
3740
3760
3770
3800
3720
3700
3750
3740
3680
3800
3750
3780
3790
3750
3710
3740
3740
3700
3720
3660
3720
3670
3680
3660
496
869
890
594
571
793
1210
519
788
726
731
845
756
762
1140
1180
989
1140
1200
1150
1130
1040
1210
1170
1170
1090
1100
1200
1220
1180
1190
1160
958
1150
1190
1150
1180
1180
1150
1090
1110
677
1030
1090
124
111
120
122
112
114
110
99
100
99
102
100
104
106
114
116
118
116
126
123
126
122
119
111
103
98
118
117
107
100
99
97
99
108
124
155
694
786
259
356
321
176
315
218
376
386
459
325
344
187
193
188
234
202
178
227
188
227
246
211
179
175
217
214
210
163
212
169
239
235
241
238
244
194
143
220
124
215
208
164
174
117
195
132
160
175
147
155
182
176
143
119
163
180
196
105
193
113
182
170
162
185
155
162
140
123
126
142
135
171
153
157
171
188
232
241
249
180
187
223
244
218
236
132
139
227
234
202
206
165
143
143
158
157
155
145
163
169
138
124
126
150
164
162
148
167
183
152
130
139
159
160
173
134
119
197
159
161
107
104
101
104
98
100
99
100
95
93
92
92
99
101
97
101
103
103
98
99
103
112
105
92
98
102
98
100
97
95
100
94
92
99
100
4970
3490
4100
2530
3510
3450
3130
5280
3100
2870
2400
2530
3390
3580
529
728
768
350
560
539
522
522
651
628
540
317
388
567
478
563
556
457
323
524
514
520
706
574
508
197
533
401
558
559
6
6
6
6
6
6
7
6
6
6
6
6
6
6
5
7
7
6
6
6
6
5
6
6
5
5
6
6
6
6
6
6
6
6
6
13
14
15
29
30
13
14
14
17
16
14
16
15
16
14
13
14
11
13
11
11
12
15
13
9
8
9
11
11
12
10
11
12
12
11
12
14
13
11
9
10
8
11
12
42
37
41
43
39
40
40
38
38
39
36
39
40
40
39
40
40
39
40
38
39
37
39
39
39
41
39
39
39
38
39
37
38
37
39
103
115
113
111
86
99
103
100
81
75
60
95
94
94
62
60
52
41
61
46
52
51
66
60
43
35
42
52
46
55
43
41
47
53
46
49
62
57
49
37
52
43
54
58
1.3
1.1
1.6
1.5
1.3
1.1
1.1
1.4
1.0
1.1
1.1
4.6
3.8
1.4
1.4
1.2
1.7
1.3
1.7
1.5
1.0
1.3
1.3
1.2
1.5
1.1
1.3
1.3
1.2
1.3
1.3
1.3
1.3
1.1
1.2
14.6
12.9
13.2
9.6
8.7
13.1
12.3
12.7
9.3
7.0
7.8
11.9
10.2
8.2
0.7
0.7
0.6
0.7
0.6
0.6
0.6
0.8
0.9
0.8
0.5
0.5
0.7
0.9
0.4
0.7
0.5
0.7
0.8
0.6
0.6
3.3
0.9
0.4
1.0
1.0
0.7
0.8
0.7
0.5
7.0
7.0
5.2
8.2
5.3
6.0
6.6
6.0
6.4
7.2
6.6
5.3
5.3
6.1
6.7
8.1
5.2
6.9
5.3
7.1
6.4
6.1
7.4
5.9
6.7
5.4
5.2
5.6
5.7
5.3
7.3
6.4
5.9
6.9
7.7
12.0
11.9
10.9
7.6
7.1
11.1
9.9
11.7
10.9
7.0
6.5
10.4
8.3
6.8
7.4
7.2
6.3
5.2
6.7
6.9
5.9
5.6
6.6
6.5
5.9
4.8
5.3
6.0
6.0
6.5
6.3
6.0
6.5
6.3
6.5
6.4
7.2
7.9
7.0
5.3
5.0
8.1
6.8
6.1
7
6
6
6
5
7
6
5
5
4
4
4
5
6
6
6
8
7
6
7
7
9
7
5
5
6
6
6
6
5
6
5
4
5
6
170
124
139
205
178
305
172
138
196
184
121
138
132
141
12
32
30
15
14
21
26
22
25
27
36
12
23
26
19
22
30
26
5
20
19
21
22
24
25
4
23
6
16
28
17
15
16
17
16
16
16
15
16
14
15
15
16
17
15
16
18
15
15
16
17
16
16
15
14
16
15
16
16
16
16
15
15
15
16
178
122
101
126
149
211
120
171
127
144
50
101
116
123
52
56
56
33
43
47
39
45
46
50
49
41
45
46
40
37
77
44
37
35
36
40
37
48
44
35
45
46
49
50
0.1
0.2
0.3
0.3
0.4
0.1
0.1
0.2
0.2
0.2
0.4
0.3
0.3
0.2
0.2
0.2
0.3
0.2
0.2
0.1
0.1
0.2
0.1
0.2
0.2
0.2
0.3
0.3
0.2
0.2
0.3
0.3
0.3
0.2
0.1
61.9
61.1
55.7
47.8
40.0
52.0
61.0
69.9
46.3
27.9
36.1
42.1
52.6
34.1
4.2
3.0
3.2
3.3
3.9
4.3
3.4
3.9
3.5
3.9
3.1
3.2
3.1
3.1
3.7
4.1
3.5
3.9
3.9
3.3
3.1
3.6
3.8
3.7
3.9
5.2
3.1
3.1
4.5
3.9
Table A12.1. Trace element compositions in WGC samples (continued)
240
Appendix A12
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
N36-1
N36-2
N36-3
N36-4
N36-5
N36-6
N36-7
N36-8
N36-9
N36-10
N36-11
N36-12
N36-13
N36-14
N36-15
N36-16
N36-17
N36-18
N36-19
N36-20
N36-21
N36-22
N36-23
N36-24
N36-25
N36-26
N36-27
N36-28
N36-29
N36-30
N36-31
N36-32
N36-33
N36-34
N36-35
N36-36
N36-37
N36-38
N36-39
N36-40
N36-41
N36-42
N36-43
N36-44
N36-45
N36-46
N36-47
N36-48
N36-49
N36-50
N36-51
N36-52
N36-53
N36-54
N36-55
N36-56
N36-57
N36-58
N36-59
N36-60
N38-1
N38-2
N38-3
N38-4
N38-5
N38-6
N38-7
N38-8
N38-9
N38-10
N38-11
N38-12
N38-13
N38-14
N38-15
N38-16
N38-17
N38-18
N38-19
0.002
0.001
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.003
0.001
0.001
0.002
0.004
0.001
0.002
0.002
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.000
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.002
0.002
0.002
0.002
0.002
0.001
0.001
0.001
0.002
0.001
0.001
0.003
0.017
0.004
0.002
0.006
0.006
0.006
0.003
0.010
0.007
0.015
0.004
0.002
0.032
0.030
0.033
0.025
0.033
0.141
0.017
0.04
0.02
0.03
0.03
0.02
0.02
0.03
0.02
0.04
0.05
0.03
0.02
0.01
0.05
0.02
0.05
0.32
0.02
0.03
0.05
0.05
0.04
0.14
0.06
0.02
0.03
0.02
0.04
0.03
0.03
0.03
0.04
0.02
0.03
0.07
0.02
0.02
0.01
0.02
0.03
0.07
0.02
0.02
0.02
0.02
0.02
0.01
0.03
0.03
0.02
0.02
0.02
0.03
0.03
0.03
0.05
0.04
0.04
0.02
0.03
0.35
0.32
0.29
0.27
0.34
0.30
0.24
0.44
0.37
0.34
0.32
0.26
0.24
0.24
0.24
0.22
0.26
0.24
0.30
0.08
0.06
0.09
0.04
0.07
0.09
0.04
0.07
0.07
0.08
0.06
0.05
0.07
0.06
0.06
0.06
0.07
0.04
0.02
0.08
0.05
0.06
0.04
0.05
0.05
0.07
0.05
0.05
0.07
0.06
0.05
0.06
0.07
0.06
0.08
0.07
0.06
0.05
0.07
0.08
0.06
0.08
0.08
0.07
0.06
0.06
0.10
0.10
0.07
0.12
0.08
0.11
0.08
0.13
0.12
0.08
0.09
0.10
0.08
0.10
0.07
0.06
0.10
0.17
0.08
0.10
0.08
0.10
0.09
0.14
0.11
0.14
0.09
0.06
0.06
0.13
0.20
0.08
0.11
683
692
702
696
692
689
674
697
676
681
681
678
694
683
682
673
681
692
687
672
688
672
709
684
687
680
675
690
672
685
686
694
719
705
730
701
701
674
689
692
705
779
696
688
678
695
682
680
678
686
686
707
689
694
691
683
694
689
715
713
2520
2190
1880
1920
2290
2000
1860
2910
2570
2300
2260
1810
3290
3320
3310
2990
2910
3330
2940
97
107
112
113
111
115
113
111
109
112
115
115
117
115
115
117
120
121
116
116
119
114
118
118
118
124
128
132
131
142
114
117
119
116
122
117
121
119
118
116
118
121
114
114
106
111
116
117
116
114
114
111
113
114
113
114
113
111
112
113
1030
859
844
855
950
809
779
1180
1020
929
923
746
1380
1420
1510
1320
1280
1670
1430
114
106
109
109
112
107
105
108
107
109
110
112
109
110
111
110
105
107
107
110
111
109
109
110
109
110
111
117
107
110
109
108
109
110
111
111
113
113
113
112
111
114
110
111
111
110
116
111
111
110
112
113
111
109
108
111
112
109
112
108
471
522
500
490
490
466
495
524
495
457
557
494
866
802
752
735
778
690
707
960
956
973
953
975
1010
923
952
929
971
971
951
980
969
992
977
931
941
913
933
960
933
936
938
948
966
992
1090
931
936
972
944
960
951
972
966
991
968
973
976
986
999
967
970
838
1020
960
935
945
942
973
981
969
933
936
939
944
910
980
943
43300
35100
26300
28900
36600
30100
27800
57600
43000
38100
37500
28200
79800
77600
79200
66900
70500
78900
68800
6
7
8
7
7
7
7
7
7
7
7
7
7
7
7
10
7
7
7
7
7
7
8
8
7
7
6
7
7
6
7
7
7
7
8
7
8
8
8
7
8
9
7
7
6
7
7
7
6
7
7
7
8
7
7
7
8
7
6
6
14
11
13
12
12
12
13
13
12
9
13
14
12
14
12
14
15
15
14
46
58
58
51
52
53
53
54
53
55
57
54
58
57
53
57
56
56
55
60
65
58
59
57
53
55
52
54
55
49
53
55
57
54
56
56
57
58
54
56
55
56
56
56
47
55
58
56
56
55
55
60
57
55
54
55
58
55
58
54
17
16
14
14
15
14
16
20
19
16
18
16
30
26
26
25
25
24
26
0.5
0.8
0.6
0.6
0.4
0.4
0.4
0.3
0.4
0.4
0.4
0.5
0.5
0.5
0.4
0.5
0.4
0.5
0.5
0.4
0.4
0.7
0.6
0.5
0.4
0.4
0.4
0.5
0.6
0.5
0.6
0.5
0.4
0.3
0.4
0.5
0.6
0.4
0.3
0.3
0.5
0.4
0.5
0.4
0.6
0.8
0.8
0.4
0.6
0.4
0.7
0.5
0.4
0.6
0.5
0.5
0.4
0.3
0.4
0.4
1.9
2.2
3.1
2.3
1.8
2.6
1.9
1.5
1.9
2.6
2.2
2.7
1.5
1.7
1.8
1.4
1.4
1.5
1.6
4.1
4.7
4.9
5.1
5.1
5.1
4.9
5.0
4.9
4.9
4.7
4.7
4.8
4.6
5.5
4.6
4.9
4.9
5.2
5.4
5.2
4.8
5.3
5.1
5.5
4.9
4.7
5.1
4.9
4.8
5.1
4.9
5.4
5.4
5.5
5.2
5.0
5.5
5.2
4.7
5.0
5.3
5.0
5.0
4.3
5.0
4.9
5.2
4.5
5.3
5.5
5.0
5.1
5.6
5.5
5.5
4.9
5.2
4.5
5.1
11.5
11.8
11.3
10.2
10.5
9.7
10.3
14.0
13.3
14.2
15.3
8.9
22.3
20.2
18.2
20.7
16.6
16.8
17.8
37
33
32
29
29
29
28
29
29
29
30
29
30
29
33
31
32
33
30
33
33
31
32
33
34
33
32
43
31
37
30
29
28
30
33
33
34
34
29
29
30
29
30
34
35
39
36
34
34
34
34
35
34
29
29
29
29
29
29
29
2080
1150
2240
2110
2540
783
244
2980
2880
1420
1770
39
3160
2720
3340
3330
946
2970
2120
11
14
12
12
11
11
11
12
11
11
11
11
12
11
13
13
14
14
14
14
14
15
14
15
15
15
15
15
14
14
12
11
11
12
13
14
14
14
11
11
12
12
11
13
13
16
15
14
14
14
13
14
14
11
11
12
11
12
11
11
11
12
9
9
11
11
9
10
10
10
7
17
11
11
10
10
9
15
9
8.1
6.3
6.1
5.7
6.2
5.8
6.2
6.0
7.0
8.6
7.0
6.2
7.4
7.7
7.2
7.8
8.7
7.0
6.9
8.4
8.1
6.5
7.0
7.0
7.1
6.8
6.8
7.6
7.3
6.4
6.4
7.1
6.1
6.3
6.8
7.0
9.0
7.8
8.5
8.1
6.5
7.5
7.6
6.6
7.5
5.6
6.0
6.4
5.8
6.1
5.6
6.0
5.7
6.3
6.4
7.7
7.4
6.1
6.4
5.8
0.4
0.5
0.4
0.5
0.4
0.6
0.6
0.4
0.3
0.4
0.4
0.5
0.7
0.7
0.7
0.6
0.6
1.0
0.6
Table A12.1. Trace element compositions in WGC samples (continued)
241
Appendix A12
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
N38-20
N38-21
N38-22
N38-23
N38-24
N38-25
N38-26
N38-27
N38-28
N38-29
N38-30
N40-1
N40-2
N40-3
N40-4
N40-5
N40-6
N40-7
N40-8
N40-9
N40-10
N40-11
N40-12
N40-13
N40-14
N40-15
N40-16
N40-17
N40-18
N40-19
N40-20
N40-21
N40-22
N40-23
N40-24
N40-25
N40-26
N40-27
N40-28
N40-29
N40-30
N55-1
N55-2
N55-3
N55-4
N55-5
N55-6
N55-7
N55-8
N55-9
N55-10
N55-11
N55-12
N55-13
N55-14
N55-15
N55-16
N55-17
N55-18
N55-19
N55-20
N55-21
N55-22
N55-23
N55-24
N55-25
N55-26
N55-27
N55-28
N55-29
N55-30
N55-31
N55-32
N55-33
N55-34
N55-35
N55-36
N55-37
N55-38
0.014
0.018
0.019
0.014
0.080
0.084
0.078
0.085
0.044
0.046
0.041
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.020
0.001
0.001
0.000
0.001
0.001
0.001
0.036
0.001
0.000
0.005
0.003
0.008
0.003
0.039
0.006
0.008
0.002
0.001
0.001
0.001
0.003
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.001
0.092
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.001
0.000
0.001
0.001
0.28
0.29
0.28
0.27
0.36
0.27
0.26
0.27
0.35
0.35
0.35
0.09
0.03
0.03
0.07
0.12
0.16
0.13
0.10
0.11
0.13
0.25
0.15
0.10
0.13
0.03
0.19
0.13
0.04
0.06
0.03
0.05
0.03
0.04
0.03
0.05
0.04
0.03
0.04
0.04
0.05
0.03
0.03
0.02
0.03
0.02
0.01
0.02
0.03
0.02
0.04
0.03
0.02
0.02
0.04
0.05
0.03
0.06
0.03
0.03
0.03
0.03
0.04
0.03
0.01
0.03
0.01
0.02
0.08
0.03
0.06
0.02
0.03
0.02
0.02
0.02
0.03
0.04
0.03
0.09
0.14
0.12
0.11
0.11
0.11
0.16
0.10
0.12
0.07
0.07
0.10
0.08
0.10
0.08
0.07
0.16
0.08
0.11
0.10
0.07
0.08
0.09
0.11
0.06
0.07
0.05
0.07
0.07
0.09
0.08
0.08
0.08
0.12
0.06
0.06
0.04
0.07
0.05
0.06
0.11
0.07
0.07
0.08
0.08
0.08
0.06
0.06
0.08
0.07
0.09
0.07
0.05
0.05
0.07
0.06
0.06
0.13
0.09
0.09
0.07
0.06
0.05
0.07
0.06
0.07
0.06
0.06
0.06
0.07
0.08
0.05
0.07
0.05
0.07
0.06
0.08
0.04
0.07
2800
2880
2860
2700
4960
4890
4760
4880
3820
3840
3770
1820
1580
1560
1620
1840
2470
2290
2710
2090
2060
2050
2570
2250
2290
1860
2040
1950
2040
1840
1620
1910
1520
1710
1890
2010
1850
1720
1690
1680
1840
1810
1810
1810
1850
1830
1800
1840
1830
1860
1840
1810
1860
1820
1810
1820
1860
1870
1840
1850
1850
1830
1860
1810
1790
1810
1830
1800
1850
1800
1880
1870
1860
1880
1810
1830
1830
1840
1860
1290
1330
1350
1300
1960
2020
1940
1980
1810
1800
1740
1350
1090
1030
1050
1110
1360
1270
1440
1180
1160
1190
1380
1260
1250
1110
1190
1120
1190
1070
1020
1130
970
1020
1160
1140
1100
1030
1000
1030
983
100
101
101
105
104
104
107
106
107
109
111
114
114
115
116
110
117
111
107
108
100
102
119
121
116
116
114
114
110
103
99
112
101
96
98
96
97
96
655
800
632
679
1070
1080
1070
1110
972
931
885
537
559
559
582
548
522
548
586
564
578
594
553
546
512
527
531
531
562
578
608
533
576
580
580
576
566
579
568
603
351
265
267
261
264
258
228
247
217
197
168
220
206
188
199
205
282
277
243
296
243
257
282
196
177
160
220
227
260
259
256
248
253
246
235
224
227
237
248
60000
68600
65700
61600
118000
117600
116000
117700
96700
92500
88400
7530
3930
3840
4670
7630
15900
13800
19100
11600
10800
11000
17700
13800
14300
7760
9450
8660
9440
8030
4940
8140
3160
5060
7010
9220
7270
6020
5490
5520
1280
1560
1030
940
928
851
796
784
884
835
773
797
791
794
776
826
1220
940
875
874
900
901
1120
758
780
774
824
818
1060
1080
1030
911
925
856
836
821
838
885
851
11
11
12
12
10
9
10
10
9
8
10
17
15
12
13
12
11
9
11
11
12
13
11
11
11
11
12
11
13
10
14
13
11
11
14
11
10
11
10
12
13
41
42
44
51
62
56
68
63
62
65
56
58
64
62
62
53
55
52
58
62
49
49
59
64
68
66
58
49
45
57
55
61
66
66
69
65
55
58
21
29
21
23
45
43
42
46
39
38
37
19
17
19
19
19
23
22
30
21
22
24
38
26
32
18
19
18
20
21
19
21
17
22
23
29
22
21
19
19
12
30
35
35
39
44
42
47
44
44
48
45
45
49
46
44
42
44
40
47
44
40
38
46
46
47
47
46
39
33
39
42
42
44
43
45
45
40
41
1.5
1.7
1.3
1.6
1.2
1.5
1.2
1.6
1.7
1.3
0.9
1.1
1.0
1.1
1.2
1.0
0.6
0.9
0.8
0.9
0.8
1.0
0.7
0.7
0.8
1.0
1.1
0.9
1.2
1.1
1.1
0.8
1.0
1.1
1.1
1.0
1.1
1.0
1.0
1.3
1.5
19.2
17.5
19.0
18.7
17.5
16.0
19.6
18.1
15.7
14.7
17.8
15.8
15.6
17.0
16.0
22.8
20.4
19.1
23.3
18.1
18.0
22.7
15.6
15.0
13.4
16.0
15.2
18.4
18.8
17.5
16.6
18.8
18.0
15.7
14.6
15.1
16.8
17.4
18.3
22.4
15.9
18.6
28.9
28.0
27.4
26.9
24.8
24.3
23.2
14.4
14.3
14.6
14.5
14.4
14.5
14.0
18.5
14.9
15.0
15.4
16.8
17.0
13.1
12.8
13.6
13.4
14.1
14.7
15.0
17.2
14.4
14.3
16.4
16.3
15.4
14.6
14.4
16.3
6.9
8.4
8.9
8.7
8.7
7.7
7.0
7.2
7.3
6.6
5.0
6.4
6.2
5.7
6.6
7.0
9.0
8.9
7.8
9.1
7.6
8.2
9.8
6.6
5.7
5.5
6.8
7.1
8.6
8.5
8.6
8.7
7.5
8.3
7.9
7.8
8.8
8.6
8.7
2520
3610
2500
2730
3800
3670
3870
3770
3800
3670
3570
135
68
54
56
249
512
264
568
130
135
238
306
396
179
103
122
157
147
66
121
200
46
51
119
109
152
99
56
43
2
61
51
40
56
44
44
42
59
50
44
44
45
44
45
47
51
57
48
49
53
49
50
43
43
46
45
47
49
50
59
53
53
53
53
51
54
53
46
11
11
13
10
15
14
13
16
13
14
11
15
24
21
22
19
15
18
18
22
19
20
16
20
9
20
19
20
19
21
20
19
22
22
22
21
19
21
20
22
7
106
115
116
116
67
70
66
97
73
68
73
75
75
82
113
136
98
93
81
76
83
112
79
67
74
82
74
116
89
100
83
107
83
79
81
83
102
85
0.6
0.6
0.7
0.8
1.3
2.7
1.5
1.4
0.9
0.8
0.8
10.9
12.4
10.0
9.9
10.1
8.7
13.0
8.8
9.4
9.6
9.6
8.8
11.1
9.4
10.2
10.7
11.1
11.3
13.7
12.6
13.5
16.1
13.7
14.7
12.4
11.4
12.2
11.4
13.2
12.9
1.0
0.4
0.4
0.6
0.9
0.5
0.7
0.5
0.5
0.5
0.6
0.7
0.7
0.8
0.6
0.5
1.1
0.5
0.7
0.5
0.5
0.5
0.8
1.0
1.1
0.7
0.6
0.5
0.5
0.7
0.5
0.5
0.5
0.5
0.5
0.6
0.6
0.5
Table A12.1. Trace element compositions in WGC samples (continued)
242
Appendix A12
Sample
MgO
Al2O3
SiO2
V
Cr
Zr
Nb
Mo
Sn
Sb
Hf
Ta
W
U
N55-39
N55-40
N55-41
N55-42
N55-43
N55-44
N55-45
N55-46
N55-47
N55-48
N55-49
N55-50
N55-51
N55-52
N55-53
N55-54
N55-55
N55-56
N55-57
N55-58
N55-59
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.003
0.001
0.001
0.002
0.002
0.001
0.001
0.01
0.02
0.03
0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.06
0.02
0.02
0.02
0.02
0.02
0.06
0.04
0.01
0.02
0.03
0.06
0.05
0.04
0.06
0.06
0.06
0.06
0.06
0.08
0.05
0.04
0.05
0.07
0.06
0.06
0.04
0.05
0.08
0.06
0.07
0.05
1810
1830
1790
1800
1780
1780
1850
1830
1840
1800
1850
1870
1860
1820
1950
1850
1870
1770
1830
1850
1890
94
96
99
98
94
92
100
99
97
98
100
98
101
97
98
100
103
102
98
99
97
239
223
236
250
235
232
230
258
226
226
298
223
229
231
238
222
228
295
248
232
250
834
846
881
997
955
890
844
832
825
864
941
905
944
927
879
851
863
918
875
883
983
61
64
55
54
50
44
58
63
58
62
70
61
60
54
65
69
71
70
62
62
52
45
42
39
40
39
36
44
43
42
45
49
43
41
35
47
47
46
46
46
44
37
16.2
15.3
17.5
19.1
15.1
20.3
16.4
19.0
16.3
16.5
18.1
15.4
16.4
16.5
19.0
15.0
15.3
20.1
16.7
14.9
19.4
8.4
8.8
8.2
8.4
8.2
7.7
8.0
8.3
8.0
7.5
10.3
8.3
9.1
8.3
8.5
8.4
8.1
9.7
9.1
8.7
8.3
47
51
55
46
62
48
48
42
49
46
48
53
55
54
50
45
50
54
51
55
45
83
89
96
113
96
91
83
84
89
79
92
92
99
95
81
80
78
114
81
92
89
0.6
0.6
0.5
0.4
0.3
0.4
0.6
0.7
0.4
0.5
0.5
0.5
0.7
0.5
0.8
0.6
0.5
0.7
0.5
0.4
0.4
Table A12.1. Trace element compositions in WGC samples (continued)
243
Appendix A12
Sample
4-1A-1
4-1A-2
4-1A-3
4-1A-4
4-1A-5
4-1A-6
4-1A-7
4-1A-8
4-1A-9
4-1A-10
4-1A-11
4-1A-12
N19-1
N19-2
N19-3
N19-4
N19-5
N19-6
N19-7
N19-8
N19-9
N19-10
N19-11
N19-12
N19-13
N19-14
N19-15
N19-16
N19-17
N19-18
N19-19
N19-20
N19-21
N19-22
N19-23
N19-24
N19-25
N19-26
N19-27
N19-28
N19-29
N19-30
N19-31
N19-32
N19-33
N19-34
N19-35
N19-36
N19-37
N19-38
N19-39
N19-40
N19-41
N19-42
N19-43
N19-44
N19-45
N19-46
N19-47
N19-48
N19-49
N19-50
N19-51
N19-52
N19-53
N19-54
N19-55
N19-56
N19-57
N19-58
N19-59
N19-60
N19-61
N19-62
N19-63
N19-64
N19-65
N19-66
Ts
Ts
Ts Tomkins
Tomkins
Tomkins
(1.8 GPa)
(1.6 GPa)
(2.0 GPa)
581
578
578
577
580
577
580
579
577
576
577
575
576
577
578
578
578
579
575
577
578
578
579
580
580
580
585
584
579
579
580
577
580
577
578
580
576
577
577
575
576
576
577
576
577
588
584
585
585
578
562
568
589
578
579
590
576
585
587
588
566
588
595
585
572
591
Ts
Tomkins
(2.2 GPa)
Ts
Tomkins
(2.5 GPa)
667
667
665
673
662
676
665
661
678
678
676
705
Ts
Ts
Tomkins Tomkins
(2.7 GPa) (3.5 GPa)
688
688
686
694
683
697
686
682
699
699
697
727
Ts
Tomkins
(3.7 GPa)
Ts Tomkins
(3.8 GPa)
598
595
595
594
598
594
597
596
594
593
594
592
593
594
595
595
595
597
592
594
595
595
596
597
597
597
602
602
597
596
597
594
597
594
595
597
594
594
594
592
593
593
594
593
595
605
602
603
602
596
579
585
607
596
596
608
593
602
605
606
583
605
613
602
590
608
Ts
Tomkins
(4.8 GPa)
Ts
Tomkins
(5.5 GPa)
Ts F&W
a(SiO2)=1
545
543
542
542
545
541
544
543
541
540
541
540
540
541
542
542
542
544
539
541
542
542
543
544
544
544
549
549
544
543
544
541
544
541
543
544
541
541
541
540
540
540
541
540
542
552
548
550
549
543
526
532
553
543
543
554
540
549
551
553
530
552
560
549
537
555
Table A12.2. Temperature measurements for the WGC samples
244
Appendix A12
Sample
N19-67
N19-68
N19-69
N19-70
N19-71
N19-72
N19-73
N19-74
N19-75
N27-1
N27-2
N27-3
N27-4
N27-5
N27-6
N27-7
N27-8
N27-9
N27-10
N27-11
N27-12
N27-13
N27-14
N27-15
N28-1
N28-2
N28-3
N28-4
N28-5
N28-6
N28-7
N28-8
N28-9
N28-10
N28-11
N28-12
N28-13
N28-14
N28-15
N28-16
N28-17
N28-18
N28-19
N28-20
N28-21
N28-22
N28-23
N28-24
N28-25
N28-26
N28-27
N28-28
N28-29
N28-30
N29-1
N29-2
N29-3
N29-4
N29-5
N29-6
N29-7
N29-8
N29-9
N29-10
N29-11
N29-12
N29-13
N29-14
N29-15
N29-16
N29-17
N29-18
N29-19
N29-20
N29-21
N29-22
N29-23
N29-24
N29-25
Ts
Ts
Ts Tomkins
Tomkins
Tomkins
(1.8 GPa)
(1.6 GPa)
(2.0 GPa)
595
613
592
610
596
614
596
614
592
609
575
592
594
612
590
608
601
619
Ts
Tomkins
(2.2 GPa)
700
703
703
690
705
707
700
699
703
701
698
702
704
691
699
709
702
704
703
691
700
698
705
706
707
702
707
690
706
702
660
655
658
664
676
663
667
672
667
675
663
668
667
661
666
663
667
662
664
664
638
667
642
650
638
Ts
Tomkins
(2.5 GPa)
Ts
Ts
Tomkins Tomkins
(2.7 GPa) (3.5 GPa)
Ts
Tomkins
(3.7 GPa)
Ts Tomkins
(3.8 GPa)
Ts
Tomkins
(4.8 GPa)
746
751
747
745
745
765
747
765
749
747
742
746
746
744
742
768
773
769
767
767
787
769
787
771
769
763
768
768
765
763
Ts
Tomkins
(5.5 GPa)
Ts F&W
a(SiO2)=1
559
556
560
560
556
539
558
555
565
706
709
710
696
712
713
707
706
710
707
704
709
710
698
706
716
708
710
710
697
706
704
711
712
714
708
714
697
712
708
666
661
665
671
683
669
674
678
674
681
670
674
673
667
673
669
674
668
670
670
644
673
648
656
644
Table A12.2. Temperature measurements for the WGC samples (continued)
245
Appendix A12
Sample
N29-26
N29-27
N29-28
N29-29
N29-30
N29-31
N29-32
N29-33
N29-34
N29-35
N29-36
N29-37
N29-38
N29-39
N29-40
N29-41
N29-42
N29-43
N29-44
N29-45
N29-46
N29-47
N29-48
N29-49
N29-50
N29-51
N29-52
N29-53
N29-54
N29-55
N29-56
N29-57
N29-58
N29-59
N29-60
N31-1
N31-2
N31-3
N31-4
N31-5
N31-6
N31-7
N31-8
N31-9
N31-10
N31-11
N31-12
N31-13
N31-14
N35-1
N35-2
N35-3
N35-4
N35-5
N35-6
N35-7
N35-8
N35-9
N35-10
N35-11
N35-12
N35-13
N35-14
N35-15
N35-16
N35-17
N35-18
N35-19
N35-20
N35-21
N35-22
N35-23
N35-24
N35-25
N35-26
N35-27
N35-28
N35-29
N35-30
Ts
Ts
Ts Tomkins
Tomkins
Tomkins
(1.8 GPa)
(1.6 GPa)
(2.0 GPa)
674
657
646
646
653
653
652
647
656
658
643
635
636
649
656
655
648
658
665
650
638
643
654
654
660
641
632
671
654
655
Ts
Tomkins
(2.2 GPa)
664
669
639
678
648
662
670
656
660
673
670
654
640
664
672
679
631
677
636
673
667
663
674
660
663
652
642
644
653
649
668
659
661
668
675
693
696
699
672
675
689
697
687
694
648
652
691
693
681
Ts
Tomkins
(2.5 GPa)
671
675
645
685
654
669
676
662
666
679
676
660
646
670
678
685
637
684
642
679
674
670
680
666
670
658
648
650
659
655
674
665
667
674
682
699
702
705
678
681
696
703
694
701
654
658
697
700
688
689
671
660
660
668
667
666
661
670
673
657
649
650
664
671
670
663
672
679
665
653
658
668
669
675
655
646
685
668
669
Ts
Ts
Tomkins Tomkins
(2.7 GPa) (3.5 GPa)
Ts
Tomkins
(3.7 GPa)
Ts Tomkins
(3.8 GPa)
Ts
Tomkins
(4.8 GPa)
Ts
Tomkins
(5.5 GPa)
Ts F&W
a(SiO2)=1
Table A12.2. Temperature measurements for the WGC samples (continued)
246
Appendix A12
Sample
N36-1
N36-2
N36-3
N36-4
N36-5
N36-6
N36-7
N36-8
N36-9
N36-10
N36-11
N36-12
N36-13
N36-14
N36-15
N36-16
N36-17
N36-18
N36-19
N36-20
N36-21
N36-22
N36-23
N36-24
N36-25
N36-26
N36-27
N36-28
N36-29
N36-30
N36-31
N36-32
N36-33
N36-34
N36-35
N36-36
N36-37
N36-38
N36-39
N36-40
N36-41
N36-42
N36-43
N36-44
N36-45
N36-46
N36-47
N36-48
N36-49
N36-50
N36-51
N36-52
N36-53
N36-54
N36-55
N36-56
N36-57
N36-58
N36-59
N36-60
N38-1
N38-2
N38-3
N38-4
N38-5
N38-6
N38-7
N38-8
N38-9
N38-10
N38-11
N38-12
N38-13
N38-14
N38-15
N38-16
N38-17
N38-18
N38-19
Ts
Ts
Ts Tomkins
Tomkins
Tomkins
(1.8 GPa)
(1.6 GPa)
(2.0 GPa)
629
623
625
625
627
624
622
625
624
625
626
627
625
626
627
626
622
624
624
626
627
625
625
626
625
626
627
630
624
626
625
625
625
626
627
627
628
628
628
627
627
629
626
627
627
626
630
627
627
626
627
628
627
625
625
627
627
625
627
625
Ts
Tomkins
(2.2 GPa)
Ts
Tomkins
(2.5 GPa)
643
637
639
639
641
638
637
639
638
639
640
641
639
640
641
640
637
638
638
640
641
639
639
640
639
640
641
645
638
640
639
639
639
640
641
641
642
642
642
641
641
643
640
641
641
640
644
641
641
640
641
642
641
639
639
641
641
639
641
639
763
773
768
766
766
762
767
773
767
760
779
767
824
816
809
807
813
801
803
Ts
Ts
Tomkins Tomkins
(2.7 GPa) (3.5 GPa)
Ts
Tomkins
(3.7 GPa)
Ts Tomkins
(3.8 GPa)
Ts
Tomkins
(4.8 GPa)
Ts
Tomkins
(5.5 GPa)
Ts F&W
a(SiO2)=1
767
777
773
771
771
766
772
778
772
764
784
772
829
821
814
812
818
805
808
Table A12.2. Temperature measurements for the WGC samples (continued)
247
Appendix A12
Sample
N38-20
N38-21
N38-22
N38-23
N38-24
N38-25
N38-26
N38-27
N38-28
N38-29
N38-30
N40-1
N40-2
N40-3
N40-4
N40-5
N40-6
N40-7
N40-8
N40-9
N40-10
N40-11
N40-12
N40-13
N40-14
N40-15
N40-16
N40-17
N40-18
N40-19
N40-20
N40-21
N40-22
N40-23
N40-24
N40-25
N40-26
N40-27
N40-28
N40-29
N40-30
N55-1
N55-2
N55-3
N55-4
N55-5
N55-6
N55-7
N55-8
N55-9
N55-10
N55-11
N55-12
N55-13
N55-14
N55-15
N55-16
N55-17
N55-18
N55-19
N55-20
N55-21
N55-22
N55-23
N55-24
N55-25
N55-26
N55-27
N55-28
N55-29
N55-30
N55-31
N55-32
N55-33
N55-34
N55-35
N55-36
N55-37
N55-38
Ts
Ts
Ts Tomkins
Tomkins
Tomkins
(1.8 GPa)
(1.6 GPa)
(2.0 GPa)
Ts
Tomkins
(2.2 GPa)
Ts
Tomkins
(2.5 GPa)
795
816
792
799
848
849
848
852
837
832
827
775
779
779
783
777
773
777
784
780
783
785
778
777
771
774
774
774
780
783
788
775
782
783
783
782
781
783
781
787
735
Ts
Ts
Tomkins Tomkins
(2.7 GPa) (3.5 GPa)
800
821
796
804
853
854
853
857
842
837
832
780
784
784
788
782
777
782
789
785
787
790
783
782
775
778
779
779
784
787
792
779
787
788
788
787
785
787
786
792
740
736
737
735
736
734
723
730
719
711
698
720
715
707
712
714
742
740
729
746
729
734
742
710
702
694
720
723
735
734
733
731
732
730
726
722
723
727
731
Ts
Tomkins
(3.7 GPa)
Ts Tomkins
(3.8 GPa)
Ts
Tomkins
(4.8 GPa)
Ts
Tomkins
(5.5 GPa)
Ts F&W
a(SiO2)=1
776
776
774
775
773
762
769
758
749
735
759
753
745
750
753
781
780
768
786
768
773
781
749
740
731
759
762
774
774
772
770
771
769
765
760
762
765
770
Table A12.2. Temperature measurements for the WGC samples (continued)
248
Appendix A12
Sample
N55-39
N55-40
N55-41
N55-42
N55-43
N55-44
N55-45
N55-46
N55-47
N55-48
N55-49
N55-50
N55-51
N55-52
N55-53
N55-54
N55-55
N55-56
N55-57
N55-58
N55-59
Ts
Ts
Ts Tomkins
Tomkins
Tomkins
(1.8 GPa)
(1.6 GPa)
(2.0 GPa)
Ts
Tomkins
(2.2 GPa)
Ts
Tomkins
(2.5 GPa)
Ts
Ts
Tomkins Tomkins
(2.7 GPa) (3.5 GPa)
727
721
726
731
726
725
724
734
723
723
747
721
724
724
727
721
723
746
731
725
731
Ts
Tomkins
(3.7 GPa)
Ts Tomkins
(3.8 GPa)
Ts
Tomkins
(4.8 GPa)
Ts
Tomkins
(5.5 GPa)
766
760
765
770
765
764
763
773
761
761
787
760
762
763
766
760
762
786
770
764
770
Ts F&W
a(SiO2)=1
Table A12.2. Temperature measurements for the WGC samples (continued)
249
Appendix A13
Sample
Phase
SiO2
TiO2
Cr2O3
Al2O3
FeO
MnO
MgO
CaO
Na2O
K2O
Total
A299
px
56
0.09
0.002
9
5
0.05
9
14
5.8
0.007
98.1
Sample
Phase
SiO2
TiO2
Cr2O3
Al2O3
FeO
MnO
MgO
CaO
Na2O
K2O
Total
px
56
0.09
0.008
9
5
0.03
9
14
6.2
grt
40
0.03
0.001
20
23
0.58
8
8
0.00
grt
39
0.58
0.024
20
23
0.62
8
8
0.00
98.3
99.1
A347g
Opx
57
0.01
Opx
57
0.05
0.14
13
0.15
31
0.13
0.002
0.005
100.9
0.17
13
0.14
30
0.13
0.02
0.001
100.5
Cpx
55
0.07
0.35
3
5
0.05
14
20
2.299
Sample A347g (continued)
Phase
grt
Cpx
SiO2
40
55
TiO2
0.03
0.04
Cr2O3
0.24
0.30
Al2O3
20
3
FeO
22
4
MnO
0.88
0.06
MgO
12
14
CaO
4
20
Na2O
0.018
2.243
K2O
Total
99.6
99.4
99.1
Cpx
55
0.04
0.24
3
4
0.07
14
20
2.296
0.001
99.2
grt
40
0.04
0.028
20
23
0.60
8
8
0.02
grt
40
0.06
0.038
20
23
0.60
8
9
0.04
99.3
grt
39
0.04
0.029
20
23
0.58
8
8
0.02
0.001
98.7
99.4
99.1
Cpx
55
0.05
0.33
3
4
0.08
15
19
2.256
0.001
99.3
Cpx
55
0.03
0.31
3
4
0.07
14
20
2.288
0.003
99.5
Cpx
55
0.05
0.32
3
4
0.07
14
20
2.371
Cpx
55
0.03
0.32
3
5
0.07
14
20
2.374
Cpx
56
0.04
0.31
3
5
0.09
14
19
2.317
0.007
99.8
Cpx
55
0.05
0.27
3
5
0.06
14
20
2.336
0.008
99.6
99.2
99.3
grt
39
0.03
0.028
20
22
1.07
7
9
0.02
0.002
99.2
grt
39
0.05
0.033
20
23
1.01
8
8
0.03
0
99.4
grt
39
0.04
0.021
20
23
1.09
7
9
0.01
grt
41
0.03
0.23
21
20
0.67
12
4
0.026
0.005
99.0
grt
41
0.04
0.24
20
21
0.70
13
4
0.018
grt
41
0.02
0.24
20
20
0.70
13
4
0.008
0.005
99.0
grt
41
0.03
0.36
20
20
0.64
13
4
Cpx
55
0.03
0.31
3
5
0.09
14
20
2.335
grt
41
0.05
0.20
20
21
0.70
13
4
0.005
0.014
100.0
99.8
100.1
99.4
0.001
99.2
grt
39
0.09
0.069
20
22
0.90
7
9
0.03
0
99.1
grt
40
0.20
0.052
20
23
0.77
7
9
0.03
0.005
99.8
px
56
0.12
0.043
9
5
0.04
9
14
6.2
px
55
0.12
0.046
9
5
0.04
9
14
5.9
98.6
98.1
grt
41
0.02
0.35
20
21
0.71
13
4
0.005
0.004
100.1
grt
41
0.02
0.39
20
20
0.68
13
4
grt
41
0.05
0.36
20
20
0.68
13
4
0.009
grt
41
0.04
0.39
20
21
0.70
13
4
99.4
99.8
0.003
99.7
Table A13.1. EPMA for samples A299 and A347g from the WGC that were used for
geothermobarometry calculations (Cuthbert, unpublished).
250
Appendix A14
Harley&Green
(1984) P(kbar)
Carswell
(1989)
P(kbar)
Brey&Köhler
(1990) P(kbar)
Brey, Nickel &
Kogarko (1986)
P(kbar)
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
39
37
40
38
40
38
40
38
40
38
40
38
40
38
40
38
40
38
40
38
40
38
40
38
40
38
40
38
40
38
40
38
40
38
40
38
41
38
40
38
40
38
41
38
44
41
43
41
44
41
44
41
45
42
44
41
44
41
45
42
44
42
44
41
44
42
44
41
44
41
44
41
44
42
44
41
44
42
45
41
44
41
44
41
43
41
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
56
55
Table A14.1. P/T results for A347g using various Grt-Opx Al Geothermobarometers
251
Appendix A14
Brey&Köhler
(1990) T(°C)
Mori&Green
(1978) T(°C)
705
654
669
639
644
663
646
656
583
571
639
631
637
641
622
653
650
628
653
651
631
567
622
645
650
653
645
670
637
637
642
612
636
648
599
630
650
657
661
665
583
650
685
616
635
597
603
627
606
618
529
515
597
587
595
600
576
615
610
583
614
612
587
509
576
604
610
614
605
636
594
594
601
564
594
608
554
585
611
620
625
629
529
611
700
646
657
634
643
657
644
651
590
571
634
623
635
638
627
653
640
628
650
648
631
571
616
638
638
645
636
661
625
633
634
605
634
646
599
624
645
652
656
656
571
641
682
609
623
594
606
623
607
616
541
519
595
581
596
599
587
619
602
587
614
612
591
519
572
600
600
608
597
628
584
594
595
558
594
610
558
582
608
617
622
622
517
604
Bhattacharaya
Lee&
Carswell 1989
Harley
et al. (1991)
Ganguly
T(°C)
(1984) T(°C)
T(°C)
(1988) T(°C)
994
766
870
840
798
869
791
816
785
744
879
805
827
796
756
858
777
804
774
732
865
781
813
783
738
879
799
827
796
753
867
784
814
784
740
874
793
821
790
747
814
724
761
733
687
799
713
743
715
672
858
777
805
775
732
848
769
794
764
723
858
775
805
775
731
861
779
808
778
735
851
761
798
769
721
876
790
823
793
747
863
787
810
780
739
852
766
799
769
724
872
790
820
789
745
871
788
818
788
744
855
770
802
772
727
799
708
743
716
670
840
761
787
757
716
862
783
809
778
736
862
787
808
778
739
868
790
815
785
743
860
783
807
776
736
884
806
830
799
758
850
775
796
766
727
858
775
804
774
731
858
780
805
775
733
830
752
776
747
706
858
775
804
774
731
870
785
817
787
741
891
672
771
744
703
848
768
795
765
723
868
788
815
785
742
874
794
822
791
748
878
798
825
795
752
879
801
826
795
753
797
724
742
714
677
865
788
811
781
740
Lavrentyeva Brey, Nickel
& Perchuk & Kogarko
1989 T(°C) (1986) T(°C)
792
723
727
700
736
723
716
700
719
723
733
700
720
723
728
700
675
723
667
700
715
723
710
700
714
723
718
700
703
723
726
700
723
723
708
700
725
723
725
700
710
723
664
700
703
723
720
700
723
723
726
700
720
723
738
700
714
723
715
700
717
723
697
700
713
723
722
700
713
723
709
700
723
723
729
700
731
723
734
700
675
723
724
700
Table A14.2. Temperature results for A347g using various Grt-Opx Geothermometers
252
Appendix A14
Powell (1985) T(°C) Krogh (1988) T(°C)
2+
Fe calc
737
691
708
672
680
644
669
683
685
636
699
685
697
698
683
680
639
654
691
707
677
662
688
689
699
675
670
646
651
675
703
648
701
705
671
687
685
675
650
662
634
699
Fe tot
763
735
734
720
741
723
744
748
735
695
751
710
742
723
732
741
717
727
757
760
741
710
713
733
724
724
731
724
724
740
756
709
754
731
711
712
734
736
730
737
694
751
2+
Fe calc
658
604
616
588
601
559
589
599
612
558
616
598
617
616
611
602
549
576
609
626
599
589
601
604
607
587
582
558
559
594
617
559
621
627
593
602
601
591
566
574
537
610
Fe tot
685
648
642
637
663
638
666
666
663
617
669
623
663
642
661
665
627
650
678
680
664
638
626
649
633
637
643
638
633
660
671
621
675
653
633
627
651
653
646
650
597
663
Ravna (1998) T(°C)
2+
Fe calc
707
615
629
597
606
566
592
607
625
571
624
612
623
625
614
606
559
582
614
634
604
600
616
613
620
599
592
562
570
600
627
576
626
632
653
615
607
598
571
583
564
623
Fe tot
736
662
657
648
671
648
672
677
679
634
681
639
670
651
666
671
641
659
685
691
673
651
642
659
647
651
656
645
647
669
684
642
683
659
698
641
660
663
655
663
628
679
Table A14.3. Temperature results for A347g using various Grt-Cpx Geothermometers
253
Appendix A15
Investigating the Use of Oxygen
Isotopes on Rutile in HP/UHP Rocks
I was given the opportunity to analyse oxygen isotopes in rutile at the Grant
Institute, University of Edinburgh, through a NERC grant that my first supervisor
obtained. I present here data for the main (KAG) and secondary (PAK) standards
that I have used for my analyses. I also present results on samples from Syros, Sesia
Lanzo, Dora Maira and the Western Gneiss Region. This is only intended as an
appendix considering further research is required in order to fully understand the
values and interpret them and this is beyond the scope of my PhD thesis.
i. INTRODUCTION
Oxygen isotopes are a powerful method of investigation used for tracing the
geochemical cycle of different protoliths, including the extent and nature of fluidmineral interactions and the crystallisation or alteration temperature (e.g. Matthews
et al., 1979; Agrinier, 1991; Zheng, 1991; Chacko et al., 1996; Moore et al., 1998;
Zheng et al., 1999, 2003; Meinhold et al., 2010).
The 18O/16O ratio is a robust tool for tracing the geochemical cycle, as it can
fingerprint derivation from pristine mantle material in contrast with contaminated
material that experienced surface processes such as hydrothermal alteration and
sedimentary recycling (e.g. Mojzsis et al., 2001; Wilde et al., 2001; Valley, 2003;
Valley et al., 2005; Meinhold et al., 2010). Rocks that have reacted with the
atmosphere or hydrosphere at low temperatures have elevated δ18O (15 – 18 ‰ for
pelitic rocks – reference?) compared to mantle rocks (5 – 6 ‰ – Taylor, 1968).
Oxygen isotopes together with trace elements on the same mineral can
provide information on metamorphic facies conditions at the time of crystallisation
or alteration (Fig. A15.1.). Temperature-dependant Zr (Zack et al., 2004a, Triebold
254
Appendix A15
et al., 2007, Meinhold et al., 2008) distinguishes rutile from different rocks that
formed in distinct temperature regimes: blueschist (low T), eclogite (medium T) and
granulite (high T) conditions. Oxygen isotopes will be high in subducted basalts with
a low-temperature alteration history, but low in HP rocks formed from high T altered
gabbros. Lower crustal granulites without alteration history will be in equilibrium
with mantle like δ18O values (Marschall, 2005, unpublished).
FIGURE A15.1: Schematic plot of [Zr] vs. δ18O as expected from the most
common rutile-bearing rock types (after Marschall, 2005 - unpublished; Zack et al.,
2004a; Agrinier, 1991)
Data acquisition is generally made by SIMS techniques (used in this study –
e.g., Valley, 2003) or by other types of laser methods (e.g., Li et al., 2003; Valley,
2003; Zhang et al., 2006). The two isotopes, 18O and 16O, are measured as a ratio and
reported in delta notation (δ18O) relative to VSMOW (Vienna Standard Mean Ocean
Water), which has an 18O/16O value of (2005.2±0.45)×10−6 (Gononfiantini, 1978).
255
Appendix A15
The analogous equation is as follows:
δ18O =
with δ18O values in per mil (‰).
Variation in typical δ18O values (lower for oceanic crust and mantle material
and elevated for the continental crust) has been explained by various processes:
-High-pressure fractional crystallisation (Garlick et al., 1971);
-Isotopic exchange with (meta)sedimentary rocks (Vogel and Garlick, 1970;
Desmons and O’Neil, 1978);
-Interaction with meteoric waters (Vogel and Garlick, 1970).
In the light of oxygen
However, isotope studies of oceanic lithosphere and ophiolites (e.g.,
Muehlenbachs and Clayton, 1972a, b; Spooner et al., 1974; Gregory and Taylor,
1981), allowed for a better interpretation of some anomalities, concluding that they
generally result from metamorphism of hydrothermally altered oceanic crust
(Gregory and Taylor, 1986; MacGregor and Manton, 1986; Ongley et al., 1987).
Moore et al (1998) have shown that the closure temperature for oxygen
diffusion in rutile is high, around 650 °C for a crystal with a 100 µm radius and a
cooling rate of 10 °C Ma-1. Lead closure is considered to be around the same closure
temperature (Cherniak, 2000; Vry & Baker, 2006) and Zr similar (Cherniak et al.,
2007). It holds that any low temperature, high-pressure metamorphism (< 600 oC)
would not suffer from diffusional resetting and the signatures would remain robust,
unless they have subsequently suffered high temperature metamorphism.
ii. SAMPLE PREPARATION AND ANALYSIS
Standards have been provided by Patrick O’Brien from the University of
Potsdam, Germany and from Randy Parrish from the NERC Isotope Geoscience
Laboratory, Nottingham, UK. Rutile grains have been mounted in epoxy resin for
analysis (please refer to Appendix 2 for Sample Preparation details).
256
Appendix A15
Major elements have been analysed prior to oxygen isotopes to check for
homogeneity (Table A15.1.).
The Oxygen isotope data were acquired at the University of Edinburgh with a
Cameca IMS 1270 (#309), using a ~5 nA primary 133Cs+ beam. Samples were coated
with a thin layer of Au (10-30nm). Secondary ions were extracted at 10 kV, and 16O(~2.0 x109cps) and 18O- (~3.0 x106 cps) were monitored simultaneously on dual
Faraday cups (L’2 and H’2). Each analysis involved a pre-sputtering time of 30
seconds, followed by automatic secondary beam and entrance slit centering and
finally data collection in two blocks of ten cycles, amounting to a total count time of
100 seconds. The internal precision of each analysis is < 0.2 per mil.
To correct for instrumental mass fractionation (IMF), all data were
normalised to an internal standard, rutile standard (KAG), which was assumed to be
homogeneous and was measured throughout the analytical sessions. The internal
precision of each analysis is +/- 0.2 per mil. For more details on the methodology,
please refer to Chapter 2.4. (Methodology).
Please refer to Appendix 5 for oxygen isotopes method description.
257
Appendix A15
STD
KAG 6
KAG 6
KAG 6
KAG 6
KAG 6
AVG
Stdev
KAG 7
KAG 7
KAG 7
KAG 7
KAG 7
AVG
Stdev
KAG 8
KAG 8
KAG 8
KAG 8
KAG 8
AVG
Stdev
KAG 9
KAG 9
KAG 9
KAG 9
KAG 9
AVG
Stdev
PAK 14
PAK 14
PAK 14
PAK 14
PAK 14
AVG
Stdev
PAK 15
PAK 15
PAK 15
PAK 15
PAK 15
AVG
Stdev
PAK 18
PAK 18
PAK 18
PAK 18
PAK 18
AVG
Stdev
PAK 17
PAK 17
PAK 17
PAK 17
PAK 17
AVG
Stdev
TiO2
99.9
99.4
99.1
99.2
99.4
99.4
0.31
98.9
99.4
99.2
99.5
99.4
99.3
0.24
98.6
96.4
99.1
99.0
98.7
98.3
1.13
99.9
100.1
99.8
99.6
100.3
99.9
0.27
97.0
99.4
100.2
98.9
99.1
98.9
1.19
99.5
99.3
100.0
99.9
99.5
99.7
0.29
99.6
99.5
100.2
100.0
99.3
99.7
0.40
99.1
99.4
99.1
99.3
99.7
99.3
0.25
SiO2
-0.024
-0.035
-0.028
-0.035
-0.033
-0.031
0.005
-0.012
-0.042
-0.035
-0.032
-0.034
-0.031
0.011
-0.029
-0.022
-0.027
-0.022
-0.020
-0.024
0.004
-0.039
-0.019
-0.026
-0.035
-0.027
-0.029
0.008
-0.042
-0.034
-0.038
-0.034
-0.049
-0.039
0.006
-0.046
-0.022
-0.047
-0.036
-0.029
-0.036
0.01
-0.035
-0.029
-0.032
-0.040
-0.037
-0.035
0.004
-0.037
-0.035
-0.023
-0.036
-0.028
-0.032
0.006
V2O3
0.231
0.243
0.230
0.226
0.235
0.233
0.007
0.240
0.244
0.213
0.232
0.231
0.232
0.012
0.220
0.233
0.226
0.213
0.230
0.224
0.008
0.235
0.217
0.244
0.214
0.227
0.228
0.012
0.229
0.200
0.223
0.228
0.221
0.220
0.012
0.234
0.217
0.218
0.223
0.229
0.224
0.007
0.228
0.218
0.235
0.211
0.231
0.225
0.010
0.219
0.228
0.243
0.219
0.217
0.225
0.011
Cr2O3
0.012
0.023
0.000
0.013
0.006
0.011
0.009
0.006
-0.003
0.002
-0.004
0.000
0.000
0.004
0.008
0.009
0.029
-0.010
0.001
0.007
0.014
-0.005
0.000
0.003
-0.005
0.016
0.002
0.009
0.009
0.005
-0.005
0.016
0.007
0.007
0.007
-0.002
0.027
0.011
-0.004
0.007
0.008
0.012
0.011
0.000
0.010
0.016
-0.007
0.006
0.009
-0.002
0.014
0.018
0.014
0.004
0.010
0.008
MnO
-0.002
0.000
-0.001
0.000
0.001
0.000
0.001
0.003
-0.003
-0.001
0.004
-0.001
0.000
0.003
0.001
-0.001
0.000
-0.001
0.000
0.000
0.001
-0.001
0.002
-0.002
0.003
0.001
0.000
0.002
0.001
0.002
0.005
0.001
-0.003
0.001
0.003
0.000
0.000
0.000
-0.002
0.001
0.000
0.001
0.002
-0.001
-0.001
0.000
0.001
0.000
0.001
0.004
-0.005
0.001
-0.001
0.002
0.000
0.003
FeO
0.521
0.575
0.536
0.487
0.507
0.525
0.033
0.402
0.400
0.399
0.402
0.400
0.401
0.001
0.641
3.427
0.450
0.389
0.459
1.073
1.319
0.480
0.515
0.535
0.474
0.460
0.493
0.031
4.175
0.462
0.482
0.483
0.485
1.217
1.653
0.420
0.431
0.436
0.439
0.438
0.433
0.008
0.489
0.479
0.474
0.464
0.494
0.480
0.012
0.420
0.444
0.430
1.634
0.436
0.673
0.537
ZrO2
0.003
0.006
0.007
0.005
0.005
0.005
0.002
0.006
0.008
0.007
0.004
0.007
0.006
0.002
0.004
0.006
0.004
0.007
0.005
0.005
0.001
0.004
0.005
0.006
0.007
0.005
0.006
0.001
0.007
0.007
0.007
0.007
0.008
0.007
0.001
0.009
0.005
0.007
0.008
0.006
0.007
0.002
0.005
0.008
0.008
0.006
0.008
0.007
0.001
0.006
0.006
0.005
0.006
0.004
0.006
0.001
Nb2O3
0.078
0.074
0.082
0.080
0.085
0.080
0.004
0.066
0.066
0.070
0.069
0.071
0.069
0.002
0.077
0.073
0.068
0.072
0.070
0.072
0.003
0.072
0.075
0.070
0.074
0.075
0.073
0.002
0.064
0.062
0.063
0.063
0.069
0.064
0.003
0.091
0.087
0.089
0.088
0.088
0.089
0.001
0.066
0.068
0.069
0.066
0.069
0.068
0.002
0.066
0.066
0.069
0.065
0.066
0.066
0.001
Ta2O5
0.027
0.028
0.032
0.021
0.028
0.027
0.004
0.021
0.031
0.030
0.027
0.025
0.027
0.004
0.030
0.022
0.026
0.025
0.021
0.025
0.004
0.022
0.030
0.028
0.030
0.022
0.026
0.004
0.026
0.025
0.024
0.019
0.026
0.024
0.003
0.031
0.025
0.024
0.027
0.031
0.028
0.003
0.027
0.026
0.025
0.032
0.029
0.028
0.003
0.023
0.030
0.021
0.029
0.029
0.026
0.004
Total
100.8
100.3
100.0
100.0
100.2
100.3
0.32
99.6
100.1
99.9
100.2
100.1
100.0
0.23
99.6
100.1
99.9
99.6
99.4
99.7
0.27
100.6
100.9
100.7
100.3
101.1
100.7
0.27
101.5
100.2
101.0
99.7
99.9
100.4
0.76
100.3
100.1
100.8
100.6
100.3
100.4
0.28
100.4
100.3
101.0
100.8
100.0
100.5
0.39
99.8
100.2
99.9
101.2
100.4
100.3
0.58
AVG PAK
STD
AVG KAG
STD
99.4
0.68
99.3
0.27
-0.036
0.007
-0.031
0.008
0.223
0.009
0.232
0.009
0.007
0.009
0.006
0.009
0.000
0.002
0.000
0.002
0.701
0.859
0.463
0.069
0.007
0.001
0.006
0.002
0.072
0.010
0.074
0.007
0.026
0.003
0.027
0.004
100.4
0.50
100.1
0.30
TABLE A15.1: EPMA on KAG and PAK standards.
258
Appendix A15
iii. RESULTS
Conventional oxygen isotope analysis for KAG and PAK by Laser
Fluorination at SUERC, Glasgow results are presented in Table A16.2. KAG was
used as the main standard, whereas PAK was used as the secondary one. Four
different sessions of O isotope analysis have been conducted, therefore standard
results are presented in four different groups (Table A15.3.).
SAMPLE
d18O smow
KAG-1
1.6
KAG-1
1.6
KAG-1
2.1
KAG-1
1.6
KAG-1
1.6
PAK-1
2.1
PAK-1
3.2
PAK-1
2.4
PAK-1
2.3
Avg
Stdev
1.7
0.217
2.5
0.483
TABLE A15.2: SIMS results for
KAG and PAK standards using
conventional O analysis by Laser
Fluorination at SUERC,
Glasgow.
The δ18O values of the KAG and PAK standards have been normalised to the
average value of KAG δ18O (1.7) obtained by repeat laser fluorination analysis;
results are plotted in four different groups for investigation of homogeneity.
Diagrams (Fig. A15.2a-h) show that standards are quite homogeneous, having an
average standard deviation of less than 2 per mil. However, this is simply a mean of
the total session and does not consider within and between run machine drift, which
can be noticed in some cases, such as in sessions 1 and 4. Note that for session 2
there is little machine drift and the results show that in KAG, apart from 2
exceptions, the values are tightly clustered and suggest homogeneity.
All results (with standard deviations) for rock samples (unknowns) are listed
in Table A15.4. The two metasomatic samples from Syros (Fig. A15.3a) have a
relatively narrow distribution, with values of 2 – 3 ‰. Specimen SY507 has a larger
variation compared to the second sample, with bigger associated errors. However, all
values are within error and in conformity with each other.
The SLZ samples (Fig. A15.3b) exhibit more heterogeneous compositions.
MK 30 forms a tight cluster, with δ18O = 2 – 4 ‰, in contrast with the rest of the
rocks. MK 126 seems to be divided into two groups with values of 2 – 4 ‰ for the
259
Appendix A15
first one and 5 – 6 ‰ for the second one. The third sample, MK 162.3 has a short
span of oxygen isotope compositions, ranging from 1.6 to 4.5 ‰. The last sample,
MK 541, has a large range of values with a transitional composition from -1.4 to 5
‰.
KAG
18/16
D18O
STD
Normalised to
Average KAG
0.001997
0.001997
0.001997
0.001997
0.001998
0.001998
0.001997
0.001998
0.001998
0.001998
0.001998
0.001998
0.001997
0.001998
0.001998
0.001998
0.001998
0.001998
0.001998
0.001998
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001998
0.001998
0.001997
0.001998
0.001998
0.001998
0.001998
0.001998
0.001997
0.001998
0.001998
0.001998
0.001998
0.001998
0.001998
0.001998
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
0.001997
1.66
1.49
1.26
1.49
1.73
2.07
1.53
1.75
2.01
1.76
2.09
2.13
1.61
1.69
2.11
1.97
1.92
2.06
1.96
1.95
1.23
1.35
1.23
1.53
1.29
1.38
1.40
1.56
1.55
1.58
1.66
1.49
1.26
1.49
1.73
2.07
1.53
1.75
2.01
1.76
2.09
2.13
1.61
1.69
2.11
1.97
1.92
2.06
1.96
1.95
1.23
1.35
1.23
1.53
1.29
1.38
1.40
1.56
1.55
1.58
0.00199735
0.00199736
0.00199736
0.00199736
0.00199736
0.00199739
0.00199739
0.00199740
0.00199740
0.00199740
0.00199743
0.00199743
0.00199744
0.00199744
0.00199744
0.00199749
0.00199750
0.00199750
0.00199750
0.00199750
0.00199754
0.00199754
0.00199755
0.00199755
0.00199755
0.00199759
0.00199759
0.00199760
0.00199760
0.00199760
0.00199735
0.00199736
0.00199736
0.00199736
0.00199736
0.00199739
0.00199739
0.00199740
0.00199740
0.00199740
0.00199743
0.00199743
0.00199744
0.00199744
0.00199744
0.00199749
0.00199750
0.00199750
0.00199750
0.00199750
0.00199754
0.00199754
0.00199755
0.00199755
0.00199755
0.00199759
0.00199759
0.00199760
0.00199760
0.00199760
0.98
0.87
0.74
0.87
1.02
1.22
0.90
1.03
1.18
1.04
1.23
1.26
0.95
0.99
1.24
1.16
1.13
1.21
1.15
1.15
0.73
0.80
0.72
0.90
0.76
0.81
0.83
0.92
0.91
0.93
0.98
0.87
0.74
0.87
1.02
1.22
0.90
1.03
1.18
1.04
1.23
1.26
0.95
0.99
1.24
1.16
1.13
1.21
1.15
1.15
0.73
0.80
0.72
0.90
0.76
0.81
0.83
0.92
0.91
0.93
PAK
18/16
D18O
STD
Normalised to
Average KAG
0.001997
0.001998
0.001997
0.001998
0.001996
0.001996
0.001997
0.001996
0.001998
0.001997
0.001998
0.001997
0.001998
0.001996
0.001996
0.001997
0.001996
0.001998
0.001997
0.001997
0.001996
0.001996
0.001996
1.54
1.86
1.58
1.87
0.97
1.06
1.28
1.16
1.93
1.54
1.86
1.58
1.87
0.97
1.06
1.28
1.16
1.93
1.44
1.35
1.09
0.96
0.90
0.00199730
0.00199731
0.00199731
0.00199731
0.00199732
0.00199732
0.00199732
0.00199732
0.00199733
0.00199730
0.00199731
0.00199731
0.00199731
0.00199732
0.00199732
0.00199732
0.00199732
0.00199733
0.00199744
0.00199745
0.00199745
0.00199745
0.00199745
0.90
1.09
0.93
1.10
0.57
0.62
0.75
0.68
1.14
0.90
1.09
0.93
1.10
0.57
0.62
0.75
0.68
1.14
0.85
0.79
0.64
0.57
0.53
TABLE A15.3: Oxygen
isotopes results for KAG and
PAK standards – Session 1
260
Appendix A15
KAG
18/16
D18O
STD
Normalised to
Average KAG
0.002000
0.002000
0.002000
0.002000
0.002000
0.002000
0.002000
0.002000
0.002001
0.002000
0.002000
0.002000
0.002000
0.002000
0.002000
0.001999
0.001999
0.002000
0.001999
0.002000
0.002000
0.002001
0.002000
0.002000
0.001999
0.002000
0.001999
0.002000
0.002000
0.001999
0.002001
0.002000
0.002000
0.001999
0.002000
0.002000
0.002000
0.002000
0.002000
0.0020003
0.0020002
0.0019998
0.0020003
0.0020004
0.0019998
0.0019995
0.0019998
0.0020006
0.0019998
0.0019998
0.0020003
0.0019997
0.0019998
0.0020002
0.0019992
0.0019992
0.0020001
0.0019992
1.79
1.76
1.55
1.80
1.85
1.55
1.42
1.55
1.97
1.56
1.58
1.81
1.52
1.59
1.75
1.29
1.27
1.73
1.30
1.87
1.56
2.00
1.62
1.52
1.39
1.62
1.25
1.58
1.69
1.35
2.26
1.72
1.83
1.42
1.67
1.63
1.56
1.83
1.58
1.79
1.76
1.55
1.80
1.85
1.55
1.42
1.55
1.97
1.56
1.58
1.81
1.52
1.59
1.75
1.29
1.27
1.73
1.30
0.00199997
0.00199996
0.00199996
0.00199996
0.00199996
0.00199996
0.00199996
0.00199995
0.00199995
0.00199993
0.00199993
0.00199993
0.00199993
0.00199992
0.00199991
0.00199990
0.00199990
0.00199990
0.00199990
0.00199986
0.00199986
0.00199986
0.00199986
0.00199986
0.00199986
0.00199986
0.00199985
0.00199985
0.00199985
0.00199983
0.00199983
0.00199983
0.00199983
0.00199982
0.00199981
0.00199980
0.00199980
0.00199980
0.00199980
0.00199997
0.00199996
0.00199996
0.00199996
0.00199996
0.00199996
0.00199996
0.00199995
0.00199995
0.00199993
0.00199993
0.00199993
0.00199993
0.00199992
0.00199991
0.00199990
0.00199990
0.00199990
0.00199990
1.05
1.03
0.91
1.06
1.09
0.91
0.83
0.91
1.16
0.92
0.93
1.06
0.89
0.93
1.03
0.76
0.75
1.02
0.76
1.10
0.92
1.18
0.95
0.90
0.82
0.95
0.74
0.93
0.99
0.79
1.33
1.01
1.08
0.83
0.98
0.96
0.92
1.07
0.93
1.05
1.03
0.91
1.06
1.09
0.91
0.83
0.91
1.16
0.92
0.93
1.06
0.89
0.93
1.03
0.76
0.75
1.02
0.76
continued
KAG
PAK
18/16
D18O
STD
0.0020038
0.0020022
0.001999
0.0019991
0.0020003
0.0020004
0.0019997
0.0020006
0.0019998
0.0019996
0.0019994
0.0019998
0.0019991
0.0019998
0.00199996
0.00199927
0.00200109
0.00200001
0.00200023
0.00199940
0.0019999
0.0019998
0.0019997
0.0020002
0.0019997
3.59
2.79
1.20
1.27
1.82
1.87
1.56
2.00
1.62
1.52
1.39
1.62
1.25
1.58
1.69
1.35
2.26
1.72
1.83
1.42
1.67
1.63
1.56
1.83
1.58
0.00199987
0.00199987
0.00199987
0.00199987
0.00199987
0.00199986
0.00199986
0.00199986
0.00199986
0.00199986
0.00199986
0.00199986
0.00199985
0.00199985
0.00199985
0.00199983
0.00199983
0.00199983
0.00199983
0.00199982
0.00199981
0.00199980
0.00199980
0.00199980
0.00199980
Normalised to
Average KAG
2.11
1.64
0.70
0.74
1.07
1.10
0.92
1.18
0.95
0.90
0.82
0.95
0.74
0.93
0.99
0.79
1.33
1.01
1.08
0.83
0.98
0.96
0.92
1.07
0.93
18/16
D18O
STD
Normalised to
Average KAG
0.0019991
0.0019984
0.0019991
0.001999
0.001999
1.18
0.85
1.20
1.16
1.16
0.00199995
0.00199995
0.00199995
0.00199995
0.00199995
0.70
0.50
0.71
0.68
0.69
TABLE A15.3: Oxygen
isotopes results for KAG and
PAK standards – Session 2
261
Appendix A15
KAG
PAK
18/16
D18O
STD
Normalised to
Average KAG
0.001990
1.65
0.00199028
0.97
0.001990
1.73
0.00199024
1.02
0.001991
2.06
0.00199019
1.21
0.001989
1.27
0.00199015
0.75
0.001990
1.53
0.00199010
0.90
0.001989
1.04
0.00198984
0.61
0.001990
1.61
0.00198979
0.95
0.001990
1.77
0.00198975
1.04
0.001990
1.89
0.00198970
1.11
0.001990
1.74
0.00198966
1.03
0.001990
1.65
0.00199028
0.97
0.001990
1.73
0.00199024
1.02
0.001991
2.06
0.00199019
1.21
0.001989
1.27
0.00199015
0.75
0.001990
1.53
0.00199010
0.90
0.001989
1.38
0.00198917
0.81
0.001990
1.95
0.00198912
1.15
0.001990
2.10
0.00198908
1.24
0.001990
2.23
0.00198903
1.31
0.001990
2.08
0.00198899
1.22
18/16
D18O
STD
Normalised to
Average KAG
0.001992
2.50
0.00199006
1.47
0.001990
1.43
0.00199001
0.84
0.001991
1.98
0.00198997
1.16
0.001990
1.62
0.00198993
0.96
0.001990
1.71
0.00198988
1.01
0.001990
1.77
0.00198984
1.04
0.001990
1.79
0.00198979
1.05
0.001991
2.26
0.00198975
1.33
0.001990
1.85
0.00198970
1.09
0.001991
2.18
0.00198966
1.29
TABLE A15.3: Oxygen isotopes results for KAG and PAK standards – Session 3
262
Appendix A15
KAG
PAK
18/16
D18O
STD
Normalised to
Average KAG
0.001995
1.65
0.00199453
0.97
0.001995
1.98
0.00199449
1.16
0.001995
1.75
0.00199445
1.03
0.001994
1.44
0.00199441
0.85
0.001994
1.34
0.00199437
0.79
0.001994
1.36
0.00199433
0.80
0.001994
1.64
0.00199429
0.97
0.001994
1.66
0.00199425
0.97
0.001994
1.62
0.00199421
0.95
0.001995
1.90
0.00199417
1.12
0.001994
1.41
0.00199413
0.83
0.001994
1.67
0.00199409
0.98
0.001994
1.76
0.00199405
1.04
0.001995
1.75
0.00199433
1.03
0.001995
2.08
0.00199429
1.22
0.001995
1.85
0.00199425
1.09
0.001994
1.54
0.00199421
0.91
0.001994
1.44
0.00199417
0.85
0.001994
2.07
0.00199292
1.22
0.001994
2.35
0.00199288
1.38
0.001994
2.36
0.00199284
1.39
0.001994
2.79
0.00199188
1.64
0.001995
3.07
0.00199184
1.81
0.001994
2.58
0.00199180
1.52
0.001994
2.84
0.00199176
1.67
0.001994
2.93
0.00199172
1.72
18/16
D18O
STD
Normalised to
Average KAG
0.001995
1.76
0.00199453
1.03
0.001995
1.88
0.00199449
1.11
0.001995
1.93
0.00199445
1.14
0.001995
2.07
0.00199441
1.22
0.001996
2.38
0.00199437
1.40
0.001994
2.05
0.00199312
1.21
0.001995
2.44
0.00199308
1.44
0.001995
2.42
0.00199304
1.43
0.001995
2.47
0.00199300
1.45
0.001995
2.56
0.00199296
1.50
0.001995
3.35
0.00199208
1.97
0.001994
2.53
0.00199204
1.49
0.001994
2.72
0.00199200
1.60
0.001994
2.69
0.00199196
1.58
0.001994
2.62
0.00199192
1.54
TABLE A15.3: Oxygen isotopes results for KAG and PAK standards – Session 4
263
Appendix A15
1.40
a
1.20
1.00
0.80
0.60
0.40
KAG - session 1
0.20
0.00
0
10
20
30
40
50
60
1.20
70
b
1.00
0.80
0.60
0.40
PAK - session 1
0.20
0.00
0
2.50
5
10
15
20
25
KAG - session 2
2.00
c
1.50
1.00
0.50
0.00
0
20
40
60
80
100
0.80
d
0.70
0.60
0.50
0.40
0.30
0.20
PAK - session 2
0.10
0.00
0
1
2
3
4
5
6
264
Appendix A15
1.40
e
1.20
f
1.00
0.80
f
0.60
0.40
KAG - session 3
0.20
0.00
0
5
10
15
20
25
1.60
f
1.40
1.20
1.00
0.80
0.60
0.40
PAK - session 3
0.20
0.00
0
2
4
6
8
10
12
2.00
g
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
KAG - session 4
0.20
0.00
0
5
10
15
20
25
30
2.50
h
2.00
1.50
1.00
0.50
PAK - session 4
0.00
0
2
4
6
8
10
12
14
16
FIGURE A15.2: KAG and PAK δ18O values obtained during four sessions,
normalised to the average absolute KAG δ18O (1.7) – a. KAG in session 1; b. PAK
in session 1; c. KAG in session 2; d. PAK in session 2; e. KAG in session 3; f. PAK
in session 3; g. KAG in session 4; h. PAK in session 4.
265
Appendix A15
Location
Rock Type
Sample
Omp-Grt-Chl-Ab-Rt
fels
SY507
Omp-Chl vein with Rt
SY521
Gln micaschist
MK 30
Grt micaschist
MK 126
Grt micaschist
MK 162.3
Omp micaschist
MK 541
Syros
Sesia Lanzo
δ18O
1.98
2.37
2.64
2.82
2.07
2.49
2.19
2.74
2.38
2.47
3.30
2.36
3.45
3.65
4.22
6.08
6.04
5.18
5.13
5.15
5.55
5.52
6.02
6.13
6.10
4.03
3.14
2.31
3.22
2.71
1.59
2.55
4.54
4.38
3.80
3.76
4.21
4.83
3.81
2.34
3.10
3.74
2.60
2.40
1.53
1.62
0.41
-0.78
-1.40
STDEV
0.42
0.32
0.44
0.72
0.31
0.39
0.34
0.26
0.45
0.43
0.29
0.57
0.61
0.78
0.66
0.79
0.38
0.49
0.53
0.33
0.27
0.37
0.38
0.34
0.41
0.34
0.32
0.49
0.45
0.64
0.67
0.70
0.37
0.82
0.40
0.40
0.35
0.44
0.28
0.41
0.25
0.32
0.39
0.44
0.47
0.33
0.37
0.45
0.53
266
Appendix A15
Location
Rock Type
Sample
Pyrope quartzite
19 464
Jd quartzite
20 254
Eclogite
N 27
UHP gneiss
N 31
Ky-Qtz vein with Rt
N 36
Ti-rich eclogite
N 38
Ti-rich eclogite
N 40
Dora Maira
WGR
δ18O
3.71
4.08
3.22
3.39
4.18
4.04
2.86
3.59
4.29
2.22
-0.90
-0.44
-3.72
-3.45
1.28
1.43
1.41
1.42
0.95
0.58
2.29
2.14
2.94
3.10
4.48
2.73
0.78
1.47
2.43
2.27
3.10
3.41
1.72
0.88
2.58
2.64
1.31
1.63
1.53
2.13
1.33
1.53
-1.79
-1.13
1.37
1.46
1.16
1.00
-5.14
-4.80
0.51
0.27
STDEV
0.26
0.32
0.32
0.31
0.25
0.87
0.64
0.92
0.72
0.72
0.66
0.66
1.23
0.42
0.35
0.66
0.92
0.71
0.51
0.47
0.47
0.39
0.75
0.33
0.65
0.35
0.75
0.54
0.75
0.94
0.69
0.92
0.26
0.47
0.31
0.78
1.02
0.67
0.68
0.35
0.79
0.79
0.65
0.25
0.78
0.29
0.47
0.37
0.69
1.53
1.02
0.79
TABLE A15. 4:
Oxygen isotope
data (including
standard
deviations) for
rutile grains from
all four locations
267
Appendix A15
The third group of rutiles, from the Dora Maira Massif (Fig. A15.3c), have a
very similar pattern to the two Syros samples. The oxygen isotope compositions vary
from 2 to 4 ‰, all being grouped together and within error of each other. Errors are
more elevated, compared to the previous samples from Syros and the SLZ, but still <
2 ‰.
268
Appendix A15
FIGURE A15.3: Oxygen isotope compositions for rutiles from four locations: a.
Syros, with δ18O = 2 – 4 ‰ for two HP metasomatic mafic samples; b. Sesia Lanzo
with values from -1.4 to 6 ‰ for HP micaschists; c. Dora Maira with concentrations
similar to the Syros samples, for two UHP metapelites; d. The WGR with the highest
range of δ18O values, spanning from -5 to almost 5 ‰ for five HP/UHP mafic and
pelitic rocks.
269
Appendix A15
The WGR samples (Fig. A15.3d) show a more or less heterogeneous trend,
with values from as low as -5 to almost 5 ‰. Rutiles in N 27 are divided in three
sub-groups, based on their δ18O: two analyses clustered at -3 ‰, other two around -1
‰ and the rest around the value of 1.4 ‰. N 31 forms a grouped cluster, with an
average δ18O of 2.5 ‰. Rutile grains in N 36 also exhibit a large oxygen isotope
composition span, ranging from 0.8 to 4.5 ‰. The last two samples, N 38 and N 40,
both from the same location (Gusdal Quarry), seem to indicate a transitional
concentration with values from -5 to 2.6 ‰.
Although no interpretation is attempted at this stage, it does seem that the
methodology is sound. This could, therefore, provide an extra geochemical tool in
rutile to evaluate the source of detrital rutile and perhaps its thermal and fluid history
within the subduction zone.
For a complete set of data, please refer to Appendix 16 that contains the
EPMA data.
270
Appendix A16
STD
KAG 6
KAG 6
KAG 6
KAG 6
KAG 6
AVG
Stdev
KAG 7
KAG 7
KAG 7
KAG 7
KAG 7
AVG
Stdev
KAG 8
KAG 8
KAG 8
KAG 8
KAG 8
AVG
Stdev
KAG 9
KAG 9
KAG 9
KAG 9
KAG 9
AVG
Stdev
PAK 14
PAK 14
PAK 14
PAK 14
PAK 14
AVG
Stdev
PAK 15
PAK 15
PAK 15
PAK 15
PAK 15
AVG
Stdev
PAK 18
PAK 18
PAK 18
PAK 18
PAK 18
AVG
Stdev
PAK 17
PAK 17
PAK 17
PAK 17
PAK 17
AVG
Stdev
TiO2
99.9
99.4
99.1
99.2
99.4
99.4
0.31
98.9
99.4
99.2
99.5
99.4
99.3
0.24
98.6
96.4
99.1
99.0
98.7
98.3
1.13
99.9
100.1
99.8
99.6
100.3
99.9
0.27
97.0
99.4
100.2
98.9
99.1
98.9
1.19
99.5
99.3
100.0
99.9
99.5
99.7
0.29
99.6
99.5
100.2
100.0
99.3
99.7
0.40
99.1
99.4
99.1
99.3
99.7
99.3
0.25
SiO2
-0.024
-0.035
-0.028
-0.035
-0.033
-0.031
0.005
-0.012
-0.042
-0.035
-0.032
-0.034
-0.031
0.011
-0.029
-0.022
-0.027
-0.022
-0.020
-0.024
0.004
-0.039
-0.019
-0.026
-0.035
-0.027
-0.029
0.008
-0.042
-0.034
-0.038
-0.034
-0.049
-0.039
0.006
-0.046
-0.022
-0.047
-0.036
-0.029
-0.036
0.01
-0.035
-0.029
-0.032
-0.040
-0.037
-0.035
0.004
-0.037
-0.035
-0.023
-0.036
-0.028
-0.032
0.006
V2O3
0.231
0.243
0.230
0.226
0.235
0.233
0.007
0.240
0.244
0.213
0.232
0.231
0.232
0.012
0.220
0.233
0.226
0.213
0.230
0.224
0.008
0.235
0.217
0.244
0.214
0.227
0.228
0.012
0.229
0.200
0.223
0.228
0.221
0.220
0.012
0.234
0.217
0.218
0.223
0.229
0.224
0.007
0.228
0.218
0.235
0.211
0.231
0.225
0.010
0.219
0.228
0.243
0.219
0.217
0.225
0.011
Cr2O3
0.012
0.023
0.000
0.013
0.006
0.011
0.009
0.006
-0.003
0.002
-0.004
0.000
0.000
0.004
0.008
0.009
0.029
-0.010
0.001
0.007
0.014
-0.005
0.000
0.003
-0.005
0.016
0.002
0.009
0.009
0.005
-0.005
0.016
0.007
0.007
0.007
-0.002
0.027
0.011
-0.004
0.007
0.008
0.012
0.011
0.000
0.010
0.016
-0.007
0.006
0.009
-0.002
0.014
0.018
0.014
0.004
0.010
0.008
MnO
-0.002
0.000
-0.001
0.000
0.001
0.000
0.001
0.003
-0.003
-0.001
0.004
-0.001
0.000
0.003
0.001
-0.001
0.000
-0.001
0.000
0.000
0.001
-0.001
0.002
-0.002
0.003
0.001
0.000
0.002
0.001
0.002
0.005
0.001
-0.003
0.001
0.003
0.000
0.000
0.000
-0.002
0.001
0.000
0.001
0.002
-0.001
-0.001
0.000
0.001
0.000
0.001
0.004
-0.005
0.001
-0.001
0.002
0.000
0.003
FeO
0.521
0.575
0.536
0.487
0.507
0.525
0.033
0.402
0.400
0.399
0.402
0.400
0.401
0.001
0.641
3.427
0.450
0.389
0.459
1.073
1.319
0.480
0.515
0.535
0.474
0.460
0.493
0.031
4.175
0.462
0.482
0.483
0.485
1.217
1.653
0.420
0.431
0.436
0.439
0.438
0.433
0.008
0.489
0.479
0.474
0.464
0.494
0.480
0.012
0.420
0.444
0.430
1.634
0.436
0.673
0.537
ZrO2
0.003
0.006
0.007
0.005
0.005
0.005
0.002
0.006
0.008
0.007
0.004
0.007
0.006
0.002
0.004
0.006
0.004
0.007
0.005
0.005
0.001
0.004
0.005
0.006
0.007
0.005
0.006
0.001
0.007
0.007
0.007
0.007
0.008
0.007
0.001
0.009
0.005
0.007
0.008
0.006
0.007
0.002
0.005
0.008
0.008
0.006
0.008
0.007
0.001
0.006
0.006
0.005
0.006
0.004
0.006
0.001
Nb2O3
0.078
0.074
0.082
0.080
0.085
0.080
0.004
0.066
0.066
0.070
0.069
0.071
0.069
0.002
0.077
0.073
0.068
0.072
0.070
0.072
0.003
0.072
0.075
0.070
0.074
0.075
0.073
0.002
0.064
0.062
0.063
0.063
0.069
0.064
0.003
0.091
0.087
0.089
0.088
0.088
0.089
0.001
0.066
0.068
0.069
0.066
0.069
0.068
0.002
0.066
0.066
0.069
0.065
0.066
0.066
0.001
Ta2O5
0.027
0.028
0.032
0.021
0.028
0.027
0.004
0.021
0.031
0.030
0.027
0.025
0.027
0.004
0.030
0.022
0.026
0.025
0.021
0.025
0.004
0.022
0.030
0.028
0.030
0.022
0.026
0.004
0.026
0.025
0.024
0.019
0.026
0.024
0.003
0.031
0.025
0.024
0.027
0.031
0.028
0.003
0.027
0.026
0.025
0.032
0.029
0.028
0.003
0.023
0.030
0.021
0.029
0.029
0.026
0.004
Total
100.8
100.3
100.0
100.0
100.2
100.3
0.32
99.6
100.1
99.9
100.2
100.1
100.0
0.23
99.6
100.1
99.9
99.6
99.4
99.7
0.27
100.6
100.9
100.7
100.3
101.1
100.7
0.27
101.5
100.2
101.0
99.7
99.9
100.4
0.76
100.3
100.1
100.8
100.6
100.3
100.4
0.28
100.4
100.3
101.0
100.8
100.0
100.5
0.39
99.8
100.2
99.9
101.2
100.4
100.3
0.58
Table A16.1.EPMA data for KAG and PAK (values highlighted in yellow represent
probable Fe-rich mineral inclusions)
271
Appendix A17
Sample
Sy 507-1
Sy 507-2
Sy 507-3
Sy 507-4
Sy 507-5
Sy 507-6
Sy 507-7
Sy 507-8
Sy 507-9
Sy 507-10
Sy 521-1
Sy 521-2
Sy 521-3
Sy 521-4
Sy 521-5
Sy 521-6
Sy 521-7
Sy 521-8
Sy 521-9
Sy 521-10
Sy 545-1
Sy 545-2
Sy 545-3
Sy 545-4
Sy 545-5
Sy 545-6
Sy 545-7
Sy 545-8
Sy 545-9
Sy 545-10
MK 30-1
MK 30-2
MK 30-3
MK 30-4
MK 30-5
MK 30-6
MK 30-7
MK 30-8
MK 30-9
MK 30-10
MK 126-1
MK 126-2
MK 126-3
MK 126-4
MK 126-5
MK 126-6
MK 126-7
MK 126-8
MK 126-9
MK 126-10
MK 162.3-1
MK 162.3-2
MK 162.3-3
MK 162.3-4
MK 162.3-5
MK 162.3-6
MK 162.3-7
MK 162.3-8
MK 162.3-9
MK 162.3-10
MK 195-1
MK 195-2
MK 195-3
MK 195-4
MK 195-5
MK 195-6
MK 195-7
MK 195-8
MK 195-9
MK 195-10
MK 541-1
MK 541-2
MK 541-3
MK 541-4
MK 541-5
MK 541-6
MK 541-7
MK 541-8
MK 541-9
MK 541-10
Si
0.0014
0.0004
0.0003
0.0031
0.0019
0.0002
0.0015
0.0012
0.0033
0.0000
0.0024
0.0016
0.0023
0.0006
0.0024
0.0058
0.0013
0.0024
0.0036
0.0039
0.0077
0.0041
0.0046
0.0117
0.0029
0.0051
0.0051
0.0036
0.0040
0.0109
0.0021
0.0017
0.0000
0.0033
0.0038
0.0004
0.0013
0.0003
0.0034
0.0020
0.0026
0.0010
0.0015
0.0002
0.0013
0.0042
0.0080
0.0006
0.0000
0.0074
0.0036
0.0024
0.0028
0.0000
0.0034
0.0021
0.0087
0.0035
0.0033
0.0046
0.0035
0.0025
0.0041
0.0285
0.0022
0.0010
0.0027
0.0047
0.0047
0.0045
0.0018
0.0000
0.0000
0.0006
0.0040
0.0024
0.0000
0.0006
0.0031
0.0024
Al
0.0078
0.0055
0.0094
0.0076
0.0097
0.0063
0.0083
0.0071
0.0081
0.0055
0.0103
0.0187
0.0080
0.0159
0.0145
0.0127
0.0146
0.0112
0.0085
0.0124
0.0081
0.0093
0.0056
0.0075
0.0062
0.0100
0.0065
0.0100
0.0091
0.0053
0.0133
0.0046
0.0149
0.0112
0.0057
0.0144
0.0144
0.0103
0.0117
0.0163
0.0120
0.0123
0.0130
0.0094
0.0128
0.0129
0.0129
0.0087
0.0112
0.0111
0.0123
0.0165
0.0173
0.0219
0.0176
0.0147
0.0106
0.0237
0.0168
0.0194
0.0139
0.0145
0.0095
0.0151
0.0150
0.0139
0.0154
0.0126
0.0128
0.0104
0.0163
0.0149
0.0144
0.0171
0.0150
0.0130
0.0169
0.0113
0.0246
0.0157
Mg
0.0021
0.0000
0.0000
0.0000
0.0000
0.0029
0.0000
0.0000
0.0000
0.0000
0.0005
0.0000
0.0000
0.0023
0.0000
0.0000
0.0000
0.0005
0.0000
0.0001
0.0004
0.0008
0.0000
0.0004
0.0001
0.0000
0.0000
0.0000
0.0014
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0021
0.0005
0.0000
0.0000
0.0042
0.0000
0.0000
0.0001
0.0010
0.0000
0.0015
0.0000
0.0000
0.0004
0.0000
0.0013
0.0000
0.0000
0.0000
0.0000
0.0002
0.0000
0.0000
0.0038
0.0000
0.0000
0.0000
0.0006
0.0000
0.0000
0.0032
0.0000
0.0000
0.0000
0.0000
0.0000
0.0008
0.0000
P
0.0004
0.0000
0.0010
0.0001
0.0000
0.0000
0.0000
0.0002
0.0003
0.0000
0.0000
0.0004
0.0016
0.0000
0.0001
0.0013
0.0002
0.0014
0.0000
0.0010
0.0014
0.0006
0.0000
0.0002
0.0000
0.0011
0.0009
0.0000
0.0011
0.0007
0.0000
0.0006
0.0000
0.0000
0.0000
0.0015
0.0013
0.0001
0.0000
0.0000
0.0004
0.0000
0.0000
0.0018
0.0000
0.0001
0.0000
0.0000
0.0009
0.0001
0.0009
0.0003
0.0009
0.0000
0.0007
0.0003
0.0000
0.0000
0.0010
0.0000
0.0000
0.0018
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0005
0.0000
0.0000
0.0000
0.0000
0.0000
0.0006
0.0000
Cr
0.0150
0.0085
0.0099
0.0074
0.0133
0.0205
0.0109
0.0213
0.0184
0.0161
0.0159
0.0260
0.0360
0.0211
0.0345
0.0245
0.0174
0.0135
0.0241
0.0223
0.0264
0.0238
0.0278
0.0171
0.0322
0.0182
0.0258
0.0254
0.0227
0.0281
0.0681
0.0655
0.0596
0.0435
0.0599
0.0586
0.0681
0.0635
0.0543
0.0544
0.0505
0.0678
0.0628
0.0600
0.0588
0.0581
0.0516
0.0458
0.0539
0.0458
0.0308
0.0310
0.0231
0.0184
0.0368
0.0155
0.0443
0.0204
0.0230
0.0375
0.0432
0.0370
0.0429
0.0412
0.0341
0.0411
0.0473
0.0356
0.0320
0.0525
0.0255
0.0528
0.0410
0.0467
0.0497
0.0337
0.0505
0.0542
0.0525
0.0478
Ca
0.0355
0.0033
0.0063
0.0064
0.0135
0.0112
0.0092
0.0096
0.0207
0.0032
0.0039
0.0053
0.0093
0.0034
0.0027
0.0051
0.0027
0.0031
0.0058
0.0033
0.0334
0.0237
0.0389
0.0159
0.0119
0.0258
0.0102
0.0371
0.0075
0.0388
0.0095
0.0023
0.0014
0.0054
0.0015
0.0490
0.0022
0.0000
0.0052
0.0049
0.0008
0.0137
0.0142
0.0010
0.0090
0.0092
0.0039
0.0072
0.0219
0.0022
0.0329
0.0172
0.0170
0.0030
0.0376
0.0031
0.0775
0.0007
0.0593
0.0113
0.0189
0.0209
0.0454
0.0689
0.0133
0.0185
0.0062
0.0943
0.0110
0.0099
0.0046
0.0031
0.0000
0.0072
0.0147
0.0048
0.0000
0.0069
0.0033
0.0000
Fe
0.5967
0.6379
0.5323
0.5341
0.4909
0.4978
0.5867
1.6534
0.5402
0.5460
0.7000
0.6447
0.5975
0.6219
0.5504
0.5907
0.8542
0.5721
0.4845
0.6271
0.3508
0.3236
0.3222
0.3397
0.3352
0.3717
0.3173
0.3446
0.3462
0.3353
0.0894
0.0992
0.0860
0.1544
0.1288
0.1065
0.1077
0.1272
0.0953
0.1027
0.1528
0.1927
0.1466
0.1318
0.1409
0.1481
0.1632
0.1500
0.1521
0.1428
0.2495
0.2283
0.2492
0.2632
0.2434
0.2436
0.1952
0.2894
0.2566
0.2282
0.2640
0.3018
0.2082
0.2152
0.2696
0.2586
0.2687
0.2966
0.3045
0.2569
0.2443
0.2172
0.2370
0.2903
0.2341
0.3054
0.2817
0.2354
0.2583
0.2454
Zr
0.0033
0.0021
0.0000
0.0061
0.0048
0.0061
0.0045
0.0006
0.0000
0.0078
0.0107
0.0019
0.0031
0.0102
0.0180
0.0053
0.0095
0.0086
0.0083
0.0032
0.0070
0.0030
0.0000
0.0035
0.0033
0.0114
0.0000
0.0026
0.0036
0.0000
0.0058
0.0071
0.0094
0.0057
0.0078
0.0097
0.0083
0.0099
0.0101
0.0147
0.0104
0.0064
0.0042
0.0041
0.0046
0.0068
0.0034
0.0068
0.0094
0.0089
0.0097
0.0000
0.0062
0.0054
0.0169
0.0013
0.0092
0.0038
0.0065
0.0039
0.0053
0.0077
0.0012
0.0018
0.0009
0.0031
0.0107
0.0000
0.0051
0.0051
0.0099
0.0148
0.0024
0.0100
0.0072
0.0129
0.0154
0.0147
0.0116
0.0110
Nb
0.0144
0.0110
0.0169
0.0000
0.0182
0.0151
0.0097
0.0123
0.0148
0.0055
0.0146
0.0196
0.0094
0.0186
0.0171
0.0233
0.0406
0.0162
0.0096
0.0132
0.0063
0.0076
0.0147
0.0073
0.0068
0.0085
0.0019
0.0079
0.0081
0.0065
0.1429
0.1503
0.1467
0.1422
0.1599
0.1639
0.1542
0.1499
0.1512
0.1481
0.1583
0.1474
0.1689
0.1239
0.1505
0.1321
0.1367
0.1266
0.1460
0.1572
0.1835
0.1605
0.1814
0.1818
0.1706
0.1685
0.1903
0.1750
0.1704
0.1652
0.1942
0.2459
0.2237
0.2266
0.2212
0.2459
0.2393
0.2233
0.2426
0.2132
0.1188
0.1822
0.1772
0.2304
0.1808
0.1941
0.1906
0.1844
0.1740
0.1753
Sn
0.0103
0.0080
0.0100
0.0094
0.0012
0.0131
0.0076
0.0000
0.0000
0.0000
0.0027
0.0075
0.0005
0.0000
0.0000
0.0088
0.0056
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0025
0.0077
0.0000
0.0032
0.0000
0.0000
0.0010
0.0034
0.0087
0.0220
0.0069
0.0057
0.0049
0.0147
0.0120
0.0085
0.0145
0.0065
0.0090
0.0000
0.0103
0.0007
0.0077
0.0080
0.0016
0.0094
0.0115
0.0216
0.0247
0.0241
0.0226
0.0230
0.0313
0.0144
0.0310
0.0162
0.0141
0.0075
0.0241
0.0240
0.0145
0.0019
0.0170
0.0092
0.0104
0.0134
0.0029
0.0003
0.0031
0.0054
0.0000
0.0000
0.0066
0.0137
0.0129
0.0137
0.0116
Ta
0.0000
0.0022
0.0000
0.0000
0.0000
0.0000
0.0059
0.0019
0.0020
0.0000
0.0043
0.0024
0.0000
0.0000
0.0000
0.0003
0.0000
0.0000
0.0000
0.0000
0.0016
0.0046
0.0014
0.0006
0.0000
0.0041
0.0000
0.0000
0.0007
0.0000
0.0028
0.0112
0.0184
0.0162
0.0095
0.0092
0.0107
0.0215
0.0040
0.0088
0.0000
0.0072
0.0043
0.0000
0.0109
0.0108
0.0106
0.0044
0.0100
0.0126
0.0243
0.0130
0.0094
0.0233
0.0120
0.0136
0.0135
0.0121
0.0115
0.0056
0.0134
0.0356
0.0200
0.0108
0.0221
0.0090
0.0243
0.0083
0.0201
0.0152
0.0061
0.0112
0.0079
0.0622
0.0201
0.0148
0.0102
0.0102
0.0160
0.0111
W
0.0000
0.0060
0.0051
0.0000
0.0148
0.0005
0.0000
0.0112
0.0000
0.0000
0.0000
0.0000
0.0047
0.0025
0.0000
0.0000
0.0091
0.0000
0.0000
0.0055
0.0000
0.0108
0.0000
0.0000
0.0102
0.0000
0.0143
0.0030
0.0053
0.0000
0.0014
0.0257
0.0079
0.0025
0.0044
0.0203
0.0163
0.0000
0.0053
0.0000
0.0037
0.0006
0.0201
0.0000
0.0000
0.0000
0.0056
0.0055
0.0106
0.0179
0.0319
0.0233
0.0220
0.0505
0.0302
0.0390
0.0375
0.0386
0.0241
0.0337
0.0134
0.0109
0.0142
0.0110
0.0136
0.0257
0.0000
0.0000
0.0079
0.0140
0.0064
0.0137
0.0159
0.0115
0.0152
0.0056
0.0000
0.0057
0.0125
0.0000
Ti
59
59
59
59
60
59
59
59
59
59
59
59
59
59
59
59
59
59
60
59
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
59
60
60
59
59
60
59
59
59
60
59
59
59
59
59
59
59
59
59
59
60
60
60
59
60
59
59
60
59
60
O
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
Total
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
Table A17.1. EPMA data for the investigated samples for oxygen isotopes (Ti was
determined by difference)
272
Appendix A17
Sample
N 27-1
N 27-2
N 27-3
N 27-4
N 27-5
N 27-6
N 27-7
N 27-8
N 27-9
N 31-1
N 31-2
N 31-3
N 31-4
N 31-5
N 31-6
N 31-7
N 31-8
N 31-9
N 31-10
N 36-1
N 36-2
N 36-3
N 36-4
N 36-5
N 36-6
N 36-7
N 36-8
N 36-9
N 36-10
N 38-1
N 38-2
N 38-3
N 38-4
N 38-5
N 38-6
N 38-7
N 38-8
N 38-9
N 38-10
N 40-1
N 40-2
N 40-3
N 40-4
N 40-5
N 40-6
N 40-7
N 40-8
N 40-9
N 40-10
15623-1
15623-2
15623-3
15623-4
15623-5
15623-6
15623-7
15623-8
15623-9
15623-10
19296-1
19296-2
19296-3
19296-4
19296-5
19296-6
19296-7
19296-8
19296-9
19296-10
19464-1
19464-2
19464-3
19464-4
19464-5
19464-6
19464-7
19464-8
19464-9
19464-10
20254-1
20254-2
20254-3
20254-4
20254-5
20254-6
20254-7
20254-8
20254-9
20254-10
Si
0.0028
0.0025
0.0074
0.0000
0.0047
0.0037
0.0006
0.0022
0.0016
0.0001
0.0000
0.0023
0.0026
0.0000
0.0002
0.0000
0.0020
0.0007
0.0011
0.0014
0.0043
0.0014
0.0014
0.0014
0.0014
0.0000
0.0015
0.0039
0.0045
0.0000
0.0006
0.0000
0.1336
0.0000
0.0051
0.0016
0.0034
0.0008
0.0015
0.0000
0.0004
0.0000
0.0065
0.0000
0.0016
0.0005
0.0020
0.0017
0.0000
0.0054
0.0024
0.0033
0.0023
0.0025
0.0005
0.0024
0.0005
0.0036
0.0028
0.0030
0.0069
0.0004
0.0026
0.0000
0.0041
0.0019
0.0006
0.0000
0.0062
0.0039
0.0040
0.0134
0.0028
0.0034
0.0046
0.0012
0.0000
0.0029
0.0084
0.0046
0.0000
0.0015
0.0015
0.0018
0.0022
0.0013
0.0032
0.0056
0.0030
Al
0.0881
0.1164
0.0493
0.0312
0.0259
0.1097
0.0399
0.0837
0.0486
0.0120
0.1670
0.0165
0.0097
0.0107
0.0102
0.0269
0.0157
0.0099
0.0161
0.0207
0.0077
0.0153
0.0103
0.0096
0.0108
0.0228
0.0129
0.0100
0.0106
0.0091
0.0236
0.0141
0.0247
0.0137
0.0210
0.0137
0.0146
0.0107
0.0460
0.0189
0.0243
0.0168
0.0416
0.0136
0.0161
0.0136
0.0145
0.0219
0.0293
0.2318
0.2668
0.2731
0.2378
0.2776
0.2463
0.2967
0.2152
0.2335
0.2954
0.0376
0.0588
0.0405
0.0267
0.0305
0.0361
0.0292
0.0398
0.0248
0.0387
0.1218
0.1411
0.1364
0.1409
0.1398
0.1294
0.1233
0.1319
0.1393
0.1305
0.0335
0.0403
0.0068
0.0237
0.0235
0.0375
0.0360
0.0371
0.0089
0.0355
Mg
0.0000
0.0007
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0007
0.0010
0.0000
0.0011
0.0000
0.0029
0.0000
0.0013
0.0000
0.0008
0.0000
0.0034
0.0000
0.0000
0.0001
0.0013
0.0000
0.0541
0.0000
0.0000
0.0005
0.0010
0.0000
0.0000
0.0011
0.0000
0.0000
0.0000
0.0004
0.0017
0.0000
0.0000
0.0000
0.0000
0.0050
0.0045
0.0000
0.0029
0.0009
0.0000
0.0026
0.0013
0.0001
0.0023
0.0000
0.0000
0.0000
0.0000
0.0000
0.0010
0.0000
0.0014
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0006
0.0000
0.0000
0.0000
0.0013
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
P
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0005
0.0000
0.0003
0.0000
0.0008
0.0005
0.0012
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0009
0.0000
0.0001
0.0001
0.0000
0.0001
0.0000
0.0002
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0003
0.0000
0.0000
0.0010
0.0000
0.0000
0.0012
0.0009
0.0000
0.0000
0.0000
0.0000
0.0008
0.0000
0.0004
0.0000
0.0000
0.0015
0.0000
0.0004
0.0000
0.0000
0.0000
0.0012
0.0000
0.0000
0.0010
0.0015
0.0006
0.0000
0.0010
0.0000
0.0003
0.0000
0.0000
0.0022
0.0000
0.0000
0.0000
0.0014
0.0009
0.0014
0.0020
0.0000
0.0010
0.0000
0.0005
0.0005
0.0007
Cr
0.0843
0.0584
0.0638
0.0543
0.0569
0.0828
0.0599
0.0631
0.0625
0.0154
0.0168
0.0245
0.0178
0.0153
0.0198
0.0177
0.0164
0.0183
0.0218
0.0543
0.0381
0.0643
0.1183
0.0582
0.0535
0.0686
0.0376
0.0447
0.0485
0.0848
0.0890
0.0929
0.0828
0.0704
0.0427
0.0749
0.0809
0.0774
0.0850
0.1085
0.1239
0.1459
0.1034
0.0896
0.0916
0.1366
0.0906
0.0894
0.0962
0.0066
0.0101
0.0118
0.0076
0.0048
0.0160
0.0079
0.0162
0.0147
0.0077
0.0382
0.0279
0.0311
0.0228
0.0263
0.0310
0.0271
0.0292
0.0271
0.0266
0.0219
0.0140
0.0293
0.0163
0.0141
0.0168
0.0208
0.0206
0.0184
0.0225
0.0167
0.0182
0.0153
0.0059
0.0114
0.0211
0.0192
0.0203
0.0076
0.0177
Ca
0.0074
0.0000
0.0340
0.0010
0.0360
0.0038
0.0038
0.0004
0.0007
0.0019
0.0027
0.0000
0.0000
0.0010
0.0014
0.0004
0.0033
0.0000
0.0021
0.0012
0.0000
0.0019
0.0005
0.0000
0.0026
0.0012
0.0002
0.0000
0.0000
0.0000
0.0002
0.0028
0.0099
0.0015
0.0070
0.0000
0.0005
0.0014
0.0021
0.0027
0.0005
0.0001
0.0026
0.0016
0.0000
0.0000
0.0006
0.0000
0.0000
0.0006
0.0024
0.0036
0.0034
0.0000
0.0030
0.0060
0.0056
0.0019
0.0135
0.0013
0.0079
0.0039
0.0016
0.0030
0.0002
0.0000
0.0015
0.0000
0.0009
0.0064
0.0133
0.0102
0.0042
0.0041
0.0018
0.0022
0.0004
0.0000
0.0000
0.0018
0.0021
0.0002
0.0045
0.0039
0.0036
0.0054
0.0070
0.0030
0.0026
Fe
0.5184
0.7574
0.5344
0.3234
0.3841
0.8370
0.3130
0.5542
0.3251
0.4161
0.3164
0.3694
0.4425
0.3301
0.4435
0.3295
0.3618
0.3920
0.3038
0.3605
0.3728
0.5545
0.2896
0.3752
0.9734
0.8067
0.2862
0.5662
0.4791
0.3075
0.1651
0.2556
0.1678
0.2980
0.2748
0.1658
0.1844
0.1974
0.1526
0.9635
0.5992
0.1342
0.2179
0.2455
0.3311
0.3027
0.2287
0.2358
0.1914
0.1401
0.1354
0.0611
0.1627
0.1103
0.1163
0.0648
0.1783
0.1608
0.0842
0.1166
0.1336
0.1380
0.2039
0.2676
0.2227
0.1391
0.1498
0.1965
0.1248
0.1079
0.0638
0.0929
0.0565
0.0829
0.0890
0.0957
0.0845
0.0570
0.0716
0.4991
0.5459
0.5650
0.5390
0.5428
0.5123
0.5207
0.4882
0.5796
0.5866
Zr
0.0401
0.0415
0.0369
0.0335
0.0393
0.0360
0.0287
0.0358
0.0257
0.0121
0.0088
0.0084
0.0088
0.0112
0.0145
0.0079
0.0112
0.0083
0.0103
0.0304
0.0214
0.0184
0.0236
0.0245
0.0217
0.0245
0.0174
0.0224
0.0243
0.0431
0.0434
0.0401
0.0464
0.0433
0.0209
0.0360
0.0442
0.0401
0.0412
0.0475
0.0399
0.0489
0.0318
0.0207
0.0483
0.0374
0.0276
0.0203
0.0071
0.0161
0.0181
0.0167
0.0180
0.0131
0.0092
0.0100
0.0110
0.0174
0.0127
0.0208
0.0348
0.0214
0.0234
0.0212
0.0190
0.0257
0.0203
0.0166
0.0230
0.0153
0.0170
0.0102
0.0128
0.0163
0.0102
0.0142
0.0112
0.0135
0.0116
0.0116
0.0171
0.0079
0.0147
0.0142
0.0145
0.0128
0.0150
0.0151
0.0131
Nb
1.1382
1.5937
1.0134
0.4391
0.4980
1.7150
0.5745
1.1733
0.4545
0.0862
0.0917
0.0826
0.0869
0.1074
0.0937
0.0879
0.1086
0.1007
0.0594
0.1988
0.2435
0.6423
0.1907
0.2344
0.2799
0.4853
0.1033
0.5616
0.5421
0.0032
0.0252
0.0230
0.0260
0.0234
0.0438
0.0273
0.0337
0.0230
0.0280
0.6965
0.8847
0.2629
0.2443
0.0977
0.3179
0.2255
0.0621
0.1118
0.1555
0.9596
1.0035
0.9477
0.9757
0.9696
0.9101
0.9610
0.9085
0.8994
0.9723
0.2394
0.3163
0.2558
0.2469
0.2597
0.2538
0.2433
0.2334
0.2563
0.2300
0.4422
0.4971
0.4504
0.4501
0.4589
0.4251
0.4284
0.4313
0.4319
0.4497
0.5231
0.5113
0.5064
0.5588
0.5238
0.5409
0.5149
0.4782
0.5094
0.5005
Sn
0.0000
0.0000
0.0024
0.0091
0.0062
0.0000
0.0055
0.0000
0.0000
0.0000
0.0036
0.0000
0.0099
0.0000
0.0003
0.0150
0.0059
0.0090
0.0144
0.0292
0.0034
0.0000
0.0182
0.0106
0.0086
0.0134
0.0223
0.0120
0.0137
0.0000
0.0028
0.0088
0.0028
0.0083
0.0054
0.0052
0.0097
0.0031
0.0040
0.0070
0.0000
0.0059
0.0134
0.0020
0.0000
0.0000
0.0054
0.0009
0.0000
0.0651
0.0692
0.0430
0.0637
0.0641
0.0494
0.0611
0.0544
0.0359
0.0450
0.0293
0.0618
0.0433
0.0306
0.0329
0.0324
0.0356
0.0283
0.0415
0.0342
0.0519
0.0458
0.0481
0.0523
0.0533
0.0614
0.0499
0.0528
0.0390
0.0537
0.0593
0.0682
0.0711
0.0660
0.0785
0.0680
0.0717
0.0841
0.0836
0.0827
Ta
0.0094
0.0000
0.0136
0.0102
0.0064
0.0158
0.0000
0.0055
0.0000
0.0050
0.0000
0.0056
0.0000
0.0077
0.0004
0.0000
0.0000
0.0038
0.0000
0.0066
0.0147
0.0310
0.0024
0.0201
0.0203
0.0207
0.0000
0.0251
0.0175
0.0000
0.0000
0.0039
0.0000
0.0011
0.0000
0.0000
0.0000
0.0000
0.0067
0.0218
0.0076
0.0040
0.0000
0.0049
0.0000
0.0003
0.0006
0.0000
0.0000
0.0866
0.1024
0.0839
0.0879
0.0963
0.0885
0.0734
0.0870
0.0939
0.1149
0.0352
0.0184
0.0221
0.0182
0.0333
0.0293
0.0070
0.0013
0.0198
0.0195
0.0530
0.0714
0.0494
0.0534
0.0557
0.0376
0.0475
0.0386
0.0636
0.0482
0.0601
0.0661
0.1203
0.0582
0.0488
0.0323
0.0605
0.0579
0.0729
0.0798
W
0.0000
0.0000
0.0033
0.0095
0.0000
0.0000
0.0083
0.0084
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0073
0.0000
0.0199
0.0000
0.0000
0.0126
0.0349
0.0000
0.0095
0.0159
0.0302
0.0343
0.0049
0.0183
0.0000
0.0240
0.0056
0.0015
0.0000
0.0000
0.0000
0.0090
0.0000
0.0000
0.0000
0.0181
0.0000
0.0000
0.0039
0.0061
0.0000
0.0063
0.0069
0.0000
0.0128
0.0377
0.0354
0.0218
0.0248
0.0082
0.0000
0.0260
0.0129
0.0390
0.0185
0.0327
0.0138
0.0054
0.0184
0.0186
0.0276
0.0318
0.0216
0.0165
0.0274
0.0448
0.0524
0.0338
0.0479
0.0721
0.0380
0.0666
0.0248
0.0310
0.0356
0.0213
0.0338
0.0206
0.0303
0.0332
0.0203
0.0397
0.0171
0.0289
Ti
58
58
59
59
59
58
59
58
59
59
59
60
59
60
59
60
60
60
60
59
59
59
59
59
59
59
60
59
59
60
60
60
59
60
60
60
60
60
60
58
59
59
59
60
59
59
60
60
60
59
59
59
59
59
59
59
59
59
59
60
0
59
59
59
59
60
60
59
60
59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
59
O
40
39
40
40
40
39
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
0
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
Total
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
1
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
Table A17.1. EPMA data for the investigated samples for oxygen isotopes (Ti was
determined by difference - continued)
273
Appendix 18
Metamorphic Studies Group Annual Research in Progress Meeting 2011, 23rd March
Department of Earth Sciences, Cambridge, UK
TESTING THE USE OF DETRITAL RUTILE TO DETECT ERODED HP
ROCKS
Florentina Enea1, Jeanette Taylor2, Craig D Storey1 and Horst Marschall3
1
School of Earth and Environmental Sciences, University of Portsmouth, Burnaby
Building, Burnaby Road, Portsmouth, PO1 3QL, UK.
2
Dept. of Earth Sciences, University of Bristol, Will’s Memorial Building, Queen’s
Road, Bristol, BS8 7RH, UK.
3
Woods Hole Oceanographic Institution, Geology and Geophysics, Quisset Campus,
Woods Hole, Massachussets 02543, USA.
Rutile is an important mineral in high-pressure rocks such as blueschists and eclogites,
generally being the main host Ti-bearing accessory phase under high-pressure
conditions. It is also a major carrier of high-field-strength-elements (HFSE), which can
potentially be used as tracers of different tectonic processes, such as subduction. For
example, the Zr-in-rutile geothermometer has now been fairly widely applied to HP
rocks and proved to be of great promise. The Nb/Cr ratio has been used to offer insight
into the bulk composition of the host rock. Also, rutile has been successfully dated by
U/Pb methods using in-situ techniques. Moreover, rutile is a robust mineral in the
sedimentary environment and is common as an accessory phase in sandstones.
Therefore, its potential as a detrital tracer of HP metamorphism is high.
In this study we address the potential of detrital rutile by investigating two case studies
located in Syros (Greek Cyclades), and the Western Alps, both settings displaying
HP/UHP conditions. Metamafic, metaigneous and metapelitic rocks have been sampled
together with sediments that resulted from the erosion of these rocks in beach and river
274
Appendix A18
catchments. Thus, a geochemical correlation between source rocks and sediments can
be assessed based on their HFSE budget.
Trace element analyses of rutile were conducted using LA-ICPMS on in-situ grains
from polished thick sections, and single detrital grains. We also studied hydrothermal
grains developed within the host rocks to attempt to fingerprint those grains that might
not necessarily reflect peak HP/UHP conditions. Preliminary results indicate that mobile
metals such as W, Sb and Sn are concentrated in hydrothermal rutile and, hence, are a
potential first order discriminant.. Further distinctions between metasedimentary and
metabasic rutile using Cr/Nb ratios appear to hold up, so that subducted igneous crust
can be distinguished from subducted terrestrial sediments. Zr thermometry appears to
give a good reflection of equilibrated HP/UHP conditions within these rocks compared
with previous conventional geothermometry. Oxygen isotope studies will further
characterise these rutiles from Syros and the Italian Alps. This will be used to further
characterize the nature of the subducted material and allow us to test the veracity of the
trace element signature in determining the protolith bulk composition. This will also
allow oxygen isotope data within single rutiles to be performed for the first time in
order to further aid the identification of the tectonic history of detrital rutiles.
275
Appendix A19
European Geosciences Union General Assembly 2011
Vienna | Austria | 03 – 08 April 2011
Rutile geochemistry and its potential
use as a petrogenetic tool
Florentina C. Enea1, Jeanette Taylor2, Craig D Storey1, Horst R.
Marschall2
1
University of Portsmouth, School of Earth and Environmental Sciences,
Portsmouth, UK
2
University of Bristol, Department of Earth Sciences, Bristol, UK
The timing of onset of modern plate tectonics is currently in conflict. Some believe
that it began in the Archaean and others the Neoproterozoic. At issue is the lack of reliable
recorders of changing styles of subduction. Whilst high-pressure rocks are present from
Archaean times, low-temperature, high-pressure rocks only appear in the Neoproterozoic.
This latter association is the hallmark of steep subduction of cold oceanic crust and is central
to the argument. Their disappearance from the rock record older than c.600 Ma may be a
matter of preservation potential. We intend to investigate this question by the novel use of
detrital rutile.
The intimate link between rutile formation and plate tectonics calls for a closer
investigation of rutile geochemistry, including minor and trace element compositions and
isotopic signatures. Research now focuses on relating geochemical signatures of rutile to the
P-T-X conditions of its host rock and, hence, to the plate tectonic setting of its formation.
Guided by the improved geochronologic constraints, rutile can than be used to recognise
tectonic processes on the early Earth and to investigate secular changes in these processes.
One category of typical protoliths that produce rutile includes basalts and gabbros in the
oceanic crust, where rutile is formed during subduction. In modern subduction zones along a
very low P/T gradient, rutile forms at ~1.3 GPa and 400–500ºC in the blueschist facies.
Modern continental subduction will produce medium to high-T eclogite with rutile
276
Appendix A19
equilibrated at 600–800ºC, while the collision of large continental blocks generates medium
to high-P granulites formed at 800–1000ºC.
One of the other major causes of rutile growth in the crust is in hydrothermal
settings and therefore we need to determine how to distinguish hydrothermal rutile from
high-P metamorphic rutile. Our sample-set from Syros contains hydrothermal rutile in
addition to high-P and our initial trace element studies demonstrate that mobile metals such
as W, Sb and Sn are concentrated in hydrothermal rutile and, hence, are a potential first
order discriminant. Oxygen isotope studies will further characterise such hydrothermal
rutiles from Syros and other settings such as the Sesia Lanzo. Mantle rutiles, such as in the
MARID association, are considered a minor input into the crust and are characterised by
extremely high Cr contents and hence should be easily distinguished. We will then be in an
ideal position to take detrital rutiles that sample unknown orogenic belts and reconstruct the
tectonic evolution of the high-pressure setting of the rutiles.
277
Appendix A20
9th International Eclogite Conference 2011, Mariánské Lázně, Czech Republic
Testing the use of detrital rutile to investigate HP/UHP
rocks
Enea Florentina C.1, Taylor Jeanette2, Storey Craig D.1, Marschall Horst R.3,
Konrad-Schmolke Matthias4
1
University of Portsmouth, SEES Burnaby Building, Portsmouth, PO1 3QL, UK
(*correspondence: florentina.enea@port.ac.uk).
2
Bristol University, SES, Wills Memorial Building, Queen's Road, BRISTOL BS8
1RJ, UK
3
Woods Hole Oceanographic Institution Woods Hole , MA 02543, USA
4
Universität Potsdam, Institut für Geowissenschaften, Karl-Liebknecht-Straße 24-25,
14476 Golm, Germany
Accessory rutile generally is the main host of Ti in HP/UHP metamorphic rocks. It is
also a major carrier of HFSE, providing a potential tracer of contrasting tectonic
processes. For example, the Zr-in-rutile geothermometer has now been widely and
successfully applied to HP rocks, And Cr/Nb ratios have been used to distinguish
between different bulk compositions of the host rock. Moreover, rutile is a robust
mineral in sedimentary environments and is common as an accessory phase in sandstones. Therefore, its potential as a detrital tracer of HP metamorphism is high.
Metamafic and metapelitic rocks from two case studies located in Syros, Greece and
the Western Alps, both settings displaying HP/UHP conditions, have been sampled
together with sediments that resulted from the erosion of these rocks in beach and
river catchments. The geochemical correlation of rutile between source rocks and
sediments is assessed based on its HFSE budget.
This study aims to establish geochemical signatures of rutile that are characteristic
for detrital grains sourced from HP/UHP rocks formed in subduction zones. The Zr278
Appendix A20
in-rutile thermometer (Zack et al., 2004b; Watson et al., 2006) provides peak
metamorphic temperatures for the investigated samples that are coherent with
published peak temperatures for the respective metamorphic sequences. In addition,
the calculated temperatures are in-dependent of the source rock lithologies, i.e., the
presence or absence of quartz. The T histograms for the Western Alps indicate a
low-T peak, suggesting the blueschists, eclogites and Dora Maira rocks are
dominant, and not the high-T Ivrea rocks, as expected. Cr/Nb ratios have been
employed success-fully and in situ analysis fall strictly into the mafic (for Syros) and
pelitic (for the Western Alps) source rock fields (Zack et al., 2002; Zack et al.,
2004a; Meinhold 2010).
Meinhold (2010) E-S Rev. 102, 1–28.
Watson et al. (2006) CMP 151, 413–433.
Zack et al. (2002) Chem. Geo., 184, 97-122.
Zack et al. (2004a), Sed. Geo, 171, 37-58.
Zack et al. (2004b) CMP 148, 471–488.
279
Appendix A21
Goldschmidt2011, August 14-19, 2011 in Prague, Czech Republic
Testing the use of detrital rutile to
Investigate HP/UHP rocks
FLORENTINA C. ENEA1*, JEANETTE TAYLOR2, CRAIG D. STOREY1, HORST MARSCHALL3 AND M. KSCHMOLKE4
1
University of Portsmouth, SEES Burnaby Building, Portsmouth, PO1 3QL, UK (*correspondence:
florentina.enea@port.ac.uk).
2
Bristol University, SES, Wills Memorial Building, Queen's Road, BRISTOL BS8 1RJ, UK
3
Woods Hole Oceanographic Institution Woods Hole , MA 02543, USA
4
Universität Potsdam, Institut für Geowissenschaften, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
Accessory rutile generally is the main host of Ti in HP/UHP metamorphic rocks. It is
also a major carrier of HFSE, providing a potential tracer of contrasting tectonic
processes. For example, the Zr-in-rutile geothermometer has now been widely and
successfully applied to HP rocks, And Cr/Nb ratios have been used to distinguish
between different bulk compositions of the host rock. Moreover, rutile is a robust
mineral in sedimentary environments and is common as an accessory phase in
sandstones. Therefore, its potential as a detrital tracer of HP metamorphism is high.
Metamafic and metapelitic rocks from two case studies located in Syros,
Greece and the Western Alps, both settings displaying HP/UHP conditions, have
been sampled together with sediments that resulted from the erosion of these rocks in
beach and river catchments. The geochemical correlation of rutile between source
rocks and sediments is assessed based on its HFSE budget. This study aims to
establish geochemical signatures of rutile that are characteristic for detrital grains
sourced from HP/UHP rocks formed in subduction zones. The Zr-in-rutile
thermometer [1, 2] provides peak metamorphic temperatures for the investigated
samples that are coherent with published peak temperatures for the respective
metamorphic sequences. In addition, the calculated temperatures are independent of
280
Appendix A21
the source rock lithologies, i.e., the presence or absence of quartz. The T histograms
for the Western Alps indicate a low-T peak, suggesting the blueschists, eclogites and
Dora Maira rocks are dominant, and not the high-T Ivrea rocks, as expected. Cr/Nb
ratios have been employed successfully and in situ analysis fall strictly into the mafic
(for Syros) and pelitic (for the Western Alps) source rock fields [3, 4, 5].
[1] Zack et al (2004b) CMP 148, 471–488.
[2] Watson et al. (2006) CMP 151, 413–433.
[3] Zack et al. (2002) Chem. Geo., 184, 97-122.
[4] Zack et al. (2004a), Sed. Geo, 171, 37-58.
[5] Meinhold (2010) E-S Rev. 102, 1–28.
281

Similar documents

Gene Larew

Gene Larew 17 Biffle Series Color Chart 18 Biffle HardHeads Biffle Bug Color Chart 19 Biffle Bugs
 Biffle Bug Juice Bass Glass Rattles

More information