Rutile: a new petrogenetic tool to investigate old subduction zones
Transcription
Rutile: a new petrogenetic tool to investigate old subduction zones
Rutile: a new petrogenetic tool to investigate old subduction zones Cornelia Florentina Enea Doctor of Philosophy 2012 Rutile: a new petrogenetic tool to investigate old subduction zones CORNELIA FLORENTINA ENEA The thesis is submitted as a partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth School of Earth and Environmental Sciences United Kingdom September, 2012 Abstract The timing of onset of modern plate tectonics is currently in conflict. Some believe that it began in the Archaean whereas others prefer a Neoproterozoic onset. At issue is the lack of reliable recorders of changing styles of subduction. Whilst high-pressure rocks (eclogite and high-P granulites) are present in the rock record from Archaean times, low-temperature, high-pressure and ultrahigh-pressure rocks only appear in the Neoproterozoic. This latter association is the hallmark of steep subduction of cold oceanic crust and is central to the argument. Their disappearance from the rock record older than c.600 Ma may be real or it may be a matter of preservation potential. The scope of this project is to investigate this question by the novel use of detrital rutile, which shows great potential as a provenance indicator for high-pressure metamorphism and tectonic settings. The best recorders of subduction are blueschists, which are present in the rock record only to ca. 600 Ma ago. Rutiles in blueschist-facies mafic rocks from Syros and pelitic samples from the Sesia Lanzo Zone have been investigated and results show that the Nb vs. Cr diagram is a reliable tool for high-pressure/lowtemperature conditions, regardless of the lithology of the source rock. Further, rutiles in ultrahigh-pressure/high temperature rocks from the Dora Maira Massif and the Western Gneiss Complex have been analysed. Grains from the first location plot on the correct area of the chart, but do not correlate with the detrital record, whereas grains from the second location show a mixed Nb/Cr signatures, with eclogites plotting along the metamafic – metapelitic borderline, or even on the pelitic region. This indicates that the discrimination diagram requires special care when using it on high grade rutiles. Provenance studies on Syros and the Sesia Lanzo showed a good host rock – detrital record correlation. Moreover, in the Western Alps, Po River contains a higher percentage of low-temperature rutiles (97 %) compared to high temperature grains (3 %), that might suggest that the rivers could control this concentration or most likely that the source rocks supply more rutile thus biasing the final population. i These results further demonstrate the capability of detrital rutile to provenance highpressure/low-temperature source rocks, mafic or pelitic, in large riverine systems. The Zr-in-rutile thermometer gives values consistent with previous estimations for both Syros and the Sesia Lanzo samples, using the calibration with a silica activity of 1. The pressure-dependant calibration has a too big correction for lower pressure and temperature conditions. Moreover, quartz-bearing rocks give almost identical temperatures with quartz-free rocks, suggesting that the silica activity does not have a major effect on the thermometer. This latter thermometer has been used for ultrahigh-pressure/high temperature rutiles from Dora Maira and the Western Gneiss Complex, giving slightly lower results for the first location and considerable higher values for most of the samples from the second location. In the first case, a partial re-setting of the zirconium concentration could be the explanation, whereas in the second case, the study concludes that the Zr-in-rutile thermometer gives more consistent results than any exchange geothermometers. Therefore, this thermometer can be safely applied to rocks from blueschist- to granulite-facies rocks, giving good estimations where diffusion did not took place. ii Contents Abstract......................................................................................................................i-ii Contents.................................................................................................................iii-vii Declaration................................................................................................................viii List of Tables...........................................................................................................ix-x List of Figures.....................................................................................................xi-xviii Abbreviations..............................................................................................................xi Acknowledgements..............................................................................................xx-xxi Dissemination...........................................................................................................xxii Chapter 1. Introduction.................................................................................................1 1.1. History of Research....................................................................1-6 1.2. Objectives of Current Study.................... ..................................6-7 1.3. Importance of Rutile......................................................................7 1.3.1. General Description....................................................7-8 1.3.2. Crystallography...........................................................8-9 1.3.3. Chemical composition.............................................10-11 1.3.4. Rutile in metamorphic rocks...................................11-13 1.3.5. Provenance indicator...............................................13-16 1.3.6. The Zr-in-rutile thermometer..................................16-19 1.3.7. Oxygen Isotopes......................................................19-20 1.4. Investigated Locations.................................................................20 1.4.1 Syros (Greece)..........................................................20-21 1.4.2 Western Alps (Italy).................................................21-23 1.4.3 Western Gneiss Region (Norway)...........................23-25 1.5. Summary of Thesis...............................................................25-28 Chapter 2. Methodology...........................................................................................29 iii 2.1. Sample Preparation……………………………………….……29 2.2. Electron Microprobe (EMP)………………………………. 29-30 2.3. Laser Ablation – Inductively Coupled Mass Spectrometer (LA – ICPMS)……………………………….30-32 2.4. Secondary Ion Mass Spectrometry (SIMS)…………………32-33 Chapter 3. Trace-element characteristics of rutile in blueschist- to low-T eclogite facies mafic-ultramafic high-P mélange zones (Syros, Greece)………..34 3.1. Abstract…………………………………………………………34 3.2. Introduction………………………………………………....35-37 3.3. Geological Setting……………………………….………….38-39 3.4. Sample Description…………………………………………39-43 3.5. Methodology…………………………………………………...43 3.6. Results………………………………………………………….44 3.6.1. Source rock rutile geochemical data............................44 3.6.2. Zr-in-Rutile thermometry........................................45-49 3.6.3. Metamorphic vs. metasomatic rutile.......................50-53 3.6.4. Rutile in a metamorphic facies perspective............54-55 3.7. Discussion....................................................................................55 3.7.1. Source rock rutile geochemical data.......................55-56 3.7.2. Zr-in-Rutile thermometry........................................56-58 3.7.3. Metamorphic vs. metasomatic rutile.......................58-60 3.7.4. Rutile in a metamorphic facies perspective..................60 3.8. Conclusions…………………………………………………60-61 Chapter 4. An evaluation of the potential of detrital rutile to document the highpressure metamorphic history of an orogenic belt (Western Alps)...........62 4.1. Abstract……………………………………………………..62-63 4.2. Introduction…………………………………………………63-64 4.3. Geological Setting…………………………………………..64-67 4.4. Sample Description…………………………………………68-70 4.5. Methodology……………………………………………………70 iv 4.6. Results………………………………………………………….71 4.6.1. Source rock rutile geochemical data.............................71 4.6.1.1. Sesia Lanzo..............................................71-73 4.6.1.2. Dora Maira.....................................................74 4.6.1.3. Po River....................................................74-76 4.6.2. Zr-in-Rutile thermometry........................................77-79 4.6.3. Trace element budgets............................................80-81 4.7. Discussion....................................................................................82 4.7.1. Source rock rutile geochemical data.............................82 4.6.1.1. Sesia Lanzo..............................................82-83 4.6.1.2. Dora Maira.....................................................84 4.6.1.3. Po River....................................................85-86 4.7.2. Zr-in-Rutile thermometry........................................86-90 4.7.3. Trace element budgets..................................................91 4.8. Conclusions…………………………………………………92-93 Chapter 5. Trace-element characteristics of rutile in HP-UHP rocks in the Western Gneiss Complex, Norway: implications for Zr-in-rutile thermometry and provenance studies………………………………………………………94 5.1. Abstract……………………………………………………..94-95 5.2. Introduction…………………………………………………95-97 5.3. Geological Setting…………………………………………97-100 5.4. Sample Description………………………………………100-104 5.5. Methodology………………………………………………….105 5.6. Results………………………………………………………...105 5.6.1. Source rock rutile geochemical data...................105-109 5.6.2. Zr-in-Rutile thermometry....................................109-117 5.6.3. Metamorphic vs. metasomatic rutile..........................117 5.6.4. Rutile formed by the breakdown of titanomagnetite vs. rutile formed by the breakdown of ilmenite......117-118 5.6.5. Rutile in a HP/LT omphacite vein vs. rutile in an UHP/HT omphacite vein……………………...118-119 5.6.6. Trace element profiles………………………………120 5.7. Discussion................................................................................120 5.7.1. Source rock rutile geochemical data...................120-125 5.7.2. Zr-in-Rutile thermometry...................................125-128 5.7.3. Metamorphic vs. metasomatic rutile..................129-130 5.7.4. Rutile formed by the breakdown of titanomagnetite vs. rutile formed by the breakdown of ilmenite.....130-131 v 5.7.5. Rutile in a HP/LT omphacite vein vs. rutile in an UHP/HT omphacite vein……………………...131-132 5.7.6. Trace element profiles………………………….132-133 5.8. Conclusions………………………………………………134-135 Chapter 6. Discussions and Conclusions.................................................................136 6.1. The Nb vs. Cr diagram…………………………………...136-139 6.2. The Zr-in-Rutile thermometer……………………………139-142 6.3. Rutile in the plate tectonics context……………………...142-144 6.4. Other trace element considerations………………………145-146 6.5. Future perspectives……………………………………………146 6.5.1. Possible rutile barometers………………….......146-149 6.5.2. A new discrimination diagram?.................................150 References…………………………………………………………………….151-187 Appendices...............................................................................................................188 A1. Sample Description............................................................188-190 A2. Sample Preparation............................................................191-193 A3. Long-term NIST 610 analyses...........................................194-204 A4. Long-term R10 analyses....................................................205-209 A5. Oxygen Isotopes – Method Description............................210-211 A6. Trace elements data and temperature measurements for the metamorphic samples from Syros............................................212 A7. Trace elements data and temperature measurements for the metasomatic samples from Syros......................................213-216 A8. Trace elements data and temperature measurements for the detrital samples from Syros...............................................217-219 A9. Trace elements data and temperature measurements for the metamorphic samples from the Sesia Lanzo Zone............220-222 A10. Trace elements data and temperature measurements for the metamorphic samples from the Dora Maira Massif........223-227 A11. Trace elements data and temperature measurements for the detrital samples from the Western Alps..........................228-237 vi A12. Trace elements data and temperature measurements for the metamorphic samples from the Western Gneiss Complex .........................................................................................238-249 A13. EPMA whole rock data for A299 and A347g from the Western Gneiss Complex.......................................................................250 A14. A complete list of P/T calculations using the EPMA whole rock data for A299 and A347g.................................................251-253 A15. Investigating the Use of Oxygen Isotopes on Rutile in HP/UHP Rocks................................................................................254-270 A16. EPMA data for Oxygen isotopes standards (KAG and PAK) .................................................................................................271 A17. EPMA data for samples used for oxygen isotopes analysis .........................................................................................272-273 A18. Abstract - Testing the Use of Detrital Rutile to Detect Eroded HP Rocks, MSG 2010……………………....274-275 A19. Abstract - Rutile Geochemistry and its Potential Use as a Petrogenetic Tool, EGU 2011.......................276-277 A20. Abstract - Testing the use of detrital rutile to investigate HP/UHP rocks, IEC 2011...............................278-279 A21. Abstract - Testing the use of detrital rutile to investigate HP/UHP rocks, Goldschmidt2011..................280-281 vii Declaration Whilst registered as a candidate for the above degree, I have not been registered for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award. Florentina Enea, September 2012 viii List of Tables Chapter 1 TABLE 1: Petrotectonic assemblages’ characteristic of plate tectonics (after Condie and Kröner, 2008) TABLE 2. Other indicators of plate tectonics (after Condie and Kröner, 2008) Chapter 2 Table 1: Standard analyses for NIST 610 and R10 (made by LA – ICPMS): known concentrations and long term average concentrations together with their respective standard deviations. Chapter 3 TABLE 1: Mineralogical description of the investigated source rocks: samples 1-5 were analysed for metamorphic rutiles, samples 6-14 for metasomatic rutiles. TABLE 2: Summary of relevant trace element data for the investigated samples (with STDEV). Chapter 4 TABLE 1: Mineralogical description of the investigated source rocks: samples 1-8 are from the Sesia Lanzo Zone and samples 9-12 are from the Dora Maira Massif. Modal abundances are given in percentages. *Please refer to Grevel et al., 2009 and Schertl & Schreyer, 2008 for a detailed mineralogical description of this sample. ix TABLE 2: LA-ICPMS trace element data (including mean concentration with standard deviation) for the SLZ, DMM and sand specimens. Chapter 5 TABLE 1: Mineralogical description of the investigated source rocks: samples 1 – 7 were analysed for metamorphic rutiles and 8-11 for metasomatic rutiles. TABLE 2: LA-ICPMS trace element data for all investigated samples including mean concentration with standard deviation). TABLE 3: Minimum and maximum pressure values used for Zr-in-rutile thermometry calculations (including errors). Calculations have been done using the Tomkins et al. (2007) calibration. x List of Figures Chapter 1 FIGURE 1: Rutile’s crystallographic structure with one Ti4+ ion being surrounded by 6 oxygens (after Baur, 2007; Meinhold, 2010). FIGURE 2: Experimentally determined formation of rutile, titanite and ilmenite for a mid- ocean ridge basalt–H2O system (after Liou et al., 1998; Meinhold, 2010). FIGURE 3: Diagram showing which elements could substitute Ti4+, based on charge versus ionic radius (Shannon, 1976) FIGURE 4: Small, scattered rutile grains in blueschist-facies from Syros (Greece); they appear as inclusions in garnet and also in the matrix (scale bar of 1 mm in both pictures). FIGURE 5: Rutile in various textural relationships in high-grade eclogites from the Western Gneiss Region (the visible yellow scale bar is 1 mm): a. as inclusions in garnet and in the matrix; b. as polycrystalline aggregates in association with amphibole. FIGURE 6: Nb versus Cr discrimination diagrams for rutile from different metamorphic lithologies: a. according to Zack et al., 2004b; b. according to Triebold et al., 2007; c. according to Meinhold et al., 2008 (after Meinhold, 2010). FIGURE 7: Comparison of Zr-in-rutile thermometers of Zack et al., 2004a, Watson et al., 2006, and Tomkins et al., 2007 (after Meinhold, 2010). Chapter 2 FIGURE 1: Time-resolved analysis spectra for LA ICPMS: a and b are NIST 610 grains, whereas c, d, e and f represent analysed unknowns. xi Chapter 3 FIGURE 1: Geological map of the Greek Island of Syros, with a small insert illustrating the island’s location within the Aegean Sea. The white rectangles represent beach sediments and the gray rectangles represent the source rocks that were collected for this study (map modified after Marschall et al., 2006). FIGURE 2: Microphotographs of thick (~ 100 µm) sections for significant samples (a scale bar of 1 mm is visible in all images): a. Sample SY412 showing metasomatic rutile in a chlorite-omphacite matrix; b. SY425G is a metagabbro with metamorphic rutile in a glaucophane matrix; c. SY521 shows a cm-size metasomatic rutile in an actinolite-chlorite matrix; d. SY545 is a garnet-glaucophane schist with metamorphic rutile as part of the matrix and as inclusions in garnets; e. SY522-100 is a metasomatised eclogite with rutile as inclusions in garnets and in the omphacite-glaucophane matrix; f. SY522-10 shows rutile in a metasomatised eclogite. FIGURE 3: Provenance study plot: Nb vs. Cr showing the metamafic and metapelitic areas according to Meinhold et al., 2008 (after Zack et al., 2004b). Almost all grains are part of the metamafic group, as expected. The metamorphic and metasomatic rutiles overlap with the detrital grains. FIGURE 4: Longitudinal profile through a sketch of a metasomatic rutile grain showing no relevant Zr zonation. Analyses were performed using a 50 µm spot size, every 250 µm (by LA-ICPMS). FIGURE 5: a. Thermometry calculations for metamorphic (1.5 and 2.0 GPa), metasomatic (0.6 and 1.2 GPa) and detrital rutiles (0.6, 1.2, 1.5 and 2.0 GPa) calculated using the Tomkins et al., 2007, calibration. The results are shown together with the standard deviation and are fairly coherent with each other. However, the values are generally higher that previous estimations (see text for discussion); b. Temperatures calculated for quartz-free and quartzbearing rocks; the chart shows that silica undersaturation has little effect on the results. xii FIGURE 6: Trace element plots for metamorphic (blue diamonds) and metasomatic (red squares) rutiles (Nb concentration is represented on the yaxis): a. V vs. Nb; b. Mo vs. Nb; c. Sn vs. Nb; d. Sb vs. Nb; d. Sb vs. Nb; e. Hf vs. Nb; f. W vs. Nb. FIGURE 7: V vs. Mo diagram showing two groups of source rocks: metabasalts and metagabbros. FIGURE 8: Spider diagram showing the rutile data normalised to R10; Ta, Nb and Cr have a bigger affinity for metasomatic grains, while V and Sb have a higher preference for metamorphic rutile; W, Sn, U, Hf and Zr show no preference. FIGURE 9: Nb vs. Cr diagram compiling data for rutiles from various facies/tectonic settings; rutiles from the metasomatised mantle peridotites form a separate cluster from the rest of the groups; granulite- and eclogitefacies rutiles partially overlap the upper part of the blueschist-facies rutiles. Chapter 4 FIGURE 1: (a) Geological map of the Western Alps showing the location of five sand samples: SL 10/12, 13, 15, 16, and 17 (modified after Beltrando et al., 2010 and Garzanti et al., 2004). The two detailed maps are of: (b) The Sesia Lanzo Zone (modified after Konrad-Schmolke et al., 2006) with positions for the other two sand samples (SL 10/4 and SL 10/10) and the hard rocks (black star); (c) The Dora Maira Massif (modified after Grevel et al., 2009) showing the location of the Parigi/Case Ramello samples (A) and of the Tapina sample (B). xiii FIGURE 2: Nb vs. Cr discrimination diagrams (after Meinhold et al., 2008; see also Zack et al., 2004b) showing metamorphic vs. detrital rutiles from: a. Sesia Lanzo Zone with Rio delle Balme and Chiusella 1 – a good correlation can be made between the source rocks and detrital material; b. The IvreaVerbano Zone (data from Luvizotto and Zack, 2009), the Sesia Lanzo Zone, and Torrente Chiusella 2 with Dora Baltea – both locations with metamorphic rutile overlap with the two rivers, indicating a coherent reciprocity ; c. Dora Maira Massif with Varaita and Maira – no relationship can be established between the metamorphic rocks and detrital rutile, as they plot on different areas of the diagram; d. The Ivrea-Verbano Zone, the Sesia Lanzo Zone, Dora Maira and Po River – the SLZ and IVZ pelitic signature can still be linked to the eroded material; a large fraction of the river’s material has a metamafic source. FIGURE 3: Simplified map of Po’s drainage system (after Garzanti et al., 2004) showing the sand samples’ locations and their associated [Zr] frequency diagram: (a) Rio delle Balme and Torrente Chiusella 1 – main peaks show [Zr] typical for LT rocks, as found in the SLZ; (b) Torrente Chiusella 2 and Dora Baltea – this diagram indicates that, besides an important LT fraction, there is a new high [Zr] group present that could be source from the IVZ; further evidence for this hypothesis is that the high [Zr] fraction is mostly pelitic, also typical for the IVZ (see text for discussion); (c) Varaita River – limited range of [Zr], indicating a small number of medium to high-T source rocks; (d) Maira River – several [Zr] peaks suggesting multiple sources, such as the Monviso Massif and the UHP and country rocks from DMM; (e) Po River – 97 % of the detrital load is represented by low [Zr], corresponding to LT source rocks; the rest 3 % indicate HT sources. FIGURE 4: Trace elements budget plots for metamorphic rutiles from the SLZ (samples labelled MK) and DMM (the rest): a. V shows a coherent behaviour for the HP samples, and a more complex behaviour for the UHP xiv specimens; b. Cr – its budget is mainly controlled by the presence of garnet; as the SLZ samples have very similar compositions, this relationship is more poignant in the DMM rocks, where garnet can be found from 10 to 40 %; more garnet will incorporate a larger fraction of the available Cr, leavening less for Rt; c. Zr – this budget is mainly controlled by Zrc, therefore explaining the low percentages; d. Nb – as rutile is the main carrier of this element, its composition reflects the rutile abundance in the host rock. FIGURE 5: Multi-trace element diagram containing rutile compositions normalised to R10; the green field is represented by the range of compositions for metamorphic rutiles from the IVZ (data collected from Luvizotto and Zack, 2009); the grey field corresponds to detrital grains from the Torrente Chiusella 2 and Dora Baltea; the good overlap between the two groups further suggests a source rock –sediments relationship (please see text for discussion) FIGURE 6: Multi-trace element diagram containing rutile compositions normalised to R10; the grey field represent the range of composition for the SLZ rocks, while the individual points represent Po River detrital rutiles; this diagram shows that at least 19 grains (from 121 grains) from the sediments can be linked back to their source rocks from the SLZ. Chapter 5 FIGURE 1: Geological map of the WGC between Sognfjord and Molde, showing sample locations. Geological units after Kildal, 1970; Robinson, 1995; Tveten, 1995; Tveten and Lutro, 1995a, b. Eclogite localities from Krogh, 1980, 1982; Cuthbert, 1985; Griffin et al., 1985; Smith, 1988; Bailey, 1989; Chauvet et al., 1992; Krabbendam and Wain, 1997 (including xv additional unpublished data of the authors). All rights reserved to Simon Cuthbert for map editing (after Cuthbert et al., 2000). FIGURE 2: Microphotographs of thick (~ 100 µm) sections for significant samples (a scale bar of 1 mm is visible in all images): a. Sample 4-1A (Raudkleivane site) showing metamorphic rutile in an eclogite; b. N 28 is a PCQ-bearing eclogite from Vetrhuset with metamorphic rutile grains; c. N 36 shows a cm-size metasomatic rutile in a white mica matrix; d. N 38 is a Gusdal Quarry Ti-rich eclogite with rutile forming clusters together with an Amp at the Omp-Grt limit; e. N 40 is another Gusdal Quarry Ti-rich eclogite with rutile forming clusters together with an Amp inside a garnet; f. N 55 shows metasomatic rutile in Omp+Chl vein. FIGURE 3: Provenance study plots: a. Nb vs. Cr showing the metamafic and pelitic areas according to Meinhold et al., 2008 (after Zack et al., 2004b). The metapelitic samples (N 31 and N 36) plot in the correct area of the diagram, whereas the metamafic eclogites and omphacite veins are highly variable, with some behaving "normally" (4-1A, N 19, N 29 and N 35), two of them plotting along the empirical pelite/mafic field boundary (N 27 and N 28), and three other plotting in the pelitic region (N 38, N 40 and N 55); b. Nb vs. Cr for metamorphic, metasomatic and detrital rutiles (detrital data was used from Morton and Chenery, 2009) – this diagram shows a good overlap of the three groups of rutile with only sample 4-1A and N 38 plotting outside the detrital area. FIGURE 4: Multi-element diagram for metamorphic, metasomatic and detrital rutiles. The two vertical segments represent element concentration for detrital grains. This chart shows a good overlap of the detrital with the other two groups of rutiles. It also emphasises the difference in trace element composition between metamorphic (higher Ta, Nb, W, Sn, V, Cr, U, Hf and Zr) and metasomatic (higher Sb and Mo) grains. xvi FIGURE 5: Trace element profiles in five investigated samples: a. N 19 (Nausdal) – Cr, W and U are relatively variable; b. N 29 (Vetrhuset) – here, Zr, Hf, Sb and U are quite heterogeneous; c. N 36 (Flatraket) – most trace elements have a flat profile, with a few exceptions: Sb, Mo, W and U; d. N 40 (Gusdal Quarry) – Ta and Nb exhibit strong variabilities, with higher compositions in the core of the grain; e. N 55 (Arsheimneset) – Zr, Hf and U have irregular abundances. FIGURE 6: Zr concentration histograms for samples: a. N 38; B. N 31; c. N 35; d. N 28; e. 4-1A; f. N 27 FIGURE 7: Trace element compositions for different groups of rutiles: a. rutile formed by the breakdown of ilmenite vs. rutile formed by the breakdown of titanomagnetite – the first class exhibits the extreme range of concentrations for Ta, Nb (at the high end) and U (at the low end); b. rutile from an omphacite vein (N 19) vs. rutile from a kyanite-quartz vein (N 36) – both groups show quite different composition ranges. FIGURE 8: Nb vs. Cr diagram for the Ti-rich Gusdal eclogites compared to zircon- and diamond-bearing eclogites xenoliths from Jericho (data from Heaman et al., 2006): both types of eclogites have Ti-rich rutiles; however, the Gusdal samples have much higher concentrations in Cr than the other sample. FIGURE 9: Temperature vs. pressure diagram for all investigated samples (with error bars). The minimum and maximum pressure values have been used for Zr-in-rutile thermometry calculations. Chapter 6 FIGURE 1: Niobium vs. Cr diagram compiling data for rutiles from various facies/tectonic settings; rutiles from the metasomatised mantle peridotites xvii form a separate cluster from the rest of the groups; granulite- and eclogitefacies rutiles partially overlap the upper part of the blueschist-facies rutiles. FIGURE 2: a. Zr vs. Al2O3 diagram showing a minor positive correlation; b. Zr vs. SiO2 diagram with no obvious correlation. FIGURE 3: a. Mo vs. Zr diagram for all WGC samples, showing a strong positive correlation; b. Zr vs. Mo diagram for samples from all locations indicating different groups based on P/T conditions. FIGURE 4: Sn vs. W diagram for samples from Syros, Sesia Lanzo and Dora Maira forming two distinct groups based on the lithology of the source rock (metamafic vs. metapelitic). xviii List of Abbreviations 1. ACCC Attic-Cycladic Crystalline Complex 2. a (SiO2) silica activity 3. DMM Dora Maira Massif 4. EPMA Electron-probe Microanalysis 5. LA-ICP-MS Laser-Ablation Inductively-Coupled Plasma Mass Spectrometry 6. HFSE high field strength elements 7. HP high pressure 8. HT high temperature 9. IVZ Ivrea Verbano Zone 10. NIST SRM National Institute of Standards and Technology Standard Reference 11. UHP ultrahigh pressure 12. UHT ultrahigh temperature 13. SIMS Secondary Ion Mass Spectrometry 14. SLZ Sesia Lanzo Zone 15. VSMOW Vienna Standard Mean Ocean Water 16. WGR Western Gneiss Region xix Acknowledgements I’d like to start my acknowledgements by mentioning the technical staff I have worked very closely with. They played a major role in the acquisition of my data and always ensured smooth, uneventful sessions. These are John Craven and Richard Hinton from the Grant Institute, University of Edinburgh, where I have done my oxygen isotopes and U/Pb analysis. They were very dedicated and interested in my project and have been an inspiration for me. Next in line is Stuart Kearns from the University of Bristol who’s been very patient with me when I seemed (and probably was) a bit confused about the whole data acquisition process. I’d also like to mention Simon Cragg and Christine Hughes from the Biology Department, University of Portsmouth whom so kindly helped me with my SEM imaging. But the sample preparation step is fundamental for good quality data, and I give my special thanks to Geoff Long from our department. I won’t even know what things to mention first, as he’s been absolutely brilliant with everything I’ve asked him to do, including impossible samples to get thick-sectioned, re-adjusting their size, helping me with the epoxy mounts, last minute, “the laser is on and I need the standards to be polished!!!”. In a nutshell, he’s done the unbelievable and done it the best way possible. Emilie Bruand, a wonderful scientist and friend who’s always had the patience to listen to my project dilemmas and provided excellent advice. We had very fruitful conversations over lots of coffees or French, amazing tea! Not to mention the afterhours amazing cheese and wine sessions! I’d also like to thank Hans –Peter Schertl from the University of Ruhr, Germany, who’s provided the Dora Maira samples and discussed them with me. Another “sample-provider “ I’d like to give my thanks to is Matthias-Konrad Schmolke from the University of Potsdam, who’s also been my field guide for the Western Alps trip. Next, I thank my office colleagues, who had to put up with “cranky and unsociable” me at times. They’ve been a good companion and had many good laughs with them! My wonderful supervisors! Horst Marschall has always been so prompt and critical, full of fresh ideas, new perspectives and lots and lots of corrections!! With Simon Cuthbert I’ve had long and detailed discussions on the metamorphic history of the Western Gneiss Complex that I’m sure many, many more Ph.D projects could arise from them. Of course, this whole project would not have been possible without my main supervisor, Craig Storey! I have many things to thank him for, amongst whom readproofing my drafts overnight when he was impossible busy with other things, xx helping me with pretty much every step of the project and more importantly for being open to my ideas and suggestions, I really appreciated that! In the end of my acknowledgments goes my family. My biggest thank you to my parents and sister for carefully and patiently listening me babbling about rutile’s geochemical properties and plate tectonics without understanding much about. They’ve been a great support and always been there for me. Oh yes, and there is my partner, what on Earth would I have done without him?! I cannot express in words how much he means to me and will never, never understand how he’s been capable of putting up with my moodswings and terrorised mind after long nights and days of staying in the lab. He’s always been capable of calming me down when panic emerged and say just the right thing I needed to hear. And even more importantly, for believing in me! Lots of love! xxi Dissemination 1. Oral Presentation at the Metamorphic Studies Group Annual Research in Progress Meeting 2011, 23rd March, Department of Earth Sciences, Cambridge, UK: Testing the use of Detrital Rutile to Detect Eroded HP Rocks. 2. Poster Presentation at the European Geosciences Union General Assembly 2011, Vienna, Austria, 03 – 08 April 2011: Rutile Geochemistry and its Potential Use as a Petrogenetic Tool. 3. Poster Presentation at the 9th International Eclogite Conference 2011, Mariánské Lázně, Czech Republic: Testing the use of detrital rutile to investigate HP/UHP rocks. 4. Poster Presentation at Goldschmidt2011, August 14-19, 2011 in Prague, Czech Republic: Testing the use of detrital rutile to investigate HP/UHP rocks. xxii Chapter 1 Introduction 1.1. HISTORY OF RESEARCH For a better understanding of our planet we must elucidate the controversy about when modern-style plate tectonics began. Earth’s tectonic regime requires very special conditions for this mode of planetary heat loss, being the only known planet with subduction zones (Stevenson, 2003). Plate tectonics is most likely to be the result of convective cooling of the mantle, although other explanations such as the gravitational pull of subducted slabs driving plate motions have been suggested (Conrad and Lithgrow-Bertelloni, 2002). Due to the fact that the early thermal history of the mantle is not fully understood, exactly when plates became negatively buoyant is not yet clear. The aim of this study is to investigate a new method with which to address this major geologic question by the novel use of rutile. Here, grains from rocks that could provide direct evidence of modern-style plate tectonics (i.e. blueschists and ultrahigh-pressure rocks), and detrital grains in sediments eroded from orogenic belts, are investigated for trace elements and oxygen isotopes and correlations between them and their source rocks have been made. The distinctive petrotectonic association of low temperature-high pressure (LT–HP) and ultrahigh pressure metamorphism (UHP) necessitates cold, deep and steep subduction, a geodynamic fingerprint of Earth’s modern tectonic style, also known as “subduction tectonics” (Stern, 2004). Blueschists are metamorphosed mafic rocks or metasediments containing sodic amphibole, which is stable under high-pressure and low-temperature conditions (Maruyama et al., 1996; Ernst, 2003). The conclusion that blueschists form only in subduction zones is based on their association with ancient mélanges and is confirmed by studies of active subduction zones (Abers et al., 2006; Maekawa et al., 1995; Zhang et al., 2004). Ultrahigh pressure metamorphic terrains are another important indicator of cold and ultra deep subduction. They form when continental crust is subducted to depths > 100 km and then returns to the surface. 1 Chapter 1 The onset of subduction-driven plate tectonics is very controversial among earth scientists: some argue that it began early, around 3 Ga (Parman et al., 2001; Smithies et al., 2003; Condie and Kröner, 2008; Shirey, 2008, Foley, 2008; Polat et al., 2008; Wyman et al., 2008) and others argue that subduction began in the second half of Earth history during the Neoproterozoic to Phanerozoic (Davies, 1992; Hamilton, 2003; Stern, 2005; Brown, 2008). Condie and Kröner (2008) consider that investigating separate pieces of evidence for early modern-style plate tectonics is not the best approach, as this could allow explanations by alternative tectonic mechanisms. A combination of all these factors sustains, in fact, the existence of modern-style plate tectonic processes since the late Archean. On the other hand, Stern (2005) argues for a non-uniformitarian approach to the question, “When did plate tectonics begin on planet Earth?” He advocates a preNeoproterozoic “proto-plate tectonic” mechanism that lacks plate subduction. He concludes that this period in Earth’s history is followed by the development of modern-style plate tectonics in the Neoproterozoic. The temporal distribution of blueschists and UHP terranes is consistent with the hypothesis that the modern episode of subduction tectonics began in the Neoproterozoic. Moreover, there are other types of evidence listed in Tables 1 and 2. It is important to point out at the beginning that “single lines of evidence” (including single petrotectonic assemblages) may not be definitive of modern-style plate tectonics, but it is the convergence of evidence at any period of time that is most useful in tracking plate tectonics into the past. Most plate-tectonic indicators given in Tables 1 and 2 suggest that modern plate tectonics was operational, at least in some places on the planet, from around 3 Ga and that it became widespread by 2.7 Ga. However, we are faced with some indicators (ophiolites, UHP metamorphism and blueschists) that suggest a much later starting date of <1.0 Ga. 2 Chapter 1 Assemblage Widespread Distribution First Appearance (Ga) (Ga) Ophiolites ≤ 1.0 3.8 Arc-Back arc 2.7 3.1 Accretionary prisms and ≤ 1.0 2.7 (3.8?) Forearc basins ≤ 2.0 2.7 (3.25?) Blueschists and UHP rocks ≤ 0.1 0.85 (1.0?) Passive margins ≤ 2.0 2.7 (2.9?) Continental rift ≤ 2.0 3.0 Metallic mineral deposits ≤ 2.7 3.5-3.4 OPS* *OPS, ocean plate stratigraphy TABLE 1: Petrotectonic assemblages’ characteristic of plate tectonics (after Condie and Kröner, 2008) Indicator Widespread Distribution First Appearance (Ga) (Ga) UHP metamorphism ≤ 0.1 0.6 Paired metamorphic belts ≤ 2.7 3.3 Transcurrent faults & sutures ≤ 2.7 3.6 (?) Collisional orogens ≤ 2.0 2.2 Accretionary orogens ≤ 2.7 3.8-3.7 (?) Paleomagnetism ≤ 2.7 ≥ 3.2 (?) Geochemistry ≤ 2.7 3.1 Isotopes ≤ 3.0 ≥ 4.0 Continents ≤ 2.7 ≥ 3.0 (?) TABLE 2. Other indicators of plate tectonics (after Condie and Kröner, 2008) However, the lack of blueschists and UHP metamorphic rocks older than Neoproterozoic could be related to preservation potential. Blueschists and ultrahighpressure rocks are notoriously difficult to preserve. They are highly metastable both 3 Chapter 1 mineralogically, and in terms of their exhumation setting in orogenic belts where they are prone to rapid erosion. Robust minerals, particularly rutile, tourmaline and zircon from within these rocks, however have a much larger preservation potential where they are eroded and deposited as detritus in later sediments. Accessory minerals are of great importance for the understanding of trace elements in the lithosphere, as they dominate the rocks’ budgets of important trace elements, such as HFSE and REE, in many cases and are invaluable archives of the geochemical history of a rock. The goal of this research is to interpret the chemical and isotopic composition of rutile in the context of their host metamorphic rocks, and employ them as accurate monitors of the P-T-X histories of the systems. Once this connection is established, heavy minerals in sediments can be employed to reconstruct geodynamic processes for episodes where the crystalline rock record is sparse. The mineral rutile (tetragonal TiO2) has gained increasing attention recently, due to the establishment of the new Zr-in-rutile thermometer (Zack et al., 2004a; Watson et al., 2006; Tomkins et al., 2007; Ferry and Watson, 2007) and in-situ U-Pb dating by LA-ICPMS (e.g. Mezger et al., 1989, 1991; Möller et al., 2000; Vry and Baker, 2006; Luvizotto et al., 2009b). Progress has also been made in linking certain trace and minor element signatures in rutile to its host rock composition. High Cr and low Nb abundances are found in rutile from mafic rocks, while low Cr/Nb ratios are characteristic of metapelitic rutile (Zack et al., 2004b, Triebold et al., 2007, Meinhold et al., 2008). Rutile is robust during diagenesis and low-grade metamorphism. Lead closure is considered to be around 650 °C (Cherniak, 2000; Vry & Baker, 2006) and Zr similar (Cherniak et al., 2007). It implies that any low temperature, high-pressure metamorphism (< 600 °C) would not suffer from diffusional resetting and the signatures would remain robust, unless they have subsequently suffered high temperature metamorphism. Rutile generally appears during prograde metamorphism in both metasedimentary and metabasic rocks, where it forms from Fe-Ti oxides (usually ilmenite) or from titanite, typically at pressures between 1.2 and 1.5 GPa (Liou et al., 1998; John et al., 2011). Hence, in common crustal rock parageneses, rutile is only 4 Chapter 1 stable at depths >35 km, and the maximum pressure conditions in stable continental crust are too low to produce rutile. Therefore, the occurrence of rutile is concentrated to rocks involved in major plate-tectonic processes, such as subduction of oceanic and continental crust or crustal thickening in the course of continental collision. The intimate link between rutile formation and plate tectonics calls for a closer investigation of rutile geochemistry, including minor and trace-element compositions and isotopic signatures. Research now focuses on relating geochemical signatures of rutile to the P-T-X conditions of its host rock and, hence, to the plate tectonic setting of its formation. Guided by the improved geochronologic constraints (e.g. Mezger et al., 1989, 1991; Möller et al., 2000; Vry and Baker, 2006; Luvizotto et al., 2009b), rutile can then be used to recognise tectonic processes through time from the Archaean and perhaps earlier and to investigate secular changes in these processes. One category of typical protolith that produce rutile is oceanic crust (i.e. basalts and gabbros, where rutile is formed during subduction. In modern subduction zones along a very low P/T gradient, rutile forms at ~1.3 GPa and 400–500 ºC in the blueschist facies. Modern continental subduction will produce medium to high-T eclogite with rutile equilibrated at 600–800 ºC, while the collision of large continental blocks generates medium to high-P granulites formed at 800–1000 ºC. The Zr-in-rutile thermometer (Zack et al., 2002, 2004a; Watson et al., 2006; Tomkins et al., 2007; Ferry and Watson, 2007) has already been used to distinguish between these regimes, and provenance studies on detrital rutile have demonstrated the applicability of the thermometer to detrital rutile (e.g., Triebold et al., 2007). Further distinctions can be made between metasedimentary and metabasic rutile using Cr/Nb ratios (Zack et al., 2004b, Triebold et al., 2007, Meinhold et al., 2008), so that subducted igneous crust can be distinguished from subducted terrestrial sediments. Some models conclude that early Archean tectonic and crustal differentiation processes were dominated by the collision of oceanic plateaux, i.e., blocks of 5 Chapter 1 thickened basaltic crust colliding with each other, leading to high-P metamorphism and rutile eclogite formation in these collision zones (Clemens et al., 2006). Distinction between (1) eclogites formed in subducted mafic crust and (2) eclogite formed at the base of thickened basaltic plateaux would help to distinguish between these processes. The modern oceanic crust is characterised by significant hydrothermal alteration produced by interaction with seawater. Oxygen isotope ratios are strongly altered with heavy O being enriched in low-T altered basalts and depleted in the high-T altered gabbros (Alt, 2003; Gao et al., 2006). In contrast, lower-crustal granulites and eclogites, having had no contact to the hydrosphere, will have mantle-like O isotope ratios and produce rutile in equilibrium with those values. Hence, detrital rutile has the potential to unravel the secular record of various plate tectonic processes, such as cold and warm oceanic subduction, continental collision and Archean-style collision of oceanic plateaux. 1.2 OBJECTIVES OF CURRENT STUDY The use of trace-element chemistry in detrital rutile to distinguish between eroded blueschist and low-T eclogite in the Precambrian requires further investigation and ground truthing before using it on very old rocks. This project focuses on the trace-element composition of rutile in blueschist-facies rocks, and comparison with rutile from eclogites and granulites and from hydrothermal veins. These different lithologies and settings are the major provider of crustal rutile and hence detritus in sediments. Trace element characterisation has been used to fingerprint the specific geochemical signature of rutile grains in various rocks from a wide range of P-T-X conditions. The Nb vs. Cr diagram has been used on blueschist- to eclogite- and granulite-facies metamorphic rocks. This allowed for observations on its reliability at higher metamorphic conditions to be made. Outcrops with well-characterised protoliths, composition and P-T history have been sampled from subducted and exhumed continental and oceanic crust. 6 Chapter 1 Moreover, sand samples from corresponding sedimentary basins that contain detrital rutile grains, have been investigated and compared with metamorphic grains from the potential source rocks. The Zr-in-rutile thermometer is examined to check how well it records the known temperature regimes and what is the possible influence of silica undersaturation. This has been applied on low- to high-temperatures rocks, in order to verify if the thermometer is still reliable at eclogite- to granulite-facies conditions. Moreover, rutile in different vein-fills has been investigated and trace element compositions have been used to describe it (HP mafic and pelitic veins, lowto high-T veins). A distinction between metamorphic and metasomatic grains has been attempted, that could further help recognising each group in the sedimentary basin. Oxygen isotopes on rutiles from a number of locations have been analysed for the first time. This method has been used in order to assess rutile’s potential of providing information on the type of protolith: crustal origin versus mantle material. This research will set the base for future research to tackle the main debates and controversies surrounding the timing of modern-style plate tectonic onset. The overarching aim is to use detrital rutile as a tool for investigating long-eroded orogenic belts to reconstruct their tectonic evolution. 1.3 IMPORTANCE OF RUTILE 1.3.1 General Description Titanium is the ninth most abundant element of the Earth's continental crust (Rudnick and Fountain, 1995), with mafic to intermediate igneous rocks being the most important source of Ti (Force, 1991). Ilmenite (FeTiO3) is generally the stable Ti-oxide, with rutile being a less common mineral. The name rutile was first coined by Werner (Ludwig, 1803), who called it “red schorl”. Description of this mineral was made, however, a few decades before 7 Chapter 1 by von Born (1772) and Romé l’Isle (1783). “Red schorl” was also used to describe the element titanium (Klaproth, 1795), which was named after the Titans of the Greek mythology. Papp (2007) showed that the typical locality of rutile is Revúca, in Slovakia. Until recently, it was believed that the type locality was Horcajuelo, in Spain. The name “rutile” comes from rutilus in Latin, which makes references to its specific dark red colour. Other colours, which often mirror variations in its chemical compositions, are yellowish and brownish, less frequent even blue (Meinhold, 2010). As rutile’s density ranges between 4.23 and 5.50 g cm – 3 (Deer et al., 1992), it is part of the heavy mineral group that includes minerals with densities higher than 2.8 g cm – 3. Rutile does not have magnetic properties (diamagnetic), being easily separated from paramagnetic and ferromagnetic (weakly magnetic and strongly magnetic, respectively), by using the Franz isodynamic separator (Buist, 1963a, Meinhold, 2010). Nevertheless, studies (Buist, 1963a; Hassan, 1994) have shown that rutile can actually retain a small fraction of iron in its structure, therefore becoming diamagnetic. 1.3.2 Crystallography The three main TiO2 polymorphs found in nature are rutile, anatase and brookite. Rutile is the most common phase, crystallising in the tetragonal space group P42/mnm (Baur, 1956). As natural occurring rutile can contain numerous trace elements in its structure, its unit parameters will differ considerably from the normal size characteristic to pure rutile – a = 4.594 Å and c = 2.959 Å (Baur, 1956). Rutile’s original structure (Fig. 1) contains, in each unit cell, one Ti4+ ion that is surrounded by six oxygens at the corners of a moderately distorted, regular octahedron, with every oxygen surrounded by three Ti4+ ions (Deer et al., 1992; Baur, 2007). 8 Chapter 1 FIGURE 1: Rutile’s crystallographic structure with one Ti4+ ion being surrounded by 6 oxygens (after Baur, 2007; Meinhold, 2010). In metamorphic rocks, rutile is the high-pressure and high-temperature polymorph. Anatase (tetragonal) and brookite (orthorhombic) are the lowtemperature polymorphs of TiO2 (Fig. 2). Analytical methods that determine geochemical compositions will not be enough to distinguish between these polymorphs, as they have similar compositions. Their identification is made based on their crystalline structure, using methods such as X-ray diffraction (Spurr and Myers, 1957; Raman and Jackson, 1965) and reflected microscopy (Mader, 1980). However, the best method, used widely nowadays, is micro-Raman spectroscopy, as each polymorph produces different Raman bands. FIGURE 2: Experimentally determined formation of rutile, titanite and ilmenite for a midocean ridge basalt–H2O system (after Liu et al., 1998; Meinhold, 2010). 9 Chapter 1 1.3.3. Chemical composition Titanium occurring in rutile’s composition is Ti4+. This element appears in three more oxidation states: Ti3+, Ti2+ and Ti0 (MacChesney and Muan, 1959). The elements that represent possible substitutions for Ti4+ appear in several oxidation states, such as: • Hexavalent: W6+ and U6+; • Pentavalent: Nb5+, Sb5+ and Ta5+; • Tetravalent: Zr4+, Mo4+, Sn4+, Hf4+and U4+; • Trivalent: Al3+, Sc3+, V3+, Cr3+, Fe3+and Y3+; • Divalent: Fe2+, Mg2+, Mn2+and Zn2+ (Graham and Morris, 1973; Brenan et al., 1994; Hassan, 1994; Fett, 1995; Murad et al., 1995; Smith and Perseil, 1997; Rice et al., 1998; Zack et al., 2002; Bromiley and Hilairet, 2005; Scott, 2005; Carruzzo et al., 2006; Meinhold, 2010). Element substitution in rutile’s structure is based on ionic radius and ionic charge (Fig. 3). Rutile is an important carrier of HFSE (e.g. Foley et al., 2000; Kalfoun et al., 2002; Zack et al., 2002). In eclogites, one modal percentage of rutile can carry more than 90% of the whole-rock content for Ti, Nb, Sb, Ta and W and substantial amounts (5–45% of the whole-rock content) of V, Cr, Mo and Sn (Rudnick et al., 2000; Zack et al., 2002). FIGURE 3: Diagram showing which elements could substitute Ti4+, based on charge versus ionic radius (Shannon, 1976) 10 Chapter 1 Another reason why rutile has received so much attention is because it is a major host mineral for Nb and Ta, which are broadly used as geochemical fingerprints of geological processes such as magma evolution and subduction zone metamorphism (e.g. Foley et al., 2000; Rudnick et al., 2000). The Nb and Ta concentrations and Nb/Ta values of crustal and mantle rocks have been used to investigate Earth’s hidden suprachondritic Nb/Ta reservoir (e.g. Green, 1995; Foley et al., 2000; Rudnick et al., 2000; Kalfoun et al., 2002; Zack et al., 2002; Xiao et al., 2006; Miller et al., 2007; Aulbach et al., 2008; Baier et al., 2008; Bromiley and Redfern, 2008; Schmidt et al., 2009). Some analytical techniques used to determine rutile’s chemical composition are: electron microprobe (EPMA), proton microprobe (PIXE), laser-ablation inductively coupled mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS). The LA-ICPMS is a moderately destructive method, as it generally leaves a crater of several tens of micrometers in diameter. However, it has a much better detection limit, compared to the EPMA, which is very useful for rare and trace elements. SIMS is widely used for isotope geochemistry and U/Pb dating. 1.3.4. Rutile in metamorphic rocks Rutile forms under various conditions, being an important accessory mineral in metamorphic rocks ranging from greenschist to eclogite and granulite facies but is also present in igneous rocks, mantle xenoliths, lunar rocks and meteorites, and importantly as a detrital mineral in clastic sediments. In metasomatic or highpressure metamorphic processes, ilmenite is broken down and iron is transported away by hydrothermal fluids, or enters other minerals (e.g. garnet – Korneliussen et al., 2000b). In low- to medium-grade metamorphic rocks (Fig. 4a and b), rutile normally appears as small grains or in polycrystalline aggregates (Meinhold, 2010). The grains are generally needle-like, which has been explained by Banfield and Veblen (1991) as an indicator of their metamorphic origin, rather than a detrital origin. 11 Chapter 1 a b FIGURE 4: Small, scattered rutile grains in blueschist-facies from Syros (Greece); they appear as inclusions in garnet and also in the matrix (scale bar of 1 mm in both pictures). Luvizotto et al. (2009a) has studied prograde rutile in low- to medium grade metasedimentary rocks from Erzgebirge (Germany). The authors concluded that the rutile polycrystalline aggregates found in association with chlorite formed by the breakdown of Ilmenite during prograde metamorphism: Ilmenite + Silicates + H2O → Rutile + Chlorite In high-grade metamorphic rocks, such as eclogites and granulites, rutile can occur as inclusions in different mineral phases (e.g., garnet, omphacite, amphibole, etc), in the matrix (Fig. 5a), but also as polycrystalline aggregates (Fig. 5b). The grains vary considerably in size – from a few microns to a few millimetres, and also in shape – from idioblastic to xenoblastic, and from oval to irregular (Hills and Haggerty, 1989; Brenan et al., 1994; Zack et al., 2002; Huang et al., 2006; Xiao et al., 2006; Janousek et al., 2007; Chen and Li, 2008; Meinhold, 2010). 12 Chapter 1 a b FIGURE 5: Rutile in various textural relationships in high-grade eclogites from the Western Gneiss Region (the visible yellow scale bar is 1 mm): a. as inclusions in garnet and in the matrix; b. as polycrystalline aggregates in association with amphibole. The stability of any TiO2 polymorph depends on a sum of factors, such as whole-rock composition, pressure and temperature (e.g. Zhang et al., 2003; Klemme et al., 2005; Bromiley and Redfern, 2008 – Fig. 2). 1.3.5. Provenance indicator The ability of rutile to encompass a range of trace elements into its structure presents an opportunity to determine the lithology of a source rock of a detrital rutile (Zack et al., 2004b). Banfield and Veblen (1991) was probably the first to suggest that rutile’s geochemistry might be used for provenance purposes. However, ten years later, only a few studies were conducted to determine rutile’s application in determining the provenance of its source (Götze, 1996; Preston et al., 1998, 2002). Zack et al. (Fig. 6a – 2002b, 2004b) established the Nb vs. Cr discrimination diagram for rutile as an indicator to whether the source rock was a metapelite (e.g. mica-schists, paragneisses and felsic granulites) or metabasite (e.g. eclogites and mafic granulites). The log (Cr/Nb) was introduced by Triebold et al. (2007) for simplification, a method that can be applied to distinguish between metamafic and metapelitic source rocks, but not for low concentrations of these two elements (Fig. 6b). Zack et al. (Fig. 6a – 2002b, 2004b) established the lower limit of Nb for 13 Chapter 1 metapelites at 900 µg/g and the upper limit at 2700 µg/g, using literature data available on specific Nb/TiO2 ratios of whole rock for metapelites. Meinhold et al. (2008) used reference data in addition and lowered the minimum concentration limit of Nb in metapelites at 800 µg/g. c FIGURE 6: Nb versus Cr discrimination diagrams for rutile from different metamorphic lithologies: a. according to Zack et al., 2004b; b. according to Triebold et al., 2007; c. according to Meinhold et al., 2008 (after Meinhold, 2010). Provenance characterisation is the next step in using the Nb vs. Cr diagram (Fig. 6a, b and c). Combining geochemical studies of whole rock and specific detrital minerals, the obtained results are important for exploration of mineral resources, basin analysis and palaeotectonic reconstructions. Other heavy minerals, such as zircon, tourmaline, garnet and chrome spinel have long been used as provenance indicators by merit of their geochemical and isotope signatures (e.g. Morton, 1991; von Eynatten and Gaupp, 1999; Morton et al., 2004, 2005; Mange and Morton, 2007). The exception is rutile, which received little attention until recently (Götze, 1996; Preston et al., 1998, 2002). Since the pioneering work of Zack et al. (2002b, 2004b), several studies have been conducted on rutile’s potential to be a provenance indicator. One study was focused on alluvial and fluvial sediments from the Yaoundé region in Cameroon 14 Chapter 1 (Stendal et al., 2006). The authors concluded that the detrital rutile originated from Neoproterozoic micaschists of the Yaoundé Group. In the following year, two more studies analysed detrital rutile from river sediments in Erzgebirge, Germany (Triebold et al., 2007) and from alluvial deposits in SW Slovakia (Uher et al., 2007). The first paper deduced that the detrital rutile grains were sourced from the surrounding country rocks, whereas the second paper concluded the grains were mirroring the chemical composition of granitic pegmatites from the Bratislava Granitic Massif. Meinhold et al. (2008) and Morton and Chenery (2009) have also investigated detrital rutile from sandstones of Chios Island (Greece) and hydrocarbon wells in the Norwegian Sea, respectively. The first publication observed a change in the lithology of the source rocks from the Carboniferous with a preponderant mafic origin for detrital rutile to the Early Triassic with a more pelitic origin. In the second study, based on the detrital rutile data, the authors demonstrated that there are five distinct sand types sourced from distinct parts of the Western Gneiss Complex. Meinhold et al. (2011) also studied detrital rutile from the Norwegian Sea and concluded that 85 % is of pelitic origin. All the above publications have demonstrated the applicability of the Nb vs. Cr discrimination diagram for provenance signature. This is possible because of rutile’s robust nature in both diagenetic and surficial weathering conditions (Pettijohn, 1941; Hubert, 1962; Morton and Hallsworth, 1999, 2007; Meinhold, 2010). However, there are a few papers on granulite-facies rocks that show caution is needed when using the discrimination diagram on rutiles formed at hightemperature conditions (Baldwin and Brown, 2008; Harley, 2008; Luvizotto and Zack, 2009; Meyer et al., 2011; Kooijman et al., 2012). Meyer et al. (2011) presents a study that focuses on UHT metapelitic and metamafic rocks from the Epupa Complex in NW Namibia. The authors note that the protolith signature of metamorphic rutile could get disturbed during prograde metamomorphic evolution. Kooijman et al. (2012) also analysed granulite-facies rocks, from the Archaean Pikwitonei Granulite Domain (Manitoba, Canada). They observed that the Nb vs. Cr signature of rutile overlaps with ranges of both metamafic and metapelitic 15 Chapter 1 provenance. Considering the fact that the investigated rocks are only metapelitic, they show the diagram must be used with care in areas having undergone similar metamorphic conditions. Earlier studies (Bakun-Czubarow et al., 2005; Massone and Czambor, 2007) also underlined the volatility of this provenance tool for the Sudetes Fe-Ti-rich eclogites and for the Saidenbach eclogites that have high Nb/Ti ratios, respectively. In both cases rutile plots in the metapelitic field. 1.3.6. The Zr-in-rutile thermometer The application of a Zr-in-rutile thermometer was initially undertaken by Zack et al., (2004a). It was recognised that the temperature of peak metamorphism can be recorded using the Zr concentration, as rutile grows or equilibrates in the presence of zircon and quartz (Zack et al., 2004a). The temperature equation is: T (°C) = 127.8 * ln (Zrµg/g) – 10. This mathematical expression has been calculated using a sample set of 31 metamorphic rocks, all containing rutile, quartz and zircon, formed in a wide range of temperature conditions: from 430 to 1100 °C. Watson et al. (2006) presented a modified version of the Zr-in-rutile thermometer, by adding experimental data to the available data on natural rocks. Experiments were conducted at a pressure of 1 GPa. The equation is: T (°C) = [4470/(7.36 – log10 (Zrµg/g)] – 273.15. A diagram showing a comparison of the available calibrations for the Zr-inrutile thermometer (Fig. 7), indicates that the Zack et al. (2004a) and Watson et al. (2006) calibrations intersect at a temperature of 540 °C, but behave differently at lower and higher temperatures. This was interpreted by Watson et al. (2006) as a possible pressure effect and underlined the need for further research. 16 Chapter 1 FIGURE 7: Comparison of Zr-inrutile thermometers of Zack et al., 2004a, Watson et al., 2006, and Tomkins et al., 2007 (after Meinhold, 2010). Ferry and Watson (2007) introduced a silica activity factor in the formula, as they noted, from their experimental work, the Zr concentration in rutile is not only temperature-dependant, but also sensitive to the activity of SiO2. This was the first study to consider this factor, therefore, both undersaturated and saturated rocks could be analysed using the Zr-in-rutile thermometer. Theoretically, the first two calibrations (Zack et al., 2004a and Watson et al., 2006) could not be applied on quartz-free rocks. The new equation is: T (°C) = [4530/(7.42 – logaSiO2)] – log (Zrµg/g)] – 273.15. The authors concluded that the maximum uncertainty for unconstrained rocks would be around 60 – 70 °C at 750 °C. Another attempt for a more accurate thermometer was made by Tomkins et al. (2007) who studied the pressure effect using experimental investigations. They introduced a new calibration for the Zr-in-rutile thermometer, which includes a pressure factor, as they observed that high-pressure, and more importantly ultrahighpressure, does have an important consequence on the thermometer. The new equations are for the α-quartz field: T (°C) = [(83.9 + 0.41 ∗ P)/(0.1428 – R ∗ ln (Zrµg/g)] – 273.15, for the β-quartz field: T (°C) = [(85.7 + 0.473 ∗ P)/(0.1453 – R ∗ ln (Zrµg/g)] – 273.15, and in the coesite field: 17 Chapter 1 T (°C) = [(88.1 + 0.206 ∗ P)/(0.1412 – R ∗ ln (Zrµg/g)] – 273.15, with P in kbar, and R being the gas constant (R = 0.0083144 kJ/K). Initially, it has been suggested by Zack et al. (2004a) that the thermometer is only applicable to rutile originating from metapelitic rocks, but further studies showed it can be used for rutile from metamafic rocks too (e.g. Zack and Luvizotto, 2006; Triebold et al., 2007) and also for detrital metamafic rutile (e.g. Meinhold et al., 2008; Morton and Chenery, 2009). Spear et al. (2006) used the Watson et al. (2006) calibration on blueschistfacies rocks from Sifnos (Greece) and suggested that the obtained temperatures reflect the temperature of rutile crystallisation. Also, Miller et al. (2007) applied the Zack et al. (2004a) and Watson et al. (2006) calibration on the Koralpe, Saualpe and Pohorje eclogites from the Eastern Alps and noted that the Zr-in-rutile thermometer gives the peak metamorphic conditions. A recent study by Chen and Li (2008) on eclogites from the Dabie UHP metamorphic zone has shown that the calibration introduced by Watson et al. (2006) gives lower temperatures by approximately 70 °C compared to the calibration of Tomkins et al. (2007). They suggested that this is a clear indication of the pressure effect on the Zr-in-rutile thermometer. Moreover, Zhang et al. (2010) applied all four calibrations (Zack et al., 2004a; Watson et al., 2006; Tomkins et al., 2007; Ferry and Watson, 2007) to HP-UHP eclogites from western China. They concluded that for HP-UHP conditions, Tomkins et al. (2007) gives the most consistent results. Luvizotto et al. (2009) used the Tomkins et al. (2007) calibration on medium-grade metasedimentary rocks from Erzgebrige (Germany) and noted that some low-T obtained for some grains may reflect crystallisation during the prograde path, before the rocks reached peak metamorphic conditions. A few publications that applied the Zr-in-rutile thermometer on granulitefacies rocks have suggested that diffusion of Zr in rutile can take place during retrograde re-equilibration (Baldwin and Brown, 2008; Harley, 2008; Luvizotto and Zack, 2009; Meyer et al., 2011). This will provide an underestimation of the peak temperature, a situation that can also be determined by the absence of zircon. Overestimation of temperature with the Zr-in-rutile thermometer can only happen 18 Chapter 1 where the rock is quartz-free (Zack et al., 2004a; Baldwin and Brown, 2008; Harley, 2008; Luvizotto and Zack, 2009). Several studies have already shown that Zr-in-rutile thermometry is a reliable method to calculate temperatures of high-grade and ultrahigh-grade metamorphic rocks (e.g. Spear et al., 2006; Zack and Luvizotto, 2006; Miller et al., 2007; Baldwin and Brown, 2008; Luvizotto and Zack, 2009; Zhang et al., 2010). 1.3.7. Oxygen Isotopes Studies have shown that oxygen isotopes can provide information regarding the degree and type of fluid-mineral interactions and also the temperature of crystallisation or alteration (e.g. Matthews et al., 1979; Agrinier, 1991; Zheng, 1991; Chacko et al., 1996; Moore et al., 1998; Zheng et al., 1999, 2003). Oxygen isotopes studies have shown that rutile can significantly contribute to unravelling the source of its host lithologies, such as a crustal origin or mantle material (e.g. Mojzsis et al., 2001; Wilde et al., 2001; Valley, 2003; Valley et al., 2005). Data acquisition is generally made by SIMS techniques (e.g., Valley, 2003) or by other types of laser methods (e.g., Li et al., 2003; Valley, 2003; Zhang et al., 2006). The two isotopes measured, 18O and 16O, are ratioed and reported in delta notation (δ18O) relative to VSMOW (Vienna Standard Mean Ocean Water), which has an 18O/16O value of (2005.2±0.45)×10−6 (Gononfiantini, 1978). The analogous equation is as follows: δ18O = [(18O/16O) sample/(18O/16O) VSMOW – 1] ∗ 103 with δ18O values in per mil (‰). Variation in typical δ18O values (lower for oceanic crust and mantle material and elevated for the continental crust) has been explained by various processes: -High-pressure fractional crystallisation (Garlick et al., 1971); -Isotopic exchange with (meta)sedimentary rocks (Vogel and Garlick, 1970; Desmons and O’Neil, 1978); -Interaction with meteoric waters (Vogel and Garlick, 1970). 19 Chapter 1 However, isotope studies of oceanic lithosphere and ophiolites (e.g., Muehlenbachs and Clayton, 1972a, b; Spooner et al., 1974; Gregory and Taylor, 1981), allowed for a better interpretation of some anomalities, concluding that they generally result from metamorphism of hydrothermally altered oceanic crust (Gregory and Taylor, 1986; MacGregor and Manton, 1986; Ongley et al., 1987). Moore et al. (1998) have shown that the closure temperature for oxygen diffusion in rutile is high, around 650 °C for a crystal with a 100 µm radius and a cooling rate of 10 °C Ma-1. Lead closure is considered to be around the same closure temperature (Cherniak, 2000; Vry & Baker, 2006) and Zr similar (Cherniak et al., 2007). It holds that any low temperature, high-pressure metamorphism (< 600 oC) would not suffer from diffusional resetting and the signatures would remain robust, unless they have subsequently suffered high temperature metamorphism. It has been shown that several minerals fractionate the oxygen isotopes. Quartz, calcite and albite fractionate 18O more strongly, whereas zircon, diopside, hornblende, almandine and rutile fractionate 16O preferentially (Matthews et al., 1979; Chacko et al., 1996; Moore et al., 1998; Meinhold, 2010). Studies where oxygen isotopes on rutile have been determined, indicate that they range from – 8.9 to + 7.1 ‰, with values from 3.6 to 8.0 ‰ for oxygen isotope fractionation between rutile and quartz Vogel and Garlick (1970), Desmons and O'Neil (1978), Matthews et al. (1979), Agrinier et al. (1985), Zheng et al. (1999), Li et al. (2003) and Gao et al. (2006). 1.4 INVESTIGATED LOCATIONS 1.4.1 Syros (Greece) The Island of Syros is famous for its blueschist- and eclogite-facies rocks and it is one of the best-preserved areas in Europe to study subduction zone processes (Keiter et al., 2003), making it the ideal locality to study detrital rutile. The blueschist- to-eclogite facies rocks on Syros, due to its exposures and well-preserved geological history, have therefore been the focus of many studies. 20 Chapter 1 Blueschist- to eclogite-facies peak metamorphic conditions have been estimated at ~ 470 – 520 oC and 1.5 – 2.0 GPa (e.g. Okrush and Brocker, 1990; Trotet et al., 2001; Bröcker and Keasling, 2006). This provides a framework for a comparison to be made with the results of Zr-in-rutile thermometry. Furthermore, Syros is an area where detrital rutile exists in beach sands, alongside their source rocks, all of which are blueschist- to eclogite-facies and formed during subduction zone processes with no previous metamorphism recorded. Hence, there is no possibility of contamination of these detrital rutiles by rutiles formed in other tectonic settings. The sample-set from Syros (Chapter 2, Table 1) contains metasomatic rutile in addition to high-P metamorphic grains and trace element studies on these two types of rutiles are discussed with the purpose of identifying geochemical tracers that could distinguish between them. Eroded detrital rutile grains found within beach sands on Syros, (Chapter 2, Figure 1), were studied along with metamorphic and metasomatic rutiles from equilibrated high-pressure rocks. Outcrops with well-known protoliths, composition and P-T history have been sampled. 1.4.2 Western Alps (Italy) The second case-study is focused only on metapelitic source rocks, therefore, in contrast to the Syros study, which discusses only metamafic source rocks. The Western Alps (Chapter 3, Fig. 1) formed by the continent-continent collision of Europe and Adria-Africa plates that started in the Cretaceous (Dewey et al., 1989; Rosenbaum et al., 2002). The Sesia Lanzo Zone (SLZ – Chapter 3, Fig. 1b), part of the Austroalpine units, is the first place where eclogites-facies metamorphism of granitic rocks was identified (e.g., Bearth, 1959; Compagnoni and Maffeo, 1974) and interpreted as subducted continental lithosphere (Ernst, 1971). The SLZ HP event reached its peak around 65 Ma ago (Rubatto et al., 1999). The Mombarone unit has undergone eclogite-facies metamorphic conditions that reached 500 – 600 °C and 1.5 – 2.0 GPa (Pognante, 1989; Tropper et al., 1999; Zucali et al., 2002). Rutile has been found in 21 Chapter 1 both HP felsic and basic rocks from the Mombarone Unit (Konrad-Schmolke et al., 2011; Venturini, 1995). The Dora Maira Massif (DMM - Chapter 3, Fig. 1c), part of the Penninic units, was the first direct evidence that continental crust can be subducted to depths of at least 100 km (Chopin, 1984. Based on different geothermobarometers and water activity, the P-T estimates for DM are various (Schertl et al., 1991; Compagnoni et al., 1995; Chopin and Schertl, 2000; Rubatto and Hermann, 2001; Hermann, 2003; Groppo et al., 2006). This study will use for thermometry calculations the peak metamorphic conditions of Schertl et al. (1991) which are 3.7 GPa at about 800 °C. Rutile has been reported in all investigated samples (pyrope megablasts and jadeite quartzite from Parigi/Case Ramello and pyrope megablasts from Tapina) by Schertl et al. (2008) both as inclusions in garnet and in the matrix. The Western Alps offer an opportunity to investigate rutile geochemistry in more detail by studying grains from high-pressure (Sesia Lanzo) and ultra highpressure (Dora Maira) metapelites and other metasediments. Moreover, sand samples from the Po River and its tributaries that contain detrital rutile grains have been investigated and compared with metamorphic grains from the potential source rocks (Sesia Lanzo and Dora Maira). Trace element signatures in rutile from blueschist- to HP and UHP eclogitefacies subducted continental crust are characterised and used to fingerprint particular geochemical signatures for metamorphic rutile. The Zr-in-rutile thermometer is examined to check how well it fits with other published geothermometry data, with the aim of assessing how reliable this thermometer is in subduction systems. The key aspect of this study is to investigate the probability of finding detrital rutile eroded from blueschists and eclogites that formed in collisional orogens, and ultimately end up in large sedimentary basins. The Po basin is a Pliocene marine gulf between the Alps and the Apennines that has been filled gradually from west to east during the Pliocene (Garzanti et al., 2011). The fluvial sediments are largely derived from the Alps that underwent 22 Chapter 1 accelerated sedimentation with the onset of the major glaciations (Muttoni et al., 2003). Torrente Chiusella (Chapter 3, Fig. 1a) drains mostly HP metapelites and metabasic rocks from the Sesia Lanzo Zone. It then joins Dora Baltea which is the catchment area for the Ivrea Verbano Zone as well. Varaita and Maira are the two rivers situated in the vicinity of the Dora Maira Massif and Monviso. All these rivers drain into the Po River, which therefore contains detritus from the current erosion of the Western Alps. Samples from these rivers have been collected and used for provenance studies and thermometry calculations. 1.4.3 Western Gneiss Region (Norway) The Western Gneiss Region (the outcrop area – Chapter 4, Fig. 1) is often described as a large basement window that was overlain by a series of Caledonian nappe units (i.e. the lower, middle, upper and uppermost allochthons) by 435 – 400 Ma. The predominant lithology of the Western Gneiss Complex (WGC - the lithotectonic assemblage) is Proterozoic granodiorite-tonalitic gneisses (Bt ± Hbl ± Grt) with granitic leucosomes. Other lithologies are anorthosites, ultramafic rocks, metasediments and mafic rocks (Bryhni, 1966). The Scandian Phase of the Caledonian Orogeny and the associated ultrahighpressure metamorphic event took place 420-400 Ma ago (Griffin and Brueckner, 1980, 1985; Gebauer et al., 1985; Mørk and Mearns, 1986). It reached 3.6 GPa and 800°C (Lappin and Smith, 1978; Cuthbert et al, 2000; Terry et al., 2000b; summary in Hacker, 2006) and possibly as high as 4.5 GPa (Vrijmoed et al., 2006; Carswell et al., 2006). The famous UHP metamorphic rocks (Coleman and Wang, 1995) described in the WGC include, in addition to coesite eclogites (Smith, 1984, 1988; Wain, 1997), opx eclogites (Lapin and Smith, 1978, 1981; Carswell et al., 1985; Carswell et al., 2006), garnet peridotites (O’Hara and Mercy, 1963; Bryni, 1966; Carswell, 1968, 1973, 1986; Lapin, 1973, 1974; Brueckner, 1977; Medaris, 1980, 1984; Jamtveit, 1984; Brueckner et al., 2010; Beyer et al., 2004, 2012), coesite gneiss (Smith, 1984; Wain, 1997; Cuthbert et al., 2000; Terry et al., 2000b) and diamond- 23 Chapter 1 bearing gneiss (Dobrzhinetskaya et al., 1995; and diamond-bearing ultramafites: Van Roermund et al., 2002; Vrijmoed et al., 2008). They are divided in two groups, based on the association with the surrounding rock: as boudins within gneisses – “country rock eclogites” or “external eclogites” and within orogenic peridotites – “internal eclogites” (Brueckner et al., 2010). The external eclogites have reached HP-UHP and HT conditions, as indicated by coesite (Smith, 1984; Wain, 1997; Cuthbert et al., 2000; Terry et al., 2000b). Estimations regarding P-T conditions are 2.4-6.0 GPa and 650-900 °C (Cuthbert et al., 2000; Carswell et al., 2006; Van Roermund 2009a). The internal eclogites have a less understood evolution, see, for example, Griffin & Qvale, 1985 and Medaris et al., 2005. The largest of the orogenic peridotites is the Almklovdalen Ultramafic body, located in the southern WGR (Chapter 4 – Fig. 1), part of the UHP metamorphic zone (see review by Carswell et al., 1999). It is made of several ultramafic bodies located around a central gneiss area (Grønlie and Rost, 1974). Chlorite-poor dunite or harzburgite is the main rock type with chlorite-rich peridotites, garnet lherzolites, wehrlites and eclogites less present (Beyer et al., 2006). At Raudkleivane, Fe-rich eclogite pods can be found, that consist of Na-rich omphacite + almandine-grossularpyrope garnet + rutile + apatite (Griffin and Qvale, 1985). They have been described as “layers in garnet peridotites” (Lapin, 1974). The Gusdal Quarry is another important ultramafic body found at Almklovdalen, consisting mainly of fresh, anhydrous dunite, which is relatively free of chlorite and serpentine. Internal Ti-rich eclogite boudins can be found, as well as pyroxenites and garnet peridotites (Medaris and Brueckner, 2003). In this study, trace element patterns of rutile in low- and medium-T eclogites (after the definitions of Carswell, 1990) and eclogites derived from granulites are characterised and used to fingerprint different geochemical compositions for metasomatic and metamorphic rutile. The Zr-in-rutile thermometer (Zack et al., 2004a; Watson et al., 2006; Tomkins et al., 2007; Ferry and Watson, 2007) is evaluated to check how well it correlates with the known temperature regimes. 24 Chapter 1 This terrain was chosen for the overall study as it extends the range of P and T that previously covered the work on Syros and Western Alps rocks, and focuses more on UHP rocks. Also, the WGC is a continental subduction zone that could potentially have its own characteristic rutile signature; evidence for UHP and deep continental subduction did not happen before the Neoproterozoic (e.g. Brown, 2006), but detrital rutiles could be a way of testing this. 1.5. SUMMARY OF THESIS The first part of Chapter 1 is a short introduction to modern-style plate tectonics and specifically to its main indicators: blueschists and UHP metamorphic rocks. Ultimately, rutile is investigated in these types of rocks in order to assess whether it is a good marker for subduction-related tectonics. The chapter continues with the physical and chemical description of rutile. Its occurrence in metamorphic rocks and sediments is also discussed. Finally, the main tools that make rutile an important determinant of metamorphic facies and lithology of the source rock are presented (Nb vs. Cr discrimination diagram and the Zr-inrutile thermometer), with a short literature review on the studies that have been published so far. Oxygen isotopes on rutile are also discussed. Chapter 2 presents a study of the HP metamafic rocks from Syros, Greece and their corresponding sediments from adjacent sediments. A number of metamorphic samples representing the main rock types from Syros (blueschist, eclogite and metagabbro) have been investigated for their trace elements. The Nb vs. Cr diagram indicates all rutiles have a metamafic origin, as expected. Moreover, the Zr-in-rutile thermometer has been applied using two calibrations: Tomkins et al. (2007) and Ferry and Watson (2007). The second calibration gives more consistent results. Moreover, qtz-bearing vs. qtz-free rocks have been compared and results indicate that silica activity has little if no effect on the thermometer. This is also obvious from the Ferry and Watson (2007) calibration which has more satisfying results for a (SiO2) = 1. Temperatures vary by 60 – 70 °C for undersatured rocks 25 Chapter 1 using the same thermometer. Considering the fact that the study just demonstrated that the presence or absence of quartz cannot influence the final temperature results too much, these high variabilities can only be explained by an overestimation of the silica activity parameter in the Ferry and Watson (2007) calibration. Metasomatic rutiles have also been analysed and an attempt to distinguish them from the metamorphic rutiles based on trace element contents has been made. Lastly, correlations between metamorphic and metasomatic rutiles with detrital rutiles have been made, primarily using the Nb vs. Cr diagram. The main conclusion of this study is that rutile is a useful tool to investigate metamafic rocks from HP-LT tectonic environments, such as subduction zones. Chapter 3 presents a case study on the Western Alps, Italy, with metamorphic rocks from the Sesia Lanzo Zone and the Dora Maira Massif. This study complements the previous one, with rocks from similar P-T conditions (Sesia Lanzo and Syros – 500 – 600 °C, 1.5 – 2.0 GPa) but from the second major lithology type – metapelitic and metasedimentary (compared to the metamafic rocks from Syros). Moreover, sediment specimens have been sampled close to the source of the metamorphic samples in addition to one sample from Po River, where the sampled rivers drain. Provenance and thermometry studies on the Sesia Lanzo Zone samples proved that the Nb vs. Cr diagram and Zr-in-rutile thermometer are reliable tools for metapelitic rocks in HP-LT environments. Moreover, metamorphic rutiles overlap with detrital rutiles from Torrente Chiusella and Dora Baltea, further sustaining rutile’s applicability in similar tectonic conditions. The Dora Maira Massif UHP rutiles plot on the metapelitic region of the Nb vs. Cr diagram, as expected, but do not correlate at all with detrital rutiles from the closest catchment area (Varaita and Maira Rivers). The Zr-in-rutile thermometer indicates a high-T peak of 694 °C for the metamorphic grains, which could be correlated with a group of detrital rutile that has a similar T value. However, these results are considerably lower compared with previous temperature estimations for 26 Chapter 1 the Dora Maira Massif (800 °C), and would suggest that the UHP rocks are not draining into these rivers. These results indicate special care is needed in using the Nb vs. Cr diagram and the Zr-in-rutile thermometer on UHP/HT rocks, as the pristine trace element signal could have been affected. Furthermore, discussions on the possibility of sampling the granulite-facies rutile from the Ivrea Verbano Zone are included. Also, trace element budget plots for the Sesia Lanzo and Dora Maira are investigated. Finally, the Po River sediment load seems to include more HP rutiles compared to UHP grains and mostly from a metapelitic source. In Chapter 4 the Western Gneiss Region, Norway, is discussed. This study increases the P-T condition range, which, so far in the present thesis has been mainly focused on HP-LT rocks (with the exception of the UHP rocks from the Dora Maira). Rocks in this region are HP to UHP and LT to HT, both mafic and pelitic. Metamorphic rutile from these rocks has been analysed and the trace element signature has been used to fingerprint specific concentrations in high-grade rocks. Moreover, comparisons between different groups of rutiles have been made: metamorphic vs. metasomatic; rutile formed by the breakdown of ilmenite vs. rutile formed by the breakdown of titanomagnetite; rutile in an omphacite vein vs. rutile in a Qtz-Ky vein. The Nb vs. Cr diagram shows that at up to 650 °C, this discrimination is reliable to be used for provenance studies. Rutile that formed at higher temperatures, however, could have had its original composition altered and thus have a biased composition. This is indicated by rutile from metamafic rocks that plot on the metapelitic region or along the mafic – pelitic boundary. The Zr-in-rutile thermometer generally gives higher values (by 80 – 100 °C) compared to previous calculations. These results are, nonetheless, more reliable that any exchange thermometers that are more sensitive to temperature variations than the Zr-in-rutile thermometer. 27 Chapter 1 Using detrital rutile data from other research studies (Morton and Chenery, 2009), this study shows that the metamorphic/metasomatic rutiles overlap with them, indicating a good correlation between source rocks and sediments. Chapter 5 summarises all findings and discusses them in a larger perspective. It has been demonstrated that the Nb vs. Cr diagram can be successfully applied on HP/LT rocks, both mafic and pelitic. Also, at higher grade conditions, UHP/HT, trace element mixing is possible, therefore affecting the pristine composition of rutile. The applicability limit of the discrimination diagram seems to be at temperatures lower than 650 °C, the temperature at which phengite breaks down and affects the chemical composition of the surrounding eclogites. Also, it has been shown the applicability of the Zr-in-rutile thermometer in a high range of metamorphic facies conditions, ranging from blueschist- to granulite – facies. The Ferry and Watson (2007) calibration with a (SiO2) = 1 is the preferred equation for HP/LT rocks, as it gives most consistent results. For higher grade conditions, the Tomkins et al. (2007) calibration is a trustworthy tool even at granulite-facies conditions, giving more reliable temperatures than any exchange geothermometers. Finally, the possibility of developing a rutile geobarometer is discussed and also an apparent new discrimination diagram. 28 Chapter 2 Methodology 2.1. SAMPLE PREPARATION Two types of sample preparations have been used for quantitative analysis: polished thick sections and epoxy resin mounts. The thick sections were made from hand specimens, with a thickness of approximately 100 µm. Thick sections for samples from Syros, Sesia Lanzo, Dora Maira and the Western Gneiss Region have been prepared. These were used for trace element analysis using LA–ICPMS (Laser Ablation – Inductively Coupled Mass Spectrometry). Epoxy resin mounts were mainly prepared for sand specimens. Prior to this, samples have been through several stages of separation (gold pans, Wilfley Table, Franz Magnetic Separator, heavy liquids and hand – picking under a microscope). Epoxy resin mounts were also prepared for hand specimens, after crushing them. These samples were prepared mainly for oxygen isotopes analysis that were made using SIMS (Secondary Ion Mass Spectrometry). For a more detailed description of sample preparation, please see Appendix A2. 2.2. ELECTRON MICROPROBE (EMP) Electron microprobe studies on all samples from Syros, Sesia Lanzo, Dora Maira and the Western Gneiss Region were carried out at the Earth Sciences Department, University of Bristol using a CAMECA SX100. Prior to analysis, samples were cleaned with alcohol and carbon – coated for 60 – 90 min. The analysis of rutiles was carried out with a 20 kV acceleration 29 Chapter 2 voltage, 100 nA beam current and a 1µm beam diameter. The following elements were analysed: Si, Al, Mg, P, Cr, Ca, Fe, Zr, Nb, Sn, Ta and W. Titanium was not analysed, as the concentration was assumed by difference. 2.3. LASER ABLATION – INDUCTIVELY COUPLED MASS SPECTROMETER (LA – ICPMS) Thick sections (~100 µm) were analysed at the School of Earth and Environmental Sciences, University of Portsmouth, using a New Wave UP-213 laser ablation system (solid state Nd:YAG laser operating at 213 nm, aperture imaged and with a pulse width of 2–3 ns), combined with an Agilent 7500cs ICP mass spectrometer. Prior to analysis, samples were first put in a sonic bath for 10 minutes with 5 % HCl. Afterwards, the samples were washed carefully with purified H2O and alcohol and prepared for analysis. High-resolution photo scans were made for each section and used as maps for LA-ICPMS analysis. The majority of the grains were ablated using spot sizes of 30–55 µm in diameter at a laser fluence of ~4–5 Jcm-2 and at a repetition rate of 10 Hz. Samples were ablated for 60 s per spot after measuring the gas blank for 30 s prior to the ablation. A He–Ar mixture was used as carrier gas, at levels of 0.65 Lmin-1 and 1.3 Lmin-1 respectively. Plasma torch conditions were tuned for sensitivity across the mass range and low oxides by monitoring Th/ThO+ (masses 232 and 248 (Th + O), which were kept below 0.5%. Analyses were calibrated against the NIST SRM 610 glass (GeoReM preferred values: http://georem.mpch-mainz.gwdg.de/), in addition to rutile standard R10 (Luvizotto et al., 2009b). Element spectra were reduced using the software ‘LAMTRACE’ (Simon Jackson, Geological Survey of Canada). Data were collected online at 1 point per peak in time resolved mode and processed offline by LAMTRACE. The measurements included the following isotopes: 26Mg, 27Al, 29Si, 31 P, 43Ca, 45Sc, 49Ti, 51V, 52Cr, 55Mn, 59Co, 66Zn, 69Ga, 72Ge, 85Rb, 88Sr, 89Y, 90Zr, 30 Chapter 2 93 Nb, 95Mo, 118Sn, 121Sb, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb, 163 Dy, 165Ho, 167Er, 169Tm, 173Yb, 175Lu, 177Hf, 181Ta, 182W, 208Pb, 232Th, 238U. It should be mentioned that, unless necessary, the REEs should not be analysed, as they have low detection limits caused by a small number of counts. The large number of analysed elements restricted the size of the used spot size (minimum 30 µm). This affected the investigations by not being able to analyse smaller grains due to the large diameter of the spot size. It is recommended that, in order to optimise future analytical protocols, a smaller number of elements to be measured, where possible. This would permit a smaller spot size for the laser that would allow smaller rutile grains to be analysed. During LA-ICP-MS analysis, reference material R10 (Luvizotto et al., 2009b) was used to check the accuracy of the calibration between the NIST SRM 610 glass standard and the element concentrations being obtained for the rutile grains studied. Throughout the duration of the project, a number of 624 analyses were made for SRM610 and 282 analyses for R10. Results for relevant trace elements were compared to published concentrations and their associated uncertainties (Pearce et a., 1996 for NIST 610 and Luvizotto et al., 2009 for R10) as shown in Table 1 (for a complete set of analyses, please refer to Appendices A3 and 4). For R10, V and Nb are within ± 5 %. Zirconium, Mo, Hf and Ta variations are within ±10 %. The good agreement between the Zr data is relevant, as the Zr incorporation in rutile is used as a thermometer (Zack et al., 2004a; Watson et al., 2006; Tomkins et al., 2007). Antimony shows a slightly higher variation (overall variation within ± 20 %). Overall, the data indicate a good correlation between analysed standards and published values, with slightly higher standard deviations for low-concentration elements. Figure 1 shows time-resolved data for standards (a and b) and unknowns (c, d, e and f). It can be noticed that most unknowns are relatively free of inclusions, which allowed for a complete signal to be selected during the data reduction step. 31 Chapter 2 However, in some cases (as seen in Fig. 1d), the laser would hit a mineral inclusion causing spikes in various investigated elements. In such situations, the signal would be selected so it would not include the inclusion. Standard No of Analyses NIST 610 624 R10 282 Known concentration(Pearce et al., 1996) STDEV Long term Average Long term STDEV Long term RSD Known concentration (Luvizotto et al., 2009) STDEV Long term Average Long term STDEV Long term RSD V Zr Nb Mo Sb Hf Ta W Pb Th U 442 42.7 441 7.4 1.7 1279 53 1234 60 4.9 440 7.8 440 8.0 1.8 759 8.0 784 45.5 5.8 419 58 419 7.5 1.8 2845 38.0 2803 118 4.2 377 45.0 377 7.4 2.0 11.2 0.09 11.1 0.8 7.6 369 27.5 368 7.7 2.1 2.1 0.1 1.9 0.3 16.3 418 28.2 417 8.1 1.9 37.2 0.2 37.6 2.6 6.9 377 78 376 7.0 1.9 384 19.0 432 39.0 9.0 445 25 445 8.7 2.0 61 3.6 74 15.7 21.3 413 15.4 413 8.3 2.0 0.1 0.0 0.3 0.5 175 451 27.8 450 8.5 1.9 <0.0035 0.1 0.5 501 457 13.6 457 8.2 1.8 44.1 1.2 45.8 3.2 6.9 Table 1: Standard analyses for NIST 610 and R10 (made by LA – ICPMS): known concentrations and long term average concentrations together with their respective standard deviations. 2.4. SECONDARY ION MASS SPECTROMETRY (SIMS) The Oxygen isotope data were acquired at the University of Edinburgh with a Cameca ims 1270, using a ~5 nA primary 133Cs+ beam. Samples were coated with a thin layer of Au (10-30nm). Secondary ions were extracted at 10 kV, and 16O(~2.0 x109cps) and 18O- (~3.0 x106 cps) were monitored simultaneously on dual Faraday cups (L’2 and H’2). Each analysis involved a pre-sputtering time of 30 seconds, followed by automatic secondary beam and entrance slit centering and finally data collection in two blocks of ten cycles, amounting to a total count time of 100 seconds. The internal precision of each analysis is < 0.2 per mil. To correct for instrumental mass fractionation (IMF), all data were normalised to an internal standard, rutile standard (KAG), which was assumed to be homogeneous and was measured throughout the analytical sessions. The internal precision of each analysis is +/- 0.2 per mil. For a more detailed method description, please see Appendix A5. 32 Chapter 2 A. B. ap12b01 ap12b02 seq # 01 seq # 02 10,000,000 10, 000,000 100 100,000 100,000 10,000 10 Signal Background S IGNAL (CPS ) 1, 000,000 S IGNAL (CPS ) 1, 000,000 10,000 1,000 1,000 100 100 10 10 20 30 40 50 60 70 80 90 10 Signal Background 10 1 0 100 1 0 100 10 20 30 40 S ECONDS T i 49 S r 88 W 18 2 S EL ECT ED T i 49 S r 88 W 182 V 51 Y 89 U 2 38 S i 29 V 51 Y 89 U 2 38 Ca 43 Cr 52 Zr 90 Cr 52 Zr 90 ap12b05 10,000,000 100 10 Signal Background S IGNAL (CPS ) 100,000 S IGNAL (CPS ) 100,000 10,000 1,000 1,000 100 100 10 1 40 50 60 70 80 90 100 10 Signal Background 10 100 1 0 10 20 30 40 SECONDS S EL ECT ED T i 49 S r 88 W 18 2 S i 29 V 51 Y 89 U 2 38 S i 29 V 51 Y 89 U 2 38 Ca 43 Cr 52 Zr 90 Ca 43 Cr 52 Zr 90 F. 100, 000 100, 000 10 Signal Background S IGNAL (CPS ) S IGNAL (CPS ) 10,000,000 1,000,000 10,000 1,000 1,000 100 100 10 1 40 50 100 ap13e10 1,000,000 30 90 seq # 10 100 20 80 S ECONDS W 18 2 10,000,000 10 70 S r 88 seq # 09 0 60 T i 49 ap13e09 10,000 50 S EL ECT ED E. 100 se q # 09 1,000,000 30 90 10,000,000 1,000,000 20 80 ap12b09 D. se q # 05 10 70 S i 29 C. 0 60 S ELECT ED Ca 43 10,000 50 S ECONDS 60 70 80 90 100 100 10 Signal Background 10 1 0 10 20 30 40 S ECONDS 50 60 70 80 90 100 SECONDS S ELECT ED T i 49 Sr 88 W 182 S ELECT ED T i 49 Sr 88 W 182 S i 29 V 51 Y 89 U 238 S i 29 V 51 Y 89 U 238 Ca 43 Cr 52 Zr 90 Ca 43 Cr 52 Zr 90 FIGURE 1: Time-resolved analysis spectra for LA ICPMS: a and b are NIST 610 grains, whereas c, d, e and f represent analysed unknowns. 33 Chapter 3 Trace-element characteristics of rutile in blueschist- to low-T eclogite facies mafic-ultramafic high-P mélange zones (Syros, Greece) 3.1. ABSTRACT Rutile is a robust accessory mineral that has been shown to yield valuable information on the source rock lithologies when studied as detrital grains in sedimentary basins and also peak metamorphic temperatures using the Zr-in-rutile thermometer. The Island of Syros, Greece, offers a great case study to test the veracity of these observations in a HP/LT environment and further characterise the relevant trace element characteristics of rutile (V, Cr, Zr, Nb, Ta, Sb, Sn, W, Hf and Mo) in metasomatic settings. Moreover, an empirical discrimination between metasomatic and metamorphic rutiles has been attempted and results indicate they have quite similar geochemical signatures in this setting. No intra-grain variations or textural dependence was observed for Zr concentration in the investigated rutiles, which is used for thermometry calculations. Calculated temperatures, using the pressure – dependant calibration, are generally higher compared with previous studies using other geothermometers, by 48 °C. The silica activity – dependant calibration gives better results, concordant with previous estimations, at a (SiO2) =1. Niobium-Cr provenance classification indicates a good geochemical correlation between source rocks and sediments (detrital grains) with most of the analysed samples suggesting a metamafic source, consistent with the rock outcrop in the catchment area on Syros. This study also characterises trace element compositions for metamorphic and metasomatic rutiles. The V vs. Mo diagram is used to distinguish different types of source rocks (metagabbros and metabasalts), with useful results. 34 Chapter 3 3.2. INTRODUCTION Blueschists and ultrahigh-pressure rocks are notoriously difficult to preserve, as they are highly metastable. Robust minerals such as rutile from within these rocks, however, have a much higher preservation potential where they are eroded and deposited as detritus in sediments. This situation can be exploited by the use of detrital rutile, which shows great potential as a provenance indicator for high-pressure metamorphism and its associated tectonic settings. Rutile can be linked back to potential high/ultrahighpressure parental rocks through mineral chemistry (including trace element geochemistry and geothermobarometry - Zack et al., 2004a and b, Watson et al., 2006, Tomkins et al., 2007 and Ferry and Watson, 2007, Triebold et al., 2007, Meinhold et al., 2008). The Zr-in-rutile thermometer (Zack et al., 2004b, Watson et al., 2006, Tomkins et al., 2007 and Ferry and Watson, 2007) has already been used to distinguish between different temperature regimes, and provenance studies have demonstrated that the grade of metamorphism in the catchment area can be estimated by applying the thermometer to detrital grains in rivers (Zack et al., 2004a). Further distinctions can be made between metasedimentary and metabasic rutile using Cr and Nb concentrations (Zack et al., 2004a, Triebold et al., 2007, Meinhold et al., 2008). Rutile generally appears during prograde metamorphism in both metasedimentary and metabasic rocks, where it forms from Fe-Ti oxides (usually ilmenite) or from titanite, typically at pressures between 1.2 and 1.5 GPa (Liou et al., 1998; John et al., 2011). Hence, in common crustal rock parageneses, rutile is only stable at depth >35 km. Stable continental crust will, consequently, not produce rutile. Therefore, the occurrence of rutile is concentrated in rocks involved in major plate-tectonic processes, such as subduction of oceanic and continental crust or crustal thickening in the course of continental collision. 35 Chapter 3 The intimate link between rutile formation and tectonic processes calls for a closer investigation of rutile geochemistry, including minor and trace element compositions. In situ analysis by laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) is ideal due to the spatial control of analysis (laser spot typically 40-50µm), low detection limits, analytical precision (typically 5-10%), speed of analysis and the avoidance of mineral inclusions, zones of alteration and overgrowths compared with single grain dissolution techniques. One of the other major causes of rutile growth in the crust, besides metamorphism, is metasomatism and, therefore, a method to distinguish metasomatic rutile from metamorphic rutile is required. Our sample-set from Syros (Greek Cyclades, Fig. 1) contains metasomatic rutile in addition to high-P metamorphic grains and here we present trace element studies on this type of rutiles to identify geochemical tracer proxies that could potentially distinguish between them. We aim to investigate rutile geochemistry in more detail by studying grains within equilibrated high-pressure rocks from Syros. Outcrops with wellcharacterised protoliths, bulk rock geochemistry and P-T history have been sampled from a section of subducted and exhumed oceanic crust exposed on Syros. In this study, trace element characteristics of rutile in blueschist-facies subducted oceanic crust are used to fingerprint different geochemical compositions for metasomatic and metamorphic rutile. The Zr-in-rutile thermometer is examined to assess how well it agrees with the known temperature regime and what the possible influence of silica undersaturation is. As different tectonic settings will produce different types of metamorphism, this will help assess how reliable this thermometer is in subduction and collision systems. High P-low T regimes (where blueschists and low T eclogites form) are exclusively produced during modern, steep, deep and cold subduction. 36 Chapter 3 This study seeks to further aid the identification of the tectonic setting of high-pressure metamorphism. The overarching aim is to use detrital rutile as a tool for investigating long-eroded orogenic belts to reconstruct their tectonic evolution. FIGURE 1: Geological map of the Greek Island of Syros, with a small insert illustrating the island’s location within the Aegean Sea. The white rectangles represent beach sediments and the gray rectangles represent the source rocks that were collected for this study (map modified after Marschall et al., 2006). 37 Chapter 3 3.3. GEOLOGICAL SETTING The Island of Syros is part of the “Attic-Cycladic Crystalline Complex” or ACCC (Fig. 1), preserving high-pressure metamorphic assemblages. Many studies on the petrology, geochronology, and the structural and tectono-metamorphic evolution of Syros have been completed (e.g. Dixon, 1968; Ridley, 1984; Rosenbaum et al., 2002; Brady et al., 2004; Keiter et al., 2004; Foster and Lister, 2005; Bröcker and Keasling, 2006; Lagos et al., 2007; Marschall et al., 2008; Miller et al., 2009). Syros consists of alternating marbles and schists that, together with a high-P mélange, underwent an Eocene (and possibly an additional Cretaceous) HP event, resulting in blueschist- to eclogite-facies metamorphism. The peak pressure and temperature conditions have been estimated (using garnet, pyroxene, paragonite and/or epidote, phengite, glaucophane, titanite and rutile) to be ~470-520 °C and 1520 kbar (Dixon, 1968; Ridley, 1984; Maluski et al., 1987; Okrusch and Bröcker, 1990; Trotet et al., 2001; Rosenbaum et al., 2002; Tomaschek et al., 2003; Keiter et al., 2004; Bröcker and Keasling, 2006). Mélange formations exposed in various part of the island (Fig.1) are composed of eclogites, metagabbros, serpentinites, metaplagiogranites, metasediments and glaucophane-rich schists, which preserve the blueschist- to eclogite-facies mineralogy with only partial retrogression in restricted domains (Hecht, 1984; Seck et al., 1996, Keiter et al., 2004). A variable fluid flow incursion around peak metamorphic conditions (Bröcker and Enders, 2001; Breeding et al., 2004; Ague, 2007) and during exhumation (Trotet et al., 2001; Marschall et al., 2006a) has been documented. The contact between different metamorphosed rocks within this mélange (metasedimentary and meta-igneous rocks with serpentinite matrix) is characterised by reaction zones (blackwalls) rich in chlorite, sodic and/or calcic amphibole, clinozoizite and/or phengite in parageneses with omphacite, albite and/or tourmaline. The P-T conditions for these hybrid rocks have been reported to be 6-12 kbar and 400-550 °C (Breeding et al., 2004; Marschall et al., 2006a, Miller et al., 2009). In some parts of the island, a greenschist-facies overprint has been recorded that is attributed to near-isothermal decompression at 400 °C, with a preservation of the HP assemblages in many parts of the island, but variable rehydration during exhumation (Trotet et al., 2001; Putlitz et al., 2005; Marschall et al., 2006a). Rutile 38 Chapter 3 occurs in three different types of source rocks: group 1 comprised of near isochemically metamorphosed rocks dominantly found in the cores of blocks; group 2 representing cryptically metasomatised rocks, which have been slightly metasomatised, but are still more or less preserving the initial major element composition and metamorphically formed mineralogy, and for which a likely protolith can be identified; and group 3 which are the blackwall rocks: hybrid, metasomatised rocks having formed through mechanical mixing and diffusional exchange in addition to metasomatism. 3.4. SAMPLE DESCRIPTION A total of 19 samples (Fig. 1) have been investigated, as follows: 5 for metamorphic rutile grains, 9 for metasomatic grains and 5 for detrital grains. The samples containing metamorphic rutiles (Table 1, sample number 1-5) cover most of the block rocks found on the island: glaucophane schists (SY545), eclogites (SY500 and SY522-175) and metagabbros (SY504, SY425G). SY545 (Fig 2b) is a metaigneous glaucophane schist where rutile occurs as small (50-150µm in diameter) inclusions in garnet and in the matrix (2-3 % modal abundance). The eclogites consist of garnet, omphacite, glaucophane ± epidote ± quartz and are probably metamorphosed basalts. A variable degree of fluid-rock interaction and alteration is manifested by the presence of amphibole, chlorite and epidote. The abundance of rutile (1–5 mm in diameter) is modally between 3 % and 8 % and it also occurs within both garnets and matrix. 39 Chapter 3 TABLE 1: Mineralogical description of the investigated source rocks: samples 1-5 were analysed for metamorphic rutiles, samples 6-14 for metasomatic rutiles. 40 Chapter 3 The coarse-grained epidote-omphacite-garnet-glaucophane felses (an isotropic metamorphic rock – SY504, SY425G) with relic igneous texture have generally been interpreted to represent HP metamorphosed gabbros based on texture and geochemistry (Marschall, 2005). Rutile grains (50-80 µm in diameter) are mainly found in the rocks’ matrices, but also as small inclusions in garnets, and are less abundant (1–2 modal %) compared to the other rock types. Sample series SY522 was taken from an eclogite block enclosed by serpentinite. The block is almost entirely exposed on the surface and accessible in three dimensions with a diameter of ~5 m. It represents the transition from metamorphic to metasomatic rutile. The core of the block comprises an eclogitic assemblage of garnet, omphacite, quartz, phengite, glaucophane and rutile, while the contact with the surrounding serpentinite is composed of chlorite, talc and Caamphibole. In the transitional zone between the eclogite and talc-chlorite assemblages, the block is dominated by glaucophane and garnet. Samples were taken at various distances from the chlorite-talc schist at the block’s edge, i.e., at 10 cm, 100 cm and 175 cm, respectively. The profile sample sequence SY522 has metamorphic rutile close to the block’s core (e.g. SY522-175 - eclogite) and rutile that replaced titanite at the other end (e.g. SY522-10 - very close to the contact with serpentinite). The intermediate zone (SY522-100) represents an eclogite slightly overprinted by a blueschist-facies assemblage, which was likely influenced by fluids that fluxed through the surrounding serpentinite. Sample SY522-175 is composed of idioblastic, poikiloblastic garnet, large omphacite and glaucophane grains (3-4 mm in length), white mica, quartz, chlorite (in small quantities), epidote and rutile. SY522-100 (Fig. 2e) is more fine-grained than the previous sample, has less glaucophane and relatively more omphacite and garnet. The strongly metasomatised eclogite (SY522-10 – Fig 2f) is coarse-grained with slightly more glaucophane and less omphacite than SY522-100. Sample SY412 has a more complex mineralogy, being a metagabbro that mostly retains the eclogite-facies assemblage (Grt and Omp), but has local signs of the exhumation-related fluid-influx (Gln+Ab+Phe+Tur). Rutile (0.1-0.2 cm in diameter) occurs in the matrix and has an average abundance of 3-4 modal% (Fig. 2a). 41 Chapter 3 The large grains, interpreted to be metasomatic, are part of HP metasomatic zones (as suggested by the mineralogical assemblage seen in Table 1, numbers 6-14) and are probably related to metasomatism during exhumation of the rocks (Marschall et al., 2006a). A B C D E F FIGURE 2: Microphotographs of thick (~ 100 µm) sections for significant samples (a scale bar of 1 mm is visible in all images): a. Sample SY412 showing metasomatic rutile in a chlorite-omphacite matrix; b. SY425G is a metagabbro with metamorphic rutile in a glaucophane matrix; c. SY521 shows a cm-size metasomatic rutile in an actinolite-chlorite matrix; d. SY545 is a garnet-glaucophane schist with metamorphic rutile as part of the matrix and as inclusions in garnets; e. SY522-100 is a metasomatised eclogite with rutile as inclusions in garnets and in the omphaciteglaucophane matrix; f. SY522-10 shows rutile in a metasomatised eclogite. 42 Chapter 3 Rutiles occur in fine-grained omphacite – glaucophane felses (± chlorite ± epidote - Fig. 2c). It is also worth noting that metasomatic rutiles are morphologically different from the metamorphic ones. They are generally cm-size and are long-prismatic. Some of them have fibrous terminations (Fig. 2c), but some are idioblastic prisms that can easily be recognised in hand specimens. All 5 sand samples (SY503, SY506, SY525, SY526 and SY535), each consisting of 69-93 individually picked and epoxy-mounted detrital rutile grains, were collected from beach sands around the island. The sands are sourced from wellknown catchment areas that exhibit the described high-pressure, low-temperature metamorphic rocks including the metasomatised zones (Fig. 1). 3.5. METHODOLOGY Thick sections and epoxy resins have been prepared for investigations. Analysis was conducted using a New Wave UP-213 laser ablation system (solid state Nd:YAG laser operating at 213 nm, aperture imaged and with a pulse width of 2– 3 ns), combined with an Agilent 7500cs ICP mass spectrometer. Analyses were calibrated against the NIST SRM 610 glass (GeoReM preferred values: http://georem.mpch-mainz.gwdg.de/), in addition to rutile standard R10 (Luvizotto et al., 2009). Element spectra were reduced using the software ‘LAMTRACE’ (Simon Jackson, Geological Survey of Canada). Data were collected online at 1 point per peak in time resolved mode and processed offline by LAMTRACE. The measurements included the following isotopes: 26Mg, 27Al, 29Si, 31 P, 43Ca, 45Sc, 49Ti, 51V, 52Cr, 55Mn, 59Co, 66Zn, 69Ga, 72Ge, 85Rb, 88Sr, 89Y, 90Zr, 93 Nb, 95Mo, 118Sn, 121Sb, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb, 163 Dy, 165Ho, 167Er, 169Tm, 173Yb, 175Lu, 177Hf, 181Ta, 182W, 208Pb, 232Th, 238U. For more details, please refer to Chapter 2. 43 Chapter 3 3.6. RESULTS 3.6.1. Source rock rutile geochemical data The Nb concentration for the investigated rutiles is generally less than 1000 µg/g, while Cr has a wider range between 2–3 µg/g and 10000 µg/g (= 0.01 wt % - Table 2). On the Nb vs. Cr plot (Fig. 3), most of the analyses plot in the field of rutile from meta-mafic rocks as identified by previous studies (Zack et al., 2004b; Triebold et al., 2007; Meinhold et al., 2008). An interesting observation is that metamorphic and metasomatic grains cover large parts of the compositional field of detrital rutiles, although that field extends to higher Cr and Nb concentrations. FIGURE 3: Provenance study plot: Nb vs. Cr showing the metamafic and metapelitic areas according to Meinhold et al., 2008 (after Zack et al., 2004b). Almost all grains are part of the metamafic group, as expected. The metamorphic and metasomatic rutiles overlap with the detrital grains. 44 Chapter 3 3.6.2. Zr-in-Rutile Thermometry Rutile appears in various textural positions: inclusions in garnet as metamorphic grains (Fig. 2d) and in the rock matrix as metamorphic (Fig. 2b and d) and metasomatic grains (Fig. 2a, c, e and f). In-situ LA-ICP-MS analyses were performed on both types and revealed similar Zr concentrations amongst the investigated samples (see Table 2 for reference). Also, longitudinal and latitudinal trace element concentration profiles on porphyroblastic (grain size 0.5–1 cm in length) and metasomatic (grain size 2–3 cm in length) rutile grains have been analysed. Figure 4 shows a uniform distribution of Zr across the grain. Both methods clearly show there is no textural dependence or zonation for the Zr content in rutile, as previous studies have also demonstrated (Spear et al., 2006; Miller et al., 2007; Luvizotto and Zack, 2009). FIGURE 4: Longitudinal profile through a sketch of a metasomatic rutile grain showing no relevant Zr zonation. Analyses were performed using a 50 µm spot size, every 250 µm (by LA-ICPMS). 45 Chapter 3 TABLE 2: Summary of relevant trace element data for the investigated samples (with STDEV). 46 Chapter 3 Zack et al., 2004a, developed an empirical thermometer based on rutile+zircon+quartz assemblages. Subsequently, Watson et al., 2006, Tomkins et al., 2007 and Ferry and Watson, 2007 refined the thermometer resulting in more accurate calculations over a wider temperature and pressure range. This study uses two calibrations: Tomkins et al. (2007) and Ferry and Watson (2007), as they include corrections related to the type of rock. Tomkins et al. (2007) calibration includes a pressure correction: T (°C) = [(83.9 + 0.410P) / (0.1428-Rln[Zr]Rt)]-273.15, where P is the pressure (GPa), [Zr]Rt is the concentration of Zr in rutile (µg/g) and R is the universal gas constant (in kJ/mol/K). Ferry and Watson (2007) has a silica activity correction: T (°C) = [(4530 ± 111) / (7.420 ± 0.105 – logaSiO2)] – log (Zrµg/g in Rt)273.15, where a (SiO2) is the silica activity. All grains containing high-Si and high-Ca analyses, that probably represent quartz, sphene and zircon inclusions, were removed and therefore not used in the calculations and plots. All remaining grains with zirconium concentrations derived by LA-ICP-MS analysis have been used for Zr-in-rutile thermometry. The zirconium concentrations found for the detrital rutiles are dominantly below 80 µg/g (71 % of 314 grains; median = 64 µg/g), but some grains show significantly higher concentrations. High Zr may represent rutile grains containing zircon or baddeleyite inclusions. Identification of these grains is possible from analysis of the timeresolved laser ablation signal and have been removed from the diagrams. Although this observation could potentially be explained by the presence of zircon inclusions within rutile, there is little additional evidence in support of this. High zirconium concentrations should be accompanied by high silica and Hf concentrations if the inclusions were zircon; however there is little correlation between the two elements, therefore indicating it may be baddeleyite in some cases. Metamorphic peak pressure for Syros was estimated to be 1.5–2.0 GPa (Dixon 1968; Ridley 1984; Okrush and Bröker 1990, Grutter, 1993; Trotet et al., 2001; Rosenbaum et al., 2002; Keiter et al., 2004; Schumacher et al. 2008), 47 Chapter 3 therefore two values were used for the metamorphic rutile thermometry: 1.5 and 2.0 GPa. The metasomatic rutiles have lower pressure estimates, between 0.6 and 1 2 GPa (Breeding et al., 2004; Marschall et al., 2006a; Miller et al., 2009), therefore these values have been used for thermometry calculations. For the detrital grains, four pressure approximations have been used, that reflect different conditions on the investigated rutiles: 0.6, 1.2, 1.5 and 2.0 GPa. The first thermometry calculations have been made using the Tomkins et al. (2007) calibration, taking into consideration the specific pressure estimations. At 0.6 GPa, the detrital grains have a median temperature of 518 °C with an increase to 540 °C at 1.2 GPa, 551 °C at 1.5 GPa and 570 °C at 2.0 GPa. The metamorphic rutiles have a lower average temperature, 539 °C at 1.5 GPa and 558 °C at 2.0 GPa. The metasomatic grains indicate 520 °C for 0.6 GPa and 542 °C for 1.2 GPa. The results from the three sample groups are coherent and indistinguishable within uncertainty (Fig. 5a). Using the same calibration, temperatures have been calculated for quartzbearing and quartz-free rocks. Figure 5b shows the results, with uncertainties, for all pressure estimations. This has been done to assess the effect that silica activity has on thermometry calculations. The diagram indicates similar temperatures for both groups. Silica activity for quartz-free rocks from Syros has been estimated at 0.5 by Marschall et al. (2006). The Ferry and Watson (2007) calibration has been used to calculate temperatures for silica-undersaturated rocks (silica activity at 0.5) and silica-saturated rocks (silica activity at 1). For the metamorphic samples, the average temperature for a (SiO2) = 0.5 is 472 °C and 522 °C for a (SiO2) = 1. For the silicaundersaturated metasomatic samples, the calculated temperature is 489 °C, whereas for silica-saturated rocks the temperature is 522 °C. For the detrital rutile, temperature values do not vary too much: between 486 °C and 526 °C. 48 Chapter 3 2.5 Mtm Rt A Mts Rt 2 Detrital Rt 1.5 P (GPa) 1 0.5 0 500 520 540 560 580 600 T (ºC) 2.5 B Rt in Qtz-bearing rocks Rt in Qtz-free rocks 2 1.5 P (GPa) 1 0.5 0 500 520 540 560 580 T (ºC) FIGURE 5: a. Thermometry calculations for metamorphic (1.5 and 2.0 GPa), metasomatic (0.6 and 1.2 GPa) and detrital rutiles (0.6, 1.2, 1.5 and 2.0 GPa) calculated using the Tomkins et al., 2007, calibration. The results are shown together with the standard deviation and are fairly coherent with each other. However, the values are generally higher that previous estimations (see text for discussion); b. Temperatures calculated for quartz-free and quartz-bearing rocks; the chart shows that silica undersaturation has little effect on the results. 49 Chapter 3 3.6.3. Metamorphic vs. metasomatic rutile A distinction between metamorphic and metasomatic rutile grains can be made based on their trace element compositions. Niobium, Cr and Ta tend to have a higher concentration in metasomatic grains (with an average of 226 µg/g, 143 µg/g and 14 µg/g respectively) compared to the metamorphic grains (average of 110 µg/g, 81µg/g and 6 µg/g respectively). Vanadium and Sb are more abundant in the metamorphic rutiles (average 1574 and 8 µg/g respectively, compared to the metasomatic average of 1412 µg/g and 2.5 µg/g. Similar concentration ranges were found for both types for Mo (0.3-10 µg/g), Sn (3-45 µg/g), Hf (1-7 µg/g) and W (0.04-167 µg/g). Zirconium has slightly higher values in metasomatic rutile (average of 60 µg/g) than the metamorphic grains (average of 49 µg/g), but they overlap within 2 standard deviations of the mean (see Table 2). Trace element plots (V, Mo, Sn, Sb, Hf and W vs. Nb – Fig. 6a-f) show how the investigated types of rutiles have similar geochemical signatures. In all diagrams, metamorphic rutiles overlap with the metasomatic grains, with some positive correlation trends for: Sn-Nb, W-Nb, Sn-W, and a negative correlation between V and Nb. However, the V vs. Mo diagram (Fig. 7) sub-divides the metamorphic rutiles into two classes, based on the type of their host rock: metagabbro and metabasalt. For a full perspective of the specific geochemical signature for each of these three rutile groups, a spider chart has been compiled showing the main trace elements and their relative abundances (normalized to R10) sorted by decreasing rutile/whole rock budget ratio (Fig. 8). With a few exceptions, the two trends are very similar to each other. The metasomatic grains have a higher abundance for a few elements such as Ta, Nb and Cr, while the metamorphic grains have a higher abundance of V and Sb. Almost identical abundances were observed for Mo, Sn, Hf and W. 50 Chapter 3 51 Chapter 3 FIGURE 6: Trace element plots for metamorphic (blue diamonds) and metasomatic (red squares) rutiles (Nb concentration is represented on the y-axis): a. V vs. Nb; b. Mo vs. Nb; c. Sn vs. Nb; d. Sb vs. Nb; d. Sb vs. Nb; e. Hf vs. Nb; f. W vs. Nb. 52 Chapter 3 FIGURE 7: V vs. Mo diagram showing two groups of source rocks: metabasalts and metagabbros. FIGURE 8: Spider diagram showing the rutile data normalised to R10; Ta, Nb and Cr have a bigger affinity for metasomatic grains, while V and Sb have a higher preference for metamorphic rutile; W, Sn, U, Hf and Zr show no preference. 53 Chapter 3 3.6.4. Rutile in a metamorphic facies perspective As the main purpose of this study is to characterise the trace element signature of blueschist-facies rutiles from metamafic source rocks, data for rutile from mafic granulite- and eclogite-facies rocks were compared to Syros rutile. Figure 9 shows the Nb vs. Cr chart for the Syros rutiles along with a number of localities: the Epupa Complex, Namibia (Meyer et al., 2011), Chinese Continental Scientific Driling, CCSD-MH (Gao et al., 2010), SE Siberia (Kalfoun et al., 2002) and Trescolmen, Central Alps (Zack et al., 2002). The first locality is comprised of granulite-facies garnet-orthopyroxene granulites that reached peak metamorphism at 970 ± 40 °C at 0.95 ± 0.2 GPa (Brandt et al., 2003). The CCSD samples are UHP eclogites that reached 700-890 °C at 3-4 GPa (Zhang et al., 1994, 1995; Banno et al., 2000). The Siberian specimens are metasomatised peridotite xenoliths in basalts. The samples from the last locality are eclogites that underwent eclogite-facies metamorphism at peak pressure conditions of 2.4 GPa, 600 °C (Meyre et al., 1997, 1999). The diagram shows most of the grains plotting on the metamafic area of the chart. Granulite- and eclogite-facies rutiles partly overlap the blueschist-facies grains on the upper part of the cluster. In contrast, rutiles from the metasomatised mantle peridotites form a separate group with high Nb and Cr concentrations (> 1000 µg/g and >10000 µg/g, respectively). 54 Chapter 3 FIGURE 9: Niobium vs. Cr diagram compiling data for rutiles from various facies/tectonic settings; rutiles from the metasomatised mantle peridotites form a separate cluster from the rest of the groups; granulite- and eclogite-facies rutiles partially overlap the upper part of the blueschist-facies rutiles. 3.7. DISCUSSION 3.7.1. Source rock rutile geochemical data A geochemical correlation between source rocks and sediments is assessed here based on the HFSE budget. Also investigated are rutiles from near isochemically metamorphosed rocks, dominantly found in the cores of blocks, and metasomatic rutiles. Within eclogites, Nb is dominantly hosted by rutile, while Cr tends to be shared with omphacite and garnet (Zack et al., 2002). The Nb abundance of rutile is therefore controlled by the Nb/Ti ratio of the respective host rock. Previous studies have demonstrated that the Nb vs. Cr plot is indicative of the source rock of rutile (Zack et al., 2004, Triebold et al., 2008, Meinhold et al., 2008). The current study is 55 Chapter 3 in conformity with this observation (Fig. 3), indicating a metamafic source for almost all of the analysed grains, consistent with the rutile-bearing lithologies on Syros that is dominated by rocks with mafic protoliths. In fact, no metapelites have been described from Syros, and the metasedimentary rocks are mostly volcanosedimentary in origin or rare quartzites that lack rutile. An interesting aspect of this study is that the geochemical signature of metamorphic and metasomatic grains overlaps with the detrital analyses indicating that some of the dominant sources of rutile in the sediments on Syros were identified in the high-P mélange. However, there is a group of rutile characterised by high Nb and Cr abundances for which no possible source rock was identified among the investigated rock samples. Nevertheless, it can be speculated, based on their trends, that detrital grains with a higher Nb/Cr ratio are most probably metasomatic, whereas rutiles with a lower Nb/Cr ratio might be metamorphic. 3.7.2. Zr-in-Rutile Thermometry Zr-in-rutile thermometry was employed to test the degree of constraint by source rock lithology, pressure and silica activity. Figure 5a is a plot illustrating the range of temperatures determined for each class of rutile (metamorphic, metasomatic and detrital) using the Tomkins et al. (2007) calibration and four pressure estimates (0.6, 1.2, 1.5 and 2.0 GPa). Also, the thermometer was employed on qtz-bearing rocks vs. qtz-free rocks to assess the influence of silica activity. The calculated temperatures are indistinguishable (Figure 5b) suggesting that the silica activity has little or no influence on them. The Zr concentration is relatively uniform across all investigated rutiles and indicates it is not dependant on source rock lithology. The thermometer produces a limited spread of data, with a narrow distribution. The results are generally not coherent with published temperatures of peak metamorphic conditions, of between 480–520 ºC, 1.5–2.0 GPa for near isochemically metamorphosed rocks (Dixon, 1968; Ridley 1984, Okrusch & Brocker, 1990; Trotet et al., 2001b; Rosenbaum et al., 2002; Keiter et al., 2004; Schumacher et al. 2008) and 400-550 ºC, 0.6–1.2 GPa, for the metasomatic rocks (Breeding et al., 2004; Marschall et al., 2006a). The calculated temperature range for 56 Chapter 3 metamorphic rutiles (539-558 ºC at 1.5 and 2.0 GPa, respectively) therefore is approximately 48 ºC higher than previous estimations. Moreover, the peak temperature value for metasomatic rutiles at 0.6 GPa is 120 ºC higher than previous calculations (520 ºC compared to 400 ºC). However, at 1.2 GPa, our results match the previous thermometry calculations (550 ºC compared to 546 ºC). With an average combined uncertainty of Zr analyses by LA-ICPMS of ±10 % (reproducibility, accuracy and precision; see Methodology, Chapter 2), the precision on the Zr-in-rutile thermometer at ~500 ºC is ± 6 ºC, while the calibration accuracy of the thermometer between 400 and 900 ºC is estimated at ±15 ºC (Watson et al., 2006). Consequently this cannot explain the discrepancy of >50 ºC between our Zr-in-rutile temperatures and published peak P-T estimates for Syros. Also, as shown before, silica undersaturation does not have a significant effect on the Zr-inrutile thermometer calculations for the range of silica activities present in our samples (Fig. 5b). This could suggest that the Tomkins et al. (2007) calibration has a pressure correction that is too high for lower P/T conditions. Tomkins et al. (2007) is based solely on experimental work in piston cylinders at temperatures between 1000 ºC and 1400 ºC, where the pressure dependence was investigated. Watson et al. (2006) also suggest that an extrapolation of the pressure correction to low temperatures (e.g. 500 ºC) introduces more uncertainty than is possibly gained from doing the pressure correction. The Ferry and Watson (2007) calibration, who based their thermometer in part on samples that equilibrated <500 ºC, also includes blueschist-facies and low-temperature eclogite-facies rocks, therefore being a better option for the Syros samples. Also, their experiments were run at 1.0 GPa and their natural rocks were equilibrated at roughly the same pressure (1.0 ± 0.5 GPa). Nevertheless, it is worth noting that the Tomkins et al. (2007) calibration allows for a good correlation to be made between detrital and metamorphic/metasomatic rutiles. The Ferry and Watson (2007) calibration is the only one that takes into consideration the silica activity effect on the Zr-in-rutile thermometer. Zack et al. (2004b), Watson et al. (2006) and Tomkins et al. (2007) only comment on silica saturated systems, therefore, strictly speaking, their calibrations cannot be used on undersaturated rocks. Using the Ferry and Watson (2007) calibration, temperatures 57 Chapter 3 were calculated for the two groups of rutile, using the silica activity estimation for quartz-free rocks from Marschall et al. (2006) – 0.5. For samples where a (SiO2) =1 was considered, temperatures are almost identical, with an average value of 522 ºC for metamorphic and metasomatic samples, and 526 ºC for detrital rutiles. These estimations are much lower that the values obtained using the Tomkins et al. (2007) calibration, and in agreement with previous peak temperature calculated for Syros – 520 ºC at 2.0 GPa. However, at a (SiO2)=0.5, the Ferry and Watson (2007) calibrations gives values that are with an average of 37 ºC lower compared to silicasaturated systems: 472, 489 and 486 ºC for metamorphic, metasomatic and detrital samples, respectively. The Ferry and Watson (2007) calibration predicts temperatures that are ~35 ºC lower at a (SiO2) = 0.5 compared to a (SiO2) = 1, or at the same equilibration temperature for both rocks, it predicts significantly higher Zr in rutile. Considering the fact that all types of rutiles have similar Zr concentrations (~65 µg/g), these low values are in contradiction with our data. Also, as discussed above, using the Tomkins et al. (2007) calibration, quartz-free vs. quartz-bearing rocks show identical temperatures (Fig. 5b), equivalent to ~520 ºC. Ferry and Watson (2007) included silica activity in their calibration, without actually testing it. Their arguments are based on thermodynamic reasoning and assume that the affect is very strong. Our data on natural rocks show that the affect is not detectable. We conclude that Ferry and Watson (2007) calibration strongly overestimates the effect of a (SiO2), being really negligible, at least in LT rocks for a (SiO2) between 0.5 and 1. This allows calculating temperatures for detrital rutile without the uncertainties introduced by the lack of rock context. Recalculating peak temperatures using the Ferry and Watson (2007) calibration with a (SiO2)=1, we obtain 515, 529 and 526 ºC for metamorphic, metasomatic and detrital samples, respectively, which are in agreement with previous T estimates on Syros (Trotet et al., 2001). 3.7.3. Metamorphic and metasomatic rutiles A first order of discrimination between metamorphic and metasomatic rutiles is based on their morphology. Metasomatic grains are considerably larger in size (up to 3 cm in length) and are generally long-prismatic. Some of them have fibrous 58 Chapter 3 terminations (Fig. 2c), but some are idioblastic prisms that can easily be recognised in hand specimens. However, a geochemical signature is needed when investigating detrital rutiles that have been reworked in a sedimentary environment. The current study shows that some trace elements are more abundant in metasomatic grains, such as Ta, Nb and Cr. Vanadium and Sb, on the other hand, have the opposite behaviour, with a higher content in the metamorphic grains. However, the trace element plots (Fig. 6a-f) show that metamorphic and metasomatic rutiles have a similar geochemical signature. The groups overlap with no clear distinction between them. This might be because some samples represent a transition between metamorphic and metasomatised rocks. Some of the samples are fresh metamorphic rocks (e.g. SY522-175), others are partly metasomatised (e.g. SY522-100) and some are completely metasomatised (e.g. SY522-10). This is reflected in the geochemical composition of the investigated rutiles. Nevertheless, the V vs. Mo diagram (Fig. 7) indicates a relatively good distinction between rutile from metagrabbros and metabasalts, therefore showing that rutile can be used to distinguish between different types of source rocks. The spider diagram (Fig. 8) confirms the earlier comments on rutile trace element characteristics, while offering a bigger perspective of rutile’s geochemical signature. Tantalum, Nb and Cr have a higher affinity for metasomatic grains, whereas V and Sb show a stronger preference for metamorphic rutile. Molybdenum is only slightly enriched in metamorphic rutile. The rest of the elements (Sn, W, U, Hf and Zr) do not exhibit any particular preference for any type of rutile. However, special care is needed when assessing rutile grains coming from different tectonic settings. The observations in this study are relevant to similar tectonic settings (HP/LT) and lithologies. Nevertheless, if low-T rutile with relatively high Cr-Nb is only formed in blueschists and eclogites, this indicates the same tectonic setting, i.e., cold subduction of mafic crust. Element enrichments in the metasomatic grains may vary with the composition and sources of the metasomatic fluids (salinity, pH, T, P, fO2, etc). The P-T conditions of blueschists and eclogites do not vary immensely from place to place, and the fluids are generally buffered by the same mineral assemblages. Hence, it can be expected that fluids that 59 Chapter 3 migrate through high-pressure mélange zones or sequences of subducted crust at high P have similar composition and trace-element transport capacity. Hence, the results obtained from Syros are probably relevant for subduction settings in general, and the metasomatic grains are characteristic for blueschist-facies high-P mélange zones. 3.7.4. Rutile in a metamorphic facies perspective The Nb vs. Cr plot (Fig. 9) is a compilation of the available data on rutile from mafic rocks formed in different facies/tectonic conditions (granulite, eclogite and metasomatised mantle peridotite) compared to our blueschist-facies data. The diagram shows rutile from metasomatised mantle peridotites having a very particular Nb-Cr signature, forming a separate cluster from the rest of the groups. Granuliteand eclogite-facies rutiles have quite a similar composition, partially overlapping the blueschist-facies rutile. However, a higher Nb-Cr concentration could indicate higher P/T conditions. Niobium concentrations in the Syros samples are quite similar to hotter localities (excluding the mantle xenoliths), but Syros samples seem to extend towards much lower Cr contents (many of the detrital grains are below 1 µg/g detection limit). One hypothesis is that at low temperatures more Cr is stored by glaucophane, while co-existing garnet and omphacite do not have the same affinity for Cr as glaucophane, hence rutile might take more of the Cr at higher temperatures. Due to the limited availability of data, other trace elements cannot currently be investigated. Nevertheless, rutile shows promising trace element particularities that could be linked back to different facies settings. 3.8. CONCLUSIONS 1. The Cr vs. Nb plot indicates almost exclusively metamafic source rocks for rutile from the Island of Syros and confirms that rutile can be used as a petrogenetic tool in HP/LT environments, such as subduction zones 2. No textural-dependence or Zr zonation has been observed in the investigated rutiles 60 Chapter 3 3. Silica undersaturation has little if no effect on the Zr-in-rutile thermometer 4. Zr-in-rutile thermometer shows higher temperatures (48 °C) compared to previous estimations; this could suggest that the Tomkins calibration has a pressure correction that is too big for lower P/T conditions 5. The Ferry and Watson (2007) calibration gives consistent results for a (SiO2)=1, with an average temperature of 522 °C; this study concludes that this calibration has a too high correction for undersaturated rocks at LT conditions 6. Trace element plots show that metamorphic and metasomatic rutiles have a relatively similar geochemical composition, with no clear distinction between the groups; however, Ta, Nb and Cr tend to have a higher affinity for metasomatic rutiles, while V and Sb for metamorphic grains 7. Vanadium vs. Mo indicates different types of source rocks, such as metagabbros and metabasalts; however, this could be specific only for this case study and should be explored by future studies for different protoliths 8. The Nb vs. Cr diagram has a poor applicability to assess rutile formed in different facies/tectonic settings, but very low Cr abundances (<10 µg/g) in low-Nb rutile (<150 µg/g) may be restricted to blueschist-facies rutile from metabasites 61 Chapter 4 An evaluation of the potential of detrital rutile to document the highpressure metamorphic history of an orogenic belt (Western Alps) 4.1 ABSTRACT Laser Ablation Inductively-Coupled Mass Spectrometry has been used to analyse rutile grains from high-pressure metamorphic rocks and as detritus in river sediments and associations based on their trace element signature have been made. The HP/LT micaschists from the Sesia Lanzo Zone indicate a strong correlation with sediments from the main catchment areas (Rio delle Balme, Torrente Chiusella). Most of the detrital grains are from a meta-pelitic protolith, as expected. Using the Zr-in-rutile thermometer, one peak temperature at 541 °C was obtained, that corresponds to the peak temperature calculated for the Sesia Lanzo Zone samples – 538 °C, and with previous estimations (500 – 600 °C). This demonstrates the applicability of the Zrin-rutile thermometer and the Nb vs. Cr discrimination diagram in blueschist-facies settings. The Dora Maira UHP metapelites show no overlap with sediments from the closest catchment areas (Varaita and Maira Rivers) on the Nb vs. Cr diagram. However, the Zr-in-Rutile thermometer clearly indicates the presence of a HT signature with one temperature peak of 728 °C in the Maira River that is close to the average value for the metamorphic rutiles – 694 °C. This might suggest that these rivers are not the catchment area of the UHP rocks from the Dora Maira Massif, or that the discrimination diagram has a limited applicability for the HT rocks. This study also examines the potential presence of HT granulite-facies metapelitic rutiles from the Ivrea-Verbano Zone in river sediments and of the Dora Maira gneisses and Monviso metapelites and metagabbros in order to provide better constrains on the main source rocks. Finally, detrital rutiles from the Po River, downstream from the confluence of all other examined streams, implies that blueschist-facies rutiles are predominant compared to (U)HP-HT grains. In turn, this may indicate that HP-LT metamorphic rocks have a lower preservation potential than their (U)HP-HT 62 Chapter 4 equivalents. In this case, records of HP-LT metamorphism in older orogens may best be sought in sediments eroded from that orogen and containing detrital rutile grains. 4.2 INTRODUCTION Rutile is a robust accessory mineral that has received growing attention in the past decade. Its chemical signature can be linked to its host rock bulk composition and the temperature of metamorphic equilibration. Zack et al. (2004a) first demonstrated the applicability of detrital rutile to determine different lithologies by using the Nb vs. Cr plot. Further studies (Triebold et al., 2008, Meinhold et al., 2008) have refined this discrimination diagram. Zack et al. (2004b) have also developed an empirical thermometer based on the Zr concentration in rutile. Other authors (Watson et al., 2006, Tomkins et al., 2007 and Ferry and Watson, 2007) have subsequently modified the thermometer and re-enforced its applicability in calculating peak metamorphic temperatures. Some studies (Tomkins et al., 2007 and Ferry and Watson, 2007) also introduced different variables in the formula (pressure and silica activity), allowing for more precise calculations. As rutile has many interesting geochemical features that could allow for a good insight into its source rock metamorphic history, this could further be investigated for possibilies of correlations between the source rock and its associated tectonic setting. Studies have shown that rutile usually forms in prograde metamorphism, in metasedimentary and metamafic rocks, at pressures between 1.2 and 1.5 GPa (Liou et al., 1998; John et al., 2011). These values correspond to depths higher than 35 km, therefore rutile will not form in stable continental crust. Consequently, rutile will form in rocks involved in key plate-tectonic processes, such as cold subduction of oceanic crust or crustal thickening. Trace elements in rutile are investigated here using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICPMS). Results are used to address the possible correlation between rutile geochemistry and tectonic processes. The Western Alps offer an opportunity to investigate rutile geochemistry in more detail by studying grains from high-pressure (Sesia Lanzo) and ultra highpressure (Dora Maira) metapelites. Outcrops with well-defined protoliths, bulk-rock and P-T history have been sampled from subducted and exhumed continental crust. 63 Chapter 4 Moreover, sand samples from the River Po and its tributaries that contain detrital rutile grains have been investigated and compared with metamorphic grains from the potential source rocks (Sesia Lanzo and Dora Maira). Trace element signatures in rutile from blueschist- to HP and UHP eclogitefacies subducted continental crust are characterised and used to fingerprint particular geochemical signatures for metamorphic rutile. The Zr-in-rutile thermometer is analysed to check how well it fits with other published geothermometry with the aim of assessing how reliable this thermometer is in subduction systems. Also, trace elements budgets (V, Cr, Zr and Nb) are discussed for metamorphic rutiles from the Sesia Lanzo Zone and Dora Maira Massif. The key aspect of this study is to investigate the probability of finding detrital rutile eroded from blueschists and eclogites that formed in collisional orogens, in large sedimentary basins. Our results show that, compared with rutile from hightemperature settings, blueschist-facies rutile is predominant. The overarching aim is to use detrital rutile as a tool for investigating long-eroded orogenic belts to reconstruct their tectonic evolution. 4.3 GEOLOGICAL SETTING The Western Alps formed by the continent-continent collision of Europe and AdriaAfrica plates that started in the Cretaceous (Dewey et al., 1989; Rosenbaum et al., 2002). Based on the lithological associations, type of sedimentary cover and/or Alpine metamorphism (e.g., Dal Piaz et al., 2003; Schmidt et al., 2004), the Western Alps can be divided in three major domains (Fig. 1a): (a) the Southern Alps representing the continental Adriatic plate covered by Permian volcanic and Meso/Cenozoic sediments that show a minor Alpine metamorphic overprint; (b) the Axial Belt, that underwent greenschist- to UHP eclogite-facies Alpine metamorphism, is further sub-divided into the Austroalpine Units made of Adriatic continental components and the Penninic Units consisting of European continental crust and oceanic units derived from the Piemonte-Liguria Ocean; (c) the External Zone representing a nappe stack resting upon the European plate that underwent anchizone to greenschist-facies metamorphism. 64 Chapter 4 FIGURE 1: (a) Geological map of the Western Alps showing the location of five sand samples: SL 10/12, 13, 15, 16, and 17 (modified after Beltrando et al., 2010 and Garzanti et al., 2004). The two detailed maps are of: (b) The Sesia Lanzo Zone (modified after Konrad-Schmolke et al., 2006) with positions for the other two sand samples (SL 10/4 and SL 10/10) and the hard rocks (black star); (c) The Dora Maira Massif (modified after Grevel et al., 2009) showing the location of the Parigi/Case Ramello samples (A) and of the Tapina sample (B). 65 Chapter 4 The Ivrea-Verbano Zone (IVZ) is a sub-division of the Southern Alps that preserves a section through the lower continental crust that underwent two episodes of orogeny (Caledonian and Variscan) and a mafic magma underplating event in the Permian (Handy et al., 1999). From southeast to northwest the metamorphic conditions increase from amphibolite to granulite-facies (Zingg et al., 1990). The IVZ has large areas of metabasic amphibolites, but these contain titanite (±ilmenite e.g., Sills & Tarney, 1984). Studies have shown that rutile is only present in the granulite facies paragneisses (Luvizotto and Zack, 2009; Zingg et al., 1980). Henk et al. (1997) has calculated the peak P-T conditions to be 810 °C and 0.83 GPa. However, Luvizotto and Zack (2009), using the Zr-in-rutile thermometer, obtained much higher temperatures up to 930 ºC. The Sesia Lanzo Zone (SLZ – Fig. 1b), part of the Austroalpine units, is the first place where eclogites-facies metamorphism of granitic rocks was identified (e.g., Bearth, 1959; Compagnoni and Maffeo, 1973) and interpreted as subducted continental lithosphere (Ernst, 1971). Based on various parameters such as the metamorphic grade and the lithological compositions, the SLZ is sub-divided into four units (Babist et al., 2006; Venturini et al., 1994): (1) the Bard nappe made of fine-grained gneisses (the ‘gneiss minuti complex’ as described by Compagnoni et al., 1977); (2) the Mombarone unit consisting of the best-preserved HP eclogitefacies felsic rocks (the ‘Eclogitic Micaschist Complex’ as described by Compagnoni et al., 1977); (3) the Bonze unit comprised of metabasic rocks interpreted to be of an oceanic-continental origin (e.g., Venturini et al., 1994); (4) the II DK unit made of pre-Alpine granulite and amphibolite-facies schists and gneisses (Carraro et al., 1970; Dal Piaz et al., 1971; Lardeaux et al., 1982). The SLZ HP event reached its peak around 65 Ma ago (Rubatto et al., 1999). The Mombarone unit has undergone eclogite-facies metamorphic conditions that reached 500-600 °C and 1.5–2.0 GPa (Pognante, 1989; Tropper et al., 1999; Zucali et al., 2002). Rutile has been found in both HP felsic and basic rocks from the Mombarone Unit (Konrad-Schmolke et al., 2011; Venturini, 1994). The Dora Maira Massif (DMM - Fig. 1c), part of the Penninic units, was the first direct evidence that continental crust can be subducted to depths of at least 100 km (Chopin, 1984). It consists of Pre-Alpine basement rocks and Permian granitoids 66 Chapter 4 (with a detached Mesozoic cover) that underwent UHP metamorphism in Eocene times (e.g., Chopin, 1987; Compagnoni & Hirajima, 2001; Gebauer et al., 1997; Groppo et al., 2006; Hermann, 2003; Schertl et al., 1991; further references in Schertl & Schreyer, 2008). Based on different geothermobarometers and water activity, the P-T estimates for DM are various (Schertl et al., 1991; Compagnoni et al., 1994; Chopin and Schertl, 2000; Rubatto and Hermann, 2001; Hermann, 2003; Groppo et al., 2006). This study will use for thermometry calculations the peak metamorphic conditions of Schertl et al. (1991) which are 3.7 GPa at about 800 °C. Rutile has been reported in all investigated samples (pyrope megablasts and jadeite quartzite from Parigi/Case Ramello and pyrope megablasts from Tapina) by Schertl et al. (2008) both as inclusions in garnet and in the matrix. The Monviso ophiolitic domain is part of the Piemonte Zone that formed by subduction and exhumation of the Tethyan ocean in the late Cretaceous (Lagabrielle & Cannat, 1990; Lagabrielle & Lemoine, 1997). It contains calcschists, pillow lavas, banded metabasalts, diabases, metagabbros and serpentinites (Lombardo et al., 1978). Angiboust et al. (2012) has estimated the P-T conditions to be ~550 °C and 2.6-2.7 GPa. Rubatto and Hermann (2003) have found rutile in eclogites (5%) and metamorphic veins (1%) from the Lago Superiore Unit. The Po basin is a Pliocene marine gulf between the Alps and the Apennines that has been filled gradually from west to east during the Pliocene (Garzanti el al., 2011). The fluvial sediments are largely derived from the Alps that underwent an accelerated sedimentation with the onset of the major glaciations (Muttoni et al., 2003). Torrente Chiusella (Fig. 1a) drains mostly HP metapelites and metabasic rocks from the Sesia Lanzo Zone. It then joins Dora Baltea which is the catchment area for the Ivrea Verbano Zone as well. Varaita and Maira are the two rivers situated in the vicinity of the Dora Maira Massif and Monviso. All these rivers drain into the Po River which contains all detritus from current erosion of the Western Alps. 67 Chapter 4 4.4 SAMPLE DESCRIPTION A total of 19 samples have been investigated: 8 HP metapelites from Sesia Lanzo, 4 UHP metapelites from Dora Maira and 7 from river sediments. The mineral assemblages for the metamorphic samples can be found in Table 1, along with rock type and metamorphic unit descriptions. The Sesia Lanzo samples are from the Mombarone Unit (as seen in Fig. 1b) and are mainly glaucophane-white mica (phengite?) micaschists, with pelitic or semipelitic protoliths (Reference - Table 1). They generally are moderately foliated with a foliation defined by Gln + White mica. Also, the Sesia Lanzo samples are relatively homogeneous and medium- to finegrained. They all preserve the HP mineral assemblage which consists of Grt + Gln + Omp + Phe (?) + Rt. A variable degree of retrogression is manifested by the presence of amphibole, chlorite and epidote. Rutile (0.5-2 mm in diameter) is found in the matrix and as inclusions in garnets. It is commonly rimmed by titanite and/or ilmenite. Three specimens from Dora Maira (Table 1) were taken from the classical coesite locality (Chopin, 1984) near Parigi (Fig 1c – location A), introduced as Case Ramello by Compagnoni et al. (1994). Sample 15623a comes from the polymetamorphic complex, whereas 20254 was sampled from alluvial deposits. Specimen 19464 is part of the Pinerolo Unit, from the graphite-rich schists and metaclastics. The fourth sample, 19296a, comes from Case Tapina, near Vallone di Gilba (Fig 1c – location B), being part of the monometamorphic complex. A detailed description of the UHP-localities from Dora Maira and a petrological description of the investigated samples are given by Grevel et al., 2009 (for samples 15623a and 19464) and by Schertl & Schreyer, 2008 (for samples 15623a, 19296a and 20254, which comes from the same block as 19470, described in the paper). Rutile (0.5 - 4 mm in diameter) is frequently found as inclusions in garnet and in the matrix. 68 MK 51 Mombarone Omp-Grt micaschist MK 126 Mombarone Grt micaschist MK 162.3 Mombarone Grt micaschist MK 195 Mombarone Grt micaschist MK 197 Mombarone Omp-White mica schist MK 541 Mombarone Omp micaschist 15623a Brossasco–Isasca Pyrope Megablasts 19296a Brossasco–Isasca Pyrope Megablasts 20254 Brossasco–Isasca Jd quartzite 19464 Pinerolo Pyrope quartzite Micaschist 3 4 5 6 7 8 9 10 11 12 Mombarone Gln micaschist Mombarone MK 35 Rock Type Unit 2 Sample Sample No. 1 MK 30 15 20 20 20 20 15 40 20 10 30 7 10 Grt 20 30 22 - - - Omp 5 15 5 7 5 - - 25 40 30 40 40 30 35 20 (phe) 35 25 20 25 5 - - - Gln White Mica Ky 10 10 15 5 - 25 - Chl 5 5 5 - 5 5 Ep 20 30 - - - Tlc 10 12 20 30 10 15 50 40 10 30 Qtz Rt-5 Amp-5, Ab-5, Opaques-5, Rt-3 Opaques-6, Rt-4 Carb-8, Rt-5 Opaques-7, Rt-3 Rt-3 Rt-5 Rt-3 Rt-1, Others*-9 Rt-2, Others*-8 Jd-17, Rt-5, Others*-8 Rt-4, Others*-6 Others Chapter 4 TABLE 1: Mineralogical description of the investigated source rocks: samples 1-8 are from the Sesia Lanzo Zone and samples 9-12 are from the Dora Maira Massif. Modal abundances are given in percentages. *Please refer to Grevel et al., 2009 and Schertl & Schreyer, 2008 for a detailed mineralogical description of this sample. 69 Chapter 4 Seven river sand samples were collected from the river banks close to the source rocks described above and downstream towards the Po plain (Fig. 1a). Specimens SL 10/04 and SL 10/10 have been sampled within the Sesia Lanzo Zone (Rio delle Balme and Torrente Chiusella 1), whereas SL 10/12 and SL 10/13 were taken further downstream in the Ivrea-Verbano Zone to check for the influence on the rutile budget with an IVZ geochemical signature (Torrente Chiusella 2 and Dora Baltea). Samples SL 10/16 and SL 10/17 (Varaita and Maira Rivers) were collected near the UHP unit of the Dora Maira Massif. Finally, sample SL 10/15 was taken from the Po River at Casale Monferrato, downstream from the confluence of all the aforementioned rivers. Detrital rutile grains are typically between 50 and 300 µm in diameter and generally well rounded. 4.5. METHODOLOGY Thick sections and epoxy resins have been prepared for investigations. Analysis was conducted using a New Wave UP-213 laser ablation system (solid state Nd:YAG laser operating at 213 nm, aperture imaged and with a pulse width of 2– 3 ns), combined with an Agilent 7500cs ICP mass spectrometer. Analyses were calibrated against the NIST SRM 610 glass (GeoReM preferred values: http://georem.mpch-mainz.gwdg.de/), in addition to rutile standard R10 (Luvizotto et al., 2009). Element spectra were reduced using the software ‘LAMTRACE’ (Simon Jackson, Geological Survey of Canada). Data were collected online at 1 point per peak in time resolved mode and processed offline by LAMTRACE. The measurements included the following isotopes: 26Mg, 27Al, 29Si, 31 P, 43Ca, 45Sc, 49Ti, 51V, 52Cr, 55Mn, 59Co, 66Zn, 69Ga, 72Ge, 85Rb, 88Sr, 89Y, 90Zr, 93 Nb, 95Mo, 118Sn, 121Sb, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb, 163 Dy, 165Ho, 167Er, 169Tm, 173Yb, 175Lu, 177Hf, 181Ta, 182W, 208Pb, 232Th, 238U. For more details, please refer to Chapter 2. 70 Chapter 4 4.6. RESULTS 4.6.1. Source rock rutile geochemistry data 4.6.1.1. Sesia Lanzo Figure 2a shows the Nb vs. Cr analyses for metamorphic rutiles from the Sesia Lanzo Zone and for the two rivers that were sampled to characterise the proximal detrital rutile geochemical signatures (Rio delle Balme and Torrente Chiusella 1 – Fig. 1b). According to previous provenance studies, (Zack et al., 2004b; Triebold et al., 2007; Meinhold et al., 2008) all the metamorphic rutiles plot in the pelitic area of the chart. Both river samples are strongly dominated by rutile from pelitic source rocks (85-90 %), with minor contributions of rutile from mafic source rocks. Torrente Chiusella 1 detrital rutile in particular shows a very good reflection of the metapelitic source rocks. Specimens SL 10/12 and SL 10/13 (Torrente Chiusella 2 and Dora Baltea – see Fig. 1b) were investigated for two purposes: 1) to detect rutiles from the SLZ and 2) to investigate a potential IVZ detrital signature. Based on the Nb vs. Cr plot (Fig. 2b), the rutile populations in both rivers are dominated by pelitic source rocks (85-90 %), but also show minor contributions from mafic source rocks. The diagram also shows analyses of metamorphic rutile from the SLZ and the IVZ. These partially overlap with detrital rutiles from the two rivers, on the pelitic area of the diagram. 71 Chapter 4 72 Chapter 4 d FIGURE 2: Nb vs. Cr discrimination diagrams (after Meinhold et al., 2008; see also Zack et al., 2004b) showing metamorphic vs. detrital rutiles from: a. Sesia Lanzo Zone with Rio delle Balme and Chiusella 1 – a good correlation can be made between the source rocks and detrital material; b. The Ivrea-Verbano Zone (data from Luvizotto and Zack, 2009), the Sesia Lanzo Zone, and Torrente Chiusella 2 with Dora Baltea – both locations with metamorphic rutile overlap with the two rivers, indicating a coherent reciprocity ; c. Dora Maira Massif with Varaita and Maira – no relationship can be established between the metamorphic rocks and detrital rutile, as they plot on different areas of the diagram; d. The Ivrea-Verbano Zone, the Sesia Lanzo Zone, Dora Maira and Po River – the SLZ and IVZ pelitic signature can still be linked to the eroded material; a large fraction of the river’s material has a metamafic source. 73 Chapter 4 4.6.1.2. Dora Maira The Nb-Cr diagram for the samples from the UHP unit from Dora Maira (Fig 2c) indicates that the metamorphic rutiles have a pelitic source whereas the detrital rutiles from the river sand samples (Maira and Varaita – Fig. 1a and c) contain a broader range of host rock compositions with both mafic and pelitic sources. The metamorphic rutiles are significantly higher in Nb and lower in Cr, a composition that is not reflected in the detrital population in either of the rivers. 4.6.1.3. Po River As expected, the Nb-Cr diagram for the Po River sample (SL 10/15 – Fig. 1a) displays a large spread of concentrations for these elements as it has multiple sources for its sediments (Fig. 2d). The metamorphic Sesia Lanzo and Ivrea-Verbano rutiles overlap with the entire pelitic detrital fraction, indicating that they might represent the main pelitic sources for Po’s sediments. In contrast, the Dora Maira rutile compositions are not represented by the Po river sediments. Most of the detrital rutiles from Po River have a mafic origin (75 %), based on the Nb-Cr diagram. All trace element compositions can be found in Table 2. 74 Chapter 4 75 Chapter 4 TABLE 2: LA-ICPMS trace element data (including mean concentration with standard deviation) for the SLZ, DMM and sand specimens. 76 Chapter 4 4.6.2. Zr-in-Rutile Thermometry Zack et al., 2004a, developed an empirical thermometer based on rutile + zircon + quartz assemblages to which Watson et al., 2006, Tomkins et al., 2007 and Ferry and Watson, 2007 made enhancements. This study uses the Ferry and Watson (2007) calibration, as it has been demonstrated (see Chapter 3 “Trace-element characteristics of rutile in blueschist- to low-T eclogite facies mafic-ultramafic highP mélange zones - Syros, Greece) to give the most accurate temperature estimations at a (SiO2)=1, for blueschist-facies and low-temperature eclogite-facies rocks: T (°C) = [(4530 ± 111) / (7.420 ± 0.105 – logaSiO2)] – log (Zrµg/g in Rt) 273.15, where a(SiO2) is the silica activity. For the UHP rocks from the DMM, the Tomkins et al. (2007) calibration has been applied too (for the coesite field), as previous studies (Zhang et al., 2010) concluded that this is the most suitable for HP-UHP rocks because it has a pressure factor in its formula: T (°C) = [(88.1 + 0.206 * P) / (0.1412 - Rln[Zr]Rt)] - 273.15, where P is the pressure (GPa), [Zr]Rt is the concentration of Zr in rutile (µg/g) and R is the universal gas constant (in kJ/mol/K). The Ferry and Watson (2007) calibration predicts an average temperature for the metamorphic rutiles from the SLZ of 538 °C. The same calibration indicates a peak temperature for the DMM samples of 595 °C. However, this calibration considers an average pressure of 1.0 GPa, which is too low for the estimated peak pressure in the DMM (3.7 GPa – from Schertl et al., 1991). Therefore, an additional calibration which includes a pressure correction has been applied (Tomkins et al., 2007). The average peak temperature obtained with the second calibration is much higher, with a value of 694 °C. 77 Chapter 4 Histograms containing Zr concentrations in detrital samples have been plotted (Fig. 3), with statistical maximums being determined using Isoplot 4.1 (K.R. Ludgwig, Isoplot/Ex 3.75, A geochronological toolkit for Microsoft Excel, Berkley Geochronology Centre, 2012). The Rio delle Balme/Chiusella 1 diagram (Fig. 3a) has three main peaks, with statistical maximums at 44 ± 2 µg/g (30 %), 72 ± 3 µg/g (30 %) and 124 ± 5 µg/g (40 %). Associated calculated temperatures are 511, 541 and 577 °C (please refer to Appendix 10). The Chiusella 2/Dora Baltea plot (Fig. 3b) has a more homogeneous distribution, with peaks at 35 ± 2 (12 %), 63 ± 4 (27 %) and 116 ± 4 µg/g (61 %) for Chiusella 2 and 51 ± 1 (93 %), 734 ± 80 (3 %) and 1179 ± 20 µg/g (4 %) for Dora Baltea. Calculated temperatures for these Zr concentrations are 498, 533 and 573 °C for Chiusella 2 and 520, 722 and 769 °C for Dora Baltea. Torrente Chiusella 2 has two HT grains (out of 101 grains; 2.0 %), with temperatures ≥700 °C, while Dora Baltea has 9 rutile grains (out of 120; 7.5 %). Varaita River (Fig. 3c) has one main peak at 138 ± 5 µg/g (91 %) and a secondary one at 10 ± 1 µg/g (9 %). Equivalent temperatures are 432 and 585 °C. Maira River (Fig. 3d) has a more homogeneous distribution, with several peaks: 3 µg/g (39 %), 59 ± 3 µg/g (23 %), 191 ± 10 (17 %) and 784 ± 38 (20 %). Corresponding temperatures are 379, 529, 608 and 728 °C. The Zr concentration frequency plot for Po River has two main peaks at 20 ± 0.5 µg/g (72 %) and 86 ± 3.5 µg/g (25 %), and two secondary ones at 856 ± 140 (2 %) and 1050 ± 220 (1 %). Calculated temperatures are: 467 and 553 °C for the main peaks, and 736 and 757 °C for the secondary peaks (Fig. 3e). 78 Chapter 4 FIGURE 3: Simplified map of Po’s drainage system (after Garzanti et al., 2004) showing the sand samples’ locations and their associated [Zr] frequency diagram: (a) Rio delle Balme and Torrente Chiusella 1 – main peaks show [Zr] typical for LT rocks, as found in the SLZ; (b) Torrente Chiusella 2 and Dora Baltea – this diagram indicates that, besides an important LT fraction, there is a new high [Zr] group present that could be source from the IVZ; further evidence for this hypothesis is that the high [Zr] fraction is mostly pelitic, also typical for the IVZ (see text for discussion); (c) Varaita River – limited range of [Zr], indicating a small number of medium to high-T source rocks; (d) Maira River – several [Zr] peaks suggesting multiple sources, such as the Monviso Massif and the UHP and country rocks from DMM; (e) Po River – 97 % of the detrital load is represented by low [Zr], corresponding to LT source rocks; the rest 3 % indicate HT sources. 79 Chapter 4 4.6.3. Trace element budgets Budgets for some trace elements in rutile (V, Cr, Zr and Nb) were calculated for Sesia Lanzo and Dora Maira samples (Fig. 4), using the concentration of the element in rutile and in the whole rock. These calculations show how much of a rocks’ element x is stored in rutile. Fig. 4a-d shows the percentage of four different elements (V, Cr, Nb and Zr), stored in rutile, in the whole rock. Vanadium ranges from 2.5 to 8.1 % in the SLZ samples, with much higher values in the DMM samples: 18.4-37 % in the pyrope megablasts and quartzite and 7 % in the Jd quartzite. Chromium has quite a similar behaviour, with values from 1.8 to 5.7 % in the SLZ specimens, and a much higher variability in the UHP rocks: 1.3 to 17.2 %. As expected, Zr has very low concentrations, all values ranging from 0.08 to 0.42 %. Niobium has the highest affinity for rutile, from these trace elements, and has slightly higher values in the HP rocks (57-181 %) than in the UHP rocks (12-152 %). a 80 Chapter 4 b c d FIGURE 4: Trace elements budget plots for metamorphic rutiles from the SLZ (samples labelled MK) and DMM (the rest): a. V shows a coherent behaviour for the HP samples, and a more complex behaviour for the UHP specimens; b. Cr – its budget is mainly controlled by the presence of garnet; as the SLZ samples have very similar compositions, this relationship is more poignant in the DMM rocks, where garnet can be found from 10 to 40 %; more garnet will incorporate a larger fraction of the available Cr, leavening less for Rt; c. Zr – this budget is mainly controlled by Zrc, therefore explaining the low percentages; d. Nb – as rutile is the main carrier of this element, its composition reflects the rutile abundance in the host rock. 81 Chapter 4 4.7. DISCUSSION 4.7.1. Source rock rutile geochemistry data 4.7.1.1. Sesia Lanzo A geochemical correlation between source rocks and sediments has been assessed based on their HFSE budget (see Table 2 for trace element compositions with standard deviations). Within eclogites, Nb is dominantly hosted by rutile, while Cr tends to be more compatible with omphacite and garnet (Zack et al., 2002). The Nb abundance is, therefore, controlled by the Nb/Ti ratio of the host rock, and thus by the host rock composition. Previous studies have demonstrated that the Nb vs. Cr plot can be employed to characterise the host rock of the detrital rutiles (Zack et al., 2004a, Triebold et al., 2008, Meinhold et al., 2008). The Nb vs. Cr diagram (Fig. 2a) shows that the metamorphic rutiles from the Sesia Lanzo Zone have a metapelitic origin and that rutiles from Rio delle Balme and Torrente Chiusella 1 indicate mafic and pelitic source rocks, with a higher abundance of the latter. The Torrente Chiusella 1 grains are more consistent with the metamorphic rutiles indicating it largely receives its sediments from the HP unit of the Sesia Lanzo Zone (SLZ). Detrital grains from Rio delle Balme have a more scattered geochemical composition suggesting various sources that has not been captured fully in this sample collection of potential host rocks. However, Venturini (1995) has shown that there are blueschist-facies mafic rocks in the SLZ that might contribute to the detrital rutile budget. Torrente Chiusella 2 and Dora Baltea contain detrital rutiles derived from metapelitic source rocks (Fig. 2b). This is not surprising, as the main potential source rocks are of pelitic origin: micaschists from the SLZ and metasedimentary gneisses from the IVZ. Previous studies (Luvizotto and Zack, 2009) reported that in the IVZ, rutile is only present in granulite-facies paragneisses that reached temperatures of up to 930 ºC. Moreover, metamorphic rutiles from the IVZ have been investigated and show a large spread in Zr concentration ranging from 700 to 5000 µg/g (Luvizotto and Zack, 2009). This shows that high-Zr rutile is typical for the IVZ granulites and the occurrence of such rutiles in the Torrente Chiusella 2 and Dora Baltea samples (see sub-chapter 4.5.2 for discussion) are, therefore, in agreement with the catchment 82 Chapter 4 area of the river. The Zr concentration histogram (Fig. 3b) for detrital rutiles from these two rivers shows that most of the high-Zr rutiles have a pelitic source, therefore further suggesting the IVZ as a possible source. Moreover, the multielement plot (Fig. 5) showing metamorphic rutiles from the IVZ (from Luvizotto and Zack, 2009) and high-Zr detrital rutile from Torrente Chiusella 2 and Dora Baltea, further supports this observation. Dora Baltea is particularly richer in high-Zr detrital rutiles, probably because its source is within the IVZ. Also, an important observation is that Torrente Chiusella joins the Dora Baltea as a tributary downstream. Therefore, metamorphic rutiles from the SLZ and detrital rutiles from rivers draining this area have a very similar geochemical signature indicating a good representation of the source rocks by sediments in HP/LT proximal tectonic environments. Furthermore, the high-T, detrital rutiles from pelitic source rocks that suggest the IVZ as a possible source might indicate a good applicability of the discrimination diagram for granulite-facies rocks. This will additionally be discussed in the following section (5.1.2). FIGURE 5: Multi-trace element diagram containing rutile compositions normalised to R10; the green field is represented by the range of compositions for metamorphic rutiles from the IVZ (data collected from Luvizotto and Zack, 2009); the grey field corresponds to detrital grains from the Torrente Chiusella 2 and Dora Baltea; the good overlap between the two groups further suggests a source rock –sediments relationship (please see text for discussion) 83 Chapter 4 4.7.1.2. Dora Maira The Nb-Cr diagram for metamorphic grains from the UHP unit of Dora Maira (Fig. 2c) is consistent with the pelitic lithology of these rutiles, whereas the detrital rutiles from the river sand samples (Maira and Varaita – Fig. 1a and c) contain a broader range of host rock compositions with both mafic and pelitic sources. There is no overlap in composition between the metamorphic and detrital rutiles, which indicates that the sampled detritus in the Maira and Varaita rivers do not represent the Dora Maira UHP rocks. The country rocks from the DMM are composed of greenschist-facies gneisses that are largely retrogressed. Schertl et al. (1991) have reported that these rocks might have experienced HP conditions based on the presence of coarse-grained phengite and the presence of the assemblage grossular + rutile. The country rocks could, therefore, be the provider of at least part of the detrital rutile from pelitic host rocks. The Maira and Varaita rivers also drain the Monviso massif (Fig. 1). It is therefore highly likely that part of the rutile is derived from the Monviso Massif. The Monviso ophiolitic complex lies on top of the continental eclogitic unit from Dora Maira and reached HP to UHP conditions (~550 °C and 2.6–2.7 GPa - Angiboust et al., 2012). The Lago Maggiore Unit contains HP metapelites with small amounts of rutile and eclogite-facies Fe-Ti metagabbros with a larger concentration of rutile (Angiboust et al., 2012). This could, therefore, represent both a pelitic and a mafic source for the Varaita and Maira detrital rutile. Rubatto and Hermann (2003) have reported that eclogites from the same unit contain up to 5 % rutile. They also analysed the Nb concentration of these rutiles and found concentrations that are lower compared to the low-Nb detrital grains (65 compared to >100 µg/g). All these observations help us conclude that Varaita and Maira Rivers might not be receiving any detrital signature from the Dora Maira Massif presently. However, the small number of rock samples analysed does not permit us to make any conclusive remarks. Clearly, more studies are needed in order to better characterise the potential source lithologies and their rutile geochemical signatures. 84 Chapter 4 4.7.1.3. Po River The Nb-Cr diagram for the Po River sample (SL 10/15 – Fig. 1a) displays a large spread of concentration for these elements as it probably has multiple sources for its sediments (Fig. 3e). The metamorphic Sesia Lanzo rutiles overlap with almost the entire pelitic detrital fraction, indicating that it might represent the main source of rutile from metapelitic rocks found in the Po’s recent sediments. To further investigate if the pelitic fraction of the detrital rutiles from Po River are drained from the SLZ, a multi-element diagram from both groups of rutile grains has been made (Fig. 6). The grey area represents the SLZ samples and the individual points represent detrital grains from Po River. This chart clearly shows that at least 20 detrital grains (out of 122) have a very similar geochemical signature with metamorphic rutiles from the SLZ. In contrast, the Dora Maira rutiles are not represented in the detrital record. Most of the detrital rutiles from Po River have a mafic origin, based on the Nb-Cr diagram. Therefore, this discrimination diagram can be used for HP-LT tectonic settings on large source-rock-to-sediment distances too. The Po River sample appears to contain more detritus from the SLZ than other sources and this might imply that more of that material has been eroded than the other sources so potentially this source is being preferentially weathered. 85 Chapter 4 Symbols – Rt grains from Po River Grey shaded area – trace element composition range for Rt from the SLZ FIGURE 6: Multi-trace element diagram containing rutile compositions normalised to R10; the grey field represent the range of composition for the SLZ rocks, while the individual points represent Po River detrital rutiles; this diagram shows that at least 19 grains (from 121 grains) from the sediments can be linked back to their source rocks from the SLZ. 4.7.2. Zr-in-Rutile Thermometry Figure 3 shows Po’s hydrographical structure including the locations of the sampled rivers. It also shows the Zr concentration frequency diagrams for the different areas (Rio delle Balme, Chiusella 1 and 2, Dora Baltea, Varaita, Maira and Po) that were calculated using two calibrations: Ferry and Watson (2007) and Tomkins et al. (2007). The rest of the potential source rocks (Monviso, the country rocks from the DMM and the IVZ) are discussed separately. 86 Chapter 4 The Rio delle Balme/Chiusella 1 diagram (Fig. 3a) has two main peaks corresponding to low-temperatures – 511 and 541 °C. They make up 60 % of the detrital rutiles load, with the rest clustering around a peak of 577 °C. The average calculated temperature for metamorphic rutiles coincides with the second Zr peak (538 °C). The estimated peak temperature for the HP unit of the SLZ is 500-600 °C (Pognante, 1989; Tropper et al., 1999; Zucali et al., 2002), therefore, in agreement with our results. Moreover, Desmons and O’Neil (1978) have calculated the average formation temperature for the Eastern Sesia Lanzo Zone, using oxygen isotope fractionations between quartz and rutile and between quartz and white mica, to be 540 °C. The Chiusella 2/Dora Baltea plot (Fig. 3b) has a similar distribution but with a few more HT rutiles. The 577 °C peak from Rio delle Balme/Chiusella 1 shows up in the Torrente Chiusella 2 River too, increasing from 40 % to 61 % from the total detrital load. Another significant peak is the 533 °C, which is probably the one from Rio delle Balme/Chiusella 1 corresponding to the SLZ metamorphic rutile. The lowest T peak, 498 °C, from the first diagram is present here too. The highest percentage of detrital rutile in the Dora Baltea River (91 %) is represented by grains with an average temperature of 520 °C, which might be interpreted as the correspondent of the lowest T peak from the former two diagrams. The rest of the detrital load of the river is represented by HT rutiles, clustering around two peaks at 722 and 769 °C. Considering that the estimated peak temperature for the Ivrea Zone, using the Zr-in-rutile thermometer, is 930 °C (Luvizotto and Zack, 2009), these HT values could be sourced from this granulite-facies massif. Also, the HT fraction has a metapelitic source, as shown by Fig. 3b, in agreement with the lithology of the rocks that contain rutile from the IVZ (Luvizotto and Zack, 2009). This is further demonstrated by Fig. 5 which shows that the trace element signature of metamorphic rutile from the IVZ (Luvizotto and Zack, 2009) overlaps with the geochemical signature of the HT detrital rutiles from Torrente Chiusella 2/Dora Baltea. These interpretations illustrate that the Zr-in-Rutile thermometer is a reliable tool for the HP-LT rocks from Sesia Lanzo where the catchment area is in the proximity of the source rocks. Also, the high temperature grains suggest that the 87 Chapter 4 detrital rutiles are a good provenance tool for granulite facies terranes using this thermometer/calibration. The detrital rutiles from Varaita and Maira were investigated for three possible source rocks: (1) the biotite-phengite gneiss country rocks; (2) the UHP rocks from the DMM; (3) the Monviso metapelites and metagabbros. The main peak in the Varaita River (Fig. 3c - 91 %) is at 585 °C. This value is very close to the peak temperature estimated for the Monviso rocks, which is 550 °C, at ~2.6 GPa (Angiboust et al., 2012). The secondary peak, at 432 °C could have multiple origins, which cannot be further discussed due to lack of information. Maira River (Fig. 3d) has quite a large spread of Zr concentrations, with the main peak at 379 °C. Again, this value is very difficult to interpret, as there are multiple sources of rutile close to the catchment area of these two rivers (Fig. 1). However, a secondary peak is at a value very close to the peak T estimate for Monviso, which is 529 °C. Furthermore, a third peak at 608 °C could be correlated to the country rocks from the Dora Maira Massif. It has been suggested that these rocks might have reached 630 °C at about 1.5 GPa (Schertl et al., 1991). The last important peak in the Maira River is at 784 °C, a value very similar to the peak T estimate for the DMM – 800 °C (Schertl et al., 1991). Using the Ferry and Watson (2007) calibration (for silica-saturated rocks), the Zr-in-rutile thermometer indicates an average temperature of 595 °C for the metamorphic rutiles from the DMM. As this calibration considers an approximate peak pressure of 1.0 GPa, the obtained temperature will be much lower for rocks formed at higher pressure conditions. For the DMM, Schertl et al. (1991) has calculated a peak pressure of 3.7 GPa. Tomkins et al. (2007) calibration uses a pressure correction in its formula, being a better option for HP-UHP rocks (Zhang et al., 2010). This calibration indicates a peak temperature of 694 °C, which is more still considerably lower than the estimated peak T in the DMM (800 °C - Schertl et al., 1991). However, Groppo et al. (2007) calculated a pressure of 3.8 GPa at 730 °C, within the diamond stability field. Schertl et al. (1991) found evidence for 3.7 GPa at 800°C but already discussed that due to a slightly lower water activity the reaction curve tc + ky = pyp + coe + water (given for pure phases and a water activity of 1) has to shift to lower temperatures which also automatically means that you enter the diamond stability field. Therefore, the obtained temperature for the DMM is quite similar to measurements made by Groppo et al. (2007). 88 Chapter 4 The Nb vs. Cr diagram (Fig. 2c) showed no correlation of the detrital rutiles with the metamorphic grains from the DMM. Another important aspect to consider is that the DMM is the only HT source of rutile in this part of the Western Alps. Also, Maira and Varaita Rivers are the closest catchment areas to the DMM, which would imply that any eroded material would drain into these two rivers. Also, it is worth mentioning that thermometry calculations for the detrital sand samples have been made using the Ferry and Watson (2007) equation, whereas for the DMM rutiles, the coesite-field equation from Tomkins et al. (2007) has been used. Therefore, the latter equation will produce lower temperatures than the former, for the same Zr concentrations. This would partially explain the discordances between the HT detrital rutiles from Maira and the metamorphic rutiles from the DMM. Nevertheless, the limited amounts of samples do not permit any conclusive remarks. Future studies on mineral inclusions in the HT detrital rutiles would be useful to further investigate these observations. These observations do not allow any unequivocal interpretation regarding the reliability of the Zr-in-Rutile thermometer to be used on UHP-HT pelitic source rocks. In the Po River (Fig. 3e), 97 % of its detrital rutile load has two lowtemperature peaks, at 467 and 553 °C. The second peak temperature estimation is very close to the peak metamorphic temperature estimated for the SLZ. Moreover, the Nb vs. Cr diagram shows that most of the pelitic fraction of the Po River overlaps with the SLZ metamorphic rutiles. Furthermore, Fig. 6 shows the composition in several trace elements for metamorphic rutiles from the SLZ (grey field) and 19 individual detrital grains from the Po River overlapping the geochemical signature. All this clearly indicates that a large fraction of the SLZ can be found in the Po River, which is even more impressive considering the large distance between the source and the sampled sediment. Regarding the mafic rutile fraction within the Po River, Monviso is a possible source, considering the peak temperature estimated for this massif (550 °C). Moreover, the Eclogitic and Blueschist Piemonte Units from the Penninic Domain (Fig. 1a) and/or metabasites 89 Chapter 4 from the Mombarone and Bard Units in the SLZ (Fig. 1b) could be other possible sources of rutile from mafic source rocks. The two secondary peaks making up the rest 3 % of the Po River sample are HT, with values at 736 and 757 °C, coincide more or less with the HT detrital rutiles found in Maira River (728 °C) and in Torrente Chiusella 2/Dora Baltea (769 773 °C), respectively. This study has already demonstrated that the IVZ is draining into Torrente Chiusella 2 and Dora Baltea Rivers, based on petrogenetic and thermometry studies, therefore the granulite-facies signature is being preserved in Po’s sediments as well. Regarding the HT rutiles found in Maira River, the only possible source that this study has considered is the DMM, but the Nb vs. Cr diagram indicates that there is no correlation between the metamorphic and detrital rutiles. Therefore, this problem remains open to discussion and future studies of mineral inclusions in the detrital rutiles might help resolve it. The most important conclusion of all these observations is that the blueschistfacies signature is much higher compared to HT eclogite- to granulite-facies rocks. The biggest contributors of rutile in the Po River are the SLZ for the LT pelitic fraction, and, probably, the Monviso Massif, for the LT mafic fraction. This is even more impressive considering the large distance between the eroded rocks and the sediment’s location (~70 km). These results further demonstrate the capability of detrital rutile to provenance HP-LT source rocks, mafic or pelitic, in large riverine systems. It is a different situation for the HT rocks as they constitute a much smaller fraction of the detrital grains in the Po River. If in the proximity of the catchment area they have a major contribution to the sediment load, as the distance between the source and the sediments grows, they significantly decrease in abundance. It could be that the LT source rocks supply more rutile thus biasing the final population. 90 Chapter 4 4.7.3. Trace element budgets Budgets for four trace elements in rutile (V, Cr, Zr and Nb) were calculated for Sesia Lanzo and Dora Maira samples (Fig. 4a-d). Vanadium and Cr are known to have the same ionic charge and very similar ionic radii (0.64 and 0.61 Å, respectively), therefore, they will have comparable geochemical behaviour. This can be seen better in the SLZ samples, where both elements have similar percentages – less than 10 %. In the DMM samples, however, Cr has a more predictable behaviour, with the highest concentration in the jadeite quartzite. This might be explained by the fact that this sample has the smallest amount of garnet, therefore, Cr accommodates better in rutile. At the other end, the lowest Cr percentage is found in sample 15623a which has the highest abundance of garnet. It has been shown that rutile has a preference for clinopyroxene and garnet, and a weaker affinity for rutile (Zack et al., 2002b). Vanadium, on the other hand, does not seem to be controlled too much by the amount of garnet, rather it is governed by the Fe-bearing silicates in general (Klemme et al., 2005). Hence, changes in V concentration in rutile may be related to changes in the paragenesis at constant whole-rock V concentration. This could indicate that at higher pressure conditions, V decouples from Cr, and has a more complex behaviour. The Zr budget is mainly controlled by zircon, therefore, the low percentages (all <1 %) is in agreement with this observation. At the other end, rutile is known to be the dominant carrier of Nb – up to 90 % (Zack et al., 2002b), which is reflected in our results too. Samples with the highest percentage of rutile (5 %) display, proportionally, the highest abundances of Nb: MK 30, MK 126 from the SLZ and 20254 and 19464 from the DMM. While at the lower end, are samples with a rutile concentration of 1-3 %. 91 Chapter 4 4.8. CONCLUSIONS 1. Provenance studies on the Sesia Lanzo Zone have demonstrated the applicability of rutile as a petrogenetic tool for pelitic rocks in HP/LT tectonic settings 2. The Zr-in-Rutile thermometer is a reliable method for HP metapelitic rocks with a good correlation between metamorphic and detrital rutiles; calculated temperatures are in agreement with previous studies (538 °C for the SLZ metamorphic rutiles) 3. The geochemical signature of the source rocks is unaltered in rutiles even over long distances (Po River) for HP-LT rocks (SLZ) 4. The Dora Baltea River contains some high-temperature rutiles that could be linked back to the granulite-facies metapelites from the IVZ; this is strengthened by similar trace element compositions and Nb vs. Cr observations on the detrital and metamorphic rutiles 5. The Nb vs. Cr discrimination diagram for the Dora Maira Massif has shown no correlation between metamorphic and detrital rutiles; this might suggest that the eroded material is not drained into the Varaita and Maira Rivers, or that the Nb vs. Cr diagram has a limited applicability at UHP/HT conditions 6. Rutile thermometry on the UHP-HT samples indicates that the Tomkins et al. (2007) calibration is a better fit for these rocks, than the Ferry and Watson (2007) calibrations, because it contains a pressure correction; a peak temperature of 694 °C is considerably lower than previous estimations on the DMM (800 °C), considering a potential resetting of Zr during cooling / retrogression 7. Several T peaks in the Varaita and Maira Rivers can be linked with temperature estimations from the Monviso Massif, the DMM country rocks and the UHP rocks from Dora Maira 92 Chapter 4 8. The Po River contains a higher percentage of LT rutiles (97 %) compared to HT grains (3 %); this might suggest that the rivers could control this concentration or most likely that the source rocks supply more rutile thus biasing the final population 9. The pelitic fraction of the LT detrital rutiles from the Po River can be linked back to the SLZ, also using trace elements; moreover, the metamafic fraction could possibly be sourced by the Monviso Massif; lastly, no definitive conclusions have been made regarding the HT detrital rutiles, but the IVZ and DMM are two potential sources. 10. Pelitic rocks formed at HP/LT conditions could represent the weakest HP material during erosion in mountain belts, which could account for their paucity in ancient exhumed orogenic belts 93 Chapter 5 Trace-element characteristics of rutile in HP-UHP rocks in the Western Gneiss Complex, Norway: implications for Zr-in-rutile thermometry and provenance studies 5.1. ABSTRACT Rutile is widely distributed in metamorphic rocks ranging from greenschist to granulite facies. It has been demonstrated to be a key mineral in provenance studies, property reflected by its Nb and Cr concentration. Moreover, the Zr content incorporated in its structure during crystallisation provides the temperature at which rutile formed. These features are further investigated in high-pressure (HP) to ultrahigh-pressure (UHP) rocks from the Western Gneiss Complex. Trace element characterisation (V, Cr, Zr, Nb, Mo, Sn, Sb, Hf, Ta, W and U) is used to fingerprint the geochemical features of rutile in both metamafic and metapelitic source rocks. The Nb vs. Cr diagram suggests trace element mixing above 650 °C, with mafic HT rocks plotting along the mafic-pelitic boundary and some in the pelitic area. The LT samples behave coherently, plotting in the correct region of the diagram. The Zr-inrutile thermometer suggests peak temperatures that are generally higher with ~40 – 100 °C than previous estimations. These are argued to be more reliable than the exchange geothermometers used for former calculations. Extremely high Nb compositions (up to 118 000 µg/g) in two internal eclogites, hosted by a mantlederived, orogenic peridotite, suggest some Nb-rich external source. Trace element comparison between metasomatic and metamorphic rutiles is not conclusive for their discrimination. However, published detrital rutile data from the Norwegian Sea indicates a good correlation with them using trace element compositions. Observations regarding rutile formed by the breakdown of ilmenite and titanomagnetite have been made. Moreover, trace element characterisation has been 94 Chapter 5 used to fingerprint distinct geochemical compositions for rutile in a HP/LT Omp vein and rutile in a UHP/HT Omp vein. Trace element profiles in rutile grains from 5 different samples have been described. 5.2. INTRODUCTION Rocks exposed at the surface of the Earth are prone to weathering and erosion, including metastable rocks formed in high-pressure or ultrahigh-pressure tectonic settings. The clastic sediments that derive from these rocks generally contain heavy minerals (e.g. zircon, titanite, tourmaline, garnet, chrome spine and rutile) that keep the geochemical signature of the source rocks. Heavy mineral analysis and geochemical description are useful tools for exploration of mineral resources, basin analysis and palaeotectonic reconstructions. Rutile has been shown to be a key mineral for provenance information and metamorphic facies characterisation (Zack et al., 2004a and b, Watson et al., 2006, Tomkins et al., 2007 and Ferry and Watson, 2007, Triebold et al., 2007, Meinhold et al., 2008). This study investigates the geochemical parameters of rutile in HP-UHP rocks from the Western Gneiss Complex (WGC) a continental ultra-high pressure terrain in the Scandinavian Caledonides, by using the Nb vs. Cr discrimination diagram, the Zr-in-rutile thermometer and trace element characterisation (V, Cr, Zr, Nb, Mo, Sn, Sb, Hf, Ta, W and U). This will further aid in assessing rutile’s ability to reflect an UHP signature in the detrital record of old subduction systems. In the southern Baltic Shield, titanium deposits are of three categories: igneous (ilmenite, magnetite and apatite), metasomatic (Proterozoic scapolitised and albilised rocks) and metamorphic (such as rutile-bearing eclogite-facies rocks – Korneliussen et al., 2000a). During the Caledonian orogeny, high-pressure metamorphism and eclogitisation transformed mafic rocks with ilmenite into rutilebearing rocks in which iron from ilmenite entered garnet and titanium formed rutile (Korneliussen et al., 2000b). Also, metasomatic alteration of Ti-rich gabbros and amphibolites is another process by which later rutile deposits formed (Korneliussen et al., 2000b). 95 Chapter 5 As rutile forms at pressures between 1.2 and 1.5 GPa (Liou et al., 1998; John, 2010), its occurrence is concentrated in rocks involved in major convergent platetectonic processes, such as subduction of oceanic and continental crust or crustal thickening in the course of continental collision. The close connection between rutile formation and convergent tectonic processes calls for a closer examination of rutile geochemistry, including minor and trace element compositions. This could help the investigation of ancient settings, where a fresh record does not allow a more comprehensive study. In situ analysis by laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) is ideal due to the speed of analyses and the identification of contaminating mineral inclusions compared to single grain dissolution techniques. In this paper we characterise trace element patterns of rutile in low- and medium-T eclogites (after definitions of Carswell, 1990), eclogite-facies pelites including eclogites derived from granulites and fingerprint different geochemical compositions for metasomatic and metamorphic rutile. We evaluate the Zr-in-rutile thermometer (Zack et al., 2004a; Watson et al., 2006; Tomkins et al., 2007; Ferry and Watson, 2007) to evaluate how well it fits the known temperature regime and to study the possible influence of silica undersaturation. As different tectonic settings will produce different types of metamorphism, this will help assess how reliable is this thermometer in subduction systems. Low T-high P regimes (where blueschists and low T eclogites form) are exclusively produced during modern, fast subduction (e.g. Piatt, 1975; England and Thompson, 1984; Cloos, 1985). This terrain was chosen for the overall study as it extends the range of P and T that previously covered in the work on Syros and Western Alps rocks (see Chapters 3.3 and 4.3) and focuses more on UHP rocks. Also, the WGC is a continental subduction zone that could potentially have its own characteristic rutile signature; evidence for UHP and deep continental subduction did not happen before the Neoproterozoic (e.g. Brown, 2006), but detrital rutiles could be a way of testing this. One of the other major causes of rutile growth in the crust is due to metasomatism and therefore we need to determine how to distinguish metasomatic rutile from metamorphic rutile. Our sample-set from the Western Gneiss Complex 96 Chapter 5 (Fig. 1) contains metasomatic rutile in addition to HP-UHP metamorphic grains and here we present trace element studies on these two types of rutiles to identify geochemical tracers that distinguish between them. This study will further aid the identification of the tectonic setting of the high-pressure to ultrahigh-pressure metamorphism by using trace element characteristics of rutile. The overarching aim is to use detrital rutile as a tool for investigating long-eroded orogenic belts to reconstruct their tectonic evolution. 5.3. GEOLOGICAL SETTING The Scandian phase of the Caledonian Orogeny was initiated by the closure of the Iapetus Ocean that started about 435 Ma ago (Griffin & Brueckner, 1980, 1985; Gebauer et al. 1985; Roberts and Gee, 1985; Mørk & Mearns, 1985; Krabbendam et al., 2000; Hacker and Gans, 2005). The continental collision resulted in the margin of the Baltic craton being subducted northwestwards below Laurentia (Root et al., 2004). The Western Gneiss Complex (the outcrop area - Fig. 1) is a large basement window exposing reworked Baltic craton that was overlain by a series of Caledonian nappe units (i.e. the lower, Middle, Upper and Uppermost Allochthons) by 435-400 Ma. The predominant lithology of the Western Gneiss Complex (WGC - the lithotectonic assemblage) is Proterozoic granodiorite-tonalitic gneisses with granitic leucosomes. Other lithologies are anorthosites, ultramafic rocks, metasediments and mafic rocks (Bryhni, 1966). Eclogites are ubiquitous in all but the extreme SE of the WGC, but are particularly common in belts of metasediments and anorthosites (Bryhni, 1966; Carswell, 1968). They cover around 25 000 km2 (Griffin et al., 1985) with UHP eclogites (coesite-bearing) located in the NW (Root et al., 2005). The Scandian Phase of the Caledonian Orogeny and the associated ultrahighpressure metamorphic event took place 420-400 Ma ago (Griffin and Brueckner, 1980, 1985; Gebauer et al., 1985; Mørk and Mearns, 1986). It reached 3.6 GPa and 800 °C (Lappin and Smith, 1978; Cuthbert et al, 2000; Terry et al., 2000b; summary in Hacker, 2006) and possibly as high as 4.5 GPa (Vrijmoed et al., 2006; Carswell et al., 2006). The Scandian eclogite facies metamorphic grade increases from ≤ 600 °C 97 Chapter 5 (in the SE) to ≥ 750 °C in the NW – (Krogh, 1977; Griffin and Brueckner, 1980; Krogh and Carswell, 1985; Cuthbert et al., 2000; Kylander-Clark et al., 2009). Coesite-bearing eclogites and gneisses are found in three antiformal culminations between Nordfjord and Modlfjord (Fig. 1), of which the northernmost one centred on the Nordoyane is known to contain metamorphic microdiamond (e.g. Dobrzhinetskaya et al., 1995). Exhumation took place by E-W extension with a relatively rapid rate between 410-385 Ma (e.g. Wilks & Cuthbert, 1994; Berry et al., 1994; Andersen, 1998; Fossen and Dallmeyer, 1998; Root et al., 2004), at amphibolites-facies conditions (Hacker, 2007) associated with extensive anatectic migmatisation in the northwestern part of the WGC (Cuthbert, 1995; Labrousse, 2002). The famous UHP metamorphic rocks (Coleman and Wang, 1995) described in the WGC include, in addition to normal coesite eclogites (Smith, 1984, 1988; Wain, 1997b), opx eclogites (Lapin and Smith, 1978; Carswell et al., 1985; Carswell et al., 2006), garnet peridotites (Bryni, 1966; Carswell, 1974, 1986; Lapin, 1974; Brueckner, 1977; Medaris, 1980, 1984; Jamtveit, 1984; Brueckner et al., 2010; Beyer et al., 2004), coesite gneiss (Smith, 1984; Wain, 1997b; Cuthbert et al., 2000; Terry et al., 2000b) and diamond-bearing gneiss (Dobrzhinetskaya et al., 1995; and diamond-bearing ultramafites: Van Roermund et al., 2002; Vrijmoed et al., 2008).They are divided in two groups, based on the association with the surrounding rock: as boudins within gneisses – “country rock eclogites” or “external eclogites” and within orogenic peridotites massifs known as “internal eclogites” (Brueckner et al., 2010). The external eclogites have reached HP-UHP and HT conditions, as indicated by coesite (Smith, 1984; Wain, 1997b; Cuthbert et al., 2000; Terry et al., 2000b). Estimations regarding P-T conditions are 2.4 – 6.0 GPa and 650 – 900 °C (Cuthbert et al., 2000; Carswell et al., 2006; Van Roermund 2009a). 98 Chapter 5 FIGURE 1: Geological map of the WGC between Sognfjord and Molde, showing sample locations. Geological units after Kildal, 1970; Robinson, 1995; Tveten, 1995; Tveten and Lutro, 1995a, b. Eclogite localities from Krogh, 1980, 1982; Cuthbert, 1985; Griffin et al., 1985; Smith, 1988; Bailey, 1989; Chauvet et al., 1992; Krabbendam and Wain, 1997 (including additional unpublished data of the authors). All rights reserved to Simon Cuthbert for map editing (after Cuthbert et al., 2000). 99 Chapter 5 The UHP eclogite zones contain numerous highly magnesian dunite bodies with local development of garnet peridotite and olivine-garnet websterites, as well as the “internal” eclogites. These “orogenic peridotites” are considered to be fragments of the Laurentian subcontinental mantle that were incorporated into the top of the subducting Baltica slab (Beyer et al., 2012 and refs within). Most of the garnetbearing parageneses in the peridotites appear to be Proterozoic in age, long predating Scandian collision (Brueckner et al., 2010) and in the sampling area of this study no Scandian garnet is known in the peridotites. However, some of the internal eclogites with Fe-Ti-rich compositions hosted within the orogenic peridotite have enigmatic “early Caledonian” ages (Mehta & Brueckner, 2003; Medaris et al., 2005) and may be related to the metamorphism of the external eclogites, but this remains uncertain. The largest of the orogenic peridotites is the Almklovdalen Ultramafic body, located in the southern WGC (Fig. 1), part of the UHP metamorphic zone (see review by Carswell et al., 1999). It is made of several ultramafic bodies located around a central gneiss area (Grønlie and Rost, 1974). Chlorite-poor dunite or harzburgite is the main rock type with chlorite-rich peridotites, garnet lherzolites, wehrlites and eclogites less abundant (Beyer et al., 2006). At Raudkleivane, Fe-rich eclogite pods can be found (sample N 55), that consist of Na-rich omphacite + almandinegrossular-pyrope garnet + rutile + apatite (Griffin and Qvale, 1985). They have been described as “layers in garnet peridotites” (Lappin, 1974). The Gusdal Quarry is another important ultramafic body found at Almklovdalen, consisting mainly of fresh, anhydrous dunite, which is relatively free of chlorite and serpentine. Internal Ti-rich eclogite boudins can be found (samples N 38 and N 40), as well as pyroxenites and garnet peridotites (Medaris and Brueckner, 2003). 5.4. SAMPLE DESCRIPTION A total of 11 samples (Fig. 1) have been investigated, 8 for metamorphic rutile grains and 3 for metasomatic grains. Samples containing metamorphic rutiles (Table 1) are from the Western Gneiss Complex (N 27, N 28, N 29, N 31 and N 35) and from the Almklovdalen Ultramafic body (4-1A, N 38 and N 40). The Nybo eclogite, previously described by Lappin & Smith (1981) is a bimineralic, fresh eclogite with xenoblastic, coarse-grained garnets and prismatic omphacite defining a 100 Chapter 5 moderate linear shape fabric (N 27). Rutile appears as relatively small subhedral grains, ranging from 30 to 200 µm, as inclusions in garnet and in the matrix. The Vetrhuset eclogites are part of a swarm of pods within a metasedimentary unit sandwiched between orthogneisses (Carswell et al., 2003). They are known to be coesite-bearing (Wain, 1997a; Cuthbert et al., 2000), being surrounded by eclogite facies schist and gneiss with prograde zoned garnets (Wain, 1998). The coesite-bearing eclogite (N 28) is made of large, subidioblastic garnets with omphacite defining a linear shape fabric. Rutile grains are subhedral, 30-300 µm and developed along the foliation. They can be found as inclusions in garnet, in the core and in the rim, and in the matrix. Eclogite N 29 contains large, xenoblastic garnets. Rutile grains are anhedral, 2-3 cm in size and form dense aggregates. The UHP pelitic garnet-kyanite-phengite schist (N 31) is slightly retrograded with biotite + plagioclase replacing phengite and fine-grained white mica replacing kyanite. Garnets are subhedral, containing quartz and rutile as mineral inclusions. Carswell & Cuthbert (2003) found PCQ after coesite in a garnet rim. Small, subhedral rutile grains are found in the matrix as well (30-80 µm). 101 Chapter 5 TABLE 1: Mineralogical description of the investigated source rocks: samples 1-7 were analysed for metamorphic rutiles and 8-11 for metasomatic rutiles. 102 Chapter 5 The eclogite from Flatraket Bekke (N 35) is composed of coarse-grained, xenoblastic garnet, with a moderately developed foliation given by omphacite and white mica. Rutile is parallel to this foliation, exhibiting a subhedral crystal shape. It is 30-300 µm long and appears as inclusion in garnet and in the matrix. The eclogite was recrystallized from a mafic (metagabbroic?) layer in a protolith of granulitefacies anorthosite (Wain, 2001). The samples from Gusdal mine in the Almklovdalen peridotite massif (N 38 and N 40) are bimineralic, Fe- and Ti-rich eclogites that form large pods within chlorite and garnet peridotites and garnet websterites with large, subidioblastic garnets. Rutile appears as small grains (0.1-0.2 mm) in the matrix and in association with amphibole (hornblende or barroisite), forming clusters and aggregates, surrounding garnets (0.1-25 mm). The last investigated metamorphic sample is a Feand Ti-rich eclogite from Raudkleivane (Griffin & Qvale, 1985; Mehta & Brueckner, 2003) with a medium-grained texture made of omphacite, garnet, rutile and apatite (these features are also characteristic for the Almklovdalen peridotite massif samples) . Garnets from these “superferrian” internal eclogites have garnets with strong “prograde” colour zoning with darker cores and paler rims, having inclusions of aluminous amphibole in the cores (Griffin & Qvale, 1985). Some paler garnet enclosing rutiles is recrystallized into bands of polygonal garnet subgrains. Retrogression is indicated by the presence of secondary amphibole and the breakdown of omphacite to symplectite. Rutile is present as small grains, 30-100 µm in size, in the matrix and as inclusion in garnets. Two metasomatic samples (N 19 and N 55) are omphacite veins with large aggregates of rutile. Sample N 19 from Naustdal, a Ti-rich eclogite with a locallypreserved gabbroic protolith that lies in the lowest-T part of the WGC (Fig. 1), is made of a layer of small grains of idioblastic garnets with stretched-out quartz veins, perpendicular to the garnet layer, a layer of omphacite and one of amphibole. Rutile appears as small, subhedral grains in association with garnet and quartz (0.1-0.2 mm) and as long, prismatic grains (0.2-25 mm), in association with the omphacite and amphibole layers. The last metasomatic sample (N 36) is an eclogite facies vein-fill, from within the Flatraket anorthosite mass (Fig. 1), mostly made of quartz, white 103 Chapter 5 mica (phengite?), kyanite and rutile. Rutile grains are long prismatic and 1-2 cm in size. Microphotographs for relevant samples are presented in Figure 2a-f. a b c d e f FIGURE 2: Microphotographs of thick (~ 100 µm) sections for significant samples (a scale bar of 1 mm is visible in all images): a. Sample 4-1A (Raudkleivane site) showing metamorphic rutile in an eclogite; b. N 28 is a PCQ-bearing eclogite from Vetrhuset with metamorphic rutile grains; c. N 36 shows a cm-size metasomatic rutile in a white mica matrix; d. N 38 is a Gusdal Quarry Ti-rich eclogite with rutile forming clusters together with an Amp at the Omp-Grt limit; e. N 40 is another Gusdal Quarry Ti-rich eclogite with rutile forming clusters together with an Amp inside a garnet; f. N 55 shows metasomatic rutile in Omp+Chl vein. 104 Chapter 5 5.5. METHODOLOGY Thick sections and epoxy resins have been prepared for investigations. Analysis was conducted using a New Wave UP-213 laser ablation system (solid state Nd:YAG laser operating at 213 nm, aperture imaged and with a pulse width of 2– 3 ns), combined with an Agilent 7500cs ICP mass spectrometer. Analyses were calibrated against the NIST SRM 610 glass (GeoReM preferred values: http://georem.mpch-mainz.gwdg.de/), in addition to rutile standard R10 (Luvizotto et al., 2009b). Element spectra were reduced using the software ‘LAMTRACE’ (Simon Jackson, Geological Survey of Canada). Data were collected online at 1 point per peak in time resolved mode and processed offline by LAMTRACE. The measurements included the following isotopes: 26Mg, 27Al, 29Si, 31 P, 43Ca, 45Sc, 49Ti, 51V, 52Cr, 55Mn, 59Co, 66Zn, 69Ga, 72Ge, 85Rb, 88Sr, 89Y, 90Zr, 93 Nb, 95Mo, 118Sn, 121Sb, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb, 163 Dy, 165Ho, 167Er, 169Tm, 173Yb, 175Lu, 177Hf, 181Ta, 182W, 208Pb, 232Th, 238U. For more details, please refer to Chapter 2. 5.6. RESULTS 5.6.1. Source rock rutile geochemistry data The Gusdal and Raudkleivane eclogites from the Almklovdalen peridotite are treated separately, as they severely bias the average compositions. The metamorphic rutile has a large spread of Nb concentration, from 11 to 5280 µg/g, with an average of 658 µg/g. The metasomatic rutile has a more narrow distribution with values between 41 and 1560 µg/g and an average of 1560 µg/g. Chromium varies from 40 to 786 µg/g in metamorphic rutiles and from 5 to 142 µg/g, in metasomatic rutiles. The average Cr composition in metamorphic grains is 244 µg/g and 72 µg/g in metasomatic grains. 105 Chapter 5 The Almklovdalen eclogites have much higher Nb and Cr concentrations, ranging from 1280 to 118 000 µg/g and 746 to 2020 µg/g, respectively. The average Nb composition is 36984 µg/g and the average Cr concentrations is 1231 µg/g. On the Nb vs. Cr plot (Fig. 3a), the investigated samples are part of both groups of the diagram, metamafic and metapelitic, groups identified by previous studies (Zack et al., 2004b; Triebold et al., 2007; Meinhold et al., 2008). Samples that plot on the metamafic region of the diagram are 4-1A, N 19, N 29 and N 35, with Nb concentration <800 µg/g. Samples with Nb > 800 µg/g, plotting on the metapelitic area of the diagram, are N 38, N 40, N 31 and N 36. The first two are internal eclogites, the third is a true pelite and N 36 is a hydrothermal segregation. The rest of the samples – N 27, N 28 and N 55, have Nb compositions along the metamafic-metapelitic limit, with rutile grains plotting in both groups: 761-959 µg/g, 114-1100 µg/g and 758-1560 µg/g, respectively. A very interesting observation is that the Nb concentration for the internal eclogites from the Gusdal Quarry goes up to 118 000 µg/g (0.118 wt %). Figure 3b contains the investigated metamorphic and metasomatic rutile groups plotted against detrital data from the Norwegian Sea (Morton and Chenery, 2009). The Almklovdalen internal eclogites are treated as a separate band on the diagram as they bias the main eclogite band. The diagram shows that there is a good correlation between the metamorphic and metasomatic samples, with the sample from Naustdal (N 19) plotting outside the detrital field. More importantly, the Almklovdalen internal eclogites partially overlap with the geochemical signature of the detrital rutiles. Moreover, the multi-element diagram (Fig. 4), from which the Almklovdalen internal eclogites have been taken out, further sustains this observation, with overlapping compositions across the range of samples. The detrital grains have a higher Nb, Mo, U and Zr composition range. 106 Chapter 5 10000 4-1A Mafic 1000 N 19 Cr (µg/g) N 27 N 28 Pelitic 100 N 29 N 31 N 35 10 N 36 N 38 N 40 N 55 1 1 10 100 1000 10000 100000 1000000 Nb (µg/g) Metamorphic Rt Metasomatic Rt Almklovdalen internal eclogites Detrital Rt (Morton et al., 2009) 10000 Cr (µg/g) 1000 100 10 1 1 10 100 1000 10000 100000 1000000 Nb (µg/g) FIGURE 3: Provenance study plots: a. Nb vs. Cr showing the metamafic and pelitic areas according to Meinhold et al., 2008 (after Zack et al., 2004b). The metapelitic samples (N 31 and N 36) plot in the correct area of the diagram, whereas the metamafic eclogites and omphacite veins are highly variable, with some behaving "normally" (4-1A, N 19, N 29 and N 35), two of them plotting along the empirical pelite/mafic field boundary (N 27 and N 28), and three other plotting in the pelitic region (N 38, N 40 and N 55); b. Nb vs. Cr for metamorphic, metasomatic and detrital rutiles (detrital data was used from Morton and Chenery, 2009) – this diagram shows a good overlap of the three groups of rutile with only sample 4-1A and N 38 plotting outside the detrital area. 107 Chapter 5 TABLE 2: LA ICPMS trace element data for all investigated samples (including mean concentration with standard deviation) 108 Chapter 5 FIGURE 4: Multi-element diagram for metamorphic, metasomatic and detrital rutiles. The two vertical segments represent element concentration for detrital grains. This chart shows a good overlap of the detrital with the other two groups of rutiles. It also emphasises the difference in trace element composition between metamorphic (higher Ta, Nb, W, Sn, V, Cr, U, Hf and Zr) and metasomatic (higher Sb and Mo) grains. 5.6.2. Zr-in-Rutile Thermometry Rutile grains form various textural relationships with the surrounding minerals: inclusion in garnet, in the matrix and at the contact between the garnet and the matrix. There are also two main types of rutiles: metamorphic and metasomatic (Fig. 2a-f). In-situ LA-ICP-MS analyses were performed on all types and observations regarding Zr concentrations have been made (see Table 2 for reference). Also, longitudinal and latitudinal trace element concentration profiles on coarsest matrix (grain size 0.5–1 cm) and metasomatic (grain size 2–3 cm) rutile grains have been analysed. Trace element profiles that include Zr concentrations are presented in Fig. 5ae. Two metasomatic samples, N 19 and N 36, have the lowest concentrations of Zr with an average of 77 and 110 µg/g, respectively (Table 2). Rutile in specimen N 36 has a higher Zr content, with an average value of 237 µg/g. Sample N 19 contains rutile in two textural positions: associated with garnet + quartz and associated with omphacite + amphibole. 109 Chapter 5 a b 110 Chapter 5 c d 111 Chapter 5 e FIGURE 5: Trace element profiles in five investigated samples: a. N 19 (Nausdal) – Cr, W and U are relatively variable; b. N 29 (Vetrhuset) – here, Zr, Hf, Sb and U are quite heterogeneous; c. N 36 (Flatraket) – most trace elements have a flat profile, with a few exceptions: Sb, Mo, W and U; d. N 40 (Gusdal Quarry) – Ta and Nb exhibit strong variabilities, with higher compositions in the core of the grain; e. N 55 (Arsheimneset) – Zr, Hf and U have irregular abundances. In the first relationship, the Zr concentration in rutile varies from 60 to 100 µg/g (Fig. 5a), whereas in the second association the Zr abundance is quite constant – 70-77 µg/g. Rutile in N 36 has a constant Zr concentration - 105-114 µg/g (Fig. 5c). Zirconium concentration profiles in metasomatic rutiles from N 55 indicate a considerate variability from 160 to 260 µg/g in a ~ 5mm long crystal (Fig. 5e). Regarding the “internal” eclogites in a mantle Peridotite, from the metamorphic rutiles, samples with the highest modal rutile have the highest concentration of Zr: an average of 555 µg/g in N 40 and 706 µg/g in N 38. Profiles in rutile grains from N 40 show a Zr variability of ~ 80 µg/g in a 2.5 cm long crystal (e.g. 527-608 µg/g - Fig. 5d). Zirconium in rutiles from N 38 ranges from 400 to 1100 µg/g, forming three distinct groups: 400-600 µg/g, 600-800 µg/g and 850-1100 112 Chapter 5 µg/g (Fig. 6a). The first group is formed by rutile localised at the contact between garnet and the matrix, whereas the other two groups is represented by grains found in the matrix. Another sample where the Zr concentration in rutile varies importantly is the UHP gneiss, N 31, where values from 120 to 250 µg/g are found in grains from the matrix (Fig. 6b). Also, in sample N 29, profiles on rutile crystals shows a variable Zr abundance, from 110 to 190 µg/g in a 2.5 cm long grain (Fig. 5b). Rutile in N 35 has a Zr concentration ranging from 125 to 200 µg/g (Fig. 6c). The analyses were all made on rutile grains found in the matrix. Within one grain, Zr varies from 130 to 160 µg/g (1 mm long). N 28 shows a smaller Zr variability, with values from 220 to 280 µg/g (rutile was analysed in the matrix and at the garnet-matrix contact - Fig. 6d). Within one grain in the matrix, Zr varies from 225 to 275 µg/g (1 mm long). Specimens 4-1A and N 27 contain rutiles with approximately homogenous Zr concentrations: 170 and 296 µg/g, respectively (Fig. 6e and f). Zack et al., 2004a, developed an empirical thermometer based on rutile+zircon+quartz assemblages. Subsequently, Watson et al., 2006, Tomkins et al., 2007 and Ferry and Watson., 2007 refined the thermometer resulting in more accurate calculations over a wider temperature and pressure range. This study uses the Tomkins et al. (2007) calibration for most samples, which includes a pressure correction. For the Nausdal sample, the β-quartz equation has been applied: T (°C) = [(85.7 + 4.73P)/(0.1453-Rln[Zr]Rt)] – 273.15, where P is the pressure (GPa), [Zr]Rt is the concentration of Zr in rutile (µg/g) and R is the universal gas constant. For the rest of the sample, the coesite-field equation has been used for thermometry calculations: T (°C) = [(88.1 + 0.206 ∗ P)/(0.1412 – R ∗ ln (Zrµg/g)] – 273.15. Pressure and temperature conditions for the investigated samples have been taken from Cuthbert et al. (2000), favouring the ‘max gros’ (maximum grossular) 113 Chapter 5 values, as they tend to maximize pressure and give better consistency with the occurrence of coesite. As some sample locations do not correspond exactly with the available P/T information, we used the closest locations to our samples. For the Nausdal sample (N 19), the P estimations for Kvineset, Inner Sunnfjord, are being used: 1.6-2.0 GPa. For the Vetrhuset specimens (N 28, N 29 and N 31), geothermobarometry calculations have been done, using microprobe data for the same rock body. The Ravna and Terry (2004) Grt-Cpx-Ky-SiO2 thermobarometer has been employed and the following values have been obtained: 2.2-2.5 GPa and 814-868 °C. As sample N 31 is an UHP gneiss, it does not contain Cpx, so the Grt-Cpx-Ky-SiO2 thermobarometry values could not theoretically be used for this rock. However, the UHP eclogites (N 28 and N 29) are embedded in this UHP gneiss, therefore the P and T estimations could be extrapolated to the pelitic sample. For the Flatraket Bekk samples (N 35 and N 36), conditions have been selected from Cuthbert et al. (2000): 1.8-2.5 GPa. Pressure estimations from Hornet, sample UHM-60 (same reference), have been considered for the Almklovdalen Ultramafic body samples (4-1A, N 38 and N 40): 2.5-2.7 GPa. Geothermobarometers have been employed for sample Arsheimneset (N 55) using microprobe data from the same location. The minimum pressure estimate was calculated at 3.7 GPa and is given by similar results using the Harley and Green (1984), Carswell (1989) and Brey and Köhler (1990) grt-opx geobarometers. The maximum value of 5.5 GPa was obtained using the Brey et al. (1986) barometer. 114 Chapter 5 a b c 115 Chapter 5 d e f FIGURE 6: Zr concentration histograms for samples: a. N 38; B. N 31; c. N 35; d. N 28; e. 4-1A; f. N 27 116 Chapter 5 For the last sample from Nybø (N 27), the P values are from the same locality (Nybø, Sørpollen): between 3.8 and 4.8 GPa. Thermometry calculations (using sample averages) have been made with the above mentioned calibration and the respective pressure estimations. Table 4 contains the results with their associated errors. For a complete set of trace element data and temperature measurements using the Zr-in-rutile thermometer, please refer to Appendix 12. For the EPMA whole rock data used for geothermobarometry calculations, please see Appendix 13. Lastly, for a comprehensive list of P/T results obtained using the EPMA data, please see Appendix 14. 5.6.3. Metamorphic vs. metasomatic rutile Distinguishing metamorphic from metasomatic rutile is an important aspect of this study because it will further evaluate rutile’s properties as a petrogenetic tool. A first order of discrimination between metamorphic and metasomatic rutile is morphology: the first type generally appears as small prisms, whereas the second type is long-prismatic (Fig. 2a-f). Trace element concentrations are a second order of discrimination (Fig. 4). Most elements (Ta, Nb, W, Sn, Cr, U, Hf and Zr) tend to have higher concentrations in metamorphic rutile, whereas Sb and Mo have slightly higher concentrations in metasomatic grains. Moreover, the Nb vs. Cr diagram seems to differentiate between the two groups (Fig. 3b), with higher Nb/Cr ratios for metamorphic grains. 5.6.4. Rutile formed by the breakdown of titanomagnetite vs. rutile formed by the breakdown of ilmenite For the discrimination of these two types of rutile, we have used the morphological description in Korneliussen (2000b). The Almklovdalen samples have not been included in this grouping, as they represent a special category. 117 Chapter 5 Rutiles most likely formed by the breakdown of titanomagnetite are usually small grains (Fig. 2a and b), mainly found in garnets as inclusions, while rutile presumably formed by the breakdown of ilmenite forms large aggregates or clusters, sometimes associated with chlorite (Fig. 2d and e). Figure 7a shows that, with the exception of V, all elements are more compatible with rutile formed by the breakdown of titanomagnetite. Rutile in the second group seems to have a much lower U concentration range. 5.6.5. Rutile in a HP/LT omphacite vein vs. rutile in an UHP/HT omphacite vein Figure 7b contains trace element compositions of rutiles, sorted by decreasing rutile/whole rock budget. There are two omphacite veins in the sample set, a HP/LT one (N 19) and a UHP/HT one (N 55). The comparison of two similar veins from different P-T regimes may be valuable, for constrains on trace element mixing. This figure shows that the composition range profiles cover almost entirely distinct areas of the chart. N 55 generally has much higher trace element concentrations, than N 19. The compositions overlap for V, U, Hf and Zr. 118 Chapter 5 a b FIGURE 7: Trace element compositions for different groups of rutiles: a. rutile formed by the breakdown of ilmenite vs. rutile formed by the breakdown of titanomagnetite – the first class exhibits the extreme range of concentrations for Ta, Nb (at the high end) and U (at the low end); b. rutile from an omphacite vein (N 19) vs. rutile from a kyanite-quartz vein (N 36) – both groups show quite different composition ranges. 119 Chapter 5 5.6.6. Trace element profiles Trace element profiles in metasomatic rutiles have been made for samples N 19, N 29, N 36, N 40 and N 55. In the Nausdal and Flatraket specimens (N 19 and N 36), analyses were made at an interval of ~250 µm, with 15 and 30 spots, respectively. For the Vetrhuset and Arsheimneset samples (N 29 and N 55), analyses were made at an interval of 300 µm, with 41 and 15 spots, respectively. The Gusdal sample (N 40) has a 14 spots profile, at an interval of 350 µm. All profiles are rimcore-rim, parallel to the longer axis. Errors are not included as they are smaller than the thickness of the profile line. Trace element profile for sample N 19 (Fig. 5a) shows that some elements are highly variable – Cr, W and U, whereas others have a relatively constant concentration along the grain - V and Zr. The rest of the elements exhibit a milder inconsistency. With a few exceptions, sample N 29 (Fig. 5b) has quite a flat trace element profile. Only Zr, Hf, Sb and U look quite heterogeneous with Nb, Ta, Hf and Mo less poignant. Very similar to this profile is the one for sample N 36 (Fig. 5c), with less variabilities: Sb, Mo, W and U. The last two samples show high heterogeneities for almost the entire range of elements. Niobium and Ta have higher concentrations in the core of the grain, in sample N 40 (Fig. 5d), than at the rims. Amongst the variable elements in N 55 (Fig. 5e), Zr is an important one, tracked by Hf. Vanadium and Cr are the only constant trace elements. 5.7. DISCUSSION 5.7.1. Source rock rutile geochemistry data A geochemical description, using the Nb vs. Cr diagram, is being assessed here, in order to investigate rutile’s potential use as a petrogenetic tool in UHP and HT tectonic settings. Within eclogites, Nb is dominantly hosted by rutile, while Cr tends to be shared with omphacite and garnet (Zack et al., 2002b). The Nb abundance of rutile is 120 Chapter 5 therefore controlled by the Nb/Ti ratio of the respective host rock. However, when other Ti-bearing micas, such as biotite and phengite, are present, rutile will not mirror the Nb/Ti ratio of the rock. This is important, as many investigated samples contain phengite. Previous studies have demonstrated that the Nb vs. Cr plot is indicative of the source rock of rutile (Zack et al., 2004b, Triebold et al., 2008, Meinhold et al., 2008). Metapelitic and metamafic rocks have been analysed and compared to Meinhold et al. (2008) diagram (Fig. 3a). The metapelitic sample (N 31) and the Ky-Qtz hydrothermal segregation (N 36) plot in the correct area of the diagram, whereas the metamafic eclogites and omphacite veins are highly variable, with some behaving "normally" (4-1A, N 19, N 29 and N 35), two of them plotting along the empirical pelite/mafic field boundary (N 27 and N 28), and three other plotting in the pelitic region (N 38, N 40 and N 55). However, care is needed when considering the exact location of the vertical field boundary, as it must have quite a large uncertainty in Nb, and it might allow some Nb values for mafic rocks to be as high as 1000 µg/g. Zack et al. (2002b, 2004b) set up the lower limit for metapelites at 900 µg/g and the upper limit at 2700 µg/g. Even so, Nb concentrations for some metamafic samples go up to 1560 µg/g (N 55), therefore, the Nb boundary is not the only factor worth taking into account. One interesting aspect is that one Vetrhuset sample gives a tight cluster in the mafic field (N 29) and the other shows a scatter starting from similar Nb values and extending towards the pelitic gneiss (N 31) values for the same site, which does suggest some "mixing". The Naustdal (N 19) sample behaves as expected for a mafic rock, even though it is a vein. This is the only sample from the coldest part of the Western Gneiss Complex (472-509 °C – from Cuthbert et al., 2000). If we assume that a 121 Chapter 5 possible source of fluids is dehydration of phengite in pelites and other mica-rich felsic rocks, then the experimental data seem to show that this will start to be effective during subduction at around 675 °C (see, e.g. Spandler et al., 2007) close to the solidus at around 2.2 GPa. Naustdal seems to have been cooler than that, while the other investigated eclogites were probably hotter (see discussion in the Thermometry sub-chapter), so this might provide an explanation for the mixed Nb/Cr concentrations. The fluid that generated the vein at Naustdal probably had some other source (perhaps internal, from the breakdown of amphibole in a precursor amphibolite at the amphibolite-eclogite facies boundary). Therefore, external fluid availability could be controlled by the stability of phengite, which either undergoes melting and generates distinct aqueous fluid and melt phases, or, at ultrahigh-pressures, undergoes dissolution to form a supercritical "melt" (i.e. a very water-rich silicate liquid). There is some Sr isotope data on eclogite Cpx from the UHP part of the WGC (Griffin and Brueckner, 1980, 1985) that shows high and unsupported radiogenic Sr values (i.e. the rocks are poor in Rb); this suggests that a fluid bearing radiogenic Sr sourced from old, felsic rocks had penetrated the eclogite either before or during eclogite facies metamorphism. This supports the idea that fluids generated in the host gneisses have flushed the eclogites. It is worth noting that both samples that plot along the mafic-pelitic boundary (N 27 and N 28) form distinct ‘enclaves’ in predominantly granitoid gneisses (Carswell et al., 2003). Wain et al. (2001) shows that transformation of anorthosites and gabbros in the Flatraket enclave required the action of an aqueous fluid (as a catalyst or aid to ionic mobility), and when such a fluid was lacking the old granulite facies mineralogy survived unaltered in spite of a high pressure overstep. The investigated kyanite vein (N 36) from Flatraket supports the idea that such fluids were sourced from the surrounding gneisses. The Gusdal Nb values (samples N 38 and N 40) fall outside the upper limit (2700 µg/g) established by Zack et al. (2002b, 2004b), with values up to 118 000 µg/g. Nevertheless, they are not too far in Cr values from the upper field boundary, and, given the uncertainty of placing this boundary, being greatly extrapolated, they 122 Chapter 5 may lie within error of the field boundary line. High-Nb rutiles (up to 57 600 µg/g) have been described before in zircon- and diamond-bearing eclogite xenoliths entrained in the Jericho kimberlite, Canada (Fig. 8). These rocks are thought to have undergone at least two episodes of metasomatism of rich-HFSE fluids or melts (Heaman et al., 2006). The Cr concentration is lower compared to the Gusdal Quarry samples (average of 150 µg/g compared to 1231 µg/g). FIGURE 8: Nb vs. Cr diagram for the Ti-rich Gusdal eclogites compared to zirconand diamond-bearing eclogites xenoliths from Jericho (data from Heaman et al., 2006): both types of eclogites have Ti-rich rutiles; however, the Gusdal samples have much higher concentrations in Cr than the other sample. The high Nb values could have several reasons: 1) These eclogites lie within a large slice of sub-continental mantle thought to have been sourced from Laurentian lithosphere (the hanging-wall to the Scandian subduction zone - see Beyer et al., 2012). They could, therefore, have been metasomatised by fluids from the Iapetus oceanic crust subduction or the subducted Baltica continental margin during final collision; 123 Chapter 5 2) The Raudkleivane rutiles, which have ordinary mafic values for Nb, are virtually identical to the Gusdal eclogites; but the Gusdal eclogites form a string of pods within a few metres of the margin of their host peridotite against the countryrock gneisses, so they could have been fluxed with fluids from the local gneisses after the peridotite was emplaced into the Baltica crust during the Scandian collision; the Raudkleivane eclogite could have escaped this metasomatism; 3) The Nb values for Gusdal extend up to extremely high values; perhaps the cause is some other type of metasomatism, for example by carbonatite or highly alkaline magma; this could have been at any time after the late Archaean, but before the Scandian collision (the crystallisation date for these eclogites are not known; however, the associated garnets in the peridotites are entirely Proterozoic so the eclogites could be as well). Considering all the above observations and arguments, we conclude that prudence is needed in interpreting detrital rutiles with borderline Nb values as they may have been subject to metasomatism by high-Nb fluids from associated pelites. Based on the reasoning regarding the stability of phengite, only rutiles with T <650 °C are likely to reliably indicate an unmodified mafic Nb/Cr signature. Additionally, the WGC "borderline" rutiles could be used to indicate the action of an external fluid source of pelitic character at T >650 °C, which is consistent with other available geochemical data. Other studies on hotter samples (UHT granulite-facies rocks Meyer et al., 2011; Kooijman et al., 2012) have also demonstrated that the Nb vs. Cr discrimination diagram should be used with care, as the trace element signature, which defines the provenance, might have been disturbed during retrograde metamorphism. The extreme values from Gusdal may either indicate a local source of Nb in adjacent gneisses, or may be due to pre-collisional metasomatism in the mantle. Several studies on UHT granulite-facies rutiles (Jiao et al., 2011; Meyer et al., 2011; Kooijman et al., 2012) have shown that the Nb concentration can go up to 16 000 124 Chapter 5 µg/g in rocks where rutile formed by the breakdown of Ti-rich biotite, as suggested by Luvizotto and Zack (2009). The same study also proposed that a large spread of Nb indicates that the element’s concentration has not reached equilibrium. Figure 3b shows a good relationship between metamorphic/metasomatic samples and the detrital grains analysed by Morton and Chenery (2009). The detrital pattern is consistent with sources from the modern coastal parts of the WGC where eclogite temperatures were higher than inland in inner Sunnfjord (e.g. Naustdal). This would explain the dominance of detrital data points at the mafic-pelite boundary and into the pelite field. It is worth mentioning that most of the rocks in the WGC are felsic, not mafic and most are granitoid and not pelitic. 5.7.2. Zr-in-rutile thermometry Zr-in-rutile thermometry was employed to test the degree of constraint by source rock lithology, pressure and silica activity. The Tomkins et al. (2007) calibration has been used for all samples, with the β-quartz equation for the nausdal sample, and the coesite-field equation for the rest of the samples. Figure 9 is a plot illustrating the range of temperatures determined for each sample, using their specific pressure estimates. Table 3 contains the minimum and maximum pressure values for all specimens, and the calculated temperatures using the Zr-in-rutile thermometer. The Almklovdalen Orogenic Peridotite Massif samples – N 38, N 40 and 41A, have quite different temperature estimations: much hotter for the Gusdal Quarry rutiles compared to the Raudkleivane ultramafic body grains. With average temperatures of 802 and 780 °C, the Gusdal samples are with more than 100 °C hotter than the third sample, which has a medium peak temperature of 683 °C. Cuthbert et al. (2000) obtained 621 – 630 °C for a coesite eclogite that lies just south of the Almklovdalen Peridotite. With an average standard deviation of 10 %, the error is ± 6 oC, consequently not explaining the big difference. However, Griffin and Qvale (1985) have calculated the P/T conditions for the Raudkleivane basic body, 125 Chapter 5 using the Grt – Cpx Fe – Mg thermometer and obtained 700 – 750 °C at 1.5 – 1.8 GPa. This is probably the minimum pressure, as there was no kyanite or phengite in their mineralogical assemblages. Therefore, our results agree with these estimations, considering that at higher pressure conditions, temperature will increase accordingly. FIGURE 9: Temperature vs. pressure diagram for all investigated samples (with error bars). The minimum and maximum pressure values have been used for Zr-inrutile thermometry calculations. Sample 4-1A N 19 N 27 N 28 N 29 N 31 N 35 N 36 N 38 N 40 N 55 min P (GPa) 2.5 1.6 3.8 2.2 2.2 2.2 1.8 1.8 2.5 2.5 3.7 max P (GPa) 2.7 2 4.8 2.5 2.5 2.5 2.5 2.5 2.7 2.7 5.5 min T (°C) 673 581 748 701 661 683 651 626 799 778 726 max T (°C) 694 598 770 708 667 690 666 640 804 783 765 STDEV 12 7 7 5 11 16 10 2 30 9 11 TABLE 3: Minimum and maximum pressure values used for Zr-in-rutile thermometry calculations (including errors). Calculations have been done using the Tomkins et al. (2007) calibration. 126 Chapter 5 The Nausdal sample also indicates a much higher average peak temperature – 590 °C – compared to previous estimations: 472 – 509 °C by Cuthbert et al. (2000) and 509 °C by Ravna and Terry (2004). The pressures considered for the Nybø specimen (N 27) have a huge range due to uncertainties arising from the very low concentrations of Al in Opx. The nearby Lyngenes Opx eclogite sample (from Cuthbert et al., 2000) gives P=3.4 GPa and T=707 °C, so the lower end of the pressure range is probably more realistic. At 3.8 GPa, the obtained temperature is 748 °C, which is with 40 °C hotter than previous studies have indicated. For the Vetrhuset samples (N 28, N 29 and N 31), the Grt-Cpx-Ky-SiO2 geothermobarometer (Kravna and Terry, 2004) was employed on the same rock body, giving 2.2 – 2.5 GPa and 814 – 868 °C. An important observation is that the temperature values are much higher than P/T studies on a close coesite-bearing rock body, Flatraket Harbour, that give 700 – 718 °C at 2.4 – 2.7 GPa (Cuthbert et al., 2000). Moreover, the lack of migmatite in the pelites here suggests that this is too high, because such high T would be likely to cause partial melting of a pelite. The Zr-in-rutile thermometer indicates temperatures of 661 – 708 °C for the Vetrhuset rutiles, which actually agree with the estimated conditions on the Flatraket Harbour body. The temperatures for the Flatraket Bekk samples (N 35 and N 36) – 626 – 666 °C - are in conformity with estimations made by Cuthbert et al. (2000) – 619 – 630 °C - and by Wain et al. (1997b) – 668 °C at 2.2 GPa. The Grt – Opx geothermometers (Mori & Green 1978; Harley, 1984; Lee and Ganguly 1988; Carswell, 1989; Lavrentyeva and Perchuk 1989; Brey & Köhler, 1990; Bhattacharaya et al., 1991) were used to calculate peak temperature conditions for the Arsheimneset (N 55) sample, using microprobe data on the same rock body and obtained values >800 °C (806 – 994 °C) for five calibrations and ~ 700 °C for the other two (Mori & Green 1978; Brey & Köhler, 1990). Using the same data, the grt-opx geobarometers (Harley and Green, 1984; Carswell, 1989; Brey and Köhler, 1990) gave pressure values of 3.7 – 5.5 GPa, that were used for thermometry: the 127 Chapter 5 obtained temperature range is 760 – 845 °C .Carswell (1989) – 732 – 775 °C, gives similar minimum and maximum peak temperature conditions to our results: 726 – 765 °C. Therefore, our thermometry results can be divided into two categories: samples with peak temperatures that confirm previous estimations and samples with temperatures much higher than former calculations (~40 – 100 °C). This implies that no diffusional resetting took place that would be reflected in an underestimation of peak temperatures. This is enforced by a fast exhumation rate that can be seen in the compositional variation in garnets from the Nordfjord area (Konrad-Schmolke et al., 2008b). It is worth mentioning that under dry conditions, Zr is even more robust even in slow cooling rates, as demonstrated by Kooijman et al. (2012). An important observation is that overestimation of temperatures has been reported to be possible only in quartz-free rocks (Zack et al., 2044a; Harley, 2008). However, in Chapter 3 – Trace-element characteristics of rutile in blueschist- to lowT eclogite facies mafic-ultramafic high-P mélange zones - Syros, Greece), the Zr-inRutile thermometer has been applied to quartz-free and quartz-bearing rocks and showed identical values. This implies that silica saturation has no effect on this thermometer. Also, previous studies on granulite-facies rocks (Luvizotto and Zack, 2009; Kooijman et al., 2012) have reported higher temperatures using the Zr-inrutile thermometer, compared to estimates using an exchange geothermometer. Even if the results are with ~ 100 °C higher, they are more reliable and considered the minimum peak temperature because of possible sub-unity Zr-activity. As all our reference geothermometers are of the same type, we conclude that our results are more robust and generally indicate hotter conditions for the Nordfjord – Stadlandet area. It is also worth considering the error magnitude when comparing the two types of thermometers: ± 50 °C for exchange geothermometers and ± 6 °C for the Zr-inrutile one. 128 Chapter 5 5.7.3. Metamorphic vs. metasomatic rutile A first order of discrimination between metamorphic and metasomatic rutiles is based on their morphology. Metasomatic grains are considerable larger in size (up to 3 cm) and are generally long-prismatic. They form nice prisms that can easily be recognised in hand specimens. However, a geochemical signature is needed when investigating detrital rutiles. The discrimination diagram (Fig. 3b) shows that the Nb and Cr compositions help distinguish metasomatic from metamorphic grains. Further constrains can be made using the rest of the trace elements (Fig. 4) and their specific composition range. Tantalum and Nb compositions in metamorphic rutiles expand over a high range, from the minimum to the maximum of the chart. The Gusdal Quarry samples (N 38 and N 40) have not been included in this diagram, as they have an anomalous high concentration in these elements. Zirconium, tracked by Hf, and Cr, tracked by V, also show higher concentrations in metamorphic rutiles. The first pair can be associated with higher peak temperatures, as Zr and Hf are temperature-dependant. Korneliussen (2000b) observed that an important difference between the metasomatic and metamorphic rutile deposits in the WGC is that rutile grains from eclogites usually have lower trace element compositions, particularly U. The lowest composition in U in this sample set is indeed represented by metamorphic rutiles. However, the highest concentration of U can be found in the UHP gneiss from Vetrhuset (N 31 – average of 49 µg/g) and in the Nybo eclogite (N 27 – average of 87 µg/g), therefore, in metamorphic rutiles. The limited amount of samples does not permit any relevant conclusions but only observations. This is also due to possible element mixing that was discussed in the provenance sub-chapter (5.1). Therefore, as at UHP-HT conditions trace element mixing is possible, it is very difficult to draw any conclusions regarding different geochemical signatures for metasomatic and metamorphic rutiles. Considering this study’s results, any investigations of the detrital record of a UHP tectonic setting 129 Chapter 5 would prove to be a difficult challenge. More research is needed in order to improve our understanding of the UHP rutile. 5.7.4. Rutile formed by the breakdown of titanomagnetite vs. rutile formed by the breakdown of ilmenite This grouping has been done solely on textural features, with no chemical background, using descriptions from previous studies (Korneliussen, 2000b; Luvizotto et al., 2009a). Morphologically, Korneliussen (2000) observed that large rutile grains probably formed by the breakdown of ilmenite (group 1), while small grains, generally found as inclusions in garnet, formed by the breakdown of titanomagnetite. Moreover, Luvizotto et al. (2009a) described rutiles that form polycrystalline aggregates made of fine-grained intergrowths of rutile and chlorite that replaces ilmenite. The study suggested that rutile has been derived from ilmenite breakdown due to the following reaction: Ilmenite + Silicates + H2O → Rutile + Chlorite Figure 2d and e shows rutile that possibly formed by the breakdown of ilmenite in association with an amphibole. This later mineral most probably formed at the expense of chlorite during prograde metamorphism. Konrad-Schmolke (2011) showed that chlorite was a likely early phase in the metamorphic development of these rocks, as it is required to explain the chemical zoning in the garnets. Furthermore, the study also indicated the presence of chlorite as a mineral inclusion in the garnet. It is worth mentioning that chlorite described in the mineralogical association is most probably late-stage, therefore not involved in the above reaction. The current sample set (excluding the ones with metasomatic rutile) has been divided into these two groups based on these characteristics. The Almklovdalen eclogites have been excluded from this grouping, due to exceptional trace element composition. 130 Chapter 5 Figure 7a shows that for most trace elements, the composition ranges overlap. This makes the task of distinguishing the two groups a difficult one. Nevertheless, rutile formed by the breakdown of titanomagnetite (group 2) has a much larger trace element composition range than the second group. A few elements tend to be preferentially partitioned into rutile from group 2: Ta, Nb, W, Sb, Sn, Mo, Cr and U. For group 1, U has a very limited range of composition, being the lowest point on the chart and probably reflecting the original concentration in the mafic protolith. It has been shown that ilmenite could be the source for Zr in zircon growth during conversion of mafic granulites and gabbros into eclogites, indicating that ilmenite precursor had substantial Zr (Bingen et al., 2001). Vanadium, Hf and Zr have similar concentrations in both groups. Another thing to consider here is if the protoliths of these rocks were, indeed, gabbros or similar coarse-grained mafic rocks. This is least certain in the “internal” eclogites like Gusdal, the metasomatic veins and obviously the pelitic schist. Evidence from zoning and inclusions in garnets (Konrad-Schmolke, 2011) indicates that for many WGC eclogites the precursor was an amphibolite, not an igneous gabbro, therefore further complicating the investigation. 5.7.5. Rutile in a HP/LT omphacite vein vs. rutile in an UHP/HT omphacite vein This comparison is being made in order to fingerprint different geochemical signatures of rutiles from a HP/LT (N 19) and UHP/HT omphacite veins (N 36) veins. As the Nb vs. Cr diagram (Fig. 3a) shows that some possible trace element mixing took place, altering the original composition of the vein, this investigation might support the fluid-mediated mixing of Nb. The discrimination diagram clearly indicates the fact that the HP/LT omphacite vein has a “correct” Nb/Cr signature, plotting on the metamafic region (Fig. 3a). In contrast, the UHP/HT sample plots along the metamafic – metapelitic boundary, probably indicating some kind of fluid-mediated mixing. 131 Chapter 5 Besides using the Nb vs. Cr discrimination diagram for both veins, the composition range of trace elements is used here to further compare them. A general observation is that both samples have a very distinct trace element signature, with N 55 being enriched in most elements, compared to N 19. Zirconium and Hf are known to be temperature-dependant (Zack et al., 2004a), therefore, the higher concentration in N 55 will mirror higher peak temperature conditions. Uranium content is expected to reflect the original concentration of the protolith, therefore this is quite similar for both samples. Korneliussen et al., 2000b) observed that the mafic igneous protolith of a Caledonian eclogite had a low concentration in U (< 2 µg/g), which was reflected in the eclogite. This is in agreement with these results that show a low content in U in both samples (< 4 µg/g). Tantalum, Nb, W, Sb, Sn, Mo and Cr show a particular high concentration in the UHP/HT specimen, further suggesting an external HFSE-rich source. These elements could be indicative of the type of the source vein. Vanadium does not have a preferential behaviour, having similar composition ranges in both samples. 5.7.6. Trace element profiles Trace element profiles are used here to describe variations in their compositions that will help with the understanding of their geochemical behaviour for provenance and thermometry observations. The profile in the HP/LT specimen from Nausdal (N 19 – Fig. 5a) shows a strong variability in Cr, decreasing from one end to the other. Texturally, the rim with higher Cr content is closer to an area abundant in amphibole + chlorite veinlets, whereas the other rim is surrounded mainly by omphacite. As omphacite can contain important quantities of Cr (Zack et al., 2002?), this could suggest some element diffusion towards the clinopyroxene. On the other hand, Cr may be inherited from a primary igneous phase like cpx or spinel, that was heterogeneous originally. An element that seems to track Cr, but with the opposite behaviour, is W which increases towards the omphacite matrix. This could imply some trace element exchange where Cr goes to omphacite and W to rutile. Some other elements exhibit a moderate heterogeneity, such as Nb, Ta, Sn, Mo and U. 132 Chapter 5 The rutile profile in the Vetrhuset eclogite (N 29 – Fig. 5b) shows most elements with flat profiles, with a few exceptions. This suggests that no diffusion processes took place that could end in trace element migration. The Zr and Hf variation might be controlled by perturbations in the equilibrium with coexisting zircon. Temperature variation seems unlikely as it would give a more symmetrical pattern. It is possible that zircon has undergone some dissolution at certain times during rutile growth. Uranium and Sb have a more significant variation. The shape of their variations is typical for a mineral inclusion that might have been too small to be noticed. The third profile (the Ky-Qtz vein - Fig. 5c) is generally flat with most elements having homogeneous compositions. Molybdenum and Sb vary slightly and irregularly. This might imply that their variation is not related to diffusion processes, as there is no clear trend, but rather to trace element availability as the rutile grain grew. As expected, the rutile from the Gusdal Quarry (N 40 – Fig. 5d) shows strong variations in Nb, tracked by Ta. The content is slightly higher in the core compared to the rims. The Nb vs. Cr diagram (Fig. 3a) showed that the Gusdal samples have an anomalous concentration in Nb, which suggested an external source. This is now enforced by this element’s heterogeneity within a single grain. Chromium (followed by V), on the other hand, varies only slightly, but mimics the shape of Nb’s and Ta’s profiles. This suggests that the Nb and Ta-rich external source enriched the Gusdal rutiles in Cr and V too, but to a lesser extent. Another aspect worth considering is that the recrystallization of garnet in these rocks also locally affects the rutile, so the variation could be due to metamorphic re-equilibration Rutile in sample N 55 (Arsheimneset - Fig. 5e) has a Zr and Hf variation, with lower concentrations close to the grain’s core. The moderate symmetry of these profiles suggests these are variations in peak temperature that happened during rutile growth. The lower content of Zr in the core of the grain and the relatively higher concentration at the rims indicate that rutile grew during prograde metamorphism, probably during subduction. Uranium, Sb and W also have moderately heterogeneous composition profiles. 133 Chapter 5 5.8. CONCLUSIONS 1. The Nb vs. Cr diagram suggests that above 650 °C trace element mixing takes place, altering the pristine composition of the rutile grains; therefore, special care is needed when using this discrimination diagram on HT rocks 2. The LT samples plot on the correct area of the Nb vs. Cr diagram, whereas the HT mafic ones plot along the mafic-pelitic boundary or in the pelitic area 3. Because trace element mixing takes place before metamorphic and vein rutiles become detrital grains, a good correlation between these groups is still possible; this is reflected in all investigated trace elements (Nb, Cr, V, Mo, U and Zr) 4. Metamorphic and vein rutiles have very alike geochemical signatures, with moderate enrichments in W, Sn and U in the first group; the rest of the elements (Ta, Nb, Cr, Hf and Zr) only mirror the source rock and peak temperature conditions 5. Trace element profiles show that: some elements migrate amongst mineral phases (N 19 - Cr from rutile to omphacite), others are dependent on perturbations in other minerals (N 29 – Zr dependant on Zrc availability), or others that suggest an external source (N 40 – strong variation in Ta and Nb); the profile on N 55 has information on variation in peak temperature during rutile growth, suggesting a prograde metamorphism with lower Zr content I the core, and higher at the rims 6. Rutile formed by the breakdown of titanomagnetite has higher compositions in Ta, Nb, W, Sb, Sn, Mo, Cr and U compared to rutile formed by the breakdown of ilmenite 7. Rutile in a UHP/HT Omp vein (N 55) shows a particularly high enrichment in Ta, Nb, W, Sb, Sn, Mo, and Cr compared to a HP/LT Omp vein (N 19), 134 Chapter 5 suggesting an external HFSE-rich fluid source that has biased the original composition 8. The Zr-in-rutile thermometry calculations are generally much higher than previous estimations, with some exceptions; it has been demonstrated that our results are probably more robust, due to the fact that exchange geothermometers have been shown to be less reliable (Luvizotto and Zack, 2009); therefore, peak temperatures in the WGC, in the Nordfjord-Stadlandet region are probably ~80-100 °C higher than previous calculations have indicated. 135 Chapter 6 Discussions and Conclusions The overall aim of my project was to investigate new methods with which to test current conflicting models for the timing of onset of modern plate tectonics. One indisputable characteristic of modern plate tectonics is subduction within a highpressure, low-temperature thermal regime. The best recorders of those processes are blueschists, which are present in the rock record only to ca. 600 Ma ago. This could, however, be related to the preservation potential of these rocks. Using trace element characteristics would allow the detrital record of blueschists within rutile to be tested for the first time. 6.1. The Nb vs. Cr diagram Blueschists, along with other mafic rocks from Syros have been analysed and trace element abundances have been described in Chapter 3. The Nb vs. Cr diagram indicates that all metamorphic rocks are metamafic, as expected. Moreover, the geochemical signature overlaps with the Nb/Cr concentrations from the detrital record. This enforces the idea that this discrimination diagram can be applied successfully to HP/LT tectonic settings on metamafic rocks. Further, the next case study in this project is represented by the Western Alps, where only metapelitic and some other metasedimentary metamorphic rocks have been investigated. The Sesia Lanzo rocks have similar P/T conditions to the rocks from Syros (1.5 – 2.0 GPa and ~ 500 – 550 °C), therefore allowing an assessment of rutile’s petrogenetic properties in similar tectonic settings, but for rocks with a different composition. Results show that all samples are metapelitic/metasedimentary, as anticipated. Moreover, the detrital rutiles from the closest catchment areas have almost identical Nb/Cr concentrations, therefore suggesting the Sesia Lanzo Zone as the sediment source. Consequently, the Nb vs. Cr diagram can be applied effectively on HP/LT rocks from a metapelitic source. 136 Chapter 6 In conclusion, rutile seems to be an excellent petrogenetic tool to use in HP/LT tectonic settings, such as subduction zones. The following step was to analyse rutile in rocks formed in eclogite- to granulite-facies conditions, to check if the Nb vs. Cr discrimination diagram is still a reliable instrument under higher-grade conditions. For this purpose, rocks from the UHP-HT massif from the Dora Maira and HP to UHP and HT rocks from the Western Gneiss Complex have been considered suitable. The Dora Maira metapelitic samples do plot on the correct area of the diagram, but they do not correlate with the detrital record. One explanation would be that the Dora Maira rutiles are not eroded in the sampled rivers (Varaita and Maira). However, they are the closest catchment area of the Dora Maira Massif and any weathered material would probably be transported in these rivers. The second possibility is that the Nb/Cr signature has been biased due to the UHP/HT conditions (3.7 GPa and ~ 800 °C). Consequently, no definitive conclusion can be drawn from this case study. A mineral inclusions study could help elucidate this dilemma. The Western Gneiss Complex samples show a more complicated behaviour under higher-grade conditions. The UHP gneiss and the Ky-Qtz vein plot “correctly” on the metapelitic area of the diagram. However, some eclogites plot on the metamafic – metapelitc borderline, whereas others plot in the metapelitic area of the chart. These are all formed under HP to UHP/HT conditions. The only HP/LT sample, an omphacite vein from Nausdal, has a normal behaviour, plotting in the metamafic region. It is also worth considering that another omphacite vein that indicates UHP/HT peak metamorphic conditions, plots on the metamafic – metapelitc borderline, therefore suggesting some fluid-mediated mixing. Eclogites in the WGC are generally found as boudins enclosed in UHP gneisses or in peridotites. In the first case, the breakdown of phengite from the surrounding gneiss, at temperatures around 650 °C, could be the source of contamination of the borderline Nb concentration. 137 Chapter 6 The Gusdal Quarry specimens, that are part of the second type of eclogites (enclosed in peridotites), exhibit extremely high Nb concentrations, that have never been recorded elsewhere. Carbonatite metasomatism could be one explanation for these findings, but no firm evidence has been found to support this assumption. In conclusion, it seems that at UHP/HT conditions, the Nb/Cr signature in rutile from metamafic rocks is biased by different external factors, therefore showing no reliability of being effectively applied on these types of rocks. It has been shown throughout this study that the Nb vs. Cr diagram can be successfully applied on HP/LT rocks, both mafic and pelitic. Also, at higher grade conditions, UHP/HT, trace element mixing is possible, therefore affecting the pristine composition of rutile. The applicability limit of the discrimination diagram seems to be at temperatures lower than 650 °C, the temperature at which phengite breaks down and affects the chemical composition of the surrounding eclogites. An important observation to make is that the borderline Nb concentrations in rutile could be indicative of a subduction zone setting where a considerable amount of continental material has been involved, or of a continental subduction zone. Even more importantly, this project demonstrates the fact that modern-style plate tectonics can be addressed by the use of detrital rutile. The trace element composition of rutile from HP/LT tectonic settings is not affected by any external causes and, therefore, maintains the pristine composition of the source rock formed in blueschist – facies metamorphic conditions. The provenance study from the Western Alps that included samples from the Po River indicates that this river contains a higher percentage of LT rutiles (97 %) compared to HT grains (3 %). This might suggest that the rivers could control this concentration or most likely that the source rocks supply more rutile thus biasing the final population. Moreover, the pelitic fraction of the LT detrital rutiles from the Po River can be linked back to the SLZ, also using trace elements. 138 Chapter 6 The most important conclusion of all these observations is that the blueschistfacies signature is much higher compared to HT eclogite- to granulite-facies rocks. The biggest contributors of rutile in the Po River are the SLZ for the LT pelitic fraction, and, probably, the Monviso Massif, for the LT mafic fraction. This is even more impressive considering the large distance between the eroded rocks and the sediment’s location (~70 km). These results further demonstrate the capability of detrital rutile to provenance HP-LT source rocks, mafic or pelitic, in large riverine systems. It is a different situation for the HT rocks as they constitute a much smaller fraction of the detrital grains in the Po River. If in the proximity of the catchment area they have a major contribution to the sediment load, as the distance between the source and the sediments grows, they significantly decrease in abundance. It could be that the LT source rocks supply more rutile thus biasing the final population. Another conclusion of this project is that the Nb vs. Cr diagram has a poor applicability to assess rutile formed in different facies/tectonic settings, but very low Cr abundances (<10 µg/g) in low-Nb rutile (<150 µg/g) may be restricted to blueschist-facies rutile from metabasites. 6.2. The Zr-in-Rutile thermometer Applications of the Zr-in-rutile thermometer on rocks from various metamorphic conditions, blueschist- to eclogite- and granulite-facies, have been made in order to investigate this thermometer’s reliability in rocks formed under these P/T settings. The first case study from Syros showed that the Tomkins et al. (2007) calibration has a too high pressure correction for lower P/T conditions, giving values almost 50 °C higher than previous estimations. With an average combined uncertainty of Zr analyses by LA-ICPMS of ±10 % (reproducibility, accuracy and 139 Chapter 6 precision; see Methodology, Chapter 2), the precision on the Zr-in-rutile thermometer at ~500 ºC is ±6 oC, while the calibration accuracy of the thermometer between 400 and 900 ºC is estimated at ±15 ºC (Watson et al., 2006). Consequently this cannot explain the discrepancy of >50 ºC between our Zr-in-rutile temperatures and published peak P-T estimates for Syros. Also, as shown before, silica undersaturation does not have a significant effect on the Zr-in-rutile thermometer calculations for the range of silica activities present in the investigated samples. Next, the Ferry and Watson (2007) calibration has been used and indicates that for a (SiO2) = 1, the results are consistent with former findings (average value of 522 °C). This is the only calibration that takes into consideration the silica activity effect on the Zr-in-rutile thermometer. Zack et al. (2004b), Watson et al. (2006) and Tomkins et al. (2007) only comment on silica saturated systems, therefore, strictly speaking, their calibrations cannot be used on undersaturated rocks. A significant conclusion of this study is that the Ferry and Watson (2007) equation uses a too big correction for undersaturated rocks, and is, therefore, advisable to use the calibration considering a silica activity of 1 for all samples. Consequently, this thermometer can be used for the detrital rutiles, even without knowing the silica saturation of the source rock. In the second case study from the Western Alps, the Ferry and Watson calibration has been further tested and showed good results, in agreement with previous measurements (538 °C). In conclusion, the Ferry and Watson (2007) calibration for a (SiO2) = 1 is the most suitable thermometer to be used for HP/LT rocks, even for sediments where there are no constrains on the silica saturation of the source rock. For the Dora Maira samples, the Tomkins et al. (2007) calibration for the coesite field has been used, as a pressure correction is mandatory at UHP conditions. The calculated temperature (694 °C) is lower by approximately 36 °C compared to results from a recent study (Groppo et al., 2007). This could have been caused by a partial re-setting of the Zr concentration during a late-stage event. 140 Chapter 6 Results for the WGC can generally be divided into two groups: temperatures that are in agreement with previous studies or temperatures that are considerably higher (by 40 – 100 °C). An important observation is that overestimation of temperatures has been reported to be possible only in quartz-free rocks (Zack et al., 2004a; Harley, 2008). However, in Chapter 3 – Trace-element characteristics of rutile in blueschist- to low-T eclogite facies mafic-ultramafic high-P mélange zones Syros, Greece), the Zr-in-Rutile thermometer has been applied to quartz-free and quartz-bearing rocks and showed identical values. This implies that silica saturation has no effect on this thermometer. Also, previous studies on granulite-facies rocks (Luvizotto and Zack, 2009; Kooijman et al., 2012) have reported higher temperatures using the Zr-in-rutile thermometer, compared to estimates using an exchange geothermometer. Even if the results are ~ 100 °C higher, they are more reliable and considered the minimum peak temperature because of possible sub-unity Zr-activity. Therefore, the temperatures obtained with the Zr-in-rutile thermometer are more robust and generally indicate hotter conditions for the Nordfjord – Stadlandet area. It is also worth considering the error magnitude when comparing the two types of thermometers: ± 50 °C for exchange geothermometers and ± 6 °C for Zr-in-rutile. This project has demonstrated the applicability of the Zr-in-rutile thermometer in a high range of metamorphic facies conditions, ranging from blueschist- to granulite – facies. The Ferry and Watson (2007) calibration with a (SiO2) = 1 is the preferred equation for HP/LT rocks, as it gives most consistent results. For higher grade conditions, the Tomkins et al. (2007) calibration is a trustworthy tool even at granulite-facies conditions, giving more reliable temperatures than any exchange geothermometers. The major finding of this project is that these higher-T eclogites and schists have a distinct trace element signature, especially for Nb vs. Cr, and this may relate to both the high-T thermal regime of the subduction zone and the interactions of mafic and felsic rocks at T >650 °C, so in the detrital record such rutiles may 141 Chapter 6 indicate a high-T subduction regime and/or a continental subduction system. Also, this points to the need for a different, independent discrimination plot for pelites and mafic eclogites. 6.3. Rutile in the plate tectonics context The main purpose of this study is to characterise the trace element signature of blueshist-facies rutiles, in order to distinguish them from non-subduction related rutiles. Figure 1 shows the Nb vs. Cr chart for the Syros rutiles along with a number of localities: the Epupa Complex, Namibia (Meyer et al., 2011), Chinese Continental Scientific Driling, CCSD-MH (Gao et al., 2010), SE Siberia (Kalfoun et al., 2002), Ivrea-Verbano, Italy (Luvizotto and Zack, 2009), Erzgebirge, Germany (Luvizotto et al., 2009) and Trescolmen, Central Alps (Zack et al., 2002). The first locality is comprised of granulite-facies garnet-orthopyroxene granulites that reached peak metamorphism at 970 ± 40 °C at 0.95 ± 0.2 GPa (Brandt et al., 2003). The CCSD samples are UHP eclogites that reached 700-890 °C at 3-4 GPa (Zhang et al., 1994, 1995; Banno et al., 2000). The Siberian specimens are metasomatised peridotite xenoliths in basalts. For the Ivrea-Verbano Zone, Henk et al. (1997) has calculated the peak PT conditions to be 810 °C and 0.83 kbar. However, Luvizotto and Zack (2009), using the Zr-in-rutile thermometer, obtained much higher temperatures up to 930 ºC. Rutiles from Germany have PT estimations ranging from 0.2 – 2.4 GPa and 480 – 600 °C, depending on the grade of metamorphism. The samples from the last locality are eclogites that underwent eclogite-facies metamorphism at peak pressure conditions of 2.4 GPa, 600 °C (Meyre et al., 1997, 1999). The diagram shows rutile grains either plotting on the left side of the graph (with metamafic source-rocks) or on the right-side (with metapeltic source-rocks). Granulite- and eclogite-facies rutiles partly overlap the blueschist-facies grains on the upper part of the cluster. In contrast, rutiles from the metasomatised mantle peridotites form a separate group with high Nb and Cr concentrations (> 1000 µg/g and >10000 µg/g, respectively). 142 Chapter 6 However, a higher Nb-Cr concentration could indicate higher P/T conditions. Niobium concentrations in the Syros samples are quite similar to hotter localities (excluding the mantle xenoliths), but Syros samples seem to extend to much lower Cr contents (many of the detrital grains are below 1 µg/g - detection limit). One hypothesis is that at low temperatures more Cr is stored by glaucophane, while coexisting garnet and omphacite do not have the same affinity for Cr as glaucophane, hence rutile might take more of the Cr at higher temperatures. An important aspect of the usability of rutile to identify old subduction zones, and, therefore, a blueschist-facies imprint, is that at HP/LT conditions it maintains its original trace element composition, as this study has demonstrated. In higher-grade (e.g. crustal thickening by continental collision) environments the pristine trace element content is affected by external factors, determining biased compositions. This can be investigated using the Zr-in-rutile thermometer, knowing that at temperatures >650 °C the trace element composition has probably been modified. In this case, records of HP-LT metamorphism in older orogens may best be sought in sediments eroded from that orogen and containing detrital rutile grains. As it has been discussed before, this project demonstrates the fact that modern-style plate tectonics can be addressed by the use of detrital rutile. The trace element composition of rutile from HP/LT tectonic settings is not affected by any external causes and, therefore, maintains the pristine composition of the source rock formed in blueschist – facies metamorphic conditions. Moreover, distinction between rutile from eclogites formed in subducted mafic crust and rutile from eclogite formed at the base of thickened basaltic plateaux can also be addressed by the use of oxygen isotopes. The modern oceanic crust is characterised by significant hydrothermal alteration produced by interaction with seawater. Oxygen isotope ratios are strongly altered with heavy O being enriched in low-T altered basalts and depleted in the high-T altered gabbros (Alt, 2003; Gao et al., 2006). In contrast, lower-crustal granulites and eclogites, having had no contact 143 Cr (µg/g) 1 10 100 1000 10000 100000 1 Laora, Brazil - Diamond-bearing sediments 10 Central Alp s - M etapelitic - Eclogite Facies Central Alp s - M etamafic - Eclogite Facies SE Siberia - metasomatised mantle peridotites Erzgebirge GEU- metapelitic - Eclogite Facies Erzgebirge M EU- metap elitic - Amphibolite Facies Erzgebirge GPU- metapelitic - Greenschist Facies Ivrea-Verbano - metapelitic - Granulite Facies CCSD - metamafic - Eclogite Facies Ep upa Complex - M etamafic - Granulite Facies Ep upa Complex - M etap elitic - Granulite Facies Sy ros - Metamafic - Blueschist Facies 100 Nb (µg/g) 1000 10000 100000 Chapter 6 to the hydrosphere, will have mantle-like O isotope ratios and produce rutile in equilibrium with those values. FIGURE 1: Niobium vs. Cr diagram compiling data for rutiles from various facies/tectonic settings; rutiles from the metasomatised mantle peridotites form a separate cluster from the rest of the groups; granulite- and eclogite-facies rutiles partially overlap the upper part of the blueschist-facies rutiles. 144 Chapter 6 6.3. Other trace element considerations Another key aspect of this thesis was to evaluate the possibility of distinguishing metasomatic rutile from metamorphic rutile in the detrital record. The sample set from Syros contains metasomatic rutiles, as well as the sample set from the WGC. The metasomatic Syros samples showed a moderate enrichment in Ta, Nb and Cr compared to the metamorphic rutiles. However, no obvious distinction was achievable. This might be due to the fact that some samples represent a transition between metamorphic and metasomatised rocks. Some of the samples are fresh metamorphic rocks (e.g. SY522-175), others are partly metasomatised (e.g. SY522-100) and some are completely metasomatised (e.g. SY522-10). This is reflected in the geochemical composition of the investigated rutiles, that shows a transition from metamorphic to metasomatic. The metamorphic samples from the WGC show a higher range of trace element composition compared to the metasomatic group, with minor enrichments in W, Sn and U. This study also did not indicate an obvious distinction between the two groups of rutile Finally, metasomatic and metamorphic rutiles do not have a particular trace element composition that would allow discriminating one from the other, based on the investigated sample sets. An additional observation made from trace element characterisation on the Syros sample set was that V vs. Mo indicates different types of source rocks, such as metagabbros and metabasalts. However, this could be specific only for this case study and should be explored by future studies for different protoliths. Observations on the trace element compositions of rutile formed by the breakdown of titanomagnetite vs. rutile formed by the breakdown of ilmenite have 145 Chapter 6 been made. It seems that rutile from the first category has higher compositions in Ta, Nb, W, Sb, Sn, Mo, Cr and U compared to rutile from the second group. Moreover, rutile in a UHP/HT Omp vein from the WGC shows a particularly high enrichment in Ta, Nb, W, Sb, Sn, Mo, and Cr compared to a HP/LT Omp vein from the same sample set, suggesting an external HFSE-rich fluid source that has biased the original composition. This further enforces the idea that at UHP/HT conditions, rutile’s composition suffers alteration caused by external sources, therefore affecting its pristine composition. 6.4. Future perspectives 6.4.1. Possible rutile barometers This section contains a few more observations made about rutile’s geochemical propensities using trace element compositions. These are only meant to be descriptive, with no interpretative scope with the presently available data. Escudero et al. (2012a; b) have suggested Al-in-Rutile and Si-in-Rutile as possible barometers, based on experimental evidence. Therefore, I have investigated these options by plotting Zr vs. Al2O3 and Zr vs. SiO2 for three samples from the WGC, that formed at low (Nausdal, 1.6 – 2.0 GPa, 581 – 598 °C), medium (Vetrhuset, 2.2 – 2.5 GPa, 661 – 708 °C) and high P/T conditions (Nybo, 3.4 – 4.8 GPa, 748 – 770 °C). If these probable barometers are correct, there should be a positive correlation observed in these diagrams (Fig. 2a and b) Figure 2a shows that there is a minor positive correlation between Zr and Al2O3, therefore indicating promising perspectives for this likely barometer. The second figure (Fig. 2b), however, does not indicate any obvious correlation between Si and Zr, therefore, with less promise than Zr vs. Al2O3. The average standard deviation for Al2O3 is 0.02 and for SiO2 it is 0.03. 146 Chapter 6 a b FIGURE 1: a. Zr vs. Al2O3 diagram showing a minor positive correlation; b. Zr vs. SiO2 diagram with no obvious correlation. As the sample set for this project contained rocks formed in a wide variety of pressure conditions, I was given the opportunity to search for a possible rutile barometer. Rocks from the WGC have been plotted on a Zr vs. Mo diagram and results show a strong positive correlation (Fig. 3a). The Mo content could be T147 Chapter 6 dependant, as it increases with T, but it seems to have a more complex behaviour. The Mo composition could intriguingly be related to pressure variation too, but this needs further investigation. All investigated samples (Syros, Sesia Lanzo, Dora Maora and the WGC) have been plotted on the same diagram (Fig. 2b). The HP/LT rocks, represented by Syros, Sesia Lanzo and the Nausdal sample from the WGC, form a separate cluster in the low Zr/low Mo region of the diagram. The UHP/HT rocks, represented by Dora Maira and the WGC, also form a separate group in the medium-Zr/high-Mo area of the chart. The sample extending to high-Zr/high-Mo is sample N 55, who has the highest P/T estimations from the entire sample set. Therefore, the Zr vs. Mo diagram could be indicative of different facies conditions, but this also requires more research. 148 Chapter 6 a b FIGURE 3: a. Mo vs. Zr diagram for all WGC samples, showing a strong positive correlation; b. Zr vs. Mo diagram for samples from all locations indicating different groups based on P/T conditions. 149 Chapter 6 6.4.2. A new discrimination diagram? Using the considerable dataset, potential new discrimination diagrams have been permitted for rutile originating from different lithologies. The Sn vs. W diagram (Fig. 4) shows samples from Syros, Sesia Lanzo and Dora Maira plotting in separate groups, based on their chemistry (metamafic vs. metapelitic). The WGC samples have not been included, as it has been demonstrated that the trace element signature has most likely been altered by external fluids and rutiles and they have not, therefore, retained their pristine composition. The diagram shows that low Sn/W compositions could indicate metamafic source rocks, whereas high Sn/W abundances could suggest a pelitic source rocks. For the first group, the Sn composition ranges from 3 to 45 µg/g, whereas W expands from 0.04 to 167 µg/g. For the second group, the same elements range from 34 to 880 µg/g and 24 to 1180 µg/g, respectively. FIGURE 4: Sn vs. W diagram for samples from Syros, Sesia Lanzo and Dora Maira forming two distinct groups based on the lithology of the source rock (metamafic vs. metapelitic) 150 References 1. Abers, G. A., van Keken, P. E., Keller, E. A., Ferris, A., and Stachnik, J. C., 2006. The thermal structure of subduction zones constrained by seismic imaging: Implication for slab dehydration and wedge flow: Earth and Planetary Science Letters, 241, 387-397. 2. Agrinier, P., 1991. The natural calibration of 18O/16O geothermometers: application to the quartz–rutile mineral pair. Chemical Geology, 91, 49–64. 3. Ague, J.J., 2007. Models of permeability contrasts in subduction zone mélange: implications for gradients in fluid fluxes, Syros and Tinos Islands, Greece. Chemical Geology 239, 217–227. 4. Aulbach, S., O'Reilly, S.Y., Griffin, W.L., Pearson, N.J., 2008. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites. Nature Geoscience, 1, 468–472. 5. Alt, J.C., 2003. Hydrothermal fluxes at mid-ocean ridges and on ridge flanks. C. R. Geosci., 335, 853–864. 6. Andersen, T. B., 1998. Extensional tectonics in the Caledonides of southern Norway, an overview. Tectonophysics, 285, 333–51. 7. Angiboust, S., Langdon, R., Agard, P., Waters, D., Chopin, C., 2011. Eclogitization of the Monviso ophiolite and implications on subduction dynamics. Journal of Metamorphic Geology, 30, 37–61. 8. Babist, J., Handy, M.R., Konrad-Schmolke, M., Hammerschmidt, K., 2006. Precollisional, multistage exhumation of subducted continental crust: the Sesia Zone, Western Alps. Tectonics, 25. 151 9. Bakun-Czubarow, N., Kusy, D., Fiala, J., 2005. Trace element abundances in rutile from eclogite–granulite rock series of the Złote mountains in the Sudetes. Mineralogical Society of Poland, Special Papers, 26, 132–136. 10. Banno, S., Enami, M., Hirajima, T., Ishiwatari, A., Wang, Q.C., 2000. Decompression P–T path of coesite eclogite to granulite from Weihai, eastern China. Lithos, 52, 97–108. 11. Baier, J., Audétat, A., Keppler, H., 2008. The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters, 267, 290–300. 12. Bailey, D.E., 1989. Metamorphic evolution of the crust of southern Norway: an example from Sognefjord. PhD thesis, University of Oxford. 13. Banfield, J.F., Veblen, D.R., 1991. The structure and origin of Fe-bearing platelets in metamorphic rutile. American Mineralogist, 76, 113–127. 14. Baur, W.H., 1956. Über die Verfeinerung der Kristallstrukturbestimmung einiger Vertreter des Rutiletyps: TiO2, SnO2, GeO2 und MgF2. Acta Crystallographica, 9, 515–520. 15. Baur, W.H., 2007. The rutile type and its derivatives. Crystallography Reviews, 13, 65–113. 16. Bearth P., 1959, Uber Eklogite, Glaukophanschiefer und metamorphe Pillowlaven. Schweiz. mineral. petrogr. Mitt., 39, 267-286. 17. Beltrando, M., Compagnoni, R., Lombardo, B., 2010. (Ultra-)high-pressure metamorphism and orogenesis: an Alpine perspective. Gondwana Research, 18, 147–166. 18. Berry, H. N., Lux, D. R., Andresen, A. & Andersen, T.B. 1994. Argon 40–39 dating of rapidly uplifted high pressure rocks during late-orogenic extension 152 in southwestern Norway. Geological Society of America: Abstracts with Programs, 25, A–477. 19. Bhattacharya, A., Krishnakumar, K.R., Raith, M., Sen, S.K., 1991. An improved set of a-X parameters for Fe-Mg-Ca garnets and refinements of the orthopyroxene-garnet thermometer and the orthopyroxene-garnetplagioclase-quartz barometer. J Petrol, 32, 629–656. 20. Bingen, B., Austrheim, H., Whitehouse, M., 2001. Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of W. Norway and implications for zircon geochronology. J Petrol., 42, 355-375. 21. Beyer, E. E., Brueckner, H. K., Griffin, W. L., O’Reilly, S. Y. & Graham, S., 2004. Archean mantle fragments in Proterozoic crust, Western Gneiss Region, Norway. Geology, 32, 609-612. 22. Beyer, E.E., Griffin, W.L., O'Reilly, S.Y., 2006. Transformation of Archaean lithospheric mantle by refertilization: evidence from exposed peridotites in the Western Gneiss Region, Norway. Journal of Petrology, 47, 1611–1636. 23. Beyer, E.E., Brueckner, H.K., Griffin, W.L., O’Reilly, S.Y., 2011. Laurentian provenance of Archean mantle fragments in Proterozoic Baltic crust of the Norwegian Caledonides. Journal of Petrology, 53, 1357-1383. 24. Brady, J.B., Markley, M.J., Schumacher, J.C., Cheney, J.T., Bianciardi, G.A., 2004. Aragonite pseudomorphs in high-pressure marbles of Syros, Greece. Journal of Structural Geology, 26, 3-9. 25. Brandt, S., Klemd, R., Okrusch, M., 2003. Ultrahigh-temperature metamorphism and multistage evolution of garnet-orthopyroxene granulites from the Proterozoic Epupa complex, NW Namibia. J Petrol, 44, 1121–1144. 153 26. Breeding, C.M., Ague, J.J., Bröcker, M., 2004. Fluid-metasedimentary rock interactions in subduction-zone mélange: implications for the chemical composition of arc magmas. Geology, 2, 1041–1044. 27. Brenan, J.M., Shaw, H.F., Phinney, D.L., Ryerson, F.J., 1994. Rutile– aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128, 327–339. 28. Brey, G.P., Nickel, K.G. and Kogarko, L., 1986. Garnet pyroxene equilibrium in system CaO-MgO--A1203-SiO 2 (CMAS), and prospects for simplified (T-independent) lherzolite barometry and eclogite-barometer. Contrib. Mineral. Petrol., 92, 448-453. 29. Brey, G.P. and Kholer, T., 1990. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol., 31, 1353-1378. 30. Bromiley, G.D., Hilairet, N., 2005. Hydrogen and minor element incorporation in synthetic rutile. Mineralogical Magazine, 69, 345–358. 31. Bryhni, I., 1966. Reconnaissance studies of gneisses, ultrabasites, eclogites and anorthosites in outer Nordfjord, Western Norway. Norges Geologiske Undersøkelse Bulletin, 241, 1–68. 32. Bröcker, M., Enders, M., 2001. Unusual bulk-rock compositions in eclogitefacies rocks from Syros and Tinos (Cyclades, Greece): implications for U–Pb zircon geochronology. Chemical Geology, 175, 581–603. 33. Bröcker, M., Keasling, A., 2006. Ionprobe U–Pb zircon ages from the highpressure/lowtemperature mélange of Syros, Greece: age diversity and the importance of pre-Eocene subduction. Journal of Metamorphic Geology, 24, 615–631. 154 34. Bromiley, G.D., Hilairet, N., 2005. Hydrogen and minor element incorporation in synthetic rutile. Mineralogical Magazine, 69, 345–358. 35. Bromiley, G.D., Redfern, S.A.T., 2008. The role of TiO2 phases during melting of subduction-modified crust: implications for deep mantle melting. Earth and Planetary Science Letters 267, 301–308. 36. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34, 961–964. 37. Brown, M., Metamorphic patterns in orogenic systems and the geological record, 2009. Geological Society, London, Special Publications, 318, 37-74. 38. Brueckner, H.K., 1977. A structural, stratigraphic and petrologic study of anorthosites, eclogites and ultramafic rocks and their country rocks, Tafjord area, western South Norway. Norges Geologiske Undersøkelse Bulletin, 241, 1–53. 39. Brueckner, H. K., Carswell, D. A., Griffin,W. L., Medaris, L. G., Jr, Van Roermund, H. L. M. & Cuthbert, S. J. (2010). The mantle and crustal evolution of two garnet peridotite suites from the Western Gneiss Region, Norwegian Caledonides: an isotopic investigation. Lithos, 117, 1019. 40. Buist, D.S., 1963a. The determination of the rutile content of beach sands from Moana, South Australia, using the Frantz isodynamic separator. Journal of Sedimentary Research, 33, 799–801. 41. Carraro, F., Dal Piaz, G. V., Sacchi R., 1970. Serie di Valpelline e II Zona Diorito-Kinzigitica sono i relitti di un ricoprimento proveniente dalla Zona Ivrea-Verbano. Memorie della Societa Geologica Italiana, 9, 197-224. 155 42. Carruzzo, S., Clarke, D.B., Pelrine, K.M., MacDonald, M.A., 2006. Texture, composition, and origin of rutile in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 44, 715–729. 43. Carswell, D.A., 1968. Possible primary upper mantle peridotite in Norwegian basal gneiss. Lithos, 1, 322-355. 44. Carswell, D.A., 1974. Comparative equilibration temperatures and pressures of garnet lherzolites in Norwegian gneisses and kimberlite. Lithos, 7, 113– 121. 45. Carswell, D.A., Krogh, E.J., Griffin, W.L., 1985. Norwegian orthopyroxene eclogites: calculated equilibration conditions and petrogenetic implications. In: Gee, D.G., Sturt, B.A. _Eds.., The Caledonide Orogen — Scandinavia and Related Areas. Wiley, Chichester, 823–841. 46. Carswell, D.A., 1986. The metamorphic evolution of Mg–Cr-type Norwegian garnet peridotites. Lithos, 19, 279–297. 47. Carswell, D. A., 1990. Eclogite Facies Rocks. Blackie, Glasgow. 48. Carswell, D.A., Cuthbert, S.J., Krogh Ravna, E.J., 1999. Ultrahigh-pressure metamorphism in the Western Gneiss Region of the Norwegian caledonides. International Geology Review, 41, 955–966. 49. Carswell, D.A., Brueckner, H.K., Cuthbert, S.J., Mehta, K., O'Brien, P.J., 2003. The timing of stabilization and the exhumation rate for ultra-high pressure rocks in the Western Gneiss Region of Norway. Journal of Metamorphic Geology, 21, 601–612. 50. Carswell, D.A., Van Roermund, H.L.M., Wigger de Vries, D.F., 2006. Scandian ultrahighpressure metamorphism of Proterozoic basement rocks on 156 Fjørtof and Otrøy,Western Gneiss Region, Norway. International Geology Review, 48, 957–977. 51. Chacko, T., Hu, X., Mayeda, T.K., Clayton, R.N., Goldsmith, J.R., 1996. Oxygen isotope fractionations in muscovite, phlogopite, and rutile. Geochimica et Cosmochimica Acta, 60, 2595–2608. 52. Chauvet, A., Kienast, J. R., Pinardon, J. L. & Brunel, M., 1992. Petrological constraints and PT path of Devonian collapse tectonics within the Scandian mountain belt (Western Gneiss Region, Norway). Journal of the Geological Society of London, 149, 383–400. 53. Chen, Z.Y., Li, Q.L., 2008. Zr-in-rutile thermometry in eclogite at Jinheqiao in the Dabie orogen and its geochemical implications. Chinese Science Bulletin, 53, 768–776. 54. Cherniak, D.J., 2000. Rare earth element diffusion in apatite. Geochim. Cosmochim. Acta, 64, 3871–3885. 55. Cherniak, D.J., Watson, E.B., 2007. Ti diffusion in zircon. Chem Geol 242, 470–483. 56. Chopin, C., 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: a first record and some consequences. Contrib. Mineral. Petrol., 86, 107–118. 57. Chopin, C., 1987. Very-high-pressure metamorphism in the western Alps: implications for subduction of continental crust. Phil. Trans. R. Soc. Lond., A321, 183–197. 58. Chopin, C. & Schertl, H. P., 2000. The UHP Unit in the Dora-Maira massif, western Alps. In: Ultra-High Pressure Metamorphism and Geodynamics in Collision-type Orogenic Belts (eds Ernst, W. G. & Liou, J. G.), 133–148. 157 59. Clemens, J.D., 2006. Melting of the continental crust: fluid regimes, melting reactions and source-rock fertility. In: Evolution and Differentiation of the Continental Crust (M. Brown and T. Rushmer, eds), 296–327. 60. Cloos, M., 1985.Thermal evolution of convergent plate margins: thermal modeling and reevaluation of isotopic Ar-ages for blueschists in the Franciscan complex of California, Tectonics, 4, 421-433. 61. Coleman, R.G., Wang, X., 1995. Overview of the geology and tectonics of UHPM. In: Coleman, R.G., Wang, X. _Eds.., Ultrahigh Pressure Metamorphism. Cambridge Univ. Press, 1–32. 62. Compagnoni, R., Maffeo, B., 1973. Jadeite-bearing metagranites l.s. and related rocks in the Mount Mucrone area (Sesia-Lanzo Zone, Western Italian Alps). Schweiz. Mineral. Petrogr. Mitt., 53, 355–378. 63. Compagnoni, R., Dal Piaz, G.V., Hunziker, J.C., Gosso, G., Lombardo, B., Williams, P.F., 1977. The Sesia-Lanzo zone, a slice of continental crust with alpine high pressure– low temperature assemblages in the Western Italian Alps. Rendiconti della Società Italiana di Mineralogia e Petrologia, 33, 281– 334. 64. Compagnoni, R., Messiga, B., Castelli, D., 1994. High pressure metamorphism in the Western Alps. 16th General Meeting of the IMA; Guide book to the field excursion, 148 p. 65. Compagnoni, R. & Hirajima, T., 2001. Superzoned garnets in the coesitebearing Brossasco-Isasca Unit, Dora-Maira massif, W Western Alps, and the origin of the whiteschists. Lithos, 57, 219–236. 66. Conrad, C. P., and Lithgrow-Bertelloni, C., 2002. How mantle slabs drive plate tectonics: Science, 298, 207-209. 158 67. Condie, K. C., and Kröner, A., 2008. When did plate tectonics begin? Evidence from the geologic record, Geological Society of America Special Papers, 440, 281-294 68. Cuthbert, S.J., 1985. Petrology and tectonic setting of relatively low temperature eclogites and related rocks in the Dalsfjord area, Sunnfjord, West Norway. PhD thesis, University of Sheffield. 69. Cuthbert, S.J., 1995. Trondhjemite veins in eclogite from the Western Gneiss Region, Norwegian Caledonides; evidence for partial melting. Chinese Science Bulletin, 40, 103–104. 70. Cuthbert, S.J., Carswell, D.A., Krogh-Ravna, E.J., Wain, A., 2000. Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos, 52, 165–195. 71. Dal Piaz, G.V., Gosso, G., Martinotti, G., 1971. La II Zona Dioritokinzigitica tra la Valsesia e la Valle d'Ayas (Alpi occidentali). Memorie della Società Geologica Italiana, 10, 257–276 72. Dal Piaz, G.V., Bistacchi, A., Massironi, M., 2003. Geological outline of the Alps. Episodes 26, 175–180. 73. Davies, G. F., 1992. On the emergence of plate tectonics: Geology, 20, 963966. 74. Deer, W.A., Howie, R., Zussman, J., 1992. An introduction to the rockforming minerals. Harlow, Essex, England. 696p. 75. Desmons, J. and O'Neil, J. R., 1978. Oxygen and hydrogen isotope compositions of eclogites and associated rocks from the Eastern Sesia Zone (western Alps, Italy). Contrib. Mineral. Petrol., 67, 79-85. 159 76. Dewey, J. F., M. L. Helman, E. Turco, D. H. Hutton, and S. D. Knott, 1989. Kinematics of the western Mediterranean, in Alpine Tectonics, Geol. Soc. Spec. Publ., 45, 265–283. 77. Dixon, J.E., 1968. The metamorphic rocks of Syros, Greece. Ph.D. thesis, St. John’s College, Cambridge. 78. Dobrzhinetskaya, L.F., Eide, E.A., Larsen, R.B., Sturt, B.A., Trønnes, R.G., Taylor, W.R., Posukhova, T.V., 1995. Microdiamonds in high-grade metamorphic rocks of the Western Gneiss region, Norway. Geology, 23, 597–600. 79. England, P. C, & Thompson, A. B., 1984. Pressure-temperature-time paths of regional metamorphism. I. Heat transfer during evolution of regions of thickened continental crust. J. Petrology, 25, 894-928. 80. Ernst, W.G., 1971. Metamorphic zonations on presumably subducted lithospheric plates from Japan, California and the Alps. Contrib. Mineral. Petrol., 34, 43–59. 81. Ernst, W. G., 2003, High-pressure and ultrahigh-pressure metamorphic belts – Subduction, recrystallization, exhumation and significance for ophiolite studies, in Dilek, Y., and Newcombe, S., eds., Ophiolite Concept and Evolution of Geological Thought: Geological Society of America Special Paper, 373, 365-384. 82. Escudero, A., Langenhorst, F., 2012a. Aluminum incorporation in a-PbO2 type TiO2 at pressures up to 20 GPa, 190-191. 83. Escudero, A., Langenhorst, F., 2012b. Incorporation of Si into TiO2 phases at high pressure, 97, 524-531. 160 84. Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429–437. 85. Fett, A., 1995. Elementverteilung zwischen Granat, Klinopyroxen und Rutil in Eklogiten — Experiment und Natur. Dissertation, University of Mainz, Germany, 227 pp. 86. Foley, S.F., Barth, M.G., Jenner, G.A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64, 933–938. 87. Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 837– 840. 88. Foley, S., 2008. A trace element perspective on Archean crust formation and on the presence or absence of Archean subduction, Geological Society of America Special Papers, 440, 31-50. 89. Force, E.R., 1991. Geology of titanium-mineral deposits. Geological Society of America, Special Paper, 259, 1–112. 90. Forster, M.A., Lister, G.S., 2005. Several distinct tectono-metamorphic slices in the Cycladic eclogite– blueschist belt, Greece. Contributions to Mineralogy and Petrology, 150, 523–545. 91. Fossen, H. & Dallmeyer, R. D. 1998. 40Ar/39Ar muscovite dates from the nappe region of southwestern Norway: dating extensional deformation in the Scandinavian Caledonides. Tectonophysics, 285, 119–33. 161 92. Gao, Y., Hoefs, J., Przybilla, R., Snow, J.E., 2006. A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B. Chem. Geol., 233, 217–234. 93. Garlick, G. D., MacGregor, I. D., and Vogel, D. E., 1971. Oxygen isotope ratios in eclogites from kimbedites. Science, 172, 1025- 1027. 94. Garzanti, E., Vezzoli, G., Ando,` S., France-Lanord C., Singh, S. K., and Foster, G., 2004. Sand petrology and focused erosion in focused erosion in collision orogens: the Brahmaputra case. 95. Garzanti, E., Vezzoli, G., Andò, S., 2011. Paleogeographic and drainage changes during Pleistocene glaciations (Po Plain, Northern Italy). Earth Science Reviews, 105, 25–48. 96. Gao, C. G., Liu, Y. S., Zong, K. Q., et al., 2010. Microgeochemistry of Rutile and Zircon in Eclogites from the CCSD Main Hole: Implications for the Fluid Activity and Thermo-history of the UHP Metamorphism. Lithos, 115, 51–64. 97. Gebauer, D., Lappin, M. A., Grunenfelder, M. & Wyttenbach, A. 1985. The age and origin of some Norwegian eclogites: a U–Pb zircon and REE study. Chemical Geology, 52, 227–47. 98. Gebauer, D., Schertl, H.-P., Brix, M., Schreyer, W., 1997. 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira massif, Western Alps. Lithos, 41, 5–24. 99. Gonfiantini, R., 1978. Standards for stable isotope measurements in natural compounds. Nature, 271, 534–536. 100. Götze, J., 1996. Genetic information of accessory minerals in clastic sediments. Zentralblatt für Geologie und Paläontologie Teil, 1, 101–118. 162 101. Graham, J., Morris, R.C., 1973. Tungsten- and antimony-substituted rutile. Mineralogical Magazine, 39, 470–473. 102. Green, T.H., 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust–mantle system. Chemical Geology, 120, 347–359. 103. Grevel, C., Schreyer, W., Grevel, K.D., Schertl, H.P., Willner, A.P., 2009. REE distribution, mobilization and fractionation in the coesite-bearing “pyrope–quartzite” and related rocks of the Dora Maira Massif, western Alps. European Journal of Mineralogy, 21, 1213–1224. 104. Griffin, W. L. & Brueckner, H. K. 1980. Caledonian Sm–Nd ages and a crustal origin for Norwegian eclogites. Nature, 285, 319–21. 105. Griffin,W. L. & Brueckner,H.K. 1985. REE, Rb–Sr and Sm–Nd studies of Norwegian eclogites. Chemical Geology, 52, 249–71. 106. Griffin, W.L., Austrheim, H., Brastad, K., Bryhni, I., Krill, A.G., Krogh, E.J., Mørk, M.B.E., Qvale, H., Tørudbakken, B., 1985. High-pressure metamorphism in the Scandinavian Cale- donides. In: Gee, D.G., Sturt, B.A. _Eds.., The Caledonide Orogen — Scandinavia and Related Areas. Wiley, Chichester, 783–801. 107. Griffin, W.L., Qvale, H., 1985. Superferrian eclogites and the crustal origin of garnet peridotites, Almklovdalen, Norway. In: Gee, D.G., Sturt, B.A. _Eds.., The Caledonide Orogen —Scandinavia and Related Areas. Wiley, Chichester, 803–812. 108. Gregory, R. T. and Taylor, H. P., Jr., 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for D18O buffering of the oceans by deep (>5 km) seawater- hydrothermal circulation at mid-ocean ridges. J. Geophys. Res., 86, 2737-2755. 163 109. Gregory, R. T. and Taylor, H. P., Jr., 1986. Non-equilibrium, metasomatic 18O/16O effects in upper mantle mineral assemblages. Contrib. Mineral. Petrol 93, 124-135. 110. Groppo, C., Castelli, D., Compagnoni, R., 2006, Late chloritoid- staurolite assemblage in a garnet-kyanite-bearing metapelite from the ultrahigh-pressure Brossasco-Isasca unit (Dora-Maira Massif, Western Alps): new petrological constraints for a portion of the decompressional path. in ‘‘Ultrahigh-pressure metamorphism: deep continental subduction’’, B.H. Hacker, W.C. McClelland, J.G. Liou, eds., Geol. Soc. Am. Spec. Pap., 403, 127–138. 111. Grønlie, G. & Rost, F., 1974. Gravity investigation and geological interpretation of the ultramafite complex of A ° heim, Sunnmøre, western Norway. Norsk Geologisk Tidsskrift, 54, 367–373. 112. Grutter, H.S., 1993. Structural and metamorphic studies on Ios, Cyclades, Greece. PhD Thesis, University of Cambridge, 227pp (Unpublished). 113. Hacker, B.R., Gans, P.B., 2005. Creation of ultrahigh-pressure terranes: the Trondelag–Jämtland region of the Scandinavian Caledonides. Geological Society of America Bulletin, 117, 117–134. 114. Hacker, B.R., 2006. Pressures and temperatures of ultrahigh-pressure metamorphism: implications for UHP tectonics and H2O in subducting slabs. International Geology Review, 48, 1053–1066. 115. Hacker, B.R., 2007. Ascent of the ultrahigh-pressure Western Gneiss Region, Norway. In: Cloos, M., Carlson, W.D., Gilbert, M.C., Liou, J.G., Sorenson, S.S. (Eds.), Convergent Margin Terranes and Associated Regions: A Tribute to W.G. Ernst. Geological Society of America Special Paper. Geological Society of America, Boulder, CO, 171–184. 164 116. Hamilton, W. B., 2003. An alternative Earth: GSA Today, 13, 4-12. 117. Handy, M.R., Franz, L., Heller, F., Jannot, B., Zurbroggen, R., 1999. Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland). Tectonics, 18, 1154–1177. 118. Harley, S. L., Green, D. H., 1982. Garnet-orthopyroxene barometry for granulites and peridotites. Nature, 300, 697-701. 119. Harley, S. L., 1984. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contributions to Mineralogy and Petrology, 86, 359–373. 120. Hassan, W.F., 1994. Geochemistry and mineralogy of Ta–Nb rutile from Peninsular Malaysia. Journal of Southeast Asian Earth Sciences, 10, 11–23. 121. Hecht, J., 1984. Geological Map of Greece, 1:50000, Syros Island. Institute of Geology & Mineral Exploration, Athens. 122. Henk, A., Franz, L., Teufel, S., Oncken, O., 1997. Magmatic underplating, extension, and crustal reequilibration: insights from a crosssection through the Ivrea Zone and Strona–Ceneri Zone, northern Italy. Journal of Geology 105, 367–377. 123. Hermann, J., 2003. Experimental evidence for diamond-facies metamorphism in the Dora-Maira massif. Lithos, 70, 163–182. 124. Hills, D.V., Haggerty, S.E., 1989. Petrochemistry of eclogites from the Koidu Kimberlite Complex, Sierra Leone. Contribution of Mineralogy and Petrology, 103, 397–422. 165 125. Huang, J., Ma, D., Liu, C., Chen, H., 2006. The Xiaojiao high-grade eclogite-type rutile deposit in Jiangsu, China: geology, geochemistry and metallogenesis. Chinese Journal of Geochemistry, 25, 33–42. 126. Janoušek, V., Krenn, E., Finger, F., Míková, J., Frýda, J., 2007. Hyperpotassic granulites from Blanský les Massif (Moldanubian Zone, Bohemian Massif) revisited. Journal of Geosciences, 52, 73–112. 127. Jamtveit, B., 1984. High-P metamorphism and deformation of the Gurskebotn garnet peridotite, Sunnmøre, Western Norway. Norsk Geologisk Tidsskrift, 64, 97–110. 128. Jiao, S., Guo, J., Mao, Q., Zhao, R., 2011. Application of Zr-in-rutile thermometry: a case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton. Contributions to Mineralogy and Petrology. 129. John, T., Klemd, R., Klemme, S., Pfänder, J.A., Hoffmann, J.E., Gao, J. 2010. Nb–Ta fractionation by partial melting at the titanite–rutile transition. Contributions to Mineralogy and Petrology, 161, 35-45. 130. Kalfoun, F., Ionov, D., Merlet, C., 2002. HFSE residence and Nb/Ta ratios in metasomatized, rutile-bearing mantle peridotites, Earth Planet. Sci. Lett., 199 49–65. 131. Kooijman, E., Smit, M.A., Mezger, K., Berndt, J., 2012. Trace element systematics in granulite facies rutile: implications for Zr geothermometry and provenance studies. Journal of Metamorphic Geology, 30, 397-412. 132. Krabbendam, M., Wain, A.L., 1997. Late-Caledonian structures, differential retrogression and structural position of _ultra.high pressure rocks 166 in the Norfjord–Stadlandet area, Western Gneiss Region. Norges Geologisk Undersøkelse Bulletin, 432, 127–139. 133. Krabbendam, M., Wain, A. & Andersen, T. B., 2000. Pre-Caledonian granulite and gabbro enclaves in the Western Gneiss Region, Norway: indications of incomplete transition at high pressure. Geological Magazine, 137, 235–255. 134. Keiter, M., Piepjohn, K., Ballhaus, C., Bode, M., Lagos, M., 2004. Structural development of high-pressure metamorphic rocks on Syros island (Cyclades, Greece). Journal of Structural Geology 26, 1433–1445. 135. Kildal, E.S., 1970. Geologisk karte over Norge, berggrunnskart Maloy 1:250 000, Norske Utgave. Norges Geologisk Undersøkelse. 136. Klaproth, M.H., 1795. Beiträge zur chemischen Kenntniss der Mineralkörper, Vol. 1. Decker & Compagnie, Posen. 374 pp. 137. Klemme, S., Prowatke, S., Hametner, K., Gunther, D., 2005. Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochim Cosmochim Acta, 69, 2361–2371. 138. Konrad-Schmolke, M., Babist, J., Handy, M.R., O'Brien, P.J., 2006. Insight into the physico-chemical properties of a subducted slab from garnet zonations patterns (Sesia Zone, western Alps). Journal of Petrology, 47, 2123–2148. 139. Konrad-Schmolke, M., O'Brien, P.J., de Capitani, C., Carswell, D.A., 2008b. Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos, 103, 309–332. 167 140. Konrad-Schmolke, M., O'Brien, P. J., Zack, T., 2011. Fluid migration above a subducted slab—constraints on amount, pathways and major element mobility from partially overprinted eclogite-facies rocks (Sesia Zone, Western Alps). Journal of Petrology, 52, 457-486. 141. Korneliussen, A., McEnroe, S.A., Nilsson, L.P., Schiellerup, H., Gautneb, H., Meyer, G.B., Stbrseth, L.R., 2000a. An overview of titanium deposits in Norway. Nor. Geol. Surv. Bull., 426, 27– 38. 142. Korneliussen, A., McLimans, R., Braathen, A., Erambert, M., Lutro, O. & Ragnhildstveit, J. 2000b: Rutile in eclogites as a mineral resource in the Sunnfjord region, Western Norway. Norges geologiske undersøkelse Bulletin, 436, 39-47. 143. Krogh, E.J., 1977. Evidence for a Precambrian continent–continent collision in western Norway. Nature, 267, 17–19. 144. Krogh, E.J., 1980. Geochemistry and petrology of glaucophanebearing eclogites and associated rocks from Sunnfjord, Western Norway. Lithos, 13, 355–380. 145. Krogh, E.J., 1982. Metamorphic evolution of Norwegian countryrock eclogites, as deduced from mineral inclusions and compositional zoning in garnets. Lithos, 15, 305–321. 146. Krogh, E.J., Carswell, D.A., 1995. HP and UHP eclogites and garnet peridotites in the Scandinavian Caledonides. In: Coleman, R.G., Wang, X. _Eds.., Ultrahigh Pressure Metamorphism. Cambridge Univ. Press, 244–298. 147. Kylander-Clark, A.R.C., Hacker, B.R., Johnson, C.M., Beard, B.L., Mahlen, N.J., 2009. Slow subduction of a thick ultrahigh-pressure terrane. Tectonics, 28, 1–14. 168 148. Labrousse, L., Jolivet, L., Agard, P., Hébert, R., Andersen, T.B., 2002. Crustal-scale boudinage and migmatization of gneiss during their exhumation in the UHP Province of Western Norway. Terra Nova, 14, 263– 270. 149. Lagabrielle, Y. and Cannat, M., 1990. Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology, 18, 319–322. 150. Lagabrielle, Y. & Lemoine, M., 1997. Alpine, Corsican and Apennine ophiolites: the slow-spreading ridge model. Comptes Rendus de l_Acade´mie des Sciences - Series IIA - Earth and Planetary Science, 325, 909–920. 151. Lagos, M., Scherer, E.E., Tomaschek, F., Münker, C., Keiter, M., Berndt, J., Ballhaus J., 2007. High precision Lu-Hf geochronology of Eocene eclogite-facies rocks from Syros, Cyclades, Greece. Chemical Geology, 243, 16–35. 152. Lappin, M.A., 1974. Eclogites of the Sunndal Grubse ultramafic mass, Almklovdalen, Norway and the T – P history of the Almklovdalen mass. Journal of Petrology, 15, 567–601. 153. Lappin, M.A., Smith, D.C., 1978. Mantle equilibrated eclogite pods from the Basal Gneisses in the Selje district, Western Norway. Journal of Petrology, 19, 530–584. 154. Lardeaux, J.M., Lombardo, B., Gosso, G., Kienast, J.R., 1982. Découverte de paragénèses à ferro-omphacite dans les orthogneiss de la zone Sesia-Lanzo septentrionale (Alpes Italiennes). Comptes Rendus de l'Académie des Sciences, 296, 453–456. 155. Lavrenteva, I.V., Perchuk, L.L., 1989. Experimental study of amphibole-garnet equilibrium (calcium-free system). Dokl. Akad. Nauk USSR, 306, 173-175. 169 156. Li, Q., Li, S., Zheng, Y.-F., Li, H., Massonne, H.J., Wang, Q., 2003. A high precision U–Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: a new constraint on the cooling history. Chemical Geology, 200, 255–265. 157. Lee, H. Y. & Ganguly, J., 1988. Equilibrium compositions of coexisting garnet and orthopyroxene: Experimental determinations in the system FeO–MgO–Al2O3–SiO2, and applications. Journal of Petrology, 29, 93–113. 158. Liou, J.G., Zhang, R., Ernst, W.G., Liu, J., McLimans, R., 1998. Mineral paragenesis in the Pianpaludo eclogitis body, Gruppo di Voltri, western Ligurian Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 78, 317–335. 159. Lombardo, B., Nervo, R., Compagnoni, R. et al., 1978. Osservazioni preliminari sulle ofioliti metamorfiche del Monviso (Alpi occidentali). Rendiconti Societa Italiana Di Mineralogia e Petrologia, 34, 253–305. 160. Ludwig, C.F., 1803. Handbuch der Mineralogie nach A. G. Werner. Vol. 1, Siegfried Lebrecht Crusius, Leipzig, 369 pp. 161. Ludgwig, K.R., 2012. Isoplot/Ex 3.75, A geochronological toolkit for Microsoft Excel, Berkley Geochronology Centre. 162. Luvizotto, G.L., Zack, T., 2009. Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: an example from the Ivrea Verbano Zone. Chemical Geology, 261, 303–317. 163. Luvizotto, G.L., Zack, T., Triebold, S., von Eynatten, H., 2009a. Rutile occurrence and trace element behavior in medium-grade metasedimentary rocks: example from the Erzgebirge, Germany. Mineralogy and Petrology, 97, 233–249. 170 164. Luvizotto, G.L., Zack, T., Meyer, H.P., Ludwig, T., Triebold, S., Kronz, A., Münker, C., Stockli, D.F., Prowatke, S., Klemme, S., Jacob, D.E., von Eynatten, H., 2009b. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chemical Geology, 261, 346– 369. 165. MacChesney, J.N., Muan, A., 1959. Studies in the system iron oxide– titanium oxide. American Mineralogist, 44, 926–945. 166. MacGregor, I. D. and Manton, W. I. (1986) Roberts Victor eclogites: Ancient oceanic crust. J. Geophys. Res., 91, 14063-14079. 167. Maekawa, H., Fryer, P., and Ozaki, A., 1995: Incipient blueschist- facies metamorphism in the active subduction zone beneath the Mariana forearc, in Taylor, B., and Natland, J., eds., Active Margins and Marginal Basins of the Western Pacific: American Geophysical Union Monograph, 88, 281-289. 168. Maluski, H., Bonneau, M., Kienast, J.R., 1987. Dating the metamorphic events in the Cycladic area: 40Ar/39Ar data from metamorphic rocks of the island of Syros (Greece). Bulletin de la Société Géologique de France 8, 833–842. 169. Mange, M.A., Morton, A.C., 2007. Geochemistry of heavy minerals. In: Mange, M.A., Wright, D.T. (Eds.), Heavy Minerals In Use: Developments in Sedimentology, 58, 345–391. 170. Marschall, H.R., 2005. Lithium, beryllium, and boron in highpressure metamorphic rocks from Syros (Greece). Dr rer nat thesis, Univ Heidelberg, Germany. 171 171. Marschall, H.R., Ludwig, T., Altherr, R., Kalt, A., Tonarini, S., 2006a. Syros metasomatic tourmaline: evidence for very high-∂11B fluids in subduction zones. Journal of Petrology, 47, 1915–1942. 172. Marschall, H.R., Altherr, R., Rüpke, R., 2007. Squeezing out the slab — modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chemical Geology, 239, 323-335. 173. Massonne, H.-J., Czambor, A., 2007. Geochemical signatures of Variscan eclogites from the Saxonian Erzgebirge, central Europe. Chemie der Erde, 67, 69–83. 174. Matthews, A., Beckinsale, R.D., Durham, J.J., 1979. Oxygen isotope fractionation between rutile and water and geothermometry of metamorphic eclogites. Mineralogical Magazine, 43, 405–413. 175. Medaris, L.G. Jr., 1980. Petrogenesis of the Lien peridotite and associated eclogites, Almklovdalen, western Norway. Lithos, 13, 339–353. 176. Medaris, L.G. Jr., 1984. A geothermobarometric investigation of garnet peridotites in the Western Gneiss Region of Norway.Contributions to Mineralogy and Petrology, 87, 72–86. 177. Medaris, L.G., Brueckner, H.K., 2003. Excursion to the Almklovdalen Peridotite. In: Guidebook to the Field Excursions in the Nordfjord-Stadtlandet-Almklovdalen area, Geological Survey of Norway Publication NGU 2003.56. 178. Mader, D., 1980. Authigener Rutil im Buntsandstein der Westeifel. Neues Jahrburch für Mineralogie, Monatshefte, 3, 97–108. 179. Maruyama, S., Liou, J. G., and Terabayashi, M., 1996, Blueschists and eclogites of the world and their exhumation: International Geology Review, 38, 486-594. 172 180. Meinhold, G., Anders, B., Kostopoulos, D., Reischmann, T., 2008. Rutile chemistry and thermometry as provenance indicator: an example from Chios Island, Greece. Sedimentary Geology, 203, 98–111. 181. Meyer, M., John, T., Brandt, S., Klemd, R., 2011. Trace element composition of rutile and the application of Zr-in-rutile thermometry to UHT metamorphism (Epupa Complex, NW Namibia). Lithos, 126, 388–401. 182. Meyre, C., de Capitani, C. & Partzsch, J. H., 1997. A ternary solid solution model for omphacite and its application to geothermobarometry of eclogites from the Middle Adula nappe (Central Alps, Switzerland). Journal of Metamorphic Geology, 15, 687–700. 183. Mezger, K., Hanson, G.N., Bohlen, S.R., 1989. High-precision U–Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth and Planetary Science Letters, 96, 106–118. 184. Mezger, K., Essene, E.J., Vanderpluijm, B.A., Halliday, A.N., 1993. U–Pb geochronology of the Grenville orogen of Ontario and New York: constraints on ancient crustal tectonics. Contributions to Mineralogy and Petrology, 114, 13–26. 185. Miller, C., Zanetti, A., Thöni, M., Konzett, J., 2007. Eclogitisation of gabbroic rocks: redistribution of trace elements and Zr in rutile thermometry in an Eo–Alpine subduction zone (Eastern Alps). Chemical Geology 239, 96–123. 186. Miller, D.P., Marschall, H.R., Schumacher, J.C., 2009. Metasomatic formation and petrology of blueschist-facies hybrid rocks from Syros (Greece): Implications for reactions at the slab–mantle interface. Lithos, 107, 53-67. 173 187. Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T., 2001. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature, 409, 178–181. 188. Möller, A., Mezger, K., Schenk, V., 2000. U–Pb dating of metamorphic minerals: Pan-African metamorphism and prolonged slow cooling of high pressure granulites in Tanzania, East Africa. Precambrian Research, 104, 123– 146. 189. Moore, D.K., Cherniak, D.J., Watson, E.B., 1998. Oxygen diffusion in rutile from 750 to 1000 °C and 0.1 to 1000 MPa. American Mineralogist, 83, 700–711. 190. Mørk, M. B. E. & Mearns, E. W. 1985. Sm–Nd isotopic systematics of a gabbro–eclogite transition. Lithos, 19, 255–67. 191. Mori, T. & Green, D. H., 1978. Laboratory duplication of phase equilibria observed in natural garnet lherzolites. Journal of Geology, 86, 8397. 192. Morton, A.C., 1991. Geochemical studies of detrital heavy minerals and their application to provenance research. In: Morton, A.C., Todd, S.P., Haughton, P.D.W. (Eds.), Developments in Sedimentary Provenance Studies: Geological Society of London, Special Publication, 57, 31–45. 193. Morton, A.C., Hallsworth, C.R., 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124, 3–29. 194. Morton, A., Hallsworth, C., Chalton, B., 2004. Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone provenance. Marine and Petroleum Geology 21, 393– 410. 174 195. Morton, A.C., Whitham, A.G., Fanning, C.M., 2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology, 182, 3–28. 196. Morton, A.C., Hallsworth, C.R., 2007. Stability of detrital heavy minerals during burial diagenesis. In: Mange, M., Wright, D.T. (Eds.), Heavy Minerals In Use: Developments in Sedimentology, 58, 215–245. 197. Morton, A., Chenery, S., 2009. Detrital rutile geochemistry and thermometry as guides to provenance of Jurassic–Paleocene sandstones of the Norwegian Sea. Journal of Sedimentary Research, 79, 540–553. 198. Muehlenbachs K. and Clayton R. N., 1972a. Oxygen isotope studies of fresh and weathered submarine basalts. Canadian J. Earth Sci., 9, 172-184. 199. Muehlenbachs K. and Clayton R. N., 1972b. Oxygen isotope geochemistry of submarine greenstones. Canadian J. Earth Sci., 9, 471-478. 200. Murad, E., Cashion, J.D., Noble, C.J., Pilbrow, J.R., 1995. The chemical state of Fe in rutile from an albitite in Norway. Mineralogical Magazine, 59, 557–560. 201. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., Sciunnach, D., 2003. Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989–992. 202. Okrusch, M., Bröcker, M., 1990. Eclogites associated with high-grade blueschists in the Cyclades archipelago, Greece: a review. European Journal of Mineralogy, 2, 451–478. 203. Ongley, J. S., Basu, A. R., and Kyser, T. K., 1987. Oxygen isotopes in coexisting garnets, clinopyroxenes and phlogopites of Roberts Victor 175 eclogites: implications for petrogenesis and mantle metasomatism. Earth Planet. Sci. Lett., 83, 80-84. 204. Papp, G., 2007. On the type locality of rutile (review of contemporary data about the occurrence of the “Hungarian red schorl”). In: Jancsy, P. (Ed.), Prvenstvá nerastnej ríše Slovenska — The unique minerals of Slovakia. Slovenské banské múzeum, Banská Štiavnica, 51–55. 205. Parman, S.W., Grove, T.L., Dann, J.C., 2001. The production of Barberton komatiites in an Archean subduction zone. Geophysical Research Letters, 28, 2513–2516. 206. Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., Cenery, S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newsl., 21, 115– 144. 207. Pettijohn, F.J., 1941. Persitence of heavy minerals and geologic age. Journal of Geology, 49, 610–625. 208. Piatt, J. P., 1975. Metamorphism and deformational processes in the Franciscan Complex, California: Some insights from the Catalina Schist terrane: Geological Society of America Bulletin, 86, 1337-1347. 209. Pognante, U., 1989. Lawsonite, blueschist and eclogite formation in the southern Sesia Zone (western Alps, Italy). Eur. J. Mineral., 1, 89–104. 210. Polat A, Frei R, Appel PWU, Dilek Y, Fryer B, Ordonez-Calderon JC (2008) The origin and compositions of Mesoarchean oceanic crust: evidence from the 3075 Ma Ivisaartoq greenstone belt, southern West Greenland. Lithos, 100, 293-321. 176 211. Preston, R.J., Hartley, A., Hole, M.J., Buck, S., Bond, J., Mange- Rajetzky, M., Still, J., 1998. Integrated whole-rock trace element geochemistry and heavy-mineral chemistry studies: aids to the correlation of continental red-bed reservoirs in the Beryl Field, U.K. North Sea. Petroleum Geoscience, 4, 7–16. 212. Preston, J., Hartley, A., Mange-Rajetzky, M., Hole, M.J., May, G., Buck, S., 2002. The provenance of Triassic continental sandstones from the Beryl Field, northern North Sea: mineralogical, geochemical, and sedimentological constraints. Journal of Sedimentary Research, 72, 18–29. 213. 40 Putlitz, B., Cosca, M.A., Schumacher, J.C., 2005. Prograde mica Ar/39Ar growth ages recorded in high pressure rocks (Syros, Cyclades, Greece). Chemical Geology, 214, 79-98. 214. Raman, K.V., Jackson, M.L., 1965. Rutile and anatase determination in soils and sediments. American Mineralogist, 50, 1086–1092. 215. Ravna, E.J.K., Terry, M.P., 2004. Geothermobarometry of phengite– kyanite–quartz/coesite eclogites. Journal of Metamorphic Geology, 22, 579– 592. 216. Rice, C., Darke, K., Still, J., 1998. Tungsten-bearing rutile from the Kori Kollo gold mine Bolívia. Mineralogical Magazine, 62, 421–429. 217. Ridley, J. 1984. The significance of deformation associated with blueschist facies metamorphism on the Aegean island of Syros. In The Geological Evolution of the Eastern Mediterranean (eds J. E. Dixon and A. H. F. Robertson), Desmons, J. and O'Neil, J. R., 1978. Oxygen and hydrogen isotope compositions of eclogites and associated rocks from the Eastern Sesia Zone (western Alps, Italy). Contrib. Mineral. Petrol., 67, 79-85. 218. Roberts, D., Gee, D.G., 1985. An introduction to the structure of the Scandinavian Caledonides. In: Gee, D.G., Sturt, B.A. _Eds.., The Caledonide Orogen — Scandinavia and Related Areas. Wiley, Chichester, 55–68. 177 219. Robinson, P., 1995. Extension of Trollheimen tectono-stratigraphic sequence in deep synclines near Molde and Brattv°ag, Western Gneiss Region, southern Norway. Norsk Geologisk Tidsskrift, 75, 181–198. 220. Root, D.B., Hacker, B.R., Mattinson, J.M., Wooden, J.L., 2004. Zircon geochronology and ca. 400 Ma exhumation of Norwegian ultrahighpressure rocks: an ion microprobe and chemical abrasion study. Earth and Planetary Science Letters, 228, 325–341. 221. Romé de l'Isle, J.B.L. de, 1783. Cristallographie, ou description des formes propres à tous les corps du règne minéral, dans l'état de combinaison saline, pierreuse, ou métallique. Paris. 222. Rosenbaum, G., Avigad, D., Sánchez-Gómez, M., 2002. Coaxial flattening at deep levels of orogenic belts: evidence from blueschists and eclogites on Syros and Sifnos (Cyclades, Greece). Journal of Structural Geology, 24, 1451–1462. 223. Rubatto, D., Gebauer, D., Compagnoni, R., 1999. Dating of eclogite- facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth Planet. Sci. Lett., 167, 141–158. 224. Rubatto, D., Hermann, J., 2001. Exhumation as fast as subduction? Geology, 29, 3–6. 225. Rubatto, D. & Hermann, J., 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67, 2173– 2187. 226. Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309. 178 227. Rudnick, R.L., Barth, M., Horn, I., McDonough, W.F., 2000. Rutile- bearing refractory eclogites:missing linkbetween continents anddepletedmantle. Science, 287, 278–281. 228. Schertl, H.-P., Schreyer, W., Chopin, C., 1991. The pyrope-coesite rocks and their country rocks at Parigi, Dora Maira Massif, Western Alps: detailed petrography, mineral chemistry and PT-path. Contrib. Mineral. Petrol., 108, 1–21. 229. Schertl, H.-P. & Schreyer, W., 2008. Geochemistry of coesite-bearing ‘pyrope quartzite’ and related rocks from the Dora-Maira Massif, Western Alps. Eur. J. Mineral., 20, 791–809. 230. Schmid, S.M., Fugenschuh, B., Kissling, E., Schuster, R., 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv., 97, 93–117. 231. Schmidt, A., Weyer, S., John, T., Brey, G.P., 2009. HFSE systematics of rutile-bearing eclogites: new insights into subduction zone processes and implications for the Earth's HFSE budget. Geochimica et Cosmochimica Acta, 73, 455–468. 232. Schumacher, J.C.B., Brady, J., Cheney, J.T., Tonnsen, R.R., 2008. Glaucophane bearing Marbles on Syros, Greece. Journal of Petrology, 49, 1667–1686. 233. Scott, K.M., 2005. Rutile geochemistry as a guide to porphyry Cu–Au mineralization, Northparkes, New South Wales, Australia. Geochemistry: Exploration, Environment, Analysis, 5, 247–253. 234. Seck, H.A., Kötz, J., Okrusch, M., Sidel, E., Stosch, H.-G., 1996. Geochemistry of a metaophiolite suite: an association of metagabbros, 179 eclogites and glaucophanites on the island of Syros, Greece. European Journal of Mineralogy, 8, 607–623. 235. Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767. 236. Shirey, S.B., Kamber, B.S., Whitehouse, M.J., Mueller, P.A., and Basu, A.R., 2008, A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction, in Condie, K.C., and Pease, V., eds., When Did Plate Tectonics Begin on Planet Earth?: Geological Society of America Special Paper, 440, 1–29. 237. Sills, J.D., Tarney, J., 1984. Petrogenesis and tectonic significance of amphibolites interlayered with meta-sedimentary gneisses in the Ivrea Zone, Southern Alps, Northwest Italy. Tectonophysics, 107, 187–206. 238. Smith, D.C., 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310, 641–644. 239. Smith, D.C., 1988. A review of the peculiar mineralogy of the ‘‘Norwegian Coesite Eclogite Province’’, with crystal-chemical, petrological, geochemical and geodynamical notes and an extensive bibliography. In: Smith, D.C. _Ed.., Eclogites and Eclogite-Facies Rocks. Elsevier, Amsterdam, 1–206. 240. Smith, D., Perseil, E.-A., 1997. Sb-rich rutile in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy; petrology and crystal-chemistry. Mineralogical Magazine, 61, 655–669. 241. Smithies, R. H., Champion, D. C., and Cassidy, K. F., 2003, Formation of Earth’s Early Archean continental crust: Precambrian Research, 127, 89-101. 180 242. Spandler, C., Mavrogenes, J., Hermann, J., 2007. Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions. Chem. Geol. 239, 228–249. 243. Spooner, E. T. C., Beckinsale, R. D., Fyfe, W. S., and Smewing, J. D., 1974. 180-enriched ophiolitic metabasic rocks from E. Liguria (Italy), Pindos (Greece), and Troodos (Cyprus). Contrib. Mineral. Petrol., 47, 41-62. 244. Spurr, R., Myers, H., 1957. Quantitative analysis of anatase-rutile mixtures with an Xray diffractometer. Analytical Chemistry 29, 760–762. 245. Stendal, H., Toteu, S.F., Frei, R., Penaye, J., Njel, U.O., Bassahak, J., Nni, J., Kankeu, B., Ngako, V., Hell, J.V., 2006. Derivation of detrital rutile in the Yaoundé region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). Journal of African Earth Sciences, 44, 443–458. 246. Stern, R. J., 2004, Subduction initiation: Spontaneous and induced: Earth and Planetary Science Letters, 226, 275-292. 247. Stern, R. J., 2005, Evidence from ophiolites, blueschists and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time: Geology, 33, 557-560 248. Stevenson, D. J., 2003, Styles of mantle convection and their influence on planetary evolution: Comptes Rendus Geoscience, 335, 99-111. 249. Terry, M.P., Robinson, P., Ravna, E.J.K., 2000b. Kyanite eclogite thermobarometry and evidence for thrusting of UHP over HP metamorphic rocks, Nordøyane, Western Gneiss Region, Norway. American Mineralogist, 85, 1637–1650. 181 250. Tomaschek, F., Kennedy, A.K., Villa, I.M., Lagos, M., Ballhaus, C., 2003. Zircons from Syros, Cyclades, Greece—recystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology, 44, 1977–2002. 251. Tomkins, H.S., Powell, R., Ellis, D.J., 2007. The pressure dependence of the zirconium-in rutile thermometer. Journal of Metamorphic Geology, 25, 703–713. 252. Triebold, S., von Eynatten, H., Luvizotto, G.L., Zack, T., 2007. Deducing source rock lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany. Chemical Geology, 244, 421–436. 253. Tropper, P., Essene, E. J., Sharp, Z. D. & Hunziker, J. C., 1999. Application of K-feldspar–jadeite–quartz barometry to eclogite facies metagranites and metapelites in the Sesia Lanzo Zone (Western Alps, Italy). Journal of Metamorphic Geology, 17, 195–209. 254. Trotet, F., Jolivet, L., Vidal, O., 2001. Tectono-metamorphic evolution of Syros and Sifnos islands (Cyclades, Greece). Tectonophysics, 338, 179–206. 255. Tveten, E., 1995. Regional foliation patterns in gneisses as an aid to the correlation of metasupracrustal rocks in the Western Gneiss Region, southern Norway. Norges Geologiske Undersøkelse Bulletin, 427, 29–32. 256. Tveten, E., Lutro, O., 1995a. Geologisk kart over Norge, berggrunnskart A° LESUND — 1:250.000. Foreløpige Utgave. Norges Geologiske Undersøkelse. 257. Tveten, E., Lutro, O., 1995b. Geologisk kart over Norge, berggrunnskart ULSTEINVIK — 1:250.000. Foreløpige Utgave. Norges Geologiske Undersøkelse. 182 258. Uher, P., Žitňan, P., Ozdín, D., 2007. Pegmatitic Nb–Ta oxide minerals in alluvial placers from Limbach, Bratislava Massif, Western Carpathians, Slovakia: compositional variations and evolutionary trend. Journal of Geosciences, 52, 133–141. 259. Valley, J.W., 2003. Oxygen isotopes in zircon. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon: Reviews in Mineralogy and Geochemistry, 53, 343–380. 260. Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K., Wei, C.S., 2005. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmaticzircon. Contributions to Mineralogy and Petrology, 150, 561–580. 261. Van Roermund, H.L.M., Carswell, D.A., Drury, M.R., Heijboer, T.C., 2002. Micro-diamonds in a megacrystic garnet-websterite pod from Bardane on the island of Fjørtoft, western Norway: evidence for diamond-formation in mantle rocks during deep continental subduction. Geology, 30, 959–962. 262. Van Roermund, H.L.M., 2009a. Recent progress in Scandian UHPM in the northernmost domain of the Western Gneiss Complex, SW Norway: continental subduction down to 180–200 km. Journal of the Geological Society of London, 166, 1–13. 263. Venturini, G., Martinotti, G., Armando, G., Barbero, M., Hunziker, J.C., 1994. The central Sesia Lanzo Zone (western Italian Alps), new field observations and lithostratigraphic subdivisions. Schweiz. Mineral. Petrogr. Mitt., 74, 115–125. 264. Vogel, D. E. and Garlick, G. D., 1970. Oxygen isotope ratios in metamorphic eclogites. Contrib. Mineral Petrol, 28, 183-191. 183 265. Von Born, I., 1772. Lithophylacium Bornianum, Index Fossilium, quae collegit, et in Classes ac Ordines disposuit Ignatius Eques a Born. Vol. 1, Gerle, Prague, 157 pp. 266. Von Eynatten, H., Gaupp, R., 1999. Provenance of Cretaceous synorogenic sandstones from the Eastern Alps: constraints from framework petrography, heavy mineral analysis, and mineral chemistry. Sedimentary Geology, 124, 81–111. 267. Vrijmoed, J.C., Van Roermund, H.L.M., Davies, G.R., 2006. Evidence for diamond-grade ultra-high pressure metamorphism and "uid interaction in the Svartberget Fe–Ti garnet peridotite–websterite body, Western Gneiss Region, Norway. Mineralogyand Petrology 88, 381–405. 268. Vry, J.K., Baker, J.A., 2006. LA-MC-ICP MS Pb–Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. Geochimica et Cosmochimica Acta, 70, 1807– 1820. 269. Vrijmoed, J.C., Smith, D.C., Van Roermund, H.L.M., 2008. Raman confirmation of microdiamond in the Svartberget Fe–Ti type garnet peridotite, Western Gneiss Region, Western Norway. Terra Nova, 20, 295– 301. 270. Wain, A.L., 1997a. Ultrahigh pressure metamorphism in western Norway: a tectonic or kinetic problem? Terra Nova 9, 94, Abstr. Suppl. 1 _EUG. 271. Wain, A.L., 1997b. New evidence for coesite in eclogite and gneisses: defining an ultrahigh pressure province in the Western Gneiss Region of Norway. Geology, 25, 927–930. 272. Wain, A.L., 1998. Ultrahigh pressure metamorphism in the Western Gneiss Region of Norway. PhD thesis, University of Oxford. 184 273. Wain, A., Waters, D., Austrheim, H., 2001. Metastability of granulites and processes of eclogitization in the UHP region of western Norway. Journal of Metamorphic Geology, 19, 609–625. 274. Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413–433. 275. Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175–178. 276. Wilks, W.J., Cuthbert, S.J., 1994. The evolution of the Hornelen Basin detachment system, western Norway: implications for the style of late orogenic extension in the southern Scandinavian Caledonides. Tectonophysics, 238, 1–30. 277. Wynman, D. A., O’Neill, C., and Ayer, J. A., Evidence for modern- style subduction to 3.1 Ga: A plateau–adakite–gold (diamond) association Geological Society of America Special Papers, 2008, 440, 129-148. 278. Xiao, Y., Sun, W., Hoefs, J., Simon, K., Zhang, Z., Li, S., Hofmann, A.W., 2006. Making continental crust through slab melting: Constraints from niobium–tantalum fractionation in UHP metamorphic rutile. Geochimica et Cosmochimica Acta, 70, 4770–4782. 279. Zack, T., Foley, S.F., Rivers, T., 2002a. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). J Petrol., 43, 1947–1974. 280. Zack, T., Kronz, A., Foley, S.F., Rivers, T., 2002b. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 97-122. 185 281. Zack, T., Moraes, R., Kronz, A., 2004a. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148, 471–488. 282. Zack, T., Eynatten, H.V., Kronz, A., 2004b. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology, 171, 37-58. 283. Zhang, R.Y., Liou, J.G., 1994. Significance of magnesite paragenesis in ultrahigh-P metamorphic rocks. Am. Mineral., 79, 397–400. 284. Zhang, R.Y., Hirajima, T., Banno, S., Cong, B., Liou, J.G., 1995. Petrology of ultrahigh-pressure rocks from the southern Sulu region, eastern China. J. Metamorph. Geol., 13, 659–675. 285. Zhang, R.Y., Zhai, S.M., Fei, Y.W., Liou, J.G., 2003. Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved rutile in garnet. Earth and Planetary Science Letters, 216, 591–601. 286. Zhang, Z.M., Liou, J.G., Zhao, X.D., Shi, C., 2006. Petrogenesis of Maobei rutile eclogites from the southern Sulu ultrahigh-pressure metamorphic belt, eastern China. Journal of Metamorphic Geology, 24, 727– 741. 287. Zhang, R.Y., Yang, J.S., Wooden, J.L., Liou, J.G., Li, T.F., 2005. U– Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism. Earth Planet Sci. Lett., 237, 729–743. 288. Zhang, G.B., Ellis, D., Christy, A., Zhang, L.F., Song, S.G., 2010. Zr- in-rutile thermometry in HP/UHP eclogites from Western China. Contrib. Mineral. Petrol., 160, 427–439. 186 289. Zheng, Y.F., 1991. Calculation of oxygen isotope fractionation in metal oxides. Geochimica et Cosmochimica Acta, 55, 2299–2307. 290. Zheng, Y.F., Fu, B., Xiao, Y., Li, Y., Gong, B., 1999. Hydrogen and oxygen isotope evidence for fluid–rock interactions in the stages of pre- and post-UHP metamorphism in the Dabie Mountains. Lithos, 46, 677–693. 291. Zheng, Y.F., Fu, B., Gong, B., Li, L., 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie–Sulu orogen in China: implications for geodynamics and fluid regime. EarthScience Reviews, 62, 105–161. 292. Zingg, A., Hunziker, J.C., 1990. The age of movements along the Insubric Line west of Locarno (northern Italy and southern Switzerland). Eclogae Geol. Helv., 83, 629–644. 293. Zucali, M., Spalla, M. I. & Gosso, G., 2002. Strain partitioning and fabric evolution as a correlation tool: the example of the Eclogitic Micaschists Complex in the Sesia–Lanzo Zone (Monte Mucrone– Monte Mars, Western Alps, Italy). Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 429–454. 187 Case Study Syros Syros Syros Syros Syros Syros Syros Syros Syros Syros Syros Syros Syros Syros Syros Syros Syros Syros Sample No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Postoulos, Laki bay, N of Galissas Galissas beach Lia beach Finikas Yacht Harbour Armeos beach block touching Monolith I on the hill slope between Kambos and Lia block near Monolith I on the hill slope between Kambos and Lia Large eclogite block on the summit of Charassonas, near the Cross (Stavros) overlooking Finikas village Ghalani (between Finikas and Galissas) c. 50m W of Campos Sumit of Charasonas (hill above Finikas, at the cross Pebble from Lia beach Large eclogite block on the summit of Charassonas, near the Cross (Stavros) overlooking Finikas village Large eclogite block on the summit of Charassonas, near the Cross (Stavros) overlooking Finikas village Loose block in wall, valley between Aghriomelio and Ghalani. Road from San Michalis to Kampos, appr. 100 m from San Michalis Location appr. 50 m west of Kampos along the path from Kampos to Lia beach. Finikas or from the road between Finikas and Galissas SY561 SY503 SY506 SY525 SY526 SY539 SY537 SY528 SY522-100 SY522-10 SY545 SY412 SY507 SY521 SY522-175 SY504 SY500 SY425G Sample Metasomatic Beach sand Beach sand Beach sand Beach sand Metasomatic Metasomatic Metasomatic Metasomatic Metasomatic Metamorphic Metasomatic Metasomatic Metasomatic Metamorphic Metamorphic Metamorphic Metamorphic Group Type Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Attic-Cycladic Massif Unit Qtz segregation (or vein) in eclogite with Rt - Omp-Gln rock Omp-Gln-Phe rock Ep-Gln-Omp-Grt schist Omp-Grt-Gln-Rt Gln-Omp-Grt-Ep-Rt-Phe Grt-Gln-Qtz-Ep-Rt schist Chl-Omp fels Omp-Grt-Chl-Ab-Rt Op-Chl vein with Rt Eclogite Metagabbro Eclogite Phe-Ep-Grt-Gln fels(metagabbro) Rock Type grain mount grain mount grain mount grain mount grain mount grain mount grain mount grain mount thick section thick section grain mount/thick section thick round section grain mount/thick section thick section thick section thick section thick section thick section Sample Type no yes yes yes yes no no no no no yes no yes yes no no no no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no no no no no no no no no no no no yes yes no no no no no no no no no no no no no no no yes no no no no no yes EPMA LA-ICPMS O Isotopes Whole Rock Appendix A1 A1.1. Sample description table (Syros) 188 Sample No. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Case Study Sesia Lanzo Sesia Lanzo Sesia Lanzo Sesia Lanzo Sesia Lanzo Sesia Lanzo Sesia Lanzo Sesia Lanzo Dora Maira Dora Maira Dora Maira Dora Maira Western Alps Western Alps Western Alps Western Alps Western Alps Western Alps Western Alps Location between Quincinetto and Mombarone between Quincinetto and Mombarone between Quincinetto and Mombarone between Quincinetto and Mombarone between Quincinetto and Mombarone between Quincinetto and Mombarone between Quincinetto and Mombarone between Quincinetto and Mombarone Parigi/Case Ramello Tapina Parigi/Case Ramello Parigi/Case Ramello Rio delle Balme Torrente Chiusella 1 Torrente Chiusella 2 Dora Baltea Varaita Maira Po River Sample MK 30 MK 35 MK 51 MK 126 MK 162.3 MK 195 MK 197 MK 541 15623a 19296a 20254 19464 SL 10/4 SL 10/10 SL 10/12 SL 10/13 SL 10/16 SL 10/17 SL 10/15 Group Type Metamorphic Metamorphic Metamorphic Metamorphic Metamorphic Metamorphic Metamorphic Metamorphic Metamorphic Metamorphic Metamorphic Metamorphic River sand River sand River sand River sand River sand River sand River sand Unit Mombarone Mombarone Mombarone Mombarone Mombarone Mombarone Mombarone Mombarone Brossasco–Isasca Brossasco–Isasca Brossasco–Isasca Pinerolo - Rock Type Gln micaschist Micaschist Omp-Grt micaschist Grt micaschist Grt micaschist Grt micaschist Omp-White mica schist Omp micaschist Pyrope Megablasts Pyrope Megablasts Jd quartzite Pyrope quartzite - Sample Type EPMA LA-ICPMS O Isotopes Whole Rock thin section no yes no yes thin section/grain mount yes yes yes yes grain mount yes no no yes thin section no yes no yes thin section/grain mount yes yes yes yes thin section no yes no no thin section/grain mount yes yes yes no thin section no yes no yes grain mount/thin section yes yes no yes grain mount/thin section yes yes no yes grain mount/thin section yes yes yes yes grain mount/thin section yes yes yes yes grain mount no yes no no grain mount no yes no no grain mount no yes no no grain mount no yes no no grain mount no yes no no grain mount no yes no no grain mount no yes no no Appendix A1 A1.1.Sample description table (Western Alps) 189 Case Study Western Gneiss Complex Western Gneiss Complex Western Gneiss Complex Western Gneiss Complex Western Gneiss Complex Western Gneiss Complex Western Gneiss Complex Western Gneiss Complex Western Gneiss Complex Western Gneiss Complex Western Gneiss Complex Sample No. 39 40 41 42 43 44 45 46 47 48 49 Arsheimneset Gusdal mine Gusdal mine Flatraket Flatraket Vertrhuset Vertrhuset Vertrhuset Nybo Nausdal Raudkleivane Location N 55 N 40 N 38 N 36 N 35 N 31 N 29 N 28 N 27 N 19 4-1A Sample Metasomatic Western Gneiss Complex Metamorphic Almklovdalen ultramafic body Almklovdalen ultramafic Metamorphic body Metasomatic Western Gneiss Complex Metamorphic Western Gneiss Complex Metamorphic Western Gneiss Complex Metamorphic Western Gneiss Complex Metamorphic Western Gneiss Complex Metamorphic Western Gneiss Complex Metasomatic Western Gneiss Complex Unit Almklovdalen ultramafic Metamorphic body Group Type Omp vein with Rt Ti-rich eclogite Ti-rich eclogite Ky-Qtz vein with Rt Eclogite UHP gneiss Eclogite PCQ-bearing eclogite Eclogite Omp vein Fe-rich eclogite Rock Type thick section thick section/grain mount thick section/grain mount thick section/grain mount thick section thick section/grain mount thick section thick section thick section/grain mount thick section thick section Sample Type no yes yes yes no yes no no yes no no yes yes yes yes yes yes yes yes yes yes yes no yes yes yes no yes no no yes no no no no no no no no no no no no no EPMA LA-ICPMS O Isotopes Whole Rock Appendix A1 A1.1.Sample description table (Western Gneiss Complex) 190 Appendix A2 Sample Preparation Two types of sample preparation have been prepared for quantitative analysis: polished thick sections and epoxy resin mounts. The thick sections were made from hand specimens, with a thickness of approximately 100 µm. The main reason for having thicker section than normal ones (30 µm thick) was for the LA-ICPMS analysis, which uses a laser beam of >30µm that would therefore penetrate through the sample. Thick sections for samples from Syros, Sesia Lanzo, Dora Maira and the Western Gneiss Region have been prepared. Large samples were cut to slices on a Tyslide diamond rimmed slabbing saw. The chips were cut to size using a Cutangrind saw made by Agate and General. Next, they were ground down on a converted potter's wheel using different grades of silicon carbide. The grades in decreasing size order were: 80, 150, 300, 600 and 1000 - the latter two grades were used on a glass plate rather than the potter's wheel. Once the chips had a good finish to them, they were bonded to the glass slides using Devcon 2-ton epoxy resin (a two component mix of resin and hardener in a 50:50 ratio). The bonding was done at room temperature with the chips subjected to compression in order to squeeze most of the resin out to give a good parallel bond (i.e. the chip and the glass end up parallel). They were left overnight, then cut off in the morning after a cure-time of about 20 hours. The excess material was cut off using a Petrothin thin section-making machine, manufactured by Buehler. This left about 0.5mm stuck to the glass. The same machine was then used to grind the remaining material down to about 110 microns (for polished thick sections). Any saw /grinding marks from the machine were then ground away using 600 grade silicon carbide, followed by 1000 grade again, used on a glass plate. At the finished desired thickness, the slides were cleaned carefully and were polished on MetaServ 3000 Variable speed grinder-polisher, manufactured by Buehler. Nearly all the samples required 4 x 4 191 Appendix A2 minute cycles using 0.3 micron deagglomerated aluminium oxide powder (supplied by Buehler) at a speed of 150 rpm using water as a slurry mixer. Some of the harder samples needed extra 1 - 2 cycles. Epoxy resin samples were made for detrital rutiles from the Western Alps. Jeanette Taylor prepared the detrital rutiles from Syros during her MSc at the University of Bristol with Horst Marschall and provided them for this study. A first order of separation for the sediment samples was done in the field by using gold pans. Approximately 95 % of the sample material was discarded at that stage. This was done to separate minerals by density and eliminate fine-grained silts and clays. For the next step of separation, samples were first washed and dried in the oven at about 40 – 50 °C. The Wilfley Table was used afterwards to separate the light fraction from the dense fraction. The dense fraction (after being dried in the oven at similar temperatures) was further separated using the Franz Magnetic Separator based on magnetic susceptibility. This way non-magnetic minerals (such as rutile) were separated from magnetic minerals (such as magnetite). The 2.5 and 3.0 A fractions were then considered for the next steps. A large hand magnet was used before this, in order to extract the highly magnetic fraction (i.e. magnetite) as much as possible. Heavy liquids were then used to separate minerals with densities lower than 2.8 g/mL (average density of the continental crust) from minerals with higher densities (such as rutile). LST Fastfloat (2.8 g/mL) was used for this purpose. At the end of the process, the sample was dried in the oven and prepared for the final step of the separation procedure. Hand picking is the process by which rutile grains are chosen using a stereomicroscope and very fine tweezers. Resin mounts were prepared using Epothin resin and hardener, made by Buehler. Grains were then mounted on a double sticky tape and mixed resin and hardener mix was poured on top of them in plastic 25mm diameter moulds. These were mixed in the ratio 100 parts resin to 39 parts hardener (ie. roughly 5:2). The epoxy resin was let to dry for 24 hours in a pressure chamber (held at around 2 bar in order to eliminate bubbles within the resin mount). Next, the resin mounts were put on the polishing machine and subjected to the same abrasive process as the thick sections (please see above) - but the 192 Appendix A2 surface was checked after every cycle very carefully, to try and minimise any loss of the smaller grains. Resin mounts were also prepared for SIMS analysis for all investigated locations. As these samples were hand specimens, before the complex separation and epoxy resin preparation described above, samples were first crushed using a rock splitter and jaw crusher. The resulting rock flakes were then reduced to a fine grain size using an agate planetary ball mill. For these specimens, SEM imaging, both secondary electron and backscatter, was used to investigate for zoning, mineral inclusions and/or fractures/cracks in the rutile grains. This was done at the Department of Biological Sciences, University of Portsmouth with a JEOL 6060LV variable vacuum SEM. 193 Appendix A3 Laser Session jn07a10 jn08a10 jn08b10 jn08c10 jn08d10 jn08e10 jn08f10 mr23b10 mr23c10 mr23d10 mr23e10 mr23f10 mr24a10 mr24b10 mr24c10 V 440 438 444 434 440 439 444 434 437 441 439 440 436 442 437 442 421 457 430 449 438 441 427 451 433 446 438 441 440 443 434 450 439 445 445 439 442 441 436 448 448 436 455 429 458 426 456 427 446 438 438 446 443 440 443 441 442 442 443 441 Zr 441 434 438 437 434 441 445 430 437 438 439 436 436 439 442 433 418 457 431 444 431 444 428 447 433 442 435 440 433 447 426 454 431 449 445 435 426 454 434 446 439 441 454 426 459 421 447 433 448 432 437 443 435 445 448 432 436 444 427 453 Nb 421 414 420 415 413 421 424 410 416 418 418 417 416 418 420 415 398 436 413 422 412 423 405 429 413 421 416 418 412 427 408 431 412 427 421 418 402 437 417 422 419 420 434 405 434 405 428 411 428 411 413 426 417 422 432 407 422 417 409 430 Mo 379 371 377 372 376 374 386 364 374 376 376 374 375 374 376 374 356 393 364 385 370 380 367 383 368 381 375 375 368 386 371 383 370 383 381 373 349 404 373 381 380 374 389 364 390 363 381 373 385 369 375 379 376 378 387 367 381 373 365 389 Sb 374 359 373 360 370 363 380 353 370 363 368 365 371 362 371 363 350 383 363 370 361 373 361 372 365 368 368 366 358 379 363 374 360 377 373 364 347 390 365 372 372 365 380 357 386 351 379 358 377 360 372 366 368 370 381 356 371 366 357 380 Hf 417 414 414 417 415 416 428 403 417 414 420 411 417 414 416 415 397 434 413 418 409 422 405 426 411 420 417 414 415 421 406 430 414 422 412 423 402 434 413 423 422 414 426 410 431 404 430 405 423 413 415 421 408 428 426 410 419 416 415 421 Ta 374 375 374 375 373 376 385 364 375 374 377 373 375 374 375 374 358 391 371 378 369 380 365 384 370 379 373 376 378 375 366 388 374 379 375 379 361 392 374 379 379 375 384 370 387 366 391 363 381 373 377 377 367 387 383 371 378 375 378 375 W 442 444 447 439 442 444 456 429 439 447 446 440 447 439 444 442 424 462 440 446 441 445 435 451 436 450 444 442 443 448 438 453 443 448 441 450 432 458 445 446 448 443 451 439 453 438 462 429 449 442 445 446 438 453 451 440 445 446 443 448 Pb 416 406 419 403 421 401 422 401 413 409 411 412 409 413 417 405 397 426 410 412 413 409 409 413 407 415 415 407 410 417 402 424 410 417 411 415 402 425 412 415 416 411 419 407 422 405 431 396 417 410 416 411 406 421 421 406 413 414 411 416 Table A3.1. Long-term 610 analyses done using the LA-ICPMS Th 448 449 449 447 446 451 461 436 447 450 449 448 447 450 450 446 429 467 444 453 444 453 438 458 444 452 450 447 441 460 440 462 449 452 450 452 438 463 449 453 456 446 456 446 459 442 468 434 454 448 453 449 444 458 458 444 453 449 453 449 194 U 455 454 453 457 457 452 463 446 453 457 458 452 455 454 451 458 436 473 452 457 452 457 445 464 449 460 453 456 450 465 449 466 453 462 457 458 444 470 455 459 462 453 466 449 466 449 470 444 458 456 454 461 451 464 465 450 458 457 460 454 Appendix A3 Laser Session mr24d10 mr24e10 mr24f10 mr24g10 mr24h10 mr24i10 mr25a10 mr25b10 mr25c10 mr25d10 mr25e10 mr25f10 mr25g10 mr26a10 mr26b10 V 452 432 441 443 434 449 449 434 440 444 446 437 432 451 470 414 450 434 444 440 442 442 448 435 449 435 442 442 440 443 444 439 440 443 441 443 440 444 448 436 440 444 431 453 461 423 433 450 434 450 443 441 439 445 442 442 436 447 Zr 444 436 438 442 434 446 444 436 434 446 449 431 434 446 467 413 452 428 442 438 440 440 434 446 448 432 442 438 437 443 460 420 437 443 437 443 438 442 450 430 433 447 421 459 457 423 434 446 436 444 442 438 434 446 438 442 429 451 Nb 420 419 422 418 415 424 423 416 410 429 423 416 417 422 440 399 426 413 428 411 422 417 418 421 426 413 424 415 417 422 439 400 415 424 418 421 415 424 425 415 410 429 402 437 434 405 415 424 417 422 420 419 413 426 417 422 409 430 Mo 382 372 374 380 376 377 376 377 375 379 381 373 373 381 387 367 385 369 379 374 378 376 375 379 383 371 379 374 372 381 393 361 370 384 379 374 376 378 388 366 372 382 363 391 387 367 374 380 375 379 388 366 372 382 375 379 369 384 Sb 371 366 363 374 365 372 367 370 359 378 369 368 374 363 392 345 378 360 381 357 368 370 366 371 372 365 371 366 368 369 381 357 361 376 365 373 367 370 379 358 365 372 357 380 385 352 368 369 369 368 378 359 363 374 368 369 359 378 Hf 424 412 411 425 401 435 414 422 413 422 410 426 411 424 441 395 422 414 439 397 430 406 418 418 426 410 426 410 421 415 426 409 423 412 419 417 419 417 432 403 417 418 407 429 437 399 414 422 413 422 439 396 422 414 422 413 405 431 Ta 379 374 371 383 364 389 376 378 371 382 371 382 372 381 396 357 381 372 398 356 385 368 378 375 383 370 382 372 381 372 385 369 379 374 379 374 377 377 390 363 378 375 366 388 397 357 374 379 374 380 392 362 377 376 381 372 364 390 W 455 436 435 456 431 460 443 448 444 446 437 454 436 455 473 418 455 436 469 422 455 435 446 445 454 437 450 441 452 439 453 438 448 443 448 443 445 446 462 429 446 445 431 460 471 420 438 453 438 453 464 427 447 443 451 440 428 463 Table A3.1. Long-term 610 analyses done using the LA-ICPMS Pb 423 404 404 423 404 423 412 415 410 416 403 424 408 419 439 388 415 411 434 393 426 401 414 413 420 406 417 410 419 408 420 407 416 411 416 410 413 414 427 400 415 411 405 422 432 395 410 417 410 417 431 396 415 412 417 409 400 427 Th 460 442 443 459 438 463 445 456 449 452 446 455 443 459 482 420 459 442 472 430 464 437 454 447 459 443 455 447 457 444 455 446 453 449 454 447 450 451 468 434 449 453 439 463 476 426 444 457 446 456 460 442 451 451 457 444 436 466 195 U 467 447 450 465 448 466 454 460 459 455 451 463 450 465 487 428 466 448 473 441 472 443 462 452 465 450 463 451 465 449 463 451 458 456 463 452 460 454 473 441 459 455 444 470 478 436 451 463 451 463 469 445 457 458 462 452 445 469 Appendix A3 Laser Session mr26c10 mr26d10 mr26e10 mr26f10 mr26g10 mr26a10 au20a10 au20b10 au20c10 au20d10 au20e10 au24a10 au24b10 au24c10 au24d10 au24e10 V 448 436 438 445 444 439 446 438 441 443 447 437 440 443 436 448 439 445 443 441 439 445 432 447 432 447 429 450 441 437 451 427 444 434 440 439 437 442 441 438 448 431 438 441 445 434 439 440 442 437 444 435 453 425 430 449 441 437 441 437 433 445 Zr 440 440 436 444 441 439 445 435 437 443 448 432 438 442 432 448 449 431 442 438 434 446 428 447 432 443 432 443 433 442 419 456 436 439 436 439 433 442 440 435 452 423 438 437 442 433 436 439 443 432 442 433 452 423 433 442 440 435 438 437 431 445 Nb 421 418 417 422 420 419 424 415 419 420 426 413 420 419 410 429 423 416 420 419 413 426 410 425 412 423 408 426 417 417 420 414 423 411 416 418 412 422 417 418 425 409 418 416 422 412 416 418 421 413 422 412 429 406 412 422 419 415 416 418 408 427 Mo 381 373 377 377 377 377 385 369 378 376 384 370 379 375 364 390 379 375 388 366 372 382 369 381 371 378 370 379 374 376 374 376 378 371 379 370 373 376 376 374 386 364 378 372 380 370 375 375 382 368 375 374 386 364 371 379 377 373 381 369 371 378 Sb 369 368 365 372 370 367 373 364 366 372 377 360 372 365 361 376 369 369 378 359 363 374 360 373 368 365 362 371 365 368 347 386 371 363 369 364 367 366 373 360 382 351 366 367 371 362 366 367 371 362 371 362 380 353 361 372 369 364 369 364 365 368 Hf 423 413 417 419 418 417 424 412 419 416 425 411 419 417 415 420 423 413 439 396 422 414 407 424 412 419 416 415 412 419 400 431 414 417 407 424 418 413 416 415 428 403 417 414 419 412 415 416 425 406 421 410 430 401 414 417 418 413 416 415 418 413 Ta 380 374 377 376 380 373 383 370 376 377 382 371 381 372 378 376 380 374 392 362 377 376 368 381 373 376 373 377 373 376 364 386 373 376 372 377 375 374 374 375 386 363 374 375 377 372 374 375 386 364 381 369 386 363 370 379 376 373 374 375 375 374 W 451 440 447 444 451 439 453 438 450 441 453 438 450 441 450 441 450 441 464 427 447 443 433 452 439 446 439 447 447 439 444 441 451 435 440 446 444 442 442 444 457 429 441 444 445 441 443 443 456 430 450 436 463 423 439 447 444 442 450 436 440 446 Pb 419 408 416 411 417 410 420 407 415 412 419 408 417 410 412 415 412 414 431 396 415 412 403 420 411 411 411 411 409 413 388 435 415 407 413 409 414 408 412 410 429 394 415 408 416 406 411 411 421 401 419 403 429 394 412 410 412 410 418 404 413 409 Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued) Th 457 445 449 453 454 447 458 444 452 449 459 443 453 449 449 453 455 447 460 442 451 451 439 457 448 448 444 453 446 450 435 462 451 446 446 451 450 446 448 448 466 431 450 446 452 444 447 449 459 438 456 440 461 435 444 453 450 446 450 446 446 450 196 U 469 445 457 458 457 457 460 455 456 458 467 448 460 455 459 456 460 454 469 445 457 458 450 460 449 461 456 453 454 455 473 436 463 447 456 454 454 456 453 456 467 442 453 457 458 452 454 455 466 444 461 449 477 433 445 464 456 453 463 446 456 453 Appendix A3 Laser Session au25a10 au25b10 au26a10 au26b10 au26c10 au26d10 au26e10 au26f10 au27a10 au27b10 au27c10 no15b10 no16a10 no16b10 no16c10 no16d10 V 442 437 435 444 439 440 445 434 442 436 444 435 443 435 449 430 448 431 437 442 438 441 436 442 438 441 446 433 440 439 432 447 448 431 444 435 440 439 439 439 439 440 447 432 436 448 444 440 448 436 431 452 443 441 442 442 449 435 434 449 Zr 441 434 440 435 436 439 439 436 447 428 437 439 439 436 440 435 446 429 431 444 436 439 433 443 438 437 447 428 442 434 432 443 446 429 438 437 434 441 434 441 437 438 451 424 436 444 441 439 446 434 430 450 441 439 440 440 446 434 432 448 Nb 422 412 420 414 417 418 423 412 429 405 419 415 417 417 422 412 425 410 418 416 418 417 414 420 417 418 424 410 422 412 411 424 427 408 421 413 417 417 418 417 418 417 427 408 416 423 418 421 424 415 413 426 421 418 419 420 425 414 413 426 Mo 380 370 374 376 377 372 381 369 390 359 376 374 376 374 383 367 383 367 372 377 380 370 376 373 375 375 382 368 380 370 368 381 381 369 376 374 379 370 376 374 379 371 380 369 372 382 380 373 383 370 369 385 373 381 379 375 383 370 369 384 Sb 372 362 371 362 365 368 371 363 367 366 377 356 366 367 367 366 374 359 369 364 372 361 365 368 366 367 374 359 376 358 364 369 375 358 370 363 370 363 371 362 366 367 380 353 368 370 366 371 372 365 360 377 372 365 369 369 374 363 357 380 Hf 421 410 424 407 412 419 418 413 436 395 416 415 420 411 418 413 427 404 417 414 411 420 418 413 415 416 425 406 421 410 411 420 426 405 416 415 409 422 418 413 418 413 427 404 413 422 420 415 416 420 413 423 419 416 421 415 426 409 412 424 Ta 381 369 381 369 373 376 379 370 392 357 376 373 378 371 377 372 386 363 376 373 373 376 374 375 374 375 384 365 381 368 370 379 384 365 375 374 369 380 375 374 377 372 383 366 373 380 376 377 377 376 371 382 379 374 379 375 379 374 373 380 W 449 436 446 440 443 443 449 437 469 416 451 435 446 440 450 436 457 429 443 443 442 444 444 442 441 445 451 435 453 433 440 446 451 435 446 440 442 444 444 442 448 438 453 433 441 450 446 445 449 442 438 453 446 445 448 442 451 440 439 452 Pb 416 407 415 408 413 409 416 406 434 388 418 404 411 411 411 411 427 396 412 410 417 405 406 416 410 413 422 401 424 398 411 411 419 403 414 408 416 406 420 403 413 409 426 396 416 411 411 416 410 417 403 424 415 411 421 406 420 407 409 418 Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued) Th 455 441 457 440 442 454 453 444 471 425 449 448 451 446 452 445 462 434 449 447 446 450 453 443 448 449 457 440 454 442 441 455 456 441 449 447 443 453 449 447 450 446 456 441 446 456 452 449 451 451 445 456 452 449 454 447 458 444 443 459 197 U 464 445 454 455 453 457 458 451 481 428 461 448 458 452 461 449 467 442 460 450 459 450 461 449 453 456 464 445 462 447 450 460 464 445 459 450 453 456 455 455 458 451 466 444 456 459 453 461 457 458 451 464 459 455 462 453 467 448 451 463 Appendix A3 Laser Session no16e10 no17a10 no17b10 no17c10 no17d10 no18a10 no18b10 no18c10 no19a10 no19b10 no19c10 no19d10 no19e10 no19f10 no22a10 no22b10 V 431 453 437 447 439 445 442 442 437 447 442 441 437 447 435 448 454 430 451 433 447 437 443 440 443 441 440 444 432 452 439 445 442 442 433 451 436 447 443 440 451 433 441 443 442 442 437 446 449 434 444 439 445 439 435 448 439 445 446 437 441 443 448 436 Zr 427 453 435 445 442 438 435 445 434 446 436 444 439 441 430 450 447 433 451 429 445 435 447 433 443 437 438 442 438 442 438 442 439 441 432 448 436 444 443 437 452 428 437 443 437 443 440 440 450 430 439 441 444 436 436 444 434 446 443 437 435 445 442 438 Nb 409 430 414 425 418 421 420 419 414 425 421 418 416 423 416 423 428 411 429 410 427 412 423 416 423 416 416 423 413 426 415 424 418 421 412 427 417 422 424 415 427 412 418 421 421 418 416 424 426 413 421 419 421 418 411 428 414 425 424 415 418 421 427 412 Mo 362 392 371 383 376 378 382 372 374 380 378 375 383 370 372 382 381 373 388 366 384 370 385 369 379 375 373 381 369 385 374 380 375 379 371 383 382 372 378 376 385 368 375 379 375 378 376 378 386 368 378 376 382 371 371 383 374 380 377 376 378 376 380 374 Sb 355 382 366 371 366 371 365 372 365 372 375 362 368 369 368 369 376 361 374 364 377 360 372 366 371 366 369 368 356 381 368 369 369 368 364 374 365 372 378 359 375 363 368 369 367 370 365 372 377 360 367 371 374 364 371 366 368 369 370 368 370 367 371 366 Hf 408 428 410 425 425 411 417 419 411 425 420 415 417 419 414 422 423 412 426 409 423 413 425 411 425 411 418 417 419 417 415 420 417 419 411 425 415 420 424 412 429 407 414 421 417 419 422 414 430 406 422 413 419 417 417 418 415 421 425 411 420 416 421 414 Ta 367 387 371 382 380 374 377 376 372 381 380 374 376 377 373 380 381 372 385 368 384 370 383 371 380 373 378 375 375 378 374 379 378 375 369 384 373 380 381 372 384 369 377 376 378 376 374 379 381 372 381 372 380 374 378 376 377 376 383 370 373 380 382 371 W 431 460 443 448 449 442 447 444 439 452 451 440 440 451 443 448 453 438 459 432 458 433 454 437 450 441 444 447 438 452 445 446 445 446 435 456 446 445 453 438 455 436 442 449 450 441 445 446 455 436 448 443 451 440 443 448 445 445 448 442 445 446 455 436 Pb 397 430 418 409 410 417 411 416 414 413 419 408 415 412 416 410 428 399 426 401 424 403 417 409 411 416 413 414 403 423 406 420 418 409 408 419 418 409 422 405 421 406 411 416 412 415 411 416 427 400 411 416 418 409 416 411 411 416 411 416 413 414 419 408 Th 437 465 448 454 452 449 450 452 449 452 452 449 448 453 444 457 461 441 461 440 459 442 457 445 456 445 453 448 447 455 450 451 447 455 444 458 449 453 456 445 461 441 448 453 450 451 448 454 457 444 454 448 457 445 451 451 449 452 454 447 447 454 462 440 Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued) U 445 469 451 464 458 457 462 452 450 465 462 452 456 458 453 461 471 444 471 444 466 449 463 451 459 455 456 458 451 463 453 461 459 456 450 464 454 460 465 449 466 448 459 456 455 459 454 461 466 449 461 453 464 450 455 460 457 457 460 455 457 458 468 447 198 Appendix A3 Laser Session no22c10 no22d10 no22e10 no22f10 no22g10 no23a10 no23b10 no23c10 no23d10 no23e10 no23f10 no23g10 no24a10 no24b10 no24c10 V 441 442 452 431 438 445 447 437 445 438 447 437 435 449 437 447 441 443 452 432 437 447 452 432 436 448 436 447 440 444 442 441 434 450 444 440 426 457 448 436 437 447 434 450 444 440 445 438 437 447 436 447 453 430 442 442 438 445 434 449 Zr 438 442 448 432 436 444 448 432 449 431 443 437 433 447 439 441 440 440 446 434 437 443 447 433 433 447 437 443 438 442 434 446 435 445 447 433 427 453 448 433 441 439 435 445 444 436 441 439 432 448 434 446 447 433 436 444 439 441 430 450 Nb 418 421 426 413 418 421 427 412 427 412 421 418 414 425 419 420 419 420 424 415 416 423 428 411 416 423 417 422 419 420 412 427 416 423 425 414 408 431 428 411 415 424 413 426 421 418 423 416 415 424 416 423 427 412 416 423 419 420 410 429 Mo 380 373 387 367 373 381 378 376 382 372 378 376 369 385 371 383 378 375 388 366 374 380 385 368 369 385 372 382 375 379 373 381 370 383 383 371 364 390 381 373 374 380 369 384 381 373 383 370 375 379 371 383 383 370 370 383 376 378 372 382 Sb 369 368 377 360 364 373 373 364 372 365 375 362 366 371 370 368 369 368 375 362 365 372 373 364 353 384 366 371 370 368 372 365 363 374 373 365 353 384 377 360 363 374 359 378 371 366 375 362 355 382 364 374 371 366 364 374 370 368 365 372 Hf 418 418 426 410 413 422 426 410 428 408 424 411 411 425 417 419 420 416 425 411 415 420 426 410 413 423 417 419 417 419 417 419 412 424 424 411 407 428 426 410 417 419 413 423 417 418 423 413 412 424 411 424 432 404 410 425 418 418 408 427 Ta 375 379 381 372 374 379 383 370 382 372 379 374 372 382 376 377 376 377 387 367 373 380 386 368 369 385 376 378 378 375 375 379 374 379 382 372 366 387 385 369 374 380 373 381 381 373 382 371 374 380 372 381 385 369 375 379 376 377 369 384 W 440 450 454 437 438 453 451 440 450 441 451 440 440 451 444 446 443 448 453 438 441 450 456 435 435 455 439 452 447 444 447 444 442 449 448 443 429 461 458 433 445 446 439 452 449 442 451 440 435 456 438 452 453 438 440 451 445 446 438 453 Pb 412 415 421 406 408 419 419 408 414 413 425 402 405 422 413 414 408 419 414 413 409 418 418 409 398 429 410 417 413 414 416 411 410 417 419 408 394 433 422 405 410 417 407 420 417 410 419 407 407 420 403 424 419 408 407 420 415 412 401 426 Th 449 452 459 442 446 455 461 440 460 441 452 449 443 458 448 453 450 452 463 438 448 454 462 440 444 457 448 453 451 450 446 455 445 456 456 446 436 466 461 440 449 453 448 454 454 447 456 446 451 451 447 455 462 439 445 457 448 454 438 463 199 Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued) U 451 463 465 449 453 462 464 450 463 451 461 454 453 462 456 458 459 455 465 450 452 462 471 443 446 468 455 459 457 458 458 457 451 464 464 450 446 468 465 449 451 463 455 460 459 455 464 450 450 464 453 462 462 452 453 462 456 458 449 466 Appendix A3 Laser Session no24d10 no24e10 no25a10 no25b10 no25c10 no25d10 no26a10 no26b10 no26c10 no26d10 no26e10 no26f10 no26g10 no28a10 no28b10 V 449 435 440 444 439 445 438 446 439 445 425 459 444 439 438 446 442 441 447 437 451 433 434 449 442 441 442 442 431 452 448 435 439 445 450 433 444 440 439 444 445 438 441 442 439 444 437 447 447 436 454 429 451 433 447 436 445 439 445 438 Zr 448 432 443 437 442 438 432 448 444 436 421 459 443 437 441 439 438 442 442 438 448 432 431 449 436 444 442 438 437 443 442 438 435 445 445 435 443 437 440 440 442 438 434 446 438 442 439 441 452 428 449 431 442 438 440 440 449 431 448 432 Nb 425 414 423 416 416 423 413 426 425 414 405 434 417 422 419 420 413 426 426 413 428 411 417 422 418 421 423 416 412 427 422 417 417 422 427 412 419 420 417 422 423 416 416 423 417 422 419 420 427 412 430 409 425 414 419 420 423 416 430 409 Mo 383 371 380 374 373 381 368 385 384 370 357 397 377 377 376 378 374 380 382 372 383 371 372 381 367 387 385 369 373 381 382 372 373 381 384 370 374 380 376 377 382 372 376 378 377 377 378 376 385 368 381 373 382 372 375 379 384 370 386 368 Sb 375 362 378 359 371 366 363 374 368 369 347 391 374 364 370 367 366 371 366 371 378 359 367 371 367 370 373 364 361 376 369 368 363 374 378 359 371 367 372 365 375 362 368 369 366 372 366 371 376 361 379 358 371 367 368 369 378 360 375 363 Hf 425 410 425 411 413 422 413 423 421 414 405 430 419 417 418 418 415 420 423 413 425 411 409 427 416 419 414 421 416 420 422 413 417 419 424 411 419 417 413 423 424 412 418 418 417 418 414 421 432 404 428 408 424 411 424 411 422 414 423 413 Ta 385 369 379 374 375 379 374 379 381 373 367 386 379 374 377 377 373 380 380 374 385 368 370 384 375 378 377 376 374 379 382 371 377 377 383 370 376 377 375 379 380 374 376 378 374 380 374 380 390 364 388 365 383 371 382 372 382 371 380 373 W 453 438 448 443 442 449 440 451 447 444 433 458 447 444 442 449 445 446 446 445 454 437 437 454 442 449 451 440 445 446 452 438 443 448 456 435 444 447 442 448 451 439 442 449 442 448 442 449 458 433 459 432 455 436 449 442 448 443 451 440 Pb 423 404 426 401 417 410 405 422 412 415 399 428 421 406 416 411 412 415 419 408 419 408 403 424 408 418 418 409 411 416 424 403 416 411 428 399 411 416 411 416 419 408 416 411 416 411 416 411 418 408 425 402 415 412 420 407 424 403 425 402 Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued) Th 459 442 457 444 450 451 446 455 454 447 439 463 451 450 451 450 449 453 456 445 460 441 443 459 449 452 450 452 448 453 456 445 447 455 458 443 451 451 450 452 455 447 450 451 451 451 445 456 462 439 467 435 460 441 457 444 460 442 456 446 200 U 464 451 460 455 452 462 453 461 463 452 443 471 456 458 458 457 455 460 462 452 466 448 451 464 454 460 460 455 454 460 464 450 456 459 466 449 457 457 452 462 461 454 459 455 458 456 453 462 465 450 473 442 467 448 462 453 466 448 464 450 Appendix A3 Laser Session no28c10 oc01a11 oc01b11 oc01c11 oc02a11 oc02b11 oc02c11 oc02d11 oc02e11 oc02f11 oc02g11 oc02h11 oc02i11 oc02j11 se29a11 V 449 435 443 441 429 455 443 441 447 437 444 440 442 442 436 448 445 439 446 437 428 456 437 447 443 440 447 436 445 438 444 440 441 442 438 446 438 445 445 439 441 443 445 439 453 431 438 446 447 437 446 437 448 436 447 436 438 446 441 443 Zr 447 433 439 441 426 454 448 432 439 441 440 440 438 442 436 444 443 437 440 440 422 458 433 447 453 427 448 432 441 439 442 438 438 442 433 447 437 443 446 434 437 443 435 445 456 424 439 441 436 444 449 431 443 437 441 439 436 444 428 452 Nb 427 412 418 421 404 435 426 413 421 418 419 420 414 425 412 427 423 416 423 416 408 431 413 426 432 407 425 414 423 416 420 419 418 421 412 427 415 424 427 412 414 425 415 424 437 402 414 425 420 419 422 417 424 415 420 419 406 433 413 426 Mo 384 370 377 377 364 390 383 371 377 377 380 374 367 386 366 388 377 377 376 377 367 387 370 384 389 365 387 367 377 376 376 378 380 374 372 382 378 376 387 367 370 384 375 379 396 358 385 369 384 370 392 362 375 378 375 379 349 405 370 384 Sb 378 359 370 367 353 384 373 364 366 371 369 368 364 374 362 375 365 372 371 366 353 384 364 373 377 360 378 359 374 363 369 368 375 362 368 370 371 366 382 355 366 371 362 376 382 355 368 369 380 357 382 355 365 372 370 367 370 367 365 372 Hf 425 411 414 422 407 429 426 410 420 415 419 416 415 421 406 429 411 424 421 414 405 431 415 421 422 414 421 414 420 415 422 413 425 411 409 427 418 417 426 410 411 424 417 419 423 412 410 425 419 416 431 405 423 413 426 410 409 426 417 419 Ta 382 371 376 378 367 386 384 369 379 374 382 371 373 381 369 385 375 379 379 374 371 382 376 377 378 375 383 370 378 376 381 372 378 375 372 381 376 377 382 372 376 377 374 380 380 373 378 376 378 376 391 362 375 378 381 372 374 380 374 379 W 446 445 444 447 434 457 455 436 448 443 455 435 438 453 436 455 440 451 443 448 426 465 444 447 447 444 453 438 448 443 448 443 453 438 441 449 449 442 450 441 440 451 448 443 452 439 444 447 445 445 454 436 443 448 453 437 451 440 439 451 Pb 418 409 414 413 401 426 420 406 416 411 419 408 409 418 402 425 405 422 413 414 395 432 413 414 412 415 422 405 416 411 418 409 422 405 411 416 420 407 421 406 404 423 416 411 424 403 408 419 420 407 421 406 404 422 416 411 410 416 413 414 Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued) Th 457 445 447 454 437 464 457 444 453 449 459 442 446 455 443 459 447 454 449 452 451 451 446 455 446 455 459 442 453 449 456 445 455 446 441 460 455 447 460 441 448 453 447 455 460 442 447 454 453 448 465 436 455 447 452 450 441 461 445 457 201 U 466 449 457 457 445 470 466 448 460 454 461 453 452 463 448 466 453 462 460 455 447 467 448 467 456 458 466 449 463 451 459 456 462 452 449 465 462 453 468 446 459 455 456 458 461 453 460 455 456 458 468 447 458 456 462 453 446 468 459 455 Appendix A3 Laser Session se29b11 se29c11 se29d11 se29e11 se30a11 se30b11 se30c11 se30d11 se30e11 ap11a11 ap12a11 ap12b11 ap12c11 ap12d11 ap12e11 V 440 444 437 446 459 425 434 450 436 448 457 427 440 444 438 446 443 441 435 449 450 434 449 435 441 443 443 440 442 441 438 446 429 454 434 450 450 434 441 442 441 443 451 432 427 456 454 430 428 456 441 443 428 455 446 437 449 434 434 450 Zr 425 455 438 442 459 421 438 442 425 455 449 431 442 438 438 442 441 439 435 445 446 434 439 441 435 445 446 434 443 437 433 447 427 453 427 453 453 427 442 438 430 450 444 436 428 452 450 430 424 456 439 441 426 454 446 434 442 438 432 448 Nb 411 428 421 418 438 401 418 421 413 426 428 411 420 419 419 420 417 422 412 427 427 412 418 421 421 418 420 419 422 417 415 424 402 437 410 429 433 406 414 425 415 424 424 415 404 435 430 409 401 438 415 424 405 434 424 415 418 421 420 419 Mo 393 360 380 374 380 374 366 387 372 382 384 370 382 372 374 380 379 375 368 385 379 375 375 379 371 382 373 381 382 371 372 382 369 385 367 386 392 362 370 384 371 383 380 374 361 393 386 368 361 393 382 372 368 386 378 376 374 380 371 383 Sb 398 339 365 373 367 371 368 369 359 378 375 362 369 368 368 369 371 367 361 376 373 364 365 372 365 372 365 372 370 367 367 370 358 379 362 375 380 358 366 371 362 375 375 362 353 384 383 354 352 385 368 369 362 375 371 366 371 367 365 372 Hf 402 433 410 426 446 390 412 424 403 433 426 410 411 424 418 418 421 415 420 416 428 408 425 411 422 413 424 412 415 421 421 414 404 431 411 424 431 404 416 419 407 429 427 409 404 432 428 408 411 424 417 418 405 430 427 409 421 415 411 424 Ta 362 391 374 379 401 353 372 381 372 382 388 365 374 380 374 379 377 376 375 378 385 368 381 372 378 375 379 375 378 375 375 378 367 387 365 388 388 365 374 379 367 386 387 366 364 389 383 370 365 389 375 378 370 384 385 368 383 370 372 381 W 461 429 439 451 473 418 446 445 438 453 462 428 440 451 443 448 446 445 444 447 457 434 445 446 456 435 446 445 452 439 443 448 437 453 439 452 458 433 447 444 444 447 450 441 431 459 461 430 433 458 446 445 428 463 453 438 449 442 442 448 Pb 435 392 415 412 424 402 407 420 407 420 429 398 417 410 410 417 415 412 411 416 418 409 416 410 419 408 410 417 417 410 410 417 400 426 407 420 427 400 415 412 402 425 423 404 401 426 419 408 401 425 413 414 402 425 418 409 418 409 403 423 Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued) Th 435 466 443 458 481 421 447 455 440 461 460 442 460 441 449 453 450 451 448 453 461 441 455 446 458 444 455 446 454 447 447 454 436 465 441 460 469 432 448 453 440 462 464 437 438 463 461 441 439 463 446 455 441 461 464 438 458 443 441 460 202 U 452 463 453 461 480 435 453 461 448 467 473 442 467 448 453 462 456 459 455 460 470 445 465 449 460 455 460 454 452 462 455 459 448 467 451 463 471 444 456 458 447 467 467 448 442 472 468 446 449 466 453 461 450 464 464 450 461 453 450 464 Appendix A3 Laser Session ap13a11 ap13b11 ap13c11 ap13d11 ap13e11 ap14a11 ap14b11 ap14c11 ap14d11 ap14e11 ap14f11 ap15a11 ap15b11 ap15c11 V 447 436 450 434 450 433 441 443 450 434 444 440 444 439 440 444 433 451 438 446 438 446 427 456 456 427 444 439 461 422 438 445 445 439 433 450 422 462 442 441 439 444 446 438 462 422 440 444 449 435 433 451 427 456 452 431 Zr 446 434 444 436 448 432 441 439 445 435 451 429 439 441 440 440 432 448 443 437 434 446 431 449 455 425 443 437 456 424 438 442 437 443 425 455 425 455 447 433 440 440 442 438 459 421 442 438 448 432 440 440 427 453 445 435 Nb 427 412 425 414 426 413 418 421 424 415 430 409 423 416 421 418 409 430 419 420 418 421 405 434 431 408 422 417 438 401 419 420 416 423 413 426 410 429 431 408 420 419 424 415 439 400 418 421 429 410 420 419 404 435 425 414 Mo 383 371 377 376 381 372 377 376 379 374 382 371 376 378 380 374 369 385 369 384 378 376 368 386 394 360 375 378 392 362 384 370 372 381 366 387 362 392 382 372 378 376 385 369 395 359 376 378 383 371 378 376 373 381 373 380 Sb 381 356 374 364 378 359 370 367 375 362 376 361 366 371 365 372 359 379 359 378 368 369 359 379 381 357 377 360 386 351 371 367 366 371 357 380 354 383 375 362 369 369 369 368 386 351 373 364 378 360 372 365 365 372 363 374 Hf 424 412 424 411 423 412 424 412 421 415 421 415 418 418 416 420 409 427 423 413 416 419 417 419 431 405 417 418 433 403 416 420 414 422 407 428 409 426 423 413 423 412 419 417 431 405 415 421 428 408 411 424 407 429 432 404 Ta 386 368 379 374 385 368 380 373 384 369 378 376 377 376 371 382 368 386 380 374 373 381 371 382 388 366 381 372 395 359 373 380 375 379 366 388 362 391 381 373 383 370 380 374 390 363 379 375 384 369 376 378 362 391 384 370 W 453 438 452 439 451 440 440 450 449 441 451 440 448 443 443 448 433 458 446 445 446 445 433 458 462 428 446 445 461 429 447 444 448 442 430 460 436 454 451 440 450 441 446 445 459 432 445 446 457 434 444 447 427 464 449 442 Pb 425 401 413 413 423 404 416 411 420 407 417 410 413 413 413 414 403 424 409 418 412 415 405 422 427 400 416 411 430 397 416 411 415 412 402 425 395 432 418 409 416 411 412 415 426 401 424 403 421 405 407 419 412 415 418 409 Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued) Th 461 440 456 445 458 443 457 445 455 447 455 446 455 447 449 452 441 460 454 448 446 456 444 458 466 435 454 448 468 434 442 459 449 452 437 465 436 466 458 443 454 447 458 443 466 435 447 454 463 439 446 456 439 462 467 435 203 U 465 450 462 452 468 446 460 455 462 452 461 454 457 457 452 462 451 464 465 450 458 457 453 461 466 449 465 449 482 433 454 460 460 455 445 470 445 470 466 449 466 449 461 453 473 442 457 458 469 446 455 459 451 464 461 454 Appendix A3 Table A3.1. Long-term 610 analyses done using the LA-ICPMS (continued) Laser Session ap17a11 ap17b11 mr13a11 mr13e11 mr13f11 mr13g11 V 458 426 437 447 449 435 410 473 449 434 444 439 441 442 443 440 423 461 442 442 448 436 471 413 Zr 456 424 437 443 447 433 405 476 452 428 445 435 440 440 448 432 421 459 439 441 450 430 467 413 Nb 433 406 417 422 426 413 389 450 429 410 424 415 419 420 425 414 403 436 423 416 432 407 450 389 Mo 391 363 377 377 385 369 352 402 383 371 375 379 376 377 382 372 362 392 369 384 384 370 396 357 Sb 380 357 365 372 375 362 341 397 379 358 373 364 368 369 372 365 356 381 369 368 389 348 392 345 Hf 436 400 415 420 420 415 387 448 433 403 423 413 418 418 426 409 400 436 421 415 434 401 446 390 Ta 390 363 376 377 384 369 352 401 385 368 378 375 377 377 381 373 358 395 378 376 387 366 404 349 W 462 429 447 444 451 440 414 476 458 433 443 448 445 446 450 441 425 466 443 448 464 427 484 407 Pb 427 400 410 417 415 412 389 438 424 402 419 407 413 414 416 411 393 434 415 412 429 398 444 383 Th 465 437 450 452 454 448 418 484 464 437 454 448 450 451 455 447 433 469 452 449 470 432 482 420 204 U 472 442 460 454 459 455 426 488 470 444 462 452 457 458 462 453 441 474 460 455 476 438 487 427 Appendix A4 Laser Session au20a03 au20a04 au20a05 au20a06 au20a07 au20a08 au24e03 au24e04 au24e05 au24e06 au24e07 au24e08 au24e09 au24e10 au24e11 au24e12 mr23a03 mr23a04 mr23a05 mr23a06 mr23b03 mr23b04 mr23b05 mr23b06 mr23c10 mr23c11 mr23d10 mr23d11 mr23e10 mr23e11 mr23f10 mr24a10 mr24b10 mr24c10 mr24d10 mr24e11 mr24f10 mr24g10 mr24h10 mr24i10 mr25a10 mr25b10 mr25c10 mr25d10 mr25e10 mr25f10 mr26a10 mr26b10 mr26c10 jn07a03 jn07a04 jn07a05 jn07a06 jn07a07 jn07a08 jn07a09 jn07a10 jn07a11 jn07a12 jn07a13 jn07a14 jn07a15 jn08a18 jn08b18 04 05 06 03 04 05 06 10 11 10 11 10 11 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10 03 04 05 06 07 08 09 10 11 12 13 14 15 18 18 V 1130 1130 1150 1140 1170 1180 1140 1180 1130 1150 1110 1090 1130 1120 1110 1080 886 858 827 827 1280 1270 1280 1300 1270 1270 1240 1260 1250 1240 1290 1250 1240 1300 1260 1280 1290 1240 1310 1280 1260 1260 1290 1280 1440 1250 1270 1240 1220 1249 1265 1259 1264 1232 1263 1284 1246 1220 1245 1212 1294 1237 1251 1262 Zr 906 939 899 869 870 886 816 785 858 839 968 801 1030 961 984 968 655 656 633 623 825 823 827 825 834 832 799 797 783 785 790 797 785 811 807 791 806 762 763 800 795 785 815 788 921 784 788 774 778 774 781 787 784 775 771 784 781 751 775 755 787 769 805 805 Nb 2750 2730 2740 2690 2750 2860 2750 2710 2720 2630 2870 2440 3000 2740 2630 2690 2380 2330 2230 2170 2960 2920 2990 2960 2990 2980 2800 2870 2810 2810 2790 2900 2840 2960 2850 2870 2920 2740 2680 2860 2870 2810 2990 2830 3230 2630 2690 2850 2710 2752 2820 3008 2870 2936 2820 2824 2806 2760 2840 3067 2811 2752 2865 2880 Mo 9.9 11.1 11.6 9.7 10.1 10.4 10.5 10.1 10.8 9.3 11.7 9.5 11.2 10.0 12.6 11.0 8.6 8.8 8.6 9.2 11.6 10.7 12.9 11.6 11.1 11.9 9.8 10.9 10.5 10.9 11.6 11.6 11.7 10.9 11.1 11.7 11.1 11.1 12.0 11.8 11.2 11.5 11.4 11.1 13.0 11.3 12.0 11.9 11.3 11.8 13.0 10.5 11.8 10.8 10.8 10.0 9.6 11.4 13.0 13.5 12.1 12.2 11.2 10.8 Sb 2.0 2.2 1.9 2.1 2.0 1.9 1.7 1.7 1.9 1.7 2.3 1.5 1.9 2.7 4.4 3.3 1.3 1.6 1.4 1.5 1.8 1.8 1.7 1.5 1.7 1.5 1.6 1.9 2.0 1.9 2.0 1.6 1.9 2.0 1.5 2.0 2.0 1.6 2.1 2.0 2.0 1.9 1.9 2.1 2.1 1.5 1.8 1.7 2.0 2.0 2.4 2.1 1.8 1.9 1.7 2.0 1.6 2.8 2.3 2.0 1.9 2.5 2.3 2.0 Hf 42.5 43.7 44 42.8 42.7 44.3 39.9 38.5 42 40.3 43.4 40.1 51.6 49.5 56.1 51.2 32.6 31.8 31.8 29.9 40.1 39.7 39.3 39.3 38.3 38.2 38.4 37.9 38.4 37.6 37.7 38.0 37.6 38.3 37.4 38.6 39.2 36.5 35.6 38.4 37.7 36.1 38.4 36.1 42.4 37.2 38.2 36.9 36.8 37.0 36.7 38.0 37.5 37.1 37.1 37.8 36.4 34.4 36.8 34.0 39.3 35.5 38.7 37.4 Ta 460 424 494 522 518 541 418 395 428 409 405 406 483 453 449 439 456 464 414 449 410 412 418 449 371 365 364 439 400 434 451 416 439 468 368 456 454 397 450 444 454 437 451 446 592 456 468 422 508 437 431 441 436 411 425 428 397 403 432 428 446 471 451 437 W 116 102 133 137 131 140 107 99 100 98 98 97 116 103 114 109 47 49 46 49 62 63 64 69 59 57 57 67 64 74 82 67 75 82 59 78 73 63 83 75 82 77 75 79 107 90 97 71 97 77 74 76 71 66 72 72 65 64 74 75 78 95 75 76 Pb 0.380 0.071 0.211 0.067 0.113 0.092 0.029 0.019 0.045 0.022 0.086 0.085 0.325 0.302 0.727 0.746 0.214 0.495 0.435 0.202 0.928 0.593 0.695 0.405 1.030 0.593 2.180 1.910 0.980 0.780 1.470 0.961 0.722 2.490 0.767 0.745 1.140 0.305 0.299 1.790 2.040 1.370 3.930 0.814 1.350 0.502 0.759 0.475 0.454 0.172 0.170 0.138 0.235 0.113 0.134 0.253 0.374 0.255 0.386 0.329 0.441 0.294 0.118 0.140 Th 0.058 0.093 0.078 0.238 0.061 0.044 0.001 0.016 0.038 0.006 0.039 0.015 0.130 0.156 0.480 0.343 0.067 0.020 0.018 0.031 0.025 0.023 0.020 0.032 0.039 0.021 0.029 0.047 0.047 0.040 0.040 0.025 0.020 0.023 0.024 0.027 0.084 0.028 0.036 0.031 0.015 0.020 0.022 0.023 0.029 0.026 0.021 0.015 0.019 0.127 0.053 0.041 0.050 0.060 0.056 0.149 0.117 0.185 0.135 0.149 0.096 0.101 0.038 0.049 U 51.8 49.8 53.7 53.3 52.9 56.2 52.3 48.9 50.3 48.9 47.3 49.1 54.2 52.5 49.3 51.3 31.8 31.6 30.6 28.9 44.1 43.7 45.7 48.3 42.2 42.7 41.4 48.2 50.3 45.0 45.8 45.8 43.9 47.8 43.8 47.9 49.0 46.4 46.4 46.5 46.8 46.1 46.6 44.4 54.3 43.0 45.3 43.8 46.6 43.9 42.0 48.5 45.6 44.5 43.8 46.4 50.4 41.9 46.6 45.9 51.6 44.8 45.4 44.3 Table A4.1. Long-term R10 analyses done using the LA-ICPMS 205 Appendix A4 Laser Session jn08c18 jn08d18 jn08e18 jn08f15 no16a11 no16e11 no16d11 no16c11 no16b11 no17b11 no17c11 no18a11 no18b11 no18c11 no19a11 no19c11 no19d11 no19e11 no19f11 no22a11 no22b11 no22c11 no22d11 no22e11 no22f11 no23a11 no23b11 no22g11 no19b11 no23c11 no23d11 no23e11 no23f11 no23g11 no24a11 no24b11 no24c11 no24d11 no24e11 no25a11 no25b11 no25c11 no25d11 no26a11 no26b11 no26c11 no26d11 no26e11 no26f11 no26g11 no28a11 no28b11 no28c11 fe07a03 fe07a04 fe07a05 fe07a06 fe07a07 fe07a08 fe08c11 fe09a11 fe09b11 fe09c11 fe09d11 18 18 18 15 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 03 04 05 06 07 08 11 11 11 11 11 V 1237 1299 1254 1349 1220 1250 1290 1250 1230 1240 1220 1270 1240 1250 1230 1250 1230 1260 1240 1290 1210 1250 1230 1240 1280 1220 1240 1250 1230 1220 1220 1240 1260 1240 1230 1230 1190 1280 1210 1240 1220 1220 1240 1240 1250 1240 1220 1220 1230 1220 1220 1220 1210 1190 1190 1180 1190 1190 1230 1220 1240 1240 1270 1240 Zr 771 820 791 795 772 813 792 786 785 820 766 809 779 814 763 766 773 798 804 819 812 815 786 795 810 783 802 796 783 756 787 789 797 807 785 768 759 832 783 792 772 796 813 787 811 777 767 771 787 752 786 726 756 777 776 772 794 791 795 724 810 749 787 757 Nb 2794 3005 2887 2935 2900 2990 2910 2770 2800 2870 2700 2930 2830 2870 2770 2780 2740 2880 2810 2950 2780 2870 2840 2860 2880 2760 2980 2840 2770 2690 2830 2820 2850 2970 2990 2810 2770 2920 2800 2840 2710 2830 2760 2820 2950 2950 2840 2880 2980 2750 2810 2720 2740 2820 2770 2790 2870 2920 2960 2790 2960 2780 2970 2750 Mo 9.3 12.8 11.3 13.6 10.9 10.6 10.7 11.2 10.7 10.9 10.4 11.5 12.2 10.7 11.7 10.9 10.3 10.9 11.5 11.8 11.0 10.7 10.8 9.6 11.9 10.9 7.3 10.7 9.8 10.0 10.4 11.4 11.6 11.2 11.1 10.2 10.9 10.8 10.0 10.5 11.0 13.3 10.5 11.4 11.4 11.6 11.0 12.1 12.3 10.8 11.7 11.4 10.8 9.4 10.2 10.8 10.8 9.8 12.0 11.0 10.7 10.6 11.1 10.0 Sb 2.2 2.0 2.0 2.3 1.9 2.8 2.0 2.0 1.9 2.3 1.7 2.0 1.9 1.8 2.3 1.7 1.7 1.8 2.0 1.9 1.6 2.0 1.9 2.0 1.9 1.8 2.2 2.0 2.0 1.5 1.9 2.2 1.9 2.0 1.9 2.1 2.1 1.8 2.5 2.1 1.8 2.1 1.7 1.9 1.9 2.2 2.4 1.8 2.0 1.7 1.9 1.9 1.7 1.8 1.2 2.1 1.3 1.6 1.9 2.0 1.8 1.7 1.9 2.0 Hf 36.5 37.8 36.2 37.8 37.3 38.8 39.1 37.4 37 39.2 38.1 39.7 38.3 38.5 36.5 36.9 36.2 39.2 40.1 38.9 39.1 38.4 37.1 38.2 39.2 37.3 40.7 39.4 37.7 36.9 40.7 38.4 38.1 40.2 37.3 36.6 36.3 40.4 37.5 39.8 37.2 37.2 38.9 38.7 37.8 36.5 35.2 32.8 37.8 36.3 36.2 38 38.5 36.1 37.6 37.9 37.9 36.7 38.7 34.6 38.3 36.1 39.3 37 Ta 457 399 416 438 440 450 469 442 419 428 448 473 465 473 453 372 444 460 459 445 429 476 424 461 461 416 434 447 457 452 454 389 434 470 370 442 371 403 367 371 346 370 372 385 470 465 426 390 474 435 451 456 363 375 366 372 382 473 487 391 449 433 469 400 W 85 64 66 72 66 69 70 70 63 63 65 71 69 76 66 59 69 69 66 65 64 69 66 65 68 66 68 65 67 68 68 60 69 72 58 63 61 69 58 57 52 58 59 63 74 72 67 65 72 67 70 70 56 55 54 54 54 71 70 62 66 65 71 64 Pb 0.107 0.189 0.101 0.156 0.115 0.122 0.100 0.077 0.038 0.178 0.272 0.116 0.097 0.103 0.116 0.054 0.062 0.113 0.187 0.096 0.152 0.075 0.081 0.162 2.350 0.124 0.342 0.159 0.127 0.090 0.169 0.118 0.171 0.221 0.221 0.157 0.147 0.196 0.147 0.110 0.124 0.157 0.086 0.119 0.106 0.123 0.218 0.349 0.107 0.137 0.118 0.145 0.084 0.248 0.123 0.153 0.085 0.384 0.115 0.052 0.044 0.049 0.055 0.053 Th 0.063 0.099 0.041 0.041 0.035 0.025 0.055 0.030 0.016 0.046 0.043 0.051 0.057 0.074 0.055 0.027 0.065 0.067 0.031 0.055 0.044 0.067 0.042 0.039 0.051 0.092 0.130 0.073 0.048 0.045 0.063 0.074 0.102 0.055 0.099 0.050 0.069 0.075 0.093 0.085 0.074 1.030 0.032 0.055 0.042 0.037 0.024 0.040 0.068 0.066 0.048 0.055 0.060 0.035 0.014 0.024 0.079 0.046 0.068 0.005 0.013 0.017 0.027 0.039 U 43.8 48.7 44.7 46.9 47.1 46.3 48.4 46.5 46.3 45.9 47.1 46.3 48.2 47.0 45.2 42.9 45.5 47.0 47.9 45.0 45.8 45.8 44.8 47.3 46.2 47.6 48.4 45.2 46.5 45.1 48.5 47.4 47.2 47.3 42.9 46.3 42.9 49.7 44.1 43.2 39.6 41.9 44.2 45.7 47.2 46.1 43.8 45.1 48.5 45.0 47.1 44.4 40.4 40.4 39.4 40.9 43 45.5 43.4 43.5 47.6 46.2 46.0 44.2 Table A4.1. Long-term R10 analyses done using the LA-ICPMS (continued) 206 Appendix A4 Laser Session fe10a11 fe11a11 fe12h11 fe12a11 fe12b11 fe12c11 fe12d11 fe12e11 fe12g11 fe13a11 fe13b11 fe13c11 fe10b11 fe10c11 fe10d11 fe10e11 fe10f11 fe10g11 fe10h11 fe11b11 fe11c11 fe11d11 fe11e11 fe11f11 fe11g11 mr08a03 mr08a04 mr08a05 mr08a06 mr08a07 mr08a08 mr08c10 mr08c11 mr08b11 mr08d11 mr13a03 mr13a04 mr13a05 mr13a06 mr13a07 mr13a08 mr13b11 mr13c11 mr13d11 mr13e11 mr13f11 mr13g11 ap11a03 ap11a04 ap11a05 ap11a06 ap11a07 ap11a08 ap12c11 ap12b11 ap12a11 ap12d11 ap12e11 ap13a11 ap13b11 ap13c11 ap13d11 ap13e11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 03 04 05 06 07 08 10 11 11 11 03 04 05 06 07 08 11 11 11 11 11 11 03 04 05 06 07 08 11 11 11 11 11 11 11 11 11 11 V 1220 1220 1240 1230 1210 1230 1240 1230 1270 1230 1260 1230 1210 1260 1230 1250 1230 1220 1250 1280 1240 1200 1240 1260 1240 1280 1280 1280 1270 1300 1260 1270 1260 1250 1250 1280 1250 1260 1250 1290 1240 1240 1230 1280 1210 1240 1180 1270 1280 1250 1230 1260 1250 1250 1280 1220 1270 1270 1220 1190 1230 1210 1220 Zr 801 797 795 818 795 785 775 723 831 806 820 779 756 798 804 753 773 792 732 805 790 753 763 778 830 824 796 790 785 790 775 785 770 735 744 801 759 785 782 781 753 799 760 772 774 764 721 768 775 784 761 771 751 792 783 749 786 773 751 768 844 754 776 Nb 2820 2830 2810 2870 2840 2850 2780 2720 2880 2820 2850 2810 2790 2910 3080 2780 2850 2830 2760 2880 2960 2810 2910 2820 2910 2830 2760 2790 2740 2770 2780 2820 2790 2840 2850 2840 2780 2900 2790 2760 2810 2760 2720 2710 2710 2680 2450 2710 2790 2620 2590 2680 2580 2630 2640 2510 2650 2630 2730 2760 2670 2760 2770 Mo 10.0 10.5 11.4 10.6 10.5 11.5 12.0 10.5 11.6 11.9 12.8 11.0 11.1 11.4 11.9 11.2 11.2 11.6 10.3 11.5 11.8 10.4 11.5 10.9 11.5 12.1 11.9 10.8 11.3 11.1 10.9 11.2 11.9 10.0 12.6 11.6 10.9 13.0 10.5 11.7 11.6 12.7 11.3 12.6 11.6 12.1 10.2 11.0 11.9 12.1 11.9 11.3 12.3 11.6 12.2 11.5 12.8 11.7 10.3 10.4 10.5 9.7 11.2 Sb 1.7 1.8 1.6 1.7 1.9 1.6 1.8 1.8 2.2 2.1 1.6 1.8 1.7 1.8 1.9 2.6 1.8 1.8 2.0 1.6 1.8 1.6 1.7 2.0 1.7 2.0 2.2 2.2 1.8 1.9 2.1 2.3 1.7 1.6 1.6 2.1 1.7 2.0 2.0 2.0 1.8 1.9 1.7 2.1 2.4 1.6 1.7 2.1 1.8 2.0 1.9 2.1 1.9 2.2 1.8 1.9 1.8 1.8 1.7 1.8 1.9 1.9 1.8 Hf 39.7 39.7 38.5 38.7 38.5 36.1 37.3 35.9 39.3 37.8 38.1 36.5 36.2 37.4 39.6 36.4 36.3 38.6 35.6 38.7 36.9 37.8 36 38.6 38.1 39.1 37.3 39.3 37.6 37.9 37.7 35.2 36.4 35.5 36.7 39.1 37.2 37 36.9 36.3 35.9 37.6 36.6 38.1 37.9 36.1 33.9 36.3 36.7 36.9 35.9 35 36.8 37.5 35.9 35.2 37.5 37.1 35 37.6 41 35.8 36 Ta 405 410 457 422 386 383 416 417 444 454 396 421 442 430 502 459 410 402 450 394 455 419 432 426 434 440 454 457 452 457 405 458 471 450 437 454 423 457 436 436 378 508 429 581 452 444 484 468 507 492 451 558 463 477 453 438 469 461 433 359 373 449 359 W 63 64 76 64 60 65 67 67 68 75 62 67 64 64 74 66 64 70 68 63 71 63 62 68 70 73 81 76 74 91 66 95 98 68 69 77 70 77 73 78 62 99 81 108 80 88 83 94 104 84 97 104 92 96 84 88 98 91 68 58 91 67 56 Pb 0.057 0.062 0.112 0.059 0.053 0.043 0.046 0.046 0.088 0.083 0.064 0.249 0.051 0.036 0.017 0.026 0.051 0.034 0.049 0.036 0.045 0.053 0.153 0.033 0.063 0.317 0.214 0.147 1.130 0.091 0.246 0.054 0.074 0.063 0.108 0.066 0.104 0.851 0.102 0.072 0.069 0.154 0.101 3.320 0.083 0.082 0.318 0.827 0.229 0.706 0.844 0.122 0.074 0.113 0.125 0.064 0.092 0.108 0.124 0.303 0.047 0.157 0.114 Th 0.028 0.016 0.038 0.032 0.021 0.026 0.037 0.019 0.037 0.018 0.023 0.021 0.028 0.012 0.019 0.008 0.012 0.022 0.032 0.032 0.009 0.014 0.013 0.019 0.027 0.100 0.082 0.149 0.176 0.313 0.132 0.038 0.034 0.047 0.062 0.054 0.059 0.040 0.065 0.090 0.031 0.042 0.026 0.038 0.034 0.037 0.057 0.283 0.094 0.144 7.640 0.537 0.030 0.036 0.073 0.046 0.031 0.030 0.026 0.056 0.047 0.044 0.074 U 47.1 46.2 44.1 45.7 45.4 45.8 46.7 44.3 44.9 45.2 43.9 42.8 45.2 44.2 45.1 42.8 42.8 45.5 46.8 44.3 48.5 46.5 44.0 46.8 44.5 47.2 44.8 45.5 44.7 46.9 45.6 46.8 44.8 44.4 46.9 46.0 48.8 47.1 45.2 45.1 42.8 46.1 46.5 47.5 46.7 45.6 41.4 45.7 49.3 46.6 43.6 45.8 44.4 47.2 44.0 43.7 46.0 44.7 46.4 41.5 51.2 44.3 42.4 Table A4.1. Long-term R10 analyses done using the LA-ICPMS (continued) 207 Appendix A4 Laser Session ap14a11 ap14b11 ap14c11 ap14d11 ap14e11 ap14f11 ap15a11 ap15b11 ap15c11 ap17a11 ap17b11 my11a03 my11a04 my11a05 my11a06 my11a07 my11a08 my11b11 my12a11 my12b11 my12c11 my12d11 my12e11 my12f11 my12g11 my18a11 my18b11 my19a11 my19b11 my19c11 my19d11 my19e11 my19f11 au22a03 au22a04 au22a05 au22a06 au22a07 au23a11 au24a03 au24a04 au24a05 au24a06 au24a07 au24b11 au25a11 au24c11 au24d11 au24e11 au24f11 au25b11 au25c11 au25e11 au25f11 au26a11 au26c11 au26d11 au28a11 au28b11 se29a03 se29a04 se29a05 se29a06 se29a07 V 11 1240 11 1240 11 1230 11 1270 11 1260 11 1250 11 1240 11 1260 11 1250 11 1240 11 1290 03 1220 04 1230 05 1220 06 1260 07 1240 08 1220 11 1290 11 1250 11 1270 11 1260 11 1240 11 1250 11 1210 11 1270 11 1230 11 1270 11 1220 11 1270 11 1280 11 1250 11 1250 11 1230 03 1210 04 1220 05 1180 06 1210 07 1200 11 1230 03 1280 04 1250 05 1260 06 1240 07 1240 11 1230 11 1250 11 1280 11 1210 11 1210 11 1220 11 1210 11 1230 11 1280 11 1230 11 1240 11 1280 11 1240 11 1200 11 1210 03 1260 04 1260 05 1250 06 1270 07 1240 Zr 783 776 800 782 770 794 765 791 756 771 796 761 761 833 798 747 764 818 795 784 794 789 769 749 773 763 783 747 758 811 794 780 762 759 742 749 762 746 747 738 757 761 773 765 734 758 758 717 746 714 765 767 756 755 791 783 751 737 744 835 827 811 811 814 Nb 2840 2920 2840 2760 2800 2830 2800 2830 2710 2800 2880 2770 2600 2710 2720 2670 2750 2660 2660 2670 2800 2880 2760 2700 2740 2690 2810 2670 2790 2870 2760 2780 2890 2770 2760 2710 2700 2760 2900 2880 2900 2810 2870 2870 2860 2870 2860 2770 2810 2780 2790 2820 2860 2800 2910 2840 2840 2730 2770 2890 2940 2890 2930 2900 Mo 11.7 11.4 11.9 12.2 11.6 10.9 10.6 11.8 11.8 11.9 12.3 11.5 10.5 11.4 11.3 11.0 10.5 10.9 11.0 12.3 10.6 9.9 11.6 11.0 11.9 9.9 11.0 11.4 10.7 11.6 12.4 11.1 10.9 10.1 12.2 10.2 11.7 11.1 11.2 11.6 10.8 11.3 11.3 11.5 11.2 10.3 11.2 10.5 11.1 11.2 11.0 11.5 10.1 10.8 12.1 10.7 11.3 10.3 11.3 11.6 11.6 11.0 11.0 11.3 Sb 1.8 1.8 1.7 1.9 1.8 1.7 1.8 1.8 2.1 1.8 1.7 1.8 1.4 2.0 1.6 1.5 1.5 2.2 1.5 2.1 3.0 2.2 1.6 2.0 1.9 2.0 1.6 1.9 1.7 2.2 1.4 1.9 1.6 1.9 1.8 2.0 1.7 1.7 1.5 1.9 2.1 1.7 1.8 1.6 2.1 2.0 1.8 1.7 1.8 2.2 1.7 1.8 1.9 1.9 1.9 1.9 1.6 1.7 1.7 1.7 1.6 1.9 1.5 1.7 Hf 37.1 35.1 37.7 37 35.8 36.9 36.3 38.6 36 36.5 37.8 36 36.3 38.7 37.9 35.9 37.1 39.2 38.6 37.8 38.4 37 36.3 36.9 37.1 37.3 38.1 36.8 35.8 37.7 37 36.7 37 36.5 34.9 33.4 37.4 33.7 36 36.2 36.7 34.2 36.6 35.7 34.3 35.9 37.4 35.7 35.8 36.3 38 36.4 36.6 36.9 36.4 35.7 37.2 34.7 34.5 39.9 38.2 40.5 39.9 38.4 Ta 419 436 442 490 431 354 409 444 426 438 429 405 343 450 464 351 349 543 493 480 414 365 382 433 424 444 426 390 400 459 389 448 446 430 448 454 539 460 389 443 430 369 390 419 399 423 398 369 418 396 421 384 440 417 407 382 420 422 408 467 455 447 407 430 W 67 68 73 97 71 58 66 76 72 75 73 62 58 123 145 58 57 98 85 91 66 58 64 67 72 71 73 65 64 76 68 90 68 75 88 85 97 86 65 73 71 62 63 70 69 69 67 63 67 72 66 62 82 68 64 63 70 73 82 83 72 70 64 65 Pb 0.290 0.256 0.093 0.095 0.114 0.102 0.140 0.216 3.160 0.061 0.162 0.156 0.099 0.141 0.075 0.061 0.095 0.183 0.179 0.087 0.363 0.349 0.125 0.152 0.343 0.111 0.058 0.088 0.245 0.153 0.204 0.170 0.183 0.262 0.219 0.072 0.180 0.096 0.070 0.152 0.090 0.085 0.059 0.064 0.084 0.111 0.099 0.080 0.130 0.148 0.076 0.117 0.124 0.112 0.161 0.061 0.062 0.080 0.074 0.150 0.145 0.086 0.103 0.083 Th 0.129 0.049 0.054 0.066 0.037 0.035 0.069 0.071 0.053 0.069 0.049 0.037 0.057 0.113 0.041 0.083 0.045 0.079 0.057 0.096 0.050 0.152 0.078 0.065 0.057 0.065 0.058 0.054 0.275 0.118 0.047 0.055 0.043 0.114 0.130 0.051 0.054 0.029 0.036 0.039 0.052 0.060 0.069 0.032 0.076 0.038 0.027 0.047 0.059 0.061 0.042 0.030 0.098 0.037 0.053 0.033 0.028 0.046 0.071 0.078 0.086 0.029 0.125 0.064 U 43.6 44.0 45.8 46.4 42.8 42.1 46.1 44.4 42.9 45.2 46.7 45.8 42.6 54.9 53.3 42.5 42.7 49.5 47.2 46.7 47.3 41.3 47.3 44.2 46.4 47.3 48.1 45.0 46.6 48.2 48.6 46.3 47.7 46.7 46.6 43.6 46.0 47.2 48.0 47.9 46.5 45.0 45.9 44.2 48.0 44.3 46.2 46.2 45.3 43.1 45.3 44.9 46.0 43.3 47.6 45.0 45.5 44.2 45.6 47.7 44.7 46.4 46.3 44.6 Table A4.1. Long-term R10 analyses done using the LA-ICPMS (continued) 208 Appendix A4 Laser Session se29a08 se29b11 se29c11 se29d11 se29d16 se29d17 se29d18 se29e11 se30a11 se30b11 se30c11 se30d11 se30e11 oc01a11 oc01b11 oc01c11 oc02a11 oc02b11 oc02c11 oc02d11 oc02e11 oc02f11 oc02g11 oc02h11 oc02i11 oc02i18 oc02j11 08 11 11 11 16 17 18 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 18 11 V 1250 1260 1260 1240 1260 1270 1250 1220 1230 1240 1210 1250 1300 1250 1200 1250 1220 1250 1230 1270 1230 1230 1240 1240 1270 1180 1190 Zr 821 771 813 811 775 784 804 805 747 757 772 765 767 766 740 765 733 758 732 742 705 714 735 712 742 708 714 Nb 2850 2750 2830 2810 2830 2820 2880 2840 2770 2810 2810 2830 2830 2890 2750 2810 2790 2940 2840 2890 2780 2690 2810 2730 2790 2670 2720 Mo 12.0 11.0 11.2 11.1 10.7 10.6 11.0 10.3 10.6 10.4 10.0 10.7 10.9 10.9 11.0 10.7 10.1 11.3 11.0 12.0 11.1 10.7 10.7 11.1 11.0 11.0 10.6 Sb 1.8 2.0 2.0 1.9 1.6 1.4 1.7 1.5 1.9 1.6 1.5 1.8 1.7 1.6 1.6 1.8 2.0 2.0 1.7 1.6 1.5 1.7 1.8 1.7 1.5 1.7 1.6 Hf 37.4 37.2 38.8 38.7 37.8 38.4 38.6 39.5 37.3 37.1 36.2 37.2 36.7 36.9 36.7 37.7 34.8 37.4 35.1 35.2 34.9 34.3 35.8 34.6 35.3 33.3 35.1 Ta 434 432 504 465 433 430 423 392 385 406 439 445 448 435 411 431 426 423 428 433 434 425 419 395 368 378 420 W 70 72 92 83 73 67 64 62 62 66 66 71 68 68 62 66 64 64 66 70 67 70 67 64 63 67 66 Pb 0.114 0.257 0.230 0.137 0.118 0.100 0.110 0.122 0.127 0.095 0.183 0.107 0.073 0.113 0.068 0.092 0.068 0.080 0.089 0.166 0.061 0.175 0.077 0.054 0.082 0.208 0.089 Th 0.075 0.068 0.062 0.075 0.035 0.065 0.051 0.046 0.083 0.046 0.081 0.064 0.063 0.048 0.068 0.033 0.035 0.046 0.039 0.017 0.039 0.090 0.042 0.099 0.108 0.105 0.047 U 43.3 43.6 49.9 46.5 45.0 45.3 45.0 47.7 46.5 46.3 46.9 48.2 48.4 47.5 44.6 48.1 47.2 50.0 45.8 46.0 47.3 47.2 45.3 48.9 43.4 44.0 44.4 Table A4.1. Long-term R10 analyses done using the LA-ICPMS (continued) 209 Appendix A5 Stable Oxygen Isotope and Trace Element Analysis Oxygen isotope data was acquired on individual rutiles in two polished grain mounts. Around 10 kg of 13 rock samples (two from Syros, four from the Sesia Lanzo, two from Dora Maira and five from the WGR) were crushed and rutiles were separated following standard heavy mineral separation techniques (please see Sample Preparation – Appendix 2) . Approximately 130 rutile grains (containing 10 rutiles from each sample) with an average size of 40-100 mm in diameter were mounted in the resin block in a cross within a 10 mm square in the centre of the mount. A few chips of two rutile standards (KAG and PAK) were mounted in the same block in the centre of the epoxy mount. The grain mounts were polished to reveal the maiden surface of the standards and samples. All mounted grains were examined in a variable pressure scanning electron microscope (JEOL 6060LV). High-resolution backscattered electron (BSE) images were taken to identify any zoning and fracturing. Low magnification secondary electron (SE) images were obtained to navigate the samples while analysing for O isotopes. Oxygen isotope ratios were measured by Secondary Ion Mass Spectrometry (SIMS) in a Cameca 1270 at the University of Edinburgh in July 2011. Isotope ratios are expressed in conventional δ18O notation in per mil relative to Vienna standard mean ocean water (VSMOW). Before analysing by SIMS the surface of the mounts was cleaned with isopropanol and coated with ∼100 nm gold. The analytical procedure is similar to that described by Kemp et al. (2006). A six nA 133Cs+ ion beam with ∼5 mm diameter was used as a primary beam. A normal incidence electron gun was used for surface charge neutralisation. Secondary ions were extracted at a constant 10 kv voltage, and 18O- and 16Owere monitored simultaneously on dual Faraday cups (L’2 and H’2). Each analysis 210 Appendix A5 involved a pre-sputtering time of 30 seconds, followed by automatic secondary beam and entrance slit centering and finally data collection in two blocks of ten cycles, amounting to a total count time of 100 seconds. Under these conditions the secondary 18 O yield was typically ~3.0 x 106 counts per second, whereas for 16O- , it was ~2.0 x 109cps. We used in house KAG as a primary standard, and assumed it to be homogeneous. A third investigated standard, RAPP, did not prove to be homogeneous enough to be used as standard. A typical analytical session consisted of 10-15 analyses of unknown rutiles bracketed by 5-10 analyses of the primary standard. During the week-long analytical period in July 2011 the average δ18O for KAG was 1.7 ‰ ± 0.02. PAK was also analysed regularly as a secondary standard to monitor instrumental drift, having an average δ18O of 2.5‰ ± 0.02. Instrumental mass fractionation and drift corrections were made using an in-house spreadsheet prepared by CD Storey. To correct for the instrumental mass fractionation all data were normalised to KAG (δ18O =1.7 ‰ ± 0.02) by a bracketing standard procedure (for stable sessions) or by a linear regression method (for the sessions with significant drift). Relative standard deviation in the 16O/18O ratio of the standard BM 1909 was about 0.02% within individual analytical sessions. 211 Appendix A6 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SY545-1 SY545-2 SY545-3 SY545-4 SY545-5 SY545-6 SY545-7 SY500-1 SY500-2 SY500-3 SY500-4 SY500-5 SY500-6 SY500-7 SY500-8 SY500-9 SY500-10 SY500-11 SY500-12 SY500-13 SY500-14 SY500-15 SY500-16 SY500-17 SY500-18 SY500-19 SY500-20 SY500-21 SY500-22 SY500-23 SY500-24 SY500-25 SY500-26 SY500-27 SY500-28 SY500-29 SY500-30 SY500-31 SY500-32 SY500-33 SY500-34 SY500-35 SY500-36 SY500-37 SY500-38 SY500-39 SY500-40 SY500-41 SY500-42 SY500-43 SY500-44 SY522-175-1 SY522-175-2 SY522-175-3 SY522-175-4 SY522-175-5 SY522-175-6 SY522-175-7 SY522-175-8 SY522-175-9 SY522-175-10 SY522-175-11 SY522-175-12 SY425-1 SY425-2 SY425-3 SY425-4 SY425-5 SY425-6 SY425-7 SY425-8 SY425-9 SY425-10 SY425-11 SY425-12 SY425-13 SY425-14 SY425-15 SY504-1 SY504-2 SY504-3 SY504-4 SY504-5 SY504-6 SY504-7 SY504-8 SY504-9 SY504-10 SY504-11 SY504-12 SY504-13 SY504-14 SY504-15 0.004 0.032 0.003 0.011 0.008 0.008 0.227 0.002 0.014 0.025 0.026 0.011 0.003 0.029 0.002 0.002 0.002 0.009 0.003 0.013 0.002 0.001 0.010 0.003 0.015 0.009 0.004 0.005 0.004 0.004 0.010 0.005 0.005 0.002 0.004 0.023 0.000 0.001 0.003 0.017 0.003 0.002 0.002 0.003 0.002 0.006 0.007 0.002 0.002 0.002 0.004 0.004 0.003 0.059 0.002 0.012 0.051 0.050 0.002 0.003 0.002 0.017 0.010 0.008 0.009 0.017 0.007 0.006 0.004 0.004 0.005 0.002 0.014 0.004 0.014 0.021 0.018 0.007 0.001 0.017 0.010 0.001 0.002 0.003 0.003 0.001 0.002 0.004 0.002 0.002 0.007 0.008 0.003 0.012 0.045 0.032 0.009 0.040 0.005 0.439 0.010 0.037 0.064 0.068 0.039 0.007 0.147 0.009 0.004 0.004 0.035 0.006 0.061 0.014 0.006 0.054 0.005 0.057 0.067 0.013 0.014 0.020 0.006 0.040 0.008 0.019 0.005 0.010 0.053 0.009 0.011 0.013 0.029 0.012 0.012 0.006 0.013 0.012 0.089 0.021 0.007 0.007 0.016 0.007 0.030 0.011 0.126 0.008 0.027 0.107 0.252 0.008 0.006 0.008 0.037 0.024 0.005 0.022 0.020 0.016 0.010 0.007 0.010 0.019 0.009 0.095 0.013 0.016 0.034 0.107 0.010 0.003 0.016 0.002 0.005 0.004 0.005 0.008 0.004 0.004 0.002 0.004 0.002 0.011 0.007 0.002 0.40 1.17 0.37 0.35 0.98 3.35 1.52 0.16 0.22 0.21 0.35 0.26 0.22 0.39 0.11 0.20 0.13 0.17 0.22 0.18 0.15 0.08 0.17 0.19 0.33 0.26 0.21 0.17 0.21 0.18 0.16 0.51 0.19 0.19 0.27 0.19 0.06 0.07 0.16 0.18 0.17 0.15 0.14 0.19 0.13 0.20 0.18 0.16 0.15 1.51 0.18 0.13 0.13 0.47 0.17 0.18 0.29 0.38 0.10 0.16 0.13 0.18 0.21 0.42 0.57 0.28 0.71 0.29 0.11 0.17 0.17 0.16 0.27 0.32 0.24 0.27 0.39 0.24 0.11 0.32 0.30 0.11 0.12 0.16 0.15 0.09 0.14 0.18 0.25 0.20 0.25 0.14 0.15 1630 1650 1510 1550 2050 1640 1580 2090 1970 2100 1980 2130 1880 1920 1810 1900 1840 2090 1960 1960 1960 1960 1850 2060 1860 2530 2520 1910 2360 2250 1940 2150 2410 1950 2360 2420 2410 2530 1900 1990 2040 1940 2050 2020 1920 2030 1960 1980 1950 1910 2030 1580 1450 1580 1600 1580 1590 1690 1710 1670 1560 1620 1660 659 607 616 571 617 584 585 612 574 568 642 612 603 602 579 988 1050 1090 1020 976 995 1010 1070 1030 1060 1090 1140 1090 1000 1060 115 85 75 114 122 125 118 6 4 5 6 8 6 4 4 5 4 5 5 2 3 2 2 5 6 12 21 12 25 31 17 32 19 14 16 15 3 3 6 4 5 5 4 4 5 5 5 4 4 6 5 6 5 6 5 7 6 6 4 6 6 4 6 300 346 480 410 429 353 394 421 457 492 392 412 392 539 406 5 14 13 2 4 4 2 3 2 6 4 6 5 5 4 34 77 36 74 37 64 41 37 45 41 44 48 58 70 51 63 54 51 67 60 54 43 43 49 38 48 49 62 52 74 49 77 60 63 48 44 42 44 42 44 49 53 39 38 43 44 40 34 34 46 50 41 38 81 80 65 58 60 68 56 68 67 44 43 45 63 49 43 33 43 48 71 55 48 53 52 73 42 30 18 18 38 36 30 36 42 37 39 20 52 22 30 38 126 109 65 119 172 118 97 94 108 94 99 102 68 80 32 66 81 65 82 67 59 54 69 75 77 75 69 76 57 86 70 81 85 78 72 62 66 73 97 85 115 81 91 164 85 107 93 93 76 94 80 129 92 64 39 81 63 43 73 60 92 39 73 253 280 256 294 267 287 304 277 250 217 294 256 270 200 288 57 77 73 60 63 61 55 71 54 63 71 68 65 61 56 3.7 2.0 1.9 2.9 4.9 3.4 2.3 2.2 2.5 1.8 1.2 2.4 2.0 1.6 1.6 1.4 2.3 1.7 2.3 1.4 1.7 1.6 1.3 2.5 1.7 2.7 1.1 2.1 1.4 1.8 1.4 3.5 1.5 2.3 1.9 1.8 1.4 1.7 1.6 1.2 1.9 2.7 2.5 2.7 1.4 1.1 0.9 1.3 2.5 1.5 2.0 1.7 2.9 2.0 0.9 1.6 1.2 1.9 2.5 1.9 2.3 1.6 2.2 6.8 8.0 4.3 6.9 4.2 5.1 2.7 4.1 2.9 4.3 5.7 4.9 6.0 4.3 6.2 3.3 4.8 8.0 3.4 3.7 3.8 3.2 4.0 2.3 5.9 4.6 5.1 3.0 5.6 6.0 13.9 14.5 8.4 15.4 15.2 19.4 12.4 14.4 13.9 14.1 16.6 11.6 10.9 14.4 8.94 10.8 12.9 11.2 12.4 11.2 10.9 11.6 15.2 12.9 12.6 9.75 7.93 17.3 10.6 14.8 12.9 15.4 14.5 16.1 14.3 11.2 9.9 9.6 15.7 12.5 16.1 13.5 13.4 14.4 14.5 11.6 13.1 14.8 14.3 15.1 12.1 15 14.4 21.3 18.5 16.2 15.7 17.8 18.8 17.8 18.1 14.2 18.4 21.8 31.1 25.4 25.3 20.7 30 23.5 22.2 23 20.1 24.3 21.7 23.6 21.3 33 8.54 11.4 5.17 9.17 7.9 9.3 7.4 9.2 9.5 6.7 9.0 6.4 6.8 7.2 7.4 1.0 1.0 0.9 1.1 0.8 1.6 0.7 5.5 4.6 3.7 4.0 5.7 1.1 0.8 2.3 0.7 2.9 2.1 0.9 1.2 1.4 2.5 3.3 3.3 4.8 3.0 2.0 1.1 2.1 3.0 3.2 1.7 1.6 1.0 3.6 3.2 1.4 1.3 3.4 2.8 3.3 1.6 2.7 3.9 3.4 3.5 4.4 5.3 3.7 3.1 1.6 0.4 0.6 0.4 0.5 0.8 0.4 0.4 0.4 0.4 0.7 0.4 0.8 39.6 38.7 39.8 43.0 39.8 31.0 35.0 42.2 43.6 34.3 38.1 40.8 37.9 38.6 37.4 2.1 2.6 3.0 3.0 2.8 3.4 2.1 2.8 2.2 3.0 2.7 4.1 2.8 2.5 1.6 1.8 4.1 2.2 2.3 2.5 4.3 3.0 2.7 3.4 2.8 2.9 2.7 2.9 4.1 2.6 3.5 2.7 3.9 4.8 3.7 2.9 3.1 3.0 3.4 3.4 3.6 2.9 3.2 3.5 4.2 3.1 4.0 4.7 3.9 3.7 3.0 2.5 2.4 2.7 2.9 3.5 3.6 4.2 2.6 2.3 3.1 2.3 1.7 2.6 3.2 2.7 3.4 2.7 6.0 5.3 4.3 4.5 4.4 7.0 5.5 5.2 4.8 6.4 1.7 3.3 2.9 2.6 1.7 1.7 1.3 2.3 4.1 3.6 3.3 2.5 2.7 4.5 4.9 2.2 2.3 2.7 2.2 3.9 3.7 3.3 4.1 3.1 3.4 2.0 3.4 2.4 2.7 2.7 7.9 4.9 3.4 8.9 10.4 7.4 5.4 5.5 7.6 6.2 6.4 6.5 5.5 5.8 2.3 4.4 5.0 4.6 5.6 4.1 3.6 3.3 4.3 5.2 5.4 4.8 3.6 4.3 3.3 3.8 3.8 4.6 4.7 3.9 4.4 2.9 4.1 4.9 6.3 4.9 6.9 4.3 5.7 12.1 5.6 6.2 5.7 4.8 4.0 5.3 4.8 25.4 7.6 5.2 2.8 6.4 5.3 2.5 6.6 4.9 8.7 3.0 5.7 8.5 10.0 9.4 8.1 8.8 11.2 12.2 8.0 7.5 7.5 8.2 8.6 8.1 6.4 10.2 3.3 4.2 4.7 4.5 4.2 4.1 2.8 4.9 3.0 4.4 5.2 4.2 4.8 4.2 2.5 6.6 12.6 32.6 7.8 14.1 6.2 19.6 2.7 3.9 1.8 2.2 2.8 1.0 3.7 0.6 1.0 2.0 2.2 3.6 1.5 0.8 0.4 2.3 4.2 1.6 1.2 2.3 0.9 0.5 4.4 3.2 2.8 3.8 1.5 1.3 1.1 0.8 2.4 5.0 1.1 4.4 1.2 4.1 14.4 2.3 2.9 4.6 3.7 2.0 2.2 2.0 7.3 5.7 0.9 0.2 0.8 0.4 0.5 1.9 2.1 1.7 0.1 1.9 32.2 30.8 42.4 63.7 81.4 40.9 53.4 78.1 55.3 57.1 66.3 63.1 64.7 43.8 63.8 4.5 5.6 6.2 6.1 6.9 7.3 4.3 6.7 4.7 7.7 6.5 5.5 4.6 5.0 3.8 0.10 0.13 0.10 0.45 0.23 0.22 0.17 0.11 0.14 0.13 0.07 0.22 0.14 0.09 0.15 0.11 0.18 0.07 0.13 0.08 0.05 0.05 0.05 0.12 0.11 0.18 0.09 0.08 0.13 0.21 0.09 0.40 0.11 0.14 0.19 0.12 0.06 0.11 0.15 0.08 0.11 0.11 0.13 0.10 0.11 0.17 0.15 0.09 0.08 0.06 0.11 0.08 0.04 0.05 0.04 0.05 0.07 0.05 0.03 0.03 0.03 0.04 0.03 0.61 0.50 0.79 0.92 0.25 0.16 0.29 0.58 0.28 0.68 0.23 0.45 0.39 0.25 0.50 0.14 0.49 0.43 0.14 0.13 0.29 0.22 0.26 0.18 0.16 0.27 0.30 0.12 0.29 0.37 Ts Tomkins (1.5GPa) 520 571 524 569 526 558 531 526 537 532 535 541 553 565 545 557 549 544 561 555 548 534 535 542 526 541 542 557 546 568 542 571 555 558 541 535 533 536 532 536 542 547 528 528 534 536 529 521 521 538 543 532 528 574 573 560 552 555 563 550 562 562 536 535 537 558 542 534 518 534 540 566 550 541 547 546 567 533 514 485 484 527 524 513 524 533 525 528 490 546 495 513 527 Ts Tomkins (2.0GPa) 538 590 542 588 544 577 549 544 555 550 554 560 572 584 564 576 567 563 580 574 566 553 553 561 544 559 561 576 564 587 561 590 574 577 559 554 552 554 551 554 560 566 546 546 552 554 548 539 539 556 561 550 546 594 592 579 571 574 582 569 581 581 554 553 555 577 560 553 536 552 559 585 569 559 566 564 586 551 532 503 501 545 542 531 543 551 544 546 508 565 512 530 545 Table A6.1.Trace element concentrations and temperature measurements for the metamorphic samples from Syros Ts F&W Qtzbearing 495 546 500 543 502 533 507 507 503 549 548 535 528 530 538 526 537 537 511 510 512 533 517 510 494 509 516 540 525 516 522 521 542 509 Ts F&W Ts F&W Qtz-free a(SiO2)=1 (asio2-0.5) 495 546 500 543 502 533 506 464 502 473 512 469 507 472 511 477 516 488 528 498 540 481 520 492 532 484 524 480 520 495 536 489 530 483 523 471 510 471 510 478 517 464 502 477 516 478 517 491 532 481 521 501 543 478 518 503 545 490 530 492 533 477 516 472 511 470 509 472 511 469 508 473 511 478 517 482 522 465 503 465 503 471 509 472 511 467 505 459 496 459 496 474 513 479 518 507 503 549 548 535 527 530 537 526 537 537 511 510 512 533 517 510 494 509 516 540 525 516 522 521 542 509 453 490 428 462 427 461 465 503 462 500 453 489 462 500 470 508 463 501 465 503 432 467 482 521 436 471 452 489 465 503 212 Appendix A7 Sample MgO Al2O3 SiO2 V Cr SY528-1 SY528-2 SY528-3 SY528-4 SY528-5 SY528-6 SY528-7 SY528-8 SY528-9 SY528-10 SY528-11 SY528-12 SY528-13 SY528-14 SY528-15 SY528-16 SY528-17 SY528-18 SY528-19 SY528-20 SY528-21 SY528-22 SY528-23 SY528-24 SY528-25 SY528-26 SY528-27 SY528-28 SY528-29 SY528-30 SY528-31 SY528-32 SY528-33 SY528-34 SY537-1 SY537-2 SY537-3 SY537-4 SY537-5 SY537-6 SY537-7 SY537-8 SY537-9 SY537-10 SY537-11 SY537-12 SY537-13 SY537-14 SY537-15 SY537-16 SY537-17 SY537-18 SY537-19 SY537-20 SY537-21 SY537-22 SY537-23 SY537-24 SY539-1 SY539-2 SY539-3 SY539-4 SY539-5 SY539-6 SY539-7 SY539-8 SY539-9 SY539-10 SY539-11 SY539-12 SY539-13 SY539-14 SY539-15 SY539-16 SY539-17 SY539-18 SY539-19 SY539-20 SY539-21 0.001 0.001 0.013 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.033 0.001 0.001 0.001 0.001 0.218 0.001 0.002 0.001 0.036 0.001 0.001 0.001 0.006 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.03 0.01 0.05 0.08 0.06 0.01 0.02 0.01 0.02 0.02 0.01 0.04 0.05 0.03 0.03 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.07 0.02 0.02 0.03 0.03 0.53 0.03 0.02 0.03 0.10 0.02 0.02 0.08 0.04 0.02 0.01 0.03 0.01 0.01 0.03 0.01 0.02 0.02 0.03 0.02 0.05 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.06 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.25 0.25 0.25 0.20 0.22 0.25 0.25 0.19 0.17 0.18 0.19 0.21 0.24 0.17 0.23 0.16 0.18 0.23 0.16 0.21 0.19 0.26 0.19 0.16 0.19 0.20 0.16 0.23 0.17 0.21 0.20 0.30 0.16 0.16 0.21 0.18 0.73 0.19 0.20 0.14 0.23 0.18 0.19 0.18 0.21 0.22 0.21 0.14 0.15 0.20 0.16 0.25 0.22 0.19 0.24 0.23 0.14 0.18 0.11 0.11 0.15 0.14 0.20 0.18 0.23 0.12 0.14 0.24 0.19 0.42 0.21 0.16 0.14 0.14 0.16 0.17 0.20 0.20 0.25 1098 1080 1078 1026 1036 1017 1017 1013 1025 1007 1043 1006 1034 1033 1036 1066 1062 1073 1150 1194 1184 1157 1119 1120 1078 1056 990 1021 1050 985 1011 1016 1030 1011 933 814 762 782 781 754 734 756 742 742 724 673 672 650 637 618 617 643 652 663 802 827 893 947 413 354 517 364 533 541 545 553 522 475 497 429 495 486 544 469 582 577 584 508 522 516 537 488 500 471 472 445 454 551 463 489 481 517 500 559 585 521 611 464 545 543 459 465 444 446 446 484 387 493 597 440 410 509 496 359 405 507 487 462 473 401 349 314 329 377 372 384 412 381 383 382 314 380 375 343 459 647 708 204 196 168 183 191 184 201 177 196 185 183 228 175 174 203 190 210 219 179 233 208 Zr 77 73 75 74 75 74 79 79 82 91 85 83 85 85 82 86 83 81 90 75 69 71 72 79 76 76 75 92 86 84 77 82 76 77 46 52 50 49 50 50 46 44 44 44 48 46 49 49 49 49 49 45 50 44 46 48 49 50 58 60 58 55 61 61 55 56 52 56 60 58 58 56 65 61 69 71 64 57 57 Nb Mo 372 347 348 341 356 357 351 359 368 515 474 461 470 464 415 385 401 379 562 401 390 387 389 378 385 379 428 559 488 398 389 394 367 363 371 439 624 586 567 580 432 458 452 461 488 468 441 437 411 388 390 412 377 358 435 306 427 400 484 485 476 444 442 421 459 506 450 433 506 467 460 509 460 504 443 462 478 478 471 1.6 1.7 1.8 1.5 1.2 1.7 1.7 1.7 1.8 1.7 1.8 2.0 1.8 1.7 1.7 1.5 1.9 2.0 2.1 1.4 1.6 1.7 1.5 1.7 1.4 1.6 1.5 2.0 2.3 1.6 1.4 1.7 1.5 1.7 0.4 0.4 0.8 0.6 0.7 0.3 0.5 0.4 0.4 0.7 0.9 0.8 0.6 0.7 0.4 0.5 0.8 0.6 0.5 0.6 0.6 0.5 0.7 0.7 2.1 2.6 2.3 2.2 2.5 2.1 1.8 2.0 1.9 2.4 2.1 1.5 2.0 1.6 2.8 1.8 2.2 2.3 2.3 1.1 1.8 Sn 37 35 34 34 33 34 32 33 34 39 35 36 38 39 40 39 40 41 45 43 35 37 39 38 37 38 30 35 35 34 34 33 32 31 12 13 12 11 11 12 10 10 11 11 12 12 12 12 13 13 14 12 13 15 17 15 16 15 34 31 31 31 34 32 31 32 30 34 32 31 33 31 38 33 36 38 36 35 34 Sb Hf Ta W U 0.4 0.4 0.3 0.6 0.3 1.0 0.4 0.3 0.3 0.8 0.4 0.3 0.3 0.2 0.5 0.4 0.6 0.3 0.4 0.3 9.6 0.5 1.6 1.2 0.2 0.3 0.2 0.5 0.3 0.3 0.3 0.4 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.3 0.2 0.1 0.3 0.2 0.2 0.2 0.2 0.2 0.3 3.3 3.3 2.8 3.2 3.6 2.9 3.2 3.4 2.9 2.9 3.4 2.5 2.8 3.5 3.0 3.4 3.3 4.3 3.6 3.5 3.7 3.5 3.0 3.4 3.2 3.3 3.5 3.0 3.2 3.5 3.5 3.3 3.4 3.8 4.0 3.4 3.4 3.3 2.9 3.4 2.8 3.1 2.8 3.3 3.6 3.4 3.0 3.0 3.8 3.5 3.4 3.3 3.3 3.0 3.1 2.4 2.8 2.9 2.4 2.5 3.0 2.9 2.7 2.2 2.2 3.0 2.9 2.6 2.6 2.2 2.4 2.8 2.5 2.4 2.6 2.7 2.5 2.5 2.5 2.5 2.8 2.3 2.8 2.5 2.7 2.5 2.1 2.0 2.4 2.6 2.8 2.7 2.2 2.4 2.7 2.9 2.9 2.9 2.5 2.9 24.2 22.3 21.4 21.5 21.0 20.5 21.7 21.7 23.3 35.8 34.3 33.9 33.8 34.0 27.5 29.8 27.4 26.9 35.3 28.7 25.9 25.7 25.6 25.2 25.2 25.1 33.1 37.1 34.9 30.0 25.9 27.7 23.7 23.9 17.8 19.3 32.8 32.0 29.6 30.6 18.0 21.9 22.8 23.1 29.5 28.9 28.0 27.4 27.8 26.7 26.1 25.8 27.4 25.2 30.5 18.0 27.4 28.7 15.8 16.6 17.5 14.4 14.4 13.5 15.6 18.8 16.0 13.1 17.7 13.3 15.3 18.2 12.9 16.6 13.2 14.1 16.4 15.3 17.4 1.3 0.9 1.1 1.1 0.9 1.0 0.8 1.2 1.0 3.4 2.8 2.7 2.7 2.8 2.4 2.1 2.3 2.0 5.3 2.7 1.2 1.0 8.6 6.7 1.3 1.4 2.3 4.6 3.3 2.0 1.1 1.1 1.3 0.9 2.8 6.4 84.4 67.8 36.7 33.7 8.3 7.1 6.3 6.9 10.9 9.3 7.3 5.9 4.7 4.0 3.0 1.9 2.3 2.2 2.7 0.6 1.6 2.0 8.6 7.3 6.5 7.6 7.2 7.0 7.1 16.0 6.1 7.4 6.8 5.5 8.2 7.0 7.7 8.7 9.5 19.1 8.3 5.7 6.7 0.03 0.06 0.06 0.03 0.07 0.03 0.05 0.03 0.04 0.04 0.02 0.03 0.04 0.04 0.06 0.02 0.03 0.02 0.04 0.04 0.03 0.05 0.03 0.04 0.04 0.05 0.03 0.03 0.03 0.04 0.03 0.05 0.08 0.04 0.03 0.05 0.04 0.04 0.04 0.06 0.04 0.04 0.04 0.05 0.04 0.06 0.03 0.04 0.05 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.02 0.03 0.07 0.05 0.03 0.05 0.04 0.05 0.04 0.05 0.03 0.04 0.05 0.04 0.05 0.03 0.06 0.04 0.06 0.03 0.04 0.03 0.03 Ts Ts Tomkins Tomkins (0.6 GPa) (1.2 GPa) 536 559 533 556 535 558 534 557 535 558 533 556 538 561 538 561 540 563 547 570 542 566 541 564 543 566 543 566 540 563 543 566 541 564 539 562 546 570 535 558 530 553 532 555 532 555 538 561 536 559 535 558 534 557 548 571 543 566 542 565 537 560 540 563 536 559 536 559 505 527 512 534 510 532 509 531 510 532 510 532 505 527 503 525 502 524 502 524 507 530 505 527 509 531 509 531 509 532 509 531 508 531 504 526 510 532 503 525 505 527 507 530 509 531 510 532 519 541 521 543 519 541 515 538 522 545 521 544 516 538 517 539 512 535 517 540 521 543 519 541 519 541 517 540 526 549 522 544 530 553 531 554 525 547 518 541 518 540 Table A7.1.Trace element concentration and temperature measurements for metasomatic samples from Syros Ts F&W Ts F&W QtzQtz-free Ts F&W bearing (asio2-0.5) a(SiO2)=1 503 545 500 542 502 544 501 543 502 544 501 543 505 547 505 547 507 549 513 556 509 552 508 550 509 552 509 552 507 549 510 553 508 550 506 549 513 556 502 544 497 539 499 541 500 541 505 547 503 545 502 544 502 543 514 557 510 552 508 551 504 546 507 549 503 545 503 546 475 514 481 520 479 519 478 517 479 519 479 518 474 513 473 512 472 510 472 511 477 516 474 513 478 517 478 517 479 518 478 518 478 517 473 512 479 518 472 511 474 513 477 516 478 518 479 518 487 527 489 530 487 527 484 524 490 531 490 530 484 524 485 525 481 521 486 526 489 530 487 528 487 528 486 526 494 535 490 531 498 539 499 540 493 533 487 527 486 527 213 Appendix A7 Sample MgO Al2O3 SiO2 V Cr SY539-22 SY521-1 SY521-2 SY521-3 SY521-4 SY521-5 SY521-6 SY521-7 SY521-8 SY521-9 SY521-10 SY521-11 SY521-12 SY521-13 SY521-14 SY521-15 SY521-16 SY521-17 SY521-18 SY521-19 SY521-20 SY521-21 SY521-22 SY521-23 SY521-24 SY521-25 SY521-26 SY521-27 SY521-28 SY521-29 SY521-30 SY521-31 SY521-32 SY521-33 SY521-34 SY521-35 SY521-36 SY521-37 SY521-38 SY521-39 SY521-40 SY521-41 SY521-42 SY521-43 SY521-44 SY521-45 SY521-46 SY521-47 SY521-48 SY521-49 SY521-50 SY521-51 SY521-52 SY521-53 SY521-54 SY521-55 SY521-56 SY521-57 SY521-58 SY521-59 SY521-60 SY521-61 SY521-62 SY521-63 SY521-64 SY521-65 SY521-66 SY521-67 SY521-68 SY521-69 SY521-70 SY521-71 SY521-72 SY521-73 SY521-74 SY521-75 SY521-76 SY521-77 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.008 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.001 0.019 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.040 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.03 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.22 0.07 0.11 0.10 0.11 0.09 0.11 0.13 0.13 0.12 0.09 0.14 0.08 0.14 0.11 0.08 0.09 0.09 0.11 0.11 0.09 0.12 0.11 0.15 0.12 0.11 0.08 0.24 0.17 0.13 0.17 0.10 0.14 0.11 0.11 0.13 0.09 0.13 0.11 0.12 0.12 0.10 0.09 0.13 0.15 0.11 0.16 0.13 0.12 0.12 0.08 0.14 0.11 0.12 0.11 0.11 0.09 0.12 0.09 0.10 0.10 0.08 0.09 0.10 0.08 0.11 0.11 0.10 0.06 0.07 0.06 0.11 0.12 0.08 0.10 0.09 0.08 0.10 502 812 929 933 922 966 934 773 935 814 920 950 926 920 896 884 959 962 954 967 941 941 949 980 937 961 951 918 950 796 546 835 953 932 938 965 952 857 977 972 941 589 751 927 965 1030 999 961 983 970 947 945 965 944 919 879 847 608 931 948 951 956 912 753 611 402 754 573 866 949 1000 1030 1010 1010 794 974 1000 939 234 109 115 143 121 134 142 160 133 143 148 143 120 107 93 82 155 118 128 151 146 114 147 125 108 102 127 112 113 112 110 110 160 131 117 140 178 153 116 112 151 156 137 162 183 221 241 166 187 173 177 115 147 104 95 81 80 81 118 109 117 87 81 64 88 72 70 81 172 194 173 183 153 137 121 291 268 81 Zr 56 74 66 78 69 63 72 63 67 68 71 71 63 68 65 68 70 69 68 74 69 66 73 71 67 65 70 70 71 70 67 70 77 73 62 74 77 74 73 69 71 71 70 68 70 69 73 70 75 67 67 67 72 72 71 69 69 71 97 94 97 68 63 59 65 53 63 63 76 82 78 79 91 73 70 77 77 69 Nb Mo Sn 495 196 194 188 192 177 185 293 188 190 180 185 192 198 179 197 181 191 183 194 184 182 193 197 182 190 195 188 191 190 195 194 195 195 176 206 185 194 199 195 199 192 184 170 155 156 161 184 174 177 184 187 183 200 191 204 210 213 327 304 318 192 213 316 236 392 268 320 225 249 232 246 282 230 199 116 116 190 2.3 3.1 3.1 3.1 3.5 3.1 3.1 2.3 3.4 2.5 2.8 3.0 3.3 3.3 3.2 3.2 3.1 3.0 2.8 3.5 2.3 2.9 3.0 3.1 3.0 3.5 3.2 3.0 3.0 2.9 2.5 3.2 3.0 2.9 3.1 3.6 3.0 2.6 3.3 2.9 3.2 2.9 3.3 3.1 3.0 2.9 3.2 3.1 2.8 2.5 2.5 2.8 3.3 3.5 3.1 3.4 3.4 3.6 5.8 5.7 5.2 2.7 2.5 2.6 3.0 1.9 2.8 2.5 3.2 3.5 3.4 3.7 3.8 3.3 3.5 3.2 3.6 3.1 35 6 5 6 6 5 6 6 6 5 5 6 5 6 5 6 5 5 5 6 5 5 5 6 5 5 5 5 6 5 6 6 6 5 5 6 6 6 5 6 5 5 5 5 6 6 5 6 6 6 5 6 5 6 5 6 6 6 9 8 8 5 5 5 5 5 5 6 7 7 7 7 8 7 6 5 6 5 Sb Hf Ta W U 3.8 4.1 3.8 3.7 3.6 3.3 3.5 7.5 3.6 3.2 3.6 3.5 3.6 3.4 3.3 3.2 3.4 3.3 3.2 3.4 3.8 3.2 3.8 4.0 3.0 3.2 3.5 3.5 3.5 3.4 9.0 3.7 4.1 3.7 3.1 4.1 3.6 4.0 3.5 3.4 3.9 3.7 3.6 3.5 3.7 3.8 4.2 3.2 3.8 3.8 3.9 3.5 3.4 3.5 3.5 3.6 3.9 3.4 5.6 5.5 5.7 3.4 4.0 6.9 3.9 10.6 4.6 7.2 5.0 5.6 5.4 5.3 6.0 4.7 4.0 3.7 3.8 3.7 2.8 3.0 2.6 3.4 3.1 2.8 2.9 2.5 2.9 2.8 2.9 2.7 2.7 3.4 2.4 2.8 3.2 3.0 2.7 3.5 2.8 2.8 3.2 3.1 3.2 2.8 3.0 2.5 3.5 3.0 2.6 3.2 3.0 3.2 2.4 3.5 3.0 3.1 3.6 3.3 2.9 3.0 3.0 3.2 3.0 2.9 3.1 3.2 3.6 2.8 2.6 2.8 3.0 3.4 3.1 2.7 3.0 2.7 4.1 3.3 3.6 3.0 2.4 2.4 2.5 1.9 2.4 3.0 3.6 4.0 3.4 3.8 4.4 3.3 3.0 3.3 3.1 3.0 16.6 13.7 12.6 12.4 12.4 12.6 13.5 13.3 12.8 14.2 12.4 12.5 13.4 12.6 10.6 11.9 13.7 13.7 12.1 15.2 14.7 14.0 14.4 15.2 13.7 13.4 14.5 12.3 13.5 12.0 12.0 13.9 13.9 14.2 11.5 13.7 11.5 13.0 12.5 14.1 12.3 13.8 13.2 13.4 11.9 13.1 12.9 13.9 13.9 13.3 14.1 12.1 13.1 13.6 11.6 12.5 12.9 14.1 30.8 30.8 30.7 14.8 19.3 23.5 16.6 21.7 24.7 19.6 21.4 21.8 22.3 23.2 25.6 19.5 14.9 7.3 7.5 12.3 5.8 10.3 10.0 10.3 11.5 9.7 10.5 11.1 10.9 10.5 10.4 11.4 11.3 10.8 10.5 10.5 9.7 10.9 11.0 11.6 10.4 11.0 12.1 10.5 10.0 10.2 10.2 10.4 10.8 10.8 24.5 11.3 12.6 10.9 9.7 11.8 9.7 10.4 12.5 12.1 10.7 11.3 10.7 10.4 9.8 12.4 11.1 12.0 11.1 10.9 11.5 11.4 11.3 11.0 10.5 10.4 10.4 10.4 119.0 91.3 167.0 9.9 10.1 12.6 10.4 10.5 14.6 13.2 42.4 57.4 43.7 50.2 48.3 27.6 12.2 11.6 12.2 9.6 0.04 0.17 0.14 0.12 0.14 0.14 0.14 0.18 0.17 0.18 0.14 0.17 0.16 0.15 0.15 0.14 0.15 0.19 0.12 0.20 0.14 0.15 0.14 0.14 0.12 0.11 0.16 0.16 0.15 0.20 0.22 0.12 0.19 0.18 0.13 0.10 5.20 0.15 0.20 0.16 0.12 0.18 0.16 0.35 0.17 0.21 0.16 0.18 0.26 0.15 0.12 0.13 0.18 0.18 0.11 0.15 0.13 0.18 0.27 0.35 0.30 0.16 0.11 0.14 0.16 0.24 0.09 0.13 0.20 0.49 0.31 0.29 0.34 0.21 0.19 0.19 0.18 0.16 Ts Ts Ts F&W Ts F&W Tomkins Tomkins QtzQtz-free Ts F&W (0.6 GPa) (1.2 GPa) bearing (asio2-0.5) a(SiO2)=1 516 539 485 525 534 557 501 543 527 550 495 536 537 560 504 546 530 553 497 539 524 546 492 533 532 555 499 541 524 547 492 533 528 551 496 537 528 551 496 537 531 554 499 540 532 555 499 541 524 546 492 533 528 551 496 537 525 548 493 534 529 552 496 538 530 553 498 539 530 552 497 539 529 551 496 538 534 556 501 543 529 552 497 538 527 549 495 536 533 556 500 542 532 555 499 541 528 550 495 537 526 549 494 535 530 553 498 539 530 553 498 539 532 555 499 541 531 553 498 540 528 551 496 537 530 553 498 539 536 559 503 545 533 556 500 542 523 545 491 532 533 556 501 543 536 559 503 545 533 556 501 543 533 556 500 542 529 552 497 538 531 554 498 540 531 554 499 540 530 553 498 539 528 551 496 537 530 553 498 540 530 553 497 539 533 556 500 542 531 554 498 540 535 558 502 544 527 550 495 536 528 551 496 537 528 550 495 537 532 555 499 541 532 555 499 541 531 554 498 540 530 553 497 539 530 552 497 539 532 554 499 541 551 575 517 561 549 573 515 559 551 574 517 560 528 551 496 537 524 546 492 533 520 543 489 529 526 549 494 535 513 535 482 522 524 546 492 533 524 546 492 533 535 558 503 545 540 563 507 549 537 560 504 546 538 561 505 547 547 570 513 556 533 556 500 542 530 553 498 539 537 560 504 546 536 559 503 545 530 553 497 539 Table A7.1.Trace element concentration and temperature measurements for metasomatic samples from Syros (continued) 214 Appendix A7 Sample MgO Al2O3 SiO2 V Cr SY521-78 SY521-79 SY521-80 SY521-81 SY521-82 SY521-83 SY521-84 SY521-85 SY521-86 SY521-87 SY521-88 SY521-89 SY521-90 SY521-91 SY521-92 SY521-93 SY521-94 SY521-95 SY521-96 SY521-97 SY561-1 SY561-2 SY561-3 SY561-4 SY561-5 SY561-6 SY561-7 SY561-8 SY561-9 SY561-10 SY561-11 SY561-12 SY561-13 SY561-14 SY561-15 SY561-16 SY561-17 SY561-18 SY561-19 SY561-20 SY561-21 SY561-22 SY561-23 SY561-24 SY412-1 SY412-2 SY412-3 SY412-4 SY412-5 SY412-6 SY412-7 SY412-8 SY412-9 SY412-10 SY412-11 SY412-12 SY507-1 SY507-2 SY507-3 SY507-4 SY507-5 SY507-6 SY507-7 SY507-8 SY507-9 SY507-10 SY507-11 SY507-12 SY507-13 SY522-10-1 SY522-10-2 SY522-10-3 SY522-10-4 SY522-10-5 SY522-10-6 SY522-10-7 SY522-10-8 SY522-10-9 SY522-10-10 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.056 0.003 0.006 0.014 0.002 0.002 0.008 0.003 0.011 0.189 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.003 0.003 0.013 0.015 0.002 0.003 0.001 0.001 0.020 0.003 0.002 0.008 0.001 0.001 0.001 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.08 0.01 0.05 0.05 0.01 0.01 0.03 0.01 0.02 0.40 0.02 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.13 0.02 0.00 0.02 0.01 0.01 0.00 0.09 0.10 0.10 0.11 0.09 0.05 0.10 0.06 0.08 0.06 0.09 0.09 0.08 0.08 0.10 0.09 0.09 0.10 0.09 0.05 0.10 0.12 0.13 0.14 0.10 0.15 0.13 0.19 0.12 0.12 0.12 0.12 0.17 0.23 0.14 0.17 0.22 0.30 0.25 0.24 0.21 0.15 0.20 0.14 0.14 0.14 0.21 0.15 0.14 0.47 0.15 0.27 0.21 0.13 0.12 2.52 0.12 0.13 0.18 0.16 0.12 0.23 0.10 0.16 0.13 0.18 0.22 0.46 0.14 0.19 0.16 0.28 0.59 0.26 0.11 0.19 0.20 0.20 0.17 907 897 740 727 930 922 983 991 986 944 927 899 721 704 651 684 773 847 781 777 761 779 772 809 754 811 757 791 795 754 819 801 1030 1100 846 1140 750 761 827 832 872 808 831 833 1660 1250 1500 689 990 607 855 1070 1060 1050 986 738 2260 1540 1490 2090 1450 1450 1390 1420 1500 1560 1360 1450 1440 2530 2350 2410 2620 2170 2260 2350 2300 2150 2610 97 182 180 117 123 120 200 226 213 203 138 149 115 141 78 82 81 81 87 79 24 26 26 24 25 26 25 25 27 27 25 29 22 20 23 20 21 17 30 37 37 37 37 37 5 4 3 4 4 10 5 3 9 4 4 9 7 12 15 11 18 18 9 13 8 14 9 12 13 2 3 4 9 8 4 4 6 4 5 Zr 91 77 80 82 70 70 77 82 80 74 69 71 70 72 88 96 94 91 92 89 49 51 48 52 51 53 49 49 55 49 51 54 60 59 52 57 51 55 51 53 54 55 54 52 56 45 47 54 61 47 46 35 57 49 50 50 43 39 44 46 41 39 48 49 36 57 43 42 36 75 48 46 63 47 51 49 54 51 50 Nb Mo 301 242 244 297 188 187 238 250 253 270 181 188 436 259 322 330 328 325 324 337 292 316 292 305 311 323 292 296 330 271 307 333 570 627 304 551 245 251 275 249 266 269 264 254 56 42 95 85 97 84 84 95 83 80 87 69 128 106 132 78 65 77 198 177 175 169 93 145 130 79 80 63 65 83 62 55 49 53 59 4.7 3.2 3.0 3.2 2.8 2.7 3.3 3.6 3.8 3.2 2.9 3.2 3.9 3.2 4.7 4.9 4.5 5.2 5.4 5.9 0.5 0.4 0.5 0.3 0.6 0.5 0.6 0.5 0.6 0.5 0.5 0.4 0.6 0.5 0.7 0.5 0.7 0.5 0.5 0.6 0.5 0.5 0.5 0.4 1.9 1.2 2.2 2.5 2.1 2.5 3.7 1.0 3.4 2.7 2.4 2.9 7.7 8.8 5.9 10.3 6.9 6.0 2.8 3.2 4.6 6.5 6.7 2.6 4.4 2.2 1.6 1.6 2.6 1.8 1.1 1.2 1.1 1.2 1.8 Sn 7 7 7 7 6 5 7 8 8 8 5 6 7 7 7 8 8 8 8 8 17 19 19 19 19 19 19 19 19 19 19 21 21 24 22 23 23 21 23 23 25 22 23 23 8 7 6 8 7 7 7 7 9 7 7 9 13 17 19 13 22 25 5 21 16 21 24 20 26 9 9 9 12 11 9 9 7 9 8 Sb Hf Ta W U 5.1 5.6 5.9 6.2 3.5 3.1 5.3 6.0 5.4 6.3 3.3 3.4 6.5 5.7 5.0 5.9 5.3 6.0 5.4 6.4 0.1 0.3 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.2 0.7 0.3 0.4 0.3 0.3 0.5 0.6 0.3 0.5 1.6 3.0 3.5 2.4 2.3 2.4 3.2 4.4 4.1 3.0 4.4 2.6 6.3 7.5 8.0 8.0 6.1 10.6 11.7 13.7 12.1 6.8 9.0 12.3 16.2 1.4 1.2 1.7 1.3 1.7 0.9 1.7 0.4 0.9 0.9 3.5 4.1 4.2 3.7 3.0 3.1 3.4 4.7 4.1 3.8 3.1 3.0 3.2 3.5 3.2 3.7 3.5 3.3 3.3 3.1 3.4 3.3 3.0 4.1 3.2 2.9 3.2 3.0 3.1 3.2 3.2 3.3 4.1 4.8 3.9 4.5 3.2 2.8 3.1 3.1 3.2 3.3 3.1 2.8 3.2 2.3 3.8 3.3 3.6 2.6 3.4 2.3 3.2 3.5 3.8 4.1 2.8 3.0 3.7 2.1 2.3 2.4 1.9 4.1 2.7 30.2 20.6 20.7 27.4 14.0 15.1 21.7 22.2 21.8 22.1 13.6 14.5 27.6 21.5 30.2 29.5 29.3 29.4 29.2 28.9 15.2 15.1 15.1 15.7 16.8 18.9 15.3 15.4 19.4 14.7 17.6 19.2 42.4 44.7 19.5 44.1 15.3 16.6 16.3 14.9 17.1 16.2 15.5 14.2 4.2 2.3 7.1 6.8 6.8 6.8 6.7 6.7 7.4 5.3 6.4 3.2 6.8 5.2 7.0 3.8 1.8 2.8 20.8 19.8 23.7 11.9 3.4 11.1 9.1 6.0 5.4 4.6 4.9 6.7 4.4 3.7 3.2 3.3 4.0 72.1 53.9 53.5 41.0 10.0 9.8 53.1 59.0 64.3 66.5 10.2 11.7 25.0 50.7 67.8 69.3 65.2 71.0 70.4 72.5 0.7 0.7 0.7 0.7 1.6 0.6 0.6 0.5 0.7 0.5 0.7 0.7 10.3 16.0 0.6 9.1 0.2 0.5 0.5 0.3 0.3 0.7 0.4 0.3 6.8 11.3 39.7 23.6 30.4 24.1 45.6 27.0 28.5 41.1 23.8 17.0 3.0 4.6 7.4 3.5 7.3 8.2 7.9 11.6 14.1 5.8 7.7 11.1 15.3 1.8 1.5 0.9 0.8 1.2 0.8 0.4 0.2 0.2 0.8 0.50 0.23 0.34 0.19 0.14 0.16 0.25 0.29 0.24 0.26 0.27 0.22 0.23 0.28 0.23 0.25 0.22 0.21 0.24 0.26 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.04 0.03 0.07 0.07 0.06 0.03 0.04 0.04 0.06 0.04 0.09 0.05 8.07 0.04 0.05 0.13 0.21 0.14 0.24 0.37 0.28 0.23 0.51 0.39 0.26 0.25 0.54 0.09 0.26 0.11 0.10 0.24 0.18 0.08 0.10 0.15 0.13 0.16 0.10 0.08 0.04 0.07 0.03 0.08 0.04 0.05 0.06 0.04 0.02 0.07 3.1 3.8 1.6 3.9 3.2 2.4 2.8 3.3 2.5 2.4 3.0 2.6 2.7 Ts Ts Tomkins Tomkins (0.6 GPa) (1.2 GPa) 547 570 536 559 539 562 540 563 530 553 530 553 537 560 541 564 538 561 534 557 529 552 531 554 530 553 532 555 545 568 550 574 549 573 547 571 548 571 545 569 508 530 512 534 508 530 513 535 511 533 513 536 508 530 509 531 516 538 509 531 511 534 515 537 521 543 520 542 512 535 518 541 511 533 515 538 512 534 513 536 514 537 516 539 514 536 512 534 517 539 504 526 506 528 515 537 522 545 507 529 505 528 489 511 518 540 508 531 510 533 510 532 501 523 495 517 503 525 505 527 499 521 496 517 507 529 509 531 492 513 517 540 501 523 500 522 491 513 535 558 507 529 505 527 524 547 506 528 511 534 509 531 515 537 511 533 510 533 Ts F&W Ts F&W QtzQtz-free Ts F&W bearing (asio2-0.5) a(SiO2)=1 513 556 503 546 506 548 507 549 498 539 498 539 504 546 507 550 505 548 501 543 497 538 499 540 498 539 500 541 511 554 516 560 515 559 513 557 514 557 512 555 517 517 520 520 517 517 522 521 520 520 522 522 517 517 517 517 525 525 517 517 520 520 524 524 530 529 529 528 521 521 527 527 520 519 524 524 520 520 522 522 523 523 525 525 523 523 521 521 485 525 473 512 475 514 484 524 491 531 476 515 475 514 460 498 486 526 478 517 479 519 479 518 471 510 465 503 473 511 475 514 469 507 466 504 477 516 478 518 462 500 486 526 471 510 470 508 462 499 502 544 477 516 474 513 492 533 476 515 480 520 478 518 484 524 480 520 480 519 Table A7.1.Trace element concentration and temperature measurements for metasomatic samples from Syros (continued) 215 Appendix A7 Sample SY522-10-11 SY522-10-12 SY522-10-13 SY522-10-14 SY522-10-15 SY522-10-16 SY522-10-17 SY522-10-18 SY522-10-19 SY522-10-20 SY522-10-21 SY522-10-22 SY522-10-23 SY522-10-24 SY522-10-25 SY522-10-26 SY522-10-27 SY522-10-28 SY522-10-29 SY522-10-30 SY522-10-31 SY522-10-32 SY522-10-33 SY522-10-34 SY522-10-35 SY522-10-36 SY522-10-37 SY522-10-38 SY522-10-39 SY522-10-40 SY522-10-41 SY522-10-42 SY522-10-43 SY522-10-44 SY522-10-45 SY522-100-1 SY522-100-2 SY522-100-3 SY522-100-4 SY522-100-5 SY522-100-6 SY522-100-7 SY522-100-8 SY522-100-9 SY522-100-10 SY522-100-11 SY522-100-12 SY522-100-13 SY522-100-14 SY522-100-15 SY522-100-16 SY522-100-17 SY522-100-18 SY522-100-19 SY522-100-20 SY522-100-21 SY522-100-22 SY522-100-23 SY522-100-24 SY522-100-25 SY522-100-26 SY522-100-27 SY522-100-28 SY522-100-29 SY522-100-30 SY522-100-31 SY522-100-32 SY522-100-33 SY522-100-34 SY522-100-35 SY522-100-36 SY522-100-37 SY522-100-38 SY522-100-39 SY522-100-40 SY522-100-41 SY522-100-42 SY522-100-43 SY522-100-44 SY522-100-45 SY522-100-46 SY522-100-47 SY522-100-48 SY522-100-49 SY522-100-50 SY522-100-51 SY522-100-52 MgO Al2O3 SiO2 V 0.004 0.002 0.002 0.003 0.006 0.005 0.003 0.003 0.002 0.004 0.003 0.032 0.003 0.004 0.030 0.009 0.004 0.003 0.005 0.003 0.028 0.011 0.008 0.006 0.022 0.018 0.051 0.004 0.020 0.011 0.046 0.018 0.019 0.016 0.012 0.001 0.002 0.015 0.009 0.017 0.013 0.015 0.036 0.011 0.001 0.001 0.001 0.001 0.002 0.001 0.007 0.001 0.011 0.002 0.004 0.003 0.005 0.005 0.013 0.014 0.008 0.014 0.002 0.002 0.008 0.003 0.001 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.011 0.002 0.002 0.001 0.009 0.002 0.002 0.002 0.002 0.001 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.08 0.01 0.01 0.05 0.02 0.01 0.00 0.01 0.01 0.08 0.01 0.02 0.01 0.02 0.01 0.08 0.02 0.02 0.02 0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.00 0.01 0.02 0.01 0.04 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.01 0.02 0.03 0.02 0.04 0.06 0.03 0.04 0.03 0.01 0.01 0.03 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.06 0.02 0.01 0.01 0.01 0.01 0.27 0.28 0.15 0.22 0.24 0.27 0.19 0.20 0.17 0.33 0.26 0.34 0.31 0.23 0.41 0.34 0.21 0.24 0.30 0.24 0.27 0.81 0.83 0.36 1.27 1.12 1.25 0.44 1.28 0.60 2.83 0.94 1.25 0.92 1.02 0.11 0.13 0.21 0.65 0.87 1.08 1.10 1.90 0.13 0.15 0.12 0.11 0.08 0.16 0.11 0.16 0.13 0.21 0.26 0.25 0.12 0.10 0.13 0.20 0.46 0.19 0.13 0.10 0.15 0.45 0.19 0.10 0.12 0.14 0.10 0.16 0.12 0.25 0.14 0.11 0.12 0.12 0.16 0.14 0.14 0.12 0.26 0.17 0.13 0.12 0.19 0.26 2110 2160 2260 2150 2200 2160 2640 2540 2400 2400 2420 2430 2570 2360 2330 2170 1900 2410 2230 1960 2310 2270 2210 2290 2380 2030 2410 2440 2310 2370 2440 2150 2520 2290 2370 2870 2940 2910 2830 2820 2960 2900 3000 2890 2930 2980 2880 2920 2950 3050 3040 2880 2740 2820 2890 2820 2750 2790 2490 2730 2590 2800 2880 2780 3090 2770 2730 2710 2740 2750 2770 2810 2820 2830 2740 2780 2790 2900 2970 3000 2780 2800 2810 2920 3000 2810 2940 Cr 8 10 6 7 9 10 6 8 6 11 8 10 5 6 13 10 12 9 10 9 9 28 25 15 40 32 48 8 33 25 92 36 44 40 32 6 9 7 21 37 46 31 78 7 6 9 9 9 4 5 5 4 6 4 5 3 5 4 5 4 4 3 9 9 4 6 5 3 4 6 5 6 4 5 3 4 6 5 8 7 4 4 5 4 5 4 6 Zr 55 56 43 48 57 66 46 57 41 62 42 34 37 60 50 54 54 63 60 52 48 36 45 39 65 38 38 46 39 51 57 41 58 54 45 51 45 62 56 59 43 94 46 46 56 48 58 45 55 35 62 52 49 51 48 49 48 50 36 50 49 39 50 47 45 54 54 61 56 59 61 44 44 42 40 34 48 48 30 44 42 37 45 42 39 51 70 Nb Mo 55 86 80 86 81 62 118 81 109 102 84 67 96 113 66 76 59 63 55 96 97 105 108 100 108 87 103 85 85 73 89 90 70 75 95 40 48 52 41 38 55 55 49 53 49 45 39 54 65 52 81 69 63 49 61 55 52 51 19 76 65 68 74 52 65 44 51 50 53 39 48 55 55 61 64 58 49 49 53 38 66 59 68 48 51 55 46 1.7 1.9 1.9 2.6 1.6 1.3 2.3 0.7 2.5 1.7 1.4 2.3 1.6 1.1 2.5 2.1 1.8 2.0 2.7 1.7 1.9 2.8 3.1 1.5 4.2 3.4 3.4 1.6 4.8 3.1 10.3 1.8 2.1 3.1 4.2 1.0 1.4 1.9 2.0 2.9 5.0 1.7 6.5 0.5 1.3 1.9 1.5 1.3 2.3 2.1 1.3 0.8 1.1 0.8 1.0 0.9 1.2 1.0 4.2 2.2 1.8 2.1 0.4 0.6 2.5 2.0 1.6 1.0 2.1 0.9 1.4 2.3 1.6 2.5 2.5 2.2 1.7 2.5 2.1 1.9 2.7 2.4 2.3 1.8 2.0 2.4 2.0 Sn 10 9 12 11 12 11 14 13 12 14 12 14 14 10 12 13 10 9 11 12 11 14 12 10 12 15 16 10 19 10 20 22 9 15 21 5 5 7 3 11 9 9 13 4 5 7 6 4 5 7 4 5 4 4 5 4 4 4 4 8 6 7 4 3 7 7 7 6 7 6 6 12 7 6 6 6 5 7 7 7 8 6 7 6 7 7 6 Sb 1.0 0.8 1.4 1.3 2.0 0.8 1.8 0.6 3.6 1.2 1.9 3.5 3.0 0.6 3.5 1.7 0.8 0.8 0.5 1.5 1.2 2.1 1.5 1.4 4.9 3.1 2.5 1.8 2.4 1.8 7.1 3.0 2.5 2.9 3.3 0.4 0.5 0.6 1.2 2.7 4.0 2.1 4.2 0.4 0.3 0.4 0.3 0.6 0.2 0.6 0.3 0.3 0.4 0.3 0.2 0.3 0.4 0.3 0.5 0.4 0.5 0.6 0.3 0.4 0.6 0.5 0.3 0.3 0.4 0.5 0.4 0.4 0.8 0.6 0.6 1.1 0.3 0.8 1.0 0.5 0.8 1.0 0.5 0.4 0.7 0.4 0.4 Hf 2.8 3.5 2.4 2.9 2.9 3.2 3.0 2.8 3.1 4.1 3.2 2.2 1.6 3.0 2.5 4.9 3.6 3.9 4.4 3.5 2.9 3.5 2.4 3.0 3.7 5.1 2.7 2.1 3.7 4.1 3.3 3.0 4.0 2.4 5.3 2.9 2.7 4.2 2.4 3.4 5.8 5.1 6.5 2.5 3.2 4.0 2.9 3.6 2.5 2.3 5.4 3.7 2.9 3.2 3.5 2.4 2.8 2.4 1.1 5.3 4.6 2.9 3.0 2.7 3.5 3.2 3.5 3.7 4.3 3.7 3.7 2.8 3.5 3.7 2.6 2.8 2.9 3.8 2.6 3.1 3.4 2.7 3.1 3.2 2.6 3.9 2.8 Ta 3.5 8.3 6.9 7.1 6.7 4.8 6.7 4.1 5.8 5.5 4.4 3.5 6.8 7.9 4.0 5.5 4.2 4.4 3.8 9.3 9.2 7.3 6.9 8.4 7.5 5.9 8.1 5.4 3.6 7.1 5.9 8.4 5.2 5.4 7.1 2.3 2.6 4.3 3.2 3.3 5.2 4.2 2.0 3.2 4.1 3.9 2.7 3.6 5.7 4.0 6.0 4.4 4.5 3.2 4.3 4.2 3.5 3.9 1.9 5.5 5.5 3.9 3.4 3.3 4.9 2.7 4.5 4.5 4.7 2.8 4.7 4.3 3.9 3.5 5.0 4.3 3.0 3.9 4.3 3.2 4.4 4.3 4.2 4.1 4.6 3.5 1.6 W U 0.6 0.9 2.0 0.9 1.3 2.1 22.2 4.7 3.0 15.3 6.2 0.7 1.5 1.7 0.9 1.4 0.5 0.6 0.7 3.2 1.3 2.0 1.5 1.1 3.5 3.1 1.6 3.2 2.6 0.7 2.8 1.7 1.9 2.8 1.1 0.2 0.1 0.3 1.0 1.0 2.4 0.6 1.1 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.7 0.2 0.2 0.2 0.0 0.2 0.1 0.3 0.5 0.3 0.4 0.3 0.2 0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.3 0.3 0.2 0.2 0.7 0.3 0.3 0.3 0.2 0.4 0.6 0.3 0.2 0.2 0.2 0.2 0.06 0.11 0.07 0.08 0.08 0.06 0.07 0.10 0.16 0.14 0.11 0.12 0.07 0.08 0.20 0.13 0.18 0.09 0.16 0.15 0.19 0.34 0.24 0.21 0.26 0.78 0.26 0.09 0.43 0.15 0.77 0.38 0.35 0.21 0.29 0.09 0.04 0.06 0.13 0.36 0.28 0.31 1.36 0.16 0.02 0.03 0.04 0.04 0.03 0.06 0.04 0.05 0.05 0.03 0.03 0.06 0.05 0.02 0.05 0.04 0.04 0.03 0.05 0.04 0.06 0.03 0.06 0.03 0.04 0.05 0.05 0.03 0.05 0.01 0.02 0.04 0.03 0.04 0.03 0.02 0.03 0.04 0.05 0.08 0.06 0.08 0.06 Ts Tomkins (0.6 GPa) 516 517 501 507 517 526 505 518 498 523 500 487 493 521 510 515 514 523 521 512 508 490 504 495 525 494 494 505 495 512 518 498 519 515 503 511 504 522 516 520 502 549 504 505 517 508 518 504 516 489 523 513 508 511 508 509 507 510 492 509 508 496 510 506 503 515 514 521 517 520 522 502 502 500 497 487 507 508 481 502 499 492 503 500 496 511 531 Ts Tomkins (1.2 GPa) 539 540 524 530 540 549 527 540 520 546 522 509 515 544 532 537 537 546 543 535 530 512 526 517 548 516 516 527 517 534 540 520 541 537 525 534 526 545 539 543 524 573 527 528 540 530 541 526 538 511 546 535 530 533 530 531 529 532 513 532 530 518 533 528 526 537 537 544 539 542 545 524 524 522 519 509 530 530 503 524 521 514 525 522 518 533 553 Ts F&W Qtzbearing Ts F&W Qtz-free Ts F&W (asio2-0.5) a(SiO2)=1 485 525 486 526 471 510 477 516 486 526 494 535 475 514 487 527 468 506 491 532 470 508 458 495 464 501 489 530 479 519 484 524 483 523 492 532 489 530 481 521 477 516 461 499 474 513 466 504 493 534 465 503 465 503 475 514 466 504 481 520 487 527 468 506 487 527 483 523 473 512 480 520 474 513 491 531 485 525 489 529 472 510 515 559 474 513 475 514 486 526 477 517 487 527 473 512 484 524 460 497 491 532 482 521 478 517 480 519 477 516 478 518 476 516 479 518 462 500 479 518 478 517 466 504 479 519 476 515 473 512 483 523 483 523 490 530 485 525 488 529 490 531 472 511 472 511 470 509 467 506 458 495 477 516 477 516 453 490 472 511 469 508 463 501 473 512 470 508 466 504 480 520 498 540 Table A7.1.Trace element concentration and temperature measurements for metasomatic samples from Syros (continued) 216 Appendix A8 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SY503-1 SY503-2 SY503-3 SY503-4 SY503-5 SY503-6 SY503-7 SY503-8 SY503-9 SY503-10 SY503-11 SY503-12 SY503-13 SY503-14 SY503-15 SY503-16 SY503-17 SY503-18 SY503-19 SY503-20 SY503-21 SY503-22 SY503-23 SY503-24 SY503-25 SY503-26 SY503-27 SY503-28 SY503-29 SY503-30 SY503-31 SY503-32 SY503-33 SY503-34 SY503-35 SY503-36 SY503-37 SY503-38 SY503-39 SY503-40 SY503-41 SY503-42 SY503-43 SY503-44 SY503-45 SY503-46 SY503-47 SY503-48 SY503-49 SY503-50 SY503-51 SY503-52 SY503-53 SY503-54 SY503-55 SY503-56 SY503-57 SY503-58 SY503-59 SY503-60 SY503-61 SY503-62 SY503-63 SY503-64 SY535-1 SY535-2 SY535-3 SY535-4 SY535-5 SY535-6 SY535-7 SY535-8 SY535-9 SY535-10 SY535-11 SY535-12 SY535-13 SY535-14 SY535-15 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.86 0.01 0.01 0.00 0.01 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.02 0.00 0.01 0.02 0.01 0.00 0.05 0.00 0.00 0.00 0.01 0.03 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.03 0.00 0.01 0.97 0.22 0.01 0.01 0.01 0.04 0.02 0.00 0.01 0.01 0.07 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.09 0.01 0.04 0.00 0.01 0.01 0.01 0.02 0.01 0.83 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.00 0.01 0.02 0.01 0.01 0.12 0.02 0.01 0.28 0.01 0.01 0.01 0.11 0.05 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.10 0.00 0.01 0.01 0.03 0.01 0.01 1.17 0.58 0.00 0.15 0.15 0.13 0.00 0.14 0.12 0.12 1.65 0.10 0.12 0.23 0.17 0.00 0.25 0.00 0.13 0.18 0.28 0.26 0.30 0.31 0.29 0.15 0.00 0.14 0.15 4.09 0.14 0.12 0.00 0.10 0.00 0.00 0.00 0.00 0.11 0.26 0.00 0.00 0.12 0.00 0.40 0.15 0.19 0.49 0.00 0.23 0.00 0.54 0.26 0.00 0.17 0.09 0.00 0.00 0.00 0.00 0.00 0.14 0.11 0.11 0.15 0.00 0.20 0.22 0.17 0.00 0.18 0.23 0.73 0.10 0.25 0.00 0.12 0.00 0.00 2.67 1.21 439 3380 2720 2600 3350 1840 2620 2340 3020 1340 2340 2100 3960 213 3260 3530 2370 1790 130 2200 1810 1560 2040 881 471 2120 1620 1380 2240 1920 3360 338 3160 2340 3190 1620 1440 2730 3510 1270 1110 2410 1130 1820 2410 1320 966 2430 2850 674 1930 968 2360 2140 2490 2880 2990 2360 756 2940 1470 1220 3410 2320 567 3220 995 2180 2360 1160 1410 2320 2410 937 906 1180 628 1290 1490 1170 0 52 2 2 4 0 2 2 438 2 6 3 300 4 14 0 103 9 6 1490 0 36 4 864 37 13 66 2 2470 69 937 0 0 0 44 132 48 0 3 205 42 95 73 0 2080 2790 0 343 813 293 1550 5 61 0 25 0 0 2810 3 1020 550 2 1 4520 11 341 184 13 0 216 3 0 2190 8480 5 0 5 1450 76 52 75 69 44 43 57 77 40 39 43 53 69 24 95 61 34 34 80 59 32 47 58 53 31 63 28 47 58 43 52 20 56 61 57 44 21 55 61 82 67 54 21 44 58 39 52 55 34 24 55 32 58 49 41 52 50 56 58 50 70 61 54 57 71 42 55 56 58 80 64 64 51 40 56 69 61 35 38 1810 59 44 87 59 99 93 248 114 5200 68 119 89 479 64 97 170 199 117 83 1960 110 202 320 204 901 122 91 141 252 32 126 53 136 94 88 317 71 55 314 47 150 4530 84 59 2340 281 50 35 1380 28 283 68 66 42 41 68 69 193 56 436 496 28 144 772 34 402 53 46 43 51 79 76 395 1060 181 185 180 2200 0.0 2.2 4.2 2.1 3.0 3.5 1.5 4.5 1.5 1.0 1.4 1.7 3.2 1.3 5.8 2.0 1.8 26.3 7.6 0.0 0.0 2.0 1.8 4.2 4.5 1.8 1.5 5.1 2.4 7.0 2.4 11.7 2.3 4.5 1.8 0.6 1.9 4.3 1.6 4.7 5.9 3.8 0.0 3.8 2.1 0.0 15.4 2.9 1.6 0.0 3.0 0.0 2.3 1.0 4.4 0.0 2.2 2.6 20.9 1.6 2.4 6.8 1.4 2.9 0.8 2.5 6.5 2.7 1.2 1.3 3.0 0.7 1.2 0.0 0.0 8.0 0.0 0.0 0.0 21.6 47.1 16.9 10.8 9.8 7.8 16.1 7.3 38.5 20.1 9.3 12.7 12.0 19.6 9.5 14.0 18.7 61.7 6.8 7.8 79.7 17.2 26.5 29.8 3.7 66.6 31.2 13.1 17.5 181.0 7.5 6.6 10.9 31.4 18.2 5.7 183.0 21.1 26.6 5.8 2.1 39.0 25.0 7.0 10.0 80.1 69.6 4.7 6.4 96.1 3.7 22.9 13.4 5.3 9.8 14.3 11.7 12.8 24.7 8.8 23.5 28.1 14.1 9.9 40.1 12.3 96.4 6.9 8.9 9.1 9.6 4.9 4.1 17.5 38.9 10.4 12.3 7.9 78.8 0.0 2.4 1.1 0.3 1.0 0.5 0.4 0.4 0.7 9.5 0.8 0.4 0.7 46.9 3.4 0.0 0.4 12.2 147.0 0.5 2.7 0.0 0.0 31.0 26.0 14.5 107.0 1.6 2.2 1110.0 3.1 137.0 0.0 0.0 0.0 0.3 30.1 5.9 0.4 0.7 1.4 1.4 7.1 2.1 0.5 8.2 263.0 0.7 1.6 7.1 2.4 47.6 0.2 0.4 0.0 3.1 0.7 0.5 16.2 0.6 0.2 0.4 0.2 0.3 11.2 1.9 7.5 13.3 0.0 0.2 7.8 0.3 1.2 1.0 3.9 21.6 9.6 0.6 5.2 7.0 2.7 3.5 3.8 2.2 2.4 2.9 3.9 4.8 1.8 2.5 3.0 3.3 1.4 3.5 3.5 2.4 2.5 3.3 2.8 1.8 2.7 3.1 3.7 3.7 7.0 2.0 3.0 2.7 2.9 3.1 1.2 4.0 2.7 2.9 2.7 1.3 3.4 2.6 5.5 3.0 3.3 1.1 2.8 3.0 2.2 3.9 2.7 2.5 2.4 2.7 1.7 2.6 3.1 1.9 2.5 3.3 2.5 3.0 2.7 3.5 2.3 3.1 3.5 5.7 3.1 4.2 2.7 3.4 5.5 3.3 3.4 3.0 1.8 3.6 4.0 4.8 3.3 2.6 93.7 3.6 2.7 7.2 4.9 5.6 5.7 12.2 6.7 197.0 4.2 7.7 6.6 36.0 4.0 5.8 8.6 13.1 2.9 5.5 129.0 7.5 10.3 20.5 22.1 47.6 8.6 4.9 10.4 14.6 2.5 8.3 3.6 11.5 7.6 5.0 22.9 4.5 3.6 20.0 3.9 12.1 170.0 6.2 4.2 148.0 15.5 4.3 2.2 108.0 2.2 19.0 5.1 4.3 2.3 2.0 4.7 5.5 9.3 4.0 26.3 34.8 1.7 10.2 50.9 1.8 44.4 4.3 4.9 2.3 4.1 5.0 6.1 18.9 62.7 11.9 7.0 8.0 147.0 6.8 242.0 1.5 10.1 2.0 0.6 1.1 0.9 13.8 207.0 20.9 0.5 46.3 37.7 3.4 1.7 3.9 19.2 155.0 0.5 457.0 0.0 0.6 475.0 931.0 1690.0 415.0 6.4 5.1 4620.0 16.6 28.9 0.6 2.7 2.0 8.4 168.0 4.4 0.5 2.0 1.7 2.7 309.0 5.2 8.5 128.0 2480.0 0.9 0.5 15.7 2.2 121.0 0.5 1.4 0.0 22.3 0.0 1.1 21.6 1.0 4.2 3.8 10.8 1.7 64.9 55.7 50.1 7.1 0.6 1.7 98.6 3.7 0.7 23.9 10.8 1.9 43.9 11.4 143.0 0.13 0.08 0.26 0.03 0.18 0.00 0.16 0.00 0.11 0.00 0.09 0.03 0.16 0.08 0.00 0.00 0.23 0.42 0.00 0.11 0.09 0.00 0.00 0.17 0.00 0.24 0.22 0.00 0.00 6.90 0.06 0.30 0.00 0.00 0.00 0.00 0.45 0.41 0.11 0.00 0.00 0.07 0.51 0.00 0.00 0.47 0.13 0.04 0.00 4.99 0.00 3.83 0.08 0.00 0.00 0.15 0.16 0.03 0.35 0.07 0.00 0.00 0.18 0.24 0.00 0.07 0.17 0.07 0.07 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 Ts Ts Ts Ts Ts F&W Ts F&W Tomkins Tomkins Tomkins Tomkins a(SiO2)=1 a(SiO2)=0.5 (0.6 GPa) (1.2 GPa) (1.5 GPa) (2.0 GPa) 536 559 570 589 545 503 512 534 545 564 521 481 535 558 569 588 544 502 530 553 564 583 539 497 503 525 536 554 511 473 501 523 534 552 509 471 518 540 552 570 527 486 536 559 571 590 545 503 497 519 530 548 506 467 496 517 528 547 504 466 502 524 535 553 510 471 513 536 547 565 522 482 529 552 563 582 538 497 469 491 501 519 477 442 550 573 585 605 559 516 522 545 556 575 531 490 488 510 521 539 496 459 489 510 521 539 497 459 539 562 574 593 548 506 520 542 554 573 529 488 484 506 516 534 492 455 507 529 540 559 515 476 518 541 552 571 527 487 513 536 547 565 522 482 483 505 515 533 491 454 524 547 558 577 533 492 478 499 510 528 486 449 506 528 540 558 515 476 518 541 552 571 527 487 501 523 534 552 509 471 512 534 546 564 521 481 460 481 491 509 468 433 517 540 551 570 526 486 522 545 556 575 531 490 518 540 552 570 527 486 503 525 536 555 512 473 461 482 493 510 469 434 515 538 549 568 524 484 522 545 556 575 531 490 540 563 575 594 549 507 528 551 562 581 537 495 514 537 548 566 523 483 463 484 494 512 470 435 502 524 535 554 511 472 519 542 553 572 528 488 495 517 528 546 504 466 512 534 545 564 521 481 516 538 550 568 525 484 488 510 521 539 496 459 468 490 500 518 476 441 516 538 549 568 525 484 485 506 517 535 493 456 519 542 553 572 528 488 508 531 542 560 517 478 498 520 531 549 506 468 512 534 545 564 520 481 510 532 544 562 519 479 517 539 551 569 526 485 518 541 552 571 527 487 510 533 544 562 519 479 530 553 564 583 539 498 522 545 556 575 531 490 515 537 548 567 523 483 517 540 551 570 526 486 531 554 566 585 540 499 500 522 533 551 509 470 516 538 550 568 525 484 517 539 550 569 525 485 519 542 553 572 528 488 539 562 574 593 548 506 524 547 558 577 533 492 524 547 559 577 533 492 512 534 545 564 520 481 497 519 530 549 506 467 516 539 550 569 525 485 529 552 564 583 539 497 522 545 556 575 531 490 490 512 523 541 498 461 494 516 527 545 503 465 Table A8.1.Trace element composition and temperature measurements for detrital rutiles from Syros (sampling and data analysis were done by Jeanette Taylor during her MSc at the University of Bristol) 217 Appendix A8 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SY535-16 SY535-17 SY535-18 SY535-19 SY535-20 SY535-21 SY535-22 SY535-23 SY535-24 SY535-25 SY535-26 SY535-27 SY535-28 SY535-29 SY535-30 SY535-31 SY535-32 SY535-33 SY535-34 SY535-35 SY535-36 SY535-37 SY535-38 SY535-39 SY535-40 SY535-41 SY535-42 SY535-43 SY535-44 SY535-45 SY535-46 SY535-47 SY535-48 SY535-49 SY535-50 SY535-51 SY535-52 SY535-53 SY535-54 SY525-1 SY525-2 SY525-3 SY525-4 SY525-5 SY525-6 SY525-7 SY525-8 SY525-9 SY525-10 SY525-11 SY525-12 SY525-13 SY525-14 SY525-15 SY525-16 SY525-17 SY525-18 SY525-19 SY525-20 SY525-21 SY525-22 SY525-23 SY525-24 SY525-25 SY525-26 SY525-27 SY525-28 SY525-29 SY525-30 SY525-31 SY525-32 SY525-33 SY525-34 SY525-35 SY525-36 SY525-37 SY525-38 SY525-39 SY525-40 SY525-41 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.11 0.02 0.01 0.01 0.01 0.14 0.02 0.00 0.02 0.01 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.29 0.50 0.01 0.00 0.00 0.03 0.02 0.00 0.00 3.78 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.33 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.02 0.01 0.04 0.00 0.37 0.04 0.02 0.02 0.02 1.12 0.10 0.01 0.06 0.02 0.00 0.21 0.01 0.01 0.00 0.02 0.01 0.45 0.03 0.21 0.11 0.91 0.00 0.01 0.01 0.10 0.01 0.00 0.00 3.34 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.11 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.05 0.01 0.01 0.00 0.00 0.01 0.01 0.53 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.09 0.14 0.00 0.46 0.00 0.00 0.12 0.00 2.65 0.58 0.00 0.00 0.17 0.10 0.42 0.26 0.16 0.00 0.00 0.00 14.60 0.76 0.34 0.76 1.46 0.00 0.22 0.12 0.28 0.00 0.00 0.00 5.25 0.00 0.00 0.00 0.00 0.16 0.00 0.18 0.22 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.13 2.22 0.17 0.14 0.00 0.16 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.13 0.14 0.00 2100 1040 1370 1450 1520 1850 1530 2860 1480 2400 1130 2230 2110 1280 1260 1430 1550 1720 1570 1250 2050 3850 2420 1210 1030 1750 1170 1390 1130 1320 2590 1470 1780 1770 1360 3150 2700 940 2820 2610 899 1280 953 1900 913 725 1060 1230 1290 2890 2590 1040 1170 2490 1080 1270 2510 1450 844 1410 1860 1170 862 863 1030 2290 1720 1150 657 826 1510 793 1520 1040 1450 1090 1520 2170 1090 1040 37 1400 1270 1510 1120 0 3630 5 1090 564 1260 0 0 2540 2420 0 1210 35 38 2720 0 8 4 6070 2 0 4 986 1490 2650 461 687 3 2700 10600 32 9 9060 5 298 684 658 498 5 87 944 1050 1030 633 108 3 952 50 9 777 1680 164 394 478 474 78 1240 268 344 2270 18 15 590 3310 3 17 52 535 501 732 558 201 20 108 4580 24 47 36 37 34 82 64 67 37 41 22 69 24 34 39 76 34 73 63 39 80 51 65 59 95 41 48 33 65 35 62 64 57 51 52 48 91 69 77 65 58 90 84 76 60 61 66 60 53 49 43 52 97 59 59 176 92 64 43 74 67 116 42 78 68 86 62 77 115 45 65 55 93 51 90 38 58 52 48 71 98 1140 3100 93 2260 48 2530 64 2340 52 1730 155 110 2550 2040 96 2510 91 65 2320 60 110 108 2000 136 76 73 2260 225 2120 82 184 187 1800 1400 22 169 136 97 30 343 428 370 115 125 918 906 595 612 83 82 284 383 76 150 2220 210 490 484 392 174 1450 624 348 231 116 414 368 76 124 166 281 555 299 375 294 118 66 175 202 0.9 0.0 0.0 0.7 0.0 4.6 0.0 3.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 2.3 0.0 1.5 2.9 0.0 14.3 4.3 4.8 0.0 0.0 1.6 2.2 0.0 1.2 0.0 7.2 0.5 10.4 0.0 0.0 2.2 8.1 1.3 1.4 1.9 2.6 1.4 6.9 1.4 10.4 5.3 0.0 1.4 5.3 2.7 0.0 9.1 5.1 5.9 14.4 0.6 2.9 2.9 9.0 3.7 8.9 5.5 8.7 5.6 6.3 3.1 46.2 0.0 9.9 7.1 0.0 4.0 11.5 2.4 1.3 12.8 0.5 1.3 30.8 1.3 3.3 36.2 74.7 3.6 97.5 4.8 77.3 12.7 87.4 4.6 81.0 10.3 25.6 62.3 75.7 5.8 79.7 8.6 7.7 57.8 11.9 15.0 9.8 64.5 10.4 12.0 6.5 69.5 129.0 68.2 8.1 13.0 7.6 50.0 63.0 3.9 24.3 48.2 6.0 4.1 22.0 20.7 14.6 8.3 6.6 15.4 22.1 25.5 32.9 9.2 17.5 94.4 20.8 10.1 12.8 79.9 7.4 35.3 29.6 37.4 51.3 128.0 22.7 23.0 16.0 16.0 42.7 18.7 94.8 23.7 9.4 92.0 43.6 10.4 56.6 13.2 22.1 8.1 15.2 38.8 8.6 2.7 8.5 0.9 6.0 0.6 1.2 0.3 9.2 2.3 5.7 0.9 10.5 8.3 10.4 1.1 5.8 0.0 1.1 1.3 15.5 10.4 1.2 2.0 0.3 1.4 0.5 4.7 2.1 6.7 12.0 1.3 29.8 2.9 0.0 0.8 2.0 1.0 0.3 0.2 0.6 0.6 0.5 0.2 7.6 3.1 2.9 1.7 1.1 0.4 1.2 5.5 2.6 0.4 11.9 7.2 0.6 0.9 18.8 0.4 3.9 3.3 6.9 1.6 25.5 0.0 9.2 0.9 4.2 7.4 0.0 14.1 0.4 2.4 0.4 9.7 0.3 0.7 16.3 0.7 1.6 3.9 2.1 2.5 1.7 3.9 3.3 2.9 2.2 2.4 1.4 3.4 1.5 1.8 2.3 4.3 2.1 3.2 2.4 2.3 3.5 2.6 3.8 3.4 4.3 3.0 2.9 2.0 3.3 2.2 3.9 3.5 4.6 3.4 1.7 2.5 4.9 6.1 3.6 3.4 3.1 4.0 3.4 5.4 3.2 3.0 3.6 3.3 3.5 3.9 2.4 2.4 6.8 5.0 3.0 6.4 5.8 3.3 2.7 3.3 3.5 6.1 2.4 4.5 3.5 3.5 4.3 3.7 6.2 3.1 3.4 4.0 3.8 2.5 3.7 2.8 3.5 2.3 2.9 5.8 7.3 59.2 188.0 6.5 140.0 4.4 182.0 4.2 141.0 1.6 123.0 10.3 5.6 153.0 128.0 7.1 144.0 6.1 5.4 140.0 4.8 8.2 6.5 159.0 5.3 4.9 6.6 129.0 10.3 120.0 5.9 11.1 11.1 109.0 77.8 1.8 7.9 7.9 6.0 2.4 20.9 26.3 23.6 7.1 7.7 50.3 42.3 30.1 37.8 5.0 6.2 19.4 20.9 5.7 7.8 125.0 12.7 26.6 25.0 24.7 11.4 132.0 40.6 22.0 11.7 6.6 36.7 19.3 4.2 6.5 9.6 12.0 32.4 14.1 24.0 15.7 9.3 5.1 9.5 10.8 42.7 1160.0 386.0 18.2 166.0 0.7 543.0 0.6 337.0 84.0 221.0 2.2 42.7 204.0 206.0 3.2 293.0 128.0 2.2 66.4 1.7 16.9 0.6 331.0 4.2 10.9 0.4 188.0 8.4 90.0 25.1 2.9 4.8 445.0 303.0 29.5 22.4 138.0 2.0 0.4 2.6 10.5 1.5 0.0 4.3 32.4 23.1 15.7 4.5 1.4 3.4 51.6 115.0 0.9 3.2 304.0 4.4 1.2 6.6 1.4 5.8 15.7 2.2 2.7 3.8 4.0 2.2 26.2 6.0 1.2 31.5 0.3 3.1 26.5 1.2 3.3 0.4 0.3 3.3 4.1 0.00 0.00 0.09 0.00 0.50 0.02 0.06 0.00 0.10 0.00 0.18 0.00 0.00 0.12 0.05 0.00 0.09 0.00 0.00 0.40 0.00 0.06 0.03 0.00 0.00 0.00 0.00 0.13 0.17 0.08 0.00 0.00 0.00 0.10 0.27 0.00 0.44 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.04 0.05 0.00 1.35 0.06 0.08 0.00 0.00 0.00 0.07 0.00 0.00 0.07 0.05 0.00 0.00 0.00 0.03 0.00 0.12 0.03 0.00 0.03 0.00 0.00 0.00 0.03 0.18 Ts Ts Ts Ts Ts F&W Ts F&W Tomkins Tomkins Tomkins Tomkins a(SiO2)=1 a(SiO2)=0.5 (0.6 GPa) (1.2 GPa) (1.5 GPa) (2.0 GPa) 468 489 499 517 476 440 506 528 539 557 514 475 491 513 524 542 500 462 493 515 526 544 502 464 487 509 520 538 495 458 541 564 575 595 550 507 525 548 559 578 534 493 527 550 561 580 536 495 493 515 525 544 501 463 498 520 531 549 507 468 464 485 496 513 472 437 530 552 564 583 539 497 468 489 500 518 476 441 488 510 521 539 496 459 496 518 529 547 504 466 536 559 570 589 545 503 487 509 520 538 495 458 533 556 567 586 542 500 524 547 558 577 533 492 496 517 528 547 504 466 539 562 574 593 548 506 511 533 544 563 519 480 526 548 560 579 535 493 520 543 554 573 529 488 550 573 585 604 559 515 498 520 531 550 507 468 508 530 541 560 516 477 486 508 519 537 495 457 525 548 560 578 534 493 489 511 522 540 498 460 523 546 557 576 532 491 525 548 559 578 534 493 517 540 551 570 526 486 512 534 545 564 520 480 512 534 545 564 521 481 508 530 541 560 517 477 547 571 582 602 557 513 530 553 564 583 539 497 536 559 571 590 545 503 526 548 560 579 535 494 519 541 553 571 528 487 546 569 581 600 555 512 542 565 577 596 551 508 535 558 570 589 545 502 521 544 555 574 530 489 521 544 555 574 530 490 527 549 561 580 536 494 520 543 554 573 529 489 513 536 547 565 522 482 508 531 542 560 517 478 501 523 534 552 509 470 512 534 545 564 521 481 551 574 586 606 560 517 520 542 553 572 528 488 520 542 554 572 529 488 592 617 629 650 602 554 547 571 583 602 557 513 525 548 559 578 534 493 501 523 534 553 510 471 534 557 569 588 543 501 528 551 562 581 537 495 563 587 599 619 573 528 500 522 533 552 509 470 537 560 572 591 546 504 528 551 563 582 537 496 544 567 579 598 553 510 523 545 557 575 532 491 536 559 571 590 545 503 562 586 598 618 572 527 504 526 537 555 512 473 526 548 560 579 535 494 515 538 549 568 524 484 548 572 583 603 558 514 511 534 545 564 520 480 547 570 582 601 556 513 493 515 526 544 502 464 519 541 553 571 528 487 512 535 546 564 521 481 507 529 540 559 516 476 531 554 566 585 540 499 Table A8.1.Trace element composition and temperature measurements for detrital rutiles from Syros (continued) 218 Appendix A8 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SY525-42 SY525-43 SY525-44 SY525-45 SY525-46 SY525-47 SY525-48 SY525-49 SY525-50 SY525-51 SY525-52 SY525-53 SY526-1 SY526-2 SY526-3 SY526-4 SY526-5 SY526-6 SY526-7 SY526-8 SY526-9 SY526-10 SY526-11 SY526-12 SY526-13 SY526-14 SY526-15 SY526-16 SY526-17 SY526-18 SY526-19 SY526-20 SY526-21 SY526-22 SY526-23 SY526-24 SY526-25 SY526-26 SY526-27 SY526-28 SY526-29 SY526-30 SY526-31 SY526-32 SY526-33 SY526-34 SY526-35 SY526-36 SY526-37 SY526-38 SY526-39 SY526-40 SY526-41 SY526-42 SY526-43 SY526-44 SY526-45 SY526-46 SY526-47 SY526-48 SY526-49 SY526-50 SY526-51 SY526-52 SY526-53 SY526-54 SY526-55 SY526-56 SY526-57 SY506-1 SY506-2 SY506-3 SY506-4 SY506-5 SY506-6 SY506-7 SY506-8 SY506-9 SY506-10 SY506-11 SY506-12 SY506-13 SY506-14 SY506-15 SY506-16 SY506-17 SY506-18 SY506-19 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.14 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.04 0.05 0.00 0.03 0.00 0.01 0.03 0.01 0.21 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.03 0.01 0.01 0.01 0.00 0.00 0.10 0.03 0.04 0.01 0.01 0.01 0.00 0.00 0.00 0.02 0.02 0.01 0.01 0.04 0.02 0.03 0.01 0.01 0.34 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.15 0.01 0.02 0.01 0.01 0.01 0.01 0.04 0.25 0.08 0.02 0.03 0.00 0.00 0.00 0.14 0.39 0.01 0.08 0.04 0.04 0.13 0.01 0.58 0.01 0.22 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.12 0.14 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.19 0.00 1.00 0.00 0.00 0.42 0.00 0.00 0.00 0.00 0.00 0.18 0.29 0.00 0.00 0.00 0.16 0.17 0.13 0.14 0.80 0.30 0.00 0.14 0.00 0.11 0.10 0.12 0.00 0.00 0.16 0.15 0.09 0.80 0.00 0.11 0.09 0.13 0.00 0.19 1.45 0.59 0.56 0.12 0.16 0.14 0.25 0.66 0.40 0.80 0.16 2.05 0.10 0.98 0.40 0.77 0.91 0.13 1180 2300 1240 1400 1320 826 1460 3940 972 673 1430 960 558 971 683 1420 2020 642 951 2490 2870 685 470 476 542 681 1300 607 721 844 3230 510 860 548 2830 847 564 1180 554 1770 2230 911 693 680 735 936 1350 1340 806 626 757 472 1160 796 923 1980 1800 754 641 412 803 834 661 739 615 929 1160 630 491 3310 1940 1020 1530 1830 1600 2090 1830 2260 1460 1520 988 1350 877 2000 1500 1590 1360 1290 1340 60 264 1070 734 2720 7 281 1190 219 5 768 136 8300 4420 61 48 7600 213 106 10 790 1190 2440 891 320 3980 751 186 2120 5 520 1850 687 2 1590 963 133 697 2060 166 1300 1370 176 2640 638 64 960 784 4330 520 281 3470 992 5960 3 5710 1640 443 447 300 756 609 375 298 1080 736 2160 4780 14 19 2 1670 6450 950 1 1150 6 1690 598 1 1510 4850 7 2130 38 2940 2 53 57 44 64 71 75 52 95 56 75 75 53 92 59 67 68 42 57 76 270 113 34 98 63 44 60 52 73 63 76 65 54 50 72 76 77 54 58 68 99 78 85 69 44 81 60 25 54 79 88 44 64 59 66 94 57 97 89 75 48 71 58 73 79 58 54 59 60 89 53 48 21 39 62 47 83 55 98 39 33 52 35 62 48 37 76 37 44 56 74 72 530 165 908 238 71 972 648 147 333 776 1230 721 139 90 228 637 32 239 483 335 940 315 425 1340 290 411 324 112 321 347 2030 86 334 506 382 302 58 40 648 489 636 508 409 7580 620 317 703 775 367 259 825 78 111 105 849 588 259 346 260 310 1090 549 337 504 725 1220 21 42 197 2040 2740 2530 107 98 54 2360 2210 80 2080 1620 108 2490 157 1910 168 3.7 1.9 4.4 3.0 3.1 12.1 32.3 4.0 4.1 12.2 10.8 0.8 3.7 0.6 3.3 4.1 0.0 3.6 7.2 9.2 3.7 6.2 7.5 7.1 4.7 13.6 0.0 6.1 8.7 5.8 4.2 3.4 6.0 6.3 2.6 13.0 6.6 10.5 6.6 4.6 2.7 1.3 2.2 4.5 3.7 0.0 0.5 0.0 6.6 5.0 8.5 12.1 5.0 3.9 4.1 6.8 4.4 2.7 7.7 5.7 8.1 6.5 6.3 4.5 10.8 10.7 0.7 2.4 3.8 4.4 2.4 1.1 2.2 0.5 0.4 0.9 0.8 6.3 0.7 0.4 1.5 1.0 0.5 1.3 0.6 2.4 0.5 2.4 14.2 9.2 3.8 31.6 45.3 14.9 28.8 21.4 22.2 22.7 23.3 12.6 20.3 22.1 15.0 13.9 10.7 24.6 32.1 17.1 6.4 19.2 12.3 17.3 12.4 17.6 80.0 11.4 11.7 27.4 47.2 16.6 12.5 52.8 14.9 29.6 11.0 18.3 13.2 32.4 3.6 17.6 13.6 17.7 16.5 17.6 89.2 26.1 20.2 15.6 17.2 12.9 45.9 20.5 14.1 19.8 22.5 23.1 22.5 11.2 15.7 15.1 15.6 14.5 14.8 23.0 20.2 17.7 14.5 6.2 5.0 9.0 88.4 77.7 68.0 3.9 6.0 5.9 69.1 77.7 8.0 81.7 47.8 5.5 80.5 10.5 85.8 11.5 21.3 0.2 5.4 1.4 0.8 7.1 10.2 0.0 3.8 4.3 2.8 0.6 1.4 0.7 2.1 0.7 3.1 1.4 1.1 5.8 3.3 29.5 6.9 3.4 11.8 16.9 1.2 6.4 7.3 2.0 1.9 11.9 9.7 5.1 0.0 33.3 11.5 8.9 10.5 7.0 2.6 0.6 1.5 6.2 1.5 0.0 307.0 0.7 28.5 2.5 8.2 6.5 0.5 3.0 6.5 5.8 6.5 2.2 6.6 9.6 10.1 20.6 9.4 3.8 10.1 9.0 0.5 3.4 1.6 0.3 1.1 16.6 12.7 6.6 10.8 0.7 0.4 10.0 6.6 7.9 0.2 8.9 1.1 0.3 8.3 0.8 5.5 29.3 1.9 3.0 2.3 3.5 3.5 5.0 3.9 4.6 4.9 3.6 3.9 2.4 6.5 3.1 2.9 3.8 2.9 2.5 3.1 8.9 4.8 2.4 3.5 3.4 2.7 3.6 3.3 3.3 2.9 3.0 3.9 3.1 2.9 5.6 3.9 4.6 2.6 2.6 3.3 4.1 3.7 3.8 2.9 2.4 3.8 3.0 1.9 2.9 3.9 6.0 2.2 3.0 2.6 4.0 2.7 4.0 3.3 5.8 3.2 2.4 3.2 3.1 3.3 3.7 3.1 2.2 2.9 3.9 3.7 1.9 2.6 1.4 2.2 4.0 2.7 4.0 2.5 9.5 2.3 2.2 2.5 2.3 3.2 2.3 1.9 2.9 2.4 2.8 3.8 4.9 3.2 38.6 11.5 36.7 12.5 3.7 63.2 45.6 10.1 14.4 67.3 68.3 29.1 10.0 6.4 13.6 37.1 1.9 16.6 31.1 21.4 41.5 19.5 22.4 70.9 19.4 22.1 14.7 7.1 22.6 22.1 181.0 5.7 17.5 27.8 26.4 19.5 2.2 2.5 51.4 23.6 38.6 33.4 31.2 393.0 27.7 19.7 51.8 42.1 21.6 20.1 64.6 4.1 4.9 5.4 47.6 37.5 19.7 22.8 17.4 17.6 42.0 28.1 13.3 24.7 47.8 42.4 1.6 3.7 11.8 118.0 169.0 179.0 3.3 5.5 3.7 145.0 131.0 6.1 126.0 90.3 8.9 131.0 9.5 129.0 9.7 157.0 1.2 2.0 19.8 1.5 17.8 3.8 0.5 20.9 3.2 5.0 15.4 13.2 56.4 8.5 4.0 2.9 8.0 3.1 11.3 4.5 4.9 1.2 7.8 3.1 5.2 105.0 4.5 1.2 8.0 4.0 2.6 6.3 98.5 0.6 4.8 3.8 3.3 3.7 10.7 21.0 55.2 2.5 4.8 6.5 2.0 3550.0 129.0 4.1 36.6 4.0 1.8 4.4 58.8 8.1 1.8 8.6 38.5 31.0 2.2 2.4 14.3 2.8 3.8 3.0 0.4 27.6 30.6 69.5 0.5 1.3 48.2 96.2 1380.0 735.0 216.0 1.5 0.9 216.0 224.0 0.4 135.0 72.7 161.0 470.0 50.8 78.3 2.6 0.69 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09 0.00 0.00 0.04 0.00 0.00 0.00 0.21 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.19 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 5.44 0.30 0.62 0.08 0.00 0.51 0.00 0.21 0.09 0.02 0.00 0.00 0.00 1.16 0.00 2.51 0.01 4.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.73 0.00 0.05 0.07 0.13 0.02 0.03 0.03 0.04 0.14 0.10 0.08 0.02 0.29 0.08 0.15 0.19 0.23 0.17 0.02 Ts Ts Ts Ts Ts F&W Ts F&W Tomkins Tomkins Tomkins Tomkins a(SiO2)=1 a(SiO2)=0.5 (0.6 GPa) (1.2 GPa) (1.5 GPa) (2.0 GPa) 514 536 547 566 522 482 518 540 551 570 526 486 503 525 536 554 511 473 524 547 558 577 533 492 531 554 565 584 540 498 535 558 570 589 544 502 513 535 546 565 521 481 550 573 585 604 559 516 516 539 550 569 525 485 535 558 569 588 544 502 535 558 569 589 544 502 513 536 547 565 522 482 548 571 583 603 557 514 520 542 553 572 528 488 528 551 562 581 537 495 529 551 563 582 538 496 500 522 533 551 509 470 518 540 552 570 527 486 535 558 570 589 545 502 624 650 662 684 635 583 561 585 597 617 571 526 488 510 521 539 497 459 552 575 587 607 561 517 524 547 558 577 533 492 502 524 535 554 511 472 521 543 555 574 530 489 512 535 546 565 521 481 533 556 568 587 542 501 523 546 558 576 532 491 536 559 570 590 545 503 526 549 560 579 535 494 515 537 549 567 524 484 510 532 543 562 518 479 532 555 566 585 541 499 536 559 570 589 545 503 536 559 571 590 545 503 515 537 549 567 524 484 519 542 553 572 528 488 529 552 563 582 538 496 553 576 588 607 562 518 537 560 572 591 546 504 543 566 578 597 552 509 529 552 564 583 538 497 503 525 536 555 512 473 540 563 574 594 549 506 521 543 555 573 529 489 470 491 502 520 478 442 515 537 549 567 524 484 538 561 572 592 547 505 545 568 580 599 554 511 502 524 536 554 511 472 525 547 559 578 533 492 519 542 553 572 528 488 526 549 561 580 535 494 549 573 584 604 559 515 517 540 551 570 526 486 551 575 586 606 560 517 546 569 580 600 555 512 534 557 569 588 543 501 507 529 541 559 516 477 532 555 566 585 541 499 518 541 552 571 527 487 533 556 568 587 542 501 538 561 573 592 547 505 518 541 552 571 527 487 514 537 548 567 523 483 519 542 553 572 528 488 521 543 555 573 530 489 545 569 580 600 555 511 513 536 547 566 522 482 508 530 541 560 517 477 462 483 493 511 469 435 496 518 529 547 504 466 523 546 557 576 532 491 507 529 540 559 515 476 541 564 576 595 550 507 516 538 550 568 525 484 552 575 587 607 561 518 496 518 529 547 505 466 486 507 518 536 494 457 512 534 546 564 521 481 490 512 523 541 498 461 523 545 557 576 532 491 507 530 541 559 516 477 492 514 525 543 500 462 536 559 570 589 545 503 492 514 525 543 501 463 502 524 536 554 511 472 Table A8.1.Trace element composition and temperature measurements for detrital rutiles from Syros (continued) 219 Appendix A9 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U MK 541-1 MK 541-2 MK 541-3 MK 541-4 MK 541-5 MK 541-6 MK 541-7 MK 541-8 MK 541-9 MK 541-10 MK 541-11 MK 541-12 MK 541-13 MK 541-14 MK 541-15 MK 541-16 MK 541-17 MK 541-18 MK 541-19 MK 541-20 MK 541-21 MK 541-22 MK 30-1 MK 30-2 MK 30-3 MK 30-4 MK 30-5 MK 30-6 MK 30-7 MK 30-8 MK 30-9 MK 30-10 MK 30-11 MK 30-12 MK 30-13 MK 30-14 MK 30-15 MK 30-16 MK 30-17 MK 30-18 MK 30-19 MK 30-20 MK 30-21 MK 30-22 MK 30-23 MK 30-24 MK 51-1 MK 51-2 MK 51-3 MK 51-4 MK 51-5 MK 51-6 MK 51-7 MK 51-8 MK 51-9 MK 51-10 MK 51-11 MK 51-12 MK 51-13 MK 51-14 MK 35-1 MK 35-2 MK 35-3 MK 35-4 MK 35-5 MK 35-6 MK 35-7 MK 35-8 MK 35-9 MK 35-10 MK 35-11 MK 35-12 MK 35-13 MK 35-14 MK 197-1 MK 197-2 MK 197-3 MK 197-4 MK 197-5 0.001 0.001 0.002 0.001 0.001 0.003 0.002 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.007 0.004 0.006 0.004 0.008 0.006 0.005 0.004 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.001 0.001 0.001 0.024 0.012 0.002 0.004 0.004 0.003 0.003 0.004 0.004 0.004 0.003 0.006 0.006 0.004 0.001 0.004 0.001 0.001 0.000 0.001 0.012 0.002 0.001 0.001 0.000 0.004 0.001 0.000 0.008 0.003 0.100 0.011 0.010 0.002 0.005 0.006 0.002 0.006 0.006 0.011 0.013 0.012 0.001 0.001 0.001 0.001 0.001 0.012 0.016 0.023 0.012 0.015 0.028 0.028 0.015 0.015 0.012 0.012 0.009 0.009 0.018 0.015 0.027 0.017 0.013 0.018 0.118 0.028 0.021 0.022 0.014 0.023 0.021 0.020 0.022 0.014 0.020 0.020 0.010 0.056 0.026 0.017 0.029 0.035 0.004 0.025 0.009 0.013 0.022 0.018 0.009 0.057 0.021 0.024 0.039 0.024 0.023 0.022 0.027 0.043 0.021 0.024 0.017 0.018 0.029 0.023 0.021 0.015 0.011 0.023 0.036 0.009 0.012 0.012 0.011 0.012 0.012 0.015 0.011 0.013 0.024 0.021 0.022 0.014 0.029 0.013 0.041 0.050 0.049 0.074 0.042 0.059 0.057 0.033 0.043 0.027 0.039 0.041 0.032 0.038 0.219 0.124 0.259 0.367 0.215 0.299 0.195 0.186 0.053 0.068 0.033 0.064 0.053 0.042 0.031 0.036 0.057 0.026 0.098 0.049 0.042 0.040 0.167 0.148 0.128 0.221 0.231 0.212 0.171 0.251 0.261 0.208 0.043 0.050 0.041 0.073 0.044 0.062 0.058 0.054 0.037 0.045 0.070 0.045 0.053 0.037 0.343 0.109 4.720 0.268 0.184 0.129 0.116 0.237 0.099 0.267 0.389 0.439 0.447 0.475 0.073 0.112 0.096 0.084 0.066 871 897 882 854 936 889 902 844 917 863 880 859 899 879 882 900 953 887 903 922 811 906 1280 1380 1340 1320 1380 1290 1270 1430 1420 1370 1300 1310 1320 1180 1290 1430 1290 1360 1170 1320 1410 1430 1430 1110 1010 1080 1050 1030 851 933 783 828 742 732 794 721 769 809 451 356 312 396 381 357 365 362 308 304 275 311 309 272 1340 1320 1290 1330 1240 365 413 423 346 397 447 441 403 386 432 411 456 503 500 467 398 480 329 380 423 467 342 453 458 483 503 503 505 532 479 488 484 469 510 526 538 565 467 531 386 506 517 536 521 412 466 521 483 501 423 259 309 324 286 323 334 314 451 421 287 97 162 82 161 147 123 128 151 146 136 133 149 222 240 517 567 638 514 617 104 99 110 109 137 71 90 101 79 93 90 114 133 130 111 127 108 127 144 95 132 129 86 90 97 73 50 97 73 83 107 62 87 94 81 100 89 92 80 64 97 96 64 99 93 91 47 54 59 45 57 76 69 62 57 49 69 59 70 50 42 42 42 43 41 43 42 45 43 40 41 38 39 43 48 83 54 82 68 1660 2020 2030 1630 2030 1810 1920 2030 1820 2520 1860 2080 2010 2040 1810 2830 2050 2280 2160 2630 1960 2370 1570 1610 1580 1680 1610 1610 1590 1610 1570 1540 1590 1700 1650 1680 1400 1570 1480 1530 1720 1700 1560 1710 1900 1580 2000 1990 2050 1940 1990 2250 2230 2200 2140 2160 2120 2290 2320 2100 2480 2500 3070 2570 2420 2410 2330 2580 3050 2680 2870 2770 2710 2760 1790 1700 1730 1810 1830 2.4 2.7 2.3 3.1 2.5 1.1 1.8 2.4 2.6 2.9 3.0 2.9 2.7 2.2 2.8 2.4 3.4 2.8 3.3 3.2 2.0 2.9 0.7 1.1 0.8 0.9 1.3 1.2 1.1 0.7 1.1 0.4 0.7 0.9 1.1 1.2 1.1 1.4 1.7 1.5 2.3 1.9 1.1 3.3 2.8 1.7 0.4 0.8 0.8 0.4 0.5 1.3 0.8 0.6 0.6 0.6 0.8 1.0 0.9 0.8 0.7 0.5 5.8 2.4 2.5 0.9 2.8 2.1 0.6 2.1 3.0 1.9 5.0 6.8 0.7 0.7 0.6 0.9 1.0 43 45 42 44 51 52 51 43 39 43 39 48 50 49 52 53 59 52 52 50 60 48 89 88 90 93 95 87 97 83 95 91 76 82 84 91 82 92 81 91 94 92 95 101 98 96 120 125 124 113 103 119 128 105 113 109 100 119 116 111 165 145 226 202 194 163 208 224 183 203 182 212 225 222 55 59 53 58 57 1.7 1.7 1.9 1.8 1.1 1.8 1.2 2.7 1.7 3.8 2.6 1.1 1.2 1.7 1.1 1.9 1.7 3.3 1.9 2.5 1.2 1.7 0.2 0.3 0.4 0.5 0.9 0.3 0.5 0.4 0.2 0.4 0.2 0.2 0.3 0.2 0.9 0.6 0.7 1.3 1.9 1.4 1.2 1.4 0.8 1.1 8.1 8.2 9.0 7.5 12.0 10.9 9.0 11.5 8.8 8.5 11.7 9.2 10.6 8.0 1.4 1.6 1.2 0.7 0.9 1.4 1.1 1.0 1.6 0.9 1.4 1.9 2.3 3.3 3.2 9.1 2.8 8.8 6.5 4.3 4.4 4.7 4.1 5.7 4.8 4.7 4.2 3.5 2.9 4.0 4.8 6.2 5.8 5.8 5.8 6.3 5.9 7.6 2.1 6.3 3.1 4.8 4.4 5.2 4.5 3.1 4.7 4.3 4.3 5.2 3.9 4.4 4.1 4.8 4.9 2.9 4.5 4.4 3.5 4.8 5.0 4.1 4.5 3.8 4.6 2.6 3.3 3.4 2.8 2.9 3.6 3.8 3.2 2.9 3.8 3.2 3.0 3.9 3.2 2.0 2.6 3.8 1.8 3.2 2.2 2.0 1.8 2.7 2.2 1.9 2.0 2.8 2.6 3.2 4.5 2.8 4.0 3.7 107 240 127 70 132 126 201 107 86 170 124 133 141 143 120 203 135 142 144 169 131 133 105 105 106 119 103 108 109 111 103 103 95 108 116 111 95 102 114 116 116 107 115 119 155 107 134 129 123 119 96 142 147 134 142 161 141 154 158 143 230 214 382 211 168 179 164 179 291 204 291 248 198 227 99 98 98 107 107 126 125 131 120 147 149 131 121 123 132 153 140 127 133 150 150 159 133 138 125 150 143 111 112 120 121 136 118 137 100 126 142 86 93 103 110 74 103 106 132 89 108 122 107 149 115 212 217 296 214 207 207 205 177 229 216 168 246 222 213 163 151 178 190 157 153 166 205 153 162 201 218 159 175 48 52 47 45 49 3.7 1.5 1.2 1.6 0.6 0.9 1.1 1.9 1.4 7.2 4.0 0.6 2.4 1.5 2.8 3.7 0.5 2.0 2.5 0.4 2.5 2.6 1.1 1.4 2.1 0.8 0.8 1.9 1.7 0.9 2.0 0.6 1.9 4.0 1.2 3.6 1.4 1.0 0.9 0.6 1.3 4.4 0.9 0.9 1.1 0.8 1.4 1.5 1.5 1.8 1.3 1.1 0.8 0.9 1.0 1.1 1.3 1.0 1.2 1.6 1.2 1.0 0.8 1.6 0.8 1.5 1.3 1.7 0.6 0.6 8.1 0.5 0.6 1.9 1.6 3.2 2.8 3.7 1.2 Ts Ts Ts F&W Tomkins Tomkins a(SiO2)=1 (1.5GPa) (2.0GPa) 597 593 601 600 616 571 587 595 579 589 587 603 614 612 601 611 599 611 619 591 613 612 584 587 592 574 550 592 573 582 599 564 585 590 580 594 587 589 580 565 592 591 565 593 589 588 546 554 560 543 558 576 569 563 558 548 570 560 571 549 540 539 539 540 538 541 540 543 540 537 538 534 535 541 548 582 555 581 569 619 615 623 622 639 593 609 617 601 611 609 625 636 635 624 633 622 633 642 613 636 634 606 609 614 595 571 614 595 604 621 585 607 612 602 616 608 611 601 586 614 613 587 615 611 610 566 575 581 564 579 598 591 585 579 569 592 581 592 570 560 560 559 561 558 562 561 564 561 557 558 554 556 561 569 604 576 603 591 Table A9.1.Trace element compositions and temperature measurements for the Sesia Lanzo samples 220 565 562 569 569 584 540 556 563 548 558 556 572 582 581 570 579 568 579 588 559 582 580 553 556 561 543 519 560 542 551 567 532 553 559 549 563 555 558 548 534 561 560 534 562 558 557 515 523 529 512 527 545 538 532 527 517 539 529 540 518 509 508 508 509 507 510 509 512 509 506 507 503 504 510 517 551 524 550 538 Appendix A9 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U MK 197-6 MK 197-7 MK 197-8 MK 197-9 MK 197-10 MK 197-11 MK 197-12 MK 197-13 MK 197-14 MK 197-15 MK 197-16 MK 197-17 MK 197-18 MK 197-19 MK 197-20 MK 197-21 MK 197-22 MK 197-23 MK 197-24 MK 197-25 MK 197-26 MK 197-27 MK 197-28 MK 197-29 MK 126-1 MK 126-2 MK 126-3 MK 126-4 MK 126-5 MK 126-6 MK 126-7 MK 126-8 MK 126-9 MK 126-10 MK 126-11 MK 126-12 MK 126-13 MK 126-14 MK 126-15 MK 126-16 MK 126-17 MK 126-18 MK 126-19 MK 126-20 MK 126-21 MK 126-22 MK 126-23 MK 126-24 MK 126-25 MK 162.3-1 MK 162.3-2 MK 162.3-3 MK 162.3-4 MK 162.3-5 MK 162.3-6 MK 162.3-7 MK 162.3-8 MK 162.3-9 MK 162.3-10 MK 162.3-11 MK 162.3-12 MK 162.3-13 MK 162.3-14 MK 162.3-15 MK 162.3-16 MK 162.3-17 MK 162.3-18 MK 162.3-19 MK 162.3-20 MK 162.3-21 MK 162.3-22 MK 162.3-23 MK 162.3-24 MK 162.3-25 MK 162.3-26 MK 162.3-27 MK 162.3-28 MK 162.3-29 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.007 0.001 0.001 0.002 0.001 0.000 0.001 0.001 0.001 0.003 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.003 0.002 0.007 0.011 0.005 0.008 0.007 0.006 0.005 0.003 0.004 0.008 0.001 0.002 0.002 0.002 0.003 0.004 0.002 0.003 0.003 0.003 0.002 0.001 0.001 0.003 0.003 0.002 0.003 0.004 0.002 0.003 0.005 0.004 0.003 0.003 0.002 0.002 0.003 0.001 0.003 0.013 0.014 0.022 0.022 0.021 0.021 0.015 0.015 0.020 0.013 0.017 0.027 0.020 0.015 0.019 0.021 0.021 0.020 0.024 0.044 0.033 0.016 0.046 0.016 0.009 0.010 0.015 0.029 0.016 0.011 0.009 0.015 0.012 0.010 0.013 0.018 0.015 0.026 0.014 0.017 0.019 0.012 0.008 0.014 0.035 0.013 0.009 0.011 0.009 0.019 0.013 0.065 0.021 0.033 0.037 0.019 0.019 0.018 0.019 0.024 0.021 0.026 0.024 0.028 0.020 0.020 0.020 0.021 0.020 0.027 0.021 0.031 0.019 0.022 0.023 0.018 0.020 0.034 0.103 0.118 0.058 0.103 0.058 0.069 0.095 0.070 0.078 0.083 0.095 0.104 0.098 0.088 0.099 0.120 0.103 0.095 0.071 0.110 0.065 0.086 0.084 0.075 0.059 0.080 0.070 0.099 0.092 0.126 0.108 0.135 0.109 0.092 0.114 0.062 0.101 0.143 0.116 0.326 0.280 0.365 0.327 0.258 0.244 0.168 0.177 0.213 0.113 0.101 0.122 0.123 0.076 0.083 0.154 0.096 0.127 0.084 0.084 0.090 0.091 0.104 0.124 0.093 0.141 0.088 0.068 0.105 0.129 0.146 0.138 0.130 0.109 0.124 0.182 0.096 0.202 0.200 1380 1290 1270 1190 1300 1330 1270 1200 1260 1380 1320 1330 1290 1340 1330 1360 1320 1310 1490 1340 1420 1360 1420 1490 1200 1190 1200 1170 1230 1130 1130 1220 1120 1130 1170 1160 1120 1110 1140 1200 1330 1170 1040 1210 1210 1200 1030 1080 1040 719 730 729 760 716 754 764 729 729 716 704 707 727 695 691 725 731 765 727 715 730 754 717 706 709 720 707 717 708 580 537 543 573 506 617 576 509 525 628 813 710 665 454 643 556 651 590 590 571 614 622 597 668 433 412 386 401 390 403 427 481 454 451 435 524 483 510 441 410 567 486 438 493 399 440 390 450 490 172 302 337 274 286 158 272 224 264 260 250 250 222 255 251 309 300 321 319 291 276 289 282 278 286 267 295 252 234 65 69 43 63 82 56 70 76 66 88 43 54 79 47 48 51 77 46 57 47 73 67 86 79 72 79 63 62 80 74 82 76 78 81 63 82 67 65 65 57 89 84 82 55 85 75 70 77 99 88 46 48 68 43 107 59 72 44 111 96 78 67 52 51 97 61 77 79 101 68 105 74 51 49 49 80 72 101 1790 1760 1770 1660 1750 1780 1760 1780 1810 1760 1740 1690 1760 1210 1570 1410 1700 1620 1850 1750 1820 1800 1770 1780 1540 1530 1680 1590 1570 1650 1640 1660 1610 1390 1520 1490 1580 1630 1580 1420 1500 1620 1230 1800 1590 1470 1460 1560 1710 2080 1960 2190 1990 1930 1960 2060 2190 2200 2370 2230 2170 1920 2140 2050 2400 2210 2420 2280 2140 2050 2200 2040 2170 2160 2170 2160 2240 2080 1.1 1.0 0.5 0.7 0.8 0.9 0.7 1.0 0.7 0.9 0.7 0.4 1.2 0.3 0.4 0.6 0.6 0.5 0.9 0.5 0.9 0.8 1.1 0.9 0.8 1.2 0.9 1.2 1.1 1.5 0.7 1.1 0.8 0.7 1.1 0.8 1.0 1.1 0.8 1.6 3.0 2.4 4.4 3.0 2.5 3.1 1.6 2.9 2.0 2.4 1.0 0.8 1.8 0.8 1.3 1.3 1.6 1.3 1.4 2.0 1.3 1.2 1.4 1.2 1.6 1.0 1.3 1.8 1.0 1.6 3.6 1.1 1.1 1.7 1.2 1.3 1.0 1.5 57 55 49 53 63 49 57 55 60 56 50 55 57 52 54 55 56 52 58 53 59 57 56 61 38 37 36 39 37 36 38 38 35 38 34 34 38 40 36 39 41 40 40 38 35 37 41 38 43 206 202 218 217 165 189 211 218 210 263 236 223 182 220 197 253 223 244 236 221 218 224 219 217 226 224 230 246 216 6.7 5.5 3.8 6.1 8.6 10.1 8.2 10.7 8.0 10.7 3.4 4.1 10.1 2.1 2.6 1.9 9.0 2.4 5.3 3.8 8.1 9.4 10.6 9.7 0.9 2.6 0.8 0.8 1.7 1.1 2.3 0.5 1.0 0.7 3.2 0.8 0.8 0.9 0.8 2.1 2.0 1.3 1.8 4.9 2.3 2.7 2.3 1.4 2.4 0.9 0.9 0.6 0.8 0.3 0.5 0.5 0.5 0.7 0.2 0.4 0.3 0.6 0.4 0.5 0.4 0.7 0.6 0.5 0.7 0.4 0.8 0.6 0.9 0.6 0.5 0.5 0.4 0.5 3.8 3.6 2.7 3.5 4.2 3.3 3.2 3.8 4.4 4.1 3.0 2.7 4.0 2.6 2.6 2.7 4.2 2.3 3.8 3.3 4.1 3.7 4.5 3.8 3.5 3.6 3.3 3.7 3.5 4.2 3.8 4.3 3.3 3.4 3.1 3.2 3.5 3.7 3.6 4.5 3.4 6.0 4.7 3.5 2.8 2.7 2.8 4.6 6.0 4.1 2.8 3.4 3.7 3.8 4.7 3.8 5.1 2.4 5.6 4.9 4.9 4.0 4.0 4.4 5.9 4.3 6.0 6.2 6.0 4.5 4.6 4.8 4.4 3.7 3.9 4.9 4.5 5.6 98 96 101 96 102 108 101 98 103 102 89 85 87 67 77 68 85 81 92 85 87 90 88 84 72 85 90 82 91 82 82 85 75 60 85 73 76 80 72 92 79 89 69 90 85 78 80 87 85 157 113 116 126 134 126 124 137 137 168 164 156 115 153 146 188 166 187 151 130 143 148 116 145 147 147 125 154 145 51 51 54 49 50 24 51 40 50 45 68 54 43 37 45 45 44 58 51 57 47 44 43 46 73 65 69 72 85 77 83 68 57 46 62 54 75 75 76 42 60 76 56 45 86 39 50 54 74 350 302 381 344 366 381 320 420 303 414 387 388 370 351 409 410 364 430 424 434 435 488 379 391 403 410 408 366 428 1.5 2.5 1.9 3.4 2.8 1.6 2.9 2.9 2.6 4.1 2.2 2.7 2.8 3.2 1.8 2.9 2.9 2.3 1.9 2.4 1.8 3.0 3.4 2.5 0.6 2.5 0.6 0.5 1.7 0.8 1.9 0.3 0.4 0.6 2.8 0.5 1.0 0.8 0.4 3.4 0.5 0.5 1.2 3.1 1.9 2.5 1.0 0.8 2.4 1.0 0.3 1.6 0.5 0.8 0.8 0.3 0.3 0.3 1.1 0.5 0.3 0.3 0.3 0.5 0.4 0.3 0.3 0.5 0.5 0.4 0.4 1.7 0.4 0.4 1.1 0.9 0.2 0.8 Ts Ts Ts F&W Tomkins Tomkins a(SiO2)=1 (1.5GPa) (2.0GPa) 566 570 541 564 581 557 571 576 567 585 541 555 578 547 547 551 577 545 558 545 573 568 584 579 572 578 564 563 579 574 581 576 578 580 564 581 568 566 566 558 586 582 581 555 583 575 571 577 594 586 544 548 569 540 599 560 573 543 601 592 577 568 553 551 592 562 577 578 595 569 597 574 551 549 548 579 572 595 587 592 562 585 602 578 592 598 589 607 562 576 600 568 568 572 599 566 579 566 595 589 606 601 594 600 586 584 601 596 603 598 599 602 585 603 589 587 587 579 608 604 603 576 605 597 592 599 616 608 565 569 590 561 621 582 594 563 624 614 599 589 574 572 614 583 598 600 617 590 620 596 572 570 569 601 594 617 534 539 510 533 549 526 540 545 536 554 510 524 547 516 516 520 546 514 527 514 542 536 553 548 541 547 533 532 548 543 550 545 546 549 532 550 537 534 535 526 555 551 550 524 552 544 540 546 562 554 513 517 538 509 567 529 541 512 570 560 546 536 522 520 560 531 545 547 563 538 566 543 520 518 517 548 541 563 Table A9.1.Trace element compositions and temperature measurements for the Sesia Lanzo samples (continued) 221 Appendix A9 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U MK 162.3-30 MK 162.3-31 MK 162.3-32 MK 162.3-33 MK 162.3-34 MK 162.3-35 MK 162.3-36 MK 162.3-37 MK 162.3-38 MK 162.3-39 MK 195-1 MK 195-2 MK 195-3 MK 195-4 MK 195-5 MK 195-6 MK 195-7 MK 195-8 MK 195-9 MK 195-10 MK 195-11 MK 195-12 MK 195-13 MK 195-14 MK 195-15 MK 195-16 MK 195-17 MK 195-18 MK 195-19 MK 195-20 MK 195-21 MK 195-22 MK 195-23 MK 195-24 MK 195-25 MK 195-26 MK 195-27 MK 195-28 MK 195-29 MK 195-30 MK 195-31 MK 195-32 MK 195-33 MK 195-34 MK 195-35 MK 195-36 MK 195-37 MK 195-38 0.005 0.008 0.008 0.006 0.006 0.009 0.008 0.005 0.006 0.004 0.001 0.002 0.001 0.001 0.003 0.002 0.002 0.001 0.001 0.012 0.001 0.003 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.002 0.002 0.004 0.009 0.006 0.007 0.006 0.005 0.006 0.007 0.021 0.077 0.024 0.023 0.031 0.024 0.028 0.039 0.023 0.021 0.039 0.038 0.017 0.012 0.023 0.022 0.009 0.017 0.018 0.044 0.013 0.013 0.013 0.017 0.015 0.016 0.014 0.014 0.015 0.008 0.013 0.014 0.017 0.020 0.016 0.012 0.015 0.018 0.015 0.014 0.019 0.018 0.015 0.022 0.012 0.013 0.028 0.018 0.065 0.208 0.249 0.251 0.350 0.350 0.337 0.235 0.402 0.261 0.214 0.438 0.088 0.098 0.148 0.084 0.114 0.133 0.096 0.261 0.096 0.131 0.117 0.077 0.068 0.068 0.081 0.092 0.077 0.077 0.083 0.065 0.051 0.177 0.081 0.150 0.132 0.109 0.069 0.049 0.260 0.196 0.198 0.212 0.243 0.450 0.340 0.208 714 527 547 542 510 559 551 573 622 703 736 707 681 738 668 712 656 709 718 701 651 699 673 759 681 695 695 673 686 713 654 721 663 670 746 671 725 672 673 672 749 703 703 694 748 685 833 722 221 244 209 174 177 293 154 200 204 229 240 193 267 266 259 197 308 286 287 247 287 274 283 244 276 299 246 300 291 273 314 219 311 361 199 310 279 291 262 396 329 362 264 277 256 472 314 345 115 97 57 57 100 61 42 92 50 73 63 64 64 69 55 60 45 69 72 65 66 51 68 85 50 49 78 40 58 51 42 79 59 54 70 48 72 62 66 49 46 42 72 79 63 50 47 48 2250 1950 1690 1960 2060 1700 1950 2050 1630 1600 2650 2630 2400 2650 2430 2350 2290 2960 2770 2460 2420 2440 2460 3110 2100 2300 2790 2240 2480 2100 2250 2810 2140 2300 2860 2120 2760 2310 2530 2160 2030 2690 3120 2850 2580 2530 2960 2190 1.9 1.7 1.5 2.3 3.3 2.8 1.3 2.8 3.7 3.0 1.4 1.3 1.4 1.1 2.0 1.6 0.7 2.3 1.8 1.7 0.9 0.9 1.0 2.5 0.8 0.6 0.9 0.7 0.6 1.1 0.8 2.3 1.2 0.5 2.0 0.6 1.6 1.3 1.2 1.5 2.0 2.9 2.7 1.8 1.8 2.4 4.1 2.4 213 245 203 244 278 170 207 261 208 140 68 75 71 81 84 68 111 69 74 78 73 92 75 57 89 108 65 110 91 86 117 63 84 89 65 121 70 85 73 129 125 143 69 71 84 137 166 116 0.6 1.8 1.1 1.2 2.5 1.0 1.6 0.9 1.7 1.3 10.7 14.4 6.9 8.3 2.6 9.0 1.6 6.3 8.9 21.9 4.4 6.7 4.8 12.2 1.3 1.8 16.0 1.5 6.4 1.7 1.1 13.9 2.9 3.8 6.7 0.9 5.2 6.3 13.7 1.1 1.1 2.9 7.7 7.7 9.6 1.6 1.3 1.5 7.0 4.5 6.1 4.5 7.6 5.4 3.6 6.4 3.1 5.4 3.1 2.7 3.2 3.5 2.7 2.8 2.8 3.9 3.7 2.7 3.9 3.0 3.2 3.9 2.8 2.7 3.5 2.2 3.4 2.8 3.0 4.1 3.1 3.1 3.6 2.8 4.2 2.4 2.9 2.5 2.8 4.0 3.7 4.8 2.3 2.4 2.8 2.5 154 273 128 128 182 131 148 163 91 104 249 187 185 225 193 199 139 244 231 171 149 189 175 303 118 125 239 128 218 111 177 229 111 205 285 127 203 171 182 114 160 443 439 238 181 206 531 100 447 497 355 407 425 352 339 319 311 369 305 222 218 232 209 194 168 260 253 382 191 209 217 322 193 181 262 182 260 165 180 337 181 224 280 169 255 149 183 147 168 151 243 216 160 191 138 200 0.3 0.5 0.5 0.5 0.4 0.3 1.0 0.8 0.8 0.3 4.2 2.5 1.6 1.9 0.9 0.9 1.1 1.2 1.6 2.1 1.5 1.2 1.6 4.9 1.5 0.9 7.2 1.0 1.1 1.4 0.6 3.7 1.3 0.8 1.5 1.5 1.6 1.0 1.7 1.3 1.1 0.7 2.0 1.9 1.1 1.8 1.5 1.6 Ts Ts Ts F&W Tomkins Tomkins a(SiO2)=1 (1.5GPa) (2.0GPa) 604 592 558 558 594 562 540 588 549 574 564 565 565 570 556 561 543 570 572 566 567 552 569 583 550 548 577 537 558 551 540 578 560 554 570 548 572 563 567 548 545 539 573 579 565 549 546 547 626 614 579 579 616 584 560 610 570 595 585 586 586 591 577 583 564 591 594 588 588 573 591 605 571 569 599 557 580 572 560 600 581 575 592 569 594 585 588 569 566 560 594 601 586 570 567 568 572 561 527 527 563 531 509 557 518 542 533 534 534 538 525 530 512 539 541 535 536 520 538 552 519 517 546 506 527 520 509 547 529 523 539 517 541 532 536 517 514 508 542 548 533 518 515 516 Table A9.1.Trace element compositions and temperature measurements for the Sesia Lanzo samples (continued) 222 Appendix A10 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U 19296-1 19296-2 19296-3 19296-4 19296-5 19296-6 19296-7 19296-8 19296-9 19296-10 19296-11 19296-12 19296-13 19296-14 19296-15 19296-16 19296-17 19296-18 19296-19 19296-20 19296-21 19296-22 19296-23 19296-24 19296-25 19296-26 19296-27 19296-28 19296-29 19296-30 19296-31 19296-32 19296-33 19296-34 19296-35 19296-36 19296-37 19296-38 19296-39 19296-40 19296-41 19296-42 19296-43 19296-44 19296-45 19296-46 19296-47 19296-48 19296-49 19296-50 19296-51 19296-52 19296-53 19296-54 19296-55 19296-56 19296-57 19296-58 19296-59 19296-60 19296-61 19296-62 19296-63 19296-64 19296-65 19296-66 19296-67 19296-68 19296-69 19296-70 19296-71 19296-72 19296-73 19296-74 19296-75 19296-76 19296-77 19296-78 19296-79 0.0005 0.0004 0.0004 0.0005 0.0005 0.0004 0.0006 0.0006 0.0005 0.0006 0.0006 0.0011 0.0037 0.0007 0.0005 0.1330 0.0007 0.0004 0.0007 0.0004 0.0005 0.0005 0.0004 0.0004 0.0005 0.0006 0.0005 0.0004 0.0033 0.0450 0.0006 0.0006 0.0005 0.0003 0.0005 0.0004 0.0004 0.0005 0.0004 0.0005 0.0128 0.0077 0.0004 0.0004 0.0004 0.0004 0.0003 0.0005 0.0006 0.0007 0.0011 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 0.0014 0.0007 0.0007 0.0004 0.0007 0.0005 0.0004 0.0006 0.0010 0.0012 0.0134 0.0006 0.0003 0.0005 0.0006 0.0005 0.0006 0.0005 0.0005 0.0005 0.0007 0.0010 0.07 0.07 0.06 0.05 0.02 0.03 0.07 0.08 0.08 0.08 0.09 0.09 0.07 0.07 0.07 0.62 0.06 0.06 0.03 0.03 0.06 0.06 0.06 0.04 0.03 0.03 0.06 0.06 0.10 0.13 0.08 0.09 0.05 0.06 0.06 0.05 0.06 0.07 0.06 0.07 0.07 0.07 0.04 0.05 0.05 0.06 0.08 0.07 0.07 0.07 0.05 0.06 0.06 0.07 0.03 0.19 0.06 0.08 0.07 0.07 0.07 0.06 0.07 0.07 0.06 0.05 0.05 0.05 0.04 0.04 0.07 0.07 0.03 0.04 0.04 0.06 0.03 0.05 0.09 0.10 0.09 0.05 0.08 0.07 0.09 0.09 0.07 0.08 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.06 0.07 0.04 0.05 0.07 0.05 0.05 0.07 0.07 0.06 0.08 0.06 0.18 0.05 0.08 0.06 0.09 0.07 0.06 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.08 0.08 0.06 0.08 0.07 0.06 0.06 0.10 0.06 0.09 0.06 0.04 0.04 0.06 0.06 0.06 0.05 0.06 0.05 0.07 0.06 0.07 0.12 0.12 0.07 0.07 0.08 0.06 0.07 0.14 0.03 0.07 0.06 0.06 0.07 0.04 2220 2230 2160 2150 2110 2210 2060 2040 2070 2070 2040 2030 2010 2040 2050 2020 1790 1810 1610 1590 2090 2080 2000 1970 1350 1360 1410 1400 1980 2020 2030 2050 2040 2030 2040 2010 1690 1700 2030 2060 2040 2080 1870 1860 2080 2030 2060 2060 1740 1860 1610 1610 2030 2060 1940 1990 2030 2020 2020 2020 1980 1990 2110 2030 2040 2080 1430 1420 1730 1700 1350 1370 2000 1980 1590 1610 1720 1700 2100 170 182 164 166 157 155 165 160 163 159 161 158 120 116 159 161 126 122 166 164 153 152 153 152 150 158 169 170 108 120 160 167 172 166 169 166 168 168 159 155 160 165 172 179 145 130 149 122 158 163 162 161 115 122 120 144 158 147 163 166 100 101 132 111 86 99 113 110 168 168 128 114 169 168 161 162 182 179 170 201 173 173 169 199 179 221 207 185 183 239 229 174 140 202 210 243 233 180 185 155 161 198 194 192 227 231 233 172 133 208 209 199 209 170 172 223 232 197 205 180 157 210 198 209 209 181 189 204 203 199 202 214 201 176 220 203 207 209 212 236 242 198 212 185 197 110 121 211 195 133 137 222 238 223 205 229 240 209 3770 3630 3460 3350 3110 3610 2930 3020 3390 3520 3210 3290 2630 2660 3010 2950 2650 2680 2450 2480 3520 3330 3130 3080 2590 2580 2740 2750 2300 2450 2680 2710 3020 2920 3480 3490 2800 2840 3490 3440 2810 2720 2930 2910 3120 2840 3110 2700 2590 2710 2750 2730 2840 2860 1800 2230 2740 3120 2910 2990 1980 1770 3010 2330 2810 3120 1840 1990 2890 2910 2720 2770 2790 2840 2650 2670 2840 2740 3300 8.9 9.9 6.7 8.3 7.6 15.3 6.7 5.9 9.8 10.9 7.1 7.2 10.7 11.7 6.5 6.9 7.5 6.5 9.8 9.1 12.3 7.8 6.3 6.3 9.0 8.4 6.8 7.5 8.9 10.4 8.7 8.4 6.3 6.6 8.2 8.1 7.4 6.3 10.8 7.6 8.9 9.2 6.7 7.5 6.3 7.3 7.1 7.8 8.0 8.0 7.6 6.9 7.4 7.3 10.3 9.8 8.1 8.2 6.3 6.7 10.6 10.8 7.9 10.1 10.9 10.0 12.3 12.5 7.8 7.0 10.4 9.7 6.8 7.7 6.9 7.3 7.6 6.8 7.7 880 809 768 727 631 863 509 540 770 831 622 642 273 280 610 599 374 459 292 297 812 711 631 641 312 308 381 384 285 279 342 344 639 586 787 794 461 432 739 742 340 304 491 489 608 473 632 525 432 412 487 487 472 514 224 276 315 644 570 586 226 218 611 344 428 517 218 243 420 418 291 274 507 525 373 383 430 403 695 9.4 13.1 13.5 13.3 15.2 25.5 11.4 13.5 15.2 17.2 7.0 8.8 15.4 14.9 12.7 14.7 11.9 14.5 9.3 8.9 18.7 12.2 10.9 14.4 11.6 11.4 10.7 12.0 8.5 9.1 7.7 8.7 11.9 11.2 20.1 17.7 13.0 13.1 11.6 8.8 13.9 12.4 11.6 12.2 13.9 13.1 14.4 14.5 11.6 11.8 12.7 14.0 11.9 12.0 10.5 8.9 10.5 12.3 11.9 12.1 12.3 11.3 9.0 12.7 12.2 11.7 10.8 10.1 12.2 11.4 12.1 11.3 12.0 11.6 12.1 12.7 12.7 9.9 9.5 10.3 8.8 8.5 8.6 9.0 8.5 8.9 9.1 8.9 9.2 7.9 8.1 4.1 4.2 9.2 9.2 8.7 8.4 5.7 6.3 7.6 8.0 8.4 8.7 8.1 7.8 9.0 9.3 4.7 4.6 5.7 6.0 10.3 10.0 8.4 8.4 8.6 8.8 9.0 9.5 5.4 5.2 8.7 7.8 8.9 7.5 8.1 8.6 7.9 8.1 8.6 7.9 8.8 8.1 3.8 5.5 5.1 8.8 9.1 8.7 4.2 4.5 9.0 6.5 6.8 5.4 2.7 4.2 8.1 8.0 4.6 5.1 10.1 9.4 9.4 8.5 8.3 8.0 9.5 362 366 252 228 217 288 235 242 242 254 228 240 171 187 179 217 106 185 143 144 262 248 263 84 183 185 193 197 62 167 168 229 238 191 286 307 232 223 244 268 252 218 202 202 179 146 198 159 190 202 193 207 117 304 21 121 189 177 195 203 25 23 229 55 263 323 21 60 203 193 182 192 156 155 219 211 194 176 272 235 290 288 290 256 367 227 231 305 305 285 293 331 328 235 245 285 271 266 247 308 285 281 279 238 235 240 253 286 287 267 305 294 322 292 300 248 242 290 265 242 237 249 245 242 273 252 298 266 237 239 237 286 282 316 269 208 235 200 214 398 413 259 365 325 282 414 357 237 248 271 329 259 253 241 246 239 224 295 6.0 6.4 6.1 5.7 5.7 4.3 6.0 6.0 5.3 5.3 6.7 6.9 14.1 14.8 5.8 6.1 11.9 11.9 27.4 25.3 4.8 5.6 11.4 11.6 35.2 34.6 28.9 27.5 16.8 20.9 7.1 6.0 6.0 6.2 5.5 5.5 21.0 21.8 6.1 5.7 22.2 24.0 26.3 26.0 22.3 22.6 5.8 6.5 18.4 19.8 10.8 9.8 5.8 5.8 17.1 15.1 5.6 5.1 5.9 6.0 5.9 6.0 5.6 6.0 8.6 8.0 40.2 41.1 45.7 44.1 41.6 40.5 20.5 21.7 30.5 29.6 26.7 28.8 5.7 Ts Ts F&W Tomkins a(SiO2)=1 (3.7 GPa) 747 734 734 732 746 737 755 749 740 739 761 758 735 717 747 750 763 759 738 740 725 728 745 744 743 757 758 759 734 713 750 750 746 750 733 734 755 759 745 748 738 726 750 745 750 750 738 742 748 748 746 747 752 747 736 754 748 749 750 751 760 763 745 751 740 745 699 706 751 744 713 716 755 761 755 748 758 762 750 Table A10. 1. Trace element compositions and temperature measurements for the Dora Maira samples 223 612 601 601 599 611 604 619 614 606 605 625 622 601 586 613 615 627 623 604 606 593 596 611 610 609 621 623 623 601 582 615 615 611 615 600 601 620 623 611 614 604 594 615 611 615 615 604 608 613 613 611 613 617 612 602 619 613 614 615 616 624 626 611 616 606 611 569 576 616 610 582 584 620 625 620 614 622 626 615 Appendix A10 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U 19296-80 19296-81 19296-82 19296-83 19296-84 19296-85 19296-86 19296-87 19296-88 19296-89 19296-90 19296-91 19296-92 19296-93 19296-94 19296-95 19296-96 19296-97 19296-98 19296-99 19296-100 19296-101 19296-102 19296-103 19464-1 19464-2 19464-3 19464-4 19464-5 19464-6 19464-7 19464-8 19464-9 19464-10 19464-11 19464-12 19464-13 19464-14 19464-15 19464-16 19464-17 19464-18 19464-19 19464-20 19464-21 19464-22 19464-23 19464-24 19464-25 19464-26 19464-27 19464-28 19464-29 19464-30 19464-31 19464-32 19464-33 19464-34 19464-35 19464-36 19464-37 19464-38 19464-39 19464-40 19464-41 19464-42 19464-43 19464-44 19464-45 19464-46 19464-47 19464-48 19464-49 19464-50 19464-51 19464-52 19464-53 19464-54 19464-55 0.0005 0.0005 0.0005 0.0005 0.0006 0.0006 0.0005 0.0007 0.0004 0.0003 0.0003 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004 0.0006 0.0025 0.0006 0.0004 0.0006 0.0006 0.0006 0.0007 0.0025 0.0017 0.0020 0.0012 0.0022 0.1310 0.0015 0.0026 0.0016 0.0018 0.0018 0.0017 0.0010 0.1250 0.0015 0.0009 0.0013 0.0032 0.0030 0.0013 0.0006 0.0011 0.0012 0.0020 0.0925 0.0009 0.0008 0.0006 0.0147 0.0017 0.0077 0.0012 0.0010 0.0049 0.0014 0.0007 0.0011 0.0007 0.0018 0.0020 0.0024 0.0026 0.0017 0.0519 0.0005 0.0016 0.0046 0.0020 0.0010 0.0008 0.0008 0.0076 0.0007 0.0008 0.16 0.05 0.09 0.06 0.06 0.06 0.07 0.06 0.06 0.08 0.08 0.04 0.06 0.05 0.07 0.03 0.05 0.08 0.07 0.09 0.06 0.07 0.07 0.06 0.27 0.26 0.38 0.24 0.25 0.30 0.49 0.25 0.33 0.26 0.24 0.24 0.24 0.32 0.59 0.26 0.28 0.32 0.39 0.24 0.25 0.25 0.30 0.28 0.21 0.31 0.22 0.29 0.18 0.41 0.28 0.31 0.23 0.29 0.38 0.30 0.26 0.26 0.26 0.39 0.32 0.34 0.41 0.26 0.33 0.28 0.29 0.34 0.26 0.27 0.24 0.33 0.30 0.30 0.27 0.06 0.07 0.07 0.08 0.06 0.06 0.06 0.06 0.07 0.09 0.10 0.11 0.08 0.09 0.10 0.11 0.11 0.06 0.08 0.08 0.09 0.10 0.08 0.08 0.08 0.13 0.09 0.10 0.06 0.14 0.23 0.08 0.09 0.10 0.06 0.09 0.10 0.10 0.26 0.09 0.09 0.06 0.30 0.07 0.06 0.09 0.10 0.07 0.13 0.18 0.06 0.07 0.07 0.09 0.09 0.13 0.08 0.09 0.10 0.09 0.07 0.08 0.08 0.09 0.07 0.10 0.14 0.10 0.10 0.10 0.07 0.17 0.13 0.09 0.04 0.06 0.19 0.07 0.08 2130 2030 2090 2080 2040 2110 2120 1850 1880 2040 2070 2140 2130 2100 2040 1850 1850 2040 2110 2110 2040 2000 2050 1940 739 740 762 659 671 630 791 747 775 583 404 633 897 709 779 875 785 631 904 751 633 803 771 801 738 737 680 776 711 844 630 847 745 740 718 807 826 809 632 778 887 841 860 657 847 787 722 713 747 841 815 690 629 741 841 165 161 164 160 155 163 157 174 177 159 157 157 157 154 144 160 163 159 161 159 158 164 160 152 169 169 135 135 109 158 252 135 142 186 139 131 185 98 143 96 104 175 127 144 111 135 189 161 143 129 141 121 146 118 93 159 118 194 135 144 125 144 145 87 128 172 152 104 116 123 105 109 103 130 140 161 149 133 186 206 242 253 213 196 181 178 211 178 232 192 185 186 209 214 242 215 182 163 198 206 216 209 236 152 138 143 136 145 151 153 137 146 130 133 128 143 145 152 147 137 128 138 157 136 153 154 149 161 131 137 126 135 144 126 149 141 154 137 148 140 156 151 132 146 149 116 118 134 119 130 138 155 147 136 147 149 127 127 3220 2940 3020 2900 2870 3270 3430 2790 2840 2840 3270 3500 3410 3130 3090 2750 2760 3350 3570 3070 3260 2950 3060 2690 4900 4900 4620 4810 4920 4980 4950 4620 4450 5340 5300 4970 5070 5260 4610 4390 4760 5460 4890 4760 5490 4880 5110 5110 4720 4980 4930 4780 4880 4450 5390 5410 4930 4920 5060 5250 4990 4800 4850 4560 4690 4520 4800 5450 4840 4750 4840 4940 4700 4710 5000 4760 4910 5260 5110 7.5 7.7 9.3 7.0 7.1 11.2 10.3 6.4 6.8 7.0 7.9 13.5 11.6 6.9 6.6 6.9 6.9 7.2 10.7 6.7 7.6 7.2 6.4 7.6 1.8 4.1 11.4 2.0 5.5 4.6 10.1 2.9 13.7 2.9 2.6 2.3 3.0 3.3 6.3 12.8 6.6 1.7 2.6 8.4 2.9 7.7 9.0 9.6 10.2 5.8 5.1 2.3 2.9 19.4 3.2 6.3 4.3 17.6 10.8 5.0 2.2 13.0 5.6 20.3 14.7 13.1 10.0 3.1 8.2 2.6 3.9 4.9 4.1 15.9 3.4 8.2 8.4 4.5 5.8 677 474 464 595 623 764 820 495 528 422 670 744 731 624 614 455 470 729 822 569 603 582 579 382 549 507 504 458 522 501 497 508 579 497 491 512 465 530 600 521 522 417 483 550 618 524 483 549 492 515 568 468 517 553 490 473 480 449 506 520 526 592 525 562 588 575 458 542 525 451 534 469 508 580 477 524 534 489 479 6.8 7.0 8.9 10.3 13.5 15.9 16.0 12.9 12.3 12.6 13.9 26.5 19.5 11.6 12.0 11.9 9.8 14.9 20.4 9.2 9.1 12.0 9.8 11.5 0.5 3.3 1.9 0.9 4.8 1.2 5.6 1.2 9.3 1.4 1.4 0.8 1.0 2.2 1.2 1.3 3.0 0.8 6.6 2.2 1.6 5.8 1.4 0.9 2.2 1.9 2.8 0.5 1.6 8.2 1.6 1.1 2.2 1.1 1.8 3.7 0.5 3.6 5.1 2.7 11.3 2.9 1.7 1.9 3.7 1.0 1.6 1.4 1.9 0.9 1.5 3.0 2.3 0.9 4.8 8.7 8.6 8.2 8.3 9.5 8.5 8.3 8.8 8.2 7.9 9.0 8.7 8.9 9.7 9.4 10.2 9.2 9.2 9.3 8.7 8.1 9.7 8.4 8.2 7.8 7.2 6.9 6.4 6.0 7.3 6.5 7.3 5.3 6.9 6.6 7.0 7.7 8.7 7.3 6.5 6.3 6.8 6.5 7.4 6.3 5.9 7.4 7.5 8.7 6.4 5.7 7.1 6.9 3.5 7.3 7.5 6.6 7.4 7.1 7.0 7.2 6.1 6.0 6.8 5.0 7.0 4.7 6.7 6.4 5.6 6.4 6.5 7.1 6.9 6.6 5.8 7.0 6.8 5.5 269 268 268 179 198 176 193 179 161 251 202 195 189 208 218 226 151 224 263 161 158 183 151 204 479 525 449 456 452 461 558 426 398 570 531 477 482 511 471 345 429 579 408 403 574 432 482 515 441 445 364 409 495 344 546 364 432 472 470 569 490 431 386 460 434 353 453 518 511 466 412 464 440 424 387 416 442 636 404 287 335 426 238 270 285 294 249 256 224 241 351 320 254 261 247 246 265 298 252 231 238 231 236 431 465 431 385 513 399 521 418 1180 409 405 428 379 420 493 478 634 331 574 550 507 636 393 380 386 552 625 408 424 1200 355 488 402 380 535 508 402 794 555 606 751 603 495 425 710 376 493 438 419 402 415 517 401 400 642 5.9 5.4 7.3 6.5 6.2 5.7 6.4 11.9 10.7 6.6 6.4 5.7 5.9 15.3 15.1 29.0 29.5 6.8 6.9 6.0 5.7 8.3 7.2 6.1 2.9 3.3 2.4 5.6 2.6 2.1 2.0 4.4 2.1 5.0 4.0 5.8 4.8 4.7 4.3 2.1 5.2 2.3 2.3 2.1 5.0 2.6 1.2 1.5 5.1 3.2 5.6 3.9 1.3 1.8 11.7 2.1 4.0 2.3 3.8 5.8 8.2 2.9 2.6 2.4 2.3 2.2 3.4 10.6 2.1 3.3 3.6 2.3 2.5 2.2 3.8 2.2 3.8 3.1 1.7 Ts Ts F&W Tomkins a(SiO2)=1 (3.7 GPa) 749 763 766 752 745 738 737 751 737 759 743 740 740 750 752 763 752 738 729 745 749 753 750 760 724 716 719 715 720 723 724 716 721 711 713 710 719 720 724 721 716 710 716 726 715 724 725 722 728 712 716 709 714 720 709 722 718 725 716 722 717 726 723 713 721 722 703 704 714 705 711 716 725 721 715 721 722 710 710 614 626 630 617 610 604 603 616 603 623 609 606 606 615 617 626 617 605 597 611 614 618 615 624 592 585 587 584 588 591 592 584 589 581 582 580 587 588 592 589 584 580 585 594 584 592 593 590 596 581 584 578 583 588 578 590 586 593 584 590 586 594 591 582 589 590 573 574 583 574 581 585 593 589 584 589 590 579 579 Table A10. 1. Trace element compositions and temperature measurements for the Dora Maira samples (continued) 224 Appendix A10 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U 19464-56 19464-57 19464-58 19464-59 19464-60 19464-61 19464-62 19464-63 19464-64 19464-65 19464-66 19464-67 19464-68 19464-69 19464-70 19464-71 19464-72 19464-73 19464-74 19464-75 19464-76 19464-77 19464-78 19464-79 19464-80 19464-81 19464-82 19464-83 19464-84 19464-85 19464-86 19464-87 19464-88 19464-89 19464-90 15623a-1 15623a-2 15623a-3 15623a-4 15623a-5 15623a-6 15623a-7 15623a-8 15623a-9 15623a-10 15623a-11 15623a-12 15623a-13 15623a-14 15623a-15 15623a-16 15623a-17 15623a-18 15623a-19 15623a-20 15623a-21 15623a-22 15623a-23 15623a-24 15623a-25 15623a-26 15623a-27 15623a-28 15623a-29 15623a-30 15623a-31 15623a-32 15623a-33 15623a-34 15623a-35 15623a-36 15623a-37 15623a-38 15623a-39 15623a-40 15623a-41 15623a-42 15623a-43 15623a-44 0.0013 0.0007 0.0008 0.0105 0.0033 0.0021 0.0033 0.0005 0.0006 0.0024 0.0041 0.0065 0.0006 0.0020 0.0008 0.2900 0.0028 0.0019 0.0682 0.0047 0.0008 0.0065 0.0008 0.0010 0.0005 0.0016 0.0011 0.0012 0.0007 0.0168 0.0028 0.0008 0.0017 0.0016 0.0010 0.0058 0.0045 0.0069 0.0043 0.0047 0.0046 0.0042 0.0044 0.0050 0.0044 0.0043 0.0060 0.0057 0.0047 0.0064 0.0050 0.0075 0.0089 0.0082 0.0072 0.0081 0.0076 0.0186 0.0049 0.0055 0.0056 0.0077 0.0083 0.0052 0.0056 0.0050 0.0042 0.0049 0.0050 0.0042 0.0142 0.0046 0.0085 0.0043 0.0035 0.0032 0.0042 0.0043 0.0034 0.23 0.26 0.35 0.37 0.44 0.35 0.28 0.26 0.25 0.30 0.25 0.28 0.30 0.38 0.27 2.48 0.30 0.30 0.34 0.34 0.30 0.34 0.28 0.33 0.28 0.26 0.31 0.27 0.28 0.43 0.26 0.24 0.24 0.25 0.26 0.53 0.54 0.57 0.53 0.52 0.48 0.48 0.54 0.52 0.54 0.51 0.50 0.49 0.49 0.60 0.58 0.61 0.42 0.44 0.46 0.47 0.46 0.51 0.59 0.57 0.56 0.49 0.48 0.52 0.53 0.55 0.49 0.49 0.47 0.50 0.48 0.47 0.49 0.47 0.47 0.45 0.46 0.46 0.59 0.20 0.09 0.07 0.11 0.29 0.07 0.09 0.08 0.06 0.06 0.10 0.14 0.06 0.08 0.06 1.06 0.06 0.05 0.31 0.18 0.07 0.10 0.06 0.06 0.08 0.08 0.07 0.06 0.05 0.08 0.07 0.06 0.06 0.06 0.03 0.07 0.06 0.07 0.07 0.07 0.08 0.04 0.07 0.08 0.06 0.08 0.08 0.07 0.06 0.11 0.08 0.07 0.07 0.06 0.07 0.06 0.05 0.09 0.06 0.07 0.07 0.09 0.08 0.06 0.08 0.05 0.09 0.07 0.05 0.11 0.06 0.07 0.07 0.07 0.08 0.09 0.05 0.06 0.07 603 819 1000 759 707 879 724 852 779 637 686 810 811 764 791 713 769 780 894 696 814 792 813 851 772 865 841 890 789 860 679 822 818 817 754 964 953 984 994 979 949 1000 907 869 884 861 806 823 827 885 874 880 813 836 838 826 849 836 833 841 818 731 691 726 716 747 701 734 687 880 876 835 841 609 617 646 680 670 907 113 130 250 156 172 126 146 136 120 278 115 113 128 114 146 242 144 109 196 133 141 99 149 136 132 185 128 112 162 185 109 137 182 151 143 19 26 23 24 30 30 31 20 17 17 17 33 33 33 52 37 48 25 28 28 26 28 23 17 18 17 14 16 17 16 15 39 43 40 17 13 15 19 18 18 17 18 16 36 135 153 146 146 134 136 135 144 137 136 138 147 139 134 144 190 105 138 169 144 144 150 143 151 143 136 128 143 142 135 148 135 155 149 140 161 168 163 151 148 156 152 153 130 134 142 162 152 147 151 138 142 159 174 178 168 166 154 148 150 149 153 154 164 150 156 171 171 162 158 144 154 168 153 159 153 153 151 146 4920 4700 5450 4780 4100 4690 4960 4550 4370 5020 4900 4480 4980 4710 4670 4450 4230 5240 4570 4810 4890 4880 4710 5450 4780 4350 5470 4400 5220 4420 4770 4660 4640 4970 4850 10600 10700 12100 10500 10400 10000 9990 11100 11000 11100 10900 10300 10500 10200 11800 11200 11600 9600 10400 10500 10400 10400 11000 11500 11700 11600 11400 11100 10400 10100 10100 10400 10300 10300 10200 9660 9670 9970 9320 9320 9300 9250 9250 10900 2.9 9.8 9.7 11.4 5.7 2.7 8.9 12.6 7.4 7.7 6.0 20.0 6.7 11.2 8.7 5.6 15.3 1.9 10.4 2.1 4.2 8.5 6.1 8.0 9.0 14.1 2.5 8.8 3.5 14.3 7.4 4.1 13.3 4.6 5.3 7.2 7.7 8.3 18.8 19.5 16.0 18.4 11.6 9.1 8.7 9.4 25.5 19.8 19.6 27.2 20.2 23.5 9.4 9.5 8.8 10.7 10.2 8.8 32.0 28.4 31.5 12.3 11.3 6.6 6.3 6.7 22.0 25.6 22.1 12.0 10.2 11.0 10.6 7.5 7.6 7.0 6.4 7.5 25.5 464 481 512 570 484 487 473 526 493 452 449 558 456 480 542 561 568 525 515 454 511 554 498 515 536 504 475 579 572 576 496 475 557 543 515 539 494 618 648 552 500 462 520 466 453 483 450 476 434 824 704 769 385 462 455 453 466 573 656 730 686 523 504 420 333 395 427 397 415 577 617 574 540 569 561 552 549 563 684 1.1 1.2 1.3 8.0 5.3 0.7 1.7 1.4 2.9 2.8 0.8 7.3 5.0 5.1 3.1 2.7 8.0 0.9 1.6 1.3 3.5 1.8 3.2 2.1 4.9 3.8 0.9 7.9 1.1 4.2 0.9 1.2 1.9 1.1 1.4 7.5 9.9 5.4 3.7 3.3 3.5 3.5 1.4 2.2 3.3 3.9 0.9 1.6 1.9 6.9 3.3 8.2 3.1 2.7 2.4 1.1 6.3 2.6 1.1 1.8 1.1 2.9 2.7 9.4 4.6 3.9 0.9 0.9 0.7 3.7 3.4 3.4 6.2 9.8 4.8 4.1 1.9 1.7 1.6 7.2 7.2 7.3 4.5 5.6 7.0 6.3 6.3 6.5 6.4 6.5 3.8 5.4 5.4 6.3 8.6 2.8 6.4 7.8 7.3 6.7 6.7 6.5 7.2 6.0 4.7 6.3 4.3 6.9 5.0 6.7 6.2 6.6 6.8 7.5 8.2 7.2 7.0 7.5 6.4 6.9 6.4 7.2 6.3 5.6 6.1 8.3 6.8 6.8 5.8 6.0 5.8 6.1 7.3 7.7 7.3 6.6 7.4 6.9 6.5 6.7 7.1 6.5 6.9 6.7 7.4 8.6 8.2 8.0 6.9 6.5 5.9 6.2 6.8 6.8 6.7 7.5 6.7 5.9 514 440 503 354 363 433 548 380 389 386 483 423 443 377 397 450 335 447 465 481 511 499 465 517 408 308 439 382 399 384 499 445 372 428 439 693 670 854 915 751 757 691 941 917 875 909 851 825 809 900 796 879 641 836 840 783 763 985 820 814 838 928 644 941 888 932 914 893 870 719 786 741 797 650 649 615 627 611 841 358 413 433 775 604 414 562 754 504 571 366 1230 664 667 741 566 844 414 421 370 653 389 524 425 866 730 396 768 425 913 321 386 681 434 438 244 375 202 240 134 206 157 133 135 139 143 167 163 156 301 121 259 180 160 162 159 409 230 185 140 153 194 204 288 150 181 173 160 164 231 204 196 303 310 135 124 68 76 155 6.1 3.6 3.2 1.9 1.0 2.3 0.8 3.5 1.8 0.5 3.0 2.5 1.3 1.4 4.8 2.4 1.8 8.7 2.2 3.2 1.7 2.6 2.1 2.0 1.9 6.4 1.7 2.4 3.3 1.8 1.9 3.2 1.8 2.1 3.8 0.2 0.3 0.2 0.1 0.3 0.1 0.1 2.3 1.8 0.8 0.3 3.5 3.1 4.5 0.1 0.2 0.2 2.4 6.0 5.9 5.4 0.5 0.6 0.2 0.6 1.8 5.6 2.5 0.2 0.2 0.1 3.6 4.8 3.5 0.4 0.4 0.2 0.3 0.5 0.4 0.3 0.3 0.3 3.4 Ts Ts F&W Tomkins a(SiO2)=1 (3.7 GPa) 714 724 721 721 714 715 714 720 716 715 716 721 717 714 720 742 695 716 732 720 720 723 719 723 719 715 710 719 718 714 722 714 725 722 717 728 732 729 723 722 726 724 724 711 714 718 729 724 721 723 716 718 727 735 737 732 731 725 722 723 722 724 725 730 723 726 733 733 729 727 720 725 732 724 727 724 724 723 721 583 592 589 589 583 584 583 588 584 584 585 589 585 583 588 608 566 585 599 588 588 591 587 591 587 584 580 587 587 583 590 583 593 590 586 596 599 597 591 590 594 592 592 581 583 587 596 592 589 591 585 587 595 601 603 599 598 593 590 591 590 592 593 597 591 594 600 600 596 594 588 593 599 592 595 592 592 591 589 Table A10. 1. Trace element compositions and temperature measurements for the Dora Maira samples (continued) 225 Appendix A10 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U 15623a-45 15623a-46 15623a-47 15623a-48 15623a-49 15623a-50 15623a-51 15623a-52 15623a-53 15623a-54 15623a-55 15623a-56 15623a-57 15623a-58 15623a-59 15623a-60 15623a-61 15623a-62 15623a-63 15623a-64 15623a-65 20254-1 20254-2 20254-3 20254-4 20254-5 20254-6 20254-7 20254-8 20254-9 20254-10 20254-11 20254-12 20254-13 20254-14 20254-15 20254-16 20254-17 20254-18 20254-19 20254-20 20254-21 20254-22 20254-23 20254-24 20254-25 20254-26 20254-27 20254-28 20254-29 20254-30 20254-31 20254-32 20254-33 20254-34 20254-35 20254-36 20254-37 20254-38 20254-39 20254-40 20254-41 20254-42 20254-43 20254-44 20254-45 20254-46 20254-47 20254-48 20254-49 20254-50 20254-51 20254-52 20254-53 20254-54 20254-55 20254-56 20254-57 0.0049 0.0044 0.0044 0.0035 0.0066 1.5200 0.0081 0.0033 0.0040 0.0748 0.0042 0.0064 0.0057 0.0058 0.0069 0.0053 0.0235 0.0060 0.0073 0.0077 0.0062 0.0096 0.0007 0.0004 0.0006 0.0112 0.0006 0.0003 0.0225 0.0004 0.0007 0.0004 0.0005 0.0007 0.0005 0.0004 0.0008 0.0007 0.0005 0.0005 0.0006 0.0004 0.0004 0.0006 0.0010 0.0006 0.0006 0.0004 0.0007 0.0007 0.0006 0.0008 0.0003 0.0004 0.0005 0.0006 0.0007 0.0004 0.0004 0.0004 0.0039 0.0016 0.0006 0.0005 0.0006 0.0005 0.0004 0.0004 0.0006 0.0005 0.0005 0.0005 0.0004 0.0006 0.0015 0.0006 0.0005 0.0007 0.62 0.58 0.48 0.48 0.51 1.51 0.51 0.45 0.45 0.66 0.44 0.64 0.66 0.67 0.66 0.62 0.59 0.53 0.53 0.54 0.55 0.06 0.03 0.04 0.03 0.06 0.04 0.04 0.16 0.08 0.08 0.04 0.03 0.04 0.05 0.07 0.06 0.00 0.02 0.08 0.05 0.00 0.00 0.03 0.05 0.06 0.06 0.08 0.00 0.00 0.07 0.07 0.00 0.00 0.03 0.03 0.08 0.07 0.06 0.06 0.10 0.04 0.00 0.00 0.00 0.00 0.05 0.05 0.03 0.04 0.04 0.04 0.18 0.15 0.05 0.05 0.04 0.09 0.08 0.09 0.07 0.06 0.06 1.69 0.06 0.04 0.04 0.10 0.04 0.07 0.07 0.06 0.08 0.06 0.06 0.05 0.06 0.06 0.05 0.12 0.07 0.07 0.05 0.10 0.04 0.06 0.34 0.06 0.07 0.09 0.06 0.07 0.05 0.09 0.06 0.06 0.05 0.08 0.05 0.07 0.06 0.04 0.07 0.05 0.04 0.04 0.08 0.12 0.07 0.08 0.06 0.08 0.07 0.09 0.08 0.09 0.07 0.05 0.17 0.08 0.06 0.07 0.06 0.04 0.07 0.05 0.06 0.06 0.07 0.05 0.06 0.06 0.06 0.06 0.07 0.06 903 909 798 821 908 953 963 612 581 583 608 571 565 573 578 710 713 768 778 770 766 372 372 367 364 405 400 406 407 364 363 375 376 394 385 394 389 367 365 368 363 351 348 391 394 407 408 387 361 363 362 364 342 355 394 398 371 382 339 335 359 354 359 361 367 365 371 375 367 363 398 391 395 392 389 390 382 387 34 34 32 32 27 28 30 14 14 16 14 31 32 30 32 30 28 31 30 33 36 88 92 80 80 90 93 105 107 85 80 86 88 108 107 71 68 76 81 94 97 103 97 102 104 95 97 123 84 87 85 84 78 77 96 99 75 74 68 67 70 68 107 106 88 84 98 93 106 103 108 105 82 82 98 107 114 108 134 140 147 162 140 149 154 152 153 151 149 142 148 146 147 155 149 123 126 133 141 157 165 148 154 150 153 142 142 144 149 157 162 141 147 143 151 155 134 154 158 161 159 147 148 145 152 159 144 139 144 139 164 165 135 141 158 150 146 145 142 160 159 157 146 153 157 159 157 162 153 153 156 159 162 157 152 161 10400 10400 9370 9410 9870 10200 10100 9080 9260 9450 9140 11100 11300 11300 11200 12000 11400 10200 10700 10900 10100 5700 5820 5850 5870 5710 5800 5950 5870 6050 5770 5840 5970 6130 6110 5850 5760 5640 5670 5560 5450 5650 5680 5800 6080 5670 5870 5700 5730 5870 5350 5360 5680 5720 5820 5920 5770 5800 5570 5560 5320 5540 5500 5540 5750 5770 5680 5780 5680 5790 5720 5750 5790 5890 5290 5640 5790 6110 17.2 17.7 7.3 7.5 10.0 14.9 19.6 4.4 3.8 4.2 4.4 29.3 36.1 17.4 36.3 16.5 25.8 13.0 11.2 11.0 12.7 51.5 55.2 34.3 44.6 36.2 44.6 28.7 30.4 26.7 30.9 51.4 55.5 34.1 31.5 23.7 32.8 40.6 29.7 48.7 53.3 46.2 45.3 56.3 49.3 24.5 35.0 43.8 35.6 25.0 47.9 39.7 53.3 56.7 35.9 39.7 41.0 28.7 36.5 35.0 47.8 58.5 47.8 48.4 36.4 44.5 41.5 43.7 46.3 51.5 40.2 35.3 40.6 41.7 55.7 49.5 47.1 43.2 530 444 563 561 496 516 532 426 468 329 350 617 625 618 635 658 619 386 391 410 398 793 720 702 725 701 679 663 657 720 699 810 773 698 717 619 663 746 692 735 760 705 707 786 677 650 690 694 710 690 797 790 714 752 709 714 708 730 756 750 781 853 732 711 704 692 639 758 694 661 726 744 651 647 805 705 668 752 2.2 2.8 1.4 0.9 1.6 2.4 0.4 2.1 2.6 2.6 2.2 1.8 1.9 1.7 1.0 2.6 9.9 2.8 2.3 2.7 1.3 0.7 1.4 2.3 1.4 0.8 1.6 2.7 6.9 1.7 1.5 1.6 1.6 2.9 1.7 1.5 1.2 1.0 1.1 1.5 0.9 1.3 1.7 1.3 2.1 1.3 1.1 1.5 1.2 1.6 1.1 1.3 0.6 1.1 1.6 1.5 1.2 1.5 1.5 1.4 1.6 1.0 1.2 1.2 1.3 1.2 1.7 1.2 1.5 1.5 1.4 1.1 1.5 1.7 0.8 1.1 2.2 2.0 5.9 6.1 6.2 7.3 6.3 6.9 6.9 6.6 7.0 6.6 6.4 6.6 7.0 6.8 6.5 7.1 6.9 5.1 5.6 5.3 6.4 7.7 7.0 7.5 8.4 7.5 7.7 7.5 7.2 7.6 8.0 7.8 7.8 7.7 6.8 7.5 7.7 7.5 6.8 7.9 7.8 7.2 7.7 7.3 7.5 7.4 8.0 7.8 7.3 7.9 7.5 7.1 8.5 8.4 7.3 7.8 8.1 7.5 7.6 7.7 8.0 6.8 7.9 8.2 7.3 7.7 7.3 7.1 7.1 8.0 7.7 7.9 7.1 7.3 8.1 7.6 7.7 7.4 786 850 581 596 676 716 708 609 601 602 574 843 834 838 836 923 863 826 846 821 807 824 571 511 492 762 401 553 559 605 579 379 469 549 551 600 618 724 544 587 542 524 546 651 660 544 523 456 479 541 565 518 713 614 581 552 489 483 636 682 596 803 495 532 575 586 588 557 562 558 483 673 612 606 582 556 579 544 160 192 152 134 154 165 150 77 86 102 83 204 189 200 179 186 321 208 217 199 158 247 310 346 370 263 417 318 331 358 368 421 396 334 333 318 307 339 346 360 351 311 294 366 296 299 310 389 363 359 367 365 338 366 339 349 355 337 370 356 392 350 343 328 316 308 256 279 327 300 368 281 282 298 301 305 336 389 3.3 1.3 5.2 5.2 2.8 1.7 2.9 0.3 0.3 0.5 0.4 1.1 1.1 1.1 1.3 0.8 1.0 0.5 2.1 3.4 3.5 4.2 3.8 2.6 3.0 4.3 4.3 5.4 6.5 4.6 4.4 3.7 4.1 4.0 2.9 3.1 2.5 5.0 4.8 5.1 4.3 4.4 4.3 4.3 6.1 1.7 2.2 3.0 3.5 3.6 4.8 4.9 4.2 3.9 3.0 3.2 3.6 6.5 4.7 5.0 10.0 8.4 4.7 4.5 2.8 2.8 3.1 3.2 2.4 2.5 2.2 3.4 4.2 3.5 3.4 3.6 2.8 3.2 Ts Ts F&W Tomkins a(SiO2)=1 (3.7 GPa) 714 717 721 729 717 722 725 724 724 723 722 718 722 721 721 725 722 707 709 713 718 726 730 722 725 723 724 718 718 720 722 726 729 718 721 719 723 725 714 725 727 728 727 721 722 720 724 727 720 717 720 717 730 730 714 718 727 723 721 720 718 728 727 726 721 724 726 727 726 729 724 724 726 727 729 726 724 728 583 586 589 596 586 590 593 592 592 591 590 587 590 589 589 593 590 577 578 582 586 594 598 590 593 591 592 587 587 588 590 594 596 586 589 587 591 593 583 593 594 596 595 589 590 588 592 595 588 585 588 585 597 598 583 586 594 591 589 588 587 595 595 594 589 592 594 595 594 596 592 592 594 595 596 594 592 596 Table A10. 1. Trace element compositions and temperature measurements for the Dora Maira samples (continued) 226 Appendix A10 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U 20254-58 20254-59 20254-60 20254-61 20254-62 20254-63 20254-64 20254-65 20254-66 20254-67 20254-68 20254-69 20254-70 20254-71 20254-72 20254-73 20254-74 20254-75 20254-76 20254-77 20254-78 20254-79 20254-80 20254-81 20254-82 20254-83 20254-84 20254-85 20254-86 20254-87 20254-88 20254-89 20254-90 20254-91 20254-92 20254-93 20254-94 20254-95 20254-96 20254-97 20254-98 20254-99 20254-100 20254-101 20254-102 20254-103 20254-104 0.0006 0.0004 0.0006 0.0005 0.0006 0.0008 0.0005 0.0006 0.0009 0.0005 0.0005 0.0005 0.0004 0.0005 0.0005 0.0006 0.0007 0.0007 0.0005 0.0005 0.0006 0.0005 0.0005 0.0004 0.0006 0.0007 0.0007 0.0005 0.0004 0.0006 0.0003 0.0004 0.0004 0.0004 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0003 0.0006 0.0007 0.0006 0.0005 0.0004 0.0003 0.07 0.07 0.02 0.02 0.03 0.03 0.03 0.03 0.00 0.00 0.09 0.07 0.06 0.06 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.02 0.01 0.01 0.00 0.00 0.07 0.07 0.05 0.06 0.05 0.04 0.00 0.00 0.03 0.03 0.01 0.01 0.00 0.03 0.00 0.03 0.01 0.02 0.02 0.06 0.06 0.07 0.07 0.04 0.05 0.05 0.07 0.06 0.07 0.09 0.07 0.08 0.04 0.05 0.06 0.07 0.05 0.05 0.05 0.05 0.07 0.07 0.04 0.04 0.05 0.04 0.05 0.08 0.04 0.06 0.06 0.05 0.05 0.06 0.04 0.08 0.06 0.07 0.05 0.05 0.07 0.05 0.06 0.04 0.09 0.05 0.06 0.04 342 344 356 363 439 441 381 378 371 366 383 373 383 392 368 366 352 361 390 403 410 410 379 375 375 367 379 389 404 410 403 410 321 320 360 357 343 342 337 358 319 362 338 390 394 391 400 86 89 73 71 77 75 96 95 79 83 89 82 70 75 121 121 114 111 103 97 108 115 109 127 87 92 120 120 122 123 95 96 83 80 90 94 92 102 84 92 81 92 93 101 107 86 90 138 141 137 131 146 144 154 156 150 141 157 157 155 163 142 151 138 148 127 133 157 155 151 145 145 141 154 137 159 155 153 157 147 150 144 149 155 152 146 150 141 152 144 145 150 148 148 5590 5750 5880 5930 6210 5980 5620 5780 5880 5810 5760 5610 5850 5880 5570 5620 5660 5710 5650 5740 5760 5780 5900 5650 5840 5470 5850 5840 5870 5990 5650 5550 5690 5550 5800 5660 5740 5740 5600 5740 5640 5760 5360 5850 5710 5730 5850 39.0 37.1 32.5 33.4 44.9 34.5 43.7 43.7 29.7 29.3 48.7 51.3 53.3 48.1 36.9 44.9 37.9 45.9 32.0 31.7 48.3 41.6 37.9 41.9 50.7 47.1 45.9 36.7 39.9 35.7 55.0 48.2 46.9 46.5 39.0 40.8 49.3 48.6 47.0 44.9 41.9 40.6 47.2 27.7 45.4 38.3 45.8 724 722 731 724 758 678 636 721 731 712 703 721 732 711 680 714 677 729 672 679 670 648 696 694 725 720 666 711 651 679 663 736 673 706 685 670 754 681 690 672 686 667 731 715 706 673 684 1.4 1.1 1.4 1.4 3.3 3.9 1.4 1.6 2.0 1.5 1.7 1.6 1.4 1.8 1.1 1.1 1.2 1.4 3.4 4.0 4.4 1.6 1.7 1.2 1.3 1.3 1.6 1.5 1.7 1.7 1.3 0.9 1.2 1.2 1.4 1.6 1.5 1.4 1.5 1.7 1.2 1.5 1.1 1.4 1.7 1.4 1.7 7.1 7.1 7.0 6.9 7.1 7.7 7.3 6.9 7.7 7.1 7.9 7.2 7.8 7.3 7.0 7.4 7.3 7.4 6.5 6.2 7.2 7.1 7.3 7.4 7.2 7.3 7.3 6.3 7.0 7.3 7.6 7.2 7.2 7.6 7.1 7.4 7.3 7.1 7.0 6.8 7.2 7.4 6.2 7.9 7.1 7.2 6.9 678 590 582 558 603 634 589 561 413 493 451 262 482 405 541 504 547 521 547 521 547 547 564 539 566 668 564 879 510 476 539 707 560 490 481 534 550 535 568 461 529 526 515 504 402 537 531 330 343 339 326 300 298 279 280 395 358 390 456 377 417 318 291 279 287 318 331 271 263 302 305 311 304 303 323 299 368 307 265 305 315 334 331 309 280 293 327 332 330 298 360 349 320 345 3.5 3.4 4.9 5.5 9.1 6.9 3.4 3.3 7.6 6.5 4.2 3.1 6.3 4.0 3.4 3.4 3.6 4.1 2.6 3.5 3.3 3.1 4.8 3.4 4.5 5.0 3.1 2.9 3.5 3.6 2.8 3.0 4.4 3.4 4.0 4.3 4.6 5.9 4.6 3.9 4.4 4.3 5.0 3.4 2.9 3.0 3.7 Ts Ts F&W Tomkins a(SiO2)=1 (3.7 GPa) 716 718 716 712 721 720 725 726 723 718 726 726 725 729 718 723 716 722 710 713 726 725 723 720 720 718 725 716 727 725 724 726 721 723 720 722 725 724 721 723 718 724 720 720 723 722 722 585 586 584 581 589 588 593 594 591 586 594 594 593 597 587 591 585 590 579 582 594 593 591 588 588 586 593 584 595 593 592 594 589 591 588 590 593 592 589 591 586 592 588 588 591 590 590 Table A10. 1. Trace element compositions and temperature measurements for the Dora Maira samples (continued) 227 Appendix A11 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SL 10/4-1 SL 10/4-2 SL 10/4-3 SL 10/4-4 SL 10/4-5 SL 10/4-6 SL 10/4-7 SL 10/4-8 SL 10/4-9 SL 10/4-10 SL 10/4-11 SL 10/4-12 SL 10/4-13 SL 10/4-14 SL 10/4-15 SL 10/4-16 SL 10/4-17 SL 10/4-18 SL 10/4-19 SL 10/4-20 SL 10/4-21 SL 10/4-22 SL 10/4-23 SL 10/4-24 SL 10/4-25 SL 10/4-26 SL 10/4-27 SL 10/4-28 SL 10/4-29 SL 10/4-30 SL 10/4-31 SL 10/4-32 SL 10/4-33 SL 10/4-34 SL 10/4-35 SL 10/4-36 SL 10/4-37 SL 10/4-38 SL 10/4-39 SL 10/4-40 SL 10/4-41 SL 10/4-42 SL 10/4-43 SL 10/4-44 SL 10/4-45 SL 10/4-46 SL 10/4-47 SL 10/4-48 SL 10/4-49 SL 10/4-50 SL 10/4-51 SL 10/4-52 SL 10/4-53 SL 10/4-54 SL 10/4-55 SL 10/4-56 SL 10/4-57 SL 10/4-58 SL 10/4-59 SL 10/4-60 SL 10/4-61 SL 10/4-62 SL 10/4-63 SL 10/4-64 SL 10/4-65 SL 10/4-66 SL 10/4-67 SL 10/4-68 SL 10/4-69 SL 10/4-70 SL 10/4-71 SL 10/4-72 SL 10/4-73 SL 10/4-74 SL 10/4-75 SL 10/4-76 SL 10/4-77 SL 10/4-78 SL 10/4-79 0.003 0.002 0.016 0.005 0.003 0.004 0.003 0.007 0.004 0.004 0.004 0.006 0.006 0.003 0.002 0.003 0.003 0.004 0.002 0.004 0.003 0.008 0.003 0.033 0.004 0.002 0.003 0.002 0.003 0.002 0.002 0.004 0.016 0.010 0.023 0.002 0.003 0.002 0.002 0.002 0.003 0.002 0.002 0.005 0.004 0.002 0.003 0.050 0.002 0.014 0.013 0.002 0.001 0.002 0.012 0.002 0.033 0.002 0.002 0.004 0.001 0.002 0.019 0.005 0.002 0.002 0.002 0.002 0.002 0.004 0.006 0.003 0.002 0.004 0.002 0.002 0.002 0.002 0.003 0.02 0.03 0.15 0.02 0.00 0.02 0.02 0.02 0.03 0.03 0.01 0.02 0.06 0.00 0.02 0.01 0.01 0.03 0.00 0.03 0.02 0.09 0.02 0.30 0.01 0.04 0.02 0.01 0.01 0.02 0.01 0.03 0.03 0.04 0.03 0.08 0.03 0.01 0.00 0.03 0.01 0.01 0.02 0.00 0.07 0.03 0.01 0.09 0.05 0.14 0.06 0.01 0.03 0.01 0.04 0.01 0.12 0.03 0.03 0.03 0.03 0.01 0.07 0.05 0.02 0.00 0.06 0.02 0.02 0.01 0.00 0.02 0.02 0.01 0.02 0.01 0.01 0.03 0.02 0.13 0.11 0.49 0.22 0.23 0.17 0.19 0.16 0.17 0.16 0.23 0.35 0.30 0.15 0.16 0.15 0.12 0.17 0.22 0.16 0.17 0.21 0.13 0.69 0.19 0.17 0.17 0.11 0.19 0.16 0.12 0.18 0.69 0.13 0.40 0.14 0.13 0.16 0.12 0.11 0.16 0.10 0.12 0.25 0.23 0.21 0.23 0.27 0.10 0.36 0.18 0.11 0.11 0.11 0.19 0.11 0.28 0.11 0.16 0.09 0.11 0.12 0.31 0.18 0.15 0.18 0.15 0.12 0.11 0.27 0.21 0.14 0.12 0.09 0.11 0.14 0.15 0.14 0.19 1750 731 361 2490 2140 1070 1500 777 2060 1520 1850 1770 1400 1340 1110 341 960 955 549 1480 1400 879 1350 1420 1260 1560 1430 1010 1860 1340 835 1070 910 1580 1790 1180 1410 2020 1790 846 1910 1290 1420 2210 1570 1150 1340 888 1040 1210 1500 1020 1260 1160 1290 801 4400 1020 1480 1250 1490 866 763 904 808 613 795 1330 1230 1290 1410 780 1100 1680 1080 995 1070 1530 1600 250 333 484 3840 2140 461 883 78 620 384 515 883 518 889 499 255 4830 373 270 492 604 500 502 426 447 522 483 4200 1010 503 2980 499 3170 538 2180 341 444 1420 3310 215 921 789 1190 1150 504 440 443 396 359 471 1910 82 470 437 1000 1670 561 441 497 407 508 1950 160 319 189 189 340 325 204 1910 846 408 520 838 252 286 461 586 583 64 34 32 45 61 72 62 99 48 33 50 61 75 55 75 55 104 52 64 50 49 93 66 64 61 24 43 61 36 52 45 88 55 42 66 37 75 40 57 46 47 71 56 87 50 86 44 51 76 50 38 49 40 63 49 64 48 47 74 77 41 42 98 57 41 67 59 46 70 53 78 94 65 42 66 41 109 67 72 3320 2690 2340 2450 358 1740 1460 1210 2450 2250 966 830 1980 308 1660 2520 1890 1800 2190 1970 1190 1700 1900 1690 1550 1610 1790 2370 628 1800 2010 2280 1980 1350 321 1530 1840 1030 262 2030 229 1840 806 958 1420 2180 1650 586 1350 2000 1220 648 1780 1160 1260 2310 2190 2700 2530 597 1760 1580 2160 301 1730 1390 1820 1580 654 1970 521 2280 710 1370 1940 2130 371 1770 2560 1.7 1.3 1.8 2.8 2.2 1.8 2.3 1.4 2.6 1.5 2.7 3.7 3.7 2.6 2.1 3.0 2.2 1.9 9.1 1.6 1.9 2.0 1.7 3.9 2.0 1.3 1.1 1.1 1.2 2.2 1.5 2.8 3.6 1.2 3.5 2.1 1.3 1.5 1.1 1.2 6.7 0.8 0.8 2.5 1.0 1.2 1.4 1.5 1.0 1.7 1.4 1.4 0.8 0.8 1.5 2.0 1.3 1.2 2.0 1.6 0.5 0.8 2.3 3.9 1.7 5.3 1.2 1.6 1.6 2.6 2.9 1.7 1.1 1.2 1.2 1.4 8.2 1.6 3.3 45 65 101 94 83 90 64 53 111 68 71 56 73 38 137 123 105 111 94 101 141 125 125 82 82 5 295 179 234 139 82 132 93 47 30 89 59 74 64 322 15 68 64 48 84 169 108 106 203 99 86 31 77 82 120 82 84 85 61 70 59 127 78 84 45 40 170 116 60 72 78 159 71 94 49 156 28 81 99 8.1 0.7 15.3 6.1 3.8 6.1 4.7 24.0 1.3 1.2 3.4 6.8 16.2 214.0 7.3 18.0 20.8 5.0 64.5 3.7 1.9 6.0 19.7 4.5 16.5 0.8 1.0 35.4 29.3 3.8 8.5 3.7 15.9 96.0 20.9 3.6 10.8 1.9 2.7 7.5 104.0 4.2 20.4 43.0 2.9 2.4 4.3 5.6 10.7 5.3 4.1 23.5 1.5 2.2 1.1 152.0 3.4 2.4 8.8 3.6 1.5 5.5 6.0 1.0 4.0 16.6 21.5 1.3 12.7 4.3 11.7 2.7 2.0 0.6 3.9 1.1 60.1 8.7 6.7 3.3 1.6 2.6 3.6 4.0 3.8 2.9 5.5 3.4 1.9 1.9 3.9 4.0 3.7 4.1 4.6 4.9 2.4 2.7 3.1 2.5 4.3 3.3 2.4 2.8 2.2 2.9 4.0 2.7 3.3 3.7 4.4 3.7 2.3 4.2 3.6 3.7 2.4 3.3 2.0 1.8 3.8 3.1 2.7 3.4 4.5 2.2 4.8 3.1 4.1 1.8 3.7 1.6 4.5 3.1 5.3 3.1 3.0 4.5 3.8 2.3 2.7 5.4 2.5 1.2 4.6 3.3 3.0 4.7 3.1 3.9 5.0 4.2 2.6 3.7 2.6 5.1 3.4 3.1 263 163 148 117 23 100 91 82 161 118 67 48 126 13 107 197 88 131 169 128 76 119 105 114 79 68 210 136 35 130 138 117 98 54 14 120 96 62 10 136 14 87 27 57 100 162 110 21 107 122 54 45 87 84 58 148 135 165 124 37 104 138 134 13 96 121 126 100 41 66 27 167 51 82 105 149 20 87 191 136 75 225 230 1690 142 156 387 298 100 57 109 48 322 254 156 321 237 210 96 358 633 183 404 100 16 252 191 535 234 241 160 238 803 351 199 95 227 304 1230 371 96 195 171 81 857 176 356 552 138 1050 437 175 153 192 317 126 110 91 528 142 274 791 40 80 1030 331 109 434 255 269 747 183 543 82 126 125 83 85 2.1 0.1 4.4 0.4 0.2 0.7 0.2 1.3 0.2 0.1 0.2 0.3 3.2 0.6 0.9 0.7 3.6 2.3 3.3 4.4 1.7 1.3 3.8 1.5 3.0 0.1 0.2 0.6 2.7 0.5 0.9 1.8 2.3 0.8 0.5 0.2 2.7 0.6 0.1 1.4 0.5 2.9 0.6 0.6 0.9 2.1 0.3 0.4 2.0 1.5 3.8 3.8 0.2 0.4 0.3 1.2 1.8 0.1 0.3 0.5 1.6 2.4 1.2 0.2 0.1 0.1 2.9 0.3 1.0 0.6 1.6 1.9 0.5 0.3 0.2 0.7 6.4 3.2 0.4 Ts Ts Ts Ts Ts Tomkins Tomkins Tomkins Tomkins Tomkins (3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa) 659 616 612 635 655 668 657 690 640 615 642 655 670 648 670 648 694 645 660 642 641 686 662 659 656 596 632 655 621 644 634 682 648 631 662 623 670 627 651 636 638 666 650 681 642 680 633 643 671 641 624 641 628 658 640 659 639 638 669 672 629 630 690 651 629 662 653 637 665 646 673 687 660 630 662 629 698 662 668 586 547 543 565 583 594 585 615 569 546 571 583 597 577 597 576 619 574 587 570 570 611 589 586 584 528 562 583 551 573 564 607 577 560 589 553 596 557 579 565 567 593 578 607 571 606 562 572 598 570 555 570 557 586 569 587 568 567 596 599 558 560 615 579 559 589 581 566 592 575 599 612 587 560 589 559 622 589 594 565 526 523 544 562 573 563 593 548 526 550 562 575 555 575 555 597 553 565 549 549 589 567 565 562 508 541 562 531 552 543 585 556 540 567 533 575 536 558 544 546 571 557 585 550 584 542 551 576 549 534 549 537 564 548 565 547 546 574 577 538 539 593 558 538 568 559 545 571 554 578 590 566 539 567 538 600 568 573 612 571 568 590 608 620 610 642 594 571 596 608 623 602 622 602 646 599 613 596 595 638 614 612 609 552 586 609 576 598 589 634 602 585 614 578 622 582 604 590 592 619 603 633 596 632 587 597 624 595 579 595 582 611 594 612 593 592 622 625 583 585 642 604 584 615 606 591 618 600 625 638 613 585 614 584 649 615 620 531 494 491 510 528 538 529 558 514 493 516 528 541 522 540 521 561 519 531 516 516 554 533 531 528 476 508 528 498 518 510 550 522 506 533 500 540 503 524 511 512 537 523 550 516 549 508 517 542 516 501 515 504 530 515 531 513 513 540 542 505 506 558 524 505 533 526 512 536 520 543 555 531 506 533 505 564 533 538 Table A11.1. Trace element compositions and temperature measurements for the detrital samples from the Western Alps 228 Appendix A11 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SL 10/4-80 SL 10/4-81 SL 10/4-82 SL 10/4-83 SL 10/4-84 SL 10/4-85 SL 10/4-86 SL 10/4-87 SL 10/4-88 SL 10/4-89 SL 10/4-90 SL 10/4-91 SL 10/4-92 SL 10/10-1 SL 10/10-2 SL 10/10-3 SL 10/10-4 SL 10/10-5 SL 10/10-6 SL 10/10-7 SL 10/10-8 SL 10/10-9 SL 10/10-10 SL 10/10-11 SL 10/10-12 SL 10/10-13 SL 10/10-14 SL 10/10-15 SL 10/10-16 SL 10/10-17 SL 10/10-18 SL 10/10-19 SL 10/10-20 SL 10/10-21 SL 10/10-22 SL 10/10-23 SL 10/10-24 SL 10/10-25 SL 10/10-26 SL 10/10-27 SL 10/10-28 SL 10/10-29 SL 10/10-30 SL 10/10-31 SL 10/10-32 SL 10/10-33 SL 10/10-34 SL 10/10-35 SL 10/10-36 SL 10/10-37 SL 10/10-38 SL 10/10-39 SL 10/10-40 SL 10/10-41 SL 10/10-42 SL 10/10-43 SL 10/10-44 SL 10/10-45 SL 10/10-46 SL 10/10-47 SL 10/10-48 SL 10/10-49 SL 10/10-50 SL 10/10-51 SL 10/10-52 SL 10/10-53 SL 10/10-54 SL 10/10-55 SL 10/10-56 SL 10/10-57 SL 10/10-58 SL 10/10-59 SL 10/10-60 SL 10/10-61 SL 10/10-62 SL 10/10-63 SL 10/10-64 SL 10/10-65 SL 10/10-66 0.002 0.002 0.003 0.003 0.003 0.002 0.002 0.002 0.003 0.003 0.002 0.006 0.003 0.002 0.068 0.012 0.002 0.002 0.003 0.003 0.003 0.002 0.002 0.003 0.002 0.003 0.003 0.003 0.005 0.002 0.003 0.003 0.003 0.004 0.004 0.003 0.002 0.002 0.003 0.002 0.003 0.004 0.003 0.002 0.002 0.003 0.012 0.004 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.004 0.003 0.002 0.005 0.005 0.002 0.003 0.003 0.006 0.011 0.003 0.014 0.003 0.005 0.004 0.003 0.006 0.003 0.005 0.003 0.002 0.004 0.006 0.002 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.00 0.01 0.02 0.01 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.03 0.00 0.02 0.00 0.01 0.03 0.02 0.00 0.02 0.01 0.01 0.03 0.04 0.03 0.01 0.02 0.02 0.02 0.00 0.02 0.02 0.01 0.01 0.03 0.03 0.01 0.01 0.04 0.02 0.02 0.03 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.04 0.01 0.02 0.02 0.02 0.04 0.01 0.02 0.01 0.02 0.06 0.02 0.03 0.06 0.02 0.03 0.03 0.03 0.04 0.01 0.01 0.11 0.13 0.13 0.14 0.15 0.12 0.09 0.14 0.13 0.14 0.09 0.12 0.14 0.21 0.14 0.13 0.15 0.18 0.12 0.17 0.14 0.13 0.15 0.14 0.12 0.16 0.10 0.12 0.10 0.13 0.16 0.16 0.14 0.12 0.11 0.17 0.13 0.11 0.17 0.13 0.15 0.18 0.16 0.11 0.11 0.14 0.19 0.18 0.13 0.13 0.18 0.16 0.12 0.15 0.18 0.22 0.17 0.11 0.29 0.13 0.11 0.12 0.14 0.15 0.11 0.12 0.16 0.14 0.19 0.15 0.13 1.94 0.14 0.19 0.12 0.11 0.16 0.12 0.15 838 1400 639 1290 1200 1710 729 358 1560 1430 898 1130 1030 1270 1800 1970 1830 1390 984 1130 1020 1220 1580 1770 1570 1400 2520 1870 1740 2090 2290 1420 1270 1690 1440 1840 1310 3090 1270 1500 1180 1200 1030 1070 1450 1250 1440 1340 1040 1430 1270 1500 1430 2490 947 1750 1030 1390 1180 1150 1150 1260 1450 956 1430 1150 1110 1080 1290 1290 1460 1530 1190 1280 1130 724 981 1690 1800 345 468 731 578 269 907 266 252 337 441 365 413 408 564 573 934 61 593 453 435 2130 426 43 212 397 536 58 501 915 455 671 371 449 810 1110 374 368 18 312 445 453 635 464 419 429 497 390 508 616 554 232 406 439 500 566 1340 407 480 383 438 462 468 530 300 3010 443 4000 320 451 447 380 441 410 540 391 326 445 620 634 38 46 52 83 63 35 53 82 56 46 78 60 85 149 41 71 44 95 105 138 68 64 121 53 120 46 106 126 94 124 41 62 142 95 86 53 52 66 161 38 142 57 123 145 119 75 144 130 75 42 74 144 147 48 74 45 73 119 49 106 64 133 143 52 60 152 51 44 76 100 68 88 128 53 119 64 127 75 59 2420 1770 2100 970 1650 1260 1930 2410 973 1840 2020 2290 2280 2030 1760 1250 160 1560 1880 1950 2110 1240 242 521 1400 1890 47 2210 669 1830 1150 1810 1710 1480 1230 1620 2040 9 2030 2110 1920 2040 1970 1900 1390 1730 2000 1800 1870 1930 1240 2060 2370 1800 2430 1530 2860 1850 1600 1980 1760 2010 2420 1720 2210 1820 1860 2150 1800 1810 1920 1950 1650 2020 1640 1790 1880 1360 2260 1.5 1.5 1.9 1.8 2.2 1.1 1.6 4.4 1.6 1.5 1.5 1.6 1.8 2.1 1.3 2.0 8.5 1.1 1.2 1.8 1.5 1.4 13.8 2.3 1.2 2.0 12.7 1.6 1.4 1.8 1.4 1.8 2.4 1.4 1.7 1.8 1.8 9.4 2.1 1.3 1.5 2.3 1.4 1.4 1.2 1.5 1.3 2.2 1.8 1.6 1.2 1.8 2.1 13.6 1.6 2.0 1.6 1.5 3.4 1.9 1.1 2.0 2.2 2.0 1.5 1.7 2.0 1.3 3.9 2.7 1.4 2.8 3.4 1.8 2.4 2.2 2.1 1.5 1.6 92 67 90 69 214 72 48 100 173 115 102 139 161 113 81 111 12 107 128 117 78 57 39 112 80 124 4 98 137 155 18 76 109 70 63 126 86 5 109 146 111 90 121 106 55 100 134 104 105 89 98 118 113 25 86 94 90 111 148 107 95 133 101 115 169 110 135 80 116 109 54 146 111 133 93 57 125 56 85 3.2 5.1 3.7 17.6 7.7 12.2 3.2 636.0 9.2 4.9 22.7 11.3 2.9 0.8 1.7 49.9 42.2 0.8 0.9 0.9 5.1 30.6 17.9 31.7 1.3 0.8 80.9 2.0 2.3 1.3 0.6 4.9 1.0 56.7 11.2 2.7 4.1 128.0 1.2 3.7 0.8 4.4 0.8 2.0 1.4 2.3 0.7 1.9 2.1 1.0 1.1 0.8 1.1 2.8 6.9 1.2 4.3 0.6 2.7 2.0 1.3 1.2 2.7 1.3 13.3 1.1 6.1 2.5 2.2 1.0 7.4 1.2 1.1 1.1 0.9 2.2 1.0 30.7 3.6 3.0 3.3 3.5 3.5 3.1 4.0 2.8 3.8 3.5 2.6 3.7 2.9 3.6 7.5 2.4 4.3 4.0 3.6 5.2 6.5 3.4 3.6 5.5 2.7 6.0 4.0 5.1 5.2 6.8 5.2 2.5 3.1 7.2 4.5 5.0 2.9 4.0 5.0 9.1 2.5 7.2 3.7 7.5 7.3 5.3 5.1 7.3 6.5 6.5 1.7 4.9 6.2 7.2 4.2 4.0 2.4 4.8 6.8 2.5 5.7 5.0 7.9 7.5 3.1 4.9 7.5 3.5 2.8 5.8 4.9 3.6 4.3 6.4 4.6 5.7 5.6 7.5 4.5 2.9 176 106 118 75 144 64 100 176 60 126 110 175 145 151 122 76 6 103 128 127 86 79 15 26 91 133 3 98 30 120 47 110 119 89 73 100 168 1 155 158 162 160 235 133 108 124 128 124 155 105 83 132 151 107 132 97 201 124 108 127 129 124 161 137 138 123 135 129 212 109 99 177 106 132 107 127 126 96 136 182 163 81 228 1240 259 132 319 300 283 446 155 607 194 149 224 50 208 295 209 150 178 45 222 142 163 48 174 284 358 8 186 227 255 47 53 145 27 202 322 201 56 183 239 45 244 333 188 230 133 177 191 206 92 59 370 182 242 59 195 182 294 328 437 719 175 219 158 237 171 59 266 205 212 145 173 254 105 125 0.2 2.9 0.3 0.4 2.1 3.1 0.2 8.7 3.4 1.0 1.5 0.4 2.6 4.8 0.2 2.3 0.1 0.9 3.0 5.9 0.3 0.9 1.6 0.3 0.2 0.1 0.1 7.0 0.1 1.3 0.1 0.4 7.8 3.9 0.6 0.6 0.3 0.1 3.7 0.1 1.5 0.5 5.7 2.1 0.4 0.5 1.8 8.8 1.1 0.2 0.2 4.1 0.8 0.2 1.1 0.2 0.9 0.6 0.2 0.7 0.3 1.4 3.5 0.5 1.1 4.7 0.9 0.6 1.5 0.4 0.2 0.4 3.4 0.2 4.5 1.1 0.9 0.7 0.4 Ts Ts Ts Ts Ts Tomkins Tomkins Tomkins Tomkins Tomkins (3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa) 624 637 645 677 658 619 646 677 649 637 673 655 680 722 630 666 634 688 695 716 663 660 706 646 705 636 696 709 687 708 628 657 718 688 680 647 644 662 728 624 718 651 707 720 705 670 720 711 670 630 669 720 721 639 669 634 668 705 640 696 659 713 719 644 655 724 644 633 671 691 664 682 710 645 705 659 710 670 654 554 566 573 603 585 550 575 603 577 566 599 582 605 645 559 593 563 613 620 639 590 587 630 574 629 565 620 633 612 631 558 584 641 613 606 575 573 589 650 555 641 579 631 643 628 596 642 635 596 560 596 642 644 568 596 564 595 628 569 620 586 636 642 573 583 646 572 562 598 616 591 607 634 574 628 587 633 597 582 533 545 552 581 564 529 554 581 556 545 578 561 584 622 539 571 542 591 597 616 568 565 607 553 607 544 598 610 590 609 537 563 618 591 584 554 552 567 627 534 618 558 608 620 606 575 619 612 575 539 574 619 621 547 574 543 573 606 548 598 565 614 619 552 561 623 551 542 576 594 569 585 611 553 606 565 611 575 560 579 591 598 629 611 574 600 629 603 591 626 608 632 672 584 619 588 639 646 666 616 613 657 599 656 590 647 660 639 658 583 610 668 639 632 600 598 614 678 579 668 604 658 670 655 622 669 662 622 585 622 669 671 593 622 589 621 655 594 647 612 664 669 598 608 674 598 587 624 643 616 633 661 599 655 612 660 622 607 500 512 519 547 530 497 520 546 523 512 543 527 549 585 505 537 509 556 562 580 534 531 571 519 571 511 563 574 555 573 504 529 582 556 549 520 518 533 591 501 582 524 572 584 570 540 583 576 540 506 540 583 584 513 540 510 539 570 515 563 531 578 583 518 527 587 518 508 542 559 535 550 575 519 570 531 575 540 526 Table A11.1. Trace element compositions and temperature measurements for the detrital samples from the Western Alps (continued) 229 Appendix A11 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SL 10/10-67 SL 10/10-68 SL 10/10-69 SL 10/10-70 SL 10/10-71 SL 10/10-72 SL 10/10-73 SL 10/10-74 SL 10/10-75 SL 10/10-76 SL 10/10-77 SL 10/10-78 SL 10/10-79 SL 10/10-80 SL 10/10-81 SL 10/10-82 SL 10/10-83 SL 10/10-84 SL 10/10-85 SL 10/10-86 SL 10/10-87 SL 10/10-88 SL 10/10-89 SL 10/10-90 SL 10/10-91 SL 10/10-92 SL 10/10-93 SL 10/10-94 SL 10/10-95 SL 10/10-96 SL 10/10-97 SL 10/10-98 SL 10/10-99 SL 10/12-1 SL 10/12-2 SL 10/12-3 SL 10/12-4 SL 10/12-5 SL 10/12-6 SL 10/12-7 SL 10/12-8 SL 10/12-9 SL 10/12-10 SL 10/12-11 SL 10/12-12 SL 10/12-13 SL 10/12-14 SL 10/12-15 SL 10/12-16 SL 10/12-17 SL 10/12-18 SL 10/12-19 SL 10/12-20 SL 10/12-21 SL 10/12-22 SL 10/12-23 SL 10/12-24 SL 10/12-25 SL 10/12-26 SL 10/12-27 SL 10/12-28 SL 10/12-29 SL 10/12-30 SL 10/12-31 SL 10/12-32 SL 10/12-33 SL 10/12-34 SL 10/12-35 SL 10/12-36 SL 10/12-37 SL 10/12-38 SL 10/12-39 SL 10/12-40 SL 10/12-41 SL 10/12-42 SL 10/12-43 SL 10/12-44 SL 10/12-45 0.002 0.004 0.003 0.002 0.003 0.033 0.002 0.004 0.002 0.262 0.004 0.002 0.003 0.002 0.002 0.003 0.003 0.002 0.003 0.003 0.003 0.004 0.002 0.004 0.002 0.004 0.003 0.003 0.011 0.003 0.002 0.004 0.047 0.002 0.003 0.170 0.029 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.003 0.002 0.003 0.003 0.003 0.004 0.001 0.003 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.003 0.004 0.002 0.002 0.003 0.001 0.001 0.005 0.001 0.001 0.02 0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.01 0.26 0.03 0.02 0.02 0.03 0.02 0.05 0.02 0.02 0.03 0.02 0.03 0.01 0.08 0.02 0.01 0.01 0.03 0.01 0.03 0.02 0.02 0.01 0.05 0.02 0.04 0.24 0.30 0.02 0.01 0.02 0.01 0.02 0.00 0.03 0.04 0.01 0.00 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.03 0.02 0.02 0.02 0.06 0.02 0.01 0.02 0.02 0.03 0.04 0.01 0.02 0.01 0.01 0.01 0.01 0.03 0.05 0.02 0.03 0.05 0.03 0.00 0.13 0.15 0.16 0.11 0.12 0.38 0.13 0.20 0.12 1.94 0.26 0.14 0.12 0.21 0.11 0.20 0.18 0.10 0.15 0.18 0.15 0.14 0.15 0.12 0.14 0.22 0.15 0.12 0.47 0.16 0.15 0.17 0.46 0.14 0.18 1.54 0.76 0.15 0.14 0.17 0.13 0.11 0.13 0.13 0.15 0.18 0.11 0.23 0.13 0.19 0.15 0.10 0.17 0.19 0.11 0.17 0.18 0.14 0.84 0.11 0.18 0.10 0.09 0.12 0.16 0.18 0.16 0.19 0.15 0.14 0.14 0.14 0.11 0.10 0.14 0.20 0.22 0.18 1910 1250 1050 1390 937 1690 1250 859 1540 1810 1290 1280 1850 1360 1050 1190 1050 1730 1130 1310 1320 845 979 1250 1250 1190 1150 798 1430 1070 1370 986 1690 927 1370 1230 1200 669 3030 799 1490 1730 1370 1580 1140 5660 1760 3130 2310 1720 2030 910 1360 2830 1130 1210 1410 1090 1370 1330 792 1320 2040 1220 1110 1510 1250 2100 1030 885 1420 1380 2010 984 1390 1280 1780 1150 422 452 961 563 306 839 332 763 304 162 461 530 464 521 371 533 453 1200 418 435 424 78 417 412 537 527 311 524 446 453 471 482 193 514 534 437 149 372 711 316 615 879 5000 476 379 136 4640 4 198 558 509 324 426 37 417 398 455 388 398 437 339 404 365 533 347 500 664 815 388 462 2140 468 652 436 224 406 562 1860 133 145 72 106 54 79 39 87 78 41 114 106 44 125 44 135 115 55 148 40 111 46 53 87 51 158 114 98 136 96 63 80 70 100 149 61 139 92 770 43 53 63 57 229 140 50 42 29 34 93 79 90 106 24 114 104 147 164 136 110 161 79 32 75 123 61 124 40 123 106 76 130 54 145 151 64 92 38 2580 1960 1900 1800 1200 105 1900 2460 1670 239 2300 2170 2260 1480 2150 2040 1620 1860 2160 1660 1800 846 1820 1840 1500 2050 2340 2570 2190 2230 2080 2160 187 1840 2060 443 1050 2290 1810 2410 2030 1830 681 3140 1790 112 854 62 68 1690 1090 1550 1990 74 2060 2150 1480 2060 1050 2050 1670 2000 89 1990 2380 1920 1760 1520 1800 885 891 1870 1590 1980 1360 1470 1770 1030 2.9 3.0 1.8 1.3 1.9 1.6 1.2 1.6 1.3 2.5 1.9 1.9 1.4 2.4 1.0 1.4 1.7 1.3 1.7 2.1 2.9 8.8 1.6 2.1 1.6 1.8 2.4 2.0 4.2 2.3 1.8 2.7 4.9 1.5 2.1 5.6 4.4 1.9 36.8 2.2 1.3 1.6 1.4 3.8 2.9 4.6 1.1 1.4 1.5 1.5 1.4 1.8 1.8 4.1 1.7 1.7 1.6 2.0 1.1 1.5 2.5 1.7 2.1 1.3 1.8 1.3 2.1 1.9 1.9 1.8 1.3 1.7 1.8 1.4 2.4 0.9 1.3 1.2 132 100 69 120 111 32 106 74 77 32 98 102 98 45 244 97 97 75 109 229 110 54 136 115 144 102 129 88 126 146 90 100 35 122 99 107 35 111 12 127 118 72 9 127 103 25 77 6 17 118 100 46 98 73 99 101 90 116 108 109 182 143 19 128 124 84 114 46 102 43 137 141 122 86 82 118 100 102 2.3 1.0 10.3 0.6 4.4 48.2 4.5 0.7 5.2 23.4 1.4 2.5 2.4 4.0 1.8 0.8 0.8 5.6 1.7 3.6 1.2 401.0 6.1 2.2 4.6 1.0 1.0 1.0 2.8 1.1 2.1 3.2 17.5 0.9 0.8 3.1 4.8 1.7 0.8 1.8 1.3 5.8 0.5 0.7 1.4 0.8 2.1 0.6 0.6 12.2 2.3 16.8 1.5 2.1 0.7 0.8 1.6 0.6 0.7 1.3 0.8 0.8 0.4 8.8 0.8 3.0 1.1 0.6 0.9 17.4 9.5 0.7 2.3 1.2 1.2 2.5 1.2 28.8 6.7 6.8 3.8 5.6 4.0 4.7 2.1 6.2 3.7 1.9 6.7 7.6 1.8 5.2 3.5 7.7 5.7 3.0 6.6 2.4 5.6 4.2 5.0 5.8 4.5 7.2 5.7 3.6 8.0 4.4 4.6 4.4 3.2 6.2 7.3 4.7 3.7 5.3 42.9 2.5 3.6 3.0 4.1 10.8 6.8 2.3 1.9 2.3 1.3 4.7 4.9 5.9 5.1 1.6 5.1 6.2 6.5 6.8 7.7 5.6 7.6 4.8 2.0 5.2 6.2 3.4 6.1 2.6 6.8 5.0 4.1 6.6 2.5 6.0 6.8 4.0 5.1 2.8 194 142 112 140 80 6 134 212 101 13 148 150 140 79 127 141 97 110 141 125 107 56 153 155 76 151 158 179 121 142 112 125 11 115 125 15 65 187 53 169 134 109 22 225 118 13 51 5 5 111 74 141 137 2 124 141 119 138 79 131 132 147 5 142 177 137 105 75 116 44 42 120 110 147 81 74 108 87 444 241 152 206 441 393 185 126 170 12 187 232 132 95 90 265 160 108 175 1100 175 436 336 222 419 176 130 126 297 213 142 116 16 285 169 295 31 474 5 284 203 142 46 171 171 121 106 29 1 184 188 231 183 1 181 241 93 270 269 228 197 387 1 311 225 82 332 27 251 143 231 153 202 200 234 133 121 250 1.1 1.2 0.9 1.1 0.6 1.4 1.4 0.4 1.1 0.2 0.6 0.8 0.2 1.0 0.2 1.3 0.8 0.2 1.8 0.5 1.2 0.1 0.3 0.7 0.4 2.2 11.0 0.5 4.0 1.2 2.6 1.1 0.2 0.9 4.2 0.9 1.7 1.0 11.0 0.9 0.4 2.6 0.1 13.1 1.4 0.3 0.2 0.2 0.1 8.4 0.2 1.5 0.5 0.2 2.4 1.1 3.4 3.0 0.5 2.3 4.8 0.3 0.1 0.4 4.7 0.3 0.8 0.3 2.0 3.8 0.8 3.6 56.1 3.4 1.2 0.6 2.1 0.6 Ts Ts Ts Ts Ts Tomkins Tomkins Tomkins Tomkins Tomkins (3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa) 713 720 667 696 647 674 626 681 674 629 701 696 633 708 634 714 702 648 722 627 699 637 646 681 644 727 701 690 715 688 658 675 666 691 722 656 717 685 873 632 646 658 651 758 717 642 630 606 616 686 674 683 696 595 701 694 721 730 715 699 728 674 614 670 707 656 708 627 707 696 671 711 647 720 723 659 685 624 636 643 594 620 575 600 556 607 600 559 625 620 563 632 563 637 626 577 644 557 624 566 575 607 572 649 625 615 638 613 585 601 592 616 645 584 640 610 784 561 574 586 579 677 640 571 560 538 547 611 600 609 620 527 625 619 644 652 638 623 650 600 544 597 631 584 631 557 631 620 597 635 575 643 646 587 610 554 614 620 572 598 554 579 535 585 578 538 603 598 542 609 543 615 604 555 621 537 601 545 554 585 551 626 603 593 615 591 564 579 571 594 622 562 617 588 758 541 553 565 558 654 617 550 539 517 527 589 579 587 598 508 603 597 621 629 615 601 627 578 524 575 608 562 609 536 608 598 576 612 554 620 623 565 588 534 664 670 620 647 600 626 581 633 626 584 652 647 588 659 588 665 653 602 672 582 650 591 600 633 597 677 652 641 665 640 611 627 618 643 672 609 667 637 815 586 599 611 605 706 667 596 585 562 571 637 626 635 647 551 652 646 671 679 665 650 678 626 569 622 658 609 658 581 658 647 623 662 601 670 673 612 637 579 578 584 538 563 520 544 502 550 543 505 567 563 509 573 509 579 568 522 585 504 566 511 520 550 518 589 567 557 579 556 530 544 537 559 585 528 581 553 716 507 519 530 524 616 581 516 506 485 494 554 544 552 563 476 567 561 584 592 579 565 591 543 492 540 572 528 573 503 572 563 541 576 521 584 586 531 553 501 Table A11.1. Trace element compositions and temperature measurements for the detrital samples from the Western Alps (continued) 230 Appendix A11 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SL 10/12-46 SL 10/12-47 SL 10/12-48 SL 10/12-49 SL 10/12-50 SL 10/12-51 SL 10/12-52 SL 10/12-53 SL 10/12-54 SL 10/12-55 SL 10/12-56 SL 10/12-57 SL 10/12-58 SL 10/12-59 SL 10/12-60 SL 10/12-61 SL 10/12-62 SL 10/12-63 SL 10/12-64 SL 10/12-65 SL 10/12-66 SL 10/12-67 SL 10/12-68 SL 10/12-69 SL 10/12-70 SL 10/12-71 SL 10/12-72 SL 10/12-73 SL 10/12-74 SL 10/12-75 SL 10/12-76 SL 10/12-77 SL 10/12-78 SL 10/12-79 SL 10/12-80 SL 10/12-81 SL 10/12-82 SL 10/12-83 SL 10/12-84 SL 10/12-85 SL 10/12-86 SL 10/12-87 SL 10/12-88 SL 10/12-89 SL 10/12-90 SL 10/12-91 SL 10/12-92 SL 10/12-93 SL 10/12-94 SL 10/12-95 SL 10/12-96 SL 10/12-97 SL 10/12-98 SL 10/12-99 SL 10/12-100 SL 10/12-101 SL 10/13-1 SL 10/13-2 SL 10/13-3 SL 10/13-4 SL 10/13-5 SL 10/13-6 SL 10/13-7 SL 10/13-8 SL 10/13-9 SL 10/13-10 SL 10/13-11 SL 10/13-12 SL 10/13-13 SL 10/13-14 SL 10/13-15 SL 10/13-16 SL 10/13-17 SL 10/13-18 SL 10/13-19 SL 10/13-20 SL 10/13-21 SL 10/13-22 SL 10/13-23 0.008 0.002 0.001 0.001 0.003 0.003 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.015 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.002 0.003 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.003 0.002 0.002 0.006 0.003 0.001 0.329 0.004 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.004 0.002 0.002 0.003 0.001 0.001 0.002 0.002 0.001 0.003 0.003 0.003 0.017 0.002 0.002 0.003 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.002 0.06 0.01 0.02 0.01 0.03 0.02 0.02 0.02 0.03 0.02 0.01 0.02 0.03 0.01 0.06 0.01 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.04 0.02 0.02 0.03 0.01 0.03 0.02 0.02 0.01 0.30 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.01 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.02 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.13 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.02 0.26 0.19 0.09 0.05 0.12 0.18 0.09 0.09 0.16 0.13 0.12 0.11 0.12 0.15 0.20 0.12 0.10 0.34 0.13 0.14 0.13 0.06 0.27 0.16 0.11 0.12 0.10 0.23 0.19 0.12 0.19 0.16 0.13 0.16 0.23 0.13 0.15 0.37 0.16 0.20 2.02 0.16 0.20 0.17 0.10 0.11 0.13 0.18 0.15 0.35 0.30 0.09 0.16 0.14 0.10 0.08 0.18 0.21 0.16 0.14 0.14 0.32 0.40 0.16 0.19 0.22 0.18 0.17 0.17 0.20 5.04 0.15 0.15 0.12 0.26 0.12 0.15 0.15 0.12 945 1120 1050 1470 919 915 1450 849 1180 718 454 1060 1280 1750 741 1180 997 1920 1130 945 1270 1540 1360 1080 963 1290 3800 791 1170 1050 1260 817 435 1760 892 1490 923 1170 1170 872 453 1170 814 1050 987 1160 740 1090 1350 1120 1100 1760 759 1280 1420 2490 636 939 1450 227 2300 1610 1410 939 1400 840 2860 2630 648 1460 1590 1000 1280 1950 996 2370 2520 1260 3350 537 539 440 460 370 336 507 358 533 259 2930 449 445 533 384 369 372 9 422 115 467 475 551 427 637 377 837 469 479 525 332 495 246 642 410 252 679 416 499 471 4420 428 417 413 366 886 467 490 475 470 441 650 362 420 420 201 367 381 136 50 455 1230 656 5090 616 331 4 3 435 665 20 294 383 438 379 3 1020 504 637 121 58 100 65 103 125 43 127 89 135 71 86 55 124 106 138 49 78 105 102 96 132 115 133 141 144 831 148 115 106 134 130 81 100 57 39 47 131 112 123 58 113 121 124 118 91 109 113 75 115 140 41 101 77 70 59 19 73 22 38 866 75 60 23 91 90 34 54 79 70 29 53 67 90 116 34 82 112 1850 2160 774 1700 1710 1750 2070 1550 1850 1980 2600 3490 1700 2150 2310 2480 1780 1520 50 1770 1300 1930 1820 2030 2010 1510 1940 1830 2790 2040 2140 1860 2060 2150 2160 1650 1460 1740 1740 1900 1560 596 1850 2110 1600 1710 806 1740 1550 2220 1840 1790 311 2080 1920 715 49 240 1720 66 3200 1140 1490 953 196 1510 866 51 92 1630 1760 145 1450 1830 1930 1730 49 363 2140 1410 2.0 1.6 1.0 0.6 1.2 1.6 1.1 1.2 1.8 2.6 1.2 1.7 1.7 1.6 2.2 1.7 0.5 9.5 1.4 1.1 1.3 1.7 1.2 3.0 1.6 1.9 35.0 3.6 1.9 1.2 1.3 2.3 2.4 2.7 1.7 1.3 0.9 3.4 2.7 2.0 3.7 2.1 1.7 1.9 1.4 1.4 2.2 1.4 1.4 1.5 1.4 1.0 1.8 1.7 1.7 4.1 4.9 1.5 6.6 5.4 22.8 2.1 2.1 2.7 2.0 2.7 1.9 1.6 1.7 2.8 2.4 7.4 1.5 1.6 1.9 8.1 1.6 2.2 31.9 229 38 91 103 74 68 80 87 112 104 139 103 100 352 295 125 139 10 98 65 122 104 107 104 126 101 11 98 129 111 106 69 112 120 62 76 150 107 101 66 99 107 104 53 95 75 98 60 66 100 113 137 93 115 73 10 41 45 25 83 15 83 45 32 45 136 7 9 44 49 10 62 19 43 77 38 62 120 12 3.2 7.9 0.6 0.6 1.2 4.9 3.4 2.7 1.2 1.1 13.2 0.8 5.5 1.5 1.9 2.1 2.4 69.3 0.9 4.7 1.9 0.5 1.5 1.3 0.9 0.5 0.2 0.7 2.0 0.8 0.8 1.0 1.5 2.5 1.1 3.1 29.5 3.5 1.9 1.3 2.0 1.0 0.9 3.9 0.8 0.8 0.4 2.2 2.8 1.0 0.7 6.8 2.3 0.9 15.5 90.8 3.5 0.6 17.6 7.4 0.5 1.5 2.7 5.8 1.7 16.5 1.3 0.8 1.1 0.6 0.8 213.0 2.2 0.7 2.8 3.3 8.6 0.8 0.8 7.0 4.3 4.8 3.5 6.0 6.2 3.1 5.6 3.6 7.4 6.0 4.7 3.0 6.6 6.3 6.2 2.8 4.5 6.7 5.9 4.7 6.5 5.1 7.4 7.5 7.2 32.8 7.9 5.9 5.9 5.9 7.1 4.0 5.2 4.8 2.9 2.4 6.0 5.6 5.7 3.5 6.6 5.1 5.2 6.4 4.8 5.7 5.4 4.1 4.7 6.4 2.7 4.7 5.0 4.7 5.0 0.9 3.6 1.0 2.1 54.4 3.7 3.3 1.4 5.5 4.9 2.3 1.6 3.9 2.8 1.7 3.8 3.3 4.3 5.5 1.3 4.6 7.1 105.0 151 49 113 113 126 135 102 120 137 157 208 103 113 184 187 117 103 3 111 79 127 127 123 172 143 133 116 200 133 151 133 150 151 141 104 101 140 124 126 112 71 128 136 108 117 39 129 109 141 136 120 14 135 122 37 3 15 102 5 370 11 87 47 28 71 44 4 6 97 105 10 91 91 83 111 1 19 139 69 426 163 161 241 179 117 111 175 177 225 223 145 51 337 585 198 250 104 178 99 216 191 225 170 440 230 87 172 189 225 267 153 216 189 75 242 766 194 210 85 167 195 269 102 138 174 194 72 173 188 419 227 93 139 298 100 4 34 2 56 31 69 92 4 53 337 1 2 69 35 2 362 32 23 191 11 546 243 130 2.6 0.2 1.4 1.0 0.2 1.1 0.1 3.1 0.6 1.3 0.2 0.8 0.5 1.9 2.9 3.2 0.8 0.2 1.1 0.4 0.5 5.6 2.5 0.7 2.7 6.5 9.6 0.7 4.9 1.6 4.3 1.5 2.7 4.2 0.2 0.2 0.9 5.9 1.6 2.1 12.3 4.2 2.3 2.3 1.3 0.3 0.8 1.8 0.4 2.7 4.2 0.2 1.5 0.6 4.3 0.1 0.3 3.3 1.2 0.2 11.4 3.0 0.2 0.1 1.7 7.3 0.1 0.3 1.4 2.6 0.2 0.1 0.8 3.3 4.2 0.1 0.4 0.7 50.1 Ts Ts Ts Ts Ts Tomkins Tomkins Tomkins Tomkins Tomkins (3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa) 706 653 691 661 694 708 631 710 683 714 666 680 649 708 696 716 641 673 695 693 688 713 702 713 718 720 881 722 702 696 714 711 676 691 651 626 638 712 700 707 653 701 706 708 704 684 698 701 670 702 717 629 692 672 666 653 581 668 589 623 886 671 654 592 684 684 616 648 674 665 607 645 662 684 703 617 676 700 974 630 580 616 588 618 632 561 633 608 637 593 606 577 631 620 639 570 599 620 618 613 636 626 636 641 642 791 644 626 620 637 635 602 616 579 556 567 635 624 631 580 625 630 631 628 610 622 625 597 626 640 559 617 598 593 581 514 595 522 553 795 597 582 524 609 609 547 576 600 592 538 574 589 609 627 548 603 624 877 607 559 594 566 596 609 540 611 587 615 572 584 556 609 598 616 549 577 597 595 591 613 604 614 618 619 765 621 604 598 614 612 580 594 557 535 546 613 602 608 559 602 607 609 605 588 600 602 575 604 617 538 595 577 571 560 494 574 502 533 769 575 561 505 587 587 527 555 579 571 518 553 568 587 604 527 581 602 848 657 606 643 614 645 659 586 660 635 665 619 632 602 658 647 666 595 625 646 644 640 663 653 664 668 669 823 672 653 647 664 662 628 643 604 581 592 662 651 658 606 652 657 658 655 636 649 652 623 653 667 584 643 624 618 607 538 621 546 578 827 623 607 548 636 636 571 601 626 618 562 599 615 636 653 572 629 651 911 571 525 559 532 561 573 507 575 551 579 537 549 522 573 563 580 515 543 562 560 556 577 568 578 582 583 723 585 568 563 578 576 545 559 524 503 513 577 566 572 525 567 571 573 570 553 564 567 540 568 581 505 559 542 537 526 463 539 471 500 726 541 527 473 552 552 494 521 544 536 486 519 533 552 568 495 546 566 803 Table A11.1. Trace element compositions and temperature measurements for the detrital samples from the Western Alps (continued) 231 Appendix A11 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SL 10/13-24 SL 10/13-25 SL 10/13-26 SL 10/13-27 SL 10/13-28 SL 10/13-29 SL 10/13-30 SL 10/13-31 SL 10/13-32 SL 10/13-33 SL 10/13-34 SL 10/13-35 SL 10/13-36 SL 10/13-37 SL 10/13-38 SL 10/13-39 SL 10/13-40 SL 10/13-41 SL 10/13-42 SL 10/13-43 SL 10/13-44 SL 10/13-45 SL 10/13-46 SL 10/13-47 SL 10/13-48 SL 10/13-49 SL 10/13-50 SL 10/13-51 SL 10/13-52 SL 10/13-53 SL 10/13-54 SL 10/13-55 SL 10/13-56 SL 10/13-57 SL 10/13-58 SL 10/13-59 SL 10/13-60 SL 10/13-61 SL 10/13-62 SL 10/13-63 SL 10/13-64 SL 10/13-65 SL 10/13-66 SL 10/13-67 SL 10/13-68 SL 10/13-69 SL 10/13-70 SL 10/13-71 SL 10/13-72 SL 10/13-73 SL 10/13-74 SL 10/13-75 SL 10/13-76 SL 10/13-77 SL 10/13-78 SL 10/13-79 SL 10/13-80 SL 10/13-81 SL 10/13-82 SL 10/13-83 SL 10/13-84 SL 10/13-85 SL 10/13-86 SL 10/13-87 SL 10/13-88 SL 10/13-89 SL 10/13-90 SL 10/13-91 SL 10/13-92 SL 10/13-93 SL 10/13-94 SL 10/13-95 SL 10/13-96 SL 10/13-97 SL 10/13-98 SL 10/13-99 SL 10/13-100 SL 10/13-101 SL 10/13-102 0.002 0.002 0.003 0.054 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.006 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.029 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.013 0.066 0.002 0.829 0.003 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.003 0.062 0.002 0.003 0.002 0.003 0.002 0.001 0.002 0.002 0.002 0.002 0.003 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.011 0.002 0.002 0.001 0.001 0.001 0.02 0.02 0.01 0.13 0.02 0.02 0.00 0.02 0.03 0.02 0.02 0.01 0.01 0.02 0.01 0.00 0.02 0.01 0.04 0.03 0.01 0.02 0.08 0.03 0.02 0.01 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.92 0.02 0.03 0.01 0.01 0.01 0.02 0.01 0.00 0.02 0.66 0.02 0.02 0.02 0.03 0.01 0.02 0.01 0.04 0.02 0.01 0.14 0.02 0.02 0.02 0.02 0.01 0.03 0.01 0.11 0.01 0.01 0.02 0.02 0.01 0.18 0.17 0.12 0.32 0.15 0.17 0.17 0.15 0.25 0.15 0.18 0.16 0.12 0.11 0.14 0.16 0.14 0.17 0.16 0.34 0.22 0.13 0.34 0.14 0.18 0.19 0.20 0.22 0.18 0.21 0.19 0.15 0.13 0.17 0.18 0.18 0.19 0.15 0.19 0.13 0.18 0.15 0.31 0.19 4.03 0.14 0.16 0.13 0.11 0.16 0.13 0.18 0.24 0.20 1.43 0.20 0.16 0.12 0.23 0.14 0.11 0.28 0.14 0.12 0.12 0.13 0.13 0.06 0.10 0.16 0.22 0.13 0.18 0.19 0.17 0.10 0.10 0.12 0.10 1860 2590 3330 1330 1290 1550 1920 1220 1330 1460 2160 1210 2270 1690 1760 2720 1430 1150 1910 942 2490 1580 1270 1680 2000 1740 1340 1410 1280 1510 5120 1080 1660 1740 2060 2010 2020 3560 1330 1880 1820 1880 2370 1680 1580 1960 1100 2400 1840 1290 1600 905 3460 1050 1090 964 2010 1200 2070 1170 1310 1580 1270 2310 3740 1060 1250 2780 968 1780 1360 1300 1380 1410 858 1860 1180 1550 2120 539 583 918 452 683 675 3140 408 1050 150 622 591 664 565 492 506 445 448 605 345 789 425 398 616 575 673 552 531 409 495 1430 406 530 80 590 521 595 31 524 579 539 130 3100 619 2450 601 597 35 616 404 494 386 26 454 335 505 470 408 676 444 340 515 370 617 2090 539 430 696 319 694 512 454 516 508 334 397 579 311 27 45 792 774 61 85 140 98 131 36 54 84 81 74 100 64 197 71 72 59 36 74 79 51 79 95 78 122 147 119 93 599 82 95 34 90 82 77 30 135 89 83 51 86 86 125 88 74 32 93 70 91 123 45 137 85 100 79 93 74 88 87 77 88 73 1090 51 110 1320 81 80 107 63 113 73 98 109 89 81 35 1600 676 1050 1630 1510 1780 848 1840 1970 929 1530 1480 1520 1820 1470 227 1660 1630 1190 2220 1470 1750 1450 1810 1790 1710 2010 1610 1700 1580 2080 1830 1820 282 1740 2050 1690 72 1730 1840 1850 51 1910 2000 163 1810 1690 100 1750 326 1950 1880 45 1810 1940 1620 1870 1960 1780 790 1760 1700 1700 1140 2120 1710 2180 1700 1800 1190 1970 1740 1870 1830 1900 805 1990 1840 80 1.3 41.7 23.8 1.8 1.9 1.8 1.8 1.6 1.4 2.3 1.5 1.9 1.6 1.4 1.3 11.0 2.0 1.9 1.2 1.7 1.8 1.6 1.5 1.9 1.6 1.7 1.5 2.1 1.6 1.0 42.2 8.1 1.4 2.0 1.1 1.9 1.4 1.4 1.3 1.3 1.4 3.7 2.2 2.0 4.2 1.6 1.4 1.7 0.6 1.6 1.6 2.3 1.2 1.8 2.7 1.8 2.1 5.5 1.3 1.1 1.6 1.8 1.1 1.5 62.6 1.3 1.9 25.4 0.6 0.7 1.4 1.3 2.0 1.3 1.3 2.0 1.3 1.2 4.4 18 4 5 101 43 104 60 101 48 7 21 23 67 48 26 17 50 34 17 257 26 65 38 39 60 66 108 106 94 72 11 75 117 35 31 110 33 15 109 54 78 9 150 108 14 71 61 12 92 27 109 110 10 116 74 109 42 143 29 93 91 50 64 25 185 70 117 12 91 36 105 55 68 103 74 214 47 53 10 0.9 0.5 1.0 2.2 0.7 1.0 0.9 0.6 0.6 0.5 1.0 1.9 3.5 0.7 1.0 1.2 0.7 1.6 0.8 2.5 0.6 0.8 1.2 0.7 1.4 1.2 0.9 1.1 1.5 1.1 0.6 5.6 1.4 1.2 1.8 2.8 0.5 2.6 1.5 0.7 12.9 0.7 2.9 1.4 108.0 5.9 0.6 0.6 1.0 1.2 1.7 1.5 0.6 0.8 1.8 1.5 0.8 4.6 1.3 1.8 2.6 0.7 1.4 0.9 1.1 1.0 0.8 0.4 0.6 1.2 0.9 0.6 2.2 2.3 3.1 31.7 1.5 0.6 0.5 2.8 42.6 38.6 3.2 4.4 6.7 6.7 6.3 2.0 1.7 4.6 3.0 3.8 4.5 3.4 6.6 3.0 3.2 3.1 2.5 3.6 3.6 1.9 4.8 4.9 3.8 5.3 6.5 7.2 4.5 37.1 3.7 5.3 1.4 4.3 5.4 4.0 1.6 7.4 4.7 3.3 2.9 5.5 4.5 5.4 5.0 4.0 0.8 4.2 4.6 5.0 6.5 2.8 6.2 3.5 5.3 5.0 4.1 3.4 4.7 4.4 3.7 4.5 3.6 48.2 2.8 5.6 62.9 4.0 4.2 4.8 3.7 6.3 5.2 6.7 4.3 4.8 4.3 1.8 64 21 33 147 98 122 26 123 99 65 64 79 74 101 89 20 71 76 45 149 65 109 83 82 108 105 143 102 109 106 63 97 117 11 85 151 84 5 115 93 100 4 89 112 8 86 93 7 95 20 110 137 3 106 141 111 85 144 103 31 119 84 121 46 132 107 145 69 137 65 139 85 130 152 106 56 96 105 6 57 1 16 140 25 144 261 225 92 10 15 44 34 25 25 7 59 34 39 362 29 31 18 59 179 108 234 140 125 88 17 79 113 1 28 246 21 17 184 35 85 1 124 103 103 83 93 1 150 352 169 325 0 179 62 153 17 145 229 103 100 48 138 27 363 206 418 11 95 52 201 47 197 173 111 565 34 55 0 0.4 10.9 8.3 0.3 0.1 2.4 2.3 4.0 0.3 0.1 1.9 3.0 0.6 5.6 0.3 3.2 0.5 0.7 0.2 0.2 1.8 1.8 1.8 1.2 2.9 2.3 2.8 2.5 0.8 2.0 17.7 22.4 2.7 0.2 1.8 4.8 0.6 0.2 4.2 5.0 2.6 0.2 1.0 0.8 0.8 3.9 1.5 0.1 0.1 2.1 1.9 1.5 0.1 4.7 0.8 0.2 4.4 2.6 3.5 2.6 4.1 0.5 0.3 0.8 225.0 0.1 2.3 18.9 1.6 1.4 2.8 1.6 1.3 0.6 2.1 4.4 1.8 2.8 0.2 Ts Ts Ts Ts Ts Tomkins Tomkins Tomkins Tomkins Tomkins (3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa) 635 876 874 655 679 717 690 712 620 647 679 676 669 691 659 745 667 668 654 620 669 674 644 674 687 673 707 721 705 686 847 677 688 616 684 676 672 610 714 682 677 643 680 680 708 682 669 612 686 665 685 707 635 716 679 691 674 686 669 682 681 672 682 669 911 643 699 933 676 675 696 658 701 669 690 698 682 675 619 564 787 784 583 605 640 615 635 551 576 605 602 596 616 586 666 593 594 582 550 596 600 572 600 613 599 630 644 628 611 760 603 613 547 609 602 598 541 637 608 603 572 606 606 632 607 596 543 611 592 610 631 565 639 605 616 600 611 596 608 607 599 608 595 819 572 623 839 602 601 621 585 625 595 615 622 608 602 550 544 760 758 562 583 617 593 613 530 555 583 580 574 594 565 642 572 573 560 530 574 579 551 579 591 577 608 621 606 589 734 581 591 526 587 581 577 521 615 586 581 551 584 584 609 585 574 523 590 570 588 608 544 616 583 594 578 589 574 586 585 577 586 574 792 551 601 812 580 580 599 564 602 574 592 600 586 580 529 589 818 816 608 631 667 641 662 575 601 631 628 622 642 612 694 619 620 607 575 622 626 597 626 639 625 657 671 655 637 791 629 639 571 635 629 624 565 665 634 629 597 632 632 659 634 622 567 638 618 636 658 590 666 631 642 626 638 621 634 633 625 634 621 851 597 650 872 628 628 648 611 652 621 641 649 634 628 574 510 718 716 528 548 581 557 577 497 521 548 545 540 559 531 605 537 538 526 497 540 544 518 544 555 543 572 584 570 554 693 546 556 494 552 546 542 488 579 551 547 517 549 549 573 550 540 490 554 536 553 572 510 580 548 558 544 554 539 551 550 542 551 539 748 517 565 767 545 545 563 530 567 539 557 564 551 545 497 Table A11.1. Trace element compositions and temperature measurements for the detrital samples from the Western Alps (continued) 232 Appendix A11 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SL 10/13-103 SL 10/13-104 SL 10/13-105 SL 10/13-106 SL 10/13-107 SL 10/13-108 SL 10/13-109 SL 10/13-110 SL 10/13-111 SL 10/13-112 SL 10/13-113 SL 10/13-114 SL 10/13-115 SL 10/13-116 SL 10/13-117 SL 10/13-118 SL 10/13-119 SL 10/13-120 SL 10/13-121 SL 10/15-1 SL 10/15-2 SL 10/15-3 SL 10/15-4 SL 10/15-5 SL 10/15-6 SL 10/15-7 SL 10/15-8 SL 10/15-9 SL 10/15-10 SL 10/15-11 SL 10/15-12 SL 10/15-13 SL 10/15-14 SL 10/15-15 SL 10/15-16 SL 10/15-17 SL 10/15-18 SL 10/15-19 SL 10/15-20 SL 10/15-21 SL 10/15-22 SL 10/15-23 SL 10/15-24 SL 10/15-25 SL 10/15-26 SL 10/15-27 SL 10/15-28 SL 10/15-29 SL 10/15-30 SL 10/15-31 SL 10/15-32 SL 10/15-33 SL 10/15-34 SL 10/15-35 SL 10/15-36 SL 10/15-37 SL 10/15-38 SL 10/15-39 SL 10/15-40 SL 10/15-41 SL 10/15-42 SL 10/15-43 SL 10/15-44 SL 10/15-45 SL 10/15-46 SL 10/15-47 SL 10/15-48 SL 10/15-49 SL 10/15-50 SL 10/15-51 SL 10/15-52 SL 10/15-53 SL 10/15-54 SL 10/15-55 SL 10/15-56 SL 10/15-57 SL 10/15-58 SL 10/15-59 SL 10/15-60 0.003 0.003 0.001 0.002 0.002 0.002 0.003 0.002 0.001 0.003 0.003 0.002 0.002 0.002 0.003 0.006 0.018 0.003 0.002 0.004 0.003 0.003 0.010 0.009 0.003 0.003 0.005 0.003 0.003 0.144 0.004 0.002 0.004 0.002 0.005 0.006 0.002 0.004 0.003 0.002 0.004 0.005 0.004 0.010 0.009 0.008 0.003 0.002 0.002 0.003 0.003 0.006 0.003 0.003 0.003 0.003 0.003 0.005 0.003 0.022 0.097 0.070 0.002 0.003 0.003 0.005 0.003 0.002 0.002 0.004 0.002 0.003 0.004 0.004 0.004 0.004 0.009 0.004 0.005 0.00 0.01 0.03 0.03 0.01 0.02 0.02 0.07 0.03 0.01 0.04 0.01 0.15 0.00 0.02 0.03 0.05 0.03 0.02 0.02 0.01 0.00 0.03 0.04 0.01 0.01 0.02 0.02 0.02 0.09 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.00 0.01 0.01 0.02 0.01 0.00 0.00 0.02 0.01 0.02 0.00 0.02 0.02 0.02 0.02 0.01 0.00 0.03 0.00 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.14 0.14 0.07 0.13 0.12 0.16 0.23 0.10 0.09 0.15 0.24 0.16 0.24 0.16 0.11 0.22 0.21 0.16 0.15 0.10 0.16 0.11 0.17 0.18 0.12 0.13 0.31 0.15 0.15 0.24 0.15 0.11 0.18 0.08 0.15 0.22 0.16 0.14 0.13 0.14 0.20 0.25 0.26 0.47 0.31 0.37 0.16 0.13 0.13 0.16 0.12 0.21 0.13 0.12 0.13 0.14 0.19 0.27 0.21 0.15 0.32 0.28 0.13 0.14 0.16 0.25 0.16 0.15 0.09 0.22 0.12 0.19 0.20 0.22 0.17 0.20 0.29 0.19 0.21 2320 771 1620 1500 1160 2100 1100 1800 1580 2490 841 292 1070 2180 1740 1120 1290 1510 1630 2140 1730 2440 1290 1860 2330 2200 1220 1730 958 465 1350 637 2080 1590 4190 2730 1550 1460 3700 3240 1850 1460 3250 1860 2470 1380 2320 2920 3440 1790 1740 1230 2130 2660 1240 1540 1230 3220 1840 2730 2820 2150 1350 2810 739 3880 1190 1060 2410 3540 893 1590 1470 1910 3280 4180 4550 2560 2290 653 408 487 553 836 686 398 559 487 694 258 51 475 718 536 435 452 512 445 767 2920 22 666 746 22 136 462 529 467 3530 447 420 185 5 1690 7 559 634 2310 98 17 509 1340 17 14 516 441 82 376 101 3 425 21 36 384 545 424 203 34 4 255 79 709 782 5 876 504 390 60 46 794 1620 372 491 11 141 127 51 12 39 110 74 86 85 91 59 1130 91 93 58 51 121 990 94 41 61 155 62 13 336 28 40 55 33 144 141 85 63 40 94 16 30 12 876 189 45 68 4310 21 25 88 794 19 16 150 33 19 17 24 14 41 27 22 72 97 147 46 27 20 28 23 46 401 24 1130 95 115 20 23 10 17 82 42 25 44 40 30 29 358 837 1680 1900 1040 1610 2320 3370 2020 1280 2100 1360 2000 1800 1900 1560 1880 1890 1540 1600 1280 41 1040 1440 33 230 2040 1940 1830 323 2250 223 107 44 1820 37 1670 1860 337 20 62 2380 1980 41 18 2210 26 34 22 197 29 1940 29 85 1630 1780 1840 28 67 38 23 60 78 1820 137 1390 5050 2040 28 17 251 63 1500 116 53 35 43 28 61 2.0 5.2 0.9 1.7 1.9 1.8 1.4 29.2 1.3 2.2 2.0 4.4 1.7 31.7 1.8 2.5 1.6 1.5 1.4 1.6 2.4 2.5 1.6 6.1 2.0 2.8 3.3 2.3 2.5 5.1 2.1 6.0 6.9 1.8 36.5 2.9 1.7 1.6 33.5 5.9 8.1 2.8 2.2 5.5 3.3 3.8 3.8 2.6 4.0 1.1 2.3 2.9 3.4 1.4 1.7 2.2 2.3 4.7 5.1 1.8 5.8 8.6 2.5 20.0 7.7 42.4 2.1 1.7 4.8 2.5 9.7 5.1 1.7 2.9 5.5 2.2 3.6 2.9 3.7 97 68 43 59 150 37 99 23 80 56 168 56 149 270 143 48 55 106 67 160 56 16 131 27 15 9 96 87 30 106 111 32 8 12 51 7 90 34 722 13 27 144 188 8 8 108 24 23 72 27 9 60 15 67 65 123 122 11 9 3 17 22 13 20 36 28 168 104 8 13 67 41 54 22 21 10 12 10 11 1.2 82.6 0.8 1.5 5.4 1.4 21.3 3.4 0.7 1.0 8.5 3.3 1.4 0.6 1.3 1.6 1.5 1.4 4.2 227.0 0.8 1.0 7.7 1.9 0.9 5.3 3.1 1.3 1.1 4.0 8.5 0.8 1.7 0.4 0.7 1.6 4.2 1.1 13.2 0.8 1.6 2.0 1.7 2.4 2.4 2.2 1.0 0.6 0.6 12.9 0.7 1.9 4.9 0.8 0.8 2.4 1.7 1.8 2.2 1.6 4.7 2.1 6.0 0.8 3.5 2.3 1.5 0.6 0.5 1.2 26.3 1.1 1.6 1.2 2.4 1.5 2.2 0.9 1.5 3.0 5.2 3.6 4.4 4.5 3.8 3.5 52.1 4.8 4.4 3.9 3.3 5.8 30.3 4.8 1.3 3.1 6.9 3.0 0.6 13.4 1.9 2.6 2.0 1.9 5.2 4.9 4.4 3.4 3.6 5.2 0.7 1.6 0.6 43.7 6.3 2.9 3.5 173.0 1.2 1.1 3.9 40.4 2.4 1.7 7.9 1.7 0.8 0.7 1.5 1.3 1.7 1.5 1.7 3.4 6.6 6.7 4.0 1.2 1.5 2.0 1.6 4.1 25.3 1.2 62.6 3.1 5.2 0.9 0.7 0.8 1.5 3.3 2.6 1.8 3.3 2.0 1.8 1.6 37 42 90 103 74 72 153 155 134 73 178 85 135 28 119 85 118 123 103 87 487 2 68 61 2 10 132 96 55 15 134 15 9 4 46 4 99 81 11 1 3 116 248 4 1 155 1 3 2 10 2 113 2 5 115 116 115 2 4 3 3 4 3 92 7 47 831 136 1 1 7 5 62 6 4 2 2 2 4 251 420 48 100 249 21 220 238 68 27 551 170 272 189 208 17 125 180 104 41 212 1 470 26 1 52 180 39 39 8 315 7 1 5 32 1 231 16 6 1 1 115 364 2 2 289 2 0 2 23 1 87 3 1 52 160 189 1 1 1 3 2 42 34 6 41 187 196 1 2 19 1 34 4 1 1 6 1 24 0.8 1.7 1.2 5.0 6.5 2.7 6.3 7.4 2.5 1.2 1.1 0.2 1.6 9.3 5.0 0.4 0.4 4.7 0.4 3.7 3.3 0.2 1.7 0.2 0.7 0.4 2.3 3.5 0.4 1.7 1.6 0.1 0.2 0.2 37.7 0.2 0.2 0.1 308.0 0.2 0.2 0.3 24.3 0.6 0.4 4.9 0.2 0.1 0.2 2.1 0.2 0.5 0.2 0.3 0.4 0.8 5.0 1.2 0.3 0.2 0.3 1.3 0.2 0.2 0.6 21.7 6.4 2.1 0.1 0.1 0.3 0.2 0.8 0.2 1.1 0.3 1.7 0.2 0.2 Ts Ts Ts Ts Ts Tomkins Tomkins Tomkins Tomkins Tomkins (3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa) 625 699 670 681 679 684 653 915 684 686 652 643 706 900 687 630 656 725 657 559 792 605 627 649 615 720 718 679 658 628 687 573 609 555 887 742 634 663 1090 586 598 682 876 582 570 723 614 580 575 595 562 630 602 589 667 689 721 636 602 583 604 594 637 808 596 915 687 702 585 592 542 574 677 630 597 634 627 609 606 555 623 596 606 605 610 581 823 610 611 580 571 630 809 612 559 583 648 585 494 709 536 557 577 546 642 641 605 585 558 612 507 541 490 797 663 564 590 984 519 530 608 787 515 504 645 545 513 509 527 497 559 534 522 594 614 644 565 534 516 536 526 566 724 528 823 613 626 518 524 479 508 603 559 529 563 557 540 537 534 601 575 584 583 588 560 795 588 589 559 550 607 782 590 539 562 625 563 475 684 516 537 556 526 619 618 583 564 537 590 487 520 472 770 639 543 569 953 500 510 586 761 496 485 622 525 494 490 507 478 539 514 502 572 592 621 544 514 496 516 506 545 699 508 795 591 604 499 505 460 488 581 539 509 542 536 520 517 580 650 622 632 631 636 607 855 636 637 606 597 657 841 638 584 609 675 610 517 738 560 582 602 571 669 668 631 611 583 638 530 565 513 829 690 589 616 1021 543 554 634 818 539 527 673 569 537 532 551 520 584 558 545 620 641 671 590 558 540 560 550 591 754 552 855 639 653 542 548 501 531 629 584 553 588 582 565 561 501 565 540 549 548 553 526 752 553 554 525 517 571 739 555 505 528 588 529 445 645 484 504 522 493 583 582 548 530 504 555 456 488 441 727 602 510 534 903 468 478 551 718 464 454 586 492 462 458 476 448 505 482 470 538 557 584 511 482 465 484 474 511 659 476 752 555 568 467 473 430 457 546 506 477 509 503 488 485 Table A11.1. Trace element compositions and temperature measurements for the detrital samples from the Western Alps (continued) 233 Appendix A11 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn SL 10/15-61 SL 10/15-62 SL 10/15-63 SL 10/15-64 SL 10/15-65 SL 10/15-66 SL 10/15-67 SL 10/15-68 SL 10/15-69 SL 10/15-70 SL 10/15-71 SL 10/15-72 SL 10/15-73 SL 10/15-74 SL 10/15-75 SL 10/15-76 SL 10/15-77 SL 10/15-78 SL 10/15-79 SL 10/15-80 SL 10/15-81 SL 10/15-82 SL 10/15-83 SL 10/15-84 SL 10/15-85 SL 10/15-86 SL 10/15-87 SL 10/15-88 SL 10/15-89 SL 10/15-90 SL 10/15-91 SL 10/15-92 SL 10/15-93 SL 10/15-94 SL 10/15-95 SL 10/15-96 SL 10/15-97 SL 10/15-98 SL 10/15-99 SL 10/15-100 SL 10/15-101 SL 10/15-102 SL 10/15-103 SL 10/15-104 SL 10/15-105 SL 10/15-106 SL 10/15-107 SL 10/15-108 SL 10/15-109 SL 10/15-110 SL 10/15-111 SL 10/15-112 SL 10/15-113 SL 10/15-114 SL 10/15-115 SL 10/15-116 SL 10/15-117 SL 10/15-118 SL 10/15-119 SL 10/15-120 SL 10/15-121 SL 10/15-122 SL 10/17-1 SL 10/17-2 SL 10/17-3 SL 10/17-4 SL 10/17-5 SL 10/17-6 SL 10/17-7 SL 10/17-8 SL 10/17-9 SL 10/17-10 SL 10/17-11 SL 10/17-12 SL 10/17-13 SL 10/17-14 SL 10/17-15 SL 10/17-16 SL 10/17-17 0.003 0.003 0.004 0.006 0.004 0.007 0.026 0.017 0.003 0.016 0.004 0.004 0.002 0.002 0.004 0.003 0.002 0.002 0.003 0.003 0.006 0.004 0.003 0.003 0.003 0.002 0.002 0.005 0.003 0.004 0.005 0.005 0.005 0.033 0.016 0.008 0.004 0.004 0.003 0.006 0.003 0.003 0.003 0.004 0.003 0.002 0.010 0.019 0.008 0.005 0.007 0.010 0.005 0.005 0.003 0.007 0.020 0.004 0.004 0.005 0.008 0.010 0.002 0.003 0.004 0.002 0.003 0.020 0.002 0.002 0.002 0.002 0.001 0.002 0.004 0.012 0.034 0.003 0.003 0.01 0.00 0.02 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.01 0.02 0.00 0.06 0.00 0.01 0.01 0.01 0.03 0.01 0.02 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.03 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.11 0.05 0.03 0.03 0.02 0.05 0.07 0.02 0.00 0.04 0.02 0.00 0.03 0.44 0.57 0.01 0.01 0.14 0.21 0.22 0.23 0.18 0.29 0.26 0.76 0.14 0.88 0.18 0.19 0.10 0.13 0.25 0.21 0.12 0.15 0.13 0.13 0.16 0.27 0.20 0.15 0.21 0.13 0.11 0.29 0.17 0.25 0.30 0.23 0.20 0.60 0.84 0.38 0.22 0.27 0.16 0.26 0.15 0.13 0.13 0.25 0.15 0.14 0.61 1.45 0.40 0.21 0.20 0.82 0.35 0.30 0.19 0.25 0.18 0.30 0.19 0.29 0.33 0.66 0.21 0.22 0.18 0.16 0.20 0.20 0.27 0.15 0.20 0.20 0.12 0.19 0.43 0.73 1.30 0.19 0.21 1780 2700 3580 4140 3360 2110 4000 3400 5190 2760 2510 2330 4120 3170 5720 2240 3150 1410 3480 1330 1870 4810 5380 797 3050 4160 3670 1910 2730 2210 1420 1450 4700 3000 2580 2900 2230 4340 3010 3140 2670 4160 1960 2440 1910 1500 4450 2570 2050 3160 2180 3710 2290 1810 2340 2170 4010 2300 1530 2440 1790 2880 2250 1160 1740 1100 1370 2060 1770 2490 2510 824 2580 2470 850 1050 146 669 1610 494 688 10 18 5 5 12 25 49 555 6 5 4 298 433 5 46 451 4 400 89 6 1320 6 7 378 3 8 3 7 10 564 5 25 34 284 1340 7 236 11 20 195 8 203 502 3 22 48 11 16 174 18 11 17 51 7 287 7 70 27 107 46 480 105 1040 276 1620 118 837 195 1080 1660 649 4710 140 611 17 352 445 124 998 24 18 68 97 23 66 37 79 28 21 39 19 30 25 31 99 46 133 47 49 41 12 23 19 15 20 18 29 19 47 25 313 23 12 63 24 42 12 24 23 18 45 98 24 97 27 29 189 30 25 25 15 17 24 41 17 19 38 40 16 8 102 3 674 2 397 93 320 562 3 1070 19 2560 105 16 7 5 2140 1430 12 37 17 27 40 23 30 33 23 24 6 43 18 76 45 2010 37 2710 73 10 274 161 14 18 73 123 13 53 31 1580 49 31 29 147 914 11 57 25 12 39 79 37 1910 115 41 24 26 809 23 42 60 32 22 52 48 28 122 37 220 19 3720 705 1960 1940 2060 1010 2040 2240 1780 3240 1440 499 14000 1740 756 1510 2180 2.1 13.3 3.1 4.5 2.6 3.4 2.6 8.9 2.9 9.8 5.2 2.7 2.3 2.0 5.8 5.7 2.2 2.0 2.8 1.5 2.0 2.9 13.3 12.8 2.2 2.2 1.0 10.2 1.6 2.3 4.5 1.9 2.3 6.1 7.5 5.1 2.3 3.0 3.9 3.0 2.3 3.6 3.7 2.4 1.4 3.6 7.3 11.3 8.7 2.1 2.5 8.4 6.4 4.9 1.7 3.4 2.4 2.6 6.6 3.1 2.8 5.8 1.4 2.2 2.0 9.8 1.7 13.4 1.8 3.8 4.5 1.8 11.3 1.2 7.4 2.4 21.6 6.7 2.2 119 18 12 14 11 10 13 17 15 14 5 7 5 29 13 9 9 101 10 151 11 11 30 37 2 8 223 28 5 28 10 57 27 5 30 5 45 11 15 8 7 41 27 15 49 17 9 16 40 125 12 11 12 10 8 9 8 11 11 8 56 16 244 132 262 78 151 360 80 115 166 396 81 747 1660 106 7 244 119 Sb Hf 1.6 6.0 1.1 51.7 1.1 1.9 1.2 1.7 1.2 1.4 2.2 3.0 1.6 1.3 4.7 2.9 1.1 1.3 3.9 4.1 1.2 1.5 0.8 1.1 0.9 2.1 0.6 1.3 3.4 2.3 2.4 1.1 0.7 1.7 6.4 4.3 1.5 2.7 4.4 6.6 1.1 2.2 1.4 1.5 1.5 0.9 13.3 0.7 1.4 1.0 0.3 1.2 0.3 0.6 1.5 1.5 1.0 1.3 1.2 1.5 1.8 2.4 1.5 3.1 1.2 1.2 5.4 8.6 6.4 4.1 1.4 2.0 2.6 3.7 1.5 1.4 1.2 2.5 5.7 1.3 1.3 1.5 0.7 1.8 1.2 1.1 2.2 2.1 1.1 4.7 1.3 1.3 4.2 3.9 8.4 3.8 2.5 1.9 7.3 6.8 1.3 1.9 2.9 3.6 1.9 2.0 1.4 1.7 0.9 0.7 1.5 2.1 1.1 2.5 2.4 1.1 1.2 1.4 1.5 2.0 4.7 1.9 3.0 1.7 68.3 0.4 7.5 4.2 6.6 0.5 11.2 27.0 1.1 0.4 3340.0 25.5 31.6 3.7 4.9 17.1 0.8 25.9 22.4 0.4 0.5 58.9 5410.0 1.4 25.2 106.0 24.5 4.6 1190.0 0.5 358.0 0.6 79.2 0.7 Ta W U 149 44 1 4 1 3 3 2 2 3 2 1 1 3 1 7 3 128 4 199 7 0 0 12 1 2 4 8 1 2 2 85 3 2 2 7 66 1 4 2 1 3 7 3 96 5 3 2 2 75 1 3 5 3 2 3 3 2 9 2 19 2 226 47 121 58 99 72 120 235 35 281 90 35 492 114 73 111 159 240 12 1 1 1 1 1 8 17 3 1 1 8 1 1 4 0 197 2 362 1 1 1 5 17 2 1 1 1 1 1 23 1 388 3 2 38 76 1 4 1 2 2 1 35 5 4 6 117 87 27 9 2 1 16 1 4 2 2 1 5 2 30 136 178 84 143 1080 102 223 234 1980 70 527 2060 233 213 403 21 3.4 13.2 0.1 0.3 0.2 0.6 0.2 2.2 0.1 0.6 0.2 0.2 0.2 0.1 0.7 0.2 0.1 5.4 0.1 15.3 0.1 0.3 12.2 1.1 0.2 0.1 1.0 0.4 0.1 0.2 0.5 0.4 0.4 1.1 0.8 0.6 1.3 40.2 0.1 0.2 0.1 0.6 0.1 0.2 4.4 3.8 0.9 1.7 0.3 1.1 0.3 0.7 0.3 0.8 0.2 0.2 0.1 0.2 0.4 0.4 0.3 0.4 2.1 5.9 0.3 9.0 1.2 38.6 6.9 12.7 9.5 0.1 65.6 12.6 113.0 7.1 3.5 0.4 1.0 Ts Ts Ts Ts Ts Tomkins Tomkins Tomkins Tomkins Tomkins (3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa) 708 901 596 579 663 689 592 661 621 674 604 587 625 580 608 598 612 690 636 713 637 640 629 554 592 582 568 584 576 607 580 638 598 785 593 555 658 595 630 557 596 593 576 636 690 595 689 603 606 742 609 598 598 569 573 594 629 576 580 625 628 572 534 693 490 859 467 807 686 787 841 487 909 581 1016 695 572 529 506 631 810 528 513 590 614 525 589 552 600 536 520 555 513 540 530 543 615 565 636 566 569 558 490 525 516 502 517 510 538 514 567 530 703 526 490 585 528 560 492 528 526 510 565 615 527 614 535 538 663 540 530 530 503 507 526 559 510 514 555 557 506 471 618 431 771 409 723 611 705 754 427 817 515 916 620 506 467 446 609 783 508 493 569 592 505 567 531 578 516 500 535 494 519 510 523 593 544 614 546 548 538 471 505 496 483 497 491 518 494 546 510 679 506 472 564 508 539 473 508 506 491 544 593 508 592 514 517 639 520 510 510 484 488 506 538 490 494 534 537 487 453 595 413 745 392 698 589 680 728 410 790 495 886 597 486 448 428 658 842 552 536 616 641 549 614 576 626 560 543 580 537 564 554 567 642 590 664 591 594 583 512 549 539 525 540 534 563 537 592 554 732 549 513 611 552 585 515 552 549 534 590 641 551 640 559 562 690 565 554 554 526 530 550 584 533 537 579 582 529 493 644 452 802 430 753 637 734 785 448 849 538 951 646 529 489 467 573 740 476 462 535 557 473 533 498 544 484 469 502 462 487 478 490 558 511 578 512 515 505 440 473 465 452 466 460 486 463 513 478 640 474 441 530 476 506 443 476 474 460 511 557 476 557 482 485 602 488 478 478 453 457 475 505 459 463 501 504 456 423 560 385 704 365 659 554 641 688 382 747 464 839 562 455 419 399 Table A11.1. Trace element compositions and temperature measurements for the detrital samples from the Western Alps (continued) 234 Appendix A11 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SL 10/17-18 SL 10/17-19 SL 10/17-20 SL 10/17-21 SL 10/17-22 SL 10/17-23 SL 10/17-24 SL 10/17-25 SL 10/17-26 SL 10/17-27 SL 10/17-28 SL 10/17-29 SL 10/17-30 SL 10/17-31 SL 10/17-32 SL 10/17-33 SL 10/17-34 SL 10/17-35 SL 10/17-36 SL 10/17-37 SL 10/17-38 SL 10/17-39 SL 10/17-40 SL 10/17-41 SL 10/17-42 SL 10/17-43 SL 10/17-44 SL 10/17-45 SL 10/17-46 SL 10/17-47 SL 10/17-48 SL 10/17-49 SL 10/17-50 SL 10/17-51 SL 10/17-52 SL 10/17-53 SL 10/17-54 SL 10/17-55 SL 10/17-56 SL 10/17-57 SL 10/17-58 SL 10/17-59 SL 10/17-60 SL 10/17-61 SL 10/17-62 SL 10/17-63 SL 10/17-64 SL 10/17-65 SL 10/17-66 SL 10/17-67 SL 10/17-68 SL 10/17-69 SL 10/17-70 SL 10/17-71 SL 10/17-72 SL 10/17-73 SL 10/17-74 SL 10/17-75 SL 10/17-76 SL 10/17-77 SL 10/17-78 SL 10/17-79 SL 10/17-80 SL 10/17-81 SL 10/17-82 SL 10/17-83 SL 10/17-84 SL 10/17-85 SL 10/17-86 SL 10/17-87 SL 10/17-88 SL 10/17-89 SL 10/17-90 SL 10/17-91 SL 10/17-92 SL 10/17-93 SL 10/17-94 SL 10/17-95 SL 10/17-96 0.003 0.002 0.003 0.002 0.608 0.006 0.002 0.008 0.002 0.004 0.004 0.002 0.003 0.002 0.002 0.002 0.018 0.014 0.009 0.027 0.003 0.084 0.015 0.079 0.003 0.002 0.003 0.003 0.003 0.005 0.002 0.004 0.002 0.016 0.003 0.002 0.040 0.004 0.002 0.002 0.003 0.006 0.002 0.003 0.058 0.005 0.004 0.003 0.003 0.003 0.029 0.011 0.002 0.030 0.004 0.004 0.011 0.012 0.002 0.003 0.004 0.024 0.002 0.002 0.002 0.668 0.002 0.006 0.027 0.003 0.068 0.014 0.003 0.114 0.002 0.806 0.013 0.059 0.002 0.04 0.02 0.02 0.04 0.94 0.13 0.01 0.05 0.01 0.04 0.01 0.03 0.02 0.02 0.00 0.02 0.42 0.26 0.08 0.17 0.05 0.19 0.02 0.06 0.03 0.01 0.04 0.09 0.01 0.08 0.01 0.03 0.02 0.13 0.01 0.01 0.06 0.01 0.03 0.08 0.00 0.07 0.01 0.03 0.09 0.13 0.00 0.02 0.04 0.04 0.07 0.04 0.06 0.10 0.00 0.08 0.15 0.03 0.00 0.04 0.09 0.04 0.04 0.03 0.03 1.25 0.01 0.05 0.09 0.01 0.04 0.20 0.01 1.52 0.01 0.71 0.05 0.17 0.03 0.24 0.16 0.18 0.18 1.13 0.20 0.18 0.20 0.15 0.20 0.17 0.20 0.16 0.23 0.21 0.20 0.80 0.42 0.36 0.62 0.23 0.58 0.40 0.18 1.07 0.20 0.22 0.17 0.19 0.20 0.18 0.18 0.20 0.23 0.19 0.16 0.26 0.21 0.16 0.35 0.14 0.18 0.10 0.22 0.35 1.11 0.20 0.24 0.20 0.22 0.35 0.25 0.13 0.23 3.40 0.32 0.49 0.17 0.12 0.18 0.65 0.24 0.21 0.19 0.12 2.49 0.13 0.16 0.32 0.22 0.20 1.52 0.15 19.60 0.13 1.19 0.19 0.80 0.13 968 813 1130 1620 1170 1060 1500 1040 986 925 960 2160 1520 1030 1910 764 1980 1720 5720 2620 1110 218 2100 1960 780 2890 644 1250 307 1350 1030 1630 1390 1920 1220 1960 953 1160 2140 1460 2680 898 3210 5180 1210 1850 1520 854 1140 944 786 1520 777 438 789 2020 512 1460 2280 1700 175 796 1630 400 1700 2410 920 1270 1080 855 1100 786 681 1990 737 277 1190 609 1180 496 517 501 380 445 577 271 452 563 355 312 579 420 58 1300 329 759 985 801 1250 505 43 907 137 412 425 575 511 66 587 246 780 572 2590 528 1130 259 263 430 418 935 438 1320 1680 1690 704 486 249 4420 1020 186 364 129 382 86 654 240 451 212 530 49 183 553 373 432 592 488 717 289 329 298 108 194 248 291 42 543 1370 605 922 52 49 576 71 68 60 4 70 5 8 209 2130 159 5 11 259 34 39 1290 5 25 1690 1430 60 845 2 44 12 7 2 12 114 650 6 4 5 228 137 61 587 59 687 1030 1400 704 90 70 429 72 9 3 679 3 286 316 11 130 216 358 146 1020 205 7 99 169 12 7 3 5 3 89 2 80 3 13 116 196 5 6910 907 642 6560 2310 3170 325 1800 2300 2610 2390 2340 866 283 372 2650 738 636 506 779 2520 1900 1190 1020 2070 215 3800 3100 3200 2500 2500 2420 3860 414 1730 413 2130 945 958 1760 3930 1940 5030 1240 821 4860 1710 1360 4070 991 3640 2450 1760 1710 103 3250 1670 3830 2090 4920 5100 273 2750 226 1690 2570 1650 2090 2470 1830 2350 1450 2630 1320 1780 1270 1610 2450 1920 12.6 1.6 1.9 5.1 1.8 2.0 2.0 6.1 1.8 2.6 2.2 2.3 54.5 1.5 2.4 1.7 3.6 2.0 2.3 6.9 1.8 7.6 21.7 10.2 3.1 12.1 2.9 2.2 88.2 2.4 2.0 2.9 1.5 13.8 2.5 3.9 1.8 3.1 1.7 1.8 1.6 2.0 5.7 10.5 5.5 4.4 2.4 2.3 6.3 1.5 1.0 1.6 7.5 2.0 2.3 2.6 3.0 2.4 1.7 4.6 30.7 85.2 2.4 2.1 1.9 1.4 1.8 1.5 1.8 5.3 0.8 3.2 3.1 3.9 1.9 2.8 2.2 3.6 1.6 137 73 131 39 70 142 299 159 94 514 245 83 43 177 216 127 73 350 254 145 244 38 436 458 133 17 136 64 268 305 273 372 71 204 163 339 197 61 126 680 168 105 276 70 315 66 127 144 74 33 150 159 209 12 684 101 23 151 243 156 129 907 147 36 97 2440 145 289 276 233 216 15 252 109 200 141 137 12 210 0.7 77.6 0.8 4.0 11.5 14.2 7.9 308.0 21.1 19.4 385.0 0.6 0.5 10.2 38.0 26.2 1230.0 1520.0 2770.0 1130.0 9.1 39.0 1100.0 597.0 1.6 0.6 2.9 42.7 3870.0 10.0 726.0 162.0 12.8 5420.0 35.8 948.0 30.2 2.7 3.2 13.5 0.6 13.1 0.5 1.7 217.0 168.0 19.8 17.6 529.0 2.8 118.0 58.2 8.6 7.1 24.7 103.0 77.6 17.6 6.0 3.7 2860.0 2030.0 3.2 0.9 20.0 15.4 39.1 6.3 476.0 272.0 225.0 65.5 1060.0 678.0 559.0 49.9 6.0 3.1 7.5 52.6 2.9 4.3 29.1 4.8 4.2 1.7 0.4 3.7 0.5 0.7 9.2 93.7 5.2 0.4 0.8 15.6 2.6 4.6 53.5 0.7 1.1 76.8 70.0 3.5 21.2 0.4 2.3 0.6 0.8 0.5 1.2 5.4 23.8 1.1 0.5 0.6 7.3 6.1 3.5 25.6 4.5 33.9 38.8 67.1 30.2 4.1 3.7 22.1 2.9 0.4 0.6 38.2 0.7 5.8 15.1 0.9 8.6 13.3 15.9 14.2 39.0 11.4 0.6 3.8 5.8 0.6 0.5 0.5 0.6 0.6 3.2 0.6 4.8 0.5 0.6 6.3 12.3 0.5 214 43 51 182 157 215 38 104 128 207 200 146 13 15 19 230 39 47 31 48 151 92 58 89 88 8 288 169 269 166 212 203 441 14 109 19 118 47 81 132 167 120 105 151 71 197 104 80 145 49 331 164 51 129 9 239 129 185 186 227 574 5 92 15 57 134 127 133 198 124 170 69 215 91 135 99 43 97 127 524 277 5 403 290 160 159 183 309 501 617 129 14 743 314 193 259 784 102 332 192 1120 86 403 347 10 3470 327 2550 253 971 191 203 247 89 1070 250 52 171 326 1180 176 2700 144 1980 616 102 99 3090 116 753 101 375 506 70 121 627 965 381 337 2820 1280 179 5 224 354 50 220 558 879 178 86 1400 842 792 504 233 58 167 32.9 0.8 0.1 5.3 7.7 1.7 10.7 2.5 1.2 0.4 10.5 15.6 33.7 6.5 0.5 0.1 87.8 14.5 32.6 144.0 0.5 7.6 73.8 163.0 6.7 8.8 1.0 1.4 9.1 1.2 1.4 4.4 2.7 307.0 5.4 2.1 4.2 0.6 1.4 3.9 5.6 2.1 6.7 26.8 237.0 5.2 10.8 3.4 9.3 0.8 3.7 0.9 37.6 1.3 8.8 9.5 10.8 8.4 16.8 15.3 66.0 693.0 9.1 0.1 12.0 12.8 0.4 0.8 1.5 1.7 2.7 1.3 2.5 9.7 0.1 7.4 6.1 3.9 1.7 Ts Ts Ts Ts Ts Tomkins Tomkins Tomkins Tomkins Tomkins (3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa) 893 645 641 843 666 663 654 502 665 511 535 750 992 727 506 550 768 617 625 931 509 598 963 943 654 883 461 633 554 525 474 554 701 856 520 499 508 757 716 655 845 653 861 905 940 864 684 665 814 667 542 483 860 484 777 786 549 711 753 797 721 904 748 528 691 732 553 523 490 510 477 683 465 675 485 561 703 745 512 802 574 570 756 593 590 582 441 592 450 472 670 893 649 446 486 687 548 555 837 448 530 867 848 582 793 404 562 490 463 416 489 625 768 458 439 447 677 639 583 758 581 773 813 846 775 609 592 730 594 479 424 772 425 695 704 485 635 673 714 643 812 669 466 616 654 488 461 430 449 419 609 408 601 426 496 627 665 451 775 553 549 731 571 569 561 423 570 432 454 647 864 627 428 467 663 527 535 809 430 510 838 820 561 767 387 541 471 445 399 470 603 742 440 421 429 653 616 562 732 560 747 786 818 749 587 570 705 573 460 407 746 408 671 679 466 612 649 690 620 785 645 447 594 631 469 442 413 431 402 587 391 579 408 477 604 642 433 834 599 595 787 619 616 608 463 618 471 494 698 928 677 467 508 716 572 580 870 469 554 901 881 607 825 424 587 512 485 436 512 652 799 480 460 469 705 666 608 789 607 804 845 879 806 636 618 760 620 501 445 803 446 724 733 508 662 701 744 671 844 697 488 642 682 511 482 451 471 440 635 428 627 447 519 653 693 472 732 519 515 690 537 534 527 395 536 403 424 609 818 590 399 437 625 495 502 765 401 478 793 776 527 724 360 508 440 416 371 440 567 700 411 393 401 616 580 528 691 526 705 743 773 707 552 536 665 538 430 379 704 380 633 640 436 576 612 650 584 742 608 418 558 594 439 413 385 403 374 552 364 544 381 446 568 605 404 Table A11.1. Trace element compositions and temperature measurements for the detrital samples from the Western Alps (continued) 235 Appendix A11 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SL 10/17-97 SL 10/17-98 SL 10/16-1 SL 10/16-2 SL 10/16-3 SL 10/16-4 SL 10/16-5 SL 10/16-6 SL 10/16-7 SL 10/16-8 SL 10/16-9 SL 10/16-10 SL 10/16-11 SL 10/16-12 SL 10/16-13 SL 10/16-14 SL 10/16-15 SL 10/16-16 SL 10/16-17 SL 10/16-18 SL 10/16-19 SL 10/16-20 SL 10/16-21 SL 10/16-22 SL 10/16-23 SL 10/16-24 SL 10/16-25 SL 10/16-26 SL 10/16-27 SL 10/16-28 SL 10/16-29 SL 10/16-30 SL 10/16-31 SL 10/16-32 SL 10/16-33 SL 10/16-34 SL 10/16-35 SL 10/16-36 SL 10/16-37 SL 10/16-38 SL 10/16-39 SL 10/16-40 SL 10/16-41 SL 10/16-42 SL 10/16-43 SL 10/16-44 SL 10/16-45 SL 10/16-46 SL 10/16-47 SL 10/16-48 SL 10/16-49 SL 10/16-50 SL 10/16-51 SL 10/16-52 SL 10/16-53 SL 10/16-54 SL 10/16-55 SL 10/16-56 SL 10/16-57 SL 10/16-58 SL 10/16-59 SL 10/16-60 SL 10/16-61 SL 10/16-62 SL 10/16-63 SL 10/16-64 SL 10/16-65 SL 10/16-66 SL 10/16-67 SL 10/16-68 SL 10/16-69 SL 10/16-70 SL 10/16-71 SL 10/16-72 SL 10/16-73 SL 10/16-74 SL 10/16-75 SL 10/16-76 SL 10/16-77 0.003 0.002 0.002 0.003 0.003 0.005 0.004 0.002 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.003 0.004 0.004 0.004 0.001 0.004 0.005 0.015 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.047 0.003 0.003 0.004 0.003 0.001 0.003 0.001 0.005 0.004 0.004 0.003 0.001 0.001 0.001 0.005 0.004 0.003 0.007 0.006 0.006 0.007 0.001 0.001 0.001 0.001 0.006 0.006 0.001 0.023 0.010 0.005 0.005 0.001 0.004 0.008 0.002 0.003 0.003 0.001 0.001 0.002 0.001 0.001 0.001 0.004 0.00 0.01 0.02 0.03 0.04 0.02 0.03 0.01 0.02 0.02 0.03 0.02 0.04 0.02 0.03 0.04 0.02 0.02 0.01 0.03 0.05 0.02 0.02 0.05 0.04 0.04 0.03 0.01 0.02 0.04 0.03 0.02 0.02 0.05 0.08 0.02 0.02 0.02 0.08 0.13 0.08 0.01 0.02 0.02 0.02 0.01 0.03 0.02 0.04 0.04 0.02 0.03 0.03 0.03 0.02 0.05 0.03 0.03 0.02 0.01 0.03 0.01 0.02 0.06 0.02 0.01 0.01 0.03 0.01 0.03 0.03 0.02 0.04 0.02 0.02 0.03 0.01 0.03 0.03 0.21 0.13 0.15 0.21 0.17 0.29 0.21 0.15 0.23 0.12 0.16 0.17 0.22 0.18 0.18 0.19 0.23 0.24 0.18 0.21 0.17 0.20 0.25 0.22 0.13 0.21 0.15 0.18 0.15 0.16 0.17 0.21 0.18 0.65 0.15 0.19 0.18 0.16 0.08 0.22 0.14 0.25 0.23 0.21 0.18 0.08 0.08 0.09 0.36 0.26 0.21 0.47 0.31 0.30 0.46 0.15 0.12 0.09 0.09 0.24 0.32 0.09 0.16 0.22 0.27 0.12 0.11 0.20 0.11 0.17 0.14 0.09 0.14 0.08 0.19 0.11 0.12 0.11 0.25 514 927 1910 1740 1780 1360 1790 1990 1460 1260 1630 1130 1930 1730 1980 2070 1960 1470 1710 2220 1230 1290 2170 1740 1840 1230 1800 2150 1320 1550 1630 2660 3350 1280 1490 1500 2280 1090 795 1260 1050 1160 1440 1920 1680 2110 1320 2420 1750 1610 1790 1540 1130 943 2190 1720 2080 1860 1450 1900 1710 1710 1100 853 1660 1260 3940 1200 1320 599 1500 1500 1380 1280 963 1400 1490 1530 1290 296 1340 587 523 568 179 466 211 584 217 587 99 238 672 607 635 573 968 520 637 702 1220 82 580 678 346 625 792 489 392 687 124 1150 51 548 535 601 69 69 580 333 1960 235 247 611 804 371 801 957 282 590 597 384 798 725 548 184 672 158 1000 758 439 329 495 558 522 503 1970 103 326 445 103 379 218 460 339 675 751 461 8 1140 185 168 128 153 189 152 164 175 111 205 163 136 178 145 141 127 143 135 54 118 150 135 187 120 146 157 150 155 131 137 124 128 7 145 158 36 73 103 61 178 121 159 116 96 142 206 191 160 146 180 116 121 136 163 138 151 147 171 134 126 23 146 136 26 154 135 196 18 182 178 104 120 132 158 144 114 6 1520 879 1910 2070 2130 1640 2130 410 1930 858 2200 723 673 1700 1790 1970 1750 750 1690 1950 1170 606 559 2000 592 1200 1850 1610 2000 2040 1970 430 1700 2480 2160 2030 1980 845 1640 1930 2030 804 565 478 1810 1770 2600 344 2060 488 1840 2350 2090 742 1980 1970 449 1990 483 1280 609 819 112 1400 2060 169 203 654 675 1170 2090 559 1440 945 1820 1720 546 1960 1890 6.2 5.6 3.9 3.8 3.7 3.1 6.3 3.5 6.4 4.9 2.9 12.7 6.7 3.4 4.5 4.2 5.6 3.7 2.7 4.9 0.8 1.7 3.6 6.5 3.8 2.1 2.8 3.2 4.5 5.1 4.1 56.3 2.1 2.7 1.5 2.1 5.7 3.8 20.4 3.1 0.6 1.5 3.1 3.7 1.8 1.4 5.1 4.6 4.9 5.1 2.9 5.8 2.9 3.1 4.5 5.6 3.3 3.8 4.9 2.3 3.7 0.9 2.1 3.1 5.6 0.8 3.4 1.4 8.3 1.7 6.6 6.4 1.5 1.3 1.7 4.1 1.8 2.2 1.7 273 311 85 105 176 159 163 29 200 27 124 58 63 131 108 129 61 108 70 87 31 86 35 141 63 129 302 190 130 130 84 34 52 108 417 139 140 60 134 141 258 98 155 47 77 56 217 43 120 54 71 238 289 119 126 156 37 105 27 100 64 46 20 242 162 52 49 90 37 72 136 34 75 102 120 101 46 38 237 296.0 629.0 1.6 0.9 1.3 1.7 1.2 1.4 8.1 7.2 16.2 1.4 2.4 1.1 1.0 1.6 1.4 2.8 1.4 1.3 32.5 1.6 2.0 1.3 2.2 4.2 1.4 7.5 1.5 2.0 1.0 3.9 1.2 21.6 22.0 9.5 2.2 1.7 3.8 9.0 0.3 4.1 3.5 1.5 5.4 3.6 2.0 0.6 2.1 2.4 1.8 2.7 2.4 4.5 5.7 0.9 2.3 1.8 1.0 6.6 1.2 1.4 1.7 4.3 1.4 0.5 1.3 3.3 1.1 4.6 1.1 1.1 1.2 1.5 3.1 0.8 1.5 3.0 16.7 0.4 56.6 6.7 8.3 5.9 6.4 8.1 5.9 7.9 6.2 4.1 10.4 6.5 6.0 8.7 7.4 6.2 5.8 8.5 6.3 5.8 5.9 4.8 6.6 6.4 5.3 6.8 6.8 5.6 6.2 6.4 7.5 4.3 4.1 0.7 6.8 6.7 1.9 3.1 4.5 3.6 8.5 4.2 4.1 5.2 4.3 6.3 9.2 8.8 9.1 7.1 10.2 3.5 4.7 7.6 5.3 6.1 6.6 5.8 7.9 4.7 5.7 1.2 6.8 7.3 1.6 7.5 6.0 6.0 1.1 7.4 6.8 4.0 4.8 6.0 7.3 5.9 5.2 0.6 102 64 106 124 128 89 133 22 123 45 135 44 47 92 115 141 103 45 113 115 64 39 36 135 36 73 114 180 141 141 121 34 92 102 154 135 120 51 90 125 129 45 29 30 96 106 155 22 145 45 114 232 267 55 139 138 42 118 31 79 39 42 8 122 150 11 13 44 39 80 153 34 66 62 119 105 37 123 126 376 1800 66 77 143 283 89 23 139 135 131 47 94 95 78 100 56 108 61 111 55 62 38 89 37 105 124 203 98 122 54 27 53 4240 337 90 90 47 71 317 72 106 94 31 136 105 130 32 126 273 49 161 199 90 111 105 24 93 61 135 62 62 2 91 114 16 23 78 101 820 91 62 187 80 188 76 37 68 297 6.3 166.0 5.8 13.7 10.9 1.2 8.6 2.0 1.7 1.4 3.1 4.7 12.4 17.9 4.3 15.7 12.1 2.4 9.1 15.7 0.7 1.4 1.6 10.8 2.4 1.3 11.4 17.5 16.8 20.9 7.2 4.6 5.4 0.5 4.9 14.8 12.1 1.5 2.8 5.1 0.6 1.0 5.2 6.2 3.0 4.4 15.9 1.8 7.8 5.0 9.8 15.3 8.6 0.5 6.3 12.5 2.2 9.5 6.4 14.6 9.0 0.6 0.1 8.1 11.1 0.3 1.6 1.4 9.5 0.5 10.5 2.7 1.0 22.2 0.1 5.7 1.2 2.8 0.4 Ts Ts Ts Ts Ts Tomkins Tomkins Tomkins Tomkins Tomkins (3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa) 533 916 740 732 710 724 742 724 730 735 699 748 729 715 737 720 718 710 719 714 647 704 723 714 741 705 721 726 723 725 712 716 708 710 529 720 727 621 669 694 656 737 706 727 703 688 718 749 742 728 721 738 703 706 715 729 716 723 721 733 714 709 593 721 715 599 725 714 745 579 738 737 694 705 713 727 720 701 519 470 824 661 654 634 647 663 646 652 657 624 669 651 638 658 643 641 633 642 637 576 628 645 637 662 629 643 649 645 648 635 639 631 634 466 643 649 551 595 618 583 658 630 649 627 613 641 669 663 650 643 659 627 630 638 651 639 646 644 655 637 633 526 643 638 531 647 637 665 512 660 658 619 629 636 649 642 625 457 451 796 638 631 611 624 639 623 629 634 601 645 628 615 635 620 618 611 619 615 554 605 622 615 638 607 620 626 622 625 613 616 609 611 448 620 626 531 574 596 562 635 607 627 604 591 618 646 640 627 620 636 604 607 615 628 616 623 621 632 614 610 506 620 615 511 624 615 642 493 636 635 597 607 613 626 619 603 439 492 856 689 681 661 674 690 674 679 684 650 697 679 665 686 670 668 660 669 665 601 655 673 665 690 656 671 676 673 675 662 666 658 661 488 670 677 576 621 645 609 686 657 677 653 640 668 697 691 677 671 687 653 657 665 679 666 673 671 683 664 660 549 671 665 555 675 665 693 536 687 686 646 656 663 677 669 652 479 422 753 601 594 575 587 602 587 592 597 566 608 592 579 598 584 582 575 583 579 521 570 586 579 601 571 584 589 586 588 577 580 573 575 418 584 589 498 539 561 528 598 571 590 568 556 582 608 603 590 584 599 568 571 579 592 580 586 584 595 578 574 474 584 579 479 588 579 605 462 599 598 561 571 577 589 583 567 410 Table A11.1. Trace element compositions and temperature measurements for the detrital samples from the Western Alps (continued) 236 Appendix A11 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U SL 10/16-78 SL 10/16-79 SL 10/16-80 SL 10/16-81 SL 10/16-82 SL 10/16-83 SL 10/16-84 SL 10/16-85 SL 10/16-86 SL 10/16-87 SL 10/16-88 SL 10/16-89 SL 10/16-90 SL 10/16-91 SL 10/16-92 SL 10/16-93 SL 10/16-94 SL 10/16-95 SL 10/16-96 SL 10/16-97 SL 10/16-98 SL 10/16-99 SL 10/16-100 SL 10/16-101 SL 10/16-102 SL 10/16-103 SL 10/16-104 SL 10/16-105 SL 10/16-106 SL 10/16-107 SL 10/16-108 SL 10/16-109 SL 10/16-110 0.002 0.003 0.002 0.001 0.001 0.001 0.001 0.002 0.003 0.003 0.001 0.002 0.005 0.003 0.006 0.002 0.070 0.001 0.001 0.001 0.001 0.001 0.021 0.003 0.002 0.009 0.001 0.006 0.001 0.001 0.001 0.004 0.003 0.03 0.02 0.03 0.07 0.02 0.03 0.03 0.02 0.02 0.03 0.01 0.01 0.01 0.01 0.16 0.01 0.05 0.04 0.01 0.01 0.02 0.02 0.02 0.04 0.03 0.02 0.02 0.01 0.03 0.05 0.06 0.03 0.01 0.21 0.11 0.09 0.11 0.11 0.08 0.06 0.20 0.13 0.18 0.10 0.14 0.23 0.23 0.13 0.16 0.09 0.08 0.15 0.18 0.19 0.08 0.35 0.18 0.11 0.41 0.09 0.12 0.15 0.12 0.06 0.24 0.24 1720 1940 1790 1850 1140 1380 1940 733 1530 1590 1290 1220 1860 1180 1340 1260 1850 1680 2330 1830 2570 1630 1210 2090 1590 1590 1820 732 1410 1390 1310 1460 1370 618 890 489 131 357 522 631 2920 363 1470 147 856 1310 1340 872 1600 802 573 543 532 907 519 288 77 766 206 120 1830 177 14 2390 1400 92 176 133 207 153 52 109 141 118 157 159 164 107 186 84 160 104 179 156 183 127 133 151 145 148 127 185 181 29 213 165 182 156 181 2110 721 1650 580 1580 633 1940 503 624 795 691 1930 1170 1250 802 2440 1840 2070 499 1820 1920 1960 820 503 1920 572 466 105 489 663 2340 961 674 5.3 1.7 6.6 4.7 0.8 2.7 4.1 1.2 2.8 3.6 6.8 1.6 2.6 2.1 1.7 1.0 5.0 4.4 4.1 2.9 2.2 3.3 4.0 4.2 2.4 3.6 5.3 1.2 6.5 5.9 2.9 3.0 6.0 108 100 92 76 86 113 141 99 60 74 18 180 79 31 93 102 110 193 50 81 66 127 46 44 59 66 33 27 25 63 415 111 31 1.8 2.8 2.8 9.0 6.0 2.2 1.2 3.4 0.8 0.9 1.0 6.3 2.4 1.4 3.3 12.1 0.6 0.7 1.0 11.4 0.8 3.8 2.3 1.4 0.7 3.2 1.4 0.6 1.0 4.1 4.3 4.1 0.9 7.0 5.4 7.8 5.7 3.3 4.9 5.6 5.1 7.3 5.9 6.9 5.1 8.4 3.9 7.7 5.0 5.7 8.6 8.4 5.4 5.9 6.9 6.0 7.1 6.1 11.1 8.2 1.2 6.1 7.6 9.5 8.3 7.1 110 40 86 39 122 32 142 29 45 49 38 97 67 94 45 114 119 137 36 104 114 129 44 34 116 32 30 3 34 42 151 50 45 64 298 65 113 121 93 123 209 43 116 45 279 84 42 342 425 81 148 49 52 158 219 62 52 79 46 41 155 53 89 683 522 64 10.5 0.4 14.0 1.4 0.7 3.9 10.5 2.1 2.9 1.2 3.0 2.6 1.5 4.5 0.2 3.7 13.3 16.0 7.3 1.1 7.8 16.3 6.5 5.0 6.2 0.5 2.4 0.1 10.2 1.6 0.3 0.9 10.2 Ts Ts Ts Ts Ts Tomkins Tomkins Tomkins Tomkins Tomkins (3.7 GPa) (2.0GPa) (1.5 GPa) (2.6 GPa) (0.7 GPa) 736 713 749 724 645 698 718 704 726 727 730 696 740 679 728 694 737 726 739 710 713 723 720 722 710 740 738 606 752 730 738 726 738 657 636 670 647 573 622 641 628 649 649 652 621 661 605 650 619 658 648 660 633 636 646 643 644 633 661 659 537 672 652 660 648 659 634 614 646 624 552 600 618 605 626 627 629 599 638 583 627 597 635 625 637 611 614 623 620 621 611 638 636 517 648 629 636 625 636 685 664 698 674 598 649 668 655 676 677 679 648 689 631 677 646 686 676 688 660 664 673 670 672 660 689 687 561 700 680 687 676 687 597 578 609 587 519 564 582 570 589 590 592 563 601 548 590 561 598 589 600 575 578 586 584 585 575 601 599 485 611 592 599 589 599 Table A11.1. Trace element compositions and temperature measurements for the detrital samples from the Western Alps (continued) 237 Appendix A12 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U 4-1A-1 4-1A-2 4-1A-3 4-1A-4 4-1A-5 4-1A-6 4-1A-7 4-1A-8 4-1A-9 4-1A-10 4-1A-11 4-1A-12 N19-1 N19-2 N19-3 N19-4 N19-5 N19-6 N19-7 N19-8 N19-9 N19-10 N19-11 N19-12 N19-13 N19-14 N19-15 N19-16 N19-17 N19-18 N19-19 N19-20 N19-21 N19-22 N19-23 N19-24 N19-25 N19-26 N19-27 N19-28 N19-29 N19-30 N19-31 N19-32 N19-33 N19-34 N19-35 N19-36 N19-37 N19-38 N19-39 N19-40 N19-41 N19-42 N19-43 N19-44 N19-45 N19-46 N19-47 N19-48 N19-49 N19-50 N19-51 N19-52 N19-53 N19-54 N19-55 N19-56 N19-57 N19-58 N19-59 N19-60 N19-61 N19-62 N19-63 N19-64 N19-65 N19-66 0.006 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.036 0.001 0.007 0.004 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.000 0.001 0.001 0.001 0.000 0.017 0.000 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.001 0.010 0.143 0.001 0.008 0.001 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.03 0.03 0.04 0.02 0.02 0.01 0.01 0.03 0.05 0.02 0.02 0.01 0.03 0.07 0.03 0.04 0.11 0.10 0.07 0.10 0.13 0.08 0.08 0.10 0.09 0.07 0.10 0.07 0.08 0.13 0.06 0.05 0.06 0.05 0.06 0.08 0.07 0.06 0.07 0.06 0.06 0.06 0.11 0.06 0.07 0.06 0.05 0.07 0.06 0.05 0.06 0.05 0.06 0.06 0.08 0.06 0.07 0.08 0.07 0.07 0.06 0.05 0.06 0.06 0.09 0.07 0.06 0.06 0.07 0.06 0.06 0.11 0.07 0.10 0.07 0.07 0.06 0.07 0.09 0.07 0.07 0.08 0.07 0.07 0.08 0.08 0.08 0.08 0.06 0.05 0.09 0.12 0.09 0.08 940 927 839 912 832 906 892 890 1020 1040 951 941 1670 1670 1690 1660 1640 1670 1640 1650 1630 1640 1610 1630 1630 1630 1590 1620 1680 1630 1600 1640 1630 1600 1590 1580 1520 1570 1560 1560 1580 1490 1640 1650 1620 1630 1650 1660 1630 1650 1600 1620 1620 1600 1630 1600 1590 1860 1790 1820 1840 1700 1680 1720 1690 1710 1690 1690 1730 1800 1790 1690 1710 1740 1680 1850 1790 1670 59 56 41 79 40 78 76 61 76 90 112 112 14 12 10 10 14 12 14 11 8 7 5 7 5 6 7 11 8 8 7 7 7 6 7 8 11 11 11 8 8 7 9 9 7 7 8 9 9 12 16 19 21 28 31 27 19 12 8 14 16 9 9 9 10 9 10 9 10 11 10 11 7 8 9 8 8 8 157 157 153 169 147 176 153 145 179 180 175 250 77 74 73 72 76 72 75 74 72 71 72 70 71 72 73 73 73 75 70 72 73 73 74 76 75 75 82 81 75 74 76 72 75 72 74 75 72 72 72 70 71 71 72 71 73 85 81 82 82 74 57 62 87 74 74 88 71 81 84 86 61 85 95 81 67 89 11 11 14 25 14 20 16 12 15 19 20 22 67 80 61 56 64 62 53 58 63 53 67 56 52 67 66 69 41 56 56 52 69 47 64 60 61 65 65 69 65 53 56 55 54 53 53 57 53 58 54 55 57 65 70 70 76 65 51 56 63 65 52 55 63 63 52 72 60 65 52 61 51 51 65 61 60 64 15 13 15 14 15 17 13 14 13 14 15 17 3 3 4 4 4 4 3 3 4 3 3 4 4 3 3 3 3 4 3 3 3 3 4 4 4 3 4 3 4 3 5 5 4 5 4 5 5 4 5 5 4 4 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 5 4 4 4 7 4 4 5 6 6 6 3 2 2 3 2 3 3 3 3 2 3 3 3 3 2 3 2 2 2 2 3 3 3 3 3 3 3 4 3 3 3 3 3 2 3 3 3 2 3 3 3 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 5.1 4.4 3.9 3.9 3.9 4.0 3.8 3.7 4.6 3.5 4.3 4.4 2.9 3.1 3.1 2.9 3.1 2.7 2.9 2.9 3.1 2.8 2.7 3.2 3.0 3.2 3.1 3.1 2.8 3.0 2.9 3.0 2.7 3.3 3.0 2.8 2.9 3.1 2.8 3.2 3.3 2.9 3.6 3.6 4.3 3.7 4.1 4.4 4.0 3.4 3.6 3.2 2.8 2.8 3.2 3.1 3.0 2.9 2.9 2.7 2.8 3.0 2.9 3.1 3.1 3.0 2.7 3.0 2.6 4.5 3.0 2.8 3.0 3.0 3.3 3.3 2.8 3.2 6.0 5.4 5.1 6.4 5.8 6.6 5.5 5.4 6.0 6.2 6.0 8.2 3.5 3.6 3.2 3.5 3.9 3.4 3.6 3.3 3.9 3.1 3.7 3.3 3.7 3.8 3.1 3.6 3.4 3.9 3.1 3.3 3.4 3.6 3.4 3.4 3.6 3.8 4.2 4.0 3.6 3.4 3.6 3.5 3.2 3.6 3.4 3.6 3.3 3.1 3.4 3.4 3.0 3.3 3.5 3.6 3.6 3.6 3.6 3.4 3.7 3.5 2.8 2.9 3.9 3.5 3.6 3.5 3.6 3.1 3.6 3.7 2.7 3.6 3.7 3.4 2.8 3.4 0 0 0 0 0 0 0 0 0 0 0 0 3 4 3 3 3 3 4 3 3 3 3 3 3 4 3 4 2 3 3 3 6 2 4 3 4 3 3 3 4 3 3 3 3 3 3 4 3 4 3 3 3 3 4 3 3 3 3 4 4 5 4 3 5 4 3 5 4 5 3 4 2 1 3 4 4 4 32 34 31 34 31 35 29 34 31 33 32 36 3 3 4 4 3 4 3 5 6 3 8 7 5 3 4 3 2 2 3 2 2 4 3 4 5 5 6 5 6 3 6 7 7 6 7 8 8 7 7 7 7 7 8 8 6 3 3 2 2 2 1 2 2 2 2 3 2 2 2 2 1 2 2 3 2 2 7.0 7.3 10.9 10.8 10.3 9.4 7.5 7.6 7.2 8.4 13.8 9.2 0.9 0.9 0.6 0.8 0.9 0.8 0.9 1.0 1.0 0.8 0.8 0.8 0.9 0.8 0.7 0.9 0.9 1.1 0.9 0.9 1.0 0.7 0.7 0.9 1.0 0.8 0.7 1.1 0.9 0.6 0.8 0.7 1.1 0.8 0.7 0.8 0.8 0.7 0.9 0.7 0.6 0.6 0.8 0.8 0.9 0.9 0.7 0.7 0.6 0.8 0.3 0.3 0.7 0.9 0.7 0.8 1.0 0.6 0.7 0.8 0.2 1.0 1.0 0.7 0.9 0.9 Table A12.1. Trace element compositions in WGC samples 238 Appendix A12 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U N19-67 N19-68 N19-69 N19-70 N19-71 N19-72 N19-73 N19-74 N19-75 N27-1 N27-2 N27-3 N27-4 N27-5 N27-6 N27-7 N27-8 N27-9 N27-10 N27-11 N27-12 N27-13 N27-14 N27-15 N28-1 N28-2 N28-3 N28-4 N28-5 N28-6 N28-7 N28-8 N28-9 N28-10 N28-11 N28-12 N28-13 N28-14 N28-15 N28-16 N28-17 N28-18 N28-19 N28-20 N28-21 N28-22 N28-23 N28-24 N28-25 N28-26 N28-27 N28-28 N28-29 N28-30 N29-1 N29-2 N29-3 N29-4 N29-5 N29-6 N29-7 N29-8 N29-9 N29-10 N29-11 N29-12 N29-13 N29-14 N29-15 N29-16 N29-17 N29-18 N29-19 N29-20 N29-21 N29-22 N29-23 N29-24 N29-25 0.008 0.001 0.048 0.001 0.002 0.001 0.001 0.001 0.002 0.004 0.003 0.002 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.003 0.030 0.003 0.002 0.013 0.035 0.001 0.001 0.001 0.003 0.001 0.001 0.002 0.004 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.003 0.001 0.001 0.037 0.001 0.001 0.011 0.001 0.001 0.002 0.001 0.003 0.001 0.001 0.001 0.001 0.003 0.011 0.001 0.001 0.001 0.011 0.002 0.003 0.001 0.001 0.001 0.002 0.001 0.001 0.000 0.001 0.001 0.004 0.001 0.04 0.02 0.01 0.02 0.04 0.31 0.03 0.02 0.02 0.02 0.05 0.05 0.02 0.03 0.04 0.03 0.04 0.13 0.05 0.03 0.03 0.03 0.03 0.04 0.05 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.05 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.04 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.05 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.11 0.08 0.07 0.04 0.08 0.05 0.06 0.06 0.05 0.07 0.07 0.07 0.11 0.08 0.08 0.08 0.07 0.08 0.06 0.11 0.13 0.12 0.09 0.11 0.23 0.07 0.09 0.12 0.10 0.07 0.06 0.07 0.16 0.16 0.07 0.07 0.06 0.06 0.13 0.10 0.06 0.07 0.14 0.10 0.10 0.09 0.10 0.16 0.10 0.08 0.11 0.07 0.09 0.05 0.08 0.07 0.09 0.08 0.07 0.07 0.06 0.07 0.08 0.09 0.08 0.06 0.08 0.08 0.08 0.07 0.07 0.08 0.07 0.08 0.05 0.07 0.06 0.06 0.07 1760 1720 1680 1750 1710 1760 1990 1930 1980 1180 1200 1230 1230 1210 1240 1210 1240 1180 1210 1130 1170 1110 1140 1140 1460 1240 1720 2170 1750 1600 1540 1640 1650 1620 1670 1690 1680 1590 1660 1580 1590 1600 1710 1760 1580 1430 1510 1480 1630 1590 1660 1670 1720 1530 3910 3950 3850 3900 3910 3850 3910 3820 3880 3870 3820 4100 3970 3940 3900 3910 3730 3720 3830 3850 3680 3840 3670 3690 3730 9 9 10 9 10 8 19 29 10 276 278 435 431 438 528 501 521 504 495 507 505 495 549 559 383 322 485 728 383 360 389 388 402 365 405 419 406 380 392 379 390 382 507 542 475 398 419 380 563 551 579 421 497 423 137 140 134 138 130 129 121 112 111 126 122 121 121 126 128 134 124 119 120 121 117 116 120 124 131 95 91 96 97 90 70 94 89 104 289 304 292 286 284 354 290 353 297 291 274 287 287 280 274 252 262 263 224 269 274 254 251 263 256 247 260 264 228 251 281 259 265 263 227 252 246 268 271 275 258 275 225 270 258 155 145 152 164 190 161 170 180 170 187 162 172 169 156 168 161 170 159 163 163 116 169 122 136 116 68 63 69 65 62 65 61 101 73 869 959 920 914 907 866 823 857 826 761 903 951 879 781 834 981 749 1100 544 1060 822 802 536 870 491 736 864 922 114 704 719 788 996 825 336 618 743 716 868 931 688 734 654 1040 764 99 98 101 96 123 91 102 102 97 99 98 99 102 100 107 119 114 120 116 113 99 97 108 102 102 4 3 3 3 3 3 3 4 3 27 31 27 30 31 30 27 29 32 29 30 31 27 28 31 27 20 20 23 25 26 21 23 23 24 21 24 23 18 23 23 24 21 23 20 19 21 23 20 25 23 20 19 26 20 7 6 6 6 7 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 6 6 6 3 2 3 3 2 3 2 3 2 48 52 50 50 50 50 46 53 48 45 50 52 50 47 50 38 32 40 30 42 40 36 34 39 33 36 39 40 27 37 38 34 38 41 26 32 33 33 35 36 36 37 31 42 37 42 41 42 42 41 39 44 42 42 43 42 42 41 41 42 42 39 39 39 39 40 39 42 41 41 2.9 2.8 3.2 3.3 3.6 3.6 3.3 4.2 3.5 4.0 4.1 4.4 3.5 3.2 4.8 3.4 4.8 4.5 3.9 3.7 3.5 3.5 3.9 3.7 3.9 4.2 4.0 3.7 4.2 3.9 4.1 4.1 3.8 3.5 4.0 3.4 3.9 3.9 3.6 4.5 4.1 4.0 3.3 4.9 4.2 3.1 4.0 3.9 4.0 4.4 4.3 3.1 4.0 3.7 1.3 1.3 1.1 1.1 1.5 1.2 1.3 1.3 1.4 1.2 1.3 1.3 1.1 1.2 1.2 1.4 1.1 1.6 1.1 1.3 1.5 1.3 1.3 1.3 1.5 3.9 3.7 4.0 3.7 3.9 3.3 3.4 3.5 4.2 15.1 16.0 15.3 14.0 14.5 18.1 13.9 16.8 16.1 14.8 14.0 14.6 14.8 15.1 14.8 9.1 9.7 10.4 8.5 10.3 9.5 9.8 8.6 9.9 8.1 9.2 9.7 9.4 6.2 9.7 9.7 8.9 10.0 9.3 7.7 9.3 9.4 10.0 10.0 10.6 10.6 9.5 8.1 10.2 8.9 6.6 5.8 5.9 6.6 7.8 6.5 6.7 7.5 7.2 7.1 7.0 5.9 7.2 6.9 6.4 6.2 6.9 6.0 6.3 6.5 4.9 6.2 5.5 5.4 4.9 5 3 5 5 4 4 3 6 4 34 43 30 41 28 27 27 21 33 24 43 42 42 27 29 31 43 52 20 49 22 30 25 32 5 42 70 118 0 23 9 47 44 38 16 29 40 16 39 34 36 40 33 29 42 6 6 7 5 7 6 6 5 5 7 6 6 6 5 7 8 7 7 8 8 6 5 7 6 7 2 2 2 2 2 3 4 9 2 29 34 28 30 31 29 32 25 24 23 30 31 26 25 28 40 43 42 30 42 39 46 34 42 25 38 39 42 21 35 39 39 35 38 33 45 28 38 40 38 35 38 30 44 38 17 17 17 16 16 16 17 17 17 16 17 17 16 16 17 16 14 16 16 15 17 16 17 17 17 0.6 0.9 0.7 0.8 0.8 0.7 0.9 0.7 0.8 85.5 92.4 74.1 81.1 79.7 79.6 107.0 55.5 85.3 99.0 83.8 82.6 81.6 109.0 107.0 6.0 6.2 5.7 5.8 5.0 6.1 6.7 6.3 5.9 5.9 5.8 5.7 5.8 5.6 5.6 6.1 6.3 6.0 5.6 7.3 6.4 6.3 5.7 6.1 5.1 5.1 6.1 5.4 5.6 6.0 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.2 0.3 Table A12.1. Trace element compositions in WGC samples (continued) 239 Appendix A12 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U N29-26 N29-27 N29-28 N29-29 N29-30 N29-31 N29-32 N29-33 N29-34 N29-35 N29-36 N29-37 N29-38 N29-39 N29-40 N29-41 N29-42 N29-43 N29-44 N29-45 N29-46 N29-47 N29-48 N29-49 N29-50 N29-51 N29-52 N29-53 N29-54 N29-55 N29-56 N29-57 N29-58 N29-59 N29-60 N31-1 N31-2 N31-3 N31-4 N31-5 N31-6 N31-7 N31-8 N31-9 N31-10 N31-11 N31-12 N31-13 N31-14 N35-1 N35-2 N35-3 N35-4 N35-5 N35-6 N35-7 N35-8 N35-9 N35-10 N35-11 N35-12 N35-13 N35-14 N35-15 N35-16 N35-17 N35-18 N35-19 N35-20 N35-21 N35-22 N35-23 N35-24 N35-25 N35-26 N35-27 N35-28 N35-29 N35-30 0.001 0.001 0.001 0.000 0.004 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.003 0.006 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.005 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.009 0.003 0.001 0.000 0.000 0.002 0.001 0.002 0.064 0.052 0.001 0.002 0.020 0.053 0.155 0.139 0.002 0.001 0.001 0.005 0.002 0.002 0.001 0.001 0.001 0.008 0.023 0.002 0.003 0.001 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.04 0.03 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.05 0.04 0.02 0.01 0.02 0.01 0.05 0.01 0.02 0.02 0.08 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.09 0.05 0.07 0.10 0.08 0.06 0.09 0.08 0.09 0.09 0.09 0.09 0.10 0.08 0.08 0.07 0.09 0.05 0.09 0.08 0.08 0.07 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.09 0.09 0.07 0.06 0.06 0.06 0.06 0.06 0.17 0.14 0.07 0.06 0.08 0.08 0.09 0.11 0.05 0.08 0.09 0.08 0.10 0.07 0.06 0.06 0.09 0.07 0.11 0.08 0.06 0.03 0.10 0.12 0.10 0.05 0.08 0.10 0.15 0.09 0.07 0.08 0.09 0.09 0.12 0.07 0.11 0.09 0.11 0.11 0.10 3710 3660 3800 3800 3720 3740 3780 3730 3690 3770 3740 3740 3760 3770 3800 3720 3700 3750 3740 3680 3800 3750 3780 3790 3750 3710 3740 3740 3700 3720 3660 3720 3670 3680 3660 496 869 890 594 571 793 1210 519 788 726 731 845 756 762 1140 1180 989 1140 1200 1150 1130 1040 1210 1170 1170 1090 1100 1200 1220 1180 1190 1160 958 1150 1190 1150 1180 1180 1150 1090 1110 677 1030 1090 124 111 120 122 112 114 110 99 100 99 102 100 104 106 114 116 118 116 126 123 126 122 119 111 103 98 118 117 107 100 99 97 99 108 124 155 694 786 259 356 321 176 315 218 376 386 459 325 344 187 193 188 234 202 178 227 188 227 246 211 179 175 217 214 210 163 212 169 239 235 241 238 244 194 143 220 124 215 208 164 174 117 195 132 160 175 147 155 182 176 143 119 163 180 196 105 193 113 182 170 162 185 155 162 140 123 126 142 135 171 153 157 171 188 232 241 249 180 187 223 244 218 236 132 139 227 234 202 206 165 143 143 158 157 155 145 163 169 138 124 126 150 164 162 148 167 183 152 130 139 159 160 173 134 119 197 159 161 107 104 101 104 98 100 99 100 95 93 92 92 99 101 97 101 103 103 98 99 103 112 105 92 98 102 98 100 97 95 100 94 92 99 100 4970 3490 4100 2530 3510 3450 3130 5280 3100 2870 2400 2530 3390 3580 529 728 768 350 560 539 522 522 651 628 540 317 388 567 478 563 556 457 323 524 514 520 706 574 508 197 533 401 558 559 6 6 6 6 6 6 7 6 6 6 6 6 6 6 5 7 7 6 6 6 6 5 6 6 5 5 6 6 6 6 6 6 6 6 6 13 14 15 29 30 13 14 14 17 16 14 16 15 16 14 13 14 11 13 11 11 12 15 13 9 8 9 11 11 12 10 11 12 12 11 12 14 13 11 9 10 8 11 12 42 37 41 43 39 40 40 38 38 39 36 39 40 40 39 40 40 39 40 38 39 37 39 39 39 41 39 39 39 38 39 37 38 37 39 103 115 113 111 86 99 103 100 81 75 60 95 94 94 62 60 52 41 61 46 52 51 66 60 43 35 42 52 46 55 43 41 47 53 46 49 62 57 49 37 52 43 54 58 1.3 1.1 1.6 1.5 1.3 1.1 1.1 1.4 1.0 1.1 1.1 4.6 3.8 1.4 1.4 1.2 1.7 1.3 1.7 1.5 1.0 1.3 1.3 1.2 1.5 1.1 1.3 1.3 1.2 1.3 1.3 1.3 1.3 1.1 1.2 14.6 12.9 13.2 9.6 8.7 13.1 12.3 12.7 9.3 7.0 7.8 11.9 10.2 8.2 0.7 0.7 0.6 0.7 0.6 0.6 0.6 0.8 0.9 0.8 0.5 0.5 0.7 0.9 0.4 0.7 0.5 0.7 0.8 0.6 0.6 3.3 0.9 0.4 1.0 1.0 0.7 0.8 0.7 0.5 7.0 7.0 5.2 8.2 5.3 6.0 6.6 6.0 6.4 7.2 6.6 5.3 5.3 6.1 6.7 8.1 5.2 6.9 5.3 7.1 6.4 6.1 7.4 5.9 6.7 5.4 5.2 5.6 5.7 5.3 7.3 6.4 5.9 6.9 7.7 12.0 11.9 10.9 7.6 7.1 11.1 9.9 11.7 10.9 7.0 6.5 10.4 8.3 6.8 7.4 7.2 6.3 5.2 6.7 6.9 5.9 5.6 6.6 6.5 5.9 4.8 5.3 6.0 6.0 6.5 6.3 6.0 6.5 6.3 6.5 6.4 7.2 7.9 7.0 5.3 5.0 8.1 6.8 6.1 7 6 6 6 5 7 6 5 5 4 4 4 5 6 6 6 8 7 6 7 7 9 7 5 5 6 6 6 6 5 6 5 4 5 6 170 124 139 205 178 305 172 138 196 184 121 138 132 141 12 32 30 15 14 21 26 22 25 27 36 12 23 26 19 22 30 26 5 20 19 21 22 24 25 4 23 6 16 28 17 15 16 17 16 16 16 15 16 14 15 15 16 17 15 16 18 15 15 16 17 16 16 15 14 16 15 16 16 16 16 15 15 15 16 178 122 101 126 149 211 120 171 127 144 50 101 116 123 52 56 56 33 43 47 39 45 46 50 49 41 45 46 40 37 77 44 37 35 36 40 37 48 44 35 45 46 49 50 0.1 0.2 0.3 0.3 0.4 0.1 0.1 0.2 0.2 0.2 0.4 0.3 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.1 61.9 61.1 55.7 47.8 40.0 52.0 61.0 69.9 46.3 27.9 36.1 42.1 52.6 34.1 4.2 3.0 3.2 3.3 3.9 4.3 3.4 3.9 3.5 3.9 3.1 3.2 3.1 3.1 3.7 4.1 3.5 3.9 3.9 3.3 3.1 3.6 3.8 3.7 3.9 5.2 3.1 3.1 4.5 3.9 Table A12.1. Trace element compositions in WGC samples (continued) 240 Appendix A12 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U N36-1 N36-2 N36-3 N36-4 N36-5 N36-6 N36-7 N36-8 N36-9 N36-10 N36-11 N36-12 N36-13 N36-14 N36-15 N36-16 N36-17 N36-18 N36-19 N36-20 N36-21 N36-22 N36-23 N36-24 N36-25 N36-26 N36-27 N36-28 N36-29 N36-30 N36-31 N36-32 N36-33 N36-34 N36-35 N36-36 N36-37 N36-38 N36-39 N36-40 N36-41 N36-42 N36-43 N36-44 N36-45 N36-46 N36-47 N36-48 N36-49 N36-50 N36-51 N36-52 N36-53 N36-54 N36-55 N36-56 N36-57 N36-58 N36-59 N36-60 N38-1 N38-2 N38-3 N38-4 N38-5 N38-6 N38-7 N38-8 N38-9 N38-10 N38-11 N38-12 N38-13 N38-14 N38-15 N38-16 N38-17 N38-18 N38-19 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.003 0.001 0.001 0.002 0.004 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.003 0.017 0.004 0.002 0.006 0.006 0.006 0.003 0.010 0.007 0.015 0.004 0.002 0.032 0.030 0.033 0.025 0.033 0.141 0.017 0.04 0.02 0.03 0.03 0.02 0.02 0.03 0.02 0.04 0.05 0.03 0.02 0.01 0.05 0.02 0.05 0.32 0.02 0.03 0.05 0.05 0.04 0.14 0.06 0.02 0.03 0.02 0.04 0.03 0.03 0.03 0.04 0.02 0.03 0.07 0.02 0.02 0.01 0.02 0.03 0.07 0.02 0.02 0.02 0.02 0.02 0.01 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.05 0.04 0.04 0.02 0.03 0.35 0.32 0.29 0.27 0.34 0.30 0.24 0.44 0.37 0.34 0.32 0.26 0.24 0.24 0.24 0.22 0.26 0.24 0.30 0.08 0.06 0.09 0.04 0.07 0.09 0.04 0.07 0.07 0.08 0.06 0.05 0.07 0.06 0.06 0.06 0.07 0.04 0.02 0.08 0.05 0.06 0.04 0.05 0.05 0.07 0.05 0.05 0.07 0.06 0.05 0.06 0.07 0.06 0.08 0.07 0.06 0.05 0.07 0.08 0.06 0.08 0.08 0.07 0.06 0.06 0.10 0.10 0.07 0.12 0.08 0.11 0.08 0.13 0.12 0.08 0.09 0.10 0.08 0.10 0.07 0.06 0.10 0.17 0.08 0.10 0.08 0.10 0.09 0.14 0.11 0.14 0.09 0.06 0.06 0.13 0.20 0.08 0.11 683 692 702 696 692 689 674 697 676 681 681 678 694 683 682 673 681 692 687 672 688 672 709 684 687 680 675 690 672 685 686 694 719 705 730 701 701 674 689 692 705 779 696 688 678 695 682 680 678 686 686 707 689 694 691 683 694 689 715 713 2520 2190 1880 1920 2290 2000 1860 2910 2570 2300 2260 1810 3290 3320 3310 2990 2910 3330 2940 97 107 112 113 111 115 113 111 109 112 115 115 117 115 115 117 120 121 116 116 119 114 118 118 118 124 128 132 131 142 114 117 119 116 122 117 121 119 118 116 118 121 114 114 106 111 116 117 116 114 114 111 113 114 113 114 113 111 112 113 1030 859 844 855 950 809 779 1180 1020 929 923 746 1380 1420 1510 1320 1280 1670 1430 114 106 109 109 112 107 105 108 107 109 110 112 109 110 111 110 105 107 107 110 111 109 109 110 109 110 111 117 107 110 109 108 109 110 111 111 113 113 113 112 111 114 110 111 111 110 116 111 111 110 112 113 111 109 108 111 112 109 112 108 471 522 500 490 490 466 495 524 495 457 557 494 866 802 752 735 778 690 707 960 956 973 953 975 1010 923 952 929 971 971 951 980 969 992 977 931 941 913 933 960 933 936 938 948 966 992 1090 931 936 972 944 960 951 972 966 991 968 973 976 986 999 967 970 838 1020 960 935 945 942 973 981 969 933 936 939 944 910 980 943 43300 35100 26300 28900 36600 30100 27800 57600 43000 38100 37500 28200 79800 77600 79200 66900 70500 78900 68800 6 7 8 7 7 7 7 7 7 7 7 7 7 7 7 10 7 7 7 7 7 7 8 8 7 7 6 7 7 6 7 7 7 7 8 7 8 8 8 7 8 9 7 7 6 7 7 7 6 7 7 7 8 7 7 7 8 7 6 6 14 11 13 12 12 12 13 13 12 9 13 14 12 14 12 14 15 15 14 46 58 58 51 52 53 53 54 53 55 57 54 58 57 53 57 56 56 55 60 65 58 59 57 53 55 52 54 55 49 53 55 57 54 56 56 57 58 54 56 55 56 56 56 47 55 58 56 56 55 55 60 57 55 54 55 58 55 58 54 17 16 14 14 15 14 16 20 19 16 18 16 30 26 26 25 25 24 26 0.5 0.8 0.6 0.6 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.4 0.7 0.6 0.5 0.4 0.4 0.4 0.5 0.6 0.5 0.6 0.5 0.4 0.3 0.4 0.5 0.6 0.4 0.3 0.3 0.5 0.4 0.5 0.4 0.6 0.8 0.8 0.4 0.6 0.4 0.7 0.5 0.4 0.6 0.5 0.5 0.4 0.3 0.4 0.4 1.9 2.2 3.1 2.3 1.8 2.6 1.9 1.5 1.9 2.6 2.2 2.7 1.5 1.7 1.8 1.4 1.4 1.5 1.6 4.1 4.7 4.9 5.1 5.1 5.1 4.9 5.0 4.9 4.9 4.7 4.7 4.8 4.6 5.5 4.6 4.9 4.9 5.2 5.4 5.2 4.8 5.3 5.1 5.5 4.9 4.7 5.1 4.9 4.8 5.1 4.9 5.4 5.4 5.5 5.2 5.0 5.5 5.2 4.7 5.0 5.3 5.0 5.0 4.3 5.0 4.9 5.2 4.5 5.3 5.5 5.0 5.1 5.6 5.5 5.5 4.9 5.2 4.5 5.1 11.5 11.8 11.3 10.2 10.5 9.7 10.3 14.0 13.3 14.2 15.3 8.9 22.3 20.2 18.2 20.7 16.6 16.8 17.8 37 33 32 29 29 29 28 29 29 29 30 29 30 29 33 31 32 33 30 33 33 31 32 33 34 33 32 43 31 37 30 29 28 30 33 33 34 34 29 29 30 29 30 34 35 39 36 34 34 34 34 35 34 29 29 29 29 29 29 29 2080 1150 2240 2110 2540 783 244 2980 2880 1420 1770 39 3160 2720 3340 3330 946 2970 2120 11 14 12 12 11 11 11 12 11 11 11 11 12 11 13 13 14 14 14 14 14 15 14 15 15 15 15 15 14 14 12 11 11 12 13 14 14 14 11 11 12 12 11 13 13 16 15 14 14 14 13 14 14 11 11 12 11 12 11 11 11 12 9 9 11 11 9 10 10 10 7 17 11 11 10 10 9 15 9 8.1 6.3 6.1 5.7 6.2 5.8 6.2 6.0 7.0 8.6 7.0 6.2 7.4 7.7 7.2 7.8 8.7 7.0 6.9 8.4 8.1 6.5 7.0 7.0 7.1 6.8 6.8 7.6 7.3 6.4 6.4 7.1 6.1 6.3 6.8 7.0 9.0 7.8 8.5 8.1 6.5 7.5 7.6 6.6 7.5 5.6 6.0 6.4 5.8 6.1 5.6 6.0 5.7 6.3 6.4 7.7 7.4 6.1 6.4 5.8 0.4 0.5 0.4 0.5 0.4 0.6 0.6 0.4 0.3 0.4 0.4 0.5 0.7 0.7 0.7 0.6 0.6 1.0 0.6 Table A12.1. Trace element compositions in WGC samples (continued) 241 Appendix A12 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U N38-20 N38-21 N38-22 N38-23 N38-24 N38-25 N38-26 N38-27 N38-28 N38-29 N38-30 N40-1 N40-2 N40-3 N40-4 N40-5 N40-6 N40-7 N40-8 N40-9 N40-10 N40-11 N40-12 N40-13 N40-14 N40-15 N40-16 N40-17 N40-18 N40-19 N40-20 N40-21 N40-22 N40-23 N40-24 N40-25 N40-26 N40-27 N40-28 N40-29 N40-30 N55-1 N55-2 N55-3 N55-4 N55-5 N55-6 N55-7 N55-8 N55-9 N55-10 N55-11 N55-12 N55-13 N55-14 N55-15 N55-16 N55-17 N55-18 N55-19 N55-20 N55-21 N55-22 N55-23 N55-24 N55-25 N55-26 N55-27 N55-28 N55-29 N55-30 N55-31 N55-32 N55-33 N55-34 N55-35 N55-36 N55-37 N55-38 0.014 0.018 0.019 0.014 0.080 0.084 0.078 0.085 0.044 0.046 0.041 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.020 0.001 0.001 0.000 0.001 0.001 0.001 0.036 0.001 0.000 0.005 0.003 0.008 0.003 0.039 0.006 0.008 0.002 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.092 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.000 0.001 0.001 0.28 0.29 0.28 0.27 0.36 0.27 0.26 0.27 0.35 0.35 0.35 0.09 0.03 0.03 0.07 0.12 0.16 0.13 0.10 0.11 0.13 0.25 0.15 0.10 0.13 0.03 0.19 0.13 0.04 0.06 0.03 0.05 0.03 0.04 0.03 0.05 0.04 0.03 0.04 0.04 0.05 0.03 0.03 0.02 0.03 0.02 0.01 0.02 0.03 0.02 0.04 0.03 0.02 0.02 0.04 0.05 0.03 0.06 0.03 0.03 0.03 0.03 0.04 0.03 0.01 0.03 0.01 0.02 0.08 0.03 0.06 0.02 0.03 0.02 0.02 0.02 0.03 0.04 0.03 0.09 0.14 0.12 0.11 0.11 0.11 0.16 0.10 0.12 0.07 0.07 0.10 0.08 0.10 0.08 0.07 0.16 0.08 0.11 0.10 0.07 0.08 0.09 0.11 0.06 0.07 0.05 0.07 0.07 0.09 0.08 0.08 0.08 0.12 0.06 0.06 0.04 0.07 0.05 0.06 0.11 0.07 0.07 0.08 0.08 0.08 0.06 0.06 0.08 0.07 0.09 0.07 0.05 0.05 0.07 0.06 0.06 0.13 0.09 0.09 0.07 0.06 0.05 0.07 0.06 0.07 0.06 0.06 0.06 0.07 0.08 0.05 0.07 0.05 0.07 0.06 0.08 0.04 0.07 2800 2880 2860 2700 4960 4890 4760 4880 3820 3840 3770 1820 1580 1560 1620 1840 2470 2290 2710 2090 2060 2050 2570 2250 2290 1860 2040 1950 2040 1840 1620 1910 1520 1710 1890 2010 1850 1720 1690 1680 1840 1810 1810 1810 1850 1830 1800 1840 1830 1860 1840 1810 1860 1820 1810 1820 1860 1870 1840 1850 1850 1830 1860 1810 1790 1810 1830 1800 1850 1800 1880 1870 1860 1880 1810 1830 1830 1840 1860 1290 1330 1350 1300 1960 2020 1940 1980 1810 1800 1740 1350 1090 1030 1050 1110 1360 1270 1440 1180 1160 1190 1380 1260 1250 1110 1190 1120 1190 1070 1020 1130 970 1020 1160 1140 1100 1030 1000 1030 983 100 101 101 105 104 104 107 106 107 109 111 114 114 115 116 110 117 111 107 108 100 102 119 121 116 116 114 114 110 103 99 112 101 96 98 96 97 96 655 800 632 679 1070 1080 1070 1110 972 931 885 537 559 559 582 548 522 548 586 564 578 594 553 546 512 527 531 531 562 578 608 533 576 580 580 576 566 579 568 603 351 265 267 261 264 258 228 247 217 197 168 220 206 188 199 205 282 277 243 296 243 257 282 196 177 160 220 227 260 259 256 248 253 246 235 224 227 237 248 60000 68600 65700 61600 118000 117600 116000 117700 96700 92500 88400 7530 3930 3840 4670 7630 15900 13800 19100 11600 10800 11000 17700 13800 14300 7760 9450 8660 9440 8030 4940 8140 3160 5060 7010 9220 7270 6020 5490 5520 1280 1560 1030 940 928 851 796 784 884 835 773 797 791 794 776 826 1220 940 875 874 900 901 1120 758 780 774 824 818 1060 1080 1030 911 925 856 836 821 838 885 851 11 11 12 12 10 9 10 10 9 8 10 17 15 12 13 12 11 9 11 11 12 13 11 11 11 11 12 11 13 10 14 13 11 11 14 11 10 11 10 12 13 41 42 44 51 62 56 68 63 62 65 56 58 64 62 62 53 55 52 58 62 49 49 59 64 68 66 58 49 45 57 55 61 66 66 69 65 55 58 21 29 21 23 45 43 42 46 39 38 37 19 17 19 19 19 23 22 30 21 22 24 38 26 32 18 19 18 20 21 19 21 17 22 23 29 22 21 19 19 12 30 35 35 39 44 42 47 44 44 48 45 45 49 46 44 42 44 40 47 44 40 38 46 46 47 47 46 39 33 39 42 42 44 43 45 45 40 41 1.5 1.7 1.3 1.6 1.2 1.5 1.2 1.6 1.7 1.3 0.9 1.1 1.0 1.1 1.2 1.0 0.6 0.9 0.8 0.9 0.8 1.0 0.7 0.7 0.8 1.0 1.1 0.9 1.2 1.1 1.1 0.8 1.0 1.1 1.1 1.0 1.1 1.0 1.0 1.3 1.5 19.2 17.5 19.0 18.7 17.5 16.0 19.6 18.1 15.7 14.7 17.8 15.8 15.6 17.0 16.0 22.8 20.4 19.1 23.3 18.1 18.0 22.7 15.6 15.0 13.4 16.0 15.2 18.4 18.8 17.5 16.6 18.8 18.0 15.7 14.6 15.1 16.8 17.4 18.3 22.4 15.9 18.6 28.9 28.0 27.4 26.9 24.8 24.3 23.2 14.4 14.3 14.6 14.5 14.4 14.5 14.0 18.5 14.9 15.0 15.4 16.8 17.0 13.1 12.8 13.6 13.4 14.1 14.7 15.0 17.2 14.4 14.3 16.4 16.3 15.4 14.6 14.4 16.3 6.9 8.4 8.9 8.7 8.7 7.7 7.0 7.2 7.3 6.6 5.0 6.4 6.2 5.7 6.6 7.0 9.0 8.9 7.8 9.1 7.6 8.2 9.8 6.6 5.7 5.5 6.8 7.1 8.6 8.5 8.6 8.7 7.5 8.3 7.9 7.8 8.8 8.6 8.7 2520 3610 2500 2730 3800 3670 3870 3770 3800 3670 3570 135 68 54 56 249 512 264 568 130 135 238 306 396 179 103 122 157 147 66 121 200 46 51 119 109 152 99 56 43 2 61 51 40 56 44 44 42 59 50 44 44 45 44 45 47 51 57 48 49 53 49 50 43 43 46 45 47 49 50 59 53 53 53 53 51 54 53 46 11 11 13 10 15 14 13 16 13 14 11 15 24 21 22 19 15 18 18 22 19 20 16 20 9 20 19 20 19 21 20 19 22 22 22 21 19 21 20 22 7 106 115 116 116 67 70 66 97 73 68 73 75 75 82 113 136 98 93 81 76 83 112 79 67 74 82 74 116 89 100 83 107 83 79 81 83 102 85 0.6 0.6 0.7 0.8 1.3 2.7 1.5 1.4 0.9 0.8 0.8 10.9 12.4 10.0 9.9 10.1 8.7 13.0 8.8 9.4 9.6 9.6 8.8 11.1 9.4 10.2 10.7 11.1 11.3 13.7 12.6 13.5 16.1 13.7 14.7 12.4 11.4 12.2 11.4 13.2 12.9 1.0 0.4 0.4 0.6 0.9 0.5 0.7 0.5 0.5 0.5 0.6 0.7 0.7 0.8 0.6 0.5 1.1 0.5 0.7 0.5 0.5 0.5 0.8 1.0 1.1 0.7 0.6 0.5 0.5 0.7 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.5 Table A12.1. Trace element compositions in WGC samples (continued) 242 Appendix A12 Sample MgO Al2O3 SiO2 V Cr Zr Nb Mo Sn Sb Hf Ta W U N55-39 N55-40 N55-41 N55-42 N55-43 N55-44 N55-45 N55-46 N55-47 N55-48 N55-49 N55-50 N55-51 N55-52 N55-53 N55-54 N55-55 N55-56 N55-57 N55-58 N55-59 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.003 0.001 0.001 0.002 0.002 0.001 0.001 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.06 0.02 0.02 0.02 0.02 0.02 0.06 0.04 0.01 0.02 0.03 0.06 0.05 0.04 0.06 0.06 0.06 0.06 0.06 0.08 0.05 0.04 0.05 0.07 0.06 0.06 0.04 0.05 0.08 0.06 0.07 0.05 1810 1830 1790 1800 1780 1780 1850 1830 1840 1800 1850 1870 1860 1820 1950 1850 1870 1770 1830 1850 1890 94 96 99 98 94 92 100 99 97 98 100 98 101 97 98 100 103 102 98 99 97 239 223 236 250 235 232 230 258 226 226 298 223 229 231 238 222 228 295 248 232 250 834 846 881 997 955 890 844 832 825 864 941 905 944 927 879 851 863 918 875 883 983 61 64 55 54 50 44 58 63 58 62 70 61 60 54 65 69 71 70 62 62 52 45 42 39 40 39 36 44 43 42 45 49 43 41 35 47 47 46 46 46 44 37 16.2 15.3 17.5 19.1 15.1 20.3 16.4 19.0 16.3 16.5 18.1 15.4 16.4 16.5 19.0 15.0 15.3 20.1 16.7 14.9 19.4 8.4 8.8 8.2 8.4 8.2 7.7 8.0 8.3 8.0 7.5 10.3 8.3 9.1 8.3 8.5 8.4 8.1 9.7 9.1 8.7 8.3 47 51 55 46 62 48 48 42 49 46 48 53 55 54 50 45 50 54 51 55 45 83 89 96 113 96 91 83 84 89 79 92 92 99 95 81 80 78 114 81 92 89 0.6 0.6 0.5 0.4 0.3 0.4 0.6 0.7 0.4 0.5 0.5 0.5 0.7 0.5 0.8 0.6 0.5 0.7 0.5 0.4 0.4 Table A12.1. Trace element compositions in WGC samples (continued) 243 Appendix A12 Sample 4-1A-1 4-1A-2 4-1A-3 4-1A-4 4-1A-5 4-1A-6 4-1A-7 4-1A-8 4-1A-9 4-1A-10 4-1A-11 4-1A-12 N19-1 N19-2 N19-3 N19-4 N19-5 N19-6 N19-7 N19-8 N19-9 N19-10 N19-11 N19-12 N19-13 N19-14 N19-15 N19-16 N19-17 N19-18 N19-19 N19-20 N19-21 N19-22 N19-23 N19-24 N19-25 N19-26 N19-27 N19-28 N19-29 N19-30 N19-31 N19-32 N19-33 N19-34 N19-35 N19-36 N19-37 N19-38 N19-39 N19-40 N19-41 N19-42 N19-43 N19-44 N19-45 N19-46 N19-47 N19-48 N19-49 N19-50 N19-51 N19-52 N19-53 N19-54 N19-55 N19-56 N19-57 N19-58 N19-59 N19-60 N19-61 N19-62 N19-63 N19-64 N19-65 N19-66 Ts Ts Ts Tomkins Tomkins Tomkins (1.8 GPa) (1.6 GPa) (2.0 GPa) 581 578 578 577 580 577 580 579 577 576 577 575 576 577 578 578 578 579 575 577 578 578 579 580 580 580 585 584 579 579 580 577 580 577 578 580 576 577 577 575 576 576 577 576 577 588 584 585 585 578 562 568 589 578 579 590 576 585 587 588 566 588 595 585 572 591 Ts Tomkins (2.2 GPa) Ts Tomkins (2.5 GPa) 667 667 665 673 662 676 665 661 678 678 676 705 Ts Ts Tomkins Tomkins (2.7 GPa) (3.5 GPa) 688 688 686 694 683 697 686 682 699 699 697 727 Ts Tomkins (3.7 GPa) Ts Tomkins (3.8 GPa) 598 595 595 594 598 594 597 596 594 593 594 592 593 594 595 595 595 597 592 594 595 595 596 597 597 597 602 602 597 596 597 594 597 594 595 597 594 594 594 592 593 593 594 593 595 605 602 603 602 596 579 585 607 596 596 608 593 602 605 606 583 605 613 602 590 608 Ts Tomkins (4.8 GPa) Ts Tomkins (5.5 GPa) Ts F&W a(SiO2)=1 545 543 542 542 545 541 544 543 541 540 541 540 540 541 542 542 542 544 539 541 542 542 543 544 544 544 549 549 544 543 544 541 544 541 543 544 541 541 541 540 540 540 541 540 542 552 548 550 549 543 526 532 553 543 543 554 540 549 551 553 530 552 560 549 537 555 Table A12.2. Temperature measurements for the WGC samples 244 Appendix A12 Sample N19-67 N19-68 N19-69 N19-70 N19-71 N19-72 N19-73 N19-74 N19-75 N27-1 N27-2 N27-3 N27-4 N27-5 N27-6 N27-7 N27-8 N27-9 N27-10 N27-11 N27-12 N27-13 N27-14 N27-15 N28-1 N28-2 N28-3 N28-4 N28-5 N28-6 N28-7 N28-8 N28-9 N28-10 N28-11 N28-12 N28-13 N28-14 N28-15 N28-16 N28-17 N28-18 N28-19 N28-20 N28-21 N28-22 N28-23 N28-24 N28-25 N28-26 N28-27 N28-28 N28-29 N28-30 N29-1 N29-2 N29-3 N29-4 N29-5 N29-6 N29-7 N29-8 N29-9 N29-10 N29-11 N29-12 N29-13 N29-14 N29-15 N29-16 N29-17 N29-18 N29-19 N29-20 N29-21 N29-22 N29-23 N29-24 N29-25 Ts Ts Ts Tomkins Tomkins Tomkins (1.8 GPa) (1.6 GPa) (2.0 GPa) 595 613 592 610 596 614 596 614 592 609 575 592 594 612 590 608 601 619 Ts Tomkins (2.2 GPa) 700 703 703 690 705 707 700 699 703 701 698 702 704 691 699 709 702 704 703 691 700 698 705 706 707 702 707 690 706 702 660 655 658 664 676 663 667 672 667 675 663 668 667 661 666 663 667 662 664 664 638 667 642 650 638 Ts Tomkins (2.5 GPa) Ts Ts Tomkins Tomkins (2.7 GPa) (3.5 GPa) Ts Tomkins (3.7 GPa) Ts Tomkins (3.8 GPa) Ts Tomkins (4.8 GPa) 746 751 747 745 745 765 747 765 749 747 742 746 746 744 742 768 773 769 767 767 787 769 787 771 769 763 768 768 765 763 Ts Tomkins (5.5 GPa) Ts F&W a(SiO2)=1 559 556 560 560 556 539 558 555 565 706 709 710 696 712 713 707 706 710 707 704 709 710 698 706 716 708 710 710 697 706 704 711 712 714 708 714 697 712 708 666 661 665 671 683 669 674 678 674 681 670 674 673 667 673 669 674 668 670 670 644 673 648 656 644 Table A12.2. Temperature measurements for the WGC samples (continued) 245 Appendix A12 Sample N29-26 N29-27 N29-28 N29-29 N29-30 N29-31 N29-32 N29-33 N29-34 N29-35 N29-36 N29-37 N29-38 N29-39 N29-40 N29-41 N29-42 N29-43 N29-44 N29-45 N29-46 N29-47 N29-48 N29-49 N29-50 N29-51 N29-52 N29-53 N29-54 N29-55 N29-56 N29-57 N29-58 N29-59 N29-60 N31-1 N31-2 N31-3 N31-4 N31-5 N31-6 N31-7 N31-8 N31-9 N31-10 N31-11 N31-12 N31-13 N31-14 N35-1 N35-2 N35-3 N35-4 N35-5 N35-6 N35-7 N35-8 N35-9 N35-10 N35-11 N35-12 N35-13 N35-14 N35-15 N35-16 N35-17 N35-18 N35-19 N35-20 N35-21 N35-22 N35-23 N35-24 N35-25 N35-26 N35-27 N35-28 N35-29 N35-30 Ts Ts Ts Tomkins Tomkins Tomkins (1.8 GPa) (1.6 GPa) (2.0 GPa) 674 657 646 646 653 653 652 647 656 658 643 635 636 649 656 655 648 658 665 650 638 643 654 654 660 641 632 671 654 655 Ts Tomkins (2.2 GPa) 664 669 639 678 648 662 670 656 660 673 670 654 640 664 672 679 631 677 636 673 667 663 674 660 663 652 642 644 653 649 668 659 661 668 675 693 696 699 672 675 689 697 687 694 648 652 691 693 681 Ts Tomkins (2.5 GPa) 671 675 645 685 654 669 676 662 666 679 676 660 646 670 678 685 637 684 642 679 674 670 680 666 670 658 648 650 659 655 674 665 667 674 682 699 702 705 678 681 696 703 694 701 654 658 697 700 688 689 671 660 660 668 667 666 661 670 673 657 649 650 664 671 670 663 672 679 665 653 658 668 669 675 655 646 685 668 669 Ts Ts Tomkins Tomkins (2.7 GPa) (3.5 GPa) Ts Tomkins (3.7 GPa) Ts Tomkins (3.8 GPa) Ts Tomkins (4.8 GPa) Ts Tomkins (5.5 GPa) Ts F&W a(SiO2)=1 Table A12.2. Temperature measurements for the WGC samples (continued) 246 Appendix A12 Sample N36-1 N36-2 N36-3 N36-4 N36-5 N36-6 N36-7 N36-8 N36-9 N36-10 N36-11 N36-12 N36-13 N36-14 N36-15 N36-16 N36-17 N36-18 N36-19 N36-20 N36-21 N36-22 N36-23 N36-24 N36-25 N36-26 N36-27 N36-28 N36-29 N36-30 N36-31 N36-32 N36-33 N36-34 N36-35 N36-36 N36-37 N36-38 N36-39 N36-40 N36-41 N36-42 N36-43 N36-44 N36-45 N36-46 N36-47 N36-48 N36-49 N36-50 N36-51 N36-52 N36-53 N36-54 N36-55 N36-56 N36-57 N36-58 N36-59 N36-60 N38-1 N38-2 N38-3 N38-4 N38-5 N38-6 N38-7 N38-8 N38-9 N38-10 N38-11 N38-12 N38-13 N38-14 N38-15 N38-16 N38-17 N38-18 N38-19 Ts Ts Ts Tomkins Tomkins Tomkins (1.8 GPa) (1.6 GPa) (2.0 GPa) 629 623 625 625 627 624 622 625 624 625 626 627 625 626 627 626 622 624 624 626 627 625 625 626 625 626 627 630 624 626 625 625 625 626 627 627 628 628 628 627 627 629 626 627 627 626 630 627 627 626 627 628 627 625 625 627 627 625 627 625 Ts Tomkins (2.2 GPa) Ts Tomkins (2.5 GPa) 643 637 639 639 641 638 637 639 638 639 640 641 639 640 641 640 637 638 638 640 641 639 639 640 639 640 641 645 638 640 639 639 639 640 641 641 642 642 642 641 641 643 640 641 641 640 644 641 641 640 641 642 641 639 639 641 641 639 641 639 763 773 768 766 766 762 767 773 767 760 779 767 824 816 809 807 813 801 803 Ts Ts Tomkins Tomkins (2.7 GPa) (3.5 GPa) Ts Tomkins (3.7 GPa) Ts Tomkins (3.8 GPa) Ts Tomkins (4.8 GPa) Ts Tomkins (5.5 GPa) Ts F&W a(SiO2)=1 767 777 773 771 771 766 772 778 772 764 784 772 829 821 814 812 818 805 808 Table A12.2. Temperature measurements for the WGC samples (continued) 247 Appendix A12 Sample N38-20 N38-21 N38-22 N38-23 N38-24 N38-25 N38-26 N38-27 N38-28 N38-29 N38-30 N40-1 N40-2 N40-3 N40-4 N40-5 N40-6 N40-7 N40-8 N40-9 N40-10 N40-11 N40-12 N40-13 N40-14 N40-15 N40-16 N40-17 N40-18 N40-19 N40-20 N40-21 N40-22 N40-23 N40-24 N40-25 N40-26 N40-27 N40-28 N40-29 N40-30 N55-1 N55-2 N55-3 N55-4 N55-5 N55-6 N55-7 N55-8 N55-9 N55-10 N55-11 N55-12 N55-13 N55-14 N55-15 N55-16 N55-17 N55-18 N55-19 N55-20 N55-21 N55-22 N55-23 N55-24 N55-25 N55-26 N55-27 N55-28 N55-29 N55-30 N55-31 N55-32 N55-33 N55-34 N55-35 N55-36 N55-37 N55-38 Ts Ts Ts Tomkins Tomkins Tomkins (1.8 GPa) (1.6 GPa) (2.0 GPa) Ts Tomkins (2.2 GPa) Ts Tomkins (2.5 GPa) 795 816 792 799 848 849 848 852 837 832 827 775 779 779 783 777 773 777 784 780 783 785 778 777 771 774 774 774 780 783 788 775 782 783 783 782 781 783 781 787 735 Ts Ts Tomkins Tomkins (2.7 GPa) (3.5 GPa) 800 821 796 804 853 854 853 857 842 837 832 780 784 784 788 782 777 782 789 785 787 790 783 782 775 778 779 779 784 787 792 779 787 788 788 787 785 787 786 792 740 736 737 735 736 734 723 730 719 711 698 720 715 707 712 714 742 740 729 746 729 734 742 710 702 694 720 723 735 734 733 731 732 730 726 722 723 727 731 Ts Tomkins (3.7 GPa) Ts Tomkins (3.8 GPa) Ts Tomkins (4.8 GPa) Ts Tomkins (5.5 GPa) Ts F&W a(SiO2)=1 776 776 774 775 773 762 769 758 749 735 759 753 745 750 753 781 780 768 786 768 773 781 749 740 731 759 762 774 774 772 770 771 769 765 760 762 765 770 Table A12.2. Temperature measurements for the WGC samples (continued) 248 Appendix A12 Sample N55-39 N55-40 N55-41 N55-42 N55-43 N55-44 N55-45 N55-46 N55-47 N55-48 N55-49 N55-50 N55-51 N55-52 N55-53 N55-54 N55-55 N55-56 N55-57 N55-58 N55-59 Ts Ts Ts Tomkins Tomkins Tomkins (1.8 GPa) (1.6 GPa) (2.0 GPa) Ts Tomkins (2.2 GPa) Ts Tomkins (2.5 GPa) Ts Ts Tomkins Tomkins (2.7 GPa) (3.5 GPa) 727 721 726 731 726 725 724 734 723 723 747 721 724 724 727 721 723 746 731 725 731 Ts Tomkins (3.7 GPa) Ts Tomkins (3.8 GPa) Ts Tomkins (4.8 GPa) Ts Tomkins (5.5 GPa) 766 760 765 770 765 764 763 773 761 761 787 760 762 763 766 760 762 786 770 764 770 Ts F&W a(SiO2)=1 Table A12.2. Temperature measurements for the WGC samples (continued) 249 Appendix A13 Sample Phase SiO2 TiO2 Cr2O3 Al2O3 FeO MnO MgO CaO Na2O K2O Total A299 px 56 0.09 0.002 9 5 0.05 9 14 5.8 0.007 98.1 Sample Phase SiO2 TiO2 Cr2O3 Al2O3 FeO MnO MgO CaO Na2O K2O Total px 56 0.09 0.008 9 5 0.03 9 14 6.2 grt 40 0.03 0.001 20 23 0.58 8 8 0.00 grt 39 0.58 0.024 20 23 0.62 8 8 0.00 98.3 99.1 A347g Opx 57 0.01 Opx 57 0.05 0.14 13 0.15 31 0.13 0.002 0.005 100.9 0.17 13 0.14 30 0.13 0.02 0.001 100.5 Cpx 55 0.07 0.35 3 5 0.05 14 20 2.299 Sample A347g (continued) Phase grt Cpx SiO2 40 55 TiO2 0.03 0.04 Cr2O3 0.24 0.30 Al2O3 20 3 FeO 22 4 MnO 0.88 0.06 MgO 12 14 CaO 4 20 Na2O 0.018 2.243 K2O Total 99.6 99.4 99.1 Cpx 55 0.04 0.24 3 4 0.07 14 20 2.296 0.001 99.2 grt 40 0.04 0.028 20 23 0.60 8 8 0.02 grt 40 0.06 0.038 20 23 0.60 8 9 0.04 99.3 grt 39 0.04 0.029 20 23 0.58 8 8 0.02 0.001 98.7 99.4 99.1 Cpx 55 0.05 0.33 3 4 0.08 15 19 2.256 0.001 99.3 Cpx 55 0.03 0.31 3 4 0.07 14 20 2.288 0.003 99.5 Cpx 55 0.05 0.32 3 4 0.07 14 20 2.371 Cpx 55 0.03 0.32 3 5 0.07 14 20 2.374 Cpx 56 0.04 0.31 3 5 0.09 14 19 2.317 0.007 99.8 Cpx 55 0.05 0.27 3 5 0.06 14 20 2.336 0.008 99.6 99.2 99.3 grt 39 0.03 0.028 20 22 1.07 7 9 0.02 0.002 99.2 grt 39 0.05 0.033 20 23 1.01 8 8 0.03 0 99.4 grt 39 0.04 0.021 20 23 1.09 7 9 0.01 grt 41 0.03 0.23 21 20 0.67 12 4 0.026 0.005 99.0 grt 41 0.04 0.24 20 21 0.70 13 4 0.018 grt 41 0.02 0.24 20 20 0.70 13 4 0.008 0.005 99.0 grt 41 0.03 0.36 20 20 0.64 13 4 Cpx 55 0.03 0.31 3 5 0.09 14 20 2.335 grt 41 0.05 0.20 20 21 0.70 13 4 0.005 0.014 100.0 99.8 100.1 99.4 0.001 99.2 grt 39 0.09 0.069 20 22 0.90 7 9 0.03 0 99.1 grt 40 0.20 0.052 20 23 0.77 7 9 0.03 0.005 99.8 px 56 0.12 0.043 9 5 0.04 9 14 6.2 px 55 0.12 0.046 9 5 0.04 9 14 5.9 98.6 98.1 grt 41 0.02 0.35 20 21 0.71 13 4 0.005 0.004 100.1 grt 41 0.02 0.39 20 20 0.68 13 4 grt 41 0.05 0.36 20 20 0.68 13 4 0.009 grt 41 0.04 0.39 20 21 0.70 13 4 99.4 99.8 0.003 99.7 Table A13.1. EPMA for samples A299 and A347g from the WGC that were used for geothermobarometry calculations (Cuthbert, unpublished). 250 Appendix A14 Harley&Green (1984) P(kbar) Carswell (1989) P(kbar) Brey&Köhler (1990) P(kbar) Brey, Nickel & Kogarko (1986) P(kbar) 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 39 37 40 38 40 38 40 38 40 38 40 38 40 38 40 38 40 38 40 38 40 38 40 38 40 38 40 38 40 38 40 38 40 38 40 38 41 38 40 38 40 38 41 38 44 41 43 41 44 41 44 41 45 42 44 41 44 41 45 42 44 42 44 41 44 42 44 41 44 41 44 41 44 42 44 41 44 42 45 41 44 41 44 41 43 41 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 56 55 Table A14.1. P/T results for A347g using various Grt-Opx Al Geothermobarometers 251 Appendix A14 Brey&Köhler (1990) T(°C) Mori&Green (1978) T(°C) 705 654 669 639 644 663 646 656 583 571 639 631 637 641 622 653 650 628 653 651 631 567 622 645 650 653 645 670 637 637 642 612 636 648 599 630 650 657 661 665 583 650 685 616 635 597 603 627 606 618 529 515 597 587 595 600 576 615 610 583 614 612 587 509 576 604 610 614 605 636 594 594 601 564 594 608 554 585 611 620 625 629 529 611 700 646 657 634 643 657 644 651 590 571 634 623 635 638 627 653 640 628 650 648 631 571 616 638 638 645 636 661 625 633 634 605 634 646 599 624 645 652 656 656 571 641 682 609 623 594 606 623 607 616 541 519 595 581 596 599 587 619 602 587 614 612 591 519 572 600 600 608 597 628 584 594 595 558 594 610 558 582 608 617 622 622 517 604 Bhattacharaya Lee& Carswell 1989 Harley et al. (1991) Ganguly T(°C) (1984) T(°C) T(°C) (1988) T(°C) 994 766 870 840 798 869 791 816 785 744 879 805 827 796 756 858 777 804 774 732 865 781 813 783 738 879 799 827 796 753 867 784 814 784 740 874 793 821 790 747 814 724 761 733 687 799 713 743 715 672 858 777 805 775 732 848 769 794 764 723 858 775 805 775 731 861 779 808 778 735 851 761 798 769 721 876 790 823 793 747 863 787 810 780 739 852 766 799 769 724 872 790 820 789 745 871 788 818 788 744 855 770 802 772 727 799 708 743 716 670 840 761 787 757 716 862 783 809 778 736 862 787 808 778 739 868 790 815 785 743 860 783 807 776 736 884 806 830 799 758 850 775 796 766 727 858 775 804 774 731 858 780 805 775 733 830 752 776 747 706 858 775 804 774 731 870 785 817 787 741 891 672 771 744 703 848 768 795 765 723 868 788 815 785 742 874 794 822 791 748 878 798 825 795 752 879 801 826 795 753 797 724 742 714 677 865 788 811 781 740 Lavrentyeva Brey, Nickel & Perchuk & Kogarko 1989 T(°C) (1986) T(°C) 792 723 727 700 736 723 716 700 719 723 733 700 720 723 728 700 675 723 667 700 715 723 710 700 714 723 718 700 703 723 726 700 723 723 708 700 725 723 725 700 710 723 664 700 703 723 720 700 723 723 726 700 720 723 738 700 714 723 715 700 717 723 697 700 713 723 722 700 713 723 709 700 723 723 729 700 731 723 734 700 675 723 724 700 Table A14.2. Temperature results for A347g using various Grt-Opx Geothermometers 252 Appendix A14 Powell (1985) T(°C) Krogh (1988) T(°C) 2+ Fe calc 737 691 708 672 680 644 669 683 685 636 699 685 697 698 683 680 639 654 691 707 677 662 688 689 699 675 670 646 651 675 703 648 701 705 671 687 685 675 650 662 634 699 Fe tot 763 735 734 720 741 723 744 748 735 695 751 710 742 723 732 741 717 727 757 760 741 710 713 733 724 724 731 724 724 740 756 709 754 731 711 712 734 736 730 737 694 751 2+ Fe calc 658 604 616 588 601 559 589 599 612 558 616 598 617 616 611 602 549 576 609 626 599 589 601 604 607 587 582 558 559 594 617 559 621 627 593 602 601 591 566 574 537 610 Fe tot 685 648 642 637 663 638 666 666 663 617 669 623 663 642 661 665 627 650 678 680 664 638 626 649 633 637 643 638 633 660 671 621 675 653 633 627 651 653 646 650 597 663 Ravna (1998) T(°C) 2+ Fe calc 707 615 629 597 606 566 592 607 625 571 624 612 623 625 614 606 559 582 614 634 604 600 616 613 620 599 592 562 570 600 627 576 626 632 653 615 607 598 571 583 564 623 Fe tot 736 662 657 648 671 648 672 677 679 634 681 639 670 651 666 671 641 659 685 691 673 651 642 659 647 651 656 645 647 669 684 642 683 659 698 641 660 663 655 663 628 679 Table A14.3. Temperature results for A347g using various Grt-Cpx Geothermometers 253 Appendix A15 Investigating the Use of Oxygen Isotopes on Rutile in HP/UHP Rocks I was given the opportunity to analyse oxygen isotopes in rutile at the Grant Institute, University of Edinburgh, through a NERC grant that my first supervisor obtained. I present here data for the main (KAG) and secondary (PAK) standards that I have used for my analyses. I also present results on samples from Syros, Sesia Lanzo, Dora Maira and the Western Gneiss Region. This is only intended as an appendix considering further research is required in order to fully understand the values and interpret them and this is beyond the scope of my PhD thesis. i. INTRODUCTION Oxygen isotopes are a powerful method of investigation used for tracing the geochemical cycle of different protoliths, including the extent and nature of fluidmineral interactions and the crystallisation or alteration temperature (e.g. Matthews et al., 1979; Agrinier, 1991; Zheng, 1991; Chacko et al., 1996; Moore et al., 1998; Zheng et al., 1999, 2003; Meinhold et al., 2010). The 18O/16O ratio is a robust tool for tracing the geochemical cycle, as it can fingerprint derivation from pristine mantle material in contrast with contaminated material that experienced surface processes such as hydrothermal alteration and sedimentary recycling (e.g. Mojzsis et al., 2001; Wilde et al., 2001; Valley, 2003; Valley et al., 2005; Meinhold et al., 2010). Rocks that have reacted with the atmosphere or hydrosphere at low temperatures have elevated δ18O (15 – 18 ‰ for pelitic rocks – reference?) compared to mantle rocks (5 – 6 ‰ – Taylor, 1968). Oxygen isotopes together with trace elements on the same mineral can provide information on metamorphic facies conditions at the time of crystallisation or alteration (Fig. A15.1.). Temperature-dependant Zr (Zack et al., 2004a, Triebold 254 Appendix A15 et al., 2007, Meinhold et al., 2008) distinguishes rutile from different rocks that formed in distinct temperature regimes: blueschist (low T), eclogite (medium T) and granulite (high T) conditions. Oxygen isotopes will be high in subducted basalts with a low-temperature alteration history, but low in HP rocks formed from high T altered gabbros. Lower crustal granulites without alteration history will be in equilibrium with mantle like δ18O values (Marschall, 2005, unpublished). FIGURE A15.1: Schematic plot of [Zr] vs. δ18O as expected from the most common rutile-bearing rock types (after Marschall, 2005 - unpublished; Zack et al., 2004a; Agrinier, 1991) Data acquisition is generally made by SIMS techniques (used in this study – e.g., Valley, 2003) or by other types of laser methods (e.g., Li et al., 2003; Valley, 2003; Zhang et al., 2006). The two isotopes, 18O and 16O, are measured as a ratio and reported in delta notation (δ18O) relative to VSMOW (Vienna Standard Mean Ocean Water), which has an 18O/16O value of (2005.2±0.45)×10−6 (Gononfiantini, 1978). 255 Appendix A15 The analogous equation is as follows: δ18O = with δ18O values in per mil (‰). Variation in typical δ18O values (lower for oceanic crust and mantle material and elevated for the continental crust) has been explained by various processes: -High-pressure fractional crystallisation (Garlick et al., 1971); -Isotopic exchange with (meta)sedimentary rocks (Vogel and Garlick, 1970; Desmons and O’Neil, 1978); -Interaction with meteoric waters (Vogel and Garlick, 1970). In the light of oxygen However, isotope studies of oceanic lithosphere and ophiolites (e.g., Muehlenbachs and Clayton, 1972a, b; Spooner et al., 1974; Gregory and Taylor, 1981), allowed for a better interpretation of some anomalities, concluding that they generally result from metamorphism of hydrothermally altered oceanic crust (Gregory and Taylor, 1986; MacGregor and Manton, 1986; Ongley et al., 1987). Moore et al (1998) have shown that the closure temperature for oxygen diffusion in rutile is high, around 650 °C for a crystal with a 100 µm radius and a cooling rate of 10 °C Ma-1. Lead closure is considered to be around the same closure temperature (Cherniak, 2000; Vry & Baker, 2006) and Zr similar (Cherniak et al., 2007). It holds that any low temperature, high-pressure metamorphism (< 600 oC) would not suffer from diffusional resetting and the signatures would remain robust, unless they have subsequently suffered high temperature metamorphism. ii. SAMPLE PREPARATION AND ANALYSIS Standards have been provided by Patrick O’Brien from the University of Potsdam, Germany and from Randy Parrish from the NERC Isotope Geoscience Laboratory, Nottingham, UK. Rutile grains have been mounted in epoxy resin for analysis (please refer to Appendix 2 for Sample Preparation details). 256 Appendix A15 Major elements have been analysed prior to oxygen isotopes to check for homogeneity (Table A15.1.). The Oxygen isotope data were acquired at the University of Edinburgh with a Cameca IMS 1270 (#309), using a ~5 nA primary 133Cs+ beam. Samples were coated with a thin layer of Au (10-30nm). Secondary ions were extracted at 10 kV, and 16O(~2.0 x109cps) and 18O- (~3.0 x106 cps) were monitored simultaneously on dual Faraday cups (L’2 and H’2). Each analysis involved a pre-sputtering time of 30 seconds, followed by automatic secondary beam and entrance slit centering and finally data collection in two blocks of ten cycles, amounting to a total count time of 100 seconds. The internal precision of each analysis is < 0.2 per mil. To correct for instrumental mass fractionation (IMF), all data were normalised to an internal standard, rutile standard (KAG), which was assumed to be homogeneous and was measured throughout the analytical sessions. The internal precision of each analysis is +/- 0.2 per mil. For more details on the methodology, please refer to Chapter 2.4. (Methodology). Please refer to Appendix 5 for oxygen isotopes method description. 257 Appendix A15 STD KAG 6 KAG 6 KAG 6 KAG 6 KAG 6 AVG Stdev KAG 7 KAG 7 KAG 7 KAG 7 KAG 7 AVG Stdev KAG 8 KAG 8 KAG 8 KAG 8 KAG 8 AVG Stdev KAG 9 KAG 9 KAG 9 KAG 9 KAG 9 AVG Stdev PAK 14 PAK 14 PAK 14 PAK 14 PAK 14 AVG Stdev PAK 15 PAK 15 PAK 15 PAK 15 PAK 15 AVG Stdev PAK 18 PAK 18 PAK 18 PAK 18 PAK 18 AVG Stdev PAK 17 PAK 17 PAK 17 PAK 17 PAK 17 AVG Stdev TiO2 99.9 99.4 99.1 99.2 99.4 99.4 0.31 98.9 99.4 99.2 99.5 99.4 99.3 0.24 98.6 96.4 99.1 99.0 98.7 98.3 1.13 99.9 100.1 99.8 99.6 100.3 99.9 0.27 97.0 99.4 100.2 98.9 99.1 98.9 1.19 99.5 99.3 100.0 99.9 99.5 99.7 0.29 99.6 99.5 100.2 100.0 99.3 99.7 0.40 99.1 99.4 99.1 99.3 99.7 99.3 0.25 SiO2 -0.024 -0.035 -0.028 -0.035 -0.033 -0.031 0.005 -0.012 -0.042 -0.035 -0.032 -0.034 -0.031 0.011 -0.029 -0.022 -0.027 -0.022 -0.020 -0.024 0.004 -0.039 -0.019 -0.026 -0.035 -0.027 -0.029 0.008 -0.042 -0.034 -0.038 -0.034 -0.049 -0.039 0.006 -0.046 -0.022 -0.047 -0.036 -0.029 -0.036 0.01 -0.035 -0.029 -0.032 -0.040 -0.037 -0.035 0.004 -0.037 -0.035 -0.023 -0.036 -0.028 -0.032 0.006 V2O3 0.231 0.243 0.230 0.226 0.235 0.233 0.007 0.240 0.244 0.213 0.232 0.231 0.232 0.012 0.220 0.233 0.226 0.213 0.230 0.224 0.008 0.235 0.217 0.244 0.214 0.227 0.228 0.012 0.229 0.200 0.223 0.228 0.221 0.220 0.012 0.234 0.217 0.218 0.223 0.229 0.224 0.007 0.228 0.218 0.235 0.211 0.231 0.225 0.010 0.219 0.228 0.243 0.219 0.217 0.225 0.011 Cr2O3 0.012 0.023 0.000 0.013 0.006 0.011 0.009 0.006 -0.003 0.002 -0.004 0.000 0.000 0.004 0.008 0.009 0.029 -0.010 0.001 0.007 0.014 -0.005 0.000 0.003 -0.005 0.016 0.002 0.009 0.009 0.005 -0.005 0.016 0.007 0.007 0.007 -0.002 0.027 0.011 -0.004 0.007 0.008 0.012 0.011 0.000 0.010 0.016 -0.007 0.006 0.009 -0.002 0.014 0.018 0.014 0.004 0.010 0.008 MnO -0.002 0.000 -0.001 0.000 0.001 0.000 0.001 0.003 -0.003 -0.001 0.004 -0.001 0.000 0.003 0.001 -0.001 0.000 -0.001 0.000 0.000 0.001 -0.001 0.002 -0.002 0.003 0.001 0.000 0.002 0.001 0.002 0.005 0.001 -0.003 0.001 0.003 0.000 0.000 0.000 -0.002 0.001 0.000 0.001 0.002 -0.001 -0.001 0.000 0.001 0.000 0.001 0.004 -0.005 0.001 -0.001 0.002 0.000 0.003 FeO 0.521 0.575 0.536 0.487 0.507 0.525 0.033 0.402 0.400 0.399 0.402 0.400 0.401 0.001 0.641 3.427 0.450 0.389 0.459 1.073 1.319 0.480 0.515 0.535 0.474 0.460 0.493 0.031 4.175 0.462 0.482 0.483 0.485 1.217 1.653 0.420 0.431 0.436 0.439 0.438 0.433 0.008 0.489 0.479 0.474 0.464 0.494 0.480 0.012 0.420 0.444 0.430 1.634 0.436 0.673 0.537 ZrO2 0.003 0.006 0.007 0.005 0.005 0.005 0.002 0.006 0.008 0.007 0.004 0.007 0.006 0.002 0.004 0.006 0.004 0.007 0.005 0.005 0.001 0.004 0.005 0.006 0.007 0.005 0.006 0.001 0.007 0.007 0.007 0.007 0.008 0.007 0.001 0.009 0.005 0.007 0.008 0.006 0.007 0.002 0.005 0.008 0.008 0.006 0.008 0.007 0.001 0.006 0.006 0.005 0.006 0.004 0.006 0.001 Nb2O3 0.078 0.074 0.082 0.080 0.085 0.080 0.004 0.066 0.066 0.070 0.069 0.071 0.069 0.002 0.077 0.073 0.068 0.072 0.070 0.072 0.003 0.072 0.075 0.070 0.074 0.075 0.073 0.002 0.064 0.062 0.063 0.063 0.069 0.064 0.003 0.091 0.087 0.089 0.088 0.088 0.089 0.001 0.066 0.068 0.069 0.066 0.069 0.068 0.002 0.066 0.066 0.069 0.065 0.066 0.066 0.001 Ta2O5 0.027 0.028 0.032 0.021 0.028 0.027 0.004 0.021 0.031 0.030 0.027 0.025 0.027 0.004 0.030 0.022 0.026 0.025 0.021 0.025 0.004 0.022 0.030 0.028 0.030 0.022 0.026 0.004 0.026 0.025 0.024 0.019 0.026 0.024 0.003 0.031 0.025 0.024 0.027 0.031 0.028 0.003 0.027 0.026 0.025 0.032 0.029 0.028 0.003 0.023 0.030 0.021 0.029 0.029 0.026 0.004 Total 100.8 100.3 100.0 100.0 100.2 100.3 0.32 99.6 100.1 99.9 100.2 100.1 100.0 0.23 99.6 100.1 99.9 99.6 99.4 99.7 0.27 100.6 100.9 100.7 100.3 101.1 100.7 0.27 101.5 100.2 101.0 99.7 99.9 100.4 0.76 100.3 100.1 100.8 100.6 100.3 100.4 0.28 100.4 100.3 101.0 100.8 100.0 100.5 0.39 99.8 100.2 99.9 101.2 100.4 100.3 0.58 AVG PAK STD AVG KAG STD 99.4 0.68 99.3 0.27 -0.036 0.007 -0.031 0.008 0.223 0.009 0.232 0.009 0.007 0.009 0.006 0.009 0.000 0.002 0.000 0.002 0.701 0.859 0.463 0.069 0.007 0.001 0.006 0.002 0.072 0.010 0.074 0.007 0.026 0.003 0.027 0.004 100.4 0.50 100.1 0.30 TABLE A15.1: EPMA on KAG and PAK standards. 258 Appendix A15 iii. RESULTS Conventional oxygen isotope analysis for KAG and PAK by Laser Fluorination at SUERC, Glasgow results are presented in Table A16.2. KAG was used as the main standard, whereas PAK was used as the secondary one. Four different sessions of O isotope analysis have been conducted, therefore standard results are presented in four different groups (Table A15.3.). SAMPLE d18O smow KAG-1 1.6 KAG-1 1.6 KAG-1 2.1 KAG-1 1.6 KAG-1 1.6 PAK-1 2.1 PAK-1 3.2 PAK-1 2.4 PAK-1 2.3 Avg Stdev 1.7 0.217 2.5 0.483 TABLE A15.2: SIMS results for KAG and PAK standards using conventional O analysis by Laser Fluorination at SUERC, Glasgow. The δ18O values of the KAG and PAK standards have been normalised to the average value of KAG δ18O (1.7) obtained by repeat laser fluorination analysis; results are plotted in four different groups for investigation of homogeneity. Diagrams (Fig. A15.2a-h) show that standards are quite homogeneous, having an average standard deviation of less than 2 per mil. However, this is simply a mean of the total session and does not consider within and between run machine drift, which can be noticed in some cases, such as in sessions 1 and 4. Note that for session 2 there is little machine drift and the results show that in KAG, apart from 2 exceptions, the values are tightly clustered and suggest homogeneity. All results (with standard deviations) for rock samples (unknowns) are listed in Table A15.4. The two metasomatic samples from Syros (Fig. A15.3a) have a relatively narrow distribution, with values of 2 – 3 ‰. Specimen SY507 has a larger variation compared to the second sample, with bigger associated errors. However, all values are within error and in conformity with each other. The SLZ samples (Fig. A15.3b) exhibit more heterogeneous compositions. MK 30 forms a tight cluster, with δ18O = 2 – 4 ‰, in contrast with the rest of the rocks. MK 126 seems to be divided into two groups with values of 2 – 4 ‰ for the 259 Appendix A15 first one and 5 – 6 ‰ for the second one. The third sample, MK 162.3 has a short span of oxygen isotope compositions, ranging from 1.6 to 4.5 ‰. The last sample, MK 541, has a large range of values with a transitional composition from -1.4 to 5 ‰. KAG 18/16 D18O STD Normalised to Average KAG 0.001997 0.001997 0.001997 0.001997 0.001998 0.001998 0.001997 0.001998 0.001998 0.001998 0.001998 0.001998 0.001997 0.001998 0.001998 0.001998 0.001998 0.001998 0.001998 0.001998 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001998 0.001998 0.001997 0.001998 0.001998 0.001998 0.001998 0.001998 0.001997 0.001998 0.001998 0.001998 0.001998 0.001998 0.001998 0.001998 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 0.001997 1.66 1.49 1.26 1.49 1.73 2.07 1.53 1.75 2.01 1.76 2.09 2.13 1.61 1.69 2.11 1.97 1.92 2.06 1.96 1.95 1.23 1.35 1.23 1.53 1.29 1.38 1.40 1.56 1.55 1.58 1.66 1.49 1.26 1.49 1.73 2.07 1.53 1.75 2.01 1.76 2.09 2.13 1.61 1.69 2.11 1.97 1.92 2.06 1.96 1.95 1.23 1.35 1.23 1.53 1.29 1.38 1.40 1.56 1.55 1.58 0.00199735 0.00199736 0.00199736 0.00199736 0.00199736 0.00199739 0.00199739 0.00199740 0.00199740 0.00199740 0.00199743 0.00199743 0.00199744 0.00199744 0.00199744 0.00199749 0.00199750 0.00199750 0.00199750 0.00199750 0.00199754 0.00199754 0.00199755 0.00199755 0.00199755 0.00199759 0.00199759 0.00199760 0.00199760 0.00199760 0.00199735 0.00199736 0.00199736 0.00199736 0.00199736 0.00199739 0.00199739 0.00199740 0.00199740 0.00199740 0.00199743 0.00199743 0.00199744 0.00199744 0.00199744 0.00199749 0.00199750 0.00199750 0.00199750 0.00199750 0.00199754 0.00199754 0.00199755 0.00199755 0.00199755 0.00199759 0.00199759 0.00199760 0.00199760 0.00199760 0.98 0.87 0.74 0.87 1.02 1.22 0.90 1.03 1.18 1.04 1.23 1.26 0.95 0.99 1.24 1.16 1.13 1.21 1.15 1.15 0.73 0.80 0.72 0.90 0.76 0.81 0.83 0.92 0.91 0.93 0.98 0.87 0.74 0.87 1.02 1.22 0.90 1.03 1.18 1.04 1.23 1.26 0.95 0.99 1.24 1.16 1.13 1.21 1.15 1.15 0.73 0.80 0.72 0.90 0.76 0.81 0.83 0.92 0.91 0.93 PAK 18/16 D18O STD Normalised to Average KAG 0.001997 0.001998 0.001997 0.001998 0.001996 0.001996 0.001997 0.001996 0.001998 0.001997 0.001998 0.001997 0.001998 0.001996 0.001996 0.001997 0.001996 0.001998 0.001997 0.001997 0.001996 0.001996 0.001996 1.54 1.86 1.58 1.87 0.97 1.06 1.28 1.16 1.93 1.54 1.86 1.58 1.87 0.97 1.06 1.28 1.16 1.93 1.44 1.35 1.09 0.96 0.90 0.00199730 0.00199731 0.00199731 0.00199731 0.00199732 0.00199732 0.00199732 0.00199732 0.00199733 0.00199730 0.00199731 0.00199731 0.00199731 0.00199732 0.00199732 0.00199732 0.00199732 0.00199733 0.00199744 0.00199745 0.00199745 0.00199745 0.00199745 0.90 1.09 0.93 1.10 0.57 0.62 0.75 0.68 1.14 0.90 1.09 0.93 1.10 0.57 0.62 0.75 0.68 1.14 0.85 0.79 0.64 0.57 0.53 TABLE A15.3: Oxygen isotopes results for KAG and PAK standards – Session 1 260 Appendix A15 KAG 18/16 D18O STD Normalised to Average KAG 0.002000 0.002000 0.002000 0.002000 0.002000 0.002000 0.002000 0.002000 0.002001 0.002000 0.002000 0.002000 0.002000 0.002000 0.002000 0.001999 0.001999 0.002000 0.001999 0.002000 0.002000 0.002001 0.002000 0.002000 0.001999 0.002000 0.001999 0.002000 0.002000 0.001999 0.002001 0.002000 0.002000 0.001999 0.002000 0.002000 0.002000 0.002000 0.002000 0.0020003 0.0020002 0.0019998 0.0020003 0.0020004 0.0019998 0.0019995 0.0019998 0.0020006 0.0019998 0.0019998 0.0020003 0.0019997 0.0019998 0.0020002 0.0019992 0.0019992 0.0020001 0.0019992 1.79 1.76 1.55 1.80 1.85 1.55 1.42 1.55 1.97 1.56 1.58 1.81 1.52 1.59 1.75 1.29 1.27 1.73 1.30 1.87 1.56 2.00 1.62 1.52 1.39 1.62 1.25 1.58 1.69 1.35 2.26 1.72 1.83 1.42 1.67 1.63 1.56 1.83 1.58 1.79 1.76 1.55 1.80 1.85 1.55 1.42 1.55 1.97 1.56 1.58 1.81 1.52 1.59 1.75 1.29 1.27 1.73 1.30 0.00199997 0.00199996 0.00199996 0.00199996 0.00199996 0.00199996 0.00199996 0.00199995 0.00199995 0.00199993 0.00199993 0.00199993 0.00199993 0.00199992 0.00199991 0.00199990 0.00199990 0.00199990 0.00199990 0.00199986 0.00199986 0.00199986 0.00199986 0.00199986 0.00199986 0.00199986 0.00199985 0.00199985 0.00199985 0.00199983 0.00199983 0.00199983 0.00199983 0.00199982 0.00199981 0.00199980 0.00199980 0.00199980 0.00199980 0.00199997 0.00199996 0.00199996 0.00199996 0.00199996 0.00199996 0.00199996 0.00199995 0.00199995 0.00199993 0.00199993 0.00199993 0.00199993 0.00199992 0.00199991 0.00199990 0.00199990 0.00199990 0.00199990 1.05 1.03 0.91 1.06 1.09 0.91 0.83 0.91 1.16 0.92 0.93 1.06 0.89 0.93 1.03 0.76 0.75 1.02 0.76 1.10 0.92 1.18 0.95 0.90 0.82 0.95 0.74 0.93 0.99 0.79 1.33 1.01 1.08 0.83 0.98 0.96 0.92 1.07 0.93 1.05 1.03 0.91 1.06 1.09 0.91 0.83 0.91 1.16 0.92 0.93 1.06 0.89 0.93 1.03 0.76 0.75 1.02 0.76 continued KAG PAK 18/16 D18O STD 0.0020038 0.0020022 0.001999 0.0019991 0.0020003 0.0020004 0.0019997 0.0020006 0.0019998 0.0019996 0.0019994 0.0019998 0.0019991 0.0019998 0.00199996 0.00199927 0.00200109 0.00200001 0.00200023 0.00199940 0.0019999 0.0019998 0.0019997 0.0020002 0.0019997 3.59 2.79 1.20 1.27 1.82 1.87 1.56 2.00 1.62 1.52 1.39 1.62 1.25 1.58 1.69 1.35 2.26 1.72 1.83 1.42 1.67 1.63 1.56 1.83 1.58 0.00199987 0.00199987 0.00199987 0.00199987 0.00199987 0.00199986 0.00199986 0.00199986 0.00199986 0.00199986 0.00199986 0.00199986 0.00199985 0.00199985 0.00199985 0.00199983 0.00199983 0.00199983 0.00199983 0.00199982 0.00199981 0.00199980 0.00199980 0.00199980 0.00199980 Normalised to Average KAG 2.11 1.64 0.70 0.74 1.07 1.10 0.92 1.18 0.95 0.90 0.82 0.95 0.74 0.93 0.99 0.79 1.33 1.01 1.08 0.83 0.98 0.96 0.92 1.07 0.93 18/16 D18O STD Normalised to Average KAG 0.0019991 0.0019984 0.0019991 0.001999 0.001999 1.18 0.85 1.20 1.16 1.16 0.00199995 0.00199995 0.00199995 0.00199995 0.00199995 0.70 0.50 0.71 0.68 0.69 TABLE A15.3: Oxygen isotopes results for KAG and PAK standards – Session 2 261 Appendix A15 KAG PAK 18/16 D18O STD Normalised to Average KAG 0.001990 1.65 0.00199028 0.97 0.001990 1.73 0.00199024 1.02 0.001991 2.06 0.00199019 1.21 0.001989 1.27 0.00199015 0.75 0.001990 1.53 0.00199010 0.90 0.001989 1.04 0.00198984 0.61 0.001990 1.61 0.00198979 0.95 0.001990 1.77 0.00198975 1.04 0.001990 1.89 0.00198970 1.11 0.001990 1.74 0.00198966 1.03 0.001990 1.65 0.00199028 0.97 0.001990 1.73 0.00199024 1.02 0.001991 2.06 0.00199019 1.21 0.001989 1.27 0.00199015 0.75 0.001990 1.53 0.00199010 0.90 0.001989 1.38 0.00198917 0.81 0.001990 1.95 0.00198912 1.15 0.001990 2.10 0.00198908 1.24 0.001990 2.23 0.00198903 1.31 0.001990 2.08 0.00198899 1.22 18/16 D18O STD Normalised to Average KAG 0.001992 2.50 0.00199006 1.47 0.001990 1.43 0.00199001 0.84 0.001991 1.98 0.00198997 1.16 0.001990 1.62 0.00198993 0.96 0.001990 1.71 0.00198988 1.01 0.001990 1.77 0.00198984 1.04 0.001990 1.79 0.00198979 1.05 0.001991 2.26 0.00198975 1.33 0.001990 1.85 0.00198970 1.09 0.001991 2.18 0.00198966 1.29 TABLE A15.3: Oxygen isotopes results for KAG and PAK standards – Session 3 262 Appendix A15 KAG PAK 18/16 D18O STD Normalised to Average KAG 0.001995 1.65 0.00199453 0.97 0.001995 1.98 0.00199449 1.16 0.001995 1.75 0.00199445 1.03 0.001994 1.44 0.00199441 0.85 0.001994 1.34 0.00199437 0.79 0.001994 1.36 0.00199433 0.80 0.001994 1.64 0.00199429 0.97 0.001994 1.66 0.00199425 0.97 0.001994 1.62 0.00199421 0.95 0.001995 1.90 0.00199417 1.12 0.001994 1.41 0.00199413 0.83 0.001994 1.67 0.00199409 0.98 0.001994 1.76 0.00199405 1.04 0.001995 1.75 0.00199433 1.03 0.001995 2.08 0.00199429 1.22 0.001995 1.85 0.00199425 1.09 0.001994 1.54 0.00199421 0.91 0.001994 1.44 0.00199417 0.85 0.001994 2.07 0.00199292 1.22 0.001994 2.35 0.00199288 1.38 0.001994 2.36 0.00199284 1.39 0.001994 2.79 0.00199188 1.64 0.001995 3.07 0.00199184 1.81 0.001994 2.58 0.00199180 1.52 0.001994 2.84 0.00199176 1.67 0.001994 2.93 0.00199172 1.72 18/16 D18O STD Normalised to Average KAG 0.001995 1.76 0.00199453 1.03 0.001995 1.88 0.00199449 1.11 0.001995 1.93 0.00199445 1.14 0.001995 2.07 0.00199441 1.22 0.001996 2.38 0.00199437 1.40 0.001994 2.05 0.00199312 1.21 0.001995 2.44 0.00199308 1.44 0.001995 2.42 0.00199304 1.43 0.001995 2.47 0.00199300 1.45 0.001995 2.56 0.00199296 1.50 0.001995 3.35 0.00199208 1.97 0.001994 2.53 0.00199204 1.49 0.001994 2.72 0.00199200 1.60 0.001994 2.69 0.00199196 1.58 0.001994 2.62 0.00199192 1.54 TABLE A15.3: Oxygen isotopes results for KAG and PAK standards – Session 4 263 Appendix A15 1.40 a 1.20 1.00 0.80 0.60 0.40 KAG - session 1 0.20 0.00 0 10 20 30 40 50 60 1.20 70 b 1.00 0.80 0.60 0.40 PAK - session 1 0.20 0.00 0 2.50 5 10 15 20 25 KAG - session 2 2.00 c 1.50 1.00 0.50 0.00 0 20 40 60 80 100 0.80 d 0.70 0.60 0.50 0.40 0.30 0.20 PAK - session 2 0.10 0.00 0 1 2 3 4 5 6 264 Appendix A15 1.40 e 1.20 f 1.00 0.80 f 0.60 0.40 KAG - session 3 0.20 0.00 0 5 10 15 20 25 1.60 f 1.40 1.20 1.00 0.80 0.60 0.40 PAK - session 3 0.20 0.00 0 2 4 6 8 10 12 2.00 g 1.80 1.60 1.40 1.20 1.00 0.80 0.60 0.40 KAG - session 4 0.20 0.00 0 5 10 15 20 25 30 2.50 h 2.00 1.50 1.00 0.50 PAK - session 4 0.00 0 2 4 6 8 10 12 14 16 FIGURE A15.2: KAG and PAK δ18O values obtained during four sessions, normalised to the average absolute KAG δ18O (1.7) – a. KAG in session 1; b. PAK in session 1; c. KAG in session 2; d. PAK in session 2; e. KAG in session 3; f. PAK in session 3; g. KAG in session 4; h. PAK in session 4. 265 Appendix A15 Location Rock Type Sample Omp-Grt-Chl-Ab-Rt fels SY507 Omp-Chl vein with Rt SY521 Gln micaschist MK 30 Grt micaschist MK 126 Grt micaschist MK 162.3 Omp micaschist MK 541 Syros Sesia Lanzo δ18O 1.98 2.37 2.64 2.82 2.07 2.49 2.19 2.74 2.38 2.47 3.30 2.36 3.45 3.65 4.22 6.08 6.04 5.18 5.13 5.15 5.55 5.52 6.02 6.13 6.10 4.03 3.14 2.31 3.22 2.71 1.59 2.55 4.54 4.38 3.80 3.76 4.21 4.83 3.81 2.34 3.10 3.74 2.60 2.40 1.53 1.62 0.41 -0.78 -1.40 STDEV 0.42 0.32 0.44 0.72 0.31 0.39 0.34 0.26 0.45 0.43 0.29 0.57 0.61 0.78 0.66 0.79 0.38 0.49 0.53 0.33 0.27 0.37 0.38 0.34 0.41 0.34 0.32 0.49 0.45 0.64 0.67 0.70 0.37 0.82 0.40 0.40 0.35 0.44 0.28 0.41 0.25 0.32 0.39 0.44 0.47 0.33 0.37 0.45 0.53 266 Appendix A15 Location Rock Type Sample Pyrope quartzite 19 464 Jd quartzite 20 254 Eclogite N 27 UHP gneiss N 31 Ky-Qtz vein with Rt N 36 Ti-rich eclogite N 38 Ti-rich eclogite N 40 Dora Maira WGR δ18O 3.71 4.08 3.22 3.39 4.18 4.04 2.86 3.59 4.29 2.22 -0.90 -0.44 -3.72 -3.45 1.28 1.43 1.41 1.42 0.95 0.58 2.29 2.14 2.94 3.10 4.48 2.73 0.78 1.47 2.43 2.27 3.10 3.41 1.72 0.88 2.58 2.64 1.31 1.63 1.53 2.13 1.33 1.53 -1.79 -1.13 1.37 1.46 1.16 1.00 -5.14 -4.80 0.51 0.27 STDEV 0.26 0.32 0.32 0.31 0.25 0.87 0.64 0.92 0.72 0.72 0.66 0.66 1.23 0.42 0.35 0.66 0.92 0.71 0.51 0.47 0.47 0.39 0.75 0.33 0.65 0.35 0.75 0.54 0.75 0.94 0.69 0.92 0.26 0.47 0.31 0.78 1.02 0.67 0.68 0.35 0.79 0.79 0.65 0.25 0.78 0.29 0.47 0.37 0.69 1.53 1.02 0.79 TABLE A15. 4: Oxygen isotope data (including standard deviations) for rutile grains from all four locations 267 Appendix A15 The third group of rutiles, from the Dora Maira Massif (Fig. A15.3c), have a very similar pattern to the two Syros samples. The oxygen isotope compositions vary from 2 to 4 ‰, all being grouped together and within error of each other. Errors are more elevated, compared to the previous samples from Syros and the SLZ, but still < 2 ‰. 268 Appendix A15 FIGURE A15.3: Oxygen isotope compositions for rutiles from four locations: a. Syros, with δ18O = 2 – 4 ‰ for two HP metasomatic mafic samples; b. Sesia Lanzo with values from -1.4 to 6 ‰ for HP micaschists; c. Dora Maira with concentrations similar to the Syros samples, for two UHP metapelites; d. The WGR with the highest range of δ18O values, spanning from -5 to almost 5 ‰ for five HP/UHP mafic and pelitic rocks. 269 Appendix A15 The WGR samples (Fig. A15.3d) show a more or less heterogeneous trend, with values from as low as -5 to almost 5 ‰. Rutiles in N 27 are divided in three sub-groups, based on their δ18O: two analyses clustered at -3 ‰, other two around -1 ‰ and the rest around the value of 1.4 ‰. N 31 forms a grouped cluster, with an average δ18O of 2.5 ‰. Rutile grains in N 36 also exhibit a large oxygen isotope composition span, ranging from 0.8 to 4.5 ‰. The last two samples, N 38 and N 40, both from the same location (Gusdal Quarry), seem to indicate a transitional concentration with values from -5 to 2.6 ‰. Although no interpretation is attempted at this stage, it does seem that the methodology is sound. This could, therefore, provide an extra geochemical tool in rutile to evaluate the source of detrital rutile and perhaps its thermal and fluid history within the subduction zone. For a complete set of data, please refer to Appendix 16 that contains the EPMA data. 270 Appendix A16 STD KAG 6 KAG 6 KAG 6 KAG 6 KAG 6 AVG Stdev KAG 7 KAG 7 KAG 7 KAG 7 KAG 7 AVG Stdev KAG 8 KAG 8 KAG 8 KAG 8 KAG 8 AVG Stdev KAG 9 KAG 9 KAG 9 KAG 9 KAG 9 AVG Stdev PAK 14 PAK 14 PAK 14 PAK 14 PAK 14 AVG Stdev PAK 15 PAK 15 PAK 15 PAK 15 PAK 15 AVG Stdev PAK 18 PAK 18 PAK 18 PAK 18 PAK 18 AVG Stdev PAK 17 PAK 17 PAK 17 PAK 17 PAK 17 AVG Stdev TiO2 99.9 99.4 99.1 99.2 99.4 99.4 0.31 98.9 99.4 99.2 99.5 99.4 99.3 0.24 98.6 96.4 99.1 99.0 98.7 98.3 1.13 99.9 100.1 99.8 99.6 100.3 99.9 0.27 97.0 99.4 100.2 98.9 99.1 98.9 1.19 99.5 99.3 100.0 99.9 99.5 99.7 0.29 99.6 99.5 100.2 100.0 99.3 99.7 0.40 99.1 99.4 99.1 99.3 99.7 99.3 0.25 SiO2 -0.024 -0.035 -0.028 -0.035 -0.033 -0.031 0.005 -0.012 -0.042 -0.035 -0.032 -0.034 -0.031 0.011 -0.029 -0.022 -0.027 -0.022 -0.020 -0.024 0.004 -0.039 -0.019 -0.026 -0.035 -0.027 -0.029 0.008 -0.042 -0.034 -0.038 -0.034 -0.049 -0.039 0.006 -0.046 -0.022 -0.047 -0.036 -0.029 -0.036 0.01 -0.035 -0.029 -0.032 -0.040 -0.037 -0.035 0.004 -0.037 -0.035 -0.023 -0.036 -0.028 -0.032 0.006 V2O3 0.231 0.243 0.230 0.226 0.235 0.233 0.007 0.240 0.244 0.213 0.232 0.231 0.232 0.012 0.220 0.233 0.226 0.213 0.230 0.224 0.008 0.235 0.217 0.244 0.214 0.227 0.228 0.012 0.229 0.200 0.223 0.228 0.221 0.220 0.012 0.234 0.217 0.218 0.223 0.229 0.224 0.007 0.228 0.218 0.235 0.211 0.231 0.225 0.010 0.219 0.228 0.243 0.219 0.217 0.225 0.011 Cr2O3 0.012 0.023 0.000 0.013 0.006 0.011 0.009 0.006 -0.003 0.002 -0.004 0.000 0.000 0.004 0.008 0.009 0.029 -0.010 0.001 0.007 0.014 -0.005 0.000 0.003 -0.005 0.016 0.002 0.009 0.009 0.005 -0.005 0.016 0.007 0.007 0.007 -0.002 0.027 0.011 -0.004 0.007 0.008 0.012 0.011 0.000 0.010 0.016 -0.007 0.006 0.009 -0.002 0.014 0.018 0.014 0.004 0.010 0.008 MnO -0.002 0.000 -0.001 0.000 0.001 0.000 0.001 0.003 -0.003 -0.001 0.004 -0.001 0.000 0.003 0.001 -0.001 0.000 -0.001 0.000 0.000 0.001 -0.001 0.002 -0.002 0.003 0.001 0.000 0.002 0.001 0.002 0.005 0.001 -0.003 0.001 0.003 0.000 0.000 0.000 -0.002 0.001 0.000 0.001 0.002 -0.001 -0.001 0.000 0.001 0.000 0.001 0.004 -0.005 0.001 -0.001 0.002 0.000 0.003 FeO 0.521 0.575 0.536 0.487 0.507 0.525 0.033 0.402 0.400 0.399 0.402 0.400 0.401 0.001 0.641 3.427 0.450 0.389 0.459 1.073 1.319 0.480 0.515 0.535 0.474 0.460 0.493 0.031 4.175 0.462 0.482 0.483 0.485 1.217 1.653 0.420 0.431 0.436 0.439 0.438 0.433 0.008 0.489 0.479 0.474 0.464 0.494 0.480 0.012 0.420 0.444 0.430 1.634 0.436 0.673 0.537 ZrO2 0.003 0.006 0.007 0.005 0.005 0.005 0.002 0.006 0.008 0.007 0.004 0.007 0.006 0.002 0.004 0.006 0.004 0.007 0.005 0.005 0.001 0.004 0.005 0.006 0.007 0.005 0.006 0.001 0.007 0.007 0.007 0.007 0.008 0.007 0.001 0.009 0.005 0.007 0.008 0.006 0.007 0.002 0.005 0.008 0.008 0.006 0.008 0.007 0.001 0.006 0.006 0.005 0.006 0.004 0.006 0.001 Nb2O3 0.078 0.074 0.082 0.080 0.085 0.080 0.004 0.066 0.066 0.070 0.069 0.071 0.069 0.002 0.077 0.073 0.068 0.072 0.070 0.072 0.003 0.072 0.075 0.070 0.074 0.075 0.073 0.002 0.064 0.062 0.063 0.063 0.069 0.064 0.003 0.091 0.087 0.089 0.088 0.088 0.089 0.001 0.066 0.068 0.069 0.066 0.069 0.068 0.002 0.066 0.066 0.069 0.065 0.066 0.066 0.001 Ta2O5 0.027 0.028 0.032 0.021 0.028 0.027 0.004 0.021 0.031 0.030 0.027 0.025 0.027 0.004 0.030 0.022 0.026 0.025 0.021 0.025 0.004 0.022 0.030 0.028 0.030 0.022 0.026 0.004 0.026 0.025 0.024 0.019 0.026 0.024 0.003 0.031 0.025 0.024 0.027 0.031 0.028 0.003 0.027 0.026 0.025 0.032 0.029 0.028 0.003 0.023 0.030 0.021 0.029 0.029 0.026 0.004 Total 100.8 100.3 100.0 100.0 100.2 100.3 0.32 99.6 100.1 99.9 100.2 100.1 100.0 0.23 99.6 100.1 99.9 99.6 99.4 99.7 0.27 100.6 100.9 100.7 100.3 101.1 100.7 0.27 101.5 100.2 101.0 99.7 99.9 100.4 0.76 100.3 100.1 100.8 100.6 100.3 100.4 0.28 100.4 100.3 101.0 100.8 100.0 100.5 0.39 99.8 100.2 99.9 101.2 100.4 100.3 0.58 Table A16.1.EPMA data for KAG and PAK (values highlighted in yellow represent probable Fe-rich mineral inclusions) 271 Appendix A17 Sample Sy 507-1 Sy 507-2 Sy 507-3 Sy 507-4 Sy 507-5 Sy 507-6 Sy 507-7 Sy 507-8 Sy 507-9 Sy 507-10 Sy 521-1 Sy 521-2 Sy 521-3 Sy 521-4 Sy 521-5 Sy 521-6 Sy 521-7 Sy 521-8 Sy 521-9 Sy 521-10 Sy 545-1 Sy 545-2 Sy 545-3 Sy 545-4 Sy 545-5 Sy 545-6 Sy 545-7 Sy 545-8 Sy 545-9 Sy 545-10 MK 30-1 MK 30-2 MK 30-3 MK 30-4 MK 30-5 MK 30-6 MK 30-7 MK 30-8 MK 30-9 MK 30-10 MK 126-1 MK 126-2 MK 126-3 MK 126-4 MK 126-5 MK 126-6 MK 126-7 MK 126-8 MK 126-9 MK 126-10 MK 162.3-1 MK 162.3-2 MK 162.3-3 MK 162.3-4 MK 162.3-5 MK 162.3-6 MK 162.3-7 MK 162.3-8 MK 162.3-9 MK 162.3-10 MK 195-1 MK 195-2 MK 195-3 MK 195-4 MK 195-5 MK 195-6 MK 195-7 MK 195-8 MK 195-9 MK 195-10 MK 541-1 MK 541-2 MK 541-3 MK 541-4 MK 541-5 MK 541-6 MK 541-7 MK 541-8 MK 541-9 MK 541-10 Si 0.0014 0.0004 0.0003 0.0031 0.0019 0.0002 0.0015 0.0012 0.0033 0.0000 0.0024 0.0016 0.0023 0.0006 0.0024 0.0058 0.0013 0.0024 0.0036 0.0039 0.0077 0.0041 0.0046 0.0117 0.0029 0.0051 0.0051 0.0036 0.0040 0.0109 0.0021 0.0017 0.0000 0.0033 0.0038 0.0004 0.0013 0.0003 0.0034 0.0020 0.0026 0.0010 0.0015 0.0002 0.0013 0.0042 0.0080 0.0006 0.0000 0.0074 0.0036 0.0024 0.0028 0.0000 0.0034 0.0021 0.0087 0.0035 0.0033 0.0046 0.0035 0.0025 0.0041 0.0285 0.0022 0.0010 0.0027 0.0047 0.0047 0.0045 0.0018 0.0000 0.0000 0.0006 0.0040 0.0024 0.0000 0.0006 0.0031 0.0024 Al 0.0078 0.0055 0.0094 0.0076 0.0097 0.0063 0.0083 0.0071 0.0081 0.0055 0.0103 0.0187 0.0080 0.0159 0.0145 0.0127 0.0146 0.0112 0.0085 0.0124 0.0081 0.0093 0.0056 0.0075 0.0062 0.0100 0.0065 0.0100 0.0091 0.0053 0.0133 0.0046 0.0149 0.0112 0.0057 0.0144 0.0144 0.0103 0.0117 0.0163 0.0120 0.0123 0.0130 0.0094 0.0128 0.0129 0.0129 0.0087 0.0112 0.0111 0.0123 0.0165 0.0173 0.0219 0.0176 0.0147 0.0106 0.0237 0.0168 0.0194 0.0139 0.0145 0.0095 0.0151 0.0150 0.0139 0.0154 0.0126 0.0128 0.0104 0.0163 0.0149 0.0144 0.0171 0.0150 0.0130 0.0169 0.0113 0.0246 0.0157 Mg 0.0021 0.0000 0.0000 0.0000 0.0000 0.0029 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0023 0.0000 0.0000 0.0000 0.0005 0.0000 0.0001 0.0004 0.0008 0.0000 0.0004 0.0001 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 0.0005 0.0000 0.0000 0.0042 0.0000 0.0000 0.0001 0.0010 0.0000 0.0015 0.0000 0.0000 0.0004 0.0000 0.0013 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0038 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0032 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 P 0.0004 0.0000 0.0010 0.0001 0.0000 0.0000 0.0000 0.0002 0.0003 0.0000 0.0000 0.0004 0.0016 0.0000 0.0001 0.0013 0.0002 0.0014 0.0000 0.0010 0.0014 0.0006 0.0000 0.0002 0.0000 0.0011 0.0009 0.0000 0.0011 0.0007 0.0000 0.0006 0.0000 0.0000 0.0000 0.0015 0.0013 0.0001 0.0000 0.0000 0.0004 0.0000 0.0000 0.0018 0.0000 0.0001 0.0000 0.0000 0.0009 0.0001 0.0009 0.0003 0.0009 0.0000 0.0007 0.0003 0.0000 0.0000 0.0010 0.0000 0.0000 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 Cr 0.0150 0.0085 0.0099 0.0074 0.0133 0.0205 0.0109 0.0213 0.0184 0.0161 0.0159 0.0260 0.0360 0.0211 0.0345 0.0245 0.0174 0.0135 0.0241 0.0223 0.0264 0.0238 0.0278 0.0171 0.0322 0.0182 0.0258 0.0254 0.0227 0.0281 0.0681 0.0655 0.0596 0.0435 0.0599 0.0586 0.0681 0.0635 0.0543 0.0544 0.0505 0.0678 0.0628 0.0600 0.0588 0.0581 0.0516 0.0458 0.0539 0.0458 0.0308 0.0310 0.0231 0.0184 0.0368 0.0155 0.0443 0.0204 0.0230 0.0375 0.0432 0.0370 0.0429 0.0412 0.0341 0.0411 0.0473 0.0356 0.0320 0.0525 0.0255 0.0528 0.0410 0.0467 0.0497 0.0337 0.0505 0.0542 0.0525 0.0478 Ca 0.0355 0.0033 0.0063 0.0064 0.0135 0.0112 0.0092 0.0096 0.0207 0.0032 0.0039 0.0053 0.0093 0.0034 0.0027 0.0051 0.0027 0.0031 0.0058 0.0033 0.0334 0.0237 0.0389 0.0159 0.0119 0.0258 0.0102 0.0371 0.0075 0.0388 0.0095 0.0023 0.0014 0.0054 0.0015 0.0490 0.0022 0.0000 0.0052 0.0049 0.0008 0.0137 0.0142 0.0010 0.0090 0.0092 0.0039 0.0072 0.0219 0.0022 0.0329 0.0172 0.0170 0.0030 0.0376 0.0031 0.0775 0.0007 0.0593 0.0113 0.0189 0.0209 0.0454 0.0689 0.0133 0.0185 0.0062 0.0943 0.0110 0.0099 0.0046 0.0031 0.0000 0.0072 0.0147 0.0048 0.0000 0.0069 0.0033 0.0000 Fe 0.5967 0.6379 0.5323 0.5341 0.4909 0.4978 0.5867 1.6534 0.5402 0.5460 0.7000 0.6447 0.5975 0.6219 0.5504 0.5907 0.8542 0.5721 0.4845 0.6271 0.3508 0.3236 0.3222 0.3397 0.3352 0.3717 0.3173 0.3446 0.3462 0.3353 0.0894 0.0992 0.0860 0.1544 0.1288 0.1065 0.1077 0.1272 0.0953 0.1027 0.1528 0.1927 0.1466 0.1318 0.1409 0.1481 0.1632 0.1500 0.1521 0.1428 0.2495 0.2283 0.2492 0.2632 0.2434 0.2436 0.1952 0.2894 0.2566 0.2282 0.2640 0.3018 0.2082 0.2152 0.2696 0.2586 0.2687 0.2966 0.3045 0.2569 0.2443 0.2172 0.2370 0.2903 0.2341 0.3054 0.2817 0.2354 0.2583 0.2454 Zr 0.0033 0.0021 0.0000 0.0061 0.0048 0.0061 0.0045 0.0006 0.0000 0.0078 0.0107 0.0019 0.0031 0.0102 0.0180 0.0053 0.0095 0.0086 0.0083 0.0032 0.0070 0.0030 0.0000 0.0035 0.0033 0.0114 0.0000 0.0026 0.0036 0.0000 0.0058 0.0071 0.0094 0.0057 0.0078 0.0097 0.0083 0.0099 0.0101 0.0147 0.0104 0.0064 0.0042 0.0041 0.0046 0.0068 0.0034 0.0068 0.0094 0.0089 0.0097 0.0000 0.0062 0.0054 0.0169 0.0013 0.0092 0.0038 0.0065 0.0039 0.0053 0.0077 0.0012 0.0018 0.0009 0.0031 0.0107 0.0000 0.0051 0.0051 0.0099 0.0148 0.0024 0.0100 0.0072 0.0129 0.0154 0.0147 0.0116 0.0110 Nb 0.0144 0.0110 0.0169 0.0000 0.0182 0.0151 0.0097 0.0123 0.0148 0.0055 0.0146 0.0196 0.0094 0.0186 0.0171 0.0233 0.0406 0.0162 0.0096 0.0132 0.0063 0.0076 0.0147 0.0073 0.0068 0.0085 0.0019 0.0079 0.0081 0.0065 0.1429 0.1503 0.1467 0.1422 0.1599 0.1639 0.1542 0.1499 0.1512 0.1481 0.1583 0.1474 0.1689 0.1239 0.1505 0.1321 0.1367 0.1266 0.1460 0.1572 0.1835 0.1605 0.1814 0.1818 0.1706 0.1685 0.1903 0.1750 0.1704 0.1652 0.1942 0.2459 0.2237 0.2266 0.2212 0.2459 0.2393 0.2233 0.2426 0.2132 0.1188 0.1822 0.1772 0.2304 0.1808 0.1941 0.1906 0.1844 0.1740 0.1753 Sn 0.0103 0.0080 0.0100 0.0094 0.0012 0.0131 0.0076 0.0000 0.0000 0.0000 0.0027 0.0075 0.0005 0.0000 0.0000 0.0088 0.0056 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0025 0.0077 0.0000 0.0032 0.0000 0.0000 0.0010 0.0034 0.0087 0.0220 0.0069 0.0057 0.0049 0.0147 0.0120 0.0085 0.0145 0.0065 0.0090 0.0000 0.0103 0.0007 0.0077 0.0080 0.0016 0.0094 0.0115 0.0216 0.0247 0.0241 0.0226 0.0230 0.0313 0.0144 0.0310 0.0162 0.0141 0.0075 0.0241 0.0240 0.0145 0.0019 0.0170 0.0092 0.0104 0.0134 0.0029 0.0003 0.0031 0.0054 0.0000 0.0000 0.0066 0.0137 0.0129 0.0137 0.0116 Ta 0.0000 0.0022 0.0000 0.0000 0.0000 0.0000 0.0059 0.0019 0.0020 0.0000 0.0043 0.0024 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0016 0.0046 0.0014 0.0006 0.0000 0.0041 0.0000 0.0000 0.0007 0.0000 0.0028 0.0112 0.0184 0.0162 0.0095 0.0092 0.0107 0.0215 0.0040 0.0088 0.0000 0.0072 0.0043 0.0000 0.0109 0.0108 0.0106 0.0044 0.0100 0.0126 0.0243 0.0130 0.0094 0.0233 0.0120 0.0136 0.0135 0.0121 0.0115 0.0056 0.0134 0.0356 0.0200 0.0108 0.0221 0.0090 0.0243 0.0083 0.0201 0.0152 0.0061 0.0112 0.0079 0.0622 0.0201 0.0148 0.0102 0.0102 0.0160 0.0111 W 0.0000 0.0060 0.0051 0.0000 0.0148 0.0005 0.0000 0.0112 0.0000 0.0000 0.0000 0.0000 0.0047 0.0025 0.0000 0.0000 0.0091 0.0000 0.0000 0.0055 0.0000 0.0108 0.0000 0.0000 0.0102 0.0000 0.0143 0.0030 0.0053 0.0000 0.0014 0.0257 0.0079 0.0025 0.0044 0.0203 0.0163 0.0000 0.0053 0.0000 0.0037 0.0006 0.0201 0.0000 0.0000 0.0000 0.0056 0.0055 0.0106 0.0179 0.0319 0.0233 0.0220 0.0505 0.0302 0.0390 0.0375 0.0386 0.0241 0.0337 0.0134 0.0109 0.0142 0.0110 0.0136 0.0257 0.0000 0.0000 0.0079 0.0140 0.0064 0.0137 0.0159 0.0115 0.0152 0.0056 0.0000 0.0057 0.0125 0.0000 Ti 59 59 59 59 60 59 59 59 59 59 59 59 59 59 59 59 59 59 60 59 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 59 60 60 59 59 60 59 59 59 60 59 59 59 59 59 59 59 59 59 59 60 60 60 59 60 59 59 60 59 60 O 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Table A17.1. EPMA data for the investigated samples for oxygen isotopes (Ti was determined by difference) 272 Appendix A17 Sample N 27-1 N 27-2 N 27-3 N 27-4 N 27-5 N 27-6 N 27-7 N 27-8 N 27-9 N 31-1 N 31-2 N 31-3 N 31-4 N 31-5 N 31-6 N 31-7 N 31-8 N 31-9 N 31-10 N 36-1 N 36-2 N 36-3 N 36-4 N 36-5 N 36-6 N 36-7 N 36-8 N 36-9 N 36-10 N 38-1 N 38-2 N 38-3 N 38-4 N 38-5 N 38-6 N 38-7 N 38-8 N 38-9 N 38-10 N 40-1 N 40-2 N 40-3 N 40-4 N 40-5 N 40-6 N 40-7 N 40-8 N 40-9 N 40-10 15623-1 15623-2 15623-3 15623-4 15623-5 15623-6 15623-7 15623-8 15623-9 15623-10 19296-1 19296-2 19296-3 19296-4 19296-5 19296-6 19296-7 19296-8 19296-9 19296-10 19464-1 19464-2 19464-3 19464-4 19464-5 19464-6 19464-7 19464-8 19464-9 19464-10 20254-1 20254-2 20254-3 20254-4 20254-5 20254-6 20254-7 20254-8 20254-9 20254-10 Si 0.0028 0.0025 0.0074 0.0000 0.0047 0.0037 0.0006 0.0022 0.0016 0.0001 0.0000 0.0023 0.0026 0.0000 0.0002 0.0000 0.0020 0.0007 0.0011 0.0014 0.0043 0.0014 0.0014 0.0014 0.0014 0.0000 0.0015 0.0039 0.0045 0.0000 0.0006 0.0000 0.1336 0.0000 0.0051 0.0016 0.0034 0.0008 0.0015 0.0000 0.0004 0.0000 0.0065 0.0000 0.0016 0.0005 0.0020 0.0017 0.0000 0.0054 0.0024 0.0033 0.0023 0.0025 0.0005 0.0024 0.0005 0.0036 0.0028 0.0030 0.0069 0.0004 0.0026 0.0000 0.0041 0.0019 0.0006 0.0000 0.0062 0.0039 0.0040 0.0134 0.0028 0.0034 0.0046 0.0012 0.0000 0.0029 0.0084 0.0046 0.0000 0.0015 0.0015 0.0018 0.0022 0.0013 0.0032 0.0056 0.0030 Al 0.0881 0.1164 0.0493 0.0312 0.0259 0.1097 0.0399 0.0837 0.0486 0.0120 0.1670 0.0165 0.0097 0.0107 0.0102 0.0269 0.0157 0.0099 0.0161 0.0207 0.0077 0.0153 0.0103 0.0096 0.0108 0.0228 0.0129 0.0100 0.0106 0.0091 0.0236 0.0141 0.0247 0.0137 0.0210 0.0137 0.0146 0.0107 0.0460 0.0189 0.0243 0.0168 0.0416 0.0136 0.0161 0.0136 0.0145 0.0219 0.0293 0.2318 0.2668 0.2731 0.2378 0.2776 0.2463 0.2967 0.2152 0.2335 0.2954 0.0376 0.0588 0.0405 0.0267 0.0305 0.0361 0.0292 0.0398 0.0248 0.0387 0.1218 0.1411 0.1364 0.1409 0.1398 0.1294 0.1233 0.1319 0.1393 0.1305 0.0335 0.0403 0.0068 0.0237 0.0235 0.0375 0.0360 0.0371 0.0089 0.0355 Mg 0.0000 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0010 0.0000 0.0011 0.0000 0.0029 0.0000 0.0013 0.0000 0.0008 0.0000 0.0034 0.0000 0.0000 0.0001 0.0013 0.0000 0.0541 0.0000 0.0000 0.0005 0.0010 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0004 0.0017 0.0000 0.0000 0.0000 0.0000 0.0050 0.0045 0.0000 0.0029 0.0009 0.0000 0.0026 0.0013 0.0001 0.0023 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0003 0.0000 0.0008 0.0005 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0010 0.0000 0.0000 0.0012 0.0009 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.0004 0.0000 0.0000 0.0015 0.0000 0.0004 0.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0010 0.0015 0.0006 0.0000 0.0010 0.0000 0.0003 0.0000 0.0000 0.0022 0.0000 0.0000 0.0000 0.0014 0.0009 0.0014 0.0020 0.0000 0.0010 0.0000 0.0005 0.0005 0.0007 Cr 0.0843 0.0584 0.0638 0.0543 0.0569 0.0828 0.0599 0.0631 0.0625 0.0154 0.0168 0.0245 0.0178 0.0153 0.0198 0.0177 0.0164 0.0183 0.0218 0.0543 0.0381 0.0643 0.1183 0.0582 0.0535 0.0686 0.0376 0.0447 0.0485 0.0848 0.0890 0.0929 0.0828 0.0704 0.0427 0.0749 0.0809 0.0774 0.0850 0.1085 0.1239 0.1459 0.1034 0.0896 0.0916 0.1366 0.0906 0.0894 0.0962 0.0066 0.0101 0.0118 0.0076 0.0048 0.0160 0.0079 0.0162 0.0147 0.0077 0.0382 0.0279 0.0311 0.0228 0.0263 0.0310 0.0271 0.0292 0.0271 0.0266 0.0219 0.0140 0.0293 0.0163 0.0141 0.0168 0.0208 0.0206 0.0184 0.0225 0.0167 0.0182 0.0153 0.0059 0.0114 0.0211 0.0192 0.0203 0.0076 0.0177 Ca 0.0074 0.0000 0.0340 0.0010 0.0360 0.0038 0.0038 0.0004 0.0007 0.0019 0.0027 0.0000 0.0000 0.0010 0.0014 0.0004 0.0033 0.0000 0.0021 0.0012 0.0000 0.0019 0.0005 0.0000 0.0026 0.0012 0.0002 0.0000 0.0000 0.0000 0.0002 0.0028 0.0099 0.0015 0.0070 0.0000 0.0005 0.0014 0.0021 0.0027 0.0005 0.0001 0.0026 0.0016 0.0000 0.0000 0.0006 0.0000 0.0000 0.0006 0.0024 0.0036 0.0034 0.0000 0.0030 0.0060 0.0056 0.0019 0.0135 0.0013 0.0079 0.0039 0.0016 0.0030 0.0002 0.0000 0.0015 0.0000 0.0009 0.0064 0.0133 0.0102 0.0042 0.0041 0.0018 0.0022 0.0004 0.0000 0.0000 0.0018 0.0021 0.0002 0.0045 0.0039 0.0036 0.0054 0.0070 0.0030 0.0026 Fe 0.5184 0.7574 0.5344 0.3234 0.3841 0.8370 0.3130 0.5542 0.3251 0.4161 0.3164 0.3694 0.4425 0.3301 0.4435 0.3295 0.3618 0.3920 0.3038 0.3605 0.3728 0.5545 0.2896 0.3752 0.9734 0.8067 0.2862 0.5662 0.4791 0.3075 0.1651 0.2556 0.1678 0.2980 0.2748 0.1658 0.1844 0.1974 0.1526 0.9635 0.5992 0.1342 0.2179 0.2455 0.3311 0.3027 0.2287 0.2358 0.1914 0.1401 0.1354 0.0611 0.1627 0.1103 0.1163 0.0648 0.1783 0.1608 0.0842 0.1166 0.1336 0.1380 0.2039 0.2676 0.2227 0.1391 0.1498 0.1965 0.1248 0.1079 0.0638 0.0929 0.0565 0.0829 0.0890 0.0957 0.0845 0.0570 0.0716 0.4991 0.5459 0.5650 0.5390 0.5428 0.5123 0.5207 0.4882 0.5796 0.5866 Zr 0.0401 0.0415 0.0369 0.0335 0.0393 0.0360 0.0287 0.0358 0.0257 0.0121 0.0088 0.0084 0.0088 0.0112 0.0145 0.0079 0.0112 0.0083 0.0103 0.0304 0.0214 0.0184 0.0236 0.0245 0.0217 0.0245 0.0174 0.0224 0.0243 0.0431 0.0434 0.0401 0.0464 0.0433 0.0209 0.0360 0.0442 0.0401 0.0412 0.0475 0.0399 0.0489 0.0318 0.0207 0.0483 0.0374 0.0276 0.0203 0.0071 0.0161 0.0181 0.0167 0.0180 0.0131 0.0092 0.0100 0.0110 0.0174 0.0127 0.0208 0.0348 0.0214 0.0234 0.0212 0.0190 0.0257 0.0203 0.0166 0.0230 0.0153 0.0170 0.0102 0.0128 0.0163 0.0102 0.0142 0.0112 0.0135 0.0116 0.0116 0.0171 0.0079 0.0147 0.0142 0.0145 0.0128 0.0150 0.0151 0.0131 Nb 1.1382 1.5937 1.0134 0.4391 0.4980 1.7150 0.5745 1.1733 0.4545 0.0862 0.0917 0.0826 0.0869 0.1074 0.0937 0.0879 0.1086 0.1007 0.0594 0.1988 0.2435 0.6423 0.1907 0.2344 0.2799 0.4853 0.1033 0.5616 0.5421 0.0032 0.0252 0.0230 0.0260 0.0234 0.0438 0.0273 0.0337 0.0230 0.0280 0.6965 0.8847 0.2629 0.2443 0.0977 0.3179 0.2255 0.0621 0.1118 0.1555 0.9596 1.0035 0.9477 0.9757 0.9696 0.9101 0.9610 0.9085 0.8994 0.9723 0.2394 0.3163 0.2558 0.2469 0.2597 0.2538 0.2433 0.2334 0.2563 0.2300 0.4422 0.4971 0.4504 0.4501 0.4589 0.4251 0.4284 0.4313 0.4319 0.4497 0.5231 0.5113 0.5064 0.5588 0.5238 0.5409 0.5149 0.4782 0.5094 0.5005 Sn 0.0000 0.0000 0.0024 0.0091 0.0062 0.0000 0.0055 0.0000 0.0000 0.0000 0.0036 0.0000 0.0099 0.0000 0.0003 0.0150 0.0059 0.0090 0.0144 0.0292 0.0034 0.0000 0.0182 0.0106 0.0086 0.0134 0.0223 0.0120 0.0137 0.0000 0.0028 0.0088 0.0028 0.0083 0.0054 0.0052 0.0097 0.0031 0.0040 0.0070 0.0000 0.0059 0.0134 0.0020 0.0000 0.0000 0.0054 0.0009 0.0000 0.0651 0.0692 0.0430 0.0637 0.0641 0.0494 0.0611 0.0544 0.0359 0.0450 0.0293 0.0618 0.0433 0.0306 0.0329 0.0324 0.0356 0.0283 0.0415 0.0342 0.0519 0.0458 0.0481 0.0523 0.0533 0.0614 0.0499 0.0528 0.0390 0.0537 0.0593 0.0682 0.0711 0.0660 0.0785 0.0680 0.0717 0.0841 0.0836 0.0827 Ta 0.0094 0.0000 0.0136 0.0102 0.0064 0.0158 0.0000 0.0055 0.0000 0.0050 0.0000 0.0056 0.0000 0.0077 0.0004 0.0000 0.0000 0.0038 0.0000 0.0066 0.0147 0.0310 0.0024 0.0201 0.0203 0.0207 0.0000 0.0251 0.0175 0.0000 0.0000 0.0039 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0067 0.0218 0.0076 0.0040 0.0000 0.0049 0.0000 0.0003 0.0006 0.0000 0.0000 0.0866 0.1024 0.0839 0.0879 0.0963 0.0885 0.0734 0.0870 0.0939 0.1149 0.0352 0.0184 0.0221 0.0182 0.0333 0.0293 0.0070 0.0013 0.0198 0.0195 0.0530 0.0714 0.0494 0.0534 0.0557 0.0376 0.0475 0.0386 0.0636 0.0482 0.0601 0.0661 0.1203 0.0582 0.0488 0.0323 0.0605 0.0579 0.0729 0.0798 W 0.0000 0.0000 0.0033 0.0095 0.0000 0.0000 0.0083 0.0084 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0073 0.0000 0.0199 0.0000 0.0000 0.0126 0.0349 0.0000 0.0095 0.0159 0.0302 0.0343 0.0049 0.0183 0.0000 0.0240 0.0056 0.0015 0.0000 0.0000 0.0000 0.0090 0.0000 0.0000 0.0000 0.0181 0.0000 0.0000 0.0039 0.0061 0.0000 0.0063 0.0069 0.0000 0.0128 0.0377 0.0354 0.0218 0.0248 0.0082 0.0000 0.0260 0.0129 0.0390 0.0185 0.0327 0.0138 0.0054 0.0184 0.0186 0.0276 0.0318 0.0216 0.0165 0.0274 0.0448 0.0524 0.0338 0.0479 0.0721 0.0380 0.0666 0.0248 0.0310 0.0356 0.0213 0.0338 0.0206 0.0303 0.0332 0.0203 0.0397 0.0171 0.0289 Ti 58 58 59 59 59 58 59 58 59 59 59 60 59 60 59 60 60 60 60 59 59 59 59 59 59 59 60 59 59 60 60 60 59 60 60 60 60 60 60 58 59 59 59 60 59 59 60 60 60 59 59 59 59 59 59 59 59 59 59 60 0 59 59 59 59 60 60 59 60 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 O 40 39 40 40 40 39 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 0 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Table A17.1. EPMA data for the investigated samples for oxygen isotopes (Ti was determined by difference - continued) 273 Appendix 18 Metamorphic Studies Group Annual Research in Progress Meeting 2011, 23rd March Department of Earth Sciences, Cambridge, UK TESTING THE USE OF DETRITAL RUTILE TO DETECT ERODED HP ROCKS Florentina Enea1, Jeanette Taylor2, Craig D Storey1 and Horst Marschall3 1 School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO1 3QL, UK. 2 Dept. of Earth Sciences, University of Bristol, Will’s Memorial Building, Queen’s Road, Bristol, BS8 7RH, UK. 3 Woods Hole Oceanographic Institution, Geology and Geophysics, Quisset Campus, Woods Hole, Massachussets 02543, USA. Rutile is an important mineral in high-pressure rocks such as blueschists and eclogites, generally being the main host Ti-bearing accessory phase under high-pressure conditions. It is also a major carrier of high-field-strength-elements (HFSE), which can potentially be used as tracers of different tectonic processes, such as subduction. For example, the Zr-in-rutile geothermometer has now been fairly widely applied to HP rocks and proved to be of great promise. The Nb/Cr ratio has been used to offer insight into the bulk composition of the host rock. Also, rutile has been successfully dated by U/Pb methods using in-situ techniques. Moreover, rutile is a robust mineral in the sedimentary environment and is common as an accessory phase in sandstones. Therefore, its potential as a detrital tracer of HP metamorphism is high. In this study we address the potential of detrital rutile by investigating two case studies located in Syros (Greek Cyclades), and the Western Alps, both settings displaying HP/UHP conditions. Metamafic, metaigneous and metapelitic rocks have been sampled together with sediments that resulted from the erosion of these rocks in beach and river 274 Appendix A18 catchments. Thus, a geochemical correlation between source rocks and sediments can be assessed based on their HFSE budget. Trace element analyses of rutile were conducted using LA-ICPMS on in-situ grains from polished thick sections, and single detrital grains. We also studied hydrothermal grains developed within the host rocks to attempt to fingerprint those grains that might not necessarily reflect peak HP/UHP conditions. Preliminary results indicate that mobile metals such as W, Sb and Sn are concentrated in hydrothermal rutile and, hence, are a potential first order discriminant.. Further distinctions between metasedimentary and metabasic rutile using Cr/Nb ratios appear to hold up, so that subducted igneous crust can be distinguished from subducted terrestrial sediments. Zr thermometry appears to give a good reflection of equilibrated HP/UHP conditions within these rocks compared with previous conventional geothermometry. Oxygen isotope studies will further characterise these rutiles from Syros and the Italian Alps. This will be used to further characterize the nature of the subducted material and allow us to test the veracity of the trace element signature in determining the protolith bulk composition. This will also allow oxygen isotope data within single rutiles to be performed for the first time in order to further aid the identification of the tectonic history of detrital rutiles. 275 Appendix A19 European Geosciences Union General Assembly 2011 Vienna | Austria | 03 – 08 April 2011 Rutile geochemistry and its potential use as a petrogenetic tool Florentina C. Enea1, Jeanette Taylor2, Craig D Storey1, Horst R. Marschall2 1 University of Portsmouth, School of Earth and Environmental Sciences, Portsmouth, UK 2 University of Bristol, Department of Earth Sciences, Bristol, UK The timing of onset of modern plate tectonics is currently in conflict. Some believe that it began in the Archaean and others the Neoproterozoic. At issue is the lack of reliable recorders of changing styles of subduction. Whilst high-pressure rocks are present from Archaean times, low-temperature, high-pressure rocks only appear in the Neoproterozoic. This latter association is the hallmark of steep subduction of cold oceanic crust and is central to the argument. Their disappearance from the rock record older than c.600 Ma may be a matter of preservation potential. We intend to investigate this question by the novel use of detrital rutile. The intimate link between rutile formation and plate tectonics calls for a closer investigation of rutile geochemistry, including minor and trace element compositions and isotopic signatures. Research now focuses on relating geochemical signatures of rutile to the P-T-X conditions of its host rock and, hence, to the plate tectonic setting of its formation. Guided by the improved geochronologic constraints, rutile can than be used to recognise tectonic processes on the early Earth and to investigate secular changes in these processes. One category of typical protoliths that produce rutile includes basalts and gabbros in the oceanic crust, where rutile is formed during subduction. In modern subduction zones along a very low P/T gradient, rutile forms at ~1.3 GPa and 400–500ºC in the blueschist facies. Modern continental subduction will produce medium to high-T eclogite with rutile 276 Appendix A19 equilibrated at 600–800ºC, while the collision of large continental blocks generates medium to high-P granulites formed at 800–1000ºC. One of the other major causes of rutile growth in the crust is in hydrothermal settings and therefore we need to determine how to distinguish hydrothermal rutile from high-P metamorphic rutile. Our sample-set from Syros contains hydrothermal rutile in addition to high-P and our initial trace element studies demonstrate that mobile metals such as W, Sb and Sn are concentrated in hydrothermal rutile and, hence, are a potential first order discriminant. Oxygen isotope studies will further characterise such hydrothermal rutiles from Syros and other settings such as the Sesia Lanzo. Mantle rutiles, such as in the MARID association, are considered a minor input into the crust and are characterised by extremely high Cr contents and hence should be easily distinguished. We will then be in an ideal position to take detrital rutiles that sample unknown orogenic belts and reconstruct the tectonic evolution of the high-pressure setting of the rutiles. 277 Appendix A20 9th International Eclogite Conference 2011, Mariánské Lázně, Czech Republic Testing the use of detrital rutile to investigate HP/UHP rocks Enea Florentina C.1, Taylor Jeanette2, Storey Craig D.1, Marschall Horst R.3, Konrad-Schmolke Matthias4 1 University of Portsmouth, SEES Burnaby Building, Portsmouth, PO1 3QL, UK (*correspondence: florentina.enea@port.ac.uk). 2 Bristol University, SES, Wills Memorial Building, Queen's Road, BRISTOL BS8 1RJ, UK 3 Woods Hole Oceanographic Institution Woods Hole , MA 02543, USA 4 Universität Potsdam, Institut für Geowissenschaften, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany Accessory rutile generally is the main host of Ti in HP/UHP metamorphic rocks. It is also a major carrier of HFSE, providing a potential tracer of contrasting tectonic processes. For example, the Zr-in-rutile geothermometer has now been widely and successfully applied to HP rocks, And Cr/Nb ratios have been used to distinguish between different bulk compositions of the host rock. Moreover, rutile is a robust mineral in sedimentary environments and is common as an accessory phase in sandstones. Therefore, its potential as a detrital tracer of HP metamorphism is high. Metamafic and metapelitic rocks from two case studies located in Syros, Greece and the Western Alps, both settings displaying HP/UHP conditions, have been sampled together with sediments that resulted from the erosion of these rocks in beach and river catchments. The geochemical correlation of rutile between source rocks and sediments is assessed based on its HFSE budget. This study aims to establish geochemical signatures of rutile that are characteristic for detrital grains sourced from HP/UHP rocks formed in subduction zones. The Zr278 Appendix A20 in-rutile thermometer (Zack et al., 2004b; Watson et al., 2006) provides peak metamorphic temperatures for the investigated samples that are coherent with published peak temperatures for the respective metamorphic sequences. In addition, the calculated temperatures are in-dependent of the source rock lithologies, i.e., the presence or absence of quartz. The T histograms for the Western Alps indicate a low-T peak, suggesting the blueschists, eclogites and Dora Maira rocks are dominant, and not the high-T Ivrea rocks, as expected. Cr/Nb ratios have been employed success-fully and in situ analysis fall strictly into the mafic (for Syros) and pelitic (for the Western Alps) source rock fields (Zack et al., 2002; Zack et al., 2004a; Meinhold 2010). Meinhold (2010) E-S Rev. 102, 1–28. Watson et al. (2006) CMP 151, 413–433. Zack et al. (2002) Chem. Geo., 184, 97-122. Zack et al. (2004a), Sed. Geo, 171, 37-58. Zack et al. (2004b) CMP 148, 471–488. 279 Appendix A21 Goldschmidt2011, August 14-19, 2011 in Prague, Czech Republic Testing the use of detrital rutile to Investigate HP/UHP rocks FLORENTINA C. ENEA1*, JEANETTE TAYLOR2, CRAIG D. STOREY1, HORST MARSCHALL3 AND M. KSCHMOLKE4 1 University of Portsmouth, SEES Burnaby Building, Portsmouth, PO1 3QL, UK (*correspondence: florentina.enea@port.ac.uk). 2 Bristol University, SES, Wills Memorial Building, Queen's Road, BRISTOL BS8 1RJ, UK 3 Woods Hole Oceanographic Institution Woods Hole , MA 02543, USA 4 Universität Potsdam, Institut für Geowissenschaften, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany Accessory rutile generally is the main host of Ti in HP/UHP metamorphic rocks. It is also a major carrier of HFSE, providing a potential tracer of contrasting tectonic processes. For example, the Zr-in-rutile geothermometer has now been widely and successfully applied to HP rocks, And Cr/Nb ratios have been used to distinguish between different bulk compositions of the host rock. Moreover, rutile is a robust mineral in sedimentary environments and is common as an accessory phase in sandstones. Therefore, its potential as a detrital tracer of HP metamorphism is high. Metamafic and metapelitic rocks from two case studies located in Syros, Greece and the Western Alps, both settings displaying HP/UHP conditions, have been sampled together with sediments that resulted from the erosion of these rocks in beach and river catchments. The geochemical correlation of rutile between source rocks and sediments is assessed based on its HFSE budget. This study aims to establish geochemical signatures of rutile that are characteristic for detrital grains sourced from HP/UHP rocks formed in subduction zones. The Zr-in-rutile thermometer [1, 2] provides peak metamorphic temperatures for the investigated samples that are coherent with published peak temperatures for the respective metamorphic sequences. In addition, the calculated temperatures are independent of 280 Appendix A21 the source rock lithologies, i.e., the presence or absence of quartz. The T histograms for the Western Alps indicate a low-T peak, suggesting the blueschists, eclogites and Dora Maira rocks are dominant, and not the high-T Ivrea rocks, as expected. Cr/Nb ratios have been employed successfully and in situ analysis fall strictly into the mafic (for Syros) and pelitic (for the Western Alps) source rock fields [3, 4, 5]. [1] Zack et al (2004b) CMP 148, 471–488. [2] Watson et al. (2006) CMP 151, 413–433. [3] Zack et al. (2002) Chem. Geo., 184, 97-122. [4] Zack et al. (2004a), Sed. Geo, 171, 37-58. [5] Meinhold (2010) E-S Rev. 102, 1–28. 281
Similar documents
Gene Larew
17 Biffle Series Color Chart 18 Biffle HardHeads Biffle Bug Color Chart 19 Biffle Bugs Biffle Bug Juice Bass Glass Rattles
More information