isolation triso-super 12 boost

Transcription

isolation triso-super 12 boost
ISOLATION
’R’
TRISO-SUPER 12 BOOST
Attestation d’éligibilité aux dispositifs
d’incitation à la rénovation énergétique
(CITE, CEE, aides de l’ANAH,…)
L’éligibilité des matériaux d’isolation aux dispositifs du crédit d’impôts transition énergétique
(CITE) et des certificats d’économies d’énergie (CEE) pour l’isolation des rampants de
toiture requiert une valeur de résistance thermique R ≥ 6 m2.K/W.
L’éligibilité des matériaux d’isolation réfléchissants à ces dispositifs est en outre
subordonnée au respect de deux exigences particulières :
-
Afficher une valeur de résistance thermique mesurée selon la norme EN 16012.
-
Justifier cette valeur par un rapport d’essai délivré par un organisme accrédité
pour réaliser des tests selon la norme EN 16012.
Pour les systèmes d’isolation composés de plusieurs matériaux, l’Administration exige
également que chaque composant soit testé séparément selon la norme EN 16012 et que la
résistance thermique du système soit ensuite calculée selon la norme EN ISO 6946 en
fonction de la destination du produit (toitures, murs etc…).
TRISO-SUPER 12 BOOST’R’ étant un système d’isolation, la résistance thermique de
chacun de ses composants a été mesurée séparément selon la norme EN 16012 puis la
résistance thermique du système a été déterminée par calcul selon la norme EN ISO 6946
pour sa destination en rampants de toiture.
Composant TRISO HYBRID
Composant BOOST’R’ HYBRID
Système TRISO-SUPER 12 BOOST’R’
Norme
EN 16012
EN 16012
EN ISO 6946
Rapports d’essai
037-11 SF/15U
037-10 SF/15U
037-10/11(C) SF/15
TRISO-SUPER 12 BOOST’R’ affiche, quelque soit la configuration de toiture, une valeur de
R > 6,21 m2.KW justifiée par un rapport d’essai délivré par un organisme accrédité pour
réaliser des tests selon la norme EN 16012.
Il est éligible aux dispositifs du crédit d’impôts transition énergétique (CITE) et des
certificats d’économies d’énergie (CEE) pour l’isolation des rampants de toiture.
Fait à Limoux le 01/12/2015,
Robert MENRAS
Directeur Juridique
INSTITUTE OF ARCHITECTURE AND
CONSTRUCTION OF KAUNAS
UNIVERSITY OF TECHNOLOGY
LABORATORY OF BUILDING PHYSICS
Notified Body number: 2018
TEST REPORT No. 037-10/11(C) SF/15
Date: 26 of November 2015
page (pages)
1 (3)
Determination of installed thermal resistance into a roof of TRISO-SUPER 12
BOOST’R’ according to EN ISO 6946:2007
(test name)
Test method:
Determination of installed thermal resistance into a roof of TRISO-SUPER 12 BOOST’R’
according to EN ISO 6946:2007
(number of normative document or test method, description of test procedure, test uncertainty)
Product name:
TRISO-SUPER 12 BOOST’R’
Customer:
ACTIS SA Avenue de Catalogne, 11300 Limoux, France
(identification of the specimen)
(name and address of enterprise)
Manufacturer:
ACTIS SA Avenue de Catalogne, 11300 Limoux, France
Calculation results:
Calculation
result, R,
Roof slope angle, 
(m2K)/W
EN ISO 6946:2007
6,22
Flat roof (  = 0°)
EN ISO 6946:2007
6,29
Pitched roof (  = 20°)
EN ISO 6946:2007
6,33
Pitched roof (  = 30°)
EN ISO 6946:2007
6,40
Pitched roof (  = 45°)
R value for others pitched sloop (different  value) can be determined by linear interpolation between two
calculated R values
Calculation method reference no.
Calculation
made by:
Laboratory of Building Physics, Institute of Architecture and Construction of
Kaunas University of Technology
(Name of the organization)
Products used TRISO HYBRID
(test report no. 037-11 SF/15 U)
R’
in calculation: BOOST’ HYBRID (test report no. 037-10 SF/15 U)
Additions information:
Application, 2015-10-12
1 – Calculation results
Annex:
(the numbers of the annexes should be pointed out)
Technical manager:
J. Ramanauskas
(approves the test results)
(n., surname)
Tested by
K. Banionis
(calculation made by)
(n., surname)
(signature)
(signature)
S.P.
Validity – the named data and results refer exclusively to the tested and described specimens.
Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the
prior written consent of the Science Laboratory of Building Thermal Physics .
Tunelio g. 60, LT - 44405 Kaunas, Lithuania (tel. +370 37 453558, +370 37 350799, fax +370 37 451810;
Web site: www.ktu.edu/asi/en/ ; E.mail: statybine.fizika@ktu.lt
Laboratory of Building
Physics IAC KUT
TEST REPORT No. 037-10/11(C) SF/15
2 (3)
Annex 1: Calculation results
Table 1: Products R-core values according to LST EN 16012:2012+A1:2015
“Calculated R-core thermal
Product
resistance, (m2K)/W
2,750
2,450
TRISO HYBRID
(test report n° 037-11 SF/15 U)
BOOST’R’ HYBRID (test report n° 037-10 SF/15 U)
Figure 1. Roof construction design
1
2
3
Unventilated Air cavity # 1
TRISO HYBRID
Unventilated Air cavity # 2
4
5
BOOST'R' HYBRID
Ventilated Air cavity # 3
Table 2: Roof construction calculation results for slope
 = 0° (EN ISO 6946)
TRISO-SUPER 12 BOOST'R' installed on roof
Angle: α = 0°
Layer
R value
Unventilated Air cavity # 1
0,448
TRISO HYBRID
2,750
Unventilated Air cavity # 2
0,473
Ascendant Heat Flux
(Winter period)
BOOST'R' HYBRID
2,450
Ventilated Air cavity # 3
0,100
R Total
6,22
Table 3: Roof construction calculation results for slope
Unit
m².K/W
m².K/W
m².K/W
m².K/W
m².K/W
m².K/W
 = 20° (EN ISO 6946)
TRISO-SUPER 12 BOOST'R' installed on roof
Angle: α = 20°
Layer
R value
Unventilated Air cavity # 1
0,482
TRISO HYBRID
2,750
0,511
Unventilated Air cavity # 2
Ascendant Heat Flux
(Winter period)
BOOST'R' HYBRID
2,450
Ventilated Air cavity # 3
0,100
R Total
6,29
Unit
m².K/W
m².K/W
m².K/W
m².K/W
m².K/W
m².K/W
Validity – the named data and results refer exclusively to the tested and described specimens.
Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without
the prior written consent of the Science Laboratory of Building Thermal Physics.
Tunelio g. 60, LT - 44405 Kaunas, Lithuania (tel. +370 37 453558, +370 37 350799, fax +370 37 451810;
Web site: www.ktu.edu/asi/en/ ; E.mail: statybine.fizika@ktu.lt
Laboratory of Building
Physics IAC KUT
TEST REPORT No. 037-10/11(C) SF/15
3 (3)
Table 4: Roof construction calculation results for slope
 = 30° (EN ISO 6946)
R'
TRISO-SUPER 12 BOOST' installed on roof
Angle: α = 30°
Layer
R value
Unventilated Air cavity # 1
0,501
TRISO HYBRID
2,750
Unventilated Air cavity # 2
0,532
Ascendant Heat Flux
(Winter period)
BOOST'R' HYBRID
2,450
Ventilated Air cavity # 3
0,100
R Total
6,33
Table 5: Roof construction calculation results for slope
Unit
m².K/W
m².K/W
m².K/W
m².K/W
m².K/W
m².K/W
 = 45° (EN ISO 6946)
R'
TRISO-SUPER 12 BOOST' installed on roof
Angle: α = 45°
Layer
R value
Unventilated Air cavity # 1
0,532
TRISO HYBRID
2,750
Unventilated Air cavity # 2
0,567
Ascendant Heat Flux
R'
(Winter period)
BOOST' HYBRID
2,450
Ventilated Air cavity # 3
0,100
R Total
6,40
Unit
m².K/W
m².K/W
m².K/W
m².K/W
m².K/W
m².K/W
Requirements for calculation validity:

Calculations of R values are valid for a pitched roof ( α is generally from 10° to 45°),
and Ceiling (α is equal to 0°),

Calculations of R values are valid when TRISO-SUPER 12 BOOST’R’ is installed from
the internal side of the Roof or the external part of the Roof,

Calculations of R values are valid when TRISO-SUPER 12 BOOST’R’ is installed in
agreement with the installation guidelines described into the manufacturer brochure,

Calculations of R values are valid when unventilated air cavities are at least 20 mm
thick.
Validity – the named data and results refer exclusively to the tested and described specimens.
Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without
the prior written consent of the Science Laboratory of Building Thermal Physics.
Tunelio g. 60, LT - 44405 Kaunas, Lithuania (tel. +370 37 453558, +370 37 350799, fax +370 37 451810;
Web site: www.ktu.edu/asi/en/ ; E.mail: statybine.fizika@ktu.lt