isolation triso-super 12 boost
Transcription
isolation triso-super 12 boost
ISOLATION ’R’ TRISO-SUPER 12 BOOST Attestation d’éligibilité aux dispositifs d’incitation à la rénovation énergétique (CITE, CEE, aides de l’ANAH,…) L’éligibilité des matériaux d’isolation aux dispositifs du crédit d’impôts transition énergétique (CITE) et des certificats d’économies d’énergie (CEE) pour l’isolation des rampants de toiture requiert une valeur de résistance thermique R ≥ 6 m2.K/W. L’éligibilité des matériaux d’isolation réfléchissants à ces dispositifs est en outre subordonnée au respect de deux exigences particulières : - Afficher une valeur de résistance thermique mesurée selon la norme EN 16012. - Justifier cette valeur par un rapport d’essai délivré par un organisme accrédité pour réaliser des tests selon la norme EN 16012. Pour les systèmes d’isolation composés de plusieurs matériaux, l’Administration exige également que chaque composant soit testé séparément selon la norme EN 16012 et que la résistance thermique du système soit ensuite calculée selon la norme EN ISO 6946 en fonction de la destination du produit (toitures, murs etc…). TRISO-SUPER 12 BOOST’R’ étant un système d’isolation, la résistance thermique de chacun de ses composants a été mesurée séparément selon la norme EN 16012 puis la résistance thermique du système a été déterminée par calcul selon la norme EN ISO 6946 pour sa destination en rampants de toiture. Composant TRISO HYBRID Composant BOOST’R’ HYBRID Système TRISO-SUPER 12 BOOST’R’ Norme EN 16012 EN 16012 EN ISO 6946 Rapports d’essai 037-11 SF/15U 037-10 SF/15U 037-10/11(C) SF/15 TRISO-SUPER 12 BOOST’R’ affiche, quelque soit la configuration de toiture, une valeur de R > 6,21 m2.KW justifiée par un rapport d’essai délivré par un organisme accrédité pour réaliser des tests selon la norme EN 16012. Il est éligible aux dispositifs du crédit d’impôts transition énergétique (CITE) et des certificats d’économies d’énergie (CEE) pour l’isolation des rampants de toiture. Fait à Limoux le 01/12/2015, Robert MENRAS Directeur Juridique INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY LABORATORY OF BUILDING PHYSICS Notified Body number: 2018 TEST REPORT No. 037-10/11(C) SF/15 Date: 26 of November 2015 page (pages) 1 (3) Determination of installed thermal resistance into a roof of TRISO-SUPER 12 BOOST’R’ according to EN ISO 6946:2007 (test name) Test method: Determination of installed thermal resistance into a roof of TRISO-SUPER 12 BOOST’R’ according to EN ISO 6946:2007 (number of normative document or test method, description of test procedure, test uncertainty) Product name: TRISO-SUPER 12 BOOST’R’ Customer: ACTIS SA Avenue de Catalogne, 11300 Limoux, France (identification of the specimen) (name and address of enterprise) Manufacturer: ACTIS SA Avenue de Catalogne, 11300 Limoux, France Calculation results: Calculation result, R, Roof slope angle, (m2K)/W EN ISO 6946:2007 6,22 Flat roof ( = 0°) EN ISO 6946:2007 6,29 Pitched roof ( = 20°) EN ISO 6946:2007 6,33 Pitched roof ( = 30°) EN ISO 6946:2007 6,40 Pitched roof ( = 45°) R value for others pitched sloop (different value) can be determined by linear interpolation between two calculated R values Calculation method reference no. Calculation made by: Laboratory of Building Physics, Institute of Architecture and Construction of Kaunas University of Technology (Name of the organization) Products used TRISO HYBRID (test report no. 037-11 SF/15 U) R’ in calculation: BOOST’ HYBRID (test report no. 037-10 SF/15 U) Additions information: Application, 2015-10-12 1 – Calculation results Annex: (the numbers of the annexes should be pointed out) Technical manager: J. Ramanauskas (approves the test results) (n., surname) Tested by K. Banionis (calculation made by) (n., surname) (signature) (signature) S.P. Validity – the named data and results refer exclusively to the tested and described specimens. Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Science Laboratory of Building Thermal Physics . Tunelio g. 60, LT - 44405 Kaunas, Lithuania (tel. +370 37 453558, +370 37 350799, fax +370 37 451810; Web site: www.ktu.edu/asi/en/ ; E.mail: statybine.fizika@ktu.lt Laboratory of Building Physics IAC KUT TEST REPORT No. 037-10/11(C) SF/15 2 (3) Annex 1: Calculation results Table 1: Products R-core values according to LST EN 16012:2012+A1:2015 “Calculated R-core thermal Product resistance, (m2K)/W 2,750 2,450 TRISO HYBRID (test report n° 037-11 SF/15 U) BOOST’R’ HYBRID (test report n° 037-10 SF/15 U) Figure 1. Roof construction design 1 2 3 Unventilated Air cavity # 1 TRISO HYBRID Unventilated Air cavity # 2 4 5 BOOST'R' HYBRID Ventilated Air cavity # 3 Table 2: Roof construction calculation results for slope = 0° (EN ISO 6946) TRISO-SUPER 12 BOOST'R' installed on roof Angle: α = 0° Layer R value Unventilated Air cavity # 1 0,448 TRISO HYBRID 2,750 Unventilated Air cavity # 2 0,473 Ascendant Heat Flux (Winter period) BOOST'R' HYBRID 2,450 Ventilated Air cavity # 3 0,100 R Total 6,22 Table 3: Roof construction calculation results for slope Unit m².K/W m².K/W m².K/W m².K/W m².K/W m².K/W = 20° (EN ISO 6946) TRISO-SUPER 12 BOOST'R' installed on roof Angle: α = 20° Layer R value Unventilated Air cavity # 1 0,482 TRISO HYBRID 2,750 0,511 Unventilated Air cavity # 2 Ascendant Heat Flux (Winter period) BOOST'R' HYBRID 2,450 Ventilated Air cavity # 3 0,100 R Total 6,29 Unit m².K/W m².K/W m².K/W m².K/W m².K/W m².K/W Validity – the named data and results refer exclusively to the tested and described specimens. Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Science Laboratory of Building Thermal Physics. Tunelio g. 60, LT - 44405 Kaunas, Lithuania (tel. +370 37 453558, +370 37 350799, fax +370 37 451810; Web site: www.ktu.edu/asi/en/ ; E.mail: statybine.fizika@ktu.lt Laboratory of Building Physics IAC KUT TEST REPORT No. 037-10/11(C) SF/15 3 (3) Table 4: Roof construction calculation results for slope = 30° (EN ISO 6946) R' TRISO-SUPER 12 BOOST' installed on roof Angle: α = 30° Layer R value Unventilated Air cavity # 1 0,501 TRISO HYBRID 2,750 Unventilated Air cavity # 2 0,532 Ascendant Heat Flux (Winter period) BOOST'R' HYBRID 2,450 Ventilated Air cavity # 3 0,100 R Total 6,33 Table 5: Roof construction calculation results for slope Unit m².K/W m².K/W m².K/W m².K/W m².K/W m².K/W = 45° (EN ISO 6946) R' TRISO-SUPER 12 BOOST' installed on roof Angle: α = 45° Layer R value Unventilated Air cavity # 1 0,532 TRISO HYBRID 2,750 Unventilated Air cavity # 2 0,567 Ascendant Heat Flux R' (Winter period) BOOST' HYBRID 2,450 Ventilated Air cavity # 3 0,100 R Total 6,40 Unit m².K/W m².K/W m².K/W m².K/W m².K/W m².K/W Requirements for calculation validity: Calculations of R values are valid for a pitched roof ( α is generally from 10° to 45°), and Ceiling (α is equal to 0°), Calculations of R values are valid when TRISO-SUPER 12 BOOST’R’ is installed from the internal side of the Roof or the external part of the Roof, Calculations of R values are valid when TRISO-SUPER 12 BOOST’R’ is installed in agreement with the installation guidelines described into the manufacturer brochure, Calculations of R values are valid when unventilated air cavities are at least 20 mm thick. Validity – the named data and results refer exclusively to the tested and described specimens. Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Science Laboratory of Building Thermal Physics. Tunelio g. 60, LT - 44405 Kaunas, Lithuania (tel. +370 37 453558, +370 37 350799, fax +370 37 451810; Web site: www.ktu.edu/asi/en/ ; E.mail: statybine.fizika@ktu.lt