Quantum Metrology for Dynamical Systems
Transcription
Quantum Metrology for Dynamical Systems
Quantum Metrology for Dynamical Systems ∗ Mankei Tsang Department of Electrical and Computer Engineering Department of Physics National University of Singapore eletmk@nus.edu.sg http://mankei.tsang.googlepages.com/ Feb 27, 2014 ∗ This material is based on work supported by the Singapore National Research Foundation Fellowship (NRF-NRFF2011-07). 1 / 32 Quantum Limits to Classical Force Detection ■ ■ ■ ■ ■ Caves et al., “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52, 341 (1980). Yuen, “Contractive States and the Standard Quantum Limit for Monitoring Free-Mass Positions,” Phys. Rev. Lett., 51, 719-722 (1983). Caves, “Defense of the standard quantum limit for free-mass position,” Phys. Rev. Lett., 54, 2465-2468 (1985). Ozawa, “Measurement breaking the standard quantum limit for free-mass position,” Phys. Rev. Lett., 60, 385-388 (1988). Braginsky and Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992). 2 / 32 Quantum Optomechanics Brooks et al., Nature 488, 476 (2012) Safavi-Naeini et al., Nature 500, 185 (2013) Purdy et al., PRX 3, 031012 (2013) 3 / 32 Detection is Binary Hypothesis Testing LIGO, Hanford Rugar et al., Nature 430, 329 (2004). 4 / 32 Statistical Binary Hypothesis Testing ■ ■ ■ signal present: P (Y |H1 ), signal absent: P (Y |H0 ). Type-I error probability (false-alarm probability): P10 = Pr H̃(Y ) = H1 H0 Type-II error probability (miss probability): P01 ■ Average error probability: = Pr H̃(Y ) = H0 H1 Pe = P10 P0 + P01 P1 ■ (1) (2) (3) Figure of merit: error exponent − ln Pe , usually − ln Pe ∝ Signal-to-Noise Ratio 5 / 32 Quantum Detection Bounds ■ ■ C. W. Helstrom, Quantum Detection and Estimation Theory, (Academic Press, New York, 1976). Quantum hypothesis testing: Pr(Y |H0 ) = tr[E(Y )ρ0 ], ■ p 1 1 P0 P1 F ≥ min Pe = (1 − ||P1 ρ1 − P0 ρ0 ||1 ) ≥ 1 − 1 − 4P0 P1 F ≥ P0 P1 F. E(Y ) 2 2 √ ■ (4) Quantum bounds (Helstrom, Fuchs/van de Graaf): p ■ Pr(Y |H1 ) = tr[E(Y )ρ1 ]. A† A, ||A||1 ≡ tr For pure states, p√ √ ρ1 ρ0 ρ1 2 . ||P1 ρ1 − P0 ρ0 ||1 = p 1 − 4P0 P1 F , F ≡ tr F = |hψ0 |ψ1 i|2 , (5) (6) and there exists a POVM such that the fidelity bound is attained. Error exponent − ln PeHelstrom ≈ − ln P0 − ln P1 − ln F , fidelity exponent − ln F is a figure of merit. 6 / 32 Fidelity and Quantum Fisher Information ■ ■ Let F (x, x′ ) = |hψx |ψx′ i|2 . Near F = 1, 1X F (x, x + ∆x) ≈ 1 − Jjk (x)∆xj ∆xk . 4 j,k ■ J(x) is the quantum Fisher information, determines quantum Cramér-Rao bound mean-square error covariance ≥ J −1 . ■ ■ ■ ■ ■ (7) (8) Once we know F (x, x′ ), getting J(x) is easy, but not vice versa. For detection, we want Pe ≪ 1, F ≪ 1, J is irrelevant Pure-state Helstrom bound is attainable, low F means achievable low Pe . For estimation, QCRB may not be attainable, high J doesn’t necessarily mean low error QCRB useful as no-go theorem 7 / 32 Helstrom Bound for Waveform Detection ■ How to apply Helstrom’s bound to waveform detection? ■ Larger Hilbert space: Purification, deferred measurements: ■ Unitary discrimination: ρ0 = U0 |ψihψ|U0† , Z 1 dtH0 (t) , U0 = T exp i~ ρ1 = U1 |ψihψ|U1† , Z 1 U1 = T exp dtH1 (x(t), t) , i~ 2 † F = hψ|U0 U1 |ψi . (9) (10) (11) 8 / 32 Quantum Optics 101 ■ Interaction picture: 1 U0† U1 = T exp i~ ■ Z dtHI (t) , HI (t) ≡ U0† (t, t0 ) [H1 (t) − H0 (t)] U0 (t, t0 ). Suppose H1 − H0 = −qx(t), Z 2 1 dtx(t)qI (t) . F = T exp i~ ■ ■ (12) Assume qI (t) has linear dynamics (H0 quadratic with respect to Z, a vector of canonical coordinate operators), Z qI (t) = g(t, t0 )Z + dt′ g(t, t′ )J(t′ ), Cascading displacement operators: Z i i 1 T exp dtx(t)qI (t) ≈ eiφ e− ~ dtx(tN )g(tN ,t0 )Z . . . e− ~ dtx(t1 )g(t1 ,t0 )Z i~ Z ′ i dtx(t)g(t, t0 ) Z = eiφ exp − ~ (13) (14) (15) (16) 9 / 32 Analytic Expression ■ ■ Characteristic function is Fourier transform of Wigner: D E Z e−iκZ = dzW (z) exp(−iκz). Assume initial state (light, mechanical) is Gaussian, Fourier transform of W (z) is Gaussian: 1 F = exp − 2 ~ ■ ■ (17) Z dt Z dt′ x(t) : ∆qI (t)∆qI (t′ ) : x(t′ ) . (18) Trade-off between detection accuracy and quantum position localization In optomechanics, p dq = , dt m dp 2 = −mωm q + κa† a, dt γ da √ = − a − iω0 a + γAin , dt 2 (19) h: ∆qI (t)∆qI (t′ ) :i is a function of input optical state and dynamics. 10 / 32 Standard Quantum Limit Phase Homodyne 11 / 32 Russian Referee? Tsang and Nair, “Fundamental quantum limits to waveform detection,” PRA 86, 042115 (2012). 12 / 32 Ponderomotive Squeezing Brooks et al., Nature 488, 476 (2012) Safavi-Naeini et al., Nature 500, 185 (2013) Purdy et al., PRX 3, 031012 (2013) 13 / 32 Overcoming SQL Positive-mass oscillator and negative-mass oscillator Dynamical Pairs Conjugate Pairs ■ ■ ■ ■ ■ Kimble et al., PRD 65, 022002 (2001) Quantum Noise Cancellation: Tsang and Caves, PRL 105, 123601 (2010) Quantum-Mechanics-Free Subsystem: Tsang and Caves, PRX 2, 031016 (2012) Backaction evasion Undo ponderomotive squeezing 14 / 32 Homodyne is Suboptimal ■ ■ Suppose input field is in coherent state, output is also coherent state after QNC. Coherent-state discrimination: QNC QNC H0 : |Aout [x(t) = 0]i, ■ ■ H1 : |Aout [x(t)]i. (20) Figure of merit: error exponent − ln Pe − ln PeHomodyne 1 Helstrom − ln Pe ≈ 2 (21) Phase Homodyne, No Backaction Noise Optimal measurement can save half of optical power 15 / 32 Quantum Optimal Measurements ■ Kennedy: null the field for H0 : H0 : |0i, ■ H1 : |Aout [x(t)] − Aout [0]i, (22) P01 = |h0|Aout [x(t)] − Aout [0]i|2 = F. (23) Error probabilities: P10 = |hN 6= 0|N = 0i|2 = 0, Photon Counter nonzero count: choose zero count: choose − ln PeKennedy ≈ − ln PeHelstrom − (− ln P0 ) ■ (24) Dolinar? 16 / 32 Stochastic Waveform Detection ■ ■ What if we don’t know x(t) exactly? Fidelity upper/lower bounds still hold: F = ■ ■ 2 Z 1 dtx(t)qI (t) dP [x(t)] T exp i~ Coherent state under H0 , mixed state under H1 : Z H0 : |Aout [0]i, H1 : dP [x(t)]|Aout [x(t)]ihAout [x(t)]|. (25) (26) Kennedy receiver still has near-optimal error exponent: Z H0 : |0i, H1 : dP [x(t)]|Aout [x(t)] − Aout [0]ihAout [x(t)] − Aout [0]|, P10 = 0, ■ Z P01 = Z dP [x(t)] |h0|Aout [x(t)] − Aout [0]i|2 = F. M. Tsang and R. Nair, PRA 86, 042115 (2012). (27) 17 / 32 Proof-of-Concept Experimental Proposals 18 / 32 Squeezed Input State ■ Caves, PRD 23, 1693 (1981). GEO 600: Nature Phys. 7, 962 (2011) ■ LIGO Hanford: Nature Photon. 7, 613 (2013) ■ 19 / 32 Squeezed Input State ■ Squeezing increases h: ∆q(t)∆q(t′ ) :i without increase in optical power Phase Homodyne, No Backaction Noise ■ ■ ■ LIGO nowhere near SQL yet Optimal detection for squeezed state? Fundamental quantum limit with respect to optical power? ◆ ◆ Optical loss: noisy quantum metrology Heisenberg limit? 20 / 32 Open Systems ■ Larger Hilbert space: bounds assume everything can be measured. ■ For open systems, bounds are still valid but not tight p√ √ 2 ρ1 ρ0 ρ1 , hopeless to compute Mixed states: ||P1 ρ1 − P0 ρ0 ||1 , F = tr Modified purification: ■ ■ 2 † F = max hψ|U0 UB U1 |ψi UB ■ ■ ■ Choose UB to tighten lower bound. Hard to find optimal UB , lower bound may not be achievable, useful as no-go only. Escher et al., Nature Phys. 7, 406 (2011) (quantum Fisher information) (28) 21 / 32 Single-Mode Optical Phase Detection ■ Pure state: 2 X 2 P (n) exp(inφ) . F = |hψ| exp(inφ)|ψi| = (29) n ■ ■ Characteristic function (Fourier transform) Quantum Fisher information for QCRB on phase estimation: F ≈ 1 − h∆n2 iφ2 , ■ J = 4 ∆n2 . e.g. coherent state: Fcoh φ = exp −hni4 sin2 , 2 − ln Fcoh ∝ hni (shot-noise scaling) (30) (31) |φ| ≪ 1: Fcoh ≈ exp −hniφ 2 , − ln Fcoh ≈ hniφ2 (32) 22 / 32 Modified Purification ■ Model loss as beam splitter: ■ Order of BS and modulation doesn’t matter i h † † , UAB ≡ exp iκ a b + ab ■ UA ≡ exp(ia† aφ). Fidelity for the modified purification: 2 † F = hψ|UAB UB UA UAB |ψi ■ (33) (34) Assume UB ≡ exp(−ib† bθ), θ free parameter. (35) 23 / 32 Quantum Optics 102 ■ Use Heisenberg picture: h † UB UA UAB UAB ■ J− ≡ a b, ■ † † † i = exp iµa a + iνb b − γ(a b − ab ) , 1 † † J3 ≡ b b−a a , 2 † J+ ≡ ab , 1 † † J≡ b b+a a , 2 h Λ3 = cos ■ ξ 2 − i λξ3 sin † ξ 2 i−2 ,ξ≡ q (38) λ23 + 4λ+ λ− . eiΛ− J− |0iB = eiΛ− a b |0iB = |0iB . Final result (η = cos2 κ = quantum efficiency): 2 X 2 n a† a Pa (n)z , F = hψ|z |ψi = n ■ (37) [J+ , J− ] = 2J3 , [J3 , J± ] = ±J± . SU(2) disentangling theorem: 3 iΛ− J− , exp(iλ+ J+ + iλ− J− + iλ3 J3 ) = eiΛ+ J+ ΛJ 3 e ■ (36) where µ ≡ φ cos2 κ − θ sin2 κ, ν ≡ φ sin2 κ − θ cos2 κ, γ ≡ (φ + θ) sin κ cos κ. Define SU(2) operators: † ■ † moment-generating function, z transform z ≡ ηeiφ + (1 − η)e−iθ . (39) 24 / 32 Jensen’s Inequality ■ If z is real and positive, we can use Jensen’s inequality: X Pa (n)z n = hz n i ≥ z hni , F ≥ z 2hni ≡ Fz , n ■ − ln F ≤ C hni , (40) shot-noise scaling bound. When is z = ηeiφ + (1 − η)e−iθ (θ free parameter) real and positive? η< 1 : any φ. 2 η≥ 1 1−η : | sin φ| ≤ , cos φ > 0. 2 η (41) 25 / 32 Shot-Noise Scaling Bound ■ ■ Supose |φ| ≪ 1 and |φ| ≪ (1 − η)/η, fidelity bound is Gaussian: η Fz ≈ exp − hniφ2 . 1−η Compare this with coherent state: Fcoh ≈ exp −hniφ ■ ■ ■ ■ 2 . (43) Quantum enhancement of fidelity exponent limited by η: − ln F . ■ (42) η η (− ln Fcoh ) = hniφ2 . 1−η 1−η (44) Generalize to lossy optical phase waveform detection, optomechanical force detection (no optical cavity), etc. Effect of optical cavity/complicated dynamics? Similar idea applies to QCRB for lossy waveform estimation Tsang, “Quantum Metrology for Open Dynamical Systems,” NJP 15, 073005 (2013). 26 / 32 Quantum Ziv-Zakai Bounds ■ ■ Parameter estimation: prior P (x), likelihood P (y|x) Ziv-Zakai bound on MSE: 1 E [x − x̃(y)]2 ≥ 2 Z ∞ dτ τ 0 Z ∞ dx [P (x) + P (x + τ )] Pe (x, x + τ ) (45) −∞ Pe (x, x + τ ) = average error probability for binary hypothesis testing: P (y|H0 ) = P (y|x), ■ ■ ■ ■ ■ P (y|H1 ) = P (y|x + τ ), 1 2 h p P0 = P (x) , P (x) + P (x + τ ) 1 − 1 − 4P0 P1 F (x, x + τ ) Quantum: Pe (x, x + τ ) ≥ prove Heisenberg limit ⊗ν √ √ Rivas-Luis: , super-Heisenberg J 1 − ǫ|0i + ǫ|ψi P1 = 1 − P0 . (46) i Tsang, PRL 108, 230401 (2012). Multiparameter extensions possible. 27 / 32 Quantum Transition-Edge Detectors ■ Beyond initial state and measurements, dynamics can also enhance metrology Unstable/chaotic dynamics is most promising. ■ Loschmidt echo (Peres): ■ H1 = H0 + ∆H, ■ ■ ■ ■ U0,1 = T exp −i Z dtH0,1 , 2 † F = hψ|U0 U1 |ψi F ≪ 1: Signature of quantum chaos, quantum phase transitions Useful for detection near quantum phase transitions P z z x Ising model (H0,1 = −J j σj σj+1 + g0,1 σj ): can’t beat shot-noise scaling OPO, Dicke: near threshold, p − ln F (g, g + ∆g) ∝ ∆g (47) (48) 28 / 32 ■ Tsang, PRA 88, 021801(R) (2013). Continuous Quantum Hypothesis Testing ■ Tsang, PRL 108, 170502 (2012). ■ Tsang, QMTR 1, 84-109 (2013) ◆ ◆ ◆ Begging the question: To demonstrate quantum behavior, you can’t assume just quantum mechanics to process your data! Right way: Hypothesis testing against classical model The classical model should be as quantum as possible ■ ■ Bell/CHSH etc. Dynamical systems: Wigner, quasi-probability 29 / 32 Experimental Collaborations ■ Hidehiro Yonezawa (now at UNSW@ADFA), Akira Furusawa at U. Tokyo ◆ Iwasawa et al., PRL 111, 163602 (2013) Position MSE −16 2 (10 m ) 1 (i) (b) Signal RF source Ti:S to mixer probe AOM OPO AOM EOM SHG 2 LO LO Computer Estimator EOM Oscilloscope Estimate Estimate ■ ■ 1.2 1 0.8 (i) (p) (ii) (iii) 0.6 (iv) 0.4 (f ) (i) (ii) (iii) 0.005 (iv) 0.01 0 6 7 10 10 2 |α| (1/sec) cavity-enhanced waveform QCRB Warwick Bowen at U. Queensland ◆ ◆ ■ FPGA (iv) Trevor Wheatley, Elanor Huntington at UNSW@ADFA ◆ ■ from RF source 0.5 (iii) 0 Momentum MSE −12 2 2 2 (10 kg m /s ) Mirror Motion Force MSE (N ) (a) (q) (ii) Ang et al., “Optomechanical parameter estimation,” NJP 15, 103028 (2013) Rheology: Fractional Brownian motion estimation Michele Heurs at MPI Gravitational Physics, Hannover: QNC Aaron Danner at NUS: Microwave Photonics 30 / 32 Quantum Smoothing ■ ■ Tsang, PRL 102, 250403 (2009); PRA 80, 033840 (2009); 81, 013824 (2010). Experiments: ◆ ◆ ◆ ■ Wheatley et al., PRL 104, 093601 (2010). Yonezawa et al., Science 337, 1514 (2012). Iwasawa et al., PRL 111, 163602 (2013). Rediscovery: Gammelmark, Julsgaard, Molmer, PRL 111, 160401 (2013). 31 / 32 References ■ Quantum Bounds ◆ Detection: Tsang and Nair, PRA 86, 042115 (2012). ◆ QCRB: Tsang, Wiseman, Caves, PRL, 106, 090401 (2011); Iwasawa et al., PRL 111, 163602 (2013). ◆ QZZB: Tsang PRL 108, 230401 (2012). ◆ Open Systems: Tsang, NJP 15, 073005 (2013). ◆ Stellar Interferometry: Tsang, PRL 108, 230401 (2012). ■ Phase Homodyne, No Backaction Noise Quantum Dynamics Control ◆ Quantum Noise Cancellation: Tsang and Caves, PRL 105, 123601 (2010); PRX 2, 031016 (2012). ◆ Transition-Edge: Tsang, PRA 88, 021801(R) (2013). ■ Signal Processing ◆ Smoothing: Tsang, PRL 102, 250403 (2009); PRA 80, 033840 (2009); ◆ ◆ ◆ ■ ■ 81, 013824 (2010). Hypothesis Testing: Tsang, PRL 108, 170502 (2012); Tsang, QMTR 1, 84-109 (2013). Mismatched Quantum Filtering: Tsang, arXiv:1310.0291. Optomechanical Parameter Estimation: Ang et al., NJP 15, 103028 (2013). http://mankei.tsang.googlepages.com/ eletmk@nus.edu.sg 32 / 32