Radiation Curing: State-of-the-Art Assessment
Transcription
Radiation Curing: State-of-the-Art Assessment
Electric Power Research lnst it Ute Topics: Radiation processing Radiation-processing chemistry End use Technology assessment Technology utilization Electrotechnology P=#EwS1 J7 EPRl EM-4570 Project 2613-3 Final ReDort June 1986 !or- Radiation Curing: - State-of-the-Art Assessment Prepared by Battelle Columbus Division Columbus, Ohio R E P O R T SUBJECT TOPICS S U M M A R Y Industrial electric technologies Radiation processing Radiation-processing chemistry End use Technology assessment Technology utilization Electrotechnology ' ~ AUDIENCE Customer service engineers / Marketing managers Radiation Curing: State-of-the-Art Assessment Radiation curing of polymeric materials offers utilities an opportunity to promote efficient electricity-based processing among their industrial customers. According to this assessment, manufacturing use of the technology is likely to grow from 10 to 20% annually for the next 15 years. BACKGROUND EPRl EM-4570s Radiation curing is an efficient and relatively low temperature electricitybased technology with many applications in coating, printing, adhesives, electronics, and communication materials. Moreover, the application of electromagnetic radiation-from infrared, ultraviolet, high-energy electron, microwave, or radio-frequency sources-can improve the overall physical or chemical properties of polymeric materials to produce results that are superior, in such characteristics as bonding, surface finish, and durability to those of other technologies. Its speed and controllability in these applications, plus the narrowing gap between the costs of electricity and natural gas, suggest an increasing market for this electrotechnology in manufacturing worldwide. OBJECTIVE To assess the state of the art of radiation-curing technologies as applied to organic substrate materials. APPROACH After a review of the literature on all aspects of radiation-processing technologies, the project team interviewed U.S., European, and Japanese equipment manufacturers, material suppliers, and end users. Their analysis of this information sought to characterize the major industries making wide use of radiation curing, to clarify the developmental trends, and to evaluate potential applications and market penetration, considering fuel prices and competing technologies. RESULTS Radiation-processing technologies-widely accepted during the past 15 years in many new and varied industries-offer several major advantages over other production methods. These benefits include rapid curing, low process temperatures, the absence of pollution, and substantially lower energy costs, as well as high-quality and specialized products. Typical product lines involve coatings (on wood, metal, paper, and plastic), inks (for letterpress, lithographic, gravure, and screen printing), and adhesives (for film, foil, or paper substrates). The industries using these technologies engage in such diverse activities as electronics, fiber optics, flooring, packaging, plastics, and plasma processing. Although radiation curing is still a minor manufacturing technique, in future its industrial use is expected to expand greatly-with an annual growth of 10 to 20%. ~ EPRl PERSPECTIVE PROJECT As electricity costs become more competitive with the costs of natural gas for industrial processing, radiation curing has prospects of becoming a key area of growth for electricity-based process heating. Much of that increased growth will come with the development of specialty products or high-value-added products that can be made only by electromagnetic radiation derived from electricity. RP2613-3 EPRl Project Manager: I. Leslie Harry Energy Management and Utilization Division Contractor: Battelle Columbus Division For further information on EPRl research programs, call EPRl Technical Information Specialists (415) 855-2411. Radiation Curing: State-of-the-ArtAssessment EM-4570 Research Project 2613-3 L Final Report, June 1986 Prepared by BATTELLE COLUMBUS DIVISION 505 King Avenue Columbus, Ohio 43201 Principal Investigator V. D. McGinniss i Prepared for Electric Power Research Institute 3412 Hillview Avenue Palo Alto, California 94304 EPRl Project Manager I. L. Harry Industrial Program Energy Management and Utilization Division ORDERING INFORMATION Requests for copies of this report should be directed to Research Reports Center (RRC), Box 50490, Palo Alto, CA 94303, (415) 965-4081. There is no charge for reports requested by EPRl member utilities and affiliates, U.S. utility associations, US. government agencies (federal, state, and local), media, and foreign organizations with which EPRl has an information exchange agreement. On request, RRC will send a catalog of EPRl reports. Electric Power Research Institute and EPRl are registered service marks of Electric Power Research Institute, Inc. Copyright 0 1986 Electric Power Research Institute, Inc. All rights reserved NOTICE This report was prepared by the organization@) named below as an account of work sponsored by the Electric Power Research Institute, Inc. (EPRI). Neither EPRI, members of EPRI, the organization(s) named below, nor any person acting on behalf of any of them: (a) makes any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this report or that such use may not infringe privately owned rights; or (b) assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report. Prepared by Battelle Columbus Division Columbus, Ohio ABSTRACT I n t h e l a s t 15 years t h e c o n v e r s i o n o f e l e c t r i c a l energy i n t o i n f r a r e d , u l t r a v i o l e t and h i g h energy e l e c t r o n e l e c t r o m a g n e t i c r a d i a t i o n has gained worldwide acceptance as an e f f i c i e n t and economical method f o r m o d i f y i n g p o l y m e r i c m a t e r i a l s . These r a d i a t i o n m o d i f i e d polymer systems are a s s o c i a t e d w i t h many d i f f e r e n t types o f p r o d u c t s which a r e produced under a wide d i v e r s i t y o f m a n u f a c t u r i n g o p e r a t i o n s . T y p i c a l p r o d u c t l i n e o r a p p l i c a t i o n areas i n c l u d e : c o a t i n g s (wood, m e t a l , paper- packaging, f l o o r - f l e x i b l e p l a s t i c , w i r e , and t r a n s p o r t a t i o n c o a t i n g systems); ( l e t t e r p r e s s , l i t h o g r a p h y , flexography, inks g r a v u r e and screen p r i n t i n g ) ; adhesives ( p r e s s u r e s e n s i t i v e tapes and l a m i n a t i o n adhesives f o r f i l m , f o i l o r paper subs t r a t e s ) ; e l e c t r o n i c s ( i n t e g r a t e d c i r c u i t s , p r i n t e d c i r c u i t boards); communications ( f i b e r o p t i c s , magnetic and o p t i c a l media); p l a s t i c s and rubber m a t e r i a l s ( w i r e and cable, p o l y o l e f i n s h r i n k wrap, p o l y o l e f i n foams); and plasma p r o c e s s i n g (polymer s u r f a c e m o d i f i c a t i o n s and polymer c o a t i n g s ) . The m a j o r advantages o f r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s over o t h e r methods are: r a p i d cu e, l o w p r o c e s s i n g temperatures, s p e c i a l t y p r o d u c t s , h i g h q u a l i t y p r o d u c t s , no p o l l u t i o n and s u b s t a n t i a l r e d u c t i o n i n energy c o s t s . The t o t a l impact o f r a d a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s , w h i l e s i g n i f i c a n t , i s s t i l l o n l y a minor p a r t o f t h e t o t a l p r o d u c t m a n u f a c t u r i n g techniques c u r r e n t l y i n use today. However, t h e f u t u r e use o f r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s i s expected t o expand dramatically. The o v e r a l l annual growth r a t e f o r r a d i a t i o n p r o c e s s i n g techniques i s p r o j e c t e d t o be between 10 t o 20%, t h u s i t i s an a t t r a c t i v e area f o r f u t u r e r e s e a r c h and development a c t i v i t y . iii ACKNOWLEDGMENTS T h i s r e p o r t i s one o f a s e r i e s o f e l e c t r o t e c h n o l o g y assessments prepared a t B a t t e l l e ' s Columbus D i v i s i o n i n c o o p e r a t i o n w i t h t h e E P R I Center f o r M e t a l s Fabrication. The o v e r a l l p r o j e c t has been conducted under t h e s u p e r v i s i o n o f M r . Thomas G. B y r e r , D i r e c t o r o f t h e Center f o r Metals F a b r i c a t i o n . Valuable i n f o r m a t i o n f o r t h i s r e p o r t was a l s o p r o v i d e d by D r . Lee S e m i a t i n o f t h e Center f o r M e t a l s F a b r i c a t i o n Department. V . CONTENTS Section 1 2 3 4 Page ............................. RADIATION PROCESSING EQUIPMENT . . . . . . . . . . . . . . . . . . . . Infrared Radiation Processing Equipment . . . . . . . . . . . . . Ultraviolet (UV) Light Sources . . . . . . . . . . . . . . . . . . High Energy Electron Radiation Processing Equipment . . . . . . . Plasma Radiation Processing Equipment . . . . . . . . . . . . . . RADIATION PROCESSING CHEMISTRY AND MATERIALS . . . . . . . . . . . . . Thermal Radiation Processing Chemistry . . . . . . . . . . . . . . UV-Visible Light Processing Chemistry . . . . . . . . . . . . . . Free Radical Photocuring System . . . . . . . . . . . . . . . Cationic Photocuring System . . . . . . . . . . . . . . . . High Energy Electron Processing Chemistry . . . . . . . . . . . . Thiol Curing Chemistry . . . . . . . . . . . . . . . . . . . . . Plasma Processing Chemistry . . . . . . . . . . . . . . . . . . . APPL ICATIONS/MARKETS . . . . . . . . . . . . . . . . . . . . . . . . . Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wood Finishings . . . . . . . . . . . . . . . . . . . . . . . Metal Decorative Coatings . . . . . . . . . . . . . . . . . . Packaging Coatings . . . . . . . . . . . . . . . . . . . . . Floor Coatings . . . . . . . . . . . . . . . . . . . . . . . Wire Coatings . . . . . . . . . . . . . . . . . . . . . . . . Transportation (Automotive) Coatings . . . . . . . . . . . . Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Letterpress Process . . . . . . . . . . . . . . . . . . . . . Lithography . . . . . . . . . . . . . . . . . . . . . . . . . Flexography . . . . . . . . . . . . . . . . . . . . . . . . . Gravure . . . . . . . . . . . . . . . . . . . . . . . . . . . Screen Printing . . . . . . . . . . . . . . . . . . . . . . . Radiation Curing Applications in Printing . . . . . . . . . . Adhesives . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTRODUCTION vi i 1-1 2-1 2-1 2-6 2-15 2-32 3-1 3-1 3-5 3-5 3-7 3-8 3-10 3-11 4-1 4-2 4-5 4-6 4-13 4-18 4-18 4-22 4-22 4-26 4-26 4-26 4-30 4-31 4-31 4-35 Section .................. Integrated C i r c u i t s ( I C ) . . . . . . . . . . . . . . . . . . Lithography . . . . . . . . . . . . . . . . . . . . . . . . . Adhesives and Encapsulants . . . . . . . . . . . . . . . . . P r i n t e d C i r c u i t Boards . . . . . . . . . . . . . . . . . . . F i b e r Optics . . . . . . . . . . . . . . . . . . . . . . . . Magnetic and O p t i c a l Media . . . . . . . . . . . . . . . . . . P l a s t i c s and Rubber M a t e r i a l s . . . . . . . . . . . . . . . . . . Plasma Processing . . . . . . . . . . . . . . . . . . . . . . . . COST AND ENERGY SAVINGS COMPARISONS . . . . . . . . . . . . . . . . . . Cost Comparison .Radiation Processing Versus Thermal Processing Technologies . . . . . . . . . . . . . . . . . . . . . Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . P r i n t i n g Inks . . . . . . . . . . . . . . . . . . . . . . . . Adhesives . . . . . . . . . . . . . . . . . . . . . . . . . . Electronics/Communication . . . . . . . . . . . . . . . . . . P l a s t i c and Rubber M a t e r i a l s . . . . . . . . . . . . . . . . Plasma Processing . . . . . . . . . . . . . . . . . . . . . . . . E l e c t r o n i c s and Communications 5 Impact o f Fuel Prices 6 ...................... ................... Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wood F i n i s h i n g . . . . . . . . . . . . . . . . . . . . . . . SALES HISTORY/MARKET PROJECTIONS Metal Decorative Coatings ................. ..................... Other Coating Systems . . . . . . . . . . . . . . . . . . . . Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adhesives . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ......... a REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APPENDIX MANUFACTURERS OF RADIATION PROCESSING EQUIPMENT AND MATERIAL SUPPLIERS . . . . . . . . . . . . . . . . . . . . viii 4-48 4-55 4-59 4-59 4-62 4-66 4-74 5-1 5-1 5-2 5-6 5-10 5-10 5-16 5-19 5-19 6-1 6-1 6-4 6-8 6-14 .................. E l e c t r o n i c s and Communications . . . . . . . . . . . . . . . . . R a d i a t i o n Processing Equipment . . . . . . . . . . . . . . . . . . Competition From E x i s t i n g and Emerging Technologies . . . . . . . CONCLUSIONS. FUTURE DEVELOPMENTS AND TECHNICAL V O I D S 4-48 6-12 P l a s t i c s and Rubber M a t e r i a l s 7 4-41 6-12 Packaging Coatings Global Trends f o r Radiation Processing o f Polymeric M a t e r i a l s Page 6-19 6-19 6-25 6-31 6-34 6-36 7-1 8-1 . . ~~ A-1 . ILLUSTRATIONS Page Figure ....................... A p p l i c a t i o n o f Long Wave I R R a d i a t i o n . . . . . . . . . . A p p l i c a t i o n o f Medium Wave I R R a d i a t i o n . . . . . . . . . A p p l i c a t i o n o f S h o r t Wave I R R a d i a t i o n . . . . . . . . . 1-1 E l e c t r o m a g n e t i c Spectrum 1-2 2-1 Schematic o f 2-2 2-2 Schematic o f 2-3 Schematic o f 2-4 R e l a t i o n s h i p o f I R E m i t t e r Temperature t o Maximum I n t e n s i t y Wavelength 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2- 18 2-19 2-20 2-21 ............................. D i s t r i b u t i o n o f Wavelengths f r o m an I R E m i t t e r . . . . . . . . . . . . I R Energy E f f i c i e n c y C o n s i d e r a t i o n s . . . . . . . . . . . . . . . . . S e l e c t i v e A b s o r p t i o n o f I R R a d i a t i o n b y Various S u b s t r a t e s . . . . . Common I R R a d i a t i o n E m i t t e r s .F u e l B u r n i n g Types . . . . . . . . . . Common I R R a d i a t i o n E m i t t e r s .E l e c t r i c a l Types . . . . . . . . . . . E l e c t r i c a l l y A c t i v a t e d Q u a r t z Tube I R E m i t t e r . . . . . . . . . . . . UV/Vis L i g h t Source Power S u p p l i e s . . . . . . . . . . . . . . . . . UV Lamp C o n f i g u r a t i o n s . . . . . . . . . . . . . . . . . . . . . . . Commerci a1 UV Processor U n i t s . . . . . . . . . . . . . . . . . . . . General Schematic o f A High Energy E l e c t r o n Beam Processing U n i t . . . High and Low Energy E l e c t r o n Processor Power S u p p l i e s . . . . . . . . Scanned E l e c t r o n Beam A c c e l e r a t o r System . . . . . . . . . . . . . . . Energy Science P l a n a r Cathode E l e c t r o n C u r t a i n Processor . . . . . . . Extended Processing Zone E l e c t r o n Beam Equipment . . . . . . . . . . R a d i a t i o n Polymer C o r p o r a t i o n ' s Modular P l a n a r Cathode Processor . . . H i s t o r i c a l Growth o f E l e c t r o n Beam A c c e l e r a t o r Systems . . . . . . . . Comparison Between P l a n a r Cathode and Swept E l e c t r o n Beam Processing U n i t s .......................... ix 2-3 2-4 2-5 2-7 2-8 2-10 2-11 2-12 2-13 2-16 2-17 2-20 2-22 2-24 2-25 2-27 2-28 2-29 2-30 2-31 Figure 2-22 2-23 2-24 . Page .............. P a r a l l e l P l a t e E l e c t r o d e Plasma P o l y m e r i z a t i o n Apparatus . . . . . . . A i r - t o - A i r Plasma Processing System . . . . . . . . . . . . . . . . . 2-35 Example o f Plasma Processing w i t h Supply and Take-up R o l l s w i t h i n t h e Vacuum Chamber 2-36 Tubular Reactor f o r Plasma P o l y m e r i z a t i o n 2-33 2-34 i 2-25 3-1 4-1 ...................... R a d i a t i o n Processing Chemistry . . . . . . . . . . . . . . . . . . . Comparison between Conventional and R a d i a t i o n Curable C o a t i n g Technologies 4-3 ............................ R a d i a t i o n Curable Wood F i n i s h i n g Technology . . . . . . . . . . . . . Wood F i n i s h i n g Operations . . . . . . . . . . . . . . . . . . . . . . 4-4 V a r n i s h i n g and UV C u r i n g l F i n i s h i n g L i n e f o r F l a t Stock Wood Products 4-2 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 4-17 4-18 4-19 4-20 4-21 . ............. R a d i a t i o n Curable Can L i n e O p e r a t i o n . . . . . . . . . . . . . . . . . Galvanized S t e e l Tubing L i n e . . . . . . . . . . . . . . . . . . . . Cross S e c t i o n o f Tube L i n e Surrounded by Three o r Four UV Lamps . . . R a d i a t i o n Curable F l o o r Sheet and F l o o r T i l e Product L i n e . . . . . . T y p i c a l Wire C o a t i n g L i n e s . . . . . . . . . . . . . . . . . . . . . . F i n i s h i n g L i n e f o r High-speed I R and UV Curable Coatings . . . . . . . L e t t e r p r e s s Process . . . . . . . . . . . . . . . . . . . . . . . . . L i t h o g r a p h y Process . . . . . . . . . . . . . . . . . . . . . . . . . Flexography Process . . . . . . . . . . . . . . . . . . . . . . . . . Gravure P r i n t i n g Process . . . . . . . . . . . . . . . . . . . . . . E l e c t r o n Beam C u r i n g L i n e f o r Wood Products ....................... O f f s e t Press Process w i t h UV Cure and EB Cure Processing U n i t s . . . . Dryer C o n f i g u r a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . Adhesive Market Area C l a s s i f i c a t i o n . . . . . . . . . . . . . . . . . Adhesive F i l m Systems . . . . . . . . . . . . . . . . . . . . . . . . Laminator Coater System . . . . . . . . . . . . . . . . . . . . . . . Screen P r i n t i n g Process X 3-2 4-4 4-7 4-8 4-9 4-11 4-14 4-15 4-16 4-20 4-21 4-24 4-27 4-28 4-29 4-32 4-33 4-36 4-37 4-39 4-43 4-44 Page Figure 4-22 P r i n t e d W i r i n g C i r c u i t Board Showing D i v e r s e Uses o f P l a s t i c Materials 4-24 .............................. I C M a n u f a c t u r i n g Process . . . . . . . . . . . . . . . . . . . . . . . L i t h o g r a p h y Process . . . . . . . . . . . . . . . . . . . . . . . . . 4-25 Schematic o f Contact P r i n t i n g Using P o s i t i v e and N e g a t i v e R e s i s t s 4-23 4-26 4-27 4-28 4-29 4-30 4-31 4-32 4-33 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 6-13 4-47 4-49 4-51 .. ................... X- Ray L i t h o g r a p h y System . . . . . . . . . . . . . . . . . . . . . . Automation o f S u r f ace-Mounted Boards . . . . . . . . . . . . . . . . . UV C o a t i n g o f O p t i c a l F i b e r s . . . . . . . . . . . . . . . . . . . . . Magnetic Media C o a t i n g L i n e w i t h EB Cure . . . . . . . . . . . . . . F a b r i c a t i o n o f L a s e r v i s i o n Video Discs . . . . . . . . . . . . . . . Electron-Beam Processing System f o r Wire.Cable . . . . . . . . . . . . A p p l i c a t i o n s o f Plasma Processing Technologies . . . . . . . . . . . H i s t o r i c a l Growth P a t t e r n f o r t h e Coating I n d u s t r y . . . . . . . . . . Major Market Segments f o r I n d u s t r i a l Product F i n i s h e s . . . . . . . . H i s t o r i c a l Growth P a t t e r n f o r t h e Wood F i n i s h i n g I n d u s t r y . . . . . . Shipments Reported f o r Metal D e c o r a t i v e Coatings Market . . . . . . . Packaging C o a t i n g Shipments . . . . . . . . . . . . . . . . . . . . . Shipment Values Reported f o r P r i n t i n g I n k s . . . . . . . . . . . . . Market Share o f Major P r i n t i n g Processes . . . . . . . . . . . . . . . Shipments Reported f o r Adhesives I n d u s t r y . . . . . . . . . . . . . . Shipments o f Pressure S e n s i t i v e Adhesives . . . . . . . . . . . . . . Electron-Beam P a t t e r n i n g System 4-52 4-53 4-54 4-56 4-63 4-64 4-67 4-71 4-78 6-3 6-6 6-7 6-10 6-13 6-15 6-16 6-20 6-22 Share o f Low D e n s i t y P o l y e t h y l e n e (LDPE) and P o l y v i n y l C h l o r i d e (PVC) Annual P l a s t i c s P r o d u c t i o n C a p a c i t y 6-23 1985 Market Share f o r Low D e n s i t y P o l y e t h y l e n e (LDPE) and P o l y v i n y l C h l o r i d e (PVC) 6-24 .............. ...................... I C Shipments . . . . . . . . . . . . . . . . . . . . . . . . . . . . U.S. E l e c t r o n i c Chemicals . . . . . . . . . . . . . . . . . . . . . . xi . . 6-27 6-28 Page Figure ................. ................. 6-14 U.S. Electronic Chemicals for Devices 6-29 6-15 U.S. Device Encapsulant Consumption 6-30 xii . TABLES Table 1-1 2-1 2-2 2-3 2-4 Page ....................... Normal T o t a l E m i s s i v i t y o f Various S u b s t r a t e s . . . . . . . . . . . . C h a r a c t e r i s t i c s o f Commercially Used I n f r a r e d Heat Sources . . . . . . UV Lamp O p e r a t i n g C h a r a c t e r i s t i c s . . . . . . . . . . . . . . . . . . E l e c t r o m a g n e t i c Spectrum 1-1 2-9 2-14 2-18 O p e r a t i o n a l C h a r a c t e r i s t i c s o f E l e c t r o d e and E l e c t r o d e l e s s Medium Pressure Mercury Arc Lamp 2-19 2-5 UV C u r i n g Equipment 2-21 2-6 Comparisons Between P l a n a r Cathode and Swept Beam High Energy E l e c t r o n Processing Equipment 2-26 3-1 I n f r a r e d o r Thermal R a d i a t i o n 3-4 3-2 P h o t o i n i t i a t o r s Used i n U l t r a v i o l e t R a d i a t i o n Curable Polymeric M a t e r i a1 s 3-3 3-4 4-1 4-2 4-3 ................... ......................... ................. Processing Chemistry . . . . . . . . . ......................... M a t e r i a l s Used i n R a d i a t i o n (UV and EB) Curable Coatings . . . . . . . Photocurable Polymer Systems . . . . . . . . . . . . . . . . . . . . . Coatings I n d u s t r y . P a i n t s and A l l i e d Products ( S I C 28500-005) . . . . R a d i a t i o n Curable Coatings f o r Wood F i n i s h i n g A p p l i c a t i o n s . . . . . . 3-6 3-6 3-9 4-3 4-10 Comparison o f Performance L i m i t s and Test Values Between H i g h and Low Pressure Me1 amine Thermal l y Cured Laminates and U n i f ace E l e c t r o n ' Beam Cured Panels 4-12 P r o p e r t i e s o f T y p i c a l UV Curable Coatings f o r Galvanized S t e e l Tubing 4-17 Comparison o f P r o p e r t i e s f o r Conventional and R a d i a t i o n C u r a b l e Coatings f o r V i n y l F l o o r i n g Products 4-19 Average P r o p e r t i e s o r R a d i a t i o n Curable Coatings i n Magnet Wire Applications 4-23 4-7 Printing 4-25 4-8 Standard ...................... 4-4 4-5 4-6 ............................. ................. ............................. I n d u s t r y Product D i v e r s i t y . . . . . . . . . . . . . . . . . (Conventional Thermal Cure) and UV/EB I n k F o r m u l a t i o n s . . . xiii 4-34 Tab1 e 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 4-17 4-18 4-19 4-20 4-21 4-22 4-23 4-24 Page ............... Adhesives I n d u s t r y Polymer-Solvent C l a s s i f i c a t i o n . . . . . . . . . . Adhesive Techno1 o g i es . . . . . . . . . . . . . . . . . . . . . . . . S t r u c t u r a l and S p e c i a l t y Adhesives Markets . . . . . . . . . . . . . . Advantages o f High-Energy E l e c t r o n Adhesives . . . . . . . . . . . . . T y p i c a l Products Prepared With a Planar Cathode E l e c t r o n Processor . . Adhesive F i l m A p p l i c a t i o n Areas . . . . . . . . . . . . . . . . . . . Photo1 it h o g r a p h i c Processes . . . . . . . . . . . . . . . . . . . . . Adhesives Market S u p p l i e r s and Products P r o p e r t i e s o f Two S t a k i n g Compounds f o r SMD Thermal Versus UV Curable M a t e r i a l s ......................... Adhesives Surface Mounting Device (SMD) Requirements . . . . . . . . . Major Types o f P r i n t e d C i r c u i t Boards . . . . . . . . . . . . . . . . P r o p e r t i e s of Screen I n k Systems . . . . . . . . . . . . . . . . . . . Comparison o f Various Means of Transmission . . . . . . . . . . . . . S e l e c t e d A p p l i c a t i o n Areas f o r I r r a d i a t e d Polymer M a t e r i a l s . . . . . Comparison o f P h y s i c a l P r o p e r t i e s f o r Conventional 105' C PVC and I r r a d i a t e d PVC Wire Compounds .................. E f f e c t o f S p e c i f i c G r a v i t y o f a M a t e r i a l on t h e Depth of E l e c t r o n Beam P e n e t r a t i o n a t Two E l e c t r o n A c c e l e r a t o r V o l t a g e s .... .. 4-38 4-40 4-41 4-42 4-42 4-45 4-46 4-55 4-57 4-58 4-60 4-61 4-65 4-68 4-69 4-70 4-25 Comparison of Chemical V u l c a n i z a t i o n Versus I r r a d i a t i o n P r o c e s s i n g 4-26 Rubber Market D i s t r i b u t i o n 4-75 4-27 Applications f o r 4-76 4-28 Re1 a t i v e Adhesive Bond S t r e n g t h s f o r Plasma and Conventional Methods o f T r e a t i n g Polymer Surfaces 4-29 5-1 5-2 5-3 ...................... R a d i a t i o n Processed E l a s t o m e r i c M a t e r i a l s . . . . . . ................. Plasma Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . UV and I R Processing Cost and Energy E f f i c i e n c y Data . . . . . . . . . 4-73 4-77 4-77 5-3 Comparison o f UV Versus Gas F i r e d Thermal Cure C o a t i n g / I n k Systems f o r Beverage C o n t a i n e r s 5-4 O p e r a t i n g Cost A n a l y s i s f o r R a d i a t i o n Versus Thermal Processing Equipment f o r C o a t i n g Aluminum C o i l Stock 5-5 ....................... .............. xiv . . Page Table Comparison o f Energy Requirements f o r D i f f e r e n t Energy Sources on a Model C o i l Coating L i n e . 5-7 Comparative Cost A n a l y s i s f o r High Energy E l e c t r o n Cured C o a t i n g Systems Versus Conventional Thermally Cured C o a t i n g Systems on Aluminum C o i l Stock 5-8 5-6 Comparison o f 5-9 5-7 Comparison o f 5-8 Comparison o f Annual O p e r a t i n g Cost, P r o d u c t i o n and Cost Savings Between a Conventional UV L i n e a r R a d i a t i o n Processor and a Compact On-Mandrel UV Processor 5 -4 5-5 5-9 5-10 5-11 5-12 5-13 5-14 5-15 6-1 .................... ......................... C u r i n g Methods. . . . . . . . . . . . . . . . . . . . . Dryer Processing Costs f o r P r i n t i n g A p p l i c a t i o n s . . . . ....................... Cost Savings Comparisons Between Conventional UV and On-Mandrel UV Processors f o r a P l a n t Rated a t 1.12 B i l l i o n P r i n t e d Cup C a p a c i t y . . P r e l i m i n a r y Cost Comparison f o r Thermal and E l e c t r o n Beam C u r i n g o f Adhesi ves ............................. . Economics, Photochemical vs Thermal P r o d u c t i o n L i n e s PressureS e n s i t i v e Adhesive Tape and Labels. ................. Energy Comparison, CV and EB, f o r Wire I n s u l a t i o n C r o s s - l i n k i n g . . . Cost Comparison Data (CV/EB). . , . . . . . . . . . . . . . . . . . . Estimated Cost t o Plasma T r e a t Small Objects. . . . . . . . . . . . . Estimated Cost t o Plasma T r e a t a Continuous Web o f PVC F i l m . . . . . R a d i a t i o n Processing End Use Markets and Products . . . . . . . . . . 5-11 5-12 5-13 5-14 5-15 5-17 5-18 5-20 5-21 6-2 Annual Shipment Values f o r t h e I n d u s t r i a l Product F i n i s h i n g ( I P F ) Market; Gross N a t i o n a l Product (GNP) Values and IPF/GNP R a t i o s . ... 6-5 6-3 A n a l y s i s o f Conventional and R a d i a t i o n Curable Coatings f o r Wood F i n i s h i n g Market Areas. ....................... 6-9 6-4 A n a l y s i s o f Conventional and R a d i a t i o n Curable Coatings f o r Metal F in is h i ng M ark e t Are as 6-11 A n a l y s i s o f Conventional and R a d i a t i o n Curable Coatings f o r P ac k ag ing Market Areas 6-12 6- 6 Annual Shipment Values f o r P r i n t i n g I n k s ; Gross N a t i o n a l Product Values and P I / G N P R a t i o s . 6-17 6- 7 Conventional and R a d i a t i o n Curable P r i n t i n g I n k I n d u s t r y Market A n a l y s i s 6-18 6-2 6-5 6-8 ........................ ........................ ...................... ........................... H i s t o r i c a l Growth o f S y n t h e t i c and Rubber Adhesives (AD); Val ues and AD/GNP R a t i o s . GNP ...................... xv 6-21 Page Table 6-9 Conventional and R a d i a t i o n Curable S y n t h e t i c and Rubber Adhesive Market A n a l y s i s . 6-21 6-10 U.S. 6-26 6-11 Magnetic Media Market 6-12 R a d i a t i o n Processing o f Polymeric M a t e r i a l s Markets and Growth Potential 6-32 6-13 Radiation 6-33 6-14 U.S. Shipments o f I n d u s t r i a l F i n i s h e s b y Coatings M a t e r i a l s and Systems.. 6-15 6-16 6-17 Synthetic ........................... and N a t u r a l Rubber Consumption. . . . . . . . . . . . . ........................ .............................. Processing Equipment (Growth and Major Market Areas). . . . ............................. Energy A n a l y s i s o f C o a t i n g Technologies . . . . . . . . . . . . . . . 6-31 6-35 6-36 Cost Comparison o f E l e c t r o n Beam t o Hot A i r Convection C u r i n g Systems f o r Wheel Rims. 6-38 Comparison Between EB C u r i n g and Thermal Curing C o a t i n g System on E l e c t r o g a l v a n i z e d S t e e l 6-40 ....................... .................. xv i SU MM A R Y The a p p l i c a t i o n o f e l e c t r o m a g n e t i c r a d i a t i o n t o p o l y m e r i c m a t e r i a l s can l e a d t o t h e f o r m a t i on o f three-dimensional network s t r u c t u r e s , which g e n e r a l l y improve t h e o v e r a l l p h y s i c a l o r chemical p r o p e r t i e s of t h e o r i g i n a l s u b s t r a t e . This use o f e l e c t r o m a g n e t i c r a d i a t i o n t o a1 t e r t h e p h y s i c a l and chemical n a t u r e o f a p o l y m e r i c m a t e r i a1 i s termed r a d i at ion-processing o r r a d i a t i o n - c u r i n g techno1 ogy. Radiation processing, as a p p l i e d t o c r o s s - l i n k i n g (network f o r m a t i o n ) o f polymer, i n k , adhes i v e , o r c o a t i n g m a t e r i a l s , i n v o l v e s t h e f u l l spectrum of e l e c t r o m a g n e t i c r a d i a t i o n e n e r g i e s t o e f f e c t chemical r e a c t i o n s . i o n i z i n g r a d i a t i o n (i.e., These forms o f r a d i a t i o n energy i n c l u d e a, 6, and y r a y s from r a d i o a c t i v e n u c l e i ) , X-rays, high-- energy e l e c t r o n s , and n o n i o n i z i n g r a d i a t i o n a s s o c i a t e d w i t h t h e u l t r a v i o l e t ( U V ) , v i s i b l e , i n f r a r e d ( I R ) , microwave, and r a d i o frequency wavelengths o f energy. R a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s r e q u i r e s t h a t e l e c t r i c a l energy be c o n v e r t e d t o some f o r m o f e l e c t r o m a g n e t i c r a d i a t i o n energy w i t h s u f f i c i e n t power o r i n t e n s i t y t o be c o m m e r c i a l l y f e a s i b l e . The most common r a d i a t i o n sources o r equip- ment f o r t h e commercial c r o s s - l i n k i n g o f p o l y m e r i c m a t e r i a l s a r e i n f r a r e d lamps , u l t r a v i o l e t l i g h t sources , low- and high-energy e l e c t r o n a c c e l e r a t o r s , and plasma o r glow-discharge energy sources. T y p i c a l l y t h e m a t e r i a l t h a t i s processed passes t h r o u g h a d r y i n g area o r oven f o r i r r a d i a t i o n . R a d i a t i o n p r o c e s s i n g o f m a t e r i a l s i s a technology based on t h e f o l l o w i n g : 0 Chemical r e a c t i o n s o f s m a l l monomer o r oligomer components ( m o l e c u l a r weight, ca 100-1,000) t o fprm l a r g e polymer components (molecular weight, ca 1,000-25,000 infinite). - 0 Small monomer-oligomer components combining t o g e t h e r w i t h l a r g e preformed polymer components. 0 Connecting l a r g e polymer components t o g e t h e r . 0 Changing t h e s u r f ace c h e m i s t r y o f l a r g e polymer components f o r improved chemical o r p h y s i c a l p r o p e r t i e s s-1 The o v e r a l l c h e m i s t r y o r chemical r e a c t i o n s o f m a t e r i a l s a s s o c i a t e d w i t h t h i s t e c h n o l o g y can be f u r t h e r c l a s s i f i e d as thermal ( c o n v e n t i o n a l ), UV l i g h t - i n d u c e d (photochemical o r photopolymeri z a t i o n ) , h i g h energy e l e c t r o n , and plasma processes. R a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s has found widespread commercial use i n t h e f o l l o w i n g areas: 0 Coatings P r i n t ing Adhes ives 0 Electronics/communications 0 0 P l a s t i c s and rubber m a t e r i a l s Plasma processing 0 0 The advantages o f r a d i a t i o n p r o c e s s i n g polymer t e c h n o l o g i e s over t h o s e o f convent i o n a l f o s s i l energy-heated p r o c e s s i n g techniques i n these areas i n c l u d e : Rapid d r y i n g speeds (seconds o r l e s s ) . Reduction o r e l i m i n a t i o n o f o r g a n i c s o l v e n t s , thus e l i m i n a t i n g a i r p o l l u t i o n and i n c i n e r a t i o n problems. S i g n i f i c a n t r e d u c t i o n o r e l i m i n a t i o n o f f o s s i l energy-heated d r y i n g ovens and i n c i n e r a t o r s . Coating o f heat-sensi t i ve m a t e r i a1s ( p l a s t i c s 1. Increased production r a t e s . More e f f i c i e n t use o f p o l y m e r i c c o a t i n g m a t e r i a l s because o f less penetration of flowing material i n t o substrates. Savings i n space o f a p p l i c a t i o n equipment. Manufacture o f p r o d u c t s w i t h h i g h value-added p r o p e r t i e s . Development o f p r o d u c t s t h a t cannot be manufactured b y any o t h e r p r o c e s s i n g technique. I n t h e U n i t e d S t a t e s i t i s e s t i m a t e d t h a t t h e t o t a l use o f r a d i a t i o n p r o c e s s i b l e m a t e r i a l i s v a l u e d a t a p p r o x i m a t e l y $0.7 t o $1.1 b i l l i o n and i s expected t o i n c r e a s e between $1.4 and $1.8 b i l l i o n i n 1990. 3035 t o t a l r a d i a t i o n (UV, Currently t h e r e are approximately EB, I R ) p r o c e s s i n g u n i t s i n t h e U n i t e d S t a t e s which a r e r a t e d a t a t o t a l ( c u m u l a t i v e ) c a p a c i t y of 430,000 kw. I n 1990 t h e t o t a l number of p r o c e s s i n g u n i t s i s expected t o r e a c h 8610 u n i t s f o r a t o t a l r a t e d c a p a c i t y o f 1,500,000 kw. European and Japan e s t i m a t e s f o r r a d i a t i o n p r o c e s s i b l e m a t e r i a l s a r e valued a t a p p r o x i m a t e l y $0.3 t o $0.6 and $0.1 t o $0.4 b i l l i o n r e s p e c t i v e l y . s-2 These values should i n c r e a s e t o $0.7 t o $0.95 b i l l i o n (Europe) and $0.8 b i l l i o n (Japan) i n t h e y e a r 1990. The t o t a l number o f r a d i a t i o n p r o c e s s i n g u n i t s f o r Europe i s a p p r o x i m a t e l y 2990 u n i t s (500,000 kw t o t a l c a p a c i t y r a t i n g ) and a p p r o x i m a t e l y 1690 u n i t s (300,000 kw t o t a l c a p a c i t y r a t i n g ) a r e c u r r e n t l y i n s t a l l e d i n Japan. y e a r 1990 t h e number o f u n i t s i s expected t o i n c r e a s e t o 8610 (1,500,000 I n the kw capac- i t y r a t i n g ) and 2500 (430,000 kw t o t a l c a p a c i t y r a t i n g ) f o r Europe and Japan . r e s p e c t iv e l y The t o t a l impact o f r a d i a t i o n p r o c e s s i n g of p o l y m e r i c m a t e r i a l s , w h i l e s i g n i f i c a n t , i s s t i l l a minor p a r t o f t h e t o t a l p r o d u c t m a n u f a c t u r i n g t e c h n i q u e s c u r r e n t l y i n use today. The o v e r a l l annual growth r a t e f o r r a d i a t i o n p r o c e s s i n g techniques i s p r o j e c t e d t o be between 10 t o 20%, thus i t i s an a t t r a c t i v e area f o r f u t u r e r e search and development a c t i v i t y . Several f u t u r e developments expected f o r t h i s t e c h n o l o g y can be d e s c r i b e d as f o l l o w s : 0 Continued r e s e a r c h i n h i g h energy p h y s i c s d i r e c t e d a t e l e c t r o n beam a c c e l e r a t o r s f o r beam p r o p a g a t i o n , maintenance and control. 0 Continued r e s e a r c h and development i n UV and I R p r o c e s s i n g equ ipment 0 Development o f new r a d i a t i o n s e n s i t i v e p o l y m e r i c m a t e r i a l s . 0 Development o f new s p e c i a l t y p r o d u c t s and markets f o r r a d i a t i o n processing technologies. 0 Reduction i n m a t e r i a l c o s t s ( l o w e r c o a t i n g c o s t s ) t o t h e u s e r o r product f i n i s h e r . . The p r e s e n t b e n e f i t s f r o m r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s a r e d e r i v e d from improved q u a l i t y , s p e c i a l p r o p e r t i e s and h i g h e r p r o d u c t i v i t y . The advantages of low-energy consumption and low p o l l u t i o n a r e g e n e r a l l y secondary c o n s i d e r a t i o n s b u t t h i s c o u l d change d r a m a t i c a l l y depending on EPA r u l i n g s and a v a i l a b i l i t y o f f o s s i l f u e l supplies. Increased usage o f r a d i a t i o n p r o c e s s i n g of p o l y m e r i c systems w i l l depend on m a t e r i a l c o s t s and addressing t h e t e c h n i c a l v o i d s p r e v i o u s l y d i s cussed above, as w e l l as, t h e e f f e c t s o f competing t e c h n o l o g i e s w i t h i n s p e c i f i c market areas. However , t h e r a p i d cure, low p r o c e s s i n g temperatures , and develop- ment o f s p e c i a l t y p r o d u c t s w i l l i n s u r e t h a t r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s w i l l c o n t i n u e t o grow i n importance t h r o u g h o u t t h e world. s-3 Section 1 INTRODUCTION The a p p l i c a t i o n o f e l e c t r o m a g n e t i c r a d i a t i o n t o p o l y m e r i c m a t e r i a l s can l e a d t o t h e f o r m a t i o n o f three-dimensional network s t r u c t u r e s , which g e n e r a l l y improve t h e o v e r a l l p h y s i c a l o r chemical p r o p e r t i e s o f t h e o r i g i n a l s u b s t r a t e . T h i s use o f e l e c t r o m a g n e t i c r a d i a t i o n t o a1 t e r t h e p h y s i c a l and chemical n a t u r e o f a p o l y m e r i c m a t e r i a l i s termed r a d i a t i o n - p r o c e s s i n g o r r a d i a t i o n - c u r i n g technology. Radiation processing, as a p p l i e d t o c r o s s - l i n k i n g (network f o r m a t i o n ) o f polymer, i n k , adhes i v e , o r c o a t i n g m a t e r i a l s , i n v o l v e s t h e f u l l spectrum of e l e c t r o m a g n e t i c r a d i a t i o n e n e r g i e s t o e f f e c t chemical r e a c t i o n s . i o n i z i n g r a d i a t i o n (i.e., These forms of r a d i a t i o n energy i n c l u d e a , B , and y r a y s f r o m r a d i o a c t i v e n u c l e i ) , X-rays, high-- energy e l e c t r o n s , and n o n i o n i z i n g r a d i a t i o n a s s o c i a t e d w i t h t h e u l t r a v i o l e t ( U V ) , v i s i b l e , i n f r a r e d ( I R ) , microwave, and r a d i o frequency wavelengths o f energy (see 1) T a b l e 1-1 and F i g u r e 1-1). (- Table 1-1 ELECTROMAGNETIC SPECTRUM Types o f R a d i a t i o n Gamma r a y E l e c t r o n beam X-ray U 1t r a v i o l e t Visible In f r a r e d Microwave Radio Frequency Wavelengths , nm 10-~-10-~ 10-3 - 1 ~ 10-2-10 10-400 400-750 750-105 >lo6 >lo6 (1) Frequency, Hz Energy, eV 1019-1~22 1018- 1021 10~~-10~9 1 0 ~ ~ - 1 0 ~ ~ 105-108 104-107 102-105 5-lo2 1-5 10~~-10~4 l o l l - 1012 <loll 10-2-1 <lo-2 <lo-2 I n general, r a d i a t i o n processing ( c u r i n g or c r o s s - l i n k i n g ) o f polymeric materials and t h e r e l a t e d t e c h n o l o g i e s i n v o l v e s f o u r main c o n s i d e r a t i o n s : the type of radia- t i o n and a s s o c i a t e d p r o c e s s i n g equipment; t h e n a t u r e of t h e p o l y m e r i c m a t e r i a l s t o be i r r a d i a t e d and t h e i r response c h a r a c t e r i s t i c s ; mechanisms o r t h e o r i e s o f r e a c - 1-1 0.76 I 0.38 I Gm" Rays I 9-oi'/ Long-Wave I.R. L 1m 1 mm 10-6 10-3 I Radio Waves lm \oo 1 km 103 m Temperature of Peak Radiated Energy O 3000 500 212OF L Ultra Violet I Infra-Red Rays Ultra Violet Rays 1 nm Wavelength 1 mm 4 pm I Visible Short- Medium Light Wave Wave I.R. I.R. X-Rays ro 2 I Visible Light 0.3 Near 0.72 Middle I.R. I.R. 1.5 Figure 1-1. Far I.R. 5.6 1,000 pm Wavelength 8 Electromagnetic Spectrum (1) 1 1 I t i o n ; and chemical , p h y s i c a l and mechanical p r o p e r t i e s r e s u l t i n g f r o m t h e f o r m a t i o n 2) o f p o l y m e r i c network s t r u c t u r e s . (that follow. These v a r i a b l e s a r e discussed i n t h e s e c t i o n s With t h i s as background, a p p l i c a t i o n s and markets as w e l l as s a l e s p r o j e c t i o n s a r e assessed. The r e p o r t concludes w i t h a sumnary o f areas i n which R&D i n t h e c u r i n g area would h e l p t o advance t h e s t a t e o f t h e a r t . 1-3 Section 2 RADIATION PROCESSING EQUIPMENT Radiation processing of polymeric materials requires t h a t e l e c t r i c a l energy be converted t o some form of electromagnetic radiation energy with s u f f i c i e n t power or i n t e n s i t y t o be commercially f e a s i b l e . The most common radiation sources or equipment f o r the commercial cross-linking of polymeric materials are infrared lamps , u l t r a v i o l e t l i g h t sources , low- and high-energy electron accelerators , and plasma or glow-discharge energy sources. Typically the material t h a t i s processed passes t h r o u g h a drying area or oven f o r i r r a d i a t i o n . (3) INFRARED RADIATION PROCESSING EQUIPMENT Infrared (IR) radiation i s the part of the electromagnetic spectrum having wavelengths between 0.7 and 1,000 microns (Figure 1-11. ( 3 , 4 ) An important commercial use of infrared radiation i s t o thermally drive off solvents or water from an ink or coating system, and t o bring about curing of the ink or coating through oxidat i o n i n a i r or t h r o u g h other forms of thermally activated chemical reaction processes. In p r a c t i c e t h r e e basic types of IR emitter equipment are available: those t h a t produce long-wave ( 4 - 1 0 0 0 ~ ,) medium-wave (2-4p) , and short-wave (0.7-2p) IR - Long-wave IR emitters generate considerable amounts of heat, b u t r a d i a t i o n . (5,6) tend t o be more d i f f i c u l t t o d i r e c t onto a s u b s t r a t e . T h i s type o f thermal radiat i o n i s d i f f i c u l t t o r e t a i n within the drying (oven) area because the longer wavelengths of IR radiation are s c a t t e r e d by a i r . There i s more s t r a y heat and l i t t l e penetration c a p a b i l i t y ; i t e s s e n t i a l l y causes only surface drying of inks and coatings a t the expense of g r e a t l y increased dwell times in the processing unit (Figure 2-1). Medium-wave IR emitters produce IR i r r a d i a t i o n t h a t penetrates the i n k or coating surface a l l the way through t o the s u b s t r a t e (Figure 2-2). Short-wave IR emitters focus IR radiation t o a h i g h i n t e n s i t y f o r curing thick films in a very short period of time (Figure 2-3). In contrast t o long-wave IR e m i t t e r s , short-wave IR emitters are very e f f i c i e n t and exhibit very l i t t l e heat loss t o the surrounding oven areas. One f a c t o r i n considering the use of IR radiation in commercial applications i s emitter e f f i c i e n c y . The t h e o r e t i c a l r e l a t i o n s h i p between a given IR emitter temperature and maximum i n t e n s i t y wavelength i s shown in Figure 2-4. In p r a c t i c e , 2-1 I.R. Emitter J \ Substrate Figure 2-1. Schematic o f Application o f Long Wave IR Radiation 2-2 (6) I.R. Emitter Substrate Figure 2-2. Schematic of Application of Medium Wave IR Radiation 2-3 (6) - I.R. Emitter F i g u r e 2-3. Schematic of A p p l i c a t i o n of S h o r t Wave I R R a d i a t i o n 2-4 (6) 0 0 0 0 z 0 cu 2-5 however, an IR emitter exhibits a broad d i s t r i b u t i o n of wavelengths ( c f . Figure 2-51 - where the operating temperature of the emitter corresponds t o the maximum p o i n t of each d i s t r i b u t i o n curve. As the emitter temperature decreases, so does the emitted energy from the IR source. This d r o p off in emitted energy can be described as f o l l ows : 4 Emitted Energy = (emissivity) (constant) (absolute temperature of the emi t t e r ) or E = E O T4 The e f f i c i e n c y of a radiating surface i s character zed by i t s emissiv t y ( € 1 . An emissivity value of 1 r e l a t e s t o perfect energy conversion t o electromagnetic waves from the primary energy source (e.g., e l e c t r i c a l r e s i s t a n c e source, gas- or o i l - f i r e d source) (Figure 2-6). Another f a c t o r t o consider i s the e f f e c t of emitted energy on the coating or subs t r a t e undergoing the radiation processing operation. Under these conditions emiss i v i t y appears t o be d i r e c t l y proportional t o the absorptivity of the materials being processed a t a p a r t i c u l a r wavelength and surface temperature. (Table 2 - 1 ) . Selective absorption of IR energy by c e r t a i n ink and coating formulations can also become an important overall curing efficiency f a c t o r ; short-wave IR radiation i s more r e f l e c t i v e from surfaces with highly colored or r e f l e c t i v e pigments than i s long-wave IR radiation (Figure 2 - 7 ) . Infrared radiation emitter processing equipment can be divided i n t o two general c l a s s e s : one using gas- or oil-burning units and the other using e l e c t r i c a l energy. Figures 2-8, 2-9, and 2-10 depict common types of IR emitter systems; Table 2-2 l i s t s the major c h a r a c t e r i s t i c s associated with e l e c t r i c a l l y activated IR emitter devices. (3-6) ULTRAVIOLET ( U V ) LIGHT SOURCES U l t r a v i o l e t ( U V ) radiation i s the part of the electromagnetic spectrum having wavelengths from 4 t o 400 nanometers. The basic energy source f o r i n i t i a t i n g reactions of UV responsive materials is the mercury vapor lamp. The major lamp systems in commercial use today are as follows: 0 Low mercury pressure 0 Medium pressure (1 t o 2 atmospheres) mercury vapor lamps having electrode configurations f o r operation. ( torr 2-6 germicidal 1 amps. 2-7 -I 2 Btu Per Sq. Ft. Per Hour at Various Emissivity Values a 4 4 5 % (D n 0 I I I I 4 4 4 53 5! B I I I I I I I I I I n v P 0 0 m 0 0 4 h) 0 0 4 Q, 0 0 lo 0 0 0 h) P 0 0 h) m 0 0 I I 1 1 I Table 2-1 NORMAL TOTAL E M I S S I V I T Y OF VARIOUS SUBSTRATES S u r f ace Aluminum, Commercial Sheet Brass, D u l l P l a t e Copper, P o l i s h e d Gold, Pure, H i g h l y P o l i s h e d Steel , Pol ished Iron, Polished Oxidized, I r o n , Dark-Gray Surface S t a i n l e s s Steel, Polished Stainless Steel , Type 301;B Tin, B r i g h t Tinned I r o n Tungsten F i 1ament Zinc, Galvanized Sheet I r o n , F a i r l y B r i g h t Asbestos, Board Brick, Fireclay Enamel, White Fused, on I r o n (5) T, OF E m i ss iv i t y 212 120-660 242 440-1160 212 800-1880 212 212 450-1725 76 6000 82 74 1832 66 0.09 0.22 0.023 0.018-0.035 0.066 0.14-0.38 0.31 0.074 0.54-0.63 0.045 & 0.064 0.39 0.23 0.96 0.75 0.90 73 76 70 170-295 100-200 100-200 69 74 32-212 0.906 0.875 0.821 0.91 0.80-0.95 0.96-0 e98 0.91 0.94 0.95-0.963 P a i n t s , Lacquers, Varnishes: Snow-white enamel v a r n i s h on rough i r o n p l a t e Black s h i n y l a c q u e r , sprayed on i r o n Black s h i n y s h e l l a c on t i n n e d i r o n sheet Black m a t t e s h e l l a c Black o r w h i t e l a c q u e r F1a t b l a c k 1acquer R o o f i n g , Paper Rubber, Hard Glossy P l a t e Water 2-9 100 90 - I\ 80 - 70 - 60 - 50 - 40 - 30 - 20 - 3 1 2 3 4 5 6 7 Peak Wave Length (microns) F i g u r e 2-7. S e l e c t i v e Absorption o f IR R a d i a t i o n by Various S u b s t r a t e s 2-1 0 (4) - Exhaust Gas Combustion Fuel and Air Inlet IR Radiation Emission / FueVAir Inlet IR Emission Impingement Flame Combustion f Refractory Surface F i g u r e 2-8. Common IR R a d i a t i o n E m i t t e r s 2-1 1 - Fuel Burning Types (3) Boro-Silicate Glass Bulb Tungsten Filament Electrodes Ceramic or Quartz Plate Element Nichrome Wire Coil Figure 2-9. Common IR Radiation Emitters 2-1 2 - E l e c t r i c a l Types (3) 2-1 3 Table 2-2 CHARACTERISTICS OF COMMERCIALLY USED INFRARED HEAT SOURCES ( 3) Tungsten T3 Quartz Lamp Quartz Tube Metal Sheath Source Temperature Normal Max. Usual Range 4000OF 3000 to 40000F 4000OF 3000 to 4000OF 1600OF 1800 to 1400OF 1200OF 1400 to lOOOOF Brightness Bright White Heat Bright White Heat Cherry Red Dull Red 6-30 318" di a. 3 f 8 or 5f8" 3f8 or 518" Usual Size Lamp Tube dia. tube dia. tube Wavelength at Energy Peak - Normal Max. (Emissivity) 1.15 1.15 2.6 3.1 Micron Micron Micron Micron (0.86) (0.62) (0.56) 1.5 to 1.15 Micron 1.5 to 1.15 Micron 2.6 to 2.8 Micron 86% 20% 86% 14% 65-80% 32-20% 72-86% 28-14% I P Nichrome Spiral Winding Glass Bulb N 2 Filament Wire Usual Range Relative Energy Distribution Normal Maximum Radiation Convection & Cond. Usual Range Radiation Convection & Cond. Low Temperature Panel Heaters Buried Metallic Nichrome Salt - Gas Infrared Burners Perforated Impingement Tile Type Type 600-8OOOF 1700OF 2200OF 1100-4OOOF 1400-155OOF 1400-205OOF No Visible Light Soft Red Bright Red 3 x 22 or 5 x 22" 3 x 12" Flat panels Various - Around 4-5 Micron 2.6 2.2 Micron Micron 2.8 to 3.6 Micron 3.2 to 6 Micron 2.5 to 2.8 Micron 2.2 to 2.8 Micron 55% 45% 50% 50% 40-30% 60-70% 54% 46% 44% 56% 5545% 4545% 53-45% 47-55% 50-20% 50-80% 46-50% 54-50% 36-40% 64-60% Degree of Heat Penetration Depth of penetration varies with the characteristics of the product. As a general rule, energy of shorter wavelengths penetrates deeper than energy of longer wavelengths. Relative response to Heatup-Cooldown seconds seconds Color Sensitivity Bodies of different colors can be heated at more nearly the same rate by infrared radiation with long wavelengths than they can by short wavelength infrared radiation. Ruggedness Mechanical Shock Thermal Shock poor poor Average life (hrs) : I seconds seconds good excellent 5,000 I minutes seconds good excellent 10,000 minutes minutes excel 1 ent excel lent score of minutes scores of minutes varies with panel design - could be quite good 1 min to 60% 1 min to 18% 3 min to 60% 7 min to 18% fair excellent poor fair 10-20,000 I , I 0 Medium pressure mercury vapor lamps a c t i v a t e d b y microwave energy r a d i a t i o n and t h u s do n o t r e q u i r e e l e c t r o d e s ( e l e c t r o d e l e s s lamp o p e r a t i o n developed by Fusion Systems C o r p o r a t i o n ) . 0 F l a s h lamps o r p u l s e d xenon gas a r c s . 0 Metal doped o r h y b r i d xenon/mercury vapor lamp systems. D e s c r i p t i o n o f t h e power s u p p l i e s , t y p i c a l lamp c o n f i g u r a t i o n s , and design c o n s i d - e r a t i o n s f o r low mercury pressure, medium mercury pressure, and f l a s h lamps a r e g i v e n i n F i g u r e s 2-11 and 2-12. General o p e r a t i n g c h a r a c t e r i s t i c s f o r s e v e r a l o f 7) t h e s e lamp systems a r e l i s t e d i n Table 2-3. ( The two major lamp systems having commercial r a d i a t i o n p r o c e s s i n g s i g n i f i c a n c e t o d a y are t h e c o n v e n t i o n a l e l e c t r o d e and e l e c t r o d e l e s s (Fusion Systems C o r p o r a t i o n ) medium p r e s s u r e mercury arcs. A d i r e c t o p e r a t i o n a l c h a r a c t e r i s t i c comparison be- (8 ) E i t h e r UV lamp system i s housed i n a tween each lamp i s g i v e n i n Table 2-4. r e f l e c t o r and must be c o o l e d w i t h a i r o r water t o promote e f f i c i e n t lamp o p e r a t i o n and a reasonable l i f e expectancy. A t y p i c a l l i n e a r a r r a y o f e l e c t r o d e lamps, e l e c - t r o d e l e s s lamp system, r e f l e c t o r s , and methods o f c o o l i n g i s shown i n F i g u r e 2-13. F u r t h e r developments i n c o o l i n g , gas i n e r t b l a n k e t i n g , f i l t e r i n g o f unwanted excess i n f r a r e d r a d i a t i o n (which i s always p r e s e n t i n t h e o u t p u t s p e c t r a o f a mercury lamp), and novel lamp housing o r equipment have been pioneered b y Union Carbide Corporation. A complete r e v i e w o f l i g h t sources used i n photo-processing a p p l i c a - t i o n i s g i v e n i n r e f e r e n c e s 3 and 7. Examples o f t y p i c a l commercial i n s t a l l a t i o n s f o r UV r a d i a t i o n p r o c e s s i n g equipment a r e d e s c r i b e d i n Table 2-5. (9-13) H I G H ENERGY ELECTRON RADIATION PROCESSING EQUIPMENT Electron-beam processors a r e used c o m m e r c i a l l y t o c r o s s - l i n k polymers , i n s u l a t i o n s , and w i r e - c a b l e c o v e r i n g s , t a k i n g advantage o f t h e i r a b i l i t y t o p e n e t r a t e v e r y t h i c k coatings. The b a s i c components o r subsystems t h a t make up a high-energy e l e c t r o n processor are a power s u p p l y (DC o r RF), a source o f e l e c t r o n s (e.g., a heated w i r e f i l a m e n t o r r i b b o n ) , a beam a c c e l e r a t i o n system, a vacuum chamber ( l o m 8 t o 10- 6 t o r r ) , o u t p u t windows, and s h i e l d i n g o r housing r e q u i r e d t o c o n t a i n t h e X-rays generated b y t h e high-energy e l e c t r o n s i m p i n g i n g on t h e s u r f a c e e n c l o s i n g t h e e l e c t r o n a c c e l e r a t o r ( F i g u r e 2-14). (14) - A c c e l e r a t o r s can be c l a s s i f i e d according t o t h e i r r a t e d t e r m i n a l v o l t a g e power s u p p l y requirements which range i n v a l u e f r o m 0.25-30 MeV. The LINAC a c c e l e r a t o r and s e v e r a l e l e c t r o s t a t i c a c c e l e r a t o r systems (Van de Graaf , P e l l e t r o n , L a d d e r t r o n ) r e q u i r e v e r y h i g h t e r m i n a l v o l t a g e power s u p p l y o p e r a t i n g p o t e n t i a l s (minimum 4 MeV f o r t h e LINAC; between 0.3 t o 30 MeV for electrostatic accelerators). However, these devices are n o t n o r m a l l y used f o r 2-1 5 Thermionic Cathode Lamp -- I . Starting Switch Ballast A-C Supply Power Supply Circuit for a Low Pressure Mercury Arc Capacitor Transformer Power Supply for a Medium Pressure Arc b R e Capacitor / C Transformer t i f i e r Lamp V Spark Gap Power Supply for a Flash Lamp F i g u r e 2-11. UV/Vis L i g h t Source Power S u p p l i e s 2-1 6 (7) I 1 mE e E E O 0 b e E E f E E d d cv .-*wC c 5 a 2-1 7 Table 2-3 UV LAMP OPERATING CHARACTERISTICS Low Pressure Mercury Medium Pressure Discharge Mercury (E) Microwave Energized Mercury Lamp Temp. coo 1 Lamp Power 1 - 10 Watts/In. 100 - 400 Watts/In. 300 Watts/In. Arc Lengths 10 Bulb Shapes Li near, Circular - High High 75 Inches 1-1/2 - 77 Inches Linear , Curved 10 Inches Linear Flash Xenon Moderate (Water Cooled) .1 to 10 MegaWatts Peak Power - 30 Inches Linear , Ci rcu 1 ar , .6 Helical Re 1 at ive System Costs Low Input Power Lamp Warranty 1 - 10 Watts/In. 110 - 440 Watts/In. 550 Watts/In. 17,500 Hours 1,000 Hours 3,000 Hours -- 254 365, 436, 546, 580 365, 636, 546, 580 450 Spectral Variations None Moderate Extensive Limited Spectral E ff i c i ency Excel lent Good Very Good Poor Radiant Efficiency Very Good Good Fair Poor Overall Efficienty Fair Good Good Poor Practical Limits Low Intensity None Limited Sizes Low Efficiency $200 Under $2,000 Moderate High High 1,000 Hours M a j o r Output Wavelengths (“1 Total System Cost 2-1 8 $3 to 7,000 $4,000 T a b l e 2-4 OPERATIONAL CHARACTER1 S T I CS OF ELECTRODE AND ELECTRODELESS MEDIUM PRESSURE MERCURY ARC LAMP (8) - - Conventional 6" LENGTH POWER - - 7" ' E l ectrodel ess Any l e n g t h i n modular 10" segments 100, 200, 300 W/in 300 W/in Discrete steps 30-300 W/in stepped o r continuously var iab1e 6600 W, 460/230 V 5200 W, 240 V Guaranteed 1000 hours 3000 hours Expected 1000 h r UV output II 300011 II 6000 'I 'I lo 2000 hours 85% 52% 10% 6000 hours 97% 92% 86% INPUT POWER TO SYSTEM LIFETIME Effect o f starts None No more than 250 i n guarantee SPECTRAL OUTPUT Lamp I n p u t output: uv Visible Infrared Convected 200 W/in 34 56 100 10 300 W/in 97 75 55 73 Limited Unlimited - 10 - 100% 1000 3000 h r s None None DOPED LAMPS Avai l a b i 1 i t y Relative spectral shifts Typical l i f e t i m e s Length l i m i t a t i o n s B a l l a s t changes 10 500 20% 1000 h r s Usually Usually - - ON/OFF Cold s t a r t u p time Cool-down r e s t a r t t i m e 45 sec - 3 min 2 - 10 min o r 45 sec 2 - 4 sec 10 sec STANDBY Power l e v e l Shutters 50% Typically 0 No No Yes Yes Yes Yes COOLING 81 UTILITIES Positive a i r Negative a i r Water Compressed a i r Nitrogen REFLECTOR GEOMETRY No No. No Yes Yes E l l i p t i c a l and Unfocussed E l l i p t i c a l and Unf ocussed SPACE REQUIREMENTS Height Width 4 - 6" 6 - 10" 12 8" 2-1 9 18" Air (5) H20 Air ) H20 UV Source: Linear Electrode Lamp (200/300 w/in) Power Supply: 1.5 KV AC > 90% Efficiency Reflector (Parabolic or Elliptical) Energy Profile Cooling (Air, H20) Housing: Radiation Containment Conveyor Bed Negative Air Cooling Positive Air Cooling Power Cable Reflector Controller Radiator (10” long 16” tall 9“ wide) - Exhaust Lamp’ Electrodeless Lamp Curing System (Fusion Systems) Figure 2-13. Commercial UV Processor Units 2-20 (8) Table 2-5 UV CURING EQUIPMENT UV Curing Device Descriptions Small (15" maximum); 1 or 2 lamps (9) End Use Applications Laboratory and in-plant ink, coating and adhesive testi ng. Production curing of electronic components; erasing of EPROM computer chips and curing of areas with point source lamps. Medium (18" and up); multiple lamp systems Heavy substrates, multiple lamp systems for curing glass, metal and wood: for curing in PC boards and photoresist systems for the electronics industry and multiple lamp systems for paper and plastics (screen, letterpress offset or flexoprinted). Large multichamber UV drying ovens (80" wide to 60' long with as many as 12 rows of lamps) Floor tile, electronics, special textured coatings, abrasion resistant coatings and combinations o f U V - I R for the graphic arts industry on paper, board or glass substrates. UV lamps mounted over belts or rollers so that the substrate is cured and stacked Sheet paper or board stock; screen printing and circuit board manufacture. 38" wide in-press sheet curing UV systems; narrow and wide continuous web UV curing systems--flex0 and letterpress assemblies (UV lamps can be used 80" in length) Graphics art industry--sheetfed multicolor presses, wet-on-wet printing of UV clear coatings over UV or solvent-based net offset inks--tag and label products and wallpaper or linoleum substrates. Multiple lamps housing assemblies UV curing of three-dimensional objects such as cups, lids, wire, optical fibers, tubes, boards containing attached components (compound coatings), partial and fully assembled furniture, tabletops, and s he1 vi ng PC . 2-21 Power I U 9 Vacuum - Shielding I output Window Figure 2-14. General Schematic o f A High Energy Electron Beam Processing Unit (14) 2- 22 r a d i a t i o n processing o f polymer m a t e r i a l s . I n d u s t r i a l machines h a v i n g t e r m i n a l v o l t a g e power s u p p l y energy ranges between 0.3 t o 4 MeV a r e t y p i c a l l y r e p r e s e n t e d b y t h e insulated-core-transformer ( I C T ) and t h e Dynamitron ( F i g u r e 2-15). Conven- t i o n a l l y b o t h machines operate w i t h a maximum l i n e a r c u r r e n t d e n s i t y o f about 50 mA/m; t h e energy c o n v e r s i o n e f f i c i e n c y f o r e i t h e r d e v i c e i s about 70% w i t h t h e o v e r a l l system e f f i c i e n c y b e i n g about 40 t o 50%. Both t h e Dynamitron and t h e ICT power s u p p l i e s can be u t i l i z e d i n a scanned beam c o n f i g u r a t i o n as shown i n F i g u r e 2-16. I n a scanned beam c o n f i g u r a t i o n t h e power s u p p l y i n c r e a s e s and r e c t i f i e s t h e 1ine c u r r e n t and t h e a c c e l e r a t o r tube generates and focuses t h e beam ( a p p r o x i m a t e l y 1 cm i n diameter a t t h e window) and c o n t r o l s t h e e l e c t r o n scanning process. The beam i s produced when h i g h v o l t a g e energizes a t u n g s t e n f i l a m e n t t h e r e b y c a u s i n g e l e c t r o n s t o be produced a t v e r y h i g h r a t e s . . These f a s t e l e c t r o n s a r e c o n c e n t r a t e d t o f o r m a high-energy beam and are a c c e l e r a t e d t o f u l l v e l o c i t y i n s i d e t h e e l e c t r o n gun. Electromagnets on t h e s i d e s o f t h e a c c e l e r a t o r tube a l l o w d e f l e c t i o n o r scan- n i n g o f t h e beam as i n a t e l e v i s i o n tube. 61-183 cm t o 10-15 cm, r e s p e c t i v e l y . metal f o i l , usually Scanning w i d t h s and depths v a r y f r o m The scanner opening i s covered w i t h a t h i n t i t a n i u m , t h a t a l l o w s passage o f e l e c t r o n s b u t m a i n t a i n s t h e h i g h vacuum r e q u i r e d f o r h i g h f r e e - p a t h l e n g t h s . C h a r a c t e r i s t i c power, c u r r e n t , and dose r a t e s o f a c c e l e r a t o r s are 200-500 kV, 25-200 mA, and 10-100 kGy/s (1-10 Mrad/s ) . (15-17 High v o l t a g e scanned e l e c t r o n processors have s e v e r a l disadvantages. severe of these i s t h e l a r g e areas which must be s h i e l d e d . The most Any s u r f a c e e n c l o s i n g t h e e l e c t r o n a c c e l e r a t o r scanner a c t s as a source o f X-rays generated b y e l e c t r o n s which a r e s c a t t e r e d t o t h e w a l l , and these emissions are along t h e e n t i r e l e n g t h o f t h e system. Another disadvantage i s t h e l a r g e space requirement f o r housing t h e equipment. (18) I n a l i n e a r o r p l a n a r cathode system (developed by Energy Sciences) t h e t e r m i n a l energy requirements a r e about 150 t o 300 kV b u t t h e beam area can be 1000 cm2 and t h e l i n e a r c u r r e n t d e n s i t y can be as g r e a t as 260 mA/m. Operation o f a l i n e a r cathode processor i s through a h i g h - v o l t a g e (150 kV) e l e c t r o n tube t h a t p r o v i d e s a c o n t i n u o u s s t r i p o f e n e r g e t i c e l e c t r o n s f r o m a l i n e a r f i l a m e n t o r cathode, which i s on t h e a x i s o f symmetry o f t h e system. The c y l i n d r i c a l e l e c t r o n gun shapes and processes t h e e l e c t r o n system i n a g r i d - c o n t r o l l e d s t r u c t u r e . The stream i s t h e n a c c e l e r a t e d across a vacuum gap t o a metal window where i t emerges d i r e c t l y i n t o a i r and t r a v e l s o n t o t h e p r o d u c t . I n t h i s t y p e of l i n e a r processor, t h e s h i e l d i n g i s c l a d d i r e c t l y t o t h e t u b e housing. Housing space i s r e l a t i v e l y s m a l l , s i n c e a s h i e l d e d tube 25 cm i n diameter r e p l a c e s t h e 3-m h i g h s t r u c t u r e r e q u i r e d f o r t h e 2-23 30 20 L I N A C 10 9 8 7 6 5 4 3 2 MeV E L E C T R 0 S T A T I C D Y N A M I 1 0.9 0.8 0.7 0.6 0.5 T R 0 N I C T 00 0.4 0.3 Cathode 0.2 0.1 I High Potential 2 Medium Potential1 Low Potential1 Accelerators Figure 2-1 5. H i gh and Low Energy El ectron Processor Power Suppl i e s 2- 24 (1 5,16,17) Shielding I I / Electron Gun / Filament ' Acceleration Section II 1 ' 1 1 Scanning Coils Vacuum Scanning Housing I I I I' \ \ \ \ I 1 I ' Figure 2-1 6 . Metal Foil Window I t Scanned Electron Beam Accelerator System 2-25 (E) scanned electron-beam apparatus. The e l e c t r o c u r t a i n has a more f l e x i b l e geometry and can be adapted r e a d i l y t o many d i f f e r e n t types o f c u r i n g a p p l i c a t i o n s ( F i g u r e 2-17). (19) Another design f e a t u r e o f t h e p l a n a r cathode processor i s t h e a b i l i t y t o combine two a c c e l e r a t i o n s e c t i o n s w i t h one o r two separate power s u p p l i e s f o r i n c r e a s e d beam i n t e n s i t y values i n t h e range o f 400 mA/m ( F i g u r e 2-18). (20) A d i f f e r e n t t y p e o f m u l t i p l e p l a n a r cathode processor has been developed by R a d i a t i o n Polymer C o r p o r a t i o n . I n t h i s equipment t h e cathode s t r u c t u r e i s com- p l e t e l y modular such t h a t i t s l e n g t h can be e a s i l y i n c r e a s e d t o accommodate t h e s i z e requirements o f a p r o d u c t l i n e w h i l e m a i n t a i n i n g i t s w i d t h p r o p o r t i o n cons t r a i n t s i n o r d e r t o meet t h e machine's requirements f o r an acceptable window c u r rent density profile. The cathode s t r u c t u r e i s a "screen" tube t y p e c o n s t r u c t i o n c o n s i s t i n g o f a s e r i e s o f modular t r i o d e s arranged i n a l i n e a r a r r a y as shown i n F i g u r e 2-19. T h i s modular cathode c o n s t r u c t i o n a l l o w s f o r broad-beam (250 cm wide) p r o c e s s i n g of m a t e r i a l s w i t h powers o f 30 kGy ( 3 Mrad) a t 300 m/min. and l i n e a r c u r r e n t densi t i e s o f 262 mA/m. The system a l s o i n c l u d e s i n t e g r a t e d s h i e l d i n g c a p a b i l i t i e s s i m i l a r t o t h o s e d e s c r i b e d f o r Energy S c i e n c e ' s p l a n a r cathode equipment. ( 21) A h i s t o r i c a l growth r e p r e s e n t a t i o n f o r h i g h energy p r o c e s s i n g equipment development and u t i l i z a t i o n i s shown i n F i g u r e 2-20 and a g e n e r a l i z e d comparison between swept beam and p l a n a r cathode h i g h energy e l e c t r o n p r o c e s s i n g equipment i s d e s c r i b e d i n F i g u r e 2-21 and Table 2-6. (22) Table 2-6 COMPARISONS BETWEEN PLANAR CATHODE AND SWEPT BEAM HIGH ENERGY ELECTRON PROCESSING EQUIPMENT (18,21,22 1 P l a n a r Cathode Swept Beam Scan System No Yes Beam Shape Rec t angu 1a r Swept s p o t Energy Dose Rate Low High C omp ac t S iz e Yes No S h i e 1d i n g Less Greater Housing Vol ume Less Greater Cmplexity Less Operating Voltage 200 KeV Pene t r a t ion 10 m i l s 2- 26 Greater 200 KeV-1 MeV 200 m i l s I \ Chamber Vacuum High Voltage Power Supply L : Structure Terminal Electron Gun ~ \ Figure 2-17. Metallic Foil Window (Anode) Energy Science Planar Cathode Electron Curtain Processor 2-27 (18,19) .. C C b CI El v c, S W E. *r 3 0- W E W m S 0 L c, u W 7 W W S 0 N cn S .r m v) W u 0 L a -0 a, -0 E W c, x w a3 I N W L 3 cn .r LL 2- 28 Figure 2-19. Radiation Polymer Corporation's Modular Planar Cathode Processor (21) 2-29 -n a. a c 5 rD Beam Current (mA/m) N I h) N 0 0 N I w 0 I 0 0 P 0 VI 0 ln4atoo 0 0 0 0 0 h) 0 0 0 0 0 P U I 0 0 0 0 = Area of Beam = Width of Product = Effective Width of Cure Zone V = Velocity of Traversal of Cure Zone Where: A W . Comparison Between Planar Cathode and Swept Electron Beam Figure 2-21 Processing Units (21,22) 2-31 PLASMA RADIATION PROCESSING EQUIPMENT P 1asma r a d i a t i o n sources i n commercial a p p l i c a t i o n s f a l l i n t o t h r e e c a t e g o r i e s therma T herma , cold, and h y b r i d plasma systems. (23) plasmas a r e produced by gas arcs under atmospheric p r e s s u r e i n t h e r e g on 5,000 t o 50,000 K. The k i n e t i c energies o f t h e a r c ' s gas molecules, i o n s , and electrons are i n e q u i l i b r i u m conditions. A d i s c h a r g e i s produced t h a t r e q u i r e s a h i g h v o l t a g e between f i x e d e l e c t r o d e s f o r i n i t i a t i o n b u t t h a t can be m a i n t a i n e d ( a f t e r t h e i n i t i a t i o n process) a t low v o l t a g e s b y a power s u p p l y w i t h low i n t e r n a l r e s istance . Cold plasmas a r e produced b y glow discharges, such as those found i n neon s i g n s . The gaseous i o n s and n e u t r a l gas molecules have temperature ranges between ambient and a few hundred degrees, whereas t h e e l e c t r o n s have v e r y h i g h temperature values and are n o t under thermal e q u i l i b r i u m c o n d i t i o n s . A d i s c h a r g e t h a t i s produced i n a gas such as argon a t low pressures (1 mm Hg) can be s u s t a i n e d w i t h as l i t t l e as 300 V w i t h no l o s s i n e f f i c i e n c y f o r e f f e c t i n g polymer s u r f a c e - t r e a t m e n t m o d i f i c a t i o n s o r p r o d u c i n g c o a t i n g s on t h e s u r f a c e s o f metal or nonmetal s u b s t r a t e materials. The power s u p p l y f o r t h i s t y p e o f plasma can be designed around dc, low frequency, r a d i o - f r e q u e n c y , o r microwave- frequency g e n e r a t o r systems; t h e equipment used i n t h i s technology i s e i t h e r e x t e r n a l l y coupled ( c a p a c i t i v e l y o r induct i v e l y ) o r i n t e r n a l l y coupled ( c a p a c i t i v e l y o r r e s i s t i v e l y ) as d e s c r i b e d i n F i g u r e s 2-22 and 2-23. I n t h e e x t e r n a l l y coupled apparatus a c o i l , or two p a r a l l e l p l a t e e l e c t r o d e s , a r e p l a c e d around t h e o u t s i d e o f t h e q u a r t z o r g l a s s vacuum chamber. glow d i s c h a r g e i s formed i n s i d e t h e chamber when radio-frequency t o the c o i l or external electrodes. A power i s a p p l i e d The advantage o f t h i s system over t h e i n t e r n a l e l e c t r o d e system i s t h a t c o n t a m i n a t i o n o f t h e processed p r o d u c t b y e l e c t r o d e degrad a t i o n i s avoided. (24,251 I n l a r g e - s c a l e commercial a p p l i c a t i o n s o f plasma p r o c e s s i n g t e c h n o l o g y i t i s o f t e n r e q u i r e d t o t r e a t o r c o a t sheet m a t e r i a l s i n t h e f o r m of a continuous web. The s u p p l y and take-up r e e l s f o r t h i s process can be o u t s i d e o f t h e plasma p r o c e s s i n g chamber as shown i n F i g u r e 2-24. I t i s a l s o p o s s i b l e t o have b o t h r e e l s i n s i d e t h e vacuum chamber as shown i n F i g u r e 2-25. The r e l a t i v e economics f o r p r o c e s s i n g m a t e r i a l s i n a plasma apparatus w i l l be discussed l a t e r . 2 (61The t h i r d t y p e o f plasma, h y b r i d plasma, i s between c o l d and thermal plasmas and i s d e f i n e d as having numerous small thermal sparks , u n i f o r m l y d i s t r i b u t e d throughout l a r g e volumes o f n o n i o n i z e d gas molecules, t h u s p r o d u c i n g a r e l a t i v e l y low average 2-32 Reactor Diagram Leak Valve RF Coil Reactor To Argon Purge Trap System I Roughing ++ Valves I F 0 Ring Joint P Diffusion Pump Pressure Gauge Figure 2-22. Tubular Reactor for P1 asma Polymerization 2-33 (24,25) a 2-34 Treatment Gas or Monomer Supply RF Power Supply Matching Network Flow Transducer Supply Reel Figure 2-24. Take-U p-Reel Air-to-Air Plasma Processing System (26) - 2-35 Figure 2-25. Example o f Plasma Processing w i t h Supply and Take-up Rolls w i t h i n the Vacuum Chamber 2-36 temperature of the plasma s t a t e . Corona and ozone generators are associated with t h i s type o f plasma, which is produced by a high impedance power supply or electrode arrangement. High voltages are required t o maintain i t s discharge charact e r i s t i c s (60-10,000 Hz a t several thousand v o l t s ) . These types of plasmas are most often used t o surface t r e a t p l a s t i c films and parts f o r improved adhesive bonding or improved p r i n t a b i l i t y ( p r i n t i n g ink r e c e p t i v i t y ) . (27-1 2-37 Section 3 RADIATION PROCESSING CHEMISTRY AND MATERIALS R a d i a t i o n p r o c e s s i n g o f m a t e r i a l s i s a technology based on t h e f o l l o w i n g : Chemical r e a c t i o n s o f smal 1 monomer o r oligomer components (molecular weight, ca 100-1,000) t o form l a r g e polymer components ( m o l e c u l a r weight, ca 1,000-25,000 infinite). 0 - 0 Small monomer-oligomer components combining t o g e t h e r w i t h l a r g e preformed polymer components. 0 Connecting l a r g e polymer components t o g e t h e r . 0 Changing t h e s u r f a c e c h e m i s t r y o f l a r g e polymer components f o r improved chemical o r p h y s i c a l p r o p e r t i e s ( F i g u r e 3-1). The o v e r a l chemi s t r y o r chemical r e a c t i o n s o f m a t e r i a l s a s s o c i a t e d w i t h t h i s t e c h - n o l o g y can be f u r t h e r c l a s s i f i e d as thermal ( c o n v e n t i o n a l ) , UV l i g h t - i n d u c e d ( photochem c a l o r pho o p o l y m e r i z a t i o n ) , h i g h energy e l e c t r o n , and plasma (28) processes. THERMAL RADIATION PROCESSING CHEMISTRY The major commercial uses o f thermal r a d i a t i o n processes a r e s o l v e n t removal ( c o a t i n g s , i n k s , and adhesive a p p l i c a t i o n s ) and t h e e f f e c t i n g o f chemical r e a c t i o n s between oligomers ( m u l t i f u n c t i o n a l low m o l e c u l a r weight prepolymers o r c r o s s l i n k i n g m o l e c u l e s ) and preformed s o l v e n t - s o l u b l e o r d i s p e r s i b l e h i g h m o l e c u l a r w e i g h t polymers i n o r d e r t o c r e a t e three-dimensional network s t r u c t u r e s . The chem- i c a l and p h y s i c a l p r o p e r t y response c a p a b i l i t i e s o f cured f i l m s o r s t r u c t u r e s a r e - - improved over t h o s e o f t h e o r i g i n a l m a t e r i a l s b e f o r e t h e thermal p r o c e s s i n g o p e r a t ion. (2) polymer Polymer I X thermal energy groups *cross-linking 5. s i t e s X 01 igomer - polymer I 'I sol vent 3- 1 polymer M R A D M A T W I P Linear Polymer N M -P M O O Crosslinked ThreeDimensional Network Structure (Cured) P R 0 C E S S O x x x -P M 0 P x = Monomer (mol wt, Ca 100-500) = Oligomer (mol wt, Ca 200-1000) = Polymer (mol wt, Ca 1,000-Infinite) = Functional Group Figure 3-1. Radiation Processing Chemistry 3- 2 (28) I n some a p p l i c a t i o n s (e.g., w i r e and c a b l e i n s u l a t i o n ) , a preformed polymer, r u b b e r , o r elastomer can be c r o s s - l i n k e d d i r e c t l y w i t h p e r o x i d e s o r v u l c a n i z i n g agents as w e l l as combinations o f peroxides w i t h m u l t i f u n c t i o n a l r e a c t i v e o l i g o - - m e r i c m a t e r i a l s t o f o r m c r o s s - l i n k e d polymer network s t r u c t u r e s . polymer - + peroxide (1,291 g *-I polymer + peroxide + cross-1 inking 01 igomer cross-1 inked network structure Conventional thermal p r o c e s s i n g w i t h I R r a d i a t i o n i s m a i n l y i n v o l v e d w i t h thermof o r m i n g o r heat-bonding o f t h e r m o p l a s t i c p o l y m e r i c m a t e r i a l s . These polymer heat-- f o r m i n g o r m e l t i n g processes u s u a l l y do n o t c u r e t h e polymer b u t o n l y cause p h y s i c a l changes and m a i n t a i n t h e o r i g i n a l polymer t h e r m o p l a s t i c c h a r a c t e r i s t i c s . I n o r d e r t o cure, i .e., f o r m three-dimensional network s t r u c t u r e s t h r o u g h chemical changes, w i t h I R r a d i a t i o n , i t i s necessary t o design a r e a c t i v e f u n c t i o n a l i t y w i t h i n t h e polymer s t r u c t u r e so t h a t c o u p l i n g r e a c t i o n s can t a k e p l a c e between polymer chains. -rpolyme c=o CHOH c =o OH I Acid functional group CH\ CH ‘2 irradiation heat I I 0I y 2 I 0 I 7H2 CHOH Epoxy f u n c t i o n a l group r polymer c r o s s 1in ked polymer - C e r t a i n p o l y m e r i c s t r u c t u r e s can a l s o be blended w i t h o t h e r c o r e a c t i v e polymers o r m u l t i f u n c t i o n a l r e a c t i v e o l igomers t h a t e f f e c t c u r i n g r e a c t i o n s when exposed t o I R radiation. These c o r e a c t i v e polymers and c r o s s - l i n k i n g o l i g o m e r s undergo condensa- t i o n o r a d d i t i o n , which cause network f o r m a t i o n (Table 3-1). (30-32) 3-3 Table 3-1 INFRARED OR THERMAL RADIATION PROCESSING CHEMISTRY (30,31) Monomer, 01i gomer, or Pol m e r Reaction Mechani sm Me1 ami ne 01 igomers and hydroxyl -functional polymers Transetherification of the melamine with the polymer to form crossl inked polymer network structures Styrene monomer and unsaturated polyesters with peroxides Thermal destruction o f the peroxide to produce free radical intermediates which initiate the polymerization o f styrene with the unsaturated polyester Epoxy polymers and acid or amine functional 01 igomers or pol ymers Acid or amine addition to the epoxy ring followed by ring opening and polymerization into three-dimensional network structures B1 ocked isocyanates and hydroxyl -functional pol ymers Unblocking of the isocyanate followed by NCO addition to the polymer hydroxyl group and curing Air, metal catalysts and unsaturated oil modified polyesters Air drying or air oxidation to form crosslinked films Peroxide crossl inking of polyethy ene (direct process) Radical induced hydrogen abstraction reactions leading to polymer chain connections and crossl inking Peroxide plus mu1 ti functional v nyl unsaturated ol i gomer and polyethylene Radical formation, addition propagation and hydrogen abstraction reactions to form crossl inked polymer structures 3-4 UV-VISIBLE LIGHT PROCESSING CHEMISTRY The t r e a t m e n t o f p o l y m e r i c u l t r a v i o l e t ( U V ) o r v i s i b l e l i g h t r a d i a t i o n f a l l s i n t o two c l a s s e s : 100% r e a c t i v e l i q u i d systems ( c o a t i n g s , i n k s , adhesives) and photo- s e n s i t i v e preformed polymer s t r u c t u r e s . I n t h i s context t h e r e are f i v e character- i s t i c s o f UV and v i s i b l e - l i g h t energy i r r a d i a t i o n o r p h o t o c u r i n g o f l i q u i d photopolymer systems. 0 (33) A s t a b l e l i g h t source i s r e q u i r e d , capable o f p r o d u c i n g UV and v i s i b l e wavelengths o f l i g h t , i.e., near and f a r UV, 200-400 nm t o v i s i b l e , 400-700 nm, w i t h s u f f i c i e n t power o r i n t e n s i t y t o be c o m m e r c i a l l y f e a s i b l e . (1) 0 A p h o t o i n i t i a t o r i s r e q u i r e d , capable o f absorbing UV and v i s i b l e - l i g h t r a d i a t i o n a t a p p r o p r i a t e wavelengths o f energy as e m i t t e d f r o m t h e l i g h t source (Table 3-21. (34) - 0 A c t i v e f r e e r a d i c a l s o r a c i d i n t e r m e d i a t e s must be produced through t h e a c t i o n of l i g h t a b s o r p t i o n b y t h e p h o t o c h e m i c a l l y a c t i v e p h o t o i n i t i a t o r . The f r e e r a d i c a l s i n i t i a t e p o l y m e r i z a t i o n o f u n s a t u r a t e d monomers , o l igomers , and polymers; t h e photochemically l i b e r a t e d a c i d intermediates i n i t i a t e c a t i o n i c o r r i n g opening p o l y m e r i z a t i o n r e a c t i o n s o f epoxy f u n c t i o n a l monomers, 01igomers, and polymers. e Unsaturated , h i g h b o i 1ing a c r y l ic o r m e t h a c r y l ic monomers , oligomers, c r o s s - l i n k i n g agents , and low m o l e c u l a r w e i g h t p o l y mers comprise t h e f l u i d , low v i s c o s i t y , l i g h t - c u r a b l e c o a t i n g system and a r e analogous t o t h e c o a t i n g m a t e r i a l s used i n t h e r m a l c u r i n g processes. Low m o l e c u l a r w e i g h t and h i g h molecu l a r weight epoxy r e s i n s ( c a t i o n i c c u r i n g mechanism) would a l s o be f o r m u l a t e d i n a s i m i l a r manner as t h e u n s a t u r a t e d m a t e r i a l s ( f r e e r a d i c a l c u r i n g mechanisms) (Table 3 - 3 ) . (33) e F r e e r a d i c a l i n i t i a t i o n o r c a t i o n i c r i n g opening r e a c t i o n s o f t h e r e a c t i v e l i q u i d system and p r o p a g a t i o n i n t o a f u l l y cured, c r o s s - l i n k e d s o l i d c o a t i n g o r f i l m . (35) The mechanism o f c a t i o n i c c u r i n g and f r e e r a d i c a l c u r i n g i s o u t l i n e d as f o l l o w s . F r e e R a d i c a l P h o t o c u r i n g System p h o t o i n i t i a t o r (PI) 7>U V - V i s PI. l i g h t energy i PI. + mu1 t i f u n c t i o n a l unsaturated monomers and polymers f r e e r a d i c a l intermediate x three dimensional network s t r u c t u r e 3- 5 Table 3-2 PHOTOINITIATORS USED IN ULTRAVIOLET RADIATION CURABLE POLYMERIC MATERIALS (34) Free Radical Photoinitiators Cationic Photoini ti ators 0 Alkyl ethers of benzoin 0 Diazonium salts of Lewis acids 0 Benzil ketals 0 Aryl iodonium salts of Lewis acids 0 Acetophenone derivatives 0 Aryl sulfonium salts of Lewis acids 0 Ketone-amine combinations 0 Halogenated compounds Table 3-3 MATERIALS USED IN RADIATION (UV AND EB) CURABLE COATINGS Free Radical Curinq Mechanisms 0 Single-functional vinyl monomers 2-ethyl hexyl acrylate, styrene, N-vinylpyrrol idinone, vinyltoluene, lauryl methacryl ate 0 Multifunctional vinyl monomers 1-6-hexanediol diacrylate, tetraethylene glycol diacryl ate, trimethylolpropane triacryl ate, pentaerythri to1 triacrylate 0 Unsaturated polymers mal ei c-fumar i c acid unsaturated pol yes ters , acrylic copolymers containing pendant vinyl unsaturation, epoxy acrylates, polyurethane acrylates Cationic Curinq Mechanisms 0 Single-functional monomers vinyl methyl ether, lauryl epoxide 0 Mu1 ti functional epoxide monomers diepoxides or triepoxides phenolic and polyhydroxy a1 coho1 compounds 3-6 (a) C a t i o n i c P h o t o c u r i n g System >- UV-Vis PI acid 1 I gh t energy acid + LA mu1 t i f u n c t i o n a l epoxy polymers three dimensional network s t r u c t u r e s I n preformed polymer systems t h e d i r e c t a b s o r p t i o n o f UV o r v i s i b l e l i g h t causes t h e polymer s u b s t r a t e s t o undergo c h a i n s c i s s i o n ( d e g r a d a t i o n ) and c r o s s - l i n k i n g . C r o s s - l i n k i n g o r c u r i n g o f preformed p o l y m e r i c m a t e r i a l s (e.g., t h e r m o p l a s t i c s ) can be markedly enhanced through use o f s p e c i a l p h o t o s e n s i t i v e molecules t h a t a r e mixed i n t o t h e polymer m a t r i x o r t h a t c h e m i c a l l y a t t a c h t o t h e backbone o f t h e polymer chains. These s p e c i a l p h o t o s e n s i t i v e molecules absorb UV o r v i s i b l e l i g h t e n e r g i e s much more e f f i c i e n t l y t h a n t h e polymer; t h e y r a p i d l y f o r m e x c i t e d s t a t e s which undergo photochemical r e a c t i o n s , which i n t u r n f o r m r e a c t i v e f r e e - r a d i c a l intermedi a t e s t h a t e f f e c t polymer d i m e r i z a t i o n o r c r o s s - l i n k i n g . These s p e c i a l p h o t o s e n s i - t i v e molecules, when compounded i n t o t h e preformed polymer m a t r i x , can undergo l i g h t - i n d u c e d r a d i c a l a b s t r a c t i o n o r i n s e r t i o n r e a c t i o n s which r e s u l t i n c o u p l i n g (36) o f t h e polymer c h a i n s and network f o r m a t i o n . 0 II r polymer-CH2-polymer t db45Jbe n zo p hen on e ( phot osens it i ve mol ecu 1e 1 6‘B OH I r- P ol ymer - CH - po 1ymer t degraded and c r o s s 1in ked polymers polymer, polymer-CH = CH-polymer t N3RN3 /polymer C HNHRN HC H hv b i s a z i de (photosensitive molecule) , . CHH polymer ‘ k p o 1ymer coupling reactions 3-7 S i m i l a r types o f c r o s s - l i n k i n g r e a c t i o n s a r e observed f o r polymers t o which photos e n s i t i v e molecules a r e c h e m i c a l l y attached. polymer-r 0 po 0 I o =CC H =CH@ -J hv ___3 O=CCH=CH + ?jJ I 1 po 1ymer P polymer c r o s s - 1 inked polymer polymer c o n t a i n i n g photosens t i v e cinnamic e s t e r l i n k a g e R a d i a t i o n c u r i n g o f polymers w i t h UV and v i s i b l e - l i g h t energies i s used w i d e l y i n photoimaging and p h o t o r e s i s t t c h n o l o g i e s (Table 3-4). (37) HIGH ENERGY ELECTRON PROCESSING CHEMISTRY I n t h i s t e c h n o l o g y e l e c t r o n e n e r g i e s o f 100 eV o r l e s s a r e used t o break chemical bonds d i r e c t l y , e n a b l i n g f o r m a t i o n o f f r e e r a d i c a l i n t e r m e d i a t e s t h a t cause p o l y m e r i z a t i o n i n i t i a t i o n o r polymer c r o s s - l i n k i n g r e a c t i o n s . I n l i q u i d reactive poly- mer systems t h e low m o l e c u l a r w e i g h t v i n y l u n s a t u r a t e d monomers, o l i g o m e r s , and (43) polymers a r e c o n v e r t e d d i r e c t l y i n t o cured o r c r o s s - l i n k e d f i l m s t r u c t u r e s . h i g h energy u n s a t u r a t e d monomers, oligomers, polymers - > i o n i c and free radical intermediates c r o s s - l i n k e d polymer structures growing polymer radicals I R a d i a t i o n c u r i n g o f preformed polymers w i t h high-energy e l e c t r o n i o n i z i n g - r a d i a t i o n p r o c e s s i n g equipment can r e s u l t i n chemical changes t h a t a r e a s s o c i a t e d w i t h c r o s s - l i n k i n g and d e g r a d a t i o n r e a c t i o n mechanisms. Cross-linking reaction mechanisms on preformed polymer s u b s t r a t e s u s u a l l y i n v o l v e removal o f hydrogen atoms t o f o r m a m a c r o r a d i c a l i n t e r m e d i a t e . coup e t o f o r m a s i n g l e molecule. M a c r o r a d i c a l i n t e r m e d i a t e s can t h e n T h i s c o u p l i n g r e s u l t s i n an i n c r e a s e i n t h e o r i g n a l average molecu a r w e i g h t o f t h e s t a r t i n g polymer. 3-8 Table 3-4 PHOTOCURABLE POLYMER SYSTEMS Polymers Remarks poly(viny1 cinnamate) uv- and visible light-induced photodimeriza- References 38 tion reactions; used in negative photoresist technologies polychalcones photodimerization or addition reactions; used in negative photoresist technologies 39 polysti 1 benes photodimerization or addition reactions; used in negative photoresist technologies 40 cyclized rubber cross-linked with bis-azide-nitrene insertion reactions 41 phenolic polymers and acid functional acrylic resins diazide photosensitizers for 1ight-induced hydrophobic-hydrophi1 ic reactions associated with positive photoresist technology 42 3-9 +cross-link site If irradiation continues, the original polymer substrate is transformed into one gigantic molecule of infinite molecular weight with lower solvent solubility, higher melting point, and improved physical properties over the original material. Enhancement of cross-linking can be facilitated through the use of multifunctional vinyl monomers or oligomers which copolymerize and propagate much more rapidly than in a direct coupling reaction to form greater amounts of gel or cross-linked materials at lower dose rates and shorter reaction times. polymer + (CH2=CHln -R ioni zing rapid gel formation radiation (multifunctional vinyl monomers or oligomers) Radiation-induced degradation reactions are in direct opposition to cross-linking or curing processes , in that the average molecular weight of the preformed polymer decreases bec aus e of chain scission and without any subsequent recombination of its broken ends. (44) ionizing radiation polymer - polymer polymer t polymer (high mol ecul ar weight ) (low molecular weight) (low molecular weight) In order for efficient radiation curing of a polymer to take place, these degradation processes must be minimized in favor of the desired cross-linking reaction. THIOL CURING CHEMISTRY somewhat different cross-linking chemistry has been developed by W. R. Grace & Co. This technology involves the free radical addition of a thiol (mercaptan) to an olefinic double bond: A 3-1 0 photoinitiator high energy electrons + H' R-S' peroxides free radical intermediates - free radical initiators RS' + C H =~ CHR I RSCH~-~HRI+ H* R S C H ~ - ~ HIR RSCH~CH~RI When a polyene and a polythiol are allowed to react in a similar manner, then a cross-linked polythioether structure can develop: = - polyene - SH = + HS ' -*- SH I SH S- - - -S f polythioether polyene S I eneySlop--- free radical initiator . s- - -I $ S S- S These polyene-polythiol systems can be rapidly cured by any source of free radicals such as UV (photoinitiator or photosensitizer), EB, or peroxide (thermal 1 techniques. (30) PLASMA PROCESSING CHEMISTRY Microwave or radio frequencies above 1 MHz are applied to a gas under low pressure to produce high energy electrons, ions, and neutral species (plasma) which can interact with organic substrates in the vapor and solid state to produce a wide variety of reactive intermediate species. The reaction processes that take place in a plasma atmosphere are very complex, as outlined in the following sequence: 4(51- 3-1 1 PLASMA REACTIONS D i s s o c i a t ion A2 t e - - 4 2 A E l e c t r o n Attachment A2 + e--A Dissoc ia t ive Attachment A, L + e--A I on iz a t i on P hotoemi s s ion A b s t r a c t ion A Where A2 * t e- 2- + At + e--+A2 +2e 2, A2+A2 + hv A + B2-AB - + B i s e x c i t e d molecule A2. These complex r e a c t i o n s can be used t o c o n v e r t s i m p l e o r g a n i c molecules i n t o v e r y t h i n (0.1 t o 8 m i c r o n s ) h i g h l y c r o s s - l i n k e d f i l m s t r u c t u r e s , t o c r e a t e a c t i v e f r e e r a d i c a l s i t e s o n t o polymer s u r f a c e s so t h a t u n s a t u r a t e d monomers may be g r a f t e d o n t o t h e a c t i v a t e d s u b s t r a t e , and t o c h e m i c a l l y o x i d i z e o r change t h e s u r f a c e energy c h a r a c t e r i s t i c s of t h e polymer s u b s t r a t e f o r improved adhesion bonding, coating, or ink r e c e p t i v i t y c a p a b i l i t i e s . (3) Organic molecule very t h i n c r o s s - l i n k e d f i l m structures li va!Ors ___) Polymer g r a f t 0 P1asma Oxygen Polymer - Active s i t e s unsaturated vinyl Polar f u n c t i o n a l groups 3-1 2 Section 4 AP PL I CAT IONS /MARKETS R a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s has found widespread commercial use i n t h e f o l l o w i n g areas: 0 0 0 0 0 0 Coatings Printing Adhesives E l e c t r o n i c s / c o m m u n i c a t i ons P l a s t i c s and r u b b e r m a t e r i a l s Plasma p r o c e s s i n g The advantages o f r a d i a t i o n p r o c e s s i n g polymer t e c h n o l o g i e s over t h o s e o f convent i o n a l f o s s i 1 energy-heated p r o c e s s i n g techniques i n these areas i n c l u d e : 0 Rapid d r y i n g speeds (seconds o r l e s s ) . 0 Reduction o r e l i m i n a t i o n o f o r g a n i c s o l v e n t s , thus e l i m i n a t i n g a i r p o l l u t i o n and i n c i n e r a t i o n problems. 0 S i g n i f i c a n t r e d u c t i o n o r e l i m i n a t i o n o f f o s s i l energy-heated d r y i n g ovens and i n c i n e r a t o r s . 0 Coating o f h e a t - s e n s i t i v e m a t e r i a l s ( p l a s t i c s I . 0 Increased production r a t e s . 0 More e f f i c i e n t use o f p o l y m e r i c c o a t i n g m a t e r i a l s because o f less p e n e t r a t i o n o f f l o w i n g m a t e r i a l i n t o s u b s t r a t e s . 0 Savings i n space o f a p p l i c a t i o n equipment. 0 Manufacture o f p r o d u c t s w i t h h i g h value-added p r o p e r t i e s . 0 Development o f p r o d u c t s t h a t cannot be manufactured by any o t h e r p r o c e s s i n g technique. Each o f these advantages w i l l become apparent i n t h e f o l l o w i n g d i s c u s s i o n s on i n d i v i d u a l a p p l i c a t i o n o r market areas a s s o c i a t e d w i t h c u r r e n t and f u t u r e r a d i a t i o n p r o c e s s i n g techno1 o g i es . 4-1 COATINGS The coatings industry comprises the manufacture, sale, and use of clear and pigmented finishes which protect, decorate, and provide functional properties to a wide variety of surfaces and objects. The product line for this industry can be divided into three general categories: trade sales, industrial finishes, and special -purpose coatings. Trade sales coatings are formulated for normal environmental conditions and find general applications on new and existing residential or commercial building structures. Industrial finishes are usually formulated for original equipment manufacture (OEM) and can be applied to products as part of the manufacturing process. Special purpose coatings are designed for field applications, such as refinishing, or for extreme environmental stress conditions, such as high temperature and corrosion. A generalized product line and product use description for this industry is shown in Table 4-1. Radiation processing of coating materials is almost exclusively associated with the industrial finishing market area; major emphasis is on wood finishing, metal coatings ,or decoration, and paper or plastic film coatings, with limited use in wire and automotive applications. (4 7 ) Radiation curable coatings offer several advantages over conventional thermally converted solvent-based coatings systems. In conventional thermal coatings technology a polymer and reactive cross-linking 01 igomer is dissolved in a nonreactive diluent solvent. The ratio o f solven to polymer-cross-linking oligomer is usually 50 to 60% of the total coating system This low viscosity liquid composition is then applied to a substrate and baked in a gas-fired oven which removes the ,solvent and sets the polymer cross-link ng oligomer into a solid three-dimensional cross-linked network or finished coat ng. This process is energy intensive, since most of the thermal input energy goes to heat the substrate and remove the nonreactive di 1 uent sol vent. Additional thermal energy is also required to activate the cross-linking reaction of the polymer with the cross-linking oligomer in order to effect cure. In many cases the substrate is heat or moisture sensitive and a thermally cured coating operation causes shrinkage-warpage or dehumidification of the substrate which requires an additional manufacturing step to produce a usable finished product. The nonreactive diluent solvent used in conventional coatings technology usually is vented into the atmosphere (which causes pollution), burned, or recycled to make up part o f the thermal energy of the oven used to cure the coating system (Figure 4-1). . In radiation curable coatings a reactive polymer and coreactive cross-linking oligomer are dissolved in a completely coreactive diluent solvent. This mixture is applied in a similar manner as a conventional thermally cured coating but is cured 4- 2 Table 4-1 COATINGS INDUSTRY - PAINTS AND ALLIED PRODUCTS (SIC 28500-005) (47) Use - Product Type Trade sales (architectural coatings) (TS) (SIC 28510-005) "D0-i t-yoursel f", over-the-counter sales Exterior solventborne Exterior waterborne Interior solventborne Interior waterborne Architectural lacquers 'Industrial finishes (product coatings , OEM; chemical coatings, factory appl led) (IF) (SIC 28520-005) Automotive finishes (primers, sealers, topcoats) Truck and bus finishes Other transportation finishes e.g., aircraft, railroad, etc. Marine coatings , including off-shore structures Appliance finishes Wood furniture and fixture finishes Wood and composition board flat stock finishes Sheet, strip, and coil coatings on metals Metal decorating, e.g., can, container, and closure coatings Machinery and equipment finishes Metal furniture and fixture coatings Paper and paperboard coatings Coatings for plastic shapes and films, e.g., packaging Insulating varnishes Magnet wire coatings Magnetic tape coatings Special-purpose coatings (SPC) (SIC 28529-005) Industrial maintenance paints --interior, exterior Metallic paints, e.g., aluminum, zinc, bronze, etc. Traffic paints Automobile and truck refinish coati ngs Machinery refinish coatings Marine refinish coatings Aerosol paints and clears Roof coatings Fire-retardant paints Multicolor paints 4-3 . , d Reclaimed Recycled or Burned I 50% Solvent Diluent 50% Polymer and Crosslinking Oligomer I t 1 Total Solvent Removal Polymer and Thermal Thermal Energy I Substrate I I Burned or Vented Into Atmosphere (Pollution) I l Cured film Substrate 4 Substrate Substrate .! Heat Removed from Substrate Conventional Thermally Cured Coating System Reactive Solvent Reactive Polymer Reactive Crosslinking Oligomer J Electrical or Cured Film t Light Energy i Substrate 6 Substrate L Finished Product Radiation Curable Coating Systems . Comparison between Conventional and R a d i a t i o n Curable C o a t i n g F i g u r e 4-1 Technologies (28) 4-4 v i a e l e c t r i c a l or l i g h t energy processes and does n o t r e q u i r e d i r e c t thermal exp e n d i t u r e o f energy. Since t h e r a d i a t i o n c u r a b l e c o a t i n g s a r e 100% r e a c t i v e t h e r e a r e no v o l a t i l e s o l v e n t losses, and t h e l i q u i d c o a t i n g s u p p l i e d t o t h e s u b s t r a t e i s t o t a l l y converted i n t o a s o l i d c r o s s - l i n k e d f i l m . Since t h e r e a r e e s s e n t i a l l y no v o l a t i l e emissions a s s o c i a t e d w i t h t h e c o n v e r s i o n process, r a d i a t i o n c u r a b l e c o a t i n g s a r e p o l l u t i o n f r e e and are n o t energy i n t e n s i v e processes. Another advantage o f r a d i a t i o n c u r a b l e c o a t i n g s i s t h a t i n t h e c u r i n g process e l e c t r i c a l o r l i g h t energy i s absorbed o n l y b y t h e c o a t i n g and i s n o t wasted i n h e a t i n g t h e s u b s t r a t e , as i n t h e case w i t h c o n v e n t i o n a l t h e r m a l l y cured c o a t i n g systems. This e f f i c i e n t use of energy a l l o w s r a d i a t i o n c u r a b l e c o a t i n g s t o be a p p l i e d and processed on h e a t s e n s i t i v e substrates, r e s u l t i n g i n f i n i s h e d products r e q u i r i n g r e l a t i v e l y simple m a n u f a c t u r i n g o p e r a t i o n s ( F i g u r e 4-1). (28) - Several major a p p l i c a t i o n areas f o r r a d i a t i o n c u r a b l e c o a t i n g s a r e discussed i n t h e following sections. Wood F i n i s h i n g s The wood f i n i s h i n g i n d u s t r y can be r o u g h l y d i v i d e d i n t o wood f u r n i t u r e and f i x t u r e f i n i s h e s ( t h r e e - d i m e n s i o n a l c o a t i n g processes) and wood o r c o m p o s i t i o n board ( p a r t i c l e board) f l a t s t o c k f i n i s h e s f o r use i n t h e manufacture o f d e c o r a t i v e panels o r furniture. The t r a d i t i o n a l method o f f i n i s h i n g these p r o d u c t s i s through f o r c e d h o t a i r o r i n f r a r e d d r y i n g oven thermal t r e a t m e n t s o f v o l a t i l e s o l v e n t or water-based c o a t i n g materials. A t t h e p r e s e n t t i m e t h e major i n t e r e s t o f non-IR r a d i a t i o n p r o c e s s i n g (UV and EB 100% r e a c t i v e c o a t i n g systems) i s i n f l a t s t o c k m a t e r i a l s ; a f u t u r e t r e n d i s m o d i f i c a t i o n o f these systems f o r three-dimensional c o a t i n g a p p l i c a t i o n s . (48-52) Two systems have been developed f o r f i n i s h i n g o f f l a t s t o c k f o r f u r n i t u r e o r paneling. The r e q u i r e m e n t s f o r these c o a t i n g / i n k / a d h e s i v e systems a r e as f o l l o w s : Wet System Dry System F i l l e r coating Base c o a t Grain p r i n t ink or 1ami n a t ion w i t h wood veneer Top c o a t F i l l e r coating L a m i n a t i on adhesive D e c o r a t i v e paper, p o l y s t y r e n e (PST) o r p o l y v i n y l c h l o r i d e (PVC) f i l m Top c o a t 4-5 Wet f i n i s h i n g i n v o l v e s d i r e c t a p p l i c a t i o n and c u r i n g o f l i q u i d s e a l e r s , varnishes, and p a i n t s ; d r y f i n i s h i n g i n v o l v e s a p p l i c a t i o n o f a p r e f i n i s h e d d e c o r a t i v e paper o r 52) p l a s t i c f i l m t o t h e board s u r f a c e . (- A p i c t o r i a l diagram f o r each system and t h e i n d i v i d u a l c o a t i n g f u n c t i o n s i s shown i n F i g u r e 4-2. A t y p i c a l r a d i a t i o n proc e s s i n g wood f i n i s h i n g l i n e i s d e s c r i b e d i n F i g u r e s 4-3 and 4-4. (50) A summary o f t h e c o a t i n g c h e m i s t r y a s s o c i a t e d w i t h thermal o r I R , UV/EB polymer m a t e r i a l s f o r t h e wood f i n i s h i n g i n d u s t r y i s d e s c r i b e d i n Table 4-2. The advantage o f u s i n g UV/EB r a d i a t i o n processing t e c h n o l o g i e s o v e r I R o r convent i o n a l thermal c u r e systems i s t h a t t h e r e s u l t a n t p r o d u c t can be more r e a d i l y manuf a c t u r e d ; i n some cases a s u p e r i o r p r o d u c t can o n l y be achieved t h r o u g h t h e use o f low-temperature high-energy c u r i n g methods. I n conventional thermal c u r i n g coating systems t h e board i s a l s o heated and subsequently d r i e d o u t , which r e q u i r e s c o o l i n g and sometimes r e h u m i d i f i c a t i o n b e f o r e s h i p p i n g t o a f u r n i t u r e m a n u f a c t u r e r . With UV/EB c u r i n g t h e board i s f i n i s h e d e s s e n t i a l l y a t ambient temperature w i t h o u t a major loss o f m o i s t u r e c o n t e n t . Hence, t h e s u b s t r a t e can be processed and shipped i m m e d i a t e l y t o t h e f u r n i t u r e manufacturer. Another advantage t o low thermal energy c o a t i n g c u r i n g processes i s t h e i r a b i l i t y t o f i n i s h heat s e n s i t i v e s u b s t r a t e s such as p l a s t i c s , paper, o r p o l y v i n y l c h l o r i d e ( P V C ) v i n y l f i l m s . t h e r e a r e a p p r o x i m a t e l y 100 U.S. A t t h e present time wood f i n i s h i n g o r m a n u f a c t u r i n g companies u s i n g UV l i g h t c u r a b l e c o a t i n g s and o n l y two o r t h r e e U.S. companies u s i n g EB p r o c e s s i n g equipment f o r manufacture o f h i g h performance low p r e s s u r e l a m i n a t e f i n i s h e d wood products. The reasons f o r t h i s d i v i s i o n i n r a d i a t i o n p r o c e s s i n g u t i l i z a t i o n a r e p r o d u c t performance c o n s t r a i n t s and economics. I n f r a r e d c u r i n g o r o t h e r forms o f thermal c u r i n g o f c o a t i n g s a r e s t i l l w i d e l y p r a c t i c e d by t h e wood i n d u s t r y . How- ever, UV p r o c e s s i n g can o f f e r s e v e r a l major advantages which w i l l be discussed i n t h e c o s t comparisons s e c t i o n o f t h i s r e p o r t . I n cases where o n l y a v e r y s p e c i a l p r o d u c t i s produced, such as h e a v i l y pigmented panels o r l o w p r e s s u r e l a m i n a t e s , t h e i n i t i a l h i g h c o s t o f EB processor equipment can be j u s t i f i e d . A t y p i c a l EB wood f i n i s h i n g l i n e i s shown i n F i g u r e 4-5 and EB versus thermal c u r e f i n i s h e d p r o d u c t performance comparisons a r e shown i n Table 4-3. (50,521 Metal D e c o r a t i v e Coatings The metal d e c o r a t i n g i n d u s t r y uses a wide v a r i e t y o f polymer systems t o c o a t metal cans, crowns, c l o s u r e s , c o l l a p s i b l e tubes, and p r e f i n i s h e d metal i n t h e f o r m o f coils. It also includes decorative f i n i s h e s applied by p r i n t i n g techniques ( l i t h - ography and s i 1k-screen on v a r i o u s metal s u b s t r a t e s . The t r a d i t i o n a l method o f f i n i s h i n g these p r o d u c t s i s u s u a l l y through g a s - f i r e d oven thermal t r e a t m e n t o f v o l a t i l e s o l v e n t o r water-based c o a t i n g m a t e r i a l s . 4-6 The two dominant markets i n WET SYSTEM UV or Electron Cured Topcoat Grain Print Inks Base Coat Very Thin Films (0.1 mil) 30 gm/m2 Filler Coating 90 gm/m2 Particle Board 0.3-3 cm Thick 50 gm/m2 DRY SYSTEM UV or Electron Cured Topcoat ~~ F i g u r e 4-2. ~ 60 gm/m2 Decorated Paper or Film Laminating Adhesive and or Filler Coating 30 gm/m2 Particle Board 0.3-3 cm Thick 90 gm/m* - R a d i a t i o n Curable Wood F i n i s h i n g Technology (52) - 4-7 WET FINISHING Particle Board Pigmented Filler Pigmented Base Coat Grain Print Clear TOP Coat Panel of Decorative Wood I Lamination With Wood Veneer DRY FINISHING P Tinting Color 8 I co Printing Printing Impregnation r Varnishing I Rolling Up I Panel of Decorative Wood Gluing on Filled Board Figure 4-3. I Wood Finishing Operations (50) Clear TOP Coat I 2 3 3 3 Varnishing of both faces: Speed 15 to 30 m h i n P I u3 Total length of the line - 60 to 65 m. 1 - Tinting of the wood (solvent base) 2 3 - Thermal oven - Sanding and vacuum cleaning AI, A2 - Application with rollercoater of 15 g/mz - 2 to 4 UV lamps of min 80 W/cm (both faces) A3 - Application with roller-coater UV of 15 g/m* on one face only Figure 4-4. (50) Varnishing and UV Curing/Finishing Line f o r F l a t Stock Wood Products Table 4-2 RADIATION CURABLE COATINGS FOR WOOD FINISHING APPLICATIONS (30,36,50) Coati nq Formul at i on A1 kyds, polyesters, ureaformaldehyde, vi nyl s, acryl i cs , urethanes; 3065% solids (solvent or water based); clear polymer systems or containing pigments ' Curinq Conditions Infrared oven 90 to 120 sec cure times A w l i cat i on Fi 1 1 er, base-coat and top-coat varnishes Acryl ated polyester resin, hexanediol di acryl ate, vinyl pyrrol i done , photoinitiator UV processor single lamp, cure time of 10 seconds C1 ear varni sh Same as above but add silica or titanium dioxide pigments UV processor sing1 e lamp, cure time of 10-30 seconds Filler or basecoat 65 wt percent unsaturated polyester, 35 wt percent vinyl monomer: 2-ethylhexyl acrylate or styrene acryl ic copolymers containing pendant vinyl unsaturation (unsaturation levels, 0.5-1.75 mol of double bonds per 1000 mol wt) and 35-45 wt percent of a vinyl monomer: 2ethyl hexyl acrylate or styrene Cured with 300 keV electrons at 200 kGy/mi n (20 Mrad/mi n) cured with a total dosage of 150 kGy (15 Mrad) electron beam; Coatings f o r vinyl covered flat board stock Acryl i c monomers : acryl i c unsaturated epoxy and acrylic unsaturated polyurethanes monomers: polyfunctional vinyl intermediates Electron-curtain curing 4-1 0 4-1 1 Table 4-3 COMPARISON OF PERFORMANCE LIMITS AND TEST VALUES BETWEEN HIGH AND LOW PRESSURE MELAMINE THERMALLY CURED LAMINATES AND UNIFACE ELECTRON BEAM CURED PANELS (52) Test High Pressure Laminate Unit Low Pressure Laminate Uniface Test Values Hoffman Scratch Resistance Grams 400 400 1200 Wear Resistance LD3-3.01 Cycles t o Fai l u r e 400 100 145 Impact Resistance LD3-3.03 Inches 50 15 24 B o i l i n g Water Resistance LD3-3.05 20 minutes No E f f e c t Slight Effect No E f f e c t High Temperature Resistance LD3-3.06 20 minutes Slight Effect Slight Effect No E f f e c t 4-1 2 t h i s i n d u s t r y a r e can c o n t a i n e r s and p r e f i n i s h e d c o i l s t o c k . However, o n l y t h e can manufacture and d e c o r a t i n g i n d u s t r y has s e r i o u s l y c o n s i d e r e d t h e use o f UV l i g h t r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s f o r c u r i n g 100% r e a c t i v e i n k s , pigments, o r c l e a r c o a t i n g systems. A t y p i c a l can c o a t i n g l i n e , t h r e e - p i e c e , and two p i e c e c o n f i g u r e d w i t h UV p r o c e s s i n g equipment i s shown i n F i g u r e 4-6. The U.S. c o i l c o a t i n g indus- t r y has adopted o t h e r s o l v e n t r e c o v e r y or i n c i n e r a t i o n thermal oven equipment modi- f i c a t i o n s so t h a t i t can c o n t i n u e t o use solvent-based ( l o w s o l i d s ) c o a t i n g systems h a v i n g l o n g - t e r m proven performance c a p a b i l i t i e s . T h i s i s n o t t h e case, however, i n Japan where a t l e a s t one major s t e e l company i s u s i n g EB c u r a b l e c o a t i n g s on m e t a l c o i l s t o c k because o f t h e i r s u p e r i o r f i n i s h and unique p r o p e r t i e s . A more d e t a i l e d d i s c u s s i o n o f t h i s process w i l l be r e p o r t e d i n t h e s e c t i o n o f t h i s r e p o r t e n t i t l e d Global Trends i n R a d i a t i o n Processing o f Polymeric M a t e r i a l s . (53-57) I n o t h e r areas, UV c u r a b l e c o a t i n g s a r e a p p l i e d t o aluminum o r g a l v a n i z e d s t e e l t u b i n g f o r b o t h d e c o r a t i v e and p r o t e c t i v e purposes. Galvanized s t e e l t u b i n g i s manufactured f r o m a continuous s t r i p o f g a l v a n i z e d o r ungalvanized s t e e l which i s g r a d u a l l y formed i n t o t h e d e s i r e d shape o r s i z e , and f i n i s h e d w i t h a UV-curable c o a t i n g system ( F i g u r e 4-7). A t y p i c a l UV lamp r a d i a t i o n p r o c e s s i n g c o n f i g u r a t i o n f o r c u r i n g c o a t i n g s on a continuous t u b i n g o r p i p e l i n e i s shown i n F i g u r e 4-8. The performance c h a r a c t e r i s t i c s f o r s e v e r a l g a l v a n i z e d s t e e l c o a t i n g f o r m u l a t i o n s are shown i n Table 4-4. (57) P ac kag ing C o a t i ngs P r o t e c t i v e h i g h g l o s s o v e r p r i n t c o a t i n g s have found g r e a t u t i l i t y i n t h e c o n v e r t i n g and packaging i n d u s t r i e s . B e f o r e t h e development o f r a d i a t i o n c u r a b l e c o a t i n g t e c h n o l o g i e s t h i s i n d u s t r y had t h e f o l l o w i n g f i n i s h i n g choices: 0 0 0 0 (58) solvent-base p r e s s v a r n i s h e s . water-base c o a t i n g s . l i q u i d laminations. f i l m laminations. I n s h e e t - f e d l i t h o g r a p h i c p r i n t i n g o p e r a t i o n s , solvent-base press v a r n i s h c o a t i n g s l e a d on a volume b a s i s . T h i s c l e a r v a r n i s h can be wet o r dry-processed on a press and i m p a r t s a g l o s s y s u r f a c e b u t o n l y f a i r r u b o r a b r a s i o n r e s i s t a n c e . Water-base c o a t i n g s a r e g e n e r a l l y wet-processed on a s i x - c o l o r press and r e p l a c e t h e s o l v e n t - base press v a r n i s h system; t h e y p r o v i d e f a i r g l o s s and adequate t o f a i r a b r a s i o n resistance. L i q u i d l a m i n a t i o n c o a t i n g s a r e c a t a l y z e d , a p p l i e d o f f - p r e s s on a r o l l - c o a t e r , and d r i e d o r c u r e d i n a 3 0 - f o o t oven. Postcards and paperback book covers undergo t h i s process; t h e c o a t i n g s p r o v i d e e x c e l l e n t g l o s s and h i g h f i n i s h q u a l i t y , 4-1 3 Sheets of Tinplate, Aluminum or Tin-Free Steel Overprint Varnish Three Piece Can Forming Operations (Body Formation and End Capping) Preformed 2 Piece Aluminum Can Printing Roller Overprint Varnish Roller Decorated Product Figure 4-6. Radiation Curable Can Line Operation 4-1 4 (53,55) Surface Treatment and/or UV Curable Coating Application and Processing Untreated Steel Surface Treatment and/or UV Curable Coating Application and Processing Galvanized Steel Fiat Coil Strips / Cleaning Figure 4-7. Galvanized Steel Tubing Line 4-1 5 W (57) One of Four UV Lamps One of Three UV Lamps Galvanized Galvanized Steel or Aluminum Tube (Small Diameter) Aluminum Tube (Large Diameter) Figure 4-8. Cross Section o f Tube Line Surrounded by Three o r Four UV Lamps (57) 4-16 Table 4-4 PROPERTIES OF TYPICAL UV CURABLE COATINGS FOR GALVANIZED STEEL TUBING (57) X Formu1a t i on V i s c o s i t y (cps @25O C) Shrinkage Penci 1 Hardness Crosshatch and tape adhesion (% removal) MEK double rubs 90° bend and tape (% removal a t bend) . Tensile, p s i E l ongat ion, % Modulus, p s i Z Y 490 8.2 3H 410 7.3 3H 260 7.9 3H 0 100 10 40 15 100 10% 4,800 14 160,000 25% 85% 4,500 9 130,000 3,900 3 140,000 Y Z Fog Corrosion Data (Degree o f B1 i s t e r i n g ) 100% R e l a t i v e Humidity (ASTM 2247) a t 38 C. Formul a t ion X 250 Hours 500 Hours #10 #10 5% S a l t Spray (ASTM B-117) a t 35 C; pH 6.5 t o 7.2. Formul a t ion X 200 Hours 500 Hours B l i s t e r size: 5% #8 20% #8 85% #8 95% #8 80% #a 90% #8 Y Z 90% #4 Red r u s t 90% #4 Red r u s t #lO=No b l i s t e r s ; #8,6,4 represent b l i s t e r s i n i n c r e a s i n g s i z e , #4 being t h e l a r g e s t (see ASTM D-714). Note: X, Y, and Z represent d i f f e r e n t c o a t i n g f o r m u l a t i o n design parameters. 4-1 7 b u t t h e y are s o l v e n t based and r e q u i r e l a r g e amounts o f thermal energy and s e p a r a t e p r o c e s s i n g equipment. D i r e c t l a m i n a t i o n o f a p r o t e c t i v e p l a s t i c f i l m , such as a p o l y e s t e r , i s another method o f a c q u i r i n g h i g h g l o s s and a p r o t e c t i v e c o v e r i n g , b u t t h i s process i s expensive and r e l a t i v e l y slow compared t o t h e c o n v e n t i o n a l systems. R a d i a t i o n processing, p r e d o m i n a n t l y UV, p r o v i d e s a l i q u i d c o a t i n g system o r l i q u i d l a m i n a t i n g system c o m p a t i b l e w i t h t h e p r i n t e r ’ s e x i s t i n g equipment and c u r r e n t p r o d u c t i o n schedule. A r a d i a t i o n c u r a b l e c o a t i n g process a l l o w s f o r b e t t e r q u a l i t y t h a n t h e press v a r n i s h o r water-base c o a t i n g s , and e q u i v a l e n t p r o p e r t i e s t o a f i l m l a m i n a t i o n process. U l t r a v i o l e t c u r i n g i s now w e l l e s t a b l i s h e d ; hundreds o f l i t h - o g r a p h i c and f l e x o g r a p h i c presses a r e equipped w i t h UV lamp systems. beam equipment i s a l s o used on a operations . (59,601 Electron im i ed b a s i s i n v e r y h i g h volume p r i n t i n g F l o o r Coatings R a d i a t i o n c u r a b l e c o a t i n g s have made a major impact on manufacture o f permanent h i g h g l o s s , no-wax v i n y l f l o o r i n g t i l e s and sheet p r o d u c t s . The c o n v e n t i o n a l method o f s u r f a c e f i n i s h i n g these p r o d u c t s i n v o l v e s a p p l i c a t i o n o f a s o l v e n t (hydrocarbon o r water based) o r 100% s o l i d s two component urethane c o a t i n g t o t h e s u b s t r a t e (3-5 m i l t h i c k u n i f o r m c o a t i n g s ) f o l l o w e d b y low temperature thermal c u r i n g t e c h n i q u e s o r b y m o i s t u r e c u r i n g i s o c y a n a t e r e a c t i o n s under room temperature s t o r a g e and d r y i n g c o n d i t i o n s . (61) Radiation curable coatings (UV i s t h e energy system o f c h o i c e f o r t h i s i n d u s t r y ) c o n t a i n 100% s o l i d s and have b e t t e r o v e r a l l p h y s i c a l and chemical p r o p e r t i e s than t h e i r c o n v e n t i o n a l urethane polymer c o a t i n g c o u n t e r p a r t s (Table 4-5). These UV-- c u r a b l e c o a t i n g s a r e tough and can be e a s i l y a p p l i e d t o sheet o r c u t t i l e p r o d u c t l i n e s as shown i n F i g u r e 4-9. (62,631 Wire Coatings R a d i a t i o n ( U V ) c u r a b l e c o a t i n g s f o r w i r e a r e m a t e r i a l s t h a t can be processed i n t o h i g h l y cross-linked, tough, f l e x i b l e f i l m s . They can be coated and cured on e i t h e r b a r e o r i n s u l a t e d w i r e a t h i g h l i n e speeds u s i n g simple, low-cost equipment ( F i g u r e 4-10). F i l m c o a t i n g s o f 10 m i l s a r e e a s i l y a t t a i n a b l e i n one pass. A typical a p p l i c a t i o n i s magnet w i r e enamels, which a r e coated c o n v e n t i o n a l l y w i t h s o l u t i o n s c o n t a i n i n g t o x i c o r h i g h b o i l i n g p o i n t s o l v e n t s , r e s u l t i n g i n a i r p o l l u t i o n problems and consumption o f l a r g e amounts o f gas t o o p e r a t e t h e d r y i n g l c u r i n g ovens and a n t i p o l l u t i o n a f t e r b u r n e r s . U l t r a v i o l e t c u r a b l e magnet w i r e enamels e l i m i n a t e 4-1 8 Table 4-5 COMPARISON OF PROPERTIES FOR CONVENTIONAL AND RADIATION CURABLE COATINGS FOR VINYL FLOORING PRODUCTS (61) Abrasion Resistance Solvent Resistance 300 micrograms l o s t per c y c l e using a Tabor Abrader CS-10 wheel w i t h a 500 gram l o a d No r e s i s t a n c e t o methyl e t h y l ketone (MEK) Conventional Urethane Coating 75- 100 micrograms l o s t per c y c l e F a i r resistance t o MEK UV c u r a b l e u r e thane a c r y l i c s 20 micrograms l o s t per cycle Excel 1e n t MEK r e s i stance Urethane Coatinq None 4-1 9 S t a i n Resistance, L i pstick/Mustard None Mustard o n l y Excel 1ent Calendar Rolls Emboss and/or Print Direct Roll Coater UV Cure o n c QQQQ 12OOF bSheet J 110-220°F 0.2-15 sec 160-180°F 80-200 ft/min Sheet or Post-Cut Tile Forming Emboss and/or Print Cut Direct UV Cure Roll Coater - J O Precut Tile Figure 4-9. Radiation Curable Floor Sheet and Floor T i l e Product Line 4-20 (63) Ball Die II Mercury UV Lamp UV Curable Wire Coating I 1I A - Pulsed Xenon Lamp L I I I Figure 4-10. * ----E 1 Snubber I Typical Wire Coating Lines 4-21 (64) these problems w h i l e m a i n t a i n i n g acceptable performance p r o p e r t i e s ( T a b l e 4-61, (64) Other nonmagnet w i r e a p p l i c a t i o n s f o r r a d i a t i o n c u r a b l e polymers a r e as f o l l o w s : @ Primary i n s u l a t i o n where a c r o s s - l i n k e d polymer i s r e q u i r e d f o r thermal , and s o l v e n t r e s i s t a n c e . @ As an o v e r c o a t f o r g l a s s and t e x t i l e b r a i d w i r e t o p r e v e n t b r a i d u n r a v e l i n g and t o i m p a r t s o l v e n t and f l a m e r e s i s t a n c e . @ As a t h i n overcoat on p o l y v i n y l c h l o r i d e i n s u l a t e d w i r e t o impart: - - improved s l i p , improved heat r e s i s t a n c e , improved appearance As a t h i n overcoat on p o l y e t h y l e n e i n s u l a t e d w i r e t o i m p a r t : - improved heat r e s i s t a n c e , greater flame retardance Primary i n s u l a t i o n i n t h e 5-10 m i l t h i c k range f o r small-gage wire requiring t h i n wall insulation. @ T r a n s p o r t a t i o n (Automotive 1 Coatings R a d i a t i o n c u r a b l e c o a t i n g s ( u s i n g e l e c t r o n beam t e c h n i q u e s ) were f i r s t i n t r o d u c e d t o t h e automotive i n d u s t r y i n t h e e a r l y 7 0 ' s b y t h e F o r d Motor Company t o f i n i s h c e r t a i n t y p e s o f p l a s t i c i n s t r u m e n t panels. This technology was d i s c o n t i n u e d i n 1979 i n f a v o r o f o t h e r competing types o f m a n u f a c t u r i n g / f i n i s h i n g o p e r a t i o n s . R e c e n t l y , however, r a d i a t i o n c u r a b l e c o a t i n g s ( U V , EB, and I R ) have f o u n d an opport u n i t y i n f i n i s h i n g automotive hubcaps and wheel r i m s i n t h e Europe. I n one U.S. U.S., Japan, and o p e r a t i o n ( J a y P l a s t i c s , M a n s f i e l d , Ohio) a s p e c i a l i z e d metal s p u t t e r - c o a t i n g l i n e r u n s high-speed I R and UV c u r a b l e base c o a t i n g and t o p c o a t i n g materials. T h i s f i n i s h i n g l i n e ( F i g u r e 4-11) r e p r e s e n t e d a v e r y l a r g e c a p i t a l e x p e n d i t u r e f o r t h e company, which based i t s s e l e c t i o n on t h e s h o r t p r o d u c t c y c l e t i m e (70% s h o r t e r : 45 minutes versus 3 t o 4 h o u r s ) , h i g h r e f l e c t i v i t y p r o d u c t s u r f a c e s , and low c o s t p r o d u c t a c h i e v a b l e w i t h t h e new system. PRINTING The p r i n t i n g i n k i n d u s t r y , l i k e t h e c o a t i n g i n d u s t r y , has many s e c t i o n s , each one s u p p l y i n g a s p e c i a l market area. A rough e s t i m a t i o n o f t h e p r o d u c t l i n e d i v e r s i t y o f t h i s i n d u s t r y i s shown i n Table 4-7 which r e l a t e s v a r i o u s p r i n t e d p r o d u c t s w i t h t h e i r e q u i v a l e n t d o t d e n s i t y ( d o t s p e r i n c h ) requirements and p r i n t i n g p r e s s cap- 4-22 Table 4-6 AVERAGE PROPERTIES OR RADIATION CURABLE COATINGS IN MAGNET WIRE APPLICATIONS (64) Average Property Values ProPerties Modul us (psi ) Tensile (psi) Percent elongation Dielectric constant 60 Hz Dielectric constant 1 MHz Dissipation factor 60 Hz Dissipation factor 1 MHz Volume resistivity (ohm-cm) Surface resi sti vi ty Dielectric strength (volt/mil) Arc resistance (sec) Cut through (C) Snap test Scrape (9) 6,000-250,000 1,000-7,400 6-340 3.81-8.03 2.49-5.75 0.006-0.1 0.01-0.07 6.6x1Ol2-5. 1x1Ol5 3~10~-3.6~10~~ 865-1,050 3.2-111 290-335 Pass 600-1,200 Note: UV-curable coatings based on W. R. Grace thiol-polyene chemistry, 0.5 t o 10 mil films cured at line speeds up to 150 ppm. 4-23 Start Topcoat Line (60 ft) F i g u r e 4-11. F i n i s h i n g L i n e f o r High-speed 4-24 I R and UV Curable Coatings (65) T a b l e 4-7 P R I N T I N G INDUSTRY PRODUCT D I V E R S I T Y (661 W + E 22 E 8 3 0 8 3 8 6 0 Textile Imaging Wallpaper Wood Grain Paneling Address Labels, No OCR Computer Letters, No OCR Computer Letters, OCR Bus. Forms Imprint Bus. Forms, Complete Computer Reports Tags Mass Paperback “Best Seller” Hardbound Technical, Short Run Deluxe Hardbound Art Quality Book Scroll Book Proof Book Newspapers and Similar Gen. Magazines, etc. Quality, 4 Color sn 5 (3 Z gz Low Quality Medium Quality High Quality 8E 3Y 2-Color 4-Color, Quality 2 n Computer Line Printer Flexographic Press Offset Press Letterpress Gravure 4 0 4-25 200 400 600 800 1000 a b i l i t i e s r e q u i r e d t o produce them. (66) major p r i n t i n g processes: screen p r i n t . T h i s i n d u s t r y can be d i v i d e d i n t o f i v e l e t t e r press, l i t h o g r a p h y , f l e x o g r a p h y , gravure, and Each process and t h e r e q u i r e d equipment can be d e s c r i b e d as f o l l o w s . (67,681 L e t t e r p r e s s Process The l e t t e r p r e s s process ( F i g u r e 4-12) uses r a i s e d c h a r a c t e r s on f l a t o r c u r v e d s u r f a c e s which a r e i n k e d and then pressed i n c o n t a c t w i t h t h e paper, c o r r u g a t e d c a r t o n s , o r p l a s t i c f i l m s u b s t r a t e s i n o r d e r t o e f f e c t image t r a n s f e r . presses can r u n a t 1500 t o 20,000 These impressions per hour, use i n k s h a v i n g v i s c o s i t i e s between 2 and 400 p o i s e a t 25 C and can d e l i v e r f i l m t h i c k n e s s values i n t h e 3-5 p m r e g i o n . (69-71) Lithography I n a l i t h o g r a p h i c press o p e r a t i o n , b o t h t h e p r i n t i n g s u r f a c e and t h e i m p r e s s i o n a r e c a r r i e d on c y l i n d e r s . The p r i n t i n g s u r f a c e i s u s u a l l y a photo-hardened n a t u r a l polymer, rubber, or p l a s t i c . The n o n p r i n t i n g impression c y l i n d e r i s a w a t e r - w e t t a b l e high-energy s u r f a c e c o n s i s t i n g o f a g r a i n e d t h i n metal p l a t e (aluminum, zinc, s t a i n l e s s s t e e l ) surface. Another v a r i a t i o n o f t h i s t e c h n i q u e i s t o use a b i m e t a l p l a t e c o m p r i s i n g a p r i n t i n g area o f copper and a n o n p r i n t i n g area o f chromium. The p r i n t i n g p l a t e i s water dampened and i n k e d s u c c e s s i v e l y b y two s e t s o f r o l l e r s f o l l o w e d b y d i r e c t c o n t a c t w i t h a paper s u b s t r a t e . It i s also possible t o o f f s e t t h i s process such t h a t t h e i n k f r o m t h e image i s t r a n s f e r r e d f i r s t t o a rubber b l a n k e t e d c y l i n d e r and t h e n f r o m t h e r u b b e r s u r f a c e t o t h e paper, metal o r p l a s t i c s u b s t r a t e c a r r i e d on an i m p r e s s i o n c y i n d e r ( F i g u r e 4-13). o f l i t h o g r a p h i c i n k s range f r o m 100 t o 800 PO The v i s c o s i t es se a t 25 C and a r e u s u a l l y a p p l i e d a t f i l m t h i c k n e s s values i n t h e 2 t o 3 pm range. (72-74) F lexography Flexography i s a method o f p r i n t i n g s i m i l a r t o l e t t e r p r e s s o r " r e l i e f " p r i n t i n g , i n t h a t t h e image p o r t i o n s a r e r a i s e d above t h e nonimage areas f o r p r i n t i n g ( F i g u r e 4-14). F l e x o g r a p h i c p r i n t i n g employs rubber o r e l a s t o m e r i c p r i n t i n g p l a t e s and c y l i n d e r s , and uses v e r y r a p i d d r y i n g f l u i d i n k s having v i s c o s i t i e s i n t h e range o f 0.5 t o 5 p o i s e a t 25 C. The f l e x o g r a p h i c p r i n t i n g process i s unique among t h e processes o f p r i n t i n g i n t h a t i t was developed p r i m a r i l y f o r t h e p r i n t i n g o f a v a s t range o f packaging m a t e r i a l s . T h i s p r i n t i n g system has developed as a web f e d method o f p r o d u c i n g continuous r o l l f o r m f e e d i n g f o r wrappings, bag making, e t c . 4-26 c Q h 4- 27 Ink-Distributing Water Dampening System Blanket Cylinder Figure 4-1 3 . Lithography Process 4-28 (67) Substrate / Rubber Printing Plate 1 Ink Fountain F i gure 4-1 4. F1 exography Process (67) 4-29 Impression Cylinder The rubber p r i n t i n g p l a t e s used i n t h e process o f f e r advantages over o t h e r p r i n t i n g processes by t h e i r a b i l i t y t o p r i n t on an e x t r e m e l y wide range of m a t e r i a l s . Also advances i n techniques f o r p r i n t i n g m u l t i - c o l o r h a l f t o n e work have opened up new commercial areas o f t h e p r i n t market. I n i t s most common form, t h e f l e x o g r a p h i c p r i n t i n g method comprises a f o u r p a r t system, as f o l l o w s : 0 A rubber covered f o u n t a i n r o l l which t u r n s i n a b a t h o f i n k , 0 A smooth o r engraved i n k t r a n s f e r r o l l which r u n s f r o m f o u n t a i n r o l l t o printing plate, 0 A plate cylinder, 0 An impression c y l i n d e r - t o m a i n t a i n p r e s s u r e between paper, e t c . and t h e p l a t e c y l i n d e r . S l i g h t v a r i a t i o n s f r o m t h i s common f l e x o g r a p h i c p r i n t i n g system a r e p o s s i b l e depending on t y p e o f work t o be p r i n t e d and t h e equipment i n use; f o r example, a d o c t o r b l a d e may be i n t r o d u c e d i n s t e a d o f an i n k t r a n s f e r r o l l e r . Other v a r i a t i o n s a l l o w t h e f o u n t a i n r o l l e r t o i n k t h e impression p l a t e s d i r e c t l y w i t h o u t u s i n g an ink transfer roller. I n i t s b a s i c f o r m t h e p r i n t i n g press i s made up o f a combina- t i o n o f unwinding, p r i n t i n g , d r y i n g , and r e w i n d i n g u n i t s . (75,761 Gravure I n gravure p r i n t i n g a p r i n t i n g s u r f a c e i s e i t h e r c h e m i c a l l y o r m e c h a n i c a l l y engraved w i t h a range o f " c e l l s " which v a r y i n depth, c r o s s - s e c t i o n a l area, and d i s t r i b u t i o n , depending on t h e p r i n t design r e q u i r e d and t h e engraving method used. The p r i n t i n g c y l i n d e r may c o n s i s t o f a s o l i d i r o n base (mounted on a s h a f t ) on which a l a y e r o f copper i s d e p o s i t e d . T h i s copper l a y e r i s engraved and may sub- s e q u e n t l y be chromium p l a t e d t o g i v e r e s i s t a n c e t o wear d u r i n g l o n g press r u n s . A l t e r n a t i v e l y , t h e copper may be i n t h e f o r m o f a c y l i n d r i c a l s l e e v e which f i t s o n t o a separate base. The p r i n t i n g c y l i n d e r i s g e n e r a l l y mounted i n t h e g r a v u r e machine so t h a t i t i s p a r t i a l l y covered by t h e i n k which i s p l a c e d i n an i n k d u c t , and, when i t s r o t a t e d , a f l e x i b l e d o c t o r blade removes s u r f a c e i n k , l e a v i n g i n k o n l y i n t h e c e l l s . Thus when a s u b s t r a t e i s p l a c e d i n c o n t a c t w i t h t h e c y l i n d e r under t h e impression o f a 4-30 rubber backing r o l l e r , t h e i n k i n t h e c e l l s t r a n s f e r s t o t h e s u b s t r a t e . The grav- u r e i n k u s u a l l y d r i e s e n t i r e l y by e v a p o r a t i o n , t h e l i q u i d ( o r s o l v e n t ) p o r t i o n o f t h e i n k b e i n g removed d u r i n g t h e d r y i n g process. T h i s enables b o t h absorbent and nonabsorbent s u r f a c e s t o be p r i n t e d i n b o t h r e e l and sheet f o r m and, p r o v i d e d t h a t a l l l i q u i d components o f t h e i n k are removed, t h e p r i n t s may be r e r e e l e d i m mediately following printing. The v i s c o s i t y o f t h e i n k s used i n t h i s process v a r i e s f r o m 0.3 t o 2 p o i s e a t 25 C and t h e s u b s t r a t e s p r i n t e d may be paper, board, f o i l , o r f i l m m a t e r i a l s w i t h i n k f i l m t h i c k n e s s values between 8 t o 12 pm F i g u r e 4-15). (77,78) Screen P r i n t i n g Screen p r i n t i n g i s e s s e n t i a l l y a s t e n c i l i n g o p e r a t i o n i n which heavy i n k f i l m s ( i n k v i s c o s i t y values range f r o m 1,000 t o 4,000 cps w i t h f i l m t h i c k n e s s values r a n g i n g f r o m 30 t o 70 p m ) a r e a p p l i e d by brush o r b l a d e o n t o a preimaged p r i n t i n g screen s u b s t r a t e ( F i g u r e 4-16). The p r i n t i n g screen can be s i l k , n y l o n , o r m e t a l ; t h e image i s prepared on t h e screen b y p h o t o l i t h o g r a p h y techniques. Screen p r i n t i n g i s b e i n g used on t e x t i l e s , r i g i d and f l e x i b l e p l a s t i c s u b s t r a t e s (such as p l a s t i c cups, v i n y l w a l l p a p e r f i l m s ) , and p r i n t e d c i r c u i t boards f o r t h e e l e c t r o n i c s industry. (68) Radiation Curing Applications i n P r i n t i n g P r i n t i n g i n k manufacturers and p a r t i c l e board f i n i s h e r s were t h e f i r s t t o commerc i a l i z e UV t e c h n o l o g y as an a l t e r a t i v e t o c o n v e n t i o n a l t h e r m a l l y c u r e d ( n a t u r a l gas) solvent-based i n k and c o a t i n g systems. U l t r a v i o l e t r a d i a t i o n processing, r a t h e r than EB, was p r e f e r r e d because o f t h e compact s i z e , low c o s t , f a s t product i o n r a t e s , p r o d u c t design f l e x i b i l i t y , l a c k o f p o l l u t i o n , and ease o f maintenance. A i r p o l l u t i o n l e g i s l a t i o n i n C a l i f o r n i a and p o s s i b l e f o s s i l f u e l energy c o s t increases are s t i l l issues o f today t h a t f a v o r solvent-free, c u r a b l e i n k p r o c e s s i n g systems. low-energy r a d i a t i o n Other advantages o f UV and EB processes are t h e a b i l i t y t o r e p l a c e thermal oven c u r i n g u n i t s w i t h a s u b s t a n t i a l r e d u c t i o n i n c o s t and even g r e a t e r r e d u c t i o n i n f l o o r space requirements. I n multicolor printing o p e r a t i o n s t h e s i z e and c u r e speed a s s o c i a t e d w i t h UV o r EB processors a l l o w f o r i n s t a n t a n e o u s c u r i n g between s t a t i o n s and e l i m i n a t e s problems o f b l o c k i n g o r smearing. Since r a d i a t i o n c u r a b l e i n k s remain l i q u i d (100% r e a c t i v e l i q u i d systems) u n t i l a c t i v a t e d b y e l e c t r o m a g n e t i c r a d i a t i o n , t h e y do n o t d r y i n i n k r e s e r v o i r s as i s t h e case w i t h c o n v e n t i o n a l s o l v e n t a p p l i e d i n k systems. Some general charac- t e r i s t i c s o f UV o r EB c u r a b l e i n k f o r m u l a t i o n s a r e shown i n Table 4-8; a two c o l o r o f f s e t p r i n t i n g p r e s s o p e r a t i o n f i t t e d w i t h e i t h e r UV o r EB r a d i a t i o n p r o c e s s i n g 4-31 \ Impression Cylinder Printing Plate Cylinder Doctor Blade \ Ink Reservoir Fi gure 4-1 5. Gravure Printing Process 4-32 (67) Ink Applicator Blade Imaged Screen Figure 4-16. Screen P r i n t i n g Process 4-33 (67,681 Table 4 - 8 STANDARD (CONVENTIONAL THERMAL CURE) AND UV/EB INK FORMULATIONS (68) Lithoqraphic or Standard Ink Li tho1 Rubine Pigment Drying Oil A1 kyd Phenol i c Res i n Driers, Other Additives 470 Oil UV/EB Ink Pigment UV Vehicle Photoinitiatora Multi-functional Monomer Add i ti ve s 20% 1 5% 3 0% 4% 31% 29% 54% 5% 10% 2% 100% 100% Standard Gravure Ink Lithol Rubine Pigment Ni trocell ul ose Maleic Rosin Ester n-Propyl Acetate To1 uene UV/EB Ink Pigment 01i gomer 15.0 4.0 60.0 Monomer Photoinitiatora Additives 27.4 19.0 100.0% UV/EB Curable Flexo Ink Pigment 01i gomer Monomer Photoinitiatora Additives 11.0% 12.0 2.0 35.0 30.0 10.0 44.0% 15.0 32.0 5.0 4.0 100.0% 100.0% UV/EB Screen Ink Standard Screen Ink Lithol Rubine Pigment Thermoplastic Vinyl Resin Thermoplastic Acryl ic Resin Addi ti ves Cyclohexanone IsoDhorone Butyl Cell os01 ve 5.0 6.0 100.0% Standard FlexoqraDhic Ink Lithol Rubine Pigment Polyamide Resin Add i ti ves Ethanol N- ProPanol N-Probyl Acetate 47.6% 10.0% 7.0 30.0% Pigment 60.0% 10.0 01i gomer 15.0 15.0 5.0 Monomer Photoinit atora Additives 15.0 5.0 5.0 20.0 10.0 10.0 100.0% 100.0% . . Evaluation properties: Cure, scr tch resistance, rub re i stance, flexibility, adhesion, gloss, pr n t strength , and odor after curing. m o t o i n i t i a t o r is not required in the EB ink formulations. 4-34 equipment i s shown i n F i g u r e 4-17. (79,801 The m a j o r i t y o f t h e p r i n t i n g i n d u s t r y u t i l i z e s UV l i g h t p r o c e s s i n g equipment ( o v e r 300 i n s t a l l a t i o n s ) , b u t EB p r o c e s s i n g o f i n k m a t e r i a l s i s b e i n g used i n s p e c i a l v e r y h i g h q u a l i t y g r a p h i c a r t s a p p l i c a t i o n areas where speed and c e r t a i n p r o d u c t i o n techniques can o n l y be achieved w i t h EB technology. The major areas i n t h e p r i n t i n g market p e n e t r a t e d by r a d i a t i o n p r o c e s s i n g ( a l m o s t e x c l u s i v e l y U V ) have been i n t h e o f f s e t ( l i t h o g r a p h i c ) , s i l k screen, and, t o some degree, f l e x o g r a p h i c areas; v e r y l i m i t e d i n r o a d s have been made i n t o g r a v u r e market segments. P a r t o f t h e reason f o r l a c k o f market p e n e t r a t i o n i n t h e g r a v u r e area i s due t o competing t e c h n o l o g i e s such as water-based i n k s and s o l v e n t r e c l a i m o r i n c i n e r a t i o n equipment m o d i f i c a t i o n s now r e a d i l y a v a i l a b l e f o r i n s t a l l a t i o n on e x i s t i n g p r i n t i n g equipment. The two most i m p o r t a n t areas f o r UV p r i n t i n g i n k process- i n g o p e r a t i o n s a r e i n t h e p u b l i s h i n g / p r i n t i n g t r a d e (books , p e r i o d i c a l s , composer p r i n t i n g ) and packaging t r a d e (metal and p l a s t i c c o n t a i n e r b o t t l e l a b e l s , f o l d i n g paperboard c a r t o n s f o r f o o d and beverages, wraps, d e t e r g e n t s , tobacco, cosmetics, and medicines 1. A unique method o f p r i n t i n g rounded p l a s t i c c o n t a i n e r s has been demonstrated u t i - l i z i n g UV energy d i r e c t e d a t t h e p r o d u c t on a s p i n n i n g mandrel apparatus r a t h e r t h a n on a l i n e a r p r o d u c t i o n l i n e c o n f i g u r a t i o n ( F i g u r e 4-18). Concepts o f u l t r a - v i o l e t d r y i n g o f i n k s on p l a s t i c c o n t a i n e r s (cups, t u b s , j a r s , tubes, and b o t t l e s ) has d r a m a t i c a l l y reduced t h e u n i t c o s t o f p r o d u c t s w i t h an average i n c r e a s e o f 33% p r o d u c t o u t p u t p e r p r i n t e r due t o e l i m i n a t i o n o f c o n t a i n e r h a n d l i n g problems. (81) ADHESIVES The adhesives i n d u s t r y can be c a t e g o r i z e d as d i f f u s e and u n s t r u c t u r e d ; p r o b a b l y more t h a n 1,000 manufacturers s u p p l y a v e r y d i v e r s e end-use market area (Table 4-9). Approximately e i g h t major producers account f o r about 30% o f t h e o u t p u t f o r t h i s industry. The p r i n c i p a l adhesives b y t y p e a r e s y n t h e t i c r e s i n s , n a t u r a l r e s i n s , s e a l a n t s , and c a u l k s . These broad market area c l a s s i f i c a t i o n s ( F i g u r e 4-19) cover a wide range o f p r o d u c t s t h a t use a p p r o x i m a t e l y 38 d i f f e r e n t t y p e s of polymer m a t e r i a l s ( T a b l e 4-10) b r o a d l y c l a s s i f i e d as p r e s s u r e s e n s i t i v e o r nonpressure sensitive. The same general p o l y m e r - s o l v e n t c l a s s i f i c a t i o n scheme ( h i g h s o l i d s , powder, 100% s o l i d s , e t c . ) as t h e one f o r t h e c o a t i n g s i n d u s t r y i s used i n t h e adhesives i n d u s t r y ( T a b l e 4-11). (82) R a d i a t i o n p r o c e s s i n g o f adhesive mate- r i a l s i n v o l v e s a major use o f s y n t h e t i c polymers and i s commonly a s s o c i a t e d w i t h a s t r u c t u r a l o r s p e c i a l t y market area. A breakdown o f t h i s s t r u c t u r a l and s p e c i a l t y adhesive market area f o r 1983 i s shown i n T a b l e 4-12. 4-35 (83) EB Generator Triode System Two Colour Off Set Roll on PaDer uv cure Processing Unit P I w l n Ink Figure 4-17. I I Offset Press Process w i t h UV Cure and EB Cure Processing Units (a) On-Mandrel Dryer Configuration for Tapered Wall Containers (64 sq ft Total Processor Area Required) - Light Shielding Take Off Tube to Counter Print "OV Pretreat for Adhesion Promotion Conventional Cup Dryer Lamp Linear Configuration (184 sq ft Total Processor Area Required) Figure 4-18. Dryer Configurations 4-37 (81) Table 4-9 ADHESIVES MARKET SUPPLIERS AND PRODUCTS (82) Packaging f 0 Corrugated board manufacture Carton side-seam and closures Composite bonding of disposable products Bags Labels cups Cigarette and filter manufacture Envelope manufacture Remoi s tenab 1e products Flexible laminates Specia1ty packages Composite containers and tubes Tapes 03 Construction Acoustic ceiling panels, floor tile, and continuous flooring installation Ceramic tile installation Counter top lamination Manufacture of prefabricated beams and trusses Carpet 1 ayment adhesives Flooring underlayment adhesives Installation o f prefinished panels Joint cements Curtain wall manufacture Wall covering instal1 ation Dry wall lamination adhesives Other Nonrigid Bonding Fabric combining Apparel 1 aminates Shoe assembly Sports equipment Book binding Rug backing Flocking cements Air and liquid filter manufacture Packaging tapes Industrial tapes Surgical tapes Masking tapes Consumer tapes Consumer Adhesives Do-it-yourself products Model and hobby supplies School and stationery products Decorative films I I Transportati on Auto, truck, and bus interior trim attachment Auto, truck, and bus exterior trim attachment Vinyl roof bonding Auto, truck, and bus assemblies Weatherstrip and gasket bonding Aircraft and aerospace structural assemblies. Other Rigid Bonding Shake proof fastening Furniture manufacture Manufacture of millwork, doors, kitchen cabinets, vanitories Appliance assembly and trim attachment Houseware assembly and trim attachment TV, radio, and electronics assembly Machinery manufacture and assembly Supported and unsupported film 1 ami n ati on Manufacture of sandwich panels A B C D E F Figure 4-19. = = = = = = Construction Transportation Rigid Packaging Non-Rigid Consumer Adhesive Market Area C l a s s i f i c a t i o n 4-39 15% 3% 5yo 46% 19% 5% 7% Table 4-10 ADHESIVES INDUSTRY POLYMER-SOLVENT CLASS IF I CATION (82) Synthetics Acrylics Modified acrylics Ami nopl asts Anaerobi cs Cyanoacrylates Epoxies Butyl rubber Nitrile (NBR) rubber Neoprene Phenol i cs Polyamides Polyi sobutylenes Polyesters (thermoplasti c) Polyesters (thermosetting) Polyethylene Other po 1 yo 1 ef i ns Block SBR polymers (example: Kraton D) Other SBR resins (styrene butadiene rubber) Other styrene polymers and copolymers Silicones Urethanes (thermoplastic) Urethanes (thermosetting) Acrylic-vinyl acetate copolymers Ethylene-vinyl acetate copolymers (50+% ethylene) Vinyl acetate-ethylene copolymers (50+% vinyl acetate) Other vinyl acetate polymers and copolymers Other vinyls (including polyvinyl alcohol) Natural Bitumens Casein Cellulosics Hydrocarbon resins Terpene resins Rosin and rosin esters Natural rubber Reclal” rubber Starches and dextrines Others 4-40 Table 4-11 ADHESIVE TECHNOLOGIES Non-Pressure Sensi t i v e s (82) Pressure S e n s i t i v e s Solvent-borne systems Waterborne systems N o n - v o l a t i l e s o l i d o r l i q u i d systems Hot m e l t s (100% s o l i d s ) Powders (100% s o l i d s ) Radia t io n c u r a b 1e systems (100% s o l i d s ) Two-part systems Solvent-borne systems Waterborne systems Hot m e l t s R a d i a t i o n c u r a b l e systems R e a c t i v e systems Pressure s e n s i t i v e adhesives ( P S A ) a r e a p o t e n t i a l s p e c i a l t y market f o r r a d i a t i o n c u r e d polymers; p r e s s u r e s e n s i t i v e ( P S ) tapes and l a b e l s c o u l d c o s t l e s s t o manuf a c t u r e b y r a d i a t i o n p r o c e s s i n g and c o u l d e x h i b i t improved performance p r o p e r t i e s over c o n v e n t i o n a l t h e r m a l l y cured s o l v e n t based adhesive systems. This technology u t i l i z e s a l a r g e volume o f polymers a p p l i e d t o preformed h e a t - s e n s i t i v e t a p e subs t r a t e s and i s s u i t e d t o b o t h EB and UV p r o c e s s i n g o p e r a t i o n s . (84 L 85) H e a t - a c t i v a t e d adhesives, h o t m e l t s ( d r y f i l m s t h a t become t a c k y upon a p p l i c a t i o n o f h e a t and p r e s s u r e and upon c o o l ing f o r m h i g h - p e r f ormance bonds 1 a r e commerci a1 l y a v a i l a b l e as t a c k - f r e e f i l m s supported on paper, f o i l , f a b r i c , board, o r f i l m subs t r a t e s ( F i g u r e 4-20). (86) R a d i a t i o n p r o c e s s i n g a l l o w s f o r t h e manufacture o f t h e s e p r o d u c t s w i t h o u t t h e use o f s o l v e n t s f o r improved e f f i c i e n c y , s a f e t y , a i r p o l l u t i o n c o n s t r a i n t s , and lower o p e r a t i n g c o s t s ( T a b l e 4-13). L a m i n a t i n g adhes- i v e s o r adhesives f o r f l e x i b l e packaging i s another area w e l l s u i t e d f o r r a d i a t i o n processing operations. A l a m i n a t o r c o a t e r w i t h a EB ( f l a t p l a n a r cathode) c u r i n g head i s shown i n F i g u r e 4-21 and a t y p i c a l f i l m l a m i n a t i o n p r o d u c t performance sheet i s shown i n T a b l e 4-14. Some general a p p l i c a t i o n areas f o r h e a t - a c t i v a t e d adhesive f i l m s and l a m i n a t e s t r u c t u r e s a r e g i v e n i n Table 4-15. (86-88) ELECTRONICS AND COMMUNICATIONS R a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s has a t t a i n e d major importance i n v a r i ous segments o f t h e e l e c t r o n i c s and communication i n d u s t r i e s . A typical printed c i r c u i t board ( F i g u r e 4-22) i l l u s t r a t e s some o f t h e many d i f f e r e n t c l a s s e s o f p o l y m e r i c m a t e r i a l s used i n i t s manufacture. Other m a t e r i a l s used i n t h e e l e c t r o n i c s i n d u s t r y a r e s i l i c o n ( s u b s t r a t e f o r i n t e g r a t e d c i r c u i t s and c h i p s ) , p h o t o r e s i s t s (used i n p r e p a r i n g c i r c u i t s ) , dopants f o r c i r c u i t a c t i v a t i o n , t h i n f i l m (conformal 1, and e n c a p s u l a t i n g m a t e r i a l s . 4-41 Table 4-12 STRUCTURAL AND SPECIALTY ADHESIVES MARKETS ($ million) (E-) 1983 Au tomot i ve 42 Aerospace 100 Construction 460 Biomedical /dental 12 Electronic/pott i ng 125 Nonrigid 200 98 Rigid bonding (anaerobic, cyanoacrylate, etc. ) 1,037 Total Table 4-13 ADVANTAGES OF HIGH-ENERGY ELECTRON ADHESIVES (86) Low volatility, 100% convertible Rapid cure rate Air pollution eliminated or reduced substantially Catalysts and initiators are eliminated No thermal postcure required Improved process control Outstanding adhesive film properties: durability, adhesion to organic substrates, reduced shrinkage, and reduced built-in stresses Ability to use heat-sensitive organic substrates Potential for cure of composite structures 4-42 Supported Adhesive Film Finished Product Self-supported Adhesive Film h fi;:;, I 1 H - 1 f n U Radiation Processing uv or EB- I Extrusio Finished Product Figure 4-20. Adhesive F i l m Systems 4-43 (g6) High Energy Electrons Nip / Secondary Film Unwind Impression Roll Primary Film Unwind \ Gravure Roll Figure 4-21. Laminator Coater System 4-44 Rewind (87) Table 4-14 TYPICAL PRODUCTS PREPARED WITH A PLANAR CATHODE ELECTRON PROCESSOR (87) Ad hes ive Structure R a d i a t i o n Curable Acrylic/Urethane (A) Low Density Polyethylene (LDPE)/SaranCoated Po 1y e s t e r s Uncoated Polyester/LDPE Oriented Nylon/LDPE 1.5 t o 2.0 Mrads Voltage 155 KV Bond Speed (A)-800 g ( d e s t r u c t i v e ) ; (B)-50 g ( d e s t r u c t i v e ) (C)-1000 g ( d e s t r u c t i v e ) Web Strength 25 fpm Nip Temperature Room Temperature Pan Temperature Room Temperature Gravure A p p l i c a t o r 300 L i n e quadrangular Heat Seal Bond 6500 g/in. Heat Seal Conditions Temperature 350" F Dwell Time 3 sec. Psi 50 4-45 Table 4-15 ADHESIVE FILM APPLICATION AREAS (86,88) Applications for Heat Activated Adhesive Films 0 Decals, Labels, Nameplates 0 Garment Repair 0 Bookbinding 0 Carpet Underlay 0 Construction Panelling 0 Furniture Edge Veneer 0 Thermal Insulation 0 Multilayer Laminates 0 Platen Press (credit cards) 0 Protective and Decorative Sheets (printed patterns, metal 1 ized films, particle board, furniture, wall components) Upholstery Applications and Structures for Laminate Adhesive Films 0 Food Packaging 0 Film/Foil 0 Flexible Packaging (Non-food) 0 Fi lm/Foi 1/Fi lm 0 Film/Film 0 Paper 4-46 Mylar wrapped Silicone molded integrated circuit Plastic molded pi..;:y I / solder maskant EPOXY Conform a I acry Iic coating on entire assembly Teflon sleeve for wire Epoxy staking compound Figure 4-22. P r i n t e d Wiring C i r c u i t Board Showing Diverse Uses o f P l a s t i c M a t e r i a l s (90) 4-47 R a d i a t i o n p r o c e s s i n g equipment used t o manufacture e l e c t r o n i c components and systems covers t h e e n t i r e e l e c t r o m a g n e t i c spectrum, such as I R , U V - v i s i b l e , e l e c t r o n beam, plasma and X-ray wavelengths o f energy. Use o f r a d i a t i o n p r o c e s s i n g o f mate- r i a l s i n commercial e l e c t r o n i c devices i s growing a t an annual r a t e o f about 10 t o 25%. The d r i v i n g f o r c e f o r u s i n g r a d i a t i o n p r o c e s s i n g over c o n v e n t i o n a l thermal c u r i n g o p e r a t i o n s can be a t t r i b u t e d i n p a r t t o t h e f o l l o w i n g f a c t o r s : S u p e r i o r p r o d u c t p r o d u c t i o n and performance c a p a b i l i t i e s . Less f l o o r space r e q u i r e d f o r t h e equipment. F a s t e r l i n e speeds. Greater energy e f f i c i e n c y ( i t r e q u i r e s as much as 80 p e r c e n t l e s s energy t o c o n v e r t f i l m s ) . Fewer problems i n meeting government p o l l u t i o n r e q u i r e m e n t s Higher f l a s h p o i n t s . Conversion w i t h o u t d i s t o r t i o n o f h e a t - s e n s i t i v e s u b s t r a t e s . Unique m a n u f a c t u r i n g f e a t u r e s . The f o l l o w i n g paragraphs p r o v i d e a d i s c u s s i o n o f s e l e c t e d e l e c t r o n i c a p p l i c a t i o n s where r a d i a t i o n c o n v e r s i o n i s b e i n g used. I n some cases i t i s t h e major means o f processing; i n o t h e r s i t i s o n l y b e g i n n i n g t o be used as a p r o d u c t p r o d u c t i o n o p e r a t i on. (89,90 1 Integrated C i r c u i t s ( I C ) I n t e g r a t e d c i r c u i t s c o n t a i n t e n s o f thousands o f c i r c u i t elements and e l e c t r o n i c components which p r o v i d e memory and l o g i c c a p a b i l i t i e s f o r devices r e q u i r e d by t h e computer and communications i n d u s t r i e s . The m a n u f a c t u r i n g process used t o prepare t h e s e I C devices i n v o l v e s complex i n t e r r e l a t i o n s h i p s between m a t e r i a l s and f a b r i c a t i o n o p e r a t i o n s such as those shown i n F i g u r e 4-23. F i l m formation i s through thermal (800 t o 1200 C ) o x i d a t i o n processes t o f o r m s i l i c o n d i o x i d e o r chemical vapor d e p o s i t i o n ( C V D ) t o produce s i l i c o n n i t r i d e s u r f a c e s . I m p u r i t y doping i s performed b y thermal d i f f u s i o n o f boron o r phosphorus, o r b y i o n i m p l a n t a t i o n . L i t h o g r a p h y and e t c h i n g a r e used t o c r e a t e c i r c u i t s on s i l i c o n s u r f a c e s . Mounting, l e a d attachment, and e n c a p s u l a t i o n a r e t h e f i n a l processes r e q u i r e d t o manufacture t h e i n t e g r a t e d c i r c u i t device. The t h r e e areas o f most i n t e r e s t t o r a d i a t i o n p r o - c e s s i n g a r e l i t h o g r a p h y , mounting, and e n c a p s u l a t i o n . (91,921 Lithography L i t h o g r a p h y i s one o f t h e most i m p o r t a n t r a d i a t i o n processes u t i l i z e d b y t h e e l e c tronics industry. L i t h o g r a p h y i s used t o d e f i n e v e r y s m a l l geometries o r c o n n e c t i o n / i s o l a t i o n pathways r e q u i r e d i n I C m a n u f a c t u r i n g technology. 4-48 I n the Single-Crystal Silicon Slicer * SiO, or Si,N, Film Formation (Thermal or CVD) Photo, E-Beam or X-Ray Lithography Etching 4 Impurity Doping (Thermal Diffusion or Ion Implantation) 1 P cc) 2 I I cllii, Placement Into Holder , * Lead Attachment F Encapsulate - Integrated Current L Figure 4-23. I I IC Manufacturing Process (91) process a s i l i c o n s l i c e i s s p i n coated w i t h a u n i f o r m t h i n f i l m o f r a d i a t i o n s e n s i t i v e polymeric material c a l l e d a r e s i s t . I f t h e l i t h o g r a p h y i s t o be performed o p t i c a l l y , t h e IC p a t t e r n i s f i r s t c r e a t e d on a mask which i s t h e n t r a n s f e r r e d t o t h e r e s i s t v i a a number o f o p t i c a l techniques ( d i r e c t c o n t a c t p r i n t i n g u s i n g c o l l i mated sources o f UV o r v i s i b l e l i g h t ) o r o t h e r l i g h t p r o j e c t i o n t e c h n i q u e s ( F i g u r e 4-24). L i g h t s e n s i t i v e r e s i s t s o r p h o t o r e s i s t s a r e g e n e r a l l y c l a s s i f i e d i n t o two groups; n e g a t i v e and p o s i t i v e . Negative p h o t o r e s i s t s i n v o l v e t h e c r o s s - l i n k i n g and g e l a - t i o n o f t h e polymer, t h e r e b y p r o d u c i n g an i n s o l u b l e f i l m . The t h r e e main compon- ents incorporated i n a negative photoresist formulation are a chemically reactive polymer, a p h o t o s e n s i t i v e agent, and a s o l v e n t . t h e p r o d u c t i o n o f t h i s t y p e o f r e s i s t are: Among t h e r e a c t i o n s i n v o l v e d i n p h o t o c y c l o a d d i t i o n r e a c t i o n s (such as t h e p h o t o c y c l o d i m e r i z a t i o n o f cinnamic a c i d s and i t s a l k y d e s t e r s 1, n i t r e n e react i o n s , and f r e e - r a d i c a l a d d i t i o n r e a c t i o n s (Table 3-4). (42-1 A p o s i t i v e p h o t o r e s i s t makes use o f an i n c r e a s e i n a c i d i t y upon exposure t o r a d i a - t i o n , t h e r e b y p r o d u c i n g a f i l m o f g r e a t e r s o l u b i l i t y i n a d i l u t e , aqueous base solution. The main components o f a p o s i t i v e p h o t o r e s i s t f o r m u l a t i o n a r e an a c i d i c polymer, a p h o t o s e n s i t i v e i n h i b i t o r , and a s o l v e n t . The two main t y p e s o f a c i d i c polymers used i n t h e development o f p o s i t i v e p h o t o r e s i s t s a r e novolacs and a c r y l ics . P o s i t i v e p h o t o r e s i s t s r e q u i r e l o n g e r exposure and more expensive m a t e r i a l s than negative photoresists. P o s i t i v e p h o t o r e s i s t s , however, have good c o n t r a s t and r e s i s t s w e l l i n g d u r i n g development. The image which i s produced on t h e s u b s t r a t e i s t h e same as t h e image on t h e photomask. q u i t e as c l e a r . Negative p h o t o r e s i s t images a r e n o t While t h e developer d i s s o l v e s t h e unexposed r e s i s t , i t a l s o causes s w e l l i n g i n t h e exposed r e g i o n s . The s w e l l i n g causes severe d i s t o r t i o n and en- largement o f t h e image ( F i g u r e 4-25). (42,931 Electron-beam d i r e c t p a t t e r n i n g can be performed w i t h o u t a mask b y u s i n g a c o n t r o l l a b l e electron-beam processor and an e l e c t r o n - s e n s i t i v e (degradable o r c r o s s l i n k a b l e ) r e s i s t m a t e r i a l ( F i g u r e 4-26). L i t h o g r a p h y has a l s o been achieved w i t h X-rays b y p r o j e c t i o n t h r o u g h a s p e c i a l mask i n c l o s e p r o x i m i t y t o t h e r e s i s t s u r f a c e ( F i g u r e 4-27). The r e s o l u t i o n c a p a b i l i t i e s f o r each o f t h e f o u r l i t h o g r a p h y system i s g i v e n i n Table 4-16. (94) 4-50 Mirror or Reflector Filter and Condenser Lens System \ I Mask I - Reduction Lens System \ Wafer F i gure 4-24. Lithography Process 4-51 (92) Light Illuminated Areas a x Silicon Dioxide Silicon Substrate Negative Resist: Positive Resist: a Rendered Insoluble nRendered Soluble 1 1 B ................................ I Etched Film Patterns: F i g u r e 4-25. Schematic o f C o n t a t t P r i n t i n g U s i n g P o s i t i v e and Negative R e s i s t s (92,93) 4-52 Electron Gun X-Y Mask Data and Computer ControI / Deflection Coils 0 I e- f Figure 4-26. Electron-Beam Patterning System 4-53 (92) x-ray Target Electron Beam Mask Absorber Resist Wafer Figure 4-27. X-Ray Lithography System 4-54 (92) Table 4-16 PHOTOLITHOGRAPHIC PROCESSES Lithography Resolution System Optical uv A (94) Present Future 1.5 p m 0.75 p m 0.5 0.25 pm X-ray 1000 R 100 W Scanned E Beam 1000 W (10 8) 5 R pm = angstrom o r 10-8 cm When t h e l i t h o g r a p h y process i s completed, t h e wafer has been s u b j e c t e d t o s e v e r a l c y c l e s o f exposure, e t c h i n g , washing, doping, and baking; and i t may c o n t a i n as many as 500 i n t e g r a t e d c i r c u i t s o r c h i p s . The wafer i s then c u t i n t o i n d i v i d u a l c h i p s , each o f which i s t e s t e d by a computerized probe. A 10% y i e l d o f w o r k i n g c h i p s i s c o n s i d e r e d good f o r a new c h i p i n i t s f i r s t p r o d u c t i o n r u n . Adhes ives and Encapsu 1a n t s Once a c h i p has been t e s t e d i t can be a t t a c h e d t o a leadframe ceramic package t h r o u g h t h e use o f e l e c t r i c a l l y c o n d u c t i v e adhesives o r nonconductive adhesives. F i g u r e 4-28 i s a schematic o u t l i n e f o r c h i p placement on a board s u r f a c e u s i n g c o n d u c t i v e o r nonconductive adhesive systems. P r o p e r t i e s o f two adhesive systems ( c o n v e n t i o n a l , thermal and U V ) a r e d e s c r i b e d i n Table 4-17 and c e r t a i n s u r f a c e mounting d e v i c e r e q u i r e m e n t s a r e g i v e n i n Table 4-18. Encapsulants used i n t h e e l e c t r o n i c s i n d u s t r y a r e p r i m a r i l y epoxy and s i l i c o n - b a s e d polymer systems, a l t h o u g h urethanes and a c r y l i c s can be used t o some degree i n these applications. Encapsulants a r e p r i m a r i l y a p p l i e d i n a m o l d i n g o p e r a t i o n o r f i l l i n g o p e r a t i o n and a r e u s u a l l y t h e r m a l l y c u r e d r a t h e r than r a d i a t i o n processed, a l t h o u g h p h o t o c u r a b l e epoxy r e s i n s m i g h t be c o n s i d e r e d f o r c e r t a i n p o t t i n g o r encapsulation operations. (95) 4-55 UV Preirradiation ,- P I am m -B-rCl- ul cn Adhesive Dispensing Chip Placement Figure 4-28. i l I I Ultraviolet Curing / &-fi-!25 PC-Board Inversion Insertion of Conventional Components Fluxing, Soldering, and Cleaning Automation of Surface-Mounted Boards 1 , I Table 4-17 PROPERTIES OF TWO STAKING COMPOUNDS FOR SMD THERMAL VERSUS U V CURABLE MATERIALS (90,91 ,95) Thermal uv EPOXY Epoxy acrylate 70,000-600,000 CP 60,000-300,000 CP 1.19 1.2 Gap filling Up to 0.010 in. up to 0.010 in. Cure times Infrared Oven 90 sec 8 150OC 10 min 8 1OOOC -- 90 sec 8 15OOC -15 sec 8 2000CW/in. Cured Properties Shore hardness Chip shear strength Max. temperature resistance Solvent resistance 850 >10 lb 255OC - 15 sec Good 850 >10 lb 255OC - 15 sec Good Electric Properties Volume resistivity 8 25OC Breakdown voltage Dielectric constant 1 x 1016 ohm-cm 2000 V/mil g3.5 1 x 10l2 ohm-cm >1500 V/mil z4 Composition Viscosity Specific gravity uv Note: Surface Mount Device (SMD) 4-57 Table 4-18 ADHESIVES SURFACE MOUNTING D E V I C E (SMD) REQUIRENENTS (90,91 , 9 5 ) SMD Attach Using Conductive Adhesive Screen p r i n t adhesive Pick and place components Cure (1-15 minutes) Test and rework components SMD Adhesives - Nonconductive The d o t s i z e must stand a t l e a s t 0.006 i n c h h i g h The d o t cannot f l o w and spread t o t h e solder path When t h e c h i p i s placed, t h e adhesive must have "tack", i.e., i t must h o l d t h e chips i n place through movement i n t h e p r o d u c t i o n l i n e The adhesive must hold t h e c h i p i n place d u r i n g t h e s o l d e r o p e r a t i o n SMD A t t a c h Using Solder Apply s o l d e r P r e - t i n components Dispense nonconductive adhesive Pick and p l a c e components Cure adhesive Prebake (80°C f o r 30 minutes) Solder r e f l o w (210°C t o 250°C f o r 30 t o 60 seconds) Clean boards, remove f l u x (2-4 minutes) Test and rework components Note: Surface Mount Device (SMD) 4-58 P r i n t e d C i r c u i t Boards P r i n t e d c i r c u i t boards (PCB) can be manufactured u s i n g t h r e e t y p e s o f p h o t o r e s i s t products: screen p r i n t i n g i n k s , l i q u i d p h o t o r e s i s t s , and d r y f i l m l a m i n a t i o n photoresists. U l t r a v i o l e t r a d i a t i o n c u r a b l e screen p r i n t i n g i n k s a r e p r o j e c t e d t o p l a y a more s i g n i f i c a n t r o l e than t h e o t h e r two p h o t o r e s i s t t e c h n i q u e s i n t h e f u t u r e f a b r i c a t i o n o f p r i n t e d c i r c u i t boards. The m a j o r t y p e s o f p r i n t e d c i r c u i t boards o f i n t e r e s t t o t h e e l e c t r o n i c s i n d u s t r y a r e d e s c r i b e d i n T a b l e 4-19. The t y p e s o f screenable p h o t o r e s i s t u l t r a v i o l e t c u r a b l e o r t h e r m o s e t t i n g i n k s used i n PCB f a b r i c a t i o n a r e (1) imaging r e s i s t s , ( 2 ) e l e c t r i c a l l y c o n d u c t i v e i n k s , ( 3 ) s o l d e r masks, ( 4 ) masking i n k s , and ( 5 ) conformal c o a t i n g s . (68,891 Imaging o r p a t i n g r e s i s t s a r e used t o c r e a t e c i r c u i t pathways and p r o t e c t s p e c i f i c areas on t h e PCB f r o m chemical o r e l e c t r o c h e m i c a l e t c h i n g processes. These r e s i s t s a r e designed t o be removable a f t e r t h e e t c h i n g o r p l a t i n g s t e p has been completed. E l e c t r i c a l l y c o n d u c t i v e i n k s can be used t o c r e a t e c i r c u i t s d i r e c t l y w i t h o u t having t o be imaged o r etched. I n a new PCB f a b r i c a t i o n process t h e c i r c u i t p a t t e r n i s p r i n t e d d i r e c t l y o n t o a t r a n s f e r paper b y a screen o r g r a v u r e process u s i n g an e l e c t r i c a l l y c o n d u c t i v e t h e r m a l l y cured i n k system. T h i s p a t t e r n e d t r a n s f e r paper s u b s t r a t e i s t h e n overcoated w i t h an adhesive, i n s e r t e d , and t r a n s f e r r e d t o t h e PCB substrate. Removal o f t h e paper leaves a m e t a l - r i c h s u r f a c e a t t h e t o p o f t h e PCB which i s immediately a c c e s s i b l e f o r s o l d e r i n g o r e l e c t r o p l a t i n g processes. (96 A 97) S o l d e r masks a r e p r o t e c t i v e c o a t i n g s a p p l i e d t o c i r c u i t boards b y s c r e e n i n g t e c h niques t o mask e l e c t r i c a l conductor t r a c k s f r o m t h e s o l d e r i n g o p e r a t i o n . c u r e d f i l m s remain as a permanent p a r t o f t h e c i r c u i t board assembly. These Masking i n k s , u n l i k e t h e o t h e r screen i n k systems, have no e l e c t r i c a l f u n c t i o n on t h e f i n i s h e d board and a r e o n l y used t o mark l o c a t i o n s f o r t h e i n s e r t i o n o f c i r c u i t components , dates , s e r i a l numbers, e t c . Conformal c o a t i n g s , however , p r o v i d e e l e c - t r i c a l i n s u l a t i o n f o r t h e e n t i r e PCB and o f f e r b a r r i e r p r o t e c t i o n f r o m t h e e n v i r o n ment. The t r e n d f o r t h e PCB f a b r i c a t i o n i n d u s t r y i s t o use more UV-curable materials. A sumnary o f i m p o r t a n t p r o p e r t i e s o r r e q u i r e m e n t s f o r some o f t h e major screen i n k systems a r e g i v e n i n Table 4-20. (68,98,99) Fiber Optics There has been a major impact on t h e e l e c t r o n i c s and communications i n d u s t r y due t o f i b e r optics technologies. F i b e r o p t i c s a r e l i g h t w e i g h t , v e r y s m a l l , and compact and p r o v i d e i n t e r f e r e n c e - - f r e e communication between computers and p e r i p h e r a l s . F i b e r o p t i c s have low a t t e n u a t i o n and can t r a n s m i t a l a r g e amount o f i n f o r m a t i o n 4-59 Table 4-19 MAJOR TYPES OF PRINTED CIRCUIT BOARDS PCB Print-and-etch single sided Description Copper circuitry on phenolic 1 ami na te (E) Application Low cost, low quality for radio, television telecommunications and appliance industries -~~~ Plated-through-hole Double-sided or multilayered tin/lead, nickel, or gold plated circuitry Military and computer applications F1 exi bl e Si ng 1e-s i ded or p 1 ated-through- Automotive and telecommunications hole with copper or tin/lead circuitry on polyester or polyimide base laminate films Additive Addition o f copper circuitry directly onto a treated laminate substrate 4-60 High volume consumerrelated products - -. Table 4-20 PROPERTIES OF SCREEN I N K SYSTEMS (68) Solder Masks .-. -- Rapid setting radiation curable acrylic or epoxy resins Screenabi 1 i ty Abrasion resistance __ --Flexibility Adhesion to copper, tin/lead, nickel and gold Flame resistance Machinabi 1 i ty Low water absorption High gloss or cosmetic appearance where desired Chemical and solvent resistance Resistance to soldering and desoldering Inks and Marking Coatings Low odor High rub and abrasion resistance Very high gloss where desired Nontoxic (oral) Low coefficient of friction Nonyel 1 ow f i lm High flexibility Low skin irritation Low curing temperatures (radiation curable) Conformal Coatings Low moisture absorption and permeabi 1 i ty High resistivity and dielectric strength Abrasion resistance Strippability for easy repair Solderabi 1 i ty Good chemical resistance Short cure time Room temperature cure Easy application Good pot and shelf life Nonpol 1 uti ng Si ngle-component formul ati ng Transparency Low cost 4-61 over longer distances w i t h longer repeater spacing than conventional copper wire telephone cables. (100,101) Optical f i b e r s can be manufactured and coated with a UV curable protective f i n i s h in an apparatus similar t o the one shown in Figure 4-29. The radiation ( U V ) curable coatings used t o coat the optical fiber must be capable of preserving the optical c h a r a c t e r i s t i c s and strength of the f i b e r , and protect against mechanical damage and moisture penetration. The use of radiation curable coatings f o r optical f i b e r s i s growing a t a rapid r a t e b u t the actual volume of coating i s very small; 1 mile of optical f i b e r weighs only 25 - grams ( 102 ,103 1 Magnetic and Optical Media Radiation processing technology o f f e r s an improved method of manufacturing magnetic and optical systems f o r the electronics and communications i n d u s t r i e s . Even though magnetic and optical media may compete f o r similar market areas, the use of some form of electromagnetic radiation i n t h e manufacturing process s t i l l appears t o be a constant f a c t o r f o r b o t h technologies. Magnetic Media. Magnetic media products fa1 1 i n t o several general categories such as audio, video, computer and instrument types and f l e x i b l e or r i g i d disks. The current manufacture of magnetic media by radiation processing (almost exclusively E B ) techniques has been driven by t h r e e important f a c t o r s : (104,105) 0 Conventional thermally s e n s i t i v e urethane binder r e s i n s are slow t o cure and r e s u l t in products t h a t are sometimes even undercured and could not perform up t o t h e i r rated s p e c i f i c a t i o n s . Moisture entrapment in the product and the necessity t o s e t aside r o l l s of coated films f o r two weeks i n order t o advance t h e curing reaction t o a s t a t e of completion were some of the other undesirable f a c t o r s of conventional coatings as applied t o t h i s industry. The instantaneous and complete curing of a acryl ate/urethane binder by EB processing techniques i s a much more c o n t r o l l a b l e manufacturing method over t h a t of the conventional moisture cure polymer binder systems. 0 Reduced wear of the coating and calendering equipment was noted with EB cure coating as compared w i t h conventional coating systems. This led t o a potential payback in one year f o r a high production r a t e EB f a c i l i t y . e Chromium dioxide i s very s e n s i t i v e t o the h i g h temperatures which were required t o form r i g i d disk configurations. Room temperature EB curing permits the greater use of t h i s special magnetic pigment and a processing speed of 500 t o 1000 f e e t per minute a t 5 t o 10 Mrad energy dose requirements (Figure 4-30). (105) - 4-62 Glass - Preform -. .. . . .-. / . . . . ... . Furnace vDiameter c3 Coating Applicator Monitor Coating Material I on I UV-Curing Lamp System I I I I I -t Figure 4-29. Coated and Cured Fiber UV Coating o f Optical Fibers 4-63 (103) I m P Unwind Rewind Figure 4-30. Magnetic Media Coating Line w i t h EB Cure (105) O p t i c a l Media. Recent developmcnts i n l a s e r technology have l e d t o t h e i n c o r p o - r a t i o n o f s o p h i s t i c a t e d o p t i c a l m a t e r i a l s and systems i n e l e c t r o n i c d e v i c e s f o r t h e communications and home market p r o d u c t areas. These devices i n c l u d e l a s e r - r e a d a b l e v i d e o i n f o r m a t i o n c a r r i e r s (Laser V i s i o n ) , l a s e r - r e a d a b l e audio i n f o r m a t i o n c a r r i e r s (Compact D i s c ) , d a t a s t o r a g e f o r computer a p p l i c a t i o n s ( d i g i t a l o p t i c a l r e c o r d i n g ) , compound Senses o r a s p h e r i c a l lenses ( o p t i c a l l e n s e s ) , and o p t i c a l d a t a t r a n s p o r t systems ( o p t i c a l f i b e r s and waveguides). The advantage o f o p t i c a l sys- tems over t h e i r metal conductor analogs can be shown i n Table 4-21. __ - ___ - (106) The o p t i c a l devices have a much g r e a t e r frequency r a n g e - t r a n s m i s s i o n c a p x i t y w i t h v e r y low l o s s of a t t e n u a t i o n p r o p e r t i e s when compared w i t h o t h e r methods used f o r d i r e c t s i g n a l coup1 i n g o f e l e c t r o n i c i n f o r m a t i o n . Table 4-21 COMPARISON OF VARIOUS MEANS OF TRANSMISSION Transmission Type Wire P a i r Coaxi a1 Cable Waveguide Optical Fiber (106) Frequency Range (kHZ A t t e n u a t i o n (dB/km) 1-140 0.06-51 x 10' <50 x l o 6 loll 0.1-0.3 59 0.5-4 <1.O-800 One o f t h e most i m p o r t a n t new areas o f o p t i c a l r e l a t e d communication devices i s t h e o p t i c a l "video disc". About t h e s i z e o f a l o n g - p l a y i n g audio r e c o r d , t h e p i c t u r e and sound i n f o r m a t i o n i s r e c o r d e d on i t as a succession o f s m a l l depressions o f v a r i a b l e l e n g t h and r e p e t i t i o n frequency. The i n f o r m a t i o n i s sensed o p t i c a l l y w i t h a helium-neon l a s e r (632.8 nm) b y t h e p l a y e r i n such a manner t h a t t h e read-out system does n o t come i n d i r e c t p h y s i c a l c o n t a c t w i t h t h e d i s c . The o p t i c a l d i s c i s manufactured i n t h e f o l l o w i n g manner: 0 P r e p a r a t i o n o f a m e t a l master mold ( u s i n g p h o t o r e s i s t o r photo1 it h o g r a p h i c p r o c e s s i n g techniques 1. 0 A p p l i c a t i o n o f a UV-curable c o a t i n g o r adhesive t o t h e c e n t e r of t h e m e t a l mold. 0 Deformation ( s l i g h t bending) o f a t r a n s p a r e n t p l a s t i c d i s c (polymethylmethacrylate, p o l y v i n y l c h l o r i d e , o r p o l y c a r b o n a t e ) t o make i t convex, and a p p l i c a t i o n o f t h e r a d i a t i o n c u r a b l e adhesive f o r u n i f o r m spreading over t h e m e t a l master mold s u r f ace. 4-65 a Exposure o f t h e r a d i a t i o n - c u r a b l e c o a t i n g o r adhesive t o UV l i g h t (365 nm) and p o l y m e r i z i n g t h e l i q u i d system i n t o a r i g i d film. a S e p a r a t i o n o f t h e s u b s t r a t e and cured c o a t i n g f r o m t h e mold f o l l o w e d by m e t a l i z a t i o n ( m i r r o r f o r m a t i o n ) and f i n a l c o a t i n g (UV r a d i a t i o n c u r a b l e , plasma c o a t i n g s o r c o n v e n t i o n a l low-temperature a i r dry-cured c o a t i n g system) f o r p r o t e c t i o n f r o m a b r a s i o n and h a n d l i n g o p e r a t i o n s . A diagram d e p i c t i n g t h e major o p e r a t i o n s a s s o c i a t e d w i t h v i d e o d i s c manufacture __ _. ._. -. - i s shown i n F i g u r e 4-31. Many o f t h e r a d i a t i o n p r o c e s s i n g concepts developed f o r present-day v i d e o d i s c s can be u t i l i z e d f o r f u t u r e manufacture o f new o p t i c a l r e c o r d i n g systems and devices. (107,108) PLASTICS AND RUBBER MATERIALS C u r r e n t r a d i a t i o n p r o c e s s i n g o f p l a s t i c s i s m a i n l y i n v o l v e d w i t h h i g h energy e l e c t r o n - i n d u c e d c r o s s - l i n k i n g of p o l y e t h y l e n e and p o l y v i n y l c h l o r i d e f o r foam s t a b i l i z a t i o n , w i r e i n s u l a t i o n , and heat s h r i n k a b l e f i l m s o r t u b i n g a l t h o u g h o t h e r v i n y l t y p e s of polymers can a l s o be c r o s s - l i n k e d i n a s i m i l a r manner t o produce u s e f u l p r o d u c t s ( T a b l e 4-22 1. High energy e l e c t r o n r a d i a t i o n p r o c e s s i n g i s used i n t h e w i r e and c a b l e i n d u s t r y t o improve t h e p r o p e r t i e s of t h e i n s u l a t i n g p l a s t i c m a t e r i a l s . One o f t h e major b e n e f i t s o f r a d i a t i o n p r o c e s s i n g i s t h e i n c r e a s e d thermal s t a b i l i t y and toughness o f t h e i r r a d i a t e d polymer over t h a t o f a c o n v e n t i o n a l u n c r o s s - l i n k e d i n s u l a t i o n m a t e r i a l ( T a b l e 4-23). The most i m p o r t a n t f e a t u r e a s s o c i a t e d w i t h high-energy e l e c t r o n r a d i a t i o n p r o c e s s i n g o f w i r e and c a b l e i n s u l a t i o n m a t e r i a l s i s t h e f a c t t h a t t h e depth o f e l e c t r o n p e n e t r a t i o n i n a g i v e n i n s u l a t o r i s a d i r e c t f u n c t i o n o f e l e c t r o n energy and i n v e r s e l y r e l a t e d t o t h e s p e c i f i c g r a v i t y o f t h e m a t e r i a l . For example, a 0.020 - i n c h t h i c k n e s s o f r a d i a t i o n c u r a b l e PVC having a s p e c i f i c g r a v i t y v a l u e o f 1.3 would r e q u i r e 200 kV o f e l e c t r o n energy f o r f u l l p e n e t r a t i o n ; a 0.045i n c h t h i c k sample would r e q u i r e 500 kV f o r p e n e t r a t i o n ; and a 0.090-inch sample o f t h e same m a t e r i a l would r e q u i r e 1 MeV. thick The i n v e r s e r e l a t i o n s h i p between s p e c i f i c g r a v i t y and depth o f e l e c t r o n p e n e t r a t i o n a t c o n s t a n t v o l t a g e i s shown i n Table 4-24. F i g u r e 4-32. A t y p i c a l electron-beam p r o c e s s i n g s e t up f o r w i r e l c a b l e i s shown i n T h i s t y p e o f r a d i a t i o n p r o c e s s i n g o p e r a t i o n can m o d i f y w i r e p r o d u c t s a t speeds o f 500 t o 3,000 f t l m i n ( s i x EB a c c e l e r a t o r s can manufacture 5.23 b i l l i o n f t l y e a r based on speeds o f 12,000 f t l m i n , 22 h r l d a y f o r 330 d a y l y r ) w i t h 10 t o 20 mA beam c u r r e n t s o r dose values r a n g i n g from 1 t o 10 Megarads. Wire and c a b l e i n s u l a t i o n can a l s o be c r o s s - l i n k e d c h e m i c a l l y through t h e use of peroxides, mois- 4-66 Molding MO Exposure Separation MO Imaging MO: Mold; L: Liquid Layer; S: Substrate; M: Mirror; P: Protective Layer. F i g u r e 4-31. F a b r i c a t i o n o f L a s e r v i s i o n Video D i s c s 4-67 (107,108) Table 4 - 2 2 SELECTED APPLICATION AREAS FOR IRRADIATED POLYMER MATERIALS (109) ADD1 i c a t i ons Pol Ymers Polyethylene Hookup wire Automotive wire Appliance and fixture wire Business machine wire Computer control cabl e Nuclear power s t a t i o n control cable Low voltage power cable A i r c r a f t and aerospace wire Polyvinyl chloride Hookup wire F1 a t ribbon cabl e High voltage lead wire Computer back panel wire Tel ephone wire Motor lead wire Propropyl ene Polyamide Polyvinyl idene f l u o r i d e Ethylene fluorocarbon copolymer F1 uoropolymer Ethyl vinyl a c e t a t e Thermoplastic polyimide Chlorinated polyethylene Neoprene Butyl Si1 icone elastomer F1 uoroel astomer Ethyl ene propylene rubber Polyurethane Shrinkable tubings Shrinkable p a r t s Shrinkable tapes D i e l e c t r i c rod and sheet forms Wire insulation and jacketing 4-68 -~ Table 4-23 COMPARISON OF PHYSICAL PROPERTIES FOR CONVENTIONAL 105O C PVC AND IRRADIATED PVC WIRE COMPOUNDS (109) Physical Propertv Conventional 105O C PVC P r o p e r t y Values I r r a d i a t e d PVC P r o u e r t v Values Tensile strength 3,000 p s i 3,000 p s i E l ongat ion 250% 200% Solder i r o n resistance: Time t o f a i l @ 660° F, 1.5 l b . l o a d t l second Insulation resistance: Megohms/l ,000 ft >1,000 . Cut-thru resistance: Time t o c u t - t h r u @ 105O C, .005" c h i s e l <5 seconds Heat r e s i s t a n c e : % retention o f elon ation a f t e r 168 h r s @ 136 C 50 % 4-69 >300 seconds >1,000 >600 seconds 75 Table 4-24 EFFECT OF SPECIFIC GRAVITY OF A MATERIAL ON THE DEPTH OF ELECTRON BEAM PENETRATION AT TWO ELECTRON ACCELERATOR VOLTAGES (0.3 AND 1 MeV) (109) Specific Gravity Accel e r a t o r Voltage (MeV) Depth of Beam P e n e t r a t i o n ( inches 1 1.o 1 0.12 1.3 1 0.09 1.8 1 0.06 1.o 0.3 0.04 1.3 0.3 0.03 1.8 0.3 0.02 4-70 Electron Scanner Electron Beam ; Wire In Wire Out Side View Electron Scanner Wire Out I Wire In U U Top View Figure 4-32. W i re-Cab1 e Electron-Beam Processing System f o r (109) 4- 71 t u r e , and thermal (steam o r d r y n i t r o g e n ) p r o c e s s i n g manufacturing equipment. There are s e v e r a l d i s t i n c t advantages t o t h e high-energy e l e c t r o n r a d i a t i o n process over those a s s o c i a t e d w i t h c o n v e n t i o n a l thermal c u r i n g techniques, b u t t h e r e a r e no i n s u l a t i o n t h i c k n e s s r e s t r i c t i o n s w i t h t h e c o n v e n t i o n a l system as i s t h e case f o r r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s (Table 4-25). Two o t h e r areas o f i n t e r e s t i n v o l v i n g commercial r a d i a t i o n p r o c e s s i n g o f p l a s t i c s m a t e r i a l s a r e c r o s s - l i n k e d p o l y e t h y l e n e foams and s h r i n k a g e packaging m a t e r i a l s o r t u b i n g ( p o l y o l e f i n s ) f a r f a o d and w i r e connector a p p l i c a t i o n s . C r o s s - l i n k e d p o l y e t h y l e n e foams a r e u s u a l l y expanded 10 t o 40 t i m e s t h e i r o r i g i n a l volume; t h e y a r e manufactured b y b o t h e l e c t r o n beam i r r a d i a t i o n and chemical c r o s s - l i n k i n g methods. These m a t e r i a l s have d e s i r a b l e q u a l i t i e s f o r commercial use because o f t h e i r r e s i l i e n c y , c l o s e d c e l l c o n s t r u c t i o n , and t h e i r a b i l i t y t o be thermofonned i n t o a wide v a r i e t y o f shapes and c o n f i g u r a t i o n s . P o l y e t h y l e n e foam ( c r o s s - l i n k e d and n o n c r o s s - l i n k e d ) i s a s p e c i a l t y polymer w i t h a usual consumption of about 25,000 m e t r i c tons; consumption i s growing a t an annual r a t e o f about 15 percent. The c r o s s - l i n k e d polymer comprises a p p r o x i m a t e l y 50 p e r c e n t o f t h e t o t a l commercial p o l y e t h y l e n e foam market. H a l f o f t h i s c r o s s - l i n k e d foam i s made t h r o u g h t h e use o f i o n i z i n g r a d i a t i o n f r o m e l e c t r o n a c c e l e r a t i o n i n t h e 500 kV t o 4 MeV range; t h e o t h e r h a l f uses o r g a n i c p e r o x i d e s . Both t e c h n i q u e s a r e growing i n use more i n accordance w i t h t h e f e a t u r e s o f t h e foaming process r a t h e r t h a n t o t h e method o f c r o s s - l i n k i n g m a n u f a c t u r i n g p r o c e s s i n g o p e r a t i o n s . These foam m a t e r i a l s a r e used f o r gaskets, f l o o r backing, mounting tapes, and consumer goods such as e x e r c i s e o r camping mats, t o y s , l i n e r s , b r a cups, and o r t h o p e d i c s u p p o r t m a t e r i d l s . (110) The CRYOVAC D i v i s i o n o f W. R. Grace and Company manufactures r a d i a t i o n processed h e a t - s h r i n k a g e p l a s t i c f i l m s and bags f o r t h e vacuumized packaging o f f o o d products. I n t h i s t e c h n o l o g y a p o l y o l e f i n preform o r tube i s extruded, t h e n i r r a d i a t e d w i t h high-energy e l e c t r o n s (500 kV t o 2 MeV scanning e l e c t r o n beam processor, 25 mA beam c u r r e n t s , 18 i n c h sweep p a t h ) , b i a x i a l l y o r i e n t e d v i a a blown f i l m - t r a p p e d bubble process, and made i n t o bags o r s l i t and s o l d as f i l m . Irradiated polyole- f i n s have a memory e f f e c t such t h a t upon h e a t i n g t h e f i l m o r t u b i n g s h r i n k s causing a secure f i t around p r o d u c t s c o n t a i n e d w i t h i n i t s surfaces. Raychem developed a s i m i l a r process f o r i r r a d i a t i n g p o l y o l e f i n t u b i n g f o r c o n n e c t i n g w i r e s o r a p p l y i n g permanent marking l a b e l s t o w i r e end connectors v i a h e a t s h r i n k i n g - b o n d i n g techniques. (111) 4-72 Table 4-25 COMPARISON OF CHEMICAL VULCANIZATION VERSUS IRRADIATION PROCESSING (2) Chemical Vu 1 cani zati on Irradiation Processina $150,000 installation cost-less, $150,000 installation cost, turnkey if boiler avai 1 able avai 1 able Special extrusion equipment required No special extrusion equipment Critical extrusion conditions Noncritical extrusion conditions High-pressure steam and cooling auxi 1 i ari es No auxiliary requirements: integrated system High scrap on start-up Economica1 start-up Low-to-medium speed, no wall thickness limitation High-speed, wall thickness limitation Space-consuming 300-500 ft steam and cooling troughs Compact, no troughs Heat , steam environment/ safety factors Ozone , irridation environmental/ safety factors 4-73 High-energy e l e c t r o n r a d i a t i o n processes can a l s o be used t o improve t h e p r o p e r t i e s o f e l a s t o m e r i c o r rubber m a t e r i a l s used i n t h e manufacture o f conveyor b e l t s , r u b b e r c a b l e i n s u l a t i o n , and t i r e s . (112) The g r e a t e s t volume use o f r a d i a t i o n ( e l e c t r o n beam) p r o c e s s i n g technology i s i n t h e t i r e i n d u s t r y , which consumes most of t h e n a t u r a l l y o c c u r r i n g and s y n t h e t i c elastomers produced i n t h e - U.S. t o d a y ~ ( T a b l e 4-26). (113) ~ I n t h e t i r e m a n u f a c t u r i n g process t h e i n n e r l i n e r s , body p l i e s , t r e a d s t a b i l i z e r p l i e s , s i d e w a l l s , and o t h e r t i r e components can be i r r a d i a t e d w i t h high-energy e l e c t r o n s p r i o r t o t h e i r assembly i n t o t h e t i r e . The c r o s s - l i n k i n g induced b y t h i s t r e a t m e n t improves t h e f o r m s t a b i l i t y o f t h e s e m a t e r i a l s d u r i n g t h e c o n s t r u c t i o n , molding, and subsequent thermal v u l c a n i z a t i o n o r c u r i n g o f t h e t i r e composite system. The i r r a d i a t i o n process improves gage r e t e n t i o n o f t h e t i r e components i n t h e f i n a l p r o d u c t such t h a t an o v e r a l l r e d u c t i o n i n t h i c k n e s s o f one o r more o f t h e f u n c t i o n a l l a y e r s can be achieved. This equates t o an o v e r a l l savings i n m a t e r i a l s and p r o v i d e s an economic i n c e n t i v e f o r t h e use o f i r r a d i a t i o n p o s t t r e a t m e n t o f calendered o r e x t r u d e d p a r t s o f t h e t i r e . F u r t h e r examples o f r a d i a t i o n t r e a t m e n t of elastomers f o r improved t i r e and r e l a t e d p r o d u c t s a r e shown i n Table 4-27. (112) - PLASMA PROCESSING Low-temperature plasma r a d i a t i o n i s a new t o o l f o r t h e commercial p r o c e s s i n g o f polymer p r o d u c t s . Plasma-processing o f f e r s a clean, f a s t , and s a f e method o f p r e - p a r i n g polymer s u r f a c e s f o r bonding, p r i n t i n g , p o t t i n g , c o a t i n g , and m e t a l i z i n g . Conventional methods f o r p r e p a r i n g polymer s u r f a c e s can be d i v i d e d i n t o two c a t e gories: wet and d r y . Wet p r o c e s s i n g uses a s o i v e n t t o remove grease and o t h e r contaminants f o l l o w e d b y t r e a t m e n t w i t h a chemical t h a t etches o r o x i d i z e s t h e polymer s u r f a c e . Dry processes i n c l u d e t h e use of corona discharges, gas flames, and mechanical a b r a s i o n t o a l t e r a polymer surface. A l l o f these c u r r e n t tech- niques have c e r t a i n drawbacks (hazardous, l i m i t e d usefulness, o r r e s t r i c t e d t o c e r t a i n polymer c l a s s e s ) which can many t i m e s be overcome through u t i 1 i z a t i o n o f plasma-processing t e c h n o l o g i e s . A comparison o f plasma e t c h i n g o f polymer s u r f a c e s w i t h o t h e r methods o f polymer s u r f a c e m o d i f i c a t i o n s w i t h r e g a r d t o adhesive bond s t r e n g t h development i s shown i n Table 4-28. 4-74 (119) Table 4-26 RUBBER MARKET DISTRIBUTION Products (113) Percent T i r e s and t i r e p r o d u c t s 65 N o n t i r e products Footwear 1 Belts, b e l t i n g 1 Hose, t u b i n g 2 Sponge r u b b e r products Foam r u b b e r p r o d u c t s 1.1 3 F l o o r and w a l l c o v e r i n g 0.4 O-rings, packing, gaskets 2 Pressure-sensitive tape 0.6 Industrial r o l l s 0.6 Automotive molded goods 5 Other molded goods 6 M i 1 it a r y goods 0.5 Shoe p r o d u c t s 1.6 Drugs, medical s u n d r i e s 0.5 Coated f a b r i c s 1.3 Thread ( b a r e ) 0.5 Sol v e n t and 1a t e x cement 1.5 Toys, b a l l oons 0.4 A t h l e t i c goods 0.6 Wire, c a b l e 1.1 Other 4.3 Total n o n t i r e products 35 100 4- 75 . _ . Table 4 - 2 7 APPLICATIONS FOR RADIATION PROCESSED ELASTOMERIC MATERIALS ADD^ i cati on (112) Reference Irradiation of radial body plies with 500 KeV electrons to doses between 1 and 5 M rads in combination with radial tensile strains o f 1 to 7 percent applied during single stage expansion of a tire eliminated wrinkling or waviness of the reinforcing tire cords. 114 Irradiat i on of i nnerl i ners, pl ies, bead cores and treads improves the dimensional stabil ity of the above tire components. 115 Extrusion of rubber strips into a moving mold followed by embossing a design in the rubber then stripping it from the mold and irradiate to produce a product useful in floor mats or precured treads useful in retreading of tires. 116 Radiation induced degradation of multilayer ti re rubber (polyisobutyl ene) inner1 i ners combined with other materials to produce puncture sealant composite structures. 117 Reduction of unsightly rubber projections such as vents and flash materials on the surface of cured tires through the use of irradiation of the tire surface prior to molding and curing. The radiation posttreatness process also demonstrated a 2 to 9 percent increase in wet and dry skid resi stance of ti res. 118 4-76 Table 4-28 RELATIVE ADHESIVE BOND STRENGTHS FOR PLASMA AND CONVENTIONAL METHODS OF TREATING POLYMER SURFACES (2) ~ Polymer Treatment Process and Re1 a t i v e Bond S t r e n g t h Control Plasma Abrasion Corona Chemical Polyethylene 1 12.1 -- P o___. l y p__ r o_ p y..l e n e 1 221 -- Polyester 1 19 - 3 4.5 5.1 81 649 -- 1 Plasma polymerized o r g a n i c c o a t i n g s e l i m i n a t e many of t h e problems a s s o c i a t e d w i t h c o n v e n t i o n a l t h e r m a l l y cured c o a t i n g systems ( s o l v e n t removal , excess thermal e n e r g i e s , e t c . ) and have unique p r o p e r t i e s such as v e r y h i g h chemical and a b r a s i o n continuous o r p i n - h o l e f r e e f i l m r e s i s t a n c e ( h i g h degree of c r o s s - l i n k i n g ) , structures, multilayer f i l m s with varying indices of r e f r a c t i o n ( a n t i g l a r e c o a t i n g s ) , t h i n membrane and b a r r i e r f i l m s t r u c t u r e s , d i e l e c t r i c f i l m s , c o m p a t i b l e f i l m s f o r biomedical a p p l i c a t i o n s ( F i g u r e 4-33). and b l o o d Some r e p r e s e n t a t i v e o r g a n i c s t a r t i n g m a t e r i a l s and t h e i r r e s u l t a n t plasma polymerized f i l m s t r u c t u r e s and a p p l i c a t i o n s a r e shown i n Table 4-29. (46,120-122) Table 4-29 PLASMA COATINGS T r e a t e d i n Plasma (46) R e s u l t a n t Polymer References Tetrafluoroethylene Thin d i e l e c t r i c f i l m s on metal s u r f aces f o r c a p a c i t o r applications 120 Hexamethyldisiloxane, t e t r a e t h y l t i n and oxygen Abrasion r e s i s t a n c e , l o w moist u r e p e r m e a b i l i t y and a n t i reflection properties 121 Benzoni tr i1e Membrane s t r u c t u r e s on s i 1i c o n e - p o l y c a r b o n a t e f i l m s f o r gas s e p a r a t i o n processes 122 4-77 ~ - CONTROLLED THERMAL STABILITY SURFACE TREATMENTS AND COATINGS FOR PLASTICS BARRIER PROPERTIES ELASTOMERS GLASSES CERAMICS CONTROLLED LIGHT TRANSMISSIVITY ADHESION PROMOTION WETTABILITY COMPATIBILITY Figure 4-33. Applications of Plasma Processing Technologies 4-78 Section 5 COST AND ENERGY SAVINGS COMPARISONS I n o r d e r t o p r o j e c t t h e f u t u r e usage o f r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s i t i s necessary t o compare t h e c o s t and p o t e n t i a l energy savings o f t h i s technology w i t h t h a t o f c o m p e t i t i v e m a t e r i a l s p r o c e s s i n g a l t e r n a t i v e s f o r a g i v e n s e t o f mark e t o r a p p l i c a t i o n areas. I n a d d i t i o n , changes i n technology which c o u l d have an impact must a l s o be examined. I n t h i s s e c t i o n , a c o s t and energy savings com- p a r i s o n f o r each of t h e major a p p l i c a t i o n s o f r a d i a t i o n p r o c e s s i n g i s discussed. Techno1 o g i c a l f a c t o r s a f f e c t i n g market p r o j e c t i o n s a r e discussed i n S e c t i o n 6. - COST COMPARISON RADIATION PROCESSING VERSUS THERMAL PROCESSING TECHNOLOGIES When a n a l y z i n g t h e c o s t of c o m p e t i t i v e p r o c e s s i n g ( c u r ng o r c r o s s - l i n k n g ) of p o l y m e r i c m a t e r i a l s s e v e r a l f a c t o r s must be c o n s i d e r e d These f a c t o r s n c l u d e t h e following: Cost o f equipment Cost o f f u e l l e l e c t r i c i t y (energy s a v i n g s ) E f f i c i e n c y o f equipment Scrap l o s s e s i n t h e process Labor and f l o o r space requirements P r o d u c t i o n r a t e s and a b i l i t y t o e l i m i n a t e h a n d l i n g o p e r a t i o n s ; c a p a b i l i t y f o r complete automation Cost of p o l y m e r i c m a t e r i a l s ( c o a t i n g s ) undergoing t h e processi n g operation Environmental f a c t o r s ( r a d i a t i o n s h i e l d i n g , p o l 1 u t i o n 1. A l l o f t h e f a c t o r s a s s o c i a t e d w i t h c o s t comparisons between c o n v e n t i o n a l g a s - f i r e d ovens and v a r i o u s t y p e s o f r a d i a t i o n p r o c e s s i n g equipment are b e s t d e s c r i b e d by t h e f o l l o w i n g examples f o r each o f t h e major market areas d e s c r i b e d i n t h i s report. (123) 5-1 Coatings The use o f r a d i a t i o n c u r a b l e c o a t i n g s i s a s i g n i f i c a n t a l t e r n a t i v e f o r t h e reduct i o n o f energy consumption and compliance w i t h a i r p o l l u t i o n l e g i s l a t i o n f o r t h i s industry. The c o s t comparison and energy e f f i c i e n c y d a t a f o r p r o c e s s i n g o f a wood f i l l e r v e h i c l e u s i n g UV and i n f r a r e d p r o c e s s i n g equipment i s g i v e n i n Table 5-1. The UV processor and a s s o c i a t e d c o a t i n g system r e s u l t i n lower p r o d u c t p r o d u c t i o n c o s t s w i t h a s u b s t a n t i a l savings i n energy over t h e thermal c u r i n g c o a t i n g operation. The o v e r a l l power consumption c o s t s p e r square f o o t o f p r o d u c t a r e a p p r o x i - m a t e l y 0.1 f o r t h e UV system, and 0.2 f o r t h e I R system. (123,124) One o f t h e major commercial successes i n r a d i a t i o n p r o c e s s i n g over t h e thermal p r o c e s s i n g techniques f o r c o a t i n g s and i n k s has been demonstrated by t h e can i n d u s try. I n t h e U.S., Adolph Coors Company and American Can Company have been t h e l e a d e r s i n u t i l i z a t i o n o f UV c u r a b l e i n k s and o v e r p r i n t v a r n i s h e s f o r beer and beverage can p r o d u c t s . Coors has r e p o r t e d t h a t 246% more energy i s r e q u i r e d t o t h e r m a l l y c u r e c o n v e n t i o n a l s o l v e n t o r water-based i n k s or c o a t i n g s t h a n t o c u r e A t y p i c a l can l i n e ( F i g u r e 4-5) o p e r a t i n g u l t r a v i o l e t s e n s i t i v e i n k s and c o a t i n g s . a t 600 t o 2000 cans/min on a 7 hr/day, 250-day work y e a r u s i n g a UV d r y e r would save over 1 b i l l i o n B t u a year w i t h an approximate p r o d u c t i o n r a t e o f over 63 m i l l i o n beer cans a n n u a l l y . An e s t i m a t e o f energy savings and comparison o f UV versus thermal d r y i n g o f i n k s and c o a t i n g s based on Coors experience i s g i v e n i n Table 5-2. American Can Company has had s i m i l a r energy savings experience ( o v e r 100 b i l l i o n B t u saved i n g o i n g f r o m n a t u r a l g a s - f i r e d ovens t o UV r a d i a t i o n p r o c e s s i n g equipment) w i t h UV c u r a b l e i n k s and c o a t i n g s i n a system c o m p l e t e l y d i f f e r e n t i n c h e m i s t r y t h a n t h a t o f t h e Coors c o a t i n g . The Coors c o a t i n g system i s c u r e d t h r o u g h a f r e e r a d i c a l mechanism; t h e American Can c o a t i n g system i s c u r e d through a photoinduced c a t i o n i c r i n g opening epoxy r e s i n r e a c t i o n mechanism. (53,54,124) Table 5-3 summarizes d a t a f r o m a h y p o t h e t i c a l c o s t model a s s o c i a t e d w i t h t h e use o f a thermal oven, an e l e c t r o n c u r t a i n processor, and a UV c u r i n g chamber. (125) - Each system i s designed t o process 180 m i l l i o n square f e e t o f aluminum c o i l s t o c k per y e a r (1 m i l t h i c k c o a t i n g ) a t l i n e speeds of up t o 150 f e e t per m i n u t e . In this model t h e h o u r l y p r o c e s s i n g c o s t s and c o s t per square f o o t o f p r o d u c t produced f o r t h e c o n v e n t i o n a l thermal c o a t i n g / c u r i n g o p e r a t i o n a r e a p p r o x i m a t e l y t w i c e those o f e i t h e r r a d i a t i o n process. Coating m a t e r i a l c o s t s a s s o c i a t e d w i t h t h i s model a r e a p p r o x i m a t e l y 1.18 cents/square f o o t f o r a c o n v e n t i o n a l so vent-based (35% s o l i d s ) alkyd varnish. T h i s i s a p p r o x i m a t e l y e q u i v a l e n t t o a 100% s o l i d s EB/UV v a r n i s h c o s t i n g 1.17 c e n t s t o 1.19 cents/square f o o t . 5-2 A more d e t a l e d and complete analy- Table 5-1 UV AND IR PROCESSING COST AND ENERGY EFFICIENCY DATA (123) Typical UV Typical I R Oven length (ft) 10-30 90 Line speed (fpm) 60-150 60 Po 1yester Urea-A1 kyd 90-100 35-65 2 2 700-800 500 Coats 1 2 Cure time (sec) 10 90 Exit temp 100 130 No Yes Wood filler vehicle Nonvolatile (%) Film thickness (mils) Coverage (wet) (sq ft/gal) (OF) coo1 Cost of filler ($/gal) 5.00-6.00 Cost per sq ft (6) Per coat Total 0.7-0.9 0.7-0.9 Power (kw) 2 00-3 00 0.9-1.3 1.8-2.6 100 250 Power per sq ft ($) Less than 0.1 App. 0.2 (two coats) Surface appearance Ex (one coat) G (two coats) Hardness Ex G Sand i ng Ex VG Ex = excellent, G = good, VG = very good 5-3 Table 5-2 COMPARISON OF UV VERSUS GAS FIRED THERMAL CURE COATING/INK SYSTEMS FOR BEVERAGE CONTAINERS (53) Gas fired ovens cost 2.5 times more than a UV processor pment Costs Gas Costs ($0.43/1000 ft3) - The aas Electrical Costs ($O.Ol/KWH) - f red w e n requires 4,OOi,OOO BTU/hr while the UV processor uses no gas UV requires 22 KWH, the gas fired oven require 15 KWH Energy and Maintenance Costs - Gas fired ovens have 2-3 times the energy and maintenance cost of a UV processor Ink Costs - UV inks are between 1.1 and 1.75 times more expensive than conventional thermal curing ink systems Sol vent Emissions UV has no solvent emissions while the thermal cure inks release at least 20% of their weight F1 oor Space Requirements Gas fired ovens require 10 times the space as the UV processor 5-4 Table 5-3 OPERATING COST ANALYSIS FOR RADIATION VERSUS THERMAL PROCESSING EQUIPMENT FOR COATING ALUMINUM COIL STOCK (125) Thermal Oven, Electron Curtain, A 210,000 8 Lamp UV Processing 300 watts/inch, 80,000. Purchase P r i c e Pol 1u t i on Control Equipment Maintenance Gas Electricity Labor F1oor Space Total 200,000 7,500 2 ,000 23, OOOa 8,700b 108,0OOc 3,000 172,000 8, OOOd 3,000 72,000 3 50 105,350 9,600 72.000 300 91,900 Hourly Processing Costs (4000 hours/year) 43.05 26.34 22.98 Processing Costs cents/square f o o t Processing Parameters: -1,000 0.073 0.120 -2, oooe -- 0.064 180 m i l l i o n square feet/year a t 150 feet/minute w i t h a c o a t i n g thickness o f 1 m i l . “14.4 MSCF a t $l.GO/MSCF. b290 MKWH a t $0.03/KWH. c1.5 people a t $18/hour. d I n e r t i n g gas generator. e I n c l udes one complete change o f 1amps a f t e r 2000 hours. 5- 5 s i s f o r coil coating systems i s contained in reference 126 and a summary of these r e s u l t s i s shown in Tables 5-4 and 5-5. - The curing of c l e a r and pigmented coatings on p l a s t i c s u b s t r a t e s i s an area where radiation processing techniques have a d i s t i n c t advantage over conventional thermal curing methods. Table 5-6 describes t h r e e curing methods ( E B , U V , and gas-fired ovens) f o r processing coatings on p l a s t i c s u b s t r a t e s . The p a r t i c u l a r advantage of radiation (E6 or U V ) curing over the thermal curing process is the very short exposure times f o r the radiatiom systems over those of the conventional ttiermal c u r ing process. The high heat-long exposure times experienced by the p l a s t i c subs t r a t e during the coating/curing process can lead t o h i g h scrap l o s s e s , and i n f e r - ior q u a l i t y in the finished product. (123) These examples o f comparative processing methodologies for the coatings industry a l l tend t o show t h a t a substantial cost and energy s a v i n g s can be realized w i t h U V / E B and even IR radiation processing equipment over t h a t of conventional gas-f i r e d ovens. Printing I n k s The advantages f o r using u l t r a v i o l e t radiation processing equipment r a t h e r than a conventional e l e c t r i c dryer system f o r the printing ink industry can be outlined as follows: 0 UV-radiation processing equipment has a lower purchase price and can o f f e r short-term payback on i t s investment. 0 I n s t a l l a t i o n costs are usually lower and the required f l o o r space f o r UV equipment i s much smaller than conventional e l e c t r i c dryer ovens. 0 Energy consumption is lower, r e s u l t i n g in a reduced unit-product c o s t . 0 UV inks have high f l a s h points and are 100% reactive s o l i d s ; t h u s , t h e r e are no f i r e hazards, no emissions, no odors. Insurance costs are reduced and pollution control devices are not required. 0 Two UV curable ink l i n e s will service 70 t o 80% o f the stock in a general screen-printing s h o p , and when the inks are cured they will n o t smear or bleed i n t o the product p i l e . T h i s eliminates special racking or handling procedures and stock wastage i s reduced. 0 UV inks are s t a b l e on the press and allow f o r easy clean-up a f t e r the run i s finished. 0 UV inks allow f o r rapid product processing and f a s t delivery of product. 5 -6 ~ Table 5-4 COMPARISON OF ENERGY REQUIREMENTS FOR DIFFERENT ENERGY SOURCES ON A MODEL COIL COATING LINE (1261 cn I v MMBtu Rlequired per Hour (Energy Consumption) Sol vent Other Air Evaporation Peak Oven Temperature Peak Metal Temperature Metal 55% s o l i d s ( s o l vent based 660 F 450 F 0.699 Ignored I R Heaters 55% s o l i d s ( s o l vent based 1 300 F 450 F 0.699 0.1 I R Heaters 55% s o l i d s (water based -- 300 F 0.426 0.282 -- -- 450 F ----- Not 100% s o l i d s None None Energy Source Coating Conventional f o s s i l f u e l (A.D. L i t t l e Model System 1 I n d u c t i o n Heating E l e c t r o n Beam or Electrocurtai n None Broken Dow None Total 0.880 5.261 -- 3.66 4.46 -- 3.23 3.94 3.682 by Source---None -- 3.4 0.25 Table 5-5 COMPARATIVE COST ANALYSIS FOR H I G H ENERGY ELECTRON CURED COATING SYSTEMS VERSUS CONVENTIONAL THERMALLY CURED COATING SYSTEMS ON ALUMINUM COIL STOCK (126) Curing Method Coating System Afterburner Therm a1 Hydrocarbon sol vent (45% s o l i d s 1 No preheat preheat Thermal Tot81 Energya T o t a l Gas 10 BTU/hr 1000 c f h Cost $/hr _(__ 15.7 10.7 15.4 10.4 40.03 26.78 Water base (45% s o l i d s ) 7.3 7 18.47 Thermal 80% water I 2 0% alcohol (45% solids) 7.8 7.5 19.71 High Energy Electron 100% s o l i d s 0.85 0.4 2.27 aUsing 1 k W h r = 10,500 BTU f o r e l e c t r i c a l power: 5-8 thermal energy conversion. Table 5-6 COMPARISON OF CURING METHODS (1 23) EB Ultraviolet 300 to 500K (H) 20 to l O O K (L) 10-30 10-30 90-300 On-of f operation Yes Yes No Inert atmosphere Yes No No Ambient 100-200 130+ 1 sec or less Seconds Minutes Cure coatings on plastics Yes Yes NO Cure pigmented coatings Yes Sometimes Yes Require catalyst No Yes Somet i mes 90- 100 90-100 35-65 700-1400 700-1400 400-500 8 to 20 (H) 8 to 20 (H) L-M L M X-Rays uv Heat Capital cost ($) Length (ft) Cure temp. (OF) Cure time Coating solids (%) Coating coverage, sq ft/mil Coating cost ($/gal ) Cost per mil sq ft Hazard K = 1,000 Note: low(L), medium(M), high(H) 5-9 Oven 100 to 200K 4 to 10 (M) (L) The model used f o r economic j u s t i f i c a t i o n o f p u r c h a s i n g UV r a d i a t i o n p r o c e s s i n g equipment over a c o n v e n t i o n a l e l e c t r i c d r y e r system i s shown i n T a b l e 5-7. The model was based on a p r i n t i n g o p e r a t i o n capable o f r u n n i n g 2400 i m p r e s s i o n s per hour i n 250 days per year ( s i n g l e s h i f t ) and p r o d u c i n g 29,880,000 product. square f e e t o f - The c o s t savings i n f a v o r o f t h e UV p r o c e s s i n g equipment was a p p r o x i ~ Thus t h e b e n e f i t s t o be d e r i v e d f r o m a d o p t i n g a UV c u r i n g system, m a t e l y $237,055. compared t o a c o n v e n t i o n a l d r y i n g system, are s u b s t a n t i a l and i n c r e a s e as f u e l c o s t s escal a t e . The unique method o f p r i n t i n g rounded p l a s t i c c o n t a i n e r s ( F i g u r e 4-18) o f f e r s an o p p o r t u n i t y t o make a d i r e c t comparison between two types ( l i n e a r and compact on mandrel UV lamp c o n f i g u r a t i o n ) o f UV r a d i a t i o n p r o c e s s i n g equipment. The compari- son o f annual o p e r a t i n g and p r o d u c t p r o d u c t i o n c o s t s f o r each system i s g i v e n i n Tables 5-8 and 5-9. i s 124,494,196 The n e t p r o d u c t p r o d u c t i o n r a t e f o r t h e compact UV lamp design cups per year ( C P Y ) compared w i t h 93,363,000 lamp p r o c e s s i n g u n i t . CPY f o r t h e l i n e a r UV The annual c o s t savings f o r t h e manufacturer u s i n g t h e com- p a c t UV d r y e r system i s $193,068. There i s a l s o a s u b s t a n t i a l s a v i n g s on produc- t i o n losses due t o f i r e s ( s t o p p i n g o f t h e l i n e , c a u s i n g cups t o remain s t a t i o n a r y under t h e h o t UV lamps) by u s i n g t h e compact UV lamp system r a t h e r t h a n t h e l i n e a r UV d r y e r . (81) Adhes ives A c o s t comparison f o r thermal and e l e c t r o n beam c u r i n g o f adhesive systems i s g i v e n i n Table 5-10. I n t h e study, a 60-inch thermal oven ( 6 MBtu/hour), c o s t i n g 2 $160,000, p r o d u c i n g 2,569 y d / h r o f adhesive coated p r o d u c t i s compared w i t h an 2 e l e c t r o n beam p r o c e s s i n g u n i t , c o s t i n g $200,000, and p r o d u c i n g 3,400 y d / h r coated p r o d u c t . (127) S i m i l a r r e s u l t s a r e observed as those shown i n t h e c o a t i n g s i n d u s t r y i n t h a t b o t h e l e c t r o n beam and UV p r o c e s s i n g u n i t s , f o r p r e s s u r e s e n s i t i v e adhesive t a p e and l a b e l s , can reduce o p e r a t i n g and p r o d u c t manufacturing c o s t s by as much as 50% ( T a b l e 5-11). (127) E 1ec t ron ic s /C ommun ic a t ion Cost, energy savings, and p r o d u c t i o n r a t e comparisons f o r p r o d u c t s i n t h e e l e c t r o n i c s and communications i n d u s t r y processed by thermal o r r a d i a t i o n methods were not available a t the time of w r i t i n g t h i s report. I t s h o u l d be noted, however, t h a t many o f t h e p r o d u c t s a s s o c i a t e d w i t h these i n d u s t r i e s can be manufactured u t i l i z i n g a wide range o f r a d i a t i o n energies, as was p r e v i o u s l y d e s c r i b e d f o r i n t e g r a t e d c i r c u i t s , p r i n t e d c i r c u i t boards, and e l e c t r o m a g n e t i c r e c o r d i n g media a p p l i - 5-1 0 - Table 5-7 COMPARISON OF DRYER PROCESSING COSTS FOR PRINTING APPLICATIONS (68) Electric Drver UV Processing Eauipment Purchase Price $38,000 $18,800 Width (inches) 38 38 2,800 3,600 225 50 4,000 1,500 30 15.2 Drver Costs Processing Capacity (Impressions per Hour) Floor Space (Square Feet) Weight (Pounds) Power Consumption (Ki 1 owat/Hours) Power Supply (Volts A.C., Amps, Herz) 2 40/ 1 20/60 Ink Cost (Per Gallon) 240/6 O/ 60 $24 $65 $0.015 $0.017 $24,504 $20,354 $5,520,861 $5,293,028 $3,712 $1,640 $5,552,077 $5,315,022 Ink Cost (Per Square Feet) Product Production Costs Labor Cost Materials and Floor Space Cost Energy Cost TOTAL OPERATING COSTS 5-1 1 Table 5-a COMPARISON OF ANNUAL OPERATING COST, PRODUCTION AND COST SAVINGS BETWEEN A CONVENTIONAL UV LINEAR RADIATION PROCESSOR AND A COMPACT ON-MANDREL UV PROCESSOR (81) Conventional UV Capital (printer/dryer), 8% o f $115,000 Operator, $5 per hr. $ Floorspace, $3/sq. ft./yr. 192 522 Dryer E l e c t r i c a l , 3f#/KWH 1,188 3,240 Dryer Maintenance, $8/hr. 64 160 Dryer p a r t s 2,400 $ Scheduled Hours 600 $ 51,522 Hours l o s t t o f i r e s , jams 81 maintenance o f d r y e r Net Production Hours 720 720 50 8 6,472 6,430 P r i n t e r Speed Loss Rate a t Transfers Net Production Rate 47,244 7,200 7,200 Hours l o s t t o causes o t h e r than d r y e r f a i l u r e 9,200 36,000 36,000 * TOTAL COST On-Mandrel UV $ 9,200 - 250 CPM 15,000 CPH 325 CPM 19,500 CPH 3.2% 480 CPH 195 CPH 14,520 CPH 19,305 CPH 1% CPM = Cups per min CPH = Cups p e r hour Annual Production 93,363,000 CPY 124,494,196 CPY = cups p e r year Sales Value o f Production a t $14/M cups $ 1,307,090 5-1 2 $ 1,742,918 CPY Table 5-9 COST SAVINGS COMPARISONS BETWEEN CONVENTIONAL UV AND ON-MANDREL UV PROCESSORS FOR A PLANT RATED AT 1.12 BILLION PRINTED CUP CAPACITY (81) Conventional UV On-Mandrel UV 12 Printers Required 9 Annual Operating Costs per Printer $ 51,522 $ 47,244 Annual Operating Cost 0 618,264 $ 425,196 $ 193,068 Anuual Saving using On-Mandrel Drying 5-1 3 Table 5-10 PRELIMINARY COST COMPARISON FOR THERMAL AND ELECTRON BEAM CURING OF ADHESIVES (127) I. - Thermal (60" oven capable of 100 ft/minute) __ Assume a consumption of 6 MBTU/hour in an oven costing $160,000. Area of the oven -120' x 12', -1500 ft2. Utilization o f 85% with 8% downtime for maintenance (2,567 -yd2/hr), Amortize capital c sts over 5 years Space use at $l/ft B Fuel costs at 6 MBTU/hra Maintenance parts Services (cooling water, 20 kW auxi 1 i ary power, air, Etc .) Operator labor (100% OH) Total operating costs 11. $32,000.OO/yr 1,500.OO/yr $13.50/hr .30/hr 2.OO/hr 10.00/hr $25.80/ hr Electron Beam (60" curing head capable of 120'/minute) Assume a consumption of 20 kilowatts in a $tation costing $200,000. Area of curing station -12' x 16', -200 ft . Utilization of 90% with under 5% downtime for maintenance (3,400 yd2/hr). Amortize capital c sts over 5 years Space use at $l/ft B Maintenance contract for system Power costs at 3 /kWhr Inert gas costs Services (water, air, etc.) Operator 1 abor (100% OH)C Total operating costs $40,000.OO/yr 200.OO/yr 5,000.OO/yr .60/hr 2.OO/hr .20/hr 5.OO/hr $ 7.80/hr $ The following gross hourly and square yard operating costsd result based upon these numbers: Thermal Oven Electron Processor aBased upon bBased upon CBased upon dBased upon to that of 2000 hr $fy& 4000 hr $/vdz 6000 hr $fy& $41.35 0.016 0.009 $32.95 19.10 0.013 0.006 $30.15 15.35 0.012 0.004 30.40 gas costs of $2.25/1000 cu. ft. for gas at 1000 BTU/cu. ft. a full man for operation and maintenance. 0 . 5 man for operation. the use of water based adhesive whose dry mil cost is equivalent the electron curable system. 5-1 4 Table 5-11 ECONOMICS, PHOTOCHEMICAL vs. THERMAL PRODUCTION LINES PRESSURE-SENSITIVE ADHESIVE TAPE AND LABELS (127) E le c t ro n Beam Line speed (f t / m i n) Powep consumption (W UV Cure 300 40.2 (Solvent-Based Adhesi v e l 300 300 510 5,100 Operating costs ($1 Power Maintenance Nitrogen gas Water Total Costs C apital Costs .81 3.50 2.75 .20 10.20 4.50 7.26 14.70 $200,000 NA NA $13,000 NA = not applic a b le 5-1 5 18.00 2.70 NA NA 20.70 $130,000 cations. The c o m p l e x i t y and h i g h performance q u a l i t y o f these p r o d u c t s demands t h a t t h e p r o c e s s i n g o p e r a t i o n s be c o s t - e f f e c t i v e under h i g h p r o d u c t i o n r a t e c o n d i t i o n s ; t h e s e c o n s t r a i n t s can o n l y be achieved t h r o u g h r a d i a t i o n p r o c e s s i n g techniques. (128) P l a s t i c and Rubber M a t e r i a l s Several f a c t o r s i n d i c a t e t h a t e l e c t r o n beam (EB) systems a r e more c o s t - e f f e c t i v e t h a n thermo-chemical systems f o r p r o c e s s i n g p l a s t i c and r u b b e r m a t e r i a l s . 0 R a d i a t i o n p r o c e s s i n g can save b o t h energy and p r o d u c t i o n c o s t . The e l e c t r i c a l energy used t o generate e l e c t r o n beams i s more expensive t h a n f o s s i l - f u e l energy c o s t s a s s o c i a t e d w i t h steam o r gas f i r e d ovens, b u t t h e lower energy i n p u t per u n i t o f m a t e r i a l processed b y EB techniques more t h a n o f f s e t s t h i s higher operational cost. 0 R a d i a t i o n p r o c e s s i n g equipment saves f l o o r space compared t o h e a t c u r i n g systems r e q u i r i n g l o n g steam tubes o r expansive h o t a i r ovens. T y p i c a l r a d i a t i o n p r o c e s s i n g equipment r e q u i r e s l e s s than 1,000 square f e e t o f f l o o r space. 0 There i s l e s s p r o d u c t scrap l o s s w i t h r a d i a t i o n p r o c e s s i n g t e c h n i q u e s due t o e f f i c i e n t t h r o u g h cure. Thermal c u r e p r o cesses can r e s u l t i n o v e r c u r e and nonuniform c u r e o f a p r o d u c t . 0 Thermo-chemical c u r i n g systems r e q u i r e t h e use o f p e r o x i d e and other c a t a l y s t s not r e q u i r e d i n r a d i a t i o n (high-energy) processing technologies. E l i m i n a t i o n of these thermal cure catal y s t s reduces t h e l e v e l o f a n t i o x i d a n t s and a n t i o z o n a n t s b y as much as 50%, thus e f f e c t i n g a c o n s i d e r a b l e m a t e r i a l s a v i n g s f o r t h e r a d i a t i o n cured product. 0 The c o s t o f e l e c t r o n beam r a d i a t i o n i n t h e p a s t t h r e e decades has been reduced f r o m $4.00 t o produce 1 KWH o f r a d i a t i o n t o a p p r o x i m a t e l y $0.03 t o $0.25 p e r KWH, depending on t h e e q u i p ment c o n f i g u r a t i o n r e q u i r e m e n t s . T h i s r e d u c t i o n has come about p r i m a r i l y due t o t h e h i g h e r e f f i c i e n c y o f s u c c e s s i v e generat i o n s o f high-energy e l e c t r o n beam a c c e l e r a t o r equipment. Comparative examples f o r c o n t i n u o u s t h e r m a l v u l c a n i z a t i o n ( C V ) and h i g h - e n e r g y e l e c t r o n beam (EB) c u r i n g ( c r o s s - l i n k i n g ) of p o l y e t h y l e n e w i r e i n s u l a t i o n i s shown i n Tables 5-12 and 5-13. As can be seen i n Table 5-12 t h e a c t u a l t o t a l energy c o s t s [energy c o s t l y e a r (4,000 h o u r s ) ] f o r EB a r e h i g h e r t h a n t h e CV process b u t t h e energy c o s t per pound of p r o d u c t manufactured i s $0.013 f o r CV and o n l y $0.006 f o r EB. S i m i l a r r e s u l t s a r e d e s c r i b e d i n Table 5-13 i n which t h e CV process c o s t / l b o f i n s u l a t i o n (2,659,500 (8,697,000 l b l y e a r ) i s $0.086; l b / y e a r ) f o r t h e EB process i s o n l y $0.046. 5-16 the cost/lb of insulation (129,130) Table 5-12 ENERGY COMPARISON, CV AND EB, FOR WIRE INSULATION CROSS-LINKING (129) cv a Systems P r o p e r t i e s E B ~ 38 Linespeed, fpm Ins. lb/hr 207.5 233 1260 - BTU /1 b Energy c o s t / l b Energy c o s t l y r (4000 h r ) 1b l y r 1000's 1127 $0.013 $0.006 $10,560 $29 500 a30 Gauge, AWG (250 MCM) Conductor , m i 1s ( 575 1 I n s u l a t i o n , m i l s (92) OD over ins., 5783 m i l s (759) I n s . sp. g r a v i t y (1.0) I n s . w t . l b 1 0 0 0 / f t (91) EB kV (1564) aAssume 750 e t c . bia4 kw e t c . 5-1 7 5,040 Table 5-13 COST COMPARISON DATA (CV/EB) (129) - CV System Electron Beam System Caei tal Costs 6" extruder 1 i ne and CV, installed, complete with steam generator CaDi tal Costs 6" extruder 1 i ne w.0. CV, installed complete 1500 kv 50 mA Dynamitron, complete with accessories 480,000 Wire Line, complete 90,000 Instal 1 ation, shielding etc. Total : OPeratinq Costs, Annual Equipment (assuming 10 yr amortization Labor (1 man/shift) Steam Power Water Maintenance Taxes, insurance, etc. Total : Cost/l b o f i nsul ati on 2,659,500 lb/yr $300.000 $750,000 125,000 $995,000 Oeeratinq Costs, Annual Equipment (assuming 10 yr amortization) Labor (2 men/shi ft) Steam Power (2 extruders and accelerator) Water Maintenance Taxes, insurance, etc. $ 75,000 72 ,000 17,000 45 ,000 2,000 16,000 1,500 Total : $228.500 Cost/l b o f insul at i on $0.086 8,697,000 1 b/yr 5-18 $ 99,500 144,000 -131,100 8,000 14,400 2 ,000 $399,000 $0.046 Other economic s t u d i e s on EB p r o c e s s i n g of p o l y e t h y l e n e p i p e , calendered r u b b e r sheet, and p o l y e t h y l e n e f i l m can be found i n Reference 131. PLASMA PROCESSING Plasma c o a t i n g and polymer s u r f a c e t r e a t m e n t equipment and processes a r e we1 1 -e s t a b l i s h e d f o r t r e a t i n g batches o f small o b j e c t s and, i n some cases, continuous p r o c e s s i n g has had commercial success i n t h e t e x t i l e and paper c o a t i n g i n d u s t r i e s . An e s t i m a t e d c o s t t o plasma t r e a t small o b j e c t s ( b a t c h p r o c e s s ) and a continuous web o r f i l m ( p o l y v i n y l 3 i l W d e ) i s g i v e n i n Tables 5-14 and 5-15. (126-,132) -These t r e a t m e n t processes are unique t o plasma p r o c e s s i n g t e c h n o l o g i e s ; t h u s comparisons w i t h o t h e r t r e a t m e n t processes are n o t p o s s i b l e . IMPACT OF FUEL PRICES Because energy c o s t s a r e a l a r g e f a c t o r i n thermal p r o c e s s i n g o f p o l y m e r i c mater i a l s , i t would n o r m a l l y be expected t h a t f u e l p r i c e s s h o u l d have a l a r g e e f f e c t on t h e f u t u r e c o m p e t i t i v e n e s s o f r a d i a t i o n processing t e c h n o l o g i e s . The p r o j e c t i o n o f f u t u r e energy p r i c e s i s approximate a t b e s t , b u t t h e gross t r e n d i s f o r t h e c o s t of e l e c t r i c i t y t o i n c r e a s e a t a r a t e much l e s s than t h a t f o r n a t u r a l gas o r o i l . The p r e s e n t Department o f Energy p r o j e c t i o n s show t h a t t h e c o s t o f e l e c t r i c i t y w i l l i n c r e a s e r a t h e r s l o w l y through 1995, whereas t h e c o s t o f n a t u r a l gas i s expected t o double d u r i n g t h i s t i m e p e r i o d . (133) Therefore, by 1995, r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s (energy e f f i c i e n c i e s o f a p p r o x i m a t e l y 90 p e r c e n t ) w i l l remain a t t r a c t i v e f r o m an o v e r a l l energy c o s t v i e w p o i n t . Energy savings alone, however, has n o t been a major f a c t o r i n c o n v i n c i n g some i n d u s t r i e s t o s w i t c h from thermal c u r i n g (energy i n t e n s i v e ) t o r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s f o r manufacture o f t h e i r product materials. O f course l a c k o f f u l l f u e l a v a i l a b i l i t y , such as was experienced i n t h e 1 9 7 0 ' ~f o~r c e d many i n d u s t r i e s , e s p e c i a l l y t h e p r i n t i n g indust r y , t o q u i c k l y e v a l u a t e r a d i a t i o n p r o c e s s i n g techniques. They soon d i s c o v e r e d many a d d i t i o n a l b e n e f i t s ( p r o d u c t i o n speed, p r o d u c t q u a l i t y , v a l u e added p r o d u c t s , e t c ) besides energy savings; t h e s e a d d i t i o n a l f a c t o r s became t h e d r i v i n g f o r c e f o r i n c r e a s i n g t h e growth r a t e o f r a d i a t i o n p r o c e s s i n g of p o l y m e r i c m a t e r i a l s f o r a wide v a r i e t y o f o t h e r i n d u s t r i a l a p p l i c a t i o n s . (126) - 5-1 9 Table 5-14 ESTIMATED COST TO PLASMA TREAT SMALL OBJECTS (132) Bases and Assumptions: Annual capacity: 40 million p a r t s per year Operation schedule: 16 hours/day, 250 days/year January 1984 dol 1ars C -aDi t a l Investment: Dol 1a r s Branson model 7150-12436 Pump Rotator f o r basket Spare baskets and handling equipment I n s t a l l a t i o n of e l e c t r i c a l equipment Spare p a r t s Total 65,000 15,000 10,000 10,000 5,000 3.000 108,000 ODeratincl Costs Cost El emen t Raw materi a1 s Electricity Labor and supervision: Direct 1abor : Operat or/f oreman Assistant operator Supervi s i on Maintenance: Labor Materi a1 s Payroll burden Overhead Factory suppl ies Quali t y control 1aboratory Insurance and property t a x Contingency Annual ized c a p i t a l recovery (10 years) Operating Requi rement s luni t s ) Annual cost, [dol 1a r s ) Cost Per Thousand Parts Jdoll a r s ) 41,840 kwh 0 2,929 0 0.073 2.00 men 2.00 men 0.15 d i r e c t labor 50,000 40,000 13,500 1.250 1.000 0.338 cap invest cap invest 1abor/super 1abor/super d i r e c t 1abor 2,160 2,160 26,415 52,830 5,400 0.054 0.054 0.660 1.321 0.135 0.10 d i r e c t labor 0.02 cap invest 0.04 d i r e c t c o s t s 9,000 2,160 8,262 0.225 0.054 0.207 25,823 0.646 240,639 6.016 0.02 0.02 0.25 0.50 0.06 0.24 cap invest Total Note: a 1500 watt, 13.56 megahertz generator consumes 3 KW. A 194 cubic foot/min. pump i s driven by a motor of 10 horsepower (7.46 kilowatts). Total KW used = 4000 hrs/year x 10.46 KW = 41,840 KWH/year. 5- 20 Table 5-15 ESTIMATED COST TO PLASMA TREAT A CONTINUOUS WEB OF PVC FILM (26) CaPi tal Investment: Dol 1 ars Shinetsu apparatus (instal led) Installation o f electrical equipment Total 1,000,000 40,000 1,040,000 ODeratinq Costs: Cost Element Raw materials Electricity Labor and supervision: Direct 1 abor: Operat or/f oreman Assistant operator Supervision Maintenance: Labor Materials Payroll burden Overhead Factory supplies Qual i ty control 1 aboratory Insurance and property tax Contingency Annualized capital recovery Annual Costs Operating Annual Requirements Cost, (units) (dollars) 1,280,000 kwh 0 89,600 0 0.311 2 men 2 men 0.15 direct labor 50,000 40,000 13,500 0.174 0.139 0.047 0.02 cap invest 0.02 cap invest 0.25 1 abor/super 0.50 1 abor/super 0.06 direct labor 20,800 20,800 31,075 62,150 5,400 0.072 0.072 0.108 0.216 0.019 0.10 direct 1 abor 0.02 cap invest 0.04 direct costs 0.24 cap invest 9 ,000 20,800 14,525 248.664 0.031 0.072 0.050 0.863 626,314 2.175 Total Note: Cost Per Thousand Sq. Ft. (dol 1 ars) Total power demand = 320 KW for pumps, generator and ancillaries 16 hrs/day x 250 days/year = 1.28 million KWH. 5-21 Section 6 SALES HISTORY/MARKET PROJECTIONS The o v e r a l l growth o f r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s (UV and E6 r a d i a t i o n p r o c e s s i n g a p p l i c a t i o n s ) f o r t h e f u t u r e depends on t h e growth ( h i s t o r i c and f u t u r e ) o f c e r t a i n i n d i v i d u a l i n d u s t r i e s and s p e c i f i c market segments w i t h i n t h e s e i n d u s t r i e s which can use o r c o n v e r t t o r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s ( T a b l e 6-1). (134) section. S p e c i f i c segments o f t h e c o a t i n g s i n d u s t r y s e r v e as examples i n t h i s Market p r o j e c t i o n s f o r r a d i a t i o n p r o c e s s i n g equipment a r e provided, and c o m p e t i t i v e f a c t o r s f r o m t h e e x i s t i n g and emerging t e c h n o l o g i e s a r e summarized. COATINGS The c o a t i n g s i n d u s t r y has an o v e r a l l h i s t o r i c growth r a t e between 8 t o 10% p e r year (1977 t o 1982) f o r t h r e e combined major p r o d u c t types: trade sales or architec- t u r a l c o a t i n g s , i n d u s t r i a l p r o d u c t f i n i s h e s , and s p e c i a l purpose c o a t i n g s ( F i g u r e 6-1). The most i m p o r t a n t area f o r p e n e t r a t i o n by r a d i a t i o n p r o c e s s i n g techniques i s t h e i n d u s t r i a l p r o d u c t f i n i s h i n g (IPF) l i n e segment o f t h e c o a t i n g s i r l d u s t r y . Table 6-2 l i s t s t h e t o t a l i n d u s t r i a l p r o d u c t f i n i s h i n g shipment values f o r 1977 through 1985 w i t h t h e p r o j e c t e d gross n a t i o n a l p r o d u c t (GNP) values f o r each year. (135-139) The growth r a t e s f o r GNP a r e w e l l e s t a b l i s h e d (10 p e r c e n t a n n u a l l y ) and can be e a s i l y p r o j e c t e d i n t o t h e year 1990. (135) The o f IPF t o GNP f o r t h e s e n i n e years i s a p p r o x i m a t e l y 0.92; thus, a p r o j e c t e d IPF average r a t i o d o l l a r v a l u e volume f o r 1990 i s c a l c u l a t e d t o be about 6 b i l l i o n d o l l a r s . (140) A f u l l range o f p r o j e c t e d I P F growth r a t e s can a l s o be o b t a i n e d if one assumes t h a t t h e IPF/GNP r a t i o v a r i e s between 0.5 and 1, r e s u l t i n g i n 1990 shipment values o f between about 3 ( l o w v a l u e ) and 7 ( h i g h v a l u e ) b i l l i o n d o l l a r s . I n 1976-1977 shipments o f r a d i a t i o n c u r a b l e c o a t i n g s (UV and EB) were $7 t o 12 m i l l i o n , a p p r o x i m a t e l y 0.5% o f t h e t o t a l v a l u e o f i n d u s t r i a l p r o d u c t f i n i s h i n g shipments f o r t h a t year. (124,141) I n 1979 t h e shipment f o r r a d i a t i o n c u r a b l e c o a t i n g s i n c r e a s e d somewhere between 2.4% and 5% o f t h e t o t a l I P F shipments values ($55 t o 114 m i l l i o n ) and i n 1982 and 1985 r a d i a t i o n c u r a b l e c o a t i n g s r e p r e s e n t e d between 2.8% and 6% ($71 t o 153 m i l l i o n ) and 4.5% and 6% ($168 t o 222 m i l l i o n ) r e s p e c t i v e l y o f t h e t o t a l IPF shipments f o r these y e a r s . 6-1 I f one assumes t h a t i n Table 6-1 RADIATION PROCESSING END USE MARKETS AND PRODUCTS (134) End Use Markets Products Graphic Arts Inks (UV, EB) Photopolymer plates (UV) Reproduction films (UV) Paper release coatings (EB) Decals (UV) Transfer letters Coated foils (UV, EB) Coated films (UV, EB) Packaging Inks (UV, EB) Photopolymer plates (UV) Overprint coatings (UV, EB) Shrink films (EB) Barrier coatings (UV, EB) Labels (UV) Tapes (UV, EB) Album jackets (UV, EB) Cosmetic cartons (UV) Liquor cartons (UV) Closures (UV) Bottles & bottle caps (UV) cups (UV) Cans (UV) Consumer Magazines (UV) Catalogues (UV) Book covers (UV) Credit cards (UV) Decorative mirrors (UV) Plaques (UV) Flooring (UV) Furniture (UV) Appliances (UV, EB) Lami nates (EB) Name plates (UV) Flocked fabric (EB) Footwear (EB) Permanent press (EB) Transportation Nameplates (UV, EB) Assembly parts (EB, UV) Replacement parts (UV, EB) Decorative finishes (UV, EB) Laminations (EB) Conductive coatings (UV) Electrical insulation (EB) Construction Panels (wood & particle board) (UV, EB) Flooring (UV) Wallpaper (UV) Binders for abrasives (EB) Laminations (EB) Electrical insulation (EB) Coil coated stock (EB) Printed circuit inks (UV) Photopolymer plates (UV) Photopolymer masks (UV) Electrical i nsul at ion (EB) Photo resists (UV) Wire coatings (UV, EB) Conductive coatings (UV, EB) Encapsulation/conformal coatings (UV, EB) Speakers (UV) Fiber optics (UV) Magnetic tapes (EB) Dielectric coatings (EB) Electrical insulation (EB) Wire & coil bonding (EB) Electronics - marking - etching (UV) (UV) - solder masks Communi cation (UV) Product usually prepared by ultraviolet (UV) or electron beam (EB) radiation processing conditions . 6-2 Q c 0 I- I 0 0 F F I 0 0 0 I O Q) O I 0 0 O 0 I 0 O IC C I 0 O D I 0 % F 6-3 I 0 0 d I 0 0 m I I O 0 O O (v r 1990 r a d i a t i o n c u r a b l e c o a t i n g s w i l l be between 6 and 10% of t h e t o t a l IPF $ m i l l i o n shipment values f o r t h a t year, then t h i s would equate t o a v a l u e f o r t o t a l r a d i a t i o n c u r a b l e c o a t i n g shipments o f between $374 and $624 m i l l i o n as c a l c u l a t e d from the relationship: (0.06 t o 0.10) ( I P F m i l l i o n $ = 0.92 GNP b i l l i o n $1. A f u l l range o f p r o j e c t e d values can a l s o be o b t a i n e d u s i n g t h e r e l a t i o n s h i p (0.06 t o 0.10) (IPF m i l l i o n $ = 0.5 t o 1 GNP b i l l i o n $ 1 (Table 6-2). R a d i a t i o n c u r a b l e c o a t i n g shipments can be f u r t h e r separated i n t o two major areas: UV and EB cured c o a t i n g systems. I n 1976-197_7_the d i v i s i o n f o r t o t a l r a d i a t i o n c u r a b l e c o a t i n g shipments was 0.4 p e r c e n t f o r UV and 0.1 p e r c e n t f o r EB t e c h n o l ogies. and 0.3, I n 1979, 1982, and 1985 t h i s d i v i s i o n became 2.1, 1.2 p e r c e n t f o r EB r e s p e c t i v e l y . 0.6, 2.2, 3.3 p e r c e n t f o r UV I n t h e year 1990 use o f EB c o a t i n g s i s expected t o be g r e a t e r than t h e use o f UV c o a t i n g s because o f t h e advantage o f u s i n g EB over UV p r o c e s s i n g techniques f o r h i g h speed-high volume c o a t i n g applications. I n d u s t r i a l p r o d u c t f i n i s h e s can a l s o be d i v i d e d i n t o n i n e market segments: metal, wood, t r a n s p o r t a t i o n , machinery, appliance, packaging, p l a s t i c p a r t s , e l e c t r o n i c s and miscellaneous ( F i g u r e 6-2). The areas most l i k e l y t o i n c r e a s e t h e i r use o f UV/EB r a d i a t i o n p r o c e s s i n g techniques a r e t h e wood, metal , packaging, and p l a s t i c f i n i s h i n g i n d u s t r i e s . (47) Wood F i n i s h i n g I n t h e wood f i n i s h i n g i n d u s t r y ( f l a t s t o c k ) t h e consumption o f UV r a d i a t i o n c u r a b l e c o a t i n g systems f o r 1974-75 was 6,803 m e t r i c t o n s o r 15 m i l l i o n pounds o f material. T h i s c o n v e r t s t o a p p r o x i m a t e l y 1.1 m i l l i o n g a l l o n s o f c o a t i n g , assuming a d e n s i t y o f 8 pounds/gallon f o r c l e a r f i n i s h e s (10% o f t h e market o r 1.5 million lbs "= 200,000 g a l l o n s ) and a d e n s i t y o f 15 pounds/gallon f o r f i l l e r c o a t - i n g s (90% of t h e market o r 13.5 m i l l i o n pounds "= 900,000 g a l l o n s ) . (124) I n 1981 t h e consumption of UV c u r e d c o a t i n g s f o r t h i s i n d u s t r y was 10 m i l l i o n pounds o r 0.73 m i l l i o n g a l l o n s . (142) - The r e c e n t annual decrease i n volume o f m i l l i o n s o f g a l l o n s shipped f o r t h i s i n d u s t r y ( F i g u r e 6-31 i n d i c a t e s t h a t t h i s market w i l l have a r e l a t i v e l y low 1990 f i n a l shipment value. (47 L 135) A t t h e p r e s e n t t i m e UV r a d i a t i o n c u r a b l e c o a t i n g s a r e o n l y 5 t o 9% o f t h e p r e f i n i s h e d board shipment v a l u e (1 t o 2% o f t h e t o t a l wood f i n i s h i n g m a r k e t ) and i n t h i s a p p l i c a t i o n , I R c o a t i n g s r e p r e s e n t a major t h r e a t t o U V - r a d i a t i o n p r o c e s s i n g systems. E l e c t r o n beam (EB) c o a t i n g s a r e n o t c o n s i d e r e d t o be a major p r o d u c t f o r t h i s market because t h e r e q u i r e d c o a t i n g s a r e t h i n enough o r t h e pigment t y p e and l e v e l s a r e such t h a t UV and I R p r o c e s s i n g techniques can c u r e t h e f i n i s h f o r acceptable p r o d u c t performance 6-4 Table 6-2 ANNUAL SHIPMENT VALUES FOR THE INDUSTRIAL PRODUCT FINISHING (IPF) MARKET; GROSS NATIONAL PRODUCT (GNP) VALUES AND IPF/GNP RATIOS (135-139) I n d u s t r i a1 Product F i n i s h e s (IPF) ( m i l $1 Gross N a t i o n a l Product (GNP) ( b i l $1 1977 1961 1918 1.02 1978 2092 2156 0.97 1979 2284 2414 0.95 1980 2418 2626 0.92 1981 2737 2926 0.93 1982 2546 3085 0.83 1983 2907 3400 0.86 1984 3428 3790 0.90 1985 3705 4265 0.87 6785 1990 IPF m i l $ 0.92 h i s t o r i c a l average (GNP b i l $) IPF m i l $ 0.5 (6785) = 3121 (1990 low value) IPFf mil $ 2 1 (6785) = 6785 (1990 high value) 6-5 I P F(GN P AVG IPF MARKETS A 6 C D E F G = Metal Coatings = Coil Coatings = Wood Coatings = Transportation = Machinery = Appliance = Packaging H = Plastlcs I = Electronics J = Miscellaneous Figure 6-2. 15.5% 9.5% 21 .O% 18.5% 8.0% 3.5% 10.5% 7.0% 3.5% 3.0% Major Market Segments f o r I n d u s t r i a l Product Finishes 6-6 (47) F ia a 6-7 levels. The f u t u r e f o r UV r a d i a t i o n processing i s i n t h e area o f three-dimensional f i n i s h i n g o p e r a t i o n s which o f f e r a v e r y a t t r a c t i v e growth o p p o r t u n i t y f o r t h e t e c h - If one assumes t h a t t h e p e n e t r a t i o n o f UV r a d i a t i o n p r o c e s s i n g i n t o t h e p r e f i n i s h e d board market w i l l remain c o n s t a n t (1 m i l l i o n g a l l o n s ) t h r o u g h 1990, nology. I f UV t h e n t h i s would equate t o a shipment v a l u e o f $24 m i l l i o n f o r t h a t year. r a d i a t i o n processing p e n e t r a t e s t h e t h r e e dimensional f i n i s h i n g market area and i n c r e a s e s t h e volume of c o a t i n g s shipped t o 2 m i l l i o n g a l l o n s i n 1990 t h e n t h i s would equate t o a shipment v a l u e o f a p p r o x i m a t e l y $48 m i l l i o n f o r t h e y e a r 1990. These p r o j e c t i o n s are made an. t h e assumptions t h a t t h o o v e r a l l wood f i n i s h i n g i n d u s t r y market growth w i l l remain c o n s t a n t (39 m i l l i o n g a l l o n s =- $234 m i l l i o n v a l u e ) o r have a c o a t i n g shipment v a l u e i n 1990 v e r y s i m i l a r t o t h a t observed i n 1985 ( T a b l e 6-31, Metal D e c o r a t i v e Coatings The t o t a l metal f i n i s h i n g market segment f o r IPF has i n c r e a s e d ( 5 % o v e r a l l average annual i n c r e a s e ) f r o m 80 m i l l i o n g a l l o n s o f c o a t i n g s shipped i n 1980 t o 98 m i l l i o n o f g a l l o n s shipped i n 1985. T h i s market segment can a l s o be s u b d i v i d e d i n t o f o u r separate product l i n e s (can-container coatings, c o i l coatings, f u r n i t u r e - f i x t u r e s , and general m e t a l s ) ; t h e can-container and general metals c o a t i n g s a r e o f most i n t e r e s t t o c u r r e n t r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s ( F i g u r e 6-4). (47 135) A R a d i a t i o n c u r a b l e shipments were 8 m i l l i o n pounds (1 m i l l i o n g a l l o n s ) i n 1974 and 10 m i l l i o n pounds (1.25 m i l l i o n g a l l o n s ) i n 1981. These shipment values r e p r e s e n t a p p r o x i m a t e l y 2 t o 3% of t h e combined c o n t a i n e r c o a t i n g s and general m e t a l markets b u t a r e o n l y 1 t o 2% of t h e t o t a l metal f i n i s h i n g market segment. (124,142) The h i s t o r i c and p r o j e c t e d growth r a t e f o r t h i s market segment i s shown i n Table 6-4. The combined c o n t a i n e r and general m e t a l market areas a r e p r o j e c t e d t o i n - crease f r o m 5 1 m i l l i o n g a l l o n s (1985) t o 80 m i l l i o n g a l l o n s (19901, which equates t o a p p r o x i m a t e l y $584 m i l l i o n combined c o a t i n g shipments f o r t h a t y e a r . I f one assumes t h a t i n 1990 r a d i a t i o n c u r a b l e c o a t i n g shipment w i l l be between 1 and 4 m i l l i o n g a l l o n s (1 t o 5% of t h e combined c o n t a i n e r - general metal volume s h i p - ments) t h e n t h i s would equate t o between $24 and 96 m i l l i o n ( 4 t o 16% o f t h e comb i n e d c o n t a i n e r and general metal markets, and 2 t o 8% o f t h e t o t a l metal f i n i s h i n g market segment d o l l a r v a l u e s ) f o r t h a t y e a r . (140-142) 6-8 Table 6-3 ANALYSIS OF CONVENTIONAL AND RADIATION CURABLE COATINGS FOR WOOD FINISHING MARKET AREAS (47,135,140,141) IPF Market Seqment Years Shipment , Million o f Gal 1 ons Million of Pounds Million o f $3 Historical Wood Finishes Total 1980- 1985 73-39 438-234 Furniture and Fixtures 1980-1985 53-27 318-162 Prefi ni shed 1980- 1985 20-12 120-72 1975- 19$1 1-0.7 UV-Radiation Curable 15-10 24-17 Future Wood Finishes Total 1990 39 UV-Radiati on Curable 1990 1-2 234 15-30 24-48 a$6/gallon conventional coatings, 12-35 $/gallon radiation curable coatings. 6-9 3 =.2s0i C O iih -01 Om - w P -2 s g 0 I- 6-1 0 Table 6-4 ANALYSIS OF CONVENTIONAL AND RADIATION CURABLE COATINGS FOR METAL FINISHING MARKET AREAS (47.140.141) I P F Market Sesment Years Shipment, Mill ion of Gal 1 ons Mill ion of Pounds Mil 1 ion o f 79-80s Historical Metal Finishes Tot a1 1980-1985 80- 98 569-700 Can-container 1980-1985 35-41 249-292 Coi 1 coatings 1980-1985 25-37 183- 271 Furniture fixtures 1980-1985 10-10 70-70 General metals 1980-1985 10-10 67-67 Radi at i on curabl e coatings 1979-1981 1-1.25 8-10 24-30 Future Metal Finishes Total 1990 160 1174 Can-container 1990 60 450 Coi 1 coatings 1990 60 450 Furniture fixtures 1990 20 140 General metals 1990 20 134 Radiation curable coatings 1990 1-4 6-1 1 8-32 30-96 Pack ag ing C o a t i ngs The packaging i n d u s t r y (paper, f o i l , p l a s t i c f i l m ) has shown an i n c r e a s e i n c o a t i n g shipments f r o m 20 m i l l i o n g a l l o n s ($130 m i l l i o n v a l u e ) i n 1980 t o 35 m i l l i o n g a l l o n s i n 1985. - A l i n e a r e x t r a p o l a t i o n f r o m 1980 t o 1990 f o r t h i s i n d u s t r y p r o j e c t s t h a t t h e volume of c o a t i n g s shipped i n 1990 c o u l d r e a c h 55 m i l l i o n g a l l o n s valued a t $403 m i l l i o n ( F i g u r e 6 - 5 ) . R a d i a t i o n c u r a b l e c o a t i n g s used i n t h i s i n d u s t r y i n 1979-1981 were valued a t between $6 and $22 m i l l i o n and a r e expected t o i n c r e a s e up t o a maximum of $118 m i l l i o n (between 5 and 29 p e r c e n t o f t h e t o t a l packaging s h i p ment v a l u e ) in.1990 ( T a b l e 6 4 ) . (47-,14@,141JTable 6-5 ANALYSIS OF CONVENTIONAL AND RADIATION CURABLE COATINGS FOR PACKAGING MARKET AREAS (47,141 1 I P F Market Segment Years Shipment , M i 11 i o n of G a l l o n s M i 11 i o n o f Pounds M i l 1i o n o f 79-80$ H is t o r i c a l Packaging (paper, f o i l , plastic film) 1980-1985 R adi a t ion c u r a b l e coatings 1974-1980 130-257 20-35 2-8 6- 22 Future Pack ag ing 1990 Radiation curable coatings 1990 35-55 257-403 8-43 22-118 Other C o a t i n g Systems I n 1976 o n l y f o u r commercially o p e r a t i v e f l o o r i n g l i n e s i n t h e U.S. used UV c u r i n g technology, b u t b y 1985 a l l o f t h e major f l o o r i n g manufactures had e x p l o r e d some aspect o f t h e commercial u t i l i z a t i o n o f t h i s technology. The consumption o f UV c u r a b l e c o a t i n g s i n 1979 was about 10 m i l l i o n pounds ($32 m i l l i o n ) ; i n 1985 t h i s grew t o a p p r o x i m a t e l y 16 m i l l i o n pounds ($50 m i l l i o n ) . T h i s consumption o f UV c u r a b l e c o a t i n g s r e p r e s e n t s a p p r o x i m a t e l y 10 t o 16% o f t h e t o t a l c o a t i n g products used i n t h e manufacture o f v i n y l f l o o r i n g p r o d u c t s . 6-1 2 A l l o t h e r segments o f t h e I P F ~ - 6-1 3 market ( c o a t i n g s f o r f l e x i b l e p l a s t i c s , elastomers, i n c l u d i n g f l o o r c o a t i n g s , and o t h e r m a r k e t s ) accounted f o r between $69 and $100 m i l l i o n shipment values o f r a d i a t i o n c u r a b l e c o a t i n g s f o r t h e years 1979-1982 and a r e expected t o i n c r e a s e f r o m a p p r o x i m a t e l y $100 t o $140 m i l l i o n i n 1990. (47,124,134,135,141,142) PRINTING The h i s t o r i c growth of t h e p r i n t i n g i n k i n d u s t r y i s shown i n F i g u r e 6-6 and t h e breakdown o f 1982 d o l l a r v a l u e shipments among t h e f i v e m a j o r p r i n t i n g processes i s shown -in Figure 6-7. (135,140,143) The t o t a r - m t n i o n d o l l a r shipment v a l u e f o r t h i s i n d u s t r y can be p r o j e c t e d t o t h e year 1990 b y t h e f o l l o w i n g r e l a t i o n s h i p der i v e d f r o m t h e i n f o r m a t i o n c o n t a i n e d i n Table 6-6 and F i g u r e 6-6. P r i n t i n g I n k ( P I ) ( $ m i l l i o n shipments) "= 0.41 (GNP $ b i l l i o n ) Thus i n t h e year 1990 t h e expected t o t a l shipment v a l u e f o r t h i s i n d u s t r y s h o u l d be a p p r o x i m a t e l y $2,782 m i l l i o n . R a d i a t i o n c u r a b l e i n k s and o v e r p r i n t varnishes a r e m a i n l y used i n t h e packaging and p r i n t i n g t r a d e consumption market areas. about 40% o f a l l i n k s consumed i n t h e U.S. Packaging i n k s o f a l l t y p e s make up The t h r e e m a j o r packaging submarkets are the following: 0 0 0 metal and p l a s t i c c o n t a i n e r s f o l d i n g paper c a r t o n s 1abel s . P u b l i c a t i o n i n k s a r e used t o p r i n t newspapers, magazines, and books, and consume a p p r o x i m a t e l y 20% o f t h e nonpackaging i n k markets; 40% of t h e nonpackaging i n k s a r e used i n t h e commercial f i e l d f o r p r i n t i n g commercial f l y e r s , d i r e c t m a i l , ads, business forms, e t c . Between t h e years o f 1975 and 1981 r a d i a t i o n c u r a b l e i n k s i n c r e a s e d f r o m 1.75 m i l l i o n pounds shipped t o 18 m i l l i o n pounds shipped w i t h a shipment v a l u e i n c r e a s e o f between $5.33 and $54 m i l l i o n o r between 0.8 t o 4% o f t h e t o t a l P I shipment v a l u e f o r those y e a r s . I f one assumes t h a t t h e use o f r a d i a - t i o n c u r a b l e i n k s w i l l v a r y f r o m 4 t o 10% i n 1990 t h e n t h e p r o j e c t e d shipment v a l u e f o r t h i s y e a r would be between $111 t o $278 m i l l i o n ( a p p r o x i m a t e l y 70% o f these values r e l a t e t o packaging i n k market areas; 30% o f t h e s e values r e l a t e t o o t h e r nonpackaging p r i n t i n g market segments) ( T a b l e 6-7). 6-1 4 (47,141,142) 6-1 5 / offset 39% // I \ Other Screen 4% I Flexographic 18% Letterpress 9% Total 1982 U.S. Shipments = $1.36 to 1.48 Billion Figure 6-7. Processes Market Share o f Major Printing (E) 6-1 6 Table 6-6 ANNUAL SHIPMENT VALUES FOR PRINTING INKS; GROSS NATIONAL PRODUCT VALUES AND P I / G N P RATIOS (135,140) Year P r i n t i n g Inks ( P I ) ( m i l $) Gross N a t i o n a l Product (GNP) ( b i l $1 PI/GNP 1977 905 1918 0.47 1978 1000 2156 0.46 1779 1110 2414 0.46 1980 1250 2626 0.48 1981 1380 2926 0.47 1982 1495 3085 0.48 1983 1540 3400 0.45 1984 1595 3790 0.42 1985 1990 P I ( m i l $1 6785 9 0.41 h i s t o r i c a l average (GNP b i l $1. 6-1 7 Table 6-7 CONVENTIONAL AND RADIATION CURABLE PRINTING INK INDUSTRY MARKET ANALYSIS (47,124,141,142) -Year Mil Pounds Mil $ Shipped (Percentage o f total PI shiPment values) Hi stori cal Printing ink (PI) industry total 1984 Radi at i on curable inks 1975 1595 1.75 1977 5.33 (0.8 percent) 15 (1.7 percent) 1979 6 1981 18 20 (1.8 to 2 percent) 54 (4 percent) Future Printing ink industry total 1990 2782 Radiation curable inks 1990 1 1 1 to 278 (4 to 10 percent) 6-1 8 I n a r e l a t e d area, p r i n t i n g p l a t e s can be manufactured v i a photopolymer t e c h n o l ogies and i n 1969-1975 t h e t o t a l market f o r a l l types o f s e n s i t i z e d p r i n t i n g p l a t e s , i n c l u d i n g UV-cured p r i n t i n g p l a t e s , was between $675 m i l l i o n and $1 b i l lion. R a d i a t i o n ( U V ) c u r a b l e m a t e r i a l s accounted f o r a p p r o x i m a t e l y 8 t o 17% o f t h i s market i n 1975-1979 ( 8 m i l l i o n pounds valued a t $120 m i l l i o n ) and i n 1985 was a p p r o x i m a t e l y 14 m i l l i o n pounds o r $210 m i l l i o n i n value. T h i s market i s expected t o grow between $210 and $250 m i l l i o n i n v a l u e f o r t h e y e a r 1990. (124,141) ADH ES I VES - The adhesive i n d u s t r y ( F i g u r e 6-8), s p e c i f i c a l l y t h e s y n t h e t i c and rubber adhesive p r o d u c t l i n e s , can be p r o j e c t e d t o grow f r o m $1880 m i l l i o n shipment values i n 1982 up t o $4139 m i l l i o n i n 1990 a c c o r d i n g t o t h e r e l a t i o n s h i p s y n t h e t i c and rubber adhesives ( A D ) ( m i l l i o n d o l l a r shipment v a l u e ) = 0.61 (GNP b i l l i o n d o l l a r ) d e s c r i b e d i n Table 6-8. (135,140,144) R a d i a t i o n c u r a b l e t o t a l adhesives (UV and E B ) shipment values i n 1983/84 were 5 m i l l i o n d o l l a r s f o r UV and $1.8 t o $2.2 m i l l i o n f o r EB. These values are p r o j e c t e d t o grow up t o $11 m i l l i o n ( U V ) and $8 m i l l i o n (EB) f o r t h e year 1990 ( T a b l e 6-9). UV c u r a b l e adhesives, such as s t r u c - t u r a l adhesives (nonpressure s e n s i t i v e ) f o r t h e e l e c t r o n i c s , automotive, and medic a l d e v i c e i n d u s t r i e s , are e l i m i n a t i n g o f f - l i n e c u r i n g o p e r a t i o n s b y i n c o r p o r a t i n g c u r i n g i n t o a f u l l y automated assembly o p e r a t i o n . I n 1983/84 L o c t i t e i n t r o d u c e d 11 new UV-curable adhesive systems and a s s o c i a t e d a p p l i c a t i o n equipment ( c o s t $50-500,000) f o r these market areas. been d o u b l i n g y e a r l y s i n c e 1979. f r o m $4 t o $10/lb. The demand f o r L o c t i t e ' s cured adhesives has The c o s t o f t h e s e s t r u c t u r a l adhesives ranges I n 1983 t h e market f o r UV-cured s t r u c t u r a l adhesives alone was about $1 m i l l i o n and i s expected t o grow t o 1.25 m i l l i o n d o l l a r s i n 1990. (144-146) Pressure s e n s i t i v e adhesives ( P S A ) are a l s o a l a r g e p o t e n t i a l s p e c i a l t y market f o r r a d i a t i o n cured polymers. p e r y e a r ( F i g u r e 6-9). This market i s i n c r e a s i n g a t about t h e r a t e o f 10 t o 11% (147) PLASTICS AND RUBBER MATERIALS T o t a l p l a s t i c s p r o d u c t i o n i n t h e U.S. has grown f r o m a p p r o x i m a t e l y 38 b i l l i o n pounds i n 1981 t o almost 50 b i l l i o n pounds i n 1985. The two most i m p o r t a n t polymer m a t e r i a l s o f i n t e r e s t f o r r a d i a t i o n processing m o d i f i c a t i o n s are polyethylene (lowd e n s i t y ) and p o l y v i n y l c h l o r i d e , which have a l s o i n c r e a s e d t h e i r combined t o t a l p r o d u c t i o n r a t e s f r o m 14 b i l l i o n pounds i n 1981 t o 16 b i l l i o n pounds i n 1985 ( F i g u r e 6-10). 6-11. The market d i v i s i o n s f o r these two m a t e r i a l s i s shown i n F i g u r e (135,148) 6-1 9 6-20 Table 6-8 HISTORICAL GROWTH OF SYNTHETIC AND RUBBER ADHESIVES (AD); GNP VALUES AND AD/GNP RATIOS (135,140) S y n t h e t i c and Rubber Adhesives, (AD) M i l $ shimed 1977 1978 1979 1980 1981 1982 - ...- ... 1222 1367 1506 1545 1667 1aao GNP Bil $ AD/GNP 1918 2156 2414 2626 2926 3085 0.64 0.63 0.62 0.59 0.57 0.61 6785 1990 S y n t h e t i c and r u b b e r adhesives (AD) ( m i l $ shipment v a l u e ) average v a l u e (GNP b i l l $ ) . = 0.61 h i s t o r i c T a b l e 6-9 CONVENTIONAL AND RADIATION CURABLE SYNTHETIC AND RUBBER ADHESIVE MARKET ANALYSIS (47,141) H istoric S y n t h e t i c and r u b b e r adhesives Pounds Consumed Year Millions o f $ shimed 1880 1982 Radiation curable adhesives uv EB 1983184 1983184 76,00o-a5,000 0.5 m i l l i o n 5 1.8 t o 2.2 Future S y n t h e t i c and r u b b e r adhesives 4139 1990 Radiation curable adhesives uv EB 1990 1990 290,000 1.3 m i l l i o n 6-21 11 a ,-- Total PSA Market 350 300 250 200 150 1975 Figure 6-9. 1980 Shipments o f Pressure S e n s i t i v e Adhesives 6-22 1985 (147) Total Plastics Production 45 40 u) 0 35 C 3 2 30 r 0 E .-- t 25 I 20 15 10 t Low Density Polyethylene 5 1981 1982 1983 1984 1985 Share o f Low D e n s i t y P o l y e t h y l e n e (LDPE) and P o l y v i n y l C h l o r i d e F i g u r e 6-10. (PVC) Annual P l a s t i c s P r o d u c t i o n C a p a c i t y (135) 6-23 100 Extruded Items Film and Sheet I L 67% 53% All Others Extrusion Coatings _. I Injection Molding Wire and Cable Figure 6-11. ; I I Calendered Sheet All Others r Molded Items Coatings 1985 Market Share f o r Low Density Polyethylene (LDPE) and Polyvinyl Chloride (PVC) l~ (148) I I t i s d i f f i c u l t t o p r o j e c t t h e a c t u a l growth o f h i g h energy r a d i a t i o n m o d i f i e d r u b b e r and p l a s t i c m a t e r i a l s a t t h i s time, b u t a general overview o f t h e s e indust r i e s can be d e s c r i b e d i n a s e m i q u a n t i t a t i v e manner. To date, p l a s t i c s consumption i n t h e U n i t e d S t a t e s as a whole has grown h i s t o r i c a l l y a t r a t e s i n excess o f GNP. Rubber consumption, however, has n o t m a i n t a i n e d t h i s t r e n d (Table 6-10). (135,149) D u r i n g t h e 1 9 7 0 ' s rubber consumption grew a t r a t e s o f a p p r o x i m a t e l y 0.5-0.7 GNP. I n t h e 1 9 8 0 ' s t h i s r a t i o has d e c l i n e d even f u r t h e r and that of has become n e g a t i v e . These t r e n d s i n d i c a t e t h a t t h e o p p o r t u n i t i e s f o r r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s a r e expected t o be g r e a t e r i n t h e p l a s t i c s i n d u s t r y t h a n i n t h e r u b b e r i n d u s t r y ~~ marketplace. I t s h o u l d be noted, however, t h a t two companies (Raychem C o r p o r a t i o n and t h e Cryovac D i v i s i o n o f W. R. Grace) have combined s a l e s o f a t l e a s t $400 m i l l i o n per year m a n u f a c t u r i n g p o l y o l e f i n h e a t - s h r i n k a b l e sleeves, t u b i n g , boots, wrap and r a d i a t i o n c r o s s - l i n k e d p o l y e t h y l e n e heat s h r i n k a b l e f o o d wrap p r o d u c t s . (150) ELECTRONICS AND COMMUNICATIONS The growth o f t h e e l e c t r o n i c s i n d u s t r y i s b e s t r e p r e s e n t e d by t h e growth o f spec i f i c i n d i v i d u a l components , such as i n t e g r a t e d c i r c u i t s ( I C ) ( F i g u r e 6-1 2 ) . The 1984 d o l l a r e s t i m a t e o f e l e c t r o n i c chemicals usage ( d e v i c e s and e n c a p s u l a n t s ) i n t h e U.S. i s shown i n F i g u r e s 6-13, 6-14, and 6-15. (151,152) The e l e c t r o n i c s and m i c r o e l e c t r o n i c s i n d u s t r i e s use c o a t i n g s , adhesives, and i n k s f o r a wide range o f a p p l i c a t i o n s b u t p r i m a r i l y f o r p r i n t e d c i r c u i t boards (PCB). Some of t h e c a t e g o r i e s o f systems used i n t h e s e i n d u s t r i e s a r e as f o l l o w s : 0 e 0 0 0 0 UV c u r a b l e screen i n k s L i q u i d p h o t o r e s i s t s f o r PCB and i n t e g r a t e d c i r c u i t s L i q u i d s o l d e r marks (UV c u r a b l e ) L e t t e r i n g and nomenclature i n k s Conformal c o a t i n g s Dry f i l m r e s i s t s and s o l d e r marks. I n 1975-76 t h e p h o t o r e s i s t p r i n t e d c i r c u i t board markets used a p p r o x i m a t e l y $41 m i l l i o n w o r t h o f i n k s , i n c l u d i n g UV c u r a b l e m a t e r i a l s . Assuming t h a t 10% o f t h e market was c a p t u r e d b y UV-curing i n k s , t h e n t h i s equates t o t h e market value f o r UV-curing i n k s i n t h e s e a p p l i c a t i o n s o f about $4 m i l l i o n i n t h e U n i t e d S t a t e s . (124) I n 1979-81-85 t h e volume o f UV c o a t i n g s and i n k s was 8, 12 and 14 m i l l i o n pounds, r e s p e c t i v e l y , r e p r e s e n t i n g a market v a l u e o f between $93 m i l l i o n and $160 m i l l i o n f o r t h i s segment o f t h e i n d u s t r y . Because o f t h e r a p i d growth f o r h i g h t e c h n o l o g y areas such as demonstrated b y t h e computer and communication i n d u s t r i e s , t h e use o f r a d i a t i o n c u r a b l e m a t e r i a l s i n t h e year 1990 i s expected t o 6-25 Table 6Synthetic and Natural Rubber Consumption (135) - U.S. S y n t h e t i c Rubber Consumption ( m i l l i o n s m e t r i c t o n s ) m I N m Year - Total - 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 1974 1973 1972 1971 1970 1969 2.00 1.84 1.73 2.10 2.01 2.49 2.59 2.51 2.26 1.99 2.20 2.41 2.31 2.17 1.99 2.09 (ex .-SBRia t e x ) Latex - SBR Butyl Neoprene Nitrile Polyb u t ad; ene .09 .08 .13 .28 .22 .27 .24 .23 .23 .13 .12 .10 .12 .13 .12 .ll .09 .12 .12 i4 .15 .05 .07 .07 .06 .06 .06 .07 .06 .06 .07 .08 .06 .06 .06 .07 .36 .27 .35 .31 .41 .41 .41 .34 .32 .35 .35 .31 .29 .28 .27 .14 .09 .15 .11 .14 .15 .14 3 4 19 14 8 2 .80 .88 1.02 1.03 1.32 1.42 1.45 1.30 1.19 1.28 1.48 1.47 1.39 1.24 1.34 .15 .16 .14 .16 -09 .12 .13 .13 .12 .12 .14 .10 .16 .17 .17 .14 .16 -15 .15 .15 .15 .13 44 63 5 6 15 5 6 6 .ll . .18 EPR - .ll .09 .10 .09 .07 .05 .05 .04 Percent t o T o t a l 1983 1970 ” -L . I 1 i I I N a t u r a l Rubber ConsumDtion (10’ M e t r i c Tons) .75 .68 .66 .63 .59 .74 .69 .71 .66 .61 .65 .62 .58 .52 .51 .54 Total 2.75 2.54 2.43 2.52 2.44 3.08 2.90 3.06 2.63 2.45 2.79 2.80 2.66 2.25 2.38 Synthetic Rubber as % o f Total 74 75 76 77 77 76 77 76 75 75 77 78 78 77 77 104 103 u) g 102 r 0 u) C -.-.-0 a 10’ 10 0 1970 1975 1980 1985 1990 Year Figure 6-12. IC Shipments 6-27 (151) 1995 1984 Estimate $3 Billion Figure 6-13. U.S. Electronic Chemicals 6-28 3 6-29 6-30 be 28 m i l i o n pounds valued a t $320 m i l l i o n . (47,134,141) I n genera , the t o t a l use o f e l e c t r o n i c chemicals f o r U.S. i n d u s t r i e s i n 1984 i s e s t i m a t e d t o be $3 b i l l i o n ( F i g u r e 6-13) and c o u l d r e a c h $15 b i l l i o n i n t h e y e a r 1990. I n a r e l a t e d electronics/communication area t h e use o f r a d i a t i o n c u r a b l e m a t e r i a l s f o r magnetic r e c o r d i n g media was $7 m i l l i o n i n 1983 ( T a b l e 6-11) and i s e s t i m a t e d t o grow t o $10 m i l l i o n i n 1990. (105) Table 6-11 (105) MAGNETIC M E D I A MARKET 1983 Factory s a1es(Million $1 Growth '82-'83 Percent Audio Media 2,050 8 Video Media 3,150 22 Computer & I n s t r u m e n t Tape 550 14 F l e x i b l e Disks 653 26 495 6,898 27 R i g i d Disks A complete summary o f p a s t and p r o j e c t e d markets f o r r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s i n t h e U.S. i s shown i n Table 6-12. RADIATION PROCESSING EQUIPMENT As more and more i n d u s t r i e s c o n v e r t t o r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s , t h e demand f o r r a d i a t i o n p r o c e s s i n g equipment i n c r e a s e s p r o p o r t i o n a l l y . It i s estimated t h a t r a d i a t i o n p r o c e s s i n g equipment (UV, h i g h energy e l e c t r o n , I R ) w i l l grow f r o m a p p r o x i m a t e l y 3035 t o t a l p r o d u c t i o n u n i t s i n 1980-81 t o a p p r o x i m a t e l y 8610 t o t a l p r o d u c t i o n u n i t s i n t h e y e a r s between 1986 t o 1990. The growth ( h i s t o r i c and f u t u r e ) and major market usage f o r these p a r t i c u l a r r a d i a t i o n p r o c e s s i n g equipment systems i s shown i n Table 6-13. (134) 6-31 Table 6-12 RADIATION PROCESSING OF POLYMERIC MATERIALS MARKETS AND GROWTH POTENTIAL Histories (1979-1985) Mi 11 ions. Rounds dol 1 ars Mi 11 ions. Wood Coatings Metal Coatings Packaging Coatings F1 oor Coatings W i re Coati ngs Flexible Plastics Elastomer Coatings Other Markets (Fiber Optics, Ceramics, Textiles) 10-15 8-10 2-8 10-16 0.1 4-5 2 17-24 24-30 6-22 32-50 Future (19901 Millions, Mi 11 ions, pounds dol 1 ars 12-14 5-6 15-30 8-32 8-43 16-19 0.1-0.2 5-9 2 24-48 30-96 32-96 50-60 -14-24 6 5-12 20-30 12-20 30-50 Sub Total (IPF Market Ranges) 41-68 116- 176 66-155 176-398 Printing Inks Printing Plates Adhesives Electronics Magnetic Recording Materials 18 8-14 0.6 8-14 54 120-210 6.8-7.2 93-160 7 54- 135 14-17 1.6 28 -- 1 1 1 - 278 210-250 19 320 10 Sub Total (Predominately UV and Low Energy Electron Processing Operations) 76-115 281 -438 98-182 670-877 High Energy Electron Beam Appl i cati ons Infrared Curing Applications Total Dollar Value -- -- --- 400-700 lo 691 - 1,148 6-32 --- 700-900 20 1,390-1,797 Table 6-13 RADIATION PROCESSING EQUIPMENT (GROWTH AND MAJOR MARKET AREAS) (134) - Approximate Number of P r o d u c t i o n U n i t s .. F o r a ' G i v e n Year Processing Equipment and Major Market Area 54 p e r c e n t i n p r i n t i n g o r packaging, 23 p e r c e n t i n wood c o a t i n g s , 23 p e r c e n t i n o t h e r appl ic a t ion areas 1971 1976 i98o-ai 1986-1990 100 300 2100 4200 2 3 a5 210 850 4200 High Energy E l e c t r o n i c s Major market areas a r e i n h i g h speed c o a t i n g and g r a p h i c s a r t s , adhesive l a m i n a t i o n , and polymer m o d i f i c a t i o n techno1 o g i e s 40 p e r c e n t i n metal c o a t i n g s ( t r a n s p o r t a t i o n ) 60 p e r c e n t i n p l a s t ics , t e x t il e s adhesives , c o a t i n g s (nonmetal 1, and t h e graphic arts industries - - - - 102 303 3035 a610 Total 6-33 The p r e s e n t and f u t u r e e l e c t r i c a l energy consumption requirements f o r I R , UV, and high-energy e l e c t r o n processing equipment can be c a l c u l a t e d assuming t h a t an average e s t i m a t e d power c a p a c i t y r a t i n g p e r u n i t f o r each r a d i a t i o n processor c l a s s i f i c a t i o n (UV, EB and IR) i s 100, 50 and 250 kw r e s p e c t i v e l y . T h i s equates t o an approximate p r e s e n t t o t a l c a p a c i t y o f 426,750 kw f o r t h e 3035 1980-1981 p r o d u c t i o n u n i t s and a f u t u r e c a p a c i t y p r o j e c t i o n o f a p p r o x i m a t e l y 1,480,500 kw f o r t h e r a d i a - t i o n p r o d u c t i o n u n i t s expected t o be i n p l a c e between 1986 and 1990. ( 16,123,134 ,150) COMPETITION FROM EXISTING AND EMERGING TECHNOLOGIES S e v e r a l competing and emerging t e c h n o l o g i e s a r e a s s o c i a t e d w i t h t h e c o a t i n g s t r y which impact t h e f u t u r e o f r a d i a t i o n p r o c e s s i n g systems. ndus- These competing c o a t - i n g systems i n c l u d e c o n v e n t i o n a l low s o l i d s solvent-based c o a t i n g s u s i n g s o l v - n t b u r n i n g o r r e c l a m a t i o n a n t i p o l l u t i o n techniques, h i g h s o l i d s c o n t e n t solvent-based c o a t i n g s , water-based c o a t i n g s ( e l e c t r o c o a t i n g and n o n e l e c t r o c o a t i n g ) and 100% s o l i d s powder c o a t i n g systems. A breakdown o f 1982 and p r o j e c t e d 1987 U.S. ship- ments f o r t h e i n d u s t r i a l p r o d u c t f i n i s h i n g market o f t h e c o a t i n g s i n d u s t r y i s shown i n T a b l e 6-14. From t h i s i n f o r m a t i o n i t appears t h a t t h e o t h e r c o a t i n g t e c h n o l - o g i e s w i l l c o n t i n u e t o dominate t h i s p a r t i c u l a r market area. (47) An energy analy- s i s f o r c u r i n g these c o a t i n g systems shows t h a t r a d i a t i o n p r o c e s s i n g i s by f a r t h e most e f f i c i e n t process; however, energy c o n s e r v a t i o n i s n o t t h e o n l y f a c t o r d r i v i n g t h e c o a t i n g i n d u s t r y t o u t i l i z e t h e s e thermal c u r i n g processes ( T a b l e 6-15). As l o n g as t h e r e i s an abundant s u p p l y o f f o s s i l f u e l , t h e c o a t i n g i n d u s t r y w i l l c o n t i n u e t o f i n i s h p r o d u c t s i n which t h e r e i s no v a l u e added o r m a n u f a c t u r i n g advantage o t h e r than energy savings by c o n v e n t i o n a l thermal c u r e methods. 6-34 (153) Table 6-14 U.S. SHIPMENTS OF INDUSTRIAL FINISHES BY COATINGS MATERIALS AND SYSTEMS (47) 1982 ~ _ _ _ _ _ - __-- 1987a Coatinqs Material/Svstem Mil $ Percent Mil $ Sol ventborne Conventional EPA conforming systems 1670 800 870 65.6 31.4 34.1 830 300 530 34.6 12.5 22.1 Waterborne Electrodeposition (ED) Non - ED 500 100 400 19.6 3.9 15.7 800 150 650 33.3 6.3 27.0 Powder coatings 150 5.9 200 8.3 70 55 15 2.8 2.2 0.6 120 50 5.0 2.9 2.1 156 6.1 450 18.8 Radiation curable U l t r a v i o l e t (UV) Elec tro n beam (EB) High sol id s -1 i q u i d Total 2546 100 aThese values a r e i n constant 1982 d o l l a r s . 6-35 70 2400 Percent 100 Table 6-15 ENERGY ANALYSIS OF COATING TECHNOLOGIES Sol v e n t Based Energy requirements t o c u r e 440 square f e e t o f 19-gauge metal per minute ( m i l l i o n BTU's) Water- High borne Sol i d s -- 12 11-12 0 Percent energy savings 0-8% Two Component Urethane Electrocoating Powder 9-10 3 8 8- 10 16-25 75 33 16-33 Radia t ion Curable 1 90 An emerging t e c h n o l o g y developed by Ashland Chemical Company u t i l i z e s a low-temperature chemical c u r i n g c o a t i n g system based on b l o c k e d i s o c y a n a t e chemi s t r y c a t a l y z e d b y a v o l a t i l e amine c a t a l y s t m a t e r i a l . T h i s vapor c u r e process o f f e r s s e v e r a l advantages over b o t h r a d i a t i o n c u r a b l e c o a t i n g s and t h e r m a l l y cured c o a t i n g s systems. I n t h i s technology t h e c o a t i n g i s a p p l i e d f r o m s o l v e n t b u t c o u l d be designed t o be 100% r e a c t i v e and i s cured b y passing t h e coated p r o d u c t through a vapor o f t h e amine c a t a l y s t . t o remove t h e s o l v e n t . No heat i s r e q u i r e d , except f o r what i s necessary T h i s vapor c u r e system i s o p e r a b l e f o r a wide v a r i e t y o f f l a t - and three-dimensional product configurations. Both t h e automotive and t h e v i n y l f i l m i n d u s t r i e s use t h i s technology t o process c e r t a i n p r o d u c t s , and i n A u s t r a l i a t h i s system has been adapted t o c u r e p r i n t i n g i n k s f o r a wide v a r i e t y o f appl ic a t ions . (154 -1 GLOBAL TRENDS FOR RADIATION PROCESSING OF POLYMERIC MATERIALS European a c t i v i t i e s i n r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s a r e m a i n l y concerned w i t h t h e development o f raw m a t e r i a l s and f i n i s h e d p r o d u c t s r a t h e r t h a n w i t h investments in i n d u s t r i a l p r o d u c t i o n equipment. A t present there are approxi- m a t e l y 800 t o 2,000 UV; 80 t o 100 EB and 1,000 t o 2,000 I R i n s t a l l a t i o n s e x i s t i n g t h r o u g h o u t Europe; and i n 1990 t h e expected numbers are 4,200 UV, 210 EB and 4,200 I R r a d i a t i o n p r o c e s s i n g u n i t s r e s p e c t i v e l y . (134 ,155 ,156 1 C u r r e n t p r o j e c t e d e l ect r i c power c a p a c i t y r a t i n g s f o r t h e s e p r o c e s s i n g u n i t s i s between 500,000 and 1,500,000 kw. The p r e s e n t i n s t a l l a t i o n s a r e b e i n g used i n a wide v a r i e t y o f r e search, p i l o t and i n d u s t r i a l p r o d u c t i o n o p e r a t i o n s . The l a r g e numbers o f e x i s t i n g i n s t a l l a t i o n s i n many d i f f e r e n t f i e l d s of a p p l i c a t i o n s a l o n g w i t h t h e i n t e n s e 6-36 a c t i v i t i e s o f raw m a t e r i a l s u p p l i e r s and manufactures o f p r o d u c t s do n o t a l l o w f o r a r e l i a b l e e s t i m a t i o n o f t h e use o f these r a d i a t i o n c u r a b l e m a t e r i a l s i n Europe. The t o t a l 1978-1981 v a l u e o f r a d i a t i o n c u r a b l e m a t e r i a l s f o r Europe i s e s t i m a t e d t o be between $300 t o $600 m i l l i o n and t h e v a l u e o f t h e s e m a t e r i a l s i n 1990 i s p r o j e c t e d t o be between $700 t o $950 m i l l i o n . The c o a t i n g i n d u s t r y , p r e d o m i n a t e l y UV c u r a b l e c o a t i n g s , accounts f o r a p p r o x i m a t e l y 20 t o 30% o f t h e t o t a l r a d i a t i o n c u r a b l e p r o d u c t s consumed i n Europe. -- __ The p r o d u c t __l i n e s o r market share breakdown percentages f o r t h i s p a r t i c u l a r i n d u s t r y a r e as f o l l ows : UV c u r a b l e c o a t rigs EB c u r a b l e c o a t wood c o a t i n g s metal d e c o r a t i o n and p r i n t i n g i n k s paper and cardboard c o a t i n g s f l e x i b l e p l a s t i c and f l o o r c o a t i n g s o t h e r c o a t i n g systems 29 22 11 11 5 22 rigs Total li5rd- I n Europe energy shortages do n o t appear t o be a major m o t i v a t i o n f o r c o n v e r t i n g t o r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s over c o n v e n t i o n a l f o s s i l f u e l thermal c u r i n g methods. Europe has access t o crude o i l f r o m t h e M i d d l e East and A f r i c a , n a t u r a l gas f r o m t h e Netherlands, S o v i e t Union and N o r t h A f r i c a . The p r o d u c t i o n o f o i l and gas f r o m t h e N o r t h Sea i s i n c r e a s i n g and c l a s s i c energy sources i n t h e f o r m o f h a r d c o a l and l i g n i t e a r e n e a r l y w i t h o u t l i m i t a t i o n s . The d r i v i n g f o r c e t h e n f o r prod- u c t manufacture v i a r a d i a t i o n p r o c e s s i n g techniques c e n t e r s on p r o d u c t i o n e f f i c i e n c y , p r o d u c t performance and v a l u e added m a t e r i a l s . (157,158) For example, r a d i a t i o n c u r a b l e c o a t i n g s on formed p a r t s has been i n p r o d u c t i o n s i n c e 1981 i n a VW p l a n t i n Wolfsburg, Germany. The p a r t i c u l a r c o a t e d p r o d u c t ( a wheel r i m ) i s f i n i s h e d w i t h an e l e c t r o n beam c u r i n g u n i t (200 KV, 40 mA, 32 Mrad/sec, 400 mm wide) u s i n g a c o a t i n g having a r a d i a t i o n c u r e s e n s i t i v i t y o f 25 Mrad o r r a t e o f c u r i n g c a p a b i l i t y w i t h i n 0.8 sec. These p r o d u c t s (9400 mm diam- e t e r , 200 mm h e i g h t , 10 Kg w e i g h t ) can be coated and c u r e d a t a p r o d u c t i o n r a t e of between 6 and 22 rims/min. a t a c o s t savings o f about 67% over t h a t of a conven- t i o n a l t h e r m a l l y c u r e d c o a t i n g system (Table 6-16). (159) - F u t u r e a p p l i c a t i o n s f o r r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s i n Europe w i l l be i n c o a t i n g s f o r automotive, metal and p l a s t i c products; t e x t i l e s , and adhesive systems f o r a wide v a r i e t y o f s u b s t r a t e l a m i n a t i o n p r o d u c t c o n f i g u r a t i o n s . 6-37 Table 6-16 COST COMPARISON OF ELECTRON BEAM TO HOT AIR CONVECTION CURING SYSTEMS FOR WHEEL RIMS (159) Cost Factor Application Quantity Pai nted Surface/r im Coating Cost Overs pr ay Coating Thickness Hot Air Convection Curinq Svstem $/year Percent of Total 100 g r p 2 0.16 m $2.45/1000 gr 30 percent 40 microns 19.95% $119,950 EB Svstem 40 sr/f 0.16 m $6.20/1000 gr 30 percent 40 microns $/year Percent of Total 30.28% $121,420 Labor Reauirements 20.94% $125,820 19.75% $79,200 Utilities Natural gas (1000 BTU/cft) cost Start-up loss Nitrogen cost Electric Energy cost Start - u p/S h u tdown Lo s s 1,480,000 Kcal/h $5.5/1000 cft 8 percent -- 12.26% $73,730 -- 3.02% $18,180 1.60% $6,430 $720,000 4 years 11 %/year 37.15% $223,300 200 kV, 60 mA 400 mm width $580,000 4 years 11 %/year 44.85% $179,870 462 m2 $87/m2 6.68 % $40,190 72 m2 $87/m2 1.56% $6,260 -- -- 127 Kw/h 0.06 Kw/h 12 percent EauiDment Investment Cost with Start-up Amortization time Financing Costs -15m3/h $0. 28/m3 49 Kw/h 0.06 Kw/h 4 percent 2.20% $8,820 Manufacturinq Area Necessary Area Cost o f Area/year TOTAL COST/Y EAR TOTAL COST/RIM (2,142,000 rims/year) $601,170 $0.281 6-38 $401,000 $0.188 I n Japan, r a d i a t i o n processing o f p o l y m e r i c m a t e r i a l s i s b e i n g used f o r wood, m e t a l , paper, p l a s t i c and automotive c o a t i n g s and f o r i n k s . E l e c t r o n i c and commun- i c a t i o n i n d u s t r i e s i n Japan a r e a l s o h e a v i l y committed t o r a d i a t i o n p r o c e s s i n g techniques i n a s i m i l a r manner as t h e i r U.S. and European c o u n t e r p a r t s . Japan i s a l s o a major producer o f c r o s s l i n k e d w i r e , c a b l e and r u b b e r p r o d u c t s f o r t h e u t i l i t y , computer and automotive t i r e i n d u s t r i e s . (160,161) A t t h e p r e s e n t t i m e i t i s e s t i m a t e d t h a t t h e r e a r e a p p r o x i m a t e l y 800 UV, 60-120 E6 ___ __ . -- and 800 I R r a d i a t i o n processing u n i t s i n Japan. The t o t a l number o f p r o c e s s i n g u n i t s i s expected t o reach 2,500 (1,100 UV, 175 E6 and 1,225 I R ) i n 1990. Current and p r o j e c t e d e l e c t r i c power c a p a c i t y r a t i n g s f o r these p r o c e s s i n g u n i t s i s between 300,000 and 430,000 kw. U l t r a v i o l e t and I R p r o c e s s i n g equipment i s m a i n l y used t o f i n i s h i n k s and c o a t i n g s as p r e v i o u s l y d e s c r i b e d f o r Europe and t h e U.S. (134,162,163) The c u r r e n t number o f e l e c t r o n beam p r o c e s s i n g u n i t s (60 u n i t s i n 1982) a r e r a t e d a t an approximate t o t a l c a p a c i t y o f 2,400 kw and t h e d i f f e r e n t a p p l i c a t i o n areas u t i l i z i n g t h i s technology are as f o l l o w s : (164) 0 0 0 0 0 0 0 Research and Development Electric wire P o l y e t h y l e n e foam H e a t - s h r i n k a b l e sheet and t u b i n g Coatings T i r e - r u b b e r sheet Others 12 u n i t s (255 kw) 20 u n i t s (1,000 kw) 7 u n i t s (270 kw) 8 units 1 unit 6 units 6 units (350 kw) (50 kw) (350 kw) (125 kw) An i n t e r e s t i n g a p p l i c a t i o n o f e l e c t r o n beam c u r e d p a i n t systems f o r metal c o i l s t o c k i s d e s c r i b e d i n Reference 165. I n t h i s p a r t i c u l a r a p p l i c a t i o n i t was f o u n d t h a t t h e EB c u r e process and a s s o c i a t e d c o a t i n g m a t e r i a l s s i g n i f i c a n t l y o u t p e r formed a c o n v e n t i o n a l thermal c u r e c o a t i n g system ( T a b l e 6-17). From these r e s u l t s i t appears t h a t a t l e a s t one f a c t o r e f f e c t i n g t h e f u t u r e growth o f E6 c u r e proces- s i n g t e c h n o l o g i e s i s t h e development o f new polymer and c o a t i n g m a t e r i a l s . These new c o a t i n g m a t e r i a l s w i l l have t h e c a p a b i l i t y t o produce h i g h q u a l i t y f i n i s h e s f o r r e f r i g e r a t o r s , microwave ovens and a i r c o n d i t i o n e r housing f i x t u r e s . A t t h e pres- e n t t i m e , t h e r e a r e more than t e n Japanese p a i n t and r e s i n manufacturers who engage i n t h e development o f EB-cured p a i n t s and r e s i n s . 6-39 Table 6-17 COMPARISON BETWEEN EB CURING AND THERMAL CURING COATING SYSTEM ON ELECTROGALVANIZED STEEL (165) E l e c t r o n Beam Cured C o a t i n g Thermal Cured A c r y l ic Thermal Cured PV c Gloss 85 80 45 S u r f ace hardness (pencil 1 8H F-4H 2H 1500 h r s 240-500 h r s 240-500 h r s Stain resistance Excel l e n t Fair-poor Fair-poor Heat r e s i s t a n c e Excel l e n t Fair Poor E v a l u a t i o n Tests -- S a l t spray resistance The e s t i m a t e d consumption values f o r r a d i a t i o n p r o c e s s i b l e m a t e r i a l s i n Japan i s c u r r e n t l y between $100 and $400 m i l l i o n and c o u l d reach $800 m i l l i o n i n 1990. The g l o b a l o r worldwide i n t e r e s t i n t h i s t e c h n o l o g y i s s t r o n g l y e v i d e n t f r o m t h e F o u r t h I n t e r n a t i o n a l Meeting on R a d i a t i o n Processing h e l d i n Yugoslavia i n 1982 (1661, which was attended b y r e p r e s e n t a t i v e s f r o m a t l e a s t 35 d i f f e r e n t c o u n t r i e s . The r a p i d growth o f r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s has been w e l l documented i n t h e U n i t e d S t a t e s , Europe, and e s p e c i a l l y Japan. Global i n t e r e s t i n r a d i a t i o n p r o c e s s i n g r e s e a r c h and developments w i l l c o n t i n u e t o i n c r e a s e w e l l beyond t h e y e a r 1990. 6-40 Section 7 CONCLUSIONS, FUTURE DEVELOPMENTS AND TECHNICAL VOIDS I n t h e l a s t 15 y e a r s t h e c o n v e r s i o n o f e l e c t r i c a l energy i n t o i n f r a r e d , u l t r a v i o l e t ___ __. and h i g h energy e l e c t r o n e l e c t r o m a g n e t i c r a d i a t i o n has gained worldwide acceptance as an e f f i c i e n t and economical method f o r m o d i f y i n g p o l y m e r i c m a t e r i a l s . These r a d i a t i o n m o d i f i e d polymer systems a r e a s s o c i a t e d w i t h many d i f f e r e n t types o f p r o d u c t s which a r e produced under a wide d i v e r s i t y o f m a n u f a c t u r i n g o p e r a t i o n s . From a consumer p o i n t o f view, almost e v e r y day we encounter a p o l y m e r i c p r o d u c t t h a t has been manufactured o r processed by some f o r m o f r a d i a t i o n energy: 0 Wood f u r n i t u r e ( I R o r UV c u r a b l e c o a t i n g s ) 0 Beer/beverage can l a b e l s ( I R o r UV c u r a b l e i n k s ) 0 Metal p i p e c o a t i n g s (UV c u r a b l e c o a t i n g s ) 0 Packaging (paper, f o i l 0 F l o o r c o a t i n g s (UV c u r a b l e c o a t i n g s ) 0 Printed publications (IR/UV curable inks) 0 Graphic screen p r i n t i n g i n k a p p l i c a t i o n on m i r r o r s (UV c u r a b l e inks) 0 Foamed p l a s t i c i n s u l a t i o n (EB i r r a d i a t e d p l a s t i c s ) ,film) (UV/EB i n k s and c o a t i n g s ) Adhesive tapes (EB c u r e d adhesives) 0 Rubber t i r e s (EB i r r a d i a t e d r u b b e r ) 0 Food packaging (EB i r r a d i a t e d p o l y o l e f i n s ) 0 Wire (EB i r r a d i a t e d p o l y o l e f i n s ) @ Telephone c a b l e / o p t i c a l f i b e r s (UV c u r a b l e c o a t i n g s ) @ Computers (UV/EB polymer r e s i s t m a t e r i a l s 1 0 Recording t a p e (EB c u r a b l e c o a t i n g s ) I n t h e U n i t e d S t a t e s i t i s e s t i m a t e d t h a t t h e t o t a l use o f r a d i a t i o n p r o c e s s i b l e m a t e r i a l s i s v a l u e d a t a p p r o x i m a t e l y $0.7 t o $1.1 b i l l i o n and i s expected t o 7-1 i n c r e a s e t o between $1.4 and $1.8 b i l l i o n i n 1990. Currently there are a p p r o x i m a t e l y 3035 t o t a l r a d i a t i o n (UV, EB, I R ) p r o c e s s i n g u n i t s i n t h e U n i t e d S t a t e s which are r a t e d a t a t o t a l ( c u m u l a t i v e ) c a p a c i t y o f 430,000 kw. I n 1990 t h e t o t a l number o f p r o c e s s i n g u n i t s i s expected t o reach 8610 u n i t s f o r a t o t a l r a t e d c a p a c i t y o f 1,500,000 kw. European and Japanese e s t i m a t e s f o r r a d i a t i o n p r o c e s s i b l e m a t e r i a l s a r e valued a t a p p r o x i m a t e l y $0.3 t o $0.6 and $0.1 b i l l i o n respectively. o $0.4 These values should i n c r e a s e t o $0.7 t o $0.95 b i l ion (Europe) and $0.8 b i l l i o n (Japan) i n t h e year 1990. The t o t a l number o f r a d i a t on p r o c e s s i n g u n i t s f o r Europe i s a p p r o x i m a t e l y 2990 u n i t s (500,000 kw t o t a -_ . . ._ . .- capac t Y r a t i n g ) and a p p r o x i m a t e l y 1690 u n i t s (300,000 kw t o t a l c a p a c i t y r a t i n g ) a r e c u r r e n t l y i n s t a l l e d i n Japan. i n c r e a s e t o 8610 (1,500,000 I n t h e year 1990 t h e number o f u n i t s i s expected t o kw c a p a c i t y r a t i n g ) and 2500 (430,000 kw t o t a l c a p a c i t y r a t i n g ) f o r Europe and Japan r e s p e c t i v e l y . The g l o b a l commercial success o f r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s i n many d i v e r s e a p p l i c a t i o n areas can be a t t r i b u t e d t o t h e f o l l o w i n g f a c t o r s : Value added p r o d u c t ( r a d i a t i o n c u r a b l e polymer t e c h n o l o g i e s can m o d i f y low c o s t and low q u a l i t y s u b s t r a t e m a t e r i a l s i n t o h i g h performance p r o d u c t s ) . Higher q u a l i t y p r o d u c t ( b e t t e r d u r a b i 1it y o r g r e a t e r p e r f o r m ance c a p a b i l i t i e s ) . High speed manufacture/low scrap oss. Product cannot be manufactured by any o t h e r method ( h e a t s e n s i t i v e s u b s t r a t e and p r o d u c t s assoc a t e d w i t h t h e m i c r o e l e c t r o n i c s i n d u s t r i e s 1. EPA p o l l u t i o n requirements. E l i m i n a t i o n o f s o l v e n t applied/removal c o a t i n g systems (reduct i o n i n m a t e r i a l i n v e n t o r y , r e d u c t i o n i n f i r e hazards and e l i m i n a t i o n o f concerns about t h e a v a i l a b i l i t y o f s o l v e n t s ) . Reduction i n energy c o s t s . The t o t a l impact o f r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s , w h i l e s i g n i f i c a n t , i s s t i l l a m i n o r p a r t o f t h e t o t a l p r o d u c t m a n u f a c t u r i n g techniques c u r r e n t l y i n use today. The o v e r a l l annual growth r a t e f o r r a d i a t i o n p r o c e s s i n g techniques i s p r o j e c t e d t o be between 10 t o 20%, t h u s i t i s an a t t r a c t i v e area f o r f u t u r e 7-2 r e s e a r c h and development a c t i v i t y . Several f u t u r e developments expected f o r t h i s t e c h n o l o g y can be d e s c r i b e d as f o l l o w s : __ 0 Continued r e s e a r c h i n h i g h energy p h y s i c s d i r e c t e d a t e l e c t r o n beam a c c e l e r a t o r s f o r beam propagation, maintenance and control. 0 Continued r e s e a r c h and development i n UV and I R p r o c e s s i n g equipment. 0 Development o f new r a d i a t i o n s e n s i t i v e p o l y m e r i c m a t e r i a l s . 0 Development o f new speci a1 t y p r o d u c t s and markets f o r r a d i a t i o n processing technologies. 0 Reduction i n m a t e r i a l c o s t s ( l o w e r c o a t i n g c o s t s ) t o t h e u s e r o r product f i n i s h e r . A t t h e p r e s e n t time, most o f t h e e x i s t i n g r a d i a t i o n p r o c e s s i n g equipment i s capable of meeting t h e demands o f c u r r e n t p r o d u c t p r o c e s s i n g o p e r a t i o n s . The major t e c h - n i c a l v o i d s t o be addressed i n t h e f u t u r e a r e i n t h e areas o f new m a t e r i a l s d e v e l opment and s c i e n t i f i c u n d e r s t a n d i n g ' o f t h e complex p h y s i c a l and chemical f a c t o r s a s s o c i a t e d w i t h polymer network f o r m a t i o n , c o a t i n g - s u b s t r a t e adhesion phenomena and t h e d u r a b i l i t y o f r a d i a t i o n processed p o l y m e r i c m a t e r i a l s under l o n g - t e r m m u l t i p l e s t r e s s environments. S p e c i f i c f u t u r e r e s e a r c h goals f o r t h i s t e c h n o l o g y can be d e s c r i b e d as f o l 1ows : 0 Development o f new n o n t o x i c , low v i s c o s i t y , 100% r e a c t i v e monomer and o l i g o m e r m a t e r i a l s f o r use i n r a d i a t i o n c u r a b l e c o a t i n g systems . 0 Development o f new adhesion promotion monomer , o l igomer and p o l y m e r i c m a t e r i a l s f o r use i n r a d i a t i o n c u r a b l e c o a t i n g systems a p p l i e d t o metal s u b s t r a t e s . 0 Development o f new r e s i s t m a t e r i a l s f o r e l e c t r o n i c and o p t r o n i c applications. 0 Long t e r m aging s t u d i e s o f r a d i a t i o n processed polymers and c o a t i n g s i n o r d e r t o e s t a b l i s h a r e a l i s t i c expected s e r v i c e l i f e projection capability. The p r e s e n t b e n e f i t s f r o m r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c m a t e r i a l s a r e d e r i v e d f r o m improved q u a l i t y , s p e c i a l p r o p e r t i e s and h i g h e r p r o d u c t i v i t y . The advantages o f low-energy consumption and l o w p o l l u t i o n a r e g e n e r a l l y secondary c o n s i d e r a t i o n s b u t t h i s c o u l d change d r a m a t i c a l l y depending on EPA r u l i n g s and a v a i l a b i l i t y o f f o s s i l f u e l supplies. Increased usage o f r a d i a t i o n p r o c e s s i n g o f p o l y m e r i c systems w i l l depend on m a t e r i a l c o s t s and addressing t h e t e c h n i c a l v o i d s discussed above, 7-3 as w e l l as, t h e e f f e c t s o f competing t e c h n o l o g i e s w i t h i n s p e c i f i c market areas. However, t h e r a p i d cure, low processing temperatures, and development o f s p e c i a1 t y p r o d u c t s w i l l i n s u r e t h a t r a d i a t i o n p r o c e s s i n g t e c h n o l o g i e s w i l l c o n t i n u e t o grow i n importance t h r o u g h o u t t h e world. 7-4 Section 8 REFERENCES 1. V . D. McGi i s s i n M. Grayson, ed., Kirk-Othmer E c y c l o p e d i a o f Chemical Technology, 3 r d ed., Vol. 19, W i l e y - I n t e r s c i e n c e , New York, 1982, pp. 607-624. 2. V. D. McGinniss and G. W. Gruber i n R. W. Tess and G. W. Poehlein, ed., A p p l i e d Polymer Science, 2nd ed,, ACS Symposium S e r i e s , No. 285, American 1985, pp. 839-854. Chemical S o c i e t y , Washington, D,C., 3. A. F. Readdy, Jr., P l a s t e c Report R43, P l a s t i c s T e c h n i c a l E v a l u a t i o n Center, P i c a t i n n y Arsenal , Dover , New Jersey, A p r i l , 1972. 4. R. W. Pray, AFP-SME T e c h n i c a l Paper, A s s o c i a t i o n f o r F i n i s h i n g Processes o f t h e S o c i e t y o f M a n u f a c t u r i n g Engineers , FC78-543, S o c i e t y o f M a n u f a c t u r i n g Engineers , Dearborn , Michigan , 1978. 5. D. Ross and G. Halvorson, Paper on D r y i n g and C u r i n g Coatings W i t h High D e n s i t y I n f r a r e d presented a t t h e R a d i a t i o n C u r i n g V Conference, Boston, Massachusetts , September 23-25, 1980. 6. G. E. Bant, Paper on I R Drying, i b i d . 7. V. D. McGinniss i n S. P. Pappas, ed., UV C u r i n g Science and Technology, T e c h n i c a l M a r k e t i n g Corp., Stamford, C o n n e c t i c u t , 1978, pp. 96-132. 8. D. M. Spero, AFP-SME Technical Paper, A s s o c i a t i o n f o r F i n i s h i n g Processes o f t h e S o c i e t y o f M a n u f a c t u r i n g Engineers, FC78-545, S o c i e t y o f M a n u f a c t u r i n g Engineers , Dearborn, Michigan , 1978. 9. J. Brewer, i b i d , FC84-1024, 1984. 10. R. W. Pray, i b i d , FC76-485, 1976. 11. G. D. Dixon and A. P. B a r r e t t , i b i d , FC78-532, 1978. 12. R. S e a r l s , i b i d , FC78-544, 1978. 13. H. H. 14. A. F. Readdy, Jr., P l a s t e c Report R41, P l a s t i c s T e c h n i c a l E v a l u a t i o n Center, P i c a t nny Arsenal , Dover, New Jersey, March, 1971. 15. A. S. Hoffman, I s o t o p e s and R a d i a t i o n Technology, V o l . 9, No. 1, F a l l , 1971, pp. 78-92. 16. S. S c h i l l e r , U. H e i s i g and S. Panzer, E l e c t r o n Beam Technology, W i 1e y - I n t e r s c i ence , New York , 1982. Troue, R a d i a t i o n Curing, Vol. 8, No. 2, May, 1981, pp. 4-14. 8- 1 17. 18. .____ __ W. J . Ramler, R a d i a t i o n Physics and Chemistry, Vol. 9 , No.'s 1-3, 1977, pp. 69-89. S. V. Nablo, SME Technical Paper, S o c i e t y o f M a n u f a c t u r i n g Engineers, FC75-311, S o c i e t y o f M a n u f a c t u r i n g Engineers , Dearborn, Michigan, 1975. 19. J. Weisman, i b i d , FC76-489, 1976. 20. U. V . Lauppi, P l a s t i c s and Rubber Processing A p p l i c a t i o n s , V o l . 5 , No. 2, 1985, pp. 173-178. 21. W. 22. W. Karmann, AFP-SME Technical Paper, A s s o c i a t i o n f o r F i n i s h i n g Processes o f t h e S o c i e t y o f M a n u f a c t u r i n g Engineers , FC83-269 , S o c i e t y o f M a n u f a c t u r i n g Engineers , Dearborn , Michigan , 1983. 23. A. Bradley, and J . D. Fales, Chemical Technology, A p r i l , 1971, p. 232-237. 24. J. R. Hollahan and A. T. B e l l , Techniques and A p p l i c a t i o n s o f Plasma Chemistry, John W i l e y and Sons, Inc., New York, 1974. 25. M. Shen and A. T. B e l l , eds., Plasma P o l y m e r i z a t i o n , ACS Symposium S e r i e s , 1979. No. 180, American Chemical S o c i e t y , Washington, D.C., 26. T e c h n i c a l I n f o r m a t i o n on S h i n - E t s u ' s Plasma Continuous Processing U n i t , Shin-Etsu Chemical Company, Japan, January, 1983. 27. G. W. Schuelke, Proceedings of t h e Technical A s s o c i a t i o n o f t h e Pulp and Paper I n d u s t r y , Polymers , Laminations and Coatings Conference, Boston , Massachusetts, September 24-26, Book 1, No. 11-3, 1984, pp. 249-252. 28. V. D. McGinniss, N a t i o n a l Symposium on Polymers i n t h e S e r v i c e o f Man, ACS, 16th S t a t e - o f - t h e - A r t Synposi um, 1980 , pp. 175-180. 29. V. D. McGinniss and J. R. Nixon i n S. S. Labana and R. A. D i c k i e , eds., C h a r a c t e r i z a t i o n o f H i g h l y C r o s s - l i n k e d Polymers , ACS Symposium S e r i e s , NO. 243, 1984 pp. 241-256. 30. J. L. Gardon and J. W. Prane, eds., N o n p o l l u t i n g Coatings and C o a t i n g Processes, Plenum Press, New York, 1973. 31. A. J. Chompff and S. Newman, Polymer Networks, Plenum Press, New York, 1971. 32. J. Ramler, J. R a d i a t i o n Curing, Vol. 1, No. 3, 1974, pp. 2-10. D. H. Solomon, The Chemistry o f Organic F i l m Formers, J. Wiley, New York, 1967. 33. V. D. McGinniss and D. M. Dusek, J o u r n a l o f P a i n t Technology, Vol. 46, 1974, pp. 23-30. 34. V . D. McGinniss i n N . S. A l l e n , ed., Vol. 3, 1982, pp. 1-52. 35. S. P. Pappas and V. D. McGinniss i n Reference 7, pp. 1-22. 36. S . S. Labana, ed., U l t r a v i o l e t L i g h t Induced Reactions i n Polymers, ACS Symposium S e r i e s No. 25, American Chemical S o c i e t y , Washington, D.C., 1976. Developments i n Polymer Photochemistry, 8-2 37. E. D. F e i t i n Reference 7, pp. 229-256. 38. K. Nakamura, T. Sakata and S. K i k u c h i , B u l l e t i n Chemical S o c i e t y o f Japan, Vol. 41, 1968, p. 1765. 39. M. Tsuda, Journal o f Polymer Science, Vol 40. F. A. Stuber, e t a l , Journal of A p p l i e d Polymer Science, Vol. 13, 1969, p. 2217. 41. F. C. DeSchryver, N. Boens, and G. Smith, J o u r n a l o f Polymer Science, Vol. A l , 1970, p. 1939. . A2, 1964, p . 2907. .__ 42. W. S. DeForest, Photo-Resists: Company, New York, 1975. 43. J. Silverman, Journal o f Chemical Education, Vol. 58., No. 2, 1981, pp. 168-173. 44. D. J. T. H i l l and J. H. O'Donnell, i b i d , pp. 174-176. 45. J. F. K i n s t l e , J o u r n a l o f R a d i a t i o n Curing, Vol. 2, No. 2, 1975, pp. 15-24. 46. H. K. Yasuda, ed., Plasma P o l y m e r i z a t i o n and Plasma Treatment, J o u r n a l o f A p p l i e d Polymer Science, A p p l i e d Polymer Symposium, No. 38, J. Wiley, New York, 1984. 47. J. Prane i n R. W. Tess and G. W. Poehlein, ed., A p p l i e d Polymer Science, 2nd ed., ACS Symposium S e r i e s , No. 285, American Chemical S o c i e t y , Washington, D.C., 1985, pp. 857-881. 48. R. L. Koch, I n d u s t r i a l F i n i s h i n g , August, 1971, pp. 44-46. 49. S. F a b r i z , AFP-SME T e c h n i c a l Paper, A s s o c i a t i o n f o r F i n i s h i n g Processes o f t h e S o c i e t y of M a n u f a c t u r i n g Engineers, FC83-279, S o c i e t y o f M a n u f a c t u r i n g Engineers , Dearborn , Michigan , 1983. 50. A. Vrancken, paper on Market Trends f o r I r r a d i a t i o n Curable Coatings and P r i n t i n g I n k s i n Europe, p r e s e n t e d a t t h e R a d i a t i o n C u r i n g V Conference, Boston , Massachusetts , Sept 23-25 , 1980. M a t e r i a l s and Processes, McGraw-Hill Book . 51. J. Hara and H. Urasugi, SME T e c h n i c a l Paper, S o c i e t y of M a n u f a c t u r i n g Engineers, FC75-342, S o c i e t y o f M a n u f a c t u r i n g Engineers, Dearborn, Michigan, 1975. 52. B. S. Q u i n t a l and D. French, AFP-SME Technical Paper, A s s o c i a t i o n f o r F i n i s h i n g Processes o f t h e S o c i e t y o f M a n u f a c t u r i n g Engineers, FC83-277, S o c i e t y o f M a n u f a c t u r i n g Engineers, Dearborn, Michigan, 1983. 53. C. R. Hamilton, AFP-SME T e c h n i c a l Paper, A s s o c i a t i o n f o r F i n i s h i n g Processes of t h e S o c i e t y o f M a n u f a c t u r i n g Engineers, FC76-506, S o c i e t y o f Manufacturing Engineers, Dearborn, Michigan , 1976. 54. R. C. S t r a n d , i b i d , FC76-507, 1976. 55. W. 56. T. A. Turner, i b i d , FC83-268, 1983. M. Kuhn, i b i d , FC78-549, 1978. 8- 3 57. G. Pasternack, i b i d , FC85-429, 1985. 58. C. Coppinger, R a d i a t i o n Curing, Vol. 3, No. 3, 1976, pp. 3-18. 59. 0. Wasilewski, Reference 27, Book 1, No. 2-2, 60. D. J. C y t e r s k i , i b i d , Book 1, No. 2-3, 1984, pp. 49-54. 61. A. H. Keough, SME Technical Paper, S o c i e t y o f Manufacturing Engineers, FC75-341, S o c i e t y o f M a n u f a c t u r i n g Engineers, Dearborn, Michigan, 1975. 62. D. H. Lorenz, AFP-SME Technical Paper, A s s o c i a t i o n f o r F i n i s h i n g Processes o f t h e S o c i e t y o f M a n u f a c t u r i n g Engineers, FC76-526, S o c i e t y o f M a n u f a c t u r i n g Engineers, Dearborn, Michigan , 1976. 63. J. W. Prane and C. B l u e s t e i n , i b i d , FC76-527, 1976. 64. A. D. K e t l e y , SME T e c h n i c a l Paper, S o c i e t y o f M a n u f a c t u r i n g Engineers, FC75-331, S o c i e t y o f M a n u f a c t u r i n g Engineers , Dearborn, Michigan, 1975. 65. G. Forger, P l a s t i c s World, June, 1983, pp. 34-36. 66. J. S a v i t , Tappi, Vol. 64, No. 5, May, 1981, pp. 83-90. 67. D. J. C a r l i c k i n Encyclopedia o f Polymer Science and Technology, Vol. 11, W i l e y - I n t e r s c i e n c e , New York, 1969, pp. 565-586. 68. S. G. Wentink and S. D. Koch, eds., UV C u r i n g i n Screen P r i n t i n g f o r P r i n t e d C i r c u i t s and t h e Graphic A r t s , Technology M a r k e t i n g Corp., Stamford, C o n n e c t i c u t , 1981. 69. H. E. Pansing, SME T e c h n i c a l Paper, S o c i e t y o f M a n u f a c t u r i n g Engineers, FC75-309, S o c i e t y o f M a n u f a c t u r i n g Engineers, Dearborn, Michigan, 1975. 70. A. J. Bean, i b i d , FC75-310, 1975. 71. L. E. Hodakowski and R. D. Jenkinson, AFP-SME T e c h n i c a l Paper, A s s o c i a t i o n f o r F i n i s h i n g Processes o f t h e S o c i e t y o f M a n u f a c t u r i n g Engineers , FC76-502, S o c i e t y o f M a n u f a c t u r i n g Engineers, Dearborn, Michigan, 1976. 72. A. John, i b i d , FC76-512, 1976. 73. F. L. K a s t e l i c , i b i d , FC76-517, 74. M. M. Magdelinskas, i b i d , FC76-532, 1976. 75. J. F. F i e l d s , i b i d , FC78-504, 1978. 76. S. S i e g e l , i b i d , FC78-548, 77. C. B. Rybny, i b i d , FC78-553, 1978. 78. J. B. Benson and A. Rudolph, i b i d , FC84-1030, 79. P. I. Ford, i b i d , FC85-426, 1985. 80. A. P. Rosenberg, Paper on R a d i a t i o n C u r i n g of P r i n t i n g I n k s , presented a t t h e R a d i a t i o n V Conference, Boston, Massachusetts, Sept. 23-25, 1980. 1984, pp. 43-48. 1976. 1978. 8-4 1984. - - ______ 81. E. C. DeSaussure, same as Reference 77, FC78-522, 1978. 82. H. E l l e r h o r s t , Jr., 83. Anon., 84. A. Schwarcz, AFP-SME Technical Paper, Association f o r F i n i s h i n q Processes o f SME, FC76-497, S o c i e t y o f Manufacturing Eng neers, Dearborn, Michigan, 1976. 85. J. Lin, W. Wen, and B. Sun, i b i d , FC84-1019 86. S. R. Kerr, i b i d , FC85-420, 1985. 87. R. J. Himics, e t a l , Reference 80, The Deve opment and E v a l u a t i o n o f EC Adhesives f o r F l e x i b l e Packaging. 88. V. D. McGinniss i n L. H. Lee, ed., Adhesive Chemistry, Plenum P u b l i s h i n g Corporation, New York, 1984, pp. 363-377. 89. D. W. Mabrey and S. Surber, Radiation Curing, Vol. 11, No. 1, 1984, pp. 2-7. 90. P l a s t i c s f o r E l e c t r o n i c s , a desk-top data bank, Cordura P u b l i c a t i o n s , Inc., San Diego, C a l i f o r n i a , 1979. 91. S. P. Parker, ed., Encyclopedia o f E l e c t r o n i c s and Computers, McGraw-Hill Book Company, New York, 1984. 92. L. F. Thompson, C. G. Willson, and M. J. Bowden, I n t r o d u c t i o n t o Microlithography, ACS Symposium Series, No. 219, American Chemical Society, 1983. Washington, D.C., 93. A. Ledwith, I.E.E. Proceedings, Vol. 130, 1983, pp. 245-251. 94. F. L. Carter, ed., 1982. Molecular E l e c t r o n i c Devices, Marcel Dekker, New York, 95. L. H. Lee, ed., 1984. 96. C. J. Berg, AFP-SME Technical Paper, Association f o r F i n i s h i n g Processes o f SME, FC76-511, S o c i e t y o f Manufacturing Engineers, Dearborn, Michigan, 1976. 97. C. Decker, i b i d , FC83-265, 98. J. P. Doherty and R. Gebo, i b i d , FC84-1020, 1984. 99. R. F. Caterino, i b i d , FC85-413, 1985. 100. K. R. Lawson, i b i d , FC83-264, 1983. 101. H. C. Newman, i b i d , FC83-267, 102. S. Kitayama, i b i d , FC85-423, 1985. 103. K. Lawson and 0. R. C u t l e r , Journal o f Radiation Curing, Vol. 9, No. 2, 1982, pp. 4-10. 104. T. M. Santosusso, Radiation Curing, Vol. 11, No. 3, 1984, pp. 4-9. - Adhesives Age, January 1982, pp. 42-48. i b i d , July, 1985, pp. 34-36. 1984. Adhesive Chemistry, Plenum P u b l i s h i n g Corporation, New York, 1983. 1983. 8- 5 __ 105. W. M. Rand, Jr., 106, J. D. Young, M i c r o e l e c t r o n i c s : New York, 1984, p. 175. 107. A. J. M. van den Broek, e t a l , Journal o f R a d i a t i o n Curing, Vol. 11, No. 1, 1984, pp. 2-9. 108. J. G. K l o o s t e r b o e r , and G. J. M. L i p p i t s , i b i d , pp. 10-21. 109. L. F. R o s s e t t i , AFP-SME Technical Paper, A s s o c i a t i o n f o r F i n i s h i n g Processes o f SME, FC76-510, S o c i e t y o f Manufacturing Engineers, Dearborn, Michigan, 1976. 110. D. A. Trageser, R a d i a t i o n Curing, Vol. 3, No. 3, 1976, pp. 19-23. - i b i d , pp. 18-22. 111. W. G. B a i r d , Jr., A Standard Manual and Guide, P r e n t i c e - H a l l AFP-SME Technical Paper, FC76-508, , 1976. 112. G. G. A. Bohm and J. 0. Tveekrem, Rubber Chemistry and Technology, Vol. 55, NO. 3, 1982, pp. 575-668. 113. D. Dworkin, Chemical Week, March 18, 1970, pp. 56-64. 114. M. A. Wilson, U.S. 115. T. K. S e i b e r l i n g , U.S. 116. G. G. A. Bohm and W. W. B a r b i n , U.S. 117. G. G. A. Bohm and J. N. Anderson, U.S. P a t e n t 4,171,237, Oct. 16, 1979. 118. G. H. F i s k and J. A. Loulan, Jr., P a t e n t 3,959,053, May 25, 1976. 119. B r a n s o n / I n t e r n a t i o n a l Plasma C o r p o r a t i o n T e c h n i c a l Brochure on Plasma S u r f a c e Treatment o f Polymers , F o r t Washington , PA, 1981. 120. A. Bradley, I n d u s t r i a l E n g i n e e r i n g Chemistry, Product Research and Development , Vol 9, 1970, p. 101. 121. M. Shen, ed., 122. A. F. S t a n c e l l and A. T. Spencer, J o u r n a l o f A p p l i e d Polymer Science, Vol 16, 1972, p. 1505. 123. S. B. Levinson, J o u r n a l o f P a i n t Technology, August, 1972, pp. 28-40. 124. R. P. O u e l l e t t e , F. E l l e r b u s c h and P. N. C h e r e m i s i n o f f , eds., E l e c t r o t e c h n o l o g y : A p p l i c a t i o n s i n Manufacturing, Vol 2, 1978. 125. C. B. Rybny, D. C. Armbruster, and J. A. Vona, Modern P a i n t and Coatings, June, 1978, pp. 49-51. 126. V. D. McGinniss, L. J. Nowacki, and S. V. Nablo, i n T. L. Vigo and L. J . Nowacki , eds., Energy Conservation i n T e x t i l e and Polymer Processing, ACS Symposium S e r i e s , No. 107, American Chemical S o c i e t y , Washington, D.C. , 1979, pp. 51-70. 127. I n f o r m a t i o n s u p p l i e d t o B a t e l l e f r o m Energy Sciences I n c . Patent 3,901,751, Aug. 26, 1975. Patent 3,933,553, Jan. 20, 1976. P a t e n t 4,122,137, U.S. Oct. 24, 1978. . Plasma Chemistry o f Polymers, Marcel Dekker, New York, 1976. . . 8-6 128. J. V. Sinka and R. A. Lieberman, Radiation Curing, Vol. 10, No. 4, 1983, pp. 18-26. 129. Radiation Dynamics, Inc., 130. D. E. Malloy, Jr., 131. R. C. Becker, P l a s t i c s World, February, 1977, pp. 48-50. 132. I n f o r m a t i o n supplied t o B a t t e l l e b y Branson/International Plasma Corporation. 133. S. L. Semiatin, I n d u c t i o n Heating o f Metals: S t a t e - o f - t h e - A r t Assessment, E l e c t r i c Power Research I n s t i t u t e Report, E P R I EM-4131 , p r o j e c t 2613 -3, July, 1985. 134. C. Bluestein, Radiation Curing V I , Conference Proceedings h e l d i n Chicago, I l l i n o i s , September 20-23, 1982, pp. 3-16 3-25. 135. Predecast , Inc. 136. J. W. 137. J. Dean, i b i d , October 5, 1983. 138. J. Dean, i b i d , October 31, 1984, pp. 3-62. 139. P. L. Layman, Chemical and Engineering News, September 30, 1985, pp. 27-68. 140. V. D. McGinniss, unpublished r e s u l t s . 141. J. Prane, paper on UV Curable Coatings and Inks-Markets and P r o j e c t i o n s presented a t t h e Radiation Curing V Conference, Boston , Massachusetts, September 23-25, 1980. 142. Anon, Chemical Week, A p r i l 13, 1983, pp. 20-21. 143. Anon, Chemical and Engineering News, Jan. 17, 1983, pp. 19-20. 144. P. L. Layman, Chemical and Engineering News, November 1, 1982, pp. 8-9. 145. Anon, Adhesives Age, July, 1985, pp. 17-18. 146. Anon, Chemical Week, September 26, 1984, pp. 14-16. 147. J. L i p i e c , Adhesives Age, March, 1982, pp. 31-35. 148. B. F. Greek, Chemical and Engineering News, June 3, 1985, pp. 23-48. 149. 6. F. Greek, i b i d , A p r i l , 30, 1984, pp. 35-56. 150. Conferences on Radiation Processing, Radiation Physics Chemistry, Vol. 14, NOS. 1-6, 1979. 151. E. R. Howells, ed., Technology of Chemicals and M a t e r i a l s f o r E l e c t r o n i c s , E l l i s Horwood L i m i t e d , Chichester, England, 1984. 152. Anon, Chemical Week, A p r i l 20, 1983, pp. 32-36. Technical B u l l e t i n , August, 1976. P l a s t i c s Engineering, December, 1984, pp. 33-36. - , Cleveland , Ohi 0 , 1981-1985. Prane, Chemical Week, October 29, 1980, pp. 28-42. 8- 7 153. I n d u s t r i a l Review on Energy, SCM-Glidden Chemical Coating, Cleveland, Ohio, 1977. 154. G. A. Senich and R. E. F l o r i n , Journal of Macromolecular Science, Reviews i n Macromolecular Chemistry and Physics, Vol. C24, No. 2, 1984, pp. 239-324. 155. E. F. Knappe, K. Ahlers, and E. Haring, AFP-SME Technical Paper, FC78-500, S o c i e t y o f Manufacturing Engineers, Dearborn, Michigan, 1978. 156. J. Jung, i b i d , FC83-252, 1983. 157. G. Metz, i b i d , FC83-258, 1983. 158. R. E. Knight, i b i d , FC83-276, 1983. 159. E. L. Dieck, P. H o l l and G. Reuter, Radcure 84, Conference Proceedings h e l d i n A t l a n t a , Georgia, Sept. 10-14, 1984, pp. 12-12-12-31. 160. I . Sakamoto, e t a1 , same as Reference 155, FC85-439 , 1985. 161. I. Aiba, i b i d , FC83-249, 1983. 162. T. Tanihata, i b i d , FC83-274, 1983. 163. H. Kobayoshi, i b i d , FC85-416, 1985. 164. I . Sakamoto, Radiation Physics Chemistry, Vol. 22, Nos. 3-5, 1983, pp. 947-953. 165. I. Sakamoto, Reference 159, pp. 12-1-12-11. 166. A. Chapiro, Reference 164, Nos. 1-2, pp. 7-10. 8-8 Appendix A MANUFACTURERS OF RADIATION PROCESSING EQUIPMENT AND MATERIAL SUPPLIERS INFRARED SYSTEMS PHOTOINITIATORS Soneko, Inc. 87 E l i z a b e t h Avenue Somerset, NJ 08873 (201 ) 873-2217 Aceto Chemical Co., Inc. 126-02 Northern Boulevard Flushing, NY 11368 ( 718 1 898-2300 ULTRAVIOLET SYSTEMS Ciba-Geigy Corporation 3 S k y l i n e Drive Hawthorne, NY 10532 (914) 347-4700 Canrad-Hanovia, Inc. 100 Chestnut S t r e e t Newark, NJ 07105 (201) 589-4300 ~ 2 0 8 MONOMERS Fusion UV Curing Systems D i v i s i o n of Fusion Systems Corporation 7600 Standish Place R o c k v i l l e , MD 20855 (301 ) 251-0300 ARCO S p e c i a l t y Chemicals D i v i s i o n o f ARCO Chemical Company Westtown Road a t W. Chester Pike West Chester, PA 19380 (215) 692-8400 Union Carbide Corporati on Linde D i v i s i o n 5705 W. Minnesota Indianapolis, I N 46421 ( 317) 214-1200 Cel anese Chemical Company 1250 W. Mockingbird Dallas, TX 75247 (214) 689-4000 Diamond Shamrock Chemicals /Co. D i v i s i o n o f Diamond Shamrock Corp. 350 M t . Kemble Avenue Morristown, NJ 07960-1931 (201) 267-1000 HIGH ENERGY ELECTRON SYSTEMS Energy Sciences I n t e r n a t i o n a l D iv is i on of Energy Sci ences Incorporated 109, Rue de Lyon 1211 Geneva 13 Switzerland 22 45 -88- 21 Morton Chemical D i v i s i o n of Morton Thiokol, Inc. 101 Carnegie Center Princeton, NJ 08540 ( 609) 396-4001 - RPC I n d u s t r i e s 3210 Investment Boulevard Hayward, CA 94545 (415 785-8040 A-1 ~ _ _ ~ OLIGOMERS POLYMERS ARCO S p e c i a l t y Chemicals D i v i s i o n o f ARCO Chemical Company Westtown Road a t W. Chester P i k e West Chester, PA 19380 (215 ) 692-8400 ARCO S p e c i a l t y Chemicals D i v i s i o n of ARCO Chemical Company Westtown Road a t W. Chester P i k e West Chester, PAa 19380 (215 ) 692-8400 Diamond Shamrock Chemicals Co. D iv i s i on o f D i amond Shamrock Corpor a t ion 350 M t . Kemble Avenue Morristown, NJ 07960-1931 (201) 267-1000 Cel anese Chemical Company 1250 W. M o c k i n g b i r d D a l l a s , TXx 75247 (214) 689-4000 _ Lord Corporation I ndus tr ia1 C o a t i ngs D iv is ion 2000 West Grandvi ew Boulevard E r i e , PAa 16514 (814 ) 868-3611 Lord Corporation I n d u s t r i a l Coating D i v i s i o n 2000 West Grandview Boulevard E r i e , PA 16514 (814) 868-3611 Morton Chemical D i v i s i o n o f Morton T h i o k o l , I n c . 1 0 1 Carnegie Center P r i n c e t o n , N J 08540 (609 ) 396-4001 Morton Chemical D i v i s i o n o f Morton T h i o k o l , I n c . 1 0 1 Carnegie Center P r i n c e t o n , NJ 08540 (609) 396-4001 A-2