Vol. 4 No 7 - Pi Mu Epsilon
Transcription
Vol. 4 No 7 - Pi Mu Epsilon
P I m i M UEPSILON -I 'I I THE PME MOTTO: MEANING A N D ETYMOLOGY Panos D. B a r d i s P r o f e s s o r o f Sociology and E d i t o r of S o c i a l S c i e n c e The U n i v e r s i t y o f Toledo, Toledo, Ohio, USA "Sosicrates says t h a t Pittacus, a f t e r c u t t i n p o f f a s m a l l fragment, d e c l a r e d t h a t t h e h a l f was niore t h a n t h e whole ."i: Dioeenes L a e r t i u s , P i t t a c u s , 75. Ten paedeusin c a e t a n a t h e m a t i c a e p i s p e u d e i n : s h i p and mathematics. t o iromote scholar- 1. Ten: feminine tender, s i n g u l a r number, a c c u s a t i v e ( o b j e c t i v e ) c a s e o f d e f i n i t e , o r p r e p o s i t i v e , a r t i c l e &, he, to: t h e . " I n preI n h i s D e f i n i t i o n s , Y I V , 1-6, Hero of Alexandria w r i t e s : s e n t i n g t o you a s b r i e f l y a s p o s s i b l e , 0 most i l l u s t r i o u s Dionysius, an o u t l i n e of b a s i c t e c h n i c a l t e r m s i n geometry, I w i l l t a k e a s t h e s t a r t i n g p o i n t , and w i l l base ,the e n t i r e o r g a n i z a t i o n on, t e a c h i n g o f Euclid, t h e a u t h o r o f ~ l e m e n t r d e a l i nw~i t h t h e o r e t i c a l geometry" ( s e e Panos 3. B a r d i s , "~e-~a V i n c i of Ancient A l e x a n d r i a : His Aeolosphaera and Other I n v e n t i o n s , " School S c i e n c e and Mathematics, J u n e 1965, pp. 535-5142). the 2. Paedeusin: feminine g e n d e r , s i n g u l a r number, a c c u s a t i v e c a s e of noun p a e d e u s i s : c u l t u r e , e d u c a t i o n , e d u c a t i o n a l system, i n s t r u c t i o n , learning, scholarship, training. P l a t o s t a t e s t h a t "an e x c e l l e n t b r e e d i n c and e d u c a t i o n , i f emphasized c o n s t a n t l y , g e n e r a t e s good n a t u r e s i n t h e p o l i t y " ( R e p u b l i c , b2lla). From paes: child. King Nostor, t h e m i l i t a r y f e n i u s and g a r r u l o u s Methuselah of P y l o s , s a i d t o King Diomedes of Argos, i h e second g r e a t e s t Greek h e r o - - - a f t e r Achilles- - - durinp "ie T r o j a n War: " Besides, you a r e s o younp, you could even be my my youngest born" (Homer, I l i a d , I X , 57-58]. e, E n g l i s h words: pedagog, pedagogy ( c h i l d l e a d i n ? ) , p e d i a t r i c i a n , ~ e d i a t r i c s( c h i l d m e d i c i n e ) . pedobaptism, p e d o c e p h a l i c p e d o g e n e s i s ( i n t r o d u c e d by Von Baer i n 1828). pedology, pedo"orphism, and many others. 3. z: c o n j u n c t i o n : I n E u c l i d ' s Elements. i n g T h e a e t e t u s (415-369 p h i l o s o p h e r , and one of t h e 13th, a r e described and. Also t r a n s l i t e r a t e d 5, XIII, Scholium 1. we r e a d t h e f o l l o w i n g r e g a r d 0 . C. ), t h e Athenian a s t r o n o m e r , mathematician, t h e p u p i l s of S o c r a t e s : " I n t h i s book, namely, t h e s o - c a l l e d f i v e P l a t o n i c s o l i d s , which, however, a r e n o t h i s , b u t t h r e e o f t h e aforementioned f i v e s o l i d s a r e of t h e Pythagoreans, t h a t is, t h e cube & t h e pyramid & t h e dodecahedron, i c o s a h e d r o n being of T h e a e t e t u s . " t h e octahedron & t h e t r i a k a i d e k a p h o b i a ( f e a r o f t h e number 1 3 ) . E n g l i s h word: 4. Ta: n e u t e r g e n d e r , p l u r a l number, a c c u s a t i v e c a s e o f d e f i n i t e a r t i c z ho, he, to: t h e . The famous C a t t l e Problem o f Archimedes ( ? I . which t h e n o t e d i n v e n t o r and mathematicran of Syracuse s o l v e d i n epigrams and s e n t t o t h e mathemat i c i a n s of A l e x a n d r i a i n a l e t t e r t o E r a t o s t h e n e s , c l o s e s w i t h t h e s e f o u r l i n e s : "0 s t r a n g e r , i f you f i n d o u t t h e s e t h i n g s and add them up i n your mind, g i v i n g a l l t h e r e l a t i o n s among t h e s e q u a n t i t i e s , you w i l l d e p a r t g l o r i o u s l y and v i c t o r i o u s l y , knowing t h a t you have been adjudged g r e a t i n t h i s kind o f wisdom." 5. Mathematica: n e u t e r g e n d e r , p l u r a l number, a c c u s a t i v e c a s e of a d j e c t i v e mathematicus: fond of l e a r n i n g , m a t h e m a t i c a l . Mathematice e p i s t e m e : mathematical science. I n t h e Nicomachean E t h i c s , A r i s t o t l e a s s e r t s t h a t , " As f a r a s cond u c t i s c o n c e r n e d , t h e b a s i c p r i n c i p l e c o i n c i d e s with t h e pursued g o a l , which is a n a l o g o u s t o t h e h y p o t h e s e s ( h e r e t h e p h i l o s o p h e r means props i t i o n 9 o f mathematics" ( V I I , v i i i , 17- 18). From manthanein: t o comprehend, t o know, t o l e a r n , t o p e r c e i v e . Mathema: knowledge, something l e a r n e d , l e s s o n , s c i e n c e . Also, m a t h e m a t i c a l s c i e n c e , e s p e c i a l l y , a r i t h m e t i c , astronomy, geometry ( s e e Panos D. B a r d i s , "Symmentrical Consonance o f P l a y , Rhythm, and Harmony: An Essay o n P l a t o ' s Mathematics,"School S c i e n c e and Mathematics, J a n u a r y 1963, pp. 52-67). E n g l i s h words: and s o f o r t h . From + a n d E&: P r o f . D a v i d C. K a y , T h e U n i v e r s i t y of O k l a h o m a ( T a l k p r e s e n t e d t o t h e Oklahoma A l p h a c h a p t e r ) I n a moment I am g o i n g t o a c q u a i n t you w i t h a problem which w i l l l e a d u s q u i t e n a t u r a l l y i n t o two d i f f e r e n t f i e l d s o f mathematics- - - Minkowski geometry, and number t h e o r y . It i s a n e x t r e m e l y e n t e r t a i n i n g problem, and it may a c t u a l l y have a n a p p l i c a t i o n o u t s i d e mathematics which r e n d e r s it p a r t i c u l a r l y heart- warming. The problem i s i n t h e form o f two q u e s t i o n s , t h e second of which makes s e n s e o n l y i f t h e f i r s t h a s a "No" answer. C o n s i d e r t h e xy- plane and t h e s e t o f a l l l a t t i c e p o i n t s , p o i n t s o f t h e form (m,n) where m and n a r e i n t e g e r s . Now imagine a n i n f i n i t e f o r e s t whose t r e e s a l l have t h e same r a d i u s , s a y r , and c e n t e r e d a t t h e l a t t i c e p o i n t s (m,n). Now I f e l l t h e t r e e a t (0,O) and s t a n d o n t h e stump. The q u e s t i o n is, can I s e e t h r o u g h t h e f o r e s t ? G e o m e t r i c a l l y o f c o u r s e , I am a s k i n g whether I c a n p a s s a l i n e t h r o u g h (0,1) which d o e s n o t t o u c h any c i r c l e c e n t e r e d a t a l a t t i c e p o i n t and having r a d i u s r I have p r e p a r e d a l i t t l e s k e t c h o f t h e s i t u a t i o n f o r r = 1 / 1 0 which I ' l l l e t you s e e . Now i f we examine t h e problem c a r e f u l l y f o r t h i s c a s e we o b s e r v e s e v e r a l s i m p l i f y i n g p r i n c i p l e s . One is t h a t a s I r o t a t e a b o u t t h e o r i g i n s e e k i n g a l i n e of v i s i o n o u t o f t h e f o r e s t , it i s n o t r e a l l y n e c e s s a r y t o c o n s i d e r a l l d i r e c t i o n s . I f I m e r e l y answer t h e q u e s t i o n f o r t h e r a y s whose a n g l e s w i t h t h e x - a x i s r a n g e from 0 t o n / 4 , I w i l l be a b l e t o a p p l y t h a t answer t o a l l t h e o t h e r remaining s e c t o r s , s i n c e t h e s e c t o r o f r a y s from n/4 t o n / 2 c o n t a i n s t h e r e f l e c t e d image i n t h e l i n e y = x o f t h a t c o n t a i n e d by t h e s e c t o r from 0 t o n/4. It is t h e n o b v i o u s t h a t , having answered t h e q u e s t i o n f o r t h e f i r s t m a t h e m a t i c a l , mathematician, mathematics, polymath, 6. Epispeudein: i n f i n i t i v e o f v e r b epispeudo: I promote, I u r g e on. .. a . ON NOT SEEING THROUGH THE FOREST FOR THE TREES I h a s t e n onward, yeudein. preposition: by, on, o v e r , upon, and t h e l i k e . I n d e a l i n g w i t h t h e Pythagorean theorem, E u c l i d r e f e r s t o two of t h e l i n e s o f t h e c e l e b r a t e d "windmill" f i g u r e w i t h t h e s e words: "two s t r a i g h t l i n e s , namely, AG, AE, n o t l y i n g on t h e same s i d e , make t h e a d j a c e n t a n g l e s e q u a l t o two r i g h t o n e s f 9 E l e m e n t s , I , 47). E n g l i s h words: e p i b l a s t , e p i c a l y x , e p i c a n t h u s , e p i c a r d i u m , e p i c e n e , e p i c e n t e r , e p i c r i s i s , epidemic, e p i d e r m i s e p i d i d y m i s , and myriad o t h e r s . I n mathematics: e p i c y c l o i d , e p i t r o c h o i d , e p i t r o c h o i d a l , and many more. b. Speudein: i n f i n i t i v e o f v e r b speudo: promote, I quicken. I h a s t e n , I p r e s s on, I Herodotus i n f o r m s u s t h a t Queen Tomyris o f t h e Massagetae s e n t t h e f o l l o w i n g message t o King Cyrus when h e was marching a g a i n s t h e r kingdom: "0 k i n g o f t h e Medes, c e a s e from promoting what you a r e promoting" f o r vou cannot know i f t h e s e t a s k s w i l l be f o r your a d v a n t a g e when f i n i s h e d " ( H i s t o r i e s , I , 206). NOTE * A 1 1 quoted p a s s a g e s have been t r a n s l a t e d by t h e p r e s e n t a u t h o r . q u a d r a n t , I have answered t h e q u e s t i o n f o r a l l q u a d r a n t s . So it s u f f i c e s t o c o n s i d e r o n l y t h e s e c t o r from 0 t o 17/4 a s i n d i c a t e d by t h e d o t t e d l i n e s i n t h e diagram I have g i v e n you. Be making a few shrewd c a l c u l a t i o n s , we c a n a c t u a l l y o b s e r v e a n upper bound i n t h e c a s e r = 1 / 1 0 , and it is a p p r o x i m a t e l y 9 ~ 8 . A few o f t h e l o n g e r l i n e s o f v i s i o n a r e shown, l a b e l l e d w i t h t h e i r approximate l e n g t h s . We may c o n j e c t u r e , t h e r e f o r e , t h a t t h e answer must be "no."! I c a n n o t s e e t h r o u g h t h e f o r e s t f o r t h e t r e e s . But might we n o t be j u m x t o c o n c l u s i o n s based o n i n s u f f i c i e n t e v i d e n c e ? What i f r is e x c e e d i n g l y s m a l l and t h e t r e e s i n t h e f o r e s t a r e m e r e l y v e r y s k i n n y t o o t h p i c k s ? Is it t h e n c o n c e i v a b l e I might s e e t h r o u g h t h e f o r e s t i n some c a r e f u l l y chosen d i r e c t i o n ? I t is o b v i o u s t h a t I s h a l l be a b l e t o s e e a l o t f a r t h e r t h a n I c o u l d when r = 1 / 1 0 , b u t how much f a r t h e r ? 274 The second q u e s t i o n i s , assuming t h a t my v i s i o n is blocked by some t r e e i n e v e r y d i r e c t i o n , what is t h e f o r t h e s t I can s e e ? I d e a l l y , t h e s o l u t i o n t o b o t h p r o ~ l e m swould be found by o b t a i n i n g a n e x p r e s s i o n f o r t h e f u n c t i o n f ( o , r ) which measures t h e d i s t a n c e from t h e o r i g i n t o t h e f i r s t t r e e which t h e l i n e y = ox t o u c h e s , i f any. I f none touch we could d e f i n e f ( o , r ) = f o r t h a t o and t h a t r. But when we t r y t o w r i t e down what we t'r.ow a l ' r u t f ( o , r ) it becomes c l e a r t h a t t h e r e must be a n e a s i e r way. But t h e , a n o t h e r t h o u g h t pops r e a d i l y i n t o mind. Suppose we r e p h r a s e t h e q u e s t i o n s l i g h t l y . Given a l i n e y = ox, O<ocl, d o e s a l a t t i c e p o i n t (m,n) come a r b i t r a r i l y c l o s e t o t h i s l i n e , o r c l o s e r t h a n r , by making some c h o i c e o f t h e p o s i t i v e i n t e g e r s m and n? The answer i s o b v i o u s l y "yes" i f o i s r a t i o n a l . But suppose o i s i r r a t i o n a l . L e t u s r,et a n i d e a how c l o s e t h e l a t t i c e p o i n t (m,n) i s from t h e l i n e y = ox. We can e a s i l y s e e t h a t t h e d i f f e r e n c e between t h e o r d i n a t e s om and n, o r - i s a measure o f how c l o s e (m.n)istoy=ox. If t h i s is l e s s than r then t h e l i n e y = ox w i l l d e f i n i t e l y b e c u t o f f bv t h e t r e e c e n t e r e d a t (m,n). So o u r problem becomes t h a t o f choosing p o s i t i v e i n t e g e r s m and n s o a s t o minimize om nl - T h i s would be c a l l e d t h e 5 t h sequence o f Farey f r a c t i o n s . A l l p r e c e d i n g sequences may be o b t a i n e d by d e l e t i n g c e r t a i n f r a c t i o n s . For example, t h e 4 t h sequence would be The 3 r d , and 2nd a r e : Given a p o s i t i v e i n t e g e r n , however, I c a n form t h e n t h sequence independent of t h e others. F a r e y f r a c t i o n s have a number o f i n t e r e s t i n g p r o p e r t i e s which w i l l e n a b l e u s t o prove t h e r e s u l t we a r e t r y i n g t o o b t a i n , namely, t h a t ma n l c r f o r some c h o i c e o f m and n. - The f i r s t o f t h e s e is e a s i l y s p o t t e d from o u r examples* Note t h a t t h e c r o s s - p r o d u c t s o f numerator t i m e s denominator o f two c o n s e c u t i v e f r a c t i o n s i n any sequence always d i f f e r by u n i t y . P i c k i n g a few a t random: T h i s i s no a c c i d e n t . R e c a l l i n g t h e r u l e o f i n e q u a l i t y f o r f r a c t i o n s w i t h p o s i t i v e numerator and denominator, where o is a n arbitrarily g i v e n i r r a t i o n a l , O<o<l. <; A s a n example o f t h e t r u e n a t u r e o f t h e problem, I have made a NOW t h e r a t i o n a l few c a l c u l a t i o n s f o r o = 6 approximates</5"(which is 1.41421435...) t o w i t h i n .0001435,.. 5 d iff ad < b c , we s e e t h a t , s i n c e we have a r r a n g e d t h e f r a c t i o n s i n n u m e r i c a l o r d e r f o r e a c h sequence, we must minimize t h e d i f f e r e n c e b So given -b - 5. x -ay Y b S i n c e bx - a y i s a p o s i t i v e i n t e g e r , t h e l e a s t it can be is - happens t o work b e t t e r f o r t h i s example, f o r t h e n , one. Hence bc ad = 1 i f t h e r e e x i s t s a f r a c t i o n i n o u r list f o r which t h i s d i f f e r e n c e & u n i t y . I t may b e t h a t we c a n n o t f i n d s u c h a f r a c t i o n , and i f we were t o prove t h i s p r o p e r t y o f Farey f r a c t i o n s , we would have s e t t l e d t h i s i s s u e . However, it may be proved, indeed from s o b a s i c a p r i n c i p l e a s E n c l i d ' s a l c o r i t h m , t h a t we can f i n d a f r a c t i o n with t h i s property. which g i v e s u s a d i f f e r e n c e of .005 a p p r o x i m a t e l y , a s compared w i t h A second p r o p e r t y , a consequence o f t h e f i r s t , is t h a t i f we t a k e t h r e e c o n s e c u t i v e Farey f r a c t i o n s a / b , c / d , e / f t h e n c / d = ( a t e ) / ( b t f ) . F o r example, c o n s i d e r ( 3 A , 2 / 3 , 3/41. We have ( 3 t 3 ) / ( 5 t 4 ) = fi/1 = ? / 3 . We can add t o t h e seeming t r i v i a o f t h e h o u r by o b s e r v i n g t h a t , s i n c e b c - ad = 1 and de - c f = 1, t h e n which is n o t v e r y t h e q u a n t i t y we a r e i n t e r e s t e d i n , e q u a l s .1435.... s m a l l . Thus, c l o s e r and c l o s e r a p p r o x i m a t i o n s t o o by r a t i o n a l numbers 2- d o e s n o t n e c e s s a r i l y make lmo - n l s m a l l . The c h o i c e n = 99, m = 70 .143. But how c a n we o b t a i n v a l u e s f o r n and m which make t h i s s m a l l e r than, say 1 0 - 7 C u r i o u s l y enough t h i s problem a p p e a r s t o be s o l v e d i n Niven's book "An I n t r o d u c t i o n t o t h e Theory o f Numbers" f o l l o w i n g a d i s c u s s i o n o f Farey f r a c t i o n s . Perhaps you have heard o f t h e s e f r a c t i o n s . For e a c h p o s i t i v e i n t e g e r n one forms a l l p o s s i b l e f r a c t i o n s p / q between z e r o and u n i t y , i n c l u s i v e , such t h a t q i n , and r e d u c e t o lowest t e r m s , p l a c i n g them i n n u m e r i c a l o r d e r . For example, f o r n = 5 we have iind p l a c i n g thorn i n n u m e r i c a l o r d e r , we have Farey f r a c t i o n s have a b i t o f unexpected power, a s we s h a l l now s e e . Observe t h a t i f we p l o t t h e k t h sequence o f Farey f r a c t i o n s , s i n c e (k - l)/k, t h e i n t e r v a l s we have c o n t a i n e d i n t h i s l i s t 1 / k , 2 / k , 3 / k , ... between c o n s e c u t i v e f r a c t i o n s is l e s s t h a n l / k . Consequently, any r e a l number a between 0 and 1 can be a pp roximated t o w i t h i n 1 / k by a Farey f r a c t i o n i n tlie k t h sequence. L e t r > o be c i v e n . There is a p o s i t i v e i n t e g e r k such t h a t 1 < r. L e t u s form t h e k t h sequence of ^T? Farey f r a c t i o n s . Choose t h e l a r g e s t one which is l e s s 0 ; than o r equal t o 4 . Ia , s a y n/m. Now 0 1 / k 7/k 3/k n' 1 I look a t t h e m B' n e x t Farey f r a c t i o n i n t h i s sequence, c a l l it n'/m'. I know t h a t mn' - nm' = 1. Hence n ' - 5 mn' - nm' m' m m'm = 1 mum But by o u r above o b s e r v a t i o n t h i s d i f f e r e n c e c a n n o t exceed 1 / k , s o 1 <1 m'm - k . Hence one o f m,m' must b e a t l e a s t a s l a r g e a s i/K. Let u s s a y t h a t m' s. ^k. Observing t h e f i g u r e , we have, c e r t a i n l y , Hence A d i f f e r e n t s o r t of i d e a which Minkowski a p p l i e d t o t h e s u c c e s s f u l s o l u t i o n o f many d i f f i c u l t problems o f number t h e o r y h a s come t o b e known a s Minkowski's Theorem: Theorem: Given a convex s e t i n t l e p l a n e symmetric a b o u t one l a t t i c p o i n t and a r e a g r e a t e r t h a n o r e q u a l t o 4 , t h a t convex s e t must c o n t a i n a t l e a s t two f u r t h e r l a t t i c e p o i n t s . To make t h i s p l a u s i b l e , Minkowski reasoned a s f o l l o w s : Let S be a convex body whose a r e a is K i . 4 and c e n t e r e d a t (0,O). C l e a r l y we prove t h e theorem i f we prove t h a t S i n c l u d e s a t l e a s t one o t h e r l a t t i c e p o i n t , f o r it w i l l a u t o m a t i c a l l y c o n t a i n its r e f l e c t i o n i n (0.0). Using a mapping l i k e x ' = a x , y ' = ay it i s c l e a r we may " enlarge" S by a f a c t o r a u n t i l it j u s t t o u c h e s one o t h e r l a t t i c e p o i n t , and i t s r e f l e c t i o n i n ( 0 , 0 ) , b e s i d e s ( 0 , 0 ) . Then s h r i n k t h i s new s e t back by a f a c t o r 1 / 2 . The r e s u l t i n g s e t S' h a s an a r e a of ( a 2 / 4 ) ~ . L e t S' b e t r a n s l a t e d t o form a system of c o n c r u e n t symmetric convex s e t s i n t h e p l a n e c e n t r e d a t each and e v e r y l a t t i c e p o i n t . I t is c l e a r t h a t t h e s e s e t s look something l i k e t h i s : They a r e non- overlapping b u t certain nairs w i l l . touch a-.t 1 . c e r t a i n p o i n t s . By c o n s i d e r i n g unit squares a l s o centered a t each l a t t i c e p o i n t , s i n c e t h e convex s e t s do n o t completely f i l l up t h e plane- - - there a r e c e r t a i n gaps left- - - we must have .- -- -- 1 or That i s , we have found, usinp, Farey f r a c t i o n s , a l a t t i c e p o i n t (n.m) t h a t i s c l o s e r t o t h e l i n e y = ox t h a n r. I n t e r e s t i n g a s a l l t h i s is I have j u s t shown you t h e wrong way t o do t h i s problem. For t h e r e i s a way t o answer b o t h q u e s t i o n s we a r e a s k i n g i n t h e same b r e a t h . A t t h i s p o i n t Minkowski, i f he were h e r e , would b e l a u g h i n g u s r i g h t o u t o f t h i s room t h a t we could b e s o i n e p t . I f I may b e allowed t o p a r a p h r a s e h i s j e e r i n p comments, t h e y would probably R O something l i k e "You b u n g l i n g i d i o t s ! I can n o t o n l y s o l v e t h e f i r s t q u e s t i o n a b o u t t h e t r e e s i n t h e f o r e s t , b u t t h e second a s w e l l and i n c l u d e what you s a i d a b o u t !ma - nl beinp: a r b i t r a r i l y s m a l l , a s a corollary! " lie would f e e l e s p e c i a l l y j i l t e d because it s o happens t h a t one o f h i s famous theorems a p p l i e s t o t h e s i t u a t i o n a t hand. Minkowski made Â¥lomi n n o v a t i o n s t o number t h e o r y by h i s u s e o f convex b o d i e s and h i s -.turiy o f a c e r t a i n d i s t a n c e f u n c t i o n . I 0 I F C i s a convex curve ymmetric about t h e o r i g i n , d e f i n e AB d(A,B) * o,, whom All I f t h e e u c l i d e a n d i s t a n c e from A t o R and 0U i s t h e e u c l i d e a n r a d i u s o f C p a r a l l e l t o l i n e AB. Tho f u n c t i o n rt(A.0) t u r n s o u t t o be a m o t r i c f o r t h o p l a n e , and one may proceed t o s t u d y t h e v a r i o u s p r o p e r t i e s t h i s d i s t a n c e c o n c r p t h a s . Such a a t u d y b e l o n g s t o t h e a r e a o f mathematics known a s Minkowskian geometry. I t I s c l o n r t h a t i f C i s any c i r c l e t h e n o u r m e t r i c is o u c l l d o n n . Rut i t I s n o t t o o h a r d t o r e a s o n t h a t i f C is any e l l i p s e , t h e n t h e resulting Minkowskian geometry c o i n c i d e s w i t h E u c l i d e a n geometry. That i s ( u s i n g k > 4 ) Hence, t h e f a c t o r by which we had t o " s t r e t c h " t h e o r i g i n a l s e t S s o it j u s t touched two f u r t h e r l a t t i c e p o i n t s was < 1,bearing w i t n e s s t o t h e f a c t t h a t it a l r e a d y c o n t a i n e d them i n t h e i r i n t e r i o r . You can e a s i l y make t h i s r i g o r o u s , b u t I ' m s u r e you g e t t h e i d e a Minkowski had i n mind. Well, I ' v e k e p t you i n s u s p e n s e l o n g enough. How s h o u l d t h e f o r e s t problem he s o l v e d ? C o n s i d e r a l i n e 1 i n any d i r e c t i o n p a s s i n g t h r o u r h Let a r e c t a n g l e be d e s c r i b e d s y m m e t r i c a l l y a b o u t 1 a s a x i s , (0,0). havinp, width 2 r ( t w i c e t h e r a d i u s o f o u r t r e e s ) and l e n f l h 7d where d is t h e d i s t a n c e we a r e s e e i n g from (0,0) i n t h e d i r e c t i o n o f 1. The a r e a o f t h i s r e c t a n g l e is 7d 7 r = 4 d r . By o b s e r v i n g a c i r c l e o f r a d i u s r c e n t e r e d a t one o f t h e v e r t i c e s , i t i s obvious t h a t o u r v i s i o n w i l l be blocked by one o f t h e t r e e s i f and o n l y i f t h i s r e c t a n g l e contains a l a t t i c e point. Hence, i f my v i s i o n is n o t b l o c k e d i n t h i s d i r e c t i o n , by Minkowski's theorem, t h e a r e a of t h e r e c t a n g l e has t o be l e s s t h a n o r e a u a l t o four. Thus Therefore, the distance I can see i n any direction does not exceed t h e r e c i p r i c a l of t h e radius of t h e t r e e s . I t ' s Touche' once apain by an elementary theorem of reometry. SOME USEFIIL PESIILTS IN APPLICATIONS OF VIE POWER SERIES TRANSFORM TO THE SOLllTInN OF DIFFERENCE EQUATIONS UNDERGRADUATE RESEARCH PROJECT Ray A. Gaskins, Virginia Polytechnic I n s t i t u t e P r o p o s e d b y K e n n e t h Loewen, U n i v e r s i t y o f Oklahoma Complex numbers may b e d e s c r i b e d a s a t w o d i m e n s i o n a l v e c t o r s p a c e o v e r t h e ~ r e a ln u m b e r s w i t h m u l t i p l i c a t i o n g i v e n by (a + b i ) (c + d i ) (a + bi) ( c + = (ac - b) d i ) = ( a c - bd) +(ad + be) i: where a , b , c and d a r e r e a l numbers. Q u a t e r n i o n s may b e d e f i n e d a s a t w o d i m e n s i o n a l v e c t o r s p a c e o v e r t h e c o m p l e x n u m b e r s w i t h m u l t i n l i c a t i o n g i v e n by w i t h m, n , p , q c o m p l e x n u m b e r s a n d i f m = a + h i t h e n ii = a - b i etc. I t i s c u s t o m a r y t o w r i t e i j = k; s o t h a t i f n = c + d i , t h e n m + n j = a + b i + c j + dk. I n t u r n a C a y l e y a l g e b r a may b e d e f i n e d a s a t w o d i m e n s i o n a l vector space over t h e quaternions with multiolication (u + ve) (x + ye) = (ux - vv) + (yu + vx-)e. H e r e u , v , x , y a r e q u a t e r n i o n s so t h a t i f u = a + b i + c j + d k ii = a - b i - c j - d k . O r d e r i s i m p o r t a n t i s t h i s d e f i n i t i o n s i n c e q u a t e r n i o n m u l t i p l i c a t i o n is n o t commutative. Q u e s t i o n : What s o r t o f s y s t e m s a r i s e i f t h i s p r o c e s s i s c a r r i e d o u t beqinninq with a s p e c i f i c f i n i t e f i e l d instead of t h e reals? 1. Introduction. Durinp the past several years difference equations have come i n t o t h e i r own as a techniqae f o r problem solvine in many areas of science and engineering such as s t o c h a s t i c processes, e l e c t r i c a l engineering and engineering mechanics. I t i s desirable, therefore, t o develop a systematic method f o r solving t h e various types of difference equations which a r i s e . One such method f o r handling a wide range of difference equations i s the power s e r i e s transform. The power s e r i e s transform as a tool f o r solvinp difference equations i s t h e d i s c r e t e counterpart of t h e Laplace Transform which i s used i n solving d i f f e r e n t i a l equations. The transform method of handling d i f f c r ence equations is superior t o more conventional methods i n t h a t i t i s able t o handle non-hoirogeneous equations and equations with variable coefficients. I t i s a l s o possible t o obtain d i r e c t l y a p a r t i c u l a r solution without f i r s t obtaining the general solution. Equipped with a good t a b l e of transfonrs and a knowledge of p a r t i a l f r a c t i o n s one i s able t o deal s w i f t l y with complicated difference equations. P a r t i a l Fractions. In order t o f a c i l i t a t e the use of t h e power s e r i e s transform i n solving difference equations it is e s s e n t i a l t h a t one be able t o resolve proper r a t i o n a l f r a c t i o n s i n t o p a r t i a l f r a c t i o n s . To t h i s end t h e following shortcut i s introduced. 2. Consider t h e proper r a t i o n a l f r a c t i o n N(x)/D(x), where the polynomial N(x) i s of lower order than t h e polynomial Dfx): The e d i t o r s o l i c i t s c o n t r i b u t i o n s f o r t h i s d e o a r t m e n t . Any problems which would b e s u i t a b l e u n d e r g r a d u a t e r e s e a r c h a r e welcome. 1 9 6 8 NATIONAL MEETING A t w o d a y m e e t i n q o f P i Mu E n s i l o n w i l l b e h e l d i n c o n j u n c t i o n w i t h t h e r e g u l a r summer m e e t i n g s o f t h e Mathematical A s s o c i a t i o n o f America and t h e American Mathematical S o c i e t y a t Madison, Wisconsin sometime t h e l a s t week i n A u g u s t . Your c h a p t e r i s e n c o u r a g e d t o n o m i n a t e y o u r b e s t s p e a k e r who w i l l NOT h a v e a m a s t e r s d e g r e e b y A p r i l , Nominations 1 9 6 8 , as a s p e a k e r f o r t h e n a t i o n a l m e e t i n g . s h o u l d b e m a i l e d t o DR. RICHARD V. ANDREE, P I MU EPSILON, THE UNIVERSITY OF OKLAHOMA, NORMAN, OKLAHOMA 73069. where. Ai = ,m-i N (XI (m-i) I (x2+bx+c) ',al (x-a I x=a A and B a r e found hy p l a c i n g A 1 (i=1,m) and Hence, B. ( j = l , n ) i n ( 2 . 2 ) F, s e t t i n g t h e r e s u l t e q u a l 3 t o (2.11. ... P(k ( k + l ) (k+n-1) y k ) = (T.4) (3). Thus knowing Y ( s ) , t h e c l o s e d form of p{yk), we may o b t a i n by (T.4) many u s e f u l t r a n s f o r m s . S e v e r a l examples w i l l be g i v e n i n t h e f o l l o w i n g s e c t i o n s . EXAMPLE 1. Find P ( k ) . L e t y k = l and n = l i n (T.4). 3. The Power S e r i e s Transform. L e t ( y k ) r e p r e s e n t t h e se- quence (yo, y,,..., yk, ... 1. We d e f i n e t h e power s e r i e s - t r a n s f o r m a t i o n of t h e sequence ( y k ) t o be! '{yk' a Yk k h 0 ~ k Now l e t u s c o n s i d e r t h e t r a n s f o r m o f t h e sequence ( r 1 k (T. 1) I From t h e p r o p e r t i e s o f power s e r i e s we have by t h e r a t i o t e s t t h a t (T.1) converges f o r s > s o= k+1 which converges and i s a continuous f u n c t i o n of r a s w e l l a s k s f o r r>s>so. D i f f e r e n t i a t i n g P ( r In t i m e s w i t h r e s p e c t - t o r we o b t a i n ! exists. A s a s h o r t h a n d n o t a t i o n we s h a l l w r i t e Y ( s ) t o d e n o t e .. ... k (k-1) , (k-n+l) rkmn = P(k (k-1) t h e c l o s e d form of t h e t r a n s f o r m , w h i l e P ( y k ) w i l l s t a n d (k-n+1) rk-"), And s i n c e P ' ~ )( r k ) = Y'") (s) we g e t t h e i d e n t i t y : f o r the s e r i e s representation. Consider, f o r example, t h e sequence ( 1 ) = (1,1,...,1,...) and i t s t r a n s f o r m P ( 1 ) =kzol/skwhich h a s t h e c l o s e d form EXAMPLE 2. Find P(k(k-1) ). L e t n=2 and r5l i n (T.5). Y ( s ) = s/(s-i) , f o r s > l . P(k(k-1) 1 = s / ( s - ~ ) The Dower s e r i e s t r a n s f o r m is a l i n e a r o p e r a t o r , i . e . P(Ayk + Bzk) = AP(yk) + BP(zk) (T.2) which f o l l o w s immediately from t h e s e r i e s d e f i n i t i o n . - Consider t h e t r a n s f o r m of t h e sequence (yk+,,) ^k+n ^k n- l y k p ( ~ k + n ' " k h 0 ~ SEXOF -kZ0~-n . 3 With t h e p r e c e e d i n g t h e o r y and examples behind u s , we a r e i n a p o s i t i o n t o h a n d l e t h e t r a n s f o r m a t i o n o f a l m o s t any A table d i f f e r e n c e e q u a t i o n one might encounter. of t r a n s f o r m s i s g i v e n a t t h e end o f s e c t i o n 5. 4. The I n v e r s e Transform. S i n c e t h e Laurent s e r i e s r e p r e s e n t a t i o n of P ( y k ) i s unique, t h e r e i s a one-to-one c o r respondence between ( y k ) and P ( y k ) , hence t h e i n v e r s e oper- The Laurent s e r i e s P ( y k ) i s uniformly convergent f o r ator P P-^Y(~)I s>soand i s t h e r e f o r e a c o n t i n u o u s f u n c t i o n o f s f o r t h a t range. I t may be d i f f e r e n t i a t e d term by term t o g i v e : (-1)"k (k+1) (k+n-1) y, n sk-n a ... d e f i n e d such t h a t ! i s a l s o unique. = (yk) We have by (T.2) t h a t P-I i s a l i n e a r operator. EXAMPLE 3. P-I [s2/(s-1) 2 ] 5 P-I [ s / ( s - l ) + 1 P-I[ s / ( s - 1 ) 2 l by l i n e a r i t y and p a r t i a l f r a c t i o n s . Hence ~ - ~ [ s ~ / ( s - l5) ~( 1] + It). 5. A p p l i c a t i o n s of the Transform t o t h e S o l u t i o n s o f Dif- f e r e n c e Equations. We c o n s i d e r d i f f e r e n c e e q u a t i o n s o f t h e tYpc 8 where a i < i = l , n ) and f k may o r may n o t be f u n c t i o n s o f k. S i n c e t h e d i f f e r e n c e e q u a t i o n i s a c t u a l l y a sequence, we may a p p l y t h e o p e r a t o r P t o it and o b t a i n an a l g e b r a i c But l i m P{yk) = yo = limy (s), ss- e q u a t i o n i n Y(s) and s. Hence, C = yo = 1 and by (T.10) l I S o l v i n g f o r Y ( s ) and u s i n g p a r t i a l f r a c t i o n s t o f a c t o r t h e r i g h t hand s i d e , we a p p l y t h e operator P t o b o t h s i d e s Ad o b t a i n a s o l u t i o n f o r yk. y ( (91, 04kSn, Yk = (El. EXAMPLE 4. I n s t o c h a s t i c p r o c e s s e s the u s u a l random walk model w i t h a b s o r b i n g b a r r i e r s a t TABLE OF POWER SERIES TRANSFORMS ---- x=0 and x=a may be r e p r e s e n t e d by t h e d i f f e r e n c e e q u a t i o n qk = pqk+l SEQUENCE for l ~ k ~ a - 1where , p i s the p r o b a b i l i t y o f a move one u n i t t o t h e l e f t , q=l-p, and qk i s t h e p r o b a b i l i t y t h a t x r e a c h e s x=0 bef o r e x=a, g i v e n t h a t i n i t i a l l y x=k. Sub- s t i t u t i n g k + l f o r k and a p p l y i n g P: Using p a r t i a l f r a c t i o n s w i t h 6=0,m=O,n=2: q/p) + s ( q l 1), yb) a J 9-1 s-q/e a^ - - L e t t i n a k=a we f i n d t h a t s i n c e a =0 (T.ll) (wksin k@) w sin à (T.12) k (W c o s k + ) TRANSFORM TABLE OF POWER SERIES TRANSFORMS ---SEQUENCE TRANSFORM s2 (T.14) (con't) - s 2wbs - , + , sL wbs 2 s2 2wbs + w - (wk cosh k + ) b = cosh # > 1 ON HULA HOOPS w2 Dennis Spellman, Temple U n i v e r s i t y b = cosh + > 1 REFERENCE: McFadden, Leonard, Clemens, Paul F. and Campbell, Hugh G., The P o w e and To of Difference E a u a t u , Edwards Brothers Inc., 1963. S e v e r a l months ago L. A i l e e n Hostinsky o f C o n n e c t i c u t C o l l e g e gave a l e c t u r e a t Temple U n i v e r s i t y e n t i t t l e d "On Groups, Loops, and Hoops"-that's right ! The purpose o f t h i s paper is t o i n v e s t i g a t e t h e prope r t i e s o f hoops - e s p e c i a l l y a c l a s s o f hoops-which we s h a l l c a l l h u l a hoops. D e f i n i t i o n 1: Let G be a non-empty s e t . Then a b i n a r y o p e r a t i o n d e f i n e d on G i s a mapping from t h e C a r t e s i a n p r o d u c t G x G i n t o G. I f ( a , b ) E GxG, i t s image is denoted a 0 b. o D e f i n i t i o n 2. Let G b e a non-empty s e t on which a b i n a r y o ~ e r a t i o no is d e f i n e d . G i s a quasi- group under o i f t h e r e e x i s t unique s o l u t i o n s i n G t o e a c h o f t h e e q u a t i o n s a 0 x = b and y 0 a = b where a and b a r e f i x e d e l e m e n t s o f G. A quasi- group G i s a g r o u p i f and o n l y i f it h a s t h e a s s o c i a t i v e p r o p e r t y . i.e.. i f and o n l y i f (a o b ) o c = a o ( b c ) for a l l a , b , c e G. (See ( 1 ) p. 38 Theorem 1 . 4 ) The New Mexico Institute of Mining and Technology, Socorro New Mexico (enrollment about 500) has found that a mathematical conference is a good way of stimulating interest in mathematics among undergraduate students. Papers are presented both by students and professional mathematicians. Briefing sessions are held in connection with the conference to supply background on the material presented i n the conference. Up to 2 hours may be allowed for each paper. Students from other schools attend. The first year there were 12 papers presented and students from 12 institutions in three states attending. Before beginning this program the number of students in math was very small but recently as many as 24 percent of upperclassmen enrolled in the institution were math majors. Definition 3: I f Gl and G a r e quasi- groups, then t h e d i r e c t product of G and G is t h e C a r t e s i a n p r o d u c t G x G2 on which a b i n a r y 1 1 o p e r a t i o n i s defined a s follows (al,a2) a l l (al,a2), o i n GI, and C i s t h e unique s o l u t i o n o f a 2 is t h e unique s o l u t i o n o f equation y o (al,a2) <al, o bl,a2 0 b2) f o r a 2 o o x = b i n 9- t h e n (Cl,C2) x = ( b , b ) i n GlxG2. = ( b1 , b 2 h a s a unique s o l u t i o n i n G Similarly the x G . Thus, t h e d i r e c t p r o d u c t of two quasi- groups is a quasi- group. of G i n t o G . Let G1 and G2 be quasi- groups. a l l a , b e GI. Then f is a homomorphism i f f ( a Let f be a mapping b) 0 = f(a) 0 f(b) for I f t h e homomorphism f i s a one-one mapping o f Gl o n t o G2, f is a n isomorphism, and G is ismorphic t o G . 1 The Governing Council of P i Mu Ensilon has approved an increase in the maximum amount per chapter allowed as a matchinq prize from $70.00 to $25.00. If your chanter uresents awards for outstanding mathematical papers and students, you may apply to the National Office to match the amount spent by your chapter--i. e., $30.00 of awards, the National Office will reimburse the chapter for $15.00 etc.--up to a maximum of $25.00. Chapters are urged to submit their best student papers to the Editor of the Pi Mu Eosilon Journal for possible publication. = ( a ( b1'b 2 ) I f C i s t h e u n i q u e s o l u t i o n o f a, o x = 1 b1 (b,b)e G x G . D e f i n i t i o n 4: MATCHING PRIZE FUND 2 I n t h i s c a s e we w r i t e Gl = G 2" D e f i n i t i o n 5: L e t Gl and G2 be quasi- groups. mapping o f Gl o n t o G . g ( a ) f o r a l l a,b, E G . Let g be a one-one Then g i s a n anti- ismorphism i f g ( a 0 b) = g(b) E v i d e n t l y t h e c o n c i p t s o f isomorphism and a n t i - isomorphism c o i n c i d e i f G and G a r e commutative. 1 2 0 A hoop H s a t i s f y i n g ( A ) is a group s i n c e (H 1 ) Definition 6: a o a=a. Let he a quasi-group. and (A) a r e s a t i s f i e d simultaneously. -.H has an i d e n t i t y element. ,\H i s t r i v i a l . Hence, no n o n - t r i v i a l hoop s a t i s f i e s ( A ) . Then a e G i s idenpotent i f Definition 8: Definition 7: A non-empty s e t tl on which a binary operation a i s defined i s a hoop ( o r medial systeir) i f t h e following p r o p e r t i e s a r e s a t i s f i e d : Theorem 1: 11 1) 11 i s a quasi-group under a I1 2) a Oa=a f o r a l l a e 11 (every element of H i s idempotent) tl 3) ( a a h ) a ( c o d) = ( a 0 c) (the medial property). 0 a 0 (hat) = ( a 0 h ) O (sac) and ?) (aoh)oc= (aoc)o(boc) (Kie r i g h t and l e f t s e l f - d i s t r i h u t i v e laws). fh 0 2 since (al, a ) " ' C) (i) can he proven s i m i l a r l y . over R . An example o f a hoop is t h e s e t K o f r e a l numhers on which a binary i f a,b e K, then a o h = ( i i ) We s t i l l have a hoop i f we change t h e hinary operation i n t o a weighed a r i t h n e t i c mean, i . e . , i f w and w a r e p o s i t i v e r e a l numbers, 1 wla+w h 2 = "1 then we can d e f i n e aob= + (1w1 + w2 w1 + w2 w1 + w2 - > t h e r e e x i s t s e E tl such t h a t e o.x=x a e=x f o r a l l x ( a o b )  ¡ c = a o ( b ~ cf o r a l l a,h.c e H. Theorem 2: Let R E r. Let a he medial i n R and l e t M he a i s t h e system .(", ? ) where t h e binary operation i s M" Let a he medial in R, and l e t M he a module Let R e T. Then V" i s Proof: - a hoop. Let a, h e Consider t h e equation a a x = h. t h i s t r a n s l a t e s i n t o a a + nx = h. We may v e r i f y by d i r e c t s u b s t i t u t i o n t h a t = aa + ( r l b a(; -1 - r1 ma) is -1 h - a aa) = a solution. aa + Zh -1 -aa aa - . We s h a l l prove t h e s e a s s e r t i o n s l a t e r ( i n g r e a t e r generality). Another example of a hoop i s t h e s i n g l e t o n H= on which t h e binary operation is defined hy e oe=e. Such a hoop i s c a x e d t r i v i a l . We note t h a t a t r i v i a l hoop i s a l s o a group and s a t i s f i e s t h e following p r o p e r t i e s : E) A) , defined by a o h = a a + ah f o r a l l a , h e V. (b'odules a r e discussed i n (1) pp. 145-147). We a r e now prepared t o s t a t e our c h i e f r e s u l t . hy (H 2) operation is defined a s t h e a r i t h m e t i c mean i.e., and R 2 r e s p e c t i v e l y , then (al, a 2) i s medial in Pl 0 -1 = (al and = %-I). (Dir- Definition 10: Theorem 3: (2) Moreover, i f a1 and rings). module over R. c) = ( a 0 a) o (b a i s an clement of I". R C .r, E e c t sums a r e discussed in (1) pp. 61-62, 77 ahelian groups, (2) pp. 17-18 Proof of ( I ) : a a a2 a r c medial in R R H 1) .r. a E R is medial i n R provided: Let R E a is i n v e r t i b l e and 2. '5'= 1-a is i n v e r t i b l e . is medial i n R i f and only i f a is medial i n R. I f Rl, R , 1. then t h e i r d i r e c t sum R ( b o d) f o r a l l a,h,c,d e II E (R : R is a r i n g with u n i t y 1 # 0 ) . Definition 9: He note I f 1 1 i s a hooq, then f o r a l l a,h,c r= E Suppose x, and x2 a r e any s o l u t i o n s of a Then a o xl = h and a 0 x2 = h. 0 x = b. H and No n o n - t r i v i a l hoop s a t i s f i e s p r o p e r t i e s (E) o r (A). Proof: - Let H be a hoop and a e H. Let e e H be an i d e n t i t y element. a 0 a=a ffl 2) and a a e=a by hypothesis Both a and e s a t i s f y t h e equation a ox=a. 2. a=e by (H 1) Since a was a r b i t r a r y , H={e>. Hence, no n o n - t r i v i a l hoop s a t i s f i e s (E). .-.XI = x2 Thus t h e s o l u t i o n of a o x = b i s unique. Similarly, t h e r e e x i s t s a unique s o l u t i o n of y I'.M^ s a t i s f i e s (I1 1). 0 a h. Let a e I a o a = a a + a a = a. s a t i s f i e s (11 2 ) . :,M^ (a h) o Let a , h, c , d E o ( c o d) = a ( a o h) +;(C d) o (See ( 3 ) pp. 158-159 Example 2 ) . = a ( a a + ah) + a ( a c + ad) = a2a + adh i an c a t b = 1 ; + a d 0 2 p) Then x 0 ( c o d) = (a a + a n c ) + (aah + a d ) = 3 a because a?i =a. ( a ), F^ F :. d e n o t e t h e hoop o p e r a t i o n s o f F a and F ' ~ )by R e a r r a n g i n g terms and r e g r o u p i n g , we have (a a'l=bandb" O y = ax t by and x commutative s i n c e ft = bx y t ay. e SKF). ~ e t ' s 0 and * respectively. F ' ~ )and F ' ~ )a r e non- 0 0 1 = 1 *0 = a S 0 t b . 1 o 0 = 0 * l = a . l t b . Now c o n s i d e r t h e mapping f : = a(aa + dc) + ;(ah + ad) d e f i n i t i o n 11: !)(I?) - (M-) Let R F ' ~ ) Â¥ F ' ~ )d e f i n e d by f ( x ) = x2. s a t i s f i e s (H 3) and i s a hoop. E h u l a hoop i f 1 1 c IJ Q ( R ) . Re r C o r o l l a r y 4: - i: M^ + M^ Proof: - If R and M ^ E Let a , h 0 c + o + + + 1 b a M. Let M ^ = (M, o ) and M ^ = (M, 0 . .'.f(x ). . t by) 2 = a2x2 t 2abxy t bZy2 = a2x2 t 0 t bZy2 s i n c e F is o f c h a r a c t e r i s t i c 2, y ) = a 2x 2 t b 2y 2 = bx2 h) = i ( a a + a h ) t ay 2 = bf(x) t afty) = ftx) * f(y) Hence, f i s an isomorphism, and t h e non-commutative hoops r a n d - = i (b) . i(a). is commutative, t h e n t h e i d e n t i t y mapping i s j u s t t h e I f M ' ~ )= i d e n t i t y isomorphism. ( i i i ) F o r example t h e a d d i t i v e group K o f r e a l numbers i s a module o v e r t h e r i n g K o f r e a l numbers, and 1/2 i s medial - i n K. The commutative hoop b e f o r e i n example ( i ) . (iv) We y ) = f ( a x t by) = (ax 0 ( R ) , then t h e i d e n t i t y mapping is an anti- isomorphism. i(a f(.x A hoop I1 i s a We have a s i m p l e c o r o l l a r y t o theorem 3. E o 1 a b We n o t e t h a t f i s a one-one mapping o f F ' ~ )o n t o F ( b ) .'I = M i s an R-module and a is medial i n R l . 0 = a . c a n look a t t h e m u l t i p l i c a t i o n t a b l e o f F t o w r i t e o u t f e x p l i c i t l y . f Finally 1=band = Kcay = ^\Â¥1'2 i s j u s t t h e one we met C o n s i d e r t h e f o u r element f i e l d F F ' ~ )a r e isomorphic. However, h u l a hoops come i n a n t i - i s o m o r p h i c p a i r s which i n g e n e r a l need not be isomorphic. Z , z") 2 + 4 = 1 ; emm ma e "Z) Z^5 For example where Z d e n o t e s t h e i n t e g e r s modulo ~-'=3and4'~=4. 5: (v) ~ ( 4 ? 5. proof".et - h= 2 i 2 ) be a n a r b i t r a r y h m o - "2 + We d e n o t e t h e hoop o p e r a t i o n s of morphism. Z(2) and 2' by 5 0 and * respectively. h(O o 1 ) = h ( 2 0 t 4 1) = h(4) 1. ;.h(O' 0 1 ) = h ( 4 ) But h ( 0 0 1 ) = h(0) h(l) = 4h(0) t 2 h ( l ) 2. +;h(O a 1 ) = 4 h ( 0 ) + 2 h ( l ) 3. .%h(4) = 4h(0) t 2 h ( l ) Now h(O 0 4 ) = h(2 ' 0 t 4 4) = h(16) = h(1) 4. .',h(O 0 4 ) = h ( l ) But h(O o 4 ) = h ( 0 ) h(4) = Uh(0) t 2h ( 4 ) 5. ,'.h(O o 4) = Uh(0) t 2h(4) 6. .Â¥.h(l = 4 h ( 0 ) t 2h(4) S u b t r a c t i n g ( 3 ) from ( 6 ) we g e t 7. h ( 1 ) - h ( 4 ) = 2h(4) 2h(l) 8. :.3h(l) = 3h(4) * I f i n theorem (FRl d e f i n e d by M u l t i p l y i n g ( 8 ) by 3'' h is n o t one-one. But h: Z? "* (Ml 9 ( = 2 ) we have h ( 1 ) = h(4) M 2 and a l l ( a , a 2 ) c M Theorem 6: Let Rl, M , ) ( ~ ) = (M, 8 is a module o v e r t h e Theorem 8: only i f a ~1 ( ~ e1 rfRl), ) and ~ ~ ( e ~(l(R-1. 2 ) '2). M2)(("' a)). e R and a l l ( a l , a ) c Hence, we have t h e f o l l o w i n g Let R be a r i n g and M a module o v e r R. A(M) = h e R: Ax = 0 f o r a l l x e MI. E MR), t h e n M ( ~is ) commutative i f and I f R E r a n d M") - a ( = 2 a -1) Proof: - x ~ ~ ( = ~(Ml2 8) M2)("l' R, s c a l a r m u l t i p l i c a t i o n being = Oa1, Aa2) f o r a l l A A(M) is non-empty s i n c e 0 is always a member; f u r t h e r m o r e . A(M) i s e a s i l y s e e n t o be a n i d e a l i n R which we s h a l l c a l l t h e M-annihilator i n R. ( I d e a l s a r e d i s c u s s e d i n ( 2 ) pp. 21-26, and simple r i n g s a r e d i s c u s s e d i n ( 2 ) pp. 38-39). T h i s d e f i n i t i o n a l l o w s u s t o g i v e a simple c h a r a c t e r i z a t i o n o f commutative h u l a hoops. 0 M . R2 e l,' M2 @ I n t h e same s p i r i t a s above, it is e a s i l y s e e n t h a t D e f i n i t i o n 12: R where t h e s c a l a r m u l t i p l i c a t i o n is d e f i n e d by 2 r i n g Rl M^l) 0 t h e n t h e group M1 9 I f H and K a r e hoops, t h e n t h e d i r e c t p r o d u c t H x K is r e a d i l y s e e n t o be a hoop a l s o . I t is e a s i l y s e e n t h a t i f Ml is a module o v e r Rl and M2 is a module o v e r R2, t h e n t h e group 'fl ^(al, a2) , corollary. was a n a r b i t r a r y hmomorjihism. 5 M2. Ml 9 - Â¥* =a is a module o v e r R a s w e l l a s o v e r R 8 * 9. = R2 = R and al = a e A(M). M ( ~ is ) commutative. Necessity: a o 0 Then = 0 o a for a l l a e M. Thus, t h e d i r e c t product o f two h u l a hoops is a h u l a hoop. Proof: - Let ( a l , a 2 ) , (bl, b2 ) be e l e m e n t s o f t h e C a r t e s i a n product M,x M l a 1 M2. F i r s t l e t ' s c o n s i d e r them a s e l e m e n t s of - x ~ ( ~ and 2 d) e n o t e t h e hoop o p e r a t i o n by o Then ( a , a 2 ) 0 (bl, b 2 ) = (al 0 = (aa1 Now l e t ' s c o n s i d e r ( a l , a,) (MI 0 bl, t a2 0 a1b1 'a2 a2 . Sufficiency: a b2) + ¡,b2) a2) (bl, b2) = (al, a2) (al, a 2 ) t - ;)a aa + . (al, a2)(bl,b2) = (a- a l b (=0) f o r a l l a , b ab a o b and ( b , b ) a s e l e m e n t s o f = ab = e M^ + a; b o a f o r a l l a.b c M ^ M(¡ is commutative. ~ ~ ) ( ( "~ 12 ' and d e n o t e t h e hoop o p e r a t i o n by Then (al, (a - a E A(M) C o r o l l a r y 9: is If R e r, M^ e B(R), and A(M) = ( 0 ) t h e n , M^) commutative i f and o n l y i f 2 is i n v e r t i b l e and a = 2-l. Proof: 2a a M -1e is commutative i f and only i f A(M) = ( 0 ) . h ( ( 2 , 1 ) ) = h ( ( 2 . 1 1 - (1,111 = (2, 1 ) x h ((1, 1 ) ) = (2, 1 ) x ( h , h ) -1 Moreover, a = 2 i f and only = (2h, 2h) If R e C o r o l l a r y 10: r is simple, 14 # (01, and M") E R(R), t h e n 1. M ( ~is ) commutative i f and only i s 2 i s i n v e r t i b l e and a = 2 " . Proof: - A(M) i s an i d e a l i n R. E M , a # 0. (Recall M # ( 0 ) ) . '* h is n o t one-one. But h! M + N was a n a r b i t r a r y homorphism. .Â¥. f N. hoop K ( " ~ ) appears i n examples ( i ) and ( i i i ) . ( v i i ) Let t h e module N over t h e r i n g K @ K be t h e a b e l i a n group K on which s c a l a r m u l t i p l i c a t i o n is d e f i n e d by K = ( > a , Aa) forall A(N) = ( ( 0 , u ) : u e K ) . The r e a d e r may v e r i f y t h a t N l (1, u ) e K 9 Although we do n o t have a converse t o our r e s u l t , we do have a p a r t i a l converse a s a consequence of t h e next theorem. We s h a l l need t h e following lemma. Kandall ( a , a ) E 2 ) ) is a commutative member of R(K à K) f o r a l l x e K - ( 0 , 1 ) . ( v i i i ) Z9 is a non-simple r i n g s i n c e 3Z9 = ( 0 , 3 , 6 ) i s a n o n - t r i v i a l prober i d e a l . Lemma 12: A(Z) If S Proof: - E r and M"), + N") defined by g ( x ) H + N^ - d is an Let yo e N"). Since f is o n t o , t h e r e = Yo t d. Suppose g ( x l ) = g ( x 2 ) If N ' ~ )e n ( R ) where M and N a r e isomorphic modules over R, t h e n it is an easy consequence t h a t M ' i s isomorphic t o N u . The converse o f t h i s statement is not t r u e . = x2 s i n c e f is one ( l / 2 , 1 / 2 ) i s medial i n .*g is one-one. 1. g ( a o b) = f ( a o b) 2. g ( a ) o g ( b ) = ( f ( a ) d) - ( x i ) Let M be t h e module K 0 (a,, -d o ( f ( b ) -d) a 2 ) , ( x i i ) Let N be t h e module of example ( v i i ) , and l e t s c a l a r m u l t i p l i c a t i o n be ( ( 1 / 2 , 1 / 2 ) ) ^ .,((1/2, 1 / 2 ) ) denoted by (A, u ) x (al, a ) . C l e a r l y M M # N. Proof: and l e t - one. K i n which s c a l a r m u l t i p l i c a t i o n c o i n c i d e s with r i n g m u l t i p l i c a t i o n and is denoted (A ,v ) Lemma 11: = f(x) ,: g i s o n t o . (ix) F ' ~ )of example ( i v ) is non-commutative s i n c e 2 ( = 0 ) is not i n v e r t i b l e . R H e x i s t s xe e H such t h a t f ( x o ) = (0). = 3 # 2. F', N ( ~ e) Q(S), H is a hoop, and f : isomorphism f o r a l l d e N. The r e a d e r may v e r i f y t h a t z ~ ( is ~ )a commutative member of B(Z9). of example ( v ) is non-commutative s i n c e 2-I E i s an isomorphism, t h e n g : The group Z9 i s a module over t h e r i n g Z9, s c a l a r m u l t i - p l i c a t i o n c o i n c i d i n g with r i n g m u l t i p l i c a t i o n i n Z9. (x) 2") (1, 1 ) ) Pick ', A(M) = ( 0 ) and i n view of c o r o l l a r y 9 t h e proof is completed. ( v i ) I n t h e r i n g K of r e a l numbers 2 h a s i n v e r s e 1/2. The commutative (A,p) ( a , a ) = h((2, 2) Since R i s simple we must have e i t h e r A(M) = ( 0 ) o r A(M) = R . a 1)) = (2h. 2 h ) :.h((2, Now h ( ( 2 , 2 ) ) = f ( a o b ) -d s i n c e f i s a homomorphism. ,' g ( a Let h: M * N be a n a r b i t r a r y homomorphism, h((1,l)) = ( h , h ) . 0 Theorem 13: b) = g ( a ) o g ( b ) and g is indeed an ismorphism. I f R,S e r, M(') e R(R), N(') e R ( s ) , and M ( a ) =, ( 6 ,) t h e n M = N where M and N M and N r e s p e c t i v e l y . a r e t h e a d d i t i v e groups of t h e modules Let Q : M ^ Proof: N(') + Then by lemma 12, f : M^ Y(x) - = Q (x) - Y(0) = Q(0) be an isomorphism. -+ N") defined by PROBLEM DEPARTMENT Q ( 0 ) is a l s o an isomorphism, and Q(0) = 0. Edited by Moreover, s i n c e Y is a hoop U. ismorphism, it is a one-one mapping of t h e s e t M onto t h e s e t N. 1. Y(a^x = ~(aa'lx 0) o 2. 'i'(a-lx o 0) This department welcomes problems believed to be new and, as a rule, demanding no greater abiISty in problem solving than that of the average member of the Fraternity, but occasionally we shall publish problems that should challenge the advanced undergraduate and/or candidate for the Master's Degree. Solutions of these problems should be submitted on separate signed sheets within four months after publication. t Fo) . = Y(x) = ydi'lx) o Y(O) = ~(a^x) o o An asterisk ( * ) placed beside a problem number indicates that the problem was submitted without a solution. = ~ ~ ( a - ~+ B x )0 o Address all communications concerning problems to M. S. Klamkin, Ford Scientific Laboratory, P. 0. Box 2 0 5 3 , Dearborn, Michigan 48121. = Bv(a--'-x) = Y(X) 3. BY (a'^x) 4. ~(a'lx) Similarly S. Klamkin, Ford Scientific Laboratory PROBLEMS FOR SOLUTION = 6'S'(x) = Y ( F '^XI f o r a l l x e M. 6 "YCX) f o r 192.* a l l x e M. Proposed by Oystein Ore, Yale University. Albrecht Durer's famous etching "Melancholia" includes the magic square Since Y is a one-one mapping o f M o n t o N, it s u f f i c e s t o show t h a t Y is a group homorphism. Let a.b e Mt. a(!' t b) = ~ ( a a ' l a + EF '^b) = Y a -'b) o = ~(a^a) o Y(F = BI 'Ma) o B = ~ 6 - l Y(a) =+ '('a) t b) ~ ( b ) IB ~ ( b ) t Y(b) The boxed-in numbers 15-14 indicate the year in which the picture was drawn. How many other 4 x 4 magic squares are there which he could have used in the same way? I w 193. Y : M + Nt is an ismorphism. Two ships are steaming along at constant velocities (course and speed). If the motion of one ship is known completely, and if only the speed of the second ship is known, what is the minimum number of bearings necessary to be taken by the first ship in order to determine the course (constant) and range (time-dependent) of the second ship? Given this requisite number of bearings, show how to determine the second ship's course and range. References: (1.) Hu, S.T., Elements o f Modern Algebra, ~ o l d i n - ~I nac~. , San ~ r a n c i s c o . 1 9 6- (2,) McCoy, N. H., York, 1964. (3. ) McCoy, N. H., I n t r o d u c t i o n t o Modern Algegra, Allyn and Bacon, Inc. Boston, 1960. - The Theory o f Rings, The Macmillan CompanyI New I thank D r . Hwa Tsang f o r h e r a i d . Proposed by William H. Pierce, General Dynamics, Electric Boat Division. Editorial Note: This problem was suggested by problem 186 which was given erroneously. See the comment on 196 (this issue). 194. Proposed by J. M. Gandhi, University of Alberta. Show that the equation h a s no s o l u t i o n s i n i n t e g e r s e x c e p t t h e s o l u t i o n s ( i ) x = '1, y = * l , ( i i ) x = 3 , y = 9. 195. 196. Proposed by Leon Bankoff, Los Angeles, C a l i f o r n i a . Math. Mag. ( J a n . 19631, p. 6 0 , c o n t a i n s a s h o r t p a p e r by Dov Avishdom, who a s s e r t s w i t h o u t proof t h a t i n t h e a d j o i n i n g diagram, AN = NC t CB. Give a p r o o f . Proposed by R. C. G e b h a r t , P a r s i p p a n y , N. J . S i n c e 1 = I1 = I2 = 1 ( i n a r e a ) , e a c h o f t h e t r i a n g l e s ABR, BCP, and CAQ would have g r e a t e r a r e a t h a n AABC c o n t r a d i c t i n g t h e lemma. The c a s e of two p a r a l l e l s u p p o r t l i n e s is a l s o r u l e d o u t e a s i l y by a r e a c o n s i d e r a t i o n s . 182. Although E u l e r e s t a b l i s h e d t h e more g e n e r a l r e s u l t t h a t every E d i t o r i a l *: odd p e r f e c t number must be of t h e form p'tatl k where p i s a prime o f t h e fnm 4 n + l , t h e above problem was g i v e n s i n c e it h a s a n e l e g a n t s o l u t i o n i n a d d i t i o n t o t h e f a c t t h a t t h e r e was a s h o r t a g e of p r o p o s a l s . / What is t h e remainder i f xlOO i s d i v i d e d by x2 197. - A-- 3x t 2? S o l u t i o n by H. Kaye, Brooklyn, N . Y. I f N i s an odd p e r f e c t s q u a r e t h e n 1. The sum o f i t s d i v i s o r s = 2N, 2. The number of i t s d i v i s o r s , e a c h b e i n g odd, must a l s o be odd s i n c e e x c e p t f o r /N, t h e d i v i s o r s o c c u r i n p a i r s d and N/d. Proposed by J o s e p h Arkin, Nanuet, N. Y. A box c o n t a i n s (1600 u t 3200)/3 s o l i d s p h e r i c a l m e t a l b e a r i n g s . Each b e a r i n g i n t h e box h a s a c y l i n d r i c a l h o l e o f l e n g t h .25 c e n t i m e t e r s d r i l l e d s t r a i g h t through i t s c e n t e r . The b e a r i n g s a r e t h e n melted t o g e t h e r w i t h a l o s s o f 4% d u r i n g t h e m e l t i n g p r o c e s s and formed i n t o a s p h e r e whose r a d i u s i s an i n t e g r a l number o f c e n t i m e t e r s . How many b e a r i n g s were t h e r e o r i g i n a l l y i n t h e box? 198. 199. Proposed by G a b r i e l Rosenberg, Temple U n i v e r s i t y . Prove t h a t a n odd p e r f e c t number cannot be a p e r f e c t s q u a r e . Proposed by S t a n l e y Rabinowitz, P o l y t e c h n i c I n s t i t u t e o f Brooklyn. A semir e g u l a r s o l i d is o b t a i n e d by s l i c i n g o f f s e c t i o n s from t h e c o r n e r s of a cube. It is a s o l i d w i t h 36 congruent e d g e s , 24 v e r t i c e s and 1 4 f a c e s , 6 o f which a r e r e g u l a r o c t a g o n s and 8 a r e e q u i l a t e r a l t r i a n g l e s . I f t h e l e n g t h o f an edge o f t h i s p o l y t o p e i s e , what is i t s volume. T h i s g i v e s a c o n t r a d i c t i o n s i n c e t h e sum o f a n odd number o f odd numbers is OL... Also s o l v e d by P a u l J. Campbell ( U n i v e r s i t y o f Dayton), P a u l Myers ( P h i l a d e l p h i a , P a . ) , Bob P r i e l i p p ( U n i v e r s i t y o f Wisconsin), S t a n l e y Rabinowitz ( P o l y t e c h n i c I n s t i t u t e of Brooklyn), Dennis Spellman (Temple U n i v e r s i t y ) , M . Wagner (New York, N. Y.), F. Z e t t o (Chicago, I l l i n o i s ) and t h e p r o p o s e r . 183. Proposed by R. Penney, Ford S c i e n t i f i c Laboratory. If r ( r r t r r t r r ) = O , 0 1 2 2 3 3 1 r ( r r + t o r 3 - r r ) = O , 1 0 2 2 3 Proposed by Larry Forman, Brown U n i v e r s i t y and M. S. Klamkin, Ford S c i e n t i f i c Laboratory. m t = z , Find a l l i n t e g r a l s o l u t i o n s of t h e e q u a t i o n ' 3m r ( r r t r r - r r ) = O , 2 0 3 0 1 3 1 r ( r r t r 0 r - r r ) = O , 3 0 1 1 2 SOLUTIONS 181. Proposed by D. W. Crowe, U n i v e r s i t y o f Wisconsin and M. S. Klamkin, Ford S c i e n t i f i c Laboratory. Determine a convex curve c i r c u m s c r i b i n g a g i v e n t r i a n g l e s u c h t h a t 1. The a r e a s o f t h e f o u r r e g i o n s ( 3 segments and a t r i a n g l e ) a r e e q u a l and 2. The c u r v e h a s minimum p e r i m e t e r . S o l u t i o n by t h e p r o p o s e r s . C o n d i t i o n ( 2 ) is i r r e l e v a n t . The o n l y convex f i g u r e s a t i s f y i n g ( 1 ) is a c i r c u m s c r i b e d t r i a n g l e whose s i d e s a r e r e s p e c t i v e l y p a r a l l e l t o t h e s i d e s of t h e g i v e n t r i a n g l e . Our proof depends on t h e known Lemma* The a r e a o f any i n s c r i b e d t r i a n g l e i n a g i v e n t r i a n g l e cannot be s m a l l e r t h a n e a c h o f t h e o t h e r t h r e e t r i a n g l e s formed. Consider a convex c u r v e t h a t is n o t a t r i a n g l e and draw t h e t h r e e l i n e s o f s u p p o r t a t t h e v e r t i c e s . Show t h a t a t l e a s t one o f t h e q u a n t i t i e s r 0 , r , r 2 , r 3v a n i s h e s . S o l u t i o n by S t a n l e y Rabinowitz, P o l y t e c h n i c I n s t i t u t e o f Brooklyn. I f none o f t h e r ' s v a n i s h , t h e n t h e e x p r e s s i o n s i n t h e p a r e n t h e s i s must v a n i s h . These c o n d i t i o n s may t h e n be w r i t t e n a s (1) 1/r1 t 1 / r t 1 / r = 0 (2) 1/r (3) 1 / r t l/rl = l / r o , (4) 1/r1 t 1 / r = l / r o + , 1 / r = l/ro , . Adding up ( 2 ) . ( 3 1 , and ( 4 ) and u s i n g ( 1 ) g i v e s 3 / r 0 = 0 . w h i c h is i m p o s s i b l e . Hence, a t l e a s t one o f t h e r ' s must v a n i s h . E d i t o r i a l E:T h i s problem h a s a r i s e n i n t h e p r o p o s e r ' s p a p e r , "Geometrization o f a Complex S c a l a r F i e l d . I. Algebra," J o u r . o f Math. P h y s i c s , March 1966, It a l s o f o l l o w s t h a t a t l e a s t 2 r's must v a n i s h . The problem can pp. 479-481. be extended t o any number o f v a r i a b l e s , e . g . , f o r 5 v a r i a b l e s we would have: For a p r o j e c t i v e p r o o f o f t h i s lemma and o t h e r r e f e r e n c e s , s e e M. S. Klamkin and D. J. Newman, t h e Philosophy and A p p l i c a t i o n s o f Transform Theory, SIAM Review, Jan. 1 9 6 1 , p. 14. If I t follows i n a s i m i l a r fashion a s before t h a t a t l e a s t two of t h e r's must vanish. Also solved by Paul J . Campbell (University of Dayton), Mario E. E t t r i c k (Brooklyn, N. Y.), R. C. Gebhart (Parsippany, N. J . ) , Theodore Jungreis (New York University), Bruce W. King (Burnt H i l l s , N. Y.), Edward Lacher (Rutgers u n i v e r s i t y ) , Paul Myers ( P h i l a d e l p h i a , Pa. 1, Charles W. Trigg (San Diego, C a l i f . 1, F. Zetto (Chicago, 111.) and t h e proposer. 184. then and Proposed by Alan Lambert, University of Miami. Find a parametric r e p r e s e n t a t i o n f o r transcendental curve given by t h e equation x" = yx . Similarly, Solution by Bruce W. King (Burnt H i l l s , N . Y.) and P e t e r Lindstrom (Union College). Let y = x t . Then s i n c e ylogx = xlogy we have, tlogx = logxt = tl/(t-l) or = tt/(t-l) and E d i t o r i a l Note: This parametric r e p r e s e n t a t i o n was already known t o Euler. can a l s o be used t o determine a l l r a t i o n a l s o l u t i o n s of t h e above equation. 185. It 9 ,, Also solved by R. C. Gebhart (Parsippany, N. J . ) H. Kaye (Brooklyn, N. Y.), Stanley Rabinowitz (Polytechnic I n s t i t u t e of Brooklyn, F. Zetto (Chicago, 111.) and t h e proposer. Bun, Proposed by A. E. Livingston and L. Moser, University of Alberta. I n oilier t o have convergence, f (n) = f(n+3) Given: , n = 1,2, ... 5 , = limit {f(l)G(l) + f ( 2 ) H ( l ) + f(3)1(l)} f(l)+f(2)+f(3)= , 0 and t h e n Find f(2). S o l u t i o n by R. Since f ( 1 ) = 1, we have two l i n e a r equations i n f ( 2 ) and f ( 3 ) , leading t o t h e previous r e s u l t s . Another way of solving t h e problem is v i a t h e function C. Gebhart ( ~ a r s i p p a n ~N. , J. ). S t a r t i n g from t h e known summations, 2 1 cos n x n = -1n2sin 2 , 1E -=7 , sinnx IT-x Here, we consider t h e more g e n e r a l problem o f summing we can o b t a i n t h e p a r t i c u l a r sums where r,s a r e r a t i o n a l and r > 0, 1 < s 5 r. For convergence, it i s necessary and s u f f i c i e n t t h a t Nor m u l t i p l y (1)by -a JL+%+.-. and (2) by -b. +As = 0 . T h i s w i l l give t h e i n i t i a l s e r i e s i f a=f(2), b=f(3) , and we o b t a i n = -j =il A3$ ( $ + l > Whence, Since E d i t o r i a l Note: A more d i r e c t way o f summing t h e s e type of s e r i e s would be t o use g e n e r a t i n g functions which l e a d t o t h e evaluation o f d e f i n i t e i n t e g r a l s . $(x) . is known e x p l i c i t y f o r r a t i o n a l x, t h e s e r i e s can a l s o b e e x p l i c i t l y evaluated. $(I) = -y - ;.(og3 -2 J $ ( l ) = -Y 2 /3 . Using these r e s u l t s on our o r i g i n a l problem, we f i n d t h a t BOOK REVIEWS Roy B. E d i t e d by D e a l , Oklahoma U n i v e r s i t y M e d i c a l C e n t e r Also solved by t h e proposers. 1. 186. Proposed by L t . Joned-Bateman, U.S.C.G. and M. S. Klamkin, Ford S c i e n t i f i c Laboratory. Two ships a r e steaming along with constant v e l o c i t i e s . What i s the minimum number of bearings necessary t o be taken by one ship in order t o determine the velocity of the other ship? Given t h i s r e q u i s i t e number of bearings, show hob t o determine the other s h i p ' s velocity. ( I t i s assumed that range-finding equipment is e i t h e r non-existent o r non-operative). Solution by William H. Pierce, General Dynamics, E l e c t r i c Boat Division. Under t h e assumption t h a t both ships a r e proceeding a t constant v e l o c i t i e s (courses and speeds), then no number of bearings taken by one ship can determine the velocity of the other ship. To fee t h i s , l e t the parametric coordinates of the two ships be denoted by EXements of Real Analysis. California, By Sze-Ben Ikl, Holden-ky, Inc., San b a n c i s c o , 1967. A comprehensive, but readable, beginning graduate l e v e l introduction t o Real Analysis, following the C U M recommendations with some optional material. It t r e a t s t h e fundamentals of topological spaces, metric spaces, topological l i n e a r spaces, including Hilbert spaces "studied l e i s u r e l y in a s i n g l e section," measures and i n t e g r a l s , including Daniel1 i n t e g r a l s and. Haar measure, and b r i e f , but modern, introduct i o n s t o d i f f e r e n t i a t i o n and d i s t r i b u t i o n s . 2. Exercises in Mathematics. Ey Jean Bass, Academic Press, Inc., New York, w i + k57 pp., $14.75. A valuable c o l l e c t i o n of c a r e f u l l y worked out problems i n r e a l and complex analysis, ordinary and p a r t i a l d i f f e r e n t i a l equations, and various aspects of applied mathematics. 3. = + vgtasgg , y' = b' 2 2 + v't sine' 2 2 where 4. Editorial problem. Note: 5. P l e a s e b e s u r e t o l e t t h e P i Mu E p s i l o n J o u r n a l know! Send y o u r name, o l d a d d r e s s w i t h z i p c o d e a n d new a d d r e s s w i t h z i p code t o : P i Mu E p s i l o n J o u r n a l Department o f Mathematics The U n i v e r s i t y o f Oklahoma Norman Oklahoma 73069 LC., D i f f e r e n t i a l Geometry. By Louis Auslander, Harper and Row, New York, 1967. A f i n e modern treatment of c l a s s i c a l d i f f e r e n t i a l and global geometry f o r t h e advanced undergraduate or f i r s t year graduate with two years of calculus and one year of modern algebra. Prerequisite of algebraic topology i s s k i l l f u l l y avoided. An i n t e r e s t i n g f e a t u r e i s t h e t r e a t ment of matrix Lie groups instead of a b s t r a c t Lie groups. See problem 193, t h i s issue f o r a corrected version of t h i s MOVING??, Ey Paul R. Hahas, Van Nostrand Co., A unique c o l l e c t i o n of problems and solutions of varying l e v e l s of d i f f i c u l t y designed t o i l l u s t r a t e t h e " central techniques and ideas of The user of t h i s book should have some knowledge of general t h e subject. topology, r e a l and complex analysis, l i n e a r topological vector spaces, including Hilbert spaces, and r e a l and. complex analysis. The f i r s t one hundred and f o r t y pages l i s t t h e problems with b r i e f h i s t o r i c a l and mathematical comments and a few d e f i n i t i o n s . The next 22 pages give h i n t s t o t h e solutions and the l a s t 185 p q e s give f a i r l y complete solutions. Then i t follows e a s i l y t h a t the following family of t a r g e t ships w i l l generate the same bearings as the t a r g e t ship above with respect t o the f i r s t ship: Xg A Hilbert Space Problem b o k . Princeton, New Jersey, 1 9 6 7 . Mundary Value Problem6 of Mathematical Physics. MacMillan Co., Riverside, New Jersey, 1 9 6 7 . By I v a r Stakgold, For t h e graduate students i n applied mathematics, engineering, and physical sciences, with advanced calculus and elementary complex variables, t h i s f i r s t of two volumes on l i n e a r boundary value problems i s an excellent introduction t o t h e study of Green's Functions, including t h e theory Of d i s t r i b u t i o n , and eigenfunction expansions i n l i n e a r i n t e g r a l equations and. t h e s p e c t r a l theory of second-order d i f f e r e n t i a l operators. . A Second Course I n C -Inc , New York, ~6f??? Addition Theorems. x i + U3 pp.7$8.75. By Henry B. Mann, John Wiley, Inc., New York, 1965, I h i s l i t t l e book on additive theory of s e t s i n number theory and more general Abelian groups or semi groups affords one of the best opport u n i t i e s f o r t h e interested reader with a l h i t e d bac&round, such as a course i n modern algebra and a minimal introduction t o number theory, t o follow some recent, important research r e s u l t s i n mathematics. Information A S c i e n t i f i c American Book. By W. H. Freeman and Co., San i l l u s t r a t i o n s. , 15 -d a t e s , ClothFrancisco, California, 1966,218- - . bound $5.00, ~aperbou&$2.50. A collection of the faclnating s e r i e s of a r t i c l e s appearing i n the September, 1966 S c i e n t i f i c American on the s t a t e of the computer art and i t s ' impact on society. By William A Veech, W. A. Benjamin, =$8.75. A very good book f o r those with an elementary course i n complex varables and general topol-y who would l i k e fundamental grounding i n some important aspects of t h e subject including t h e prime numbers theorem. By Guggenheimer, Plane Geometr and Its Grou s Francisco, c a k i ~ & n ~ Holden-Day, Inc., San Although t h e generation of motions by reflections i s classic, t h i s treatment and selection of topics has such a modern flavor t h a t many students of today w i l l f i n d it interesting and profitable t o pursue. Foundations g Mechanics. By Ralph Abraham, W. A. Benjamin, Inc., York, 1967, ix + 290 pp., $14.75. New I h i s i s t r u l y a foundations text. It i s based on a s e r i e s of lectures directed primarily a t physicists a t the graduate level, but t h e mathematical background i s so well presented t h a t it might also serve a s an excellent introduction f o r mathematics majors t o a modern treatment of d i f f e r e n t i a l manifolds vector and tensor bundles, and integration on manifolds. The study of c e l e c t i a l mechanics contains very recent basic results. J -- Nunbere and Ideals. California, By Abraham Robinson, Holden-Cay, Inc., San Francisco, A very elementary introduction t o algebraic number theory with i t s own introduction t o mdern algebra i n a small book t h a t could be stuiiied, f o r example, by freshman honor students i n mathematics. Applied Combinatorial Mathematics. DUted by Etlwir~F. Beckenback, John Wiley, Inc., New York, 1964, %xi + 591 pp., $13.50. A collection of eighteen chapters by outstanding mathematicians, covering a wide v a r i e t y of aspects of t h i s much recently emphasized aspect of mathematics. Varying levels, generally from advanced calculus on a r e required t o seriously study t h e a r t i c l e s . Mathematical L a i c . 1967. By Stephen Cole KLeene, John Wiley, Inc., New York, A junior ( a l s o written f o r juniors) addition of t h e author's famous "Introduction t o Metamathematics" which should, prone t o be one of the most popular books on the subject f o r Mathematics majors. Evolution-of Mathematical San Pranciso, California, NOTE: All correspondence concerning reviews and all books for review should be sent to PROFESSOR ROY B. DEAL, UNIVERSITY OF OKLAHOMA MEDICAL CENTER, 800 NE 13th STREET, OKLAHOMA CITY, OKLAHOMA 73104. Topological Vector Spaces and Distributions By John Horvath, AddisonWesley Publishing Co., Inc., Reading, Mass., Vol. I., 1966. Ccmmter Pr ranmi Wiley, IncN :ew . Y ., and Related Mathematics Z k ~ g pp m $6-50. By R. V. Andree, John Abstract Theory of Groups By 0. U. Schmidt, Translated from t h e Russian by Fred H o l l h g and J. B. Roberts, m i t e a by J. B. Roberts, W. E. Freeman and Co., San Francisco, California, 1966, 174 pp., $5.00. Value Distribution and x Klyoshi N. J. Van Nostrand Co., Inc., Theory Princeton, Leo N. Sario J., 1967, i + 235Noshiro, pp., $11.50. Linear Geomet K. Gruenberg b c . , Princet:, I?. J., W.1967, viii +and I BA.pp., ~ J. Weir, $6.00. Van Nostrand and Co., By I h6 y h t . By &schkowski, Holden-Day, Inc., 19 5 155 pp., $5.95. By This book, translated from the German, i s an interesting discussion "about" t h e foundations of mathematics f o r a wide range of readers i n both i n t e r e s t and l e v e l of background. Geometric Pr ramm ~ e &i &w %!78 By Duffin, Peterson and Zener, John Wiley, Inc., pp., $12.50. Although t h e material was collected f o r use in solving engineering design problems, and many examples a r e given, many readers, interested i n optimization problems such as generalization of l i n e a r programming problems, would, f i n d t h i s a profitable book t o study. Ihe Theoq of Gambli and S t a t i s t i c a l Lcgic. By Richard A. Epstein, Academic P r ~ s d N e w York, 1967, x i i i + 485 pp., $10.00. A scholarly t r e a t i s e on gambling with many thought-provoking ideas on a wide v a r i e t y of subjects a s well a s some interesting mathematical r e s u l t s i n probability theory and game theory f o r readers a t about the advanced calculus l e v e l of mathematical maturity. Set Theory and the Number System6 By May Risch Klnsolving, International Textbook Co., Scranton, Penn. Vector Belmont,Analytic C a l i f o Ge-t rnia,5. By Paul A. White, Mckenson Fublishing Co., Inc., ., Introduction t o Modem Abstract Algebra By David M. Burton, AddisonWesley ~ublishingCo., m a d i n g , ass 1967. Abstract Algebra By Chih-Hah Sah, Academic Press, Inc., x i i i + 335 PP., $9.75. New York, 1966, Theory of Functions of a Complex Variable Vol. 11 By A. I. Marhushevlch, Translated from t h e & h n by Richard A. Silve--, P r e n t i c e - W , Inc., Englewood CU-ffs, N. J., x i i + 329 pp., $12.00. INITIATES T h e o r y of F u n c t i o n s of a C m p l e x Variable Vol. I11 By A. I. Markushevich, T r a n s l a t e d f r o m t h e R u s s i a n by Richard A. Silvern, Printice-Hall, Inc., Englewood Cliffs, N. J., 1967, x i 355 pp., $12.95. + I n t r o d u c t i o n t o R e a l Analysis By Goffman, Casper Harper a n d Row, New York, 1966. Vectors, Tensorsand G r o u p s By 'Hior A. Benjamin, Inc., New York, 1967. of One and Several W. A. Benjamin,Inc.,Mewrk, Functions Bale a n d J o n a s Lichtenburg, W. A. By Thor A. Eak and. Jonas Lichtenburg, Variables 1967. York, 1967. Series, D i f f e r e n t i a l Eouations a n d C o m p l e x F u n c t i o n s New W. A. ALABAMA ALPHA, University of Alabama Elaine E. Alexander Ronald A. ~ t k i n s o n Charles A. Barnes Bettve D. Beroen ~ o h n ~ . - ~ l a n dJr. ; Robert C. Bradley Cecil W. Bridges Marion A. Cabaniss Patrick A. Callahan Donald A. Campbell Wavne Heath Causev ~ d w i r d ~ . c h i l d i j~ r . Ronald James Cornutt Robert .- - - - W.. Cowden -.- Helen D. Darcey Carolyn Darden Sheila Anne Denholm Ralph 0. Doughty Eleanor Ann Fitts Joyce Gwin Fox Mary E. Garrett Billy Gene Gibbs Eugene F. Glass Charles H. Gunselman James P. Hayes, Jr. Nevin Julian Henson Seth J. Hersh John E. Holleman James 0. Howell John W. Howerton Michael J. Huggins Margret E. Ingrain Claud James Irby James R. Jackson Daniel J. Jobson George Thomas Jones Haim Kaspi Emogene Knight Saksiri E. Kridakorn Jerry Kenneth Lewis Jimmie R. Lindsay Larry B. McDonald Robert Lee Manasco Linda K. Manduley Janet Louise Mate Lianna D. Mulliqan Michael Terry Newton Charles M. North, Jr. Robert R. Parker Jonathon Raffield Fred A. Roberson Ginger Sue Roberts Robert L. Robinson Emily Jean Sabo Mary V. Schorn Linda Carole Smith William B. Smith Billy C. Tankersley Herman E. Thomason Donald G. Turner Claudia E. Vookles James L. Whitson Linda Howell Wise Ronald Lee W w t e n James Addison Wright, JI Laura Johnston Glenda M. Jones Steven G. Joseph Judy A. Kennedy Lynne Mielke Rex K. Rainer, Jr. Frank P. Ramsey, Jr. Beverly J. Upchurch Patricia F. Villafann Phillip A. Wallace Stephanie J. Wallace Stanley W. Milwee Karen Anne Monroe Teresa Ann Morgan Sarah C. Morris Helen B. Murphree Abdul A. Nafoosi William D. Powell Jarrett Richardson Wayne Shaddix Amy Sue Sims Shera Lynne Thackery Barbara E. Thompson Martha C. Thorpe Rex G. . Walker -. . -- -. Marjorie Watson Judy L. Wells Ed Wheeler John F. Whirley Aubrev H. White ~rend: P i yarnell Letitia G. Yeager Catherine E. Parry J. Byron McCormick Michael J. Merchant Richard E. Rothschild Dale B. Nixon Van 0. Parker Michael A. Plunkett Mauer D. Schwartz Gay R. Reid Richard R. Schurtz Mavis A. Upton Chang-Shing Chen Richard J. Clasen Carol Grace Cook Arthur A. Duke Maxine Eltinqe John March Gardner David B. Gauld Bernard A. Glassman Jerrold M. Gold N. Grossman Benjamin, Inc., ALABAMA BETA, Auburn University Introduction t o Probabilit a n d S t a t i s t i c s w o r t h P u b ~ s h T n gCo., B e l m t n r C a l i f o r n i a , text, $11.35 trade. By W i l l i a m Menderihall, Wads1967, x i i i + 389 pp., $8.50 I Guidelines For T e a c h i n g Mathematics By D o n o v a n A. Johnson a n d Gerald R. Hising, W a d s w o r t h Publishing Co., Inc., Belmont, California, 1967, v i i i + 439 PP., $6.95. Leadbe=, Informal A r o a c h 8.*- In B r o o k s / ~ o l e Publishing Co., 50. and R e l a t e d Stochastic John Wiley, Inc., New C o m b i n a t o r i a l Methods Tatoc, John w i n e ; Processes 7 , By H a r o l d C r a m e r and xii + 345 pp., of Stochastic Processes York, 1957, x i + 255 -75. t h e Theory F i r s t Order Mathematical Loqic Publishing Co., Waltham, ' l a s s . , M. R. $12.50. By L a j o s B y Angelo 'fargaris, B l a i s d e l l 1967. NOTE: A l l correspondence concerninq reviews and a l l books f o r review should be s e n t t o PROFESSOR ROY B DEAL, UNIVERSITY OF OKLAHOMA MEDICAL CENTER, 800 M E 13th STREET, OKLAHOMA CITY, .-by,- Ruby Dean Susan A. Donne11 Harold E. Dowler Janet S. Farris Martha L. Graves Lawrence M. Gorham ALABAMA GAMMA, Samford University I n t r o d u c t o r G e o m e t r : An Behont, California, 'ljff~, Statio Carolyn H. Adkins Robert 5. Barnes Phyllis S. Boozer Dianne Burgess Lee R. Christian ..,-..- --... Sharon Blice Larry T. Bolton E. Delilah Carter Barbara P. Chandler Floyd L. Christian Richard H. Collier Janice E. Cox Wayne B. Faulkner Ernest G. Garrick Charles A. Greathouse Robert B. Hall Carey R. Herring Charlotte Jarrett M. Carolyn Keyees Dorothy C. King Phyllis I. Laatsch Chester R. Killy Dianne Crews McDaniel Wayne K. Meshejian Helen B. Miller ARIZONA ALPHA, University of Arizona H. Bradford Barber Arts E. Dameani Robert E. Darwin Jack M. Kemler James I. Leong ARKANSAS AuPHA, University of Arkansas John R. Bass James P i Douglas Russell H. Ewing Jerry A. Jenkins James P. Luette William H. Ma Jerrel D. Martin Susan N. McManus CALIFORNIA ALPHA, University of California NEED MONEY? The Governing Council o f Pi Mu Epsilon announces a c o n t e s t f o r the b e s t e x p o s i t o r y paper by a student (who has n o t y e t r e c e i v e d a masters degree) s u i t a b l e f o r p u b l i c a t i o n i n t h e P i Mu Epsilon Journal. There w i l l be t h e f o l l o w i n g p r i z e s $200 f i r s t p r i z e $100 second p r i z e $50 t h i r d p r i z e providing a t l e a s t t e n papers are r e c e i v e d f o r t h e c o n t e s t . In a d d i t i o n there w i l l be a $20 p r i z e f o r t h e b e s t paper from any one chapter, provided t h a t chapter submits a t l e a s t f i v e papers. Nguyen Huu Anh David J. Bailey M. Kenneth Bates John D. Billings Sonia Munn Bloom Charles R. Bosworth Jeanne I. Brown Patrick M. Brown Edgar Coleman Lois Ann Chaffee A. Hales Thomas L. Henderson Barry Connick Howard Keith Joseph Jeffrey Asch Karas Martha R. Katzin Melissa Knapp Don Krakowski , Young Koan-Kwon Michael King-Xing Lai Richard Lewis Wickham Low Victor Marfoe Yashaswini Deval Mittal Hadi J. Mustafa Samuel D. Oman Nicholas Perceval-Price Arthur Tashima James Thompson Gabriel 5. Salzman Edward Turner U. Kurt Scholz Leonard 0. Weisberg Donald J. Secor Norman Weiss Charles B. Sheckells Ellen L. Wong Hiroshi Shimada Herbert Siege1 Kenneth J. Wong Daniel A. Stock Virginia Zwnkovich Leon M. Traister CALIFORNIA ZETA, University of California at Riverside Brian W. Bauske Donald P. Brithinee Wallace P. Brithinee ~ o b e r tEarle Carr Alfred James Delay Lynnette Rosalie Daroca James Dunbrack Abraham Dykstra William A. Fanner Sheryl I. Hampton John Dale Harris David George Hazard Jfadith Marie James Kent D. Mason Kenneth Lee Holnar Robert Norman Reber Greg W. Scragg Pamela Kay Sierer Suzanne Smith Michael J. Stimson Julianne Tracy Robert James Vrtis FLORIDA ALPHA, University of Miami Marilyn Bennan Harvey L. Bernstein Jeffry Ben Fuqua Habib H. Jabali William F. Kern Jeanne Eve Melvin William Frank Page Geoffrey L. Robb Vaughn D. Rockney, Jr. Juan Luis Sanchez Kenneth M. Simon John A. Moore Daniel J. Mundrick Sam S. Narkinsky Brian R. O'Callaghan Susan E. Richardson Kennit Rose Richard W. Ross Yaichi Shinohara Ilk0 P. Shulhan James Richard Smotryeki Bennett M. Stern L. Lee Williams Thomas G. Parish Harriet C. Seligsohn FLORIDA BETA, Florida State University Gary L. Alderman William Walton Alfred Wayne Curtis Barksdale John M. Bowling Charles M. Bundrick Tanya A. Connor William R. Crowson Leila E. Donahue Martin J. Fischer Mary Ellen Gaston Charles W. Jernigan Douglas Julian Jones Robert E. Lorraine Mary Louise Miner FLORIDA EPSILON, University of South Florida LaRay E. Geist Peter T. Laseau CALIFORNIA ETA, The University of Santa Clara Gerald Alexanderson Karel De Bouvere Sherrill Ford Leonard Klosinski Thomas Kropp Bruce McLemore Russell Meredith Richard Schweickert Dennis Smolarski Irving Sussman Charles Swart Kathleen Weland Ilgee Moon 3EORGIA ALPHA, University of Georgia Susan Gerald John P. Holmes COLORADD GAMMA, United States Air Force Academy Robert J. Barnum Charles L. Clements Michael N. Gilea Edward A. Greene, I1 Joseph Hasek Ronald L. Kerchner Peter L. Knepell Edward C. Land, I1 Frederick K. Olafson Howard L. Parris, Jr. Arthur R. Miller Eugene A. Rose, 111 Jeffrey E. Schofield Robert Rue Craig C. Squier John J. Watkins, Jr. Gary N. Wiedenmann Roger L. Wiles Michael C. Wirth Donald R. Windham CONNECTICUT ALPHA, University of Connecticut Joseph Adamski Elizabeth Baer Bruce Barrett Donald Bleich Jane Chapitis Sandra Duchnok John Kuzma Linda Musco Gail Perry Nola Reinhardt Judith Rosenberq Sharon Sluboski DISTRICT OF COLUMBIA Alpha, Howard University Hayford A. Alile Cleo L. Bentley Mohammed A. Bilal Millicent S. Carter Marie A. Cloyd Laura E. Parley John A. Harris William A. Hawkins James A. Jackson Beverly A. Jacques Cornel J. Rigby William H. Jones Timothy 0. Olateju Fred D. Price Linda M. Raiford Pericles D. Stabekis Sudershan K. Vadehra Quinton E. Worrell James T. Yeh Arthur H. Gardner Jerry W. Gaskill Stephen Z. Kahn R. E. Einziqer J. T. Gill D. F. Jackson w. G. Kelley J. 0. Scardina J. H i S c h m e r s Y. S. Yen Ruth Brady Ronald J. Dale Roberta S. Haqer Janice E. Hunter Edwin H. Kaufman, Jr. Marie S. Ludmar William P. Mech Edward B. Noffsinger Bilram 5. Rajput Stephen M i Taylor Constance L. Thompson William L. Young Rodney R. Oldehoeft Jane M. Pinkstaff Lawrence E. Prichard George Richards Richard R. Setzekorn Michel B. Samokhine Gloria E. Thurston John Robert Rhoadee Judith Ann Sharps Gerald Slack Artemese E. Smith Barbara Spangle Minnie M. Tashima Larry Tredway Jim Tremper Tommy Tomlinson Enmitt Tyler Lee Vercoe Timothy D. Voorhies ILLINOIS DELTA, Southern Illinois University Johnny M. Brown John R. Crede ~ a l t0. Diltinstraat John R. Graef Melvin D. Hall Robert Kohn - - -- - . .... . James L. Mazander Abraham Mazliach ~ Dale - -- - G -.. .Roedl .- -- ILLINOIS GAMMA, DePaul University INDIANNA BETA, Indiana University Thorns P i Haggerty James Monaqan Denise Huet Larry Panasci Eleanor Christine Iorio Marilyn J. Power James Jenkins Donald J. Propst Svetoza Kurepa Kennard W. Reed John B. Manning Stephen M. Soldz Mary Helen Sullivan Michael J. Sullivan Lewis Suskiewicz John Tallman Edmond Villani DISTRICT OF COLUMBIA GAMMA, George Washington University Sarah D. Barber Timothy Boehn Richard Epstein E. H. Brownlee D. N. Davis Gerhard Perschke DISTRICT OF COLUMBIA BETA, Georgetown University Robert Baldwin Joseph A. Ball Charles Byrne Maureen Castle Elroy W. Eckhardt Andrew Grekas GEORGIA BETA, Georgia Institute of Technology Ruth D. Koidan Linda K. Larsen Thierry Livennan Kent Minichiello Randy Boss David A. Schedler Anne Marie Hocker INDIANA DELTA, Indiana State University Phillip W. Boqan Bill Fisher Mrs. Charles Flory Julia Hamilton Norbert Johnson David Keusch James R. Mayrose Ronald L. Melbert Gloria Kay Norton Gerald Pearson INDIANA GAMMA, Rose Pol$technic Institute David H. Herbert Karl W. John D. William Badtke R. Bailey Beeson Borst R. Brown Earl E. Creekmore Charles H. Divine Randall E. Drew Michael J. Hanley G. Felda Hardymon Alan F. Hoskin Robert E. Janes Gary Roy Johnson Terrence M. Joyce William D. Schindel Thomas George Schultz Gholam Ali Semsarzade' George R. Scherfick Robert W. Walden Russell A. Zimennan David P. Meyer Alan D. Miller Loren K. Miller Michael G. Milligan Eugene J. Mock Judith K. Noordsy Mary S. Pickett David W. Porter James A. Schuttinga Albert D. Sherick Elaine B. Vance Harold R. Warner, Jr. Dennis A. Watts James L. Woo Martin R. Holmer Lee Martin Hubbell Joseph R. Jacobs David A. Kikel Kurt L. Krey Donald E. Kruse Maria Y. C. Liu Judith Magnuson Dave Mcclain Sue Meredith Jeff S. Nichols Kathie Phillips Richard E. Sweet Michael C. Rasmussen Louis A. Talman Emil G . Trott, Jr. Roger K. Alexander IOWA ALPHA, Iowa State University Sudhir Aqgarwal Robert F. Baur Robert E. Bonnewell Michael M. Burns James F. Frahm David M. Gustafson John S. Hartman Dean E. Harvey Gregory F. Hutchinson Dean 0. Keppy Thomas B. Leffler Steven P. LeMett Jerry Malone Roy E. MeLuen LOUISIANA GAMMA, Tulane University Jack Aiken Evelyn Alband Jessica Aucoin Claudia G. Avner Don Barrvs Bruce Baguley Wayne Bru Prank R. Buchanan Betty Carriere Mrs. Joan copping Elizabeth Ford Kenneth Goldberg Richard J. Gonzalez Charles E. Gow Patricia Greene Frances Hayes Thomas W. Kimbrell Karen Klingman Carolyn Kutcher James M. Laborde Mary Ann Lemley Jonathan Levin Paul E. Livaudais william McCue, Jr. Colyin G. Norwood, Jr. Richard C. Penney stots B. Reels Nicola Ricciuti Roslyn B. Robert Brenda M i Robinson Christine Robinson Michael P. Saizan Ross Serold Gayle Singer George A. Swan Raymond L. Walker Jocelyn Weinberg John C. Woodward Glenn J. Rrejean Ronald Shirley LOUISIANA EPSILON, McMeese State College Terry Franks Peter Leathard Theodore Laftin KANSAS ALPHA, University of Kansas Allen Leon Ambler Charles J. Banqert Martin R. Bebb David L. Bitters Sara Ann Bly Paul W. Bock John W. Boushka Ronald R. Brown Michael Sterling Cann Jose J. Chaparro Mary Ruth Church Barbara Ann Crow Jerald P. Oauer James W, Frane Ned Gibb ns Edward C? Gordon Danille L. Harder John 0. Harris R. Phillip DuBois Joseph Arimja Elukpo Gary D. Gabrielson John David Hartman Y. 0. Koh Louis D. Kottmann David D. Kreuger Raja Nassar Marvin C. Papenfuss Thomas K. Plant Ranjit S. Sabharwal Roae K. Shaw Darrol H. Timmona Jerry D. Wheeler Micha Yadin Shelemyahu Zacks J i m i e J. McKim William 11. McMillian Stuart E. Mills Ronald H. Getting Paul I. Pedroso James E. Phillips Carlton W. Pruden Owen D. Roberts Keith N. Roussel Gail I. Rusoff Florence M. Sistrunk Ray C. Shipley Edwin A. Smith Carol Seasums Harold 7 . Toups Ernestine Watson Ronnie E. Zammit Judy M. Dyson Morgan C. Eiland Daniel J. Fourrier Patricia A. Fults Charles R. Guin Andrew J. Hargooa Earl W. H o m e loy ye 0. Howard Thomas V. McCauley LOUISIANA BETA, Southern University James Altemus James Handy Isiah Moore Kathleen Morris J. Ray Comeau, Jr. Remel R. Cooper, Jr. Robert W. H a m Ossie J. Huval Rose M. Lillie Linda A. Looq Anne 8. McGampbell Cecil H. McGregor Robert E. Mooney John C. Peck Matthew D. Peffarkorn James J. Phillips Gospard T. RiZZut0 Constance D. Watler Karen Kristine Anderson Barry Michael Beganny Mary Ann Carson Dorothy Rose Dobbins Clayton W. Dodge Meriel F. Duckett Sally Ann Emery Elizabeth D. Giusani Stephen Eric Godsoe Gary Leroy Goss Jane Rachelle Huard Thomas Peter Hussey Thomas Childs Jane Carroll F. Merrill Van Mourdian Martha Ann Parry Joanne S. Perry Stephen M. Perry Carl Henry Rasmussen Sandra Joyce Rogers Jeffrey Cole Runnels Stanley J. Sawyer Madeline C. S O U C ~ ~ william L. soule, Jr. WilliamFranklin S t e a m Wilfred Paul Turgeon Helen P. Whitten Janet Marie Viger Clover Jane Willett Gail Laura L m g e Roselyn Lowenbach Alan M. Mathau John Wayne Molino Bruce Whitmore Parkinson Ralph P. Pass I11 Terri Sue Pierce Rhoda Shaller Sue Ellen Stiefel Nancy Wolf Andrew Anthony Lesick Edward A. Olszewski Michael R. Paige Richard Arthur SnaY Leo T. Sprecher John P. van Alstyne MARYLAND ALPHA, University of Maryland LOUISIANA ALPHA, Louisiana State University William F. Beyer Thomas C. Bleach David M. Bock Joan J. Capana Robert P. Cifreo Matthew B. Collins Howard B. Davis Stanley J. DeMoss Charles N. Dyer McKenzie W. Allen Claudia A. Barras ~ e w i sE. Batson John C. Bell Grace A. Blanchard MAINE ALPHA, University of Maine KANSAS BETA, Kansas State University John H i Brand I1 Anna Bruce Patricia A. Buchan John (Chang-Ho) Chu Terry J. Dahlquist Arthur Dale Dayton LOUISIANA ZETA, University of Southwestern Louisiana Dan V. Snedecor Arthur Turnmr Butrus G. Basryaji John Gerald Belt Anne Bernstein William Edward Caswell Gary Robert Catzva Bryant Stewart Centofanti Paul Gilbert Clemens Robert L. Epstein Ellen J. Feinglass Marianne T. Hill Paul Don Yon9 Hong Fred Jacobson MASSACHUSETTS ALPHA, Wocester Polytechnic Institute George M. Banks George R. Bazinet Warren Bentley John F. Cyranski Wayne N. Fabricius Berton Hal Gunter Mark Hubelbank Ronald E. Jodoin MASSACHUSETTS BETA, College of the Holy Cross LOUISIANA DELTA, Southeastern Louisiana College Judith Ann Alston Thomas Lynn Dieterich James Russell Dupuy Pearl Jo Gebauer Sharon Claire Hein Karen Raye Kistrup Daniel G. Dewey Sandra Kay Morere David Edward Thomas Naomi Barbara Richardson Harvey L. Yarborough Donna L. Schilling Vincent 0. McBrian Patrick Shanahan MINNESOTA ALPHA, Carleton College Bruce L. Anderson David R. Barstow Ralph W. Carr Janice Clarke John W. Gage Jeffrey H. Hoe1 Eric S. Janus Frank M. Markel J. Paul Marks Thomas L. Moore Stephen R. s a v i t z k y Edward F. Schlenk Edwin D. ~ c o t t Timothy I . Wegner Mary G. Whitaker Barbara L. Whitten James Louis Morley I1 Terry A . McKee Dennis A. Novacek Donna Novotny Dale Osborn Vernon Marvin Donald Robert Lee Pankonin Rowher Joe Saal John Schmucker Elden H. S t e e v e s James Robert S t o r k J a n i c e M. S t r a s b u r g J o e l Richard Swanson Paul C. Tangeman Joseph E. Tyer Keith W i l l i s Reginald Lee Wyatt MINNESOTA BETA, College of S t . C a t h e r i n e John R. Chuchel S r . C e c i l y Debelak HEW HAMPSHIRE ALPHA, U n i v e r s i t y of New Hampshire C a r o l Opatrny MISSOURI ALPHA, Universit y of Missouri Rose Marie Ahee T r u d i e Akers Bonita J . Allgeyer Manouchehr Assadi Paul W. Barker Stephen B a u d e n d i s t i l Jane Brightwell Chi Keng Chen Javad S i r u s C h i t s a z S a l l y Clayton John A. C r i s c u o l o P h i l l i p Embree Max Engelhardt Ronald 0. E u l i n q e r Ed W. Gray Robert B. G r i f f i t h s Leland R. Hensley Robert A. H a r r i s James R. HOUX. J r . Henry B. Ivy, J r . C h r i s t o p h e r W. J o n e s John E. J o n e s Harvey L. Johnston, J r . F r a n k l i n Kahl Larry Livengood Larry J. Logan Sandra Meinershaqen Larry Mot2 E l i z a b e t h Ann M i l l e r Edward J. O'Dell Ronald W. Oxenhandler Robert W. Ramsey Dan Rea J a c q u e l i n e Roberts D. M. Robinson Walter J . Rychlewski Husaini S a i f e e B i l l Sangster J e r r y Schatzer C a r o l Scrivnmr Larry Smarr Robert H. Smith John B. Spalding Roy G. S t u e r z l Lynn Walley Gary Walling Thomas F. Walton Samuel R. Weaver Edward West E l a i n e Wyett Steven W. Yates Greg Z i e r c h e r David R. Lammlein Thomas Madigan Margaret A. Lynn Mary Ann McClintock J o e T. McEwen Margie McNamee E l i z a b e t h Ann Meyer Ann K. M i l l e r Linda K. Montani E r n e s t R. Moses Robert Murdock Katherine V. Murphy J a n e t Nelson Lawrence W. Oberhausen E l l e n O'Hara David P i s a r k i e w i c z Nancy C. Poe Mary Louise Radersdorf Maureen R a f t e r Donna R i z z u t i Michael J. Z l a t i c James J. Ruder Joseph E. Snyder F r a n c i s E. Sohm, J r . J a r o s l a w Sobieszczanski Warren F. Speh J o e l J. Tannenholz Brian C. Ternoey Nancy Anne Tlapek P a t r i c k L. Trammel1 Lourdes T r i a n a Benjamin H. U l r i c h , J r . Joseph C. Vago Gayle Vincent Robert J. Walsh Barbara A. Wanchek John G. Weber Marie A. Werkmeister William C. Wester Steven R. Wood Mary Joan Woods James R. Wyrnch Spencer E. Minear John B. Mueller Judson L. Temple Edward A. Teppo William J. Weber Larry R. Wedel Herman J . G i t s c h i e r Carolyn Gorski Joan A. Kearney Marie LaFrance Robert G. L e a v i t t Robert Ludwig Michael A. Minor Charles G . MCLure Michael C. Malcolm George B. Phalen John L. Sanborn Leon R. T e s s i e r Joane Wakefield NEVADA ALPHA, U n i v e r s i t y of Nevada J e r r y Ivan B l a i r Douglas M. C o l b a r t Michael Paul Ekstrom William B. Jacky Thomas 11. Lambert Erwin McPherson, J r . Richard Ross O l i v e r Larry Anthony Rosa Richard M. H a r r i s C l a i r e C. Jacobs Mary T. Kondash Leon P. Polek A l i c e C. P r u t z e r Frank G. ROSS Robert D. Turkelson David T. Lindsey D a r r e l Lotz Dennis R. Moon Elmo LaMont Palmer Dave Peercy Tommy V. Ragland NEW JERSEY GAMMA, Rutqers Collage of South J e r s e y Orhan H. Alisbah Jonathan C. Barron Robert H. Barron Leonard N. Bidwell Karen T. Cinkay J e s s e P. Clay Joseph R. DeMeo E l l e n 11. Fenwick MISSOURI GAMMA, S t . Louis U n i v e r s i t y Theodore C. Appelbaum J. Frank Armijo Lynn M i B a r t e l s Mary G. Barton Yvonne Bauer S i s t e r M. Luke Bauman David N. Becker Sandra Bellon P e t e r C. Bishop James F. Boyer A u r e l i a Brennan Axel F. Brisken C a t h e r i n e P. Browman Kathryn A. Cross Dela J e a n Doerr Mary Donnelly Thomas J. Douglas Robert J. Dufford Jeanne Edwards Dennis M. Elking Francine E n d i c o t t Eugene A. Enneking Mrs. Eugene A. Enneking V a l e r i e Erickson J u l i a E. Fusiek Sue E l l e n Goodman John W. Green Veronica Grob M a r j o r i e E. Hicks E i l e e n M. Kurd F e l i x 0. I s i b o r Thomas I v e r s o n Anthony Karrenbrock, Jr. William D. Keeley C a t h e r i n e Kestly Diane Kennedy J . Stephen Kennedy S i s t e r M. Ronald Kozicki Douglas J. Kuhlmann P a t r i c i a A. Laffoon MONTANA BETA, Montana S t a t e U n i v e r s i t y Fred J. Balkovetz Kathleen M. Brownell Roger L. Brewer Eugene A. Enebo William J. Haley John W. Hemmer David P. Jacobson Karen McNeal Thomas Wesley Copenhaver Daniel E. Crawford Thomas B. Cunningham Wendell Dam Robert N. Dawaon Danne E. C o i l i n g Charles P. Oowney Bernard F. Engebos Neal Hart Jim Olin Howard Michele Kravitz David W. LeJeune NEW MEXICO BETA, New Mexico I n s t i t u t e of Mining and Technology R u s s e l l E. Erbes Lawrence E. F i e l d s F r e d e r i c k C. Frank C h a r l e s D. Glazer Lawrence Lake Richard W. Lenninq Nicholas J. Nagy Thomas A. Nartker Paul M. P e r r y Robert B. P i r o Ronald D. Reynolds Linda N . Sharp Surendra Singh Henry L. Stuck James W. Tyree, J r . Dennis E. Williams Robert W. L i s s i t z Meryll Lizan Joseph E. Paris! Michael R. Pike Carolyn A. Quine C h a r l e s D. Reinsuer Henry E. Riqer John A. R o u l i e r John D. Schoenfeld Steven Schulman James S h o r t P e t e r M. S i l v a g g i o Richard C. S i n s Robert L. Smith J o e l M. Tendler Richard Tuacione Emily W i l i e r David G. West Linda Schiffman Carol J a n e S h e v i t z Leopoldo T o r a l b a l l a A l i c e Whitternore William Xanthos Martin Zuckerman NEW YORK ALPHA, Syrocusie U n i v e r s i t y Walter W. Carey Thomas B. C l a r k e Anthony Culmone P e t e r M. Danilchick Hai Hong Doan Alexander J . Donadoni Anne L e s l i e Drazen Joann F a c o n t i Rosalind F. Friedman S h a r i Frankel Marilyn L. Freedman Halfon N. Hamaoui Donna L. H i r s t Wallace F. J e w e l l , J r ., F r e d e r i c H. Katz Michael Kreiqer Robert A. K r e l l J u d i t h E l l e n Ladwig Alexander J . Lindsey NEW YORK BETA, Hunter College of The Cuny NEBRASKA ALPHA, U n i v e r s i t y o f Nebraska Gary W. A h l q u i s t Claude Bolton, Jr. John E. Boyer, Jr. Thomas Louis Burger Richard L. C h i b u r i s NEW MEXICO ALPHA, New Mexico S t a t e U n i v e r s i t y Larry Dean E l d r i d q e Stephen Ray Gold Larry E. Groff Linda E. Hammer A l l e n Lee Harms J e a n Marie K h e s Alan Lee Larson John S. Lehigh, Jr. Ronald Eugene Lux Norman L. M e j s t r i k Dennis C a l l a s Rose Ann G a t t o Dianne M i l s t e i n Norbert Moelke Diane P e s h l e r Shlomo Piontkowaki , NEW YORK GAMMA, Brooklyn College Moshe Augenstein Robert Chalik Joseph C h e s i r Carl C i r i l l o Barbara R. Comisar Aaron D r i l l i c k Hsrmsnn E d e l s t e i n Martin E d e l s t e i n Benjamin Fine Sheldon J. F i n k e l s t e i n Allen M. Flusberg Marilyn S. F r a n k e n s t e i n David Freedman Marc M. F r i e d l a n d e r S y l v i a Gelb Sonja M. Gideon Lois Goldstein Seymour N. G o l d s t e i n Keith Narrow Brian Hingerty Mayer M. ~ s c o b o v i t z M a r g a r i t a Jimenez A l l e n Lipmsn Dennis C. Lynch Kenneth Mandelberg J u d i t h R. Markowitz I r a n e L. May Michael L. ~ u c h l i s Harry Rutmsn A l b e r t Schon Ellen N. schultz I s r a e e Sendrovic Janet Spitzer Susan L. T i r s c h w e l l George Weinberger Morris Zyskind NEW YORK EPSILON, S t . Lawrence U n i v e r s i t y Joyce P. Gurzynski Thomas C. L i t t l e Robert J . Sokol NEW YORK LAMBDA, Manhattan College John A l i n i Diego X. Alvarez Andrew Arenth Richard Basener A l f r e d Buonaguaro J e r r y Carey Gerard Chingas Frank C i o f f i David Concis Lawrence Cox Frank O o t z l e r Joseph Femia Alphonse Fennelly Thomas Finn James F. Garside Thomas Heenan Raymond Huntington Michael A. I n f r a n c o Fred I p a v i c h C h r i s t o p h e r Kuretz David Lee Steven Lincks F r a n c i s J . Martin John Menick Kevin M. O'Brien Daniel O'Donnell Robert E. Padian P e t e r Savino Robert S c i a f f i n o Vincent S g r o i John Slowik V i c t o r C. S t a s i o Fred Szostek Mary Shiffman Karen Sidelmsn Joseph Tosto I r a j Yaqhoobia Steven Levinson Trueman MacHenry Hubert Msdor B o r i s Mitrohin Vladimir Morosoff Steven P f l a n z e r Barry Reed Martin Rudolph Judith Russell Gsspar Schweiger Benedict S c o t t Robert S i l v e r s t o n e John Stevenson Harry S t r a u s s J a n e t Tierney Marian Weinstein Arthur Whelan S t u a r t Wiitamak NEW YORK NU, New York U n i v e r s i t y Rostom Dagazian F r e d e r i c k Fein William Gesick Nancy Makiesky Richard McNulty Melvin Melchner Robert E l d i Doris Fleishman Geoffrey Goldbogen Michael Gorelick Whitney H a r r i s Susan Herman James Holwell Alan Hulsaver Robert Iosue John Kruckeberg Dale K r e i s l e r Robert Schular David Silberman Richard S t r a k o Mark S t e i n e r Robert V e t t e r Cameron Wood Grady M i l l e r Martha Moore Gwynne Ormaby P a -t . Paliner - -- - Lucy Roberts Jerome Saks Richard S c o t t L e s l i e Stanford Ron staift-sy ~d S u l l i v a n B i l l Taylor Mary E. T h r a l l Robert S. T r e m l e t t William W a t e r f i e l d C h a r l e s Whits Ken Young NORTH CAROLINA ALPHA, Duke U n i v e r s i t y Michael D. Holloway J e f f Kay Freddy Knape Cheryl Kohl Robert Lees Cathy Losey Dennis H. Matthias Linda McKissack Ware BotsfOrd Don W. Brown Marshall Checket J a c k Davis Peggy E r l a n g e r Katharine K. Flory Harvey S. G o t t s Thomas A. H a r r i s Corinna Head NORTH CAROLINA GAMMA, North C a r o l i n a S t a t e U n i v e r s i t y ~ o b yM. Anthony James A. Blalock Gary M. Brady Dinnis L. C a r r o l l P a t r i c i a M. Beauchanip C u r t i s R. Bring C h a r l e s L. Comstock Kenneth L. Daniels Kenneth M. Ehley Edward D. Elqsthun Edward D. E u s t i c e Wayne W. Fercho Doris M. F i s h e r C h a r l e s R. F r i e s e Betty L. Frigen Vernon L. Gallagher Carol J . G e l l n e r Joseph A. Middleton Tom L. Murdock W i l b e r t L. Murphy F r e d e r i c k Naqle Douglas M. Tennant w i l l i a m W. Wilfong, J r Paul L. J u e l l Donald J. Lacher Thomas J. Lien R u s s e l l E. Long Kenneth A. Losee Q u e n t i n D. Lundquist Bruce C. MacDonald Cheryl M. McDougal Dalton D. Meske Terrance E. Nelson E s t e l l e R. Neuharth Donovan M. Olson John F. Ovrebo Marcia L. Parker Westly Parker Lyle R. Paton Harold Paulsen A. rillan Riveland Carol Rudolph Franklyn Schoenbeck J e f f M. Siemers Madeleine Skogen R. Vslborg Smith Larry A. Wurdeman Trudy A. Westrick J . Ingram Jewett Johnson Jones Sherri-Ann Lancton Edward McCleIlan I d a E c k l e r Pugh L e s l i e A. Rodgers Lew H. Walters Susan K. Woernsr Peggy Wurzburger Robert R. Chandler Michael B. D i l l e Linda J. F r i t z E. James Gunn Dale E. McCUnn J e r r y L. P i t t e n g e r Richard D. S e l c e r Helen M. Smith Lawrence A. White Marilyn H i Zanni Ted R. Clem Michael L. Kelly Richard P. Kitson James D. McAdams Frank J . Lambiase Max 0. Gerling Jeanne M. Glasoe Dale J. Haaland Richard G. Haedt w i l l i a m R. Nauqen Amelia R. Hoffman David L. Hoffman Martin 0. Holoien Lynn H. Jennings Caye M. Johnson C l a r Rene Johnson J e r r e l W. Johnson Keith W. Johnson OHIOBETA, Ohio Weslayan U n i v e r s i t y Stephen D. Clements Barbara S. Combs Marjorie E. F e r s t e r william N. Grunow NEW YORK OMICRON, Clarkson College of Technology William Richard F r s n i c s Harold King, J r . James Markowsky Norman P e a r l Steven Pincus Michael P o t t e r p h i l i p Rossomando NORTH DAKOTA ALPHA, North Dakota S t a t e U n i v e r s i t y NEW YORK XI, Adelphi U n i v e r s i t y Pasquale Arpaia Lynne Bensol Richard Bentz Dorothy Bergmann P h i l i p Bookman Douglas Brsz Alan Chutsky Penelope D'Antonio Joseph Dunn Bernard Eisenberg Masako K i t a t a n i Drew Koschek John Majewski Fred Mallen David Matos Richard Freedman P e t e r M. G s b r i e l e Dennis J. Holovach Frank James Jordan John Kiely Marjorie James E. Gregg W. susan E. P h i l l i p Washburn OHIO DELTA, Miami U n i v e r s i t y NEW YORK RHO, S t . J o h n ' s U n i v e r s i t y Theresa M. Boyd Donald R. Coscia S i s t e r Anne Daniel Gerald S. Korb Dennis J. Korchinski John C. Lumia David J. Nolan Diana M. P a t e r n o s t e r P a t r i c i a L. S a b a t e l l i Beatrice J . S e t t e Cristiano S t e i d l e r Marty T r i o l a OHIO GAMMA, U n i v e r s i t y of Toledo NEW YORK SIGMA, P r a t t I n s t i t u t e Lawrence Adams Gerald A. A i e l l o F r a n c i s Atkins William B e l l Ray L. Bieber Gordon Brookman Michael F. Adolf Candy L. Anthony r o s e C. Antunes James E. Brockhoume J e f f r e y Bromberq Frank Corredine Rudolf Diener Mary E l l i e n William Erny S t a n l e y Finger William V i c t o r Backensto Richard C. B e l l Donna Bellmaier Roberta Boszor I r i s E l i z a b e t h Coffman Alan Roy Cohen P a u l Richard C o l l i e r John Gerald Duda James E a r l G e i s e r t P e r s i s Ann Giebel James Anthony Grau Ray A. Grove Lawrence I r v i n H i l l Wendell C. H U l ? James E. K i t t l e Richard E. Knauer Denise Ann Krauss Martin P e t e r Kummer . w a s G. La Pointm James E. Livingston Msnikant Lodaya Cathay M. McHenry Lawrence E. Mlinac m b e r t Pollex 114 Gerald m a Babbitt L o u i s e Ann R i d e o u t 1 S t e v e n It. S e l m a n R i c h a r d N. S n y d a r - Thomas T e n n e y Maryann W o j c i e c h o w s k i OHIO EPSILON, K e n t S t a t e U n i v e r s i t y Roger Barnard Susan Brakua Michael Cleckner V i t t o r i a Consentino J o e l Edelman Donald Federchek Karen F i s h e r Carol Qorrer Linda F r y e R o b e r t B. Good, Jr. J e a n Hannah S u s a n Hay Gary Holues Marilyn Kirschner Eunice Krinsky Nancy L y o n s Ann M a l l e t t Richard Mathias Myra P a t t e r s o n Theresa Recchio R i c h a r d Shoop Howard S i l v e r Wei C h i n q Chang Mark C h r i s t i e J i h J i a n g Chyu E l i z a b e t h Ann C l i f t o n D a v i d S. Cohen C l i f f o r d Comisky L a r r y Cowan W i n s t o n Dean J e r r y Eagle Gordon E v a n s D a v i d L. F i s h Harold F i t z p a t r i c k --. Jndv P uller - ----- R o b e r t S. G a r n e r 0 Ronald G r i s e l l D e n n i s Ileckman D o n a l d G. I l o f f a r d Dean H a y a s h i d a Kuo-Cheng H s i e h .Mei-Lee .- - -. H-s-i e- h W a l t e r E. I s l e r Ben J. J o n e s P a u l C. Kang JWayne u C. Teng Trucks J o h n P. K e a t i n g Gary K o l s t o e Bruce Link Eugene C. McKay S i s t e r Andrea Nenzel william Peterson James P h i l l i p s Gerald Saunders Jonathan Stafford Evan Simmons R o b e r t 11. T a r s G r e g o r y Tye J a m e s R. T y e R o n a l d Wagoner M i l t o n Wannier J u d i t h E. W e i n b e r q Nick Wengreniuk L e s l i e Wilson J a m e s Yu Barbara Z e l l e r M i c h a e l HcDonald S u e Ann McGraw B y r a n F. H a c P h e r s o n C a r o l G. M a u r a t t Danny M. N e s s e t t M a r s h a l l E. N o e l S t e v e n Q. R a f o t h A l a n T. R i c h a r d s L a r r y W. S a s s e s H a r v e y W. S c h u b o t h e C a r o l e Anne S e t t l e s M a r b a r e t E. S h a y M a r i o n M. S t a l n a k e r Mary J. T a y l o r N e i l 11. T o k e r u d Susan M i Woerndle L o r e n P. H o t c h k i a s L a r r y G. Meyer Joyce Schlieter J a m e s R. McSkimin L o u i s J. M o r a y t i s B r i a n R. Mund Ned W. P o l a n J e f f r e y B. P r e s s Allan Reichenbach S t e p h e n W. R i d d e l l D a v i d A. R o b b i n s R o b e r t G. Simons Christopher Schell Robert Taylor Mark T o r r e n c e OREGON BETA, O r e g o n S t a t e U n i v e r s i t y OHIO ZETA, U n i v e r s i t y o f D a y t o n N e i l A. B i t z e n h o f e r D e n n i s M. C o n t i C h a r l e s J. D e B r o s s e D a n i e l Q. D u l a R o b e r t C. F o r n e y Bernard J. G a l i l e y K e n n e t h M. Herman Mary H. K a l a f u s J o s e p h W. Keim Nancy C. ~ o c h J e f f r e y A. L i n c k C h a r l e s A. Merk Maureen M o r r i s o n R o b e r t A. N e r o Edward N e u s c h l e r P a u l E. P e t e r s Thomas S a n t n e r J a m e s A. S c h o e n Roger S t e i n l a g e I n e z Young B a r b a r a Zimmerman D a r r e l A l l e n Nixon Thomas M. P e c h n i k V i n c e n t T. P h i l l i p s G e r a l d H. Rosen Roger ~ o f o L a w r e n c e M. T a u s c h K e i t h N. Ward K e n n e t h H. A n d e r s o n Thomas Danny R.M. ABv ea ri yl e y S c o t t A. D a v i d G. D a v i d A. R o b e r t D. J a m e s N. Beuvais Bennett Butler Erwin llaek J a m e s R. Hagan A r t h u r D. Hudson S h i r l e y D. Hudson F r a n c i s C. Hung J o h n R. J a c o b s o n M i c h a e l L. J o h n s o n John Leonard L e w i s Lum OHIO ETA, C l e v e l a n d S t a t a ~ n i v e k s i t ~ OREGON GAMMA, P o r t l a n d S t a t e C o l l e g e D o u g l a s S. Bouck David C h e y f i t z Ralph Gigante Joanne Hart ~ i c h a r dl l u t b e r J a m e s Reed K e s u l l P h i l l i p Kramer D a v i d M. L à § w i H. Richard David B a l l J a m e s M. B r a u n K e n t H a l e Byron T r o y J. Downey PENNSYLVANIA BETA, B u c k n e l l U n i v e r s i t y OHIO IOTA, D e n i s o n U n i v e r s i t y J a n e t Atkinson Richard Bedient M a r g a r e t Enke S u s a n Hardy Marilyn Stephen Richard Richard Knox H. K r i e b e l C. McBurney H a r p e r Meeks P a u l David Neidhardt Margaret Prica J a n i c e ShilcoOk B r u c e M. S h m a n A r t h u r Staddon C l a i r Wvichet D a v i d L. Ackermann F r a n k A r e n t o w i c z , Jr. J e f f r e y C. B a r n e t t w i l l i a m B. B e r t h o l f G e o r g e 8. B r i n s e r S a m u e l E. C l o p p e r , Jr. B a r b a r a D. C l o y d P h i l l i p R. D a n t i n i S y l v i a A. G a r d n e r Thomas L. H o t s l e n J u d i t h A. J a c o b s o n P e t e r J. J o h a n s s o n B a r b a r a A. M a t t i c k V i v i a n K. McDonough J. OKLAHOMA ALPHA, U n i v e r s i t y o f Oklahoma S t e v e Abney C l a r e n c e H. B e s t D a l e T. Bradshaw J o h n W. B y m e Thadeus C a l i n s o n L e l i a Chance J a m e s Chapman J i m m i e W. C h o a t e Mary E. C o a t e s S t e v e n Doughty Rodney G r i s h a m Gary H e n s l e r D a v i d Hughes Jack Johnson D a v i d Kay S i d n e y W. K i t c h e l R u t h A. Loyd C e c i l M. McLaury J. George M i t c h e l l G e o r g e Morrow J a m e s S. Muldownmy David 0. N i e l s s o n John Norris Joanne Patterson P a u l 11. P o w e l l M o r r i s E. R i l l Thomas J. S a n d e r s H. P. S a n k a p p a n a v a r G e r a l d D. S m e t z e r Tom T r e v a t h a n M e l i s s a Uhlenhop L o n n i e Vance James Wantland H a r o l d Wiebe E l l i n o r Wiest L a r r y J. Y a r t z Benny E v a n s S i s t e r Ann Mark D o n a l d R. P o r t e r Rodney S c h u l t z William Joseph Davis T e r r y Eastham OREGON ALPHA, U n i v e r s i t y o f O r e g o n Michael Arcidiacono Norman Beck Carlos Berkovics R o b e r t Bohac R i c h a r d L. A t k i n s o n Clifford Bastuscheck C a r l Beiswenger J o h n Bobick Lawrence Dunst George P r i c k H a r o l d W. G a l b r a i t h N e l s o n L. Seaman F r a n k l i n P. S h u l o c k Ted S i m s A l l a n K. S w e t t Dennis T o r r e t t i S a n d r a M. Z e i l e r Barbara Gross James Harvey Lee H i v e l y T e r r y Ann L a n d e r s K e n n e t h S. Law, Jr. J o h n R u s s e l l Mashey A l b e r t Lehman, Jr. PENNSYLVANIA THETA, D r e x e l I n s t i t e o f T e c h n o l o g y OKLAHOMA BETA, Oklahoma S t a t e U n i v e r s i t y J a m e s L. Alexander! C h a r l e s M. B a k e r P e t e r Chevng PENNSYLVANIA DELTA, P e n n s y l v a n i a S t a t e U n i v e r s i t y David S. Browder Theodore Burrowes Robert Codergreen Chung H a i Chang Norman E. A u s p i t z F r a n k Gamblin Alan G o l d i n R i c h a r d E. Myers D a v i d P. P e t e r s R i c h a r d E. R u s s e l J u d i t h E. S i s s o n c TEXAS ALPHA, Texas C h r i s t i a n U n i v e r s i t y PENNSYLVANIE IOTA, Villanova U n i v e r s i t y Murray Adelman mi1 Ame10tti Nicholas P. A u g e l l i Robert E. Beck Joseph E. Brennan James 0. Brooks Leo P. Comerford John F. D'Arcy Richard A. D e r r i g Robert DeVos William H. DeLone Thomas Dougherty h a n d Innocenzi Richard L. I r v i n e S h e l l e y M. Kam Michael Makynen Walter 11. Marter Robert J. McDevitt Joseph R. McEnerney F r a n c i s c o Migliore Michael J . Hruz Lawrence Muth Joseph P e r f e t t e Leon C. Robbins, Jr. Lucien R. Roy August A. S a r d i n a s Robert L. Smith David Sprows Joseph A. S t r a d a James Vincenzo John E. Zurad Constance A. Magner Susan Nadeau Gregory P. Niedzwecki Richard W. Palczynski A l i c i a Parente P h y l l i s A. P e l l a John F r a n c i s Ryan Lynne Helen S t e w a r t S a l l y Taylor M. L. Verrecchia Robert A. Wilkinson Doris E. Wise Benjamin M. Adams Hull Belmore L i l l a s K. Berzsenyi Ray J o e l Chandler Roy J. Chandler C h a r l o t t e E. Dickerson Jeanne M. Ericson R u s s e l l Floyd James Fugate Steven D. H i t t Nazem M. Marrach Charles W. Mastin Donald F. Reynolds H. Edward Stone Wanda L. Savage Johnny D. Walker Michael Dennis J u l i a n William C. King John P. Lamb Roger G. Larson Marilyn Kay Latham Barbara J e a n Laucher N. Wayne L a u r i t z e n David Payne Alexander Peyerimhoff Walter Reid Robert J. Rich Don K. Richards George W. S h e l l David A. Simpson Glen Kerr Tolman Allen L. T u f t Sheldon F. Whitaker William A. Williams Frank Wanq Kai Tak Wong Marion R. Reynolds, Jr. John Rogers Robert S n i d e r George T. Vance C a r l t o n R. Wine John A. Wixson Thomas Woteki Mary Sue Younger Gary R. Houlahan Paul Joppa J a n e t Lamberg Susan McDougall Heidi J . Madden Gary F. Martin George J. N e t t Arthur Pearson Charles J . Schleqel Michael D. Smeltzer Richard Waggoner Mary Ann Hindery Michael G. Severance C e l e s t a J. Gardner Margaret H. Garlow Henry W. Gould William K. Hale Kathryn H e l l e r James B. Hickman Franz Hiergeist John W. Hogan Florence Hunter James M. Handlan Margaret K i r t l e y John Klemm Tze-fen Li Stephen Lipscomb Brenda McFrederick Betty L. M i l l e r TEXAS BETA, Lamar S t a t e College of Technology John S t Bagby Georgia A. F a r r Muriel D. Huckaby Mary Ann F. Mathews RHODE ISLAND ALPHA, U n i v e r s i t y o f Rhode I s l a n d UTAH ALPHA, U n i v e r s i t y of Utah Herbert P. Adams Harry Aharonian, Jr. Grace Ann B e i n e r t Sandra Ann Campo J u d i t h Anne C a r r o l l Carole C a r l s t e n Joyce Davidson Ubiratan D'Ambrosio Leo A. Dextradeur Norman J. F i n i z i o Cheryl Anne Gerry Dennis M. Hagqerty MODE ISLAND BETA, Rhode I s l a n d College Clancy P. A s s e l i n Bryan L. Barnes J u d i t h A. Bruno Katherine J. Camara Joyce C o l l i n s Frank B. C o r r e i a Michael D i B a t t i s t a J u l i e A. Fidrych Edward T. Ford F r a n c i s P. Ford Edmund B. Gamea Valmord Guernon Henry P. G u i l l o t t e Ronald Hamill Nancy L. Humes William E. I d e David L a n c a s t e r Marie L. LaPrade George A. Lozy Raynor Marsland, J r . Ann Maynard Kathleen II. McLee Katherine M. Morgan John Nazarian P a t r i c k J. O'Regan Constance Pasch Linda L. Read Mariano Rodrigues Arthur F. Smith E l a i n e Sobodacha Robert Steward Thomas H. S u l l i v a n Gertrude M. T e s s i e r P h i l l i p M. Whitman SOUTH CAROLINA ALPHA, U n i v e r s i t y of South C a r o l i n a C e l i a Lane Adair Ronald E. Bowers Willys Brotherton Alpheus Burner William Burns Linda M. Chatham Dan Fabrick Dugenia F e l k e l David J . F r o n t z Robart L. H a r t P e t e r D. Hoffmann D e l l a Hicks Michael D. Hyman William S. Jacobs E i l e e n B. K i l p a t r i c k Ada D. Kirkman Gary D. LaBruyere Alonzo Layton 0. William Lever Cynthia S. L y t l e L o r r i n F. Martin Gerald H. Morton Paul H. Pinson V i r g i n i a Ann Reeves B e t t y Ann Shannon John H. S i g l e r E d i t h Smoak John J. Smoak, J r . P h i l i p Stowell S a l l y S a i Cam Lau Mary Agnes Lundburq Kathleen E. McMinemee Roy F. Myers Jung J a Park Mona Redmond Elaine Rietz S h i r l e y J e a n Schempp Gary C l i n t o n Stamann Alan Thorson Thomas Tucker David Vlasak Gerald Winckler V i r g i n i a Mae W i t t SOUTH DAKOTA ALPHA, U n i v e r s i t y o f South Dakota Alyn N . Dull Faryl Foster James F. FOX John H a l l Cheryl Marie Hone Cynthia Ann Jensen Stephen E. Jones William J . Kabeisman TENNESSEE ALPHA, Memphis S t a t e U n i v e r s i t y G a i l D. Clement Carolyn A. Cothran Ada J. Culbreath Betty L. Downs Ronald L. F o s t e r Dorothy A. Heidbrink James D. Holder J e r r y A. Matthews Ronald L. McCalla Henry H . Nabors John L. P e l 1 Ben F. P r e w i t t C h a r l e s E. S t a v e l y Nancy C. T i c e Robert Lee Askew George Cleo Barton S h i r l M. B r e i t l i n g Lorin W. Brown A. E a r l Catmull Gary James Clark Eva A. -. - . .. Cranale Gerald L. Despain Sharon Lee Doran .-- Thompson E. Fehr Robert M. F l e g a l Richard W. F u l l e r Robert Gordon N e i l s H. Ilansen Joseph H. H a r r i s Paul W. Heaton Kenneth E. IIooton Wayne R. Jones UTAH BETA, Utah S t a t e U n i v e r s i t y Wen Ming Chen Robert Michael H a r r i s Dale M. Rasmuson VIRGINIA BETA, V i r g i n i a P o l y t e c h n i c I n s t i t u t e Margie C. Clevinger John A. C o r n e l l Daniel Denby Ralph C u r t i s Epperly Samuel V. Givens S t e v e J . Lahoda Gene Lowrimore William T. McClelland J e r r y Moore Glenda Gayle Pace WASHINGTON BETA, U n i v e r s i t y o f Washington Alan Aronson Sandra Burroughs P e t e r W. Cole Gael A. Curry Bradley C. Fowler P a t r i c i a J . Gale Glenn Goodrich C l i f f o r d G. Hale Ronald L. Hebron M e r r i l e e K. Helmers Sidney L. Hendrickson Ken R. Hinkleman WASHINGTON GAMMA, S e a t t l e University William Alan Ayres G a i l Marie H a r r i s WEST VIRGINIA ALPHA, West V i r g i n i a U n i v e r s i t y Robert A l l e n John Atkins S a l l y Beile Donald Beken Larry Brumbaugh ~ o s e p h~ a r t i s i n o Richard C e r u l l o Charles Cochran Barbara Conaway James C o t t r i l l Alyson Crogan A. B. Cunningham S a r a Debolt Paul Deskevich Joy B. Easton Roger F l o r a ' David Moran William C. Nordai I. D. Peters John Perrine Deborah Seltz ' Dawn R. Shelkey John S. Skocik Joseph K. Stewart William Stewart Mary Squire Samuel Swallow Ronald Tomaschko Ann Trump Ronald Vento M. L. Vest Ronald Virden Dorothy Watt Stanley Wearden Lynn Reppa Anthea Smith Peter Stockllausen WISCONSIN ALPHA, Marquette University Kathleen McElligott Sharon Parrot Jon Davis Ronald Jodat NEW CHAPTERS OF PI MU EPSILON ALABAMA GAMMA 125-1967 Prof. William Peeples, Jr., Dept of Math, Samford University, Birmingham 35209 CALIFORNIA ETA 129-1967 Prof. L. F. Klosinki, Dept of Math., The University of Santa Clara, Santa Clara 95053 MASSACHUSETTS BETA 122-1967 Prof. Daniel R. Dewey, Dent of Math, Collage of the Holy Cross. Worcester 01610 NEW JERSEY GAMMA 131-1967 Prof. Claire C. Jacobs, Dept of Math, Rutqers Colleqe of South Jersey, Camden 08102 NEW MEXICO BETA 124-1967 Prof. Merry M. Lomanitz, Dept of Math, New Mexico Inst. of Mining 6 Technology, Socorro 97801 NEW YORK SIGMA 132-1967 Prof. A. B. Finkelstein, Dept of Math, Pratt Institute of Brooklyn, Brooklyn 11205 NORTH DAKOTA ALPHA 127-1967 Prof. Martin 0. Holoien, Dept of Math, North Dakota State University, Fargo 58102 PENNSYLVANIA IOTA 130-1967 Prof. James 0. Brooks, Dept of Math, Villanova University, Villanova 19085 RHODE ISLAND BETA 128-1967 Dr. Frank B. Correia, Dept of Math, Rhode Island State College, Providence 02908 TENNESSEE ALPHA 126-1967 Prof. Henry L. Reeves, Dept of Math, Memphis State University, Memphis 38111 WEST VIRGINIA ALPHA 123-1967 Dr. Franz X. Hiergelst, Dept of Math, Weç Virginia University, Morqantown 26506 BACK ISSUES AVAILABLE Because of special reprinting, ALL back issues of the Pi Mu Epsilon Journal are now available. This is your chance to complete your set. VOLUME VOLUME VOLUME VOLUME PRICE: I, NUMBERS 1 2, NUMBERS 1 3, NUMBERS 1 4, Numbers 1 - 10 (complete) -- 10 (complete) 10 (complete) - 7 (complete) + Index + Index + Index fifty cents (50t) each issue; indexes are free. SEND REQUESTS PEE-PAID TO: Pi Mu Epsilon Journal Department of Mathematics The University of Oklahoma Norman Oklahoma 73069
Similar documents
2004 - The University of North Carolina at Chapel Hill
The Board further discussed the issue of critical questions on the "practical e x a m i n a t i o n " and plans to review these items with school representatives w h o attend monthly Board meetings...
More information2006-07 Men`s Basketball Media Guide
The campus itself has an enrollment of over 5,500 students, with a student-faculty ratio of 14 to 1. UMR is one of four campuses that comprise the University of Missouri system. The university, fou...
More information