DOCUMENT: tutorial002
Transcription
DOCUMENT: tutorial002
DOCUMENT: tutorial002 Illustration of running DIOGENE for processing, a diallel trial according to various ways Introduction The documents of the “tutorial series”, as the present one, are only concerned with the very practical problems to which the user is faced before being able to use the results of data processing (thesis, publication, selection of the best genotypes etc.). Other documents, “notice series”, are designed to give general informations about the biometrical and genetic models and cautions mandatory to draw conclusions from the experimental results. These practical problems may be classified into three categories: (1) Data organization: How to prepare the data files to be processed, both for the measured or graded traits (observations), for the codes which describe the experimental structure which the user wants to analyze (indicators) and for the alphanumeric labelling of these two categories that we shall shortly name “trait labels”, “indicator labels” or, more compactly, “labels”; (2) Processing selection: How to select the program (or sequence of programs) which best fits the user’s aim, whatever the kind of results would be (data management, estimation of parameters, exploration of data structure etc.) (3) Importation of results: After data processing, it is necessary to obtain the final results in a form edited as well as possible and which anybody can use for integrating them in a variety of documents. For point (1), even if it is not the only way to prepare files for DIOGENE, the data in Excel format will be privileged because this spreadsheet is de facto the standard tool used by researchers. For point (3) and for the same reasons, Word will also be privileged, even if “paper” edition of the results is also possible without using it, via; for instance, an A3 network printer. Of course, Excel and Word may be replaced by programs belonging to the same categories, for instance the equivalent spreadsheets and word-processors which can be found for Linux. The examples given in this documents have been practically obtained On a Sun Microsystem Enterprise 450 server with Solaris 9 version of Unix (for running DIOGENE) and Windows-XP (professional edition), with Office-XP, for preparation of Excel data files and importation/edition of results. The standard programs connecting the PC to the server were Tera Term Pro as (alphanumeric terminal emulator) and WS-FTP95 LE, for file transfer. These programs can be freely downloaded on internet. Lastly, although DIOGENE now enables 2-D and 3-D graphics (as interfaced with Gnuplot), this aspect will not developed in the basic “tutorials”, because it requires graphic terminal emulators as X-windows, for instance. The points where the files specialized for these graphics are created by the programs will be indicated. Note that these files can also be used for realization of graphics using Excel (or an equivalent spreadsheet). The edited graphics will be alphanumeric. Specialized tutorials will be later devoted to high definition graphics. This tutorial follows another document, tutorial001 which deals with a more simple situation and that we recommend to read first. The above screen concerning an Excel table (d4423.xls file) and the three ones below display data from a diallel trial of maritime pine(experiment d4423) which is managed by the EFPA Department of the French NIAR (National Institute of Agronomical Research). The mating design combines 12 parent trees as mothers and 11 of them as fathers (father # 9 is lacking). Each individual is referenced on a row of the Excel Table by five integer numbers ie from left to right: mother, father, bloc, plantation row and rank of the tree on the row (“abscissa”). After these five indicators, five measurements or observations are registered: height growth observed at three different years (1984, 1985, and 1986), circumference at breast height (1995) and score for Dioryctria splendidella pine beetle attack in 1995. There are 74 blocs, numbered from 1 to 74. We remark that, compared to the 2 file “lebart.xls” presented in tutorial001, three indicators: mother, father and bloc (and not one only) receive a label. On the other hand, these indicators are a sub-sample as row and abscissa remain without any label. Note that the ranks of the labels are assigned in a “positional” way, series of 10 contiguous ‘*’ being used to fill the places where no label is present. Moreover, there are more data rows than indicators and a varying number of labels from one indicator to another. What is constant when comparing lebart and d4423 files is that the label sequences is always closed by semicolons (column I here, where the dummy labels holding for abscissa are concerned). Transcoding this file into a .prn format is done in the same fashion than for lebart.xls and we obtain a d4423.prn version that we transfer on the Unix server again using the ASCII mode. 3 Note that to preserve, after data transfer, spaces between character chains representing labels or data we have inserted blank columns in the table. 4 This screen shows the beginning of data transfer. 5 The data transfer has been achieved and we can see above the 41 first rows of the Unix ASCII file. We repeat one time more that it is mandatory to have no insertion of blanks within the strings, whatever their nature would be (labels or data). 6 Typing “diogene” give access to the main menu and, to make a little variation compared with the tutorial001 example, we shall run ASCBIN, the transcodage program in interactive mode (see the position of the selection cursor). 7 We select the “file management” branch as shown above. 8 Then, we select “transcodage –copy again”. 9 And, lastly, the ASCBIN program which has become familiar to us. 10 The above screen displays the first parameters which describe the general structure of a d4423’s record. NB. If we enter erroneously a filename nonexisting or not suffixed by “.prn”, the program stops running. 11 Above are entered the last parameters. After entering the last one a transient display appears (not shown here) indicating that transcodage is done. ASCBIN has detected factor’s labels and therefore chains automatically CREFAM which creates the file of factor’s labels already described in the tutorial001 document. 12 After leaving the DIOGENE menu manager (typing W key), we can obtain an edition of the sortie standard output file where the combined result of ASCBIN-CREFAM cooperation. In addition, NORMEX utility was also run (cf. message) to write minimum and maximum values of the indicators in the parameter file of d4423, d4423.p. CREFAM needs these data to run. 13 On the above screen, we can see the beginning of the correspondence table between row numbers and labels. This table has been generated by CREFAM. Note that, in spite of lack of # 9 father, the label of # 10 father has been correctly positioned on row 10, a dummy chain “**********” being inserted at row 9. Any sequence gap l among codes would be dealt in the same fashion, including the case where the minimum value of some codes would not be “1” (5, 7, 15 etc.). 14 And the LIRE program allows a screen edition of any part of the data file as shown above. We have therefore exemplified here the general value of the file management system of DIOGENE. It is now useful to deal with the case where the data file, with only trait labels and the factor’s labels are not available at the same time. This situation is met when one wants to label the modalities of factors when only the data file and its parameter file are available. To simulate this alternative, we have shared the d4423.xls file in two subfiles: - d4423bis.xls (data file with trait labels) - d4423ter.xls (factor’s labels) 15 The beginning of the first of these files is shown above. 16 As the 41 first rows of the second one are visualized in this new screen. The d4423bis.prn file can be processed by ASCBIN exactly as the “complete” d4423.prn file, with the same parameters. The only difference will be that the d4423bis.fam companion file will of course not generated (as having not detected semicolons, ASCBIN will not run CREFAM). 17 We have run interactively ASCBIN, simply by typing its name (avoiding to run the menu manager to shorten the operations). The last message recalls what we have just said concerning its property to run CREFAM in the appropriate situation. Now, we change the name of the d4423ter.prn file into d4423bis.prn by typing the Unix command: mv d4423ter.prn d4423bis.prn In this example, as the first useful row has rank 2, we remove the fist row (blanks) of the file by typing “:dd” after editing the file with vi (and then, of course, save the corrected file by typing “:w”). If we forgot this blank line removal, this will be detected by the program (warning edition). 18 If we run CREFAM in the same way as ASCBIN, we obtain the above screen which recalls what we have just mentioned. The only necessary parameter is the name of the data file (d4423bis). Thus, we have seen that the ways to obtain the sets of compatible 3-tuple files which contain all numeric data and alphanumeric labels are quite flexible and fulfil the user’s needs in every situation. NB. For reasons which will be explained in a document of the “notice” series, the number of rows of the “.fam” file is equal to the maximum value encountered among the N indicators. Here, it is given by the maximum value of the abscissa (240). Of course, after row # 74, only series of “**********” are met. 19 The screen above gives the output of the MINMAX program that we have run directly. This program makes a first scanning of the d4423 file, giving the minimum and maximum values of both indicators and traits. An additional and useful information given for each trait is the number of “valid” individuals, that is, for this example, all records with values different of “-5” (not observed) or “-9” (dead at measurement time). We can see that, for the first height measurement we have the minimum of observed individuals. Thus, we can suspect that these young trees where very small when transplanted into the trial and were hidden by grass. As this implies a strong competition, it is legitimate, at least in a first step, to discard these individuals from our computations. Therefore, we shall run the COPY program which, as CRECAR used for the tutorial001 document, will select the records with no lacking observation. In addition, the sub-file that we shall obtain will be adequate for re-sampling (confidence intervals of estimates). 20 As shown by the above screen, COPIE created a sub-file with 2730 records with “no hole”: e4423. But, it may also be interesting to obtain a file allowing to compute the frequencies of individuals scored as “-5” or “-9”. For this new purpose, we shall run the SURVIE program. 21 The above screen shows the message of SURVIE which allows frequency analysis the traits according to the three referenced categories. The original file, d4423, is now changed into d4423back and its parameter file into d4423back.p as a copy of d4423.fam is made as d4423back.fam. If we are not satisfied with this new name, we can change it, using the COPIE utility which also makes a copy of the “.fam” file according to the new name. 22 Let us first work with the e4423 sub-file to study quantitative data (without any transformation for this example). We wish to combine half-diallel analysis with incomplete bloc trial, to obtain estimates of genetic parameters (coefficients of genetic prediction and genetic correlations) and perform univariate/multivariate comparisons of GCA. At this time (as a researcher is often a very scatter-brained person!), we realize that we have forgotten to create a supplementary indicator that will be necessary for adjustment of traits to bloc effects: family code which combine mother and father codes. For this purpose, we run the MAJF3 program as illustrated by the above screen. We chosen the option “output on sortie file”, to be able to visualize any parts of this output using the vi editor. 23 We see on the above screen the end of the output of MAJF3.The NORMEX utility has been automatically run for conversion of the resulting file (the name of which is still “e4423”, which has the new “family” indicator in first position, to the EAN normalisation, now mandatory for every DIOGENE data file. Now an additional problem has to be solved: compatibility between the e4423.fam file and the new version of e4423. The incompatibility is due to the discrepancy between number of indicators and number of label’s columns. To obtain this result, we shall use the CORFAM utility (see the next two screens). 24 25 We can see on the above screen that an additional column of dummy “**********” has been created in the e4423.fam file. This ensures its compatibility with e4423 data file. The “unexpected” value of “239” in place of “240” for the 6 th indicator is due to the fact that e24423 is a sub-file with the result that one of the represented values for abscissa completely disappeared. NB. The CORFAM utility may also, of course, be used to correct punctual “real” label values. Moreover, it is also designed to de novo create a .fam file, avoiding that the user is obliged to use Excel for this purpose. All the parts of DIOGENE software were designed with in mind the aim to afford to the users the greatest versatility as possible. 26 After typing “diogene”, we choose the “procedure” option (script’s name = exdial) and the following choices illustrated by the screens shown below. 27 Choice of the “biometry-quantitative genetics” branch. 28 Selection of the “MANOVA and following computations” branch. 29 Choice of the “Cross classification” model, with generation of an adjusted data file. 30 Choice of the “Half-diallel MANOVA” which will processed the data file adjusted for bloc effects. 31 Choice of the “Duncan/Newman-Keuls” group of methods to compare GCA effects from half-diallel analysis. 32 Backward jump to access to options for Discriminant Analysis. 33 Choice of the group of options corresponding to Discriminant Analysis. 34 Choice of the appropriate case of Discriminant Analysis with “downstream” options including Cluster Analysis. 35 Acceptation of all programs selected (“n” entered for triprog option). 36 Display by the supervisor of the ordered list of seven programs. First parameters for general processing options. 37 Next choice of general processing parameters. 38 End of choice of general parameters including the simplified definition of studied traits. 39 First parameters of the ENVIR program (adjustment of data for bloc effects). Note that we have chosen the “re-sampling” option in view to obtain the confidence intervals for estimates of interest. 40 End of the parameters for ENVIR. Important remark : The “.fam” file can only be used to provide labels form outputs of programs which use this file as starting data file. In the actual DIOGENE version, the ENVIR program automatically makes a copy of this file, if any, into “vajust.fam”. Therefore, the labels are transferred to the programs which use adjusted data without need of user intervention. 41 Firsts parameters for DIAL program. Choice of “fixed model” for comparison of effects is independent from an estimate of variances-covariances according to “random model”. These estimations starting from values adjusted for bloc effects follow a “mixed model” (fixed blocs and random GCA an SCA). Note that we have chosen the “re-sampling” option and that the amont parameter (“1”)indicates that the selection of samples will be done at the level of ENVIR program as the estimates for which the confidence intervals will be computed are a part of those corresponding to DIAL program. 42 Next parameters for DIAL program. Note that the resampling system will automatically select the estimates the estimates corresponding to the edition option (here, “normalised” matrices as different categories of correlations and Coefficients of Genetic Prediction). 43 Parameters corresponding to “downstream” options (including Discrimant Analysis). All the parameters with can be “guessed” by the supervisor are automatically generated. 44 Last parameters for DIAL. Father is entered as “column” factor and mother as “row” factor. Note that and indicator for family (mother x father combination) is not mandatory. 45 Warnings which indicate the “edition incompatibilities” for re-sampling. Here, we had erroneously chosen to make an edition both for matrices and effects. We had to correct and choose the “o” value for the “effsup” option (no edition of GCA and/or SCA estimates). 46 Here, we choose the “Newman and Keuls” algorithm for GCA comparisons and the 5% significance level (DUNCAN program). 47 On the above screen are the parameters for DISCRI program (first part of Discriminant Analysis). The number of dimensions for computations of Mahalanibis distances were further changed into “3”, as being far the most biologically significant. 48 The only parameter of ILLY program (projections of population centroids on the pairs of selected axes) - presence of “supplemental points - is “guessed” by the supervisor. 49 On the above screen are given the parameters of MAHAL (computation of Mahalanobis distances). 50 First parameters of PRADET which computes dendrograms, here for the Mahalanobis distances after transformation into normalized similarities. 51 Last parameters of Pradet. 52 On the above screen and on the following ones are given the sequence of parameters for reiteration of the exdial script. Note that this last operation was done after leaving the menu manager (“w” key). Another possibility is to select “jbstar” in the menu. If we do so, JBSTAR is run interactively, and we have not to leave the menu-manager. 53 JBSTAR displays a variety of warnings to help the user. In the last entry of the above screen, we have to specify the “structures” (matrices or vectors) for which we want to get confidence intervals (and associated results as t tests). 54 The above screen allows the choice of the probability associated the confidence intervals (level of significance). 55 We can obtain creation of files of the successive estimates of the parameters in the reiteration process. This is mainly interesting when we use the “bootstrap” method, because it allows computation of confidence intervals without assumption of normality of distribution for these estimates. 56 The above parameters show that the JBSTAR resampler can also be used for simulating model populations to test some “null hypotheses” concerning population effects and between-trait associations. We have not used this possibility here. Other explanations can be read on the screen. 57 The above screen asks to the user to indicate what are the first and the last program of the “reiterated sequence”. Here, they are ENVIR and DIAL, respectively (codes “2” and “9”). 58 The above screen gives the number of reiterated sequences as computed by JBSTAR. Eventually, there is an “offcut”, when the rest of division of the sample size by the number of reiterations is not zero, but say r (the problem raises only for jackknife). In that case, the “total sample” is computed on all the available individuals and the reiterations are truncated by leaving at the end of the file the last r individuals not implied in the re-sampling. The user is free to accept or not a such approximation. He can also “call the chief” to obtain a strategy with no “offcut” or with the smallest possible value. 59 The above warning gives different indications. The most important of them are how to run the reiterated script and in what file the final results will be stored. There are also some polite remarks. The SUPERPICHOT subroutine included in JBSTAR allows to run computations in a complex sequence of programs, like here, where only a sub-sequence has to be reiterated. In that case, the reiterated subsequence must concern the first programs of this sequence (here, the first two). 60 The script now controls running of the different programs. The sub-set of two first programs (ENVIR-DIAL) is run 2731 times (1 time on all data and 2730 times on all data but one, arranged in a circular permutation system). Finally, The Tuckey formula is computed on each individual estimate and all subsequent statistics as confidence intervals are derived. 61 The last screen informs the user than the re-sampling process is achieved and the user can here obtain the results by editing the exdial.all file. Find below this file after an edition using Word, following the choices described in the tutorial001 document. Some comments about these results are given at the end of this tutorial002 document. 62 $*$*$*$*$* 24 heures sur 24, DIOGENE 2004 a votre service ! *$*$*$*$*$* Biometrie du fichier : e4423 ---------------------------------exemple noms des 5 caracteres etudies : --------------------------------y y y y y 1 2 3 4 5 = = = = = haut84 haut85 haut86 circ95 attdio .............................................................................. definition des 5 caracteres etudies : y 1 = x1 y 2 = x2 y 3 = x3 y 4 = x4 y 5 = x5 .............................................................................. ENVIR : ajustement d'un fichier de donnees a n facteurs : modele croise non-orthogonal a n facteurs traitement en parallele de n caracteres (observes ou crees) Carre moyen pour test F des effets principaux = CM intra cellule Fichier d'entree = e4423 ---------------------------------------------------Option de reechantillonnage = 1 Methode = JACKKNIFE, valeur du cache = 1 ---------------------------------------------------Option impression d'effets (EFFSUP) = 0 Nombre d'indicatifs/enregistrement = 6 Mode 0 (0 = quantitatif, 1 = qualitatif + transformation, 2 = qualitatif sans transformation.) Enregistrements numeros 1 a 2730 Numero du premier individu traite/enregistrement = 5 caracteres observes, 5 1 , dernier = 1 , saut = etudies Contraintes 63 1 lim.inf. indicatif indicatif caractere caractere 4 1 1 1 lim.sup. 1 1 -99999.000 -99999.000 99999 99999 99999.000 99999.000 Constante de correction pour d.l. d'erreur (donnees ajustees) = Nombre de niveaux du facteur bloc retenus = 0 74 Nombre de niveaux du facteur code en sequenc retenus = Nombre de cellules bloc*code en sequenc retenues = 115 1047 Carres moyens & tests F sous l'hypothese d'effets fixes (sous les tests F figurent les seuils de signification en %) Carres moyens du facteur bloc ajuste ( y 1 haut84 3.3742E+03 tests F ( y 2 haut85 6.3573E+03 y 3 haut86 1.4121E+04 73 d.l.) y 4 circ95 3.7276E+02 y 5 attdio 1.7354E-01 y 4 circ95 4.736 0.000 y 5 attdio 1.795 0.006 73 et 1683 d.l.) y 1 haut84 13.801 0.000 y 2 haut85 16.723 0.000 y 3 haut86 18.760 0.000 Carres moyens du facteur code en sequenc ajuste ( y 1 haut84 1.0969E+03 Tests F ( y 2 haut85 2.0122E+03 114 d.l.) y 3 haut86 5.1097E+03 y 4 circ95 3.7496E+02 y 5 attdio 2.1100E-01 y 3 haut86 6.788 0.000 y 4 circ95 4.764 0.000 y 5 attdio 2.182 0.000 114 et 1683 d.l.) y 1 haut84 4.487 0.000 y 2 haut85 5.293 0.000 Carres moyens de l'interaction bloc * code en sequenc ( y 1 haut84 4.8914E+02 Tests F ( y 2 haut85 7.7596E+02 y 3 haut86 1.6634E+03 y 4 circ95 9.3732E+01 859 d.l.) y 5 attdio 1.1727E-01 859 et 1683 d.l.) 64 y 1 haut84 2.001 0.000 y 2 haut85 2.041 0.000 y 3 haut86 2.210 0.000 y 4 circ95 1.191 0.145 y 5 attdio 1.213 0.050 Carres moyens intra-cellule bloc * code en sequenc ( 1683 d.l.) y 1 haut84 2.4448E+02 y 2 haut85 3.8015E+02 y 3 haut86 7.5272E+02 y 4 circ95 7.8709E+01 y 5 attdio 9.6702E-02 Moyennes (en % si caracteres qualitatifs non transformes) Moyennes generales y 1 haut84 54.709 y 2 haut85 77.535 y 3 haut86 134.685 y 4 circ95 39.077 Fichier VAJUST cree : 2730 enregistrements a individu & 5 caracteres. 6 y 5 attdio 0.126 indicatifs, 1 65 NORMEX : conversion d'un fichier de norme ANTAR a la norme ANTAR etendue Le fichier vajust a ete converti a la norme ANTAR etendue -----------------------------------------------------------------------DIAL : MANOVA non orthogonale modele diallele avec niveau individuel sans effet reciproque (extension du modele Henderson III adaptee de Garretsen & Keuls 1977-78) Fichier d'entree = vajust ----------------------------------------------------Nombre moyen d'individus/donnee elementaire = Option de reechantillonnage = 1.000 3 Pilotage par un programme d'amont (AMONT = 1) ----------------------------------------------------carre moyen pour test F des AGC = CM intra-cellule composantes individuelles utilisees pour estimation des variances-covariances. options matrices & effets : MATSUP = 1 , DENDRO = 0 , EFFSUP = 0 option elimination des selfs option Analyse Dicriminante : population = Aptitude Generale a la combinaison facteur etudie = Genotype_parent Nombre d'indicatifs/enregistrement : Mode 0 6 (0 = quantitatif, 1 = qualitatifs + transformation, 2 = qualitatif sans transformation) Coefficient des variances - covariances des effets genetiques additifs dans composante d'AGC = Coefficient des variances - covariances de dominance dans composante d'ASC = Enregistrements numeros 1 a 2730 Numero du premier individu traite/enregistrement : 5 caracteres observes , 5 1 , dernier = 1 , saut = etudies contraintes lim. inf. indicatif 3 1 2.5000E-01 lim. sup. 99999 66 1 2.5000E-01 indicatif caractere caractere 2 1 1 1 -99999.000 -99999.000 99999 99999.000 99999.000 Constante de correction pour d.l. d'erreur (donnees ajustees) = Nombre de niveaux de l'aptitude generale (AGC) : 73 12 Nombre de cellules retenues (reciproques confondues) : 63 Carres moyens & tests F sous l'hypothese d'effets fixes Carres moyens de l'AGC du genotype Genotype_parent ( y 1 haut84 4.3732E+03 Tests F ( 11 y 2 haut85 7.1542E+03 y 1 haut84 12.727 0.000% et 2479 y 3 haut86 1.5705E+04 y 4 circ95 1.0888E+03 y 3 haut86 13.690 0.000% y 4 circ95 12.501 0.000% Carres moyens de l'aptitude specifique, ASC ( tests F ( y 2 haut85 8.7347E+02 51 et y 1 haut84 1.452 2.062% 2479 y 3 haut86 2.4344E+03 y 5 attdio 7.4363E-01 y 5 attdio 7.177 0.000% 51 degres de liberte) y 4 circ95 1.0608E+02 y 5 attdio 1.5961E-01 y 4 circ95 1.218 13.972% y 5 attdio 1.540 0.868% d.l.) y 2 haut85 1.596 0.490% y 3 haut86 2.122 0.001% Carres moyens intra-cellule ( y 1 haut84 3.4361E+02 degres de liberte) degres de liberte) y 2 haut85 13.072 0.000% y 1 haut84 4.9877E+02 11 y 2 haut85 5.4730E+02 2479 degres de liberte) y 3 haut86 1.1473E+03 y 4 circ95 8.7092E+01 y 5 attdio 1.0361E-01 Esperance des 3 sommes de carres et coproduits (modele aleatoire) : ve = variance intra, var(ASC) = variance d'Aptitude specifique, var(AGC) = variance d'Aptitude generale S1 = S2 = S3 = 11 ve + 51 ve + 2479 ve 508.517 var(ASC) + 2057.875 var(ASC) 4321.907 var(AGC) 67 Correlations des effets d'Aptitude Generale a la Combinaison y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio y 1 haut84 1.000 0.950 0.908 0.630 -0.140 y 2 haut85 1.000 0.969 0.612 -0.050 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.487 0.030 1.000 0.535 1.000 correlations des effets d'Aptitude Specifiques a la Combinaison y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio y 1 haut84 1.000 0.988 0.692 -0.156 0.527 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.810 0.123 0.621 1.000 0.812 0.457 1.000 0.324 1.000 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.870 0.591 0.147 1.000 0.696 0.157 1.000 0.165 1.000 Correlations intra-cellule y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio y 1 haut84 1.000 0.928 0.763 0.500 0.139 Decomposition des variances-covariances selon le plan de croisements Correlations des effets genetiques additifs y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio y 1 haut84 1.000 0.950 0.908 0.630 -0.140 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.487 0.030 1.000 0.535 1.000 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.810 0.123 0.621 1.000 0.812 0.457 1.000 0.324 1.000 1.000 0.969 0.612 -0.050 Correlations des effets de dominance y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio y 1 haut84 1.000 0.988 0.692 -0.156 0.527 Correlations des effets genetiques totaux y 1 y 2 y 3 y 4 y 5 68 y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio haut84 1.000 0.960 0.807 0.456 0.110 haut85 haut86 circ95 attdio 1.000 0.893 0.486 0.222 1.000 0.545 0.239 1.000 0.442 1.000 Pourcentage d'additivite dans la variance genetique y 1 haut84 71.828 y 2 haut85 66.245 y 3 haut86 51.074 y 4 circ95 84.124 y 5 attdio 51.364 Correlations des effets d'environnement y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio y 1 haut84 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.925 0.763 0.509 0.136 1.000 0.870 0.605 0.134 1.000 0.715 0.144 1.000 0.146 1.000 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.873 0.587 0.145 1.000 0.683 0.157 1.000 0.180 1.000 Correlations phenotypiques y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio y 1 haut84 1.000 0.930 0.768 0.502 0.132 Matrices des Coefficients de prediction genetique (heritabilites sur la diagonale) Coefficients de prediction genetique au sens strict y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio y 1 haut84 0.107 0.102 0.097 0.068 -0.011 y 2 haut85 0.108 0.104 0.066 -0.004 y 3 haut86 y 4 circ95 y 5 attdio 0.107 0.052 0.002 0.108 0.041 0.054 Coefficients de prediction genetique au sens large y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio y 1 haut84 0.149 0.149 0.142 0.063 0.014 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 0.163 0.165 0.070 0.029 0.209 0.089 0.036 0.128 0.051 0.106 69 Estimation des Aptitudes Generales et Specifiques a la Combinaison Correlations entre interactivites ( y y y y y 1: 2: 3: 4: 5: haut84 haut85 haut86 circ95 attdio y 1 haut84 1.000 0.958 0.862 0.705 0.766 10 d.l.) y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.883 0.681 0.820 1.000 0.559 0.732 1.000 0.766 1.000 70 DUNCAN Comparaison de moyennes par la methode de Newman & Keuls Classement & comparaison de modalites de facteurs aux seuils 1%, 5% ou 10% seuil de signification adopte = 5 % (difference non significative entre modalites reliees par meme trait) Effets ajustes issus de DIAL : genotype = Genotype_parent Valeurs correspondant aux 12 Aptitudes Generales Moyenne harmonique des effectifs/effet = 414.686 caractere numero : rang 1 2 3 4 5 6 7 8 9 10 11 12 modalite libelle estimation effet 2 9 12 8 5 10 4 6 7 1 11 3 pere_2 mere_9 pere_12 pere_8 pere_5 pere_10 pere_4 pere_6 pere_7 pere_1 pere_11 pere_3 6.227 4.666 3.398 1.541 1.199 0.540 0.350 -0.431 -1.126 -3.304 -5.211 -5.857 caractere numero : rang 1 2 3 4 5 6 7 8 9 10 11 12 libelle estimation effet 2 9 12 4 8 10 5 7 6 1 11 3 pere_2 mere_9 pere_12 pere_4 pere_8 pere_10 pere_5 pere_7 pere_6 pere_1 pere_11 pere_3 8.517 7.248 5.114 1.626 1.100 0.009 -1.425 -1.576 -2.193 -2.846 -5.094 -7.247 1 modalite 2 1.028 | 1.147 | 0.789 || 0.806 || 0.866 || 0.876 || 0.802 || 0.912 || 0.929 || 0.861 || 1.017 | 0.816 | pere_2 1.149 erreur standard 1.298 | 1.448 | 0.996 | 1.012 | 1.017 | 1.105 | 1.093 || 1.173 || 1.151 || 1.086 || 1.284 || 1.030 | 3 (haut86), erreur standard moyenne/modalite : libelle 0.910 erreur standard 2 (haut85), erreur standard moyenne/modalite : modalite caractere numero : rang 1 (haut84), erreur standard moyenne/modalite : estimation effet erreur standard 12.481 1.879 | 1.663 71 2 3 4 5 6 7 8 9 10 11 12 12 9 4 8 10 6 11 7 5 1 3 pere_12 mere_9 pere_4 pere_8 pere_10 pere_6 pere_11 pere_7 pere_5 pere_1 pere_3 caractere numero : rang 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1.442 || 2.097 || 1.466 || 1.473 || 1.600 || 1.667 | 1.859 | 1.698 | 1.583 | 1.572 | 1.491 4 (circ95), erreur standard moyenne/modalite : modalite libelle estimation effet 9 6 2 10 1 4 12 8 7 5 11 3 mere_9 pere_6 pere_2 pere_10 pere_1 pere_4 pere_12 pere_8 pere_7 pere_5 pere_11 pere_3 2.802 2.025 1.960 1.610 0.940 -0.079 -0.253 -0.293 -1.017 -1.035 -2.441 -2.590 caractere numero : rang 8.958 5.454 2.522 2.327 0.429 -2.308 -2.814 -2.988 -3.957 -4.276 -12.252 0.458 erreur standard 0.578 0.459 0.518 0.441 0.433 0.404 0.397 0.406 0.468 0.436 0.512 0.411 | || || || || || || || || || | | 5 (attdio), erreur standard moyenne/modalite : modalite libelle estimation effet 6 2 11 1 9 4 3 10 12 7 5 8 pere_6 pere_2 pere_11 pere_1 mere_9 pere_4 pere_3 pere_10 pere_12 pere_7 pere_5 pere_8 0.096 0.040 0.039 0.018 0.017 0.002 -0.005 -0.006 -0.019 -0.022 -0.049 -0.061 0.016 erreur standard 0.016 0.018 0.018 0.015 0.020 0.014 0.014 0.015 0.014 0.016 0.015 0.014 | | || || ||| ||| ||| ||| ||| || | Valeurs correspondant aux 12 Ecovalences du facteur Genotype_parent Moyenne harmonique des effectifs/effet = 414.686 caractere numero : rang 1 2 3 4 5 6 1 (haut84) modalite libelle Ecovalence 9 11 10 5 8 6 mere_9 pere_11 pere_10 pere_5 pere_8 pere_6 15.588 12.958 11.497 10.101 8.842 8.618 Ecovalence cumulee 15.588 28.546 40.043 50.144 58.987 67.605 72 7 8 9 10 11 12 7 2 3 1 12 4 pere_7 pere_2 pere_3 pere_1 pere_12 pere_4 caractere numero : rang 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 libelle Ecovalence 9 10 11 7 6 5 8 2 1 3 4 12 mere_9 pere_10 pere_11 pere_7 pere_6 pere_5 pere_8 pere_2 pere_1 pere_3 pere_4 pere_12 15.411 13.960 12.124 8.799 8.426 8.386 8.149 7.640 5.074 4.816 3.630 3.584 rang 1 2 3 4 5 6 7 8 9 10 11 12 libelle Ecovalence 11 10 9 7 6 5 2 8 12 3 4 1 pere_11 pere_10 mere_9 pere_7 pere_6 pere_5 pere_2 pere_8 pere_12 pere_3 pere_4 pere_1 13.797 12.434 11.275 8.991 8.977 8.748 7.387 7.288 7.193 4.972 4.536 4.402 15.411 29.371 41.495 50.294 58.721 67.107 75.256 82.896 87.970 92.786 96.416 100.000 Ecovalence cumulee 13.797 26.231 37.506 46.497 55.474 64.222 71.609 78.897 86.090 91.062 95.598 100.000 4 (circ95) modalite libelle Ecovalence 9 11 7 6 2 4 10 12 5 3 8 1 mere_9 pere_11 pere_7 pere_6 pere_2 pere_4 pere_10 pere_12 pere_5 pere_3 pere_8 pere_1 23.931 11.711 10.905 10.565 7.291 6.529 6.022 5.768 5.692 4.402 3.748 3.435 caractere numero : Ecovalence cumulee 3 (haut86) modalite caractere numero : 76.074 82.602 88.661 93.176 96.724 100.000 2 (haut85) modalite caractere numero : rang 8.469 6.527 6.060 4.515 3.548 3.276 Ecovalence cumulee 23.931 35.642 46.548 57.113 64.404 70.933 76.955 82.723 88.415 92.817 96.565 100.000 5 (attdio) 73 rang 1 2 3 4 5 6 7 8 9 10 11 12 modalite libelle Ecovalence 9 11 6 2 10 7 1 8 5 4 12 3 mere_9 pere_11 pere_6 pere_2 pere_10 pere_7 pere_1 pere_8 pere_5 pere_4 pere_12 pere_3 13.878 12.748 10.659 9.757 9.594 8.345 8.032 6.852 5.714 5.525 4.593 4.303 Ecovalence cumulee 13.878 26.626 37.285 47.042 56.636 64.981 73.013 79.865 85.579 91.104 95.697 100.000 74 NORMEX : conversion d'un fichier de norme ANTAR a la norme ANTAR etendue Le fichier moyfac a ete converti a la norme ANTAR etendue -----------------------------------------------------------------------DISCRI : analyse factorielle discriminante Nombre de dimensions (axes canoniques a contribution relative >0.0001) = 5 Valeurs propres (par ordre decroissant) lambda 1 1.0239E-01 lambda 2 6.0456E-02 lambda 3 4.5386E-02 lambda 4 2.8708E-02 lambda 5 7.7359E-03 Moyenne des valeurs propres (indice de differenciation sur toutes les dimensions) : Pourcentages de discrimination lambda 1 41.848 lambda 2 24.708 lambda 3 18.549 lambda 4 11.733 lambda 5 3.162 lambda 4 96.838 lambda 5 100.000 Pourcentages de discrimination cumules lambda 1 41.848 lambda 2 66.556 lambda 3 85.106 Vecteurs propres (dans l'ordre des valeurs propres) VE 1 VE 2 VE 3 VE 4 VE 5 Y 1 Y 2 Y 3 Y 4 Y 5 haut84 haut85 haut86 circ95 attdio -1.7966E-02 -3.0329E-03 5.7219E-02 -1.6869E-01 -9.8384E-01 Y 1 Y 2 Y 3 Y 4 Y 5 haut84 haut85 haut86 circ95 attdio 1.1478E-01 -4.1283E-02 3.8065E-03 8.3440E-02 -9.8901E-01 Y 1 Y 2 Y 3 Y 4 Y 5 haut84 haut85 haut86 circ95 attdio -6.9120E-02 5.7581E-02 3.7774E-04 5.3289E-03 9.9593E-01 Y 1 Y 2 Y 3 Y 4 Y 5 haut84 haut85 haut86 circ95 attdio -4.2558E-02 7.1019E-02 -2.7019E-02 4.1554E-03 -9.9619E-01 Y 1 Y 2 Y 3 Y 4 Y 5 haut84 haut85 haut86 circ95 attdio 1.6687E-02 1.3344E-02 -1.3061E-02 -3.0334E-02 9.9923E-01 Correlations entre axes canoniques (AC) &caracteres (Y) (1) : Correlations entre termes d'erreur ((r)intra-population ) 75 4.8936E-02 AC AC AC AC AC Y 1 haut84 0.192 0.924 0.077 0.052 0.318 1 2 3 4 5 Y 2 haut85 0.253 0.847 0.389 0.185 0.183 Y 3 haut86 0.367 0.775 0.462 -0.162 -0.158 Y 4 circ95 -0.374 0.722 0.423 -0.109 -0.384 Y 5 attdio -0.254 -0.009 0.557 -0.549 0.569 (2) : Correlations entre modalites du facteur discrimine AC AC AC 1 2 3 Y 1 haut84 0.258 0.956 0.069 AC AC 4 5 0.037 0.118 Y 2 haut85 0.336 0.864 0.344 0.130 0.067 Y 3 haut86 0.477 0.773 0.400 -0.112 -0.056 Y 4 circ95 -0.508 0.754 0.383 Y 5 attdio -0.455 -0.013 0.665 -0.078 -0.143 -0.521 0.280 Y 4 circ95 -0.383 0.724 0.421 -0.107 -0.375 Y 5 attdio -0.263 -0.009 0.561 -0.548 0.562 (3) : Correlations phenotypiques (totales) AC AC AC AC AC Y 1 haut84 0.196 0.925 0.076 0.051 0.311 1 2 3 4 5 Y 2 haut85 0.258 0.848 0.386 0.183 0.179 Y 3 haut86 0.374 0.775 0.459 -0.160 -0.154 tests Chi 2 de l'egalite des moyennes de population (test de Wilks : cf Saporta 1990, p 423-424) Test global sur tous les axes canoniques = 584.229 avec 55 d.l., seuil de signification = tests partiels sur chacun des axes canoniques: Numero de l'axe 1 2 3 4 5 test Chi 2 240.734 144.958 109.611 69.895 19.030 nbre de d.l. 15 13 11 9 7 probabilite 0.000% 0.000% 0.000% 0.000% 0.822% 76 0.000% ILLY : Calcul de fonctions discriminantes de populations (centroides) avec reperage de ces populations. Graphique par coordonnees sur les axes canoniques pris deux a deux des points representatifs des diverses populations etudiees. centroides (moyennes des variables canoniques par population) population 1 , libelle Axe 1 Axe 2 2.0136E-01 4.2339E-01 population 2 , libelle Axe 1 Axe 2 7.6070E-01 1.1753E+00 population 3 , libelle Axe 1 Axe 2 4.2142E-01 9.0622E-03 population 4 , libelle Axe 1 Axe 2 6.9846E-01 6.1451E-01 population 5 , libelle Axe 1 Axe 2 5.3250E-01 7.8332E-01 population 6 , libelle Axe 1 Axe 2 0.0000E+00 7.4645E-01 population 7 , libelle Axe 1 Axe 2 6.0141E-01 5.0189E-01 population 8 , libelle Axe 1 Axe 2 7.6528E-01 8.1633E-01 population 9 , libelle Axe 1 Axe 2 2.7113E-01 1.1149E+00 population 10 , libelle Axe 1 Axe 2 3.0325E-01 8.4399E-01 population 11 , libelle Axe 1 Axe 2 8.7573E-01 0.0000E+00 population 12 , libelle Axe 1 Axe 2 1.0510E+00 8.5060E-01 = pere_1, nombre = Axe 3 3.0559E-01 = pere_2, nombre = Axe 3 3.3487E-01 = pere_3, nombre = Axe 3 1.8477E-01 = pere_4, nombre = Axe 3 2.9209E-01 = pere_5, nombre = Axe 3 0.0000E+00 = pere_6, nombre = Axe 3 2.2947E-01 = pere_7, nombre = Axe 3 1.7860E-01 = pere_8, nombre = Axe 3 1.1581E-01 = mere_9, nombre = Axe 3 3.4856E-01 = pere_10, nombre = Axe 3 1.8603E-01 = pere_11, nombre = Axe 3 3.1143E-01 = pere_12, nombre = Axe 3 2.6331E-01 464 325 516 534 458 413 398 529 261 448 332 552 Erreurs standard des centroides pour graphique : (construction des ellipses de confiance) population Axe 1 0.060 population Axe 1 1 , libelle = pere_12, nombre = Axe 2 Axe 3 0.084 0.029 2 , libelle = pere_12, nombre = Axe 2 Axe 3 464 325 77 0.072 0.101 population 3 , libelle Axe 1 Axe 2 0.057 0.080 population 4 , libelle Axe 1 Axe 2 0.056 0.079 population 5 , libelle Axe 1 Axe 2 0.061 0.085 population 6 , libelle Axe 1 Axe 2 0.064 0.089 population 7 , libelle Axe 1 Axe 2 0.065 0.091 population 8 , libelle Axe 1 Axe 2 0.057 0.079 population 9 , libelle Axe 1 Axe 2 0.081 0.112 population 10 , libelle Axe 1 Axe 2 0.061 0.086 population 11 , libelle Axe 1 Axe 2 0.071 0.100 population 12 , libelle Axe 1 Axe 2 0.055 0.077 0.035 = pere_12, Axe 3 0.028 = pere_12, Axe 3 0.027 = pere_12, Axe 3 0.029 = pere_12, Axe 3 0.031 = pere_12, Axe 3 0.032 = pere_12, Axe 3 0.027 = pere_12, Axe 3 0.039 = pere_12, Axe 3 0.030 = pere_12, Axe 3 0.035 = pere_12, Axe 3 0.027 nombre = 516 nombre = 534 nombre = 458 nombre = 413 nombre = 398 nombre = 529 nombre = 261 nombre = 448 nombre = 332 nombre = 552 -----------------------------------------------------Graphe des centroides par coordonnees : 52 interlignes*100 colonnes (coordonnees positives ou nulles, car exprimees en deviation au minimum) (* = point simple , # = point double ou multiple) si plus de 10 points sur une ligne,les indicatifs concernent les 10 premiers. Les autres indicatifs seront alors reportes a la page suivante. 78 Axe 1 populations dans l'ordre des points ^ | 1.0510E+00 + pere_12* 12 | | | | | | | |*pere_11 11 | | | | | | pere_8* pere_2* 8 2 | | | pere_4* 4 | | | | | *pere_7 7 | | m pere_5* 5 | | | | | |*pere_3 3 | | | | | pere_10* 10 | | mere_9* 9 | | | | *pere_1 1 | | | | | | | | + pere_6* 6 | 0.0000E+00 |+------------------------------------------------------m-------------------------------------------+-->Axe 2 0.0000E+00 1.1753E+00 79 Axe 1 populations dans l'ordre des points ^ | 1.0510E+00 + pere_12* 12 | | | | | | | | pere_11* 11 | | | | | | *pere_8 pere_2* 8 2 | | | pere_4* 4 | | | | | pere_7* 7 | | m*pere_5 5 | | | | | | pere_3* 3 | | | | | pere_10* 10 | | mere_9* 9 | | | | pere_1* 1 | | | | | | | | + pere_6* 6 | 0.0000E+00 |+----------------------------------------------------------------m---------------------------------+-->Axe 3 0.0000E+00 3.4856E-01 80 Axe 2 populations dans l'ordre des points ^ | 1.1753E+00 + pere_2* 2 | | mere_9* 9 | | | | | | | | | | | | pere_10* *pere_12 10 12 | *pere_8 8 | |*pere_5 5 | pere_6* 6 | | | m | | pere_4* 4 | | | | | pere_7* 7 | | | | pere_1* 1 | | | | | | | | | | | | | | | | | + pere_3* pere_11* 3 11 | 0.0000E+00 |+----------------------------------------------------------------m---------------------------------+-->Axe 3 0.0000E+00 3.4856E-01 81 Fichier illy007.gnu cree en vue des graphiques ( 12 enregistrements) 82 MAHAL : Classement & comparaison de centroides issus d'Analyse Discriminante : seuils 1%, 5% ou 10% comparaison par la methode de Newman & Keuls Matrice des distances generalisees de Mahalanobis entre populations Seuil de signification choisi pour tests = 5 % Moyenne harmonique des effectifs/population : Axe discriminant : rang 1 2 3 4 5 6 7 8 9 10 11 12 rang 1 2 3 4 5 6 7 8 9 10 11 12 libelle 12 11 8 2 4 7 5 3 10 9 1 6 pere_12 pere_11 pere_8 pere_2 pere_4 pere_7 pere_5 pere_3 pere_10 mere_9 pere_1 pere_6 libelle 2 9 12 10 8 5 6 4 7 1 3 11 pere_2 mere_9 pere_12 pere_10 pere_8 pere_5 pere_6 pere_4 pere_7 pere_1 pere_3 pere_11 1 modalite 9 estimation effet 1.051 0.876 0.765 0.761 0.698 0.601 0.532 0.421 0.303 0.271 0.201 0.000 0.064 erreur standard 0.055 | 0.071 || 0.057 || 0.072 || 0.056 || 0.065 || 0.061 || 0.057 || 0.061 | 0.081 | 0.060 | 0.064 2, erreur standard d'un centroide : modalite Axe discriminant : rang 1, erreur standard d'un centroide : modalite Axe discriminant : 414.686 estimation effet 1.175 1.115 0.851 0.844 0.816 0.783 0.746 0.615 0.502 0.423 0.009 0.000 0.089 erreur standard 0.101 0.112 0.077 0.086 0.079 0.085 0.089 0.079 0.091 0.084 0.080 0.100 | || || || || || | || || | | | 3, erreur standard d'un centroide : libelle mere_9 estimation effet 0.349 0.031 erreur standard 0.039 | 83 2 3 4 5 6 7 8 9 10 11 12 2 11 1 4 12 6 10 3 7 8 5 pere_2 pere_11 pere_1 pere_4 pere_12 pere_6 pere_10 pere_3 pere_7 pere_8 pere_5 0.335 0.311 0.306 0.292 0.263 0.229 0.186 0.185 0.179 0.116 0.000 0.035 0.035 0.029 0.027 0.027 0.031 0.030 0.028 0.032 0.027 0.029 | || || || || ||| || || || | Matrice des distances generalisees entre populations L'espace de reference est celui des 3 ligne 1 = distance , ligne 2 = test F avec premieres variables canoniques p 1:pere_1 test F probabilite (%) p 2:pere_2 test F probabilite (%) p 3:pere_3 test F probabilite (%) p 4:pere_4 test F probabilite (%) p 5:pere_5 test F probabilite (%) p 6:pere_6 test F probabilite (%) p 7:pere_7 test F probabilite (%) p 8:pere_8 test F probabilite (%) p 9:mere_9 test F probabilite (%) p 10:pere_10 test F probabilite (%) p 11:pere_11 test F probabilite (%) p 12:pere_12 test F probabilite (%) p 1 pere_1 0.0000E+00 0.000 100.000 3.5886E-01 22.844 0.000 1.1744E-01 9.556 0.001 1.5761E-01 13.033 0.000 3.3863E-01 25.996 0.000 7.0226E-02 5.111 0.174 1.3695E-01 9.772 0.000 3.2530E-01 26.781 0.000 1.5280E-01 8.501 0.002 9.5782E-02 7.271 0.010 3.2335E-01 20.842 0.000 4.8658E-01 40.855 0.000 p 11 p 2 pere_2 0.0000E+00 0.000 100.000 5.3789E-01 35.724 0.000 1.0245E-01 6.894 0.017 3.5900E-01 22.731 0.000 4.2579E-01 25.793 0.000 2.1410E-01 12.758 0.000 1.5964E-01 10.704 0.000 1.4324E-01 6.906 0.017 2.1266E-01 13.341 0.000 4.2894E-01 23.463 0.000 9.4691E-02 6.452 0.030 p 12 3 & 2477 d.l., ligne 3 = seuil de signification % p 3 pere_3 p 4 pere_4 p 5 pere_5 p 6 pere_6 p 7 pere_7 p 8 pere_8 0.0000E+00 0.000 100.000 1.8567E-01 16.228 0.000 2.7516E-01 22.236 0.000 2.7521E-01 21.027 0.000 9.3045E-02 6.963 0.016 2.7985E-01 24.347 0.000 4.5226E-01 26.109 0.000 2.2008E-01 17.578 0.000 1.6229E-01 10.920 0.000 4.6493E-01 41.298 0.000 0.0000E+00 0.000 100.000 2.3913E-01 19.636 0.000 3.0347E-01 23.539 0.000 4.1752E-02 3.171 2.313 9.3024E-02 8.234 0.003 1.9201E-01 11.212 0.000 1.3656E-01 11.081 0.000 1.3426E-01 9.154 0.001 9.2459E-02 8.358 0.003 0.0000E+00 0.000 100.000 3.0021E-01 21.714 0.000 1.0696E-01 7.586 0.007 6.6033E-02 5.399 0.119 3.7880E-01 20.976 0.000 1.1906E-01 8.981 0.001 4.9957E-01 32.026 0.000 3.3431E-01 27.872 0.000 0.0000E+00 0.000 100.000 2.3845E-01 16.097 0.000 3.8006E-01 29.359 0.000 1.2030E-01 6.408 0.032 6.1982E-02 4.436 0.427 6.3944E-01 39.198 0.000 6.5900E-01 51.853 0.000 0.0000E+00 0.000 100.000 5.5814E-02 4.222 0.567 2.5117E-01 13.186 0.000 8.8246E-02 6.195 0.042 1.6531E-01 9.966 0.000 1.7441E-01 13.434 0.000 0.0000E+00 0.000 100.000 3.0740E-01 17.894 0.000 1.3878E-01 11.212 0.000 3.0577E-01 20.774 0.000 1.0321E-01 9.286 0.001 84 p 9 mere_9 p 10 pere_10 0.0000E+00 0.000 100.000 8.9227E-02 0.0000E+00 4.901 0.000 0.230 100.000 5.9718E-01 4.4963E-01 29.064 28.557 0.000 0.000 3.9890E-01 3.4545E-01 23.544 28.453 0.000 0.000 p 11:pere_11 test F probabilite (%) p 12:pere_12 test F probabilite (%) pere_11 pere_12 0.0000E+00 0.000 100.000 2.4381E-01 0.0000E+00 16.835 0.000 0.000 100.000 Distance moyenne entre population = 2.5002E-01 Indice de differenciation = 3.8198E-02 NORMEX : conversion d'un fichier de norme ANTAR a la norme ANTAR etendue Le fichier dista a ete converti a la norme ANTAR etendue -----------------------------------------------------------------------Fichier DISTA - distances - maintenu et recopie sous le nom de mahal007.gnu 85 PRADET : analyse des constellations sur matrice de similarite issue de DAG, MAHAL, DAUGEY ou EUCLID Matrice de similarite issue de MAHAL Option MATSUP = 0 , GRSUP = 0 , ZOOM = 3 Algorithme d'agglomeration = 0 (0 = lien simple , 1 = lien moyen , 2 = lien complet) Nombre total de groupes formes : 13 Dendrogramme (similarite au .01 plus proche si <0.995 et a 0.99 sinon) ---------------------------------------------------------------------1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 +---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ p 1 : p 10 : p 6 : p 4 : p 7 : p 8 : p 5 : p 9 : p 12 : p 3 : p 2 : p 11 : echelle : pere_1*====>+----------------* | pere_10*====>+-----------* * | | pere_6*====>+-----------*----*---------* | pere_4*====>+* * | | pere_7*====>+*-------* * | | pere_8*====>+--------*-----* * | | pere_5*====>+--------------*-----------* | mere_9*====>+--------------------------*-* | pere_12*====>+----------------------------* | pere_3*====>+----------------------------*-* | pere_2*====>+------------------------------*----------------* | pere_11*====>+-----------------------------------------------*------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 86 Programme JBMAT : E.S. et intervalles de confiance d'elements de matrices Methode utilisee pour calcul des E.S. = JACKKNIFE Seuil choisi pour les intervalles de confiance = Coefficient des E.S. calcule = 95.000% 1.9600 Pour les intervalles de confiance, ligne 1 = limite superieure, ligne 2 = limite inferieure nombre de degres de liberte pour les E.S. = 2729 Parametres et tests de la matrice numero 1 Correlations des effets d'Aptitude Generale a la Combinaison y 1 : haut84 E. standard : Test t : Signif. (%) : y 2 : haut85 E. standard : Test t : Signif. (%) : y 3 : haut86 E. standard : Test t : Signif. (%) : y 4 : circ95 E. standard : Test t : Signif. (%) : y 5 : attdio E. standard : Test t : Signif. (%) : y 1 haut84 1.000 0.000 0.000 100.000 0.950 0.016 60.692 0.000 0.908 0.039 23.032 0.000 0.630 0.098 6.419 0.000 -0.140 0.200 0.700 50.899 87 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.000 0.000 100.000 0.969 0.020 49.519 0.000 0.612 0.095 6.414 0.000 -0.050 0.196 0.257 79.296 1.000 0.000 0.000 100.000 0.487 0.106 4.603 0.001 0.030 0.195 0.155 87.156 1.000 0.000 0.000 100.000 0.535 0.160 3.343 0.100 1.000 0.000 0.000 100.000 Intervalles de confiance de la matrice 1 Correlations des effets d'Aptitude Generale a la Combinaison y 1 : haut84 y 2 : haut85 y 3 : haut86 y 4 : circ95 y 1 haut84 -5.000 -5.000 0.980 0.919 0.985 0.831 0.822 0.437 y 2 haut85 y 3 haut86 y 4 circ95 -5.000 -5.000 1.000 0.931 0.800 0.425 -5.000 -5.000 0.694 0.280 -5.000 -5.000 87 y 5 attdio 87 y 5 : attdio 0.252 -0.531 0.333 -0.434 0.412 -0.352 0.848 0.221 -5.000 -5.000 Parametres et tests de la matrice numero 2 Correlations des effets d'Aptitude Specifique a la Combinaison y 1 : haut84 E. standard : Test t : Signif. (%) : y 2 : haut85 E. standard : Test t : Signif. (%) : y 3 : haut86 E. standard : Test t : Signif. (%) : y 4 : circ95 E. standard : Test t : Signif. (%) : y 5 : attdio E. standard : Test t : Signif. (%) : y 1 haut84 1.000 0.000 0.000 100.000 0.988 0.050 19.803 0.000 0.692 0.204 3.395 0.085 -0.156 0.991 0.158 86.950 0.527 0.485 1.086 27.721 88 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.000 0.000 100.000 0.810 0.112 7.202 0.000 0.123 0.718 0.172 85.820 0.621 0.432 1.435 14.716 1.000 0.000 0.000 100.000 0.812 0.331 2.453 1.368 0.457 0.354 1.292 19.327 1.000 0.000 0.000 100.000 0.324 0.739 0.439 66.511 1.000 0.000 0.000 100.000 Intervalles de confiance de la matrice 2 Correlations des effets d'Aptitude Specifique a la Combinaison y 1 : haut84 y 2 : haut85 y 3 : haut86 y 4 : circ95 y 5 : attdio y 1 haut84 -5.000 -5.000 1.000 0.890 1.000 0.293 1.000 -1.000 1.000 -0.424 88 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio -5.000 -5.000 1.000 0.589 1.000 -1.000 1.000 -0.227 -5.000 -5.000 1.000 0.163 1.000 -0.237 -5.000 -5.000 1.000 -1.000 -5.000 -5.000 Parametres et tests de la matrice numero 3 Correlations des effets genetiques additifs y 1 : haut84 E. standard : Test t : Signif. (%) : y 2 : haut85 E. standard : Test t : y 1 haut84 1.000 0.000 0.000 100.000 0.950 0.016 60.692 y 2 haut85 y 3 haut86 88 y 4 circ95 y 5 attdio 1.000 0.000 0.000 88 Signif. (%) : 3 : haut86 E. standard : Test t : Signif. (%) : y 4 : circ95 E. standard : Test t : Signif. (%) : y 5 : attdio E. standard : Test t : Signif. (%) : y 0.000 0.908 0.039 23.032 0.000 0.630 0.098 6.419 0.000 -0.140 0.200 0.700 50.899 100.000 0.969 0.020 49.519 0.000 0.612 0.095 6.414 0.000 -0.050 0.196 0.257 79.296 1.000 0.000 0.000 100.000 0.487 0.106 4.603 0.001 0.030 0.195 0.155 87.156 1.000 0.000 0.000 100.000 0.535 0.160 3.343 0.100 1.000 0.000 0.000 100.000 Intervalles de confiance de la matrice 3 Correlations des effets genetiques additifs y 1 : haut84 y 2 : haut85 y 3 : haut86 y 4 : circ95 y 5 : attdio y 1 haut84 -5.000 -5.000 0.980 0.919 0.985 y 2 haut85 y 3 haut86 -5.000 -5.000 1.000 -5.000 0.831 0.822 0.437 0.252 -0.531 0.931 0.800 0.425 0.333 -0.434 -5.000 0.694 0.280 0.412 -0.352 Parametres et tests de la matrice numero Correlations des effets de dominance y 1 : haut84 E. standard : Test t : Signif. (%) : y 2 : haut85 E. standard : Test t : Signif. (%) : y 3 : haut86 E. standard : Test t : Signif. (%) : y 4 : circ95 E. standard : Test t : Signif. (%) : y 5 : attdio E. standard : Test t : Signif. (%) : 89 y 1 haut84 1.000 0.000 0.000 100.000 0.988 0.050 19.803 0.000 0.692 0.204 3.395 0.085 -0.156 0.991 0.158 86.950 0.527 0.485 1.086 27.721 y 4 circ95 y 5 attdio -5.000 -5.000 0.848 0.221 -5.000 -5.000 4 89 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.000 0.000 100.000 0.810 0.112 7.202 0.000 0.123 0.718 0.172 85.820 0.621 0.432 1.435 14.716 1.000 0.000 0.000 100.000 0.812 0.331 2.453 1.368 0.457 0.354 1.292 19.327 1.000 0.000 0.000 100.000 0.324 0.739 0.439 66.511 1.000 0.000 0.000 100.000 89 Intervalles de confiance de la matrice Correlations des effets de dominance y 1 : haut84 y 2 : haut85 y 3 : haut86 y 4 : circ95 y 5 : attdio y 1 haut84 -5.000 -5.000 1.000 0.890 1.000 0.293 1.000 -1.000 1.000 -0.424 4 90 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio -5.000 -5.000 1.000 0.589 1.000 -1.000 1.000 -0.227 -5.000 -5.000 1.000 0.163 1.000 -0.237 -5.000 -5.000 1.000 -1.000 -5.000 -5.000 Parametres et tests de la matrice numero Correlations des effets genetiques totaux y 1 : haut84 E. standard : Test t : Signif. (%) : y 2 : haut85 E. standard : Test t : Signif. (%) : y 3 : haut86 E. standard : Test t : Signif. (%) : y 4 : circ95 E. standard : Test t : Signif. (%) : y 5 : attdio E. standard : Test t : Signif. (%) : y 1 haut84 1.000 0.000 0.000 100.000 0.960 0.018 54.091 0.000 0.807 0.065 12.486 0.000 0.456 0.146 3.121 0.200 0.110 0.204 0.539 59.663 5 90 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.000 0.000 100.000 0.893 0.036 24.737 0.000 0.486 0.132 3.672 0.034 0.222 0.193 1.152 24.807 1.000 0.000 0.000 100.000 0.545 0.110 4.957 0.000 0.239 0.183 1.302 18.981 1.000 0.000 0.000 100.000 0.442 0.208 2.124 3.184 1.000 0.000 0.000 100.000 Intervalles de confiance de la matrice 5 Correlations des effets genetiques totaux y 1 : haut84 y 2 : haut85 y 3 : haut86 y 4 : circ95 y 1 haut84 -5.000 -5.000 0.994 0.925 0.934 0.680 0.743 0.170 90 y 2 haut85 y 3 haut86 y 4 circ95 -5.000 -5.000 0.964 0.822 0.745 0.227 -5.000 -5.000 0.761 0.330 -5.000 -5.000 y 5 attdio 90 y 5 : attdio 0.510 -0.290 0.600 -0.156 0.598 -0.121 Parametres et tests de la matrice numero Correlations des effets d'environnement y 1 : haut84 E. standard : Test t : Signif. (%) : y 2 : haut85 E. standard : Test t : Signif. (%) : y 3 : haut86 E. standard : Test t : Signif. (%) : y 4 : circ95 E. standard : Test t : Signif. (%) : y 5 : attdio E. standard : Test t : Signif. (%) : y 1 haut84 1.000 0.000 0.000 100.000 0.925 0.006 161.913 0.000 0.763 0.016 48.250 0.000 0.509 0.025 20.007 0.000 0.136 0.032 4.183 0.006 y 1 : haut84 y 2 : haut85 y 3 : haut86 y 4 : circ95 y 5 : attdio y 1 : haut84 E. standard : Test t : Signif. (%) : y 2 : haut85 E. standard : 6 91 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.000 0.000 100.000 0.870 0.010 91.075 0.000 0.605 0.022 26.981 0.000 0.134 0.033 4.119 0.007 1.000 0.000 0.000 100.000 0.715 0.019 38.440 0.000 0.144 0.034 4.208 0.005 1.000 0.000 0.000 100.000 0.146 0.031 4.671 0.001 1.000 0.000 0.000 100.000 6 91 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio -5.000 -5.000 0.889 0.852 0.649 0.561 0.198 0.070 -5.000 -5.000 0.752 0.679 0.211 0.077 -5.000 -5.000 0.207 0.085 -5.000 -5.000 Parametres et tests de la matrice numero Correlations phenotypiques y 1 haut84 1.000 0.000 0.000 100.000 0.930 0.004 -5.000 -5.000 y 2 haut85 Intervalles de confiance de la matrice Correlations des effets d'environnement y 1 haut84 -5.000 -5.000 0.936 0.914 0.794 0.732 0.559 0.459 0.199 0.072 0.849 0.034 y 2 haut85 7 y 3 haut86 91 y 4 circ95 y 5 attdio 1.000 0.000 91 Test t : Signif. (%) : y 3 : haut86 E. standard : Test t : Signif. (%) : y 4 : circ95 E. standard : Test t : Signif. (%) : y 5 : attdio E. standard : Test t : Signif. (%) : 251.673 0.000 0.768 0.009 90.085 0.000 0.502 0.015 33.530 0.000 0.132 0.021 6.225 0.000 0.000 100.000 0.873 0.005 175.034 0.000 0.587 0.013 44.177 0.000 0.145 0.021 6.930 0.000 Intervalles de confiance de la matrice Correlations phenotypiques y 1 : haut84 y 2 : haut85 y 3 : haut86 y 4 : circ95 y 5 : attdio y 1 haut84 -5.000 -5.000 0.937 0.923 0.785 0.752 0.531 0.472 0.174 0.091 1.000 0.000 0.000 100.000 0.683 0.011 59.832 0.000 0.157 0.020 7.669 0.000 1.000 0.000 0.000 100.000 0.180 0.020 8.876 0.000 1.000 0.000 0.000 100.000 7 92 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio -5.000 -5.000 0.883 0.863 0.613 0.561 0.187 0.104 -5.000 -5.000 0.706 0.661 0.197 0.117 -5.000 -5.000 0.220 0.140 -5.000 -5.000 Parametres et tests de la matrice numero 8 Coefficients de prediction genetique au sens strict y 1 : haut84 E. standard : Test t : Signif. (%) : y 2 : haut85 E. standard : Test t : Signif. (%) : y 3 : haut86 E. standard : Test t : Signif. (%) : y 4 : circ95 E. standard : Test t : Signif. (%) : y 5 : attdio E. standard : Test t : Signif. (%) : y 1 haut84 0.107 0.021 5.121 0.000 0.102 0.021 4.941 0.000 0.097 0.019 5.043 0.000 0.068 0.018 3.858 0.018 -0.011 0.015 0.722 52.271 92 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 0.108 0.022 4.996 0.000 0.104 0.020 5.095 0.000 0.066 0.018 3.638 0.038 -0.004 0.015 0.261 79.039 0.107 0.022 4.946 0.000 0.052 0.018 2.878 0.415 0.002 0.015 0.154 87.237 0.108 0.022 4.958 0.000 0.041 0.015 2.670 0.754 0.054 0.018 3.037 0.258 92 Intervalles de confiance de la matrice 8 Coefficients de prediction genetique au sens strict y 1 : haut84 y 2 : haut85 y 3 : haut86 y 4 : circ95 y 5 : attdio y 1 haut84 0.148 0.066 0.143 0.062 0.135 0.059 0.102 0.033 0.018 -0.040 93 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 0.150 0.066 0.144 0.064 0.102 0.030 0.025 -0.033 0.149 0.065 0.088 0.017 0.032 -0.027 0.150 0.065 0.071 0.011 0.089 0.019 Parametres et tests de la matrice numero 9 Coefficients de prediction genetique au sens large y 1 : haut84 E. standard : Test t : Signif. (%) : y 2 : haut85 E. standard : Test t : Signif. (%) : y 3 : haut86 E. standard : Test t : Signif. (%) : y 4 : circ95 E. standard : Test t : Signif. (%) : y 5 : attdio E. standard : Test t : Signif. (%) : y 1 haut84 0.149 0.039 3.820 0.021 0.149 0.039 3.866 0.018 0.142 0.036 3.940 0.014 0.063 0.029 2.181 2.763 0.014 0.027 0.520 60.978 93 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 0.163 0.041 4.028 0.010 0.165 0.038 4.315 0.004 0.070 0.030 2.328 1.899 0.029 0.027 1.073 28.348 0.209 0.041 5.090 0.000 0.089 0.033 2.699 0.695 0.036 0.029 1.225 21.827 0.128 0.035 3.655 0.036 0.051 0.027 1.904 5.387 0.106 0.038 2.767 0.572 Intervalles de confiance de la matrice 9 Coefficients de prediction genetique au sens large y 1 : haut84 y 2 : haut85 y 3 : haut86 y 4 : circ95 y 1 haut84 0.225 0.072 0.225 0.074 0.213 0.072 0.120 0.006 93 y 2 haut85 y 3 haut86 y 4 circ95 0.243 0.084 0.240 0.090 0.129 0.011 0.290 0.129 0.154 0.024 0.197 0.059 y 5 attdio 93 y 5 : attdio 0.066 -0.038 0.082 -0.024 0.092 -0.021 Parametres et tests de la matrice numero Correlations entre interactivites y 1 : haut84 E. standard : Test t : Signif. (%) : y 2 : haut85 E. standard : Test t : Signif. (%) : y 3 : haut86 E. standard : Test t : Signif. (%) : y 4 : circ95 E. standard : Test t : Signif. (%) : y 5 : attdio E. standard : Test t : Signif. (%) : y 1 haut84 1.000 0.000 0.000 100.000 0.958 0.064 14.857 0.000 0.862 0.253 3.401 0.083 0.705 0.391 1.805 6.764 0.766 0.412 1.859 5.979 y 1 : haut84 y 2 : haut85 y 3 : haut86 y 4 : circ95 y 5 : attdio 0.181 0.031 10 94 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio 1.000 0.000 0.000 100.000 0.883 -5.000 0.000 100.000 0.681 0.331 2.059 3.734 0.820 0.315 2.605 0.903 1.000 0.000 0.000 100.000 0.559 0.389 1.438 14.646 0.732 0.372 1.968 4.646 1.000 0.000 0.000 100.000 0.766 0.460 1.666 9.161 1.000 0.000 0.000 100.000 Intervalles de confiance de la matrice Correlations entre interactivites y 1 haut84 -5.000 -5.000 1.000 0.832 1.000 0.365 1.000 -0.061 1.000 -0.042 0.104 -0.001 10 94 y 2 haut85 y 3 haut86 y 4 circ95 y 5 attdio -5.000 -5.000 -5.000 -5.000 1.000 0.033 1.000 0.203 -5.000 -5.000 1.000 -0.203 1.000 0.003 -5.000 -5.000 1.000 -0.135 -5.000 -5.000 Compteur de series initialise a 0 sur INDEX 94 Comments about results and concluding remarks Processing of the survival rate (d4423 file) will be done in the tutorial003 document if my institute, INRA, will decide allowing me to carry on this teaching task. If these favourable conditions will be met, a new choice of parameters will illustrate how the factor’s labels are used in the MANOVA outputs. Pages 71-74 show the outputs of DUNCAN where alphanumeric labels are left-justified. The GCA (General combining abilities) concern each parent as mother and father. The choice have been (arbitrarily) to label for parents registered according to DIAL’s parameters as “column” factor. As it appened that we declared father as “column”, the labels are “père_xx”. But, we remark that “père_9” is replaced by “mère_9”. It is not a mistake! DIAL and REDIAL outputs are arranged in such a fashion, that a “sex” which is absent is replaced by the corresponding modality of the other sex: here, “father 9” is absent and was replaced as label by “mother 9”. These labels are left-justified as the corresponding ones of MAHAL (pages 83-84). The same is true for the graphs of ILLY (pages 79-81) where this format saves place between the labels and the “*” giving the position of GCA corresponding to the 12 parents. This still holds for the dendrogram of PRADET (page 89). For the Mahalanobis distances, the choice was “mixed”, living the labels “centered” for columns (like for trait’s labels) and left-justified for rows. Another remark concerns the outputs specific of reiterations, due a specialized program, JBMAT, directly managed by JBSTAR. In “format 3” output, we have all the results for characterising the estimated parameters. The first matrix tests for the “null hypothesis” that each parameter may be considered as having a “0” true value. The second one holds for confidence interval at the selected level of confidence. As the confidence interval concern the true values and not their estimates, the computed ranges are truncated at the values corresponding to their definition. That means: [-1; +1] for a correlation coefficient or a CPG between two different traits or [0; 1] for an heritability (CPG of a trait by itself). Lastly, you can see that DIOGENE automatically generates “.gnu” files, for instance, page 82 (illy007.gnu). Generally, the rule for generating the names is: [program name]xxx.gnu, where “xxx” is a sequence number. The sequence number may be reinitialized to “0” by using the RESET utility (but, be careful, all these files would be destroyed in the current directory). The “.gnu” files are EAN files (therefore, their edition is easy with utilities like LIRE, LECTURE etc...), which contain all data for obtaining graphics using Gnuplot or Excel, with, of course, a better quality than those edited in alphanumeric mode! To transform these files in a usable format for these two programs, use the TOTEMG converter (only one parameter: the name of the file to be converted). The explorer integrated with DIOGENE can also be used to run Gnuplot. The converted files will be named: [program name].xxx.dat. Therefore, their correspondence to “.gnu” files is obvious. If this teaching work may be continued (according to the decision of INRA), a specialised tutorial will be devoted to “advanced” uses of re-sampling, as for generating model populations or estimating confidence intervals when normality of distribution of parameter estimates cannot be assumed. On the other hand, again if the undertaken work has to continue, “notices” will be devoted to theoretical aspects completely discarded by the tutorials. Up to now, only the “Papadakis++” notice is ready. The following ones would have the same kinds of aim and presentation. Montpellier April 7/2004 Ph. Baradat 95