Nysted Off-shore Windfarm
Transcription
Nysted Off-shore Windfarm
Nysted Off-shore Windfarm Jan Havsager Elkraft System Independent System Operator Overview of presentation • • • • • History Major system concerns The Project Gained experiences Basic problems Development and prognosis for wind turbine capacity in East Denmark installed wind turbine capacity MW 3000 2500 built on shore 2000 built off-shore 1500 1000 1998 off shore plan plangrundlag 2003 500 0 1970 1980 1990 2000 2010 2020 2030 year ¾Kraftværksplaceringer ¾400 kV net ¾132 kV net ¾Vindmølleplaceringer Network Capacity • Off-shore and On-shore wind turbines are located in areas with relative weak transmission network • First Off-shore wind farm required reinforcements to the 132 kV network. (Local Bottle-necks removed) • Future Off-shore wind farms will require additional reinforcements if production restrictions must be avoided Ancillary services • • • • • Primary control (MW/Hz) Secondary control (MW/minute) Voltage control (Mvar) Fault-ride-through capability (Stability) Voltage Quality support – Harmonics – Flicker – Voltage Dips Simulation of voltage collapse 1999 Without SVC With SVC Investigated alternative transmission connection and reinforcements • • • • • • • • • 1 AC connection 1.a Dynamic compensation 1.b 400 kV overhead line 1.c 400 kV cabel 2 HVDC connection 2.a Local HVDC connection 2.b Central HVDC connection 3 HVDC reinforcement 4 combination of AC og HVDC connection Location of the Nysted wind farm Near Rødsand, 10 km south of the coast of Lolland, Denmark Construction Projects Key Figures of the wind farm • Number of turbines: 72 • Contractor: Bonus Energy • Generator output per turbine: 2.3 MW • Height of hub above sea level: 68.8 m • Rotor diameter: 82.4 m • Construction period: 2002-2003 33 kV interconnecting network • 48 km 3-core 33 kV XLPE submarine cable • Built-in fibre optic cables for thermal monitoring and communication • Various capacity • Contractor: ABB Cables 132/33 kV offshore substation The substation contains: • 180 MVA triple-winding transformer 132/33/33 kV. The transformer is oil-cooled with intensified fan cooling • 132 kV circuit-breaker (GIS unit) • 33 kV busbar comprising 12 bays • 400 kVA transformer 33/0.4 kV for local power supply • 90 kVA diesel generator as a backup for local power supply • Local distribution equipment including batteries, rectifiers and distribution boards • Boards for SRO and measuring equipment • Main Contractor: Bladt Industries On shore grid connection • 3 * 18 km single core 132 kV XLPE 1200 mm2 Al • Fibre optic cables for thermal monitoring and communication Extensions at the grid connection point, Radsted 132 kV substation • 40 MVAr shunt reactor • 132 kV Bus bar protection • Combined fault and acquisition recorder • The offshore 132/33 kV substation Sketch of the basic substation platform The enclosed substation platform on site Offshore grid connection and reinforcements • 22 km 3-core 132 kV XLPE 760 mm2 Cu submarine cable with built-in fibre optic cables for thermal monitoring and communication • Non-magnetic sea armouring, stainless steel and PE FILM Wind turbine in general Wind turbine concepts Background – observed problems • After building Nysted Havmøllepark (NHP), SEAS has measured disturbing variations in the voltage in Radsted (RAD). • At full wind production NHP consumes approx. 50 Mvar from RAD, giving a voltage dip of 5-8 kV. Radsted 132 kV, Start: 18/11-04 kl. 3:00 Local time. White: Voltage i kV Red: Active Power [MW] Green: Reactive Power [Mvar] Dynamic simulations no SVC SVC +/- 50 Mvar SVC +/- 100 Mvar Distributed temperature measurements Hot Spot after 2 days with high production Location of HOT SPOT What is Reactive Power ? • • • • • • Electric Current and Magnetic Fields Current and voltage in a reactor Current and voltage in a Condenser Basic proporties of the AC Grid Relation to reactive power ? General principle to Power systems Voltage Control Electric Current and Magnetic Fields Current flow S N Seen from the side Magnetic compass S Seen from above N Current(I) and voltage(V) in a + V reactor reactor + U Magnetic field - V U I A Reactor is an electric conductor Which is wound in loops. If a current is flowing in the conductor, the current will circulate around an area, limited by the Conductor. This will create a magnetic field, which will counteract the current. I tid The voltage jumps to the maximum level, the current grows from zero, The current follows after the voltage. Strøm og spænding i en kondensator kondensator + U En kondensator består Af to elektrisk ledende plaDer placeret tæt sammen, Men isoleret fra hinanden. + V I - V U I tid Strømmen springer straks til maksimalværdien, spændingen vokser op fra nul, Strømmen kan siges at være foran spændingen. Grundlæggende egenskaber i vekselstrømsnet Transmissionsnet Resistans Elforbrug spole spole G kondensatorer Resistans Hvad har alt det med reaktiv effekt at gøre ? Hvad er betydningen af reaktiv effekt ? • Den reaktive effekt er den effekt, der lagres som magnetisk og elektrisk energi i magnetfelterne og de elektriske felter. • Den reaktive effekt skaber spændingsfald og spændingsstigninger i transmissionsnettet. • For at kontrollere spændingerne skal man tilføre eller udtage reaktiv effekt de rigtige steder i transmissionsnettet Overordnet princip for elsystemets spændingskontrol Formasket 400 og 132 kV net G Formasket 50 eller 30 kV net 10 kV radialer Kobbelbare Reaktive komponenter
Similar documents
EU`s Borgmesterpagt
energien. Der vil i 2013 blive fokus på, hvordan skolerne benytter systemerne, hvordan kan det styrkes og kan der skabes en adfærdsændring på skolerne. Samarbejdet/dialogerne med skolerne skal være...
More information