Diapositiva 1
Transcription
Diapositiva 1
. com/raulespert AMOR Y SEXO EN EL CEREBRO (Estudios de Neuroimagen) Hospital Clinic Universitari Hospital “Dr. Peset” Hospital Arnau de Vilanova Facultad de Psicología Lesión perisilviana derecha con afectación insular que capta gadolinio de forma heterogénea Planificación quirúrgica con una incisión (trazos transversales cortos) y proyección del tumor dibujada sobre la piel. Test de denominación y memoria semántica A y B corresponden al valle silviano y C al giro supramarginal Hospital Clinic Universitari (Valencia) UNIDAD DE NEUROPSICOLOGÍA HOSPITAL CLINICO UNIVERSITARIO (VALENCIA) Enamoramiento y cerebro La evolucion del sexo: 1941-2015 REALDOLLS .COM REALDOLLS .COM REALDOLLS .COM Si tienes entre 18-40 años, te invitamos a participar en una investigación sobre amor y función cognitiva dirigida por el Dr. Raúl Espert (Dpto. de Psicobiología, UV). Si estás interesado/a envianos un mail a: tesisamor@gmail.com Te explicaremos las condiciones del estudio y su privacidad AMOR Y SEXO EN EL CEREBRO 1. 2. 3. 4. 5. 6. 7. 8. 9. Introducción histórica: Sexo escondido Resonancia magnética: Sexo en el pubis Bases de la Resonancia magnética funcional y el PET “Miembros” fantasma: Sexo en el cerebro Cerebro enamorado Sexo en el cerebro masculino Sexo en el cerebro femenino Sexo en el cerebro: Diferencias de sexo Conclusiones. Revisiones y metaanálisis Los beneficios del sex o: Los beneficios del sex o Menor riesgo de ataques cardiacos Ejercicio aeróbico (200 Kcal/sesión) Menos depresiones ( serotonina) Protección frente al cáncer Potenciación del sistema inmunológico (Iga) Prevención de la fobia social Alivio para el dolor Potenciar las defensas Terapia de antienvejecimiento Antiestrés SEXO EN EL CEREBRO: ¿Es cierto que los hombres solo piensan en “eso”?: (“en el mundo solo hay dos cosas importantes: una es el sexo y la otra no me acuerdo”) Woody Allen HD Ong Hai, B. G. & Odderson, I. R. (2000) Involuntary masturbation as a manifestation of stroke-related alien hand syndrome. American Journal of Physical Medicine and Rehabilitation; 79(4): 395-398. Un hombre de 73 años de edad acudió a urgencias ya que manifestaba debilidad en toda la parte izquierda de su cuerpo. Se le diagnosticó una isquemia transitoria pero producto de un infarto cerebral que había sufrido algunos meses antes presentaba algunos daños a nivel cerebral. A los cuatro días, el paciente comenzó a manifestar una conducta totalmente anormal: su mano izquierda cobraba vida y comenzaba a masturbarlo. El hombre no tenía una historia de exhibicionismo anterior ni había presentado jamás hábitos masturbatorios excesivos por lo cual se avergonzaba de realizar este actividad en público pero no era capaz de detener su mano, experimentando gran frustración. Al cabo de un mes, como suele suceder con la mayoría de estos casos, la mano ajena va haciendo sus movimientos más precisos por lo que el conflicto intermanual se hizo evidente. La mano izquierda comenzó a ejecutar otras acciones como mover las cosas y tirarlas o intentar realizar las mismas tareas que emprendía la mano derecha. A primera vista esta dificultad podría parecer una nimiedad pero basta imaginarnos que para destapar un pomo necesitamos de la coordinación de ambas manos: mientras una sostiene el pomo la otra lo destapa; si las dos manos intentasen ejecutar la misma acción una tarea aparentemente tan sencilla se convertiría en un verdadero dolor de cabeza. Los médicos del Hospital St. Charles y del Centro de Rehabilitación de Port Jefferson en Nueva York afirman que es un caso muy particular del Síndrome de la Mano Ajena. Por supuesto, más allá de lo curioso del caso, lo cierto es que una patología de este tipo provoca no solo dificultades físicas sino que tienen grandes repercusiones psicológicas en tanto compulsan al paciente a restringir sus relaciones sociales para prevenir los actos vergonzosos. Horizontal, transverse view. T2weighted magnetic resonance images of the brain showed increased signal intensity over the right medial frontal lobe and anterior corpus callosum area (see arrow). There is also increased signal intensity over the periventricular areas consistent with small vessel ischemic disease. De su trabajo de 1953 sobre el Comportamiento sexual en la mujer, Kinsey realizó 5.490 entrevistas a mujeres de raza blanca de las cuales el autor deduce que: Un 13% de mujeres habían experimentado algún orgasmo homosexual a partir de la adolescencia. Sólo un 3% de las mujeres habían sido predominantemente homosexuales durante un período de 3 años como mínimo. Las mujeres, en contraste con los hombres, no solían ser promiscuas y tenían sus relaciones homosexuales sólo con 1 ó 2 compañeras en el 71% de los casos. Sobre la base de más de 5.300 entrevistas personales con hombres de raza blanca, Kinsey llegó a una serie de conclusiones acerca de la homosexualidad (1948) El 37% de los hombres entrevistados experimentaron alguna vez un orgasmo homosexual a partir de la adolescencia. El 13% de los varones sintieron deseos homosexuales, sin que se produjera por ello contacto físico alguno. El 25% de ellos tuvieron experiencias homosexuales no incidentales entre las edades de 16 a 55 años. El 18% mantuvieron igual número de relaciones heterosexuales que homosexuales durante un período mínimo de 3 años, entre las edades de 16 a 55 años. El 10% tuvo una conducta estrictamente homosexual durante un período de 3 años como mínimo y entre las edades ya reseñadas. Sólo un 4% manifestaba una conducta estrictamente homosexual durante toda su vida y ya manifiesta durante la adolescencia. La homosexualidad existía a todos los niveles sociales y ocupacionales. Juntos estudiaron la respuesta sexual humana, realizando un exhaustivo estudio en el que participaron diferentes parejas, tras su observación y análisis de los datos obtenidos de los encuentros sexuales de las personas que participaron en el estudio, diferenciaron 4 fases en la respuesta sexual humana: excitación, meseta, orgasmo y resolución. Mediante el empleo de electroencefalogramas, electrocardiogramas, cámaras cinematográficas, pletismógrafos y fotopletismógrafos, estudiaron la fisiología y la anatomía de la actividad sexual. Como resultado de sus investigaciones publicaron un exitoso libro titulado La respuesta sexual humana (1966), además de Incompatibilidad sexual humana (1970), Homosexualidad en perspectiva (1979) y El vínculo del placer (1975), que refutaban una serie de opiniones muy extendidas acerca del orgasmo, la impotencia, la frigidez y la homosexualidad. Junto con Robert C. Kolodny publicaron La sexualidad humana (1982) y Heterosexualidad (1994). AMOR Y SEXO EN EL CEREBRO 1. 2. 3. 4. 5. 6. 7. 8. 9. Introducción histórica: Sexo escondido Resonancia magnética: Sexo en el pubis Bases de la Resonancia magnética funcional y el PET “Miembros” fantasma: Sexo en el cerebro Cerebro enamorado Sexo en el cerebro masculino Sexo en el cerebro femenino Sexo en el cerebro: Diferencias de sexo Conclusiones. Revisiones y metaanálisis 2. ANÁLISIS “IN VIVO” 2.2 RESONANCIA MAGNÉTICA (R.M.) Abstract 1. ANÁLISIS POST-MORTEM: 1.1. MACROSCOÓPICO 1.2. MICROSCÓPICO TEMA 1 2. ANÁLISIS “IN VIVO”: 2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA 2.2. RESONANCIA MAGNÉTICA (R.M.) 2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA) 2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL British Medical Journal, Dec 18, 1999 Objective: To find out whether taking images of the male and female genitals during coitus is feasible and to find out whether former and current ideas about the anatomy during sexual intercourse and during female sexual arousal are based on assumptions or on facts. Design: Observational study. Setting: University hospital in the Netherlands. Methods: Magnetic resonance imaging was used to study the female sexual response and the male and female genitals during coitus. Thirteen experiments were performed with eight couples and three single women. Results: The images obtained showed that during intercourse in the "missionary position" the penis has the shape of a boomerang and 1/3 of its length consists of the root of the penis. During female sexual arousal without intercourse the uterus was raised and the anterior vaginal wall lengthened. The size of the uterus did not increase during sexual arousal. Conclusion: Taking magnetic resonance images of the male and female genitals during coitus is feasible and contributes to understanding of anatomy. 2. ” ANÁLISIS “IN VIVO” 2.2 RESONANCIA MAGNÉTICA (R.M.) 1. ANÁLISIS POST-MORTEM: 1.1. MACROSCOÓPICO 1.2. MICROSCÓPICO TEMA 1 2. ANÁLISIS “IN VIVO”: 2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA 2.2. RESONANCIA MAGNÉTICA (R.M.) 2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA) 2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL Magnetic resonance imaging of male and female genitals during coitus and female sexual arousal. Willibrord Weijmar Schultz, Pek van Andel, Ida Sabelis, Eduard Mooyaart British Medical Journal, Dec 18, 1999 El orgasmo femenino 2. ANÁLISIS “IN VIVO” 2.2 RESONANCIA MAGNÉTICA (R.M.) Magnetic resonance imaging of male and female genitals during coitus and female sexual arousal. Willibrord Weijmar Schultz, Pek van Andel, Ida Sabelis, Eduard Mooyaart British Medical Journal, Dec 18, 1999 1. ANÁLISIS POST-MORTEM: 1.1. MACROSCOÓPICO 1.2. MICROSCÓPICO TEMA 1 2. ANÁLISIS “IN VIVO”: 2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA 2.2. RESONANCIA MAGNÉTICA (R.M.) 2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA) 2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL SEXO EN EL CEREBRO 1. 2. 3. 4. 5. 6. 7. 8. 9. Introducción histórica: Sexo escondido Resonancia magnética: Sexo en el pubis Bases de la Resonancia magnética funcional y el PET “Miembros” fantasma: Sexo en el cerebro Cerebro enamorado Sexo en el cerebro masculino Sexo en el cerebro femenino Sexo en el cerebro: Diferencias de sexo Conclusiones. Revisiones y metaanálisis 2. ANÁLISIS “IN VIVO” 1. ANÁLISIS POST-MORTEM: 1.1. MACROSCOÓPICO 1.2. MICROSCÓPICO TEMA 1 2. ANÁLISIS “IN VIVO”: 2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA 2.2. RESONANCIA MAGNÉTICA (R.M.) 2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA) 2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL RESONANCIA MAGNÉTICA FUNCIONAL (RMf) 2.2 RESONANCIA MAGNÉTICA (R.M.) Historia: Primera RMf (1992): Técnica BOLD: aprovecha el aumento local de la oxihemoglobina producido por la activación cerebral (arterialización de sangre venosa) dando una señal magnética. REPOSO ACTIVACIÓN Hemoglobina 2. ANÁLISIS “IN VIVO” MÉTODO FUNCIONAL (REGISTRO METABÓLICO) 1. ANÁLISIS POST-MORTEM: 1.1. MACROSCOÓPICO 1.2. MICROSCÓPICO TEMA 2. ANÁLISIS “IN VIVO”: 2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA 2.2. RESONANCIA MAGNÉTICA (R.M.) 2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA) 2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL 2.2 RESONANCIA MAGNÉTICA (R.M.) RESONANCIA MAGNÉTICA FUNCIONAL (RMf) Técnica: Cambios en la oxigenación de la sangre venosa como consecuencia de la actividad cerebral (lenguaje, atención, percepción, praxias, imaginación, etc.). La técnica consiste en la repetición alternante de una actividad motora, sensorial o cognitiva (“on”: hacer una determinada actividad, “off”: relajación o actividad control). 1 2. ANÁLISIS “IN VIVO” MÉTODO FUNCIONAL (REGISTRO METABÓLICO) 1. ANÁLISIS POST-MORTEM: 1.1. MACROSCOÓPICO 1.2. MICROSCÓPICO TEMA 2. ANÁLISIS “IN VIVO”: 2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA 2.2. RESONANCIA MAGNÉTICA (R.M.) 2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA) 2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL 2.2 RESONANCIA MAGNÉTICA (R.M.) TOMOGRAFÍA DE EMISIÓN DE POSITRONES (TEP) 1 2. ANÁLISIS “IN VIVO” MÉTODO FUNCIONAL (REGISTRO METABÓLICO) 1. ANÁLISIS POST-MORTEM: 1.1. MACROSCOÓPICO 1.2. MICROSCÓPICO TEMA 2. ANÁLISIS “IN VIVO”: 2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA 2.2. RESONANCIA MAGNÉTICA (R.M.) 2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA) 2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL 2.2 RESONANCIA MAGNÉTICA (R.M.) TOMOGRAFÍA DE EMISIÓN DE POSITRONES (TEP) Historia: Desarrollada en 1975, trata de determinar qué estructuras cerebrales se relacionan con una función cognitiva (funcional). Técnica: Administración de un radioisótopo emisor de positrones (fotones duales) integrado en una molécula biológica (flúor, carbono, glucosa, nitrógeno, oxígeno, etc.) (11C, 13N, 15O, 18F) (18-fluoro-desoxiglucosa: 18-FDG). 1 SEXO EN EL CEREBRO 1. 2. 3. 4. 5. 6. 7. 8. 9. Introducción histórica: Sexo escondido Resonancia magnética: Sexo en el pubis Bases de la Resonancia magnética funcional y el PET “Miembros” fantasma: Sexo en el cerebro Cerebro enamorado Sexo en el cerebro masculino Sexo en el cerebro femenino Sexo en el cerebro: Diferencias de sexo Conclusiones. Revisiones y metaanálisis Plasticidad cerebral Plasticidad cerebral SEXO EN EL CEREBRO 1. 2. 3. 4. 5. 6. 7. 8. 9. Introducción histórica: Sexo escondido Resonancia magnética: Sexo en el pubis Bases de la Resonancia magnética funcional y el PET “Miembros” fantasma: Sexo en el cerebro Cerebro enamorado Sexo en el cerebro masculino Sexo en el cerebro femenino Sexo en el cerebro: Diferencias de sexo Conclusiones. Revisiones y metaanálisis Enamoramiento y cerebro Activity elicited when subjects viewed pictures of their loved partner compared to that produced when they viewed pictures of their friends. The activity, restricted to only a few areas, is shown in sagittal (x = -4 mm), transverse (z = -6 mm), and coronal sections (y = 0 mm) superimposed on slices taken through a template brain in (a) and in glassbrain projections in (b). ac, anterior cingulate; cer, cerebellum; I, insula; hi, posterior hippocampus and the coronal section activity in caudate nucleus (C) and putamen (P). Data are from a SPM random effects group analysis of 17 subjects (glassbrains: p < 0.001 (Z = 3.69), sections: p < 0.005 (Z = 2.92), both uncorrected with an extent threshold of 6 voxels. (c) An independent component analysis applied to single subjects isolated activity in the insula and the anterior cingulate cortex separately, and in 9 of 11 the components did not involve any other regions. Shown are two independent components from a single subject, in which the one containing the insula included also a more frontal region Bartels: Neuroreport, Volume 11(17).November 27, 2000.3829–3834 Deactivations revealed by a comparison of brain activity elicited when subjects viewed pictures of their friends with that produced when they viewed pictures of their loved partner. Cortically, deactivations were right-lateralized within the prefrontal cortex, the middle temporal gyrus and the parietal cortex, as is apparent (a) in the projections onto the cortical surfaces in side and front views of a template brain and (b) in glassbrain projections. (c) The sagittal section (x = 4 mm) shows deactivations in the posterior cingulate gyrus (pc) and in the medial prefrontal cortex (mp). (d) The coronal section (y = -8 mm) shows deactivation in the left amygdaloid region (A). Thresholding: as in Fig. 3, with (a) thresholded as (b). Bartels: Neuroreport, Volume 11(17).November 27, 2000.3829–3834 Amor, sexo y tacto Romantic love: An fMRI study of a neural mechanism for matechoice Helen Fisher, Arthur Aron, Lucy L. Brown. J Comp. Neurol. Vol.493, 1 Pages: 58-62 Group activation regions detected as individuals looked at an image of their beloved compared to an image of an acquaintance (see Aron et al., for details). The regions of activation (white) are from anatomically normalized data and are superimposed on a template brain from SPM99. A: The right ventral tegmental area (arrow) was activated. B: The right caudate nucleus (arrow) was activated. Data from other studies of mammals suggest that these regions are involved in reward and motivation functions. Reward, Motivation, and Emotion Systems Associated With Early-Stage Intense Romantic Love Arthur Aron, Helen Fisher, Debra J. Mashek, Greg Strong, Haifang Li and Lucy L. Brown J Neurophysiol 94: 327-337, 2005 Caudate nucleus activation, positive-minus-neutral contrast. A: an enlargement of an axial section through the caudate nucleus from the MNI T1 template that averaged 305 subjects. Black dots show peak activation points for each participant in the present study. Activation points were near the medial edge of the caudate in the vicinity of Talairach coordinates 12, 11, 14 (dark gray areas are lateral ventricles). B: a sagittal section from an individual participant shows the extent of the posterior dorsal caudate activation (arrow). Images in this and all following figures are presented in radiologic convention (participants’ left on the right side of the image). C, caudate. Reward, Motivation, and Emotion Systems Associated With Early-Stage Intense Romantic Love Arthur Aron, Helen Fisher, Debra J. Mashek, Greg Strong, Haifang Li and Lucy L. Brown J Neurophysiol 94: 327-337, 2005 Group mean data and an individual subject show the localized ventral midbrain effect. A: positive-minus-neutral contrast. B: positive-minus-countback contrast. Activity in the right VTA region (arrows) specifically increased in response to the positive image compared with both control conditions. The regional activation is highly localized to the medial A10 dopamine cell region with little inclusion of the medial substantia nigra. C: time-course of the BOLD response (means ± SE, 0 = mean of all conditions) for a voxel in the right VTA shows that the signal increased to the positive image (solid line) relative to the others; the signal during control stimuli presentations decreased relative to the positive image, especially for the countback task (shortdash line; 40-s countback task shown). Long-dash line, neutral stimulus. D: in a single subject, a sagittal view shows the anteroposterior extent of the right VTA activation (arrow). E: in the same subject, a coronal view of the right VTA activation (arrow) shows how it is limited to the medial midbrain. Locations of responses shown in the graph are given in Talairach coordinates. L, left side; VTA, ventral tegmental area. RESULTADOS OBJETIVOS: Comparar la conectividad funcional en reposo mediante RMf (DMN) entre un grupo de 34 personas enamoradas (A), 32 con fracaso sentimental reciente (FSR) y 32 solteros/as que nunca se enamoraron (S) RESULTADOS: ->Actividad en cíngulo anterior izdo. del grupo A ->Conectividad en el grupo A en la red de la emoción, refuerzo y motivación (ínsula, caudado, amígdala y núcleo accumbens). -> Actividad del grupo A en la red de cognición social (unión T-P, cíngulo posterior, corteza prefrontal medial, parietal inferior, precúneo y lóbulo temporal. -Una persona enamorada tiene mayor conectividad entre las regiones del cerebro asociadas con la recompensa, la motivación, la regulación de la emoción y la cognición social. SEXO EN EL CEREBRO 1. 2. 3. 4. 5. 6. 7. 8. 9. Introducción histórica: Sexo escondido Resonancia magnética: Sexo en el pubis Bases de la Resonancia magnética funcional y el PET “Miembros” fantasma: Sexo en el cerebro Cerebro enamorado Sexo en el cerebro masculino Sexo en el cerebro femenino Sexo en el cerebro: Diferencias de sexo Conclusiones. Revisiones y metaanálisis Subjective responses to the sexual and neutral experimental conditions along seven dimensions: (1) beauty of the women represented on the photographs; (2) perceived desire to engage in sexual behavior; (3) perceived degree of erection; (4) feeling of pleasure; (5) feeling of displeasure; (6) interest for photographs; (7) perceived tenderness. Notes: Means and standard errors of the mean have been calculated over the two runs of each experimental condition. Bars are standard errors. *P < 0.05; **P < 0.01; †P < 0.001; ‡P < 0.0001. NeuroImage Volume 20, Issue 2, October 2003, Pages 855-869 Brain processing of visual sexual stimuli in healthy men: a functional magnetic resonance imaging study Mouras et al. Brain areas showing a higher signal in response to sexual than to neutral photographic stimuli. Notes: (A) Right view of the brain: a = parietooccipital sulcus; b = superior parietal lobule; c = postcentral gyrus; d = precentral gyrus. (B) Left view of the brain: a′ = superior occipital gyrus; b′ = superior parietal lobule; c′ = inferior parietal lobule; d′ = precentral gyrus; e′ = intraparietal sulcus. For A and B, height threshold: P < 0.05, corrected for multiple comparisons. Average penile turgidity and button presses for 11 subjects for video 1. Button A was pressed to indicate sexual interest, Button B was pressed to indicate onset of erection and Button C was pressed to indicate loss of interest. The onset and durations of the three different video conditions, erotic, sports and relaxation (R), are indicated below the turgidity trace. Brain, Vol. 125, No. 5, 10141023, May 2002 Brain activation and sexual arousal in healthy, heterosexual males Bruce A. Arnow et al. Average penile turgidity and button presses for 11 subjects for video 2. Button responses A, B and C were as described in Fig. 1. Brain, Vol. 125, No. 5, 10141023, May 2002 Brain activation and sexual arousal in healthy, heterosexual males Bruce A. Arnow et al. Turgidity-correlated brain activations obtained from a random effects analysis of 11 subjects. Red–yellow colour scale indicates regions that exhibit significant correlations with behavioural measures of penile turgidity. These colour maps have been superimposed on the average T2-weighted and stereotaxically normalized brain volume. (A) SPM99 surface reconstruction depicting projections of activations on the right side of the brain. (B) Axial section depicting the largest brain activation observed in this experiment in the right insula and claustrum. (C) Axial section illustrating activation in left caudate/putamen and right middle temporal/middle occipital gyri (BA 37/19). (D) Axial section depicting cingulate gyrus activation. (E) Coronal section illustrating activation in the right hypothalamus. THE JOURNAL OF UROLOGY 2006, Vol. 176, 679-683, Schematic of experimental design. Three categories of audiovisual stimuli are represented as gray box— sexually explicit clip (S), white box—nonsexual neutral clip (N) and mosaic box—dynamic mosaic image control clip (M). Each video was presented in random order and lasted 3 minutes. PET scanning is indicated by striped bars. When each clip was started PET scanning was initiated simultaneously regardless of erectile status. Durations of penile erection are indicated by black boxes below scanning bars. Typical graph of RigiScan® Plus data indicating rigidity (Rig) and tumescence (Tum) of tip (upper 2 graphs) and base (lower 2 graphs) of penis shows percentage of linear displacement of loops due to constant force Tsojimura et al. The Journal of Urology, 2006, 176: 679-683 and changes in penile circumference. Neocortical activation for S-M contrast. Large regions of prominently increased activation were identified in middle occipital gyrus (BA19) in right hemisphere and inferior occipital gyrus (BA19) in left hemisphere. Most activated locus was identified in right cerebellar vermis. Tsojimura et al. The Journal of Urology, 2006, 176: 679-683 Neocortical activation for M-S contrast. Activity in sulcus (BA17), inferior frontal gyrus (BA47), inferior parietal gyrus (BA7) and medial frontal gyrus (BA8) was seen only in left hemisphere. Tsojimura et al. The Journal of Urology, 2006, 176: 679-683 Schema of the experimental conditions and monitoring of penile rigidity to investigate the plateau phase. (A) Three categories of audiovisual stimuli are represented as follows: gray box, sexually explicit clip (S); white box, non-sexual control clip (N); mosaic box, dynamic mosaic control clip (M). Videos were presented in random order and lasted 10 min. (B) PET scans are indicated by striped bars. All scans under conditions of sexual arousal (S condition) were indicated 7 min after the beginning of the each clip. The durations of penile erection are indicated by block boxes below the PET scan diagram. (C) Typical chart of RigiScan Plus® data indicating rigidity (Rig) and tumescence (Tum) of the tip of the penis shows the percentage of linear displacement of the loops due to constant force (upper graph) and changes in penile circumference (lower graph). Miyagawa et al., NeuroImage 36 (2007) 830–842 Neocortical activation during the presentations of non-sexual stimuli for Np–Mp and Mp–Np contrasts. Non-sexual video presentations activated the anterior/posterior auditory temporal cortex (BA21/22) and the extrastriate cortex (BA19) bilaterally but in a right-dominant manner. The most prominent activation was observed in the right anterior auditory cortex. The inferior temporal gyrus (BA20) in the left hemisphere, which may be associated with neural processing of visual information, was particularly activated. EC: extrastriate cortex; Ant. AC: anterior auditory cortex; Post. AC: posterior auditory cortex; ITG: inferior temporal gyrus. Miyagawa et al., NeuroImage 36 (2007) 830–842 Activation of the ventral right putamen. (A) Whole-brain activation in the Sp– Mp contrast is shown in the sagittal, coronal and horizontal orientations. Increased rCBF in the ventral right putamen is superimposed on the standard MRI. (B) rCBF of the ventral right putamen under the M vs. S condition in the excitement phase (Me vs. Se) and in the plateau phase (Mp vs. Sp) of the psychosexual cycle. In the excitement phase, no rCBF change was observed under the non-sexual or sexual condition. However, rCBF of the ventral right putamen was significantly increased under the sexual condition compared to the non-sexual vcondition (*). Miyagawa et al., NeuroImage 36 (2007) 830–842 The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193 Brain Activation during Human Male Ejaculation Gert Holstege, et l. Protocol for the ejaculation condition. The bold black line shows a typical time-activity curve. Vertical lines indicate time frames of 10 sec. Ejaculation took place within the early phase of the time-activity curve, as indicated by gray shading. kcps, Kilocounts per second. Brain Activation during Human Male Ejaculation Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C. Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone Reinders The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193 So-called glass brains for ejaculation minus stimulation. Activations are shown in a sagittal, coronal, and horizontal orientation Brain Activation during Human Male Ejaculation Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C. Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone Reinders The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193 Strong activation in the mesodiencephalic transition zone. Increased rCBF is represented in coronal sections (a-h) through the brain. The red lines on the glass brain on the left indicate the orientation and location of the sections. Activations are superimposed on the averaged MRI of the volunteers. The activated cluster contains the VTA (sections a-d). The midline thalamic nuclei are located slightly more caudally (sections d-f). The lateral central tegmental field (lctf; sections c-f) and the zona incerta are located lateral to this area. The activated region extends dorsally into the intralaminar nuclei (intralam. nucl.; sections d-h) and the ventroposterior thalamus. Note also the activation in the medial pontine tegmentum (pt; sections g and h). y = -14 (means 14 mm posterior to the anterior commissure). r, Right side. Brain Activation during Human Male Ejaculation Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C. Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone Reinders Activations in the basal ganglia and the anterior nucleus of the thalamus and absence of activation in the hypothalamus. Increases in rCBF are superimposed on the averaged MRI of the volunteers and are depicted in coronal sections (see the red lines on the glass brain on the left). Activations are found in the lateral putamen and perhaps the laterally adjoining claustrum and insula (cp; sections a-c). Note that in sections c and d, the anterior nucleus (na) of the thalamus is on the right side. Sections (b-d) demonstrate that in the hypothalamus (hyp) no activation is found. y = -6 (means 6 mm posterior to the anterior commissure). r, Right side. Sagittal view of the activations in midline cortical structures, the mesodiencephalic transition zone, and the cerebellum. Increased rCBF is represented in sagittal sections, of which the location is indicated by the red lines on the glass brain on the left. Activations are superimposed on the averaged MRI of the volunteers. In b and c, activation in the secondary visual cortex (BA 18) and posterior cingulate/precuneus (BA 23/31), respectively, can be found. Note in sections a-c that the activation in the mesodiencephalic transition zone (mes-di) extends from the rostral midbrain into the ventral parts of the caudal thalamus. x = -12 (means 12 mm left to the intercommissural line). Activations in the cerebellum, brainstem, and occipital cerebral cortex. Increases in rCBF are superimposed on the averaged MRI of the volunteers and are depicted in oblique (45°) sections (see the red lines on the glass brain on the left). Cerebellar activations can be observed in the vermis (v; sections b-h), the cerebellar hemispheres (ch; sections d-h), and the deep cerebellar nuclei (dcn; sections b-d). Note that activation in the cerebellar hemisphere is more pronounced on the left than on the right side. Brainstem activation is present in the medial pontine tegmentum (section a), the lateral pontine tegmentum (sections b and c), and in a region possibly involving the dorsal vagal nuclei and the solitary complex (sections f and g). pt, Pontine tegmentum; r, right side Brain Activation during Human Male Ejaculation Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C. Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone Reinders The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193 Deactivation in the anterior part of the left medial temporal lobe, comprising parts of the amygdala and entorhinal cortex (entorhin.). Decreases in rCBF are superimposed on the averaged MRI of the volunteers and are depicted in coronal sections (see the red lines on the glass brain on the left). The significance threshold was p < 0.001 (uncorrected for multiple comparisons). y = -2 (means 2 mm caudal to the anterior commissure). Brain Activation during Human Male Ejaculation Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C. Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone Reinders The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193 Activations in the cerebral cortex rendered onto a standard anatomical template (SPM99). Note that the cortical activations are almost exclusively on the right side. Brain Activation during Human Male Ejaculation Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C. Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone Reinders The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193 Human brain activation during sexual stimulation of the penis Janniko R.Georgiadis, Gert Holstege J. Comp. Neurol. (2005) Vol.493, 1 Pages: 33-38 Activations: t-map for stimulation of the erect penis minus rest, depicted in glass brains and superimposed on a standard T1-weighted MRI template (SPM99). The lines on the glass brains show the orientation and location of sections A-C. The t-bar indicates the level of activation in red scaling (t = 0: white, t = 7: dark red). y, anterior-posterior, relative to AC; z, superior-inferior, relative to AC. ht, hypothalamus; SI genital, primary somatosensory cortex, genital part; SII, secondary somatosensory cortex. Human brain activation during sexual stimulation of the penis Janniko R.Georgiadis, Gert Holstege J. Comp. Neurol. (2005) Vol.493, 1 Pages: 33-38 Deactivations: t-map for rest minus stimulation of the erect penis, depicted in glass brains and superimposed on a standard T1-weighted MRI template (SPM99). The lines on the glass brains show the orientation and location of sections A and B. The t-bar indicates the level of deactivation in blue scaling (t = 0: white, t = -7: dark blue). y, anterior-posterior, relative to AC; z, superior-inferior, relative to AC. Fig. 1. An example (subject no. 7) of the time course of penile reaction as recorded by the penile tumescence measuring device. The curve is shown against a schematic of the fMRI acquisition paradigm that consists of six identical epochs, each composed of a sport video clip (light gray), a neutral video clip (white), an erotic video clip (darker shades of gray), and finally, another neutral video clip (white). The vertical bars represent the times of button depression indicating the beginning of subjective interest for the erotic content of images (full line) or the lack of interest (dotted line). Different shades of gray in the erotic video clip sections highlight distinct phases of penile reaction as indicated by the penile tumescence measuring device. Lighter gray: absence of erection (NE); middle gray: rising erection (OE); and darker gray: sustained erection (SE). NeuroImage Volume 26, Issue 4, 15 July 2005, Pages 1086-1096 Dynamics of male sexual arousal: distinct components of brain activation revealed by fMRI Group results: cortical areas that are significantly more active (larger BOLD signal) during erotic as compared to sport visual stimulation with video clips. The map is thresholded at P < 0.01 (Bonferroni corrected) and superimposed on the inflated cortex (light and dark gray indicate gyri and sulci, respectively). Eur J Neurosci. 2008 Jun;27(11):2922-7. Hypothalamus, sexual arousal and psychosexual identity in human males: a functional magnetic resonance imaging study. Brunetti M, Babiloni C, Ferretti A, Del Gratta C, Merla A, Olivetti Belardinelli M, Romani GL. Department of Clinical Sciences and Biomedical Imaging; Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti, Chieti (CH), Italy. mbrunetti@itab.unich.it In a recent functional magnetic resonance imaging study, a complex neural circuit was shown to be involved in human males during sexual arousal [A. Ferretti et al. (2005) Neuroimage, 26, 1086]. At group level, there was a specific correlation between penile erection and activations in anterior cingulate, insula, amygdala, hypothalamus and secondary somatosensory regions. However, it is well known that there are remarkable inter-individual differences in the psychological view and attitude to sex of human males. Therefore, a crucial issue is the relationship among cerebral responses, sexual arousal and psychosexual identity at individual level. To address this issue, 18 healthy male subjects were recruited. Their deep sexual identity (DSI) was assessed following the construct revalidation by M. Olivetti Belardinelli [(1994) Sci. Contrib. Gen. Psychol., 11, 131] of the Franck drawing completion test, a projective test providing, according to this revalidation, quantitative scores on 'accordance/non-accordance' between self-reported and psychological sexual identity. Cerebral activity was evaluated by means of functional magnetic resonance imaging during hard-core erotic movies and sport movies. Results showed a statistically significant positive correlation between the blood oxygen level-dependent signal in bilateral hypothalamus and the Franck drawing completion test score during erotic movies. The higher the blood oxygen level-dependent activation in bilateral hypothalamus, the higher the male DSI profile. These results suggest that, in male subjects, inter-individual differences in the DSI are strongly correlated with blood flow to the bilateral hypothalamus, a dimorphic brain region deeply implicated in instinctual drives including reproduction. Brain activation areas of sexual arousal with olfactory stimulation in men: a preliminary study using functional MRI. Huh J, Park K, Hwang IS, Jung SI, Kim HJ, Chung TW, Jeong GW Journal of Sexual Medicine. 5(3):619-25, 2008 Mar. INTRODUCTION: There have been extensive studies evaluating the functional neuroanatomy of the brain during visual sexual stimulation. However, little data exist concerning the role of olfactory stimulation in human sexuality. AIM: This preliminary study intended to elucidate the brain areas responding to an olfactory sexual stimulus using functional magnetic resonance imaging (fMRI). METHODS: Eight healthy right-handed heterosexual male volunteers (20-35 years of age), having normal olfaction and no brain diseases, were recruited. During fMRI, a women's perfume was given as an olfactory sexual stimulant in an alternating block design with a 30-second stimulation period followed by a 30-second rest. After the fMRI sessions, the participants provided ratings for both the odorant's intensity and perceived arousal. MAIN OUTCOME MEASURES: The study subjects rated the odorant stimulation and perceived sexual arousal response by Likert-type rating scales. Brain activation maps were made by blood oxygenation level-dependent (BOLD)-based fMRI with an echo-planar imaging pulse sequence. RESULTS: Two out of eight subjects experienced "strong" sexual arousal, and three subjects experienced "moderate" arousal during olfactory stimulation, resulting in a mean score of 2.25 on a 4-point scale. The common brain areas activated in response to the odor stimulus in all eight subjects included the insula, the inferior and middle frontal gyrus, and the hypothalamus. The median cingulate gyrus, thalamus, angular gyrus, lingual gyrus, and cerebellar cortex were activated in subjects who had moderate or strong sexual arousal response. CONCLUSION: Olfactory stimulation with women's perfume produces the activation of specific brain areas in men. The brain areas activated differed according to the degree of perceived sexual arousal response. Further studies are needed to elucidate brain activation response according to the different kinds and intensities of olfactory stimulation. NeuroImage Volume 40, Issue 4, 1 May 2008, Pages 1482-1494 1. Main regions of sexual stimulus perception controlling for emotional stimulus perception. (a) The sagittal brain section shows activity in hypothalamus, VS, pgACC and DMPFC to be higher in positive bodily (erotic) than positive nonbodily (emotional) pictures at a corrected threshold of p < 0.001 and a voxel threshold of k > 10. (b) Bar diagrams in the upper panel show percentage signal changes in these regions for all four stimulus conditions (positive (+) and negative (−) bodily and non-bodily stimuli). The lower panel shows corresponding time courses for each condition for the next 8 acquisition time points (16 seconds) after stimulus onset. For DMPFC Specific effects of positive bodily picture viewing. Regions revealed by the conjunction of the contras [positive bodily > positive non-bodily pictures] and [positive bodily > negative bodily pictures] at a corrected threshold of p < 0.05, k > 10. Common activations, reflecting common effects of positive erotic experience controlled for the general display of naked people, were found in pg Anterior Cingulate Cortex, Ventral Striatum, anterior hypothalamus and precuneus NeuroImage Volume 40, Issue 4, 1 May 2008, Pages 1482-1494 Distinguishing specific sexual and general emotional effects in fMRI Subcortical and cortical arousal during erotic picture viewing Martin Walter et al. NeuroImage Volume 40, Issue 4, 1 May 2008, Pages 1482-1494 Distinguishing specific sexual and general emotional effects in fMRI— Subcortical and cortical arousal during erotic picture viewing Martin Walter et al. Correlation of neural responses and subjective ratings. (a) Brain sections show effects of bodily stimuli in the Ventral Sriatum and the anterior cingulate, extending into the VMPFC, that were found to be positively modulated by reported ratings of sexual intensity when entered as parametric regressors (p < 0.001, corrected, k > 10). The lower panel in (b) shows the parametric modulation of responses for one representative subject to illustrate this finding. The modeled changes in hemodynamic responses function are therefore plotted as a function of peristimulus time (PST, stimulus onset at t = 0) and individually reported sexual intensity. The anterior cingulate responded with strongest signal decreases for bodily stimuli with low sexual intensity while highly sexually intense stimuli were correlated with near resting state activity. In the VS in contrast, stimuli with highest sexual intensity ratings elicited highest signal increases NeuroImage Volume 40, Issue 4, 1 May 2008, Pages 1482-1494 Distinguishing specific sexual and general emotional effects in fMRI— Subcortical and cortical arousal during erotic picture viewing Martin Walter et al. Common and interacting regions in sexual and emotional processing. (a) Red voxels indicate regions with a significant interaction in processing of sexual arousal and valence, as revealed by the contrast [positive > negative bodily-emotional pictures] > [positive > negative non-bodily-emotional pictures] at p < 0.05 , corrected, k > 10. Significantly stronger effects in the first contrast were found in the pgACC and bilateral occipital cortex (LOC) (see also Table 4 and bar diagrams in Fig. 1 and Fig. 4 for comparison of neural and behavioral effects in pgACC). Blue voxels indicate significant regions for the conjunction of the contrasts [bodily > non-bodily-emotional pictures] and [non-bodily-emotional > non-bodily neutral pictures] at p < 0.05, corrected, k > 10. In resulting regions, including amygdala, DMPFC, LOC, tectum and thalamus, activity during non-bodily emotion processing was found to be lower than during processing of bodily stimuli but higher than during neutral picture presentation, reflecting rather general effects of emotional intensity. (b) Bar diagrams plot mean percentage signal changes for bodily, non-bodily-emotional and neutral conditions in these common regions. Prelude to passion: limbic activation by "unseen" drug and sexual cues. Childress AR, Ehrman RN, Wang Z, Li Y, Sciortino N, Hakun J, Jens W, Suh J, Listerud J, Marquez K, Franklin T, Langleben D, Detre J, O'Brien CP PLoS ONE 3(1): 1506, 2008. BACKGROUND: The human brain responds to recognizable signals for sex and for rewarding drugs of abuse by activation of limbic reward circuitry. Does the brain respond in similar way to such reward signals even when they are "unseen", i.e., presented in a way that prevents their conscious recognition? Can the brain response to "unseen" reward cues predict the future affective response to recognizable versions of such cues, revealing a link between affective/motivational processes inside and outside awareness? METHODOLOGY/PRINCIPAL FINDINGS: We exploited the fast temporal resolution of event-related functional magnetic resonance imaging (fMRI) to test the brain response to "unseen" (backward-masked) cocaine, sexual, aversive and neutral cues of 33 milliseconds duration in male cocaine patients (n = 22). Two days after scanning, the affective valence for visible versions of each cue type was determined using an affective bias (priming) task. We demonstrate, for the first time, limbic brain activation by "unseen" drug and sexual cues of only 33 msec duration. Importantly, increased activity in an large interconnected ventral pallidum/amygdala cluster to the "unseen" cocaine cues strongly predicted future positive affect to visible versions of the same cues in subsequent off-magnet testing, pointing both to the functional significance of the rapid brain response, and to shared brain substrates for appetitive motivation within and outside awareness. CONCLUSIONS/SIGNIFICANCE: These findings represent the first evidence that brain reward circuitry responds to drug and sexual cues presented outside awareness. The results underscore the sensitivity of the brain to "unseen" reward signals and may represent the brain's primordial signature for desire. The limbic brain response to reward cues outside awareness may represent a potential vulnerability in disorders (e.g., the addictions) for whom poorly-controlled appetitive motivation is a central feature. SEXO EN EL CEREBRO 1. 2. 3. 4. 5. 6. 7. 8. 9. Introducción histórica: Sexo escondido Resonancia magnética: Sexo en el pubis Bases de la Resonancia magnética funcional y el PET “Miembros” fantasma: Sexo en el cerebro Cerebro enamorado Sexo en el cerebro masculino Sexo en el cerebro femenino Sexo en el cerebro: Diferencias de sexo Conclusiones. Revisiones y metaanálisis Neuroscience Letters Volume 449, Issue 1, 2 January 2009, Pages 42-47 The role of the anterior cingulate cortex in women's sexual decision making Heather A. Rupp et al. Areas of activation demonstrating increased activation to low versus high risk potential sexual partners. Brain regions included the bilateral anterior cingulate cortex (ACC), right midbrain (MDBN), pons (PONS), intraparietal sulcus (IPS), and precuneus (PRE). We studied the central representation of pudendal afferents arising from the clitoral nerves in 15 healthy adult female subjects using electrical dorsal clitoral nerve stimulation and fMRI. As a control body region, we electrically stimulated the right hallux in eight subjects. In a block design experiment, we applied bilateral clitoral stimulation and unilateral (right) hallux stimulation. Activation maps were calculated for the contrasts 'electrical dorsal clitoral nerve stimulation versus rest' and 'electrical hallux stimulation versus rest'. A random-effect group analysis for the clitoral stimulation showed significant activations bilateral in the superior and inferior frontal gyri, insulae and putamen and in the postcentral, precentral and inferior parietal gyri (including the primary and secondary somatosensory cortices). No activation was found on the mesial surface of the postcentral gyrus. For the hallux, activations occurred in a similar neuronal network but the activation in the primary somatosensory cortex was localized in the inter-hemispheric fissure. The results of this study demonstrate that the central representation of pudendal afferents arising from the clitoral nerves and sensory inputs from the hallux can be studied and distinguished from each other by fMRI. From the somatotopic order described in the somatosensory homunculus one would expect for electrical clitoral nerve stimulation activation of the mesial wall of the postcentral gyrus. In contrast, we found activations on the lateral surface of the postcentral gyrus ¿Un nuevo homúnculo del clítoris? Neuroimage. 2010 Jan 1;49(1):177-84. Epub 2009 Jul 23. The somatosensory representation of the human clitoris: an fMRI study. Michels L, Mehnert U, Boy S, Schurch B, Kollias S. neuroimage.2007.05.026 Correlation between insula activation and self-reported quality of orgasm in women Stephanie Ortigue, Scott T. Graftona and Francesco Bianchi-Demicheli Blood oxygenation level-dependent (BOLD) responses within the left anterior insula during partner-related conditions (beloved-acquaintance) are significantly correlated with individual mean orgasm scores as measured by the Female Sexual Functioning Index. Correlations are significant on the p < 0.001 level, corrected for multiple comparisons. (A) Peak of activation in the anterior insula correlating with FSFI orgasm scores shown on lateral views of the inflated (A1) and flat (A2) left brain (circle). (B) Sagittal, (C) coronal and (D) axial section through the insula from the MNI T1 template Komisaruk, B.R., & Whipple, B. (2005). Functional MRI of the brain during orgasm in women. Annual Review of Sex Research, 16: 62-86. Hormones and Behavior Volume 56, Issue 1, June 2009, Pages 66-72 Neural activation in the orbitofrontal cortex in response to male faces increases during the follicular phase Heather A. Rupp et al. Increased neural activation in response to male faces during the late follicular versus luteal test sessions in the right medial orbitofrontal cortex (12, 29, − 10). The bar graph shows the difference in activation in this region in response to faces and houses (follicular minus luteal). Statistical parametric maps of average brain activation (shown in hot color) and deactivation (shown in cool color) for all subjects in all menstrual phases in response to the visual sexual stimuli in slices and 3D view. Images are calculated by first a fixed-effects analysis to within-subject data (one subject's three phases) to estimate each subject's mean activation across one menstrual cycle, then a mixed-effects group analyses to the subjects’ means to estimate the group mean activation using FLAME stages 1 + 2. Maps are thresholded by using clusters determined by Z > 2.3 and a (corrected) cluster significance threshold of P = 0.05. Color bar indicates Z values, and the underline anatomical image is FSL's MNI avg152 template. Cortical and subcortical structures can be seen took part in the processing of visual sexual stimuli. SEXO EN EL CEREBRO 1. 2. 3. 4. 5. 6. 7. 8. 9. Introducción histórica: Sexo escondido Resonancia magnética: Sexo en el pubis Bases de la Resonancia magnética funcional y el PET “Miembros” fantasma: Sexo en el cerebro Cerebro enamorado Sexo en el cerebro masculino Sexo en el cerebro femenino Sexo en el cerebro: Diferencias de sexo Conclusiones. Revisiones y metaanálisis HD Asimetrías funcionales: Diferencias de género ¿Qué piensan las mujeres de los hombres y los hombres de las mujeres?: Tópicos y mitos HD NeuroImage Volume 32, Issue 3, September 2006, Pag: 1299-1307 Men and women show distinct brain activations during imagery of sexual and emotional infidelity Hidehiko Takahashi et al. Correlations between the self-ratings of jealousy for emotional infidelity and brain activations. (a) Correlations between selfrating of jealousy and the degree of activation in the insula in EI-N contrast of men. (b) Correlations between self-rating of jealousy and the degree of activation in the posterior STS in EI-N contrast of women. Images showing sex differences in brain activations in response to SIN and EI-N conditions. (a) Compared to women, greater activation in the amygdala in men was shown for SI-N contrast. (b) Compared to women, greater activations in the insula and hypothalamus in men were shown for EI-N contrast. (c) Compared to men, greater activation in the posterior STS in women was shown for EI-N contrast. Human Brain Mapping Volume 16, Issue 1, Pages 1-13, 30 Jan 2002 Areas of brain activation in males and females during viewing of erotic film excerpts Sherif Karama et al. Areas of significant BOLD signal increases in female subjects when brain activation associated with viewing the emotionally neutral film excerpts were subtracted from that associated with viewing the erotic film excerpts. As in Figure 1, height threshold is set at P < 0.001 (z = 3. 09). A: Medial prefrontal cortex, anterior cingulate cortex, thalamus and hypothalamus. B: Orbitofrontal cortex. C: Insular cortex. D: Amygdala. E: Ventral striatum. F: Occipitotemporal cortex. Human Brain Mapping Volume 16, Issue 1, Pages 1-13, 30 Jan 2002 Areas of brain activation in males and females during viewing of erotic film excerpts Sherif Karama et al. Hipotálamo Areas of significant BOLD signal increases in male subjects when brain activation associated with viewing the emotionally neutral film excerpts were subtracted from that associated with viewing the erotic film excerpts. Accompanying sagittal and coronal slices through ROIs are provided for the sake of clarity. Regions of activation are displayed as a Z score-statistical map coded according to the color bars. Height threshold is set at P < 0.001 (z = 3.09). The neurological convention has been chosen for orientation of coronal sections in all figures i.e., left is left and right is right. A: Medial prefrontal cortex, anterior cingulate cortex, thalamus and hypothalamus. B: Orbitofrontal cortex. C: Insular cortex. D: Amygdala. E: Ventral striatum and hypothalamus. F: Occipitotemporal cortex. Schematic overview of the experimental set-up of the male and female studies. A: The scan order differed between men and women. Note that in women the three orgasm attempts were scheduled at the end of the experiment (scans 6–8), whereas men attempted to attain orgasm twice, namely once in the middle (scan 4) and once at the end (scan 8) of the experiment. B: The rhythm of the [15O]-H2O PET-protocol. During the eight minute interscan interval there was sufficient time to prepareorgasm. C: Orgasm was aimed at the period 20–60 s after tracer injection (indicated by the dashed lines). Misc, miscellaneous, Org, orgasm attempt; Stim, sexual genital stimulation Georgiadis et al. Human Brain Mapping, 2009, 30: 3089-3101 Men and women compared during tactile sexual genital stimulation. A: Genital stimulation-related effects were assessed by comparing scans of sexual tactile genital stimulation with scans of a non-sexual passive resting state. Green shading indicates clusters more activated in men than in women and red shading clusters more activated in women than in men. Shared activations are depicted in ‘‘hot’’ metal shading, shared deactivations in blue shading. The threshold for all rCBF changes depicted in the figure is P < 0.001 (uncorrected for multiple comparisons), corresponding to t 5 3.15. Sections are lined-up from anterior (left section) to posterior(right section), with the distance to the anterior commissure (in mm) indicated in the right top corner. B: Parameter estimates were calculated for identified clusters using the region of interest analysis tool MarsBar Each boxplot depicts the percentage signal change in a particular region relative to its mean signal over all conditions for men (green) and women (pink). The color of the anatomical label indicates, for the comparison STIM vs. REST, whether a region was activated more in men than in women (green), more in women than in men (pink), or showed an effect in both gender groups (orange, activation; blue, deactivation). Variance is indicated by 90% confidence interval bars. IPL-PPC, inferior parietal lobule, posterior parietal cortex; IPLSA2, inferior parietal lobule, somatosensory area 2; L, left hemisphere; MI/PMC, primary motor cortex and premotor cortex; MISC,miscalleneous condition; ORG, orgasm condition; PMC, premotor cortex; rCBF, regional cerebral blood flow; REST, nonsexual resting state condition; t, t value; SII, secondary somatosensory cortex; STIM, sexual tactile genital stimulation condition; VOT, ventral occipitotemporal cortex. Georgiadis et al. Human Brain Mapping, 2009, 30: 3089-3101 Men and women compared during orgasm. A: Orgasm-related effects were assessed by comparing scans of orgasm with scans of sexual tactile genital stimulation. Green shading indicates clusters more activated in men than in women and red shading clusters more activated in women than in men. Shared activations are depicted in ‘‘hot’’ metal shading, shared deactivations in blue shading. The threshold for all rCBF changes depicted in the figure is P < 0.001 (uncorrected), corresponding to t 5 3.15.Sections are lined-up from anterior (left section) to posterior (right section), with the distance to the anterior commissure (in mm) indicated in the right top corner. B: Parameter estimates were calculated for identified clusters using the region of interest analysis tool MarsBar (http://marsbar.sourceforge.net/). Each boxplot depicts the percentage signal change in a particular region relative to its mean signal over all conditions for men (green) and women (pink). The color of the anatomical label indicates, for the comparison ORG vs. STIM, whether a region was activated more in men than in women (green), more in women than in men (pink), or showed an effect in both gender groups (orange, activation; blue, deactivation). Variance is indicated by 90% confidence interval bars. DCN, deep cerebellar nuclei; L, left hemisphere; LOFC, lateral orbitofrontal cortex; MISC, miscellaneous condition; MOFC, medial orbitofrontal cortex; ORG, orgasm condition; PAG, periaqueductal gray matter; rCBF, regional cerebral blood flow; REST, non-sexual resting state condition; STIM, sexual tactile genital stimulation condition; t, t value; vermis-al, anterior lobe of cerebellar vermis Georgiadis et al. Human Brain Mapping, 2009, 30: 3089-3101 SEXO EN EL CEREBRO 1. 2. 3. 4. 5. 6. 7. 8. 9. Introducción histórica: Sexo escondido Resonancia magnética: Sexo en el pubis Bases de la Resonancia magnética funcional y el PET “Miembros” fantasma: Sexo en el cerebro Cerebro enamorado Sexo en el cerebro masculino Sexo en el cerebro femenino Sexo en el cerebro: Diferencias de sexo Conclusiones. Revisiones y metaanálisis Trends in Cognitive Sciences Vol.13 No.8 Tania Singer, Hugo D. Critchley and Kerstin Preuschoff AI’s dense connections with the nuclei of the amygdala which is implicated in emotion (e.g. fear) and novelty detection. AI connects bidirectionally to decision-making networks including areas implicated in valuation and response selection such as OFC, nucleus accumbens, anterior cingulate, dorsolateral prefrontal cortex (DLPFC, Brodmann area 46) and prefrontal areas. von Economo and Koskinas,1925 Regions of the brain containing Von Economo neurons (VENs). (a) A lateral view of the brain, with fronto-insular cortex (FI) shown in red. (b) A medial view of the brain, with anterior cingulate cortex (ACC) shown in red. Adapted from Von Economo and Koskinas [2]. (c) FI and the spindle-cell-containing region of ACC indicated on coronal sections through a human brain (50-year-old female) and (d) a common chimpanzee brain (sections shown with the right hemisphere of the brain on the right of the figure). Sections are from the Yakovlev Brain Collection at the National Museum of Health and Medicine, and were scanned by the authors. Note that FI is much larger in the human than in the chimpanzee. (e) A Von Economo neuron and a pyramidal neuron in layer 5 of FI. Both types of neuron have a single apical dendrite, but note that the VEN also has only a single basal dendrite, in contrast to the pyramidal neuron’s multiple basal dendrites. Photomicrograph by the authors of a section fromthe 50-year-old human brain shown in part (c). Intuition and autism: a possible role for Von Economo neurons John M. Allman, Karli K. Watson, Nicole A. Tetreault and Atiya Y. Hakeem TRENDS in Cognitive Sciences Vol.9 No.8 August 2005 Vasopressin 1a Dopamine d3 Serotonin 2b Immunocytochemistry of Von Economo neurons. VENs in ACC of male humans, labeled with antibodies to: (a) the vasopressin 1a receptor, which has been linked to the formation of social bonds in rodents (b) the dopamine d3 receptor, a high-affinity receptor potentially linked to the anticipation of reward under conditions of uncertainty; (c) the serotonin 2b receptor which may be linked to the anticipation of punishment. Intuition and autism: a possible role for Von Economo neurons John M. Allman, Karli K. Watson, Nicole A. Tetreault and Atiya Y. Hakeem TRENDS in Cognitive Sciences Vol.9 No.8 August 2005 ¿Dónde se origina el amor? ¿Y el deseo? ¿Qué papel juega el cerebro en el impulso sexual? La ciencia lleva años intentando explicar, con datos en la mano, qué factores intervienen en la generación de estos sentimientos. Una revisión de estudios muestra ahora las áreas cerebrales que comparten deseo y amor, y también las diferencias en los patrones neuronales que generan cada uno. Múltiples estudios han analizado las respuestas bioquímicas y neuroendocrinas que se generan tanto en el amor como en el deseo. Se sabe que en las relaciones de pareja, además de dos personas, intervienen un grupo de hormonas, entre las que se encuentran la oxitocina, la serotonina o la vasopresina. Sin embargo, faltaba una visión integral sobre las redes neuronales que se dan en cada uno de estos sentimientos. "El principal propósito de nuestro estudio es ofrecer un meta análisis (revisión y análisis) de todos los estudios de imagen funcional por resonancia sobre el deseo sexual y el amor para comprender mejor las diferentes activaciones cerebrales y las vías comunes que comparten", explican en su trabajo investigadores de diferentes universidades como la de Concordia (en Montreal, Canadá) o la de Ginebra (en Suiza). Jim Pfaus, principal autor de este estudio, explica a ELMUNDO.es que "el amor y el deseo tienen patrones diferentes en el cerebro, pero coinciden significativamente en las estructuras corticales y límbicas, como la ínsula y el núcleo estriado. Es así tanto para mujeres como para hombres, algo que no esperábamos ya que se tiende a creer que piensan de forma diferente en relación al amor y al sexo". En su trabajo analizaron los resultados de 20 estudios que examinaron esa actividad cerebral en un total de 309 participantes mientras estaban viendo fotos eróticas o de una persona a la que amaban. Lo que encontraron fue que dos estructuras cerebrales, la ínsula y el núcleo estriado, están activadas por los dos sentimientos. Sin embargo, observaron que el núcleo estriado se ve afectado de forma diferente cuando se trata de amor o de deseo. Por otro lado, la parte anterior de la ínsula sólo se activa con sentimientos de amor, mientras que la posterior de la ínsula izquierda se 'enciende' con el deseo sexual. "Esto está en línea con la visión de que el amor es una construcción abstracta, lo que se basa en parte en la representación mental reiterada de momentos emotivos del pasado", explica el estudio publicado en la revista 'The Journal of Sexual Medicine'. Áreas implicadas con la interpretación social Además, también pudieron comprobar que "el deseo sexual no sólo pone en marcha áreas cerebrales implicadas en la percepción de estímulos sensoriales y emocionales de la propia persona sino también las estructuras relacionadas con la interpretación social de las emociones y deseos de los otros", explica la investigación. Al comparar el amor con el deseo sexual, la actividad en el estriado ventral, hipotálamo, amígdala, corteza somatosensorial y lóbulo parietal inferial se redujo. Estas reducciones están en consonancia con el deseo sexual como un estado del ánimo con un objetivo muy específico, mientras que el amor podría ser considerado como un comportamiento con un objetivo más abstracto, flexible y complejo, menos dependiente de la presencia física de otra persona. Además, el amor está asociado con unas zonas cerebrales (el área tegmentaria ventral, la parte derecha del estriado y con dos regiones dopaminérgicas) que están relacionadas con la motivación, la expectación y la formación de hábitos. Aunque amor y deseo comparten un patrón de activación emocional, motivacional y cognitiva de las áreas cerebrales, "nuestra revisión también revela patrones específicos de activación de cada uno de estos fenómenos". Que el amor se localice en una determinada área del estriado, asociada con las adicciones a las drogas, podría explicar que "el amor es realmente un hábito que está formado por un deseo sexual que se retroalimenta a través de una recompensa. Funciona de la misma manera en el cerebro como lo hace las drogas en las personas adictas", afirma Pfaus. Otra implicación que se podría extraer, según sugiere Pfaus, "es que el amor romántico puede basarse en el deseo sexual, como el deseo se ve recompensado por el orgasmo sexual u otras recompensas. A pesar de que la gente habla de 'amor a primera vista', por lo general desean para consumar ese amor y mantener relaciones sexuales con la persona amada. Por supuesto, la relación de adicción ocurre cuando el objeto de nuestro amor se va bruscamente. Entramos en un estado de abstinencia en el que nos sentimos deprimidos y anhelamos al otro (y a menudo se hace cualquier cosa para conseguir a esa persona)". Pero no tiene por qué ser un mal hábito, necesariamente, explica. El amor activa diferentes vías en el cerebro que están involucradas con la monogamia y con la creación de lazos afectivos. Esperamos que "nuestros resultados ayuden a avanzar en el campo de un modelo neurobiológico para el amor y el deseo y podrían tener implicaciones interesantes en la medicina sexual". En cuanto al futuro, Pfaus señala que la idea es seguir estudiando lo que ocurre en animales, "que presentan una activación muy similar en el cerebro, sobre todo en la ínsula. Por lo que otra conclusión es que el sexo y el amor son sistemas en el cerebro que se han conservado en la evolución". SEXO EN EL CEREBRO 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Introducción histórica: Sexo escondido Resonancia magnética: Sexo en el pubis Bases de la Resonancia magnética funcional y el PET “Miembros” fantasma: Sexo en el cerebro Cerebro enamorado Sexo en el cerebro masculino Sexo en el cerebro femenino Sexo en el cerebro: Diferencias de género Sexo en el cerebro homosexual Trastornos sexuales Conclusiones SEXO EN EL CEREBRO: CONCLUSIONES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Importancia del HD (valor en rehabilitación de daño cerebral) Importancia de los perfumes y las feromonas (pistas olfativas hipotálamo) Diferencias de sexo: Los hombres activan su cerebro durante el orgasmo y las mujeres lo desactivan. Hombres: sexo fisico vs. mujeres sexo emocional El sexo estimula el circuíto de refuerzo (dopamina) El cortex visual masculino se activa más durante la fase de excitación ¿Validez ecológica de los experimentos? ¿sentimientos? Las observaciones de Penfield han sido refutadas El cortex frontal es básico para la toma de decisiones sobre la elección de pareja sexual en las mujeres (cingulo) La investigacion en sexología ha dejado de ser un tabú y puede ser útil para el abordaje en terapia sexual y patología Importancia de las hormonas en la respuesta sexual Femenina El enamoramiento conforma una red imnplicada en aspectos, emocionales, motivacionales y de teoría de la mente GRACIAS POR VUESTRA ATENCIÓN Dpto. Psicobiologia UV Despacho: 406 Tel: 96 386 46 15 Facebook: raul espert Orientation of functional slices during fMRI session. Seventeen slices were acquired in an interleaved order. b Six representative slices (numbers 9,10,11 and 13,14,15) are shown for illustration. Note that spatial resolution and contrast allow the identification of anatomical structures. Difficulties persisted due to low signal intensities in the pallidum or due to frontal signal dropout (slice 11) but were absent in other subcortical structures, including thalamus High resolution fMRI of subcortical regions during visual erotic stimulation at 7 T. Martin Walter et al. Magn Reson Mater Phy (2008) 21:103–111 Magn Reson Mater Phy (2008) 21:103–111 High resolution fMRI of subcortical regions during visual erotic stimulation at 7 T Martin Walter et al. Regions with significant signal increases during erotic picture viewing. Coronary sections on the right show localization of significant clusters (q < 0.05 false discovery rate) overlaid on individual anatomical images at high resolution (1mm isotropic). Images are in radiological orientation (the right hemisphere is shown on the left). On the left, activations are shown directly on functional images to assure correspondence of underlying structures. Note that functional images suffer from considerably weak signals in the ventral striatum which does however not boarder to signal changes in activated structures. Time courses of activations following onsets of erotic (yellow) or non-erotic, emotional (green) stimuli are plotted in means of percent signal changes. Activations were plotted over the next 16 s and were extracted for a right hemispheric cluster located in the anterior caudate nucleus (a), a right hemispheric cluster in the mediodorsal portion of the thalamus (MD, b), and for the right lateral geniculate nucleus (c). Note that, except for subject 5, right MD and right head of caudate did not show significant activations for non-erotic stimuli (Table 1). Individual data are shown for one representative subject (subject 1) and the corresponding P-value for a false discovery rate of 5% is indicated in the right lower corner (P< 0.00691 for subject 1). for activations in the other five subjects,