Diapositiva 1

Transcription

Diapositiva 1
. com/raulespert
AMOR Y SEXO EN
EL CEREBRO
(Estudios de Neuroimagen)
Hospital Clinic Universitari
Hospital “Dr. Peset”
Hospital Arnau de
Vilanova
Facultad de Psicología
Lesión
perisilviana
derecha con
afectación
insular que
capta
gadolinio de
forma
heterogénea
Planificación quirúrgica con una incisión (trazos transversales cortos) y proyección del
tumor dibujada sobre la piel.
Test de denominación y memoria semántica
A y B corresponden al valle silviano y C al giro
supramarginal
Hospital Clinic Universitari
(Valencia)
UNIDAD DE NEUROPSICOLOGÍA
HOSPITAL CLINICO UNIVERSITARIO (VALENCIA)
Enamoramiento y cerebro
La evolucion del sexo: 1941-2015
REALDOLLS .COM
REALDOLLS .COM
REALDOLLS .COM
Si tienes entre 18-40 años, te invitamos a participar en una investigación sobre amor y función
cognitiva dirigida por el Dr. Raúl Espert (Dpto. de Psicobiología, UV).
Si estás interesado/a envianos un mail a: tesisamor@gmail.com
Te explicaremos las condiciones del estudio y su privacidad
AMOR Y SEXO EN EL CEREBRO
1.
2.
3.
4.
5.
6.
7.
8.
9.
Introducción histórica: Sexo escondido
Resonancia magnética: Sexo en el pubis
Bases de la Resonancia magnética funcional y el PET
“Miembros” fantasma: Sexo en el cerebro
Cerebro enamorado
Sexo en el cerebro masculino
Sexo en el cerebro femenino
Sexo en el cerebro: Diferencias de sexo
Conclusiones. Revisiones y metaanálisis
Los beneficios del sex o:
Los beneficios del sex o
Menor riesgo de ataques cardiacos
Ejercicio aeróbico (200 Kcal/sesión)
Menos depresiones ( serotonina)
Protección frente al cáncer
Potenciación del sistema
inmunológico (Iga)
Prevención de la fobia social
Alivio para el dolor
Potenciar las defensas
Terapia de antienvejecimiento
Antiestrés
SEXO EN EL CEREBRO:
¿Es cierto que los hombres solo
piensan en “eso”?: (“en el mundo solo hay dos cosas
importantes: una es el sexo y la otra no me acuerdo”)
Woody Allen
HD
Ong Hai, B. G. & Odderson, I. R. (2000) Involuntary masturbation as a manifestation of
stroke-related alien hand syndrome.
American Journal of Physical Medicine and Rehabilitation; 79(4): 395-398.
Un hombre de 73 años de edad acudió a urgencias ya que manifestaba debilidad en toda la parte izquierda de su cuerpo. Se le
diagnosticó una isquemia transitoria pero producto de un infarto cerebral que había sufrido algunos meses antes presentaba algunos
daños a nivel cerebral. A los cuatro días, el paciente comenzó a manifestar una conducta totalmente anormal: su mano izquierda
cobraba vida y comenzaba a masturbarlo. El hombre no tenía una historia de exhibicionismo anterior ni había presentado jamás
hábitos masturbatorios excesivos por lo cual se avergonzaba de realizar este actividad en público pero no era capaz de detener su
mano, experimentando gran frustración. Al cabo de un mes, como suele suceder con la mayoría de estos casos, la mano ajena va
haciendo sus movimientos más precisos por lo que el conflicto intermanual se hizo evidente. La mano izquierda comenzó a ejecutar
otras acciones como mover las cosas y tirarlas o intentar realizar las mismas tareas que emprendía la mano derecha. A primera vista
esta dificultad podría parecer una nimiedad pero basta imaginarnos que para destapar un pomo necesitamos de la coordinación de
ambas manos: mientras una sostiene el pomo la otra lo destapa; si las dos manos intentasen ejecutar la misma acción una tarea
aparentemente tan sencilla se convertiría en un verdadero dolor de cabeza.
Los médicos del Hospital St. Charles y del Centro de Rehabilitación de Port Jefferson en Nueva York afirman que es un caso muy
particular del Síndrome de la Mano Ajena.
Por supuesto, más allá de lo curioso del caso, lo cierto es que una patología de este tipo provoca no solo dificultades físicas sino que
tienen grandes repercusiones psicológicas en tanto compulsan al paciente a restringir sus relaciones sociales para prevenir los actos
vergonzosos.
Horizontal, transverse view. T2weighted magnetic resonance images
of the brain showed increased signal
intensity over the right medial frontal
lobe and anterior corpus callosum
area (see arrow). There is also
increased signal intensity over the
periventricular areas consistent with
small vessel ischemic disease.
De su trabajo de 1953 sobre el Comportamiento sexual en la mujer, Kinsey
realizó 5.490 entrevistas a mujeres de raza blanca de las cuales el autor deduce
que:
Un 13% de mujeres habían experimentado algún orgasmo homosexual a partir
de la adolescencia.
Sólo un 3% de las mujeres habían sido predominantemente homosexuales
durante un período de 3 años como mínimo.
Las mujeres, en contraste con los hombres, no solían ser promiscuas y tenían
sus relaciones homosexuales sólo con 1 ó 2 compañeras en el 71% de los
casos.
Sobre la base de más de 5.300 entrevistas personales con hombres de
raza blanca, Kinsey llegó a una serie de conclusiones acerca de la
homosexualidad (1948)
El 37% de los hombres entrevistados experimentaron alguna vez un
orgasmo homosexual a partir de la adolescencia.
El 13% de los varones sintieron deseos homosexuales, sin que se
produjera por ello contacto físico alguno.
El 25% de ellos tuvieron experiencias homosexuales no incidentales entre
las edades de 16 a 55 años.
El 18% mantuvieron igual número de relaciones heterosexuales que
homosexuales durante un período mínimo de 3 años, entre las edades de
16 a 55 años.
El 10% tuvo una conducta estrictamente homosexual durante un período
de 3 años como mínimo y entre las edades ya reseñadas.
Sólo un 4% manifestaba una conducta estrictamente homosexual durante
toda su vida y ya manifiesta durante la adolescencia.
La homosexualidad existía a todos los niveles sociales y ocupacionales.
Juntos estudiaron la respuesta sexual
humana, realizando un exhaustivo estudio en
el que participaron diferentes parejas, tras su
observación y análisis de los datos obtenidos
de los encuentros sexuales de las personas
que participaron en el estudio, diferenciaron 4
fases en la respuesta sexual humana:
excitación, meseta, orgasmo y resolución.
Mediante el empleo de electroencefalogramas, electrocardiogramas, cámaras
cinematográficas, pletismógrafos y fotopletismógrafos, estudiaron la fisiología y la anatomía
de la actividad sexual. Como resultado de sus investigaciones publicaron un exitoso libro
titulado La respuesta sexual humana (1966), además de Incompatibilidad sexual humana
(1970), Homosexualidad en perspectiva (1979) y El vínculo del placer (1975), que refutaban
una serie de opiniones muy extendidas acerca del orgasmo, la impotencia, la frigidez y la
homosexualidad. Junto con Robert C. Kolodny publicaron La sexualidad humana (1982) y
Heterosexualidad (1994).
AMOR Y SEXO EN EL CEREBRO
1.
2.
3.
4.
5.
6.
7.
8.
9.
Introducción histórica: Sexo escondido
Resonancia magnética: Sexo en el pubis
Bases de la Resonancia magnética funcional y el PET
“Miembros” fantasma: Sexo en el cerebro
Cerebro enamorado
Sexo en el cerebro masculino
Sexo en el cerebro femenino
Sexo en el cerebro: Diferencias de sexo
Conclusiones. Revisiones y metaanálisis
2. ANÁLISIS “IN VIVO”
2.2 RESONANCIA MAGNÉTICA (R.M.)
Abstract
1. ANÁLISIS POST-MORTEM:
1.1. MACROSCOÓPICO
1.2. MICROSCÓPICO
TEMA 1
2. ANÁLISIS “IN VIVO”:
2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA
2.2. RESONANCIA MAGNÉTICA (R.M.)
2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA)
2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL
British Medical Journal, Dec 18, 1999
Objective: To find out whether taking images of the male and female genitals during
coitus is feasible and to find out whether former and current ideas about the anatomy
during sexual intercourse and during female sexual arousal are based on assumptions or
on facts.
Design: Observational study.
Setting: University hospital in the Netherlands.
Methods: Magnetic resonance imaging was used to study the female sexual response
and the male and female genitals during coitus. Thirteen experiments were performed
with eight couples and three single women.
Results: The images obtained showed that during intercourse in the "missionary
position" the penis has the shape of a boomerang and 1/3 of its length consists of the root
of the penis. During female sexual arousal without intercourse the uterus was raised and
the anterior vaginal wall lengthened. The size of the uterus did not increase during sexual
arousal.
Conclusion: Taking magnetic resonance images of the male and female genitals during
coitus is feasible and contributes to understanding of anatomy.
2.
” ANÁLISIS “IN VIVO”
2.2 RESONANCIA MAGNÉTICA (R.M.)
1. ANÁLISIS POST-MORTEM:
1.1. MACROSCOÓPICO
1.2. MICROSCÓPICO
TEMA 1
2. ANÁLISIS “IN VIVO”:
2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA
2.2. RESONANCIA MAGNÉTICA (R.M.)
2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA)
2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL
Magnetic resonance imaging of male and female genitals during coitus and female sexual arousal.
Willibrord Weijmar Schultz, Pek van Andel, Ida Sabelis, Eduard Mooyaart
British Medical Journal, Dec 18, 1999
El orgasmo femenino
2. ANÁLISIS “IN VIVO”
2.2 RESONANCIA MAGNÉTICA (R.M.)
Magnetic resonance imaging of male and female genitals
during coitus and female sexual arousal.
Willibrord Weijmar Schultz, Pek van Andel, Ida Sabelis, Eduard Mooyaart
British Medical Journal, Dec 18, 1999
1. ANÁLISIS POST-MORTEM:
1.1. MACROSCOÓPICO
1.2. MICROSCÓPICO
TEMA 1
2. ANÁLISIS “IN VIVO”:
2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA
2.2. RESONANCIA MAGNÉTICA (R.M.)
2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA)
2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL
SEXO EN EL CEREBRO
1.
2.
3.
4.
5.
6.
7.
8.
9.
Introducción histórica: Sexo escondido
Resonancia magnética: Sexo en el pubis
Bases de la Resonancia magnética funcional y el PET
“Miembros” fantasma: Sexo en el cerebro
Cerebro enamorado
Sexo en el cerebro masculino
Sexo en el cerebro femenino
Sexo en el cerebro: Diferencias de sexo
Conclusiones. Revisiones y metaanálisis
2. ANÁLISIS “IN VIVO”
1. ANÁLISIS POST-MORTEM:
1.1. MACROSCOÓPICO
1.2. MICROSCÓPICO
TEMA 1
2. ANÁLISIS “IN VIVO”:
2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA
2.2. RESONANCIA MAGNÉTICA (R.M.)
2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA)
2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL
RESONANCIA MAGNÉTICA FUNCIONAL (RMf)
2.2 RESONANCIA MAGNÉTICA (R.M.)
Historia: Primera RMf (1992): Técnica BOLD: aprovecha
el aumento local de la oxihemoglobina producido por la
activación cerebral (arterialización de sangre venosa)
dando una señal magnética.
REPOSO
ACTIVACIÓN
Hemoglobina
2. ANÁLISIS “IN VIVO”
MÉTODO FUNCIONAL
(REGISTRO METABÓLICO)
1. ANÁLISIS POST-MORTEM:
1.1. MACROSCOÓPICO
1.2. MICROSCÓPICO
TEMA
2. ANÁLISIS “IN VIVO”:
2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA
2.2. RESONANCIA MAGNÉTICA (R.M.)
2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA)
2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL
2.2 RESONANCIA MAGNÉTICA (R.M.)
RESONANCIA MAGNÉTICA FUNCIONAL (RMf)
Técnica: Cambios en la oxigenación de la sangre venosa como consecuencia de la
actividad cerebral (lenguaje, atención, percepción, praxias, imaginación, etc.). La
técnica consiste en la repetición alternante de una actividad motora, sensorial o
cognitiva (“on”: hacer una determinada actividad, “off”: relajación o actividad
control).
1
2. ANÁLISIS “IN VIVO”
MÉTODO FUNCIONAL
(REGISTRO METABÓLICO)
1. ANÁLISIS POST-MORTEM:
1.1. MACROSCOÓPICO
1.2. MICROSCÓPICO
TEMA
2. ANÁLISIS “IN VIVO”:
2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA
2.2. RESONANCIA MAGNÉTICA (R.M.)
2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA)
2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL
2.2 RESONANCIA MAGNÉTICA (R.M.)
TOMOGRAFÍA DE EMISIÓN DE POSITRONES (TEP)
1
2. ANÁLISIS “IN VIVO”
MÉTODO FUNCIONAL
(REGISTRO METABÓLICO)
1. ANÁLISIS POST-MORTEM:
1.1. MACROSCOÓPICO
1.2. MICROSCÓPICO
TEMA
2. ANÁLISIS “IN VIVO”:
2.1. TOMOGRAFÍA COMPUTERIZADA (T.C.)- ANGIOGRAFÍA
2.2. RESONANCIA MAGNÉTICA (R.M.)
2.3. INACTIVACIÓN CEREBRAL REGIONAL (WADA)
2.4. ESTIMULACIÓN ELÉCTRICA CEREBRAL
2.2 RESONANCIA MAGNÉTICA (R.M.)
TOMOGRAFÍA DE EMISIÓN DE POSITRONES (TEP)
Historia: Desarrollada en 1975, trata de determinar qué estructuras cerebrales se
relacionan con una función cognitiva (funcional).
Técnica: Administración de un radioisótopo emisor de positrones (fotones duales)
integrado en una molécula biológica (flúor, carbono, glucosa, nitrógeno, oxígeno,
etc.) (11C, 13N, 15O, 18F) (18-fluoro-desoxiglucosa: 18-FDG).
1
SEXO EN EL CEREBRO
1.
2.
3.
4.
5.
6.
7.
8.
9.
Introducción histórica: Sexo escondido
Resonancia magnética: Sexo en el pubis
Bases de la Resonancia magnética funcional y el PET
“Miembros” fantasma: Sexo en el cerebro
Cerebro enamorado
Sexo en el cerebro masculino
Sexo en el cerebro femenino
Sexo en el cerebro: Diferencias de sexo
Conclusiones. Revisiones y metaanálisis
Plasticidad cerebral
Plasticidad cerebral
SEXO EN EL CEREBRO
1.
2.
3.
4.
5.
6.
7.
8.
9.
Introducción histórica: Sexo escondido
Resonancia magnética: Sexo en el pubis
Bases de la Resonancia magnética funcional y el PET
“Miembros” fantasma: Sexo en el cerebro
Cerebro enamorado
Sexo en el cerebro masculino
Sexo en el cerebro femenino
Sexo en el cerebro: Diferencias de sexo
Conclusiones. Revisiones y metaanálisis
Enamoramiento y cerebro
Activity elicited when
subjects viewed pictures
of their loved partner
compared to that
produced when they
viewed pictures of their
friends. The activity,
restricted to only a few
areas, is shown in sagittal
(x = -4 mm), transverse (z
= -6 mm), and coronal
sections (y = 0 mm)
superimposed on slices
taken through a template
brain in (a) and in
glassbrain projections in
(b). ac, anterior cingulate;
cer, cerebellum; I, insula;
hi, posterior hippocampus
and the coronal section
activity in caudate nucleus
(C) and putamen (P). Data
are from a SPM random
effects group analysis of
17 subjects (glassbrains: p
< 0.001 (Z = 3.69),
sections: p < 0.005 (Z =
2.92), both uncorrected
with an extent threshold of
6 voxels. (c) An
independent component
analysis applied to single
subjects isolated activity in
the insula and the anterior
cingulate cortex
separately, and in 9 of 11
the components did not
involve any other regions.
Shown are two
independent components
from a single subject, in
which the one containing
the insula included also a
more frontal region
Bartels: Neuroreport,
Volume 11(17).November
27, 2000.3829–3834
Deactivations revealed by a comparison of brain activity elicited when subjects viewed pictures of their friends with that
produced when they viewed pictures of their loved partner. Cortically, deactivations were right-lateralized within the prefrontal
cortex, the middle temporal gyrus and the parietal cortex, as is apparent (a) in the projections onto the cortical surfaces in side
and front views of a template brain and (b) in glassbrain projections. (c) The sagittal section (x = 4 mm) shows deactivations in
the posterior cingulate gyrus (pc) and in the medial prefrontal cortex (mp). (d) The coronal section (y = -8 mm) shows
deactivation in the left amygdaloid region (A). Thresholding: as in Fig. 3, with (a) thresholded as (b).
Bartels: Neuroreport, Volume 11(17).November 27, 2000.3829–3834
Amor, sexo y tacto
Romantic love: An fMRI study of a neural mechanism for matechoice
Helen Fisher, Arthur Aron, Lucy L. Brown.
J Comp. Neurol. Vol.493, 1 Pages: 58-62
Group activation regions detected as individuals looked at an image of
their beloved compared to an image of an acquaintance (see Aron et al., for
details). The regions of activation (white) are from anatomically normalized
data and are superimposed on a template brain from SPM99.
A: The right ventral tegmental area (arrow) was activated.
B: The right caudate nucleus (arrow) was activated.
Data from other studies of mammals suggest that these regions are
involved in reward and motivation functions.
Reward, Motivation, and Emotion Systems Associated With Early-Stage Intense Romantic Love
Arthur Aron, Helen Fisher, Debra J. Mashek, Greg Strong, Haifang Li and Lucy L. Brown
J Neurophysiol 94: 327-337, 2005
Caudate nucleus activation, positive-minus-neutral contrast. A: an enlargement of an axial section through the
caudate nucleus from the MNI T1 template that averaged 305 subjects. Black dots show peak activation points for
each participant in the present study. Activation points were near the medial edge of the caudate in the vicinity of
Talairach coordinates 12, 11, 14 (dark gray areas are lateral ventricles). B: a sagittal section from an individual
participant shows the extent of the posterior dorsal caudate activation (arrow). Images in this and all following
figures are presented in radiologic convention (participants’ left on the right side of the image). C, caudate.
Reward, Motivation, and Emotion
Systems Associated With Early-Stage
Intense Romantic Love
Arthur Aron, Helen Fisher, Debra J.
Mashek, Greg Strong, Haifang Li and
Lucy L. Brown
J Neurophysiol 94: 327-337, 2005
Group mean data and an individual subject show the localized ventral midbrain effect. A: positive-minus-neutral contrast. B: positive-minus-countback
contrast. Activity in the right VTA region (arrows) specifically increased in response to the positive image compared with both control conditions. The
regional activation is highly localized to the medial A10 dopamine cell region with little inclusion of the medial substantia nigra. C: time-course of the
BOLD response (means ± SE, 0 = mean of all conditions) for a voxel in the right VTA shows that the signal increased to the positive image (solid line)
relative to the others; the signal during control stimuli presentations decreased relative to the positive image, especially for the countback task (shortdash line; 40-s countback task shown). Long-dash line, neutral stimulus. D: in a single subject, a sagittal view shows the anteroposterior extent of the
right VTA activation (arrow). E: in the same subject, a coronal view of the right VTA activation (arrow) shows how it is limited to the medial midbrain.
Locations of responses shown in the graph are given in Talairach coordinates. L, left side; VTA, ventral tegmental area.
RESULTADOS
OBJETIVOS: Comparar la conectividad funcional en
reposo mediante RMf (DMN) entre un grupo de 34
personas enamoradas (A), 32 con fracaso sentimental
reciente (FSR) y 32 solteros/as que nunca se
enamoraron (S)
RESULTADOS:
->Actividad en cíngulo anterior izdo. del grupo A
->Conectividad en el grupo A en la red de la emoción,
refuerzo y motivación (ínsula, caudado, amígdala y
núcleo accumbens).
-> Actividad del grupo A en la red de cognición social
(unión T-P, cíngulo posterior, corteza prefrontal
medial, parietal inferior, precúneo y lóbulo temporal.
-Una persona enamorada tiene mayor conectividad
entre las regiones del cerebro asociadas con la
recompensa, la motivación, la regulación de la
emoción y la cognición social.
SEXO EN EL CEREBRO
1.
2.
3.
4.
5.
6.
7.
8.
9.
Introducción histórica: Sexo escondido
Resonancia magnética: Sexo en el pubis
Bases de la Resonancia magnética funcional y el PET
“Miembros” fantasma: Sexo en el cerebro
Cerebro enamorado
Sexo en el cerebro masculino
Sexo en el cerebro femenino
Sexo en el cerebro: Diferencias de sexo
Conclusiones. Revisiones y metaanálisis
Subjective responses to the sexual and neutral experimental conditions along seven dimensions: (1) beauty of the women represented on the
photographs; (2) perceived desire to engage in sexual behavior; (3) perceived degree of erection; (4) feeling of pleasure; (5) feeling of
displeasure; (6) interest for photographs; (7) perceived tenderness. Notes: Means and standard errors of the mean have been calculated over
the two runs of each experimental condition. Bars are standard errors. *P < 0.05; **P < 0.01; †P < 0.001; ‡P < 0.0001.
NeuroImage
Volume 20, Issue 2, October 2003, Pages 855-869
Brain processing of visual sexual stimuli in healthy men:
a functional magnetic resonance imaging study
Mouras et al.
Brain areas showing a higher signal in response to sexual than to neutral photographic stimuli. Notes: (A) Right view of
the brain: a = parietooccipital sulcus; b = superior parietal lobule; c = postcentral gyrus; d = precentral gyrus. (B) Left
view of the brain: a′ = superior occipital gyrus; b′ = superior parietal lobule; c′ = inferior parietal lobule; d′ = precentral
gyrus; e′ = intraparietal sulcus. For A and B, height threshold: P < 0.05, corrected for multiple comparisons.
Average penile turgidity and button
presses for 11 subjects for video 1.
Button A was pressed to indicate
sexual interest, Button B was
pressed to indicate onset of
erection and Button C was pressed
to indicate loss of interest. The
onset and durations of the three
different video conditions, erotic,
sports and relaxation (R), are
indicated below the turgidity trace.
Brain, Vol. 125, No. 5, 10141023, May 2002
Brain activation and sexual
arousal in healthy,
heterosexual males
Bruce A. Arnow et al.
Average penile turgidity and button presses for 11 subjects for
video 2. Button responses A, B and C were as described in
Fig. 1.
Brain, Vol. 125, No. 5, 10141023, May 2002
Brain activation and sexual
arousal in healthy,
heterosexual males
Bruce A. Arnow et al.
Turgidity-correlated brain activations obtained from a random effects analysis of 11 subjects. Red–yellow colour scale indicates regions that exhibit significant correlations
with behavioural measures of penile turgidity. These colour maps have been superimposed on the average T2-weighted and stereotaxically normalized brain volume.
(A) SPM99 surface reconstruction depicting projections of activations on the right side of the brain. (B) Axial section depicting the largest brain activation observed in this
experiment in the right insula and claustrum. (C) Axial section illustrating activation in left caudate/putamen and right middle temporal/middle occipital gyri (BA 37/19).
(D) Axial section depicting cingulate gyrus activation. (E) Coronal section illustrating activation in the right hypothalamus.
THE JOURNAL OF UROLOGY 2006, Vol. 176, 679-683,
Schematic of experimental design. Three categories of audiovisual stimuli are represented as gray box—
sexually explicit clip (S), white box—nonsexual neutral clip (N) and mosaic box—dynamic mosaic image
control clip (M). Each video was presented in random order and lasted 3 minutes. PET scanning is
indicated by striped bars. When each clip was started PET scanning was initiated simultaneously
regardless of erectile status. Durations of penile erection are indicated by black boxes below scanning bars.
Typical graph of RigiScan® Plus data indicating rigidity (Rig) and tumescence (Tum) of tip (upper 2 graphs)
and base (lower 2 graphs) of penis shows percentage of linear displacement of loops due to constant force
Tsojimura et al. The Journal of Urology, 2006, 176: 679-683
and changes in penile circumference.
Neocortical activation for S-M contrast. Large regions of prominently increased
activation were identified in middle occipital gyrus (BA19) in right hemisphere and
inferior occipital gyrus (BA19) in left hemisphere. Most activated locus was
identified in right cerebellar vermis.
Tsojimura et al. The Journal of Urology, 2006, 176: 679-683
Neocortical activation for M-S contrast. Activity in sulcus (BA17), inferior frontal
gyrus (BA47), inferior parietal gyrus (BA7) and medial frontal gyrus (BA8) was
seen only in left hemisphere.
Tsojimura et al. The Journal of Urology, 2006, 176: 679-683
Schema of the experimental conditions and monitoring of penile rigidity to
investigate the plateau phase. (A) Three categories of audiovisual stimuli are
represented as follows: gray box, sexually explicit clip (S); white box, non-sexual
control clip (N); mosaic box, dynamic mosaic control clip (M). Videos were
presented in random order and lasted 10 min. (B) PET scans are indicated by
striped bars. All scans under conditions of sexual arousal (S condition) were
indicated 7 min after the beginning of the each clip. The durations of penile
erection are indicated by block boxes below the PET scan diagram. (C) Typical
chart of RigiScan Plus® data indicating rigidity (Rig) and tumescence (Tum) of the
tip of the penis shows the percentage of linear displacement of the loops due to
constant force (upper graph) and changes in penile circumference (lower graph).
Miyagawa et al., NeuroImage 36 (2007) 830–842
Neocortical activation during the presentations of non-sexual stimuli for Np–Mp and Mp–Np contrasts. Non-sexual video
presentations activated the anterior/posterior auditory temporal cortex (BA21/22) and the extrastriate cortex (BA19)
bilaterally but in a right-dominant manner. The most prominent activation was observed in the right anterior auditory cortex.
The inferior temporal gyrus (BA20) in the left hemisphere, which may be associated with neural processing of visual
information, was particularly activated. EC: extrastriate cortex; Ant. AC: anterior auditory cortex; Post. AC: posterior auditory
cortex; ITG: inferior temporal gyrus.
Miyagawa et al., NeuroImage 36 (2007) 830–842
Activation of the ventral right putamen.
(A) Whole-brain activation in the Sp–
Mp contrast is shown in the sagittal,
coronal and horizontal orientations.
Increased rCBF in the ventral right
putamen is superimposed on the
standard MRI. (B) rCBF of the ventral
right putamen under the M vs. S
condition in the excitement phase (Me
vs. Se) and in the plateau phase (Mp
vs. Sp) of the psychosexual cycle. In
the excitement phase, no rCBF change
was observed under the
non-sexual or sexual condition.
However, rCBF of the ventral right
putamen was significantly increased
under the sexual condition compared to
the non-sexual vcondition (*).
Miyagawa et al.,
NeuroImage 36
(2007) 830–842
The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193
Brain Activation during Human Male Ejaculation
Gert Holstege, et l.
Protocol for the
ejaculation
condition. The
bold black line
shows a typical
time-activity
curve. Vertical
lines indicate time
frames of 10 sec.
Ejaculation took
place within the
early phase of the
time-activity
curve, as
indicated by gray
shading. kcps,
Kilocounts per
second.
Brain Activation during Human Male Ejaculation
Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C.
Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone
Reinders
The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193
So-called glass brains for ejaculation minus stimulation. Activations are
shown in a sagittal, coronal, and horizontal orientation
Brain Activation during Human Male Ejaculation
Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C. Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone
Reinders
The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193
Strong activation in the mesodiencephalic transition zone. Increased rCBF is
represented in coronal sections (a-h) through the brain. The red lines on the glass brain
on the left indicate the orientation and location of the sections. Activations are
superimposed on the averaged MRI of the volunteers. The activated cluster contains the
VTA (sections a-d). The midline thalamic nuclei are located slightly more caudally
(sections d-f). The lateral central tegmental field (lctf; sections c-f) and the zona incerta
are located lateral to this area. The activated region extends dorsally into the
intralaminar nuclei (intralam. nucl.; sections d-h) and the ventroposterior thalamus. Note
also the activation in the medial pontine tegmentum (pt; sections g and h). y = -14
(means 14 mm posterior to the anterior commissure). r, Right side.
Brain Activation during Human Male Ejaculation
Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C. Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone Reinders
Activations in the basal ganglia and the anterior nucleus of the thalamus and absence of activation in the
hypothalamus. Increases in rCBF are superimposed on the averaged MRI of the volunteers and are depicted in
coronal sections (see the red lines on the glass brain on the left). Activations are found in the lateral putamen and
perhaps the laterally adjoining claustrum and insula (cp; sections a-c). Note that in sections c and d, the anterior
nucleus (na) of the thalamus is on the right side. Sections (b-d) demonstrate that in the hypothalamus (hyp) no
activation is found. y = -6 (means 6 mm posterior to the anterior commissure). r, Right side.
Sagittal view of the activations in midline cortical structures, the mesodiencephalic transition zone, and the cerebellum.
Increased rCBF is represented in sagittal sections, of which the location is indicated by the red lines on the glass brain
on the left. Activations are superimposed on the averaged MRI of the volunteers. In b and c, activation in the secondary
visual cortex (BA 18) and posterior cingulate/precuneus (BA 23/31), respectively, can be found. Note in sections a-c that
the activation in the mesodiencephalic transition zone (mes-di) extends from the rostral midbrain into the ventral parts
of the caudal thalamus. x = -12 (means 12 mm left to the intercommissural line).
Activations in the cerebellum, brainstem, and occipital cerebral cortex. Increases in
rCBF are superimposed on the averaged MRI of the volunteers and are depicted in
oblique (45°) sections (see the red lines on the glass brain on the left). Cerebellar
activations can be observed in the vermis (v; sections b-h), the cerebellar
hemispheres (ch; sections d-h), and the deep cerebellar nuclei (dcn; sections b-d).
Note that activation in the cerebellar hemisphere is more pronounced on the left than
on the right side. Brainstem activation is present in the medial pontine tegmentum
(section a), the lateral pontine tegmentum (sections b and c), and in a region possibly
involving the dorsal vagal nuclei and the solitary complex (sections f and g). pt,
Pontine tegmentum; r, right side
Brain Activation during Human Male Ejaculation
Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C. Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone Reinders
The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193
Deactivation in the anterior part of the left medial temporal lobe,
comprising parts of the amygdala and entorhinal cortex (entorhin.).
Decreases in rCBF are superimposed on the averaged MRI of the
volunteers and are depicted in coronal sections (see the red lines on the
glass brain on the left). The significance threshold was p < 0.001
(uncorrected for multiple comparisons). y = -2 (means 2 mm caudal to the
anterior commissure).
Brain Activation during Human Male Ejaculation
Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C.
Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone Reinders
The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193
Activations in the cerebral cortex rendered onto a standard anatomical
template (SPM99). Note that the cortical activations are almost exclusively
on the right side.
Brain Activation during Human Male Ejaculation
Gert Holstege, Janniko R. Georgiadis, Anne M. J. Paans, Linda C.
Meiners, Ferdinand H. C. E. van der Graaf, and A. A. T. Simone Reinders
The Journal of Neuroscience, October 8, 2003, 23(27):9185-9193
Human brain activation during sexual stimulation of the penis
Janniko R.Georgiadis, Gert Holstege J. Comp. Neurol. (2005) Vol.493, 1 Pages: 33-38
Activations: t-map for stimulation of the erect penis minus rest, depicted in glass brains and superimposed on a
standard T1-weighted MRI template (SPM99). The lines on the glass brains show the orientation and location of
sections A-C. The t-bar indicates the level of activation in red scaling (t = 0: white, t = 7: dark red). y, anterior-posterior,
relative to AC; z, superior-inferior, relative to AC. ht, hypothalamus; SI genital, primary somatosensory cortex, genital
part; SII, secondary somatosensory cortex.
Human brain activation during sexual stimulation of the penis
Janniko R.Georgiadis, Gert Holstege
J. Comp. Neurol. (2005) Vol.493, 1 Pages: 33-38
Deactivations: t-map for rest minus stimulation of the erect
penis, depicted in glass brains and superimposed on a
standard T1-weighted MRI template (SPM99). The lines on the
glass brains show the orientation and location of sections A
and B. The t-bar indicates the level of deactivation in blue
scaling (t = 0: white, t = -7: dark blue). y, anterior-posterior,
relative to AC; z, superior-inferior, relative to AC.
Fig. 1. An example (subject no. 7) of the time course of penile reaction as recorded by the penile tumescence
measuring device. The curve is shown against a schematic of the fMRI acquisition paradigm that consists of six
identical epochs, each composed of a sport video clip (light gray), a neutral video clip (white), an erotic video clip
(darker shades of gray), and finally, another neutral video clip (white). The vertical bars represent the times of button
depression indicating the beginning of subjective interest for the erotic content of images (full line) or the lack of
interest (dotted line). Different shades of gray in the erotic video clip sections highlight distinct phases of penile
reaction as indicated by the penile tumescence measuring device. Lighter gray: absence of erection (NE); middle
gray: rising erection (OE); and darker gray: sustained erection (SE).
NeuroImage
Volume 26, Issue 4, 15 July 2005, Pages 1086-1096
Dynamics of male sexual arousal: distinct components of brain activation
revealed by fMRI
Group results: cortical areas that are significantly more active (larger BOLD signal) during erotic as compared to sport visual
stimulation with video clips. The map is thresholded at P < 0.01 (Bonferroni corrected) and superimposed on the inflated cortex (light
and dark gray indicate gyri and sulci, respectively).
Eur J Neurosci. 2008 Jun;27(11):2922-7.
Hypothalamus, sexual arousal and psychosexual identity in human males: a functional magnetic resonance imaging study.
Brunetti M, Babiloni C, Ferretti A, Del Gratta C, Merla A, Olivetti Belardinelli M, Romani GL.
Department of Clinical Sciences and Biomedical Imaging; Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti, Chieti
(CH), Italy. mbrunetti@itab.unich.it
In a recent functional magnetic resonance imaging study, a complex neural circuit was shown to be involved in human males during sexual arousal [A.
Ferretti et al. (2005) Neuroimage, 26, 1086]. At group level, there was a specific correlation between penile erection and activations in anterior
cingulate, insula, amygdala, hypothalamus and secondary somatosensory regions. However, it is well known that there are remarkable inter-individual
differences in the psychological view and attitude to sex of human males. Therefore, a crucial issue is the relationship among cerebral responses,
sexual arousal and psychosexual identity at individual level. To address this issue, 18 healthy male subjects were recruited. Their deep sexual identity
(DSI) was assessed following the construct revalidation by M. Olivetti Belardinelli [(1994) Sci. Contrib. Gen. Psychol., 11, 131] of the Franck drawing
completion test, a projective test providing, according to this revalidation, quantitative scores on 'accordance/non-accordance' between self-reported
and psychological sexual identity. Cerebral activity was evaluated by means of functional magnetic resonance imaging during hard-core erotic movies
and sport movies. Results showed a statistically significant positive correlation between the blood oxygen level-dependent signal in bilateral
hypothalamus and the Franck drawing completion test score during erotic movies. The higher the blood oxygen level-dependent activation in bilateral
hypothalamus, the higher the male DSI profile. These results suggest that, in male subjects, inter-individual differences in the DSI are strongly
correlated with blood flow to the bilateral hypothalamus, a dimorphic brain region deeply implicated in instinctual drives including reproduction.
Brain activation areas of sexual arousal with olfactory stimulation in men: a preliminary study using functional MRI.
Huh J, Park K, Hwang IS, Jung SI, Kim HJ, Chung TW, Jeong GW
Journal of Sexual Medicine. 5(3):619-25, 2008 Mar.
INTRODUCTION: There have been extensive studies evaluating the functional neuroanatomy of the brain during visual
sexual stimulation. However, little data exist concerning the role of olfactory stimulation in human sexuality. AIM: This
preliminary study intended to elucidate the brain areas responding to an olfactory sexual stimulus using functional
magnetic resonance imaging (fMRI). METHODS: Eight healthy right-handed heterosexual male volunteers (20-35
years of age), having normal olfaction and no brain diseases, were recruited. During fMRI, a women's perfume was
given as an olfactory sexual stimulant in an alternating block design with a 30-second stimulation period followed by a
30-second rest. After the fMRI sessions, the participants provided ratings for both the odorant's intensity and perceived
arousal. MAIN OUTCOME MEASURES: The study subjects rated the odorant stimulation and perceived sexual
arousal response by Likert-type rating scales. Brain activation maps were made by blood oxygenation level-dependent
(BOLD)-based fMRI with an echo-planar imaging pulse sequence. RESULTS: Two out of eight subjects experienced
"strong" sexual arousal, and three subjects experienced "moderate" arousal during olfactory stimulation, resulting in a
mean score of 2.25 on a 4-point scale. The common brain areas activated in response to the odor stimulus in all eight
subjects included the insula, the inferior and middle frontal gyrus, and the hypothalamus. The median cingulate gyrus,
thalamus, angular gyrus, lingual gyrus, and cerebellar cortex were activated in subjects who had moderate or strong
sexual arousal response. CONCLUSION: Olfactory stimulation with women's perfume produces the activation of
specific brain areas in men. The brain areas activated differed according to the degree of perceived sexual arousal
response. Further studies are needed to elucidate brain activation response according to the different kinds and
intensities of olfactory stimulation.
NeuroImage
Volume 40, Issue 4, 1 May 2008, Pages
1482-1494
1. Main regions of sexual stimulus perception controlling for emotional stimulus
perception. (a) The sagittal brain section shows activity in hypothalamus, VS,
pgACC and DMPFC to be higher in positive bodily (erotic) than positive nonbodily (emotional) pictures at a corrected threshold of p < 0.001 and a voxel
threshold of k > 10. (b) Bar diagrams in the upper panel show percentage
signal changes in these regions for all four stimulus conditions (positive (+) and
negative (−) bodily and non-bodily stimuli). The lower panel shows
corresponding time courses for each condition for the next 8 acquisition time
points (16 seconds) after stimulus onset. For DMPFC
Specific effects of positive bodily picture viewing. Regions revealed by the conjunction of the contras [positive bodily > positive non-bodily pictures]
and [positive bodily > negative bodily pictures] at a corrected threshold of p < 0.05, k > 10. Common activations, reflecting common effects of positive
erotic experience controlled for the general display of naked people, were found in pg Anterior Cingulate Cortex, Ventral Striatum, anterior
hypothalamus and precuneus
NeuroImage
Volume 40, Issue 4, 1 May 2008, Pages 1482-1494
Distinguishing specific sexual and general emotional effects in fMRI
Subcortical and cortical arousal during erotic picture viewing
Martin Walter et al.
NeuroImage
Volume 40, Issue 4, 1 May 2008, Pages
1482-1494
Distinguishing specific sexual and
general emotional effects in fMRI—
Subcortical and cortical arousal during
erotic picture viewing
Martin Walter et al.
Correlation of neural
responses and subjective
ratings. (a) Brain sections
show effects of bodily stimuli in
the Ventral Sriatum and the
anterior cingulate, extending
into the VMPFC, that were
found to be positively
modulated by reported ratings
of sexual intensity when
entered as parametric
regressors (p < 0.001,
corrected, k > 10). The lower
panel in (b) shows the
parametric modulation of
responses for one
representative subject to
illustrate this finding. The
modeled changes in
hemodynamic responses
function are therefore plotted
as a function of peristimulus
time (PST, stimulus onset at
t = 0) and individually reported
sexual intensity. The anterior
cingulate responded with
strongest signal decreases for
bodily stimuli with low sexual
intensity while highly sexually
intense stimuli were correlated
with near resting state activity.
In the VS in contrast, stimuli
with highest sexual intensity
ratings elicited highest signal
increases
NeuroImage
Volume 40, Issue 4, 1 May 2008, Pages
1482-1494
Distinguishing specific sexual and
general emotional effects in fMRI—
Subcortical and cortical arousal during
erotic picture viewing
Martin Walter et al.
Common and interacting regions in sexual and emotional processing. (a) Red voxels indicate regions with a significant interaction in processing of
sexual arousal and valence, as revealed by the contrast [positive > negative bodily-emotional pictures] > [positive > negative non-bodily-emotional
pictures] at p < 0.05 , corrected, k > 10. Significantly stronger effects in the first contrast were found in the pgACC and bilateral occipital cortex (LOC)
(see also Table 4 and bar diagrams in Fig. 1 and Fig. 4 for comparison of neural and behavioral effects in pgACC). Blue voxels indicate significant
regions for the conjunction of the contrasts [bodily > non-bodily-emotional pictures] and [non-bodily-emotional > non-bodily neutral pictures] at p < 0.05,
corrected, k > 10. In resulting regions, including amygdala, DMPFC, LOC, tectum and thalamus, activity during non-bodily emotion processing was
found to be lower than during processing of bodily stimuli but higher than during neutral picture presentation, reflecting rather general effects of
emotional intensity. (b) Bar diagrams plot mean percentage signal changes for bodily, non-bodily-emotional and neutral conditions in these common
regions.
Prelude to passion: limbic activation by "unseen" drug and sexual cues.
Childress AR, Ehrman RN, Wang Z, Li Y, Sciortino N, Hakun J, Jens W, Suh J, Listerud J, Marquez K, Franklin T,
Langleben D, Detre J, O'Brien CP
PLoS ONE 3(1): 1506, 2008.
BACKGROUND: The human brain responds to recognizable signals for sex and for rewarding drugs of abuse by activation
of limbic reward circuitry. Does the brain respond in similar way to such reward signals even when they are "unseen", i.e.,
presented in a way that prevents their conscious recognition? Can the brain response to "unseen" reward cues predict the
future affective response to recognizable versions of such cues, revealing a link between affective/motivational processes
inside and outside awareness? METHODOLOGY/PRINCIPAL FINDINGS: We exploited the fast temporal resolution of
event-related functional magnetic resonance imaging (fMRI) to test the brain response to "unseen" (backward-masked)
cocaine, sexual, aversive and neutral cues of 33 milliseconds duration in male cocaine patients (n = 22). Two days after
scanning, the affective valence for visible versions of each cue type was determined using an affective bias (priming) task.
We demonstrate, for the first time, limbic brain activation by "unseen" drug and sexual cues of only 33 msec duration.
Importantly, increased activity in an large interconnected ventral pallidum/amygdala cluster to the "unseen" cocaine cues
strongly predicted future positive affect to visible versions of the same cues in subsequent off-magnet testing, pointing both
to the functional significance of the rapid brain response, and to shared brain substrates for appetitive motivation within and
outside awareness. CONCLUSIONS/SIGNIFICANCE: These findings represent the first evidence that brain reward circuitry
responds to drug and sexual cues presented outside awareness. The results underscore the sensitivity of the brain to
"unseen" reward signals and may represent the brain's primordial signature for desire. The limbic brain response to reward
cues outside awareness may represent a potential vulnerability in disorders (e.g., the addictions) for whom poorly-controlled
appetitive motivation is a central feature.
SEXO EN EL CEREBRO
1.
2.
3.
4.
5.
6.
7.
8.
9.
Introducción histórica: Sexo escondido
Resonancia magnética: Sexo en el pubis
Bases de la Resonancia magnética funcional y el PET
“Miembros” fantasma: Sexo en el cerebro
Cerebro enamorado
Sexo en el cerebro masculino
Sexo en el cerebro femenino
Sexo en el cerebro: Diferencias de sexo
Conclusiones. Revisiones y metaanálisis
Neuroscience Letters
Volume 449, Issue 1, 2 January 2009, Pages 42-47
The role of the anterior cingulate cortex in women's sexual
decision making
Heather A. Rupp et al.
Areas of activation demonstrating increased
activation to low versus high risk potential sexual
partners. Brain regions included the bilateral anterior
cingulate cortex (ACC), right midbrain (MDBN), pons
(PONS), intraparietal sulcus (IPS), and precuneus
(PRE).
We studied the central representation of pudendal afferents arising from the clitoral nerves in 15 healthy
adult female subjects using electrical dorsal clitoral nerve stimulation and fMRI. As a control body region,
we electrically stimulated the right hallux in eight subjects. In a block design experiment, we applied
bilateral clitoral stimulation and unilateral (right) hallux stimulation. Activation maps were calculated for the
contrasts 'electrical dorsal clitoral nerve stimulation versus rest' and 'electrical hallux stimulation versus
rest'. A random-effect group analysis for the clitoral stimulation showed significant activations bilateral in
the superior and inferior frontal gyri, insulae and putamen and in the postcentral, precentral and inferior
parietal gyri (including the primary and secondary somatosensory cortices). No activation was found on
the mesial surface of the postcentral gyrus. For the hallux, activations occurred in a similar neuronal
network but the activation in the primary somatosensory cortex was localized in the inter-hemispheric
fissure. The results of this study demonstrate that the central representation of pudendal afferents arising
from the clitoral nerves and sensory inputs from the hallux can be studied and distinguished from each
other by fMRI. From the somatotopic order described in the somatosensory homunculus one would
expect for electrical clitoral nerve stimulation activation of the mesial wall of the postcentral gyrus. In
contrast, we found activations on the lateral surface of the postcentral gyrus
¿Un nuevo homúnculo del clítoris?
Neuroimage. 2010 Jan 1;49(1):177-84. Epub 2009 Jul 23.
The somatosensory representation of the human clitoris: an fMRI study.
Michels L, Mehnert U, Boy S, Schurch B, Kollias S.
neuroimage.2007.05.026
Correlation between insula activation and self-reported quality of orgasm in women
Stephanie Ortigue, Scott T. Graftona and Francesco Bianchi-Demicheli
Blood oxygenation level-dependent (BOLD) responses within the left anterior insula during partner-related conditions (beloved-acquaintance) are significantly correlated with individual mean
orgasm scores as measured by the Female Sexual Functioning Index. Correlations are significant on the p < 0.001 level, corrected for multiple comparisons. (A) Peak of activation in the
anterior insula correlating with FSFI orgasm scores shown on lateral views of the inflated (A1) and flat (A2) left brain (circle). (B) Sagittal, (C) coronal and (D) axial section through the insula
from the MNI T1 template
Komisaruk, B.R., & Whipple, B. (2005).
Functional MRI of the brain during orgasm in women.
Annual Review of Sex Research, 16: 62-86.
Hormones and Behavior
Volume 56, Issue 1, June 2009, Pages 66-72
Neural activation in the orbitofrontal cortex in
response to male faces increases during the
follicular phase
Heather A. Rupp et al.
Increased neural activation in
response to male faces during
the late follicular versus luteal
test sessions in the right medial
orbitofrontal cortex (12, 29,
− 10). The bar graph shows the
difference in activation in this
region in response to faces and
houses (follicular minus luteal).
Statistical parametric maps of average brain activation (shown in hot color) and deactivation (shown in cool color) for all subjects in all menstrual phases in
response to the visual sexual stimuli in slices and 3D view. Images are calculated by first a fixed-effects analysis to within-subject data (one subject's three
phases) to estimate each subject's mean activation across one menstrual cycle, then a mixed-effects group analyses to the subjects’ means to estimate the
group mean activation using FLAME stages 1 + 2. Maps are thresholded by using clusters determined by Z > 2.3 and a (corrected) cluster significance
threshold of P = 0.05. Color bar indicates Z values, and the underline anatomical image is FSL's MNI avg152 template. Cortical and subcortical structures can
be seen took part in the processing of visual sexual stimuli.
SEXO EN EL CEREBRO
1.
2.
3.
4.
5.
6.
7.
8.
9.
Introducción histórica: Sexo escondido
Resonancia magnética: Sexo en el pubis
Bases de la Resonancia magnética funcional y el PET
“Miembros” fantasma: Sexo en el cerebro
Cerebro enamorado
Sexo en el cerebro masculino
Sexo en el cerebro femenino
Sexo en el cerebro: Diferencias de sexo
Conclusiones. Revisiones y metaanálisis
HD
Asimetrías funcionales:
Diferencias de género
¿Qué piensan las mujeres de los hombres
y los hombres de las mujeres?:
Tópicos y mitos
HD
NeuroImage
Volume 32, Issue 3, September 2006,
Pag: 1299-1307
Men and women show distinct brain
activations during imagery of sexual
and emotional infidelity
Hidehiko Takahashi et al.
Correlations between the self-ratings of
jealousy for emotional infidelity and brain
activations. (a) Correlations between selfrating of jealousy and the degree of activation
in the insula in EI-N contrast of men. (b)
Correlations between self-rating of jealousy
and the degree of activation in the posterior
STS in EI-N contrast of women.
Images showing sex differences in
brain activations in response to SIN and EI-N conditions. (a)
Compared to women, greater
activation in the amygdala in men
was shown for SI-N contrast. (b)
Compared to women, greater
activations in the insula and
hypothalamus in men were shown
for EI-N contrast. (c) Compared to
men, greater activation in the
posterior STS in women was
shown for EI-N contrast.
Human Brain Mapping
Volume 16, Issue 1, Pages 1-13, 30 Jan 2002
Areas of brain activation in males and females during
viewing of erotic film excerpts
Sherif Karama et al.
Areas of significant BOLD signal increases in female subjects
when brain activation associated with viewing the emotionally
neutral film excerpts were subtracted from that associated
with viewing the erotic film excerpts. As in Figure 1, height
threshold is set at P < 0.001 (z = 3. 09). A: Medial prefrontal
cortex, anterior cingulate cortex, thalamus and hypothalamus.
B: Orbitofrontal cortex. C: Insular cortex. D: Amygdala. E:
Ventral striatum. F: Occipitotemporal cortex.
Human Brain Mapping
Volume 16, Issue 1, Pages 1-13, 30 Jan 2002
Areas of brain activation in males and females during
viewing of erotic film excerpts
Sherif Karama et al.
Hipotálamo
Areas of significant BOLD signal increases in male subjects
when brain activation associated with viewing the emotionally
neutral film excerpts were subtracted from that associated with
viewing the erotic film excerpts. Accompanying sagittal and
coronal slices through ROIs are provided for the sake of clarity.
Regions of activation are displayed as a Z score-statistical
map coded according to the color bars. Height threshold is set
at P < 0.001 (z = 3.09). The neurological convention has been
chosen for orientation of coronal sections in all figures i.e., left
is left and right is right. A: Medial prefrontal cortex, anterior
cingulate cortex, thalamus and hypothalamus. B: Orbitofrontal
cortex. C: Insular cortex. D: Amygdala. E: Ventral striatum and
hypothalamus. F: Occipitotemporal cortex.
Schematic overview of the experimental set-up of the male and female studies.
A: The scan order differed between men and women. Note that in women the
three orgasm attempts were scheduled at the end of the experiment (scans 6–8),
whereas men attempted to attain orgasm twice, namely once in the middle
(scan 4) and once at the end (scan 8) of the experiment.
B: The rhythm of the [15O]-H2O PET-protocol. During the eight minute interscan
interval there was sufficient time to prepareorgasm.
C: Orgasm was aimed at the period 20–60 s after tracer injection (indicated by
the dashed lines). Misc, miscellaneous, Org, orgasm attempt; Stim, sexual genital
stimulation
Georgiadis et al. Human Brain Mapping, 2009, 30: 3089-3101
Men and women compared during tactile sexual genital
stimulation.
A: Genital stimulation-related effects were assessed by
comparing scans of sexual tactile genital stimulation with scans
of a non-sexual passive resting state. Green shading indicates
clusters more activated in men than in women and red shading
clusters more activated in women than in men. Shared activations
are depicted in ‘‘hot’’ metal shading, shared deactivations in blue
shading. The threshold for all rCBF changes depicted in the figure
is P < 0.001 (uncorrected for multiple comparisons),
corresponding to t 5 3.15. Sections are lined-up from anterior (left
section) to posterior(right section), with the distance to the
anterior commissure (in mm) indicated in the right top corner.
B: Parameter estimates were calculated for identified clusters
using the region of interest analysis tool MarsBar Each boxplot
depicts the percentage signal change in a particular region
relative to its mean signal over all conditions for men (green) and
women (pink). The color of the anatomical label indicates, for the
comparison STIM vs. REST, whether a region was activated
more in men than in women (green), more in women than in men
(pink), or showed an effect in both gender groups (orange,
activation; blue, deactivation). Variance is indicated by 90%
confidence interval bars. IPL-PPC, inferior parietal lobule,
posterior parietal cortex; IPLSA2, inferior parietal lobule,
somatosensory area 2; L, left hemisphere;
MI/PMC, primary motor cortex and premotor cortex;
MISC,miscalleneous condition; ORG, orgasm condition; PMC,
premotor cortex; rCBF, regional cerebral blood flow; REST, nonsexual resting state condition; t, t value; SII, secondary
somatosensory cortex; STIM, sexual tactile genital stimulation
condition; VOT, ventral occipitotemporal cortex.
Georgiadis et al. Human Brain Mapping, 2009, 30: 3089-3101
Men and women compared during orgasm.
A: Orgasm-related effects were assessed by
comparing scans of orgasm with scans
of sexual tactile genital stimulation. Green shading
indicates clusters more activated in men than in
women and red shading clusters more activated in
women than in men. Shared activations
are depicted in ‘‘hot’’ metal shading, shared
deactivations in blue shading. The threshold for all
rCBF changes depicted in the figure is P < 0.001
(uncorrected), corresponding to t 5 3.15.Sections are
lined-up from anterior (left section) to posterior (right
section), with the distance to the anterior commissure
(in mm) indicated in the right top corner.
B: Parameter estimates
were calculated for identified clusters using the region
of interest analysis tool MarsBar
(http://marsbar.sourceforge.net/). Each
boxplot depicts the percentage signal change in a
particular region relative to its mean signal over all
conditions for men (green) and women (pink). The
color of the anatomical label indicates, for the
comparison ORG vs. STIM, whether a region
was activated more in men than in women (green),
more in women than in men (pink), or showed an
effect in both gender groups (orange, activation; blue,
deactivation). Variance is indicated by 90%
confidence interval bars.
DCN, deep cerebellar nuclei; L, left hemisphere;
LOFC, lateral orbitofrontal cortex; MISC,
miscellaneous condition; MOFC, medial orbitofrontal
cortex; ORG, orgasm condition; PAG, periaqueductal
gray matter; rCBF, regional cerebral blood flow;
REST, non-sexual resting state condition; STIM,
sexual tactile genital stimulation condition;
t, t value; vermis-al, anterior lobe of cerebellar vermis
Georgiadis et al. Human Brain Mapping, 2009, 30:
3089-3101
SEXO EN EL CEREBRO
1.
2.
3.
4.
5.
6.
7.
8.
9.
Introducción histórica: Sexo escondido
Resonancia magnética: Sexo en el pubis
Bases de la Resonancia magnética funcional y el PET
“Miembros” fantasma: Sexo en el cerebro
Cerebro enamorado
Sexo en el cerebro masculino
Sexo en el cerebro femenino
Sexo en el cerebro: Diferencias de sexo
Conclusiones. Revisiones y metaanálisis
Trends in Cognitive Sciences
Vol.13 No.8
Tania Singer, Hugo D.
Critchley and Kerstin
Preuschoff
AI’s dense connections with the nuclei of the amygdala which
is implicated in emotion (e.g. fear) and novelty detection. AI
connects bidirectionally to decision-making networks
including areas implicated in valuation and response
selection such as OFC, nucleus accumbens, anterior
cingulate, dorsolateral prefrontal cortex (DLPFC, Brodmann
area 46) and prefrontal areas.
von Economo and Koskinas,1925
Regions of the brain containing Von Economo neurons (VENs).
(a) A lateral view of the brain, with fronto-insular cortex (FI) shown in red. (b) A medial
view of the brain, with anterior cingulate cortex (ACC) shown in red. Adapted from Von
Economo and Koskinas [2]. (c) FI and the spindle-cell-containing region of ACC indicated
on coronal sections through a human brain (50-year-old female) and (d) a common
chimpanzee brain (sections shown with the right hemisphere of the brain on the right of
the figure). Sections are from the Yakovlev Brain Collection at the National Museum of
Health and Medicine, and were scanned by the authors. Note that FI is much larger in the
human than in the chimpanzee. (e) A Von Economo neuron and a pyramidal neuron in
layer 5 of FI. Both types of neuron have a single apical dendrite, but note that the VEN
also has only a single basal dendrite, in contrast to the pyramidal neuron’s multiple basal
dendrites. Photomicrograph by the authors of a section fromthe 50-year-old human
brain shown in part (c).
Intuition and autism: a possible role for Von Economo neurons
John M. Allman, Karli K. Watson, Nicole A. Tetreault and Atiya Y. Hakeem
TRENDS in Cognitive Sciences Vol.9 No.8 August 2005
Vasopressin 1a
Dopamine d3
Serotonin 2b
Immunocytochemistry of Von Economo neurons. VENs in ACC of male humans, labeled with antibodies to:
(a) the vasopressin 1a receptor, which has been linked to the formation of social bonds in rodents
(b) the dopamine d3 receptor, a high-affinity receptor potentially linked to the anticipation of reward under conditions of uncertainty;
(c) the serotonin 2b receptor which may be linked to the anticipation of punishment.
Intuition and autism: a possible role for Von Economo neurons
John M. Allman, Karli K. Watson, Nicole A. Tetreault and Atiya Y. Hakeem
TRENDS in Cognitive Sciences Vol.9 No.8 August 2005
¿Dónde se origina el amor? ¿Y el deseo? ¿Qué papel juega el cerebro en el impulso sexual? La ciencia
lleva años intentando explicar, con datos en la mano, qué factores intervienen en la generación de estos
sentimientos. Una revisión de estudios muestra ahora las áreas cerebrales que comparten deseo y amor,
y también las diferencias en los patrones neuronales que generan cada uno.
Múltiples estudios han analizado las respuestas bioquímicas y neuroendocrinas que se generan tanto en
el amor como en el deseo. Se sabe que en las relaciones de pareja, además de dos personas, intervienen
un grupo de hormonas, entre las que se encuentran la oxitocina, la serotonina o la vasopresina. Sin
embargo, faltaba una visión integral sobre las redes neuronales que se dan en cada uno de estos
sentimientos.
"El principal propósito de nuestro estudio es ofrecer un meta análisis (revisión y análisis) de todos los
estudios de imagen funcional por resonancia sobre el deseo sexual y el amor para comprender mejor las
diferentes activaciones cerebrales y las vías comunes que comparten", explican en su trabajo
investigadores de diferentes universidades como la de Concordia (en Montreal, Canadá) o la de Ginebra
(en Suiza).
Jim Pfaus, principal autor de este estudio, explica a ELMUNDO.es que "el amor y el deseo tienen
patrones diferentes en el cerebro, pero coinciden significativamente en las estructuras corticales y
límbicas, como la ínsula y el núcleo estriado. Es así tanto para mujeres como para hombres, algo que no
esperábamos ya que se tiende a creer que piensan de forma diferente en relación al amor y al sexo".
En su trabajo analizaron los resultados de 20 estudios que examinaron esa actividad cerebral en un total
de 309 participantes mientras estaban viendo fotos eróticas o de una persona a la que amaban. Lo que
encontraron fue que dos estructuras cerebrales, la ínsula y el núcleo estriado, están activadas por los
dos sentimientos.
Sin embargo, observaron que el núcleo estriado se ve afectado de forma diferente cuando se trata de
amor o de deseo. Por otro lado, la parte anterior de la ínsula sólo se activa con sentimientos de amor,
mientras que la posterior de la ínsula izquierda se 'enciende' con el deseo sexual. "Esto está en línea con
la visión de que el amor es una construcción abstracta, lo que se basa en parte en la representación
mental reiterada de momentos emotivos del pasado", explica el estudio publicado en la revista 'The
Journal of Sexual Medicine'.
Áreas implicadas con la interpretación social
Además, también pudieron comprobar que "el deseo sexual no sólo pone en marcha áreas cerebrales
implicadas en la percepción de estímulos sensoriales y emocionales de la propia persona sino también las
estructuras relacionadas con la interpretación social de las emociones y deseos de los otros", explica
la investigación.
Al comparar el amor con el deseo sexual, la actividad en el estriado ventral, hipotálamo, amígdala, corteza
somatosensorial y lóbulo parietal inferial se redujo. Estas reducciones están en consonancia con el deseo
sexual como un estado del ánimo con un objetivo muy específico, mientras que el amor podría ser
considerado como un comportamiento con un objetivo más abstracto, flexible y complejo, menos
dependiente de la presencia física de otra persona. Además, el amor está asociado con unas zonas
cerebrales (el área tegmentaria ventral, la parte derecha del estriado y con dos regiones dopaminérgicas)
que están relacionadas con la motivación, la expectación y la formación de hábitos.
Aunque amor y deseo comparten un patrón de activación emocional, motivacional y cognitiva de las áreas
cerebrales, "nuestra revisión también revela patrones específicos de activación de cada uno de estos
fenómenos". Que el amor se localice en una determinada área del estriado, asociada con las adicciones a
las drogas, podría explicar que "el amor es realmente un hábito que está formado por un deseo sexual que
se retroalimenta a través de una recompensa. Funciona de la misma manera en el cerebro como lo
hace las drogas en las personas adictas", afirma Pfaus.
Otra implicación que se podría extraer, según sugiere Pfaus, "es que el amor romántico puede basarse
en el deseo sexual, como el deseo se ve recompensado por el orgasmo sexual u otras recompensas. A
pesar de que la gente habla de 'amor a primera vista', por lo general desean para consumar ese amor y
mantener relaciones sexuales con la persona amada. Por supuesto, la relación de adicción ocurre cuando
el objeto de nuestro amor se va bruscamente. Entramos en un estado de abstinencia en el que nos
sentimos deprimidos y anhelamos al otro (y a menudo se hace cualquier cosa para conseguir a esa
persona)". Pero no tiene por qué ser un mal hábito, necesariamente, explica. El amor activa diferentes vías
en el cerebro que están involucradas con la monogamia y con la creación de lazos afectivos.
Esperamos que "nuestros resultados ayuden a avanzar en el campo de un modelo neurobiológico para el
amor y el deseo y podrían tener implicaciones interesantes en la medicina sexual". En cuanto al futuro,
Pfaus señala que la idea es seguir estudiando lo que ocurre en animales, "que presentan una activación
muy similar en el cerebro, sobre todo en la ínsula. Por lo que otra conclusión es que el sexo y el amor
son sistemas en el cerebro que se han conservado en la evolución".
SEXO EN EL CEREBRO
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Introducción histórica: Sexo escondido
Resonancia magnética: Sexo en el pubis
Bases de la Resonancia magnética funcional y el PET
“Miembros” fantasma: Sexo en el cerebro
Cerebro enamorado
Sexo en el cerebro masculino
Sexo en el cerebro femenino
Sexo en el cerebro: Diferencias de género
Sexo en el cerebro homosexual
Trastornos sexuales
Conclusiones
SEXO EN EL CEREBRO: CONCLUSIONES
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Importancia del HD (valor en rehabilitación de daño cerebral)
Importancia de los perfumes y las feromonas (pistas olfativas hipotálamo)
Diferencias de sexo: Los hombres activan su cerebro durante el orgasmo y las mujeres
lo desactivan. Hombres: sexo fisico vs. mujeres sexo emocional
El sexo estimula el circuíto de refuerzo (dopamina)
El cortex visual masculino se activa más durante la fase de excitación
¿Validez ecológica de los experimentos? ¿sentimientos?
Las observaciones de Penfield han sido refutadas
El cortex frontal es básico para la toma de decisiones
sobre la elección de pareja sexual en las mujeres (cingulo)
La investigacion en sexología ha dejado de ser un tabú y
puede ser útil para el abordaje en terapia sexual y patología
Importancia de las hormonas en la respuesta sexual Femenina
El enamoramiento conforma una red imnplicada en aspectos,
emocionales, motivacionales y de teoría de la mente
GRACIAS POR VUESTRA ATENCIÓN
Dpto. Psicobiologia UV
Despacho: 406
Tel: 96 386 46 15
Facebook: raul espert
Orientation of functional slices during fMRI session. Seventeen
slices were acquired in an interleaved order. b Six representative slices
(numbers 9,10,11 and 13,14,15) are shown for illustration.
Note that spatial resolution and contrast allow the identification of
anatomical structures. Difficulties persisted due to low signal intensities
in the pallidum or due to frontal signal dropout (slice 11) but were absent
in other subcortical structures, including thalamus
High resolution fMRI of subcortical regions during visual erotic
stimulation at 7 T. Martin Walter et al. Magn Reson Mater Phy
(2008) 21:103–111
Magn Reson Mater Phy (2008) 21:103–111
High resolution fMRI of subcortical regions during visual
erotic stimulation at 7 T
Martin Walter et al.
Regions with significant signal increases during erotic picture
viewing. Coronary sections on the right show localization of significant
clusters (q < 0.05 false discovery rate) overlaid on individual anatomical
images at high resolution (1mm isotropic). Images are in radiological
orientation (the right hemisphere is shown on the left). On the left,
activations are shown directly on functional images to assure
correspondence of underlying structures. Note that functional images suffer
from considerably weak signals in the ventral striatum which does however
not boarder to signal changes in activated structures. Time courses of
activations following onsets of erotic (yellow) or non-erotic, emotional
(green) stimuli are plotted in means of percent signal changes. Activations
were plotted over the next 16 s and were extracted for a right
hemispheric cluster located in the anterior caudate nucleus (a), a right
hemispheric cluster in the mediodorsal portion of the thalamus (MD,
b), and for the right lateral geniculate nucleus (c). Note that, except for
subject 5, right MD and right head of caudate did not show significant
activations for non-erotic stimuli (Table 1). Individual data are shown
for one representative subject (subject 1) and the corresponding P-value
for a false discovery rate of 5% is indicated in the right lower corner
(P< 0.00691 for subject 1). for activations in the other five subjects,