¿Como se conserva el esqueleto vertebrado?
Transcription
¿Como se conserva el esqueleto vertebrado?
PAVYH conservación, patrimonio, tafonomía, • Permisos, actuaciones • Intervenciones de urgencia: excavacion-extracción • Proyectos de investigación: – Prospecciones – Excavaciones • • • • • Estudio tafonómico, mapas, base datos campo Preparación en/del yacimiento: trabajo de campo Conservación: trabajo de laboratorio, almacén Museos, Instituciones publicas Pavyh, www.aragosaurus.com, iuca Michael Skrepnick: Cretaceous centrosaurs swimming to their death Raymond R. Rogers, David A. Eberth, Anthony R. Fiorillo (Editors) (2008): BONEBEDS: GENESIS, ANALYSIS, AND PALEOBIOLOGICAL SIGNIFICANCE. University of Chicago Press, 1-512. ¿Como fosiliza el esqueleto de un vertebrado? Procesos diagenéticos Junggar Basin Jurásico NG 2008 Junggar Basin Jurásico NG 2008 Resultados: procesos biostratinomicos, interpretación de facies Tafonomía de Vertebrados Factores de conservación y destrucción de vertebrados Pisoteo bioestratinomico En el Cretácico superior de Blasi 1, Arén, Huesca Intrínsecos: Anatomía, estructura, ontogenia, paleobiología Sima de los Huesos, Burgos, Spain Stratigraphy of the Sima de los Huesos site (modified from Arsuaga et al. [21]). The hominin bones were recovered in Lithostratigraphic Unit 6 (LU-6) dated to c. 430ka [21]. This unit is composed of pure red clays, filtering into the conduit system from overlying soils with little or no lateral transport, and very low velocity of sedimentation (decantation by dripping water) [23]. The figure also shows a detailed image of Cr17 during its excavation at the site. Note the pure red clay that covers the cranial bones (partially cleaned in situ to enhance visualization) and the typical in situ postmortem (fossil diagenetic) fractures of the cranial vault. Photo credit: Javier Trueba (Madrid Scientific Films). Cranium 17 from Sima de los Huesos, 430 ka, Atapuerca, Burgos, Spain. Sala N, Arsuaga JL, Pantoja-Pérez A, Pablos A, Martínez I, Quam RM, et al. (2015) Lethal Interpersonal Violence in the Middle Pleistocene. PLoS ONE 10(5): e0126589. doi:10.1371/journal. pone.0126589 Tipo de vertebrado: anatomía • Python Quelonio Factores de conservación y destrucción de vertebrados • Extrínsecos: geológicos, biológicos Rana de Libros Dinosaur Monument National Park, Colorado, Utah, USA Foto: A. Elipe. 2004 Fotos hechas con la lupa binocular Olympus SZX, Zaragoza, 2006 ¡no es un vertebrado pero mola! Las icnitas de dinosaurios de Arén: examen de los expertos nombrados por la Comisión de Patrimonio de la Humanidad. 2005 Las icnitas de dinosaurios de Arén: examen de los expertos nombrados por la Comisión de Patrimonio de la Humanidad. 2005 Las icnitas de dinosaurios de Arén: examen de los expertos nombrados por la Comisión de Patrimonio de la Humanidad. 2005 Las icnitas de dinosaurios de Arén: examen de los expertos nombrados por la Comisión de Patrimonio de la Humanidad. 2005 Yacimientos con vertebrados excepcionalmente bien conservados en España Edad, condiciones de preservación, asociación faunística, facies, interpretación… Perez Pueyo: Las Higueruelas • Listado • Cinco líneas máximo, una foto, presentación • cuencag@unizar.es Diagénesis, alteración, composición Bauluz, B., Gasca, J.M., Moreno-Azanza, M. & Canudo, J.I. 2014: Unusual replacement of biogenic apatite by aluminium phosphate phases in dinosaur teeth from the Early Cretaceous of Spain. Lethaia, Vol. 47, pp. 556–566. Altered iguanodontian dinosaur teeth have been studied to analyse the unusual replacement of biogenic apatite and to deduce how the alterations affect the preservation of these fossils. The fossils were recovered from alluvial lacustrine facies (Barremian, Early Cretaceous) in Teruel (Spain). Mandibular teeth and sediments were studied in hand sample, by X-ray diffraction (XRD) and by scanning electron microscopy (SEM). The combination of the different techniques shows that the teeth have undergone at least three pseudomorphic stages: (1) replacement of the organic component of the dentine and enamel by fluorapatite; (2) replacement of the fluorapatite by aluminium sulphate phosphate phases (crandallite–woodhouseite series); and (3) replacement of part of the tooth by gypsum and Al- and Fe-rich phosphates (vauxite) as a consequence of the superficial weathering of the fossil-rich outcrop. The presence of organic matter and sulphides in the host rocks was the main factor promoting the dissolution of the previous phases and crystallization of the new ones. This is the first description of the replacement of biogenic apatite in dinosaur teeth by aluminium and iron phosphates as a result of fossil diagenetic processes; these minerals are scarce in sedimentary environments and may have economic interest because they contain rare earth or radioactive elements. Additionally, our results indicate that, to ensure proper curating of the specimens from this fossil site, it is crucial to completely remove the host rock and strictly control storage humidity. □ alteration, aluminium phosphate phases, biogenic apatite, Iguanodontian dinosaurs, mineralogy.\ infrared spectrometry (FTIR) Structure of fresh incisors – scanning electron microscope (SEM), back scattered electron (BSE) images.a–d: Rattus, polished and etched section (formic acid 5% for 10 s); a – Parasagittal polished section showing the enamel outer (EOL) and inner (EIL) layers. b – Detail of thestructure of the outer layer of enamel. c – Uniserial pattern of the EIL. d – Oblique section shows the tubules in dentine.e–i: M. shawii; e – Parasagittal section showing the two sublayers in the enamel (HCl 1% for 30 s). f – Detail of the same showing the uniserial pattern of EIL. g – Parasagittalsection of another incisor showing the uniserial pattern of the EIL and the parallel fibres within a prism (HCl 1% for 15 s). h – Same sample, tubules in the dentine. i – Obliquesection of the dentine, showing the tubules (formic acid 5% for 10 s). infrared spectrometry (FTIR) Structure of Meriones incisors extracted from regurgitation pellets of Bubo – SEM BSE images.a–d: Untreated samples. a – Outer surface showing the structure of the altered enamel. b – Fracture showing the uniserial pattern of the enamel. c – Altered outer surfaceshowing the enamel dentine junction (EDJ). d – Fracture showing the tubules of the dentine.e–i: Polished and etched section (HCl 1% for 30 s); e – Parasagittal section showing the two sublayers (EOL and EIL) of the enamel. f – Detail of the outer layer of enamel. g –Detail of the uniserial pattern of EIL. h – EDJ and dentine, showing the parallel tubules. i – Detail of the tubules of the dentine. infrared spectrometry (FTIR) FTIR maps of area between 900 and 1200 cm−1for the mineral content (PO4)(a, d, g), between 1580 and 1720 cm−1for organic content (b, e, h). These maps areratioed to estimate the mineral–organic ratios (c, f, i). a–c: Rattus, d–f: fresh Meriones,g–i: pellet from Bubo. The organic contents of both fresh and pellet Meriones differfrom that of Rattus.