¿Como se conserva el esqueleto vertebrado?

Transcription

¿Como se conserva el esqueleto vertebrado?
PAVYH conservación, patrimonio, tafonomía,
• Permisos, actuaciones
• Intervenciones de urgencia: excavacion-extracción
• Proyectos de investigación:
– Prospecciones
– Excavaciones
•
•
•
•
•
Estudio tafonómico, mapas, base datos campo
Preparación en/del yacimiento: trabajo de campo
Conservación: trabajo de laboratorio, almacén
Museos, Instituciones publicas
Pavyh, www.aragosaurus.com, iuca
Michael Skrepnick:
Cretaceous
centrosaurs
swimming to their
death
Raymond R. Rogers, David
A. Eberth, Anthony R.
Fiorillo (Editors) (2008):
BONEBEDS: GENESIS,
ANALYSIS, AND
PALEOBIOLOGICAL
SIGNIFICANCE. University
of Chicago Press, 1-512.
¿Como fosiliza el esqueleto de un
vertebrado?
Procesos
diagenéticos
Junggar Basin
Jurásico
NG 2008
Junggar Basin
Jurásico
NG 2008
Resultados: procesos biostratinomicos,
interpretación de facies
Tafonomía de Vertebrados
Factores de conservación y
destrucción de vertebrados

Pisoteo bioestratinomico
En el Cretácico superior de
Blasi 1, Arén, Huesca
Intrínsecos:
Anatomía,
estructura,
ontogenia,
paleobiología
Sima de los Huesos, Burgos, Spain
Stratigraphy of the Sima de los
Huesos site (modified from Arsuaga
et al. [21]). The hominin
bones were recovered in
Lithostratigraphic Unit 6 (LU-6)
dated to c. 430ka [21]. This unit is
composed of pure
red clays, filtering into the conduit
system from overlying soils with little
or no lateral transport, and very low
velocity of sedimentation
(decantation by dripping water) [23].
The figure also shows a detailed
image of Cr17 during its excavation at the site.
Note the pure red clay that covers
the cranial bones (partially cleaned
in
situ to enhance visualization) and
the typical in situ postmortem (fossil
diagenetic) fractures of the cranial
vault. Photo credit: Javier Trueba
(Madrid Scientific Films).
Cranium 17 from Sima de los Huesos, 430
ka, Atapuerca, Burgos, Spain.
Sala N, Arsuaga JL, Pantoja-Pérez A,
Pablos A, Martínez I, Quam RM, et al.
(2015) Lethal
Interpersonal Violence in the Middle
Pleistocene.
PLoS ONE 10(5): e0126589.
doi:10.1371/journal.
pone.0126589
Tipo de vertebrado: anatomía
• Python
 Quelonio
Factores de conservación y
destrucción de vertebrados
• Extrínsecos:
geológicos, biológicos
Rana de Libros
Dinosaur Monument National
Park, Colorado, Utah, USA
Foto: A. Elipe. 2004
Fotos hechas con la lupa binocular
Olympus SZX, Zaragoza, 2006
¡no es un vertebrado pero mola!
Las icnitas de dinosaurios de Arén:
examen de los expertos
nombrados por la Comisión de
Patrimonio de la Humanidad. 2005
Las icnitas de dinosaurios de Arén:
examen de los expertos
nombrados por la Comisión de
Patrimonio de la Humanidad. 2005
Las icnitas de dinosaurios de Arén:
examen de los expertos
nombrados por la Comisión de
Patrimonio de la Humanidad. 2005
Las icnitas de dinosaurios de
Arén: examen de los
expertos nombrados por la
Comisión de Patrimonio de la
Humanidad. 2005
Yacimientos con
vertebrados
excepcionalmente bien
conservados en España
Edad, condiciones de preservación,
asociación faunística, facies,
interpretación…
Perez Pueyo: Las Higueruelas
• Listado
• Cinco líneas máximo, una
foto, presentación
• cuencag@unizar.es
Diagénesis, alteración,
composición
Bauluz, B., Gasca, J.M., Moreno-Azanza, M. & Canudo, J.I. 2014: Unusual
replacement of biogenic apatite by aluminium phosphate phases in dinosaur
teeth from the Early Cretaceous of Spain. Lethaia, Vol. 47, pp. 556–566.
Altered iguanodontian dinosaur teeth have been studied to analyse the
unusual replacement of biogenic apatite and to deduce how the
alterations affect the preservation of these fossils. The fossils were
recovered from alluvial lacustrine facies (Barremian, Early Cretaceous) in
Teruel (Spain). Mandibular teeth and sediments were studied in hand
sample, by X-ray diffraction (XRD) and by scanning electron microscopy
(SEM).
The combination of the different techniques shows that the teeth have
undergone at least three pseudomorphic stages:
(1) replacement of the organic component of the dentine and enamel by
fluorapatite; (2) replacement of the fluorapatite by aluminium sulphate
phosphate phases (crandallite–woodhouseite series); and (3) replacement
of part of the tooth by gypsum and Al- and Fe-rich phosphates (vauxite) as a
consequence of the superficial weathering of the fossil-rich outcrop.
The presence of organic matter and sulphides in the host rocks was the main
factor promoting the dissolution of the previous phases and crystallization of
the new ones. This is the first description of the replacement of biogenic
apatite in dinosaur teeth by aluminium and iron phosphates as a result of fossil
diagenetic processes; these minerals are scarce in sedimentary environments
and may have economic interest because they contain rare earth or radioactive
elements. Additionally, our results indicate that, to ensure proper curating of
the specimens from this fossil site, it is crucial to completely remove the host
rock and strictly control storage humidity.
□ alteration, aluminium phosphate phases, biogenic apatite, Iguanodontian
dinosaurs, mineralogy.\
infrared spectrometry
(FTIR)
Structure of fresh incisors – scanning electron
microscope (SEM), back scattered electron (BSE)
images.a–d: Rattus, polished and etched section
(formic acid 5% for 10 s); a – Parasagittal polished
section showing the enamel outer (EOL) and
inner (EIL) layers. b – Detail of thestructure of the
outer layer of enamel. c – Uniserial pattern of the
EIL. d – Oblique section shows the tubules in
dentine.e–i: M. shawii; e – Parasagittal section
showing the two sublayers in the enamel (HCl 1%
for 30 s). f – Detail of the same showing the
uniserial pattern of EIL. g – Parasagittalsection of
another incisor showing the uniserial pattern of
the EIL and the parallel fibres within a prism (HCl
1% for 15 s). h – Same sample, tubules in the
dentine. i – Obliquesection of the dentine,
showing the tubules (formic acid 5% for 10 s).
infrared spectrometry
(FTIR)
Structure of Meriones incisors extracted from
regurgitation pellets of Bubo – SEM BSE
images.a–d: Untreated samples. a – Outer
surface showing the structure of the altered
enamel. b – Fracture showing the uniserial
pattern of the enamel. c – Altered outer
surfaceshowing the enamel dentine junction
(EDJ). d – Fracture showing the tubules of the
dentine.e–i: Polished and etched section (HCl 1%
for 30 s); e – Parasagittal section showing the two
sublayers (EOL and EIL) of the enamel. f – Detail
of the outer layer of enamel. g –Detail of the
uniserial pattern of EIL. h – EDJ and dentine,
showing the parallel tubules. i – Detail of the
tubules of the dentine.
infrared spectrometry
(FTIR)
FTIR maps of area between 900 and
1200 cm−1for the mineral content
(PO4)(a, d, g), between 1580 and 1720
cm−1for organic content (b, e, h).
These maps areratioed to estimate the
mineral–organic ratios (c, f, i). a–c:
Rattus, d–f: fresh Meriones,g–i: pellet
from Bubo. The organic contents of
both fresh and pellet Meriones
differfrom that of Rattus.