Isotope effects on solubility and diffusivity of hydrogen isotopes in Li
Transcription
Isotope effects on solubility and diffusivity of hydrogen isotopes in Li
Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Session 3 Tri:um transport proper:es in Li-‐Pb Isotope effects on solubility and diffusivity of hydrogen isotopes in Li-‐Pb eutec:c alloy Satoshi FUKADA Dept. of Advanced Energy Engineering Science Kyushu University, Japan sfukada@nucl.kyushu-‐u.ac.jp 1 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Introduc:on • Li15.8Pb84.2 (Li17Pb83) eutec4c alloy Inertial fusion reactor, KOYO-Fast – High TBR – Low reac:vity with N, C, O – Simplified blanket structure (low m.p.) • Tri4um breeding blanket – Self-‐sufficient tri:um cycle – High efficiency heat recovery ITER-TBM DCLL-US HCLL-EU 2 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Tri:um recovery and leakage in Iner:al fusion reactor, KOYO-‐fast, to give proper liquid blanket design LiPb wet wall 1GWt fusion power T generation rate : 1.5MCi/day Overall tritium leak : 10Ci/day Laser shot, implosion D-‐T reac:on D2 addi:on T permea4on Tritium recovery ratio of 99.999% is demanded!! T high • Es:mated tri:um concentra:on in Li16Pb84 flow is 5.9x10-‐11 g-‐T/g-‐Li17Pb83. 8.6x10-‐9 mol-‐T/mol-‐Li17Pb83 3 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid (4) Blanket design Tri:um extrac:on and Heat exchanger system for Koyo laser fusion reactor Li15.8Pb84.2 heat exchanger steam D2 addi:on tri:um extrac:on permea:on steam turbine 300oC fuel evacua:on water Fusion reactor chamber pump pump generator Total power 1 GWt Li16Pb84 inlet temp. 300 oC Li16Pb84 outlet temp. 500 oC ~ Li16Pb84 mass flow rate 18.4 t/s condenser cooling water D+T fuel injec:on 500oC Li16Pb84 loop for Laser fusion reactor and steam Rankine cycle T generation rate 1.43 MCi/day T concentration in Li16Pb84 8.6x10-9 T/Li16Pb84 T partial pressure in LiPb 1.8x10-3 Pa Heat transfer coefficient of heat exchanger 5.0x103 W/m2K Surface area of het exchanger 690 m2 Logarithmic temperature difference in heat exchanger 290 K Estimated T leak rate 255 Ci/day Rate-determining step T permeation through tube wall 4 T inventory and T permea:on are important issues. Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Experimental clarifica:on of T transfer and recovery in Li15.8Pb84.2 blanket (0) Determine permeability, diffusivity, solubility of H, D and T in Li-‐Pb alloys (1) Isotope effects on diffusivity and solubility among H, D, T in Li16Pb84 eutec:c alloy Interac:on energy between H, D, T and Li atoms. (2) H chemical proper:es when H isotope mixtures are present in Li16Pb84 Chemical condi:ons of H, D and T dissolved in Li-‐Pb and mutual interac:ons. (3) Varia:ons of Li-‐Pb alloy proper:es with Li composi:on Li chemical ac:vity in Li-‐Pb. 5 (0) PDK data of Li-‐Pb Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Comparison among previous solubili:es of Li16Pb84-‐H system Data were summarized in previous WS, which show large differences. (1) Isotope effects among H, D, (T) (2) Li ac:vi:es in Li-‐Pb, (3) Impurity effects have to be clarified. 6 Japan-‐US joint program Fusion Safety Program TITAN data compared to references for H2 solubility T T 1000/T K C 1/K 500 600 700 800 900 1000 227 327 427 527 627 727 Reiter 91 1e3 - 1e5 Pa 2.00 1.76E-08 1.67 1.86E-08 1.43 1.93E-08 1.25 1.11 1.00 Ks H2 at fr / Pa^-0.5 Chan 84 Katsuta 85 Fauvet 88 Schumacher 90 Aiello 06 Fukada 1e4 Pa 1e4 - 1e5 Pa 1e3 - 1e4 Pa 1e4 - 1e6 Pa 1e3 - 1e5 Pa 1e3 - 1e5 Pa 2.07E-07 7.73E-08 1.08E-06 2.64E-07 3.17E-07 1.00E-07 1.08E-06 2.70E-08 3.15E-07 4.66E-07 8.44E-08 1.21E-07 3.59E-07 6.21E-07 1.26E-07 3.97E-07 7.77E-07 1.72E-07 4.31E-07 2.21E-07 INL 08 1 - 1e5 Pa 1.26E-08 1.96E-08 2.73E-08 3.53E-08 INL 09 1 - 1e5 Pa 1.45E-08 3.14E-08 1.02E-07 3.65E-07 Recent data were substantially different than those presented in FY08 • In the range of applicability (<500 C) Reiter data are verified by desorption experiments based on PVT measurements • Different liquid column geometry shows impact of surface to volume ratio is negligible diffusion controlled process PVT measurements by adsorption procedure Fukada’s data obtained with permeation cell • High temperature data are still unreliable • Interaction with the alumina crucible PVT measurements by desorption procedure VLT Nov09 above 500 C is likely responsible for the high apparent solubility because of the formation of Li-Al alloys, as demonstrated by corrosion tests performed by B. Pint at ORNL (presented at ICFRM14) 7 Tri:um solubility in Li-‐Pb are determined this year. 9 (0) PDK data of Li-‐Pb Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Experiment : single H,D or dual H+D mixture permea:ng through Li16Pb84 Permeability, diffusivity and solubility of hydrogen isotopes in Li16Pb84 are determined by means of a permea:on method Experimental conditions Ar Temperature 573-973 K H2 partial pressure 103-105 Pa D2 partial pressure 103-105 Pa H2, D2 flow rate 5 ccm Ar flow rate 5 ccm H2 or D2 QMS A schematic diagram of the experimental apparatus 8 (0) PDK data of Li-‐Pb Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Transient H permea:on through Li-‐Pb alloy ∂c H ,k 2 = D H,k ∇ c H,k ∂t For k=Fe and Li16Pb84 x=LFe+LLiPb c H,LiPb = K H,LiPb p H 2 ,down € Determine KH,LiPb and DH,LiPb from fimng between experiment and calcula:on € pH2,down, pHD,down, pD2,down recombina4on Li-‐Pb alloy x=0 c H,Fe = K H,Fe p H 2 ,up Downstream-‐side Ar x Diffusion H, D Fe dissocia4on pH2,up, pD2,up H2, D2 A model of H permea:on in Li16Pb84 Upstream-‐side 9 (0) PDK data of Li-‐Pb Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Typical H permea:on run experiment Permeated H2 concentration in Ar purge gas [ppm] • Overall permea:on is considered to be limited by diffusion based on the following reasons: simula:on 105 !Fe-H2 permeation 104 Experiment Li17Pb83+!-Fe !-Fe 103 !Fe+Li17Pb83-H2 permeation 102 (stady-state permeation) (transient-state permeation) 101 0 2 4 6 8 10 Time from start of H2 permeation [hr] (1) The permea:on rate through α-‐Fe only is hundred higher than through α-‐Fe+Li16Pb84. (2) The permea:on rate is in reverse propor:on to the thickness of Li16Pb84. (3) The overall permea:on rate is well predicted by the diffusion equa:on in Li16Pb84 layer. 10 jLiPb-‐H 2 Permeation flux [mol/m s] (0) PDK data of Li-‐Pb Dependences of pH2, upstream and L on jLiPb-‐H 10-1 2 -2 10 1 jLiPb-‐H∝pH2,upstream0.5 j LiPb − H = 973K 873K 773K 673K -3 10 J =1.6x104pH 0.500 J =1.4x104pH 0.478 H J =1.2x104pH 0.446 H J =1.4x104pH 0.366 H H2 2 2 2 2 2 2 -4 10 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid 1000 € PLiPb − H L ( p H 2 ,upstream − p H 2 ,downstream PLiPb-H : H permeability [mol/msPa0.5] 2 10000 100000 Upstream pressure [Pa] pH2,upstream Dependence of upstream pressure, pH2,upstream L=1cm jLiPb-‐H∝1/L L=2cm Dependence of thickness, L Dependence of temperature 11 ) (1) Isotope effects Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Solubility and diffusivity of H and D in Li16Pb84 alloys Solubility as a func:on of temperature Diffusivity as a func:on of temperature Solubility and diffusivity of H and D in Li16Pb84 are correlated to a func:on of temperature, and isotope differences between H and D are determined.12 (0) PDK data of Li-‐Pb Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Comparison among previous solubili:es of Li17Pb83-‐H system Our single component data Our data locate between Chan&Veleckis and Reiter. 13 (0) PDK data of Li-‐Pb Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Comparison of diffusivity with p revious d ata o Temperature C] [ 700 600 500 400 300 2 Diffusivity [m/s] 105 Pa 104 Pa 5x103 Pa 103 Pa F.Reiter T.Terai Okamoto -8 10 10-9 10-10 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1000/T [1/K] Previous data of H diffusivity in Li-‐Pb are consistent within allowable errors. 14 (2) H+D permea:on Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Permea:on of H2, D2 and HD component through materials PH jH = L P jD = D L ( ( p H2, upstream − pH2 , downstream p D2, upstream − pD2 , downstream ) ) pt = p H2 + pHD + p D2 € € PH jH = yH, upstream pt, upstream − yH, downstream pt, downstream L € P jD = D yD, upstream pt, upstream − yD, downstream pt, downstream L 1 p H2 + pHD 2 yH = H molar frac:on p H2 + pHD + p D2 ( ( 1 p D2 + pHD 2 yD = p H2 + pHD + p D2 ) ) downstream-‐side Ar purge H2, D2 solu4on recombina4on Li17Pb83 Fe (1mm) diffusion H, D dissocia4on D molar frac:on H2, D2 upstream-‐side 15 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid (2) H+D permea:on The ra:o of H and D permeability through Li-‐Pb, PH, PD H+D 4 700oC 2 10-118 6 4 2 10-128 6 4 2 10-13 0 400oC o H D 8 6 4 2 1 H:D 34:66 44:56 66:34 80:20 8 6 4 K HD = p HD 2 p H 2 pD2 H2+D2=2HD 2 0.1 1.0 700 C 400oC 20 10 D2 10-108 6 Equilibrium constant, KHD [-] PH, PD 0.5 Permeability of H or D through Li17Pb83 [mol/msPa ] H2 € 1.1 1.2 1.3 1.4 1.5 Reciprocal of temperature, 1000/T [K-1] 40 60 80 100 D atom fraction in upstream gas, D/(H+D) [-] Equilibrium constant at the downstream side of Li16Pb84 layer, the line is theore:cal value. Permeability of H and D through Li16Pb84 • H permeability is around 1.4 :mes larger than D one as the isotope effect independent of the H:D composi:on ra:o. • The isotope equilibrium of H2+D2=2HD is achieved at the downstream side. 16 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid (2) H+D permea:on Permeability of H and D through Li16Pb8, when H and D are simultaneously permeated 10-108 10-108 6 6 H2+D2 mixture 0.5 2 10-118 6 4 2 10-128 6 H:D 100:0 90:10 80:20 66:34 44:56 34:66 H permeability 4 2 10-13 1.0 H2+D2 mixture 4 D permeability [mol/msPa ] 0.5 H permeability [mol/msPa ] 4 2 10-118 6 4 2 H:D 0:100 34:66 44:56 66:34 80:20 90:10 10-128 6 4 2 1.1 1.2 1.3 1.4 Reciprocal of temperature, 1000/T [K-1] H permeability through Li16Pb84 when upstream side is H2+D2 mixture 1.5 10-13 1.0 1.1 1.2 D permeability 1.3 1.4 1.5 Reciprocal of temperature, 1000/T [K-1] D permeability through Li16Pb84 when upstream side is H2+D2 mixture When H and D simultaneously permeate through Li16Pb84 layer, H and D behave independently. The permeabili:es of H and D are described by the ideal solu:on model regardless of any H:D ra:os. 17 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid (1) Isotope effects Isotope effects of harmonic oscilla:on in inters::als surrounded by Li and Pb atoms Interface between gas and Li16Pb84 absorp:on H-H Gas phase absorp:on heat ⎡ ⎛ hν D,0 ⎞ ⎤ ⎢ sinh⎜ ⎟ ⎥ ⎛ K H ⎞ ⎝ 2kB T ⎠ ⎥ G H 2 ,0 − GD2 ,0 ⎢ + ⎟ = 3ln⎢ Saddle point ln⎜ ⎛ hν H ,0 ⎞⎥ 2Rg T ⎝ K D ⎠ ⎟⎥ ⎢sinh⎜ diffusion ac:va:on energy of 2k T ⎝ B ⎠⎦ ⎣ diffusion Li16Pb84-H Li16Pb84-H νH,0 Zero-‐point vibra:on energy in solu:on site νH,0* Zero-‐point vibra:on energy at saddle point L H 2 T 3.5 € ⎛ B H 2 ,0 ⎞ G H 2 ,0 = −Rg T ln ⎟ −J H 2 /T − Rg ⎜ DH 2 ,0 + 3 1− e ⎝ ⎠ BH2, DH2, JH2, LH2; constant ⎡ ⎡ ⎛ hν *H ,0 ⎞⎤ ⎛ hν H ,0 ⎞⎤ ⎢ sinh⎜ ⎥ ⎢sinh⎜ ⎥ ⎟ ⎟ ⎛ DH ⎞ ⎝ 2kB T ⎠⎥ ⎝ 2k B T ⎠⎥ ⎢ ⎢ ln⎜ − 2ln ⎟ = 3ln⎢ ⎛ ⎞ ⎛ hν *D,0 ⎞ ⎥ ⎢ hν D,0 ⎥ ⎝ DD ⎠ ⎟ ⎥ ⎢ sinh⎜ 18 ⎟ ⎥ ⎢ sinh⎜ ⎝ 2kB T ⎠ ⎦ ⎝ 2k B T ⎠ ⎦ ⎣ ⎣ Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid (1) Isotope effects Li17Pb83-H,D system Li-H,D,T system solubility KH/KD solubility KH/KD diffusivity DH/DD solubility KH/KT (EH,0=0.30eV, EH,0*=0.47eV) (EH,0=0.10eV) 2.0 KH/KD, DH/DD or KH/KT [-] Solubility and diffusivity ra:o of H ad D in Li-‐Pb Isotope effects of solubility and diffusivity in Li15.8Pb84.2 and Li 1.5 0.47eV (45kJ/mol) Transi:on site Li17Pb83 Li-H,D,T Li17Pb83 0.3eV (29kJ/mol) Solu:on site 1.0 Li17Pb83-H,D Zero-‐pint energy of vibra:on for LiPb-‐H bond 0.5 0.0 400 600 800 Temperature [K] 1000 1200 19 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid (1) Isotope effects 1st principle numerical simula:on for diffusion of H in PbLi D. Masuyama, et al., Chem. Phys. Let., 483 (2009) 214-‐218 3 Pb atoms, 1Li atoms 4 Pb atoms crystal ◆H atoms are present at posi:ons near to Li than Pb. Pb crystal⇒fcc stable at tetrahedral site -‐229.95 eV Diffusion Barrier α eV(≒0.1 eV) 0.29 + α eV (0.29 » α) > -‐230.24 eV Energy difference⇒0.29 eV H Pb 4 H H Pb 3-‐Li 1 H Li Pb saddle posi:on calculation experiment Diffusion barrier 0.29+α eV 0.27 eV trapped posi:on • H behavior in Li17Pb83 can be understood by pure numerical calcula:on! 20 (3) composi:on differences Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Chemical ac:vity of Li in Eutec:c alloy of LiXPb1-‐X Intermetallic compound of Li0.5Pb0.5 2 Li0.17Pb0.83 is approximated by Li1/6Pb5/6 and is an eutec:c alloy of 2Pb+1Li0.5Pb0.5 intermetallic compound. Eutec:c composi:on 2:1 1 4Pb site 3Pb1Li site 21 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid (3) Li-‐Pb composi:on differences Li and H activity of LiXPb1-X-H2 eutectic alloy system 1 When Li/Pb ra:o is large, 0 KLiPb-H=xLiKLi-H+xPbKPb-H 10 Pb Pure Li 0 10 -1 10 -1 10 -2 10 -2 10 ln(KLiPb-H)=xLiln(KLi-H)+xPbln(KPb-H) -3 -3 10 10 -4 10 Pure Pb 800K, LiXPb1-X Activity of Li in Li-Pb [-] 0.5 Solubility of H in Li-Pb [1/atm ] 10 Pb Li+ H-‐ When Li/Pb ra:o is small, Pb Li+ -4 10 -5 10 0.0 0.2 0.4 0.6 0.8 Li/(Li+Pb) [mole fraction of Li in Li-Pb] 1.0 aHinLi ⎛ a H2 = ⎜⎜ xHinLi ⎝ p H2 Li-‐Pb can cons:tute eutec:c alloy system. • • ⎞0.5 ⎟ ⎟ ⎠ Pb H-‐ When xLi>0.5, electric charge of Li+ is not shielded by Pb atoms, and Li+-H- ionic € binding is major in LiXPb1-X eutectic alloy. Activity of Li is higher. When xLi<0.5, electric charge of Li+ is shielded by Pb atoms, and Li+ and H- ions may not be combined directly. Activity of Li is the lowest. 22 € Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid (3) Li-‐Pb composi:on differences Li ac:vity in Li+Pb mixtures can be correlated by ln(K LiPb− H ) = x Li ln(K Li− H ) + x Pb ln(K Pb− H ) Other physical or chemical proper:es of Li-‐Pb alloy Viscosity Thermal conduc4vity Vapor pressure Latent heat Measurement for Li17Pb83 2 cP 22 W/mK 0.37 Pa 180 kJ/mol value for Li 0.36 cP 53 W/mK 2.1 Pa 140 kJ/mol value for Pb 2.0 cP 20 W/mK 0.0056 Pa 178 kJ/mol Es:ma:on by xLiKLi+xPbKPb 14% 16% 2% 5% Es:ma:on by xLilnKLi+xPblnKPb 25% 7% 95% 5% • Thermal proper:es (when macro-‐energy is dominant) can be correlated by the linear combina:on model. • Mechanical proper:es on molecular dynamics (when micro-‐energy is dominant) can be correlated by the logarithmic linear combina:on. 23 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid (4) Blanket design Tri:um extrac:on and Heat exchanger system for Koyo laser fusion reactor Li16Pb84 heat exchanger steam tri:um extrac:on permea:on steam turbine 300oC fuel evacua:on water Fusion reactor chamber pump pump generator Total power 1 GWt Li16Pb84 inlet temp. 300 oC Li16Pb84 outlet temp. 500 oC ~ Li16Pb84 mass flow rate 18.4 t/s condenser cooling water D+T fuel injec:on 500oC Li16Pb84 loop for Laser fusion reactor and steam Rankine cycle T generation rate 1.43 MCi/day T concentration in Li16Pb84 8.6x10-9 T/Li17Pb83 T partial pressure in LiPb 1.8x10-3 Pa Heat transfer coefficient of heat exchanger 5.0x103 W/m2K Surface area of het exchanger 690 m2 Logarithmic temperature difference in heat exchanger 290 K Estimated T leak rate 255 Ci/day Rate-determining step T permeation through tube wall 24 (4) Blanket design Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Tri:um permea:on rate through steam generator of laser fusion reactor system as a func:on of tri:um concentra:on in Li16Pb84 Tri:um is dissolved as an atomic form in LiPb as well as in sus 316 tube wall. RT = kT −LiPb (cT −LiPb,m − cT −LiPb,S1 ) = LiPb cT-‐LiPb,m € € ⎛ pT ,S 2 pT ,m ⎞ DT −sus cT −sus,S1 − cT −sus,S 2 ) = kT − He ⎜⎜ 2 − 2 ⎟⎟ ( t sus ⎝ Rg TS 2 Rg Tm ⎠ cT −sus, S 2 pS 2 = K T −sus steam sus316 cT-‐sus,S1 cT-‐LiPb,S1 pT2,S2 cT-‐sus,S2 pS1 = Tri:um permea:on pT2,m cT −LiPb, S1 cT −sus, S1 = K T −LiPb K T −sus ⎛ ⎞ Rg TS 2 c 1 t sus T + RT + S 2 pT2 ,m = T −LiPb,m ⎜ ⎟RT + kT − He Tm KT −LiPb ⎝ KT −LiPb kT −LiPb KT −susDT −sus ⎠ € When pT2,m is negligibly small, € RT = KT −LiPb t sus cT −LiPb,m KT −susDT −sus + d ShLiPb DT −LiPb 25 € (4) Blanket design Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Values of permeability for combina:ons of liquid breeders and structural materials Resistance of T diffusion in LiPb boundary layer and that of permea:on through wall is comparable. T diffusion resistance in Flibe is limi:ng. 26 (4) Blanket design Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Design of He-‐Li16Pb84 counter-‐current extrac:on tower for tri:um recovery He out • Material balance equa:on Ldy = Gdx Li16Pb84 in kL avγ S ( y − yi ) dz = kG aV ct ( x − xi )dz • Gas-‐phase mass-‐transfer coefficient 2 ⎛ G ⎞⎟ G 0.32 ⎛ ν ⎞ 3 H G ⎜ = = 3.07 0.51 ⎜ G ⎟ ⎝ kG aV ct ⎠ L ⎝ DG ⎠ Li16Pb84 out He in Cited from He-‐water system • LiPb-‐phase mass-‐transfer coefficient ⎛ L ⎞⎟ 1 ⎛⎜ L ⎞⎟ H L ⎜ = = ⎝ kL aV γ S ⎠ 430 ⎝ µ L ⎠ 0.22 ⎛ ν L ⎞ ⎜ ⎟ ⎝ DL ⎠ 0.5 Cited from He-‐water system • Tri:um concentra:on profile in tri:um extrac:on tower ⎡⎛ K L⎞ z ⎤ K L exp ⎜1 − C ⎟ − C ⎢⎣⎝ G ⎠ H 0,L ⎥⎦ G y = yin ⎡⎛ K L⎞ h ⎤ KC L exp ⎜1 − C ⎟ − ⎢⎣⎝ G ⎠ H 0,L ⎥⎦ G Example of calcula:on of tri:um concentra:on in a counter-‐current extrac:on tower (Flibe case) S. Fukada et al., Fusion Science and Technology, 41 (2002) 1054.) 27 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid D permea:on and D recovery experiment in Li-‐Pb flowing system • D permea:on experiment through Li16Pb84-‐wall-‐secondary (gas) flow • D recovery experiment by He gas bubbling 28 Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid H permea:on test is under way. H2 increase in Ar purge by permea:on Li16Pb84 H2 decrease in feed by permea:on Ar or H2 Varia:ons of H2 concentra:on in permea:on side Experimental conditions Permeation part SUS304 Permeation temperature 300oC Tube diameter, thickness 3.2mm, 0.5mm Ar flow rate 8 5ccm Varia:ons of H2 concentra:on in feed s29 ide Interna:onal WS on liquid metal breeder blankets, Sep. 23-‐24 2010, SIEMAT Madrid Conclusions 1. Permeability, diffusivity and solubility of H and D in Li16Pb84 alloy are determined. 2. Isotope effects of solubility and diffusivity are correlated by harmonic oscilla:on model and vibra:on energy in solu:on site and transient site. 3. The energy determined so is consistent with 1st principle numerical simula:on for H behavior in Li16Pb84 eutec:c alloy. 4. When H and D mixtures are present simultaneously, their permea:ons are determined by the ideal solu:on model, and the solubility and diffusivity are determined in a similar way to the single component of H2 or D2. 5. Li ac:vity and H energy in trap site for solubility in arbitral composi:on of Li+Pb alloys are correlated by the linear addi:on rule of Li and Pb atoms. 6. Hydrogen permea:on through Li16Pb84 flow surrounded by solid walls is determined by the conjugated system of flow-‐wall-‐gas purge. 30 Our recent published papers 1. Y. Edao, H. Noguchi, S. Fukada, “Experiment of hydrogen isotopes permea:ng through Li-‐Pb with diffusion, dissolu:on and isotopic exchange”, Proc. ICFRM-‐14, Sapporo, (2009) Sept. 7-‐11. 2. S. Fukada, Y. Edao, “Unresolved issues on tri:um mass transfer in Li-‐Pb liquid blankets”, Proc. ICFRM-‐14, (2009) Sept. 7-‐11. 3. D. Masuyama, T. Oda, S. Fukada, “Chemical state and diffusion behavior of hydrogen isotopes in liquid lithium-‐lead”, Chemical Physics Le|ers, 483 (2009) 214-‐218. 4. Y. Edao, S. Fukada, H. Noguchi, Y. Maeda, K. Katayama, ”Isotope effects of hydrogen isotope absorp:on and diffusion in Li0.17Pb0.83 eutec:c alloy”, Fusion Science and Technology, 56 (2009) 831-‐835. 5. Y. Edao, S. Fukada, S. Yamaguchi, H. Nakamura, “ Tri:um removal by Y hot trap for Li purifica:on of IFMIF target”, Fusion Engineering and Design, 85 (2010) 53-‐57. All the researches are financially supported by Grant-‐in-‐aid for Scien:fic Research of Priority area (Fusion Tri:um) from Japanese government. 31