Isotope effects on solubility and diffusivity of hydrogen isotopes in Li

Transcription

Isotope effects on solubility and diffusivity of hydrogen isotopes in Li
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Session 3 Tri:um transport proper:es in Li-­‐Pb
Isotope effects on solubility and diffusivity of hydrogen isotopes in Li-­‐Pb eutec:c alloy
Satoshi FUKADA Dept. of Advanced Energy Engineering Science Kyushu University, Japan sfukada@nucl.kyushu-­‐u.ac.jp
1
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Introduc:on •  Li15.8Pb84.2 (Li17Pb83) eutec4c alloy Inertial fusion reactor,
KOYO-Fast
–  High TBR –  Low reac:vity with N, C, O –  Simplified blanket structure (low m.p.) •  Tri4um breeding blanket –  Self-­‐sufficient tri:um cycle –  High efficiency heat recovery ITER-TBM
DCLL-US
HCLL-EU
2
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Tri:um recovery and leakage in Iner:al fusion reactor, KOYO-­‐fast, to give proper liquid blanket design LiPb wet wall
1GWt fusion power
T generation rate : 1.5MCi/day
Overall tritium leak : 10Ci/day
Laser shot, implosion
D-­‐T reac:on
D2 addi:on
T permea4on
Tritium recovery ratio of
99.999% is demanded!!
T
high
•  Es:mated tri:um concentra:on in Li16Pb84 flow is 5.9x10-­‐11 g-­‐T/g-­‐Li17Pb83. 8.6x10-­‐9 mol-­‐T/mol-­‐Li17Pb83
3
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
(4) Blanket design
Tri:um extrac:on and Heat exchanger system for Koyo laser fusion reactor
Li15.8Pb84.2 heat exchanger
steam
D2 addi:on
tri:um extrac:on
permea:on
steam turbine
300oC
fuel evacua:on
water
Fusion reactor chamber
pump
pump
generator
Total power
1 GWt
Li16Pb84 inlet temp.
300 oC
Li16Pb84 outlet temp.
500 oC
~
Li16Pb84 mass flow rate
18.4 t/s
condenser
cooling water
D+T fuel injec:on
500oC
Li16Pb84 loop for Laser fusion reactor and steam Rankine cycle
T generation rate
1.43 MCi/day
T concentration in Li16Pb84
8.6x10-9 T/Li16Pb84
T partial pressure in LiPb
1.8x10-3 Pa
Heat transfer coefficient of heat
exchanger
5.0x103 W/m2K
Surface area of het exchanger
690 m2
Logarithmic temperature
difference in heat exchanger
290 K
Estimated T leak rate
255 Ci/day
Rate-determining step
T permeation
through tube wall
4
T inventory and T permea:on are important issues.
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Experimental clarifica:on of T transfer and recovery in Li15.8Pb84.2 blanket
(0) Determine permeability, diffusivity, solubility of H, D and T in Li-­‐Pb alloys (1) Isotope effects on diffusivity and solubility among H, D, T in Li16Pb84 eutec:c alloy Interac:on energy between H, D, T and Li atoms. (2) H chemical proper:es when H isotope mixtures are present in Li16Pb84 Chemical condi:ons of H, D and T dissolved in Li-­‐Pb and mutual interac:ons. (3) Varia:ons of Li-­‐Pb alloy proper:es with Li composi:on Li chemical ac:vity in Li-­‐Pb.
5
(0) PDK data of Li-­‐Pb
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Comparison among previous solubili:es of Li16Pb84-­‐H system
Data were summarized in previous WS, which show large differences. (1) Isotope effects among H, D, (T) (2) Li ac:vi:es in Li-­‐Pb, (3) Impurity effects have to be clarified.
6
Japan-­‐US joint program
Fusion Safety Program
TITAN data compared to references for H2 solubility
T
T
1000/T
K
C
1/K
500
600
700
800
900
1000
227
327
427
527
627
727
Reiter 91
1e3 - 1e5 Pa
2.00
1.76E-08
1.67
1.86E-08
1.43
1.93E-08
1.25
1.11
1.00
Ks H2
at fr / Pa^-0.5
Chan 84
Katsuta 85
Fauvet 88
Schumacher 90
Aiello 06
Fukada
1e4 Pa
1e4 - 1e5 Pa 1e3 - 1e4 Pa
1e4 - 1e6 Pa
1e3 - 1e5 Pa 1e3 - 1e5 Pa
2.07E-07
7.73E-08
1.08E-06
2.64E-07
3.17E-07
1.00E-07
1.08E-06
2.70E-08
3.15E-07
4.66E-07
8.44E-08
1.21E-07
3.59E-07
6.21E-07
1.26E-07
3.97E-07
7.77E-07
1.72E-07
4.31E-07
2.21E-07
INL 08
1 - 1e5 Pa
1.26E-08
1.96E-08
2.73E-08
3.53E-08
INL 09
1 - 1e5 Pa
1.45E-08
3.14E-08
1.02E-07
3.65E-07
Recent data were substantially different than those presented in FY08
• In the range of applicability
(<500 C) Reiter data are verified
by desorption experiments
based on PVT measurements
• Different liquid column geometry
shows impact of surface to
volume ratio is negligible diffusion controlled process
PVT measurements by
adsorption procedure
Fukada’s data obtained
with permeation cell
• High temperature data are still
unreliable
• Interaction with the alumina crucible
PVT measurements by
desorption procedure
VLT Nov09
above 500 C is likely responsible for
the high apparent solubility because
of the formation of Li-Al alloys, as
demonstrated by corrosion tests
performed by B. Pint at ORNL
(presented at ICFRM14)
7
Tri:um solubility in Li-­‐Pb are determined this year.
9
(0) PDK data of Li-­‐Pb
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Experiment : single H,D or dual H+D mixture permea:ng through Li16Pb84 Permeability, diffusivity and solubility of hydrogen isotopes in Li16Pb84 are determined by means of a permea:on method Experimental conditions
Ar
Temperature
573-973 K
H2 partial pressure
103-105 Pa
D2 partial pressure
103-105 Pa
H2, D2 flow rate
5 ccm
Ar flow rate
5 ccm
H2 or D2
QMS
A schematic diagram of the experimental apparatus
8
(0) PDK data of Li-­‐Pb
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Transient H permea:on through Li-­‐Pb alloy ∂c H ,k
2
= D H,k ∇ c H,k
∂t
For k=Fe and Li16Pb84
x=LFe+LLiPb
c H,LiPb = K H,LiPb p H 2 ,down
€
Determine KH,LiPb and DH,LiPb from fimng between experiment and calcula:on
€
pH2,down, pHD,down, pD2,down
recombina4on Li-­‐Pb alloy x=0
c H,Fe = K H,Fe p H 2 ,up
Downstream-­‐side Ar x
Diffusion H, D Fe dissocia4on pH2,up, pD2,up
H2, D2 A model of H permea:on in Li16Pb84 Upstream-­‐side 9
(0) PDK data of Li-­‐Pb
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Typical H permea:on run
experiment
Permeated H2 concentration in Ar purge gas [ppm]
•  Overall permea:on is considered to be limited by diffusion based on the following reasons: simula:on
105
!Fe-H2 permeation
104
Experiment
Li17Pb83+!-Fe
!-Fe
103
!Fe+Li17Pb83-H2 permeation
102
(stady-state permeation)
(transient-state permeation)
101
0
2
4
6
8
10
Time from start of H2 permeation [hr]
(1) The permea:on rate through α-­‐Fe only is hundred higher than through α-­‐Fe+Li16Pb84. (2) The permea:on rate is in reverse propor:on to the thickness of Li16Pb84. (3) The overall permea:on rate is well predicted by the diffusion equa:on in Li16Pb84 layer. 10 jLiPb-­‐H
2
Permeation flux [mol/m
s]
(0) PDK data of Li-­‐Pb
Dependences of pH2, upstream and L on jLiPb-­‐H
10-1
2
-2
10
1
jLiPb-­‐H∝pH2,upstream0.5
j LiPb − H =
973K
873K
773K
673K
-3
10
J =1.6x104pH 0.500
J =1.4x104pH 0.478
H
J =1.2x104pH 0.446
H
J =1.4x104pH 0.366
H
H2
2
2
2
2
2
2
-4
10
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
1000
€
PLiPb − H
L
(
p H 2 ,upstream − p H 2 ,downstream
PLiPb-H : H permeability [mol/msPa0.5]
2
10000
100000
Upstream pressure [Pa] pH2,upstream
Dependence of upstream pressure, pH2,upstream
L=1cm
jLiPb-­‐H∝1/L
L=2cm
Dependence of thickness, L
Dependence of temperature
11
)
(1) Isotope effects
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Solubility and diffusivity of H and D in Li16Pb84 alloys
Solubility as a func:on of temperature
Diffusivity as a func:on of temperature
Solubility and diffusivity of H and D in Li16Pb84 are correlated to a func:on of temperature, and isotope differences between H and D are determined.12
(0) PDK data of Li-­‐Pb
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Comparison among previous solubili:es of Li17Pb83-­‐H system
Our single component data
Our data locate between Chan&Veleckis and Reiter.
13
(0) PDK data of Li-­‐Pb
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Comparison of diffusivity with p
revious d
ata
o
Temperature C]
[
700 600 500
400
300
2
Diffusivity [m/s]
105 Pa
104 Pa
5x103 Pa
103 Pa
F.Reiter
T.Terai
Okamoto
-8
10
10-9
10-10
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
1000/T [1/K]
Previous data of H diffusivity in Li-­‐Pb are consistent within allowable errors. 14
(2) H+D permea:on
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Permea:on of H2, D2 and HD component through materials
PH
jH =
L
P
jD = D
L
(
(
p H2, upstream −
pH2 , downstream
p D2, upstream −
pD2 , downstream
)
)
pt = p H2 + pHD + p D2
€
€
PH
jH =
yH, upstream pt, upstream − yH, downstream pt, downstream
L
€ P
jD = D yD, upstream pt, upstream − yD, downstream pt, downstream
L
1
p H2 + pHD
2
yH =
H molar frac:on
p H2 + pHD + p D2
(
(
1
p D2 + pHD
2
yD =
p H2 + pHD + p D2
)
)
downstream-­‐side Ar purge H2, D2 solu4on recombina4on Li17Pb83 Fe (1mm)
diffusion H, D dissocia4on D molar frac:on
H2, D2 upstream-­‐side 15
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
(2) H+D permea:on
The ra:o of H and D permeability through Li-­‐Pb, PH, PD
H+D
4
700oC
2
10-118
6
4
2
10-128
6
4
2
10-13
0
400oC
o
H
D
8
6
4
2
1
H:D
34:66
44:56
66:34
80:20
8
6
4
K HD =
p HD 2
p H 2 pD2
H2+D2=2HD
2
0.1
1.0
700 C
400oC
20
10
D2
10-108
6
Equilibrium constant, KHD [-]
PH, PD
0.5
Permeability of H or D through Li17Pb83 [mol/msPa ]
H2
€
1.1
1.2
1.3
1.4
1.5
Reciprocal of temperature, 1000/T [K-1]
40
60
80
100
D atom fraction in upstream gas, D/(H+D) [-]
Equilibrium constant at the downstream side of Li16Pb84 layer, the line is theore:cal value.
Permeability of H and D through Li16Pb84
• H permeability is around 1.4 :mes larger than D one as the isotope effect independent of the H:D composi:on ra:o. • The isotope equilibrium of H2+D2=2HD is achieved at the downstream side.
16
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
(2) H+D permea:on
Permeability of H and D through Li16Pb8, when H and D are simultaneously permeated
10-108
10-108
6
6
H2+D2 mixture
0.5
2
10-118
6
4
2
10-128
6
H:D
100:0
90:10
80:20
66:34
44:56
34:66
H permeability
4
2
10-13
1.0
H2+D2 mixture
4
D permeability [mol/msPa ]
0.5
H permeability [mol/msPa ]
4
2
10-118
6
4
2
H:D
0:100
34:66
44:56
66:34
80:20
90:10
10-128
6
4
2
1.1
1.2
1.3
1.4
Reciprocal of temperature, 1000/T [K-1]
H permeability through Li16Pb84 when upstream side is H2+D2 mixture
1.5
10-13
1.0
1.1
1.2
D permeability
1.3
1.4
1.5
Reciprocal of temperature, 1000/T [K-1]
D permeability through Li16Pb84 when upstream side is H2+D2 mixture
When H and D simultaneously permeate through Li16Pb84 layer, H and D behave independently. The permeabili:es of H and D are described by the ideal solu:on model regardless of any H:D ra:os.
17
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
(1) Isotope effects
Isotope effects of harmonic oscilla:on in inters::als surrounded by Li and Pb atoms
Interface between gas and Li16Pb84
absorp:on
H-H
Gas phase
absorp:on heat
⎡
⎛ hν D,0 ⎞ ⎤
⎢ sinh⎜
⎟ ⎥
⎛ K H ⎞
⎝ 2kB T ⎠ ⎥ G H 2 ,0 − GD2 ,0
⎢
+
⎟ = 3ln⎢
Saddle point
ln⎜
⎛ hν H ,0 ⎞⎥
2Rg T
⎝ K D ⎠
⎟⎥
⎢sinh⎜
diffusion
ac:va:on energy of 2k
T
⎝ B ⎠⎦
⎣
diffusion
Li16Pb84-H
Li16Pb84-H
νH,0 Zero-­‐point vibra:on energy in solu:on site νH,0* Zero-­‐point vibra:on energy at saddle point
L H 2 T 3.5 € ⎛
B H 2 ,0 ⎞
G H 2 ,0 = −Rg T ln
⎟
−J H 2 /T − Rg ⎜ DH 2 ,0 +
3
1− e
⎝
⎠
BH2, DH2, JH2, LH2; constant
⎡
⎡
⎛ hν *H ,0 ⎞⎤
⎛ hν H ,0 ⎞⎤
⎢ sinh⎜
⎥
⎢sinh⎜
⎥
⎟
⎟
⎛ DH ⎞
⎝ 2kB T ⎠⎥
⎝ 2k B T ⎠⎥
⎢
⎢
ln⎜
− 2ln
⎟ = 3ln⎢
⎛
⎞
⎛ hν *D,0 ⎞ ⎥
⎢
hν D,0 ⎥
⎝ DD ⎠
⎟ ⎥
⎢ sinh⎜ 18 ⎟ ⎥
⎢ sinh⎜
⎝ 2kB T ⎠ ⎦
⎝ 2k B T ⎠ ⎦
⎣
⎣
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
(1) Isotope effects
Li17Pb83-H,D system
Li-H,D,T system
solubility KH/KD
solubility KH/KD
diffusivity DH/DD
solubility KH/KT
(EH,0=0.30eV, EH,0*=0.47eV) (EH,0=0.10eV)
2.0
KH/KD, DH/DD or KH/KT [-]
Solubility and diffusivity ra:o of H ad D in Li-­‐Pb
Isotope effects of solubility and diffusivity in Li15.8Pb84.2 and Li
1.5
0.47eV (45kJ/mol)
Transi:on site
Li17Pb83
Li-H,D,T
Li17Pb83
0.3eV (29kJ/mol)
Solu:on site
1.0
Li17Pb83-H,D
Zero-­‐pint energy of vibra:on for LiPb-­‐H bond 0.5
0.0
400
600
800
Temperature [K]
1000
1200
19
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
(1) Isotope effects
1st principle numerical simula:on for diffusion of H in PbLi D. Masuyama, et al., Chem. Phys. Let., 483 (2009) 214-­‐218 3 Pb atoms, 1Li atoms 4 Pb atoms crystal ◆H atoms are present at posi:ons near to Li than Pb. Pb crystal⇒fcc stable at tetrahedral site -­‐229.95 eV Diffusion Barrier α eV(≒0.1 eV) 0.29 + α eV (0.29 » α) > -­‐230.24 eV Energy difference⇒0.29 eV H
Pb 4 H
H
Pb 3-­‐Li 1 H Li Pb saddle posi:on calculation
experiment
Diffusion barrier
0.29+α eV
0.27 eV
trapped posi:on •  H behavior in Li17Pb83 can be understood by pure numerical calcula:on! 20 (3) composi:on differences
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Chemical ac:vity of Li in Eutec:c alloy of LiXPb1-­‐X
Intermetallic compound of Li0.5Pb0.5
2
Li0.17Pb0.83 is approximated by Li1/6Pb5/6 and is an eutec:c alloy of 2Pb+1Li0.5Pb0.5 intermetallic compound. Eutec:c composi:on 2:1 1
4Pb site
3Pb1Li site
21
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
(3) Li-­‐Pb composi:on differences
Li and H activity of LiXPb1-X-H2 eutectic alloy system 1
When Li/Pb ra:o is large,
0
KLiPb-H=xLiKLi-H+xPbKPb-H
10
Pb Pure Li 0
10
-1
10
-1
10
-2
10
-2
10
ln(KLiPb-H)=xLiln(KLi-H)+xPbln(KPb-H)
-3
-3
10
10
-4
10
Pure Pb 800K, LiXPb1-X
Activity of Li in Li-Pb [-]
0.5
Solubility of H in Li-Pb [1/atm ]
10
Pb Li+ H-­‐ When Li/Pb ra:o is small,
Pb Li+ -4
10
-5
10
0.0
0.2
0.4
0.6
0.8
Li/(Li+Pb) [mole fraction of Li in Li-Pb]
1.0
aHinLi ⎛ a H2
= ⎜⎜
xHinLi ⎝ p H2
Li-­‐Pb can cons:tute eutec:c alloy system.
• 
• 
⎞0.5
⎟
⎟
⎠
Pb H-­‐ When xLi>0.5, electric charge of Li+ is not shielded by Pb atoms, and Li+-H- ionic
€
binding is major in LiXPb1-X eutectic
alloy.
Activity of Li is higher.
When xLi<0.5, electric charge of Li+ is shielded by Pb atoms, and Li+ and H- ions may
not be combined directly.
Activity of Li is the lowest.
22 €
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
(3) Li-­‐Pb composi:on differences
Li ac:vity in Li+Pb mixtures can be correlated by
ln(K LiPb− H ) = x Li ln(K Li− H ) + x Pb ln(K Pb− H )
Other physical or chemical proper:es of Li-­‐Pb alloy
Viscosity
Thermal conduc4vity
Vapor pressure
Latent heat
Measurement for Li17Pb83
2 cP
22 W/mK
0.37 Pa
180 kJ/mol
value for Li
0.36 cP
53 W/mK
2.1 Pa
140 kJ/mol
value for Pb
2.0 cP
20 W/mK
0.0056 Pa
178 kJ/mol
Es:ma:on by xLiKLi+xPbKPb
14%
16%
2%
5%
Es:ma:on by xLilnKLi+xPblnKPb
25%
7%
95%
5%
• Thermal proper:es (when macro-­‐energy is dominant) can be correlated by the linear combina:on model. • Mechanical proper:es on molecular dynamics (when micro-­‐energy is dominant) can be correlated by the logarithmic linear combina:on. 23 Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
(4) Blanket design
Tri:um extrac:on and Heat exchanger system for Koyo laser fusion reactor
Li16Pb84 heat exchanger
steam
tri:um extrac:on
permea:on
steam turbine
300oC
fuel evacua:on
water
Fusion reactor chamber
pump
pump
generator
Total power
1 GWt
Li16Pb84 inlet temp.
300 oC
Li16Pb84 outlet temp.
500 oC
~
Li16Pb84 mass flow rate
18.4 t/s
condenser
cooling water
D+T fuel injec:on
500oC
Li16Pb84 loop for Laser fusion reactor and steam Rankine cycle
T generation rate
1.43 MCi/day
T concentration in Li16Pb84
8.6x10-9 T/Li17Pb83
T partial pressure in LiPb
1.8x10-3 Pa
Heat transfer coefficient of heat
exchanger
5.0x103 W/m2K
Surface area of het exchanger
690 m2
Logarithmic temperature
difference in heat exchanger
290 K
Estimated T leak rate
255 Ci/day
Rate-determining step
T permeation
through tube wall
24
(4) Blanket design
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Tri:um permea:on rate through steam generator of laser fusion reactor system as a func:on of tri:um concentra:on in Li16Pb84
Tri:um is dissolved as an atomic form in LiPb as well as in sus 316 tube wall.
RT = kT −LiPb (cT −LiPb,m − cT −LiPb,S1 ) =
LiPb
cT-­‐LiPb,m
€
€
⎛ pT ,S 2 pT ,m ⎞
DT −sus
cT −sus,S1 − cT −sus,S 2 ) = kT − He ⎜⎜ 2 − 2 ⎟⎟
(
t sus
⎝ Rg TS 2 Rg Tm ⎠
cT −sus, S 2
pS 2 =
K T −sus
steam
sus316
cT-­‐sus,S1
cT-­‐LiPb,S1
pT2,S2
cT-­‐sus,S2
pS1 =
Tri:um permea:on
pT2,m
cT −LiPb, S1 cT −sus, S1
=
K T −LiPb
K T −sus
⎛
⎞
Rg TS 2
c
1
t sus
T
+
RT + S 2 pT2 ,m = T −LiPb,m
⎜
⎟RT +
kT − He
Tm
KT −LiPb
⎝ KT −LiPb kT −LiPb KT −susDT −sus ⎠
€
When pT2,m is negligibly small,
€
RT =
KT −LiPb t sus
cT −LiPb,m
KT −susDT −sus + d ShLiPb DT −LiPb
25
€
(4) Blanket design
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Values of permeability for combina:ons of liquid breeders and structural materials
Resistance of T diffusion in LiPb boundary layer and that of permea:on through wall is comparable.
T diffusion resistance in Flibe is limi:ng.
26
(4) Blanket design
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Design of He-­‐Li16Pb84 counter-­‐current extrac:on tower for tri:um recovery He out •  Material balance equa:on Ldy = Gdx
Li16Pb84 in kL avγ S ( y − yi ) dz = kG aV ct ( x − xi )dz
•  Gas-­‐phase mass-­‐transfer coefficient 2
⎛
G ⎞⎟
G 0.32 ⎛ ν ⎞ 3
H G ⎜ =
= 3.07 0.51 ⎜ G ⎟
⎝ kG aV ct ⎠
L ⎝ DG ⎠
Li16Pb84 out He in Cited from He-­‐water system •  LiPb-­‐phase mass-­‐transfer coefficient ⎛
L ⎞⎟
1 ⎛⎜ L ⎞⎟
H L ⎜ =
=
⎝ kL aV γ S ⎠ 430 ⎝ µ L ⎠
0.22
⎛ ν L ⎞
⎜ ⎟
⎝ DL ⎠
0.5
Cited from He-­‐water system •  Tri:um concentra:on profile in tri:um extrac:on tower ⎡⎛ K L⎞ z ⎤ K L
exp ⎜1 − C ⎟
− C
⎢⎣⎝
G ⎠ H 0,L ⎥⎦ G
y
=
yin
⎡⎛ K L⎞ h ⎤ KC L
exp ⎜1 − C ⎟
−
⎢⎣⎝
G ⎠ H 0,L ⎥⎦ G
Example of calcula:on of tri:um concentra:on in a counter-­‐current extrac:on tower (Flibe case) S. Fukada et al., Fusion Science and Technology, 41 (2002) 1054.) 27 Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
D permea:on and D recovery experiment in Li-­‐Pb flowing system
•  D permea:on experiment through Li16Pb84-­‐wall-­‐secondary (gas) flow •  D recovery experiment by He gas bubbling 28 Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
H permea:on test is under way.
H2 increase in Ar purge by permea:on
Li16Pb84
H2 decrease in feed by permea:on
Ar or H2
Varia:ons of H2 concentra:on in permea:on side
Experimental conditions
Permeation part
SUS304 Permeation temperature
300oC
Tube diameter, thickness
3.2mm, 0.5mm
Ar flow rate
8 5ccm
Varia:ons of H2 concentra:on in feed s29
ide
Interna:onal WS on liquid metal breeder blankets, Sep. 23-­‐24 2010, SIEMAT Madrid
Conclusions
1.  Permeability, diffusivity and solubility of H and D in Li16Pb84 alloy are determined. 2.  Isotope effects of solubility and diffusivity are correlated by harmonic oscilla:on model and vibra:on energy in solu:on site and transient site. 3.  The energy determined so is consistent with 1st principle numerical simula:on for H behavior in Li16Pb84 eutec:c alloy. 4.  When H and D mixtures are present simultaneously, their permea:ons are determined by the ideal solu:on model, and the solubility and diffusivity are determined in a similar way to the single component of H2 or D2. 5.  Li ac:vity and H energy in trap site for solubility in arbitral composi:on of Li+Pb alloys are correlated by the linear addi:on rule of Li and Pb atoms. 6.  Hydrogen permea:on through Li16Pb84 flow surrounded by solid walls is determined by the conjugated system of flow-­‐wall-­‐gas purge. 30
Our recent published papers
1.  Y. Edao, H. Noguchi, S. Fukada, “Experiment of hydrogen isotopes permea:ng through Li-­‐Pb with diffusion, dissolu:on and isotopic exchange”, Proc. ICFRM-­‐14, Sapporo, (2009) Sept. 7-­‐11. 2.  S. Fukada, Y. Edao, “Unresolved issues on tri:um mass transfer in Li-­‐Pb liquid blankets”, Proc. ICFRM-­‐14, (2009) Sept. 7-­‐11. 3.  D. Masuyama, T. Oda, S. Fukada, “Chemical state and diffusion behavior of hydrogen isotopes in liquid lithium-­‐lead”, Chemical Physics Le|ers, 483 (2009) 214-­‐218. 4.  Y. Edao, S. Fukada, H. Noguchi, Y. Maeda, K. Katayama, ”Isotope effects of hydrogen isotope absorp:on and diffusion in Li0.17Pb0.83 eutec:c alloy”, Fusion Science and Technology, 56 (2009) 831-­‐835. 5.  Y. Edao, S. Fukada, S. Yamaguchi, H. Nakamura, “ Tri:um removal by Y hot trap for Li purifica:on of IFMIF target”, Fusion Engineering and Design, 85 (2010) 53-­‐57. All the researches are financially supported by Grant-­‐in-­‐aid for Scien:fic Research of Priority area (Fusion Tri:um) from Japanese government.
31

Similar documents