Institut für Astronomische und Physikalische Geodäsie
Transcription
Institut für Astronomische und Physikalische Geodäsie
Die ESA Schwerefeldmission GOCE: Stand der Mission und geplantes Auswertesystem Thomas Gruber Institut für Astronomische und Physikalische Geodäsie Technische Universität München Kolloquiumsvortrag, Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 Inhalt 1. Die GOCE Mission • Ziele • Missionscharakteristiken • Instrumentierung 2. GOCE Auswertesystem • Überblick • Payload Data Segment • High-Level Processing Facility GOCE Structural Model at ESTEC (June 2004) Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Überblick Schwerefeldmissionen CHAMP (GFZ): 2000 - 2007 first mission of the new generation SST high-low GRACE (JPL/CSR/GFZ): 2002 - 2010 1 cm-geoid at 180 km, monthly variations SST low-low GOCE (ESA): 2006 - 2008 High spatial resolution: 1 cm-geoid at100 km Gravity Gradiometry Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Ziele der Schwerefeldmissionen half wavelength [km] 400 −8 10 200 130 100 80 65 Kaula −9 10 GMs SST − hl −10 Degree RMS 10 −11 SGG 10 −12 10 −13 10 SST − ll −14 10 50 100 150 200 spherical harmonic degree Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 250 300 iapg 10 -1 P re -C 10 10 100 M HA 1 cm G CE A R C GO -2 E GRIM5-C1 TUM-1S TUM-2SP EIGEN-3P CHAMP Prediction GSM-2 0066 (GFZ) GSM-2 08-2003 (UTCSR) GRACE Prediction GOCE Prediction -4 -5 50 10 P -2 -3 10 -1 100 Degree 150 10 -3 10 -4 10 -5 10 0 10 2 10 P re 10 -1 10 -2 10-3 10 - CH 3 4 10 0 10 GRIM5-C1 TUM-1S TUM-2SP EIGEN-3P CHAMP Prediction GSM-2 0066 (GFZ) GSM-2 08-2003 (UTCSR) GRACE Prediction GOCE Prediction AM P 1 cm CE 10 150 MP HA C 10 100 Cummulative Error Degree Variances (Square Root) in Geoid [m] 50 100 GO Cummulative Error Degree Variances (Square Root) in Geoid [m] Ziele der Schwerefeldmissionen C H AM P -4 -5 10 2 Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 3 10 Resolution [km] -1 10 -2 10-3 G R AC 10 10 10 -4 10 4 10 -5 E iapg GOCE Ziele Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Überblick GOCE Missionsprofil Geplanter Start: 31.8.2006 2-3 Messphasen unterbrochen durch Ruhephasen Eclipse Duration Orbit Altitude 270 km 30 min. 25 min. 260 km 20 min. 250 km 15 min. 240 km 10 min. 35 d 43 d T0 T0 + 3 months 1.5 1.5 Gradiometer Spacecraft Commissioning Set-up and Calibration T0 + 9 months 6 months First Measurement Phase 4.5 months 5 min. 35 d 135 d T0 + 14 months .5 Measurement Interruption Gradiometer Calibration Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 T0 + 20 months 6 months Second Measurement Phase iapg Messprinzip GOCE Mission Combined SGG and SST - hl GPS - satellites SST - hl SGG Earth mass anomaly Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Satellit und Instrumente Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Instrumente – Lagekontrolle Star Tracker (3) Magnetotorquer (3 Stück) Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Instrumente – Drag-Free Thrust Requirements Thrust Range : 0.9 – 20 mN Thrust error : < +/-5 % Magnetotorquer (3 Stück) Command Freq: 10 Hz Thrust min step: 12 μN Step response error : < +/-5 % Thrust Overshoot : <5% Thrust vector stability: 0.2 o Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Instrumente - GPS GPS Antenne Lagrange GPS Receiver Dual receiver units (LABEN) 9 12 dual-frequency channels 9 L1 C/A code 9 L1, L2 P(Y) code 9 L1 (LA), L2 carrier phase 9 L1 integrated Doppler 9 On-board measurement of C/No ratio Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Instrumente - Gradiometer Accelerometer Sensor Heads Pt-Rh proof mass of 4x4x1 cm and 320 g mass Accelerometer cage made of ULE ceramics with gold electrodes for 6 DOF control Sole plate in INVAR 8 electrode pairs per sensitive element (for redundancy reasons) Proof mass grounded by a 25 mm long and 5 micron “thick” gold wire Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Instrumente - Gradiometer One-Axis Gradiometer Accelerometer Development Model Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Instrumente - Gradiometer Complete Gravity Gradiometer Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Instrumente - Gradiometer Accuracy requirements specified in the Gradiometer Reference Frame within a Measurement Bandwidth of 5 -100 mHz Performance better than ~6 mE/Hz0.5 (instrument only) Noise specification for single accelerometer in MBW: 2E-12 m/s2 /Hz0.5 Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Gesamtsystem angular forces translational forces star sensors GPS/GLONASS SST -hl A * * B GRAVITY GRADIOMETER measures: gravity gradients angular accelerations common mode acc. drag control angular control Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Satellit – Juni 2004 Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg GOCE Auswertesystem - Überblick Space Segment RT TM Recorded TM Science Data Reference Planning Facility Calibr. rules Calibration/ Monitoring Facility Rules,Ops.Plans FOS: * FOCC * CDAF * LEOP Stations Reports Rules Science Data rec. HKTM Data Aux. Data Planning Data Reports Products Monitoring Data PDS: * Processing L0,L1B * DPA PDS . USER User Service Facility SERVICE Products Inventory Data Core GS Elements Long Term Archive Prod. Aux. (L1) Prod. Aux. (L2) S/W Images HK TM Data Predicted Orbit Pointing Data Aux Data Provider Laser Data GPS Data ILRS ILRS IGS IGS Mon. Data ECMWF ECMWF GPS Network HPF HPF Satellite Prime Contr. (SPC) Meteo Data Other Aux. Data Other External GS Elements Supporting GS Elements GOCE Mission Management TC User Community Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Payload Data Segment • Generation of level 1B products from raw data acquired by the Flight Operations Center • Level 1B products are internal corrected instrumental data sets: ¾ Nominal SGG and SSTI (GPS) data sets ¾ Monitoring products for SGG and SSTI ¾ Calibration products for SGG and SSTI • Development by ACS, Rome • IAPG in charge for scientific support including detailed processing models for SSTI and SGG. Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Payload Data Segment EGG Lev 0 AUX_STR AUX_ROT AUX_DFC AUX AUX SST Lev 0 Lev 0 AUX_NOM From CMF, RPF via PDS L1B EGG ICM EGG K2F SST ICB CAL EGG CAL 1B EGG K2F PP SST NOM SST CAL 1B To CMF, RPF via PDS SST Lev 1B EGG NOM EGG Lev 1B Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Payload Data Segment SGG Processing Chain SST_NOM_1b Level 0/1B De-Packeting EGG_NOM_0_ STR_VC2_1B DFC_01_1B Voltage to Acceleration Conversion AUX_EGG_DB Proof Mass Acceleration Retrieval AUX_ICM_1b Angular Rate Reconstruction GGT Computation GGT Transformation Matrix Monitoring Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 EGG_NOM_1b_ EGG_MON_1b_ iapg Payload Data Segment SGG Observation Equation X GR a = −V ⋅ r + ω × r + ω × (ω × r ) X1 Y6 Z6 O GR Y GR X4 Z2 A2 Z5 X3 Y3 O3 Z3 A3 O4 Z GR a: Acceleration on proof mass vector V: Gravity gradient matrix R: displacement from COM : Angular rate vector Z4 Y4 ⎧ ⎛a ⎞ ⎪ ⎛V ⎜ x ⎟ ⎪ ⎜ xx ⎜ a ⎟ = ⎪⎨ − ⎜ V ⎜ y ⎟ ⎪ ⎜ yx ⎜ a ⎟ ⎪ ⎜⎜ V ⎝ z ⎠ ⎪ ⎝ zx ⎩ A5 O5 Y5 X2 O2 X5 Z1 Y1 O6 Y2 A1 O1 X6 A6 A4 V xy V yy V zy V ⎞ ⎛ 0 xz ⎟ ⎜ ⎟ + ⎜ ω V yz ⎟ ⎜ z ⎟ V ⎟ ⎜ −ω y zz ⎠ ⎝ −ω z 0 ω x ⎛ −ω2 − ω2 ⎞ ω ⎜ y z y ⎟ ⎜ ⎟ −ω +⎜ ω ω x⎟ ⎜ x y 0 ⎟ ⎜ ⎠ ⎜ ω ω ⎝ x z Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 ω ω x y 2 2 −ω − ω x z ω ω y z ⎞⎫ ⎟⎪ ⎛ r ⎞ ⎟ ⎪⎪ ⎜ x ⎟ ω ω ⋅⎜ r ⎟ ⎟ ⎬ y z ⎟⎪ ⎜ y ⎟ 2 2 ⎟⎪ ⎜ r ⎟ −ω − ω ⎟ ⎝ z ⎠ ⎪ x y ⎠⎭ ω ω x z iapg Payload Data Segment Accelerometer 1 X GR ⎛ ⎛ rx ⎞ ⎜ ⎜ ⎟ ⎜ ⎜ ry ⎟ = ⎜ ⎜r ⎟ ⎜ ⎝ z ⎠ ⎜ ⎝ X1 X6 A6 Y6 Z6 O GR Y GR X4 Z2 A2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Z5 X3 Y3 O3 highly sensitive axis less sensitive axis ( 2 2 a = −V −ω −ω 1, x xx y z ) L x Z GR 2 ( ) L x ( ) L x +ω ω a = −V +ω yx z x y 1, y +ω ω a = −V −ω 1, z zx y x z Z3 A3 O4 Y4 A5 O5 Y5 X2 O2 X5 Z1 Y1 O6 Y2 A1 O1 Lx 2 0 0 green red 2 2 Accelerometer 4 Z4 A4 ⎛ Lx ⎞ − ⎛ rx ⎞ ⎜ 2 ⎟ ⎜ ⎟ ⎜ ⎟ r = 0 ⎜ ⎟ y ⎜ ⎟ ⎜r ⎟ ⎜ 0 ⎟ ⎝ z ⎠ ⎜ ⎟ ⎝ ⎠ ( )⎛ a4,x = −Vxx −ωy −ωz ⎜− 2 2 Lx ⎞ ⎟ ⎝ 2⎠ z +ωxωy ) ⎛⎜− a4,y = ( −Vyx +ω Lx ⎞ ⎟ ⎝ 2⎠ ⎛ L⎞ y +ωxωz ) ⎜− x ⎟ a4,z = ( −Vzx −ω ⎝ 2⎠ Other Accelerometers in Analogy Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Payload Data Segment green red Differential Model Accelerations 1-4 ( ) ( ) highly sensitive axis less sensitive axis ( ) ( a d,1,4, x = L L 1 1 1 ⎛ L ⎞ L a1,x − a 4,x = −Vxx − ω2y − ωz2 x − − Vxx − ω2y − ωz2 ⎜ − x ⎟ = x −2Vxx − 2ω2y − 2ω2z = x − Vxx − ω2y − ωz2 2 2 2 2 2 ⎝ 2 ⎠ 4 a d,1, 4, y = L 1 1 1 ⎛ L z + ωx ωy x − − Vyx + ω z + ωx ω y ⎜ − x a1,y − a 4,y = − Vyx + ω 2 2 2 2 ⎝ 2 a d,1,4,z = L L 1 1 1 ⎛ L ⎞ L y + ωx ωz x − − Vzx − ω y + ωx ωz ⎜ − x ⎟ = x −2Vzx − 2ω y + 2ωx ωz = x − Vzx − ω y + ω x ωz a1,z − a 4,z = − Vzx − ω 2 2 2 2 2 ⎝ 2 ⎠ 4 ( ) ( ) ( ( ) ( ) ( ) ) ( a d,2,5, x = Y6 Z6 O GR Y GR X4 Z2 A2 Y3 O3 Z4 Ly 2 Ly a d,3,6, x = Z3 A3 A4 ( ) ( ) ) 2 ( −Vxy − ω z + ωx ωy ) a d,2,5,y = ( −V 2 Ly yy − ω2x − ω2z ) ( −Vzy + ω x + ωy ωz ) Differential Model Accelerations 3-6 Z5 X3 O4 Y4 ( a d,2,5,z = A5 O5 Y5 X2 O2 X5 Z1 Y1 O6 Y2 A1 O1 ) Differential Model Accelerations 2-5 X1 X6 ( ) X GR A6 L ⎞ Lx z + 2ωx ω y = x − Vyx + ω z + ωx ω y ⎟ = 4 −2Vyx + 2ω 2 ⎠ ) Z GR a d,3,6,z = ( Lz y + ωx ωz −Vxz + ω 2 ( Lz −Vzz − ω2x − ω2y 2 Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 ) a d,3,6, y = ( Lz x + ωy ωz −Vyz − ω 2 ) iapg ) Payload Data Segment Colour Code. green good sensitivity red worse sensitivity blue combination green & red cyan combination red & red Gradiometer Angular Accelerations x =− ω a d,3,6,y y =− ω a d,1,4,z Lz Lx + a d,2,5,z + a d,3,6, x z =− ω Ly a d,2,5, x Ly + a d,1,4, y Lx Lz Gravity Gradients Vxx = − 2a d,1,4, x Vzz = − 2a d,3,6, z Lx X GR X1 X6 A6 O6 Z6 Y GR Vyx = − O GR X4 Z2 A2 Z5 Vxy = X3 Y3 O3 Z3 A3 O4 Y4 A5 O5 Y5 X2 O2 X5 Z1 Y1 Y6 Y2 A1 O1 Z GR 2a d,1,4,y Lx Vyy = − 2a d,2,5, y Ly − ω2x − ω2z − ω2x − ω2y z + ωx ωy ; Vxy = − +ω 2a d,2,5,x Ly z + ωx ω y −ω a d,1,4,y a d,2,5,x 1 Vyx + Vxy ) = − − + ωx ω y ( 2 Lx Ly Vxz = − a d,1,4,z Vzy = − a d,2,5,z Z4 A4 Lz − ω2y − ω2z Lx Ly − a d,3,6,x − a d,3,6,y Lz Lz + ωx ωz + ωy ωz Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Payload Data Segment green red Common Mode Accelerations 1-4 ( ) ( ) ( highly sensitive axis less sensitive axis ) a c,1,4,x = L 1 1 1 ⎛ L a1,x + a 4,x = − Vxx − ω2y − ωz2 x + − Vxx − ω2y − ω2z ⎜ − x 2 2 2 2 ⎝ 2 a c,1,4,y = L 1 1 1 ⎛ L ⎞ L z + ωx ωy x + − Vyx + ω z + ωx ωy ⎜ − x ⎟ = x − Vyx + ω z + ωx ωy + Vyx − ω z − ωx ωy = 0 a1,y + a 4,y = − Vyx + ω 2 2 2 2 ⎝ 2 ⎠ 4 a c,1,4,z = L 1 1 1 ⎛ L y + ωx ωz x + − Vzx − ω y + ωx ωz ⎜ − x a1,z + a 4,z = − Vzx − ω 2 2 2 2 ⎝ 2 ( ) ( ) ( ( ) ( ) ( ) ) ( ) Lx ⎞ 2 2 2 2 ⎟ == 4 − Vxx − ωy − ωz + Vxx + ω y + ωz = 0 ⎠ ( ) ⎞ Lx y + ωx ωz + Vzx + ω y − ω x ωz + = 0 ⎟ = 4 − Vzx − ω ⎠ ( ) X GR X1 A6 Y6 Z6 O GR Y GR X4 Z2 A2 Z5 X3 Y3 O3 Z3 A3 O4 Y4 A5 O5 Y5 X2 O2 Common Mode Accelerations between Accelerometers 2-5 and 3-6 are all 0 ! X5 Z1 Y1 O6 Y2 A1 O1 X6 Z GR Z4 A4 Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Payload Data Segment Gravity Gradients in Earth fixed Reference Frame (Transformation from GRF to EFRF required – Exchange of X and Z-Axis and Rotation) x y z x y Vik [E] −0.5 0 0.5 Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 z iapg Payload Data Segment Gravity Gradient Errors in Earth fixed Reference Frame (Transformation from GRF to EFRF required – Exchange of X and Z-Axis and Rotation) x y z x y Error Coefficient Size [log10] −10.5 −10 −9.5 −9 Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 z iapg High Level Processing Facility • Generation of level 2 products from level 1b data • Level 2 products are: ¾ External corrected and calibrated instrumental data sets ¾ Rapid science orbits and quick-look gravity field models ¾ Precise science orbits and final GOCE gravity field models Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg High Level Processing Facility 1. The European GOCE Gravity Consortium (EGG-C) submitted a proposal to ESA covering the HPF development and operations. The proposal was accepted by ESA. The project started in April 2004. 2. EGG-C is composed of 10 European institutes working in the field of gravity field research and orbit determination (see map). 3. The HPF is a distributed system composed of a central processing facility (located at SRON) and several sub-processing facilities (located at various institutes of EGG-C members). 3. The HPF is led by a Principal Investigator (Reiner Rummel) and a management team composed by IAPG (Th. Gruber) and SRON (R. Koop). The main contract for the HPF is signed between ESA and IAPG. High-level work packages are sub-contracted to EGG-C members. Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg European GOCE Gravity Consortium (EGG-C) Institute of Astrodynamics and Satellite Systems, Techn. University Delft, The Netherlands (FAE/A&S) National Space Research Center of the Netherlands (SRON) Institute of Geophysics, University Copenhagen, Denmark (UCPH) GeoForschungsZentrum Potsdam, Dept. 1 Geodesy and Remote Sensing, Germany (GFZ) Institute of Theoretical Geodesy, University Bonn, Germany (ITG) PI & Project Management: Institute of Astronomical and Physical Geodesy, Techn. Univ. Munich, Germany (IAPG) Astronomical Institute, University Berne, Switzerland (AIUB) Centre Nationale d‘Etudes Spatiales, Toulouse, France (CNES) Politechnico di Milano, Italy (POLIMI) Institute for Navigation and Satellite Geodesy, Graz University of Techn., Austria (TUG) Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg HPF Struktur WP ID WP3000 WP Description Scientific Pre-processing and External Calibration Responsibility SRON • Gradiometer External Calibration • Corrections for Temporal Gravity (tidal & non-tidal) • Data Screening and Data Gaps WP4000 Orbit Determination FAE/A&S • Rapid Science Orbits (kinematic & reduced dynamic) • Precise Science Orbits (kinematic & reduced dynamic) WP5000 Gravity Field Determination – Direct Approach CNES • SST: Orbit Perturbation; SGG: Normal Equations • Combination by Normal Equations WP6000 Gravity Field Determination – Time-wise Approach TUG • SST: Energy Conservation; SGG: Semi-Analytical & Normal Equ. • Combination by Normal Equations • Quick-Look and Precise Solutions WP7000 Gravity Field Determination – Space-wise Approach POLIMI • SST: Energy Conservation; SGG: Wiener Filtering • Combination by Collocation WP8000 Level 2 Products Validation IAPG • Extensive Validation Reports, Recommendation of Final Products by independent committee. Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Science Consultants Work Package Partners Work Package Managers Management Principal Investigator HPF Struktur Principal Investigator: R. Rummel (IAPG) Technical Contracts & Financial Management: IAPG Management: IAPG WP3000 SRON WP5000 CNES FAE/A&S IAPG UCPH TUG/AAS Technical Link WP7000 POLIMI GFZ UCPH Project Control & CPF: SRON WP4000 FAE/A&S AIUB IAPG ITG Contractual Link Technical Management: SRON WP6000 TUG IAPG ITG WP8000 IAPG FAE/A&S FAE/A&S Project Control Link Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 ITG MOU Link iapg HPF Prozessierungsstrategie 1. The HPF will use all level 1b data and a variety of ancillary data for generation of level 2 products. 2. Intermediate level 2 products will be generated in all work packages. In most cases they are used as input for another work package. 3. Level 2 products are divided into quick-look products targeting for a low latency with reasonable accuracy and final products targeting for ultimate precision. AUX_IERS_2i AUX_OCM_2i AUX_ICGEM_2i AUX_GRAV_2i AUX_ERM_2i EGG_NOM_1b EGG_MON_1b EGG_DFC_1b STR_QUA_1b AUX_SCM_1b EGG_K2F_1b AUX_ICM_1b AUX_EGG_2i AUX_ECMWF_2i AUX_TID_2i AUX_ISDC_2i AUX_TOP_2i WP 3000 EGM_QLK_2i EGG_NOM_2i EGG_TRF_2 EGG_NOM_2 SST_NOM_1b SST_CAL_1b EGG_NOM_1b CDM_ROT_1b AUX_SCM_1b EGG_CAL_2i SST_AUX_2i SST_MON_1b STR_QUA_1b DFC_F01_1b SST_AUX_1b WP 4000 SST_RSO_2 AUX_CLK_2i SST_NOM_2i AUX_SCM_1b AUX_IGS_2i AUX_ITRF_2i AUX_EPH_2i AUX_DTM_2i AUX_ICGEM_2i AUX_BLQ_2i AUX_ILRS_2i AUX_IERS_2i AUX_RAD_2i AUX_SGA_2i AUX_ERM_2i SST_PSO_2i WP 5000 SST_DYN_2i EGM_DIR_2i WP 6000 EGM_QLK_2 EGM_TIM_2i WP 7000 EGG_SPW_2i SST_SPW_2i AUX_ALT_2i AUX_ORB_2i AUX_GEOID_2i EGM_SPW_2i WP 8000 SST_PSO_2i EGM_QLR_2i SST_PSO_2 Level 1b Input Products Level 2 Anciliary Products Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 EGM_GOC_2 Level 2 Intermediate Products Level 2 Final Products iapg HPF Prozessierungsstrategie EGG Earth-fixed Frame WP 3000 Level 1b EGG Pre-processed, calibrated EGG Pre-processed (QL) Ancillary Data WP 4000 Rapid Science Orbit Precise Science Orbit WP 5000 Dynamic Orbit Gravity Field Model WP 6000 QL Gravity Field Gravity Field Model WP 7000 Gravity Field Model WP 8000 GOCE Precise Orbit Level 1b Input Products Level 2 Anciliary Products GOCE Gravity Field Model Level 2 Intermediate Products Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 Level 2 Final Products iapg Charakteristiken Schwerefeldmodellierung Direct Approach: CNES & GFZ Software Architecture Normal equations (SST+SGG) REDDEL reduce normal equations SEQADD/SEQSUB accumulate normal equations TOTSOL solve (Cholesky) EPOS EPOS-RG format gravity field model EQUALY re-arrange unknowns in the normal equations GOCE dynamic orbit CNES-GFZ interfaces Normal equations (SST+SGG) DYNAMO-B reduce normal equations DYNAMO-C accumulate normal equations GINS GOCE dynamic orbit DYNAMO-D solve (Cholesky) CONVERS-POT format gravity field model DYNAMO-P re-arrange unknowns in the normal equations Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg Charakteristiken Schwerefeldmodellierung Time-Wise Approach: TUG & IAPG & ITG Software Architecture QL-GFA: Quick-Look Gravity Field Analysis • SST: Energy conservation • SGG-only: Analysis of residuals & Error model • SST, SGG, SST+SGG Gravity models based on block-diagonal normal equations using an iterative approach. CS: Core Solver TM: Tuning Machine • Optimal regularisation and weighting parameters • Filter design FS: Final Solver • SST: Energy conservation • SST & SGG: Full normal equation systems Input Data SST & SGG WP 6000 QL-GFA CS TM Regularization parameter Weighting factors Filter coefficients Stat. Quality sheet FS SST Assembling Flags: gaps, outliers SST residuals SST normal eq. Update of GGT error PSD Regularization parameter Weighting factors SGG filter estimates Flags: data gaps, outliers Residual time series Diagnosis Report: SST, SGG SOLUTION QL gravity field models Diagnosis Report Sheet Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 SGG Assembling Flags: gaps, outliers SGG residuals SGG normal eq. Quality Assessment Parameter GOCE gravity field model + variance/ covariance matrix iapg Charakteristiken Schwerefeldmodellierung SST Space-Wise Approach: POLIMI & UCPH Software Architecture SGG Data synthesis along orbit test Final model Energy conservation FFT Wiener filter complementary Wiener filter + LORF/GRF correction FFT -1 Energy Conservation: for SST data analysis Wiener Filter: for joint analysis of SST and SGG observations in frequency domain producing spatialized observations. Data gridding Space-wise solver FFT Harmonic analysis + Gridding: by least squares collocation Harmonic Analysis: by fast spherical collocation Iterative Scheme: for recovery of lost signal during filtering and errors in GRF-LORG rotations. Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg HPF Level-2 Produkte Identifier Description Products of WP 4000 SST_RSO_2 • Rapid science orbit from reduced dynamic approach • Rapid science orbit from kinematic approach • Rapid science orbit quality assessment Products of WP 6000 EGM_QLK_2 • • • • Quick-look Earth gravity field model from SST only Quick-look Earth gravity field model from SGG only Quick-look Earth gravity field model from SST and SGG combination Diagnosis report sheets for all models Products of WP 8000 EGM_QLK_2 • Quick-look gravity field quality assessment report Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg HPF Level-2 Produkte Identifier Description Products of WP 3000 EGG_NOM_2 • Externally calibrated and corrected gravity gradients in GRF (2 weeks latency) • Corrections to gravity gradients due to temporal gravity variations • Flags for outliers, fill-in gravity gradients for data gaps with flags • Statistical information EGG_TRF_2 • Externally calibrated gravity gradients in Earth fixed reference frame including error estimates for transformed gradients • Transformation parameters to Earth fixed reference frame Products of WP 8000 SST_PSO_2 • GOCE precise science orbits final product • Quality report for precise orbits EGM_GOC_2 • Final GOCE Earth gravity field model as spherical harmonic series including error estimates. Target: 1-2 cm / 1 mGal up to degree and order 200 corresponding to 100 km spatial resolution. • Variance-covariance matrix of final GOCE Earth gravity field model • Grids of geoid heights, gravity anomalies and geoid slopes computed from final GOCE Earth gravity field model including propagated error estimates • Quality report for final GOCE gravity field model Institut für Planetare Geodäsie, TU Dresden, 3.8.2004 iapg
Similar documents
Water Pump Catalogue
This catalogue is protected by copyright and may not be reproduced in whole or in part without the prior written consent of Repco. This catalogue is supplied on the condition that it may not be len...
More information