Institut für Astronomische und Physikalische Geodäsie

Transcription

Institut für Astronomische und Physikalische Geodäsie
Die ESA Schwerefeldmission GOCE:
Stand der Mission und geplantes Auswertesystem
Thomas Gruber
Institut für Astronomische und Physikalische Geodäsie
Technische Universität München
Kolloquiumsvortrag, Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
Inhalt
1. Die GOCE Mission
• Ziele
• Missionscharakteristiken
• Instrumentierung
2. GOCE Auswertesystem
• Überblick
• Payload Data Segment
• High-Level Processing Facility
GOCE Structural Model
at ESTEC (June 2004)
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Überblick Schwerefeldmissionen
CHAMP (GFZ): 2000 - 2007
first mission of the new generation
SST high-low
GRACE (JPL/CSR/GFZ): 2002 - 2010
1 cm-geoid at 180 km, monthly variations
SST low-low
GOCE (ESA): 2006 - 2008
High spatial resolution: 1 cm-geoid at100 km
Gravity Gradiometry
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Ziele der Schwerefeldmissionen
half wavelength [km]
400
−8
10
200
130
100
80
65
Kaula
−9
10
GMs
SST − hl
−10
Degree RMS
10
−11
SGG
10
−12
10
−13
10
SST − ll
−14
10
50
100
150
200
spherical harmonic degree
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
250
300
iapg
10
-1
P re
-C
10
10
100
M
HA
1 cm
G
CE
A
R
C
GO
-2
E
GRIM5-C1
TUM-1S
TUM-2SP
EIGEN-3P
CHAMP Prediction
GSM-2 0066 (GFZ)
GSM-2 08-2003 (UTCSR)
GRACE Prediction
GOCE Prediction
-4
-5
50
10
P
-2
-3
10
-1
100
Degree
150
10
-3
10
-4
10
-5
10
0
10
2
10
P re
10
-1
10
-2
10-3
10
- CH
3
4
10 0
10
GRIM5-C1
TUM-1S
TUM-2SP
EIGEN-3P
CHAMP Prediction
GSM-2 0066 (GFZ)
GSM-2 08-2003 (UTCSR)
GRACE Prediction
GOCE Prediction
AM
P
1 cm
CE
10
150
MP
HA
C
10
100
Cummulative Error Degree Variances (Square Root) in Geoid [m]
50
100
GO
Cummulative Error Degree Variances (Square Root) in Geoid [m]
Ziele der Schwerefeldmissionen
C
H
AM
P
-4
-5
10
2
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
3
10
Resolution [km]
-1
10
-2
10-3
G R AC
10
10
10
-4
10
4
10
-5
E
iapg
GOCE Ziele
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Überblick GOCE Missionsprofil
Geplanter Start: 31.8.2006
2-3 Messphasen unterbrochen durch Ruhephasen
Eclipse
Duration
Orbit
Altitude
270 km
30 min.
25 min.
260 km
20 min.
250 km
15 min.
240 km
10 min.
35 d
43 d
T0
T0 + 3 months
1.5
1.5
Gradiometer
Spacecraft
Commissioning Set-up and
Calibration
T0 + 9 months
6 months
First Measurement
Phase
4.5 months
5 min.
35 d
135 d
T0 + 14 months
.5
Measurement
Interruption Gradiometer
Calibration
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
T0 + 20 months
6 months
Second Measurement
Phase
iapg
Messprinzip GOCE Mission
Combined SGG and SST - hl
GPS - satellites
SST - hl
SGG
Earth
mass
anomaly
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Satellit und Instrumente
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Instrumente – Lagekontrolle
Star Tracker (3)
Magnetotorquer (3 Stück)
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Instrumente – Drag-Free
Thrust Requirements
‰ Thrust Range :
0.9 – 20 mN
‰ Thrust error :
< +/-5 %
Magnetotorquer (3 Stück)
‰ Command Freq:
10 Hz
‰ Thrust min step:
12 μN
‰ Step response error : < +/-5 %
‰ Thrust Overshoot :
<5%
‰ Thrust vector stability: 0.2 o
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Instrumente - GPS
GPS Antenne
Lagrange GPS Receiver
‰ Dual receiver units (LABEN)
9 12 dual-frequency channels
9 L1 C/A code
9 L1, L2 P(Y) code
9 L1 (LA), L2 carrier phase
9 L1 integrated Doppler
9 On-board measurement of
C/No ratio
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Instrumente - Gradiometer
Accelerometer Sensor Heads
Pt-Rh proof mass of 4x4x1 cm
and 320 g mass
‰
Accelerometer cage made of
ULE ceramics with gold
electrodes for 6 DOF control
‰
‰
Sole plate in INVAR
8 electrode pairs per sensitive
element (for redundancy
reasons)
‰
Proof mass grounded by a 25
mm long and 5 micron “thick”
gold wire
‰
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Instrumente - Gradiometer
One-Axis Gradiometer
Accelerometer Development Model
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Instrumente - Gradiometer
Complete Gravity Gradiometer
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Instrumente - Gradiometer
‰Accuracy
requirements specified in the
Gradiometer Reference Frame within a
Measurement Bandwidth of 5 -100 mHz
Performance better than ~6 mE/Hz0.5
(instrument only)
‰
Noise specification for single
accelerometer in MBW:
2E-12 m/s2 /Hz0.5
‰
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Gesamtsystem
angular
forces
translational
forces
star
sensors
GPS/GLONASS
SST -hl
A
*
*
B
GRAVITY GRADIOMETER
measures:
gravity gradients
angular accelerations
common mode acc.
drag control
angular control
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Satellit – Juni 2004
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
GOCE Auswertesystem - Überblick
Space Segment
RT TM
Recorded TM
Science Data
Reference
Planning
Facility
Calibr.
rules
Calibration/
Monitoring
Facility
Rules,Ops.Plans
FOS:
* FOCC
* CDAF
* LEOP Stations
Reports
Rules
Science Data
rec. HKTM Data
Aux. Data
Planning Data
Reports
Products
Monitoring Data
PDS:
* Processing L0,L1B
* DPA
PDS
.
USER
User
Service
Facility
SERVICE
Products
Inventory Data
Core GS Elements
Long Term
Archive
Prod.
Aux.
(L1)
Prod.
Aux.
(L2)
S/W Images
HK TM Data
Predicted Orbit
Pointing Data
Aux Data Provider
Laser Data
GPS Data
ILRS
ILRS
IGS
IGS
Mon.
Data
ECMWF
ECMWF
GPS Network
HPF
HPF
Satellite Prime
Contr. (SPC)
Meteo Data
Other Aux.
Data
Other
External GS Elements
Supporting GS Elements
GOCE Mission Management
TC
User Community
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Payload Data Segment
• Generation of level 1B products from raw data
acquired by the Flight Operations Center
• Level 1B products are internal corrected instrumental
data sets:
¾ Nominal SGG and SSTI (GPS) data sets
¾ Monitoring products for SGG and SSTI
¾ Calibration products for SGG and SSTI
• Development by ACS, Rome
• IAPG in charge for scientific support including
detailed processing models for SSTI and SGG.
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Payload Data Segment
EGG
Lev 0
AUX_STR
AUX_ROT
AUX_DFC
AUX
AUX
SST
Lev 0
Lev 0
AUX_NOM
From CMF, RPF via PDS
L1B
EGG
ICM
EGG K2F
SST ICB CAL
EGG
CAL 1B
EGG K2F PP
SST NOM
SST
CAL 1B
To CMF, RPF via PDS
SST
Lev 1B
EGG NOM
EGG
Lev 1B
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Payload Data Segment
SGG Processing Chain
SST_NOM_1b
Level 0/1B De-Packeting
EGG_NOM_0_
STR_VC2_1B
DFC_01_1B
Voltage to Acceleration
Conversion
AUX_EGG_DB
Proof Mass Acceleration
Retrieval
AUX_ICM_1b
Angular Rate Reconstruction
GGT Computation
GGT Transformation Matrix
Monitoring
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
EGG_NOM_1b_
EGG_MON_1b_
iapg
Payload Data Segment
SGG Observation Equation
X GR
a = −V ⋅ r + ω × r + ω × (ω × r )
X1
Y6
Z6
O GR
Y GR
X4
Z2
A2
Z5
X3
Y3
O3
Z3
A3
O4
Z GR
a: Acceleration on proof mass vector
V: Gravity gradient matrix
R: displacement from COM
†: Angular rate vector
Z4
Y4
⎧
⎛a ⎞ ⎪ ⎛V
⎜ x ⎟ ⎪ ⎜ xx
⎜ a ⎟ = ⎪⎨ − ⎜ V
⎜ y ⎟ ⎪ ⎜ yx
⎜ a ⎟ ⎪ ⎜⎜ V
⎝ z ⎠ ⎪ ⎝ zx
⎩
A5
O5
Y5
X2
O2
X5
Z1
Y1
O6
Y2
A1
O1
X6
A6
A4
V
xy
V
yy
V
zy
V ⎞ ⎛ 0
xz ⎟ ⎜
⎟ + ⎜ ω
V
yz ⎟ ⎜ z
⎟
V ⎟ ⎜ −ω
y
zz ⎠ ⎝
−ω
z
0
ω
x
⎛ −ω2 − ω2
⎞
ω
⎜ y z
y ⎟
⎜
⎟
−ω
+⎜ ω ω
x⎟
⎜ x y
0 ⎟ ⎜
⎠ ⎜ ω ω
⎝ x z
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
ω ω
x y
2
2
−ω − ω
x
z
ω ω
y z
⎞⎫
⎟⎪ ⎛ r ⎞
⎟ ⎪⎪ ⎜ x ⎟
ω ω
⋅⎜ r ⎟
⎟
⎬
y z
⎟⎪ ⎜ y ⎟
2
2 ⎟⎪ ⎜ r ⎟
−ω − ω ⎟ ⎝ z ⎠
⎪
x
y ⎠⎭
ω ω
x z
iapg
Payload Data Segment
Accelerometer 1
X GR
⎛
⎛ rx ⎞ ⎜
⎜ ⎟ ⎜
⎜ ry ⎟ = ⎜
⎜r ⎟ ⎜
⎝ z ⎠ ⎜
⎝
X1
X6
A6
Y6
Z6
O GR
Y GR
X4
Z2
A2
⎞
⎟
⎟
⎟
⎟
⎟
⎠
Z5
X3
Y3
O3
highly sensitive axis
less sensitive axis
(
2 2
a = −V −ω −ω
1, x
xx y z
)
L
x
Z GR
2
(
)
L
x
(
)
L
x
+ω ω
a = −V +ω
yx z x y
1, y
+ω ω
a = −V −ω
1, z
zx y x z
Z3
A3
O4
Y4
A5
O5
Y5
X2
O2
X5
Z1
Y1
O6
Y2
A1
O1
Lx
2
0
0
green
red
2
2
Accelerometer 4
Z4
A4
⎛ Lx ⎞
−
⎛ rx ⎞ ⎜
2 ⎟
⎜
⎟
⎜ ⎟
r
=
0
⎜
⎟
y
⎜ ⎟
⎜r ⎟ ⎜ 0 ⎟
⎝ z ⎠ ⎜
⎟
⎝
⎠
(
)⎛
a4,x = −Vxx −ωy −ωz ⎜−
2
2
Lx ⎞
⎟
⎝ 2⎠
z +ωxωy ) ⎛⎜−
a4,y = ( −Vyx +ω
Lx ⎞
⎟
⎝ 2⎠
⎛ L⎞
y +ωxωz ) ⎜− x ⎟
a4,z = ( −Vzx −ω
⎝ 2⎠
Other Accelerometers in Analogy
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Payload Data Segment
green
red
Differential Model Accelerations 1-4
(
)
(
)
highly sensitive axis
less sensitive axis
(
)
(
a d,1,4, x =
L
L
1
1
1
⎛ L ⎞ L
a1,x − a 4,x = −Vxx − ω2y − ωz2 x − − Vxx − ω2y − ωz2 ⎜ − x ⎟ = x −2Vxx − 2ω2y − 2ω2z = x − Vxx − ω2y − ωz2
2
2
2 2
2
⎝ 2 ⎠ 4
a d,1, 4, y =
L
1
1
1
⎛ L
z + ωx ωy x − − Vyx + ω
z + ωx ω y ⎜ − x
a1,y − a 4,y = − Vyx + ω
2
2
2 2
⎝ 2
a d,1,4,z =
L
L
1
1
1
⎛ L ⎞ L
y + ωx ωz x − − Vzx − ω
y + ωx ωz ⎜ − x ⎟ = x −2Vzx − 2ω
y + 2ωx ωz = x − Vzx − ω
y + ω x ωz
a1,z − a 4,z = − Vzx − ω
2
2
2 2
2
⎝ 2 ⎠ 4
(
)
(
)
(
(
)
(
)
(
)
)
(
a d,2,5, x =
Y6
Z6
O GR
Y GR
X4
Z2
A2
Y3
O3
Z4
Ly
2
Ly
a d,3,6, x =
Z3
A3
A4
(
)
(
)
)
2
( −Vxy − ω z + ωx ωy )
a d,2,5,y =
( −V
2
Ly
yy
− ω2x − ω2z
)
( −Vzy + ω x + ωy ωz )
Differential Model Accelerations 3-6
Z5
X3
O4
Y4
(
a d,2,5,z =
A5
O5
Y5
X2
O2
X5
Z1
Y1
O6
Y2
A1
O1
)
Differential Model Accelerations 2-5
X1
X6
(
)
X GR
A6
L
⎞ Lx
z + 2ωx ω y = x − Vyx + ω
z + ωx ω y
⎟ = 4 −2Vyx + 2ω
2
⎠
)
Z GR
a d,3,6,z =
(
Lz
y + ωx ωz
−Vxz + ω
2
(
Lz
−Vzz − ω2x − ω2y
2
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
)
a d,3,6, y =
(
Lz
x + ωy ωz
−Vyz − ω
2
)
iapg
)
Payload Data Segment
Colour Code.
green
good sensitivity
red
worse sensitivity
blue
combination green & red
cyan
combination red & red
Gradiometer Angular Accelerations
x =−
ω
a d,3,6,y
y =−
ω
a d,1,4,z
Lz
Lx
+
a d,2,5,z
+
a d,3,6, x
z =−
ω
Ly
a d,2,5, x
Ly
+
a d,1,4, y
Lx
Lz
Gravity Gradients
Vxx = −
2a d,1,4, x
Vzz = −
2a d,3,6, z
Lx
X GR
X1
X6
A6
O6
Z6
Y GR
Vyx = −
O GR
X4
Z2
A2
Z5
Vxy =
X3
Y3
O3
Z3
A3
O4
Y4
A5
O5
Y5
X2
O2
X5
Z1
Y1
Y6
Y2
A1
O1
Z GR
2a d,1,4,y
Lx
Vyy = −
2a d,2,5, y
Ly
− ω2x − ω2z
− ω2x − ω2y
z + ωx ωy ; Vxy = −
+ω
2a d,2,5,x
Ly
z + ωx ω y
−ω
a d,1,4,y a d,2,5,x
1
Vyx + Vxy ) = −
−
+ ωx ω y
(
2
Lx
Ly
Vxz = −
a d,1,4,z
Vzy = −
a d,2,5,z
Z4
A4
Lz
− ω2y − ω2z
Lx
Ly
−
a d,3,6,x
−
a d,3,6,y
Lz
Lz
+ ωx ωz
+ ωy ωz
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Payload Data Segment
green
red
Common Mode Accelerations 1-4
(
)
(
)
(
highly sensitive axis
less sensitive axis
)
a c,1,4,x =
L
1
1
1
⎛ L
a1,x + a 4,x = − Vxx − ω2y − ωz2 x + − Vxx − ω2y − ω2z ⎜ − x
2
2
2 2
⎝ 2
a c,1,4,y =
L
1
1
1
⎛ L ⎞ L
z + ωx ωy x + − Vyx + ω
z + ωx ωy ⎜ − x ⎟ = x − Vyx + ω
z + ωx ωy + Vyx − ω
z − ωx ωy = 0
a1,y + a 4,y = − Vyx + ω
2
2
2 2
⎝ 2 ⎠ 4
a c,1,4,z =
L
1
1
1
⎛ L
y + ωx ωz x + − Vzx − ω
y + ωx ωz ⎜ − x
a1,z + a 4,z = − Vzx − ω
2
2
2 2
⎝ 2
(
)
(
)
(
(
)
(
)
(
)
)
(
)
Lx
⎞
2
2
2
2
⎟ == 4 − Vxx − ωy − ωz + Vxx + ω y + ωz = 0
⎠
(
)
⎞ Lx
y + ωx ωz + Vzx + ω
y − ω x ωz + = 0
⎟ = 4 − Vzx − ω
⎠
(
)
X GR
X1
A6
Y6
Z6
O GR
Y GR
X4
Z2
A2
Z5
X3
Y3
O3
Z3
A3
O4
Y4
A5
O5
Y5
X2
O2
Common Mode Accelerations
between Accelerometers 2-5 and 3-6
are all 0 !
X5
Z1
Y1
O6
Y2
A1
O1
X6
Z GR
Z4
A4
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Payload Data Segment
Gravity Gradients in Earth fixed Reference Frame
(Transformation from GRF to EFRF required – Exchange of X and Z-Axis and Rotation)
x
y
z
x
y
Vik [E]
−0.5
0
0.5
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
z
iapg
Payload Data Segment
Gravity Gradient Errors in Earth fixed Reference Frame
(Transformation from GRF to EFRF required – Exchange of X and Z-Axis and Rotation)
x
y
z
x
y
Error Coefficient Size [log10]
−10.5
−10
−9.5
−9
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
z
iapg
High Level Processing Facility
• Generation of level 2 products from level 1b data
• Level 2 products are:
¾ External corrected and calibrated instrumental
data sets
¾ Rapid science orbits and quick-look gravity field
models
¾ Precise science orbits and final GOCE gravity
field models
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
High Level Processing Facility
1. The European GOCE Gravity Consortium (EGG-C) submitted a
proposal to ESA covering the HPF development and operations. The
proposal was accepted by ESA. The project started in April 2004.
2. EGG-C is composed of 10 European institutes working in the field of
gravity field research and orbit determination (see map).
3. The HPF is a distributed system composed of a central processing
facility (located at SRON) and several sub-processing facilities
(located at various institutes of EGG-C members).
3. The HPF is led by a Principal Investigator (Reiner Rummel) and a
management team composed by IAPG (Th. Gruber) and SRON (R.
Koop). The main contract for the HPF is signed between ESA and
IAPG. High-level work packages are sub-contracted to EGG-C
members.
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
European GOCE Gravity Consortium (EGG-C)
Institute of
Astrodynamics and
Satellite Systems, Techn.
University Delft, The
Netherlands (FAE/A&S)
National Space Research
Center of the
Netherlands (SRON)
Institute of Geophysics,
University Copenhagen,
Denmark (UCPH)
GeoForschungsZentrum
Potsdam, Dept. 1 Geodesy
and Remote Sensing,
Germany (GFZ)
Institute of Theoretical
Geodesy, University
Bonn, Germany (ITG)
PI & Project Management:
Institute of Astronomical
and Physical Geodesy,
Techn. Univ. Munich,
Germany (IAPG)
Astronomical Institute,
University Berne,
Switzerland (AIUB)
Centre Nationale
d‘Etudes Spatiales,
Toulouse, France
(CNES)
Politechnico di Milano,
Italy (POLIMI)
Institute for Navigation and
Satellite Geodesy, Graz University
of Techn., Austria (TUG)
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
HPF Struktur
WP ID
WP3000
WP Description
Scientific Pre-processing and External Calibration
Responsibility
SRON
• Gradiometer External Calibration
• Corrections for Temporal Gravity (tidal & non-tidal)
• Data Screening and Data Gaps
WP4000
Orbit Determination
FAE/A&S
• Rapid Science Orbits (kinematic & reduced dynamic)
• Precise Science Orbits (kinematic & reduced dynamic)
WP5000
Gravity Field Determination – Direct Approach
CNES
• SST: Orbit Perturbation; SGG: Normal Equations
• Combination by Normal Equations
WP6000
Gravity Field Determination – Time-wise Approach
TUG
• SST: Energy Conservation; SGG: Semi-Analytical & Normal Equ.
• Combination by Normal Equations
• Quick-Look and Precise Solutions
WP7000
Gravity Field Determination – Space-wise Approach
POLIMI
• SST: Energy Conservation; SGG: Wiener Filtering
• Combination by Collocation
WP8000
Level 2 Products Validation
IAPG
• Extensive Validation Reports, Recommendation of Final Products
by independent committee.
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Science
Consultants
Work
Package
Partners
Work Package
Managers
Management
Principal
Investigator
HPF Struktur
Principal Investigator: R. Rummel (IAPG)
Technical
Contracts & Financial
Management: IAPG Management: IAPG
WP3000
SRON
WP5000
CNES
FAE/A&S
IAPG
UCPH
TUG/AAS
Technical Link
WP7000
POLIMI
GFZ
UCPH
Project Control &
CPF:
SRON
WP4000
FAE/A&S
AIUB
IAPG
ITG
Contractual Link
Technical
Management: SRON
WP6000
TUG
IAPG
ITG
WP8000
IAPG
FAE/A&S
FAE/A&S
Project Control Link
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
ITG
MOU Link
iapg
HPF Prozessierungsstrategie
1. The HPF will use all level 1b
data and a variety of ancillary
data for generation of level 2
products.
2. Intermediate level 2 products
will be generated in all work
packages. In most cases they are
used as input for another work
package.
3. Level 2 products are divided
into quick-look products
targeting for a low latency with
reasonable accuracy and final
products targeting for ultimate
precision.
AUX_IERS_2i
AUX_OCM_2i
AUX_ICGEM_2i
AUX_GRAV_2i
AUX_ERM_2i
EGG_NOM_1b EGG_MON_1b
EGG_DFC_1b STR_QUA_1b
AUX_SCM_1b EGG_K2F_1b
AUX_ICM_1b
AUX_EGG_2i
AUX_ECMWF_2i
AUX_TID_2i
AUX_ISDC_2i
AUX_TOP_2i
WP 3000
EGM_QLK_2i
EGG_NOM_2i
EGG_TRF_2
EGG_NOM_2
SST_NOM_1b
SST_CAL_1b
EGG_NOM_1b
CDM_ROT_1b
AUX_SCM_1b
EGG_CAL_2i
SST_AUX_2i
SST_MON_1b
STR_QUA_1b
DFC_F01_1b
SST_AUX_1b
WP 4000
SST_RSO_2
AUX_CLK_2i
SST_NOM_2i
AUX_SCM_1b
AUX_IGS_2i
AUX_ITRF_2i
AUX_EPH_2i
AUX_DTM_2i
AUX_ICGEM_2i
AUX_BLQ_2i
AUX_ILRS_2i
AUX_IERS_2i
AUX_RAD_2i
AUX_SGA_2i
AUX_ERM_2i
SST_PSO_2i
WP 5000
SST_DYN_2i
EGM_DIR_2i
WP 6000
EGM_QLK_2
EGM_TIM_2i
WP 7000
EGG_SPW_2i
SST_SPW_2i
AUX_ALT_2i
AUX_ORB_2i
AUX_GEOID_2i
EGM_SPW_2i
WP 8000
SST_PSO_2i
EGM_QLR_2i
SST_PSO_2
Level 1b Input Products
Level 2 Anciliary Products
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
EGM_GOC_2
Level 2 Intermediate Products
Level 2 Final Products
iapg
HPF Prozessierungsstrategie
EGG Earth-fixed Frame
WP 3000
Level 1b
EGG Pre-processed, calibrated
EGG Pre-processed (QL)
Ancillary Data
WP 4000
Rapid Science Orbit
Precise Science Orbit
WP 5000
Dynamic Orbit
Gravity Field Model
WP 6000
QL Gravity Field
Gravity Field Model
WP 7000
Gravity Field Model
WP 8000
GOCE Precise Orbit
Level 1b Input Products
Level 2 Anciliary Products
GOCE Gravity Field Model
Level 2 Intermediate Products
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
Level 2 Final Products
iapg
Charakteristiken
Schwerefeldmodellierung
Direct Approach: CNES & GFZ Software Architecture
Normal equations (SST+SGG)
REDDEL
reduce normal equations
SEQADD/SEQSUB
accumulate normal equations
TOTSOL
solve (Cholesky)
EPOS
EPOS-RG
format gravity
field model
EQUALY
re-arrange unknowns in
the normal equations
GOCE dynamic
orbit
CNES-GFZ interfaces
Normal equations (SST+SGG)
DYNAMO-B
reduce normal equations
DYNAMO-C
accumulate normal equations
GINS
GOCE dynamic
orbit
DYNAMO-D
solve (Cholesky)
CONVERS-POT
format gravity
field model
DYNAMO-P
re-arrange unknowns in
the normal equations
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
Charakteristiken
Schwerefeldmodellierung
Time-Wise Approach: TUG & IAPG & ITG Software Architecture
QL-GFA:
Quick-Look Gravity Field Analysis
• SST: Energy conservation
• SGG-only: Analysis of residuals &
Error model
• SST, SGG, SST+SGG Gravity
models based on block-diagonal
normal equations using an iterative
approach.
CS: Core Solver
TM: Tuning Machine
• Optimal regularisation and
weighting parameters
• Filter design
FS: Final Solver
• SST: Energy conservation
• SST & SGG: Full normal equation
systems
Input Data SST & SGG
WP 6000
QL-GFA
CS
TM
Regularization parameter
Weighting factors
Filter coefficients
Stat. Quality sheet
FS
SST
Assembling
Flags: gaps, outliers
SST residuals
SST normal eq.
Update of GGT error PSD
Regularization parameter
Weighting factors
SGG filter estimates
Flags: data gaps, outliers
Residual time series
Diagnosis Report: SST, SGG
SOLUTION
QL gravity field
models
Diagnosis Report
Sheet
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
SGG
Assembling
Flags: gaps, outliers
SGG residuals
SGG normal eq.
Quality Assessment Parameter
GOCE gravity field model +
variance/ covariance matrix
iapg
Charakteristiken
Schwerefeldmodellierung
SST
Space-Wise Approach: POLIMI & UCPH Software Architecture
SGG
Data
synthesis
along orbit
test
Final model
Energy
conservation
FFT
Wiener filter
complementary
Wiener filter
+
LORF/GRF
correction
FFT
-1
Energy Conservation: for SST data analysis
Wiener Filter: for joint analysis of SST and SGG
observations in frequency domain producing
spatialized observations.
Data
gridding
Space-wise solver
FFT
Harmonic
analysis
+
Gridding: by least squares collocation
Harmonic Analysis: by fast spherical collocation
Iterative Scheme: for recovery of lost signal
during filtering and errors in GRF-LORG
rotations.
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
HPF Level-2 Produkte
Identifier
Description
Products of WP 4000
SST_RSO_2
• Rapid science orbit from reduced dynamic approach
• Rapid science orbit from kinematic approach
• Rapid science orbit quality assessment
Products of WP 6000
EGM_QLK_2
•
•
•
•
Quick-look Earth gravity field model from SST only
Quick-look Earth gravity field model from SGG only
Quick-look Earth gravity field model from SST and SGG combination
Diagnosis report sheets for all models
Products of WP 8000
EGM_QLK_2
• Quick-look gravity field quality assessment report
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg
HPF Level-2 Produkte
Identifier
Description
Products of WP 3000
EGG_NOM_2
• Externally calibrated and corrected gravity gradients in GRF (2 weeks
latency)
• Corrections to gravity gradients due to temporal gravity variations
• Flags for outliers, fill-in gravity gradients for data gaps with flags
• Statistical information
EGG_TRF_2
• Externally calibrated gravity gradients in Earth fixed reference frame
including error estimates for transformed gradients
• Transformation parameters to Earth fixed reference frame
Products of WP 8000
SST_PSO_2
• GOCE precise science orbits final product
• Quality report for precise orbits
EGM_GOC_2
• Final GOCE Earth gravity field model as spherical harmonic series
including error estimates. Target: 1-2 cm / 1 mGal up to degree and order
200 corresponding to 100 km spatial resolution.
• Variance-covariance matrix of final GOCE Earth gravity field model
• Grids of geoid heights, gravity anomalies and geoid slopes computed from
final GOCE Earth gravity field model including propagated error estimates
• Quality report for final GOCE gravity field model
Institut für Planetare Geodäsie, TU Dresden, 3.8.2004
iapg

Similar documents

Water Pump Catalogue

Water Pump Catalogue This catalogue is protected by copyright and may not be reproduced in whole or in part without the prior written consent of Repco. This catalogue is supplied on the condition that it may not be len...

More information