facts and myths regarding the violet mutation in lovebirds

Transcription

facts and myths regarding the violet mutation in lovebirds
GamebirdsJ
FACTS AND MYTHS
REGARDING THE VIOLET
MUTATION IN LOVEBIRDS
Article and photos by Norris Dryden
To experience violet visually one has thus to combine a blue gene
to a single dark factor and then add one or two violet genes"
Q
uite a few myths exist when it
comes to the breeding of the
violet mutation in Lovebirds.
Some of these myths include that a
bird can be a "split" to violet and that
a single bird can possess up to three
violet genes in its genetic structure. It
is generally accepted (until such time
as the contrary is proved) that only one
type of violet gene exists in the world.
The American, Danish and German
violet mutations are all one and the
same violet gene. Violet inherits in
a "co-dominant" fashion which has
the implication that it is genetically
impossible to produce any "split" birds.
What will be produced are birds with
single factor violet genes as well as
birds with doublefactor genes. The latter
being the more intense violet colour of
the two. When combining a green violet
bird with a par-blue (turquoise or aqua)
bird the different genes will inherit in the
following manner: green - dominantly,
violet - co-dominantly, turquoise and
aqua - autosomal recessively.
HISTORY
It is documented that during 1980 in The
Netherlands as well as in Denmark the
violet gene developed naturally in the
Peach Face (Roseicollis) lovebird.
In Denmark the advantage was
that it appeared in the par-blue
series of birds, thus being
visible to the human eye. The Danish
quickly claimed this colour, branded it
and at the same time commercialized
it. From there the name Danish violet
originated. Unfortunately for breeders
in The Netherlands, the violet gene
first originated in green series birds.
It was found that the more exotic the
name the bigger the commercial value.
This same tendency is today still found
in South Africa when a new colour
mutation is imported for the
first time and then sold at
an above-market price.
It is unfortunately
true that the bigger
the
demand,
the
higher
the asking
price.
violet gene developed naturally in
Australia in the Personatus (Mask)
species. From there it was transmutated to the Fischer, Nigrigenis (Black
Cheek) as well as the Lilianae (Nyassa)
species. The primary goal with transmutation is to transfer only the colour
gene from one species to another. This
is a process that needs to be carried
out 100% correctly or else
you will end up
transferring
more than
just
the
c o l o u r
g e n e .
Incorrectly
applied it
will have
the effect
that babies
will
display
characteristics
of both species.
The most commonly
found
example of
jj
this phenomena is in
M the blue series (blue,
M
D blue (cobalt), DD blue
JF
(mauve) and violet related
combinations)
Fischer
lovebirds, where quite a high
percentage of offspring display
grey markings in their faces and
chest. The faces and chest of a
blue line Fischer should be 100%
pure white and should not display any
grey markings at all. The grey markings
are a clear indication of trans-mutation
having been applied incorrectly in
previous generations. These substandard birds should preferably not
be included in a breeding program
as these poor qualities will simply be
passed on from one generation to the
next. This should be avoided at all
costs.
Blue & Cobalt DF Violet Fischer
The colour violet is generated by
means of a light effect, and as light has
no ownership/nationality no country
should strictly be allowed to attach
its name to it. The violet gene that
developed naturally in more than one
country simultaneously was thus one
and the same gene after all.
TECHNICAL INFORMATION
Light is part of an electromagnetic
wave that is visible to the human eye
in the form of light or colour images.
All different types of electromagnetic
waves travel at the exact same speed,
namely 300 000 kilometres per second.
Different types of electromagnetic
waves however have different wave
lengths. Ultra violet light for instance
has a wave length of between 14 and
380 nanometre (nm); UV-C shorter
than 280 nm; UV-B between 280 - 315
nm and UV-A between 315 - 380 nm.
It is impossible for the human eye to
observe light within these ranges. The
human eyG can however observe light
in the wave lengths between 380 - 780
nm. These lengths are known as the
spectrum, and within this spectrum
humans have allocated certain names
to certain colours. The mixing together
of these colours proportionally are
what we as humans define as "white"
daylight.
A black surface will absorb all incoming
light whereas a white surface will reflect
all incoming light. In contrast to this will
a grey surface absorb ±50% light and
reflect the other 50%. A surface that is
violet in colour will reflect light between
380-480 nm and absorb the rest. A blue
colour surface will reflect light between
420-495 nm and absorb the rest.
The chest feather of a green lovebird
consists of a central axis, known as
the rachis, to which lateral branches
are attached known as barbs (rami).
Attached to the barbs are branches
known as barbules (radii). It is these
barbs, and to a lesser degree the
barbules, which determine the colour
of a feather. When a cross cut is
made of one of these barbs and it is
microscopically enlarged ± 800 times
the following observations can be
made. The feather comprises three
(3) oval type areas from the outside to
inside as follows:
1. A "Skin" known as the cortex. It
consists of colourless keratin.
Within the cortex a yellow pigment
is found known as "psittacin".
2. A spongy area (spongy zone) of
miniature tubes that are also made
up out of colourless keratin.
Feather Structure
TABLE OF COLOURS
Red 627-780 nm, Orange 589-627
nm, Yellow 566-589 nm, Green 495566 nm, Blue 420-495 nm, Violet
380-420 nm. These colours are not
clearly defined from one another but
rather have an effect of one flowing
into the other. When light is reflected
through objects of different densities
the human eye observes it as different
images, An example of this is sunlight
shining through a shower of raindrops,
causing the human eye to observe a
rainbow.
www.avizandum.co.za • april 2012 • avizandum 17
s
Above: Blue SF Violet and Blue DF Violet Fischer
Below: Blue SF Violet
3. The central area which is known as
the medulla. The medulla contains
vacuoles (miniature cavities filled
with air) which are surrounded by
black melanin.
What happens when light shines on the
feathers of a green bird? Very simply
put, the following; "white" light (which is
a combination of seven colours) shines
on the cortex (which contains yellow
psittacin) of the barb and only a small
portion of this light is reflected. The
difference in density between the light
and the cortex disseminates the light
into 7 colours. These seven colours
now penetrate the spongy zone from
where only blue light is reflected. The
six remaining colours penetrate further
and are absorbed by the black melanin
within the medulla. What we now have
is a partial reflection of both blue and
yellow light and together they create
the colour green. Green birds thus do
not possess any green pigmentation,
as is commonly believed. All they have
is yellow (to red) psittacin and black
eumelanin. The colour green visually
experienced by the human eye is thus
nothing more than an effect created by
light. "
When a mutation has been affected
in such a way that the yellow psittacin
18 avizandum • april 2012 • www.avizandum.co.za
has just about vanished, only blue
light can be reflected. In this way we
observe blue mutation birds. This
will only happen if no other changes
have occurred in the other two areas.
If, for instance, changes should take
place in the central area (medulla)
with the effect that the black melanin
increases or decreases the density of
the colourless keratin tubes, together
with a disappearance of the yellow
psittacin, then the light would be
reflected differently and instead of blue
light being reflected, violet light would
now be reflected. The violet colour we
experience is thus created by a change
in the psittacin, together with change in
the feather structure.
The violet factor became known to
budgie breeders as early as 1930. The
violet factor has only become prevalent
in the Peach Face lovebirds since 1980
and from 1994 in the other white eye
ring species. The budgie breeders have
had many more years to experiment
and gain experience with this colour
mutation. Through experience, they
had come to the conclusion that the
violet mutation is best expressed
when combining a blue mutation with
a single dark factor and then adding
one or two violet factors. They were
unanimously of the opinion that the
violet factor should not be combined
with a green factor. They based this
opinion on the fact that a violet factor
darkens a green bird to nearly the
same degree as what a dark factor
would do. The problem arises that the
human eye can't differentiate between
a green bird with a single dark factor
and a green bird with a single violet
factor. The same applies to a dark
blue (cobalt) bird and a blue bird with
a violet factor. The two mutations look
identical. In their opinion a violet gene
should be visually displayed and not
hidden away in a green bird. But that
is their opinion. I am convinced that
many lovebird breeders will certainly
disagree with them.
To experience violet visually one has
thus to combine a blue gene to a
single dark factor and then add one
or two violet genes. The term "visual
violet" is incorrectly used to describe a
violet related mutation. "Visual violet"
is not a mutation but merely a manner
of speaking to indicate that the bird
displays violet visually. This term has
been the cause of much confusion in
the past and should rather be avoided
at all cost.
Cobalt DF Violet
Cobalt SF Violet Pied
iiil
VIOLET COMBINATIONS
Blue + one violet factor = Blue SF
Violet (this mutation looks identical to
a D Blue (Cobalt) and does not show
any visual signs of violet)
Blue + two violet genes = Blue DF
Violet (this mutation looks identical to a
D Blue (Cobalt) SF Violet and displays
violet visually)
Blue + one dark factor + one violet
factor = D Blue (Cobalt) SF Violet (this
mutation displays violet visually)
Blue + one dark factor + two violet
factor = D Blue (Cobalt) DF Violet (this
mutation displays violet visually and it
is the most intense violet colour of all
combinations)
A visual violet can thus be any one of
three possible birds. The use of the term
visual violet should thus be avoided at
all costs and the describing a bird as
genetically correctly as possible should
be encouraged.
The newest mutation on everybody
lips are the so called "true blue" or
"pure blue" Roseicollis. These birds
had their origin when over many
years breeders had selectively mated
the "bluest" of turquoise birds to one
another. The result was a bird that
looked "blue" to the naked eye. A bird
can only be classified to be blue if a
complete (100%) reduction of psittacin
has occurred. Within these birds
called "true blue/pure blue" a small
percentage of psittacin is unfortunately
still present. It is because of this
fact that the BVA (Belgium Lovebird
Society), with its ± 2500 members
worldwide, has classified these birds
as "blue". The name blue is written
in inverted commas because there is
20 avizandum • april 2012 • www.avizandum.co.
co.za
still that small percentage of psittacin
present. The category in which they are
displayed at European shows is called
"blue" and not "true blue" or "pure blue"
as they are commonly known in South
Africa. The name blue is reserved for
the day that a breeder manages to
breed a pure blue Roseicollis - one
without any psittacin.
DIE VIOLET FAKTOR
IN LOVEBIRDS (SPE5IE
7!CAPORNlS>~FE!TE EN MITES
deur Norris Dryden
Baie mites bestaan in die teel van
die violet kleur mutasie in Lovebirds.
Van hierdie mites is dat n voel kan
"split" vir violet en dat sommige voels
tot drie violet faktore in sy genetiese
samestelling kan bevat. Dit word
kommersiele waarde. Hierdie tendens
word vandag nog ervaar wanneer n
nuut geteelde mutasie vir die eerste
keer na Suid Afrika ingevoer word en
dan teen buitensporige hoe pryse van
die hand gesit word. Hoe groter die
aanvraag hoe hoer die prys.
The primary goal with trans-mutation is to transfer only the colour gene from one species to another.
This is a process that needs to be carried out 100% correctly or else you will end up transferring
more than just the colour gene, as can be seen in these two examples
I
algemeen aanvaar (todat die teendeel
bewys word ) dat daar nie verskillende
tipe violet gene in die wereld bestaan
nie. Die Amerikaanse, Deense en
Duitse violet mutasies is almal een
en dieselfde violet geen. Violet vererf
"ko-dominant" wat beteken dat geen
"splits" geneties moontlik is nie. Daar
sal dus enkel en dubbel faktorige voels
voorkom, waarvan die dubbelfaktoriges
donkerder en meer intens van kleur
sal wees. Wanneer groen violette met
"par-blue" [Turkoois en Aqua] mutasies
gekruis word sal hierdie nasate dus
dominant vererf wat betref die groen
geen, ko-dominant vererf wat die violet
geen aanbetref maar autosomaal
resessief wat die turkoois en aqua
geen aanbetref.
Geskiedenis : Gedurende 1980 het
daar tergelyke tyd in Denemarke en
Nederland die eerste violet Peach
Faces (Roseicollis) natuurlik verskyn.
Omrede die violet faktor in Denemarke
in die Parblue (partial blue - turquoise)
lyn verskyn het en dus visueel sigbaar
was, het hulle gou ingespring om die
naam te eien en te kommersialiseer.
Vandaar die name "Danish violet" en
"American violet". In Nederland aan die
anderkant het die violet geen eerste in
groen verwante voels verskyn.. Hoe
meer eksoties die naam, hoe grater die
22 avizandum • april 2012 • www.avizandum.co.za
In die wit oogring spesies het die violet
kleur spontaan ontstaan in Australia
in die Personatus (Masker) spesie.
Vandaar is dit verder geneem en deur
middel van transmutasie gevestig in die
Fischer, Nigrigenis (Black Cheeck) en
Lilianae (Nyassa) spesies. Die primere
beginsel met transmutasie is om die
spesifieke kleur geen oor te dra van
een spesie na n ander. Transmutasie
is n poses wat 100% korrek toegepas
moet word andersins word meer as net
die kleur geen oorgedra. Transmutasie
verkeerdelik toegepas veroorsaak
dat voels geteel word wat fisiese
eienskappe van beide spesies vertoon.
Die mees algemeenste voorbeeld
hiervan is n blou, donker blou (kobalt)
of violet verwante Fischer mutasie wat
grys merke in sy gesig en bors vertoon.
Die gesig en bors van n blou verwante
Fischer moet spierwit wees en absoluut
geen tekens van grys toon nie. Die
grys is n nagevolg van transmutasie
wat in vorige geslagte verkeerdelik
toegepas was. Hierdie sub-standaard
voels moet eerder nie in n teelprogram
gebruik word nie aangesien die swak
eienskappe bloot van een generasie
na n ander oorgedra word. Dit moet
eerder ten alle koste vermy word.
Die kleur violet word veroorsaak deur
n lig effek en aangesien lig geen
nasionaliteit/eienaar het nie, kan geen
land streng gesproke sy naam koppel
aan die violet kleur/geen nie. Die violet
geen wat tergelyke tyd natuurlik te
voorskyn gekom het in die verskillende
lande was dus al die tyd een en
dieselfde geen.
TEGNIESE INUGTINC
Lig is deel van n elektromagnetiese
golf wat mense deur hulle sig
ervaar as lig of as kleur beelde. Alle
verskillende elektromagnetiese golwe
beweeg teen dieselfde spoed, naamlik
300 000 kilometer per sekonde.
Verskillende elektromagnetiese golwe
het verskillende golf lengtes. Ultraviolet lig het byvoorbeeld n lengte van
tussen 14 en 380 nano meter (nm):
UV-C korter as 280 nm; UV-B tussen
280 - 315 nm en UV-A tussen 315
- 380 nm. Die menslike oog kan nie
hierdie golf lengtes waarneem nie. Die
Wat gebeur wanneer lig op die vere van
n groen voel skyn. Baie vereenvoudig
en kortliks gestel die volgende. "Wit"
daglig (wat n samevatting van 7 kleure
is) skyn op die korteks (wat geel
"psittacin bevat) van die "barb" en
slegs n gedeelte van die geel lig word
gereflekteer. Die verskil in densiteit
van die lig en die korteks breek die lig
op in die 7 verskillende kleure. Hierdie
TABEL VAN KLEURE
Rooi 627 - 780 nm, Oranje 589 - 7 kleure dring die sponserige area
binne vanwaar blou lig gereflekteer
627 nm, Geel 566 - 589 nm, Groen
word.
Die ander 6 kleure beweeg
495 - 566 nm, Blou 420 - 495 nm,
verder
en
word geabsorbeer deur die
Violet 380 - 420 nm. Hierdie kleure
swart
"melanien"
Ons het dus nou n
word nie duidelik van mekaar geskei
weerkaatsing
van
blou en geel lig en
nie, maar vloei egalig van die een
gesamentlik
veroorsaak
dit die kleur
binne in die ander. Wanneer lig deur
groen.
Groen
voels
bevat
dus geen
voorwerpe van verskillende digthede
groen
pigment
nie.
Al
wat
hulle
bevat
reflekteer, word verskillende beelde
is
geel
(tot
rooi)
"psittacin"
en
swart
deur die menslike oog waargeneem. n
"eumelanin"
Die
kleur
groen
wat
die
Voorbeeld hiervan is sonlig wat deur n
menslike
oog
ervaar
word
dus
deur
n
vlaag reendruppels skyn en dan as n
lig effek veroorsaak.
reenboog waargeneem word.
menslike oog kan slegs sig ervaar in
die golflengte 380 tot 780 nm. Hierdie
golf lengte staan bekend as die
spektrum en binne hierdie spektrum
het die mens sekere name aan sekere
kleure gekoppel. Die vermening van
hierdie kleure in sekere hoeveelhede
neem ons waar as "wit" daglig.
'n Oppervlakte wat heeltemal swart
is sal alle inkomende lig absorbeer.
n Oppervlakte daarenteen wat wit
is sal weer alle lig reflekteer. n Grys
Oppervlakte op sy beurt sal weer ± 50%
lig absorbeer en ± 50% reflekteer. So
sal n violet Oppervlakte lig tussen 380 en
480 nm reflekteer en die res absorbeer.
n Blou oppervlakte daarenteen sal weer
lig tussen 420 en 495 nm reflekteer en
die res absorbeer.
Die borsveer van n groen lovebird
bestaan uit n sentrale as bekend as
die "rachis" waaraan daar laterale
vertakkings is bekend as "barbs" (rami).
Aan hierdie vertakkings is daar weer
vertakkings bekend as die "barbules"
(radii). Die "barbs" en in n mindere
mate die "barbules" bepaal die kleur
van n veer. Wanneer n dwars snit van
n "barb" gemaak word en dit + 800
maal mikroskopies vergroot word word
die volgende waarnemings ervaar.
Die veer bestaan uit drie ovaalvormige
areas. Van buite na binne as volg:
1. 'n "skil" bekend as die korteks. Dit
bestaan uit kleurlose keratien. Binne
die korteks word n geel pigment
gevind bekend as "psittacin"
2. Die sponserige (spongy zone)
gedeelte wat bestaan uit miniatuur
buisies wat ook op hul beurt
saamgestel
is
uit
kleurlose
keratien.
3. Die middelste area staan bekend as
die "medulla. Die "medulla" bevat
vakuoles (miniatuur holtes gevul
met lug) wat omring is met swart
rnelanien.
Wanneer n mutasie in so n mate
geaffekteer is dat die geel "psittacin"
bykans heeltemal verdwyn het dan kan
slegs blou lig gereflekteer word. Op
hierdie wyse word die blou mutasies
deur die menslike oog ervaar. Dit is
slegs van toepassing as daar geen
verandering in die ander twee areas
plaasgevind het nie. Wanneer daar
wel n verandering in die sentrale area
(medulla - sponserige area/ spongy
zone) plaasvind, m.a.w. die swart
"melanien" verminder of vermeerder
die digtheid van die kleurlose keratien
buisies , tesame met n verdwyning
van die geel "psittacin", word die lig
verskillend gereflekteer en dan in plaas
van blou lig word violet lig weerkaats.
Vandaar ons pragtige violet mutasie.
Dit as gevolg van n verandering in die
"psittacin" en die veertekstuur.
Die violet faktor was reeds so vroeg as
1930 bekend aan budjie telers. In die
Peach Face lovebird hetditsedert 1980
voorgekom en in die ander wit oogring
spesies sedert 1994. Die budjie telers
het dus dekades meer ondervinding
van die violet mutasie as lovebird
telers. Deur ervaring en ondervinding
het hulle tot die gevolgtrekking gekom
dat die violet mutasie die mooiste
vertoon wanneer hulle n blou geen
en een donker geen met een of twee
violet gene kombineer. Budjie telers is
dit eens dat die violet geen nie met die
groen geen gekombineer moet word
nie. Hulle baseer hierdie stelling op
die feit dat die violet geen groen voels
verdonker tot byna dieselfde mate as
wat die donker geen dit doen. Dit is
www.avizandum.co.za • april 2012 • avizandum 23
Above: Cobalt SF Violet Pied
Below: D Turquoise SF Violet
nie vir die menslike oog moontlik om
te onderskei tussen n groen voel wat n
donker geen bevat en een wat n violet
geen bevat nie. n Donker groen en n
violet groen mutasie sal dus visueel
eenders voorkom vir die menslike oog.
Dieselfde beginsel is van toepassing
op n donker blou (kobalt) en n blou
violet mutasie. Wanneer n violet geen
dus tot n donker groen voel toegevoeg
word verdonker dit die donker groen
tot n byna olyfgroen, maar nie 100%
in dieselfde mate as wat die donker
geen dit sou doen nie. Hulle beskeie
opinie is dat die violet kleur visueel
ervaar moet word en nie weggesteek
moet word nie. Hierdie opinie is een
wat beslis nie deur alle lovebird telers
ondersteun word nie.
Om violet visueel te ervaar moet ons
dus n blou geen kombineer met n
donker geen en daarna een of twee
violet gene toevoeg. Vandaar die
terme "Visual Violet" Visuele violet is
nie n mutasie nie, maar terminologie
om aan te dui dat die betrokke voel
visueel violet vertoon. Hierdie term
bied geen aanduiding van watter tipe
violet daar gepraat word nie en moet
liefs moontlik vermy word, aangesien
dit slegs verwarring veroorsaak.
VIOLET KOMBINASIES
24 avizandum • april 2012 • www.avizandum.co.za
Blou + (plus) een violet geen = Blou EF
Violet (hierdie mutasie lyk op n haar na
dieselfde as n donker Blou (Kobalt) en
vertoon glad nie violet visueel nie)
Blou + (plus) twee violet gene - Blou
DF Violet (hierdie mutasie lyk weer
identies soos n
donker Blou (Kobalt) EF Violet en
vertoon violet visueel.
Blou + (plus) een donker geen + (plus)
een violet geen = Donker Blou (Kobalt)
EF Violet. Hierdie mutasie vertoon
violet visueel.
Blou + (plus) een donker geen +
(plus) twee violet gene = Donker Blou
(Kobalt) DF Violet. Hierdie mutasie
vertoon violet visueel en is die mees
intense violet mutasie.
Wanneer ons dus blou met twee violet
gene kombineer kry ons ook n visuele
violet mutasie bekend as Blou DF
Violet, n Visuele violet kan dus enige
van die drie bogenoemde geneties
saamgestelde mutasies wees. Om
dus die terme "visual violet" te gebruik
skep ons net n Babelse verwarring en
niks meer nie. Daar moet dus te alle
tye gepoog word om n voel so geneties
moontlik korrek te beskryf. Sodoende
sal erge verwarring uit die weg geruim
word.
Die nuutste mutasie op almal se
lippe is die "true blue" ofte wel "pure
blue" Roseicollis. Die visuele "blou"
Roseicollis het onstaan deurdat telers
oor die verloop van jare die visueel
"blouste" turkooise voels geneem het
en selektief met mekaar gekruis het
totdat hulle n visuele "blou" mutasie
gevestig het. n Voel kan slegs as
blou beskou word as daar n algehele
(100%) verwydering van "psittacin"
plaasvind. By hierdie "blou" Roseicollis
mutasies is daar nog steeds n geringe
persentasies "psittacin" aanwesig. Om
hierdie rede het die BVA (Belgiese
Lovebird Vereniging - n klub met + 2500
lede wereld wyd ) dit goed gedink om
vir skoudoeleindes n nuwe kategorie
naamlik "blou" bekend te stel waar
hierdie visuele "blou" voels vertoon kan
word. Die kategorie staan bekend as
"blou" en nie "true blue" of "pure blue"
soos die gebruik in Suid Afrika nie.
Die rede waarom aanhalingstekens
gebruik word is omrede hierdie voels
nog nie werklik suiwer blou is nie Die
kleur blou word dus gereserveer vir die
dag waarop iemand dit regkry om n
suiwer blou Roseicollis te tee'l.