facts and myths regarding the violet mutation in lovebirds
Transcription
facts and myths regarding the violet mutation in lovebirds
GamebirdsJ FACTS AND MYTHS REGARDING THE VIOLET MUTATION IN LOVEBIRDS Article and photos by Norris Dryden To experience violet visually one has thus to combine a blue gene to a single dark factor and then add one or two violet genes" Q uite a few myths exist when it comes to the breeding of the violet mutation in Lovebirds. Some of these myths include that a bird can be a "split" to violet and that a single bird can possess up to three violet genes in its genetic structure. It is generally accepted (until such time as the contrary is proved) that only one type of violet gene exists in the world. The American, Danish and German violet mutations are all one and the same violet gene. Violet inherits in a "co-dominant" fashion which has the implication that it is genetically impossible to produce any "split" birds. What will be produced are birds with single factor violet genes as well as birds with doublefactor genes. The latter being the more intense violet colour of the two. When combining a green violet bird with a par-blue (turquoise or aqua) bird the different genes will inherit in the following manner: green - dominantly, violet - co-dominantly, turquoise and aqua - autosomal recessively. HISTORY It is documented that during 1980 in The Netherlands as well as in Denmark the violet gene developed naturally in the Peach Face (Roseicollis) lovebird. In Denmark the advantage was that it appeared in the par-blue series of birds, thus being visible to the human eye. The Danish quickly claimed this colour, branded it and at the same time commercialized it. From there the name Danish violet originated. Unfortunately for breeders in The Netherlands, the violet gene first originated in green series birds. It was found that the more exotic the name the bigger the commercial value. This same tendency is today still found in South Africa when a new colour mutation is imported for the first time and then sold at an above-market price. It is unfortunately true that the bigger the demand, the higher the asking price. violet gene developed naturally in Australia in the Personatus (Mask) species. From there it was transmutated to the Fischer, Nigrigenis (Black Cheek) as well as the Lilianae (Nyassa) species. The primary goal with transmutation is to transfer only the colour gene from one species to another. This is a process that needs to be carried out 100% correctly or else you will end up transferring more than just the c o l o u r g e n e . Incorrectly applied it will have the effect that babies will display characteristics of both species. The most commonly found example of jj this phenomena is in M the blue series (blue, M D blue (cobalt), DD blue JF (mauve) and violet related combinations) Fischer lovebirds, where quite a high percentage of offspring display grey markings in their faces and chest. The faces and chest of a blue line Fischer should be 100% pure white and should not display any grey markings at all. The grey markings are a clear indication of trans-mutation having been applied incorrectly in previous generations. These substandard birds should preferably not be included in a breeding program as these poor qualities will simply be passed on from one generation to the next. This should be avoided at all costs. Blue & Cobalt DF Violet Fischer The colour violet is generated by means of a light effect, and as light has no ownership/nationality no country should strictly be allowed to attach its name to it. The violet gene that developed naturally in more than one country simultaneously was thus one and the same gene after all. TECHNICAL INFORMATION Light is part of an electromagnetic wave that is visible to the human eye in the form of light or colour images. All different types of electromagnetic waves travel at the exact same speed, namely 300 000 kilometres per second. Different types of electromagnetic waves however have different wave lengths. Ultra violet light for instance has a wave length of between 14 and 380 nanometre (nm); UV-C shorter than 280 nm; UV-B between 280 - 315 nm and UV-A between 315 - 380 nm. It is impossible for the human eye to observe light within these ranges. The human eyG can however observe light in the wave lengths between 380 - 780 nm. These lengths are known as the spectrum, and within this spectrum humans have allocated certain names to certain colours. The mixing together of these colours proportionally are what we as humans define as "white" daylight. A black surface will absorb all incoming light whereas a white surface will reflect all incoming light. In contrast to this will a grey surface absorb ±50% light and reflect the other 50%. A surface that is violet in colour will reflect light between 380-480 nm and absorb the rest. A blue colour surface will reflect light between 420-495 nm and absorb the rest. The chest feather of a green lovebird consists of a central axis, known as the rachis, to which lateral branches are attached known as barbs (rami). Attached to the barbs are branches known as barbules (radii). It is these barbs, and to a lesser degree the barbules, which determine the colour of a feather. When a cross cut is made of one of these barbs and it is microscopically enlarged ± 800 times the following observations can be made. The feather comprises three (3) oval type areas from the outside to inside as follows: 1. A "Skin" known as the cortex. It consists of colourless keratin. Within the cortex a yellow pigment is found known as "psittacin". 2. A spongy area (spongy zone) of miniature tubes that are also made up out of colourless keratin. Feather Structure TABLE OF COLOURS Red 627-780 nm, Orange 589-627 nm, Yellow 566-589 nm, Green 495566 nm, Blue 420-495 nm, Violet 380-420 nm. These colours are not clearly defined from one another but rather have an effect of one flowing into the other. When light is reflected through objects of different densities the human eye observes it as different images, An example of this is sunlight shining through a shower of raindrops, causing the human eye to observe a rainbow. www.avizandum.co.za • april 2012 • avizandum 17 s Above: Blue SF Violet and Blue DF Violet Fischer Below: Blue SF Violet 3. The central area which is known as the medulla. The medulla contains vacuoles (miniature cavities filled with air) which are surrounded by black melanin. What happens when light shines on the feathers of a green bird? Very simply put, the following; "white" light (which is a combination of seven colours) shines on the cortex (which contains yellow psittacin) of the barb and only a small portion of this light is reflected. The difference in density between the light and the cortex disseminates the light into 7 colours. These seven colours now penetrate the spongy zone from where only blue light is reflected. The six remaining colours penetrate further and are absorbed by the black melanin within the medulla. What we now have is a partial reflection of both blue and yellow light and together they create the colour green. Green birds thus do not possess any green pigmentation, as is commonly believed. All they have is yellow (to red) psittacin and black eumelanin. The colour green visually experienced by the human eye is thus nothing more than an effect created by light. " When a mutation has been affected in such a way that the yellow psittacin 18 avizandum • april 2012 • www.avizandum.co.za has just about vanished, only blue light can be reflected. In this way we observe blue mutation birds. This will only happen if no other changes have occurred in the other two areas. If, for instance, changes should take place in the central area (medulla) with the effect that the black melanin increases or decreases the density of the colourless keratin tubes, together with a disappearance of the yellow psittacin, then the light would be reflected differently and instead of blue light being reflected, violet light would now be reflected. The violet colour we experience is thus created by a change in the psittacin, together with change in the feather structure. The violet factor became known to budgie breeders as early as 1930. The violet factor has only become prevalent in the Peach Face lovebirds since 1980 and from 1994 in the other white eye ring species. The budgie breeders have had many more years to experiment and gain experience with this colour mutation. Through experience, they had come to the conclusion that the violet mutation is best expressed when combining a blue mutation with a single dark factor and then adding one or two violet factors. They were unanimously of the opinion that the violet factor should not be combined with a green factor. They based this opinion on the fact that a violet factor darkens a green bird to nearly the same degree as what a dark factor would do. The problem arises that the human eye can't differentiate between a green bird with a single dark factor and a green bird with a single violet factor. The same applies to a dark blue (cobalt) bird and a blue bird with a violet factor. The two mutations look identical. In their opinion a violet gene should be visually displayed and not hidden away in a green bird. But that is their opinion. I am convinced that many lovebird breeders will certainly disagree with them. To experience violet visually one has thus to combine a blue gene to a single dark factor and then add one or two violet genes. The term "visual violet" is incorrectly used to describe a violet related mutation. "Visual violet" is not a mutation but merely a manner of speaking to indicate that the bird displays violet visually. This term has been the cause of much confusion in the past and should rather be avoided at all cost. Cobalt DF Violet Cobalt SF Violet Pied iiil VIOLET COMBINATIONS Blue + one violet factor = Blue SF Violet (this mutation looks identical to a D Blue (Cobalt) and does not show any visual signs of violet) Blue + two violet genes = Blue DF Violet (this mutation looks identical to a D Blue (Cobalt) SF Violet and displays violet visually) Blue + one dark factor + one violet factor = D Blue (Cobalt) SF Violet (this mutation displays violet visually) Blue + one dark factor + two violet factor = D Blue (Cobalt) DF Violet (this mutation displays violet visually and it is the most intense violet colour of all combinations) A visual violet can thus be any one of three possible birds. The use of the term visual violet should thus be avoided at all costs and the describing a bird as genetically correctly as possible should be encouraged. The newest mutation on everybody lips are the so called "true blue" or "pure blue" Roseicollis. These birds had their origin when over many years breeders had selectively mated the "bluest" of turquoise birds to one another. The result was a bird that looked "blue" to the naked eye. A bird can only be classified to be blue if a complete (100%) reduction of psittacin has occurred. Within these birds called "true blue/pure blue" a small percentage of psittacin is unfortunately still present. It is because of this fact that the BVA (Belgium Lovebird Society), with its ± 2500 members worldwide, has classified these birds as "blue". The name blue is written in inverted commas because there is 20 avizandum • april 2012 • www.avizandum.co. co.za still that small percentage of psittacin present. The category in which they are displayed at European shows is called "blue" and not "true blue" or "pure blue" as they are commonly known in South Africa. The name blue is reserved for the day that a breeder manages to breed a pure blue Roseicollis - one without any psittacin. DIE VIOLET FAKTOR IN LOVEBIRDS (SPE5IE 7!CAPORNlS>~FE!TE EN MITES deur Norris Dryden Baie mites bestaan in die teel van die violet kleur mutasie in Lovebirds. Van hierdie mites is dat n voel kan "split" vir violet en dat sommige voels tot drie violet faktore in sy genetiese samestelling kan bevat. Dit word kommersiele waarde. Hierdie tendens word vandag nog ervaar wanneer n nuut geteelde mutasie vir die eerste keer na Suid Afrika ingevoer word en dan teen buitensporige hoe pryse van die hand gesit word. Hoe groter die aanvraag hoe hoer die prys. The primary goal with trans-mutation is to transfer only the colour gene from one species to another. This is a process that needs to be carried out 100% correctly or else you will end up transferring more than just the colour gene, as can be seen in these two examples I algemeen aanvaar (todat die teendeel bewys word ) dat daar nie verskillende tipe violet gene in die wereld bestaan nie. Die Amerikaanse, Deense en Duitse violet mutasies is almal een en dieselfde violet geen. Violet vererf "ko-dominant" wat beteken dat geen "splits" geneties moontlik is nie. Daar sal dus enkel en dubbel faktorige voels voorkom, waarvan die dubbelfaktoriges donkerder en meer intens van kleur sal wees. Wanneer groen violette met "par-blue" [Turkoois en Aqua] mutasies gekruis word sal hierdie nasate dus dominant vererf wat betref die groen geen, ko-dominant vererf wat die violet geen aanbetref maar autosomaal resessief wat die turkoois en aqua geen aanbetref. Geskiedenis : Gedurende 1980 het daar tergelyke tyd in Denemarke en Nederland die eerste violet Peach Faces (Roseicollis) natuurlik verskyn. Omrede die violet faktor in Denemarke in die Parblue (partial blue - turquoise) lyn verskyn het en dus visueel sigbaar was, het hulle gou ingespring om die naam te eien en te kommersialiseer. Vandaar die name "Danish violet" en "American violet". In Nederland aan die anderkant het die violet geen eerste in groen verwante voels verskyn.. Hoe meer eksoties die naam, hoe grater die 22 avizandum • april 2012 • www.avizandum.co.za In die wit oogring spesies het die violet kleur spontaan ontstaan in Australia in die Personatus (Masker) spesie. Vandaar is dit verder geneem en deur middel van transmutasie gevestig in die Fischer, Nigrigenis (Black Cheeck) en Lilianae (Nyassa) spesies. Die primere beginsel met transmutasie is om die spesifieke kleur geen oor te dra van een spesie na n ander. Transmutasie is n poses wat 100% korrek toegepas moet word andersins word meer as net die kleur geen oorgedra. Transmutasie verkeerdelik toegepas veroorsaak dat voels geteel word wat fisiese eienskappe van beide spesies vertoon. Die mees algemeenste voorbeeld hiervan is n blou, donker blou (kobalt) of violet verwante Fischer mutasie wat grys merke in sy gesig en bors vertoon. Die gesig en bors van n blou verwante Fischer moet spierwit wees en absoluut geen tekens van grys toon nie. Die grys is n nagevolg van transmutasie wat in vorige geslagte verkeerdelik toegepas was. Hierdie sub-standaard voels moet eerder nie in n teelprogram gebruik word nie aangesien die swak eienskappe bloot van een generasie na n ander oorgedra word. Dit moet eerder ten alle koste vermy word. Die kleur violet word veroorsaak deur n lig effek en aangesien lig geen nasionaliteit/eienaar het nie, kan geen land streng gesproke sy naam koppel aan die violet kleur/geen nie. Die violet geen wat tergelyke tyd natuurlik te voorskyn gekom het in die verskillende lande was dus al die tyd een en dieselfde geen. TEGNIESE INUGTINC Lig is deel van n elektromagnetiese golf wat mense deur hulle sig ervaar as lig of as kleur beelde. Alle verskillende elektromagnetiese golwe beweeg teen dieselfde spoed, naamlik 300 000 kilometer per sekonde. Verskillende elektromagnetiese golwe het verskillende golf lengtes. Ultraviolet lig het byvoorbeeld n lengte van tussen 14 en 380 nano meter (nm): UV-C korter as 280 nm; UV-B tussen 280 - 315 nm en UV-A tussen 315 - 380 nm. Die menslike oog kan nie hierdie golf lengtes waarneem nie. Die Wat gebeur wanneer lig op die vere van n groen voel skyn. Baie vereenvoudig en kortliks gestel die volgende. "Wit" daglig (wat n samevatting van 7 kleure is) skyn op die korteks (wat geel "psittacin bevat) van die "barb" en slegs n gedeelte van die geel lig word gereflekteer. Die verskil in densiteit van die lig en die korteks breek die lig op in die 7 verskillende kleure. Hierdie TABEL VAN KLEURE Rooi 627 - 780 nm, Oranje 589 - 7 kleure dring die sponserige area binne vanwaar blou lig gereflekteer 627 nm, Geel 566 - 589 nm, Groen word. Die ander 6 kleure beweeg 495 - 566 nm, Blou 420 - 495 nm, verder en word geabsorbeer deur die Violet 380 - 420 nm. Hierdie kleure swart "melanien" Ons het dus nou n word nie duidelik van mekaar geskei weerkaatsing van blou en geel lig en nie, maar vloei egalig van die een gesamentlik veroorsaak dit die kleur binne in die ander. Wanneer lig deur groen. Groen voels bevat dus geen voorwerpe van verskillende digthede groen pigment nie. Al wat hulle bevat reflekteer, word verskillende beelde is geel (tot rooi) "psittacin" en swart deur die menslike oog waargeneem. n "eumelanin" Die kleur groen wat die Voorbeeld hiervan is sonlig wat deur n menslike oog ervaar word dus deur n vlaag reendruppels skyn en dan as n lig effek veroorsaak. reenboog waargeneem word. menslike oog kan slegs sig ervaar in die golflengte 380 tot 780 nm. Hierdie golf lengte staan bekend as die spektrum en binne hierdie spektrum het die mens sekere name aan sekere kleure gekoppel. Die vermening van hierdie kleure in sekere hoeveelhede neem ons waar as "wit" daglig. 'n Oppervlakte wat heeltemal swart is sal alle inkomende lig absorbeer. n Oppervlakte daarenteen wat wit is sal weer alle lig reflekteer. n Grys Oppervlakte op sy beurt sal weer ± 50% lig absorbeer en ± 50% reflekteer. So sal n violet Oppervlakte lig tussen 380 en 480 nm reflekteer en die res absorbeer. n Blou oppervlakte daarenteen sal weer lig tussen 420 en 495 nm reflekteer en die res absorbeer. Die borsveer van n groen lovebird bestaan uit n sentrale as bekend as die "rachis" waaraan daar laterale vertakkings is bekend as "barbs" (rami). Aan hierdie vertakkings is daar weer vertakkings bekend as die "barbules" (radii). Die "barbs" en in n mindere mate die "barbules" bepaal die kleur van n veer. Wanneer n dwars snit van n "barb" gemaak word en dit + 800 maal mikroskopies vergroot word word die volgende waarnemings ervaar. Die veer bestaan uit drie ovaalvormige areas. Van buite na binne as volg: 1. 'n "skil" bekend as die korteks. Dit bestaan uit kleurlose keratien. Binne die korteks word n geel pigment gevind bekend as "psittacin" 2. Die sponserige (spongy zone) gedeelte wat bestaan uit miniatuur buisies wat ook op hul beurt saamgestel is uit kleurlose keratien. 3. Die middelste area staan bekend as die "medulla. Die "medulla" bevat vakuoles (miniatuur holtes gevul met lug) wat omring is met swart rnelanien. Wanneer n mutasie in so n mate geaffekteer is dat die geel "psittacin" bykans heeltemal verdwyn het dan kan slegs blou lig gereflekteer word. Op hierdie wyse word die blou mutasies deur die menslike oog ervaar. Dit is slegs van toepassing as daar geen verandering in die ander twee areas plaasgevind het nie. Wanneer daar wel n verandering in die sentrale area (medulla - sponserige area/ spongy zone) plaasvind, m.a.w. die swart "melanien" verminder of vermeerder die digtheid van die kleurlose keratien buisies , tesame met n verdwyning van die geel "psittacin", word die lig verskillend gereflekteer en dan in plaas van blou lig word violet lig weerkaats. Vandaar ons pragtige violet mutasie. Dit as gevolg van n verandering in die "psittacin" en die veertekstuur. Die violet faktor was reeds so vroeg as 1930 bekend aan budjie telers. In die Peach Face lovebird hetditsedert 1980 voorgekom en in die ander wit oogring spesies sedert 1994. Die budjie telers het dus dekades meer ondervinding van die violet mutasie as lovebird telers. Deur ervaring en ondervinding het hulle tot die gevolgtrekking gekom dat die violet mutasie die mooiste vertoon wanneer hulle n blou geen en een donker geen met een of twee violet gene kombineer. Budjie telers is dit eens dat die violet geen nie met die groen geen gekombineer moet word nie. Hulle baseer hierdie stelling op die feit dat die violet geen groen voels verdonker tot byna dieselfde mate as wat die donker geen dit doen. Dit is www.avizandum.co.za • april 2012 • avizandum 23 Above: Cobalt SF Violet Pied Below: D Turquoise SF Violet nie vir die menslike oog moontlik om te onderskei tussen n groen voel wat n donker geen bevat en een wat n violet geen bevat nie. n Donker groen en n violet groen mutasie sal dus visueel eenders voorkom vir die menslike oog. Dieselfde beginsel is van toepassing op n donker blou (kobalt) en n blou violet mutasie. Wanneer n violet geen dus tot n donker groen voel toegevoeg word verdonker dit die donker groen tot n byna olyfgroen, maar nie 100% in dieselfde mate as wat die donker geen dit sou doen nie. Hulle beskeie opinie is dat die violet kleur visueel ervaar moet word en nie weggesteek moet word nie. Hierdie opinie is een wat beslis nie deur alle lovebird telers ondersteun word nie. Om violet visueel te ervaar moet ons dus n blou geen kombineer met n donker geen en daarna een of twee violet gene toevoeg. Vandaar die terme "Visual Violet" Visuele violet is nie n mutasie nie, maar terminologie om aan te dui dat die betrokke voel visueel violet vertoon. Hierdie term bied geen aanduiding van watter tipe violet daar gepraat word nie en moet liefs moontlik vermy word, aangesien dit slegs verwarring veroorsaak. VIOLET KOMBINASIES 24 avizandum • april 2012 • www.avizandum.co.za Blou + (plus) een violet geen = Blou EF Violet (hierdie mutasie lyk op n haar na dieselfde as n donker Blou (Kobalt) en vertoon glad nie violet visueel nie) Blou + (plus) twee violet gene - Blou DF Violet (hierdie mutasie lyk weer identies soos n donker Blou (Kobalt) EF Violet en vertoon violet visueel. Blou + (plus) een donker geen + (plus) een violet geen = Donker Blou (Kobalt) EF Violet. Hierdie mutasie vertoon violet visueel. Blou + (plus) een donker geen + (plus) twee violet gene = Donker Blou (Kobalt) DF Violet. Hierdie mutasie vertoon violet visueel en is die mees intense violet mutasie. Wanneer ons dus blou met twee violet gene kombineer kry ons ook n visuele violet mutasie bekend as Blou DF Violet, n Visuele violet kan dus enige van die drie bogenoemde geneties saamgestelde mutasies wees. Om dus die terme "visual violet" te gebruik skep ons net n Babelse verwarring en niks meer nie. Daar moet dus te alle tye gepoog word om n voel so geneties moontlik korrek te beskryf. Sodoende sal erge verwarring uit die weg geruim word. Die nuutste mutasie op almal se lippe is die "true blue" ofte wel "pure blue" Roseicollis. Die visuele "blou" Roseicollis het onstaan deurdat telers oor die verloop van jare die visueel "blouste" turkooise voels geneem het en selektief met mekaar gekruis het totdat hulle n visuele "blou" mutasie gevestig het. n Voel kan slegs as blou beskou word as daar n algehele (100%) verwydering van "psittacin" plaasvind. By hierdie "blou" Roseicollis mutasies is daar nog steeds n geringe persentasies "psittacin" aanwesig. Om hierdie rede het die BVA (Belgiese Lovebird Vereniging - n klub met + 2500 lede wereld wyd ) dit goed gedink om vir skoudoeleindes n nuwe kategorie naamlik "blou" bekend te stel waar hierdie visuele "blou" voels vertoon kan word. Die kategorie staan bekend as "blou" en nie "true blue" of "pure blue" soos die gebruik in Suid Afrika nie. Die rede waarom aanhalingstekens gebruik word is omrede hierdie voels nog nie werklik suiwer blou is nie Die kleur blou word dus gereserveer vir die dag waarop iemand dit regkry om n suiwer blou Roseicollis te tee'l.