100 lat fizyki niskich temperatur i nadprzewodnictwa
Transcription
100 lat fizyki niskich temperatur i nadprzewodnictwa
100 lat fizyki niskich temperatur i nadprzewodnictwa Tadeusz Wasiutyński IFJ PAN 9 maja 2013 Wstep ˛ teoria BCS teoria Ginzburga Landaua nowe nadprzewodniki wysokotemperaturowe co z tego mamy Heike Kamerlingh Onnes(1853–1926) 1913 nagroda Nobla "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium" Heike Kamerlingh Onnes(1853–1926) 1913 nagroda Nobla 1908 skroplenie helu Heike Kamerlingh Onnes(1853–1926) 1913 nagroda Nobla 1908 skroplenie helu 1911 odkrycie nadprzewodnictwa Heike Kamerlingh Onnes(1853–1926) 1913 nagroda Nobla 1908 skroplenie helu 1911 odkrycie nadprzewodnictwa pierwsze cztery dekady 1931 nadprzewodnictwo w stopie (de Haas i Keesom) 1933 efekt Meissnera (Meissner i Ochsenfield) 1935 Fritz i Heinz London zapostulowali: ~j = − 1 A ~ λ2L ~ = ∇2 B 1~ B λ2L λL = m 1/2 e µ0 ns e2 teorie Bloch, Einstein, Bohr, Brillouin, Born, Feynmann ... John Bardeen John Bardeen oddziaływanie elektron-fonon • efekt izotopowy • H. Fröhlich Phys. Rev (1950): • Leon Cooper Phys. Rev (1956): Bound electron Pairs in a Degenerate Fermi Gas oddziaływanie elektron-fonon • efekt izotopowy • H. Fröhlich Phys. Rev (1950): • Leon Cooper Phys. Rev (1956): Bound electron Pairs in a Degenerate Fermi Gas φ(k~1 , k~2 ; r~1 , r~2 ) = 1 i(k~1 ·r~1 +k~2 ·r~2 ) e V ~ = k~1 +k~2 , ~k = (k~2 −k~1 )/2 ~r = r~2 −r~1 , K oddziaływanie elektron-fonon • efekt izotopowy • H. Fröhlich Phys. Rev (1950): φ(k~1 , k~2 ; r~1 , r~2 ) = ~ = k~1 +k~2 , ~k = (k~2 −k~1 )/2 ~r = r~2 −r~1 , K Z χ(r , K ) = • Leon Cooper Phys. Rev (1956): Bound electron Pairs in a Degenerate Fermi Gas 1 i(k~1 ·r~1 +k~2 ·r~2 ) e V ~ ei k ·~r N(K , (k )) d ~ dk EK + (k ) − E dk oddziaływanie elektron-fonon • efekt izotopowy • H. Fröhlich Phys. Rev (1950): φ(k~1 , k~2 ; r~1 , r~2 ) = 1 i(k~1 ·r~1 +k~2 ·r~2 ) e V ~ = k~1 +k~2 , ~k = (k~2 −k~1 )/2 ~r = r~2 −r~1 , K Z χ(r , K ) = E F − ωD ~ ei k ·~r N(K , (k )) d ~ dk EK + (k ) − E dk k↑ E F + ωD • Leon Cooper Phys. Rev (1956): Bound electron Pairs in a Degenerate Fermi Gas -k ↓ EF Bardeen, Cooper, Schriefer Phys. Rev. (1957) 2 ) V ρ(EF ) T 1/2 ∆(T ) = 1.74 1 − ∆(0) Tc ∆ = 2}ωD exp(− Tc ≈ 0.57∆(0) teoria Ginzburga Landaua Zh. Eksper. Theor. Fiz. 1950 • przejście fazowe jest ciagłe ˛ • parametr porzadku ˛ zależy od pola magnetycznego • parametr porzadku ˛ jest liczba˛ zespolona: ˛ ψ(~r ) = |ψ(~r )|eiθ(~r ) = q ñs (~r )eiθ(~r ) teoria Ginzburga Landaua Zh. Eksper. Theor. Fiz. 1950 • przejście fazowe jest ciagłe ˛ • parametr porzadku ˛ zależy od pola magnetycznego • parametr porzadku ˛ jest liczba˛ zespolona: ˛ ψ(~r ) = |ψ(~r )|eiθ(~r ) = f = f0 + q ñs (~r )eiθ(~r ) 1 2 ~ |(−i~∇ − q A)ψ| + a(T − Tc )|ψ|2 + 2b|ψ|4 2m∗ teoria Ginzburga Landaua Zh. Eksper. Theor. Fiz. 1950 • przejście fazowe jest ciagłe ˛ • parametr porzadku ˛ zależy od pola magnetycznego • parametr porzadku ˛ jest liczba˛ zespolona: ˛ ψ(~r ) = |ψ(~r )|eiθ(~r ) = f = f0 + q ñs (~r )eiθ(~r ) 1 2 ~ |(−i~∇ − q A)ψ| + a(T − Tc )|ψ|2 + 2b|ψ|4 2m∗ i h 1 ~ 2 + a(T − Tc ) + 2b|ψ|2 ψ = 0 (−i~∇ − q A) 2m∗ 2 ~j = − iq~ (ψ ∗ ∇ψ − ψ∇ψ ∗ ) − q |ψ|2 A ~ 2m∗ m∗ kwantowanie strumienia magnetycznego 2 2 ~j = −( e~ ∇θ + 2e A)|Ψ| ~ m mc |Φ| = n hc = nΦ0 2e SQUID: złacze ˛ Josephsona: j = j0 sin(θ1 − θ2 ) j0 = e~ns Ke −Kd j = j0 sin δ1 +j0 sin δ2 = j̃ cos(δ1 −δ2 ) δ1 − δ2 = 2π Φ Φ0 In the 100 years since the discovery of superconductivity, progress has come in fits and starts. The graphic below shows various types of superconductor sprouting into existence, from the conventional superconductors to the rise of the copper oxides, as well as the organics and the most recently discovered iron oxides. Experimental progress has relied on fortuitous guesses, while it was not until 1957 that theorists were finally able to explain how current can flow indefinitely and a magnetic field can be expelled. The idea that the theory was solved was overturned in 1986 with the discovery of materials that superconduct above the perceived theoretical limit, leaving theorists scratching their heads to this day. In this timeline, Physics World charts the key events, the rise in record transition temperatures and the Nobel Prizes for Physics awarded for progress in superconductivity. 1987 Paul Chu and his team break the 77 K liquidnitrogen barrier and discover superconductivity at 93 K in a compound containing yttrium, barium, copper and oxygen, now known as “YBCO” 140 120 superconducting transition temperature, Tc (K) 100 1908 and 1911 Heike Kamerlingh Onnes wins the race against James Dewar to liquefy helium (1908), then discovers zero resistance in mercury with Gilles Holst (1911) 1987 Georg Bednorz Alexander Müller 1957 JohnBardeen, Bardeen,Leon LeonCooper Cooperand andRobert Robert John Schriefferpublish publishtheir their(BCS) (BCS)theory, theory,which which Schrieffer builds buildson onthe theidea ideaofofCooper Cooperpairs pairsproposed proposed the theprevious previousyear, year,and anddescribes describesall allthe the electronstogether togetheras asone onewavefunction. wavefunction. electrons Thetheory theorypredicts predictsthat thatsuperconductivity superconductivity The cannot cannotoccur occurmuch muchabove above20 20KK 1931 Wander Johannes de Haas and Willem Keesom discover superconductivity in an alloy 1973 Brian Josephson 1972 John Bardeen Leon Cooper Robert Schrieffer 80 60 T > Tc 40 20 1910 T < Tc 1920 1930 1940 boiling point of liquid nitrogen 1962 Lev Landau 1933 Walther Meissner and Robert Ochsenfeld discover that magnetic fields are expelled from superconductors. This “Meissner effect” means that superconductors can be levitated above magnets 1962 Brian Josephson predicts that a current will pass between two superconductors separated by an insulating barrier. Two of these “Josephson junctions” wired in parallel form a superconducting quantum interference device (SQUID) that can measure very weak magnetic fields 1935 Brothers Fritz and Heinz London make a long-awaited theory breakthrough, formulating two equations that try to describe how superconductors interact with electromagnetic fields 1913 Heike Kamerlingh Onnes 0 1900 2003 Alexei Abrikosov Vitaly Ginzburg 2006 Hideo Hosono and colleagues discover superconductivity in an iron compound. The highest Tc found in these materials to date is 55 K 2001 Jun Akimitsu announces that the cheap and simple chemical magnesium diboride (MgB2) superconducts up to 39 K 1986 Georg Bednorz (right) and Alexander Müller (left) find superconductivity at 30 K, over the 20 K limit of BCS theory, and not in a metal, but a ceramic 1981 Superconductivity is found by Klaus Bechgaard and colleagues in a salt – the first organic material to superconduct at ambient pressure. To date the organic superconductor with the highest Tc is Cs 3C60 at 38 K 1950 1960 1970 1980 1990 2000 2010 Image credit s (lef t to right): Physics Today Collection/American Institute of Physics/Science Photo Librar y; Wikimedia Commons; Eye of Science/Science Photo Librar y; Univer sity of Birmingham Consor tium on High T c Superconductor s/ Science Photo Librar y; Y Kohsaka/Cornell Univer sity/RIKEN; Emilio Segrè Visual Archives/American Institute of Physics/Science Photo Librar y; Supercond. Sci. Technol. 21 125028 Superconductivity at 100