Quantum kagome spin liquids
Transcription
Quantum kagome spin liquids
Quantum kagome spin liquids Philippe Mendels - Univ Paris-Sud Orsa The discovery of Herbertsmithite, ZnCu3(OH)6Cl2, which features a perfect kagome geometry, has been coined as the "end to the drought of spin liquids" [1,2]. It has triggered an intense activity on new kagome materials and related theories for the ground state of the quantum kagome Heisenberg antiferromagnet which has eluded any definitive conclusion for the last twenty years. This is indeed the first experimental example of a kagome lattice where no order has been found at any temperature well below J through all experimental techniques, among which µSR [3] has been by far the most accurate. This illustrates the power of the association of an enhancement of quantum fluctuations for S=1/2 spins with the frustration of antiferromagnetic interactions on the loosely connected kagome lattice to stabilize novel ground states of magnetic matter, namely quantum spin liquids. I will review and discuss our contribution to this field through µSR, in connection with our NMR work. Through the various Cu2+ S=1/2 materials which we have studied, I’ll illustrate some of the research thrusts in tracking down quantum spin liquid physics. This will encompass Zn and Mg-paratacamites, (Zn,Mg)xCu4-x(OH)6Cl2 [), their polymorphs kapellasite [4] and haydeite, vesignieite [5] as well as the recently discovered triangular-based lattice Ba3CuSb2O9 [6] compound. [1] P.A.Lee, Science, Perspectives 321, 1306 (2008). [2] For a review, see P. Mendels and F.Bert, Special Topics Section on "Novel States of Matter Induced by Frustration", J. Phys. Soc. Jpn 1, 011001 (2010). [3] Phys. Rev. Lett. 98, 077204 (2010). [4] Phys. Rev. Lett. 109, 037208 (2012). [5] Phys. Rev. B 84, 180401 (2011). [6] Phys. Rev. Lett., in press. Quantum liquids Quantum KagomeSpin Antiferromagnets F. Bert, E. Kermarrec, A. Olariu, J. Quilliam, M. Jeong, A. Zorko Laboratoire de Physique des Solides, Université Paris-Sud, Orsay, France Antiferromagnetism, Classical state ‘à la Néel’ r r H = − J ij S i .S j , J ij < 0 ΤΝ∼J -excitations = magnons (S=1) - 1/S quantum corrections (fluctuations) -> moments reduction r r r r − ri − r j / ξ < Si .S j >= e ; ξ → +∞ Néel state, any alternative? 1972 Geometrical Frustration of magnetic interactions ? C Class. A B r r r r S A + S B + SC = 0 Néel AF state, any alternative? RVB = …… Corner sharing: classical kagomé lattice C r r r r S A + SB + SC = 0 A B C A B C C A B C A ... C A B C A C B C A B ... C A B A C B A C A B A C ... C A B A C A B ... Macroscopic degeneracy Soft modes Corner sharing: classical vs quantum kagomé lattice Classical soft modes Triangular ≠ Kagome <J/20 Back to 90’s • Δ<J/20 • No gap in the singlet sector •Lecheminant, PRB 56, 2521 (1997) •Waldtmann et al., EPJB 2, 501 (1998). Other stream: can one stabilize a spin liquid in dimension >1? Spinon continuum ≠ Spin waves branches « Fractional excitations fractionnaires » (∆S ≠ 1) The IDEAL Highly Frustrated Magnet - Heisenberg or Ising spins - S=1/2 (quantum spins) - Corner sharing geometry: Kagomé (2D) , hyperkagome or pyrochlore (3D) lattice - No « perturbation » (anisotropy, dipolar interaction, n.n. interactions, dilution) - For kagome: stacking should keep the 2D kagome planes uncoupled Kagome Heisenberg antiferromagnet, a model of geometrically "frustrated " magnetism 2011 Néel Anderson 1972 S. Yan, D. Huse and S.R. White, Science 332 (2011) Kagome Heisenberg antiferromagnet, a model of geometrically "frustrated " magnetism Chiral spin liquid Messio et al., PRL 2012 Quantum Spin Liquid diamond-pattern valence bond crystal honeycomb valence bond crystal S. Yan, D. Huse and S.R. White, Science 332 (2011) Kagome ground state? - Quantum spin liquid? A state without any spontaneously broken symmetry Z2 QSL Gapped magnetic excitations (S=1/2) Gapped non-magnetic excitations Cv~e-∆/T ; χ~e-∆’/T Short range RVB Yan et al, science (2011) Algebraic/Critical/Dirac/U(1) QSL Gapless excitations Cv~T2 ; χ~T Long range RVB = Hastings, PRB 63, 2000 Ran et al, PRL 98, 2007 Ryu et al, PRB 75, 2007 Large size numerical study (DMRG) The ground-state of QKHA would be a gapped spin-liquid (short-range RVB) Quantum Spin Liquid triplet valence bond crystal singlet S. Yan et al, Science 332 (2011) The Cu2+ world (S=1/2, ~Heisenberg) b Materials are all existing minerals ! Cu2+ S=1/2 Herbertsmithite Haydeeite Volborthite Kapellasite Vesignieite Ross H Colman, David Boldrin, Andrew S Wills, UCL, UK 2005 Sciences, perspectives sept 2008 Kagome stats From C. Broholm (2010) FRUSTRATION: unsatisfied pairwise interactions • Disorder : Spin glasses (e.g. CuMn) • No disorder : Geometric Frustration NETWORK GEOMETRY : •Triangular based lattice •AF coupling ? J1 INTERACTIONS GEOMETRY: 2nd n.n. interactions | J2 | / J1=0.5, J1 (AF) J2 ? ? (Carretta; Geibel) µSR @ ISIS, PSI ⊕ NMR Outline - Zn and Mg Herbertsmithite Cu3(Zn,Mg)(OH)6Cl2 - a gapless quantum spin liquid (summary) - the fate of defects - field induced solidification of the QSL - Vesignieite Cu3Ba(VO5H)2 Quantum criticality Dzyaloshinky-Moriya interactions - local susceptibility (NMR) - heterogeneous frozen ground state (µSR+NMR) -Kapellasite Cu3Zn(OH)6Cl2 - competing exchange interactions: Collaborations J1-J2 model on kagome lattice Novel spin liquid? (Herbertsmithite, Vesignieite, Kapellasite) samples Ross H Colman, David Boldrin, Andrew S Wills, UCL, UK P. Strobel, Institut Neel, Grenoble, France A. Harrisson, M. de Vries, Edinburgh, UK F. Duc, Toulouse M.I.T., 2005 Cu Herbertsmithite: ZnCu3(OH)6Cl2 Zn OH Cu2+, S=1/2 Cl µSR : ZnCu3(OH)6Cl2: zero field 1.0 Herbertsmithite Zero Field µSR Polarisation 0.8 0.6 Deuterated 0.4 upper limit of a frozen moment for Cu2+, if any : 6x10-4 µB 0.2 H 0.0 OH-µ : 85% Cl: 15% 50 mK 0 5 10 time ( µ s) P. Mendels et al, PRL 98, 077204 (2007) No order or frozen disorder down to 50 mK despite J=190 K ! Liquid down to J/4000 under ZF Also: ac-χ Helton et al, PRL 98 107204 (2007) µSR O. Ofer et al, cond-mat/0610540 µSR : phase diagram of paratacamites ZnxCu4-x(OH)6Cl2 x = 1.0 0.9 Polarization x =0.5 x = 0.66 0.6 - Paramagnetic (x=1 type) component x = 0.33 - Oscillations smeared out x = 0.15 0.3 x=0 T=1.5K, Zero Field 0.0 0.3 - x=0 : fully ordered below ~18K X.G. Zheng et al, PRL 95, 057201 (2005) 0.6 time (µs) Large dynamical domain 0.66<x<1 -> small influence of interlayer coupling P. Mendels et al, PRL 98, 077204 (2007) Susceptibility: χmuons, D NMR vs 17O NMR (intrinsic, defects) µSR D NMR χ 2 20 ac 10 1 17O 0 0 A. Olariu et al., Phys. Rev. Lett (2008) 100 NMR 200 T (K) 300 0 χSQUID (10-4 cm3/mol Cu) T. Imai, Phys. Rev. B (2011) 17 O lineshift (%) O. Ofer et al., ArXiv (2010) Cu Zn O Cl 10 1 -1 -1 T1 ~ T 0.7+/-0.1 -1 J/20 1 T1 (ms ) 2 17 O lineshift (%) 20 χSQUID (10-4 cm3/mol Cu) Gapless spin liquid 0.1 0 1 10 100 0 0 1 -1 2 -1 T (K ) T (K) Olariu et al, PRL 100, 087202 (2008) See also Imai et al, PRL 100, 077208 (2008) Inelastic Neutron scattering: Helton et al, PRL 98 107204 (2007) χ’’~ω-0.7 Very Low T Spin Dynamics 6.8 T 0.1 M. Jeong et al, Phys. Rev. Lett 107 (2011) -1 1/T1 (ms ) 0.01 1E-3 ? 1E-4 1E-5 0.01 0.1 1 T (K) 10 Very Low T Spin Dynamics: freezing under a field Tc 6.8 T 6.7 T 0.1 M. Jeong et al, Phys. Rev. Lett 107 (2011) -1 1/T1 (ms ) 0.01 1E-3 1E-4 1E-5 0.01 0.1 1 T (K) 10 Small frozen moment ~ 0.1µB A Quantum Critical Point ? Tc ~ (H-Hc)0.65 Hc = 1.5 T ∆ ~ 2.3 kBTc µSR Algebraic critical spin liquid ? • No gap (H = 0) α • Instability ( H≠ 0) M ~ H but Tc ~ H • DM interaction -> L.R.O. Ran et al, PRL 98 117205 (2007) µB Hc ~ J/180 Ideally…. … Nobody is perfect Magnetic defects : Zn/Cu intersite mixing Cu Zn Cu on the Zn site Nearly free ½ spins (~ 15-25 %) Freedman et al, JACS, 132 (2010) defects Zn in the kagome plane -> magnetic vacancy (~ 1 - 7%) ? Cu J’ (AF), F ~ few K J (AF) ~180 K For a review and discussion, see 97° Zn/Cu OH 119° P. Mendels and F. Bert, J. Phys. Soc. Jpn 79 011001 (2010) J. Phys. Conf. Series (2011) Cl Out-of-plane (?) defects (2) Electronic spin signal Dynamical relaxation (T1 process) 2500G 1.0 P = exp(−λt ) Polarisation 0.8 80G 0.6 0.4 0.0 - Hµ ~ 20 G very small ->relaxation involves few Cu2+ (defects?) 10G 0.2 λ = 2γ µ2 H µ2 /ν ZF 50 mK 0 5 10 time (µs) ZnCu3(OH)6Cl2 : x=1 - Weak decrease of the electronic spin fluctuation rate when T->0 - ”Dynamical plateau” vanishes when x 1.0 Frozen fraction 0.8 Dynamic 0.6 0.4 Static 0.2 0.0 P21/n R3m 0.2 0.4 0.6 Zn content 0.8 1.0 1.2 Energy scale ~1K in the defect channel Mg- Herbertsmithite: control of inter-site defects E. Kermarrec, Phys. Rev. B (R) (2011) Dzyaloshinskii-Moriya interactions: quantum criticality For classical spins, DM stabilizes ordered phases (cf jarosites) Disordered M. Elhajal et al, PRB 66, 014422 (2002) In the quantum case, a moment free phase survives up to D/J~0.1 O. Cepas et al, PRB 78, 140405 (R) (2008) Y. Huh et al, PRB 81, 144432 (2010) L. Messio et al, PRB 81 , 064428 (2010) Herbertsmithite Dzyaloshinskii-Moriya interactions: quantum criticality For classical spins, DM stabilizes ordered phases (cf jarosites) Disordered M. Elhajal et al, PRB 66, 014422 (2002) In the quantum case, a moment free phase survives up to D/J~0.1 ESR: A. Zorko et al., PRL 101 (2008) O. Cepas et al, PRB 78, 140405 (R) (2008) Y. Huh et al, PRB 81, 144432 (2010) L. Messio et al, PRB 81 , 064428 (2010) S. El Shawish et al, PRB 81, 224421 (2010) Herbertsmithite Hc ~ Dc - Dherb Outline - Zn and Mg Herbertsmithite Cu3(Zn,Mg)(OH)6Cl2 - a gapless quantum spin liquid (summary) - field induced solidification of the QSL - Vesignieite Cu3Ba(VO5H)2 Quantum criticality Dzyaloshinky-Moriya interactions - local susceptibility (NMR) - heterogeneous frozen ground state (µSR+NMR) -Kapellasite Cu3Zn(OH)6Cl2 - competing exchange interactions Collaborations Ross H Colman, David Boldrin, Andrew S Wills, UCL, UK L. Messio, C. Lhuillier, B. Bernu, Paris, France B. Fak, CENG, Grenoble, France Vesignieite Cu3Ba(VO5H)2 Y. Okamoto et al, JPSJ 78, 33701 (2009) a weakly distorted kagome lattice 0.1 % (Volborthite : 3%) R.C. Colman et al., Phys Rev B, Rapid Com 2011 Coll. UCL London susceptibility V NMR (T>9K) -2 χintJ = (K-σ)J/A (10 K µB / kOe) V @ Cu hexagon 5 4 3 2 Vesignieite (J = 53 K) Herbertsmithite (Olariu2008, J=170 K) Volborthite (Hiroi2001, J=84 K) Theory (Misguich2007, adjusted) 1 0 0 1 2 3 T/J Shift ≡ Herbertsmithite J. Quilliam et al, arXiv:1105.4338 - J ~ 50 K - Curie tail ~ 7% S=1/2 - Kink at T~9K R.C. Colman et al (2011) Vesignieite µSR: two components One static – disordered- one dynamical Not zero slope Dynamical component! Not zero Static component! At least 4 muon sites P(t) = ffPf(t) + (1-ff)Ppara(t) T < 9K decoupling µstat ~ 0.1 µB R.C. Colman et al., Phys Rev B, Rapid Com (2011) Coll. UCL London Vesignieite µSR: two components Frozen fraction Coupled slow dynamics non frozen fraction • No macroscopic phase separation. • Spin dynamics of all Cu2+ suppressed down to spin freezing for 40%. Vesignieite V NMR T<9K Static component below 9 K ~ 0.2 µB J. Quilliam et al, PRB (R), 2011 Vesignieite NMR -> two components Static + dynamic (lost) Seen in NMR Lost in NMR NMR µSR Good agreement Coll. Orsay / UCL London J. Quilliam et al. R.C. Colman et al Dzyaloshinskii-Moriya induced quantum criticality |Dz|=0.08J, |Dp|~0.01J Jvesi ~ Jherb/3; ∆Hvesi ~ ∆Hvolb D/Jvesi ~ 0.1 - 0.17 ESR: ∆H~D2/J A. Zorko et al, PRL 101, 026405 (2008) W. Zhang, H. Ohta et al., JSPJ (2010) Herbertsmithite Vesignieite Conclusions Herbertsmithite Vesignieite • Perfect kagome • Close to perfect kagome • No freezing at H=0 • Partial freezing @ J/6 • Field induced freezing • 0.44 < D/J < 0.08 • D/J > 0.1 QCP Outline - Zn and Mg Herbertsmithite Cu3(Zn,Mg)(OH)6Cl2 - a gapless quantum spin liquid (summary) - field induced solidification of the QSL - Vesignieite Cu3Ba(VO5H)2 Quantum criticality Dzyaloshinky-Moriya interactions - local susceptibility (NMR) - heterogeneous frozen ground state (µSR+NMR) -Kapellasite Cu3Zn(OH)6Cl2 - competing exchange interactions Collaborations Ross H Colman, David Boldrin, Andrew S Wills, UCL, UK L. Messio, C. Lhuillier, B. Bernu, Paris, France B. Fak, CENG, Grenoble, France Quantum Kagome Antiferromagnets ZnCu3(OH)6Cl2 B. Fak, E. Kermarrec et al, PRL, 2012 Kapellasite : a polymorph of Herbertsmithite Cu3Zn(OH)6Cl2 Herbertsmithite Kapellasite 20 µm 119° 105° 35Cl NMR 1.0 NMR lines T=78 K ). .ua ( yit sn et ni R M N 0.8 Cl-1 Cl-2 Cl-3 0.6 Cl-4 0.4 0.2 0.0 -0.0100 -0.0075 -0.0050 -0.0025 0.0000 0.0025 NMR shift Zn Cu 46 % Cl-1 37 % Chemical analysis (ICP) Neutron diffraction Cl-2 15 % Cl-3 2% Cl-4 Cu2.3Zn1.7(OH)6Cl2 (Cu0.73Zn0.27)3 (Zn0.88Cu0.12) (OH)6Cl2 Kagome site pc=0.65 High-Temperature series expansion analysis J1 ferro -15 K ~ further neighbor J2,d 13 K B. Fak, E. Kermarrec et al, PRL, 2012 Interactions scheme L. Messio, et. al, PRB 83, 184401 (2011) Classical ordered states on the Kagome lattice L. Messio, C. Lhuillier, G. Misguich, LPTMC Paris, CEA 8 Classical long-range ordered states allowed by symmetries Non coplanar state • 12 sublattice spins order : « cuboc2 » • Neutrons experiment shows correlations reminiscent of this peculiar state L. Messio, et. al, PRB 83, 184401 (2011) µSR -no freezing (no decoupling) -Persistent slow fluctuations Neutron scattering (B. Fak, ILL) Cuboc-2 correlations survive up to 100 K (also specific heat) µSR vs NMR Conclusions Experimentally: two quantum spin liquids on the kagome lattice: Heisenberg + anisotropy and J1-J2 Fragility of the QSL: • Defects: no • Anisotropy, field: yes Is the gapless behavior intrinsic or not? Can we achieve a better understanding of the relaxation plateaus? Other materials: S=1/2 Vanadates Thank you to ISIS team!
Similar documents
Honeycomb Iridates
Ground state is quantum spin liquid with Majorana fermions and gauge visons Spin component coupling x,y,z depends on bond Inherently spin-orbit coupled Kitaev, Ann.Phys. 321, 2 (2006)
More information