JTWC Report PDF - Weather Underground
Transcription
JTWC Report PDF - Weather Underground
$, ::; . . a “ .. ,. ,. ‘ # %. . P MCHA OF ‘o PE T-SK . . _ ‘; Am , B P A .-. . -... ... -. - R ,pl ... / 0 W* tit @?w~”J-@.# , ‘8-, ” ,, T=., . ~,J~ACIFIC lSLA @lIl~iRiiihm Indian Ocean Area (Malay Pacific Area Peninsula to Africa) AREA OF RESPONSIBILITY - JOINT TYPHOON (Dateline WARNING to Malay CENTER, GUAM Peninsula) U. S. NAVAL JOINT OCEANOGRAPHY COMMAND CENTER TYPHOON WARNING CENTER COMNAVMARIANASBOX 17 FPO SAN FRANCISCO96630 THOBIAS R. MUR.RAY *DEAN R. MORFORD Captains, U,nited States Navy COMMANDING JOHN W. DIERCKS *JAMES K. LAVIN Lieutenant Colonels, United States Air Force DIRECTOR, JOINT TYPHOON WARNING CENTER STAFF’ LCDR James H. Bell, USN *LCDR Carl B. Ihli, Jr., USN CAPT Clifford R. Matsumoto, USAF *LT Olaf M. Lubeck, USNR CAPT John D. Shewchuk, USAF CAPT Gerald A. Guay, USAF LTJG George M. Dunnavan, USN LTJG Jack E. Huntley, USNR *LTJG William T. Curry, USN AG1 Donald L. McGowan, USN *TSGT Bobby L. Setliff, USAF SSGT Charles J. Lee, USAF SSGT William H. Taylor, USAF AG2 Kenneth A. Kellogg, USN SGT Konrad W. Crowdez, USAF AG3 Victoria J. Macke, USN AG3 Stephani A. Bubanich, USN AG3 Winifred A. Few, USN AG3 Carl A. Gantz, USN SRA John W. Archambeau, USAF *SRA Timothy J. Sowell, USAF *AGAN Kathleen S. Minerich, USN *AGAN Gregory M. Hardyman, USN AGAN Sally E. Stege, USN *AGAN Thomas E. Stockner, USN CONTRIBUTOR: Det 1, lWW - USAF *MAJ John L. Thoma CAPT David C. Danielson CAPT John E. Oleyar *CAPT Michael L. D‘Spain *CAPT Mike W. Kowa CAPT James P. Millard CAPT Marsha A. Korose *Transferred during 1979 -. -- .- - 4. Conduct an annual postanalysis of all tromical cyclones occurring with~n the JTWC are> of responsibility and prepare an Annual Typhoon Report for issuance to interested agencies. The Annual Typhoon Report is prepared by the staff of the Joint Typhoon Warning Center (JTWC), JTWC is a combined USAF/USN entity operating under the command of the U. S. Naval Oceanography Command Center, Guam . The senior Air Force Officer assigned is designated as Director, JTWC and is responsible to the Commanding Officer, U. S. Naval Oceanography Command Center, Guam for the operation of the JTWC. The senior Naval Officer of the JTWC is designated as the Deputy Director/Operations Officer. The JTWC was established by CINCPACFLT message 2802082 April 1959 when directed by CINCPAC message 2302332 April 1959. Its operation is guided by the CINCPACINST 3140.1 (series). 5. Conduct tropical cyclone forecasting and detection research as practicable. In the event of incapacitation of the JTWC, the alternate (AJTWC) assumes the responsibility for issuing warnings. The U. S. Naval Western Oceanography Center, Pearl Harbort Hawaii is designated as the AJTWC . Assistance in determining tropical cyclone reconnaissance requirements and in obtaining reconnaissance data is provided by Detachment 4, 1st Weather Wingr Hickam AFB, Hawaii. The Naval Oceanography Command Center/ Joint Typhoon Warning Center, Guam has the responsibility to: The meteorological services of the United States are planning to implement the metric system of measurement over the next few years. Some civilian and military agencies have started the education program by showing the metric equivalents to current units of measure. This Annual Typhoon Report includes metric equivalents to most measures. 1. Provide continuous meteorological watch of all tropical activity north of the equator, west of the Date Line, and east of the African coast (JTWC area of responsibility) for potential tropical cyclone development. 2. Provide warnings for all significant tropical cyclones in the assigned area of responsibility. Unless otherwise stated, all satellite data used in this ATR are Air Force Air Weather Service DMSP Data as acquired by OL-C, 27cS personnel and analyzed by Det 1, lWW personnel colocated with the JTWC at Nimitz Hill, Guam. 3. Determine tropical cyclone reconnaissance requirements and assign priorities. ... 111 TABLE OF CONTENTS CHAPTER I page OPERATIONAL PROCEDURX.S 1. General---------------------------------------------l 2. Data sources----------------------------------------l 3. Comunications--------------------------------------l 4. Malyses--------------------------------------------l 5. Forecast Aids---------------------------------------2 6. Forecasting Procedures------------------------------2 7. Warnings--------------------------------------------3 Prognostic Reasoning Message------------------------3 :: Significant Tropical Weather Advisory---------------3 10. Tropical Cyclone Formation Alert--------------------3 CHAPTER II RECONNAISSANCE AND FIXES 1. *neral---------------------------------------------4 2. Reconnaissance Availability-------------------------4 3. Aircraft Reconnaissance Summary---------------------4 4. Satellite Reconnaissance Summary--------------------5 5. Radar Reconnaissance Summary------------------------6 6. Tropical Cyclone Fix Data---------------------------6 CHAPTER III SUMMARY OF TROPICAL CYCLONES 1. Western North Pacific Tropical Cvclones------------lO TROPICAL CYCLONE TY ALICE TY BESS TY CECIL TS DOT TD 05 TY ELLIS TS FAYE TD 08 ‘ST HOPE TS GORDON TD 11 TY IRVING ST JUDY TD 14 INDIVIDUAL TROPICAL CYCLONES TROPICAL AUTHOR CYCLONE l?$2$lS SHEWCHUK----------16 GUAY--------------18 LUBECK------------22 SHEWCHUK----------24 GUAY--------------26 DUNNAVAN----------28 DUNNAVAN----------3O MATSUMOTO---------34 CURRY-------------36 SHEWCHUK----------4O LUBECK------------42 GUAY--------------44 DUNNAVAN----------48 MATSUMOTO---------52 2. TC TC TC TC 17-79 18-79 22-79 23-79 TS TY TY TS TY TS TS TY ST ST TS TD TY TS KEN LOLA WAC NANCY OWEN PAMELA ROGER SARAH TIP VERA WAYNE 26 ABBY BEN AUTHOR e SHEWCHUK----------53 LUBECK------------54 GUAY--------------56 DUNNAVAN----------58 LUBECK------------6O GuAY--------------64 MATSUMOTO---------66 HUNTLEY-----------68 DUNNAVAN----------72 MATSUMOTO---------78 LUBECK------------8O GUAY--------------82 HUNTLEY-----------84 SHEWCHUK----------88 North Indian Ocean Tropical CyC10neS---------------90 “cuF.RY-------------92 LUBECK------------94 MATSUMOTO---------96 SHEWCHUK----------96 TC 24-79 TC 25-79 TC 26-79 SHEWCHUK----------97 HUNTLEY-----------97 SHEWCHUK----------98 CHAPTER IV SUMMARY OF FORECAST VERIFICATION 1. Annual Forecast Verification----------------------loo 2. Comparison of Objective Techniques----------------lO5 CHAPTER V APPLIED 1’ROPICALCYCLONE RESEARCH SUNMARY 1. JTWC Research-------------------------------------108 Establishment of the JTWC Tropical Cyclone Data Base NEDS/Computer Applications Tropical Cyclone Minimum Sea-Level PressureMaximum Sustained Wind Relationship Objective Tropical Cyclone Initial Positioning with a Weighted Least Squares Algorithm Equivalent Potential Temperature/Minimum SeaLevel Pressure Relationships for Forecasting Tropical Cyclone Intensification Basic Streamline Analysis and Tropical Cyclone Forecasting Technique Guide Improvement and Extension of the JTWC Climatology iv 2. page NEPF@ Research------------------------------------log Tropical Cyclone Modeling Tropical Cyclone Wind Distribution Tropical Cyclone Strike Probabilities A Statistically Derived Prediction Procedures for Tropical Cyclone Genesis Extreme Sea States within a Typhoon Tropical Cyclone Origin, Movement and Intensity Characteristics Based on Data Compositing Techniques Improved Upper-Level Tropical Cyclone Steering Techniques Airborne Expendable Bathythermograph Observations Immediately Before and After Passage of Typhoon Phyllis (Aug 75) Mesoscale Effects of Topography on Tropical Cyclone Associated Surface Winds Typhoon Haven Studies ANNEX A TROPICAL CYCLONE TRACK DATA 1. Western North Pacific Cyclone Track Data----------ll2 2. North Indian Ocean Cyclone Track Data-------------l3l ANNEX B TROPICAL CYCLONE FIX DATA 1. Western North Pacific Cyclone Fix Data------------l35 2. North Indian Ocean Cyclone Fix Data---------------l85 APPENDIX 1. 2. 3. DISTRIBUTION ------------------------------------------------------191 Contractions--------------------------------------l88 Definitions---------------------------------------189 References----------------------------------------l9O v CHAPTER I - OPERATIONAL 1. GENERAL d. Meteorological satellite data from the Defense Meteorological Satellite Program (DMSP) and the National Oceanic and Atmospheric Administration played a major role in the early detection and tracking of tropical cyclones in 1979. A discussion of this role is presented in Chapter II. Routine services provided by the Joint Typhoon Warning Center (JTWC) include the following: (1) Significant Tropical Weather Advisories issued daily describing all tropical disturbances and their potential for further development; (2) Tropical Cyclone Formation Alerts issued whenever interpretation of satellite and synoptic data indicates likely formation of a significant tropical cyclone: (3) Tropical Cyclone Warnings issued four times daily for significant tropical cyclones; and (4) Prognostic Reasoning messages issued twice daily for tropical storms and typhoons in the Pacific area. e. 3.COMMUNICATIONS a. JTWC currently has access to three primary communications circuits: (1) The Automated Digital Network (AUTODIN) is used for dissemination of warnings and other related bulletins to Department of Defense installations. These messages are relayed for further transmission over U. S. Navy Fleet Broadcastsr U. S. Coast Guard CW (continuous wave morse code) and voice communications. Inbound message traffic for JTWC is received via AUTODIN addressed to NAVOCEANCOMCEN GUAM. 2. DATA SOURCES COMPUTER PRODUCTS: The Naval Oceanography Command Center (NAVOCEANCOMCEN) Guam provides computerized meteorological/oceanographic products for JTWC. In addition, the standard array of synoptic-scale computer analyses and prognostic charts are available from the Fleet Numerical Oceanography Center (FLENUMOCEANCEN) at Monterey, California. With the installation of the Naval Environmental Display Stations (NEDS) during 1978, JTWC now has very timely access to necessary FLSNUMOCEANCEN products and is thereby able to more efficiently and effectively use this information. b. (2) The Air Force Automated Weather Network (AWN) provides weather data to JTWC through a dedicated circuit from the automated digital weather switch (ADWS) at Clark AE, R.P. The ADWS selects and routes the large volume of meteorological reports necessary to satisfy JTWC requirements for the right data at the right time. Weather bulletins prepared by JTWC are inserted into the AWN circuit by the Nimitz Hill Naval Telecommunications Center (NTCC) of the Naval Communications Area Master Station Western Pacific. CONVENTIONAL DATA: Conventional meteorological data are defined as surface and upper-air observations from island, ship and land stations plus weather observations from commercial and military aircraft (AIREPS). Conventional data charts are prepared daily at OOOOZ and 12002 for the surface, 700 mb, and 500 mb leve1s. A chart of upper-air data is prepared which utilizes 200 mb rawinsonde data and AIRRPS above 29,000 ft within 6 hours of the 00002 and 1200Z synoptic times. c. RADAR RECONNAISSANCE: During 1979, as in recent years, land radar coverage was utilized extensively when available. Once a storm moved within the range of a land radar site, reports were usually received hourly. Use of radar during 1979 is discussed in Chapter II. JTWC responds to changing requirements of activities serviced. Therefore, contents of routine services are subject to change from year to year usually as a result of deliberations at the Tropical Cyclone Conference. a. SATELLITE RECONNAISSANCE: (3) The Naval Environmental Data Network (NEDN) provides the communications link with the computers at FLENUMOCEANCEN. JTWC is able to both receive environmental data from FLENUMOCEANCEN and access the computers directly to run various programs. b. Besides providing forecasters with the ability to rapidly access computer products, the NEDS has recently become the backbone of the JTWC communications system. AUTODIN and AWN message tapes can now be prepared by JTWC personnel for insertion into the AUTODIN and AWN circuits by the ?JTCC. The NEDS is also used by the TDO to request forecast aids which are processed by the computers at Monterey and transmitted back to the TDO over the NEDN circuit. AIRCRAFT RJ3CONNAISSANCE: Aircraft weather reconnaissance data are invaluable in the positioning of centers of developing systems and essential for the accurate determination of the eye/center, maximum intensity, minimum sea-level pressure and radius of significant winds exhibited by tropical cyclones. Winds and pressure-height data at the 500 and/or 400 mb level, provided by reconnaissance aircraft while enroute to, or returning from, fix missions, are also used to supplement the sparse data in the tropics and subtropics. These data are plotted on large-scale sectional charts for each mission flown. A comprehensive discussion of aircraft weather reconnaissance is presented in Chapter II. 4. ANALYSES A composite surface/gradient level (3000 ft) manual analysis is accomplished on the 0000Z and 1200z conventional data. Analysis of the wind field using streamlines is stressed for tropical and subtropical 1 regions. Analysis of the pressure field is stressed for higher latitudes and in the vicinity’of tropical cyclones. 6. FORECASTING Manual analysis of the 500 mb level is accomplished on the 0000Z and 1200Z data. Although the analysis of the 500 mb height field is stressed, knowledge of the wind field to more clearly delineate steering currents is equally important. In the preparation of each warning, the actual surface location (fix) of the tropical cyclone eye/center just prior to (within three hours of) warning time is of prime importance. JTWC uses the Selective Reconnaissance Program (SAP) to levy an optimum mix of aircraft, satellite and radar resources to obtain fix information. When tropical cyclones are either poorly defined or the actual surface location cannot be determined, or when conflicting fix information is received, the “best estimate” of the surface location is subjectively determined from the analysis of all available data. If fix data are not available due to reconnaissance platform malfunctions or communication problems, synoptic data or extrapolation from previous fixes are used. The initial forecast (warning time) position is then obtained by extrapolation using the current fix and a “best track” of the cyclone movement to date. a. A composite upper-tropospheric manual analysis, utilizing rawinsonde data from 300 mb through 100 mb, wind directions extracted from $atellite data by Det 1, lWW and AIREPS (plus or minus 6 hours) at or above 29,000 feet is accomplished on 0000Z and 1200Z data daily. Wind and height data are used to arrive at a representative analysis of tropical cyclone outflow patterns, of steering currents and of areas that may indicate tropical cyclone intensity change. All charts are hand plotted over areas of tropical cyclone activity to provide all available data as soon as possible to the TDO. These charts are augmented by the computer-plotted charts for the final analyses. b. a. TRACK FORECASTING: (1) The prospects for regurvature are evaluated. This evaluation is based primarily on present and forecast position and amplitude of middle tropospheric midlatitude troughs from the latest 500 mb analysis and numerical prognoses. AIDS CLIMATOLOGY : Climatological publications utilized during the 1979 typhoon season include previous JTWC Annual Typhoon Reports and climatic publications from local sources, Naval Environmental Prediction Research Facility, Naval Postgraduate School, Air Weather Service, First Weather Wing and Chanute Technical Training Center. Publications from other Air Force and Navy activities, various universities and foreign countries are also used by the JTWC. b. INITIALIZATION: M initial forecast track is developed based on the previous forecast and the objective techniques. This initial track is subjectively modified based on the following: Additional sectional charts at intermediate synoptic times and auxiliary charts such as checkerboard diagrams and pressure: change charts are also analyzed during periods of significant tropical cyclone activity. 5. FORECAST PROCEDURES (2) Determination of steering level is partly influenced by maturity and vertical extent of the system. For mature cyclones located south of the 500 mb subtropical ridge, forecast changes in speed of movement are closely correlated with forecast changes in the intensity of the ridge. When steering currents are very weak, the tendency for cyclones to move northward due to their internal forces is an important consideration. OBJECTIVE TECHNIQUES: The following objective techniques were employed in tropical cyclone forecasting during 1979. A description of these techniques is presented in Chapter IV. (3) The proximity of the tropical cyclone to other tropical cyclones is evaluated to determine if there is a possibility of Fujiwhara interaction. (1) TYFN75 (Analog) (4) Over the 12- to 72-hr forecast spectrum, speed of movement during the early time frame is biased toward persistence (12-hr extrapolation) while that near the end of the time frame is biased towards objective techniques and climatology. (2) MOHATT (Steering) (3) 12 HR EXTRAPOLATION (4) CLIMATOLOGY (5) A final check is made against climatology to determine the likelihood of the forecast track. If the forecast deviates greatly from climatology, the forecast rationale is reappraised and the track adjusted as necessary. (5) HPAC (Combined extrapolation and climatology) (6) TROPICAL CYCLONE MODEL (Dynamic) (7) INJAH74 (Analog) (8) CYCLOPS (Steering) (9) TYAN78 (Analog) 2 -.. ... -. c. INTENSITY FORECASTING: analysis “best track” positions. A summary of the verification results for 1979 is presented in Chapter Iv. In forecasting intensity, heavy reliance is placed on aircraft reconnaissance reports, the Dvorak satellite interpretation model, wind and pressure data from ships and land stations in the vicinity of the cyclone, and the objective techniques. Additional considerations are the position and intensity of the tropical upper-tropospheric trough (TUTT), extent and intensitY of upper-level outflow, sea-surface temperature, terrain influences, speed of movement and proximity to an extratropical environment. 8. PROGNOSTIC REASONING MESSAGE In the Pacific Area, prognostic reasoning messages are transmitted based on the 00002 and 12002 warnings or whenever the previous reasoning is no longer valid. This plain language message is intended to provide users with the reasoning behind the latest JTWC forecast. Prognostic reasoning messages are not prepared for tropical depressions nor for cyclones in the Indian Ocean area. 7. WARNINGS For the 1979 season, JTWC included confidence statements for the 24 and 48-hour forecasts. The confidence values were percentage probabilities that the 24-hour forecast position error would be less than 100 nm and less than 150 nm, respectively, and that the 48-hour error would be less than 200 nm and less than 300 nm, respectively. These probabilities were based on objective data from error analysis studies of past cyclones and were a function of latitude, longitude, storm intensity, organization and the number of western Pacific storms in existence. Tropical cyclone warnings are issued when a definite closed circulation is evident and maximum sustained wind speeds are forecast to increase to 34 or more knots within 48 hours, or the cyclone is in such a position that life or property may be endangered within 72 hours. Warnings are also issued in other situations if it is determined that there is a need to alert military and civil interests to conditions which may become hazardous in a short period of time. Each tropical cyclone warning is numbered sequentially and includes the initial warning time, eye/center position, intensity, the radial extent of 30, 50 and 100 knot surface winds (when applicable), the levied reconnaissance platform used, the instantaneous speed and direction of movement of the cyclone’s surface center at warning time and the forecast information. The forecast intervals for all tropical cyclones, regardless of intensity, are 12-, 24-, 48- and 72-hr. Warnings within the JTWC Pacific area are issued within two hours of 00002, 06002, 12002 and 18002 with the constraint that two consecutive warnings may not be more than seven hours apart. Warnings in the JTWC Indian Ocean area are issued within two hours of 02002, 08002, 14002 and 20002 with the constraint that two consecutive warnings may not be more than seven hours apart. These variable warning times allow for maximum use of all available reconnaissance platforms and more effectively distribute the workload in multiple cyclone situations. If warnings are discontinued and a cyclone reintensifies, warnings are numbered consecutively from the last warning issued. Warning forecast positions are verified against the corresponding post- Prognostic reasoning information applicable to all customers is provided in the remarks section of warnings when significant forecast changes are made or when deemed appropriate by the TDO. 9.SIGNIFICANT TROPICAL WEATHER ADVISORY This plain language message, summarizing significant weather in the entire JTWC area of responsibility, is issued by 06002 daily. It contains a detailed, non-technical description of all significant tropical disturbances and the JTWC evaluation of potential for significant tropical cyclone development within the 24-hour forecast period. 10. TROPICAL CYCLONE FORMATION ALERT Alerts are issued whenever interpretation of satellite and other meteorological data indicates significant tropical cyclone formation is likely. These alerts will specify a valid period not to exceed 24 hours and must either be cancelled, reissued or superseded 6Y a warning prior to expiration of the valid period. 3 RECONNAISSANCE 1. GENERAL (ARWO) and dropsonde operators of Detachment 4, IiqAWS who flew with the 54th. These data provide @e Typhoon Duty Officer (TDO) indications of changing cyclone characteristics, radius of cyclone associated winds, and present cyclone position and intensity. Another important aspect of this data is its availability for research in tropical cyclone analysis and forecasting. Aircraft reconnaissance will become even more important in years to come when high-resolution tropical cyclone dynamic steering programs will require a dense input of wind and temperature data. The Joint Typhoon Warning Center depends on reconnaissance to provide necessary, accurate and timely meteorological information in support of each warning. JTWC relies primarily on three sources of reconnaissance: aircraft, satellite and radar. Optimum utilization of all available reconnaissance resources is obtained through use of the Selective Reconnaissance Program (SRP) whereby various factors are considered in selecting a specific reconnaissance platform for each warning. These factors include: cyclone location and intensity, reconnaissance platform capabilities and limitations, and the cyclone’s threat to life/property afloat and ashore. A summary of reconnaissance fixes received during 1979 is included in Section 6. 2. RECONNAISSANCE a. AND FIXES b. Satellite Satellite fixes from USAF ground sites and USN ships provide day and night coverage in the JTWC area of responsibility. Interpretation of this satellite imagery provides cyclone positions and estimates of storm intensities through the Dvorak technique (for daytime passes) . AVAILABILITY Aircraft: Detachment 1, 1st Weather Wing, which receives and processes DMSP data, is the primary fix site for the northwestern Pacific. DMSP fix positions received at JTWC from the Air Force Global Weather Central (AFGWC), Offutt Air Force Base, Nebraska were the major source of satellite data for the Indian Ocean. GOES fixes were also provided by the National Environmental Satellite Service, Honolulu, Hawaii for tropical cyclones near the dateline. Aircraft weather reconnaissance is performed in the JTWC area of responsibility by the 54th Weather Reconnaissance Squadron (54 WRs). The squadron, presently equipped with six WC-130 aircraft, is located at Andersen Air Force Base, Guam. From July through October, augmentation by the 53rd WRS at Keesler Air Force Base, Mississippi brings the total number of available aircraft to nine. The JTWC reconnaissance requirements are provided daily throughout the year to the Tropical Cyclone Aircraft Reconnaissance Coordinator (TCARC). These requirements include area(s) to be investigated, tropical cyclone(s) to be fixed, fix times and forecast positions of fixes. The following priorities are utilized in acquiring meteorological data from aircraft, satellite and land-based radar in accordance with CINCPACINST 3140.lN: c. Radar Land radar provides positioning data on well developed cyclones when in proximity (usually within 175 nm of the radar site) of the Republic of the Philippines, Taiwan, Hong Kong, Japan, the Republic of Korea, Kwajalein, and Guam. d. “(l) Investigative flights and vortex or center fixes for each scheduled warning in the Pacific area of responsibility. One aircraft fix per day of each cyclone of tropical storm or typhoon intensity is desirable. Synoptic In 1979, the JTWC also determined tropical cyclone positions based on the analysis of the surface/gradient level synoptic data. These positions were helpful in situations where the vertical structure of the tropical cyclone was weak or accurate surface positions from aircraft were not available due to flight restrictions. (2) Center or vortex fixes for each scheduled warning of tropical cyclones in the Indian Ocean Area of responsibility. (3) Supplementary fixes. 3. (4) Synoptic data acquisition.” During the 1979 tropical season, the JTWC levied 289 six-hourly vortex fixes and 52 investigative missions. In addition to the levied vortex fixes, 150 supplemental fixes were also obtained. The number of levied investigative missions has increased steadily over the past four years in response to JTWC’S increased efforts to detect initial tropical cyclone development. As in previous years, aircraft reconnaissance provided direct measurements of height, temperature, flight-level winds, sea level pressure, estimated surface winds (when observable) and numerous additional Parameters. The meteorologiekl data are gathered by the Aerial Reconnaissance Weather Officers AIRCRAFT RECONNAISSANCE sUMMARY 4 . the spacecraft and laker downlinked to AFGwC via command/readout sites and communications satellites. With their coverage, AFGWC is able to fix a storm anywhere within the JTWC area of responsibility. As the only site in the network that receives coverage over the entire Indian Ocean, AFGWC has the primary responsibility for satellite reconnaissance in this area as well as a small portion of the central Pacific near the dateline. On occasion, AFGWC is tasked to provide storm positions in the western Pacific as backup to the tactical sites. Of 1979’s 2a tropical cyclones, investigative missions were not flown on four. The average vector error for all aircraft fixes received at the JTWC during 1979 was 13.0 nm (~4#1 ~). Reconnaissance effectiveness is summarized in Table 2-1 usinq the criteria as set forth in CINCPACINST 311O.1N. rABLE 2-1. AIRCRAFT RECONNAISSANCE EFFECTIVENESS EFFECTIVENESS NUMBER OF LEVIED FIXES PERCENT 258 2 89.3 D.7 :OMPLETED ON TIME ZARLY -ATE USSED 1: -&f 100.0 m TOTAL The thread that ties the network together is Det 1, lWW colocated with JTWC atop Nimitz Hill, Guam. Based on available satellite coverage, Det 1 coordinates satellite reconnaissance requirements with JTWC and tasks the individual DMSP sites to provide the necessary storm fixes. The tasking concept is to fix every storm or tropical disturbance (alert area) once from each satellite pass over the area of the storm. When a satellite position is required as the basis for a warning (levy), a dualsite tasking concept is applied. Under this concept, two sites are tasked to fix the storm off the same satellite pass. This provides the necessary redundancy to virtually guarantee JTWC a successful satellite fix of the storm. Using the dual-site tasking concept, the satellite reconnaissance network was able to meet 98 percent of JTWC’S satellite fix requirements. Dual-site tasking is not available over the Indian Ocean since only AFGWC receives the satellite coverage for most of that area. LEVIED VS. MISSED FIXES LEVIED !VERAGE 1965-1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 4. SATELLITE 507 802 624 227 358 217 317 203 290 289 RECONNAISSANCE MISSED PERCENT 10 2.0 1:: 2::; :; 1; ii 3.2 3.5 ; 14 H 4.8 The network provides JTWC with several products and services. The main service ,is one of surveillance. With the exception of Osan, each site reviews its daily coverage for any indications of development. If en area shows indications of development, JTWC is notified. Once JTWC issues either an alert or warning, the network is tasked to provide three products: storm positions, storm intensity estimates, and 24-hour storm intensity forecasts. Satellite storm positions are assigned position code numbers (PCN) depending on the availability of geography for precise gridding and the degree of organization of the storm’s circulation center (Table 2-2). During 1979, the network provided JTWC with 1970 satellite fixes of tropical cyclones in warning status. A comparison of those fixes made on numbered tropical cyclones with their corresponding JTWC best track positions is shown in Table SUMMARY The Air Force provides satellite reconnaissance support to JTWC using imagery data from DMSP polar orbiting spacecraft. Data from similar NOAA spacecraft (TIROS-N/NOAA-6) were not available to the tactical sites of the network but could be processed on a backup basis by the Air Force Global Weather Central (AFGWC). The DMSP network consists of both tactical and centralized facilities. Tactical DMSP sites are located at Nimitz Hill, Guam; Clark AB, Philippines; Kadena AB, Japan; Osan AB, Korea; and Hickam AFB, Hawaii. These sites provide a combined coverage that blankets the JTWC area of responsibility in the western Pacific from near the dateline westward to the Malay Peninsula. TABLE 2-2. PCN — The centralized member of the DMSP network is the Air Force Global Weather Central located at Offutt AFB, Nebraska. AFGWC receives worldwide satellite imagery coverage four times daily from two DMSP spacecraft. In addition, AFGWC has the capability to process either TIROS-N or NOAA-6 should one of the primary DMSP spacecraft fail. Imagery taken over the JTWC area of responsibility is recorded on board 1 2 3 4 5 6 POSITION CODE NUMBERS METHOD OF CENTER DETERMINATION/GRIDDING EYE/GEOGRAPHY EYE/EPHEMERIS WELL DEFINED CC/GEOGRAPHY WELL DEFINED CC/EPHENERIS POORLY DEFINED CC/GEOGRAPHY POORLY DEFINED CC/EPHEMERIS CC=Circulation Center 5 TABLE 2-3. MEAN DEVIATIONS (NN) OF DNSP DERIVED TROPICAL CYCLONE POSITIONS FROM JTWC BEST T~CK POSITIONS. NUMBER OF CASES SHOWN IN PARENTHESIS. PCN WESTPAC 1974-1978 AVERAGE (ALL SITES) WESTPAC 1979 (ALL SITES) : 3 4 5 6 13.3 18.5 21.2 25.6 37.1 47.2 (178) ( 68) (270) (101) (368) (190) 14.4 17.9 18.6 20.5 37.8 43.3 l&2 3&4 5&6 14.8 22.0 40.6 (246) (371) (558) 15.0 (329) 18.9 (411) 39.4 (837) 13.5 23.1 23.4 18.0 34.1 42.2 ( 7) ( 7) (16) ( 8) (22) (66) 18.3 (14) 21.6 (24) 40.2 (88) Of the 16 tropical cyclones which were monitored with land radar, 11 were typhoons: Alice, Cecil, Ellis, Hope, Irving, Judy, Mac, Owen, Sarah, Tip and Vera. These 11 typhoons accounted for 89% of all radar fixes received for this season. Excellent support through timely and accurate radar fix positioning allowed JTWC to track and forecast tropical cyclone movement through even the most difficult and erratic tracks. The availability of satellite data varied during the year. At the start, the network had access to three DMSP spacecraft: F-1 (late-morning), F-2 (mid-morning), and F-3 (sunrise). In June, a fourth DNSP spacecraft, F-4, was launched into a late morning orbit. The network had access to these four spacecraft until mid-September when F-1 failed. Three months later, in early December, F-3 failed reducing the active DMSP fleet to only two spacecraft with similar mid- to late-morning coverages. The network was able to partially compensate for this loss by depending on AFGWC to provide fixes for the entire network based on its unique ability to process TIROS-N as a replacement for F-3. Therefore, the 1979 season ended with available satellite coverage at its lowest point for the entire year. The 54 WRS made four radar center fixes from their WC-130 aircraft when actual penetration was restricted. One ship radar center fix was received on Typhoon Bess. No radar fixes were received on Indian Ocean tropical cyclones. 6. TROPICAL CYCLONE FIX DATA A total of 3318 fixes on 28 northwest Pacific tropical cylones and 166 fixes on 7 northern Indian Ocean tropical cyclones were received at JTWC. Table 2-4, Fix Platform Summary, delineates the number of fixes per platform for each individual tropical cyclone. Season totals and percentages are also indicated. Besides the network provided fixes, JTWC also receives satellite-derived storm positions from several secondary sources. These include: U.S. Navy ships equipped for satellite direct readout; the National Environmental Satellite Service using NOAA and GOES data; and the Naval Polar Oceanography Center, Suitland, Maryland using stored DUSP and NOAA data. Fixes from these secondary sources are not included in the network statistics. RADAR RECONNAISSANCE (268) ( 61) (341) ( 70) (605) (232) This year, 1139 radar fixes were coded in this manner; 25% were good, 29% fair and 46% poor. Compared to the JTWC best track, the mean vector deviation for land radar sites was 15 nm (28 km). 2-3. Estimates of the storm’s current and 24-hour forecast intensity are made once each day by applying the Dvorak technique (NOAA Technical Memorandum NESS 45 as revised) to daylight visual data. Satellite derived storm positions, intensity estimates, and forecasts constitute the satellite portion of the JTWC forecast data base. 5. INDIAN OCEAN 1979 (ALL SITES) Annex B lists individual fixes sequentially for each tropical cyclone. Fix data is divided into four categories: Satellite, Aircraft, Radar and Synoptic. Those fixes labeled with an asterisk (*) were determined to be unrepresentative of the surface center and were not used in determining the best tracks. Within each category, the first three columns are as follows: SUMMARY Sixteen of the 28 significant tropical cyclones occurring over the western North Pacific during 1979 passed within range of land based radars with sufficient cloud pattern organization to be fixed. The hourly and oftentimes, half-hourly land radar fixes that were obtained and transmitted to JTWC totaled 1143. FIX NO. - Sequential fix number TIME minutes (Z) - GMT time in day, hours and FIX POSITION - Latitude and longitude to the nearest tenth of a degree The WMO radar code defines three categories of accuracy: good (within 10 km (5.4 rim)),fair (within 10-30 km (5.4-16.2 rim))and poor (within 30-50 km (16.2-27 run)), Depending upon the category, the remainder of the format varies as follows: 6 . . TABLE 2-4. FIX SUMMARY FOR 1979 FIX SUVMARY —AIRCRAFT DMSP —_ TIROS-N GOES3 ._ RADAR SYNOPTIC TOTAL _ WESTERN PACIFIC 43 TY ALICE 5 42 170 1* TY BESS :; TY CECIL ;; 51 87 1:; TS DOT 7 i 93 ;: TD 05 :: 2 33 TY ELLIS 1; 14 66 7 99 14 TS FAYE 48 67 29 ? TO 08 2; ST HOPE 4i 1 1:: 25 ;: 8 TS GORtX)N 73 ; 41 TD 11 2: 148** 1; 297 TY IRVING 26 140 177 i 345 ST JUDY 3 2 23 28 TD 14 5 41 73 TS KEN 119 63 80 TY LOLA 5;** : 86 ;: TY MAC 155 33 15 TS NANCY 3; 312 8 4:; TY OWEN 87 14 TS PAMELA 9 : TS ROGER ii i 13 13 4 1:: TY SARAH 59 ST TIP 109 267 99 60,H ST VERA 14 54 ; 137 11 TS WAYNE 44 1 56 2 TD 26 40 TY ABBY :; ; ; 11: 4 2 ; TS BEN 20 33”” ---------------------- ---.--------------- ----------------------------------------------------------------------TOTAL 437 % OF TOTAL NO. OF FIXES 1643 13.1 49.5 DMSP —— 5 9 .3 1146 .2 34.6 78 2.3 SYNOPTIC — TIROS-N 3318 100 TOTAL — INDIAN OCEAN 33 28 5 TC 17-79 25 i 4 TC 18-79 16 12 TC 22-79 2 8 2 37 TC 23-79 6 1 3 22 TC 24-79 ;: TC 25-79 TC .26-79 ;: ;: --------------------------------------------- -----------------------------------------------------------------TOTAL 138 20 8 166 83 13 4 100 % OF TOTAL NO. OF FIXES * ** *** SHIP RADAR FIX INCLUDES TWO ACFT RAOAR FIXES INCLUDES ONE ACFT RADAR FIX 7 .. . . a. [2) 700 MB HGT - Minimum heiqht of the 700 mb pressure surface within th~ vor$ex recorded in meters. Satellite [1) ACCRY - Position Code Number (PCN) (see Sec. 5) or Confidence (CONF) number (see table 2-5) is listed depending on method used to determine the fix position. ;ABLE 2-5. (3) OBS MSLP - If the surface center can be visually detected (e.g., in the eye), the minimum sea level pressure is obtained by a dropsonde released above the surface vortex center. If the fix is made at the 1500-foot level, the sea level pressure is extrapolated from that level. confidence (CONF) NuM6ERs AS A FUNCTION OF DVORAKT NUMBER AND RADIUS OF 90% PROBABILITY AREA (NM). rROPICAL CYCLONE INTENSITY !QmQ!m&l 60 60 60 50 T1.5 T2. O T2.5 T3.O T3.5 T4.O T4.5 T5.O T5.5 T6.O T6.5 T7.O T7.5 T8.O 22 45 40 40 :: 30 (4) MAX-SFC-WND - The maximum Surface wind (knots) is an estimate made by the ARWO based on sea state. This observation is limited to the region of the flight path, and may not be representative of the entire cyclone. Availability of data is also dependent upon the absence of undercast conditions and the presence of adequate illumination. The positions of the maximum flight level wind and the maximum observed surface wind do not necessarily coincide. Q!!!x 120 120 120 100 90 90 90 90 80 80 70 70 60 170 170 170 150 140 140 140 130 130 130 120 120 100 (5) NAX-FLT-LVL-WND - Wind speed (knots) at flight level is measured by the AN/APN 147 doppler radar system aboard the WC-130 aircraft. Values entered in this category represent the maximum wind measured prior to obtaining a scheduled fix. This measurement may not represent the maximum flight level wind associated with the tropical cyclone because the aircraft only samples those portions of the tropical cyclone along the flight path. In many instances the flight path may be through the weak sector of the cyclone. In areas of heavy rainfall, the doppler radar may track energy reflected from precipitation rather than from the sea surface; thus preventing accurate wind speed measurement. In obvious cases, such erroneous wind data will not be reported. In addition, the doppler radar system on the WC-130 restricts wind measurements to drift angles less than or equal to 27 degrees if the wind is normal to the aircraft heading. % - (2) DVORAK CODE - Intensity evalua.—,—. Lion and trend utilizing DMSP visuai satellite data. (For specifics refer to NOAA TM; NESS-45) L. (6) ACCRY - Fix position accuracy. Both navigational (OMEGA and LORAN) and meteorological (by the ARWO) estimates are given in nautical miles. (7) EYE SHAPE - Geometrical representation of the eye based on the aircraft radar presentation. Reported only if center is 50% or more surrounded by wall cloud. EXAMPLE: T5/6MlNUS/wl.5/24hrs. (8) EYE DIAM/ORIENTATION - Diameter of the eve in nautical miles. In case of an elliptic~l eye, the lengths of the maior and minor axes and the orientation of the-major axis are respectively listed. (3) SAT - Specific satellite used for fix position (DMSP 35, 36, 37 or 39, TIROS-N or Geostationary Operational Environmental Satellite (GOES, 135W)). c. (4) COMMENTS - For explanation of abbreviations see Appendix. (1) RADAR - Specific type of platform utilized for fix (land radar site, aircraft or ship). (5) SITE - ICAO call sign of the specific satellite tracking station. b. Radar (2) ACCRY - Accuracy of fix position (good, fair or poor) as given in the WMO ground radar weather observation code (FM20- Aircraft V) . (1) FLT LVL - The constant pressure surface level, in mb, maintained during the penetration. 700 mb is the normal level flown in developed cyclones due to turbulence factors with low-level missions flown at 1500 (3) EYE SHAPE - Geometrical representation of the eye given in plain language (circular, elliptical, etc.). ft. 8 .- .. -. (7) SITE - WMO station number of the specific tracking station. (4) EYE DIAN - Diameter of eye given in nautical miles. d. (5) RADOB CODE - Taken directly from WMO ground weather radar observation code FM20-V. First group specifies the vortex parameters, while the second group describes the movement of the vortex center. Synoptic (1) INTENSITY ESTINATE - TDO’S analysis of low-level synoptic data to determine a cyclone’s maximum sustained surface wind (knots). (6) pJfjAR pOSITIoN . Latitude and longitude of tracking station given in tenths of a degree. (2) NEAREST DATA - Accuracy of fix based on distance (nautical miles) from the fix position to the nearest synoptic report or to the average distance of reports in data sparse cases. 9 OF TROPICAL SUMMARY CHAPTERIII 1. WESTERN NORTH PACIFIC TROPICAL CYCLONES CYCLONES oped to typhoon (TY) stage, only 4 reached the 130 kt (67 m/see) intensity necessary to be classified as a super typhoon (ST). This season, beginning with Typhoon Bess, tropical cyclones attaining tropical storm strength or greater were assigned names on an alternating male/female basis. This change was a result of the 1979 Tropical Cyclone Conference, and the list of names can be found in CINCPACINST 3140.lN CH-1. A similar but different series of cyclone names is used for eastern North Pacific and North Atlantic cyclones. Each tropical cyclone’s During 1979, the western North Pacific experienced a below normal year of tropical cyclone activity with a total of 28 cyclones [Table 3-1). By comparison, 1978 was a near normal year with 32 cyclones and 1977 was a near record low year with a total of 21 cyclones. Five significant tropical cyclones never developed beyond tropical depression (TD) sta9e, and nine developed into troPical storms (TS). Of the 14 cyclones that devel- WESTERN NORTH PACIFIC TABLE 3-1. 1979 SIGNIFICANT TROPICAL CYCLONES —CYCLONE —TYPE 06 07 08 09 ;: 12 13 14 25 26 27 28 TD TS TY TY TS TV TS TS TY :: TS TD TV TS NAME ALICE BESS CECIL DOT TD-05 ELLIS FAYE TD-OB HOPE GORDON TD-11 IRVING JUDY TO-14 KEN LOLA MAc NANCY OWEN PAMELA ROGER SARAH TIP VERA WAYNE TO-26 ABBY BEN PERIOD OF WARNING 01 20 11 10 23 01 01 24 27 26 03 09 16 18 01 02 15 19 22 25 03 04 05 02 08 01 01 21 JAN-14 MAR-25 APR-20 MAY-16 MAY-24 JUL-06 JUL-06 JUL-25 JUL-03 JUL-29 AUG-06 AUG-18 AUG-26 AUG-20 SEP-04 SEP-08 SEP-24 SEP-22 SEP-01 SEP-26 OCT-07 OCT-15 OCT-19 NOV-07 NOV-13 DEC-02 DEC-14 DEC-23 JAN MAR APR MAY MAY JUL JUL JUL AUG JUL AUG AUG AUG AUG SEP SEP SEP SEP OCT SEP OCT OCT OCT NOV NOV DEC DEC DEC 1979 TOTALS MAX SFC WIND MIN OBS —SLP NUMBER OF WARNINGS ; 6 6 :; 85 40 930 958 965 984 998 955 998 1004 898 980 997 954 887 1006 985 950 984 993 918 1002 985 929 870 915 990 998 951 990 51 1: 110 90 80 CALENDAR DAYS OF WARNING 14 1: 4 1% ;: 1: 11 3 5 1% 20 60 90 1; ; 12 16 6 6 i: 110 45 45 110 165 140 50 1: 3 1?; 60 1: 149* :: 24 2! 20 3: ;: 3B 39 9 x 35 14 37 1: 43 60 23 22 5: 10 DISTANCE TRAVELLED 2597 1804 2535 2876 2170 1612 1837 1264 3928 1058 1088 2732 2502 605 1418 129B 1831 528 2151 984 1920 1194 3972 1868 1559 1070 4044 2245 695 *OVERLAPPING DAYS INCLUDED ONLY ONCE IN SUM. .. -- - Table 3-2 provides further information on the monthly distribution of tropical cyclones and statistics on Tropical Cyclone Formation Alerts and Warnings. Even though there were 4 fewer cvclones this season compared to last sea~on, there were 18 more warning days. maximum sUrfaCe wind (MAX SFC WwD), in knots, and minimum observed sea-level pressure {MIN OBS SLP), in millibars, were obtained from best estimates of all available data. The distance travelled,in nautical miles, was calculated from th”eJTWC official best track (see Annex A). TABLE 3-2. 1979 SIGNIFICANT TROPICAL CYCLONE STATISTICS WESTERN NORTH PACIFIC (199i::) JAN FEB TROPICAL OPPRESSIONS 0000101 TROPICAL STOFMS O 0 MAR APR MAY JUN JUL AUG SEP OCT NOV OEC TOTAL 20001 0 0 1 0 2 0 4 1 1 1 5 4.8 10 10.0 18.0 32.8 TYPHOONS 1011002 22211 13 ALL CYCLONES 1011205 46323 28 (1959-78) AVERAGE 0.6 FORMATION ALERTS 23 of the 27 (85%) Formation Alert Events developed into tropical cyclones. 0.4 0.6 0.9 1.4 2.1 5.2 6*B 6.0 4.8 2.7 1.3 5 of the 28 (18%) tropical cyclones did not have a Formation Alert. WARNINGS Number of warning days: 149 Number of warning days with 2 cyclones: 38 Number of warning days with 3 or more cyclones: . 11 5 32.8 .,. -.. –+ : ..- . . ..,.- -,, -,. . +--+- -+--t .,. . . .,. .-., ..- -.. .. . Y4P. . - -., - ----- -. MAJUR( -—+-* --t-- , +--..1---{---+ ,.. ”’”- ,. . .- . i <: I ?’”” . t t L ,.. 11, 5++ .x 2,. .=O. . 1 “wit --vpwf?h z. .i. . k-++--+-++”&4--+4+4 T-u j-t--+-+--++.+ I . $&J +- ‘i,— /-’-+ 1 +“. ---t-– I– :;( + ‘\ ‘X::w:: .’ . ..+ A“’+-+--+4 +. G . . ++--++ 13 105° 1Iv 115” 120” 125° lW 135- 14’$ i45~ 150” 155” , .-,.--- -—,——-165” - .-T - -. 175. --r-.—. -.-?. - ~ -i“1: :~ ‘ j 1--1 ! 170” 160” 1 I --la% 4---+ -+ t- -4- t “1[ +--, , 1, T I -+ I +-!---- --4- t- -+---r , -k --+-G t- +-+ J. WESTERN NORTH PACIFIC TYPHOONS +- i -1-k –i–-+ ,i 1979 +4-I --* “’hiti?tf “IfJr I r f + --t-- l---t -4-II 1 --1--4 ‘IL --+-+--- .+.. .+ ..++.* + 10 t 1“s Km , ., .+.. ,— I 1m- 11~~: +–-++ “w-r[’+7=%+=-=- -P----+-- WI–I -- +--!- + -+-- ! -+—F 4-{ -- -+-+ 4.””, + -l.-l{ l-h-L , ... ., ... .&+. .. . .1.- –t –, : i 1- :1 ~ ‘D” H -+-i --l-+ .4 T +J-+ I ~-’ @ .—+t- ++ ..’ ~ . * I ) : ~ .-,--+., 4--+++—++—+— #+.-!@.,+.+ ,’ ..%.. ~li{ \...,_,..,.. t.. ..++.++ h.-% - --k... 155 lGO$ _++.+ ;, --+—+ + “.: ~ .L.4–i._., ... .. . _.. .... 165° 170~ ___ 175* /. 1’+ 1 ..” 1 I ,, !l:f! t ! ,, I I ]’jd: + I +=++-”’k”+’’””7. 1-? t ,. I T, ~”;’” 15 T, “—r7———— TYPHOON ALICE Typhoon Alice, the first tropical cyclone first of the 1979 season, was actually sighted as a tropical disturbance on the 27th of December 1978. Being over the Gilbert Islands quite close to the equator, the potential for development was considered poor. A tropical cyclone formation alert was issued at 03002 1 January 1979 when satellite data showed the disturbance progressively increasing in organization. Soon after, the suspect area accelerated northwest to higher latitudes where development conditions were more favorable, and by 0118002, tropical storm Alice was named. Post-analysis showed that the tropical depression stage began near O1OOOOZ at low latitudes, contrary to the general rule that cyclones do not form close to the equator. Although a climatologically unfavored period for western North Pacific tropical cyclone development, the fact that Alice did form supports the non-existence of a definitive “typhoon season” for WESTPAC; tropical cyclones are possible anytime of the year. The greatest forecasting difficulties and concomitant large forecast errors occurred during Alice’s formative and dissipating stages. Double intensification also contributed to Alice’s notoriety. Early in her lifetime, Alice meandered through the Marshall Islands as if determined to visit each island. One week later, on 12 January 1979, President Carter declared the Narshall Islands a major disaster area. A satellite reconnaissance fix at 0221332 showed Alice had moved northeastward when forecast to continue northwestward. Being a fix on a poorly defined satellite verbatim; image (PCN 6), it was not taken continued to be forecast. northwest movement An aircraft reconnaissance fix at 0300532 confirmed the earlier satellite fix as did a follow-on O3O31OZ aircraft fix. Postanalysis revealed that a mid-latitude, shortwave trough passed north of Alice during this time period. The trough extended deep enough into the tropics to weaken the midtropospheric ridge. This weakness permitted a southward intrusion of mid-latitude westerlies into Alice’s vicinity, temporarily steering her northeastward. As the shortwave trough continued eastward, the subtropical ridge quickly reestablished itself north of Alice producing strong easterly steering flow, temporarily accelerating her from 4 to 10 kt (8 to 19 km/hr) toward the northwest when continued northeast movement was forecast. During this time, decision makers on Enewetak (also within the Marshall Islands), noting the low forecast confidence stated on prognostic reasoning messages, kept a condition of readiness which paid off. (01) tic data and satellite imagery (Fig. 3-01-1) indicated that an approaching frontal shearline was the responsible agent. The shearline began interacting with Alice while she was southeast of Guam. As Alice neared Guam, radar data from Andersen AFB and aircraft data indicated that Alice’s previously welldefined wall cloud became larger and somewhat less organized. Cooler, drier air north of the shear-line was likely responsible for this weakening trend. A weakness in the subtropical ridge vertically above the shearline apparently allowed for Alice’s northward deviation. The most unusual portion of Alice’s track occurred during the final 3 days of Alicels life. Based on interpretation of PE progs, the subtropical ridge was expected to persist and maintain Alice in the easterlies. As a result, the JTWC forecasts (supported by the majority of objective forecast aids) indicated westward movement until 1200002, 18 hours after Alice had actually begun tracking northwestward. The subtropical ridge weakened in response to a long-wave trough deepening over eastern Asia. Easterly steering currents in Alice’s vicinity diminished and veered in direction, permitting a more northward track. Alice reached a secondary intensity maximum of 100 kt (51 m/see) during this period due to her slowing in speed of movement, the increased absolute vorticity of higher latitudes and good outflow aloft. By the 13th, Alice turned northeastward and began weakening rapidly. The subtropical ridge was now completely severed and upperair westerlies were shearing Alice significantly in the vertical. Close proximity of yet another frontal shear-line contributed to further weakening. The biggest surprise, however, came when Alice’s low-level circulation turned almost 180 degrees back toward the west at about 1312002 under the influence of strong, low-level easterlies and weakened rapidly in the strong, vertical-shear environment t. As a result of vertical decoupling, Alice as a shallow depression, dissipated during the following 12-hour period. From the 6th to the llth, Alice traveled due west. On the 8th, Alice attained 110 kt (57m/see) intensity and simultaneously accelerated to a speed of 14 kt (26 km/hr) (the fastest observed along track), whereupon she began weakening slowly. During the 9th, Alice began an unexpected northward movement trend and showed further weakening. Post-analysis of low-level synop- FIGUR& 3-0?-1. zg TyphoonA.!iwmaghtg withthe 9 Januahy1979, end o~ a ~hon-tddmaz-fine, HMsPiJnageJuJl ~: IA . ~,, . .. . . . ..- ,,, ... e: $“.- ... . ,.. -.. -“’”’ ... ..- ““””” .- -,. “’”” .% t d +_+ +.....+.. .+..-.+_+__+..+.-+.-+-+ -.. ~“”’f 4“”’’”” ~ .,, t 11 +.. . w VI ,. 3 +...~...+ ..– ~...+. p.+-+-–. i..+–+-.-.+.–Z ~: -.. i% z i ‘T-77 ‘ ‘Li’ - . . . . . . . . Iii . . . .. .,. . ,.O” . . . -&t–i... 0, . o”... -. .$ . ..,, ..o@ lf. .m ,.. -4-+-+ ,.. . . s m . ++-+-+- .+—++ .:”. 0 .@ Z.. $ ;::: ,.. ,8-! ‘., -+—t——i ,3 . 1 :+, m.. 1 -.$_ . N. ‘ -t --- ~i$i . -:3 f :“ i! ,.. .4. ‘2 \.~. ~~~~ - 1–+QI--I- tih:.$ ! ++--t+-- TYPHOON BESS Since 1959, only three typhoons have developed over the Western Pacific in March. Of these three, only Bess developed in the last decade with Typhoon Tess developing in 1961 and Typhoon Sally in 1967. Tropical cyclone development in March is usually inhibited by a southward adjustment in the sub– tropical ridge axis. Although not recognized in advance, Typhoon Bess’ development paralleled Typhoon Tess, which developed in the eastern Caroline Islands and reached tropical depression strength near Woleai Atoll. Continuing northwestward between Guam and Yap, both recurved northward near 135E (Fig. 3-021) before dissipating north of 20N under the influence of a strong vertical shear. (02) developing systems, 162207z satellite imagery showed a significant decrease in the mid- to LIPPer-leVelconvective organization, while the synoptic analysis continued to support a weak circulation southeast of Guam. Continuing to pulsate, the suspect area presented a curious, but intensified upper-level convective pattern on 172151z and 172333Z satellite imagery. Synoptic analysis at 180000z indicated that, in addition to the circulation near 3.5N 147.5E, a secondary low had developed on the slow moving wave axis near 7.lN 150.OE and that the earlier ill-defined convection had been associated with these two circulations. As this secondary low track= northward up the wave axis, increased cyclon- FIGURE3-02-2. ln@zted.imagetyohuezy eamt.g development h.tage 06 Eebb, 16 Mamch 1979,1109Z. .StzeamLine pattexn.i.nabzteb an uppe4-levd o.YuXcgctona. A Auzdace cihcu?a.tion had not yat developed. lUMSPAnagu2gl ic shear between strong easterly flow north of the wave and weak equatorial westerlies south of the wave caused the northern circulation to become the dominant center as the initial low weakened. Simultaneously, the UPPer-leVel anticyclone intensified, producing an excellent outflow signature on 182315Z satellite imagery (Fig. 3-02-3). Although a formation alert Was issued based on 182315Z satellite imagery,,continued rapid development did not occur as expected. Aircraft data at 200259Z found strong enhanced easterly flow of 20-30 kt (10-15 m/see) to the northeast, but only weak cyclonic flow to the south and east. Aircraft reports finally confirmed tropical storm strength early on the 21st (Fig. 3-02-4), five days after Bess was initially observed. nom%oebfuwd FIGURE3-02-1. TyphoonBtibtzacki.ng bealueenGuamandYapo..t8lzZ (15km//vL], 21 Mu.t.eh 1979, 01032. SU.teui.’teimag#Lyeaptumd .inowabd o~ani.za.tion in Zha convective bandingju.b.t pziimto &bb JIcudL@ .tZO@d A9M1. &t!?ktb.@. (wsPinkzg’wd Synoptic data at 160000Z suggested the existence of a weak surface circulation near 3.ON 152.5E at the base of a wave in the easterly flow. satellite imagery at 160119z indicated that an ill-defined area of convection existed near the surface circulation. By 161109Z, however, increased upper-level organization suggested development of a weak 200 mb anticyclone (Fig. 3-02-2). Increased curvature in the mid-level convective cloud pattern hinted at the possibility of tropical cyclone formation. As often observed in weak 19 FIGfJRE 3-02-3. ln@vwd .i.mug~04 Typhoon%ebh developing uncb gooduppeJL-&vdou&Wow whkh d u.&dLe kaom .tIic A odhwd .z%tough the nwthweb.t, J8 Ma.wh-1979, ‘Z315Z.(lMSPimagvyl Sea Surface Temperature (SST) PlaYs a vital role in the development and maintenance of tropical cyclones. A study by Charles P. Guard (1979) indicates $hat tropical cyclones which move over water cooler than 26C are less likely to intensify due to a reduction in latent heat. The study further states that tropical cyclones which develop prior to June intensify up to 10 kt (5 m/see) after recurvature. This intensification, if experienced, will occur within the 12-24 hour period following recurvature. Typhoon Bess followed this recurvature pattern. The axis of recurvature was crossed at 2300002. slow intensification occurred over the next 18 hours with Bess reaching her maximum intensity of 90 kt (46 m/see) at 2318002. Bess maintained 90 kt (46 m/see) for 18 hours end then rapidly weakened, dissipating by 2500002. SST analyses during 24-27 March (Fig. 3-02-5) indicate that the area in which Bess weakened from 90-60 kt (46-31 m/ see) in a six-hour period corresponds closely to the location of water cooler than 26c. The reduction of latent heat input, coupled with increased vertical shear produced by strong westerlies aloft, literally sheared Bess apart during the final 12-18 hcurs. 20 -. 2? 4 25° 2 21 -,! +-–-l--- <’ ,.. I>wl ,.. i ,. L t“ \’ .t“ ..— 1’ “, , @n” T + “+:” l-=--R-d=”’Y--J--J -$:=’:‘“~ ~‘-?+% 1: ,’ ..’~\ ‘. jv +- -t- t--- 4-- i- ‘= +.. t“,n’” -+-t+-t +,.. I ~-I- [:”1 ~.+- T t T“L , LOUT Y ‘.. ~ ‘: m W TYPHOON CECIL Typhoon Cecil, the first tropical cyclone of 1979 in the Northwest Pacific given a male name, generated in mid-April from an easterly wave over the Philippine Sea. Cecil was forecast very well while on a climatological west-northwest track toward the central Philippines. Overallr post-analysis statistics showed that mean forecast errors were better than long-term averages. Nevertheless, JTNC warnings failed to forecast the crucial recurvature point in Cecilts track. Was there sufficient evidence to forecast this recurvature 24-48 hours in advance? (03) synoptic and climatological data indicated a west-northwestward track over the Philippines with recurvature late in the forecast period in the South China Sea as Cecil tracked to the vicinity of 15N. Post-analysis, however, revealed that the ridge axis east of the Philippines abruptly shifted south between 1612002 and 1700002 with westerly winds intruding far to the south over the South China Sea. This pattern shift caused Cecil to recurve much earlier than anticipated. Within 48 hours, Cecil was well east of Luzon (Fig. 3-03-2). The ridge axis shift was the vital piece of information not present in anY of the available prognostic tools. Thus , it appears even in post-analysis that forecasting of Cecil’s recurvature 36 hours in advance was beyond state-of-the-art capabilities. Post-analysis showed that recurvature occurred 36 hours after the 1512002 best track position. Satellite imagery (Fig. 303-1) located Cecil just south of Samar. At this time, the 500 mb subtropical ridge axis was at 17N with a small high pressure cell located over IiorthernLuzon. The 500 mb 36hour PE prog maintained the ridge, Steering techniques based on this synoptic situation indicated westward movement for 72 hours. Analog techniques indicated west-northwestward movemen~. As a matter of fact, no objective forecast technique indicated recurvature prior to entrance into the South China Sea. The climatological average location of the 500 mb ridge axis is along 15N for April over the Philippines and the climatological recurvature point is 15-17N. Both F@.uLe3-03-1. ln@ated imagay o{ TgphoonCw.it 36 how ptih .tokeuuw~e withmaxi.nwm huata.ined wina206 80 kt [41 m/hec], 75 Apti 1979,1225z, (DMSPimagezy) FIGURE3-03-2. Ceciladtexnmucvalwce wLth w.i.d o{ 50 kt {26m/bee), 19 Ap/L.U J979,00142. (lXLSP imag~y) maximum hti~d 23 TROPICAL STORM DOT TRACK TC - 04 “t 10BESTMAY-16 MAY 1979 40 KTs MAX SFC WIND ~ .+ MINIMUM SLP 984 MBS .. “+I .+ SHAN HA!O ~ , .~ ‘+”=”+” + t., ,,\<,, , . ,,. :~. :: “+’””’’’”’”” .+, . F .+’~ 110” ; + l“ I -., . Y “::: .._ -i30?~ 1,, . . ;.. - , ,.. 1150ti”t[j~ + ‘:’. ‘“ :H<. ‘“”’ ../~2&A~A,, , ;.. .ai = / -.b. .:. ..nxn: -:’ ‘ ‘nnniQ~’ ”; “CHI?HI ~~ i -“MA ‘. ,-- ~ t3;’- b. - IWO JIMA ‘. -’0’:: :“+:- T .;@. ‘.: .( ,. - y“, LEGEND W 06 A B C +.- . . . 1 I I ● MANtl ** -— + O w ● ● ● I ! ““’ -; b 5“” ,-—,-, 1.. , * * k HOUR BEST TRACK SPEED OF MOVEMENT INTENSITY POSITION TROPICAL POSIT AT XX/OOOOZ DISTURBANCE TROPICAL DEPRESSION TROPICAL STORM TYPHOON SUPER TYPHOON START SUPER TYPHOON END EXTRATROPICAL DISSIPATING STAGE FIRST WARNING ISSUED LAST WARNING ISSUED +’+ :T:. i “ 1o”, 4+ I .,. ,,. +t- ‘+. ” “+”” T :I:i. T RUK ,+ /+’\ + “=’tz :!i’r-%1 I I 10 115” L!\. 120” l-, K 125” , 1 130” 135” 14CY 145” 150” 24 ..- -. TROPICAL STORK DOT (04) TS Dot slowly formed in an area of broad, low-level easterlies, high surface pressures, and strong upper-level shear. The conditions for significant tropical cyclone development were poor while the system existed east of the Philippine Islands. After crossing the Philippines, however, Dot reached troP1cal storm strength while over the South China Sea. FIGURE3-04-2. rtop.ku.t Ston.m Vo.twhdk MzluuJ&J ManL&z, 72 Mug 1979, 2353Z. (oMsPimugwy) ,~ti 26 t’”~”””t” i.. . t, .- }.+. . ..J. “1, ;-:~: TROPICAL DEPRESSION ~ i.;. 05 . . TC-05 23 MAY-24 MAY1979 MAX SFC WIND 30 KTS 0 ..#p. .p ; ] .;ey~ -1 BEST TRACK ! { , I “y” ~ t 1 T. t“. . MINIMUM SLP “-.vj ”””: - 998MBS 1- –+-+307 : . .@ $ f --:”’ 14 ● ! :!;: ~.“ 1 _e.(””. ~.. “;. ...; ~“: 35° *\. i’”’”: ., . . . . . . ~“:” “’: ‘:!:::’. i.. ..-*. +I k19 ● J ..L I I .kd !. \v- B3’0?’0; I !.! , {15 . I ...+...’. d .“ l? +1 &ml-L . . . s -’x. 1 —. ● #7. + ~ (/!! .j. j o* -— * 0 ~w ..j ..4 .i I 1 . . . . . 04 A B C .---’1 J-. . l.. I.m-----FCFN13 ~ /y 80 SAiPAd #. “+””””+’” 1,. - , I I I -T”’ $GA,0f7. - [ . HOUR BEST TRACK POSIT SPEED OF MOVEMENT INTENSITY POSITION AT XX/OOOOZ TROPIC CAL DISTURBANCE TROPK CAL DEPRESSION TROPI( CAL STORM TYPH iOON SUPEk““ ‘Wmufin” , , rnvw,m .,“’ART SUPER TYPHOON ENI EXTRATROPICAL “ ‘ATING STAGE ,.,. r,.,,.,–– ,e’z, ,Erl” ,JJ”. mm,,.” ISSUED RNING 1’””]., ,’” ~ ~::::: ++“-”I ~ 11. .>L I ..,. . . . . . 3’ J 05” ,- I lKY 175° 120° 130” 125° 135” I 140” .- 1 An L 1 145” 26 .. .. MONSOON/TROPICAL DEPRESSION Early season disturbances in the South China Sea, as discussed by Ramage (1971), may develop as a result of active monsoon troughs which extend eastward across Southeast Asia into the South China Sea (SCS). During late May, increased convergence in the enhanced southwest monsoon flow produced a significant increase in convection across the SCS, and several weak surface circulations were noted along the monsoon trough between Hainan Island and northern Luzon. Surface/gradient level synoptic analysis at 1700002 confirmed the existence of an elongated pressure trough with several 1005 mb centers. The main circulation, located northezst of the Paracel Islands, was actually north of the main convective area which covered most of the SCS south of the trough. Characteristics of SCS monsoon depressions include: strong enhanced southwesterly flow with light winds near the depression center: large areas bf convection associated with convergence in t’hesouthwesterly flow with little curvature in flat s~lrface towards the center: a relatively pressure regime of large areal extent; and. a mid-tropospheric cyclonic circulation over the area (Ramage, 1971). These conditions were observed in this area. (05) Initially, TD 05 drifted southwestward east of the Paracel Islands. By 2000002 a slow, eastward-tracking 500 mh short-wave over central China caused TD 05 to accelerate northeastward. As TD 05 accelerated, increased cyclonic shear at the surface southeast of Taiwan caused the system to transition from a monsoon depression to a tropical depression with a small anticyclonic outflow center evident aloft. (Many SCS monsoon depressions never make this transition, usually dissipating after 3-4 days.) Totally divorced from the monsoon trough, TD 05 tracked eastward through the Bashi Channel and then along the remnants of a weak frontal boundary. TD 05 was not forecast to intensify significantly, but it merged with an extratropical frontal boundary near 22.ON 124.8E and produced an improved satellite signature at 2300182 (Fig. 3-05-1) which included a banding-type eye. (Banding-type eyes are usually characteristic of more intense tropical cyclones.) Synoptic analyses during the life of TD 05 never indicated an intensity above 30 kt (15 m/see). The lowest pressure recorded was 998 mb measured by a ship close to the circulation center. This pressure equates to approximately 32 kt L’ -’6””- .. . #-- -“” . . . “e””” :.. . . .. n+L -.. +. ,.. H f.: ,.. {-.. ~ 2 . . o -t--’--t- ,.1 --{.---1 ,.. -1 +-., bb.. . 0 : :Mi-+-;.-. t‘-!--i- g ... . &? ,. ‘. t ‘1 -1 L. ..1 H ..+.._ *-_ i.-}+..-+. L ‘{ %G-il$%Qa&-+--+4--’----’-””””+d ‘ ‘ P=@R’““‘-+’ +“””{ 81 jf#+j-”j::-+pf,:-:’3:::1:0 / .,. TYPHOON ELLIS The tropical disturbance, which later became Typhoon Ellis, was first noted on satellite and synoptic data on 25 June 1979. The surface/gradient-level analysis showed that a broad monsoon trough had developed between Guam and the Philippine Islands. At upper-levels, a Tropical Upper Tropospheric Trough (TUTT) was oriented northeastsouthwest between the Volcano Islands and the central Philippine Islands. This TUTT allowed excellent upper-level outflow to the northeast and was expected to induce intensification of the tropical disturbance southeast of the TUTT axis. Therefore, a Tropical Cyclone Formation Alert (TCFA) was issued for the area valid at 2700002. However, significant development did not occur. Reconnaissance aircraft could find only a very broad surface circulation with relatively high surface pressures. The surface circulation drifted under the TUTT and the associated convection was suppressed; development was thereby thwarted. Based on the superposition of the TUTT and the surface circulation and the fact that the overall satellite signature had not improved, the TCFA was cancelled at 2820002. (06) For his entire-lifetime, Ellis followed an uncomplicated, classic west-northwest track at near climatological speeds ranging from 9-14 kt (17-26 km/hr). Post-analysis indicates that Ellis was moving tinderthe influence of the east-southeasterly steering flow on the southern edge of the subtropical mid-tropospheric ridge. Ellis ‘ nearly straight track is due primarily to the fact that this ridge did not change in intensity or orientation during the period. Ellis reached typhoon strength at 0212002 and a maximum intensity of 85 kt (44 m/see) at 0300002 (Fig. 3-06-1), Continued intensification was anticipated, but a slow weakening trend was actually observed. As with Tropical Storm Faye, this weakening was associated with a drastic change in the upper-level flow pattern. During Ellis’ developing stage, the TUTT was located to the north-northwest and was providing the necessary outflow channel to the northeast. By 0200002, however, an uPPer-level anticYclone over central China began to ridge the northeast. eastward, Strong forcing the TUTT to upper-level northeasterly winds associated with this anticyclone began to exert pressure on Ellis, shearing the convective activity to the southwest. Continuing west-northwest in this shearing environment, Ellis weakened steadily. By the time he was in the South China Sea, Ellis had weakened to tropical storm strength and was a completely exposed low-level circulation (Fig. 3-06-2). The area was closely monitored, and when satellite imagery showed increased convective development and surface data showed decreasing pressures and increasing winds, a second TCFA was issued valid at 3006002. Subsequent aircraft investigation revealed a minimum sea-level pressure of 1000 mb and surface winds in excess of 35 kt (18 m/see). Based on this new information, the first warning on TS Ellis was issued at O1OOOOZ July . Ellis was in a favorable position at thattime and steady intensification occurred over the next 2 days. With winds of 54 kt (26 m/sec)r Ellis made landfall on the Chinese coast at 0600002, 164 nm (296 km) southwest of Hong Kong and dissipated rapidly over land thereafter. FIGURE3-06-2. Tmp&a..LSzhtm E.f.fAa an expohed .&xo-leveLc dm@dionin.theSouth ChinaSU, 5Ju4 1979,O1OIZ. (uusP.inw.9wly @omuet5, Nw, C-!aJd2 A8, RP] FIGURE3-06-1. TyphoonEtl.iJ l-?t~.t] at mzxZnwm 0~ 85 k.t (44 M/beC], 2 J&y 1979,2356Z. .i.n.ten@.! TS Faye (@ht) b developing notiho~ (Uoleai. foMSPinlag’a.g) 28 . . . . .4. -.. . -.. . . T’ . + - J. TROPICAL STORM FAYE !“’” BEST TRACK TC-07 01 JUL- 06 JUL 1979 MAX SFC WIND 40KTs SLP I ) 4 +.:!-’A 150° MINIMUM 1 .t . lC 155° 998 MBS !:”’ i “1 30 .- -. TROPICAL STORM FAYE FIGURE 3-07-1. l@pe,t-leu& 4~e 020000Z J1l.@ 1979. (07) ana.tybiA at Tropical Storm Faye proved a most interesting case study, not because it developed into an intense tropical cyclone, but because typhoon intensity was not attained as forecast. TD 07 was first analyzed as a closed surface circulation about 800 nm (1482 lob) southeast of Guam on the 28th of June. The associated convective activity remained disorganized until 0112002 July. At that time a TUTT cell developed north of the system; thereby providing an excellent upper-level Outflow channel to the northeast (Fig. 3-071). The wind data plotted in figures 3-07-1, -3 and -5 are a combination of RAOBS, AIIWPS and satellite-derived winds for the 250 mb to 150 mb levels. Diffluence over TD 07 was extensive and well-defined. The satellite signature also showed improved outflow (Fig. 3-07-2), and further intensification was expected. FIGURE 3-07-2. The .ttopica.t deptu~ionzhat WA .to become 1S Faye,02 IL@ 1979, 00222. [OMSP.intugtiy) 31 .-F. ...? .“ .O%f:] .-r Y.-l- .,-1-.. + 1 u-t ! .i ,~.1 ! 1: --- . I 1.. 1 .-L. I.. , -t- .J?-. m- I ..), ~ ‘ .? .4. . ..+. FIGURE3-07-3. fkXX?h-hVfLt 0512002Ju@ 1979;’ .,ZW. T b.tXWnLh“ e anatub.ihat The flow pattern over the depression. (TD 07) remained favorable for development for the next two days and tropical storm intensity was reached by 0318002. Continued intensification was still anticipated with typhoon strength forecast within 18 hours. Instead of intensification, however, Faye weakened. Post-analysis shows that Faye’s weakening, and subsequent dissipation, was linked to a radical change in the upperlevel flow pattern. Whereas figure 3-07-1 shows a tropical cyclone in excellent position for intensification, figure 3-07-3 shows just the opposite. By 0512002, a large UpPePkVel anticyclone over China was beginning to build southeastward into the western Pacific toward Faye. Faye’s outflow channel to the north became restricted and her lowlevel circulation center became exposed (Fig. 3-07-4). The mid- to upper-level centers and the associated convection were sheared off to the southwest by increased northeasterly winds at the upper-levels. 82 FIGURE3-07-4. TO07 [FAYE1,05 J(LLY1979,120’22. have begun to Stzonguppat-levet notiheaA&xt&A dea.z odd the convection to the Aou.thwti.t. m8PiJno4Wy, Moon.t%htlkbllall .1 . . . + + , ,,, I . \-K ,“” I . fl I 7- 1- P’-!’’’’”: :X%’’(’V -1--. 1.111 I-—I I xl- % . !“,+(-’’-$?c ., .-, : f —., (. -:- FIG((T?E3-07-5. UppG’L-&Ut?l &WI.&I~ 0612002 July 1979. W@ib.d & Displacement between surface and upperlevel centers was observed often during the 1979 season (e.g., see discussions on Hope, Irving, Ellis). Development is usually arrested in this situation, until the system becomes aligned in the vertical. In the case of TS Faye, the upper-level pattern failed to improve. Figure 3-07-5 shows that by 0612002 the upper-level ridge had intruded as far east as Guam and that northeast winds aloft had increased to 50 kt (26 m/see). At that time, Faye’s low-level circulation was fully exposed (Fig. 3-07-6). This exposed low-level circulation meandered northwestward for two days and eventually dissipated northeast of Luzon. The short history of Tropical Storm Faye is an excellent example of premature dissipation induced by strong vertical wind shear. FIGURE3-07-6. TV 07 (FAYE]& nowa @Mj expaAed Low-Levetukwtation, 06 Ju.&j 1979, 15182. (vMsPhnogtu2y, 33 Moon.ugld v.i.wd] t -~+—+–- 1 -k t r-, -,, i’-’ -P44--t+--}- l.. *._ +..... -t -+- . t+ . . + I ,0I b .t’--+----i--i+-i--++--+st- , <* .- \’ }& - -. +“”,A””t’’”t” ● ..,’ ., ,...8, ..--.. ,, ‘m --$-–E -+–t-i--l- ---+s +–,0. . ,., .x ,g. , c) .,, ,,, . . ,. -., t ,.. . -.. ., -. . t“” .--.. .-.. ’+”.” .(. .(i --- . ~“ 1- ,- ,.. .. ., *. .b $.. “i .. . d.. P [$ -:’ .. L... . w(i. {:/) : ~~~~~~ ‘- Y ‘J--if’ TROPICAI,DEPRESSION 08 For the greater part of its life, TD 08 was an exposed low-level circulation with the major convective activity detached to the north of the surface center (Fig. 3-08-1). Aircraft reconnaissance confirmed an exposed surface circulation approximately 100 nm (185 km) south of the convective center at 241016z. TD 08 was not expected to intensify to trOplCal storm strength as a result of str0n9 Ve:t+cal shear which began on 231200Z. However, lnltial warnings were issued based on the forecast track which indicated passage directly over Okinawa. post-analysis indicated that the calm. wind center did indeed track over Okinawa with most of the convective activity track. i.ng well north of the island. FIGURE3-og-I. ln@.w&.&g~~~ ~ Og ~~ tiemily oIj20 kt [37m/bee), 24 Juty 1979,~244Z. TV 08’A241200Z6u@cc centm [e) b depkted h.c&.tLvea% &q@ce dtipae poti [=) and 700 mb ad.&uz&.kepoti (x]. (VMSp~Uy] 35 TYPHOON HOPE BEST TRACK TC-09 27 JUL-03AUG 1979 MAX SFC WIND 130 KTS MINIMUM SLP 898 + .- 1:5” MBS i- . 155° t’ 27rn6Z + ++-i-I -t--l )5 -; ~1f / Ii w @’o,~& /:M ] , ““”:””””. ~.. f t “’t ..,. k ~ +lH LEGEND 06 HOUR BEST TRACK SPEED OF MOVEMENT B C o.. . . . ~ o * ● ☛☛ ,.. ; ,.- -. I!iJ:i: Ii L? &l k:8’8”A!*: ‘- ~;y.. ,~ : , Y— ~, . ., ‘- T ‘-, -0/ -. & - / : ] WLEfl . . . : : ~:; .: . .. : TI?UK ”””’ . . . . . -: ~ ,.. ~v. .+”” t:*: :~:::: . I.. #“ 0: .-: :.:- -::: lR/l*z.-t4’ i r : ‘.%%> ;’k’ .1. PiLAU ~25””~’” *7=* ~ “r :Jio;oo : Py POSIT INTENSITY POSITION AT XX/OOOOZ TROPICAL DISTURBANCE TROPICAL DEPRESSION TROPICAL STORM TYPHOON SUPER TYPHOON STJ ART SUPER TYPHOON END EXTRATROPICAL DISSIPATING STAGE FIRST WARNING ISSUED LAST WARNING ISSUED -- ) /3 ~ id : r , --,, . .7.. ,/ o A : ‘S&A “ + ~ M ‘-”’qyj+:!j:,., ~#K+:: t .<: -: II761+: 27-76’’$”; .W’ ,3:.’$3+’96”’/ $’fi ::: “‘~”f ;,j7,tl ...,,,,, 1- , :; ..; > .*6 :’ -fil “ . . ;::’::::;’,::: ..+ . . ..i. . . ;: ...1....’ . . ..i..;. :’i:::i . ‘-U.. ,.. i“.--+ .L 85” . . . “cl t ... . ,.. .. ... ... . 4. ..!,.. . ..+.. , , .. . ..- . . . . . -.. . . . .. , . . . . , . . . .- , L(’% . -.. ,. . ... .- . - ‘!’ -. .. . . PT. * LAIR ., - ‘-.. ‘S B NOGKOK. > .8. \ , :: “(” ). ~J~s t“ .(’. :.” -:’:-!,. f :dq+y: / ,1- .- .: : .,, ‘ ::- -.:” ::- . . %j?j ...’ :;D ;“. Q :; ~ ~ ‘A 36 . SUPER TYPHOON HOPE The disturbance which eventually developed into the first super typhoon of 1979 became evident on satellite imagery at 2500002 July as a focal point of cumulus banding. Future intensification was indicated as the disturbance was situated within an area of strong upper-level diffluence associated with the southern periphery of an east-west oriented TUT1’. This outflow mech– anism aloft, combined with an improved satellite signature, dictated issuance of a Tropical Cyclone Formation Alert at 2507512; the alert box described an area southwest of Guam . Subsequent aircraft reconnaissance at 2509002 described a cyclonic circulation with wind speeds of 15-25 kt (8-lo m/see) and a central pressure of 1004 mb centered near 11.lN 144.5E. Based on this aircraft data and the proximity to Guam, the first warning on TD 09 (Hope) was issued at 251200Z. By 280000z, Tropical Storm Gordon had mcved into the Luzon Straits. Due to the orographic blocking of the Philippine land mass, the majority of the strong southwest monsoonal flow was diverted into Hope. This increased low-level inflow coupled with decreasing upper-level shear resulted in a much improved vertical structure with feederband activity developing in the south; 2820522 aircraft reconnaissance supported this improved organization trend. Postanalysis indicates that TD 09 (Hope) could have been upgraded to tropical storm intensity 12-24 hours prior to the warning upgrade at 2900002, as 35-45 kt (18-23 m/see) winds were reported in feederband activity as much as 24 hours earlier (Fig. 3-09-1). By 290920z, a well-defined eye with a central surface pressure of 972 mb and 65-70 kt (33-36 m/see) surface winds were reported by aircraft data; the 2912002 warning upgraded Hope to a typhoon. From the 25th through the 26th of July, while TD 09 (Hope) tracked to the westnorthwest; the TUTT axis shifted northward and strong upper-level northeast flow dominated the area. The resultant shear produced by this uni-directional upper-level flow displaced the convective activity to the southwest of the surface circulation, indicating a loss of vertical alignment and subsequent weakening. By 2706002, the center of the convective activity was displaced 120 nm (222 km) southwest of the low-level circulation center. Surface analyses, at this time, indicated the southwest monsoonal flow was being channeled principally into Tropical Storm Gordon located 750 nm (1389 km) to the northwest of TD 09 (Hope). With further weakening of Hope expected, a final warning was issued at 270451z advising that the area would be closely monitored for possible FIGURE 3-09-1. TJwp-LcczLSomI Hope L7i.gh.t) &iztop&M.L Gotin[Q&]~ 100m (09) regeneration. Post-analysis showed that from L71200Z through 2800002, the TUTT weakened with resultant reduced shear over TD 09 (Hope). Conditions for development being improved, reorganization took place and TD 09 kegan to develop. Unfortunately, the improver.entin the surface circulation went unn~ticed as it occurred during the night when only infrared satellite imagery, on which low-level clouds are difficult to disting~ish, was available. An aircraft investigation on the morning of the 28th reported a surface pressure of 999 mb with 45-50 kt (23-27 m/see) winds in the heavy convective activity to the southwest of the surface center. A warning was issued at 280221Z indicating the regeneration of TD 09 (Hope). bxotutl&t’&rlbLtg570 m [1056 km] noLthtaato6Guam, 29 Ju..?g1979, 02192. (lg5 km) wtoA Hong Kong. (0h13p@~I 37 The 2912002 200 mb analysis indicated the TUTT had again established itself north Df Hope. Due to the east-west orientation of the TUTT, strong westerly flow along its southern periphery enhanced Hope’s upperlevel anticyclonic outflow. Aircraft reconnaissance at 2920312 indicated a sharp decrease in surface pressure to 961 mb with the temperature/dewpoint data correlating to an equivalent potential temperature (eel of 359X. An empirically derived forecast aid that relates pressure and ee indicates that once the traces intersect, rapid intensification can be expected within 18-30 hours (Fig. 3-09-2). The intensification equates to a possible mean pressure decrease of 44 mb and a mean wind speed increase of 50-60 kt (2630 m/see). Typhoon Hope verified this study 36 hours after the intersection occurred; reconnaissance aircraft reported a surface pressure of 898 mb and wind speeds of 100120 kt (51-62 m/see). By 3112002, Hope attained super typhoon intensity of 130 kt (Fig. 3-09-3). (67 m/see) MSLP/ FIGURE 3-09-3. ln@vwd imo.g~ 06 ffopc juAta~fem dtainingMLpsttyphoon tie.d,tq 06 130 tat (67 ftt/AeC], 31 Julq 1979,7244Z. [OWSPimaaszu] -. THETA E TRACE HETA E 390 NIBS 1010 1000 380 990 980 370 970 960 360 950 940 350 93a 920 340 91C 90L 89C )2 28JUL 122 UUL 29 IZL uvO= ILL ““31 30 --- ----— 01 AUG 330 ! ● 02 FIGURE 3-09-2. (THETA E (Oe) 1 38 .. --- — Hope entered the Luzon Straits approximately 4 days after Tropical Storm Gordon. Hope’s compact wind structure and a slight weakening trend were noted as Heng Chun (WMO 46752) on the southern tip of Taiwan reported sustained winds of 40 kt (21 m/see) with gusts to 86 kt (44 m/see) at 0110002 as Hope passed 45 nm (83 km) south of the station. Two persons on the Batanes Islands and one person on Taiwan were killed as a result OE the torrential rainfall experienced as Hope tracked through the Luzon Straits. Typhoon Hope made landfall less than 10 nm (19 km) north of Hong Kong at 0205302 (Fig. 3-09-4) with maximum sustained winds of 70 kt (36 m/see) and gusts to 110 kt (57 m/see) reported. Figure 3-09-5 is a time sequence of the surface observations received from the Royal Observatory of Hong Kong during Hope’s passage. Extensive wind and rain damage, 3 deaths and over 258 injuries were reparted. Damage to shipping within Hong Kong harbor was heavy as 17 ships broke their moorings and 8 ships collided. FIGURE 3-09-4. Typhoon Hope d 100 k.t (51 m[bec) .intem-i%g, 3 hoti ptioJL .to c-Lo&tit point06 ap~oaclt .to HongKong, ”2 AuguA.t 1979,02472. [Ohiwimaglngl Subsequent to passage over Hong Kongr Hope moved into southern China and weakened. The final warning was issued at 0301112 downgrading Hope to tropical storm intensity. Hope’s uncomplicated northwest track after development into a typhoon resulted in minimal right-angle track errors with her unexpected acceleration accounting for the majority of the discrepancy. Strengthened once again by pre-existing strong southwest monsoonal flow, Ropereintensified from 0700002 through 0718002 with maximum sustained winds of 35 kt (18 m/see) reported on 0712002 surface analysis. A tropical cyclone warning was not issued due to Hope’s proximity to land and her expected movement into northeastern India within 12 hours. Hope, however, was discussed at length in the Significant Tropical Weather Advisory (ABEH PGTW). Although weakening considerably during passage over southeast Asia, Hope did maintain a satellite signature and exited into the northern Bay of Bengal 110 nm (204 km) southeast of Dacca, Pakistan at 0605002. 45005- HONGKONG ST OBSERVATORY HOPE DATE02 JULY 1979 / TIMES:O1-1OZ I 02/olz :~,wl 02/022 9%989 02/04z 02/03z #$984 ~~978 02/06z 02105z :* ~,.o 02/07z q: 02/OBZ f 02/09z O2I1OZ >;;4 ,.~’ v G FIGURE3-09-5. lfou@bu@ce&y o~ TyphoonHope. nop.tLc ob~ctvtiona @.om.the Roya.tObAIVUJa.tO@ o{ 39 HongKong (ROHK]du.%i.ng pzbbage + + ~+- -t--t a’: . -t; . -1.- “, -}--+-+ —+ d“ --1--~ .-”” ,. t— -. fJ. . “% VI In .— m “t -it 5!’? +.. . . —-t+–+–– 0. -+ “m g.- 00 0 0 z’ “../3 -1-++tt+-t-k--t++-+ + t- t-- -- g “1’’%”1’” I +--l %26 R,. > d’ : ..+ ; +..–+— y+ –+ >.—+-t-knk 1’1’ -t+-+--’r+kt-+-+-+ t 1% ~>.,’”t” l— TROPICAL STORN GORDON (lo) Gordon, the 10th significant tropical cyclone of 1979, developed in late July in the monsoon trough near 20N-135E and eventually made landfall east-northeast of Hong Kong. A stronger sister, Hope (TD 09), followed Gordon several days later on a similar ‘crackinto Hong Kong. Note that TD 09 (Hope) and TD 10 (Gordon) are alphabetically out of sequence because TD 10 was upgraded to trop!.cal storm stage before TD 09. Post-analysis revealed that Gordon reached tropical storm intensity at the time of the first warning. CINCPACINST 3140.lN, section 2.5.1., paragraph b states that warnings will be issued when “maximum sustained wind speeds are forecast to increase to 34 or more knots within 48 hours.“ In this case, there was no lead time between the first warning and tropical storm stage. Figures 3-10-1 and 3-10-2 illustrate why this occurred. TD 10 developed rapidly within the 22-hour time period between these figures. Synoptic data indicated increasing southwest monsoon flow into the area during this period; yet no definitive surface circulation could be located. The most significant finding of the post-analysis was that Gordon could not be traced back 48 hours prior to the first warning from available synoptic anti satellite data, and, therefore, falls into the category of a rapid developing system. Gordon’s track took an unexpected jog northwestward while passing south of Taiwan (Fig. 3-10-3). (Typhoon Hope took a similar, but less pronounced, jog.) This northward adjustment is historically evident from tropical cyclones that pass south of Taiwan. The influence of Taiwan’s high mountain range is thought to be responsible. As tropical cyclones pass south of Taiwan, they induce lee-side troughing west of the mountains over the Formosa Strait and track northwestward in response. FIGURE3-10-2. Tkop.icaLStozm Gohdon22 kowu adt~ Figuze3-10-1zshowing .incm.abed deuel.opmaat, ?5 Ju.tg 1979, 23502. A Tzup.&a.t CgctoncFohnwtion ihbld 6 hou.upti.oh.to thibtime. A&?A.twab [okSPimagayl S.to?on Goz.don in .&b indancg FIGURE3-10-1. Ttopica.E to batngdhcubbed on thtSkgn.i@anf 4 hum p.tiofi 8T.topia.t Weathe/t Aduboq [ABEHFGTW), 25 Ju.@ 1979,01512. [UMSPimagVq’) FIGURE3-10-3. Kaohbi.ung & pm2btn&ztion o~ Gohdonat 2821032a&#t pabbi.ng south06 Tahan. (Photogtiph COIJW%Y Ttipti,Tuimn.] 41 0{ .ZhQCemttaZWa.fhut BUJWU, 120” 115” 1lcf 105” 145” 140° 135° 13@ 125” 150° -. 7= ’’’’’’<4’’’’!’’’’’’’” “t”[\” ””’””’’’”’+’” ““l +) Y/y ”’’’”.” ! I .L I ...] ~ -. ..’+,., --.. . I I/ I ! , 1 J ,f, , I Y.., - 000 :: — 1A ‘9 r .,. ● O . 4 o .L . .- ..- +++ ● ● ● - * * ,‘?O ,1 , I B c .#, “’”T +“ 11 T . MINIMUM - 997 , , ~ I - ; ; MBS ; ;P i t :i”” ‘“t” ,“””’ . ““t BEST TRACK TC-ll 03 AUG-06 AUG 1979 MAX SFC WIND 25 KTS SLP . CHI%HI JIMA , ,“”” .1 , , Y-l -,:,:+””” J-: ; -.........T ., ~ .,nKJ.:”: TROPICAL DEPRESSION +:- i Y---’-7 ‘ . I i 11’t ?. INTENSITY POSITION TROPICAL AT XX f’O@?z DISTURBANCE :%!% !%%w’ON TYPHOON SUPER TYPHOON SUPER TYPHOON EXTRATROPICAL DISSIPATING FIRST LAST ,, . * “9. & . . -.. .+. .:. --::::.. . . -:::.:”:.++’ . .-. ... .. ~....+. .+ Q: ?., . START END , -%- i . . . . . ..~. . ..+. . ..i. ..-f ‘}!:!:,}’ . STAGE WARNING WARNING w.’ ,., . . ISSUED lssuED 1 ;. :..’ ?? .“. . -. ------- )} .’” ~.a~ ?+=-. , , . L ‘n . 0“ # ,#2”& “ - 42 -m .- . TROPICAL DEPRESSION 11 FIGURE 3-il.-l. TILopti& Oephebbion 11 & 20 k-t [10 mlaee] .6upe.timpohed a-tLotion 06 &@ace cimuhtion cotta aA CouidaabLe veI&cal bhem etited ouu the bgb&m and m A.tzength. IUM.SPimugelgl 43 .&vh&Xtj, 5 Augu&t 1979, 21532. The TU~~boX (~) h by a.ih&ia&&tconn&&ance at 052222Z. the hwon .thu.t .Ltdid not developinto.tzopical htcIVLm detemi.ned + “t’”” ‘i: — NPHOON 1: 150” 145° 146= ;35’4 130’ 125° 120° 115° -. IRVING BEST TRACK TC-12 09 AuG-18AuG1979 MAX SFC WIND 90 KTS MINIMUM SLP 954 MBS I I — ~“’ 1 ,. - ‘1 — 150° 1: . . T:’ . I., T“ . .-bn<. ./ *’+4/ /// ‘47s&+.’/?, Y._JL+=fo.fo d / ~. 1.$=1-.l. :w.: l’o .1 ..d— =7+ U>= I + /, 1’?W)<WA .. . .. , “’f-”:’”ld I 57 i , ), ::.:; iI ““” , s , SAiPA . . ::G$: ,. ..’ . ‘“”” JL. .i . . . . . “1’ . . . . . .,. . +. ...+.’... .y:p.’. !v.!- ”,t, . . . , IN7ENS17Y 30 llIOOZ , 9 35 11J06Z 18 18+ 13 7 7 kJ 45 16+ a . . , ..A a ,*WK .. LEGEND .41 ~ ,7 ‘-r 8 11118Z , A 06 HOUR BEST TRACK SPEED OF MOVEMENT B INTENSITY C ..0 -- POSITION TROPICAL TRoPICAL TROPICAL — o +++ : ●O TYPHOON SUPER TYPHOON START SUPER TYPHOON ENo EXTRATROPICAL DISSIPATING STAGE 17+ 40 11/12z ~s<””” . t l“’”’””” SPEED . ‘.!:/:. . e wOLEAI . . . :s;::::~:”~ D7G ::::: ~. LITHI M ~~:’”’:~”’ ::: . 6 ● .* A #T FIRST LAST POSIT . . + AT XX/OC@OZ DISTURBANCE DEPRESSION STORM WARNING WARNING # lssuED ISSUED .. 44 ..— -- TYPHOON IRVING Surges in the southwest monsoon frequent the western North Pacific during the early tropical cyclone season and produce widespread convection from the Malay Peninsula to as far east as Guam. During the same period, the 500 mb monsoon trough fluctuates eastward across the South China Sea (SCS) and occasionally into the Philippine Sea. By late July 1979, an eastward extension of the midlevel monsoon trough was the main synoptic feature west of Guam. The 500 mb trough axis extended along 15N from northern Vietnam through the central SCS and then eastward into a quasi-stationary low pressure center over the Philippine Sea. (12) exposed low-level circulation in satellite imagery with maximum convection located to the west of the surface center (Fig. 3-12-1). Ship synoptic data during the same period indicated that 25-35 kt (13-18 m/see) winds extended outward 120 nm (222 km) south of the surface center. By the llth, the monsoon surge had weakened and receded westward, leaving a cut-off 500 mb low over the Philippine Sea in the vicinity of Irving’s surface circulation. Irving executed a small, tight cyclonic loop on the llth. During the loop, vertical alignment between the surface and the 500 mb center improved, and Irving intensified to tropical storm intensity. Simultaneously, a break developed in the 500 mb subtropical ridge to the north, and Irving tracked north-northwestward towards the Ryukyu Islands while intensifying further to typhoon strength. Although originally forecast to recurve south of Japan, strengthening of the 500 mb ridge southeast of Japan caused Typhoon Irving to track over the western East China Sea and accelerate northnortheastward across Korea before merging with an extratropical frontal boundary north of Japan. On 7 August at 1200Z, a developing surface circulation was observed at the eastern end of the monsoon trough near 14.lN 137.7E. This weak circulation tracked cyclonically around the eastern periphery of the broad 500 mb low pressure center in the Philippine Sea. Taking on the characteristics of a monsoon depression (Ramage, 1971), Irving was described in aircraft reconnaissance data received from 9-11 August as a weak depression with poor vertical alignment and maximum surface winds located 150 to 180 nm (278 to 333 km) west of the surface center. At this stage, Irving displayed an Although not a spectacular typhoon, Irving’s apparent sinusoidal motion, unusually large wind radii, failure to rapidly deepen and damage to southern Korea are noteworthy. Sinusoidal motion of tropical cyclones has been observed for many years, especially when short-term movements are observed by accurate fix platforms such as land radar (Fig. 3-12-2) and reconnaissance aircraft. Sinusoidal motion was observed from 131600Z to 151800z as Irving tracked north-northwestward through the East China Sea. Radar reports from the Ryukyu Islands FIGURE3-12-2. TgphoonIzvingaA been bg the M&U a%ackednoti-notihwa$a.tffau&n, Taiwan. IILv.ing and am wad actob~ the bouthw Rgukgulb.tandb acauuztely ticked by eightk.adak b.d2.b,14 Augub-t 1979,17002. (Photogtiph cowt.tebg o~ -theCen.thaL Okz.thezt3uAeAu,TOiPti, Ta&unl FIGURE 3-12-7. TgphoonIwi.ngab a WZUZfZ tiopicol depkebb~on withan expohedlow-levd dw.&uXm, 10 Algubt7979,0126Z. P,tioato intenb.i@7.tion, obbemed ~he aiJLCJU&h~COWdbAcZHM conb.iAten.tty mo.xikm convetionto ihe we,bf 06 -the&@ace cente.z. [OM.SP imagwl.g; 4s d ‘a - 2“ aQ J’ . 16/OOZx \ t # ‘a v 0 0 0 Q 0 4793 47929* & 931 8 ● : h.lruuodal motionin Tgphoon FIGURE3-12-3. AppoJLd Dwing‘d notih-notikwa.t tick &om 1316002to 151800zAuguA.t aA ob~tzvtd by tandtadah&lzt.ionA in Zhc Rgukgu IAJ?.ancb. ‘3 clearly indicate that Irving oscillated about an overall north-northwest track (Fig. 3-12-3). Unlike Super Typhoon Hope, Typhoon Irving (Fig. 3-12-4) did not follow the intensification pattern suggested by JTWC’S Equivalent Potential Temperature (ee)/Minimum Sea-level Pressure Study. This study indicates that sea-level pressure should fall about 44 mb and maximum surface winds should intensify an average of 55 kt from the point where the Qe and pressure curves intersect (see Super Typhoon Hope, Figure 3-09-2). The reason why Irving failed to intensify further is not known. The relationship between Irving’s surface . and 500 mb centers during the earlier stages of”development produced unusually large surface wind radii. Synoptic and aircraft data between 092000Z and 120000Z indicate that Irving’s maximum wind band actually existed 150–200 nm (278-370 km) west of the large, calm-wind surface center. Although the maximum wind bands did eventually migrate towards the surface center, the wind radii remained large for the duration of Irving. The large wind radii nay be related to Irving’s developmental interaction with the 500 mb monsoon low and its large areal extent. Irving never became a tight, welldeveloped tropical cyclone. Aircraft reconnaissance during the period of eyewall development indicated that Irving had a large 30 nm (56 km) diameter eye with the radius of over 30 kt (15 m/see) winds extending outward 400 nm (741 km) in the eastern semicircle. Typhoon Irving was the first tropical to strike Korea in 1979. Rapidly weakening as he made landfall, Irving spared southern Korea from the destructive typhoon force winds he had maintained through most of the East China Sea. Korea did, however, receive torrential rains which produced widespread flooding. The hardest hit area was the island of Cheju Do where 4.3 inches (109.7rmn)of rain were reported at Cheju. Official estimates reported 150 dead or missing, 1000-2000 homeless and approximately 10-20 million US dollars damage to food and agriculture. cyclone FIGllRE 3-72-4. A.&%o~h Tgphoon lavhg did not developaccomii.ng to .in.tenb.i@a.tian d.tua!ie4, Iaving _ &dpoAAc.46good @dtibandac. t&Ltgand Otii$hw, 14 Augu.$t 1979, 022gZ. 47 (VUSP .imo.g~] t 00 * [._,__ I l_.,+.-+.- +-a+ ,.. J“ : ---.,-t Q -i-l t . 4 W+ “t :-LE.d--}-J+-++- L--l--rbrt’-t-+l le\&si +. I .J. + ~, I I ) + $ .+-+-+ .=?Ylc!x [.. +fu ~-+--+--+-l--l-+’--+t+$+ —t+++-tt-+ +“-+. d--llg?.~-v..,+....+. %T!F--””+.’1”+7FTI :kiki! -1-” k lG%---t-t-l- --+- ,., —– !2E!iL_L_-= Cu “m . ‘1‘ .(,. SUPER TYPHOON JUDY (13) FIGURE3-13-1. In@ted~uy 06 .ttopi& titi06 Guam, 16 AugvAt 1979, bance (Judy) whUe&otihwt 11202. The .&atdenotti%he app.totitie Lotion 06 by a aeconti~mce a weak.wcdacecenttid.&cove.ted aLILOIa@ U.bOld 4 ho#c4ea,t&i#L.[D1.LSP .inw.gety) Of all the typhoons of 1979, Judyqs significance was only surpassed by Super Typhoon Tip. Judy eventually developed into the year’s second super typhoon, but more importantly, she served as a reminder of how rapidly a minor tropical disturbance can develop into a dangerous tropical cyclone. present, but only a few flare-ups of convec tive activity were noted. Surface circulations were broad, ill-defined and transient BY 15 August, however, synoptic and satellite data revealed a tropical disturbance, about 120 nm (222 km) east-northeast of Truk, which was to eventually become Typhoon Judy. Surface synoptic data from the beginning to the middle of August showed that the area south and east of Guam was fairly inactive. Good cross-equatorial flow was This area was closely monitored by JTwC, and when the satellite signature began to improve, a Tropical Cyw Formation Alert was issued at 1521OOZ. 49 No significant pressure falls were observed over the area as the disturbance drifted slowly west-northwestward. A reconnaissance aircraft at 160700Z was able to define only a weak surface circulation witi a MSLP of approximately 1006 mb and observed surface winds in the south semicircle of 10 kt (5 m/see) or less (Fig. 3-13-1). Judy intensified steadily while following a nearly climatological west-northwest track at 10-12 kt (19-22 km/hr) for the next 24 hours. She reached typhoon strength at After that, .alongapproximately 180300z. wave trough in the mid-level westerlies, moving over Japan toward the Pacific, fractured the subtropical mid-tropospheric ridge north of Judy, allowing her to track more to the northwest. Rapid intensification was not expected at that time, but at 161635z, less than 10 hours after the aircraft investigation, weatier radar at Andersen Air Force Base, Guam, located a well-defined circulation center moving west-northwest toward Guam at 15 kt (28 km/hr). Gradient-level wind reports from Guam, Truk, Palau and Ulithi at 161200Z also showed that the low-level inflow pattern associated with the disturbance had increased in areal extent. The disturbance continued tracking toward Guam and at 161800Z the center passed over the Naval Oceanography Command Center (NAVOCEANCOMCEN)r Guam building on Nimitz Hill (Fig. 3-13-2). NAVOCEANCOMCEN reported a MSLP of 1001.0 mb and a wind gust to 51 kt (26 m/see) at that Based on this “first-hand” informatime. tion, JTNC issued the first warning on Tropical Storm Judy at 161900Z. Postanalysis revealed, however, that Judy did not reach tropical storm strength until 170000Z. During the next 36-hour period, after reaching typhoon strength, Judy’s central pressure dropped 69 mb and she attained super typhoon strength at 200000z. Her lowest central pressure, 887 mb, was measured by a reconnaissance aircraft at 192145Z. Three distinct, concentric wall clouds were also noted at that time (Fig. 3-13-3). Super typhoon intensity was maintained until 201500Z, with gradual weakening thereafter. Forecast aids indicated that Judy would pass to the south of Okinawa, but base w her persistence track and the deep trb~ % that existed over Japan at 500 mb, Judy was forecast to recurve east of Okinawa. The steering aids were reacting to the mid-level PE Forecast series which built the ridge back between Japan and Judy. The numerical forecasts had not been verifying well up to that point, and, thus, the well-entrenched trough was forecast to persist. The numerical forecasts proved to be correct, however, and Judy did pass south of Okinawa before beginning to recurve into the East China Sea. The rapidly intensifying ridge was expected to drive Judy into the Asiah,uJainland south of Shanghai. The 500 mb Wk>ysis at 241200Z provided the first indication that Judy was not going to make landfall. At that time, she was just off the Chinese coast, but north of the mid-level ridge axis. Three-hourly synoptic reports from Sheng-Szu were watched closely and when the winds backed from east at 40 kt (21 m/see) to north at 35 kt (18 m/see) , there was little do~t that Judy had, in fact, recurved to the northeast. As Judy recurved, she was downgraded to tropical storm strength based on land synoptic data. Transition to an extratropical system occurred at 261200Z while Judy passed through the Korea Strait. Due to being still relatively weak while passing over Guam, damage there was insignificant. Damage to Okinawa was also minimal, even though sustained winds of 40 kt (21 m/see) were experienced for a 28-hour period. Southern Korea did not fare as well, however. One hundred eleven people were killed, over 8,000 houses were inundated, 57 vessels were destroyed and many thousands of acres of crops were ruined by Judy’s torrential rains and strong winds. FIGURE 3-13-2. M&oba-toghaph .tMCCkeCOtiCdd NAVOCEANCOMCEN, Guam &t&g the po-fdage 06 TO 13 (Judy)o-tabout 761$002,Augtit1979. 50 51 . J . . ..-....+. + ...;..... .“::. + +. +}. .: d 1 ’”’ .: ::.. -- -- -’- - :--“ ~~ -: :- -’- L- . ! . -1 DEPRESSION 14 BEST TRACK TC-14 ‘18AUG-20AUG 1979 MAXSFC WIND 20 KTS -.. , .+ ~ -. -1- ..,-. -.. -.. . .- . CHICHI JIMA. k +.. . Wlo” 35° P.. >., . ,“ -’”’”- 1 1. I Ujz<. ,20/c -“”’”/ -“”’- 1( . ..- . .#17 ● . . . . .. -“,, ,- -, .; ..- . 4. .,..+... P. YAP Ii’””’ MAJURO I LEGEND t“ w06H0uR t3E5TTRAcKPoslT A SPEED OF MOVEMENT B INTENSITY C POSITION AT XX/OOOOZ . . . TROPICAI DISTURBANCE ● .+ TROPICAL DEPRESSION -TROPICAL STORM — TYPHOON * SUPERTYPHOON START 0 SUPER TYPHOON END +++ EXTRATROPICAL ● ** DISSIPATING STAGE * FIRST WARNING ISSUED * LAST WARNING ISSUED ~ % -. K i.. ~.l i.. ,”. . ..’. .1 T ::::. -::;;. .: . -., ‘T ... .,. . +.. . . -: :::e:: 1::::- ..- :::.- ““” .-.. - :::. ““- . ~.... .:8” ‘“-.. . .. :::. . . . . ... .: ,.. . .,. ,.. - .,. .. ..: ““”’ . . ,. .- .,. . . . . . . -,. -. . ... -. 52 . ““”. . .. ,,, ( . -;,:::. ;. ...,- :::? ‘“. . . -::::; 4-,...@TARAWh . ... . ““’ ,. . - ...,. . . 53 135° 140 145” 150” 155° 16(Y 165” 170” 175° 54 .. .. TROpICAL STORM KEN (15) AND TYPHOON LOLA (16) Ken and Lola developed almost concurrently along the periphery of an upper-level TUTT . Satellite imagery on 1 September 1979 (Fig. 3-16-1) shows a number of disturbances organized into a line of convection ringing the TUTT in question from north of Kadena to south of Marcus. Ken developed from the disturbance just east of Kadena. At this same time, the disturbance which developed into Lola is south of Marcus and appears quite weak. The largest and most menacing middle disturbance northwest of Guam (Fig. 3-16-1) did not develop. deepened southwestward over the middle disturbance and suppressed its convection. At the same time, it divided the convective line into the two distinct systems, Ken and Lola (Fig. 3-16-2). After forming, Ken and Lola began to move in similar recurvature tracks. Ken tracked northward into the Sea of Japan of 60 kt reaching a maxim~ inte~~ity (31 m/see). Lola intensified into a typhoon and eventually transitioned into an extratropical system over the cooler waters east of Japan. During the next 48 hours, the TUTT FIGURE 3-16-1. Lineo~ .ttop.icol ddtutbancti@.omwhich TS O1OO39Z Sep 1979. (vMsPimugewl Ken ond I .’. 1 “;++ . . . . FIGURE 1979. .:../’:”..:/ , 1 3-16-2. Ken at 45 kt [23mf~ec)Awh.&Lty ond lUMSPimagexy) . .../ I Lola at 55 TY Lo&z even.tuutlg devekbped, 3122572 Aug - ‘! =-=F7F’W, 36 k,t(15m/hec].intenAi_.ty, 0’222212 - 0300032Sep ,.--.. .--..... ,..-.. .. . L,, ,i:,‘ ,,; ,.. r “ ,100” .’ ‘f: +-’:’”y?< -.: : :+4 - w- A’ B C ... ●. . -— + O +++ ● , ● * * n-w. 100 1 .-.. .. . . . 2 F“- ‘-:-“:’”“o’” ,* , *L4 r ;3~. t.* ‘“s” ‘:5 IWO JIMA .~. 13cf . *.. *..:” - , --- SPEED OF MOVEMENT INTENSITY POSITION AT XX/OOOOZ TROPICAL DISTURBANCE TROPICAL DEPRESSION TROPICAL STORM TYPHOON SUPERTYPHOON START SUPER TYPHOON END EXTRATROPICAL DISSIPATING STAGE FIRST WARNING ISSUED LAST WARNING ISSUED I i J---$ .a CHICHI JIMA 105° 1“ :T’F- .i & : . ..“p’ ,“’ t,. <x s I 170” lla I 135” I 14cf 56 -— ‘+. (17) AND NANCY (18) Typhoon Mac developed from a weak surface circulation northeast of Yap in September 1979. This circulation tracked westward, reaching tropical storm intensity by 1600002. Mac followed the clirnatological intensification rate for tropical cyclones approaching the Philippines and reached typhoon intensity prior to making landfall. Frictional effects caused Mac to weaken slowly as he tracked across southern Luzon towards the South China Sea. The unexpected development of Tropical Storm Nancy east of H’ai-nanIsland influenced Mac’s track in the South China Sea. The unexpected development of a second tropical cyclone in the South China Sea (SCS) produced a series of track and intensity modifications in Typhoon l.lac.Upon exiting the Philippines, Mac, which was originally forecast to track west-northwest into the SCS, began a Fujiwhara interaction (Fig. 3-18-2) with the rapidly developing Tropical Storm Nancy located near Hai-nan Island. Instead of tracking west-northwest, Mac tracked north-northwest, skirting Cubi point Naval Air Station, Philippines, on his new track toward Hong Kong. Strong anticyclonic outflow from Nancy sheared Mac’s convection towards the southwest with aircraft reconnaissance reporting an exposed low-level circulation of 30-35 kt (15-18 m/see) intensity on the 20th. JTWC’S real-time forecasts do not always reflect the actual intensity of a tropical cyclone. Rapid intensification or weakening, peripheral data unavailable due to geographical restrictions, and tight maximum wind bands, which are not initially detected, all reduce the accuracy of intensity estimates provided in tropical cyclone warnings. These intensity discrepancies often go unrecognized until discovered during post-snalysis, as in the case of Typhoon Mac. Weak steering currents allowed Nancy to take a cyclonic track across southern Hai-nan Island before heading southwestward into Vietnam. Nancy’s southwestward track towards landfall forced Mac further north than originally forecast. Mac eventually passed just south of Hong Kong. Ironically, Nancy’s development, which caused Mac to track towards Hong Kong, also helped to spare Hong Kong from potential typhoon force winds. Nancy’s upper-level outflow, which dominated the SCS from 19-23 September, produced strong vertical shear over Mac and slowed his rate of reintensification. Typhoon Mac only reached minimal tropical storm intensity prior to making landfall west of Hong Kong. Reanalysis of aircraft reconnaissance data from 16-18 September indicates that Mac most probably intensified to typhoon intensity by 1618002. During the period 16-18 September, aircraft reconnaissance at 160503z reported 68 kt (35 m/see) at 1500 ft (457 m) and 60 kt (31 m/see) on the surface prior to encountering moderate turbulence which forced the aircraft to climb through the overcast stratocumulus cloud layer above. Subsequent reconnaissance data at 17081OZ confirmed typhoon intensity by locating 80-90 kt (41-46 m/see) surface winds in a 10-nm (19 km) wide band tucked under the strong eastern feederband. Mac made landfall prior to the next scheduled aircraft fix with geographical constraints severely reducing peripheral data collection. Although real-time data were available which indicated Mac had possibly reached typhoon intensity, the isolated reports of strong winds were dismissed as gusts associated with lower velocity sustained winds. (Aircraft data are occasionally not used verbatum when they fall outside reasonable limits after being analyzed with available surface reports, satellite data intensity estimates and the JTWC Maximum-Wind MinimumPressure Relationship (Atkinson”and Holliday, 1977) .) During post-analysis, the reconnaissance data were re-examined using an intensity study of tropical cyclones crossing the Philippines (Sikora, 1976). For typhoons with maximum sustained winds of less than 80 kt (41 m/s?@, %~study shows that an average intensification of 30 kt can be expected for trq?ical. (15 m/see) cyclones which follow a track similar to Mac’s. Reanalysis of the period between 151800z and 1800002 shows, in fact, that Mac intensified to typhoon intensity before weakening from frictional effects over Catanduanes Island on 18 September (Fig. 3-17-1). FIGURE 3-17-1. TyphoonMac a@.z otoming Co.@wlwneA Lifand,l%if,ippinzb, 16 .se.ptembwt1979,0038Z. [lM.SPimag’#c!/) 57 t-i .,, ,.. .Q. ,.. ,’, . ..- . ..- . .,. + . ,.. . . . . . -., -- -. .4 - . -r .. -., ---- ---- ---- ---- ---- -,’ ---- -.. ,.. i - -.. ,- -., ..- . ,.. .,. . ,.. I - ., + + I b & ,, I + + I k“”+++% “** + +’ + Y + + ,, f; 1 >. ~.,,?: ,.. 00 1- . -.’- .,, -,”’ .;. z . .h: ,., ‘J””’” i h–t–– $ ,i }. -+ —-. .-1. I - -,; -.. :0 .+- 4“<’ 4’ ,t Fh t. ,.Q?:,, ,.. ., ...-,; < ““’” L.-+” ;–.++.. .+ .+ A+LL.4.4 5. >’::”.,.;,.. ; -b ..- . ,’ ~“(” .,. T ;\, , , ,+, *,:, ,.. !iY:.’- 35 cgw , t- . TROPICAL STORM NANCY FIGURE 3-18-1. Ttop.i,cu.L Stohm (18) Nancyat 35 k-t[1~mjbec].inWn&iXyjuAZa&ttm&nd&.tl on the bou,ikvcnend o~ Hoi-nunTb&lnd, 20 Septemb~ 1979,O143Z. (lMSP.Aqe.tydkom De,tg, lw, Ku& A%, Okinwz] m FIGIRE3-18-2. TyphoonMac and TJwpicaLSZohiI Nancyunda.goingFujiuham-OvMadion owt t ChinaSea, 22 Septembwt 1979, 0302Z. TfIe 4&hoIJAa%du be{oheand a@t picture? tie &qWLimpObed [00.t4bmckd 24-hoti.&dhV& ), (o~F’ hmgoly @om U& S, MU), Clahk A8, RP] .SOuih 59 120° ,., . -. ‘ - +- 125” 130 135” 14(T 145” 150° - 160” 155” :j +“ :,, f’ :; ..). 1 + ~...~ I T“”” ,.. ‘+””$ .? T“’””’”””’ *1 ~ .4.. L-..L& OWEN TYPHOON -L‘ BEST TRACK TC-19 22 SEP-01 OCT 1979 MAX SFC WIND 110 KTS MINiMUM SLP 918 1 -p- MBS 1 ::’t:::.f::f: -=--h.J. ,,. 3 lGCY Eti I $ . . PON?Pi 1. ,.. ~ AT IOSITION 1-i’ ,. S,..!.! XX/OOOOZ “ROPICAL DISTUJRBANCE ‘ROPICAL DEPRIESSION !M ‘ROPICAL STOR( ‘YPHOON‘4 ilJPERTYPHOON START iUPER TYPHOON END :XTRATROPICAL DISSIPATING STAGE ‘IRST WARNING ISSUED .AST WARNING ISSUED I 1.. .L. +., . + -L..+. 60 .. ,.. TYPHOON OWEN the 2212002 analyses at 500 mb and 200 mb superimposed. An upper-level trough is evident on the 200 mb analysis just west of the cyclone. Southerly winds of 50 kt (26 m/see) were observed on the eastern periphery of the trough. Considerable vertical shear existed in the layer from 500 mb to 200 mb. It appears that the steering and depth of this upper-level trough rather than 500 mb steering was the dominant feature in Owen’s movement. Under its influence, Owen tracked generally northward throughout his lifetime, although undergoing major changes in speed. He slowed to a barely perceptible l-kt (2 km/hr) movement just northeast of Okinawa (at the latitude of the subtropical ridge axis) and then dramatically accelerated to 24 kt (44 km/hr) 36 hours later under vertically consistent westerly steering. At this time, Owen made landfall near Osaka, Japan and began weakening in intensity while still accelerating to 47 kt (87 km/hr). Eventually, he transitioned into an extratropical system but not before reaching a maximum intensity of 110 kt (57 m/see) (Fig. 3-19-3) on 26 September. Typhoon Owen developed from a disturbance which tracked south of Guam during 20 September 1979. Two days later, satellite imagery (Fig. 3-19-1) showed that the system was organizing at the same time that aircraft reconnaissance data indicated a definite surface circulation with a 1000 mb central pressure. This prompted JTWC to issue a tropical depression warning or.the system at 2200002. During the 2 days prior to and 1 day after 22 September, the syetenrmoved on a generally westward track at 5 to 8 kt This speed and direction (9 to 15 km/hr). was in good agreement with climatological tracks. Also, the 500 mb analysis showed a strong subtropical ridge which indicated westward steering. Based on this information, JTWC forecast westward movement for the first 8 warnings. However, Owen unexpectedly turned sharply to the north and began moving at speeds of 15 kt (28 km/hr). Post-analysis revealed a possible son for this movement. Figure 3-19-2 reashows FIGURE 3-19-/. (19) Typhoon(kuen m a 1979,23262. bfWICL?, 21 S@embex 61 .tJLOpica,t diA.tr.vl- (vMsP&lllgVly) .- 11.5” /“ .. /-- 1?0” I 130” 125” I 1 140” 135° /’ t’ I J 150° 145* 155” I .J+=-.J4E<~ 4. .1 82 ./ -L . . .- . K(, . 1 MANI T .... ..,, !~++i!-~%1’ti X-’4f -!--+== . J’ -a. ‘-%-.4--- -+3 , 2 6+ . +’.”. . w .9+ . . . . w.’ 1- “t ‘0.wnukz4a tipicddqau44ion &caZed neaz 13N 137E. at2hid ..C-ri. * +j . ...+.. .1- . . ?:. . ...+. .timeanduku .. C.-ri. # f+.. FIGURE 3-”19-2, Sf@4.&& 500 Mb .i.40ti LZh.&2k “-?.inm uWhcfewnti&zh@ti] and200mbbtzau2he Septemben 1979. (thin .2im.6)adwz.! at 2212002, . %,. . 9 . . . . ,. . . “$.., -. 62 “. ..- FIGURE3-19-3. Typhoon cluenal mur.inum.intmtiy 110 !d [57m/4ccJ,26 Wptembti 1979, 0145Z. [W.SP lnwgay) 63 o~ , 120° 115” 135” 130” 125° .. . Y 145° 140” \ ... , . -.. L- - ;, . I I :? + .1. . TROPICAL STORM PAMELA BEST TRACK TC-20 25 SEP-26 SEP 1979 MAX SFC WIND 45 KTs J; -- 64 I ‘-Z 150” 155° TROPICAL STORM PAMELA Developing at the apex of a wave in the easterly flow in late September 1979, Tropical Storm Pamela tracked westward, north of the Mariana Islands, and dissipated in Typhoon Owen’s eastern feeder band under strong vertical shear (Fig. 3-20-1). (20) transient wind.band of 60 kt (31 m/see) north and east of the surface center. The ARWO on this mission indicated that surface winds may have been even higher than the reported 60 kt (31 m/see) . Subsequent aircraft investigations were not able to locate winds greater than 25 kt (13 m/see). The occurrence of maximum winds which exceed the range of the JTWC tropical cyclone pressure-wind relationship is encountered several times each season. Although several explanations have been offered for these anomalies, none have been substantiated. A JTWC pressure-wind relationship study (Atkinson and Holliday, 1977) suggested TS Pamela’s maximum intensity should have ranged between 25-30 kt (13-15 m/see) for the concomitant 1002-1003 mb minimum sealevel pressure reported. Instead, aircraft data at 2508272 reported a very narrow, FIGURE 3-20-1. TJLop.i&ttStomn PamtiuLt.hmaxinum hubzhi.ned winch06 45 /&t(23mfhec],24 Scptemba 1979,2232.?.Tht expohedIm-tevct cAm&tion m a MM.& o~ &Czongvemticat~heti pzoduced by Typhoon Cwen. (m3P.inMglM.lJ 65 115” 120” I 13C7 125° 135” 14@ .4- :i”.:,. :::: -f I’i#’ -- 149 150” 155° I i r TROPICAL STORM ROGER BEST TRACK TC ’21 030CT-070CT 1979 MAX SFCWIND45HS MINIMUM .. fi. - . . t . . “.’ i SLP 985 MBS f., ~-.... . ..’.... >A I . .,, I .. I +.. .,...+4 .. .,.,. . & . .T. 7-” & 115°” - :,8> t .. ● 1 -rw. 1 MANIL h :“:- ;$kf$< .,. . . ..L . ..- I j#’”- ,.. 61 , - ~. r+~:. em+ . ...+... .*, SPEEO INTENS:TY -“””{”:’~”Y-%”.-I-B” . . . . . . -::::: - -.. * 3 ! ’03. :“”;=oy:’f ““ t“””.+,”, , I , ;: 137 +22 . d . . . i7::- , . -.. t .- :::- >.- . . . . .-. .- . . . .-.. 40 9 04/12Z 40 WOL +21 Et’! ,. 10 04J18Z . . ● , 13 04/06z . + -.. . .- . . . . . .t . . . .. . . . .- -., a . . . - -. .TRU<K . ”.” -..’ . -. . ..----. .- -.. - -. . :::: . ...+....OTG ::: -’wo “MA --&A;cu~ -“’ “~’&” ;35-:+ ;5.” ~. x... . . ..lp(. .:l~: “:: / ~ . :: ::’.: i .- 5. . .- -.. 06- . ) W. . --.. 1 m -“” - .+ , x .- I I Hid:::: I;’:::: , <. w::., :. :“Ha: : :~’g 4’~:6: . .... .. ~.... , -“ ..~ ++”” !. -- >..’ 2 T 1P . @ ,* .,,.+... 11 “+: 0 + ul,l~ . . . . . . . . PON:F . . 45 12 05/ooz 45 +20 12 05106Z 45 11 + ;~.: +19137 . . . ?. . .-. LEGEND j ~ 06 HOUR BEST TRACK POSIT SPEED OF MOVEMENT INTENSITY POSITION AT XX/ODOOZ o.. TROPICAL DISTURBANCE ● ** TROPICAL DEPRESSION -TROPICAL STORM — TYPHOON * SUPERTYPHOON START O SUPERTYPHOON END +6+ EXTRATROPICAL t ● * DISSIPATING STAGE * FIRST WARNING ISSUED * LAST WARNING ISSUED A B C 66 -- -. TROPICAL STORM ROGER As Typhoon Owen began recurving toward Japan, activity increased in the monsoon trough that extended over the Caroline Islands. The increased activity was noted in the Significant Tropical Weather Advisory (AEEH PGTW) on 28 September. For the next 5 days, 2 weak surface circulations and associated cloud clusters within the broad trough, one southwest of Guam and the other southeast of Guam, were closely monitored. As Owen began weakening over Japan, the southwest monsoon flow into the trough oriented NW-SE increased on 30 September, and a line of strong convective activity developed from the southern Philippines to a position south of Guam. (21) 030220z reported a surface pressure of 998 mb and estimated surface winds of 40 kt (21 m/see) in a band of strong southwesterly flow 60 nm (111 km) south of the surface center. The aircraft also observed a calm wind center at the surface of 30 nm (56 km) in diameter with clear skies over the area. Synoptic and satellite data at 0312002 indicated that TD 21 was beginning to separate from the broad trough as convective activity was becoming more directly associated with the circulation center (Fig. 3-21-1). TD 21 was upgraded to a tropical storm at 06002 on 4 October based on 35 kt (18 m/see) surface winds and a 982 m sealevel pressure reported by aircraft reconnaissance at 0403082. Post-analysis indicates tropical storm intensity was attained 6 hours earlier. Post-analysis indicated the existence of a weak circulation southwest of Guam which was to become Tropical Storm Roger. During the entire time preceding the issuance of the first warning on Roger, JTWC’S attention was focused on another area of major convective activity 5° west of the circulation center which was associated with strong low-level convergence and cyclonic shear. Gradient-level winds at Yap of 56 kt (29 m/see), Palau 52 kt (27 m/see) and Guam 28 kt (14 m/see) are indicative of the strong low-level winds around the periphery of the trough. Thus, the initial and the reissued formation alerts (0206002 Ott and 0222002 Ott) covered the area of heavy convective activi%y rather than the actual surface circulation center. A break in the mid-tropospheric subtropical ridge north of Roger existed as Owen recurved over Japan. The strong midlevel southeasterly steering current along the southwestern periphery of the ridge was responsible for Roger’s 15 to 20 kt ‘(8to 10 m/see) northwestward movement. The ridge retreated eastward between OOOOZ and 12002 on 4 October as a mid-level trough deepened over Korea. The loss of definitive steering flow permitted Roger to execute a cyclonic loop. After emerging from the loop, Roger continued on a northwestward track until north of the ridge axis, after which he accelerated north-northeastward. Extratropical transition was complete by 070600z as Roger merged with a cold front south of Japan. Numbered warnings began at 0600z on 3 October when a reconnaissance aircraft at . FIGURE 3-21-1. TJLopi.ca-L StOJOIIRoget d 35 k-t[lgml~ec] .inienb.i.ty 04 Octobtz1979,0054Z. (OLL$P inugeqjl 87 ~~~ ~ 113 + 11+ ~ 115 +++++ 116 115 116 117 118 121 120 119 + 03+ % ● ✎☛ .“ 1 ● ~16 f“ -“’”””- J-J-J- -1-L 108 ~ 04112Z 04/18Z 05/ooz 05/06Z 05112Z 05/18Z 06100Z 06/06z 06/ 1ZZ 06/18Z 07/ooz 07/06z 0711ZZ - ““” 109 110 111 ~ lNTENSITY 30 07118Z 5 35 5 08/@3z 40 4 08f06Z 40 3 08/1 2Z 40 2 2 08/18Z 40 1 7 4 09/1 2Z 45 75 lo/12z , a 4 70 5 65 4 65 60 4 60 13/06Z 5 110 60 13/12Z 6 100 13/18z 60 -L-l- J119 410 121 120 TYPHOON 125 SARAH BEST TRACK TC-22 04 OCT - 150CT 1979 MAX SFC WIND no KTS 50 MINIMUM 35 SLP 929 MBS LEGEND 5 20 ~ A B C 06 HOUR BEST TRACK SPEED OF MOVEMENT INTENSITY *,. POSITION AT XX/OOOOZ TROPICAL DISTURBANCE TROPICAL DEPRESSION TROPICAL STORM TYPHOON SUPER TYPHOON START SUPER TYPHOON END EXTRATROPICAL DISSIPATING STAGE A A FIRST LAST . . . A 13/ooz 8 5 5 15/ooz 75 12118Z 50 14118z 6 12/12z 55 5 14/12Z 5 90 INTENS IT\ 14106Z 75 12/06Z ~ 6 90 121WZ 117 14/ooz 100 85 11/18z 75 QTG_ 100 3 110 3 3 INTENSITY 11112Z 75 3 10IO6Z ~ 3 95 10IOOZ 114 11106Z 75 4 60 1lIOOZ 90 5 4 09/ 18Z 50 1 75 85 09/06Z 1 10I18Z 75 6 40 1 - 3 2 09/ooz 40 2 9 3 3 J--L-L -I--I- 4113 112 . ●. -— O 44+ WARNING WARNING ISSUED ISSUED POSIT TYPHOON SASAH Typhoon Sarah spawned in the monsoonal trough during late September 1979, This trough extended from the southwestern portion of the South China Sea toward Luzon. A northeast monsoon surge existed north of the trough, while the southwest monsoon dominated the area south of the trough. The circulation was steered initially by the southwest monsoon and then later by the first northeast surge of the fall from the Asian mainland. During the last few days of September, the circulation meandered slowly toward Luzon under the influence of the southwest monsoon, and then looped over Luzon during the first three days of October as a mid-tropospheric short-wave trough moved eastward north of Luzon. Once the short-wave trough had moved east of the circulation, the northeast surge intensified and became more of an influence as the circulation finished its loop and began its south-southwest track. (22) source of food, fresh water, and other necessities for survival. Four deaths were attributed to Sarah. On 8 October, Sarah finally began to track westward and the weather finally cleared over Palawan Island and the central Philippines. Sarah’s change in track was due to the strengthening of the mid-tropospheric ridge north of Sarah from Luzon across the South China Sea into Asia. Aircraft reconnaissance early on the 9th reported that Sarah’s structure had become better organized. Earlier aircraft reported that Sarah was not vertically aligned; but on the 9th, the mid-level center had become vertically aligned with the surface center. With vertical alignment and improved upperlevel outflow, Sarah’s intensity increased to 110 kt (57 m/see) as ahe became a most impressive storm. This is in contrast to her unusual origin. After Sarah reached peak intensity early on 10 Octoberr she began to slowly weaken as On 5 and 6 October, Sarah, now a tropical storm, apparently was again influenced by another mid-tropospheric short-wave trough which moved across Sarah’s longitudinal position and induced the brief eastward movement in her track. At this time, the southwest monsoon also increased in intensity and may have been another factor in steering Sarah eastward. For almost the entire period that Sarah was tracking southward, there was a weakness in the mid-tropospheric ridge between the Philippines and the Asian mainland, enabling Sarahts track to be influenced by short-wave troughs. This weakness in the ridge resulted in midtropospheric flow that was too weak to significantly affect the steering of Sarah. This weakness allowed the surface winds to dictate Sarah’s direction of motion through the first 8 days of October. Figures 3-22-1 and 3-22-2 illustrate the surface and midlevel flow patterns which influenced Sarah during this phase of her track. During Sarah’s depression stage, strong easterlies in the upper-troposphere restricted Sarahss outflow to the northeast, thus inhibiting development into a tropical storm. As Sarah ‘proceeded southward, the easterlies decreased in strength, outflow increased, and Sarah intensified to tropical storm and then typhoon strength. It is very interesting to note that Sarah intensified to typhoon strength while tracking southward which is quite unusual for a tropical cyclone. Several aircraft reconnaissance flights reported that Sarah had attained typhoon strength even though her cloud structure was not well organized. FIGURE3-22-3. StihwLth bO k-t (31 mf~ec) In.twu.i.ty one day pfkOh to land@l ovct V&tnonI, 13 O@obe.z 1979,01362. (lM.SPlnlag’Wd During the first several days of to October when Sarah was -s@w ~oping typhoon strength and rnovYngsouth, Palawan Island and the central Philippines were battered by high winds and rain. Thes~ areas were inundated by flooding and landslides which caused massive crop damage and death. Many vil~ges were cut off from any FIG(/RES 3-22-1 and 3-22-2cuteon do.t.&Luin9 she tracked west-northwestward (Fig. 3-22-3). Sarah continued on a west-northwest track until dissipation over Vietnam on 17 October. After 20 days, she dissipated within 300 nm (556 km) of her origin as a monsoon depression on 28 September. pugti. 88 .1” $“ .U1. . ,.. 1++’”’””’; . 1“’” T“ 70 —+ vE u -0 -d +--ft-i--j++++ N+--++ 474+-+4-AL--IL +-*w&w . , , 1 1 71 t . 120° 125” TYPHOON lti 135” 140” 145” 150” 155° 16 ] TIP ,, BEST TRACK TC-23 05 OCT-190CT 1979 MAX SFC WIND 165 KTS ~ . .:; t: ! ~ ““t”” t 1 -- t--t-+ ! LEGEND ++ A 06 HOUR BEST TRACK SPEED OF MOVEMENT POSIT + B C INTENSITY POSITION AT XX/OOOOZ DISTURBANCE . DO TROPICAL ●●. TROPICAL DEPRESSION -TROPICAL STORM — TYPHOON + SUPER TYPHOON START O SUPER TYPHOON END e# EXTRATROPICAL ● ●* DlsslpATING STAGE A A ,-. .7iP . . . FIRST LAST DTG —— 04/002 04/062 04/12z 04/18z 05/002 05/062 05/12z 05/18z 06/OOZ 06/06z 06/122 06/182 07/002 07/062 07/12z 07/18z 08/OOZ . SPEED INTENSITY — 20 11 25 25 25 25 25 30 7 6 7 7 10 12 3 4 6 7 3 10 ,.. . ‘.&.#. 1 ,4=?” .~- 1+= 1:4 ~ml::~~l 135 I$f \ 9+ +’\+ +9 +++ 6+ 1 40 40 40 40 40 40 7+ + 6+ + 5+ -1- ..” TCFA~/o * 41*0 “ 4 ! 30 35 35 35 4 3 3 lfl 52 ISSUED ISSUED . + 150 10+ WARNING WARNING -j# & 05/oozZ2 1$31$4 & +..~\.~L\ 42 +d””fj ““l :]:: :. J”$JQ ~.” 72 .. .. . . SUPER TYPHOON TIP Super Typhoon Tip was the most significant typhoon of the 1979 season, and possibly the most significant tropical cyclone this century. Forty aircraft reconnaissance missions were flown on Tip, which produced 60 fixes, and thus made it one of the most closely watched cyclones in recent memory. Aircraft and synoptic data showed that Tip achieved the lowest sea-level pressure ever observed in a tropical cyclone (870 mb) and also had the largest circulation pattern on record (nearly 1200 nm (2222 km) in diameter). TS Tip’s surface position dur’~ngthis period, The best track is based almost entirely on aircraft surface positions, because the satellite fixes were based on upper-level outflow centers, and even the 700 mb center, as observed by aircraft reconnaissance, was considerably displaced from the surface center. Changes in the surface wind direction reported by Truk assisted JTWC in monitoring TS Tip during this period of erratic behavior. Post-analysis shows that Tip’s slow development and early erratic behavior are related to the weak, yet extensive circulation patterns that were associated with TS Roger. While near Truk, TS Tip was still competing with TS Roger for strong southerly surface inflow and, until the 8th, was coming out second best. During the period of erratic movement, JTWC continued to forecast a northwestward track with passage south of Guam . These forecasts were based primarily on the mid-level steering winds observed at Guam and obtained by the reconnaissance aircraft. These fairly strong winds were from the southeast and were expected to steer Tip toward Guam. However, at this stage of development, Tip was evidently too far south of this wind band and the steering in the immediate vicinity of Tip remained weak. Satellite and synoptic data during the early part of October revealed an active monsoon trough that extended from the Marshall Islands through the Caroline Islands to Luzon. Three distinct circulations developed in this trough: One near Manila, which would become Typhoon Sarah; another southwest of Guam, which would become Tropical Storm Roger; and the last between Truk and Ponape, which was destined to become Super Typhoon Tip. It is not possible to discuss the development of Tip without, at the same time, examining the development of TS Roger. The surface analysis for 0300002 showed the three circulations in the monsoon trough with strong cross-equatorial flow, most of which was feeding into TS Roger. This situation was enhanced, in part, by an extratropical trough north of Roger over Southern Japan. The split in the surface flow pattern near Guam tended to keep Tip from developing rapidly while southeast of Guam. The upperlevel analysis at the same time showed a large anticyclone north of Guam in close association with TS Roger and a developing TUTT cell about 300 nm (556 km) east of Marcus Island. The TUTT cell was moving slowly westward. Only strong upper-level northeasterliea existed over Truk and Ponape. On 8 October, the expected northwest movement began. Roger was far to the north becoming extratropical, and the southerly winds that had been flowing north began to veer toward Tip. The TUTT cell earlier near Marcus Island migrated to a position northwest of Guam, affording Tip an excellent outflow channel to the north. Synoptic and subsequent aircraft data revealed that the southeasterly mid-level winds finally began to influence TS Tip, and the 0802082 aircraft fix confirmed that Tip was heading toward Guam at approximately 13 kt (24 km/hr). The minimum sea level pressure dropped to 995 mb and surface winds were 40 kt (21 m/see). The satellite signature of the tropical disturbance near Truk continued to show improvement despite the initially unfavorable upper-air pattern. A Tropical Cyclone Formation Alert was issued at 0409002, when a reconnaissance aircraft found a closed surface circulation about 120 nm (222 km) southeast of Truk with a MSLP of 1003.9 mb and a maximum observed surface wind of 25 kt (13 rdsec). \ Tropical Storm Tip continued to intensify and accelerate, eventually to 20 kt (37 km/hr) as he headed toward Guam. Until 6 hours before reaching Guam, Tip’s persistence track and JTWC’S forecasts indicated that he would pass directly over the center of the island. Six hours before expected landfall, however, reconnaissance aircraft and radar ‘positions from Andersen AFB showed that TS Tip had turned to the west. Tip actually passed south of Guam, reaching CPA at about 25 nm (46 km) south of the southern end of-the island at -O91O15Z. Maximum winds of 48 kt (25 m/see) with gusts to 64 kt (33 m/see) were recorded at the Naval Oceanography Command Center on Nimitz Hill. Andersen AFB recorded 6.5 inches of rain between 0818002 and 09180GZ, and an additional 2.61 inches between 0918002 and 0919002. A reconnaissance aircraft fixed t%e disturbance the following day about 100 nm (185 km) southeast of the previous position. Based on indications of continual development, the first warning on TD 23 was issued at 0500002. Although the surface pressure did not drop significantly, the observed surface winds did increase, and as a result, TD 23 was upgraded to Tropical Storm Tip at 0600002. During the period from 0500002 to 0718002, TS Tip gave the JTWC forecasters a striking example of what the term “erratic movement” really means. TS Tip first executed a cyclonic loop southeast of Truk, then accelerated to the northwest, only to stall and meander to a position south of Truk. It was difficult to keep track of . . (23) Shortly after passing Guam, Tip reached typhoon strength and continued on a basic west-northwest track. The analyses over the next few days showed that Typhoon Tip was moving into an area of strong upper-level divergence which appeared to cover most of 73 the western Pacific. Rapid intensification was forecast based upon the favorable uPPer-leVel Pattern and the continued drop in surface pressure as observed by the reconnaissance aircraft. Intensification was much more rapid than expected, however, as the pressure between the 9th and the llth dropped 98 mb to 898 mb. Tip reached super typhoon strength at that time with maximum winds of 130 kt (67 m/see) reported by aircraft reconnaissance. The surface analyses revealed that the circulation pattern associated with Typhoon Tip had increased to a diameter of 1200 nm (2222 km) which broke the previous record of 720 nm (1333 km) set by Typhoon Merge in August 1951. Super Typhoon Tip intensified still further, and at 120353Z, a reconnaissance aircraft recorded the lowest sea-level pressure ever observed in a tropical cyclone: 870 mb. This was 6 mb lower than the previous record set by Super Typhoon June in November 1975. The 700 mb height was 1944 meters and the 700 mb temperature within the eye was an exceptionally high 30° C (Fig. 3-23-l). The Aerial Reconnaissance Weather Officer (ARWO) on that particular mission remarked that “...one unusual feature was the spiral striations on the wall cloud. It looked like a double helix spiraling from the base of the wall cloud to the top, making about two revolutions in FIGURE3-23-1. SupeJLTgphoonTip bhoI.tl.y befoze the 06 ~70mb wu obbehvd by htconn&i4&znce a-i.kuqft,12 Octobw 1979, 0012Z. [UMSP .imUgelgl. aecoti MSIP 74 climbing.“1 Tip maintained super typhoon strength for the next 54 hours while moving to the northwest at between 3 and 7 kt (6 and 13 km/hr). Estimated maximum wind intensity of 165 kt (85 m/see) was reached at 1206002. Steering forecast aids were useless during this period because they merely steered Tip in his own large storm-induced flow. Persistence and climatology became the primary forecast aids during this stage in Tip’s life. The immense circulation pattern associated with Typhoon Tip extended from the surface through 500 mb (and probably higher) and essentially split the subtropical midtropospheric ridge south of Japan. This would have allowed an average typhoon to recurve sharply to the north, but Tip was an atypical system and the northwestward movement persisted for the next three days. From the 13th to the l?th, the radius of surface and gradient-level 30 kt (15 m/see) or greater winds extended over 600 nm (1111 km) from Typhoon Tip’s center. The radius of over 50 kt (26 m/see) winds was over 150 nm (278 km) (Fig. 3-23-2). The aircraft reconnaissance data likewise showed that 700 mb winds of 105 kt (54 m/see) existed more than 120 nm (222 km) from Tip’s center during this per<od (Fiq... 3-23-3). r t+’ 150° . . * I . II . . J03+’ ‘1 . I 97, , The 140000ZO&but 1979bu%fa.ce (~)/gwfkn-t-leuet [ddd+ ) wind dataand Wtibute andgb.d in the u&&.i.tyo P Sup&t Typhoon Tip. Ui.nd.5peed4 ake.in Iumt.6. lPATRICK W. GIESE, Capt, USAF: Uission ARwO. 75 . 12s[ . FIGURE 3-23-2. . 1 1 1 I , 13 1 E 1: 1: . 20 N- E -20 N >m “m 3 * m / -19N 19Nd / \ . 2 \y / & 18N- –18N 42205Z 141915 /\ /“ 4 2 m’ 1. 17N. -17N 2 1’ )---- 16N –16N 0 —15N 15N E 130E 131E 132 E 1 134 E E FIGURE 3-23-3. Plot0~wit heCOtiAWICe& &@m fit26thtitin into” SupehTyphoon T.i.p on 15 Octoben 1979.Tkp’b po4i.tion4 we &ixed at 141915Z cnd142205Z. Windbahh ohe the meawuod 700mbw&A. The .tw d.@.t o~ the wind dinectbt 2.3 U%O p20tied LUWI the wind tahb6. CUZti no 700 mb tui.nd data aw.L&b.&. An “m” i.ndi- .- “. .. After the 17th, Tip began to weaken .as the large circulation pattern began to shrin~. This, together with the effects of a mid-level trough moving toward Japan from china, caused Tip to begin tracking north-. By the 18th, he was accelerating to ward. the northeast under the influence of the. increased mid-level southwesterlies. The majority of the severe damage occurred in Japan where the agricultural and fishing industries sustained losses into the millions of dollars. Flooding from Tip’s rains also breached a fuel retaining wall at Camp Fuji, west-northwest of Yokosuka. The fuel caught fire causing 68 casualties, including 11 deaths, among the U.S. Marines stationed there. During recurvature, Tip passed within 35 nm (65 km) of Kadena AB on Okinawa, which reported maximum sustained winds of 38 kt (20 m/see) with gusts to 61 kt (31m/see). Considering the size and strength of Super Typhoon Tip, the Western Pacific faired well. Luckily, the maximum intensity was reached while the system was still far from any inhabited areas. The potential for mass destruction was always there, but from a strictly meteorological standpoint, Tip was also a thing of great beauty. One of the Aerial Reconnaissance Weather Officers stated, shortly after she returned from a mission, that “...the second penetration was beyond description. This is unquestionably the most awe-inspiring storm I have ever observed. In the 2+ hours that transpired between the first and second fixes, the moon had risen sufficiently to shine into the eye through an 8 nm clear area at the top of the eyewall. To eay it was spectacular is totally inadequate...’awesome’ is a little closer.”l At approximately 1901OOZ, after reaching a forward speed of between 35 and 45 kt (65 and 83 km/hr), Typhoon Tip, with maximum winds of 70 kt (36 m/see) , made landfall on the Japanese island of Honshu, about 60 nm (111 km) south of Osaka. Synoptic and radar data from stations on the island showed that Tip niaintaineda speed in excess of 45 kt (83 km/hr) as he passed to the north of Tokyo and eastward into the Pacific Ocean. According to satellite imagery, Tip completed extratropical transition over Honehu. The extratropical low pressure center (the remnants of Tip) maintained winds of storm force, 48 kt (25 m/see) , until the 21st when it moved to a position east of Kamchatka and finally began to fill rapidly. lCAROL L. BELT, lLT, USAF: Mission ARWO. n -4 SUPER TYPHOON VERA Vera, the fourth aridfinal super typhoon of 1979, originated in an active nearequatorial trough (NET) which extended through the Caroline and Marsh&ll Islands. Vera was first analyzed as a weak surface circulation 100 nm (185 km) southeast of Ponape on 27 October and was included on JTWC’S Significant Tropical Weather Advisory (ABEH PGTw) for the next 4 days as it remained in the NET. Low-level inflowduring this period was split between several weak eddies. (24) The island chain began restricting lowIevel inflow as Vera continued northwestward toward northern Luzon. Vera made landfall north of Tarigtig Point packing winds of 90 kt (46 m/see). After landfall, the onset of enhanced low-level northeasterly flow over the Taiwan Straits coupled with strong upper-level southwesterlies over the Philippines resulted in vertical disorganization and rapid weakening of Vera. Radar and aircraft reports indicated the low-level circulation continued to track northwestward over the Cagayan River valley and exit into the South China Sea near Culili Point south of Laoag.’ The upper-level circulation sheared off near Tuguegarao and was tracked using satellite imagery northward over Aparri then east-northeastward into the Philippine Sea. Surface synoptic and ship reports at 0700002 indicated that a secondary surface center existed near Baguio. At the same time, the primary center was crossing the Cordillera Central Mountain range 95 nm (176 km) to the north (Fig. 3-24-l). By 3000002, synoptic data indicated that the low-level inflow was now concentrated into the developing cyclone. Meanwhiler the convective activity increased rapidly over a 24-hour period from 31OOOOZ to O1OOOOZ. A Tropical Cyclone Formation Alert was issued at O1OOOOZ November based on increased upper-level outflow and a continued decrease in surface pressure. Aircraft reconnaissance at O121OOZ found an ill-defined circulation center with a central pressure of 1004 mb and estimated surface winds of 15 kt (8 m/see). Numbered warnings began at 0200002 based on an improved satellite signature. Rapid intensification occurred, and TD 24 was upgraded to Tropical Storm Vera 6 hours later. Vera continued to intensify, reaching typhoon strength by 00002 on 3 November while 190 nm (352 km) south-southeast of Yap. At this time, the 200 mb analysis revealed that a large upper-lkwel anticyclone, previously located northwest of Vera at O1OOOOZ, was weakening and was no longer restricting Vera’s outflow to the north. By 0200002, the anticyclone situated over Vera had become the dominant upper-level synoptic feature over the western Pacific. After exiting into the South China Sea, the strong northeast monsoon flow accelerated Vera southwestward, and the final warning was issued at 12002 on the 7th downgrading Vera to a tropical depression. . From the time of the first warning until her approach to the Philippines northeast of Ssmar, Vera moved on a virtually straight west-northwest track. The major influence on her movement was the unusually strong mid-tropospheric subtropical ridge over the western Pacific. The strength of the easterly current south of the ridge steered Vera at forward speeds of 20 to 22 kt (37 to 41 km/hr)--almost twice the climatological average--as she passed 35 nm (65 km) south of Yap. As a result, although 3TWC’S forecast tracks were consistent and accurate, forecast forward speeds lagged behind Vera’s actual speeds. The underestimates were considerable during the early stages of acceleration. ..“ .“ . . . . .“ ● $LOwU IEvlI mm Vera continued to intensify during her west-northwestward acceleration and reached super typhoon intensity only 18 hours after being upgraded to a typhoon. Reconnaissance aircraft reports indicated Vera maintained super typhoon strength for over 24 hours before weakening as she approached Catanduanes Island. The peak wind reported on Catanduanes Island was 50 kt (26 m/see) at 0512002 as Vera passed just off the coast. FIGURE 3-24-1. Ttackb Otf hW-f!W& Od Uppt?k-&W& a@m Zhe uppex-lkvd h hmtcd add OVJW notihw Luzon. Sgnopticand bh.ip JLepoZtb at 0700002 Novonbtiindicate~econdd.ylow-Levelcente.t neat Bagu.io [WMO9~328)l.inditied bg a 4~1. Tht LZJW .&uL&x&d by bO.t.id do.tb . 0700002UULWZ pO&itiOnb wute.u (ti.nd Apu.db OJu2.inkno.tb. 79 8 x 00 . –t-+ !“, ,,. a”;.!” ‘+ ; -1 ~ 8 S#e ~g ,. -+- .s. =....: ~ (e ~. o ‘: ,.. +—t—ti— t I t’. m“ l--!--l-. - +-4 ,. ,0. +x t..+, ~, k z.. 0 i P: _., ~-a =! . I +.. --1-. ---1- –i–--l. -–t t l“” .-F--t-i -.. I t..,+. ““lV’I’ + “:”$0”0””: ;$:” ““’ ~~ . -65 . . ~.. —T— ., (“ -CT _ . -3A -E— > (“J” .,. . \ ,L/- -+– +-- -:-~i-~~ ““m I 6 -1 ,.. -- i--l z,. -0+ +-t--- -1 ----i t. -1- “< 7- .\ -– s! --+ ..,. “7 L; \. ./, - -+-—t——+—+ T Y ““\” ., +.+ +-. ....+ – –t –-l--+—+— . . ‘–-t-—--,++. ..T.. . ,.. ; t.:+ ..... ....-,?*, . ./..,.. , ---–t-+-+-+t .+ rr ‘~$ ,; .... g ,.......... , ... .... Fx 1...Pi? ‘1 “s ,0 ~-—r— .T,8,, [“:‘ -1-- TROPICAL STOF.MWAYNE Tropical Strom Wayne was first detected as a mid-level circulation on satellite imagery in early November. Figure 3-25-1 shows the broad cloud structure associated with the system. Aircraft reconnaissance around this period showed that the disturbance was most developed at mid-levels. Wayne moved northward initially and began developing a more definitive surface circulation which became evident in synoptic Eata on 7 November. Wayne lasted only a relatively short time, but he still proved to be one of the more difficult storms to forecas<;for 1979. Philippines. At the same time, strong shear did weaken Wayne as it tracked toward the Philippines (Figure 3-25-2) and dissipation occurred as he made landfall over Luzon. JTWC’S first forecasts called for recurvature. They were based on the 0800002 November 500 mb synoptic situation which showed a weakness in the subtropical ridge with westerlies extending south to 23°N latitude. Steering flow at all levels, however, was not consistent and strong lowlevel easterlies prevented Wayne from recurving toward the east. On 9 November, an extratropical system with accompanying surface frontogenesis developed north of Wayne. This caused a break in the otherwise persistent easterly flow and Wayne began to track northward. JTWC forecasts again reflected recurvature and called for early dissipation due to the strong shear from low-level easterlies and upper-level westerlies. Tbe extratropical system moved rapidly eastward bypassing Wayne. By 11 Novemberr strong northeasterlies had once again been established, and Wayne turned back to the west, ultimately, tracking west-southwest toward the central FIGURE 3-25-2. Tzopicd StMm Wayne wedening @Long bhea.tab i% approached the Ptippinti, 12 Nouembe~ 1979, C1OOZ. (lJMsPillag!aiJ) FKWRE 3-25-1. Ui.b.i2u&nce.btageo& Waynewhenthe b~b&JfI wub mainlfj ti,on, 6 Novembti 1979, 120ilZ. 81 TZOp.&t.tStom” a mi.d-tevet [OMSP lmag~] ciJLcuPa- due to j,: 1 .1/ 1. “: t BEST TRACK TC-26 01 DEC-02 DEC 1979 MAX SFC WIND 30 KTS ~ MINIMUM SLP 998MBS !-’= ,. -,. .,, “““ . . . . . .... ‘s84 - ---- -- .4 I ?* .- .A: :”:- . . --’ . -- . ;;5”, : : : ;;&;:;, .. . .“:”: . --’”” . ----- . ‘-”””’ ‘“ “ : . .. . . . . -- me”’ : “’ ., : .-:.’ - -“”””’ ..’ Y:P. ‘*L*u .o~-+”; -.”. ‘“”” ““ w)oz ..- “-- -“ . . ““@.@::::, i,, ‘-”’”” . ...?-. -. Wo,Efl I .,.- .- -.. . I , -.. . .. . . . - - I e , I I I I KOSRAE LEGEND i ~... ., 1 . . . ] ; * ..L. .. ’”--”’ .- .“ y, ~ tf !9 BEST TRACK POSIT SPEED OF MOVEMENT INTENSITY POSITION AT XX/OOOOZ TROPICAL DISTURBANCE C TROPICAL DEPRESSION -TROPICAL STORM — TYPHOON SUPSRTYPHOON START O SUPERTYPHOON END 4+-9 EXTRATROPICAL ● ● ● DISSIPATING STAGE * FIRST WARNING ISSUED LAST WARNING ISSUED - . . . -.. . . -.. ;:: +. . . l:.... . --..- * .f~ 1 -., ti “! -. . . . . . . . .K. . ;:;; ‘~ . - ~’ . -. 155” 150”. ::::T- ., . . -- “-.,’,: -.. . . . .. . ‘-’””” --””’” .- ..., . . .. . . ,, \ . :; ““”%.” ?o%~ -“””” - ““ .. . . ..* ,g$% 345” . ,. I“; * 14CY ‘.;:’: . .- 135” . +...+.-,] ~:’pt:’ ●● L .+$:”: 3@ . 06 HOUR A B C . . . s “.”””” -I- lG@ . . . . :., --”’”” --’””’ .. . . . .. . . 165” . “ ----- . ~ 170” 82 .—. TROPICAL Depression 26 FIGURE 3-26-2. .&l&&akle Tkop.Lcd @YW?.Abbn 26 deuetoped c&u&zti.on and .&@w&@d huk~ace an ah a .tMCked nok.th-notthwti-. A Ahip,aYtanALti.ng the mea, pabbed though the AtonmCW.WL and JLepotied 35 !zt[lg mfaec]w.indb in heavg &howe)LA. on Aynop.tic d~, the ,@u.t WoAn.Lng WA bbued BLued on TzopicalVepwbbion 26, bti 35 h.t-oa-gk~ti w.LndA we nevtitepotiedagain. Thi.A photo~houu TkcJp&at ?ephtidbn 26 at .@ maxinndn convective inten.hi.tg, 1979, 2237Z. (lXtj’P hag~} 30 Novmba 83 –+-+-1 ,.. ,,, . -. . - .,. ,. A ‘ . -“al_ ~ , l! 1. t w.” . Z%-/10 ,., -. \’”” ● . ‘ + . --.. .- - --.. , II -,. +-. m I ,1 , ! , 1’ , , 1 I 1 -, I , . 100{ t “.lA;, +k, *., ‘DLL :1”’ . . ‘I “&til ‘.s$1 ,,, ● :@<;,Lw~? ,. 1; a3nssl 9NIN8VM Lsvl a3nSSl 9NINUVM lSWJ 39V1S 9NllVdlSSla lV>ldOULVUlX3 aN3 NOOHdAl U3dllS lzWIS NOOHdAl a3dIlS + ~ ● * ● +++ O - , , ,.. ~ Qll , . . +’+ . . . . :::0. q,pw; - h dl ,,{,, !,- t:::.: . .. . .. . . . . . “? ~“: :: -. / ~ ,J+’ f::: 1. . .::~; - -Vyyzo IHX17 @ ,. - - -/”’- ‘“”” ‘“” - ~+’ t : . i:::i:::: . m... !“’’*i”””’l””’j”.l CIW .. . ~,~ 1111 ~NIM LZ-X i:::i::::hhk llSOd XXWl I 1 0= 8 - .,, ..- ll. -1’- 4 . 6fbt ZOOOO/XX lV NOlllSOd 3 A11SN31NI a 13dS V 1S39 WIOH 90 Imd , ‘N’:::: L--’iLt& -dii’iui+m? I ~“w,N,w ~~s )(VW 33am-33a 10 )13VM 1S39 1- A98V NOOHdAl T + I TYPHOON ABBY (27) up being unusual. On our way inbound for the supplemental fix, there was no problem reading winds at flight level or on the surface. Winds were 20-25 kt the entire way. An area of thunderstorm activity became visible ahead of us. As we neared it, the doppler indicated that the 700 mb center was in the middle of the thunderstorm. Not eager to go find this out, we went back to find the surface center. Enroute, we saw surface winds in excess of 35 kt which led us to a fairly disorganized surface center east of the main thunderstorm. just Over it was a fairly small light and variable wind center. Radar showed little curvature in the shower pattern, but the surface winds did indicate a weak,circulation existed at this first position. NO weather existed to the east of our first fix, and this position was right on the JTWC forecast track. On the second fix, things had changed. As we came in the second time, we encountered considerable precipitation. Doppler and search radar indicated a center with a possible wall cloud forming considerably west of our first fix. Winds were stronger at flight level and we penetrated a wall cloud of about 80% coverage. When we broke through, we encountered our strongest winds at flight level. The surface center was under the eastern wall cloud with a small light and variable wind center at 700 mb centered in the eye. Lightning started in the eastern wall cloud and spread around the Abby, the last typhoon of the 1979 season, developed over the Marshall Islands during early December. Abby proved to be an unusual cyclone in several ways. Throughout much of Typhoon Abby’s existence, Abby was not vertically aligned. Aircraft reconnaissance located the mid-level circulation center displaced as much as 55 nm (102 km) from the surface center. At one point, two centers were identified; a point to be discussed later. In addition, Abby fluctuated between tropical depression and tropical storm strength several times before reaching typhoon strength 10 days after formation. Within 24 hours of the first warning, aircraft reconnaissance observed surface winds of 45 kt (23 m/see) and a sea-level pressure of 996 mb. The surface and 700-mb centers were displaced by 12 nm (22 km). Abby continued to intensify to 60 kt (31 m/see) on 4 October while increasing the displacement between the surface and 700-mb centers. Abby deviated from a westward track to a north-northwestward track on”3 December with a reduced forwartispeed of movement. The temporary northward movement was associated with a deepening mid-tropospheric trough which moved rapidly northeastward away from Japan on 1 December. ~by resumed a westward track with increased forward speed after the trough axis passed east of Abby late on the 3rd. All available information (climatology, analog aids, analyses and numerical forecasts) indicated continued intensification as Abby tracked towards Guam. This expected intensification was reflected in JTWC warnings during this period. Howeverr the opposite occurred. As Abby moved west of Truk, she weakened to less than tropical storm strength. An upper tropospheric anticyclone north of Abby restricted Abby’s outflow and resulted in the observed weakening (Fig. 3-27-l). By 7 December, Abby reintensified”to minimum tropical storm strength as she moved westward and away from the influence of the restricting anticyclone. Abby then tracked west-northwestward under the influence of a mid-tropospheric long-wave trouglioriented along 142E. As the trough moved east of Abby, the subtropical midtropospheric ridge again built eastward, providing a mechanism which steered Abby towards the west-southwest. During the 8th, Abby once again weakened to less than tropical storm strength and increased her forward speed of movement. Abby was not vertically aligned from the issuance of the first warning through the 9th. On the 9th, aircraft reconnaissance making a supplemental fix at 06172 observed that Abby possessed multiple 700 mb centers. By the time of entry into &by for a levied 08302 fix, only one well organized, intensifying center was found. The following is a storm mission summary by the Aerial Reconnaissance Weather Officer (ARWO), w~~~de the double penetration into Abby: mission started out as a normal fix but ended FIGURE3-27-2. Typhoon Abby’balooout$?owcen.tw OJW indicated by cwLouM,9 Oecembez 1979,0144z. [VW’ imagw) Figute3-27-1d on nextpage. FIGURE3-27-J ~ on ~o-%xuing puge, 85 ~.~ 1“ t.. ilm.-J,..’, ,. i i mm- i+-+-+- ~Y2 : , ,\l , # ‘+~: 1200 mb &?.ILP.MItine aJU2@ 04 Guam which gxedhj .te&&&ted ; ! .. -.,. I ;fi .. “ I %4 >, !?T’t’+7@’f++ ‘=-’FF’WRE3-’7-’” ...J.-.L..L ....M&~~noMT””o’T”” T notihtwt AIREFS d mtell+e-devtd ,[, ~ )* d 060000z WC57LWI 1’+17 aqTyphoon Abby ’b OU.?3%W. @~ $e 250mb ~0 150 mb ~ev~. UIC moat I dominant cIW2C@Ont , . . . ... ., “,,+.,. \ r Y +,-d : .+ * ,,, ., ~ b, ,.. I - I . eye. Our drop was made as close to the surface center as was possible and indicated a good 988 mb sea-level pressure. The 700 mb height was down 72 meters from the first fix. The positions were 85 miles apart causing me to believe that two centers existed for a short time with the latter becoming the predominate one. The pressure profile seems to indicate this theory....”l Satellite imagery at 0901442 also indicated the possible existence of multiple outflow centers (Fig. 3-27-2). While Abby was reorganizing into a single center, she began to reintensify to tropical storm strength. By the 10th, Abby had attained typhoon strength which made her the last typhoon of the decade. A mid-tropospheric short-wave trough moved from mainland China into the Sea of Japan and deepened on the 10th. In response to the short-wave trough, the subtropical mid-tropospheric ridge again receded eastward north of Abby. The interaction of these two synoptic features allowed Abby to again track northwest. On the llth, Typhoon Abby recurved in response to another midtropospheric short-wave trough, which extended further south than the trough on the 10th. This last trough in the series moved into the northern part of the South China Sea and deepened, causing Abby to finally follow a recurvature track. Typically, recurving typhoons have their maximum intensities either less than 12 hours after recurvature or prior to recurvature (Riehl, 1971) . Abby, however, did not reach maximum intensity until 36 hours after recurvature. By 13 December, Typhoon Abby reached maximum intensity of 110 kt (57 m/see) with a minimum sea-level pressure of’951 mb (Fig. 3-27-3). AS Abby continued toward the east-northeast, she approached a regime of very strong westerlies in the middle-and upper-troposphere. The strong westerlies induced Abby’s acceleration lCHARLES B. STANFIELD, L%Pt, USAF: Mission ARWO . 87 TROPICAL STORM BEN (28) FIGURE 3-2~-l. Tzop.Zcol StomI Ben at 40 kt (21 ItI/bCC] h.tenbi.tij, 2~ (ktobe,t 1979, 00592. Ben WA Zhe .tiu.t tiopicd cgcbne h the uw.tatn Mona%?audic dwing 1979. [m.w .onag+vy] 89 2. NORTH INDIAN OCEAN TROPICAL CYCLONES seasons between the northeast and southwest monsoon periods were the favored “cyclone seasons” (Table 3-4). This was an above normal season with most activity occurring during the fall transition per~od. Durina 1979. troDical .–– —. 7 significant cyclones occurred in the North Indian Ocean area (Table 3-3). As usual, the transition TABLE 3-3 NORTH INDIANOCEAN 1979 SIGNIFICANT TROPICAL CYCLONES CYCLONE TC TC TC TC TC TC TC PERIOD OF WARNING 17-79 18-79 22-79 23-79 24-79 25-79 26-79 06 18 21 27 29 16 23 MAY-12 JUN-20 SEP-23 SEP-25 OCT-01 NOV-17 NOV-25 CALENDAR OAYS OF WARNING MAX SFC WIND EST MIN —SLP NUMBER OF WARNINGS 7 3 3 5 4 85 50 25 55 35 26 ; :: 967 985 1000 980 995 994 995 t4AY JUN SEP SEP NOV NOV NOV 1267 581 694 1108 720 547 1071 :: ;: 7: ,24* 1979 TOTALS OISTANCE TRAVEL LEO 93 ●OVERLAPPING OAYS INCLUDED ONLY ONCE IN SUM. TABLE 3-4. 1979 SIGNIFICANT TROPICAL CYCLONE STATISTICS NORTH INOIAN OCEAN JAN FEB MAR APR MAY JUN ALL CYCLONES o 0 0 0 1 1 00 (1971-78) AVERAGE* 0.1 0 0 0.3 0.5 0.3 0 FORMATION ALERTS 7 of the B (87%) Formation Alert Events developed into numbered cyclones. WARNINGS Number of warning days: JUL AUG 0 SEP OCT NOV OEC TOTAL 2 1 2 0 7 0.4 O.B 1.4 0.3 4 25 Number of warning days with 2 cyclones: 3 Number of warning days with 3 or more cyclones: O ●Frcm 1971 through 1974, only Bay of Bengal cyclones were considered; the JTWC area of responsibility was extended in 1975 to include Arabian Sea cyclones. 90 +.. . . . . [ .+. . . . . . . . . . . . . ,. [ YCp:n+.. 1~ . w . . . . . . . . . . . . . +3. “s-7 ~. Ml”’ J.- /:, L -. . . . . 7 + t“/K’7t .. . , , .-.. k .’>. . . . . . . . .. . . . . . . . .- ,- . . .- . .- .,. . . . . ,+4, , . .- -.. . . ,- . . . . ,- . . . . . .. . . . . ,. . . . . -. . . . . .-.. , . 15° . .. . . . .- . .. . . . . . . . . .-.. . . . . . -.,. . I 1 . . ,,. r ,,. . . . . . . . . . . .- t . . . ,,, . -.. , . .,. . ,., , .,, -.,, . . .,. , ... . . . .,. . .,. . ,,, . .,. . 1 . . ,.4, ..+. . .. . . . .- . . . . . . . . . . . . . . . . . . . #., . .- . .- 55” . . .- . . . t 1 .,.. ... , t 60” . ..- . -.. . . , . ..,. . ,.. . .,. . ... . . . . . . . . . . . . .. . . . ,. . . . . .“. . . . . ,. . . . --., 65° .-. -.. . . . < --.. .- . . . . . .. . . . . . ..- . ,,, . .,O . , .,. . ,.. .- , ... , ., I , ,- . , m“ . 75° . . . # f 1 t Em I . 1 }0”+ . . . 1 . . J\p#–/ 7 1 I . . =Y’-Y’V”U”w“)”’+ ”””+ . , w , . . : o“: .,. . ““+” . . . . 1 c Z%p’9 ”””t”””’-t””””to . . -., . . . . . t:o’+ /, Jc . -.. 85° ! ‘. . -.. . .- . . 1 # 0° .,. . . . .. . . . .- . . .- -.. .- . , 90° . ..,. . . . . , 95° . %: . . . . t 5“ G“ @ Lr. . .: .,. . . . . . Y -m J-- . IQ .-.. . . . . .. . 1 . . . --.. . . . . . . . . ..l. . RI 1 ~ ..\. . K< “O . . . . “* +kk—+—— J-.... . t-?- {:-;,<% ,, *.-“ [ . . . . .. . . . . T-r’’ t’xr”“’x”’ % “a ,“-, 00 r- L. 92 ,.. ,U. I ,.. > . *, .0. . . G“”””””” . . . . . . . .“ . . . t . .-.. ..(! e.. . . . >. . . . . . ““ . . . ‘N-, . . . . . . . . . ” . $ .+ .,.. . . . . - ----- -“.”” -.. ‘Q . . . . . . . . --...’- . -“”. . t - -. . . . ..- ~ ~ ,. ,. . . . . . . . . . . .-$.. --. . ..- --.:. . -. ----- . . . . . ,. . . . . . . t+-.. . . . ...-.’ “’-N-””””””’ % . . ..- .iw . . .... l-u... ... .). . -. .. TC 17-79 TC 17-79 was the only significant tropical cyclone in the Bay of Bengal during the 1979 spring transition season. Attainin9 typhoon intensity, TC 17-79 was the most destructive cyclone in India since TC 22-77 (Nov 1977) which, coincidentally, followed a similar track. began tracking slowly to the southeast possibly initiating a Fujiwhara type interaction. By 080000z, a mid-level anticyclone had formed in the northern Bay of Bengal with east-northeasterly steering flow over TC 1779 resulting in a west-southwest forecast track. From 080000z through 090000Z, while TC 17-79 intensified (Fig. 3-29), the dominant steering flow shifted to the south then southeast as the mid-level ridge was replaced by a trough and the upper-level trough dug southward over India. AS a result of this shift in steering flow, TC 17-79 executed a tight cyclonic loop from 0800002 to 081800Z. From 7 through 9 May, though satellite fix position accuracies improved due to the formation of a well-defined eye, forecast errors increased appreciably due to the erratic movement. A Tropical Cyclone Formation Alert and the first warning were precipitated by synoptic reports received from ships participating in the First GARP Global Experiment (FGGE). At 1200Z on 6 May, these ships’ observations defined a cyclonic circulation near 07N-088E with reported surface pressures near 1003 mb and wind speeds of 20-25 kt (10-12 m/see) . The first warning on TC 17-79 was issued at 061507z. From 060000z through 061200Z, a strong mid-tropospheric ridge extended westward along 15N with southeast steering flow dominating TC 17-79% movement. During the same time period, a short-wave trough, evident at both middle and upper levels, was deepening over India. Interaction between this ridging and troughing resulted in a loss of definitive steering flow in the vicinity of ‘lC17-79, producing an erratic north and then south track. Also during this time, TC 16-79 located in the southern Indian Ocean about 750-800 nm (1389-1481 Ioa)to the southwest, By 091200Z, southeast steering flow became dominant with TC 17-79 oscillating about a northwest track until making landfall over India (Fig. 3-30). TC 17-79 struck the east central coast of India at 120800Z, 45 nm (83 km) north of NellOre with maximum sustained winds of 80 kt (41 m/see). Twenty-one deaths occurred-and--over800,000 persons were left homeless as a result of TC 17-79’s passage over the Nellore district. FIGURE 3-30. TC 17-79 @t p4.ioIc to making 1$.n@@ ouem mt ccnakzl India with 80 fat [41 m/heel in.twify, 7’Zhky 1979, 05562. (l?MSP.imagvuj @m AFUIJC, O{{@ AF8, Ncbmfza) FIGURE 3-29. TC 17-79 kth weU-de@ted M18U’.O2? &gnaaime O!LUL@the MMJ2C cyc-f!onic .&op,8 w 1979,05282. [DK$P~my@mAFWC, 066wJZAF8, Neb/uzAka] 93 “o ccl b -y i= ;? . . ‘5 ‘ “g . .- . ~. -. .. . . ‘t””’ . .,. . . --“””’“$”- -“”’”“ --“-’”- . , . . . . . . .%. .,. . . . . . L .. . .- -.. Ci ”””’” ..---. .- -.. . ,.- ,T . -:;:: . . . . . ..- . . -U:; . . . .: :k . . . . ii..,. ..,. 1 ..““ . .- -.. -.. .Lf)8 ‘a)’ . . ““”’”-”’”” + . . xl- . . ““””% .,.’ . .“”, . . ‘: . . . . . . .. . . ..- -. . ..- -,, . -::::-::.::; ::::’: :::::: :::::: --.. . . . . .. . . . z ” ., ... .... .... .... ..-. .t . . . : :: . -.. . . . . .. “- . . . .- _? ..- .. . . -O0 . 544””””” ,E: ..-. . 1 . ‘“”””“’:”’‘“”” -. .. ..- I . 1 . . . ----.- . ..- kl I . ----. . . . )- $J ,-- ;: . +? 1 . . . . ‘“” ‘“ ‘-y “ “o . ~gv: . . . rk, . ‘~’~” :. - -. .. . 2’”” : :::::- --+ ““””” . . . “o : . ..- . . .- -..... -::::- -!. ““””’ ‘ ! . . . . . . . . . -::- . . . . . . . . . . . . . . ... . . -3 0 & ~ m a) b ?0 F- ?? () 00 0 -,~ -- ::::: --;;;: -o : : --;;;; -;: - :“::: : -.::.:: --’””” w 0o“ : - ~ --’ -b --’ “-’””- “ “m .. ...‘L& ~~o, :7 ‘1: ..- \}): . . . . . M , [,,,,: ?L4M33L-.V -t -?’j“ r Q-’ “$ ~ ,.. ,.. N ~ )’‘ .,. r - ~-l . 7 . . . . .. . . . . . -.-. . . . . . . . .,. m Q~~ !34 .. TC 18-79 tion, a surge in the monsoonal flow occurred and a low-level jet could be traced from the .Somalicoast extending eastward across the entire Arabian Sea. The strength and persistence of this feature aided the formation of TC 18-79 in the cyclonic shear side of the wind maximum. As TC 18-79 intensified and moved westward, the southwesterly flow strengthened to a point where 65 kt (33 m/ see) surface winds were observed 600 nm (1111 km) away from TC 18-79’s center. Examination of the visual data of Figure 3-31 shows cloud streets indicative of this strong low-level flow from 05N to 12N between The gale area persisted durinq 55E to 62E. TC 18-79”s dissipation over land, weakening gradually with time. Interestingly, postanalysis reveals the maximum winds in the gale area exceeded the maximum sustained winds estimated in TC 18-79’s center. TC 18-79 began 1714002 June 1979 as a monsoon depression in the Arabian Sea and tracked virtually westward throughout its life, finally dissipating over the Oman coast (Fig. 3-31). Althouqh TC 18-79’s movement was confined to a narrow 2-degree latitudinal band, the extent of the meteorological hazard from gale force winds encompassed roughly half of the Arabian Sea. .These gale force winds were produced by the interaction of TC 18-79 with the normal southwest monsoonal flow over the Arabian Sea. During this season, a climatological low-level wind maximum develops off the coast of Somali. Normal wind speeds can reach 3540 kt (18-21 m/see), but the gale area is generally localized near the coast. However, beginning 2 days prior to TC 18-79’s formd- n coab.t FIGURE3-31. TC 18-79&mated jut 066 the wLthga.&~omt@kdA to ~/tcAOU7%,20 June T 1 79, 07312. Suptipobed ahe bhi.p ohbemw.tiw at 2006002. (V$KPkagag@ omAFQ3c, O@t-tAF8, !@kutil 95 + 55° 1 60” , 1 - ‘-- - iix 65° A \ -1 - 70” 1 -, ‘r”-” ‘(; - J 1 }.”” t “+” ... . I . . . ,. t . -. . -”--” . +“”\”+ . t . . I “ Wwklt “ ..’..... . hj ~ .’ $. 1 . . .. . .. . . “ MINIMUM /- SLP 980 . ...,. . .,. .. . . . . .. . . . . . . -. . . . .- -.. . . . . . . . . I I .,. -. . . . ----- 50 2-76) . ---. -.. 45° 2 (NEW . . 7’. .- -.. 1 . . . ----- . 1 t . . . . . . . . . # 55° -.. . . . . . . . .- . . . .- -. . . . .- . . I , . . .,.. .. , 60° . ”-” i{l; ~ ‘+- ‘“”””- . . L- . -“”””, ! . -.. .- i “t “ :. . . . 10I3’ . ,’ . . . t “ “ . . ‘n;%“ -uA\’ “~-~_”~ ““. -L ~ -r. ~~ -.. . --- . .- -.. . -.. :0: . . . . . -.. . . .. . . . ~ - . ----i ,-,-. MBS . “% “ . . BESTTRACK TC23-79 21 SEP- 25SEP 1979 MAX SFC WIND 55 KTS . -= 95” w 85” , --+?-T * . .. .//. ::”- .? . . . . ..- .... .. -.->. . H kL-2-L7 rr-- “::Yw’ i . . . . --.. . ,- -.. “’ . . .. . . .. . ‘“” R&~( $“”””- ‘-’” ‘,}-~~t~”)[t’”]t LZ3. . 8@ -1-t-r “1””” ‘“ 75° ““/’”- - -“”””” -x- r , ! -- . I ! 65° -’.’- . . . . -..’. -1-’. . LEGEND ~ 06 HOUR BEST TRACK POSIT A SPEED OF MOVEMENT B INTENSITY C POSITION AT XX/0200Z 000 TROPICAL DISTURBANCE . . . TROPICAL DEPRESSION -TROPICAL STORM — TYPHOON + SUPERTYPHOON START O SUPERTYPHOON END +.$+ EXTRATROPICAL ● . ● DISSIPATING STAGE * FIRST WARNING ISSUED * LAST WARNING ISSUED ,. -.. ., . . .. . . .. . . -..<. t I 8(Y ..- -.. . .- -.. BESTTRACK TC 22-79 21 SEP-23SEP 1979 MAX SFC WIND 25 KTS MINIMUM +o’t—t— Ill! . . . .... . . . .. . . . . .- -.. .- . . . 1 I 1 ! 85° SLP 1000 . . . . 1 ....1 r,,, . . -.. -.. -.. 90° MBS . . . . .. ..- . -w . 5° . . . -% .. . . . -.. -.. , 95° . . 0° . . %: . . . , , 5“ -00” co Y2 45° 55° 60” 65° -->!’ +>. I . .“’ - “ -l . 5-”- 70° . .,, . +-” .. , . .. 75” . .. JJ- (J . 80 . . . . . . ‘r’i’’”- . . . . . ...+... L.A “ ‘ ~ 85° ( . ~....<, .~. -, -K.k -“? . . . . . ,.. . .,,L t “=t%t+k~-+4~. . . . ..J-. -;:::- . 1 BESTTRACK TC25-79 16 NOV - 17 NOV 1979 MAX SFC WIND 40 KTS , “ . MINIMUM SLP 994 . . . .. . ‘ 40— I . . L ‘-r’””’ -Y. . - . l!o~+ .,, -- . ~ -. -. . ..- -. . ..- ... -. . ..- -. . ..- . -’””- ...+... . . . . . . . . . . . . . . . MINIMUM j+:, r~ 51P 995 . . ; i 25° *T MBS . ti , k . . . k -A....&.. TCFA~” l\ ~ . . . . . ..- .. . . . . .,. -“””- -“”””- I ~ . . . . . -.. . . . I ~,f” ~’” -q--?/ ,q .A--J- .,. . +. . . .,. 100” 33” .!. 4.. w u . 95° -::: . ... ..- . . . . . -., . ...._ MBS . 7-– BESTTRACK TC 24-79 29 OCT -01 NOV 1979 MAX SFC WIND 35 KTS 1 t . —-7-- .--’ - “ - ‘“”’- ‘w . . . . . -.. . . . -’” “.”””- 5“ LEGEND ~ / . . . . .. . . . . . . . . -. . . . , A B C 000 .,. ... -- “.””” 1- ‘“’””. -. . . . . — + 06 HOUR BEST TRACK POSIT SPEED OF MOVEMENT INTENSITY POSITION AT XX/0200Z TROPICAL DISTURBANCE TROPICAL DEPRESSION TROPICAL sTorcM TYPHOON SUPERTYPHOON START . --. . .. . .. . . ..- -. . ..- . . . ..- . . ..- -. . . . . ..,. . -. -, .,.. . ...,. . ... . . . . . . . . . + . 0° ... . . .- .,. . . .. . . . .- . , - -,, . . .. . . . . . ... . . .- . . ,+. ,., , ,,, $; co JO $5° 95° 60° 65° 70” 1 “\” . . . .-. “ “ - “’.’”\ “\””” -“””” % “J” ‘ -“.” 1 r ./. ““ f’ ?-@-.-”- 1 .- . 80’ . ..- ““. (. -~RtiH( “~,: ;..- 1 75” 85” , :. . >.<. --- . ;+~fl -.-k% - -- ‘--~ . . . ..- -. .. . . . ----- . . --, . . . .,. . -- . . . . - -.. . ----- . . .. . . ---. -- . . BESTTRACK TC 26-79 .23 NOV-25NOV 1979 MAX SFC WIND 30 KTS . . . MINIMUM . ..- . . ; ~k- ‘“” q+fi. ~J=j: :: ->-+ : ~J‘; “~ “R~ .D:&i ‘-” ; 25A4z . Iocf :+ ~ ‘0 ); - -“”’ 7- .. : ‘ii ~ ‘“.,.[ ” “ “-”” SLP 995 MBS . ..>” I . ~ --,”~ ~ --’. . . -- . 95” =i,Q=”- { . m 1 ).. .-L. ? ‘J ;fx’ --“-”=0 S.. .J . . ..J .+..,- k&I-d 4.. I 45” /.+ 1 . . t ..+. .$ I I 5ff 55° ‘-i I I , ,.. . t“””’t” . . . .+””+’ LEGEND . . l-406 H0uRBEsT TRACK POSH A SPEED OFMOVEMENT B INTENSITY C POSITION AT XX/0200Z . . . TROPICAL DISTURBANCE . . . TROPICAL DEPRESSION -TROPICAL STORM — TYPHOON + SUPERTYPHOON START o SUPERTYPHOON END +++ EXTRATROPICAL ● .+ DISSIPATING STAGE FIRST WARNING ISSUED LAST WARNING ISSUED * I 60° ....#.- J 65° 70° 36” ..,. . . . . . . -.. I 75° I 1 . .- . . . . -. . . . ..-. . . . , I , 80 . . . . . . II ~B . . I . . .. . . . .- -.. . .. . . . *’”- -“”’- 8Z’”” ,.. ! I ~ y 1 1 . .- ‘“”’”” . ...’. 1 -.% ) 9 o“ . , 95° J5” ?OOO ~ 26-79 FIGURE 3-32. TC 26-79 a on expowd &X.U-&Vd &JW.LNowmba 1979, 04552. [VM3P Anaguy @om AFG%oc, 06@tt AFE, N@uulu} IluXon,24 99 CHAPTER IZ SUMMARY OF FORECAST VERIFICATION 1. ANNUAL FORECAST VERIFICATION and are disDlaved in Table 4-1. Annual mean errors for ;ll-tropical cyclones are listed in Table 4-2 for comparison. Frequency distributions of the vector errors for 24-, 48-, and 72-hour forecasts on all 1979 tropical cyclones are shown in Figure 4-1. Annual mean vector errors are graphed in Figure 4-2. Western North Pacific Area a. Forecast positions at warning times and 24-, 48-, and i’2-hourvalid times were verified against corresponding best tracks. Vector errors and right angle errors for individual tropical cyclones were calculated TARLE CYCLONE ::: 17. 18. 19. 20. 21. 22. 23. TY ALICE TX BESS TY CECIL TS DMI TD-05 TY ELLIS TS FAYE TD-08 TS GORlY3N TS 350PE TD-11 TY IRV2NG ST JUDY TD-14 TS RSN TY LOLA TY NAc TS NANCY TX OWRN TS PAMELA TS ROGER TY SARAR ST TIP 24. 25. 26. 27. 28. ST VSRA TS WAYNE TY ASBY TD-26 TS BEN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. ii: 9LL FORECASTS 4-1. FORSCA8T POSIT ERROR 18 ;: 23 12 25 35 43 23 23 47 26 18 33 :2 23 28 25 :: ;: 43 27 31 21 34 25 TAEIJ? 4-2. WARNING ST ANGLB SRROR # POSIT ERROR WmW8 105 114 51 11 15 11 16 12 21 21 20 12 16 30 17 12 19 13 10 16 19 15 22 19 16 15 20 14 17 21 40 24 6 22 20 5 13 33 14 38 39 16 i; 60 23 22 52 6 1:: 158 71 138 195 129 134 144 163 105 157 116 8S 93 116 146 254 195 61 135 14s 170 164 55 1s 10 81 16 ANNUAL 1: 23 35 14 37 6 83 73 62 1;: 57 86 70 90 75 94 98 51 43 60 64 66 86 78 15 93 :! 69 115 108 28 89 124 695 MEAN 24 HOUR RT ANGLS ERROR FORECAST 77 VECTOR 1971 1972 111 117 1973 1974 1975 1976 1977 1978 1979 108 120 138 117 148 127 124 48 HOUR POSIT Rl ANGL8 ERROR ERROR —— # NRNGS 47 17 37 23 3 18 17 4 9 29 10 34 36 5 10 21 27 9 33 2 13 39 56 19 16 48 3 6 591 FmiF WRNGS ERROR 72 FIR ST ANGLE ERROR — # WRNGS — 222 265 191 244 175 164 131 171 43 13 33 20 338 34s 320 315 271 240 215 257 145 167 396 173 266 138 286 173 296 278 172 196 216 250 103 185 180 113 99 ;8 2% 138 118 111 148 152 1s6 158 14 14 3. 5 23 6 30 27 1 7 19 19 4 29 449 376 171 441 277 278 188 129 344 213 1 21 2 26 23 415 2s7 279 227 327 195 236 227 219 256 3 14 19 1 25 251 110 259 249 362 286 108 86 142 111 295 19s 9 34 52 15 12 39 303 143 345 385 443 338 178 107 214 247 413 21s 4 27 48 11 4 26 316 223 368 3;: 121 140 287 16 2 226 151 471 39 9 :: ERRORS FOR THE WESTERN NORTH PACIFIC. 72-HR 48-SIR 24-HR YEAR PACIFICSIGNIFICANT TROPICALCYCLONES. ERROR SUM14APXFOR THE 1979 WESTSRN NORTR VECTOR RIGHT AWGLE VECTOR RIGHT ANGLE 64 72 212 245 118 146 317 381 177 210 74 78 84 71 83 75 77 197 226 288 230 283 271 226 134 157 181 132 157 179 151 253 348 450 338 407 410 316 162 245 290 202 228 297 223 RIGHT ANGLE 100 1 100 200 300 aa 600 500 NAUTICAL MILE 700 800 900 1000 1100 700 800 900 1000 1100 700 Boo 900 Woo lWO+ ERROR 50 40 N i B 30 E R j I : 20 s E s 10 0 100 200 300 400 600 500 NAUTICAL MILE ER~ 50 w 40 N i : 30 R ~ : 20 s : 10 0 100 200 300 400 FIGURE 4-7. i%e.quency d&t4ibtin tiptcal cgcbnti in 600 50+3 NAIJtlCAL MILE ERROR and 72-hmLJL ofj 1979 24-, 48-, .i%z we.b-twus NoJ@L Pa&fic. 101 60JlW.&t Vb3X%t VULCW 150a & @3ni&.#u WESTPAC FORECAST ERRORS 0( NM 500 B 450 ~1 400 35 350 300 30 25 250 10 200 15 150 10 100 5 50 D 1971 1972 1973 FIGURE 4-’2. Annual 1974 umtoz mo.u 1976 1975 (m] 60JLd.t cydonu 102 1979 1980 in the wc!h?xn Nom% Pau@. 1977 1978 Intensity verification statistics for all significant tropical cyclones in the western North Pacific area are depicted in Figures 4-3 and 4-4. The average absolute magnitude of the intensity error as well as the intensity bias (algebraic average) are graphically depicted. An analysis of the errors indicates that JTWC intensity forecasts often lag true intensity. In intensi- fying situations, JTWC underforecasts, while in weakening situations JTWC overforecasts. This causes a large average magnitude error, but a small average bias. Verification of intensity forecasts by objective aids is also depicted in Figures 4-3 and 4-4. (An explanation of the objective forecasting aids is found in this chapter, Section 2Comparison of Objective Techniques.) KTS 40 I(TS 40 30 30 20 20 10 10 0 I Q 0 -10 ~ HRS - KEY JTWC — CLIM -----C:T;: .--=..-.. ----ECR _ -lo 24 48 72 HRS 24 48 72 / FIGuRE 4-3. FIGURE4-4. Compal.i40n 0{ aw.kagcintenbtiyVM.oti (btiti) dotd-t Cy&OYZ&4 -in tit w.?A.teh.n NonthPac.ifjic. CompoAiAon oh ave.kagc intenA.&yehAom4 (mzgtie) AohaU cyctontiin .thc wtitctnNo&thPac.@c. 103 b. North Indian Ocean Area area. Table 4-4 contains the annual average of forecast errors back through 1971. Vector errors are plotted in Figure 4-5. Seventy-two hour forecast errors were evaluated for the first time in 1979. Ocean Forecast positions at Warning times and 24-, 48-, and 72-hour valid times were verified by the same methods used for the western North Pacific area. Table 4-3 is the forecast error summary for the significant tropical cyclones in the North Indian FORSCAST SRROR SUMRRY FOR TSS 1979MATS SIGN.7FICAWT TROPICAL CYCLONES. TARLE 4-3. WAP3i2NG POSIT ERROR CYCK)WE TC TC TC TC TC TC TC 17-79 18-79 22-79 23-79 24-79 25-79 26-79 ALL FOSECASTS ST ANGLE EPJtOR 139 137 122 160 190 189 14a 151 ;: 31 26 12 10 14 13 8 10 46 24 93 17 24 34 21 WSNGS .— tOSZT sRROR 1:: 103 B3 22 1 7 9 9 4 5 233 363 170 253 482 121 163 192 284 122 104 332 73 21 18 4 3 5 5 1 2 99 63 270 202 38 ERROR 95 78 90 ANNUAL M23AN FORECAST ERRORS FOR THE NORTH was not included prior to 197S). TARLE 4-4. 232 1971 107> ----- 101 --- 77A “-. 99 182 137 145 138 122 133 151 1973 1974 1975 1976 1977 1978 1979 INDIAN :; 108 94 86 99 INDIAN 112 299 238 228 204 292 202 270 160 146 144 159 214 128 202 FORECAST # WRNGS — 346 296 14 773 1036 629 902 2 1 437 371 17 ERROR .— (the Arabian Sea 72-HR 410 292 OCEAN 72 HOUR RT mGLE ERROR Posm s wRNGS OCEAN RIGHT ANGLE VECTOR RIGHT ANGLE VECTOR E“ ERROR —. 48-HR 24-HR YEAR I POSIT =R .— INDIANOCEAN 48 HOUR 24 EOUR # WRNGS :: 54 48 48 50 52 I Forecast intensities were not verified. VECTOR RIGHT ANGLE 437 371 ERROE3 NM NM 500 500 437 ) 72HR 43NR4 i+ 400 10 400 “\ ‘s ‘\. 300 a* — — — 300 h3NR 200 200 1 )y2 %* . 13?-, *,< ~:m,-, ,38 b,=,-,, ~z?-s-’.’i ~ .*.-:4 J24H’ 100 100 0 1;2;1 1972 [4) 1973 (41 1974 <1) 197s (6) 1976 (s) 197 (5)’ 19 (4T F3so o w ABABIAN SEA NOI’ INCWCSD PRIOR TO 1975 FIGUKE4-5. A& mean vec.tot eA.ZOZA /nml doa ul-t CY~Onti kn fie No~ In~n Ocean. 704 .-. -. 2. COMPARISON a. OF OBJECTIVE TECHNIQUES cyclone forecast positions and intensity changes for initial latitude/longitude positions. The data are arranged by months and are based on historical data which includes 1945 to 1973. This detailed climatology replaced the previous JTWC climatology on 1 September 1980. General Objective techniques used by JTNC are divided into four main categories: (1) climatological and analog techniques; (2) extrapolation; (3) steering techniques; and (4) a dynamic model. The analog technique provides three movement forecasts: one for straight moving cyclones, one for recurving cyclones and one which combines the tracks of straight, recurving and cyclones that do not meet the criteria of straight or recurving analogs. All techniques were executed using the operational data available at warning time. b. (5) 12-HR EXTRAPOLATION - A track through the current warning position and the 12-hour old preliminary best track position is linearly extrapolated to 24 and 48 hours. (6) HPAC - The 24- and 48-hour forecast positions are derived by averaging the 24- and 48-hour positions from the 12hour EXTRAPOLATION track and the CLIM track. Description of Objective Techniques (7) INJAH74 - Analog program for the North Indian Ocean similar to TYFN75, except tracks are not segregated. (1) TYFN75 - Analog program which scans history tapes for cyclones similar (within a specified acceptance envelope) to the current cyclone. Three 24-, 48-, and 72-hour position and intensity forecasts are provided (straight, recurve and combined). (8) TYAN - w updated analog program which combines TYFN75 and INJAH74. (9) CYCLOPS - An updated version of the MOHATT program which has the capability to select steering forecasts at the 1000, 850, 700, 500, 400, 300 and 200 mb levels. (2) MOHATT 700/500 - Steering program which advects a point vortex on a preselected analysis and smoothed prognostic field at designated levels in 6-hour time steps through 72 hours. Utilizing the previous 12-hour history position, MOHATT computes the 12-hour forecast error and applies a bias correction to the forecast position. c. Testing and Results of selected techniques A comparison is included in Table 4-5 for all western North Pacific cyclones and in Table 4-6 for Indian Ocean cyclones. In Tables 4-5 and 4-6, *,x-~lsvorefers to techniques listed horizontally across the top, while “Y-AXIS” refers to techniques listed vertically. The example in Table 4-5 compares CONB to MH70. In the 425 cases available for comparison, the average 24-hour vector error was 134 nm for COMB and 160 nm for NH70. The difference of 26 nm is shown in the lower right. (Differences are not always exact due to computational round off.) (3) TCM- The Tropical Cyclone Forecast model is a coarse mesh (220 km) PE Model, with the digitized storm warning position bogused in the 850 mb wind and temperature fields of the FLENUMOCEANCEN Global Band Analysis. Hemispheric forecast data are used on the boundaries. (4) CLIM - A climatological aid in the form of 24-, 48-, and 72-hour tropical 105 TABLE 4-5. 24 HR FCSTS STATISTICS FOR YEAR ~ ~ !4wJl mm _ Q3!m ~ Q ~ Qy w :. . . . . . ..-y..-. .-..----:: X-AX13 ; :-~ ; ~&&.: m: JTHC 591 124 124 0 STA4 ;;: 1;; ;;; 153 0 RECR 516 127 139 12 489 153 136 -16 524 139 139 0 ;.”..-—--...”.”.* .); ~-= : _ i D— Y-x : :- ~:-clm ~. : ~! j i . . . . .. . .. .. . L“”””..——..”.” CLIMB;4J 124 10 514 153 133 -19 509 139 135 -3 551 135 135 0 / b4i70435 123 159 36 407 150 8 158 399 136 L.4?&j.l.; 445 15$ 163 26 ;;~i; 158 0 t4i50425 124 158 35 396 152 157 5 ~. 136 25 413 135 159 24 430 159 1S7 -1 434 157 157 0 TCWI 121 122 132 10 111 152 134 -16 104 128 146 18 115 127 141 14 96 148 143 -4 % 138 142 4 124 136 136 0 CLIM 305 129 150 20 282 165 142 -22 265 152 150 -1 ;;9J 145 3 245 170 149 -20 245 162 150 -11 93 144 153 9 315 150 150 0 XTRP 572 124 150 26 521 152 146 -5 511 138 153 15 538 133 150 17 439 159 145 -13 431 154 145 -12 124 136 6 142 309 150 168 18 584 149 149 0 HPAC 559 124 134 10 514 152 129 -23 501 137 135 -2 527 13; 134 434 158 133 -24 426 158 132 -25 124 136 129 -6 309 150 138 -II 571 150 134 -15 571 134 134 0 JTUC :~6 226 0 STFi4437 224 309 85 462 306 306 0 RICR 415 232 247 15 422 306 248 -57 440 252 252 0 C(M8 440 225 244 20 449 306 243 -62 430 2:; 243 f~ ?3+70 ;;: 22: ;4J 30; 323 249 318 69 347 243 310 67 359 30$ 308 0 !Oi50 330 220 299 79 339 305 296 -8 320 247 297 50 345 242 297 55 345 310 292 -17 35$ 295 0 295 TCJ43 97 314 255 -57 ::; 2?: 2;? 2:! ‘H 2]: ~;; 2:: ;:$ 257 0 CLIM ;;: 2;; 249 330 243 -86 222 276 251 -25 247 265 252 -12 20S 337 242 -94 206 294 242 -51 75 272 260 -1I 263 250 250 0 XTRP ;;; 224 67 450 3M 290 -13 430 249 298 49 454 241 292 51 351 309 295 -13 353 296 291 -4 101 255 311 56 260 249 325 76 485 291 291 0 HPAC ;;; 223 9 442 305 231 -74 418 246 235 -10 442 242 233 -7 345 300 231 -75 346 295 228 -66 101 255 245 -9 260 249 235 -!3 471 291 233 -57 2fi 2;; STATISTICS 72 FOR YEAR JTUC JT14C;;: Hi70-u3FA2T STRA 700-2f3PKG @4J50-K3nTr 500+9PKG mt3-’LKu1mLCYcCmr an’l —— xLFP—12-wJR-cN 3!PM2-lEuJcFxIfemm — 244 0 (CNz-ww) 471 233 233 0 FCSTS HR RECR 2@i70 CC468 HH50 TCMO CLIM 316 0 STRA338 315 381 453 443 129 453 0 RECR 319 346 456 360 349 327 331 -3 348-107 349 CO148 343 328 316 12 370 452 343-109 ::: :;; ::; 340 0 MH70 230 471 325 147 260 474 236 488 362 126 269 475 352 122 464 10 5W50 227 329 254 467 482 153 481 14 TCMO 73 314 347 33 0 :;; 473 0 234 364 257 355 259 469 265 486 488 124 482 127 479 10 486 0 78 445 69 351 376 -68 393 41 78 359 61 543 62 484 84 372 380 22 4131-141 396 -87 372 0 CLIM :;: 308 208 494 179 357 204 366 161 506 164 483 64 389 218 332 7 333-160 338 -18 334 -31 329-176 331-151 353 -34 332 0 106 . 7. . . STATISTICS FOR INJA JTWC JTWC 24 HR YEAR FCSTS MN70 MH50 TcMO XTRP ............................................ :Nu.lBm : X-zixm : : : cl? mam~ ~ : : : CASES : Emm: : ..~ .. .............+ .... ................ ; / : . Y-AXIS : 180 : ..* : : TKTiNICUE E 0 Di%$&E ; /“ : Y-x ?..”...:... =...s ..” : lZR132R . : S...................A ....................175 ;...uup..p -1:173: 0: ......... ....... 63 151 151 INJA 48 125 134 -7 52 127 127 0 MH70 28 173 159 14 27 175 132 44 30 180 MH50 27 167 158 9 26 164 132 32 Z9 173 TCMO 2 164 43 121 2 164 53 111 2 164 73 91 16; l; XTRP 61 146 147 0 52 130 127 3 30 148 180 -32 29 149 173 -23 2 164 14 -150 65 148 148 0 HPAC 40 135 148 -12 32 128 134 -5 16 146 179 -31 15 148 175 -26 2 164 43 -120 40 135 145 -9 STATISTICS 0 FOR JTWC MH70 INJA MH50 INJA 26 227 252 -24 26 227 227 0 MH70 14 360 332 28 9 365 273 91 15 340 340 0 PIH50 13 407 338 69 8 447 298 149 14 388 331 57 14 388 388 0 0 34: 2:; 34; & 00 :0 XTRP 1 343 HPAC 343 0 XTRP 36 259 272 -12 25 243 235 8 15 243 340 -96 14 388 252 -135 1 343 110 -232 37 255 255 0 HPAC 23 231 270 -38 18 224 235 -11 8 233 310 -76 7 424 249 -174 1 343 86 -256 24 225 269 -43 STATISTICS FOR YEAR 72 HR FCSTS INJA NH50 MH70 JTWC 17 437 437 0 INJA 12 262 350 -57 12 292 292 0 MH70 2 876 460 -415 1 263 361 -97 2 460 460 0 MH50 2 838 1 1033 361 672 2 838 460 378 876 -37 135 0 . . ... .. ......... ............ : ;JIW-@FICIAL JT$KFORKXST : : ; INJA- ANAI&X (llU3AH74) : ; MH70 - IKHA1’T 700-MS Pm : ; MH50 - Imi?frT 500-MEI Pm : : X7!FlP- 12-HOUR EQT@KIATI~ :HPAckEA!J0F2fIT@AlJD Uml’w3Y: % .....................................................i 270 0 JTWC 40 135 . 38 270 ‘o 0 164 0 TCMO JTWC TCMO 2 164 HR FCSTS 48 YEAR HPAc 2 838 838 0 TABLE 4-6. 1!37 24 225 225 0 CHAPTER Z 1. JTWC APPLIED TROPICAL CYCLONE RESEARCH SUMMARY RESEARCH Part of the mission of the Joint Typhoon Warning Center is to conduct applied tropical cyclor.eresearch as time and resources permit. The purpose of this research is to improve the timeliness and accuracy of operational forecasts. During 1979, there was continued effort to convert and update operational programs and to streamline operational procedures for compatibility with the Naval Environmental Display Station. The following abstracts summarize the year’s applied research projects which were completed or are still in progress. OBJECTIVE TROFICAL CYCLONE INITIAL POSITIONING WITH A WEIGHTED LEAST SQUARES ALGORITHM (Lubeck, O. M. and Shewchuk, J. D. . NAVOCtiNCOMChN/JTWC) Recent studies indicate tropical cyclone forecast errors through 72 hours can be reduced by more accurate initial warning positions. This study developed an objective and standardized method of determining initial position based on all available fix information. A least squares algorithm was used on available fix data with a weighting scheme which is inversely proportional to the stated fix accuracies. The results of this objective method showed no significant improvement over the current subjective method. Therefore, this method was not incorporated into operational procedures. This method, however, produces an improved tropical cyclone “best track” and was incorporated into JTWC’S post-analysis procedures. ESTABLISHMENT OF THE JTWC TROPICAL CYCLONE DATA BASE (Curry, W. T. and Matsumoto, C. R., NAVOCEANCOMCEN/JTWC) A data base of 6-hour best track positions (intensities, direction and speed of movement) and 24-, 48-, and 72-hour objective technique and official JTWC forecasts for each tropical cyclone in the western North Pacific, Arabian Sea and Bay of Bengal from 1966 through 1978 has been established on FLENUMOCEANCEN computer I.HSS storage systems. Tropical cyclone fix data (position, intensities, platform, etc.) for each tropical cyclone from 1966 through 1977 remain to be added. This climetological data base will be maintained on disk and tape files at FLENUMOCEANCEN Monterey, California and updated annually. EQUIVALENT POTENTIAL TEMPERATURR/MINIMUM SEA-LEVEL PRESSURE RELATIONHIPS FOR FORECASTING TROPICAL CYCLONE INTENSIFICATION (Dunnavan, G. M., NAVOCEANCOMCEN/JTWC) The relationship between equivalent potential temperature at 700 mb in the center of developing tropical cyclones and associated intensity changes was explored by Sikora (ATR 1975), Milwer (ATR 1976), and Hasse!xock (ATR 1977). The Sikora and Milwer studies produced conflicting results, but the Hassebrock study showed some sk+.11in forecasting explosive and rapid deepening when 1977 and 1978 tropical cyclones were evaluated. Evaluation of 1979 tropical cyclones again showed that the Hassebrock technique has some skill. Unfortunately, dewpoint data from aircraft reconnaissance missions from earlier years are not readily available at JTWC, so it has been difficult to increase the data base. The Hassebrock stuclywill be applied to 1980 tropical cyclones and aay cyclones przor to 1976 for which data are available. The data base may then be large enough to draw some definite conclusions. NEDS/COMPUTER APPLICATIONS (Staff, NAVOCEANCOMCEN/JTWC) have been JTWC’S objective techniques converted by contractors to execute on A NEDS graphic FLENUMOCEANCEN computers. capability is being developed to depict forecast tracks from objective techniques. Evaluation and monitoring of program conversion will continue in 1980. TROPICAL CYCLONE 141NIMUMSEA-LRVEL PRESSURE - MAXII’4UM SUSTAINED WIND RELATIONSHIP (Lubeck, O. M. and Shewchuk, J. D., NAVOCEANCOMCEN/JTWC) A related study of equivalent potential temperature was also started. A comparison was made of past 12- and 24-hour changes in equivalent potential temperature in the eye of a tropical cyclone with the subsequent 12- and 24-hour changes in 700 mb height. These correlations proved inconclusive, again due to the small initial data base. An attempt will be made to obtain more data for this study also. The Dressure-wind relationship developed .—. by Atkinson and Holliday (1977), Tiopical Cyclone Minimum Sea Level Pressure - Maximum Sustained Wind Relationship for western North Pacific, is a primary tool used to determine troRical cyclone intensities for JTWC operations. This relationship was re-evaluated and tested with an independent data set. The study produced no significant differences or changes. Therefore, the current Atkinson and Holliday relationship will continue to be use?.at JTWC. Other regression equations using case-dependent latitude and environmental pressure (versus 101IJ~) as predictors were also tested. These predictors did not improve the maximum sustained windmininuunsea-level pressure relationship. 108 . BASIC STREAMLINE ANALYSIS AND TROPICAL CYCLONE FORECASTING TECHNIQUE GUIDE A more sophisticated TCM is being developed jointly by NEPRF and NRL and is expected to become operational in 1981. This TCM includes the effects of surface friction, cumulus clouds and latent and sensible heat transfer from the ocean. Preliminary tests indicate that these improvements may reduce forecast track errors by 15% to 20% when compared to the one-way interactive TCM. (Guay, G. A., NAVOCEANCOMCEN/STWC) A case study, based on an active tropical cyclone period, is being developed. The study will be worked into a training guide for new forecasters and will include basic streamline analysis procedures as well as tropical cyclone forecasting techniques. The case study will also be integrated into STORMEX training (training scenario for DET 4 HQ AwS, 54 WRS, DET 1 lWW, JTWC, and AJTWC personnel). IMPROVEMENT AND EXTENSION TROPICAL CYC1,ONEWIND DISTRIBUTION (Tsui, T., Brody, L.R., and Brand, S., NEPRF) The wind distribution around tropical cyclones for the warnings issued by the JTWC from 1966 through 1977 have been compiled and edited into a unique data set. An analysis of the wind radii shows the asymmetrical nature of the radii of 30 kt and 50 kt winds around tropical cyclones as a function of the characteristics of the storm. A statistical forecast model to predict the asymmetric wind distribution has been developed. OF THE iJTWC CLIMATOLOGY (Shewchuk, J. D., NAVOCEANCOMCEN/JTWC) Climatology forecast aid is for an JTWC. important objective A new climatology was developed for the western North Pacific which provides position and intensity forecast information for 24-, 48- and 72-hour intervals. Pertinent statistical information is produced by month for each latitude/ longitude of available historical data, which includes 1945 to 1973. Similar climatological information TROPICAL TROPICAL CYCLONE RESEARCH AT OR UNDER CONTRACT TO THE NAVAL ENVIRONMENTAL PREDICTION RESEARCH FACILITY (NEPW), MONTEREY, CALIFORNIA CYCLONE PROBABILITIES is a Tropical cyclone strike probability method for determining probabilities up through 72 hours that a tropical cyclone will come within specified distances around geographic points of interest to the user. This program can be used as an aid for operational decisions associated with tropical cyclone evasion, evacuation and base preparedness. Strike probability output is presently being evaluated by a number of Navy and Air Force meteorologists and operational customers in WESTPAC. Other applications of strike probability that are presently being developed include geographic depictions, wind probabilities and strike probabilities for EASTPAC. NEPRF RESEARCH TROPICAL STRIKE (Brand, S., NEPRP and Jarrell, J.D., Science Applications Inc.) is being developed for the North and South Indian Oceans and the western South Pacific. The periods of available historical daia are 1900-1970, 1900-1969 and 1900-1971, respectively. 2. CYCLONE MODELING A STATISTICALLY DERIVED PREDICTION PROCEDURX FOR TROPICAL CYCLONE GENESIS (Hodur, R.M., NEPRF and Madala, R., NRL) A one-way interactive Tropical Cyclone Model (TCM) is being evaluated operationally. This model differs from the original channeled TCM, that has been used for the past three years, in two ways. First, hemispheric forecast data are used on the boundaries as opposed to the channel boundaries used in the original TCM. Second, a new bogus is used to represent the storm based on the observed maximum wind. This latter change has cut the average initial position error by 59% to 15 nm. The one-way interactive TCM average forecast errors at 48.,60 and 72 hr are 8%, 14% and 21% less than the channel model, respectively, for Pacific cyclones through August 1979. Both TCMS have about the same average forecast errors at 12, 24 and 36 hr. (Perrone, T., Lowe, P., Rabe, K., and Brand, S., NEPFU’) A statistical experiment using stepwise discriminant analysis was conducted to determine algorithms to be applied to daily, operationally-available meteorological analyses. Parameters identified as potential predictors of tropical cyclone formation were statistically examined to determine their tropical cyclone genesis prediction capability and were found to possess substantial prowise to predict tropical storm formation 24, 48 and 72 hours prior to occurrence. 109 EXTREME SEA. STATES (Rabe, WITHIN A TYPHOON AIRBORNE EXPENDABLE BATHYTHERMOGRAPH OBSERVATIONS 1MMEDIATEL% BEFORS AND AFTER (AUG 75) PASSAGE OF TYPHOON PHYLLIS K., and Brand, S., NEPRF) (Schramm, W.G., NEPRP and NAVPGSCOL) Extremely high sea states are known to occur to the right of the direction of movement in typhoons. A well-documented case of such extre~e sea heights in the western North Pacific was examined and compared with results from a numerical spectral ocean wave model. The wind and sea state field of the numerical model compared favorably with the observed data. M examination was also made to determine how extreme sea states relate to tropical cyclone intensity, forward speed of movement, and circulation size or wind distribution. The results indicated that all three are important with the intensity being the primary factor, speed of movement being of secondary importance and circulation size or wind distribution being the least important factor. Ocean typhoon thermal was analyzed response on to the an intense basis of data collected during the passage of Typhoon Phyllis (Aug 75) in the Philippine Sea. A unique data set was collected using calibrated Airborne Expendable Bathythermographs dropped from a Navy P-3 aircraft. There were three flights: the first, 14 hours before storm passage, the second 10 hours after passage, and the third two days later. The results indicate a dramatic upward movement of isotherms, relative to the sea surface, in a narrow band under the storm path, with a reversal toward pre-typhoon conditions within three days. NESOSCALE EFFECTS OF TOPOGRAPHY ON TROPICAL CYCLONE ASSOCIATED SURFACE TROPICAL CYCLONE ORIGIN, MOVEMENT AND INTENSITY CHARACTERISTICS BASED ON DATA CONPOSITING TECHNIQUES WINDS (Brand, s. and Chambers, R., NEPRF, Woo, H., Cermak, J., and Lou, I., Colorado State University, and Danard, M., University of Waterloo) (Gray, W.M., Colorado State University) Observational studies using large amounts of compcxiitedrawinsonde, satellite and aircraft flight data have been performed to analyze global aspects of tropical cyclone ‘occurrences. The data were used to study the physical processes of tropical cyclone genesis, tropical cyclone intensity changes, environmental factors influencing tropical cyclone turning motion 24-36 hours before the turn takes place, tropical cyclone intensity determination from upper-tropospheric reconxiaissance,and the diurnal variations of vertical motion in tropical weather systems. An analysis was made of the influence of topography on tropical cyclone associated strong surface wind conditions for Subic Bay, Republic of the Philippines by means of an environmental wind tunnel. Surface flow patterns were deduced by smoke and surface oil films, while isotach and gust values were obtained by hot wire anemometers. The laboratory results show the significant effects of the mountainous regions surrounding the Subic Bay harbor complex and indicate preferred sheltered locations. The results were compared with synoptic observations and a high resolution (0.19 nm) diagnostic, one-level, primitive equation model. Where direct comparison could be made, all techniques appeared to show qualitative agreement. IMPROVED UPPER-LEVEL TROPICAL CYCLONE STEERING TECHNIQ.JES (Hamilton, H., Systems and Applied Sciences Corporation) Current automated objective steering forecast techniques incorporating HATRACK and MOHATT algorithms are operationally termed CYCLOPS and may be run in analysis or prognosis modes at seven different atmospheric levels including 1000 mb, 850 mb, 700 mb, 500 mb, 400 mb, 300 mb and 200 mb. Since tropical cyclones vary greatly in areal and vertical extent and may be representatively steered at varying atmospheric levels dependent on state of development/intensity, continuing research is ongoing which will attempt to identify, given certain tropical cyclone input parameters, a “best” steering level or a “weighted scheme” that takes into account several steering levels. TYPHOOE HAVEN STUDIES (Stevenson, G.A. and Brand, S., NEPRF) The l?vnhoonHavens Research Proaram, the results of which have been summarized in NEPRF Technical Paper 5-76, has been resumed. COMSEVENTHFLT has identified an additional 12 ports and harbors for evaluation as typhoon havens. Work has commenced on Palau, Saipan and Tinian. A.; 110 ..- .- - . 3 u * 1- , $ c, I Ir-1-N*-in mso. *+ --- ---- *.-A .+ .4- -N* .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...*.*+.. . r-m . . :.:mm:~m~c.: . . . . . . . . . . . 00. . 10 . . ..mmmmiw. m4. .I t- r-I.*.:: e.m-emma::mm m*m. mm*r4m .u?fomumlflfl ~.nononn,onn O f.m. mnm CUC-C. ooem. mmm.. r--ma ---.-- mm=-++e.mmm .nr-r-m ma. u.*u. .3. cD.aa3Aoo*m . . . . . . . . . . . . . . . . . . .m”l. .Uloulou-lo.nm. . . . . . . . . . m.Alnom=oo, . . . . . . .n!nrl . . .m.amknoomeooul . . . . . . . . . . .Inulo . .. 7 z.. . . o+. -------- Lrcu.=u-cccircuc --, ---- -.--r.... =C-c>xw utrcu= Ctcr--axmm . r-f- Lru-cclrcuu *-.*=O3*C --------- ----A. ------ --- N mmm!nas.a ---- ccc. CCu-’u-c<c C.ma’-m. +m --- ------------ mm’-m ”-r-m<+@Na?=mmmrurln! cemmac-m-rw m.mmcmmrv.lm!m U. -*-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u.c’. - mm=.=..=-N NNNCUNNNN - -- N!W-NNNNN mmm. 4 .Ulrlruu-. rr.rmrlmfu.r . .cc, ,fa. F-ud C.< .F. .I-.Kr-a. -. W-* U’ACCW-CCU I-A@. UUt-&ULCC . . . . . . . . . . . . . . . . . . . . ...*... . . . . . . . . . . . . . . . . . . . . . . . . . . . m*. r-min.7 mm-s-. f-. .o. o t-em. m-. mmt. .I-r. oo.oaa*+a 0 . ..ma. a. . 44 . . . . . . . . . .a.e.c . . ..m mm.. IIImm m....... .mm~mrwmmmmmm mmm. --------,-.----------------------. . . . . . . ee.ae,nmmor-t-m C.cc.=ee.lrmn . . ; Cc<cu. fcuucc.rr, ,wN!-m*. c=. me. . . - %-------- !nmlw. nmw l-.: . . . . . . . .W*N. =Y=. . -la. nlmmmril-. . . . . . . . . . . . -N NNNNNNWN ----.-+++ ------- - . . -!rJru*. . . . . -* . . fi-mo . . . . ,.#--- *m--.-l . . . . -N NN-NNNNm FI mr.le-tllulaaao~ ---------------- e c.O.---m . . . . . o---- 000000 m7. WN. NN NNNNNw. N. Iw?4 NNP4NNNNNNNx I-4 MNINIWNN N.. N=o QWSOO N..-mno~N=0 -Wm04NS.aNS OC!Nm.aNW.* o-. o..-. .e --o.--a=-.-= Oa-e-.---.’mJ wmJfurl-3m r-,** ----------------------------------.0 ...0.00 -= ..0 -- ..--.=-..--. .-+.0-.. .*u. ..nn, nn aa aar-1--l-snms%m . . . . ...0.. --...-==. e.eooo . --1 --1------+---l-l-l. ----------.=. .=00000 00...-..0000 NNW. aNr-m r-No . . . . . . +.o AQ *.= .r<r <r< -! ------- .“.Jm G.aaI. . . o N e . a,h.c, -en - = .==-.<--< o<m’tu. cunem .rdncl-<ue r.. I.Cu?ti.furc u-c ,., .0,,. . . .. 0.$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .c .oemu mm.om>.om. m-oa. t.-omem-o aam I-I-t-f-o QoQf-Pc. s .c.f<<r<. c’. .r<< lrwlr!f!r.rm@lJ*4 #*de **!-.-!-,-r .%m@. ml-.f-r l--!----------.--.-4.----------------.---.-.-- z.-:fi. :m. . F- Ar”-. ---------- @n-. . . &.u”). ? . . . ....u.w.4w.-*N 4 ---------5-. .-WNWA J--. = 0.=....=. s ----------X.-O.....==. I N : 1- . c,mlr-.-feac. c m.-q-.jc. . . . . . . . . . . . . . . . . . . . . . . e-cm G.cuu, r..o Jl.n ..** .Dr-hmo-im *. Fl,wmmmm,.lmm In Snm, .lm mm..+ ------------------ .: .. =.:===.,: . . . . . . . . ,-: . . ~-:::==== . . . . . . . . .========= . . . . . . . . ,. . . 11, ,,, , .CCCCCCCQ4J. . . . . . . =Ooooce ,T . m * c. In . P 22 m 8 l-i g n, g g ~ T *l- ‘5 z . r . O,,, . == . . . . . . . . . . . . . . . . >. 2.= ,,t8 .c’== Cccc. cc-=c. =.=. C.=.=.=. .< =,=, . . . . . . . .......+ =.=,=5.==.V,111*:,:88** **t,, . ->>=. . . . cc. . Ccccc. . . . . . . .ccc . . . . .. ..== .. .. . . . C.ccc. =0== =====.=. S.=.=.=.C,=. . >>>>. tt, ........ CC. .. c.cc.. . . . . . .. ’ae.so Qeoooe-=..Oe.=..’o.o 0.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*. .o. oe’ao C.ceo.e.-0-0.000’000 00. . . : :=...=. . . . . . . < . =.<.....= . :,.<::.=. -?: .- . . . ,., =.=.=.=.=. . ..=, .-.,. .=:::: . ..= . .=== .====C . ..= . .=C, .=.=.=.=. . .c.cccc. ,= z.rv ,= mm. --- .== -r.,.=.=. =.=, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.00.00000 o.ao-o-.eoo oe.o.a:~:’7.ao - .J ..>-.>=>.. U,.J3,101, ‘r 3 k ; ~; -, =,, ,, $,0,,,, ,,, ,,11 . . . ,0,,1 <e< . . . . . r-c*!-. 61 . . r< ’3m* m= . . . . . .. . . . . . . . . . =.=..=:::: . . . . ........ .. .. . . .. .. . . . . . . .. .. .. ...=..... . ---------- ------- ---- --W&,*?lOLISWONU*020N+”2W -----------------.. l-.-!- J mo<mom, . . . . . ::> . x“. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m-cc. ’=c. .n C2Ccccc=cc, o c’=occ=co~: :-m: ,,. . . . . 0===. . . . . o=. . ’am . . 0=0 . .. ,* : ”.=”=’=.=’ ~.=”=”=”=.=.=’=”o“>.e.~’=moe . . :-” & ;. : 3 ,------- J.. ,.+., *, . . . . . . . ..J”...--.FIN-w ------------------- . . .. ...= ”-= ..,..0 ,C=c= 7 Cc : . T. ,= .? . (7?= .,, -- ‘,7 . &$:;-o .m . .2 =oFJlu-:-, .* Fl - t . ., 1. : s., 2C, ; ...,.. CC Z...... . . . . . . . . . . . . C.r=rrfifr,= -..-... ,-”. ... r,nr . . . . . . ========== ~ . . . . . . . === . : 1 : c.. . . . e... . . . . ... .. . Z=cc. : . . . . . Imo..o.eo-o.o Cltllloll l,, . . ,, . 0. cc . . .. . . m m : u72,12z U7?>187 07?Duol 072 UU6Z 072D12L 072~18/ L172(130z L)72106z 072 T1.?z 072118L 072tLuuz 07ZUU6Z 072d121 u721j18/ 072+(10z 07291Jb7 072412z lM. H 1 {2.7 V I 31.=, > 1+!3.6 139.7 19. 19. 19.9 20.2 ?0.4 ?O. ?O. ?0.8 1?8.7 1>7.5 , b 176. ? 1?5. ? 174.7 20.8 1>2. ” ?U. Q 1?1.7 ?1.3 ]>0.. ?2.0 l?O. , 2?.3 i18. R ?2.7 117.). ?3.1 lt6. n 114.7 U.* O.n 0.0 0.0 20. ? 20.5 20. $ ?0.7 20.7 20.3 ?O. R ?0.3 22. n 22. q 22. h 23.1 !16.7 23.7 115. ? u. u. u. 0. 30. 3U. 33. 4U. +(). b5; in. >5. >5. as. au. *5. 3(2. V;T -0. -o. -0. -o. M7NI 0. u. u. 0. 45. e;. b. Q. $ ,. 17. 13. 23. -~. -10. -5. -i. -1o. -10. -1o. -5. 0. 3:: 5. 0. 1:: 30. 0. lu. DS1 0.0 0.0 tI. o 0.1) 0. D. 30. 90. ?5. -u. -u. -u. -“. 20+. 24+. 43. 5U. bY. 7b. 0:,? 40:(1 0: 116.2 05. 120. 20.’4 llS.M To. 13<. 2G. >4.6 0.0 O.n o.n 0.0 llM. ? rl. n l!. n ,1.1, n.o ,?5. o. o. 0, o. 0.0 ?1.. ,1 .,, 127.7 ?2. K 126. H >1.6 >1.7 ?1.7 >]. & ,2, .0 121.6 110.7 11*. ) 20.0 0. 43. 45. *5. 211. -u. -u. -u. -u. n. 0. n. . . -G. .]”. =]<. .10. -’+. K. 1~. c. n. n. 6. n. n.,) 0.!1 U.(I 0.0 0:11 U.u 0.() O.IJ 2, .,, 125,2 >&. / 124.3 ?-+. n 118,5 ?1.4 117.8 >>.11 115.8 n.{) O.lz O.(I U.o n.11 n.o “,0 0.0 0.1s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 u. u. o. 0. 31). 5U. 3U. 5U. 50. 0. 0. u. -u. -o. -u. -u. 3.5. 3?3. 63. 100. 69. -o. -o. -o. -o. -o. -u. -o. -c’ . u. u. lz. 0. 0. d[Nl) 0. 0. 0. 0. -5. 0. 0. 5. 30. 0. 0. 0. 0. 0. 0. 0. 0. 0.0 0.0 (!.0 n.o 0.0 0.0 0.0 0:;) Z<. b 1/2.4 n.o n.o 0.0 0.0 11. o n.o *.O (1.0 0.0 n.o 0.0 0.0 0.0 0.0 0.0 0.0 0.(7 0.0 0.0 O.u 0.0 0.0 0.0 0.0 0. 0. 0. o. -0. -0. -n, 0. 0. n. -0. 0. 40. 0. 13. 0. 0. 60. 469. 0. 0. 0. 0. o. 0. :: 0. 0. 0. 0. .0. -0. -o. -n. .0. -0. .0. -o. -0. -0. -0. -0. 0. n. 0. n. n. a. 0. 13. if- .= E == .=..= .. . ... . .. . . . . c.=== ,-,- .0 .-000 11111*111 . . . . . . .. . .. .. .. .. .. Zccecu-w ;:::~~e-oo.e -- ----- . . . cGc . . . Kc.J. . . . . @. <.Jc”lrc . . . . . . ccc . .. ; . s .m. o.> ==mo -. ’win, -,1.-.llrdwdw Lo JIJ1. = .N.-.xm. xm . . . . . . . . . . . . . . . . . . c:.f.r.tire.cc , ---..--..-,-. ..mmhcr-r. cc-ccc . . . . . . . . . QO”oe.-.m ------- C.u-u’. x,-”xr. *,.. cr. m.ll -- ,r J,.I r-c” . . . . . . . . . O“?r-mmm .-me ?-.----mm . .C. C** X. U** .tm+. -nt . . . . . . . . . . . . . . . . . . . ..c.-. >r. r nl-mm-=mrd. mm,vm!m,m,mlm!m r., ,w,-d, wcu --?----------- z==. ,Ce. cc. c{, -r..-=.== . . . . . . . . . . . . . . . . . . =C cc.<.mx-.l ‘i-.=== lvr.J. mJ,-.Jr.JnlnJlwfu i--.-.---.. U CC CC C4R*. ”CC . ...’==< . . . . . . . . . . . . . . . . . . . .a. .ln*Q.5mamc N’-lo. .ao -------km ,“:. C,! C.. CG **J**C CC CSC=S . . . . . . . . . . . ..!*.... Gccc+a.za= ccc Ccc ccc --.--*A :CIIOOUUI1* = 1 :. ,r 2 . . . ‘ . . EC E ;: . y Ni-ulvlx I**llllllV wlu!wwrul u-- --1 411 I wlmr!mee +~~~~ , . . . .*...***** NNNNNWWNN. Wu-ul-. . . . ---o ,,811s .-t--=c= . *.** . . . . oo = arcu-caoe c=. . . . . . . . . . . . . . . . . i-+r. .sa. ccc. ---------- -*---I===.==m?- . . . . . . . . .. . .. . . .. . . . . . .. . ... . .. . . .xe . .. .. .. ..lmu. . . . . lm . -. .U?eeua!mln. . . . . . . . . ..m - ..mw. . . . . . ..= ..0 . . . . . . in . . . ..om c*l#ell*ti . +-------- me.* .--.(WIW Nnmlfummm mmt-+t-ommcno - maar-mm-. r.l-c--m,-!-!. Eaeo*a*a&ur . . . . . . . . . . . . . . . . . . . . .. c+=. .-.+ m-.aoomeemo r-?-r-mammal-l-mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m+. rdiwm-. m.nm mnr-m Ne. -*a. = 0 -ma.*-*c a.rb-we-vua-+c-.s Lral-eclxn#, loll Lruff*r*. *R.-. F u-c nu-nnn,-l-dlmcww .---- mr-r-m*mc. -m. ----- ,nm.aoeemm-loo*a**lnm,nmma -------- Ou. <-a. m --------- f-a .4rt-*-4ulr <*< =.sc-<nl-.ccnt mm.< . . . . . . . . . . . . . . . . . . . . . . F.. a+f+.-r.w+rm tc+r-mr<+++r mmmmmww. .m. w NNNNNNNNNNNN . . . . . . . . . . . . . . . . . . . . . . *.**.*.-. CCcccc. . . . . . . .cm. - .C. .ccc-r. .u. .-r-a nsfiuu. a. .K*-ealr **Oar-. *me&.s. vc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .a. .a-.aamminmw .+*m I-0. ma+aun aa *mm*e**emnn mmn. .nn.-. lm.rim,-l”m!-lwwfu NNNNNWWNCW!WN (uml. nllwwcuiumrdfu Ntwlmlwn -------.-,----------------------------- o.000om-.mmm . . . . . . . . . . . . . . ...* ccccuc cce. .c.a.aoeemeee . CC. : . ‘%: z . x :1- m> . . ..I- ...*-’ nl T. a . n.. **m X . z$:”~miy?i SUPER RFST MO/04/HO 0815.122 081518Z #[Nl) lU.5 11.3 11. d 12.3 lz. d 13.3 13.8 14.2 1+.5 15.0 15.7 1s1.. 150.1 1119.” 16.6 17.1 17.6 18.2 19.0 19.7 1-s8. > 20.5 21.3 134.. 133. 22:2 ?2.7 23.1 ?3.4 Z&,z 24.3 ?4.6 ?4.4 24.4 24.5 25.1 25. s 26.9 27.5 20.2 28.7 29.3 ?9. B 30. * 30.9 31.4 31.8 32.5 33.2 33.9 34. * ,M?.llvlj lQAIY p351T 1< P9STT 0.0 o.n o. 0. Q.n 1? 0.0 13. n 1=, 0.0 o.n 15 O.n 0.0 ?=, 0.0 3n 13.5 164.5 167.6 11.6.1 144.7 143.. ]42.7 0. 0. )3.9 1$.?.7 14. ? 1$2.,. u. 35. !30 . 40. )+.5 13.0 1s..4 lb. n 16.8 17. b 140. ~ {39.6 13fl. Q 137.6 1’37.3 136.4 45. 50. 55. ml. 70. 75. 173:7 132.6 131.0 131.1 19.2 19.9 19.7 20.2 21.3 22;? 13s.7 135. ~ 134.6 13407 133. a ~33.7 110. 115. 123. 130. 135. 135. 23.1 23.3 23. + 132. R 131.7 131.0 135. 130. 130.6 1?9.6 1?8.0 2+.0 24.5 24.7 3< 3=, 141.1 14.0.0 139. n 137. ? 1’16.& 135. * 135,1 134.7 a ]>8.0 1?7.5 127.0 1?6. ? ]75.6 1?4.7 123.7 1?3.7 1?2. Q 172./, 1?2.6 1?2.7 ]?3.1 I?3. A 1.24.> 1?5.1 176.1 1??.1 12s. =, 10IT lnn 95 Qo 90 R5 85 8=, *5 lsll I)n 70 bn 5% 5s 5n 40 30 ?5 2% 20 24;6 24.4 2+.3 24. q 25.8 26.7 27.5 28.0 22.. FI 23.5 29.3 30.6 30.9 31.4 32. o 32.3 33.6 34.6 O.n ,z7. n 127.7 21. 0. 0. 24. 40. 126.9 176.1 125.7 I?*. A 123.7 123.0 122.7 122.7 122. -4 122.’7 122.7 1 23.=, 124.1 125. ? 126.7 127.6 O.n 5. 16. 1?. 21. 0. o. 5. 5. 5. 0. 0. 5. 0. 5. 15. 15. -5. -5. -5. 90. 11. t35 . $35. 00. B5. so. BO. ‘so . 70. 65. 55. 55. 50. +5. *O. 35. 15. 16. -5: 21. 5. 20. -5. 0. o. 15. 12. -10. -5. 24. % o. 41”L #ANG AVG FORFC4S1 P05x 7 FFW)R AVG RIG4T 4WLE E?w)Q AVG lNTrN517f MdGVTTUOF E!4Roa hVG IN7FNS11Y fiTA5 NUMdER OF FWWCAS7< 5. Ei. 11. 120. 130. A 115. 129. A 115. 128.7 115. 18. 12. 6. 1. 30 M, >Iotl F( lHELA>I EN12J*s 0>1 61.41 *1W -0. n. o.1) o. -0. n. 0.0 0. -0. (1. n.<> 0. 11.() -v. n. 0. -u. n. n.,, 0. 109. 16. u 14.. ? 60. 1.. 62. =. lb. % 13.. ? an. 16.7 13’7.4 5/. .IR. ho. b5. 111. .]C. 16.7 13=... *5. i)d. .2s. 17. > 13.. % 75. ● 3=.. 101. 17. ? 136.3 125. .b#l. ?5. 18.1 13?.1 18.7 \3?. A B5 . 9>. .3=.. 121. .4.. 19.4 132.6 H5. 99. n. 130. ?0.6 13?.1 10’4. -%. ?L. ? 131. % 130. 81. n. 72.7 131. ? 133. 5J . 10. 135. ?2. -4 13?.7 jr., 89. ?4.5 137. ? IJ5. 91. 2=.. >5.6 131. S 135. 20. 120. 76.6 13n.7 139. 16. 121. ?5.1 126. s 115: 1<. b. >4. $ 12R. O 110. lr.. 160. ?4.0 )30. I. )05. 125. 76.6 127. IT 100. 1.. 116. ]<. lUO. 77.0 12=..7 bj. 63. 92!I. 75.. 124.. 40. 78. ● 2.. 25.6 12*.6 151. .2.. ?5. n 126.1 60. 8*. ● 2.. 35. >6. Q 12?.3 70. 49. *in. 77.0 12-4.1 50. 5B. =?n. 79.7 121.5 1(30. .]s. *5. 30.1 120.7 .:: 17. 2*. 21. 1;: 16. 39. 33. -0. -5. 0. -5. -5. 0. 5, 5. 0. 0. .9 RECASTS >lk-.4n 48-P(3 105. 173. Fsl. 133. 29. 16. -7. -3. 36 27 Pn~lI 0.n 0.0 C1. n 0.0 O.n 30. k -s1.7 32.2 120.1 120. -4 120. ? 12.G 120.6 32.. 12n.~ -42..12?.7 74.7 36.7 o.n 0.0 0.0 O,n )26.,3 127.7 n.n n.n 0.0 fi.o MO/~A/HR 0818002 0B1K062 081$122 Oalelez 0819002 ee1906z 0819122 0819182 0820002 0B200bZ IINI) RJS17 13.5 166.6’ 1~ ?n 13.9 166. ? 20 1+.5 165.6 15.3 165.2 16.1 1<4.6 17.1 163.0 18.1 163.11 19.2 152.0 20.0 160.0 21.0 159.6 10 26 dM4u1w TQ~c~ POST 7 dlN> 11.11 o. 0.0 20. 13.9 166. ? 20. 1$.6 166.7 20. I*. R 165.6 20. 15.7 164. ? 20. 17.0 153.. 20. 17.3 163.1 20. 19.4 162.2 21J. 19.5 160. A 20. 19.9 160.1 AVG FORrCASl ,PIT51T FQI?OR Avb ?IGHI ANGLE EaOOR AVG INTFNS1l Y N4Gq1Tl10F ERQOa AVG INTFNS177 i3f A5 NUM6iR OF FoREcasT< A,’L wnw~ 73. 19. ;: /2 TQROQS OST IAIN) -o. 0. s. o. 35. 39. 25. 3. 17. 43. 41. 77. 0. .0. 0. L 5. 10. 10. w% 05 00 4Y-lia 29s. 119. 30. 30. I :!: 25. 25. 25. 0, 0. 0. 0. -u. -u. n. n. DEPRESSION 74.6 ?7.3 7R.3 70. ? 77-M 7k:7 7..7 ?n.1 20.7 7?.7 ?7.7 27.0 130.5 133.2 133.0 130. b 125.3 125.7 127.7 125.7 124.5 122.1 121. V 121.5 Xl.? 121.0 >n. ? 120.6 31.7 119.4 0,11 0.0 n.o 0.0 n.o n.o 0.0 n.n n.n n.n n.1] n.o n.o 0.0 0.0 0.(3 0.0 0.0 0.0 0.0 0.0 O.u 0.0 0.0 0.0 0.0 0. u. u. 13. 0. -o. -0. -o. -o. -0. 192. 0. 0. 0. 0. ?!3. -2:: 70. .40. .45. .45. 1% ??1. 257. ?3?. %9; *O. ?&5, % . ?-47. I35. 106. )3>. Q7 . fu. 75. /,. Lb. 85. 135. 62. R?.. ]55. 1 K.. 3?3. ]3,. 375. 36U. -50. 21.9 .45. 21.6 ?>.5 27.9 ?f.. o ?<.3 ‘?6.2 27.7 27.3 ?Q. b 30.5 31.8 3).3 30.0 3?.5 31.2 31.6 20.9 -50: -45 . -35. 15. 25. 35. 35. 40. 45. 20. 170; 20: )00. >b: 15. +0. 175. 5. 9(I. 1?7. 5. 90. Q1. 10. 73. .30. ?0 . -20. ad. 177. -10. 3!3.114. -25. 50. 104. +0. .15. 215. -25. -o. 0. -o. 0. -o. 0. -u. 0. 0. -o. 135. 2>. 0. IJ. 0. 13. o. 0. 0. u. u. 0. 0. 0. 0. -o. -o. -o. -o. -o. -o. -o. -o. ..0 2..1 7?.9 20. s 21.1 o. 0. 0. 0. 0. 0. 0. 0. VOOcCII%T 43!.)4 0.0 0.11 (J.” 0.” 0.0 1s2.9 1.*1.4 1~>.~ 1.?7.0 1P6. + llIkl 0. 0. 0. 0. 0. 85. 55. d5. 85. 85. l&b.7 90. )25.7 90. 175.8 95. 1/5.3 %. 12f3.5135. l?~.9 135. 1?3-7 1.25. 1*0.3 125. 137.] 125. 1.17.2115. i?b; j 1/5.8 1?7.; l’?b. i 1/5-] 119.9 3n.1 0.0 11.0 0.0 0.0 n.o 113-7 0:0 0.0 0.0 0.0 O.n n:lj 0.0 0.0 0.0 n.o n.o n.o ,).0 n.o 0.0 0.0 ():0 (I.O 0.0 Qsr s!-+) 0. -0. -0. n. u. -0. 0. -0. -0. 210. 1,+. ?.8. 175. -+12. >F,6. >*7. 2>+. lQH. 60. 131. ?*O. ?51. I.. Q. 700. 95. 616. 90. 75?. .e3. 170. 8s. 7)6. 80. 109. 75. s42. 25. 175. 25. >,5. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0. -0. -n. -0. -o. -0. -0. -o. -o. -0. -0. -o. -0. -0. -0. -n . -0. -0. Il. -’u. -6-,. -50. -50. -60. -30. -?0. -=$. -5. 6{1. 65. 3-,. 40. 40. 30. 10. In. 5. 15. >n. ?0. -30. ->=,. a. n. n. n. n. (1. 0. 0. 0. n. (). n. n. n. n. n. n. 14 FOUECA5 t EN13WS Pn<~l W[.io 0s1 *IWO O.n n.n o. -u. n. in. 30. 13U. 15. i 16..~ ]0. 16.0 16&. M 30. 162. ]=.. 30. 209. 16.1 16?.7 17.6 \61. Q 30. Lb>. 26. 15. 12U. 5. 19.3 1611. ? -0. n. O.n n.n o. 0.0 0.0 O.n :7 QFCAS7S 157. 43. 12. 12. 40. 30. 30. 134. ● 1=.. 144. .26. 1s1. ..?n. 187. .]0. -s. 247. 16!. n. +i. n. 6b. s. -u. m. n. -u. n.u 0.0 O.t) 0.0 0.(, 0.0 !3.() 0.0 0.11 0.0 7(?.I4 36.8 IQ. + 3*.5 1 ..6 33.0 1..)! 30.9 ,0.3 30.0 lf+.3 30.1 ?n. u 12’).0 7...7 }29.1 ?1.1 12H.2 7>.4 129.5 77. + i29. o 76.1) 129.5 Po$It n.o 11.0 ,3.0 ,,.0 7?-+R 277. 21-4. 98. -1. ?3 TROPICAL BESf JUDY 2. ERRoAS 051 hTrAl -o. :: -o. -n. o. -o. 0. -o. 0. ?1. 5. 13. 65. 12’. 5. 30. 5. 35. 0, 19. 0. 42. -15. -10. 18. 12. -]5. ,1!’3> TYPEWN 7>-+8 O. n. n. 0. ‘7 0.0 0.0 0.0 413 HOllN Unlln 0. 0. 0. -u. -u. -u. 0. 0. n. FoRFCAST FQ.3n.7S 41N0 -o. 0. ?06. 30. -o. 0. -o. 0. -o. 0. -o. 0. -0. 0. -0. 0. -0. 0. -o. 0. Pnsl r MIND (I.O 0.0 o. 1 A.+ i61. B 60. n.o 0.0 u. n.11 o. 0.0 0.0 0. n.o 0.0 0. n.n 0.0 u. 0.0 0.0 o. n.(, 0.0 0. n.,) 0.0 0. n.!) r)sr 72 -IJUH Posit FnoFca%T #IUJ 0.0 n.o 0.0 0.0 0. 0. n.o 41.0 n.o 0.0 0.0 0.0 0. 0. 0. 0.0 0.0 0.0 n.o 0.0 0.0 0.0 0.0 0.0 0.0 0. 0. 0. 0. 0. nS1 14TN1) -0. -0. .0. -o. -o. -0. .0. n. n. t). n. a. 0. n. -o. -Il. -0. n. n. (7. ..a . (Jo . --*IZ ::q:y _-,; In -1 GO . . O.OOO. . . . . . . Ow. . . . h--. . . . . . . ~.. .. ~... . . . . . . . . ..e-z~ . . ..U = .; -a ~:. . ===. .=. . . . . . . . a ..nu139aa. s.3= . . . . . . . . . . . ..C i ii . . . . ..=== . . . . $ 1,,,,,,,,,,: eea..aee..e. . . . . . . s..= . . . . . . . . . . . ,,, . =;======== . . . . . . ,,, .*eaoo. . . . . . . ...= ..” ,t=~ . o.aa* . ..- ..*OQ ..tiee=.~=.. . . . . . . . . . . . . . . -1.7.3.ze-*umelJ -------- mcocomm-l.-----.wm (se.. . . . .. .. .. .. .. .. .. .. .. .. *-J . . . . . . NLu*m**rv*-l --------J-l -l. O’. . . -- x; . : ; i? z g m ..C X,.).J !“V.JU” UVJ 4, UV” 0...=. ==.==.=> ,.. s,.n J,.Jl ..=. .J7. . . . J;====== .= .==; .. .............. ........... ............ ...... * A d. ”.”..---’ V.J,)JA.IJA *A”, ,,, ,,, #,,> @lll#*#ll#ll ,1, ,WDVA V-. 4J**>”*LI* ..000 ooa. e -.-..erv-+ UT.ul+.a.. .uom .Wowcru a... O. C.O. J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..+ .Pwlnu. *.me YG-btJ-.3 O.mem+. v 000000=00”!”!”! U..I”-QQ”,”!=U .,”,”lcc~=e=ce ===OZ . . . . . . . . . . ---s0=”4 .. .. .... ... .... ...... . . . . . . . . . . . . ..w ; z . >. . r.c. . . . .-o ---- . r-f-- -------- Ut-oagmsam<u . . . . . . . . ------ . . +..,~ --o . mm. -- UK.=!. . . . nnn ma. -r----n-l . mc. mu. mmmmo - Flmmm -ANeI-NNIWNNNN.!NN . .C.mm.=m= . ------- cmcr-udh . . . . 11.nar-r-mmm . . . . . . . . . . . . . .aoa=o,neonos . . . . . . . . . . .........*.. oomomm. <Au. . . . . . . . . . ------ .mamm.mmmmfumluluwfw mNe.u.menu.mmo .r--- zan.nnmomn.nnc. -,IJIUOJ, WN-I.** cc. ------- . . . . . . . .mr-. +mmmmmmmmmm ,.. . ..— + * ,r- :Ommw:m $&. -1; .Zcc. . . . cccc=c. . . . . . . . c. COecc . ... . : C, I* II, ,* III Illlt .Lnoc.oo.e.a.. . . . . . . . . . . . .0000 . ... . .2000. . . .0....-0 . . . . . . . . OO.o. ... . . . . . . . . . . . . (:oaonm . . .C ccc . . . . :0000 . . **t . c! 01 . . . . ..*.*.. a--..=. . . . as> . . .2C. . . ... . CC. . . . C. G.$lr. . . .* ..*. .c. . . w Ccccccccc=c. . . . . . . . . ..c. .oeo’aoa: Uzn . . . ..= $IWC. ,1*,*1111, m 5 < . . c, . . . . . Lnnaoemoa.=oe r+ N z=-or. -.. +xa. -. -----m r-~c C. CC ~m. w.-oo-mo. OO.=. .OO . . . . . . . . . . . . . . .. . . . O.= 000 . . t... CC CCC CC * : ; . . . . . . . ..oo-oo ll::~llt: . . . . . . o.. . . . . . =oaooeooo 1*11111 . . . e..== . . . . . ...00 #1# Ill ..”””””” . #1, . .Zsc)==oelnee.’= . . . . . . . . . . . ce. . . . .=eeeeeec. .. . ... --; . . Inoo cll, . , O. . cc . . . 0”””-= . C..OOOSO. +0”=” . z CC. . . . . . . ccc.. . . c.. c”. . . --- . . . . . . . . . G . . 00 == . . . . . . 00 . CC ..O ,, . . . . . . fcc c= . CC=s . .cc . . . . . . . . . . ===r. ao ,., ,+m m,, . ..,+.* . . . . =.=.:;;.=.. . ,,, . . . =Ccc. . C. . . . 0000:4:=0.0 . . . . . ’=--= ~’”=-- . . ~= =. . . ...= .== 4, . . . . . . . . . ,, . m . . r- . : rccc. - :: .-! UT. . Uxn>. y.la, ? . N. . ;: m“ : ~.=.=.=.=: g w -4 . ● . . . . . .. . . . . =.-=.0. . ...* . . . . . . . . --. . . . . ..a . . . =... . . 1111181118891 -Oooeaa--.o . . . . . . . . . . 33>>. ==-=>=>3 . . . . . . . . . . Os =.000=0=00 .oeo. . . . ..-. .-.0-.00 . . . . . . . ..m .==.% ..m oow . . . .oc. . . . -..00UI . . . =- + u (,3 :: . 1> . .5Z ..C . a. =.= . . . . . =030=2 . . . . . . . . . . . . .=* .000....0 . . . . . . . ..353>=. . . . . . . . 33 . 3 .=...=.-= . . . 0 . . . . . . . . S=.=.a==..a=>= ..s . . . 8111 . . . *t .QQO...-D.. . . . . . . . . . -.*-..4.-4. . . 8181814 . >;;3 . N. . . .03> .e . . 000 . . . . . . . 0 = 0000-=-.= ==..>=== . . . . -. +.?.:::z~w . . . . . . . . . ...?. a.*. w-.. . ----.- . 0000 -4ul*w” . . . . . . . . >> S>-J. *-J .oa.u+=+,mmun -------(D O.”e+l.l!.lw--. . . . . . . . n % ; ~ z z g e * -----------. . 0 >uuoovnu + . . 0+ . . . 1,1 mJ-, . . G . . . . . I’n . . . w u . .L?U o. . P>3 . . . -urtu . . . . IA. . ..-..0000. . . . . . . . . . . : . .-.. . . s=O. . . . 811111111111 . - . . . . . . . . . . . -.s0 . . . . ...00 . . . . . . 0 . . -. . ..-*..... . . . . . . . .. .. . 2 ,,!I!I, II II o.a.a--eaoo.o.o m . . . . . . . . . .. >3>3>> 3.>==; . . . . . . . . . . . . =.=.=x ,= .=.= >>.33nn . . . . . -w,:::: ,,lllommw+L. CCeccct. . . . . . . -..-1- *W C.000-u!”l”!”l”! . . . . . . . .Vwv. .v .o=cJ-Ln.m*u -. . . . . . . . . . . . . ..=..+.>.. 0 ------W*+**WW .===, >-4=-!, x. . . . . . . . . . . . . .=. .. VCO CO-4 #r.JF-. ‘aCe-oil==u,”u. . . . . . ..ew Q..dwkJ@ oe. Lnhl. .3-uu . . . . . . . . . . . . >>>> nJrunJNNm N--OOrurdrvr w”-... . . . . . . . . . . =0. .,4=.-.0 .-W?------,vNnlmwlvwrvrt,h,h n ,-,-----------u.=’ -* LLk L*L n e --a=-----c .wN-Oa N’--. a &o F. NN*NF.I.N, W N%rw 2 NORTH INDLAN OCEAN CYCLONE TRACK DATA Tc 8EST Mo/u&/MR 0505082 050514i 0505202 0506022 050 NJ13Z 050614z 050620z 0507022 0507082 0507142 0507?OZ 050a02z 050iio8z 050a14z Osob?oz 0509022 05090az 0509142 0509202 O51OO2Z O51OO8Z 051014Z o51O2OZ 051102z 05110$32 0511142 051120Z 0512022 051?082 051214z 0512202 PDsIT Wrkn 6.3 ‘- ” 90.4 1=, ?0 2!7 .“. 6.4 6.5 b.6 7.0 7.5 i’. 6 7.1 6.7 89.7 R9. I F3B.6 e13. A 25 25 317 30 90.0 m7. R 57. ? 36 60 65 6.7 6.4 5.0 R6 . f. 86.1 RfJ. n 5.9 6.5 7;1 7.6 8.2 R6.4 86.6 86.6 F16.? R6. J u5. q .?5:? *4.6 *4.7 U3.7 *3.7 82.7 *2.3 81.7 91.2 no.11 90.1 9.2 10.3 11.2 11.7 12.3 12.7 13.0 13.4 13.7 14.1 1+.5 15. ? 16.0 17.0 w& ftv TNG TR&cK 5n bn 60 60 *G b5 60 60 6S 70 75 75 75 MO 79. > 7.9.1 POSTT 0.0 0.0 0.0 0.0 0.0 7.2 7.4 7.9 7.? 7.6 7.5 6.Q 5.6 5.? 5.9 7.3 7.r! 0.8 10.4 10.9 11.6 12.1 12.7 13.1 13.2 14.2 1+.1 1$. $ 14. R 15.2 17.0 D.n O.n 0.0 o.n O.n 07.7 87. < W,.n 87. ? 07.1 86. I. Eb. O 96. n .s5.4 06.7 06.7 85. R 05.6 B5.7 04. ? E3. Q 83.4 83.4 UINI o. 0. 0. 0. 3:: 30. 35. 35. 40. *5. 50. 60. 60. bO . 65. 65. 60. 60. 65. 75. 75. T5 . Bo. 90. 95. 95. 90. 85. 60. 50, 82. A 82.3 80.0 80. n 2.0.5 80. s 79a 7a.1 AI’L WNNG AVG FORFC4S1 .POSIT FRRoR AVG i71GM1 ANOLE E?QtN? AVG INTFr451Tr MAGvT70DF ERROR 4VG IN7FNSIT7 tlIA% NUMdER nf’ FORECASTS 26 ERR(-3S OST WI N-J o. -o. 0: -o. 0. -o. -o . -o. 45. 3?. 49. 42. 61. 72. 66. 0. 0. 0. 0. u. o. 0. 0. 30. 98. 73. 19. 30. 0. 0. 0. 0. 0. 0. 0. 30. 8. 25. 19. 21. 12. a. 12. 55. 23. 18. 33. 59. 0. PnSl O.n 0.0 o.n 9.I. 8.7 9.0 9.~ 7.(. 4,Q 5.7 a.a 9.0 Io. ti 12.2 !0. 10. 10. 5. 0. 0. FM? Ec4STS 48-H? >6-*R 16. 77. 2. 2. 26 1’39. 95. 9. -5. 22 233. 192. 13. -11. la 41ES7 MARWThJG 7R4cK wINn 66.4 -?5 65. q 30 64. ~ 30 64.17 35 63.1 40 61. R w 60.7 50 50 59.4 517 59.6 58.11 5n s7. n 4n S6.6 ?% 56.1 2n 55.7 1s POST T 0.0 O.n 0.0 0.0 18.3 18.4 18.2 18.5 18.7 lE.7 la.5 19.0 19.4 19.8 20.0 ?0.5 IIIM? o. 0. 2& 65.7 64.0 63. % 62.6 61.7 59.0 5.9.A 58.1 59. n 58.7 56. u 55.6 FORFC&ST PO=,l T FQQnQ RIGHT 4WGLE E?nOR AVG IN7F14Sl Tf M6Gw1TIILIE AVG INTFNSIIY RrAs NUW3ER nF FORECASTS A8. ERRo? 24. b. 6. ]7 -o. -0. 40. +0. +S. +5. 50. 50. 50. 50. 50. 45. 35. 34. 56. 40. 38. 70. 1!7. 59. 29. 69. 92. 4]. 25. 25. 61”L U+(NG AVG AVG 0$7 0.0 0: i’: 5. 5. 0. 0. 0. 0. 0. ;:: 15. 10. F’3REc&STS ba.ff? >4-.6R 737. 363. 0.0 0.0 )9.5 19.6 19. A 19.7 ?0.0 ‘20.7 .?O.? O.n 0.0 O.n O.n o.n 64.6 66.1 6?.3 5~.3 5*.6 57.1 54.1 n.11 O.n O.fi 0.0 0.0 n. 0, 5. 2s. ● 3”. =20. n. 0. n. n. FO14ECfiSt EUR3NS 0s1 JI*IO -0 . 0. -u. 50. 23M. n. G. 55. 248. n. 5. 5. 30. 30. n. 0. .. 53. 17(J. 5.5. 4b. 50. bb. 30. 25. 7>-,* n. 286. 4 .Zn. .] =.. *1<. ~. In. ?b3. -1% ?%9. -15. 7G7. -1o. 1s5. -1o. 113: 315. 470. 511. 6-49. 26?. 191. 111, 70. 101. 132. )?0: 178. -0. -o . -o. .0. -o. -o. -o. -0. s. 10. .10. 0. -5. -5. .10. .15. .J5. -30. .20. .25, .10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 92 .Iw# FOQFCbCT Po< It WIND o. 0.0 0.0 n.o 0. 0.0 0.0 0. 0.0 0. 0.0 n.o 0. n.o 0.0 12.0 w4. i3 55. HQ.3 17.7 55. 17.3 69.7 65. 1>.6 .’). $ 65. l&. o VO.7 70. 11.0 75. .a. B Q.b t6. T 50. +7.1 70. ~.3 ?6. ] 70. %.5 5.4 70. -0.5 60. ‘a.4 fB.7 11.0 ?tl.7 50. t8. Q 1?.7 45. !8.9 13.3 30. 0. 0.0 0.0 n.o 0. 0.0 0. n.o 0.0 0. ::: 0:0 0. 0.0 0. n.o 0.0 0.0 0. 0.0 0.0 0. 0.0 0.0 0. 0.0 n.o 0. 0.0 0. n.o 0.0 0. fi. o 0.0 “s1 .0. .0. -0. -0. -0. ?01. d 1 Ml) n. n. 0. 0. 0. .5. .5. n. 155. 3?3. 3nFJ. 6>0. 377. 612!. 573. 500. =,71. 17!3. %4. leli. ?76. -0. -0. -0. -. 0 .0. .0. -0. -0. -0. -0. -0. -0. .5. .5. 0. -?s. -]0. -15. -}5. -?0. --40. -]5. -w. a. o. (1. 0. n. o. 0. 0. 0. 0. 0. 18-79 WIVO 0. 0. O.(I 78. 7 n. =.. =.. 5. n. HO!, % FoRFCAST ER+rI?S 0S1 dINl) 0. 0. -o. 0. -o. 0. -o. -o. Pns I T U[ND n.a 0.0 0. n.u 0.0 0. n.o 0.0 0. n.o 0.0 0. n.u 0.0 0. 84.5 10. I 45. fi 84.1 +5. an. ? )). ? 35. 88.2 5,. 10.5 65. 17.0 89.0 70. a6.7 I\. k 55.. %0.0 R.? ao. z 4.9 70. 70. 79.2 K.11 =,.4 a4. o 70. 0.,1 65. al. s b5. )n.3 al. j el. z 11.9 50. 55. 17.0 80.8 ao. o bO. 13.0 l?. ] 79.6 55. l&. n 50. 79.4 1*. S 79.8 50. n.o 0.0 0. (7.(3 0.0 0. 0.0 0.0 0. 0.0 rl. o 0. n.u 0.0 0. rl. n 0.0 0. n.o 0.0 0. n.o 0.0 0. +a HO,IR MoI*M PIX17 wIN7 68 IND n. n. n. 0. 0. -G . *in. -6 . .]<. ● 10. n. -K. ● 77..IR 366, 206. 1?. -12. }* rRRn?s Pw.17 17. i 17.9 12!.0 16.0 ]a.2 la.2 la. O 18.$ Ia. a 19.1 19.2 19.5 19.8 20.1 14&. 184. 254. 330. 275. 70. lai. 70. 161. b5. 114. *2. 60. al.n 60. b t.. 81.6 85. 75. 81.2 85. 42. 85. 81.6 34. an..a H5. 25. en.=! 64. t05. 70. 30. 7P. ? 7*.5 30. 64. 0.0 -0 . 0. 0.0 -u . 0. 0.0 -(3. 0. n.n -u . 0. TC MO/O&/HR 061714z 0617?oz 0618022 0b1008Z 0b181+Z 0b1820Z 061902z 0619u IIz 0b1314Z 061920z 0620022 062009z 0620142 062020z i29. 14s. 262. 179. 222. 04.7 ab. t a?.=, a7.7 12.3 lZ. C 13.2 13.7 14.3 !4.2 16.6 16.0 0.(! O.n 0.0 O.n 5. 10. O>r -u . -o. -u. -u. -u. 60. 6,0 0. 0. SOUECASt EURWS *IWJ 0.!7 o. tl. n 0. 11, n 0. n.n 0. n.n 3:: SK. m a=,. % 35. 0$? .? ● 5. 87.=! 43. 50. a7. Q a+. a 60. a-4.7 65. a3.6 67.4 65. as. q 65. 8.7 8.$! $ wmlu 1 O.n O.n 0. 17-79 0 131 o. 0. o. o. 0. 77. 11*. -o. -(J. -u. -0. -u. G. 5. in. =. G. n. n. 0. 0. n. 00517 uINO FOWFCb5T FQ4Q?S 7)S7 dIND n.o n.o ?1.5 7?. o ??.6 ?1.6 0.0 0.0 65. o 64a 63.5 56.5 0. “. 60. 60. 6u. 40. n.o n.n n.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. l). 0. 0. 0. 0. 0. 0. -o. -o. 476. 4Ft2. 445. lno. -o. -o. -o. -o. -0. -0. -o. -o. 0. 0. 20. 35. 40. 25. 0. 0. 0. 0. 0. 0. 0. 0. *2 Posit n.o 0.0 n.o 0.0 n.o 0.0 n.o n.o n.o n.o 0.0 0.0 0.0 n.o KNIR FOOFCQST UIVO nsr -0. -0. -0. 0.0 0. 0.0 0.0 0.0 0.0 U.o 0.0 0.0 0.0 0. 0. 0. 0. 0. o. 0. 0. 0. -0. -0. -0. -0. -0. .0. 0.0 0.0 0.0 0.0 0. 0. 0. 0. .0. -0. -0. -0. 0.0 -0. Ill Ml) -Il. n. 0. 0. 0. 0. 0. 0. n. n. n. 0. 0. 0. ? . m... . . . . A.M +44, -nJnJIAlwwwer UIU!mowtrmvm. . . . . . . . . .=.>>..=. . . 000 . . . . . -40 CP.*WL4 aa= . . . . .0.000 . . . . . . . . . . . . . ...> .00-.-.2 . . . . oc. .a. . . . . . . . . >= . . . J z s + owNLo . ------------------------.UJmm. muecnww ** WWWNNW . . . . . . . . . . . . . . . . . .“ Omec. a*=ew O U’1.lm. . w’. ..m ‘mm M.9-w-Nw. mmmoeo. . . . . . . . . . . . . . UIUlulu!knv. ..co . . . . . J> AI DJ. Nnl-lw!vlv --*.OO-**** . . . . . . eoc-um-a-lmu . --------- 0 . . 000000 . . .=3. . . ..0..- >. >.. . . . . ..m .000000 0.000.... . . . . . 1811111111111s . 0=00000-0 . . . . . . . . . 0--00000.0. . . . . . . -...4 . ...” .Oo=o . . . . .. . . 000-. : 2. . *L . .4 **2owl . . . . . . . . . . . . . . . . . . . . - ==s>>3=. . . . . . . -0.000000 . .-.-2 . . . . . . . . . . . .000..>~ .. -..-.-0 ------ -C O=*ST . . . . ...0 . . -N. uulw!dlurv Oullm-oom’=wwv +c’.7wulm*8N . . . . . . . .mul QtJ u... : m m ; ; x m z F3KST Mo/D4/Ho 1029022 1029uIAZ 1023142 10292OZ 103uu2z 103uu8Z 1030142 10302OZ 1031022 103 II38Z 1031142 10312OZ 1101O2Z 11 U108Z 110114Z 12.4 1.?.0 13.1 13. * 13.5 13. $ 13.0 12.7 12.5 12.5 12.7 JIN1 0. 0. 20. 25. 25. 25. 25. v~s T r O.rl 0.0 ().0 0.0 Q9. k 12.5 8’3.0 13. -5 13.6 t3R.7 88.7 12.6 97.0 12.5 13.0 86.5 13.4 84. A 13.9 83. s 13. Q 82. R 62.. 13. R 12.7 81. n 12.7 79.* 79./! 12.7 25. 25. 68. 76. FORFCASI Posl r FewrIR RSG~r A$4GLE EW?OR INTFNSITY M4GNr TlJr)f ERRDQ 2. -?. 13 AVG INTFNSIIY 81As NUMSER OF FOREC4STS =RRoes D5T kfr -0, -o. 21. 66, 77. 65. 105. 59. 30. 33. 54. 7?. 13. 17. 17. 30. 30. 30. 30. 20. 15. ?.I’L MUNG AVG AqG AVG 24-79 n.n n.n 8u. n W.? o. 0. 60. *O. 35. 30. 30. 35. 35. 25. .?0. 0. 0. 0. 0, <4 R”!8JG TRficK WINP P3s IT 11.1 90. * ?n 11.7 Qo.1 ?0 12.2 12.4 TC N> 0. 0. 0. 0. 0. 0. -:: -5. -;: -5. 0. 0. 0. F’)REc,a5TS >6-40 68.H3 68?. 190. I 62. 332. 6. l]. 4. 7. * 5 O.n O.n 16.. 16.0 15. s 13.2 12.0 14.0 ls. -4 15. P 15.1 0.0 0.0 O.n 0.0 87.5 !Sh.7 W.5 67... B,l. H 00.1 7.2.? 11.0 (,. ,, 0.0 -u. -u. Z5U. .251. 192. 163. 215. 121. 16{. 19r. 144. -0. -u . -0 . -0 . n. n. 1%. 1.. 5. n. -G. n. =.. =.. G. n. h. n. m. Pn51 :T n.{) 0.0 0.0 0.0 la.,) 91.9 10.6 90.2 17.’? 87.5 14.1 84.9 14.6 t35.1 IT.o 0.0 n.rl 0.0 n.o 0.0 n.1> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n,o 0.0 WIND u. 0. 30. 30. +0. 35, >,. a. 0. 0. 0. 0. 0. 0. 0. n;; -0. .0. 633. 673. 49?. ?c)5. 3=.5. .0. .0. -o. -0. -0. -0. -0. .0. ;It’m 0. 0. -5 . +. 10. 15. 20. 0, 0. 0. 0. 0. 0. 0. 0. PO<! n.o n.o I*. M n.o n.o ..0 0.0 n.o n.o 0.0 0.0 0.0 fl. o n.o n.o t 0.0 0.0 95.8 0.0 0.0 0.0 0.0 0.0 0.0 U.o 0.0 0.0 0-0 0.0 0.0 UIV3 ?s1 0. .0. 0. -0. 15.1036. 0, -o. -0. 0. 0. -0. 0. .0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -0. 0. -n. 0. -0. 0. -o. NIM> n. n. 0. 1) . 0. [i. n. n. o. 0. I). 0. n. n. (3. 7?-+1 10-+6. 9.?. 0. 0. 1 !l!C 25-79 SEST Mu/04/HR 111+027 1114082 111+142 111+202 1115(222 111!X!8Z 1115142 1115202 11)602z 1116082 1116142 1116202 111702z ll17u8z 11171+2 1117202 llleo2z AVG AVG hVG PosIT 12.3 12.0 13.0 13.3 13.6 13.9 14.2 14.6 15.0 15.6 16.4 17.3 18.2 1s.8 19.6 20.3 21.3 wTN71 2n ?0.1 20 70.0 *9. Q 20 69. R 20 &9. n 217 69. * 2< 69.8 30 69. U 30 69.0 3q 40 70.0 70. ? 46 40 70.6 70. ? 60 70.1 70.1 70. ? 70. b PoSr 0.0 0.0 0.0 0.0 O.n 0.0 0.0 0.0 15.0 14.6 14.6 17.3 3< 18.1 17.9 30 25 15 19.7 20.3 0.0 FORcCfiSr PO-IT FRQ”R I?IGHT ANGLE E?DoR INTFNSI Ty M4GV1TIJOF ERRoQ AVG INTFi’ASITY I17As MUM8ER nF F9RECtISTQ 2& ,& RrmNG TRKK WINO 0.0 0: O.n 0. 0. 0.0 0. o.n 0. O.n 0. O.n 0. o.n 0.0 0. 40. 70.0 40. 69.7 +0. 69.7 60.. TO. R 4U. 71. = 35. T1.Q 30. 70.1 25. 70.7 0. 0.0 T ERmm?s Oil wIN> -o. -o. 0. -o. 0. -o. 0. -o. 0. -o. -o. :: -o. 0. -o. 5. 6. 0. 62. 0. 111. 0. 23. 0. -74. 0. 115. 0. 6, 0. 0. o. -o. 61’L WHNG r1QEc6S7S 24-@ =.0. 76. 189. 103. 14. 1. 6 1. 1. R +8-H3 121. 73. 45. *5. 1 MrOIR FORECASI EIO(O*S OST *IWO -u. ‘n. -u. n. n. -w. -L1. . . -0. . . -u. n. -a . n. Pns TT *lMf2 n.n o. O.n II.(I 0. 0.0 n.lr 0. 0.0 n.o 0. O.n 11. n 0, 0.0 0. O.n 0.0 n.o 0. 0.0 17.0 7::: 4:: 6Q. O 45. 15. A ;:: 191. 15. * ?O. ? 0.0 o.n 0.0 O,n O.n 23Y. 252. -0. -u. -u . -0. -u. O.n boa 7b.7 n.o 0.0 0.0 n.o n.n 45. 0, o. 0. 0. o. o. 77-IR 0. Il. n. n. 0 133 n. =.. 10. ]<. .2=.. n. 0. n. n. +8 ISOIIII DrISIT 0.0 0.0 0.0 n.u n.u n.n n.o 0.!3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.5 71. + n.1) O.u n.n 0.0 0.0 0.0 6.0 0.0 !3.[) 0.0 0.0 n.fl n.o 0.0 n.o 0.0 FnnFc&5T Fe?o*s DST tiIND -o. 0. -0. 0. -0. 0. -0. 0. UINO 0. 0. 0. 0. u. -0. u. -u. 0. .0. u. -0. 60. 1?1. 0. o. 0. 0. 45. ?2 17. o 0.0 0.0 n.o 0.0 n.o 0.0 0.0 0.0 u. 0. 0. -0. -0. -0. 0. 0. 0. n.o 0.0 0.0 0. 0. 0. 0. 0. -o. -o. -o. -o. .0. 0. 0. 0. 0. 0. 0.0 0.0 0.0 n.o n.o .IXJR U.o O.u 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.u 0.0 0.0 0.0 Fnrrrca$r 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0. 0. 0. nSl UTWO -0. -0. -0. -0. .0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. n. 0. 0. n. 0. 0. IT. n. 0. il. o. 0. n. n. 0. n. n. , . .s=. >,0 ..mmm =s+ E,*sa= . . . . . . . ..D === . . . s== . e.6..e.mee . . . . . . . . 3>>. =.====3 ===’=’== . . ...0.. 2=’. =.==s -woe . . . . U43 . 5 : . . . >Ls . . . Yn> . . . . . . . . ==.>>>>.>.=.> ,:: -. .S~ . ..=’ . . . . . 3 . . . . ----.-= . . . . 0000 . . . ., . 3.3. . . . . . . . 3 . . . . . . . . . 0---=----=4 . . . . . . . . . . . ...2 . ..C ...” . s>>.>.;:= . . . .*=.3====== . .=====>==== . . . . . . ..*Uc=~ ‘S.a....”=”aea= >>>> . . . ~ :, g .-oooa%x:l&: . . . . . . . . . .o=.000o-.o~.-.= .. .. .. ; -. I* I1l:ZWW 4,1 11111, ,,, omm cc. ccc~:ocvz n .CCC. O* C’CC. . . . . . . . . . . . . . . . . . ..->> ..=. . . ==. . ----- ..-ru . . . .=J>==UV. .. .. .. i . . ANNEX 1. WESTERN NORTH PACIFIC CYCLONE DATA NOTICE - THE ASTERISKS ( ●) B TROPICAL CYCLONE FIX DATA FIX INDICATE FI~S UNREFFS2SENTATIVS AND NoT USED FOR BEST TRACK PURPOSES. TYPHCY3N ALICE CBIEI ! 71S C:IXE5 T,M: FIA Mu. . {7) 1 < 3 * .> b 7 d Y 10 11 12 13 14 1> lb 17 18 :: ?1 i?.? 23 26 25 26 21 2s 29 30 31 32 33 3+ 35 36 37 30 39 40 41 6.? 43 4+ 45 46 47 *I3 .49 50 51 52 5.I 54 5> 56 57 w 59 60 61 62 63 64 6> ● bb “67 68 69 ~u ?1 72 73 7* 75 ● 7b ● 71 71S UV~>4K 8CC?Y 1 (?. ?E ]*Q.5E lb7.3E lh6.. llE ]+G. SE PC.4 Pew P~N b h h Pcv PCM b 6 0?0351 07 LJ!301 071?18 0>1400 022133 07d31Ll 07 L1741 071?00 0>1$40 (3-42115 03.?150 0/,0042 o&u350 o&u*57 06200? 107.5E Ih7. LIE 1h7. oc ]h7.4E lh7.7E 1(.7.3E lbrl. oE 16P.3E Ifi?.l E 16u.6E Pr4 PrN PrN PCN PCN Pcv Prw Prv Pcv 6 6 o b d 6 6 h 6 Prv 5 06<05B 064026 IL.c..5E PCN Pcw Pcv Ptv b 4 4 3 PCN Pcv Prv Pcv 6 b * 1 Pcv PC* 2 2 31 U.+OIJ 1011236 011+19 01<151 0, Z33b <t,7Fl co+4qsM,~ ! Ilk lb7. bE 167.1 E 167.4E 16!=.. (IE 1*5. OE ii,*.5E lf.3.7F 11.7.6F lb?. +E lkl .7E 16n. flE 15q.7E ISO..?E 0k1247 of.1923 062205 \5n.l E 157.9E /?.5 /7.0 T2. /7.0 13.5/ 3.5 T3.0,3. PGIU KGuC PHIK PGTU PGl# KGtiC PGTU KG#C PGTw /S O. O/24HRG /0].EI/2Wf?< Pill.s PG7d PHIK PGTU PHIK O /131 .h/24HRG or,.234B 070350 07090+ 157.4E 157. OE 15 f,.3E 071013 071047 071?30 07??147 oqol12 0aU92b 0s0926 15%. BE 15=..7E 15%.3E 15?.2E 1s7.5E 151.2[ 157. IE lS1. OE ]5,1. )E l?.17N l?. ON 12.13U 11. W 11. ?N 14R.6E )1. W 147.5E 17.3hl 146.7E I?. %1 145.7E l??.+M }b=,.2E 11.9N 1*7.3E ]?. !3.,14?.6E 12.4.! lbn. ZE ]7. >. 140.9E I&o.4E 101136 l?. % 17. ?N 16n. lE 1.71317 IoZ127 12.3N 13Q.3E in’?127 1?.3,! 139.3E 1?.3.! 130.1 E 102236 110159 12.7M 13R.7E 1,1008 l?. WJ 13s. OE 111008 13.0$4 13s. OE 111118 13. 0.1 137.8E 1)1041 13.3.! 13-I.7E 1I2107 13.6N 137.5E 112108 13.7N 137.4E 112218 13.6N 137.1 E 1701+] 14.0,8 }37. IE 170141 13. W! 137. IE 170~+8 15. ?N 136.6E 170949 lb. 9,,. 136.3E 171100 15. ON 136. ?E 15.lbJ 136.4E 171+23 l?.20+13 15. &bJ 136.6E 1=..bw 136.7E 1723+3 1?092!5 16.7N 137.5E 170!229 16.7.! 137.6E 1310+? ]6. qN 137.7E 13160E. 14.3N \37.4E 13.5/3.5 T4. o/4. /DO. cl /00. PGT# PGT# PGTN PGTW PHIK PGT# PGTti PGTU PGT d PGTM PG7U j/2bHRC j/23HR< Prw 2 PC.N 1 Pcu 1 PcN 2 PCN 2 Prv Pc$i Prw 2 2 1 PCN Prv 1 5 PCN 6 PCN 5 P(Y 2 PCN 5 PC% 4 PCM 6 Pcu b Pew * Pcv 1 PC* 1 Pcw * PCN Pcv 6 1 PCN Pfx Pcb4 Pcv PCM PCN 2 1 2 2 1 1 Pcw Pcv PCN Pcv Pcq 1 2 1 .? 2 PC* Pcv Pcw PCN PC* PCN PCN 2 1 1 6 ~ 6 4 Pcv PCN 5 3 Pcw Prv PC.4 Pcv b 2 6 6 SITE PGT# PGT# T?. 12. 16 R.IIE 0<0350 0G0339 061305 0G1943 Of.000b 0AU923 0$.0922 oqlo29 o*i353 0C12025 0VO054 000906 091011 041335 00225$ lno?17 ln094b ln094b COn E 15.0/5.0 T6. o/6. /D1. o /01. o/2 PGTd PG7M PG7W f,HR< o/24HRQ DvsP_47 O*<P37 T+.5/5.5 /u] T3.5/4.5 /ul. T4. /w0,5/19HRc o,,.5 .3/27MR< o/23HRs T3.5/3.5 /SO. O/23HR< 73.5,3.5 /s13.13/25HRG 74.0/4.0 /so. INII Ods PGTW P141K PGTti PHIK PGTU PGTU PGTU PGTU PGTM ROON PGT!I PGTW PG7U PGTU PGTW PGTU PGTu PGTW PGT M ROOM PG7U PGTU PGlti RPUK PG7U PG7# PGT# ROOM PGTN PGTM PGTU P6T u ROON PGTti RPMK PGTW o{2RHRc RPMK .;g;; T3.5,3.5 /SO. PGTM PGTd PGTd PGTM UDON PGIU PGTU O/2hHR% 135 * ● f9 bO 81 82 b3 B4 85 1?2026 1-4Z02B 1?232 j 1* LI105 lao909 1403rA9 142307 1*. ?U 16. IN, Ibn.lc 13 f..1E If). ti 1*. ON 17. bN 16. ?.J 17. IN 136.6E 136.4E 14..7E 135. +E 137.lE Pcu Pcv P<w PcN Pcv 5 3 6 b 5 Pcv ,PCN b 3 Du5D37 DM5P?7 r?. 0/3.0 T1. O/2. /w I . 5/24tA13c O /wl. o/.26HR$ AI ICOAFT TTME (7) FTX POSITIOM 1 2 3 * 5 6 7 0>0115 0715?0 0-40053 5.-W 6.~N 7,2N 030310 o&l)?]o o&15z3 051302 7.7N 16R.5E 167.6E lfs4. OE 16R.3E M 0.316?3 0602S9 061213 ok1627 07UO08 070?56 Q.3N Q . s., 10.3N In. $* 167. flE 16 f..2E 1b_4.3E 163.lE 11. % 1?. 1.( 12.2M 12.3N 12. *N 12.5N 12. ?M l?. W 12.%1 )2. lV 12. nl 161. oE 15Q.2F 15.7. OE 157.6E 157. OE 154.7E FIX NG. 1: 11 12 13 i+ 15 16 17 18 ;: 21 22 23 2* 25 Eb 21 :: 30 31 32 :: 35 36 3’/ 38 39 40 ● 1 42 +3 071+07 071820 07~0+0 Onoolo Oqoz+? OR130? on150B 0S2Z49 0Q0202 000601 000940 09163+ 11.9N U.* ]~.~N 12.1 12. IN 17.18, 11.7!4 1%.?* 1017*2 102105 liu?lo 12.3N l?.3N I?.5M 13.3” 13.3U 1’3.9W 14. ON 16. % 15. IN 15. ?N 15. *N 15. ?W Ih.lw 16.3w )6.5N lh. lN 111245 111530 121059 1.=1906 172013 I 300?8 1?0253 13122.6 171517 1*000* 140308 156.2E 153.5E 157. F5E 152.4E 14q. $3E 16Q.6E .E4n& 147.46 N lb6.6E 00205* 1 no 6+.5 1?0106 1702s+ FLT LVL 146.1 ]46.8E E 167.6E 1*1.8E 130.2E 139.2E 13n.5E 137.6E 137.3F i37.1 E 137. OE 136.5E 13 F..5E 136.77, 136. IAE 13A.7E 137.2E 137. ZE 136.7E 136.2E 15130F1 700Nb 700UU 7!30Mn 700M8 700V3 HGT 794R >97-4 9934 9?4? 7ooMe 7noW 7’931 >0+7 700MN 7qOMH ?170wH 7170MB 7110u6 700Hh 7!70PW 7’OOW 700H8 7i30W 7825 7807 7763 >76? ?674 7b46 7561 747* 7477 9544 ;:oofi 7ooMh 7+aGMU 7i30nL4 70016B 700wB -700W 7110un 71roHB 700H8 700!4u 7nouH 7130W 7fioMti 7130MS 7f10MM 71TOW 7001.W 7no Mn 700MS 700MM 700MU 700qH 790MU 700M13 ?537 7690 >743 >17% 9771 >84=! ?857 ?849 9847 >804 76tlR >646 >60. 7597 >56? ?b73 ?625 Y77r3 >766 >761 2859 7925 7959 -4017 7126 3145 08S MSLP 986 984 982 983 983 972 969 96!3 963 MtIx-sFC-WqO VEL/RRG/FING 160 35 55 $5 55 120 060 310 15 60 b5 340 961 9*9 937 930 928 938 935 Q54 957 w 964 974 973 970 965 953 949 943 90 .s ?0 14 110 ?50 90 180 95 ?10 10 030 090 95 360 120 150 150 938 966 965 963 1?0 8 8 961 977 60 65 030 090 35 15 50 30 33U 350 ?0 30 97!5 989 1005 Ilh-jficl rims, (71 Flu 1 2 .5 ; 6 r n 9 10 11 12 13 1* 15 16 030330 olob20 0’3(3730 0?0930 0-60330 0-41130 oq2z30 0,1J130 0A0530 06(J730 0,U500 040030 0’0900 0,0?30 061000 o&lloo 17 10 0*1130 000635 :: 21 OQO51O 00U535 09ublo 4cr#Y 7.7u 168.2E a.+N *.?N 71.5hJ n.=Jw 8.6N Q.l W ‘9.3,! 9.6u 9. bf.! q.bu 0.5.J ‘+.$. 9.5w O.%W 16R. oE 16R.2E 16R.2E 16U. ?E 16n. ?E 167.7E 1*7.4E 167.6E 167.6E 167.5E 167.5E lb7. ?E ?67. IE 167. lE o.% lkI..9E Q.% l?.3N I?.3w l?.3N lfYA. ME Ib6. ME )4&.7E Ib4.7E ].?. 146.5E ?N LAMO LA.,0 LANO LA.,0 Lfik4D LA.JII LAhlCl LAUD Lfi.,il LAND LA?JO LAUO LA.lC) LAND L13N0 LAUD LAWI LA.u3 P!30R LauO LA.1i3 LAVD PWR P-ION PqUH EYE SHAPE ??0 1160 ?10 72 60 60 1 An n=.n +10 )30 52 53 56 74 290 ldcl Oeo 31U 2UU 0+0 19* !00 1?0 (l&n 79 70 !37 FJa 3*IJ b30 3(IO EYF oIa14 ~v~ kCC07 NAU, WET oRlEN- 100 102 96 wSN No. 131t, u/ T4110N lno O*IJ 090 lpb Olo 17)5 300 1*O 1]5 060 115 60 090 )30 3bU 70 W(3 75 XM3 107 050 090 94 230 160 90 040 Iln 87 OAU ) =.0 99 0’)0 3%11 86 2M0 0/.0 90 330 Ofu )n~ io5 8 Rn 00 lUO 000 85 3*O ?>0 ~~o I 50 150 ?70 110 1?0 134 0>0 17{1 90 090 lno 83 360 110 65 03U non 40 3*O 100 170 67 040 57 2s0 lhn ● 5 !340 140 35 330 110 ,,0 010 100 330 100 170 130 060 60 65 FIXES WF.X-FLI-LVL-*ND lllR/#EL/dHG/tiNG 65 93 RODN PGTd PGTd PGT# RODN PGTli PGTu Oti<pw. DM<D3% Duqu37 rlblqP-47 Du$P36 +23 .1.? 2 +Ii +13 .11 : 311 zn m 2’4 In 20 n7n Onn 170 lAn 1?0 060 3* o-4n 130 •, 4 C112Ct ILAR ELLIPTICAL 35 3(3 ?0 010 .13 .10 ELLIOT 25 15 030 .12 IC4L CLRC, ILAR CIRC,,LaR 27 17 CIRC!PLAR 15 CIRCNLAR 7 4 4 ELLIPrl CIR&fMR CIRC,ILAR CIRC,,L&R ELLXDIICIIL CIRC,,L&R CIRC,,L&R 3 5 .Ii 25 15 3(3 30 35 25 20 17 CIRC[,LAR CLRC,,L&R CL13C[ILAR 13 C1RC,,Lti13 10 .19 ● 19 .21 +15 .2$ +22 +14 .20 .?* .Y.2j. ● 15 C&l 18 020 13 .23 .23 .la +11 040 +25 13 11 +10 ● 1O ● 1? ● 12 ● 8 B ● 13 ● 1U ● 9 *lo +11 ● lo +11 .20 +10 CiliC,,LAR 13 411 2 CIRCIILhR in ● la +13 11 1-? 12 13 13 14 14 14 15 15 lb 16 lr 17 ● +1? +23 .19 .19 C112CIIL4R 10 Iu ● +1* ● 13 .12 . 5 ● 6 *LO *11 +11 3 1 2 3 3 b 7 .11 . B +10 ● e .11 +1+ .13 .10 .11 ● 13 ● 23 *1U .22 ● 1,? +19 +1? +15 .1* +16 ● I? +1? .20 *12 +21 .15, *I2 +21 .21 *I1 ● 22 .10 +16 12 in s +25 .15 .16 .13 +i7 .11 +15 .15 .1* .17 .16 Id Id 1’4 20 ?1 ● ?3 ?3 23 2+ ?4 ?5 ?s ?6 ?6 ?6 ?7 ?7 1Q 28 W 29 29 5 STIES aAnnm.CoOE bswbU TL)UFt POOR FblR F*1U PQO17 P?UH Ft.lR P,OR PqOR GI)OO GOOD Gnoo 0000 FAIR FaIN PIWR POUR Pn.lR COMMENTS 9.7W PSLIL PCtiL P*BL PcUL P5FJL PCLiL PCBL PcHL CMTU CW7R FvF CWU CNTll CNTU CNTU CUTR PSBL PcF3L 9s13L PCIIL P<Ii!_ PWJL CNTH FvF FvF svr FvF FVF Pq#L PSBL P<13L UALL FvF CNTM PN7kF rI n vsB MALL PI n 167.7E 167.7E, 167.7EI 167.7E, >.67.7E 167.7E 1 67.7E 167.7E 167.7E 167.7E 167.7E’ 167.7E 157.7E 167.7E 167.7E 167.7E 167. ?E, 16 b.9E I $$.9E 16+.9E 8.7u B.7W 0.7B. 7N 0. 7U 0. 7U B.7U B.7w a.7u 8.7U e.7N 8.7N 8.7N VSBL 2.rw 0.7Ssw. S#-N NNE 8.7W 13. W 13.6BI 13. *9I 13. W q13h6 Q1366 01366 91366 Q1366 91366 t?l366 Q13S6 91366 91366 q] 365 q 1366 q] 366 91346 913F16 01366 Q 1366 L31?la 91216 912,8 ~l?le 16$.9E 136 . .. 22 23 24 25 26 21 28 29 30 0QIJ535 000705 000735 0?!)905 12.3.! LAW LA.!O o~1335 00 J$lu LAbJII LAq O LAWI LAWI I-AND LAND LAWI LAND LAND LAUD LAwD LAWB LA,,9 LAW) 091435 0+1510 OQIE.35 091510 0Q1635 LA?JO LA.(O LAw) LAM3 LAM) OOv U5 030310 000335 OQ1O1O 001035 OQI1O5 0.31135 0G1205 0,1235 (391320 38 39 40 41 42 1?. ?.! 17. WJ 17,4U 12.3., P?LW PqOR Pqoa D90R F&lR PqOR F&l R P130R Fb. IR FAIR Fall? Gi3U0 F&l Al 6FIOLI GnOO FF.l R F.l Ili F41U uALL WALL U4LL MALL uALL wALL IAALL WALL wALL WdLL wbLL ufiLL dt,LL 29 >0 W GnOD HVY HVY HVY HVY HWY HUV FAIR Fal R FAIR 737 13.W till vSEL SSW-U c1 n VSBL SSW-NNE PI O VSEL SSM-ti m n VSBL SSW-NNW (7L0 SSW-NNE c1 O W-N cLf) SW-)A CL o SSU.AA-NNE Cl O S-M-NE CLFI S. NNA.-NE CLll S-N <su-NNE <-MU R*P CIR *ALL MALL We OPEM CLF3 OPEN AT7FNUATION bTTFNUATI ON AT7FNuATION ATTENUATION ATTENUATION ATTFMuATION ~ ZNE-S-Sti 13. (IW 13.6?4 13. AN 13.6N 13.6u 13. bN 13.9u 13.6U 13.6w 13.613. bu 13. bN 1313.6W 13. bN 13.6N 13.6* 13. ew 13.** 13.6* 146.9E 14$.9E 1*$.9E 1**.9E 1+6.9E 1~6.9E 16+.9E 1w6.9E lb$.9E 1+$.9E l+&.9S 14$.9E 14*.13E 16$.9s 16$.9C 164.9F 16$.9i 14 Q.9i l*&.9E 1+6.9E 16+.9E .- +..*+ c-<.--.=: --- ● -. --- NN$l*rnrl \ :.++..+*+ -r -lrl**a A---- Y’>------- ● 7 * s 1 : *. . : % ‘ TYPHOON C6TEII Flx ?40, llb- CECIL CIXES TIME (7 I 1 0,??25 2 3 * 5 6 ? 0c123+9 oa233i 101212 102314 11 U31U SITE 3.13U 14?.6E 3.6U ]A-4.6~ +.1*, lJ+l.7E 6. 3.1 lb fi. bE f,.a,, 130. OE 6.6U 13n. HE 6.*N 13n.3E 6.3N 13 fl.5E 6.3U 13i7.3[ 134.4E 6*W 7.ohl 137.6E ?.nbl 137.4E 7.n.1 l%.l E 7.lu 136.*E 4. 7U 13/,.6E 6.W 136.7E ?.ITN 136. eE 7. 1,1 13S. bE 134.5E 7.W 110?11 Y 111155 ~ 111$3+ 1(3 111+36 11 lld151 12 ]12256 13 1,0134 14 1>013+ 1> 1?0135 lb l?l$ib 17 1>1+16 16 172131 19 170020 20 lau?55 ZL 1>1011 22 111119 ?3 131337 .24 171358 25 1-41355 26 1’42111 27 1GUOU2 .2M 1.0?39 23 140?39 140239 30 31 140?52 3? 141263 33 I*li.zcl 34 1*1321 35 141521 36 142233 3i 142344 3d 1s32?1 39 1=.U221 ●U 1=.093.2 .41 151?25 62 15150? 43 15150? ++ 1<2?13 45 1%??13 46 140ZU3 +7 16132u3 1?. 1.! 171. (IE *6 IM3Z03 11.%! 173.1 IF 49 I?7.4E lf.1053 1?.7., 161053 l?.3*! 127.5E % 1610s3 I?.%* 1?7. $E 52 lhi?oa l?.7N 1?7.2E 53 16144+ 17.7*! 1?7. ?F 54 1!31+46 17.7,1 127. fJE 55 1*2153 I?. CJU I?I.9E 5b 162153 1?.3.1 129. IIE 57 170050 I?. +N I?7.3E 58 13.?u 127. ?E 170326 93 171033 13. qM l??.3E 60 171033 1 1.7w 127.5E 61 171332 13. Qw I??. *E 62 11. s., 12>.4E 17142b 63 171508 t4. lN 1z7.4E b+ 171606 13. ?.J 1?7.3E 65 14.3., 17?. HE 172133 66 lnL!032 14.5M 127. JE 67 lqo30B 14. qN l?l. i’E 68 lRo300 14.5M 127.2E 69 I?A.2E 1!31013 I’+.4N 7!3 }ClL3i4 14.7u 123.7E 71 1.3154? 15.7N 124.6E 72 15.5N I?6.7E 1*1549 73 19001+ 16.%, 1?5.1 E 74 190249 17. IN l?<.2E 75 1W?49 17. ?.1 12s.7E 76 190953 17.7N I?6.5E ?? IQ1531 19.5N I?7.2E 7tJ 101531 lfl.3N I?7. bE 79 120. OE 1.3<357 21 .1.! 90 192357 ZO.9N 12Q.2E 2?.5N 137. UE 200933 :; 2(71?3s 21.6N 133. ?E b3 2ni?3B 2?. %u 1 ‘47.7E 84 2n1513 24.5.1 1.36. bE 85 201513 23.7v 134.5[ 86 2n1313 2?. qw 137.6E B? 2nZ33S 2?.9N J37,. *E 70. ”,0.0 PGIu TU.0,13. (J rl. o/1,” /$0. o/2%HRe /nl.3/?&tln5 71.; /Qu.5/Z&MRC /1.5 73.0/ 3.0 PG1 w PGT* P1j Tll PGTd INI1 .)SS INII 34s 074 EOUE OF 04Ta o/3. o lNII JdS r3. o/-i. o. [Ntl 2.ss T3. n/-5.l3 /$13.13 /2 bHRc T3.5/3. j r4. o. /1)0.5 T4.5i4.5-/Bl Pf3T# PG114 PGTw PGTM 7?OON RPMK PGltl PGT# Roov PGIN RPUK PGJd PGTU PG1 U ROIJV UPMK PGTU PGIM PGTW RPMK PGT@ PGTIA PGrd /26HR< .o/2?tiR% Tb.5,&.5_/1) ].o,24Hl?< SPLI T*. P/4.5 T3. @/4. o 14.0/4.0 ● .tRS I ROON PGTU RPM!( ROO!4 PGTN RPM< 9GTd R130W RPM% PGrU ROON PG1 w PGTti RPHK F40LP4 /w O.5/2diR. /.4] .5/2,3HRei lNII PGTd RODN PGIW P61U RPMK PG7M PGTw RODW PGIu RPMK PGtw ROL3M PGld PGTd /nl.5/23HH5 T3. o/4. STOQM JOS T4. o/6. o /5,1. o/24HR< 14.5,4.5 /0] .3,21HU< T6. j/4.5 */1)0 .~/22HU< RPMK PGIN ROOM PGTW RPAIK N/4 72.5/3.5 T3. o/6. 73.0/4.0 /wl o./”] /wl. .5/2sHRs .5/3nHRc S./2 fiH7tC T3.5./3.5 T3. o,3. /01. o /50. o/2+HRQ o/~’HRc UJG TO TFDu INATO* ROOY PGTH PGT# RPM< ROOV PGTIA ROON RoOM PGTd flP13K P(ITM PGrU R(7ON PGTU 1200$4 PGld PGru T2.5Jz.5 T3.13/3.5/WO.5/26URS EAPuSEU 1 LC qYs IEM 015 S,?41F(J PGr# RPMK ROON PGrd PGId m * 9 .4 -s ”.. -.. Jl**Alklv-lmaarJ ..---.V. 4 . . . .6. R12CUAF1 14 ,.J . llM< (7) ,., rLr t.VL 1500FI 7nnMu r?, -4u9n 7U1] >974 ?’+5? -iu35 1002 3127 1004 ,ICC*Y !-AN13 LAalD LA. ICI LA. tD LA 10 LA,ILI LA, !9 LA* III LA*!O LA.10 LAW LAW 1-4<?33 17/303 1-+2330 I.. (J33 14U1O, 1.0135 160205 16U?35 16 U3135 160+10 140632 1AZ3*6 P,otl 9nuR P?OH F61H Fdl R F.41H 25 30 160 18U 55 50 9FJk 15 15 360 100 30 30 ?5 310 1?0 25 )40 50 T,rl: (7! 1 t 3 lhl?ou 17 UOIIU 1712!30 .Ix ms~rrm, ?0.0%, I?9. IIE 27. 1., 133. (IF 27. r3N 16n.5E IN TENS1l ESTIMATE Fnlti Filn CIRC, ILA? CIRCllL&? CI!?CIILA3 C19CIILA< C1RClfLb3 CIGCIILA? CInCl)Lh? CIRCIIL133 F41H G’30D 6.300 P!-luk Cl RCtlLb3 cIRCIIL&? CIRC!ILA? CIRCIILA? 23 :: V 710 7+0 0?0 110 3<4, ~lrl 1611 34 30 16u IX! 35 3? 39 150 3>U 2(U ELLIPTICAL ELLIDTi v:aREs T 367A {NM) CtL OR IENTAT ION k V. clllt/ Mw w). .lII .iz.]0 3n ?0 36o .19 .15 .10 30 70 360 + 9 .]3 .1? .1! .2+ .11 +2+ . 9 32 31U ?s 290 ● 5 b 6 6 u 8 Flvts <lTF EYE stl&PE COMMENTS P<HL CFNTER CkJTQ STNWY EvE SYW3DTT? Flk *O. .YE Di4.f EYE SFla?k Oa>m TTW: (71 E5 M6T 7n0Mti 717n Ml! 7nL3M” TnoMn 7130W la ,0. F[x 01 hN SINCE UN6 HMO No. LdST l?EPWIT 15.2N 15.2N 15.2u 15.29J 15. ?94 15.215.2u 15.2N 15.2u 15.2M 15.2* 15.2N FTXES COUAIEWIS 120 60 60 742 ... 120.6E 120.65 120.6EP 12 D.6E 120.6E, 120.6E 120.6E li?O.6E 120.6Ei 120.6E 1.20.6E, IZO.6E 983>7 98397 C18377 983?7 983?7 Q83?7 003?? r#33?7 q8377 983?7 oe327 W3 327 ‘23tOPI_ SATEI F[x N(J . : 3 4 5 6 7 a 1; 11 12 13 1* 15 lb 17 in 19 20 FIX MO. $ 3 * 5 b 7 B 9 10 11 TTUE (7) CIX P051TIOfI 210311 ?70035 114.2E l] R.oE 2?0253 2?0253 ?*UUIR 2.0235 23u235 ?-410?2 27102Z ?3125+ 2?i; i6 ?31516 2%?121 2321?1 llR.3f lIR.5E 2koooo 240216 24u216 2.1000 261OU2 241002 T,*E (7J 2-40200 2-,0200 Z?uboo 230400 230500 2-3 U5.00 210600 2aObO0 2?u700 2_+u90D 2>1500 124.6E 125.3E 12<.5[ l?r.. fIE 12e. oE 129. oE 129.7E 23. ?kJ 12’3.8E 2-4.1 N 137. OE 24.6U 133.5E 24. % 13?. TE 25. bb, 13?.l E 25.1 N 13_i. LIE 27.7., 136. OE 28. ON 135.7E 27.1N 136. OE ?2. m 22. ?rA 2?.3N 22.3.s ??.6v 2?.4v 22. $,, 27’. *N 2?.5M 2?. =PJ 23.6N 12.5.1 E 125.1 E 12=,.7E 12%.7E 1?6. oE 12/.. OE 126.2E 1?6.2E 126.6i I?#,.9E 129.5E PCN Pcq Pcq Prf4 PCN Pcu PCN PCM PCN PC’+ PCN PCM PrN Pcw 5 3 3 3 3 4 3 3 3 3 5 5 5 5 PCN PCM 5 3 Pcw PCN PCN Pcv 3 5 3 s Rboae NU , 1 ? TIM: (7) 21 UOO0 2,1200 FaXES T1.5/l.5 11 .011.0 11.5/ 1.5 11.5/ 1.5 T2.5/z.5-/fll /so. T2.5,?.5 /01. T1. n/]. /all. ods ads IN]T 3dS P$N L14sEn r)/24MRc o/?&HR< EYr DI&M IN I T LldS/UPR 1?61 I CNSS TOllF~ LANO LANO LAND L AVD ?1s72 10!T?3 ?1s12 ?ITQ42 so51i 50716 5091+ 50612 LANO LAVO LANO LAMO LAvO LA!40 LAvO JOR72 -45/41 ?7Q12 ?f27Rl ?*R42 ?4s11 ?1/// s0816 50s19 50814 S0911 S0822 50816 40522 FIXE6 M:4REST (NM) BANDS I VL COMNENIS 60 60 143 CONMENT S . RPNK PGTM RPMK ROON PGT# P($TM ROON PGT# RKSiI PGTu ROOM PGTM PGTW RPMK PGTN PGTM RI(SO PGTU ROON RKSO m41)nu-cOUE Aqu@ 04TA ON CR O/21tiRS O EYE SHAPE 6cckY INrr INIT SITE .s/2bHRq 11 .5,2.5 T2. O/?.0 INTENSITV ES71MATE lQ. OU 116.OE 20.0,, 115. nE 05 C3MMFNTS SYU03TIC FIX I ?TF t,crw s.. !005 TTTOM DEPRESS1ON )T40WI PoSITio+l 2+. w i?*.3N 26. S* 26.3N 24. IM 2+.3M 24.8U 24.3w 26.8N 24. LIAI ?6.lAI ~Z3.3E, 126.2E, ~25.3El 12$.2E~ I z5.3E. 1 -2$.2V i 23’.3E, 1,24.2EI 1z5.3E, ?25.3E1 127.7E$ qIrr Uuo Mo. ,79?7 479’78 ,79?7 ,7*’TS ,7W7 ● 7918 47W7 +TW21 479?T 4197T ,7977 TYPES(X3N C6TEI FIx TIME, w. {7) El 9 10 11 260019 261119 261641 270001 270?00 270047 271102 272120 272363 2Q0141 2FI1OO8 12 13 14 15 16 11 la 19 20 21 2!31225 2n1423 2$32325 291?00 2Q2307 3nl150 301346 31T220B “O1OO31 010227 4 5 6 7 22 23 24 25 zb 27 28 29 30 31 32 33 34 35 36 37 38 39 40 59 60 61 62 63 b4 65 66 0!0227 011050 0i1050 011313 011313 011509 011509 012148 040013 CIX P05TT10M 5.9V ‘3. Di .S.9V ‘?. nu .3.7N R.6w P.7N 11.3N RN 0>2?49 040300 0$031$ 041131 061555 061555 042230 050101 050255 0=,0256 0=.1110 051110 O’+13*3 051537 0=,2210 od210 0600+3 060237 o/23HR< PGT# PGTd PGTd 6 6 b 5 70.0/( Pcw Pcw e 9 TO. O/0. Pcv Pcu Pm PCN Pcv Pcq PCN PCN Pcq Pru Pc% Pch PCN PCN IJCN Pcv b b b 5 3 > b b 6 b El 5 5 ] b 3 PCN IJ!!N Pcu PCW Pcq Pcw PC* PCN Pcq 5 d 4 6 5 5 3 5 5 TQ.0,4. o /c)l. o/21HR< Pcw Pcw Pcv P17M PCN Pcu PCN Pcu PrN PCN Pcv Pcti 1 b 6 6 6 3 5 5 3 4 3 3 T5.13/5. o /r12. n/28HRc T4.5/3.5 73. O/4. /wl. O./W? F’cv PCN PCN PCN Pcw PCN PCY PCN PC* PCN Prv Pcw 5 3 3 3 3 * 3 3 5 5 s 5 T3. s/3.5 74. s/4. 14.7N 14.5W ]6. bN 14.1 N 14.%! 129. IE 12R.4E 1 ?5. OE I%U.3E l?n.l E 1?!4.5E 12n.l E 127. IE 12 fi.6E 12A.6E 126.4E I?l.5E 171?.6E 120.4E 11’Q.4E 211. lN llfI. OE 217. ?M 118. IE II A.3E 20. lN 2(!. OW 116. OE 11<.8E 20. lN 20.7., 1115.9E 20.5N 114.3E 11+.5E 20.4.1 20.6MI 113.7E 20.7N 113.7E 21.7*4 111.8E 111.7E 21.5N 21 .5,, 111. *E 21. +W lln. OE .). ss T1. fl/l.O /nl. PCM PcN PC* Pcw 1317.7E 1317.7E 13n.2E 13n.l E SITE O/?4HHC 6 5 5 13n.9E CJ.4MFFJTS I TIE O /50. PCN Pcv PCN 137.4E 131.5E 131.3E 131. OE F,IXES PGIw PGTd PGru PGTti PGTU PGTU PGTU PGTU PGTd PGTU PGTII PGTti PGTW PGTd PGTM PGTW 13s.9E 13a.6E 13$1.4E I llF 3NII 5 5 b b b 5 b 13. % 13.2N 12. *W 13.7N ~~.8N 13.9N 13.7M 13.’W I?.6N IH.7U lR.9.8 IQ. W 19. W 5&TFl P@J PCN PCN PCM PCN Pcf4 PCN 12.IN 17?. QN 13R.6E 13.??J13R.7E 12.5N 136. OE 12.9U 133.6E 13.7N 13=..2C 13.7N 13?.6E 13.9U 13?.3E 13.7*I137.7E 040137 0?0155 070209 020209 14.5V 0?0209 14.61’J 0?1029 15. OU 071255 15.1 W 021$50 15. lW 021451 15.3.! 07212B 1=1. OW 02212’4 15.9N 0?2356 16.0,1 070137 16.2A! 0$1009 17. $W 011237 17. R.J 0?1632 lfl.l N 031632 18.IM 032249 1*.6. COOE 13q.3E 141.7E 13Q. OE 1413.4E 14n.3E 139.5E 139. *E 11.6N 13u.7E 11. 0Vn?4K ecc QY ELLIS 10. OJII.O rO. o/n. o fs17. 3.0 /so. o/26uRc P0S513\E SECOUnAUY 10.8N 139.6E o/26HRc PGT d PGTII IN I I Lids c1 UP UPR Lub n117Fl ?2.0/2.0 tjPR T3.0/3. T4.5/4.5 Lv\ RPMK PG1 d RoD!4 PGlbl RoDN PGIU RW4K nu F.NT I/clhNUING RPMK PGIU ROov RPUK PGTW RP)U( ROON PGTU PfiTu RPMK PGTU UPNK PGTd PGTU RPMK PGTU PGTW PGTVI RPMK ROI)W O /1)2. O/26HRc /D O.j/2.HRC INIT 06s c1 UP 74.0/4.0. o/21HRQ .0/21 HRC RPMK EXPUSiIJ 1 LCC EXP05ELI I LCC %-/Ul. OF O/2%HR< ExPdSELI 1 LCC WELL 3CF1NED N/A T2. NF /D O.5/24HRS j/?.5-/w2.6/2?HR~ 144 OJC ?0 1 I cc TFsMINA1OK Ot.NSE CIJNV ROON RoON RP14K ROOW RPMK RPM!( RPMK ROow ROON RPMK RODN RPMK PGTU RPMK ROON RKSO Nwwn l-----lNnlnJnJ IT. *0. . . . . . . . WWWUWIUIJU Zz=zzzzzzzrzz \ \ \ ..\\\ \\\l.n,ne JILn \.. lu.. \\aror,JNN\ \\.n\\\**.o e*\ X.w, ,,.o.. w,, ,, \\. \., .rb a\,\ ---*rm*cr. (? v. . . . . . . . UC.” u.o2 \ e . >Y.7. >3--.IS 4.4 n* JTJl\=>Jlm J,-aria, ,oo.d?-+mx. ..-. ,,-, JI-M -:, \\\ w, \-.,-,---P, ., -P .*. ---- .-l-- Lr, *l. enJN w:: .+***., .*ww. ::: ...+ eQ--leew ‘9 ● . ..+....,. - “,---,--*wuuJ. . .. ---,-e!J- , .a L L. N- Wuw. -. .-I- u’w L.nolwom V.d. m . . . . . a-mea FIF. lmmm 1-,----- 4. U’4AII.I . . . . . =0=.!=. 22.?22 v* .Dmw*mw* x mJ~ E e N w I-IW ”!m .*, +...* .nl . . ..ulrvcmc4 ● ~ -* . . a.22 . ..*...* . . . .. -c--4 ”lu. *-J . . *s uN.- . . - ++ .*.+ N. ---w W**8W* . . . . . . . . . =OU. *W.”01-UIS ZZZZZZ2ZZZ2Z ..0-... -. mwN--=l==na . * ** ----*.nJ-. -+ .- ,:, -L.U. ..,---------------.. LCAI, UKYKG3>LUN (JU tAtEl FIX Nv. TTMZ (7J 202333 211?20 271ZU? 2?.2302 2-31012 2.114$ 2-41303 271328 ●✛ 2+2111 10 ● * 11 * 1? * 13 ● 14 ● 15 ● 16 ● )7 ● ● ● ● * 18 19 20 21 2Z :: 25 232245 2A0145 26u209 2&0210 260951 261?4+ .241307 2i1651 2.14S1 2=,0005 2=,0126 2RO151 2=.0151 2=,1226 2=,1250 251+33 252350 252350 260133 260314 DVn7AK bccw ● ,.WC l-u.4EPCN 0,3. 13.5M 136.5E 139.8E lH.9M 20. >N 1313. bE 130.4E 213.3M 2t7.5N 20.5N Z?. rm .??.4w 13R.9E 139.7E 13R.6E 137. OE 136.6E 23. s?N 23. rlN 2?. ?N 24. qN 24. CIM .?4.9N 2S. >N 25. oN 25.6$4 26. ?u 26.6N 26.5N 30.7N 30.7., 13G.l E 134. SE 134.8E 134. Of 13Q.6E 13?.5E 137.9E 133. OE 130.9E 1311.4E 13n.l E 12 Q.EIE I?7.6E 177.5E 30. q?I 31.6N 3i. fMJ 32.4w 37. qN 127. *E 125. ?E 1?5.5E 1?6.4E I?+.3E PCY PCV PCN Pcv PrN 5 ‘s 6 5 6 6 PCN PCN PCN Pcv PCN PCN 6 5 5 5 5 5 PcN PCN Pcti PCN PCM Prw 5 3 b 6 5 5 Pcw Pcti Pcw PCN PcN Pm Pcbl P~N PCN P(X PCN 5 5 5 5 5 5 5 5 5 5 3 To. rj, CODE L TTF S4TFI o.o 1 T T13E {7) 2410]6 FTX 00 SfTION 23. IN 133.5E OMF,P’V. OMSPW. 1 2 3 4 5 b T TTME (7J 240000 241200 2=.0000 251200 240000 ,?6i MMI 2mJ00(] FIX P05TTTON z1.5N 23.5+! 24.5M ?q. nu 3]. oN 33. fiu ?6.0,, 136. OE 133. OC I? ’+.9E ]?T.5E ]2+,.5E I?6. OE 17t,. QF T1. o/l. 11.0/ o /so. t VI PGTU PGTW IN I [ 2dS/LLCr 735N 1*07E INII N4GHTIMF POSS13LE 08S SECnNr)ARY 27. ON o/4. O/%. o O-/D2. 0MSP75 OMSP-46 o/24HRc 08S MSLP OdS RODN PGTII PGTU P6TU INIT OdS RKSO PGTM PGTU RKSO OUSD’W 0MSP35 om5*35 ?oOMS 3127 1004 MaX-SFC-UVO YEL/mT4G/RqG 15 I1O 120 FIxES Mbl-FLT-LVL-dNn olIs/VEL/13RG/dNG 150 15 obO F1XE6 MEaREST otTA (N141 13n.3E PGTU PGTU PGTli PGTM PGTM RPHK PGIU PGTU PGTU PGTM PGIIs RoOt4 @GTU PGTU PQTU INII DMS916 T4. T2. PGTN PGTN PGTM oAlsP-V3 0“CP35 iiM@i7 oM<P-4h OMSCI-?Q 0MSPW5 o/2?HRc 1.0 70043 liGT COMMENTS 60 E 20 20 15 15 1(1 PGTU INIT Ods CI si4Wi/l#PR Owwwl OUSP-4? Dw-o?h 71 .0/1.0 FLT LVL I16TENSTTV ESTIMATE SITE tlMSP_W! S’fWl=TIC FIX NO. COUMFNTS t ITt &lqCIUFT FIX NLI . FTXES 60 60 60 60 60 An 147 ACrRV NAVZMI?T in ? 10 EvE SHAPE EVE OR IENOIAU/TATIOU kYr 0(1?/ +l@. TEwP (r, Iqf 0?,/5<1 )*B .+ss4 w. I ,< -------- . . . . FIX TTMS NO. [7) i 2 3 4 a 6 r n * 10 11 ;$ 1+ 15 16 17 18 19 20 21 22 FII NO. 1 2 3 4 ; 7 s 9 10 11 lZ 13 16 15 lb ir 18 19 20 21 22 23 2+ ● 25 26 27 28 29 30 31 .32 33 34 3; 3b 3? 3d 33 40 41 42 .33 2=.0929 2=,2113 ?60509 2F.I13k3 27.1$30 262025 27?3U7 281933 2H2052 200715 200320 2015ua 202031 3n0615 3nu925 3n1?33 30.2? .25 3,1)b*9 310910 31 Z149 010743 0)0306 7UO”3 H6T FLT I.VL 10. wJ 11.2N 11.5.1 L1. qu 12.3N l?. % 16. Iu )6.9., 16.7., 1(,.6w 16.6k 16.7+ 16.3N 17.lu 17.lu IS,7KJ )8.64 144.5E I+?. *E 141.7E 161.3E 130.8E 160.OE 137. VE 135.7E 136.7E 13!$.5E 13=.2E 136. IE 13a. tlE 13?. ?E 137.4E 13n.2E lxJ.7E 1’9.3N 127.6E 1’9.4N 126.91 2q,5w 1.??.7E 21. !3N IE’I. lE 21. ?N 120.8E 1500F1 1500F1 7noMH 7nolA* 7nowu 1511nFl 790MM ?170uti 1005 1000 1000 1002. 700NH 7*owtl 995 999 736s 7110MH 7!70141+ 7noMti 7170Mlf 7013ML4 700MH 7i30Mn 7QoMtl 7noub SAb& 2{?* ?765 7556 ?509 7?OMLI 700MH 700MU TIWE (7) 010000 Olulou 01u150 010300 010350 010500 O1O5OU 0)0500 010550 010500 01 U500 Olubou 0i0550 0)0700 010700 010700 O1O3IJO 01 U930 01 U3U0 010300 010400 010330 011 DOO 011000 011200 011300 011600 011500 011600 011700 ot1900 011940 011900 012000 012100 O1L1OU 070100 O7U1OO 0>0200 0>0300 0213300 07 U*OLI 0>0+00 0?0;00 P057T1DN 20.%1 20.7M 2(I. 7,1 213.5W 20.7* 213. +U 213.5u ?n. rw 2Q.5.J 2n. qk. 2n.7N 21, QN 20.7N 20. e* NbDa13 l?-4. nE 127.9E 1?7.5E I?7. ZE 127. OE 127. OE 121. OE 12?. OE 1?1 .5E 121.8E 121,8E 121.8E 121.3E 121.5E ?I:IP1 121.5E z?. % 121 .bE 21.2N l?l.3E ?I1. qu l?n. HE 21. ?N l?l. OE ?]. IN I?O.2C 21. ?W 170. YE 2,1. QN l?n.2E 12(1.9E 1211.7E I?n.l E ?l .7.$ 2?.19J ?I.7U 21.7,< ?l.3N 21.9U 27.3N 2?. =,. 2?.$N 2?.4u 2?.4N 22.;N 2?. 22. +N *., lln.7E 110.4E 110. OE IIn. ?E IIn. +E ]112. lE ll~.lE 117.9E 117.7E 117. *E 117.5E l) A.2E 116. IE II C.7E ]1<.2E 11=1.2E 114.8E 114. HE 114.3E 30s MSLP DC?RY 972 965 961 934 926 9i2 998 9(32 917 9?0 EYE SHAPE LAW LAWO LA$@ IJWO LAND LANO LAMO L MO LA.,D LA.,0 LAWO L k.+o LAVO LANO mvi-%~c-wvo ~6~-FLT-L$L-..AP ?5 310 1?0 25 nso 50 15 050 ?0 15 130 100 10 50 080 120 50 15 +0 100 75 3+0 70 130 qO 95 95 60 ’35 95 100 140 95 100 30 70 ?0 360 n90 170 ?20 140 ?60 360 110 060 n60 30 15 12 50 5 20 10 ?0 30 ?0 FYc Dta M =, LANO LANO LANC3 LAVO LA@3 LANO LANO =, 1 71MZ {7) LAND LAWI LA.J9 LA*I9 LA.!O LAW! (.AWJ LAW LAND LANll LAMJD 241200 lg.5u (1?1 lb7. OE 38 28 31 i.w >’30 ‘+10 I*n 11. 3A0 17 50 30 30 41 69 “%n 50 1-4771} milt) 170 730 nln 170 000 72 66 75 85 no 75 110 130 147 134 120 86 31U Oru 42n ●n 050 lAU 3U0 210 140 070 270 90 &2h 30 30 ]r. 120 20 310 060 110 3b0 090 17U 3U0 CIRC#,LAR ELLIPr Ic4L ELLIPTICAL ELLIPTICAL CIRC, )LAR CIRCItLAR ciRC,,LAR CIRC,,LAR CltiC, JLAR i?an13n-coL3E a<wan TL31AF6 71</1 {f/(/ 31s?1 ?07s) 30711 53023 527]b 52914 ‘5=.%1 52519 n ~ E1.LIPT]CbL 0>0 360 0’?0 110 200 2*O 1: Ill 15 16 ;n IR 16 LAVO LAh,D LAWJ LA*)O LAWO LAU9 LANO LAPAO L AIOQ SRTAIAI CWERLAT Is oE@2FE< 4//// ///// S0 IRA, t7vEf7LA t’ 15 OEqQEES 15 ////f //f/l 5303/ /t//( I/t// v~biJEST n&7A {NV) FIXES COt4MENl S 100 149 340 6 8 E 160 140 140 511.= WMO No. ///// 103II3 //11/ ?5/1/ 3 .25 .23 +23 ?3 .?5 +?1 ?8 .11 ● 9 +1/ .]3 ● 3 .10 + 7 .25 +?3 .12 .11 7s .17 + 9 .11 .13 +10 +15 ● IO .Il!.17 .10 .13 ● I5 .13 .13 +15 .19 +15 .1? ,16 ● 13 +]5 +16 .11 ●15 ● 15 .15 ● I6 .1? +27 ● I? *1M .20 ● ]7 *1* .15 ?Ib .1* .17 .1? COWIEN7S 71/// LCIN13 LAW3 I. Ah!D INTENSTTV ?STIMAIE CIX 00%111 070 1/.6 t 60 FYE 0RIEt4OIa./TATl OU EvE SU4?E 1 5 =, SYMI=TIC FIx NO. ACPeY NAv/MF n, U/ UEL/3HG/dNG VZL/RRG/0W3 1+.2-J 2s. 18! 14.2N 1+.2N 14.2N ?2. *W 14.2U ?*. ON 1+.2N i?*.lNu ?2.6N ?5. IN 1*.2N ?2.6N 1 2Z.7E 121.6E 122.7E l?Z.7E 122.7E 120.3E 122.7E. 121.6E 122.7E 121.6E 120.3E 121.6E 122.7E, 120.30 ?4. IWJ ?5. IN ?$. UU 16.3* ?*. IIU .?2.6m 121.6E, 121.6E, 12L.6E, 120.6E 1.?l.6C 120.3E, 121.6E 120.6E 121.6E. 120.3E 120.3E 120.3f 120.3E 120.3E 120.3ES 120.3E l? O.3EJ ?’5. IN 16.3* 24. OU P2.691 ?2.6N ?2.6N 22.6U 22..5N ?2.6M 22.6W 22.6* ?6.3W 22.6N 22. bm ?2.6u 22.3u ?2.3N 22. bN ?2.3N ?2.3M 22. *N 22.3N ?2.3M ?2.3bI 120.6E 120.3E, 120.3E 120.3E, t 1 +*2E lIb.2E 120.3E 11$.2E llb.2E 11$.2E 11$.2E 11$.2E 11+.2E I)en] 66SQ6 082-41 Qa?ll Q8.231 46764 Q8?31 466q9 Qe?a 1 bb6Q9 46764 666Q6 QE231 66?44 6b609 4bb06 46609 qLt3?l b6bQ9 46764 4bb46 083?1 +66*9 +6764 46764 46764 66764 66764 bb7b4 ,b?bb +6?44 66770 4b764 4b764 66764 asons 45005 46744 65005 65005 65065 450n5 650n5 ●sons b b ( 7 n 8 v v 10 IIJ 11 II 12 13 13 TROPICAL ST03N4 GORDON ~6TEll lTF FIXLS kCr3Y ?%1?2; 251250 251+33 ?52?1? 2523>0 260107 ZhLJl~3 2fiu133 2*123? 2613+0 261616 1.3.. HE ]?o.4E l?o.2E ] 7c,.l#; 2AZ33? 27U230 270?55 l?,..3E 27u?55 ?7025b ?71033 271329 271537 271537 201J05b 2UO?11 2uu?37 ?.0237 znlo13 2M131o 2R1310 2’?1 338 2Q1;19 2.2253 2.2253 290038 I?A.2E I?G.7E 2qIJ151 2Qu21il 200219 291134 2ql13+ 231319 2u1320 l?A.2Z I? I.. I7E 1?6.7E l?-+.6E 27.3N ?7.5!1 1>3. +F 1?6.1! l?l.7E ]?1.6[ IZ1.2F 121.41 I?A.7E 110.9E lIS.9E ??. *w ?7. +N ?-!. rl.t 7>,5W 110.6E llq.5E ]]6.5E ,17.6E 117..2i ?7. ?. 117. OE ?7. Q., Ih. +c 27.%. 2?.7,, ?,. fm 2>.9. ??. av 23. IN l/.. fE IA.9E l&.9E 14. lE 14. IE UVq2&K Pru Prw P-v 0 5 3 %-v Prv Pru PC* P(-N PCM Prv Pcw 9 3 3 3 9 3 5 > PCN Prv PC* Prv Pcv PI-N PC.4 Prv PC.J Pi-v P,v 5 3 3 b 3 b 5 3 5 5 3 Prv Pcv PC* PCu PrN PC* PI-N Pcv Pcv PC* PCN Prv Pcv PCN Prv P?w Prv 1 1 1 5 b 5 5 5 5 5 1 1 1 1 > 6 3 Prw 5 LJ*MFNTS CODE lNI 12. O/Z. U r2. r2. nf2. o/?.0 o /91 15130FI 700MH 15QOFI 100MII 7rIOMH 7noMw 7.30Mti 700MH TT,% (7) L?4LIAIT ZI.nw ?n. ai! 7.?.>M Zl+uboo 29050D ?QU700 ?RU90U 2UIJ3UU 2M1UUD 2nL100 2’a12uu 2.13(Jo ?Mlboo 2+1 500 2.1600 2r117011 2q19UD 2.1300 71. n, I 121. IE 21. n. I? I.IE ?l .?.! I?.. RE ?1..,$ ]2n.7E 2.<000 2.21UU 2QUOO0 20u3uo 2as15UL! 2*U+OU ?.)1+20 ?2. %. 27.7< ?>.+. lln.l E 117. qE I17,3F 27.9N llf..9E L Ahag LA”9 LA.,3 LAVD LA.J9 LA.J13 L ,t.,0 LA*IO LAN13 !. A., o LAW3 LAND LA,.)0 LAMD LA.JD LA,,O L AtiO LAhIO LAh,O ?3.1. ?3. lN ?3.1., 116.4F 11%, HE 114.4F L&vO LAWO LA.,0 21.3. 21 .5., ?l .7., /?.0., 17n.6E l?n.5E )?o.6E 1213.3E 2~.?N 2?,3., 7?. bN ?7. 5,) ?7. =,,, l?n. OE 11o.’7E I1o. +E ])cJ. I)E IIn.9E 2J.5. ?7.; lln. 11”. ., hE eE I Oms UP ITHS PGTW PGTU PG1 w PGTU PGT# PGTU PGTU PGld 1100* PGTW PGTW PGTM PGTN RPMK PGTM RKSO ROOM PGTII PGTU .r3/25HlfG r2.0/?. o r3. !l/3. o EXPn<FII LLCC /r)l.11/2\HRc c1 UP ROO$4 lTPMK 74.0/ 6.0 /nl, O/??HRC BANUIVG c1 12. 5/3.3 T300/3.0Tb.13,b. o./5u. T3. %/’wlo.5/24HRQ n/3. INIT ,CC*Y 50 050 ?0 9Q4 50 320 50 &o 330 020 30 $0 50 EYE SHAPE 50 6S 040 30 ?0 150 FT Uum FIxES *dx-FLT-LVL-d I) Tu/b’EL/BHG/@Mfi 997 991 983 9s1 975 3’SS D/22HRc M4X-<FC-MV0 VZL/RRG/UWG 3006 3U03 2947 7926 ROOU PGT# PGTU RKSO PGTN PGTw RPMil RoON PGTW ROON RPMK PGIIA RPMK RKSO PGT14 ROON RPMK RKSO PGTM FYE /w I.5/27HR< c1 -4U65 ?L163 TYPE SA4L EYG 01. fm 1?n Ol?n 070 l,n Ill) *5 39 35 *O 54 51 53 45 1<0 o>u 050 320 330 OLO ● VU 040 ito UAIMIL$-COOE b<waU TODFk 1.A.12 27i?50 2UU2(IU 2nu31)u I?l.9E 12).2E 17). lE IN) c1 INI1 Sds pAQr IFd.Lv IN I I WS FLT I VL 260S27 262036 26215? ?7UY1O 27u9+a 27193b 2721a Z 2HJ 050 *$ GH1]MF 71 .0/1.0 AtaCwb TTM5 (7) I SITE Nn Accwv NAV/MFT EYE s!ihPE EVC OR IEN1314w/TATION 2n &T(l 60 3=. 420 kYF tEMP (c, 0(17/ I Ufl DP/%5T .25 .1? 2R 3(7 t2n CIUCIIL&R ELLIPTICAL COMMENTS 5 40 ?5 010 .lI .l~ 5 1nq13 lno}z 5s/h3 6=,163 7n400 627o9 73111 7301U 72013 ///// ●25 22. oN 22.6N ?2.6N ?2. bN ?2.6N ?2.3w ?2.3w ?2.3N ?2.3N 22.3N ?9 ●lo +11 ●12 ●1+ +11 wbotl Q POS?TTOW ?5.1* ?5.lW ?5. lN 22.6N ?2. 6* ?2. hN ?2.ON ?2.6U ?2.6N ?2.6W 22.6W ??.6N ?2.6N ?2. eM ?2.6N LA,JO ILA,,3 .2s +13 .25 .12 .11 +1$ +17 .15 USN No. 2 3 3 4 4 b 5 b <Ilr W40 Wo. 121.6E 6 b S*6 b66Qb 66406 l?l.6E 121.6E 120.3E 120.3E 120.3E 120.3E 120.3E 120.3E 120.3E l?O.3E 120.3E 120.3E 120.3E 120.3E 170.3E 120.3E 12 D.3E 12 D.3C 120.3E 116.2E ll\.2E lIt.2E ll&.2E 11 4.2E k67k4 46764 66?44 66744 46744 b67d4 66764 66764 467k4 66744 46744 46?64 46764 467b4 b67b4 46764 66764 . 450135 4SQ135 45fio5 45005 65005 150 .. .- DEPRESSION TROPICAL .I1 <bTEt I lTF FST.ES TIME {7) $ 5 . b 7 8 . * 9 lU 11 ● 12 ● 13 + 14 ● la ● ● 16 * 17 1s 19 ● 20 21 3’2 23 ● ● 2* 25 26 27 2Ll 29 30 31 32 33 FIX Ooslrlob.1 0Vi33AK 071317 12. 135.3E Prv e 13;ml::: 13.4N l?.. ?w 14.5.! 14. ?,, 13).2E 1311.4E 131. OE 1311.2E P~bi ?CN PCN Prw 5 b h b 16. 130.3E PC* PC’4 Pcw 3 5 6 Pcv Pcv PrN 5 3 PcN PCN Pcu Pcv Pcw PcN S b 5 5 3 3 070953 071150 02125s 011510 071510 0.003? 060139 O6U?1O 060210 0bOi133 041?33 041314 0AI+51 041+s1 044?14 0=,0014 050120 05015.i 05.0151 051256 051602 051633 052153 052153 0=,2356 0s,0243 0AU31$ 0A0314 06103+ 061317 Iv Sccmy %J 13.3N 14. w 178.9E 13 fi.3E 15.13N 177.7E l?n.l E 15.7” 15.2w 12n.l E l!i.bv 1213. IE 15.9v 1+. $.1 IAo=m 16.5N 16. ?u 11.9u l?.?- 127. OE 126.3E 12’A.3E l? f..0E 125.9E 1z6.2E 1?7.8E 17.7u 17. *N IR. nN IR.9M 19. ?N ]Q+O.J 12n. OE lz’R. OE 1?6.9E I?A.2E 125.2E 1?5. SE lH. CW ]’+.3., 18.5., 1’9.3,, IQ.3N ]0.3N 12?.8E I?3.6E 127.9E 173. SE 12_4. +E 123.5E 21.1A, 21 .0., 177. CJ.IMFNTS cODE TO. ( ,0.0 ● 5 b 71 S!! (7) 5 PC* 5 Pctib Pcw 5 Pcq 5 PC* PI-M b 3 b A 5 PC* PCN Pc$l 5 5 5 11 .0/1.0 OE PC* PCN PCN 5 5 5 TO. O/P,. 119.6E PCN 5 FL1 LVL ?130*M 7f10H6 15noFr 1500F1 700MH 15130F1 O?Ubl S 032200 04~1/6 05u B15 05<130 052222 1 TNTEN51TY ESTIMATE 0>u600 ‘? 060600 17.0.0 2n.7.. 13 f,. OE 171.9E 15 ]5 IMF rvs PGIw PGTw P6TU RPMK PGTti 12.0/7.0 Ti. O/l. I LCC RODN PGTd PGTW RPM!( PGTN RODN RoON RPMK /S0. O I?frl Ws iNIf Ods /s0. O 70043 tiGT 08s MSLP ?099 -4U79 1003 1004 109-+ PGT ,1 PGTIA ROOM PGT!d PGT # PGT!i PGT14 PGTd RPMK PGIw PGTN PGT# PGTU ROON PGTII JdS EXPOSSB lUO1 997 1001 1007 14ax-13FC. uMO “:t/#IG, I?” G 10 730 VT.3REST 0f,7A INSI) RKSO ROOM FXXES f4n X- FL T-LVL-*?An “,t?, #EL/eI(6/IfqG 68 ?70 ]S 150 30 180 ?5 060 jO $0 50 ?0 360 + 06tt ?70 l!n ?%0 ofin SYW3>TTC Fl& NO. MS [rut PcY Pcv PCN FIX POS1TIOVJ X@T IfIll PGTU RODN PGTd Jl?C9&FT FIx )40 . iNJ I SITE 15 ObU 4U 12 330 10 30 1150 35 2s0b0 60 2s 150 10 15330 % FIXES CO14MLNIS 120 30 151 ACr12V NA”,l#FT % % % 5 6 15 q 5 -4 Ill ● 7 EVE SHAPE EVE oQl ENOI4.UTATIOU ILYF TEMP IC, ollf/ IV/ DPKsT +15 ‘4 E w . +11 .13 + + +25 .23 +?3 +25 28 ,6 28 +25 +.25 >7 2 2 + 5 b b -1*=Qo . . . . . . . . --------------V,wvw’w’w.wlvmlwv VnJNvv\, uw.vvww t. fiJTJim JlJl>>4> -4>. >>>>> 444 . . . . . . . . . . . . . . . . . . . . . o--l Wml.J+ -ma+ ‘0--s +s.0 Immmmmmmmmm mrmmmmmrnmmmm -----*’WV .C .95 . . . . . . J,.$’+mz mmmmmm # --------.*-l,*,>>4 . . . . . . . . . -.4. -J . . . Zz. zzzz ?? --------.Wvvw-d!ve.lvwwv +<r>. oseoso . . . . . . . . . m’+-awwmw mmmmmm.mmm . W..VWVNWNW WW,VWN ----- “--------J- J. 4 - 4 . ...--..> .>. %>. .. +.+4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . s’. -++s+ .J. .JJ-..14J *=. c--Jm.l--J4J4 ,..O. ZZz?. z= ?L.?<?zz Zzzzzzz ?Z<zczc .;. -x ~ :. -1- -+ .-. ->,,, ...--.-.” ✍✍✍✍ w------Q’U,--*-U,*U,? . .+.+,..+.. --a.wnlo.wlv-v,.ee + +. .**.. : ;:;:;::: ., +*...... ~ -U.a:mw ----’.-N*W W- W-WU8 +. .++.. . . ...+... . w .+ :: ..+ - .&U * Ea.%% . N-IV. “tlulI. ● ✎ ✎ ✎ 11+’ 11> ~lb llt 118 11$ 1.?2 123 124 *12, 126 *L27 *128 123 13(3 131 132 133 134 135 136 137 i3n 139 140 1=,0035 150100 1=,11135 15U?O0 l: U??OO 1=,U?35 15U30U I+U300 I’=,U31O 150500 1< U6U(3 1W535 150700 l~U7L0 lSU73j 1<U800 150900 150300 >50300 1G1OOO l~lloo 151100 IKL1OO 151200 151200 1=1300 161300 151600 151600 1%1500 1<17U0 15190U 1<1330 152151 1<2335 fll- Pow? PquR PnOK I?4.3E 1>6.3E 12A.5E P< c?JT14 EVE Hnvc 3220 PsUL CNTW 6///3 53611 EvF MuG P<FIL 6!//4 3620 CNTW 53*I* EVF Mnut? 3b20 P<13L CWTW EYE MnVG 3120 Cn f./I/- 5322d .12r..2E 127. W 12+.2E 12=..OE 173.7E IZ?. HE IZ1. mf 27. 27. 77. ?N IN -W 27.2w 23. m 27. % 27.5%! 27.5hJ 27.5N 27. (W 27.3w 27.9N ?Y. ?u 2Y.5N 2.Q.3M 2Q. ?c4 25. bN 121.9E 1?’?. *E I??. UE }23. BE l??. RE 123.9E 173.7E I? ’+. YE l??. tiE 1?3.9E 124. OE 17b. OE I??.8E 1?3.8E l?A. OE 12-4. RE 124.2E Pqhl. 60 Cbllq F,I#13 72%39 EYE STUQ EvE SIUR EYF )3flVG3210 EvF MnUG 32)0 EVE ArnvG 3210 Gf3Ull G’30LI PrIOR EvE EvE EVF, EvE NAV Mfiul? 13215 Mnufi u120 M(luG 3620 MOUG 3620 ACCllUAcY 6NM P@u P<HL ?o’a73 5o130rl ,-AtJ9 LAND I-Am Lam LAv(3 LAN13 LhlD LAND LANiI LANO LAAJO LA.113 LANO L&NO 4CFT ACF 7 LAhJO Sll F&l H %/)43 58/43 50000 53609 6//4@ =,0211 FAIR Fdlil FhIR I.//l* 50013U 68!!4 53b06 ChTW T3!PHDON .3UOI’ eArEl I lTF FJXES FIX NO. 1 2 3 4 ; i 8 1: II 1? 13 14 15 lb 17 la !: 21 22 23 ;: 2b 27 28 29 3U 31 32 33 34 35 3b 27 TTI#I (7) 1.31310 152239 1+.1120 16213* 17U055 170132 170133 171015 171155 171+1$ 171616 172114 172345 17?345 iRO03b 1HI)1336 lRU1l$ 1R0956 1R1?26 1s1355 1Q1356 1*1*55 10?054 1#2327 190159 100237 10U237 10023$ laIzo9 10125EI IQ1337 IQ1519 19151? 19Z03* I ?23139 2rIu140 217 U1*0 Cl POS1l C3NMFNTS ,5”.l E 13.7,1 11. ?W 15”.4E II.%! 14=,.4E 16b.l E 13.lu 13. % 143.2E 14?.9E 13.9N 14. lW 147.9E 13. ?.1 tbn. HE 16 D.3E 14.4.4 14. bN 160.5E 16tl.4E 14.9N 15. $W 15.4N 1’5. &N 1<.6N 15.5U 15.6N ]3R.7E 13s06E 13R.7E 13R.5E 16. *W \A.7u 17. 1.1 16.5.$ 16.7u 17.9U 18. ?., l!!. % 1 ,!. i.! ]4. =,., ]0.6.8 lQ.7., 1.1.9.! 137.6E 137.1 E 137. fIE 137.2E 137. OE 136. IE 13G. HE 13=. bE 1%.5E 138.5E 13r2.4E 135.SE 134.9F 13b. bE 13b.7E ?9. n.Q 131.. RE IQ. ?.I 1.lb.7E l’a.7., )34. *E ?O. =au 134.4E 13a.6E ?1 .3M 21.6N 133.6E 21.5* 13?.6E TO. O/O. Ei T3. o n/3. 13.0/ /113. lNII Jds EDGC 0$ INI 06s o/27HRc 3.0 I PA7A SITE PGTU PGT# PGTM PGTU PGTM PGTM rTPMrr PGTW PGTM PGIU 14.0/4.0 T4. O/4.0 r4. rT,&. T6. n /6.0 T6.0,6,0 /D1. o/23HRc f)l. o/23HR< [NII o./ /02. /1)1.5 Jds o/24HR< /26HRc Q.wvl Ouso-w T5. n/K. r7. o/7. T6.1386. O /ul. o /01. O o/24H!+C o/Z3HRG OUWJ-45 Du$P3S OUWI-4 I 0W?9.W. QMSP3” OW<PW 155 ROON PGIU PGT# ROON PGTH RPMK PGTri PGTM PGTM PGr!4 RoO+A RPMK PGTW PGTW PGT # RPIIK PGTM PGTW PGTII PGTW PGT!A RPMU ROON PGIU PGTU XNI ; ads 24.8N ?6.3N 26.4N ?4. W 76.3* ?b. *u ?6. IIN ?6.8W ?b.4N 1?5.3E 125.8C 127.8E 12S.3E 1 25. t3E i27. rlE 125.3E 123.3.E 2+.8+! ?6.3N ?4. HN ?4. Ru ?6.3M ?6.2?4. HN ?b.3N ?6. Iw ?6.3N 2*. H* 26.3N 26.3N 26.3* ?6.3N F&lfl SOPER ,27.8S 12$..61 26.3N ?6.4N ?6. w ?$.8u ?b.3N EVE MnVG 2920 PsBL CNTN PqRL CUTN ‘in ?b.4m 26.3* 2b.4w 1?7.8E 1?7.8E 125. r3i 12T.8E 127.8E 125.3E 1.?5.21E 125..3E 125.8E 125.3E 12s..3E. 125. ef 127.7E ~25.3E 12b.6E 12j.3L. 126.8E 125.3E I?5. $3E IZ5.51E I ?5”. SE 1z5.8E rmi-. mm. F Jm-lJm ------- -------- “WWNVN.. WW.NNJU N$un)wwww. .r.>>m-4>n*. .. P.**444d . . . . . . . . . . . . . . . . . . . . No-Q-1 mm**o Ou*w NO .mmmmm mmmmmmmmmmm ------- -------- -------- ------ ------- ------- ------- $wwww NW.NUWW%NWW WNWVN’VN%!WN”J Nlwruw%ml!w. xnlw NNWNWN.VW,VWNV ~~~-.~dnsm nmmm.n>>>m 3.>-43+ Uvuvwvuvvv u.vvv4Jd-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m@m’m*m=m-Jom w-1--J =Nuu4m -J-I -J= Z4 -U.-N ul!DQ-.s*ea *a-J Oz*w mmmmmmmmmmm mmmmmmmmm. m mm.mmmmmmmmm mrmmmmm”mm”m ------- ------- ------ ------- WNN.V. NWVVWV Uuuuuuudwu. +.-4-4. r.. .o>oococ . . -------. . . . . . . . . . . . . . . . . . . . . . **-1-i-N.IWNW~_JOmt ac---s+ .m”mmmrmmmmm ..mmmmmmmmm . . Uwlwwuu . -uvuv . . . . J. . . . ---------- -aa - m+m”m mm> “mmmmm. . RI(S(3 PG7U RPMK RI(SD RO03 FIX NO. 1 2 3 * a b ? m 9 lU 11 1? 13 1+ 1> 16 17 Is 19 Zu 21 22 23 24 2> 26 11*E (7) Po=,, CTX 11OI, 1 &?j*l 170303 17 U,505 1 720+s Iaoss$ 1F70Y45 1R1332 1%21$9 101036 191921 IW2145 2(30500 2.0963 20’??59 2103OO 210503 ?1 oe*2 212?06 2jUl17 2,U?47 27u650 22095B 271?32 27??00 230600 ?30010 75.2,, 25. f.N 26. q,, l?h.2E 1 ?=..9E I?4.3E 27.1 I?4.2E N FLT LVL 7UU.3 I16T 08s lqs~P 700MS 7170MH 7170Mti 7onuH 7noMH 700MB 700MM 7130Mti 700L4U 7!10MH 700!48 7noMH 700MH 7ooMn 7qOM6 ‘306Q ?U41 1025 >99? >707 >717 >411 ?336 ?295 >121 >UY) 729] 998 700AIH 70nMLi 700MH 7(31W413 7noMtl 7130Mti 7170MB 7110MLI 7110M6 7aoMu 7170MH >613 ?61+ 7670 767q 7b6& 76711 ?bbs >636 ?b67 3669 >66q ?3811 2;79 ?611 995 qqh 987 956 956 922 ?]4 909 889 987 ?08 919 9+0 965 965 944 952 951 953 94~ 948 946 952 950 35 35 60 70 65 110 360 090 090 770 6’5 320 70 15 16 15 10 5 55 >60 12 70 130 ;0 060 030 280 100 0.?0 3 4 a b 7 5! 1: 11 :$ 1* 15 16 }1 18 19 20 ,?1 22 23 :; :; 28 29 30 31 32 :: 35 36 37 38 39 40 lTME (7) 161635 lk1710 161935 I6LO1O 16?135 ?10600 210700 210300 21 U900 210300 210*00 211 OOII 211100 211100 211200 211200 211300 2? 1300 211600 211 boo 211500 211500 211500 211500 211700 211700 21180U 211300 211300 211310 ZiZOOO 212000 212100 212100 21 Z200 214200 212300 Zx!ooo 2X3000 .2>0100 Z’?o?ou 2?0300 2>0300 22U400 2?0400 27.U500 2>u500 270500 =lV POSV710N I&=,.lE 13.11.I llbb.9E 144.5E 13.5.4 14b. ?E 13.5N 141. !4E 1~.*N ?3. *N 13n.3E 24. ON 13n.4E 2*. ON ]3n.2E 13n. ?E 24.7N 24. lW 130. IE 130. iE 24.1*, 26. IU 129. HE 24. nN l?O.HE ?6.1 N 12’J.7E ?4. ON 12’+.4E 24. lN l?O.5E 24. QDJ 12q.3E l?Q.4E 24. IN 24.1 N I?Q.2E 120.2E 26.1*1 I?Q.l E 24.lu I?Q.l E 24. IN I?9.2E 2+. m 24. IW 1?17.9E !3.2N 2&.3M 2b. ?u 2b.3v ?4. ?\, 74. -W 2&. a 12R.9E 12R.7E 1?8.9E 12R.5E ]? ft.7E 12H.5E Z4. -+U l?R.6E 17n.5E 24.4hJ 1217.3E 24.3M 24. *.U Izm.3E 2b. zN 1?17.2E 24. 3W 17Q.3E 12R. OE 24.3w 24. 3N 1Z7.9E 127.9F. 1z7.7E 127.5E 127.5E 127.2E 177.2E [27.3E I??.lc 127.2E 1?7.3E RAOAQ LANO LAND LANO LANO LANO LAI.30 LAh10 LANO LAMO LANO LANO LANO LANO LAMO LANO LANO LANO LANO LANO LAVO LANO LANO LA, *O LANO LAtiO LANO LAMO LAUO LAVO LANO LANO LAUD LAb30 LA*O LANO LAvO LA,)O LANO LANII LAMO LA*IO LANO L&40 LAW3 LANO LAMO LAVO LANO O*O Of,a I (4.3 170 ()?0 100 95 as 95 360 360 350 030 35 300 55 120 150 Ian Inn 55 060 130 }?n +0 140 ?113 aceRY EYE S14APE FaIR F*1R ELL1P71CAL FAIR F.3i R CIRCULA? CIRCllL&? 5+ $6 kb 61 04 90 93 90 92 108 110 136 110 030 1= ? 3>0 090 090 90 1* ? 10 ‘410 1. <13 <? 280 140 EYF ?JIail 91 ,12 6 5 +11 ● 11 ,11 +10 .12 +1+ .1s ● I1 .13 .19 ● IO CIRCHLAR CIUCIILAR 5 7 ●1J ,Ih +lB .23 ●17 +18 C113C, IL&R 5 ● 1J CIRCULAR CIRCULAR 1: 25 +1s .1* ● 1Q CIRCULAR 30 ● 1* io CIRCIJL4R .l~ ●18 CIRCIILAR 35 gn 15 30 CIRCULAR 20 CIRCIJLAR 15 (c) 14SN DP/wT +lH NO. .12 2 : 3 ● 6 5 5 6 7 ? 8 a 9 9 76 .]5 ● 34 ● 1B .2$..15 .19 +18 .19 ● IS .18 .]? .lB *14 ● 2O *15 .19 *15 +Ib +19 ●I* 10 10 11 11 11 12 12 13 13 I* 16 .16 +16 ● I7 ● 15 ● 15 .16 .14 .16 .16 *15 ,11 +19 ● I6 +16,● I5 .16 .16 +1S 050 ot10 140 TEMP 1w .18 +1) CLRCIILN3 CARCIILAU C1RCUL6R 330 % 7? 2moqx? 260 170 1: : ; 160%52 270 %=,? 030 7.? 27U 1: 7 2 ?5 120 65 6S 011*/ 5 84 1.?0 ~A 30 q8 010 +17 75 170 76 270 3n 71 360 ~5.7 El 200 3n 78 030 820 78 020 t4? 1+ 220 90 010 100 ?60 ~A>Aw FIX NU . E!’r EYE S!LAPE FIXES nanom.coOE A<UAU TL30FF -45 ?0 -imu/* 3t3q42 351// 4//// 53022 527o9 35/// 5301U 7=,//0 52412 NF6 4xrs u#Ll In/s CLO @TR NFG t3PFN SW-N blat I CLO OPEN EvE )413Vn 2620 EvE H13vG 2720 EvE M!lUG 2720 EYE M13uI? 2720 ofloD GnOD G900 FdlR <///2 72611 5//#1 7271u FdIR GnoD 5///2 727o7 5///2 72806 GtiOO POOR s~!lz 7040s Wt/3 73107 POOR PI)06 3=./#3 EvE Mf3uG 2720 EYE 140uR 2720 EvE M7v71 2720 EvE M13VII 2720 EvE Mow!? 2720 EVE STM7t 73307 PnOR ?5!!3 72909 Pnoa w{~l 727o6 Gf100 f.//#l72611 EVE N13u62715 Pr)OR <///1 726o9 PnOR PnOR PqOR P!30R 3///2 -4~ft2 ??rn+ 3///1 4.//// ??R14 6///1 EYE EYE Mi3UG MnVR .2715 2715 EvE EvE U13W6 272o MOVG 273o EvE MOWS 2320 72719 7250r PnOR 5//// 72511 5000U 5330L! 72405 157 R~OaR POSXTTONI COMMEIATS Sw ANO ME ?6:1N 26. Iu ?6. 1* ?6. lW 26.3* 26.lN 26. IN 26.1 N 26. in ?6. IN 26.lu 26. IN 26.lN 26.lN 26.1x! 26. IN 26. IN 26. lU ?6.lw 26.lu 26.lu 26. IM 26.lu 26. IN 26. lN 26.lw 26. lW .?6.lAI 26. IN \ +$.9E 1+6,9EI t 46.9EI 1+*.9E~ 16&9E0 127.7E >27.7EI 127.7E 121.7E 127,7E, 127.7EI v27.7E, 12?. 7E. 127.7EE 12?.7E+ 127.7E1 !27.7E 127.7E 127.7EI 127.7E! 127.7El ~27.7E, 12?.7E, 127.7E, 127.7E4 12?.7EI )27.7E1 127.7E! ~27.7E~ 127.7E 127.7E, 127.7P 12r.7E 12T.7E, 127.7Ec 127.7E 127.7E 127.7E 127.7Ef 12r.7El 26. IN ?6.1!4 ’26. IN 2$. *N 76.lu 24.3u 2*. eN ?6.lu 127.7E 127.7E4 727.7E 125.3E’ 127.7E, 12$.2E 125.3E, \27 .7E 13.6W 13.6N 13.6M 13.6M 13.6N .26. IM i?6.ls 26. Iw ?6. IN 26. iM 76. IN n’ .31 WAO No. Q1218 01218 q121a !Al?la ql?le 679!37 b?w+? 679%7 479~7 4?W7 &7977 479~7 47937 67997 47+3’?7 479-37 4??97 679-7 670?? 479-7 47997 67977 .7*W 47977 &7? ’37 b7977 4rm7 479’+7 47077 +7W7 47937 &7v37 679!37 479’4? 479-3? 474-57 67~37 47W47 679?7 47937 679!37 67937 479-7 473?7 b? 937 ●7918 679?7 ●7937 *. . .. : L- : 0 . wg : ..- . ,,1 z. . *- . . --*.. ccc - nifiru -.-l-l . . . ~1.mlurii *.++ ● ml irl,t. ● -1 *-*M Uc **N** Ooomo . ..n . . . . ,., ,> ● *nus--m me> 00--.WN . . ------ TYPHCX3N MAC SArEI [ 1’7F FJXES FIR No. TIME, (7) 1 2 3 + ● ● 140008 LAO030 l&0917 161?50 141*94 162157 1L2350 Il. % 11.9,1 11.5N 11.9* 17.0., 12. ?N I?. ?u 13/..5E 13A.5E 13&.9E 134.7f 134.2E 13?.6E 133. OE 151037 15123? 1%. ~w 1?.9,8 131 .6E 130. sE 151?5? 151346 1=,1527 152136 1s2137 152332 160133 160227 161017 lf.lo17 161?1+ 162117 170114 17U11+ 170957 171355 171356 17223s lnlJo30 1ROZ37 lm0237 lallle li?.5N 13n. OE 12. ?N 131.9E 17. ?N 131. OE 12Q. IE I?.9N 13. ON I?q. LIE I?o. OE l?.3N 13.5,, l?R.8E 13. hu 12.3.7E 1?7.3E 13.6U 13.9N 127. OE ]3. ?N 126.3E l?~.2E 1401W 13. (V.! l?<. +E 12s. BE 11.6M l?=..3E 13.9U 13. ?N 125. uE 13. $N \2<.2E 124.*E 13.8M 123. EIE 13.6W l?l. st 13.7N I-4.4W 127. *E 13. ?.1 1?7.3E % 37 lR1ll B 1131320 tR1336 181337 1R?21B lnt218 13.3.J 13. ?M 13.2U 13.3.1 13.7N 13. %-J 38 39 lQoo20 19021L3 : 7 B v 10 11 12 13 1+ 15 lb 17 1s 19 20 21 22 23 2* 25 26 27 E 30 31 32 33 3* ao ● +1 . 6?. ● 43 ● ●* ● 45 ● 46 ● 47 s 48 ● 4* 50 ● ● FIX PO ST TI(lM Z; 53 5+ 55 56 57 % 59 60 61 62 63 64 65 66 67 60 69 70 71 72 73 -/4 75 76 77 70 7U ii el 02 83 8* 85 86 lQOZIU 10105L+ 10105B 1Q1302 101313 1Q1317 101318 10?157 102157 102157 20U1$4 201J159 200159 20103B 2012++ 2111Q39 2014&0 2n2137 202313 210116 210126 2r0160 210321 21101B 2,1421 2il+21 212258 212258 2701OB 270302 270302 2?113? 2?1$0? 271$02 292232! 2?0050 210050 270263 2?0243 2-41118 271119 231342 2q1343 231363 232216 2bO031 240?26 l??.7E 12772E 122.3E 12?. ?E l?l.5E ]21.4E )21*IE 12n.7F 13. ?M 13.7* 1-4.7. 11.5.1 13. ?V 13.7N 13.5N 12n. @E l?O.6E 110.7E llfl.8E lln.6E ItO.3E lIQ.8E 14.5U II R.4E 14.7N 117,8E 13. W II FI.2E 16. % lln.8E 16.8N llri.9E 16. W II J7. IIE 17.5M llfl. sE 17.5N 1)7.7E 17.7M 117.5E 17.9W llR.3E lJI.4N 117.3E 18.4* 117.7E 117.3E 1F3.7N 117.7E lR.9N 117.2E 19. (3w llK.61E 19.6N 117.4E 19.4N 117.lE 19.4N 116.9E 19.4N 116.6E 2fI.4N 116.4E 213.4w 116.6E 20.9w llh.4E llf,.lE 20.13N 217.3Uilf,.8E 20.6N 116.9E 21.3V 116.2E 21.*N 116.7E 21.4N 114.5E 21.5bJ114.5E 21.5u 114.1 E 21.9N 113.9E Iq.?u 22.?M 11’+.4E 22.IN 113.9E 22.IN 11-4.6E 22.6N lI?.3E 22.lhJ113.13E ??.5N I1?.8E 22.5N I1?.9E 22.% 117.8E &ccL2Y VVr3?4K CO17E %aTfl OJIT.O lNII Prw 5 Pcv Prv 5 5 Pcu PCN Pcu Pc.d PC* Prv PC! s 5 5 5 !5 b 5 PC* Pcq Pcq 6 5 5 TO.5/o.5 /00.5 Pct4 PcN 3 5 11.0/1.0 /S O. O/26HRG PI-N Pcti PCM Pcq 5 5 2 e pCN PCN PC* Pcu Pcv PCM 5 6 5 9 5 5 12.5/2.5 12.0/?.0 /01.5 /01.5 PCY PCM Pcw PC* PCN Pcq P12hl 5 6 !? 3 3 4 0 T3.5/3.5-/D 13.5/3.5 l.cI/23iiRQ /D1.5/24HRC PCN PCN PC.4 PCY 5 5 5 6 PC* o PcN 5 P@4 5 Prv 5 PC* 6 PC* 5 PCM 5 PCN 5 PCM 5 Pcv 5 PC* 5 PCN 5 PC* b Prq 3 pCN 3 Pcq 3 PcN 5 Pcw 5 PCW 6 PCu Pcu PC$4 Pcv PC4 PCN PCN PC+ PCN PCN PCN 5 5 5 3 5 5 3 5 5 b 5 PCN Pcu Pcv PCN Pcls 5 5 5 5 5 Pcv 5 TO. 72.5/3 T2.5f3. [ PGT14 PG1 W PGT# PGTti PGTU RPMK PGT# RPMK PGTti PGI# Dds /IA1. RoON RoDN RPMK PGTW PGTti PGIU PGTd PGTU RPtlK PGTU PG7M PGTU RPMK PGIU RPNU ROON RPMK PG7# RPM!( RDON RPWU ROL3N PGTU RPMK PGT# RPMU PGTU PGT)I SIP15U /26HR< /24HR< INIT 3dS PSBL Z*O o/?4MRq o/241N3< o/24HR< /U1.5/t4HRC /tiO.5/2bHR< /h.l. o/24HRc 11.0/ 1.0 71.0/?.0 T1. OJI.5 /SO. O/24HliC /ul.0f24HRc /so. o/24tiRc CNTM &l 153N l~U6E ROON UPUU ROW PGTM ROOM RPMK PGTu PGTd ROON RPM% ROOq RPMK PGrd PGTU PGTU RPMI( ROON PGT W QCN3.4 i30DN RPMK PGIw RoOP4 PGTu T2. o/2. 73.0/3.0 o-/I3l /02. .O/24tiRC o/2514Rc PSN 5 72.0/2.0 72. s/3.0 T2.5/2.5- PCN PCN PCN PCN Pcv PCN 3 5 6 b 5 6 5 i)ds /24nRc 1].0/,?.0 12.0/?.0 T).5/2.5 5 s 3 .5+/wl. o /ul. T2.5/3.5 Pcv PCN SITE /ol.13/24HRs T3.5?3.5 PCN PCN PCN INI O T0.01L3. 11.0/1.0 COdMFNTs t lTE 11.5/2.5 BSO /s0. o/26HRc /uO.5/23HRQ IN I I /ul. o/24HRs W@ ON EXTQ4P oF cLI) LINFs RP16K ROOM flpMK ROON RPMK ROON RP15K ROON ROOV RPM’K RPMK ROIM4 PGIU ROON RPMK RPSIU ROOV 74P*6 ROOM PGIU RKSO RP16K ROOM ,l?CIUFT FIx NO. 1 ? J 4 3 Q ( 6 1: )1 12 13 lb FIX NO. i 3 * 5 b 7 M 1: i: 13 14 15 lb 17 16 19 20 21 22 23 2+ 25 26 2r 28 29 :: 32 33 36 35 36 37 38 39 40 41 42 43 46 45 46 47 48 49 5U 51 52 53 5* 55 I,m: (7 I lfiu503 17U507 179919 Ingi]] IOl!).lb IRZO*? 1Q0929 ?ndoo~ 2A1330U 2019-33 ?.2151 210619 210906 212100 TTME [7) 171959 172300 172300 1s!0?00 lqlo30 1.1100 1I!L1OO ISllzoll 1R13UU ln1500 ln1530 181 bL10 IRZ1*5 1R2230 1R2255 191205 191300 101300 1’?133> 101*00 1V2200 20UOO0 2000+0 2OV1OO 200100 2,’70130 200300 21705U0 2.0700 200800 20U900 2171200 220?00 27U?O0 27UbO0 2>0900 ?71200 221300 2?1400 2>2100 2=.2300 2.0000 23U?O0 230300 2?0600 230900 2’?1200 231500 231300 2?2000 2-+2100 2.!2200 260000 26U1OO 260300 rrx ~051T11Wl 13.7., 13.6%, 1?.9. I 1. 6., ]?. q., 1 +.5.’ 14.7”1 {6.?,, 17.&u 17. ?w )*. )N 1 +.1,! lq. ?., 21 .0.) l?H. oE l?5. hF 12=.. % I??.’JE I?]. YE l?l.7E 1.?n.3E 110. IE 1(.. RE lIR. IE 11*. lE 119. OE 117.5E 111..1E !les MSLP FLT l.ql 700MH 700MW 7“OMt+ 7“OW 790MH 7nnuli 7oowi 7110.4H 7,113Mv ?noMti 700MI! 700blu 15170FT 15nOF C 7U5A IO*3 7056 79b) ?032 3066 50 ao 7101 ?lllfl -+DM7 7u61 ?1367 7097 -410 1005 1000 20 60 60 997 998 999 ?0 60 60 090 350 070 .,... PO S1TIOPI I 12b.3E I?3.9E 12’5.5E 127.9E 127.9E 13. flM 1?7.6E 127.9E 13.7MI 17?.7E 13.5U 13.7* 13.8U 14.5V 13.3N 13.7N 13.6”) 122.7E l?.6W 1?7.6E 11. 5,1 127.3E l?.6W l??.5E 13.0.1 171.6E 1-+..3W121.5E 121 .4E 1217.5E l?n.4E l?n.2E lZn. *E 12n. OE 1)9. *E llv. OE 16.3N lln.5E 16.qN lh.lw IIs. RE 17.%4 lIl?.5E 16. 7.8 II R.7E 16. ?N llR.9E 17.0.1 lln.6E ]7. ?.! lln.5E ]7.3N lln.7E 1 ?.3W Ile.7E 17. SU lln.4E 2n.6kl 11’+. HE 211.5u 11<.9E 15. nw 16.17U 2fI.5N 11(.. OE ?0.’7.111%.9E ?13.9N 11=..5E 20.9N ?O.9U 21. ?N 21.4N 115. SE 115.5E 114.7E 114.6E 114.5E 114.3E 21. bN 21.6N 114. IE 21.6N 113.8E 21.7N lI?.7E 21.7N 113.9E 21 .9hl 22. ?W 113.8E 39.3N 113.3E 22.’iN 117. OE 22. 3W 117. OE 117. OE 2?.3.4 117.7E 2?.3N lI?.6E 22.3W 22.3u lI?.6E RAUAR Yc, X-~FC-Ww3 “:L/qRG, R”G ,4cctlY 050 10 110 90 360 bO 3b0 EYC SHAPE 30 30 75 30 FIxES UX-FLT-LVL-4Nn ,) fQ/VEL/IjUG/*NG EYE sn4PE FYI oRlEN3TaU/TATION *SN Nf). 171) 1/,0 .Ib )00 !700 370 .15 .It 350 man 350 070 31 60 ?4 20 37 Err til&M ACCRV $AtIV/Ufl 050 16 ? % 3L.U 420 A 5 4 090 .btl ● 3UU *S 10 10 070 bn 2n 1 eanns.cOOE A%W4H TOOFF .15 +11 .1” +13 +16. .15 .11 .11 +11 + 0 ● 9 .11 .11 .io .11 .1! .1s +11 +11 ● + .13 ● e .1? .10 .15 ● 9 .26 +26 $Ilr 16AoaR COMNENTS PI) S* TIOW MMO *O. =,,UQ% &cFr L6ND LAAIO LbvO LANO LAPJO LAvO LAND LANO LAWI LANO LAPlO LAVO LAhiCl LAWO LAN13 LA40 LA*,O LANO LAW) LA.,D LA.,0 L ANO LAWO LAND LAND LANO LAvO LAVO LAF40 Cawo LANO LA,JO LANO LANO LAASO LAhIO LANO LANO LAwO LAuO LAVO LA.!O LANO LANO LANO LAAJO LANO LANO LANO LANO LAqO LANO LANO LA*IL7 28 .2 4 4 b 7 7 9 )0 12 I* ]4 15 15 16 F41R FAIR F&l R P130R POOR Pf3i3u CIRCIJLA? CIRCIJLA? CIRCIILAP CIRCIILA? CIRCIJLA? 10710 4//1/ ?n?4/ ?5/1/ ) 068/ ?5/// /!66/ ///// ///// 5211r3 ~///l ///1/ ///// ///// t oh?/ 10s6/ 70?)/ 117’6/ //1// ///// ?27// 52703 l$.l M 123. 16.3N 120. InA// 5//// 10+?/ 62916 10~1/ 630// 10aO/ 6//// 1nc1325//// 17167!I 5/f // 5//// >nhl/ 4561/ 6/1// 61//2 //1#/ 6///2 1//// 65/// ////1 A!I//////// 6oI/I /i/{/ wKl13 5//00 40913 54*OU 4175?353106 405?3 53007 6n5?3 53001 S0SS2 329o6 5///2 52906 s//~2 52906 5///2 529o3 61//2 ///// ///// ///// 6//1/ ///// sri9121//// ///// ///{/ ///// 5/!11 6//// /11// ////1 Ia3. oE1 11+,2E1 16.3M 16.3!J 1’20.6E, 120.6EI 1,20 .6EI 16:3M 15.2N 16.3M 16.3* 16.3FI 16.3AI 16.3M 16.3u 16.3AI 16.3u 16.3N 16.3N 16.3N 16.3M 16.3N 22.3u 22.3u 22.3N 22.3M Z2:3N ?2.3M 22.3M 22 .3U 22.3u 22.3N 22.3u 22.3u ?2.3N 22.3AJ ?2.3U 22.3AI 22.3u 22. 3N 22.3N 22. 3U 22. 3U 22.3u 22.3u 5 5//// 6//)/ %//// 14,1u 2Z.3M lb.3N 16.3N 16.3* 1*.lN 16.3w lS.2U 15.2u IS.2U 15.2N 15-2w 15 1s 15 5 5 OE’ bEi ,7864(( 983?1 IZO.6EI 120.6EI 123. OEI 120.6El 120.6EI ~20.6El 120.6El t20,6El t 20.6E! 120.6El 120. 6EI 120.6E, lzO.6EI 120.6E1 ]20.6EI 120.6E1 120.6EI 120.6EI 120.6E( 120.6El t20.6El 120.6EI 1.20.6EI i20.6E! 116,2EI 116.2EI 116.2EI 1 1$.2EI 11+.2EI 11+. 2E1 114.2E1 tl$.2E 1 I b.2E! I 1$.2EI 1 1%2EI ilh2El 1 l&2EI ;]$.2E Ilh2EI 11$.2E, 114.2E, 114.2E, 1 I $.2EI il$.2El 1 1$m2E! 116.2E1 11$.2E1 ;5004 450n* bsonb 65004 450n5 . 104 -. TYPHOON OWEN .,iTE1 I lTF FII w. . T,M: 17) 1 21d140 21 1?25 2) ZI17 ● $ * ● a 6 ● * ● ., lj ,?12326 270120 2>0357 271209 2>12217 * 10 11 12 1.s 14 13 2?1?20 22E057 2723UB 230102 2?0102 2?u.)37 231201 ● ● 1 lb 17 lb 19 20 21 2? 23 2+ 25 2b ;7 2B .?9 3U 31 32 35 36 37 3LI 3* 40 41 42 63 64 4> 46 67 48 *9 5U 51 52 53 5+ 55 56 57 5B s’) 6U 61 62 63 64 e5 bb 67 68 b9 7U ?1 7’? 73 ?b 7? 7U 79 t3u 2a203b 2&u031 2&u03,? 2&U042 Z+U043 <’U9L7 260!317 241313 261314 241324 ?61324 262157 262158 26.2158 2=,U01+ 26(3203 2s0205 2=,lo3a 251933 2512S6 25131J6 2<13U5 262137 262137 2r,014b 2AUl*b 26 U141J 261013 261016 261238 261?38 241?+6 261Z4b 26124b 262117 26Z117 ,?A233!J 2h233tl 27u127 .?713127 27!3127 27u95tl 270959 271220 271226 271 ?27 27 J227 27L057 27.4037 272320 211010Y 2.UIUY 2w0337 ZQ1119 2ql?u2 2171207 2A12U7 ?qdu3.7 20U02b 2QUOk3 2qo?30 2qlosEi 2013?5 ??13?5 201330 20/155 =1X Do’iTTllT?d 130. YE l?O.+E 136.9E 136. bE 13.S.7E 137.2s 136.4E 13..5E 13A. ?E 13<.9E 13G.7E 135. *E L31..5E 13G.6E 13A.2E 14. 6.! 13%.5E 134.7E lfl. % ]6.7. ? lW. OE 13F. OE 16.9.J lh. qv 13u.7F lM.7.! 137.7E 1 .l.7u 13-3.3E 131.2E 1’?.4., 132.7E 1’3.3.1 ]>,2., 137.7E l’J.l N 13?. ]E ?Il: 9* 13).2E 213.7,.1 ?n, *v 21 .0.0 21 .3.1 2? .?.! ?l .?., ?l .3., 27. !3.! 24.3., ?3. “N 23.1., ?2.9. .tCcet’ Dv??al( Pcv 3 PCN 5 Pcv 3 PCN 3 PCN 3 Pcu 5 Pcv > Pcv 3 PC* s PrN Y PrN !3 Prq 3 Prv 3 PrN 0 PI-N 3 PrN 5 Prw 5 Pcv 5 PI-V 3 P6W 3 PCN 5 Prw 5 PC* 3 Pcq 5 PC* 5 Pr?4 5 Pry 3 12 Q.flE 1>0.9E PI-N Prv PC* Prv PCN Pcv Pcv Pcv Prv 3 3 3 3 1 1 1 1 2 I?Q.7E 17Q.2E 120. ?E PC4 PC* Pcw 1 1 1 PCN PC.4 Prv PrN Pru Prv Pc?i 1 1 1 1 1 1 1 Pru Pr-v Pcu PCM PC* PCN Prti Vrv Prv PCM Prv PrN PCN Prv Prw Pcw Prv I 3 3 1 1 1 1 1 1 I I 1 1 1 1 1 1 PCN Pr4 PC* Prv Pru PI-M Pc.i PI-N PC.J 1 1 1 1 I 1 1 I 1 PC* Pru Pcv Prv Pcv Prq d 3 1 1 1 1 13n.9E 130. vE 13n. HE 13n. bE 130.54 1’2L). 7E 120.7E Pcv P..J 1 1 I-’rv Pc.i Prv Pry Prv Prq lJr~ 3 3 3 3 b > a T1. n/I. c(),,E 5urFl! FIXES llk o 12.0/?.0 INI /ol. o/?. o 13.0/3.0 13.0/3.0 T*. o/.$. 1 00S INI /132. o/23Wic /f31. q/?bHRs I /n2. ROOV PGTM PGTM RPM!( PG7ti P.ST* PGTII PGTW RPlfIc PG711 PGTW RODN PGTU ROON RP?tK PGTN PGTU ROOM RPNK PGld ROOV PGTU PGTN RoON PGT# RODD4 PGTU RPHK Jds cl/2>tlRc 14.5,6.5 /nl.5/?&HRc r$.5/4.5 /1>1 .5/29iRc ROON PGTU RPMK RPMK ROOV PGTtI PGTM RODN PGTU RODW Tb. n/6. O /111 .j/24HR< 76. (7/6.0 /131 .5/?5HR= EYE r5. n,6. T5.1)/f,. rb. O/6. o /M1. O /#1. O /110. o/??HR< o/ Z?HRC 5/? ITHR~ ,k. o /til. r7/2aHK. o /’+11 .j/26HRC o,=,. ‘T4.5/5. r4. r,6..5 r4. fl/4. NLIt VStTL RPMK PGT4 13KS9 PGTd Ooow PGT# ROOV RPMK PGTW RODN ROON PGTd PGIIA RPt3!t PGTN R(3OW PGTII ROL3N PGT d PGTU RoUW PGT# ROON PGTU /w13.5/2?HR< r*.5/4.5 T+. 5,6.5 SITE PGTi+ PGT U PGT d PG1 II PGT# PGIW PGlti PGFd )ss INII o Nls n/?3HRc TU. O/71. (J 12.0/?.0 /S O. O/?6HR. T2. CMMP /s.13. o/26HR< o ,4.5,4.5 166 INI I 36S INI I Jds INI I .3SS RKSO PG lM PGT!J RKsO ROD* RI(SO RPMK PGTli QOON RKS!3 PGTti ROON RPMK PGTU PGIU RPM% Roo% .. 51 -iCur-l FIX *O. * 1,?4< [7) : 3 + 2?”3]5 ?>OY33 ?2J904 272?13 2?U630 ; 230901 7 m ?-31+23 232?16 1: 11 12 13 14 15 lb 17 i5 19 20 21 22 23 24 25 26 27 28 29 3U 31 32 33 3* .1X ‘0$111 FI. T :!$1 13<t.5E 137. H[ 137. ?E 137. OF 136.7E 136. *E 13?. HE 13<. *F 1 34. PE ?60603 2L, IJY5LI ?61910 262155 260733 26,)306 261131 260033 .?ALI?22 2Q21*2 3000u6 317U200 3nu921 3n; &u 3f7.llN 31. ?N 32.9N 1500FI 1500FI 7noMu 1500F1 1500FT 7Q0Mtl 700vti 7nnf4ti 7n,3un 7?OMH 7“0hlH 7o04t! 7(70MH 7“0!48 ?0 OMH 999 10I32 ,5 15 >50 ?90 $5 30 1002 399 15 70 15 n6u 150 0 30 ?5 ho 090 5s 100 $5 n90 n $5 17<1 30 ?077 qu.11 TU15 7997 7!)2, 3U01 7827 ?2.3? 7701 100? 765.3 ,375 949 918 ?4V-+ ,*I$ ,38? 7110u* 711014.Y 700Mti 7n0Mtl 7rlomn rnomti 7“clMlJ 2>94 ?b3? ?5Y9 ,b9R ,b97 ,69ti ,70, l?o.7E ]?!Q. HE ]3n.3E 7170?4H 7noM13 700MU 700MM 7’70MM ]31.lE 13’). *E 131. HE 133. *E 700MM 7(70MM 7ootw 71313Mli 768? 7bElj 76.85 7bBq ?606 970? 7707 ,70, 7b9c I?o.4E 12n. bE IW.7E l<?.6E 120.7E I?9.9E IZO. HE 120. HE ,70.7E 2821*7 ?90048 2011216 2QU662 ?OU54B EvI SH4PE I VL 717clb!ti 7nowH 700MM ’260330 262146 270?40 27$>348 2.3U112 2R0315 2RO*14 2RU1335. 990 967 +?2 919 942 953 954 952 95? 956 954 957 5 0 8 3 3 3 15 18 90 0+0 qO 360 Qo 110 30 050 100 ?50 >0 330 Go ?50 90 90 70 50 170 ?70 190 ?30 50 so 70 090 040 (I9U 65 040 70 75U 65 (750 +0 090 65 770 60 90 100 90 060 160 ?50 310 72 35 30 1 ?0 50 L 2 3 + 5 b : 1: 11 12 13 1$ 15 16 17 18 19 20 21 22 23 2$ 25 26 .?7 28 29 3U 31 32 33 34 3’3 3b 37 38 39 TIME (7) 25Z1OO 2s2200 25<300 2523(Ao 260000 2F.UIOO 26 LISO0 260200 2.0200 26U300 2(,0300 Zf. u$oo 260500 260500 260500 260500 2AU700 2607U0 260800 260300 2hu900 2A1OUO 2A1OOO 2(.1100 2.41100 761200 261200 261300 261300 261600 2A1600 2h15uo 27.1500 2J,15u0 261700 2617(JD 2f,19u0 241300 261900 EYE PO% T71GU Z?.9N ?3.l!J 23. ?N 23.3u 2-+. ?)4 23.1 U 23..2M 23.3rA 23.3N 23. %J ?3. ?N 24.5V Z3. =IN ?4. +N 23. <.( 23.5,8 ?3. 7N 23. ?U 23.6hJ .?3.6N 120.3E 17q.3E IZO.2E 171?.2E 1Z9.2E l?O. IE 129. OE 12cJ. OE 12q. OE ]Zq. OE l?cI.OE 121?. OE 129. oE I?9.1 E IZQ.l E 12Q. OE I?Q. ?E 12Q.3E 12Q.l E ]20.2E 12’2.2E 23.7u 170.2E 21.6. 12q.l E 23.7w 23. qNl 12q.3E I?o. ?E 23.7w ?3. Qkl 170.2E ?E 23. 3N ]79. 24.13.J 120. ?E 24.0,1 l?q.2E l?o.3E 24.lu ?4.0,, 12cI.3E ]zo.3E 24.?. l?cI.2E 2h.2kt ?4. 3N ]20.2E I?Q.3E 24.3rJ 24.3N 12cI.3E ?4. 3., lm.3E ?4. 4.8 12Q.3E 120. *E 24.5V RAUAq I-ANO LAW) 1-P.,MD LAwO LAVO LAND LAND LA@ LAW) LA.40 LA?AO LAwO LAWO LAqO LA.JO LAVO LAkIO LAVO LAUC LAtAO LAND LAND LA?D LAW3 LAW LA.,0 LAIAO LAtAD LAUD LAUO LANO LAW LAMD LA.JO LANO ‘A,, O LA.,0 LAVO LAMO !CCRY SHAPE 1%. nfill n&n I 7$U 1A(I 2.,1 lUJI EYF DIa M 160 Y 45 46 50 Ido .?10 120 110 0W3 400 1 lb<) 65 0S3 5n CIRCIILAR CIRC,,L&R 3otD 300 90 95 84 60 70 61 65 70 81 75 70 75 64 64 33U 250 230 Z7LI I Yu CIRC!ILhR CIRCULAR Cl) MCENTRIC CIRC!]LAR CIRCt!LAR ELLIPT1C4L ELLIPr IC4L 25 12 20 20 35 ?Sn ELLIPTICAL C1RC11L4R 25 2 1 =.0 .iTn , C,n ?71> 1* O*O 230 27U O*U (390 0<0 26U UYQ CIRCUL4R CIRCULAR ELL1Pr1C4L CIRCULAR CIRCIILAR CIRCIILAR llU ?70 100 lbo la 010 60 3b0 70 10 GOOD Gf30Ll P mnu-COUE A<W4R 10DFF 65//2 501// 35//1 70204 CO!IMENTS 3225 EvE MnvG 3610 EYE MFIuf7 3210 EvE EvE MflVn Mnwn 020S 0205 EvE EYE S7NB STU71 EvE HOWG 020S EvE EvE M(WG Mnvr7 0205 3610 EvE EvE M71UG 3610 MOVG 3610 70603 ‘JO PnOR P.30R 75/11 GflDl) MOUG ’10 ?7!41 1 GoOD F-IOR 73605 70 %=.,11 7olob 55/11 736o6 Gr30D GqOD ?n =.%/11 S%tll 31/11 G3UD G.laD u SN No. 180 10 15 030 220 15 120 10 310 12 15 9 10 .?* +2b .25 +2b +22 +25 +2b .23 .23 +14 .25 .25 .~+a .]1 .13 +10 .10 .lt ● I3 .15. ● 1O .10 +IM .19 .13 + + .1P .13 +15 +14 .20 ●I3 .1s .19 .15 .1* .16 .)* .Ib .16 +16 ● lb .17 .15 .17 .17 .15’ .16 .16. .17 .17 .1A .15 .1* .17 +le .!* .lb ?9 ?7 4 6 ●15 ● 7 10 .16 11 11 12 13 13 13 14 Is 15 15 16 16 17 17 17 Ie .15 ● I6 +16 ●13 ●1S +1s .15 +12 .16, ● 12 .19. .10 .17 . 6 7oho5 70105 736o3 ?0 ?0 3//n a//l 7020+ 1 7030b li4D. !4 POSI TrONI ?6.2M 26.2bI ?6.2N 26.3u 26.2u 26.2N *6. w 26.2PI 26. Iu 26.2N 26.3u 26. Iu 26.2u 26. lM ?6. IAI i?6.2u 26.2bI 26. lm 26;1N 26.2N 26. lb! 26. IN ?6.2u 26.2u 26. IN ?6. lU 26.2N 26: lN 26.2u 26. 2M 26.lAI 26.lN 76.226.2N 26.2M 26.lm 26.lN 26.226.2N ; 3 3 4 + 5 5 6 6 7 7 8 8 9 9 9 FTTES EvE Gnol) O/loo Y CIRCIIL&e CIRCIILdR -40 -40 -40 Zo 3ku 1.? 2>0 79 1]0 95 Pqon onoll POUR OR IEN- 7U IUIJ 63 U*O 75 Q60 POOH 6130D EVE OI&”/TATION 16 lUO 2U 3s0 2d 31U la OJJIA 30 ?0 30 1 ?0 1?0 $0 30 15 ?0 5 9A>Au F1a NEJ. FIXES 127.71E, ~?7. r3El ~27.6iEI 1 ?6.8EI 127.8EI i27.41El 1 ?6w8E+ 127.8EI 1.27*7EI \ ?7 .8EI ?25.14EI 127.7EI 127*BE 127.7EI 127.7E 127*8E, 1.27*8EI ~27.7EI 127.7E$ c31TF UMO No. 479?7 679’+7 67Q3? 47999 47**7 47997 4*9 47*?7 479’37 479~7 47999 ,7w47 47997 127.7E$ IZ7.7E9 !27. IJEI 127.8E! 127.7EI 127.7EI 127.6EI \27.7EI 127.8EI 1.27.8EI 12 T.7EI 127.7E, ~27.6EI 479*7 479’37 6793? 679~7 479?? ●7**? 479%7 479*7 67977 679’?7 475!-7 47*37 47*’37 47* ’37 +7*%7 679~7 67’9’37 67*%7 67937 479’47 127.8EI 127.8EI 127.7EI i27.7E 127.8E 127.8E; 479’47 47*37 675+37 47*%7 67’?~? 479-3? 127.8EI ,.. CCw *,. I . <4TEl FIX No. r,u: ,1X (7) $$05, 1 ) [,,: eCCQY ~V’)zaK c(TOE q&TFl I lTC F,IXk S 1 ITk cJ*qFNrs SITE PGTU PGT* PGIH PGT d PGT M PGTU RPMK PGTll PGTu s * FIK Nu. ,1X Ol)$rrl[w 2505?7 ?5<222 2%2?s9 2bl13U7 cLT l.vL ,Uuq? HGT 0t7S MSLP 70CIMH ?151 lon4 10I34 15noF1 7130vH 15110F1 15QOFI 21, u504 312$7 1003 1003 *bx-<FC-dvD VEL/HRG/UqG 50 ?5 20 ?5 15 100 050 360 060 150 35 30 50 50 ?0 TROPICAL 160 130 1?0 150 ?7n 5* 16 20 1? 21 STORM 100 Oau 3bo luO llU 3G 3n 6“ 60 4(I 7 5 EYC S156PE rY[ OR IEWol&./TATIow L)Vq>,l( {7) 1 2 3 e 5 b 7 8 Y Ill Ii 12 13 16 15 16 ir 18 19 2U 21 22 23 2+ 2> 26 2r 26 29 3(3 31 32 071233 0?1213 07<036 032313 06U055 o&uo55 060917 0bl15+ 041155 042157 0* L155) 0<0036 051J217 13q0217 0<0217 05131T U=,131? 0’31317 0s1319 051319 0%2137 069018 0601ss or. u15$ 060158 061017 061018 O<lolb 0(,1257 061301 061301 o/, tl17 13.% 1~.lw 2n.9N 21).5w 2Q.9., 20.9., 21. eN 21. TN 21 .4,, 20. W 21,.3.9 ?n. nm Z’o.m 711. OU ?n.3.> 21 .7.! 21 .7., 21. *N 21. % 21. *U 23.6N cODE S4TFI .26 6 11) 1!3 5 CL14MFNT.S 13<.7E 13n.6E 136.9E 136.4E ]3G.7E 13=..6E 13=..2E 11 .5/1.5 0MSD39 nM<0a7 133.4E 13-4. SE 133.1[ 133.6E 137. fIE 133.3E 133.5E 13?.3E 13=..6E )3<.6E 135. TE 13=,. *E 13=..7E 134. qE 135. OE 27.3N 24. *N i35. OE 24. lN 35. IE 2&. ?U 35. OE W.. f.w 34.6E 26. RN 34.2E 3G.6E 25. nN 3=,.4E 2T.3v 3%.lE 27.1 N ?6. QM 3=..4E Ze. nw 36.3[ INI r ?ds o T1.0)2. o 73. n,3. fJ T3. i3,3. o /01. /wl. o/22HR< o/?4HRc 0)4S037 0M<P?7 0.%9-46 CJWWV4 Ouso >0 Omsolo O*W 39 Owqtl ?Cl Ouqo-ig 0USO?6 DUGP36 INI I Ods 0MqP37 DMqPIA D$MPW Du%rvl OMSD?Q 0.s037 171 EOGE W E& POSEO IN] I i3ds lNI I Ods ,22 .2!4 .~j, SITE p6rw PG7U PGTM PGIU PGrw RPMK PGTM RODM PGTW DUSP~O D* GP3f, T2. o/2. 73.5,3.5 lEPW! ,1-, IW/ DP/ssT 7 +2J +11 + 7 RWER I TTk krr o!lT/ +16+ 3 % TIM< FIX NO. ● krrQy MAu, MFT MA1-FLT-LVL-*NI) l,, M/vEL/LINti/dNG MT4 I LCC PGTU RODN PGTU PGTU RPMK ROOM PGTM RODN RKSO RPMU PGTU PGT# PGTU RPU6 P(3Tu RKSO T4KS0 RPMK PGTW RKSO PGTti RPHK PGTW ● 8 qo USN w-l. J- FJ-F?5. IJ-vnvu-lr , S@ 95 96 97 96 99 100 Loi 10.? 103 104 105 Lob 107 108 10? ilo 111 112 Fix 121139 I>l+zb 1714?6 122?3s 172239 1?0136 1-40307 130307 1-s1119 1-41119 1-41$01 171607 1,0116 160?4EI :bo?613 14S058 i6105e 1$1348 141348 141359 142339 160229 150?29 7,ME {7) 1 051001 2 3 $ 5 b 7 M 060342 070203 07(2$31 ORU21O 0R0512 090$05 1130142 1(30+22 110131 1)03+3 1?0700 170923 FIK NO. 1 2 3 4 5 T7M5 17) 041200 061300 0,1300 Oil BOO 060000 13.3N 13.6w 13.6* 13. ON 13.2N 13. lN 13. ?W 13.3N ]3.6N 13.5N 13.4N 13.7N 13.5w 13.6w 13. ut I?. *E 17. EIE 17.3E 1705E 17.4E 17.3E 1>.6E 11.7E 11). ~E .211.6E lll.l E 11o.7E Pc+i PCM Pcw PCN Pcv PCN PCN PC* PC* PCN 4 J 5 b 3 5 1 1 3 3 PCN PCN PcM 3 3 5 3 3 Y 3 5 13.’w .lln.7E I1o.7E 12.3N 13.3u 13. ?M 113Q. OE IOQ.5E IOQ.2E PCN PC! Pcu PcfA PCN 13. ow 13.1 N ]3.7N 10Q.6E 100..2E 10R.7E PCM PcN PCN 5 3 5 13. %J 1.?*3N 1137.9E 107. SE PCY PCY 5 5- FIX POSTTION 12.6w 12. *N 12’?M 12.2M 11.3N 11.IM 11.3N 11.5N 11.7N 12. ON 12. OW L?.9N 13.1 N 11’4.3E llQ.7E 119.4E 119.3E llQ.2E 110.2E 117.9E 116.5E 116. *E 1)5.4E 115.2E 111.6E 113. *E Frx P09TTION 14. 13. IN Ru 16. ON 13. oJ 13.6FJ 119.5E 11o.2E lIQ. OE 13.5/4.5 T5. /M1 .O/2.+HRC o/5. 12.5/ o 3.5 /D1 .5/25HRs /ul. n/2&HRc T+. fl/5.O./Wl. O/26H7F? DW<WS7 DU<P37 Du$E27 DMSP39 13u$u76 OMSP?. TINE {7) 7Joq3 HGT 06s MSLP 7!30MB 7noMLl 7noNtI 7n061n 7nOMH 7noMH 700MM ?017 -4055 >994 ?970 2920 >92? 776 I 991 996 7QOMU 700MB 7t3014ti 700ML4 700HB 700MU 7*96 >+BrF 7737 7733 77b6 77LA4 ACCRY LANO LANO LANO LANO LANO ’385 *82 3E!0 960 929 959 962 MF.x-FLT-Lv Mhx-qFC-MwO VEL/8RG/UWG 65 60 50 75 75 45 30 100 100 50 65 65 45 360 010 030 330 300 (380 I +0 060 180 070 130 f180 180 011200 0?0000 0-40000 061200 14.5M 15. 15. 14. 120.5E ON 121. ov 121. ot.J lIQ. oE uE RE L-9Nn 1)1 U/ VEL/LiRG/dNl? 50 50 11 10 ?0 5 10 5 7 50 ?5 ?0 30 3?n 40 2 Io 010 360 210 3bo 2.?0 O*O 060 Inn 101 150 93 070 115 020 1?0 73 060 !360 74 320 740 70 1*O 110 63 040 EYE SHAPE 4CC!?V NAv/MET 3n 3 r, 16 -+ -4 . 4 4 5 in 20 2 1 ? 2 5 EYE SM&?E EYE OR ICN D1a./7ATIoN $4SN NO. 2: .Ii .Ii .k’j .1! ●17 .13 .15 +1$ .1? .1$ .13 ● 9 ● 3 . 3 ● 5 . E + 9 4 e 15 .11 +25 .25 ● IO . + 12 +14 +’lj .11 .14 .]6 CL14CIIL&R CIRCIILAR CIRCULAR CIRC(ILAR CIRCULAR CLRCIILAR CISICtILhR CIRCNLAR 20 20 20 10 CIRCIjLAR CIRC,,LAR +14 .13 . UAO&R POS!11OY CO16MENT5 16. JM 16.3N 16.3N 16.3M 13.7N CXRCOLA? INTENSITY ESTIMATE Plx P02.lTION RPMK ROOY RODN qpw( RPMK RPM< RODN ROUV RPHU PGT# DWW=4W OUCD-47 SYUO=TIC FIX No. 13PMK 129MK Rol)v RPMK ROON RPMK RPMK ROOV RPMK RPHti RPMK RoON FL? LVL Rt30AR I1o.7E I1o.8E 0“<017 LWSOW L3*5P?9 DMS977 Dws037 DM~03A DMSIV?Q DMSPICI 1 3 * 4 5 5 6 7 7 B 8 9 9 b SITF Uuo l?o.6E 120.6E, ~20.6Ec 120.6E lLIO.6E. FIXES COMMENTS 10 10 10 15 ● 174 . No. @3?l 08371 Q33371 w33?l ,8665 ,., JIJln ,, ..,, Jln?. . . . , V* Zz .Z” . WI-U . . . aaaaaauaaaeo Oaa . . . . . . . . . . . . . . !“W!WNNNNNN !VNNNNN ------. -------mmmmmmmmmwww m-m Zz.?zzzzzzzzzz . --t-~..-.-. Wwwl.lwuwwwwww ------- mmm .,, e.m-wul . . . . . . . **muem’L?*’3u*ee mmmmr.tmmmmmmm “-l’mcc=w N*omm ***n.n -------, -----,** -.. .. m......+.n >>. .0 c g~ - . .-4 .. . --..”..,..*.* bJ” AL.l”w ainmnc-r. -aa . . . . . . . . . ● Lt@N*xwww “Illmmvm”mm ● *9 WWUWNN “II--..4...8* . . . . . . . . -l--..J*-J >-l? Zzzz,zzczz moQQ5DDna ru.-. ..= NN. l.Iwrv . . ..r.llv .,-. -,- L-. L.J*U mNNN!vm. m- -- ...,-. . SUPER TYPHOON caTEl FIX W. t lTF VERA F,TXLS TIFIE t!cc RY (7) 3i231b 01 U02b 010s14 011126 011158 012055 01225B 020001 10 11 12 13 M 15 Ib 17 lM 19 20 21 22 23 24 25 2b 27 2S 29 30 31 32 .33 34 35 36 1T 38 33 60 +1. 42 43 44 4s 46 47 48 49 FIX NO. 1 2 3 6 5 6 z 8 9 10 11 12 13 14 0?0?35 0?1140 0?124B 0?1?+6 0?203* IJ30021 030021 030129 O-509L4 0-51228 0?1229 0?1302 0-9.2155 040003 060110 040110 041035 061244 0612+5 0L1351 0k2135 042135 050126 050?3? 050232 051015 OS 226 051332 o;i332 O<i*OB 057256 060108 060i09 060213 060213 060956 061312 061350 061351 062236 0700s0 070153 0+0156 071116 071332 0RO032 6*>Q ra.7hJ 6.C3N h. 3.N 6. 3.1 6.QN 6.?N 6.6N 7,>N 7.?N 7.1 N 6.W 7.5V 9.3N 7.QN R.?N ‘?. ON Q.?u 9.4MJ CI.?N lQ.5V 10.5N 10.5.J 1(3.5., 11.4.J 11. qM 11.7M 11. QN 12. kN I?.5N 12.9N 13. IN 13. IN 14.1 U 14. *W 14.6N ;A,5M 14.5lS.61’J 15.6N lS.6N 15.7., 15.9N 16.7N 17.1 U 17.7N ;7.2N 1.9.3N lR. sN )7.9W lR. bN lU.7N 16.9M (7J 0?0625 0>0s00 030753 .031933 0?2049 060507 OASOO 062225 050bl B 0=.0702 05do17 0=,2232 0s0620 062001 14Q. uE 14 R.9E lbR.3E 167. oE 147.2E 146.7E 14A. OE Pcw PC?4 PCN pCN PC% Pcv Pcv 5 5 b 5 5 5 5 145.7E 1Q3.9E 14>. bE lfI’1.4E 14?.2E 141.5E 141 .(2E l&I.l E 14n.7E 137.8E 137. IE 131.2E 136.9C 13_4. SIE 133. OE 137.7E 137. *E I?9.7E 12Q. OE l? FI.8E 12R.7E 12ii. hE li%.5E 125.9E 125.9E 12<.8E 124.4E 123.9E 123.6E 1’23. IE 124. IE 1’27.9E 1?3.1 E 127.*E 12?.3E 12?.5E 1’??.2E 127.2E 12?.3E 127.3E l?l.5E I’?l.7E 121.7E 121 .7E 1’2?.lE F’CM Pcw PCM PCM PCN PCN 5 3 ?. 5 6 3 Pcw PCM P@d P~q 3 3 3 6 PC* Pcv Pcw Pcw Pc.i PCN b 5 6 1 1 1 PCN Pcw Pcti PCN PCN PCN PC* TJcw PCN Pcw Pcw PCv Pcq Pcq 1 2 1 2 2 1 1 1 1 1 2 1 1 1 PCM Pcq PCN PC* Pcw 1 3 3 3 1 Pcw Pcu 1 3 PcN PCN Pcq PCN PcN PcN PC* PCN Pcw Pcw 5 5 3 3 5 5 5 1 5 5 lI?.8E lfJ.lN 116.5E TTi4E, FIX Dostlrotl 7.4% JI.6u S.%4 In.lv 1+4.5E 13q.3E 13R. *E 136.’(E in.?hl 134,3E 11.13N 131.5E m.A 1%.h l?.5N 13.2N 13.6% lS.l N 15.1 N 16.3N 17. RU L3V~?AK 126.5E 12=1.lE lE’4. HE 123.3E 127.7E 12?.3E 121 .6E FLT LVL lSn OFT 100lo+ ?nosrm 7nclMn 7floMm 7004B ‘%Omu 7130MH ~OOMW 7110MH 7nOMH 7i30Mti 71TL3MH 7noMn T1. O/l. 12.7)/ cO13C Fll TTE O 7.0 /131,0 13.5/ 3.5 T3. o/3. o T5. Stl o/5.0 /f)l. Ods o-/r31. 14.5,5.5 T5.5/6.5-/Wl /wl. .o-/so. INII 06S ?97] ?94b ?72n ?643 ?39q >J+s 737? >413 >410 2557 ?587 7647 RODN PGTd PGT!J PGrd PGTU ROD* PGTd POT u PGTW PGId RPM< PGl# PGTU RODN PGTW PGTW RPHK RPMK ROOV RPMK PGTW PGTM INIT Ot$S /27HRC o/26HRq Soow PGTd RPMK ROON PGTM ROON RODN !3/z7HRG .o/23HRG o/24HR< RPMK PGTxI PGTU RPSIK ROOFS ROOM PGTU RPMK PGTU RPMK PGTU PGTU /w2. o/24MRq O /U 1. 5/25HRG ApRN7 700q3 I16T Ptirli PGT16 PGIII PGTtI PGT# PGTW PGT# PGTd PGT# P6TW PGTW RPM< PGTU o/25t5Rc /130.3 rb. o,6. 10.5,,$.5 1+.0/5.0 T3. o,4. I UP +/n2;0/24HR5 T5.5,6.5 o/f! INI cl /24HRc T5.13,5.13 Tb. SITE OBS )tSLP M&x-sFC-wqO VEL/RRG/RVG 3q4 50 130 70 090 Mb X-FL T-L VL-d Nn 1)1F?/ YEL/BMG/iiNG 7 5 982 9*5 915 9]9 941 130 ?70 130 .110 3 5 1ZO 330 130 050 130 3+0 3 7 4 b5 060 100 050 LLcC $0 35 160 750 I=.0 1?n ‘5?0 IRrr +?1) ?6 65 46 73 120 125 170 060 240 020 Ouo 270 110 AWRY NAu/uE7 211 30 1: In 5 G. 2 6? 52 5 5 53 1 6 EYf ORIENOI4WTATION CIRCOLAR CIRC,,LAR CIRCIILAR CIRC(JLAR 17 211 R R CONCENTRIC 25 70 CI*C,,LAR CIRC,ILAR CIRC,,LhR CIIiCULAR 1: 3n 120 l@G@Wl~~ 111 lUO 1< I 7n 116 050 1? 8 5 1’30 I ail 100 103 !35 210 110 070 in 3n 2s L 4 5 130 S2 020 6n 2 2 1 III “5 n EvE SH4PE 4 2 @vr r3uf/ TEMPI IW .21 ,2$ ●22 .1! .1$ +15 .1+ +10 + B ● 11 .1!! .19 .12 ● Z5 .+9 .14 .19 .16 .16 .16 .]5 .1!! ● 15 tr, 0P7<sT IKN !40. 2 4 6 5 5 6 7 7 8 8 Y Y 10 11 + n +13 44 ● I4 +12 .15 .15 ● 15 .15 + 4 .. . 178 -. ... FYF SHAPE accwi 14 15 lb 17 16 19 20 21 22 23 24 25 2b 27 2U 29 ● 30 ● 31 32 33 0. U71b 050,00 6CFT LA.10 050505 05 U5UIJ 0=.0500 05U500 0=,0530 O’6U700 050700 0=.0900 05V500 OG09U0 o~u+oo OCUYOO O<lnoo 0<1100 QGi3(fo 051600 05151JIJ 0619(70 051940 nc,19ulJ nql.A&3 06.?00; 05<035 0%?110 0%2135 0s2215 062?35 0s<300 0%?300 I%4M 052300 L/1.Jo L,4W3 !LA.10 LAl10 LbVO LA.01 LANO LAV9 LA.ID LA40 LAW LA.ID I-A,JD LA.1O LA. ID LA.10 LAL, D LAUD LAWO LAUO LAP1O i_AwJ LA-II LAUO LA.#0 LAW) LAND LAND LANO LA.+D LANO LAMO LA~JO LAW3 I-AVO LANO LAVO LAN9 LAVO LA,1O LA?60 LANO LAV9 060000 O6U1OO OIJJ1OO 0N3ZO0 01,U200 or. u300 0A03Du 04.0400 0+.0600 06u630 060500 06u600 060500 06 U70EI OC.0930 061200 061500 061500 061900 061900 070100 07U200 070300 07U300 070500 070500 070700 070900 FIX No. TIFIE <7) : 3 + 5 b 7 B Y 200000 291200 3nuooo 3ni200 310000 3) L200 071200 Orloooo 0Q1200 15.6w i5. Iv I?7.7E 127. UE ;;7.6E 1-,.7N l?P.9E 1=..W 127.5E 15. qkr I??.9E 1%.9N 16. oN 16. ?N 127.4E 127.9E 1?7.3 IE 1/).24 16.3., ~6.~U 1’27.3E I?7. !3E 1?7.2E 16.5N lh. bti 127. 179. 16.5U 16.5N 16.7v 17.3N 17. *N 17. *w 16.7” 1?7.5E 1?7.3E 127.1 E 127.1 E l??. OE 121. QE l??.4E 17.9N IR. nv 113. lW la.lw l?l. IE 120.7E 1Z17.6E I?c.8E .. bE *E lS.2N lR.3.J l’2n.4E 170. IE 1%4N 117. _iu l?n. ?E lIQ.9E =1X 00 S1110- 6.17U h.nti S.nu fl. n. C1. nti 6.0,, 17.0., 15.5* I 15. nN 1511.5E 15(,.5E IW. OE 15~. OE 151. OE l+cI.oE lIR. OE lt7.5E 117. UF EYC ola M w4MW-COL3E 2.SV. W TOLJFr ?n!4/1 3(31// 10)11 53406 7,)1.,1/ ///// 1n543 5351> ?nl,// 5302L! ?s7/u 54s3> 70711 5331J 7n211 53309 ?06~/ 53325 7061 / 5312> ?0711 529?1 PO?) 1 52921 ?07// 53314 ?01// ///// ?n?’al 5471* ?n>ll 117-43Z 10412 s3212 5.34]+ 53414 Pfwlr P!301? P-ON PnOR P.3DR P9UR P1OU POOR Pqon vow 907?/ 5//// Io=, *3 5320+ >0?// 5(//1 10s63 5352LI L AuO LANO LAVD LA.N O LANO LAN(3 LA!AO LAW Lbci71 LA-JO LAWO LA~JO LA*KA LAb!O LAW JNrENSTTV ug13RcsT FsTTMATE DATA 05 (35 10 05 10 15 30 2U 15 //1// 112%5 INN) 10?)1 1n543 10?11 1 05+3 5//// 5341U 5//)/ 5341 L 10s43 1o137/ 10543 \n7bf 1 IV4*3 53+11 +3606 53409 4340s 53513 InR’+/ ?1 ?+3 16n170 65/// 45//1 65/// 1071/ ?0781 70751 ?0341 45/// 45/1/ 53/// 35?42 60/// 53210 527// 5270$ 7281/ 728// /11// 53+06 52713 52915 52913 ///// ///// ///// e42/t 728// COHNENIS 320 90 75 ;: 120 179 S(1F CO!4MENr5 Wqo 10.3N 12+.0<. 123. OE 123. OE l?t.3E 123. OE. 124.3E 12hoE IZ3. OE 16.lw 1+. IN 14. W 14.IU 14. uN 10.3w 16.lu 14.lN 1+. ON 14. ON l+.l N I+. (WI 16.13* 14.1* 1+.lh 14.1* 14.lN 14.lN 15.2N 15.2* 15.2N 15.2M 15.2u 15.2bl 15.2* 15.2M 15.2N 16.3N 14.lN 15.2u 16.36! 16.3N 14.1* 16.3u 14. IN 16.3N 16.3M 14.1 N 16.3M 14. IU 16.3AI 14.1 N 123. OE lzt.3C. t2s.3E 123. OE 126.3E 12t.3E 123. OEI 123. OE 123. OE }23. OE 123. OE 120.6E 120.6E 120.6E 120.6E IzO.6EI 120.6E IZO.6C 120.6E. IzO.6E 120.6fi 123. OE 120.6t lzO.6E, 123. OE. 120.6E 123. OE 120.6E. 123. OE, 120.6E1 120.6E. 123. OE 120.6E 123. OE, 120.6E, 123. OE 16.3N 16.3N 16.3u 16.3bI 16.361 16.3* 16.3M 16.316.3DJ 16.3N 16.3M 16.3N i?O.6E 120.6E! 120.6E1 120.6E 120.6E, 120.6E! 12 D.6EI lzO.6E1 “120.6E. 120.6E, 120.6E 120.6E$ 16.3N 16.3M 16.3M t20.6E, 120,6El T20.6C, 1*.lu No. 54*W 98566 Qf)*60 *lsb&o !35647 Q8b40 .+gb47 Q@b46 Qn$ao CJ8640 .q8647 98647 98&+0 @3&47 w3b47 $?tJb40 Q8*41J Q8640 90440 Q.9440 903?7 003?7 003?7 05L3?7 5!83?? 08377 98327 q83?7 QB3?7 003?1 Q8A60 083?7 9B3P1 qElb*o 963?1 #+866Q @3?l Qnbbo Q9321 993>1 96M40 q8321 ‘qB44c7 qe3?l 9B@o qB3?l 98321 983?1 (383?1 *83>1 ?!8321 r183?l 983?1 t383?l qa3?l Q243Z1 Q83?1 q83?I ee371 9837 t 8 b --N m-l-. m r’fio .N mmom -..-4---- m-.n**!T. nl--. --. -------● **+++.++. * ~mq 7.. . . +....++.. **. . ---● *.. <*U-W** No. .CU-WUU- ..mm-mo!m ccc ,-mru-m . Ulrn=euc , r * I,! r.* l-- .n. 2ZT2Z7222Z22 .,..0-.-... . . . . . .f.L.r.r*?Cra AN-1. . . .-m. . . .-l- . . r-i. --’u -,.-1. s . TROPICAL ~ BEN c4TEt t 3TF F,lXES F1 x NO. TTME (71 1 .? 3 * 5 b 2,iO13+ .?”1217 210059 210114 2,011$ 2113*O 7 ‘$ Iu 11 12 13 1+ 211355 211355 211356 2700+1 270236 2712237 2?gb5Z 271322 1> 2?1336 10 17 lM 19 20 21 22 21u OZ3 2’313?04 23u217 2?0217 230640 231304 2?1317 DVO?AK lIQ.l SaTFI I ITE T2.0/2.0T2. n/?. o DUSD76 INIT o.=.@3Q OUSPXV D“cc26 INI : 3 a : 3 * 3 b 7 OdS PGT# ROON RPHK KOWC L3ds PGTU PGTU PGTd E 11’7..?E 11o.3E llQ. W. 15.7U 16. ?u II Q.7E llQ.3E 1+.5.1 14.0* I?l.3E 20. nu I?7.9E 20. OU lZt.. lE PGTU KGMC PGTV PG7W 7130q2 11.5u I?. $w 13. bN 15.5W 12s. BE 12?.3E llQ. ME IIQ. W OBS M&x-sFC-UqD VZL/4RG/*VG TIME {7) mbX-FLT-LVL-*Mn nlM/VEL/dti6/*NG 1?5. ?E I?<. ZE LAMD LA9i0 l?. II. 12..2E I?-i. QE LAW LAND oM *N 11. RN 13.5,, 123. *E ]10.9E LAND LAND 1%. ?N 110.4E LA*JO EVE ORIEN_ 0]4WTATt ON Evr rw?/ WSN TE16PI (CI IW OP,/WT No. 992 50 030 ?0 , On 46 330 6n 6 5 .11 ● 11 1 996 395 50 70 70 360 720 020 IO 10 12 >lo l~n 17n 38 72 56 1.20 Obo 090 6!I IS 1< 3 1 7 b 3 7 .13 .10 ● B 9 2 4 6 CCRV 17. I)N 1>.0,, EYE SHAPE ?LMr =1X 21110b 211200 211300 22 IJ1OO 2?1900 ACCRV NA*/MEl MSLP -+013 -V25? 290710 2109*o f IXES rlGT wA~A” FIX NO. I INlr TTME 17) 210620 212225 270913 2?2239 PGTU PG7U PGIU pGrd RPMK ROOti PGTti L3dS D Wcmm oMs-3Dusmau AT ?CIJAFT FIX No. SITE 0.=J7VJ 0.%9-4. 11 .7.1 1 3>.0[ 11.7U 13n.9E 1?7. flE 11. i. II .=,.* 126. QE 11 .$.1 ]? f,.7E 11 .7.! 1?3.8E 11.6.4 123. RE 11. bu 17?.7E 11.6N IZ-!. BE 1?.4$4 1?1 .*E 13. IN 121. OE 1?. 5.1 I?O.9E 13.6N 110, +E 13. qN 13. q., l’i.9N CO17E EYF SHAPE EY= D16M CIRCIJL4? CIRCIJLA? 25 ● F7XES a&l105f-cOOE A5U6U TOUFF ln51/ 1!3510 !?013 l(la?o ?=,2>0 Fbltl CIRCIILAR ///// 5//// 5271* 52bl B 52b2U 7R CO16MENTS RAO.i R Pnsfr!ov 10.3N 10.3U 10.3u 10.3N 10.3N 15.2U IS.2N <lTF Iwo 12$. oE 12b. oE 12$. oE 12 b.oE, 12c. oE 120.6,S 120.6EI No. .?85S6 qEIS&6 q8f146 98%6 @J646 903?? 98377 784 .. . r- 2 c . lz Ii, x. l-: . g“ . :< mm . m . . m . c:. ● * -@Jr.-.+ln.n.a*- . .. . . InLn . . . . -.> . . . . ...... .. .. .... u . * . wlllulld”l.lww Iuwwwl.lldwu. uw .Uwluklldwwwuid WWIIJ I.Iwl.l .!m=*om*N1-N*Flm ● mNOO=-O *m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-.-c a.. e LTeumaur<lrt Lf+.aac.aava’naem Fl-’ m&l--=Cco mm aa -=. l-e&e& .naa’4. ** Q.* ’L*a *1-rr-. ’ae wd*l.l**r-m*o’se 22 ZZ2Z222Z -t-a+-=**~-ff . . . . . . . . . . Uoc’!r==-=mer .-. .N twfu iv--IU.--. . . . . . . . .N*.al.’l. o. Lcl.*. -a Owrum. -m00=. *04.m *N* wa - m* I-w *a-.*-* ,n** +--000---0= 0-nnrin&&titiw FI-*F F***** NNN, OJNNWNN -m NNNNN ZZZ22Z2ZZZ2ZZ Zz?zzzzzzzzzz ● **.-.. CI*N --*N i-mom.m-em-.h . . . . . . . . . . . . . . . . . . . . . . r.l N**** m*u!lclil* *.?a-*G+m*u@.=u . ..-. --. .+.4 . . .-! .. . . . . ... .. I-. .4.. !U** . . . . . . IJI+**+N+N--00m NO**m m*d*Lc. *Q Am-* .s. Om-n*.a. . -0..-4-.---00---0.00Uueewee=c ccc---. -A-.-+ AIw N(u(u NNNNNNNNNN 1. CONTRACTIONS AC&W ICAO Aircraft Control and Warning System International Civil Aviation Organization IR Infrared ACCRY Accuracy KM Kilometer(s) ACFT Aircraft KT Knot(s) AIREP Aircraft Weather Report(s) (Cormnericaland Military) LLCC Low Level Circulation Center LVL Leve1 M Meter(s) ANT Antenna APT Automatic Picture Transmission M/SEC Meters per Second ARWO Aerial Reconnaissance Weather Officer MAX Maximum ATT Attenuation MB Millibar(s) AVG Average MET Meteorological AWN Automated Weather Network MIN Minimum BRG Bearing MOHATT Modified Hatrack CDO Central Dense Overcast MSN Mission CI Current Intensity NAV Navigational CLD Cloud NAVPGSCOL Naval Postgraduate School CLSD Closed NEDN Naval Environmental Data Network CNTR Center mm Naval Environmental Display Station CONF Confidence (number) NEPRF CPA Closest Point of Approach Naval Environmental Prediction Research Facility DEG Degree(s) NESS National Environmental Satellite Service DIAM Diameter NET Near Equatorial Trough DIR Direction NM Nautical Mile(s) DMSP Defense Meteorological Satellite Program NOAA National Oceanic and Atmospheric Administration EASTPAC Eastern Pacific ELEV Elevation FLT Flight GOES Geostationary Operational Environmental Satellite HATRACK Hurricane and Typhoon Tracking (numerical forecast) HGT Height HPAC Mean of XTRP and Climatology HU Hurricane HR Hour (s) HVY Heavy NRL Naval Research Laboratory NTCC Naval Telecommunications Center OBS Observation(s) PCN Position Code Number PE Primitive Equation PSBL Possible PTLY Partly QUAD Quadrant RADOB Radar Observation RECON Reconnaissance 188 -. -. . -. RNG Range F2?D Rapid SAT Satellite SFC Surface EPHEMERIS - Position of a body (satellite) in space as a function of time. When no geographical reference is available for gridding satellite imagery, then only ephemeris gridding is possible which is solely based on the theoretical satellite position and is susceptible to errors from satellite pitch, orbit eccentricity and the nonspherical earth. SLP (MSLP) Sea Level Pressure (Minim~ Sea Level Pressure) SMS Synchronous Meteorological Satellite SPOL Spiral Overlay SRP Selective Reconnaissance Program STNRY Stationary SST Sea Surface Temperature ST Super Typhoon TC Tropical Cyclone TCARC Tropical Cyclone Aircraft Reconnaissance Coordinator TCM Tropical Cyclone Model TD Tropical Depression TIROS Television Infrared Observation Satellite TS Tropical Storm TY Typhoon TUTT Tropical Upper Tropospheric Trough (Sadler, 1976) VEL Velocity VIS Visual VSBL Visible WESTPAC Western Pacific WNo World Meteorological Organization WND Wind WRS Weather Reconnaissance Squadron XTKP Extrapolation z Zulu Time (Greenwich mean time) EXPLOSIVE DEEPENING - A decrease in the minimum sea level pressure of a tropical cyclone of 2.5 mb/hr for 12 hrs or %.0 ti/hr for 6 hrs (ATR 1971). EXTRATROPICAL - A term used in warnings and trop~cal summaries to indicate that a cyclone has lost its “tropical” characteristics. The term implies both poleward displacement from the tropics and the conversion of the cyclone’s primary energy sources from release of latent heat of condensation to baroclinic processes. The term carries no implications as to strength or size. EYE - “EYE” is used to describe the cent= area of a tropical cyclone when it is more than half surrounded by wall cloud. FUJIWHARA EFFECT - An interaction in which tropical cyclones within about 700 nm of each o~her be~in to rotate cyclonically about one another. When intense tropical cyclones are within about 400 nm of each other, they may also begin to move closer to each other. MAXIMUM SUSTAINED WIND - Maximum surface wind speed averaged over a l-minute period of time. Peak gusts over water average 20 to 25 percent higher than sustained wind. RAPID DEEPENING - A decrease in the minimum sea level pressure of a tropical cyclone of 1.25 mb/hr for 24 hrs [ATR 1971). RECURVATURE - The turning of a tropical cyclone from an initial path toward the west of northwest to the north then northeast. SIGNIFICANT TROPICAL CYCLONE - A tropical cyclone becomes “significant” with the issuance of the first numbered warning by the responsible warning agency. SUPER TYPHOON/HURRICANE - A typhoon/ hurricane in which the maximum sustained surface wind (l-minute mean) is 130 kt or greater. TROPICAL CYCLONE - A nonfrOntal low pressure system of synoptic scale developing over tropical or subtropical waters and having a definite organized circulation. . 2. DEFINITIONS TROPICAL CYCLONE AIRCRAFT RECONNAISSANCE COORDINATOR - A CINCPACAF representative desiccated to levv troPical cyclone aircraf; weather rec~nnai~sance requirements on reconnaissance units within a designated area of the PACOM and to function as coordinator between CINCPACAF, aircraft weather reconnaissance units, and the appropriate typhoon/ hurricane warning center. BEST TRACK - A subjectively smoothed path, versus a precise and very erratic fixto-fix path, used to rePresent troPical cyclone movement. CENTER - The axis or pivot of a trOpiCal cyclone. Usually determined by wind, temperature or pressure distribution. CYCLONE - A closed atmospheric circulation rotating about an area of low pressure (counterclockwise in the northern hemisphere) TROPICAL DEPRESSION - A tropical cyclone in whxch the maxmmun sustained surface wind (l-minute mean) is 33 kt or less. 1%9 TROPICAL DISTURBANCE - A discrete system -— of apparently orqanlzed convection--qenerally 100 tO 300 m~les-in diameter--originating inthe tropics or subtropics, having a nonfrontal migratory character, and having maintained its identity for 24 hours or more. It may or may not be associated with a detectable perturbation of the wind field. As such, it is the basic generic designation which, in successive stages of intensification, may be classified as a tropical depression, tropical storm or typhoon (hurricane). 3. REFERENCES Atkinson, G. D., and Holliday, C. R., 1977: Tropical Cyclone Minimum Sea Level Pressure Maximum Sustained Wind Relationship for Western North Pacific, Monthly Weather Review, Vol. 105, No. 4, pp. 421-27 (also FLEWEACEN TECH NOTE: JTWC 75-l). Dvorak, V. F., 1973: A Technigue for the Analysis and Forecasting of Tropical Cyclone Intensities from Satellite Pictures, NOAA TM NESS 45, 19 pp. TROPICAL STORM - A tropical cyclone with maximum susta~ned surface winds (l-minute mean) in the range of 34 to 63 kt, inclusive. Guard, C. P., 1979: The Intensity of Recurving Western North Pacific Tropical Cyclones: A New Look. Unpublished, 33 pp. (available from NAVOCEANCOMCEN/JTWC, . COMNAVMAR, BOX 17, FPO SF 96630). TROPICAL UPPER TROPOSPHERIC TROUGH (TUTT) - “A dominant climatological system, and a daily synoptic feature, of the summer season over the tropical North Atlantic, North Pacific and South Pacific Oceans,” from Sadler, James C., Feb. 1976: Tropical Cyclone Initiation by the Tropical Upper Tropospheric Trough. (NAVENvp~DRSCHFAc Technical Paper No. 2-76) Ramage, C. S., 1971: Monsoon Meteorologyr Academic Press, 253 pp. Riehl, H., 1971: Intensity of Recurving Typhoons, NAVWEASERSCHFAC Technical Paper No. 3-71, 11 pp. TYPHOON/HURRICANE - A tropical cyclone in which the maximum sustained surface wind (lminute mean) is 64 kt or greater. West of 180 degrees longitude they are called typhoons and east of 180 degrees they are called hurricanes. Foreign governments use these or other terms for tropical cyclones and may apply different intensity criteria. Sadler, J. C., 1976: Tropical Cyclone Initiation by the Tropical Upper Tropospheric Trough, NAVENVPREDRSCHFAC Technical Paper No. 2-76, 103 pp. Sikora, C. R., 1976: A Reevaluation of the Changes in Speed and Intensity of Tropical the Philippines, FLEWEACEN Cyclones Crossing TECH NOTE: JTWC 76-2, 11 pp. WALL CLOUD - An organized band of cumuliform clouds immediately surrounding the central area of a tropical cyclone. The wall cloud may entirely enclose the eye or only partially surround the center. 190 -- .. I-1 w -. z- i= i= UNCLAssI~ iECURITY CLASSIFICATION OF REPORT ?. REPORT PAGE (W’hen Data DOCUMENTATION (and Entered) PAGE NUMOER ]2. GOVT flrmual Typhoon !.TITLE THIS 1979 Report ACCESSION NC I 5. .%btitfe) TYPEOF REPORT& PERIOD COVERED !nnual (JAN-DEC 1979) kNNUAL TYPHOON REPORT 1979 S.PERFORMING B. ). Performing organization NAME AND ADDRESS CONTRACT ORG. REPORT NUMBER ORGRANTNUMBER(@ 10. PROGRAM ELEMENT,PROJECT, AREA& WORK UNIT NUMBERS 12. REPORT TASK J. S. Naval Oceanography Command Center/Joint ryphoon Warning Center (NAVOCEANCOMCEN/JTWC) ?PO San Francisco 96630 1. CONTROLLING OFFICE NAME AND ADDRESS 13. 14.MONITORING 1S. AGENCY NAME & ADDRESS(ff djfferctttfmm OATE 1979 J. S. Naval Oceanography Command Center/Joint ryphoon Warning Center (NAVOCEANCOMCEN/JTWC) ?PO San Francisco 96630 NUMBEROF PAGES 191 CtmtrOllin~Offiee) SECUFUTY CLASS. (efthiarePOti) UNCLASSIFIED iSa 6. DISTR18UTIONS TATEMENT (efthfa DECLASSIFICATION/DOWNGRADING SCHEDULE Repc@) Lpproved for public release; distribution unlimited. 7. DISTRIBUTION 8. SUPPLEMENTARY D. KEY WORDS ST ATEMEF4T (o fthoabattact emtexedfn B10cki?0, ifdifforemt fr&n R.pat) NOTES (ConNnuoon rmverae ●ide lfIIec*aa8?y mdidmtlw by blmlrnumbw) :ropical cyclones Tropical storms :ropical cyclone forecasting Tropical depressions :ropical cyclone research Typhoons kopical cyclone steering model Meteorological satellite ‘ropical cyclone fix data Aircraft reconnaissance ●ideifnee.aaq mdidmtiw bybfocknumborj 1 ABSTRACT (C~tfnUOrnrevwae mnual publication summarizing the tropical cyclone season in the western Iorth Pacific, Bay of Bengal and Arabian Sea. A brief narrative is given .on !ach significant tropical cyclone including the best track. All reconnaissance Iata used to construct the best tracks are provided. Forecast verification ~ata and statistics for the JTWC are summarized. Research efforts at the ‘TWC and NEPRF are discussed briefly. DD ,~:j$~ 1473 ~DITloN oFl Nov651sossoLETE S/N O1O2-O14-66O1I UNCLASSIFIED SECURITY CMSSIFICATION 0FTt41SPAGE mmDataBttt@?d) ,E+ZVWITY CLASSIFICATION OF THIS PAGE(Whem Data Enterad) b SECURITY CLASSIFICATION OF THIS PAGE~oII .- D~a Jfnti@ .. . . r. I I I I 1 1 1 .I . . . . . . . . . . I A I M . . ... . [.)1 t:: .,. : : . .,,,, ,~~~~~ .- . ,,: ..,,,, ... - ... ,,, ,::, ., ,:: ,,, I .,. .,. .. . .. . . . . ,., ,. . . ~“” . . . . : .{ ”””” 3d .- -, ,50. 16 0. !7 0. .. ””” 2“’”” .,, .. :“’”” ““”’ ..,,. 4.0+ -04 .,. . .. . . . .. .. ... .. .. ‘ ““r ~ ., ~ ~~~~~~ ... .- ., ... ,’. ... + I . .,, ,,, .,, ,, ... ,’H’ &.. ----- “;:”” :,, ~.,. /. .. , 4.. .’ 4. t,.. ,. ... ,, -- .,. ,304 . . . ----. ...’ .. . 4 .. .. .. (?; “’”” !m.””’ .. r .. 14 .. . . . . , ‘. s :: . ... . : ,6... m ~ .2, :20.! H2VI & .. .,, .. ... .. t3Lw :30.! i ,W“’” .. ,a. .. t-i30q .. ,,, ,70, ,, .. .. ::” ~ .; -.. < ,,, ,,, ,%JG+iNSK+4 ISIANO -+.—- i , r r -10-I ‘Y - -—+— 7“6 ~’ !,;;;, t : ‘CENTRAL T ‘“”’~” ““ PACIFIC+=&---= -,0— .+--l‘-‘+EASTERN P,ACIFIC ~“~,; ~“=+::: .... . ., i. . . . . !,, . . . . ,.. . .-— .. .. ,’. ::’1 0“::: :: ’f”::; :::: f;:: c;l~b~rin: : ‘f: ~~ : :::: ... .... .... .,’ !+‘ : ‘::: :::” “‘:‘:;‘v Areasof Responsibility- Central and Eastern pacific Hurricane Centers :::~