JTWC Report PDF - Weather Underground

Transcription

JTWC Report PDF - Weather Underground
$, ::;
.
.
a
“
..
,.
,.
‘
# %.
.
P
MCHA
OF
‘o
PE
T-SK
. .
_
‘;
Am
,
B
P
A
.-. . -...
...
-.
-
R
,pl
...
/
0
W*
tit
@?w~”J-@.#
, ‘8-, ” ,, T=.,
.
~,J~ACIFIC
lSLA
@lIl~iRiiihm
Indian Ocean
Area
(Malay
Pacific Area
Peninsula to Africa)
AREA OF RESPONSIBILITY
- JOINT
TYPHOON
(Dateline
WARNING
to Malay
CENTER, GUAM
Peninsula)
U. S. NAVAL
JOINT
OCEANOGRAPHY
COMMAND CENTER
TYPHOON WARNING CENTER
COMNAVMARIANASBOX 17
FPO SAN FRANCISCO96630
THOBIAS R. MUR.RAY
*DEAN R. MORFORD
Captains, U,nited States Navy
COMMANDING
JOHN W. DIERCKS
*JAMES K. LAVIN
Lieutenant Colonels, United States Air Force
DIRECTOR, JOINT TYPHOON WARNING CENTER
STAFF’
LCDR James H. Bell, USN
*LCDR Carl B. Ihli, Jr., USN
CAPT Clifford R. Matsumoto, USAF
*LT Olaf M. Lubeck, USNR
CAPT John D. Shewchuk, USAF
CAPT Gerald A. Guay, USAF
LTJG George M. Dunnavan, USN
LTJG Jack E. Huntley, USNR
*LTJG William T. Curry, USN
AG1 Donald L. McGowan, USN
*TSGT Bobby L. Setliff, USAF
SSGT Charles J. Lee, USAF
SSGT William H. Taylor, USAF
AG2 Kenneth A. Kellogg, USN
SGT Konrad W. Crowdez, USAF
AG3 Victoria J. Macke, USN
AG3 Stephani A. Bubanich, USN
AG3 Winifred A. Few, USN
AG3 Carl A. Gantz, USN
SRA John W. Archambeau, USAF
*SRA Timothy J. Sowell, USAF
*AGAN Kathleen S. Minerich, USN
*AGAN Gregory M. Hardyman, USN
AGAN Sally E. Stege, USN
*AGAN Thomas E. Stockner, USN
CONTRIBUTOR:
Det 1, lWW - USAF
*MAJ John L. Thoma
CAPT David C. Danielson
CAPT John E. Oleyar
*CAPT Michael L. D‘Spain
*CAPT Mike W. Kowa
CAPT James P. Millard
CAPT Marsha A. Korose
*Transferred during 1979
-.
--
.-
-
4. Conduct an annual postanalysis of all tromical cyclones occurring
with~n the JTWC are> of responsibility and
prepare an Annual Typhoon Report for issuance
to interested agencies.
The Annual Typhoon Report is prepared
by the staff of the Joint Typhoon Warning
Center (JTWC), JTWC is a combined USAF/USN
entity operating under the command of the
U. S. Naval Oceanography Command Center,
Guam . The senior Air Force Officer assigned
is designated as Director, JTWC and is responsible to the Commanding Officer, U. S.
Naval Oceanography Command Center, Guam for
the operation of the JTWC. The senior
Naval Officer of the JTWC is designated as
the Deputy Director/Operations Officer. The
JTWC was established by CINCPACFLT message
2802082 April 1959 when directed by CINCPAC
message 2302332 April 1959. Its operation is
guided by the CINCPACINST 3140.1 (series).
5. Conduct tropical cyclone forecasting and detection research as practicable.
In the event of incapacitation of the
JTWC, the alternate (AJTWC) assumes the
responsibility for issuing warnings. The
U. S. Naval Western Oceanography Center,
Pearl Harbort Hawaii is designated as the
AJTWC . Assistance in determining tropical
cyclone reconnaissance requirements and in
obtaining reconnaissance data is provided by
Detachment 4, 1st Weather Wingr Hickam AFB,
Hawaii.
The Naval Oceanography Command Center/
Joint Typhoon Warning Center, Guam has the
responsibility to:
The meteorological services of the
United States are planning to implement the
metric system of measurement over the next
few years. Some civilian and military
agencies have started the education program
by showing the metric equivalents to current
units of measure. This Annual Typhoon
Report includes metric equivalents to most
measures.
1. Provide continuous meteorological watch of all tropical activity north
of the equator, west of the Date Line, and
east of the African coast (JTWC area of
responsibility) for potential tropical
cyclone development.
2. Provide warnings for all significant tropical cyclones in the assigned
area of responsibility.
Unless otherwise stated, all satellite
data used in this ATR are Air Force Air
Weather Service DMSP Data as acquired by
OL-C, 27cS personnel and analyzed by Det 1,
lWW personnel colocated with the JTWC at
Nimitz Hill, Guam.
3. Determine tropical cyclone
reconnaissance requirements and assign
priorities.
...
111
TABLE OF CONTENTS
CHAPTER I
page
OPERATIONAL PROCEDURX.S
1. General---------------------------------------------l
2. Data sources----------------------------------------l
3. Comunications--------------------------------------l
4. Malyses--------------------------------------------l
5. Forecast Aids---------------------------------------2
6. Forecasting Procedures------------------------------2
7. Warnings--------------------------------------------3
Prognostic Reasoning Message------------------------3
:: Significant Tropical Weather Advisory---------------3
10. Tropical Cyclone Formation Alert--------------------3
CHAPTER II
RECONNAISSANCE AND FIXES
1. *neral---------------------------------------------4
2. Reconnaissance Availability-------------------------4
3. Aircraft Reconnaissance Summary---------------------4
4. Satellite Reconnaissance Summary--------------------5
5. Radar Reconnaissance Summary------------------------6
6. Tropical Cyclone Fix Data---------------------------6
CHAPTER III
SUMMARY OF TROPICAL CYCLONES
1. Western North Pacific Tropical Cvclones------------lO
TROPICAL
CYCLONE
TY ALICE
TY BESS
TY CECIL
TS DOT
TD 05
TY ELLIS
TS FAYE
TD 08
‘ST HOPE
TS GORDON
TD 11
TY IRVING
ST JUDY
TD 14
INDIVIDUAL TROPICAL CYCLONES
TROPICAL
AUTHOR
CYCLONE
l?$2$lS
SHEWCHUK----------16
GUAY--------------18
LUBECK------------22
SHEWCHUK----------24
GUAY--------------26
DUNNAVAN----------28
DUNNAVAN----------3O
MATSUMOTO---------34
CURRY-------------36
SHEWCHUK----------4O
LUBECK------------42
GUAY--------------44
DUNNAVAN----------48
MATSUMOTO---------52
2.
TC
TC
TC
TC
17-79
18-79
22-79
23-79
TS
TY
TY
TS
TY
TS
TS
TY
ST
ST
TS
TD
TY
TS
KEN
LOLA
WAC
NANCY
OWEN
PAMELA
ROGER
SARAH
TIP
VERA
WAYNE
26
ABBY
BEN
AUTHOR
e
SHEWCHUK----------53
LUBECK------------54
GUAY--------------56
DUNNAVAN----------58
LUBECK------------6O
GuAY--------------64
MATSUMOTO---------66
HUNTLEY-----------68
DUNNAVAN----------72
MATSUMOTO---------78
LUBECK------------8O
GUAY--------------82
HUNTLEY-----------84
SHEWCHUK----------88
North Indian Ocean Tropical CyC10neS---------------90
“cuF.RY-------------92
LUBECK------------94
MATSUMOTO---------96
SHEWCHUK----------96
TC 24-79
TC 25-79
TC 26-79
SHEWCHUK----------97
HUNTLEY-----------97
SHEWCHUK----------98
CHAPTER IV
SUMMARY OF FORECAST VERIFICATION
1. Annual Forecast Verification----------------------loo
2. Comparison of Objective Techniques----------------lO5
CHAPTER V
APPLIED 1’ROPICALCYCLONE RESEARCH SUNMARY
1. JTWC Research-------------------------------------108
Establishment of the JTWC Tropical Cyclone Data
Base
NEDS/Computer Applications
Tropical Cyclone Minimum Sea-Level PressureMaximum Sustained Wind Relationship
Objective Tropical Cyclone Initial Positioning
with a Weighted Least Squares Algorithm
Equivalent Potential Temperature/Minimum SeaLevel Pressure Relationships for Forecasting
Tropical Cyclone Intensification
Basic Streamline Analysis and Tropical Cyclone
Forecasting Technique Guide
Improvement and Extension of the JTWC
Climatology
iv
2.
page
NEPF@ Research------------------------------------log
Tropical Cyclone Modeling
Tropical Cyclone Wind Distribution
Tropical Cyclone Strike Probabilities
A Statistically Derived Prediction Procedures for
Tropical Cyclone Genesis
Extreme Sea States within a Typhoon
Tropical Cyclone Origin, Movement and Intensity
Characteristics Based on Data Compositing
Techniques
Improved Upper-Level Tropical Cyclone Steering
Techniques
Airborne Expendable Bathythermograph Observations
Immediately Before and After Passage of Typhoon
Phyllis (Aug 75)
Mesoscale Effects of Topography on Tropical
Cyclone Associated Surface Winds
Typhoon Haven Studies
ANNEX A
TROPICAL CYCLONE TRACK DATA
1. Western North Pacific Cyclone Track Data----------ll2
2. North Indian Ocean Cyclone Track Data-------------l3l
ANNEX B
TROPICAL CYCLONE FIX DATA
1. Western North Pacific Cyclone Fix Data------------l35
2. North Indian Ocean Cyclone Fix Data---------------l85
APPENDIX
1.
2.
3.
DISTRIBUTION
------------------------------------------------------191
Contractions--------------------------------------l88
Definitions---------------------------------------189
References----------------------------------------l9O
v
CHAPTER
I
- OPERATIONAL
1. GENERAL
d.
Meteorological satellite data from
the Defense Meteorological Satellite Program
(DMSP) and the National Oceanic and Atmospheric Administration played a major role
in the early detection and tracking of
tropical cyclones in 1979. A discussion of
this role is presented in Chapter II.
Routine services provided by the Joint
Typhoon Warning Center (JTWC) include the
following: (1) Significant Tropical Weather
Advisories issued daily describing all tropical disturbances and their potential for
further development; (2) Tropical Cyclone
Formation Alerts issued whenever interpretation of satellite and synoptic data indicates likely formation of a significant
tropical cyclone: (3) Tropical Cyclone Warnings issued four times daily for significant
tropical cyclones; and (4) Prognostic
Reasoning messages issued twice daily for
tropical storms and typhoons in the Pacific
area.
e.
3.COMMUNICATIONS
a. JTWC currently has access to three
primary communications circuits:
(1) The Automated Digital Network
(AUTODIN) is used for dissemination of warnings and other related bulletins to Department of Defense installations. These
messages are relayed for further transmission over U. S. Navy Fleet Broadcastsr
U. S. Coast Guard CW (continuous wave morse
code) and voice communications. Inbound
message traffic for JTWC is received via
AUTODIN addressed to NAVOCEANCOMCEN GUAM.
2. DATA SOURCES
COMPUTER PRODUCTS:
The Naval Oceanography Command
Center (NAVOCEANCOMCEN) Guam provides computerized meteorological/oceanographic products
for JTWC. In addition, the standard array of
synoptic-scale computer analyses and prognostic charts are available from the Fleet
Numerical Oceanography Center (FLENUMOCEANCEN)
at Monterey, California. With the installation of the Naval Environmental Display
Stations (NEDS) during 1978, JTWC now has
very timely access to necessary FLSNUMOCEANCEN
products and is thereby able to more efficiently and effectively use this information.
b.
(2) The Air Force Automated Weather
Network (AWN) provides weather data to JTWC
through a dedicated circuit from the automated digital weather switch (ADWS) at Clark
AE, R.P. The ADWS selects and routes the
large volume of meteorological reports necessary to satisfy JTWC requirements for the
right data at the right time. Weather bulletins prepared by JTWC are inserted into the
AWN circuit by the Nimitz Hill Naval Telecommunications Center (NTCC) of the Naval
Communications Area Master Station Western
Pacific.
CONVENTIONAL DATA:
Conventional meteorological data are
defined as surface and upper-air observations
from island, ship and land stations plus
weather observations from commercial and
military aircraft (AIREPS). Conventional
data charts are prepared daily at OOOOZ and
12002 for the surface, 700 mb, and 500 mb
leve1s. A chart of upper-air data is prepared which utilizes 200 mb rawinsonde data
and AIRRPS above 29,000 ft within 6 hours of
the 00002 and 1200Z synoptic times.
c.
RADAR RECONNAISSANCE:
During 1979, as in recent years,
land radar coverage was utilized extensively
when available. Once a storm moved within
the range of a land radar site, reports were
usually received hourly. Use of radar during 1979 is discussed in Chapter II.
JTWC responds to changing requirements
of activities serviced. Therefore, contents
of routine services are subject to change
from year to year usually as a result of
deliberations at the Tropical Cyclone
Conference.
a.
SATELLITE RECONNAISSANCE:
(3) The Naval Environmental Data
Network (NEDN) provides the communications
link with the computers at FLENUMOCEANCEN.
JTWC is able to both receive environmental
data from FLENUMOCEANCEN and access the
computers directly to run various programs.
b. Besides providing forecasters with
the ability to rapidly access computer products, the NEDS has recently become the
backbone of the JTWC communications system.
AUTODIN and AWN message tapes can now be
prepared by JTWC personnel for insertion
into the AUTODIN and AWN circuits by the
?JTCC. The NEDS is also used by the TDO to
request forecast aids which are processed by
the computers at Monterey and transmitted
back to the TDO over the NEDN circuit.
AIRCRAFT RJ3CONNAISSANCE:
Aircraft weather reconnaissance data
are invaluable in the positioning of centers
of developing systems and essential for the
accurate determination of the eye/center,
maximum intensity, minimum sea-level pressure
and radius of significant winds exhibited by
tropical cyclones. Winds and pressure-height
data at the 500 and/or 400 mb level, provided
by reconnaissance aircraft while enroute to,
or returning from, fix missions, are also used
to supplement the sparse data in the tropics
and subtropics. These data are plotted on
large-scale sectional charts for each mission
flown. A comprehensive discussion of aircraft weather reconnaissance is presented in
Chapter II.
4. ANALYSES
A composite surface/gradient level
(3000 ft) manual analysis is accomplished on
the 0000Z and 1200z conventional data.
Analysis of the wind field using streamlines
is stressed for tropical and subtropical
1
regions. Analysis of the pressure field is
stressed for higher latitudes and in the
vicinity’of tropical cyclones.
6. FORECASTING
Manual analysis of the 500 mb level is
accomplished on the 0000Z and 1200Z data.
Although the analysis of the 500 mb height
field is stressed, knowledge of the wind
field to more clearly delineate steering
currents is equally important.
In the preparation of each warning,
the actual surface location (fix) of the
tropical cyclone eye/center just prior to
(within three hours of) warning time is of
prime importance. JTWC uses the Selective
Reconnaissance Program (SAP) to levy an
optimum mix of aircraft, satellite and radar
resources to obtain fix information. When
tropical cyclones are either poorly defined
or the actual surface location cannot be
determined, or when conflicting fix information is received, the “best estimate” of
the surface location is subjectively determined from the analysis of all available
data. If fix data are not available due to
reconnaissance platform malfunctions or
communication problems, synoptic data or
extrapolation from previous fixes are used.
The initial forecast (warning time) position
is then obtained by extrapolation using the
current fix and a “best track” of the
cyclone movement to date.
a.
A composite upper-tropospheric manual
analysis, utilizing rawinsonde data from
300 mb through 100 mb, wind directions extracted from $atellite data by Det 1, lWW
and AIREPS (plus or minus 6 hours) at or
above 29,000 feet is accomplished on 0000Z
and 1200Z data daily. Wind and height data
are used to arrive at a representative
analysis of tropical cyclone outflow patterns, of steering currents and of areas
that may indicate tropical cyclone intensity
change. All charts are hand plotted over
areas of tropical cyclone activity to provide all available data as soon as possible
to the TDO. These charts are augmented by
the computer-plotted charts for the final
analyses.
b.
a.
TRACK FORECASTING:
(1) The prospects for regurvature
are evaluated. This evaluation is based
primarily on present and forecast position
and amplitude of middle tropospheric midlatitude troughs from the latest 500 mb
analysis and numerical prognoses.
AIDS
CLIMATOLOGY :
Climatological publications utilized
during the 1979 typhoon season include previous JTWC Annual Typhoon Reports and climatic publications from local sources, Naval
Environmental Prediction Research Facility,
Naval Postgraduate School, Air Weather
Service, First Weather Wing and Chanute
Technical Training Center. Publications from
other Air Force and Navy activities, various
universities and foreign countries are also
used by the JTWC.
b.
INITIALIZATION:
M initial forecast track is developed based on the previous forecast and the
objective techniques. This initial track
is subjectively modified based on the following:
Additional sectional charts at intermediate synoptic times and auxiliary charts
such as checkerboard diagrams and pressure:
change charts are also analyzed during
periods of significant tropical cyclone
activity.
5. FORECAST
PROCEDURES
(2) Determination of steering level
is partly influenced by maturity and vertical extent of the system. For mature
cyclones located south of the 500 mb subtropical ridge, forecast changes in speed of
movement are closely correlated with forecast
changes in the intensity of the ridge. When
steering currents are very weak, the tendency for cyclones to move northward due to
their internal forces is an important consideration.
OBJECTIVE TECHNIQUES:
The following objective techniques
were employed in tropical cyclone forecasting
during 1979. A description of these techniques is presented in Chapter IV.
(3) The proximity of the tropical
cyclone to other tropical cyclones is
evaluated to determine if there is a possibility of Fujiwhara interaction.
(1) TYFN75 (Analog)
(4) Over the 12- to 72-hr forecast
spectrum, speed of movement during the early
time frame is biased toward persistence
(12-hr extrapolation) while that near the
end of the time frame is biased towards
objective techniques and climatology.
(2) MOHATT (Steering)
(3) 12 HR EXTRAPOLATION
(4) CLIMATOLOGY
(5) A final check is made against
climatology to determine the likelihood of
the forecast track. If the forecast deviates greatly from climatology, the forecast
rationale is reappraised and the track adjusted as necessary.
(5) HPAC (Combined extrapolation and
climatology)
(6) TROPICAL CYCLONE MODEL (Dynamic)
(7) INJAH74 (Analog)
(8) CYCLOPS (Steering)
(9) TYAN78 (Analog)
2
-..
...
-.
c.
INTENSITY FORECASTING:
analysis “best track” positions. A summary
of the verification results for 1979 is
presented in Chapter Iv.
In forecasting intensity, heavy
reliance is placed on aircraft reconnaissance reports, the Dvorak satellite interpretation model, wind and pressure data from
ships and land stations in the vicinity of
the cyclone, and the objective techniques.
Additional considerations are the position
and intensity of the tropical upper-tropospheric trough (TUTT), extent and intensitY
of upper-level outflow, sea-surface temperature, terrain influences, speed of movement
and proximity to an extratropical environment.
8. PROGNOSTIC
REASONING
MESSAGE
In the Pacific Area, prognostic reasoning
messages are transmitted based on the 00002
and 12002 warnings or whenever the previous
reasoning is no longer valid. This plain
language message is intended to provide users
with the reasoning behind the latest JTWC
forecast. Prognostic reasoning messages are
not prepared for tropical depressions nor
for cyclones in the Indian Ocean area.
7. WARNINGS
For the 1979 season, JTWC included confidence statements for the 24 and 48-hour
forecasts. The confidence values were percentage probabilities that the 24-hour forecast position error would be less than 100 nm
and less than 150 nm, respectively, and that
the 48-hour error would be less than 200 nm
and less than 300 nm, respectively. These
probabilities were based on objective data
from error analysis studies of past cyclones
and were a function of latitude, longitude,
storm intensity, organization and the number
of western Pacific storms in existence.
Tropical cyclone warnings are issued when
a definite closed circulation is evident and
maximum sustained wind speeds are forecast to
increase to 34 or more knots within 48 hours,
or the cyclone is in such a position that
life or property may be endangered within 72
hours. Warnings are also issued in other
situations if it is determined that there is
a need to alert military and civil interests
to conditions which may become hazardous in
a short period of time. Each tropical
cyclone warning is numbered sequentially and
includes the initial warning time, eye/center
position, intensity, the radial extent of 30,
50 and 100 knot surface winds (when applicable), the levied reconnaissance platform
used, the instantaneous speed and direction
of movement of the cyclone’s surface center
at warning time and the forecast information.
The forecast intervals for all tropical
cyclones, regardless of intensity, are 12-,
24-, 48- and 72-hr. Warnings within the
JTWC Pacific area are issued within two hours
of 00002, 06002, 12002 and 18002 with the
constraint that two consecutive warnings may
not be more than seven hours apart. Warnings
in the JTWC Indian Ocean area are issued
within two hours of 02002, 08002, 14002 and
20002 with the constraint that two consecutive warnings may not be more than seven
hours apart. These variable warning times
allow for maximum use of all available
reconnaissance platforms and more effectively
distribute the workload in multiple cyclone
situations. If warnings are discontinued and
a cyclone reintensifies, warnings are
numbered consecutively from the last warning
issued. Warning forecast positions are
verified against the corresponding post-
Prognostic reasoning information applicable to all customers is provided in the
remarks section of warnings when significant
forecast changes are made or when deemed
appropriate by the TDO.
9.SIGNIFICANT
TROPICAL
WEATHER
ADVISORY
This plain language message, summarizing
significant weather in the entire JTWC area
of responsibility, is issued by 06002 daily.
It contains a detailed, non-technical description of all significant tropical disturbances and the JTWC evaluation of potential
for significant tropical cyclone development
within the 24-hour forecast period.
10. TROPICAL
CYCLONE
FORMATION
ALERT
Alerts are issued whenever interpretation of satellite and other meteorological
data indicates significant tropical cyclone
formation is likely. These alerts will
specify a valid period not to exceed 24 hours
and must either be cancelled, reissued or
superseded 6Y a warning prior to expiration
of the valid period.
3
RECONNAISSANCE
1. GENERAL
(ARWO) and dropsonde operators of Detachment
4, IiqAWS who flew with the 54th. These data
provide @e Typhoon Duty Officer (TDO) indications of changing cyclone characteristics,
radius of cyclone associated winds, and
present cyclone position and intensity.
Another important aspect of this data is its
availability for research in tropical cyclone
analysis and forecasting. Aircraft reconnaissance will become even more important in
years to come when high-resolution tropical
cyclone dynamic steering programs will require a dense input of wind and temperature
data.
The Joint Typhoon Warning Center depends
on reconnaissance to provide necessary,
accurate and timely meteorological information in support of each warning. JTWC
relies primarily on three sources of reconnaissance: aircraft, satellite and radar.
Optimum utilization of all available reconnaissance resources is obtained through use
of the Selective Reconnaissance Program (SRP)
whereby various factors are considered in
selecting a specific reconnaissance platform
for each warning. These factors include:
cyclone location and intensity, reconnaissance platform capabilities and limitations,
and the cyclone’s threat to life/property
afloat and ashore. A summary of reconnaissance fixes received during 1979 is included
in Section 6.
2.
RECONNAISSANCE
a.
AND FIXES
b.
Satellite
Satellite fixes from USAF ground
sites and USN ships provide day and night
coverage in the JTWC area of responsibility.
Interpretation of this satellite imagery provides cyclone positions and estimates of
storm intensities through the Dvorak technique (for daytime passes) .
AVAILABILITY
Aircraft:
Detachment 1, 1st Weather Wing,
which receives and processes DMSP data, is
the primary fix site for the northwestern
Pacific. DMSP fix positions received
at JTWC from the Air Force Global Weather
Central (AFGWC), Offutt Air Force Base,
Nebraska were the major source of satellite
data for the Indian Ocean. GOES fixes were
also provided by the National Environmental
Satellite Service, Honolulu, Hawaii for
tropical cyclones near the dateline.
Aircraft weather reconnaissance is
performed in the JTWC area of responsibility
by the 54th Weather Reconnaissance Squadron
(54 WRs). The squadron, presently equipped
with six WC-130 aircraft, is located at
Andersen Air Force Base, Guam. From July
through October, augmentation by the 53rd
WRS at Keesler Air Force Base, Mississippi
brings the total number of available aircraft
to nine. The JTWC reconnaissance requirements are provided daily throughout the year
to the Tropical Cyclone Aircraft Reconnaissance Coordinator (TCARC). These requirements include area(s) to be investigated,
tropical cyclone(s) to be fixed, fix times
and forecast positions of fixes. The following priorities are utilized in acquiring
meteorological data from aircraft, satellite
and land-based radar in accordance with
CINCPACINST 3140.lN:
c.
Radar
Land radar provides positioning data
on well developed cyclones when in proximity
(usually within 175 nm of the radar site) of
the Republic of the Philippines, Taiwan,
Hong Kong, Japan, the Republic of Korea,
Kwajalein, and Guam.
d.
“(l) Investigative flights and vortex or center fixes for each scheduled warning in the Pacific area of responsibility.
One aircraft fix per day of each cyclone of
tropical storm or typhoon intensity is
desirable.
Synoptic
In 1979, the JTWC also determined
tropical cyclone positions based on the
analysis of the surface/gradient level
synoptic data. These positions were helpful
in situations where the vertical structure
of the tropical cyclone was weak or accurate
surface positions from aircraft were not
available due to flight restrictions.
(2) Center or vortex fixes for each
scheduled warning of tropical cyclones in the
Indian Ocean Area of responsibility.
(3) Supplementary fixes.
3.
(4) Synoptic data acquisition.”
During the 1979 tropical season, the
JTWC levied 289 six-hourly vortex fixes and
52 investigative missions. In addition to
the levied vortex fixes, 150 supplemental
fixes were also obtained. The number of
levied investigative missions has increased
steadily over the past four years in
response to JTWC’S increased efforts to
detect initial tropical cyclone development.
As in previous years, aircraft reconnaissance provided direct measurements of
height, temperature, flight-level winds, sea
level pressure, estimated surface winds (when
observable) and numerous additional Parameters. The meteorologiekl data are gathered
by the Aerial Reconnaissance Weather Officers
AIRCRAFT
RECONNAISSANCE
sUMMARY
4
.
the spacecraft and laker downlinked to AFGwC
via command/readout sites and communications
satellites. With their coverage, AFGWC is
able to fix a storm anywhere within the JTWC
area of responsibility. As the only site in
the network that receives coverage over the
entire Indian Ocean, AFGWC has the primary
responsibility for satellite reconnaissance
in this area as well as a small portion of
the central Pacific near the dateline. On
occasion, AFGWC is tasked to provide storm
positions in the western Pacific as backup
to the tactical sites.
Of 1979’s 2a tropical cyclones, investigative missions were not flown on four. The
average vector error for all aircraft fixes
received at the JTWC during 1979 was 13.0 nm
(~4#1 ~).
Reconnaissance effectiveness is summarized in Table 2-1 usinq the criteria as set
forth in CINCPACINST 311O.1N.
rABLE 2-1.
AIRCRAFT RECONNAISSANCE EFFECTIVENESS
EFFECTIVENESS
NUMBER OF
LEVIED FIXES
PERCENT
258
2
89.3
D.7
:OMPLETED ON TIME
ZARLY
-ATE
USSED
1:
-&f
100.0
m
TOTAL
The thread that ties the network
together is Det 1, lWW colocated with JTWC
atop Nimitz Hill, Guam. Based on available
satellite coverage, Det 1 coordinates satellite reconnaissance requirements with JTWC
and tasks the individual DMSP sites to
provide the necessary storm fixes. The
tasking concept is to fix every storm or
tropical disturbance (alert area) once from
each satellite pass over the area of the
storm. When a satellite position is required
as the basis for a warning (levy), a dualsite tasking concept is applied. Under this
concept, two sites are tasked to fix the
storm off the same satellite pass. This
provides the necessary redundancy to virtually guarantee JTWC a successful satellite
fix of the storm. Using the dual-site
tasking concept, the satellite reconnaissance
network was able to meet 98 percent of JTWC’S
satellite fix requirements. Dual-site tasking is not available over the Indian Ocean
since only AFGWC receives the satellite
coverage for most of that area.
LEVIED VS. MISSED FIXES
LEVIED
!VERAGE 1965-1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
4.
SATELLITE
507
802
624
227
358
217
317
203
290
289
RECONNAISSANCE
MISSED
PERCENT
10
2.0
1::
2::;
:;
1;
ii
3.2
3.5
;
14
H
4.8
The network provides JTWC with several
products and services. The main service ,is
one of surveillance. With the exception of
Osan, each site reviews its daily coverage
for any indications of development. If en
area shows indications of development, JTWC
is notified. Once JTWC issues either an
alert or warning, the network is tasked to
provide three products: storm positions,
storm intensity estimates, and 24-hour storm
intensity forecasts. Satellite storm positions are assigned position code numbers
(PCN) depending on the availability of
geography for precise gridding and the degree
of organization of the storm’s circulation
center (Table 2-2). During 1979, the network
provided JTWC with 1970 satellite fixes of
tropical cyclones in warning status. A
comparison of those fixes made on numbered
tropical cyclones with their corresponding
JTWC best track positions is shown in Table
SUMMARY
The Air Force provides satellite reconnaissance support to JTWC using imagery data
from DMSP polar orbiting spacecraft. Data
from similar NOAA spacecraft (TIROS-N/NOAA-6)
were not available to the tactical sites of
the network but could be processed on a
backup basis by the Air Force Global Weather
Central (AFGWC).
The DMSP network consists of both tactical and centralized facilities. Tactical
DMSP sites are located at Nimitz Hill, Guam;
Clark AB, Philippines; Kadena AB, Japan;
Osan AB, Korea; and Hickam AFB, Hawaii.
These sites provide a combined coverage that
blankets the JTWC area of responsibility in
the western Pacific from near the dateline
westward to the Malay Peninsula.
TABLE 2-2.
PCN
—
The centralized member of the DMSP
network is the Air Force Global Weather
Central located at Offutt AFB, Nebraska.
AFGWC receives worldwide satellite imagery
coverage four times daily from two DMSP
spacecraft. In addition, AFGWC has the
capability to process either TIROS-N or
NOAA-6 should one of the primary DMSP spacecraft fail. Imagery taken over the JTWC
area of responsibility is recorded on board
1
2
3
4
5
6
POSITION CODE NUMBERS
METHOD OF CENTER DETERMINATION/GRIDDING
EYE/GEOGRAPHY
EYE/EPHEMERIS
WELL DEFINED CC/GEOGRAPHY
WELL DEFINED CC/EPHENERIS
POORLY DEFINED CC/GEOGRAPHY
POORLY DEFINED CC/EPHEMERIS
CC=Circulation Center
5
TABLE 2-3. MEAN DEVIATIONS (NN) OF DNSP DERIVED TROPICAL
CYCLONE POSITIONS FROM JTWC BEST T~CK POSITIONS.
NUMBER OF CASES SHOWN IN PARENTHESIS.
PCN
WESTPAC
1974-1978 AVERAGE
(ALL SITES)
WESTPAC
1979
(ALL SITES)
:
3
4
5
6
13.3
18.5
21.2
25.6
37.1
47.2
(178)
( 68)
(270)
(101)
(368)
(190)
14.4
17.9
18.6
20.5
37.8
43.3
l&2
3&4
5&6
14.8
22.0
40.6
(246)
(371)
(558)
15.0 (329)
18.9 (411)
39.4 (837)
13.5
23.1
23.4
18.0
34.1
42.2
( 7)
( 7)
(16)
( 8)
(22)
(66)
18.3 (14)
21.6 (24)
40.2 (88)
Of the 16 tropical cyclones which were
monitored with land radar, 11 were typhoons:
Alice, Cecil, Ellis, Hope, Irving, Judy, Mac,
Owen, Sarah, Tip and Vera. These 11 typhoons
accounted for 89% of all radar fixes received for this season. Excellent support
through timely and accurate radar fix positioning allowed JTWC to track and forecast
tropical cyclone movement through even the
most difficult and erratic tracks.
The availability of satellite data varied
during the year. At the start, the network
had access to three DMSP spacecraft: F-1
(late-morning), F-2 (mid-morning), and F-3
(sunrise). In June, a fourth DNSP spacecraft, F-4, was launched into a late morning
orbit. The network had access to these four
spacecraft until mid-September when F-1
failed. Three months later, in early
December, F-3 failed reducing the active
DMSP fleet to only two spacecraft with
similar mid- to late-morning coverages. The
network was able to partially compensate for
this loss by depending on AFGWC to provide
fixes for the entire network based on its
unique ability to process TIROS-N as a
replacement for F-3. Therefore, the 1979
season ended with available satellite
coverage at its lowest point for the entire
year.
The 54 WRS made four radar center fixes
from their WC-130 aircraft when actual
penetration was restricted. One ship radar
center fix was received on Typhoon Bess.
No radar fixes were received on Indian Ocean
tropical cyclones.
6.
TROPICAL
CYCLONE
FIX
DATA
A total of 3318 fixes on 28 northwest
Pacific tropical cylones and 166 fixes on
7 northern Indian Ocean tropical cyclones
were received at JTWC. Table 2-4, Fix Platform Summary, delineates the number of fixes
per platform for each individual tropical
cyclone. Season totals and percentages are
also indicated.
Besides the network provided fixes, JTWC
also receives satellite-derived storm
positions from several secondary sources.
These include: U.S. Navy ships equipped for
satellite direct readout; the National
Environmental Satellite Service using NOAA
and GOES data; and the Naval Polar Oceanography Center, Suitland, Maryland using
stored DUSP and NOAA data. Fixes from these
secondary sources are not included in the
network statistics.
RADAR RECONNAISSANCE
(268)
( 61)
(341)
( 70)
(605)
(232)
This year, 1139 radar fixes were coded in
this manner; 25% were good, 29% fair and 46%
poor. Compared to the JTWC best track, the
mean vector deviation for land radar sites
was 15 nm (28 km).
2-3. Estimates of the storm’s current and
24-hour forecast intensity are made once each
day by applying the Dvorak technique (NOAA
Technical Memorandum NESS 45 as revised) to
daylight visual data. Satellite derived
storm positions, intensity estimates, and
forecasts constitute the satellite portion
of the JTWC forecast data base.
5.
INDIAN OCEAN
1979
(ALL SITES)
Annex B lists individual fixes sequentially for each tropical cyclone. Fix data
is divided into four categories: Satellite,
Aircraft, Radar and Synoptic. Those fixes
labeled with an asterisk (*) were determined
to be unrepresentative of the surface center
and were not used in determining the best
tracks. Within each category, the first
three columns are as follows:
SUMMARY
Sixteen of the 28 significant tropical
cyclones occurring over the western North
Pacific during 1979 passed within range of
land based radars with sufficient cloud
pattern organization to be fixed. The
hourly and oftentimes, half-hourly land
radar fixes that were obtained and transmitted to JTWC totaled 1143.
FIX NO. - Sequential fix number
TIME
minutes
(Z)
- GMT time in day, hours and
FIX POSITION - Latitude and longitude to
the nearest tenth of a degree
The WMO radar code defines three categories of accuracy: good (within 10 km
(5.4 rim)),fair (within 10-30 km (5.4-16.2
rim))and poor (within 30-50 km (16.2-27 run)),
Depending upon the category, the remainder
of the format varies as follows:
6
.
.
TABLE 2-4.
FIX SUMMARY
FOR
1979
FIX SUVMARY
—AIRCRAFT
DMSP
—_
TIROS-N
GOES3
._
RADAR
SYNOPTIC
TOTAL
_
WESTERN PACIFIC
43
TY ALICE
5
42
170
1*
TY BESS
:;
TY CECIL
;;
51
87
1:;
TS DOT
7
i
93
;:
TD 05
::
2
33
TY ELLIS
1;
14
66
7
99
14
TS FAYE
48
67
29
?
TO 08
2;
ST HOPE
4i
1
1::
25
;:
8
TS GORtX)N
73
;
41
TD 11
2:
148**
1;
297
TY IRVING
26
140
177
i
345
ST JUDY
3
2
23
28
TD 14
5
41
73
TS KEN
119
63
80
TY LOLA
5;**
:
86
;:
TY MAC
155
33
15
TS NANCY
3;
312
8
4:;
TY OWEN
87
14
TS PAMELA
9
:
TS ROGER
ii
i
13
13
4
1::
TY SARAH
59
ST TIP
109
267
99
60,H
ST VERA
14
54
;
137
11
TS WAYNE
44
1
56
2
TD 26
40
TY ABBY
:;
;
;
11:
4
2
;
TS BEN
20
33””
---------------------- ---.--------------- ----------------------------------------------------------------------TOTAL
437
% OF TOTAL
NO. OF FIXES
1643
13.1
49.5
DMSP
——
5
9
.3
1146
.2
34.6
78
2.3
SYNOPTIC
—
TIROS-N
3318
100
TOTAL
—
INDIAN OCEAN
33
28
5
TC 17-79
25
i
4
TC 18-79
16
12
TC 22-79
2
8
2
37
TC 23-79
6
1
3
22
TC 24-79
;:
TC 25-79
TC .26-79
;:
;:
--------------------------------------------- -----------------------------------------------------------------TOTAL
138
20
8
166
83
13
4
100
% OF TOTAL
NO. OF FIXES
*
**
***
SHIP RADAR FIX
INCLUDES TWO ACFT RAOAR FIXES
INCLUDES ONE ACFT RADAR FIX
7
..
.
.
a.
[2) 700 MB HGT - Minimum heiqht of
the 700 mb pressure surface within th~ vor$ex
recorded in meters.
Satellite
[1) ACCRY - Position Code Number
(PCN) (see Sec. 5) or Confidence (CONF) number (see table 2-5) is listed depending on
method used to determine the fix position.
;ABLE 2-5.
(3) OBS MSLP - If the surface center
can be visually detected (e.g., in the eye),
the minimum sea level pressure is obtained
by a dropsonde released above the surface
vortex center. If the fix is made at the
1500-foot level, the sea level pressure is
extrapolated from that level.
confidence (CONF) NuM6ERs AS A FUNCTION
OF DVORAKT NUMBER AND RADIUS OF 90%
PROBABILITY AREA (NM).
rROPICAL CYCLONE
INTENSITY
!QmQ!m&l
60
60
60
50
T1.5
T2. O
T2.5
T3.O
T3.5
T4.O
T4.5
T5.O
T5.5
T6.O
T6.5
T7.O
T7.5
T8.O
22
45
40
40
::
30
(4) MAX-SFC-WND - The maximum Surface wind (knots) is an estimate made by the
ARWO based on sea state. This observation
is limited to the region of the flight path,
and may not be representative of the entire
cyclone. Availability of data is also dependent upon the absence of undercast conditions and the presence of adequate illumination. The positions of the maximum flight
level wind and the maximum observed surface
wind do not necessarily coincide.
Q!!!x
120
120
120
100
90
90
90
90
80
80
70
70
60
170
170
170
150
140
140
140
130
130
130
120
120
100
(5) NAX-FLT-LVL-WND - Wind speed
(knots) at flight level is measured by the
AN/APN 147 doppler radar system aboard the
WC-130 aircraft. Values entered in this
category represent the maximum wind measured
prior to obtaining a scheduled fix. This
measurement may not represent the maximum
flight level wind associated with the tropical cyclone because the aircraft only samples those portions of the tropical cyclone
along the flight path. In many instances
the flight path may be through the weak
sector of the cyclone. In areas of heavy
rainfall, the doppler radar may track energy
reflected from precipitation rather than
from the sea surface; thus preventing accurate wind speed measurement. In obvious
cases, such erroneous wind data will not be
reported. In addition, the doppler radar
system on the WC-130 restricts wind measurements to drift angles less than or equal to
27 degrees if the wind is normal to the
aircraft heading.
%
-
(2)
DVORAK CODE - Intensity evalua.—,—.
Lion and trend utilizing DMSP visuai satellite data. (For specifics refer to NOAA TM;
NESS-45)
L.
(6) ACCRY - Fix position accuracy.
Both navigational (OMEGA and LORAN) and
meteorological (by the ARWO) estimates are
given in nautical miles.
(7) EYE SHAPE - Geometrical representation of the eye based on the aircraft
radar presentation. Reported only if center
is 50% or more surrounded by wall cloud.
EXAMPLE:
T5/6MlNUS/wl.5/24hrs.
(8) EYE DIAM/ORIENTATION - Diameter
of the eve in nautical miles. In case of an
elliptic~l eye, the lengths of the maior and
minor axes and the orientation of the-major
axis are respectively listed.
(3) SAT - Specific satellite used
for fix position (DMSP 35, 36, 37 or 39,
TIROS-N or Geostationary Operational Environmental Satellite (GOES, 135W)).
c.
(4) COMMENTS - For explanation of
abbreviations see Appendix.
(1) RADAR - Specific type of platform utilized for fix (land radar site,
aircraft or ship).
(5) SITE - ICAO call sign of the
specific satellite tracking station.
b.
Radar
(2) ACCRY - Accuracy of fix position
(good, fair or poor) as given in the WMO
ground radar weather observation code (FM20-
Aircraft
V) .
(1) FLT LVL - The constant pressure
surface level, in mb, maintained during the
penetration. 700 mb is the normal level
flown in developed cyclones due to turbulence
factors with low-level missions flown at
1500
(3) EYE SHAPE - Geometrical representation of the eye given in plain language
(circular, elliptical, etc.).
ft.
8
.-
..
-.
(7) SITE - WMO station number of the
specific tracking station.
(4) EYE DIAN - Diameter of eye given
in nautical miles.
d.
(5) RADOB CODE - Taken directly from
WMO ground weather radar observation code
FM20-V. First group specifies the vortex
parameters, while the second group describes
the movement of the vortex center.
Synoptic
(1) INTENSITY ESTINATE - TDO’S analysis of low-level synoptic data to determine
a cyclone’s maximum sustained surface wind
(knots).
(6) pJfjAR
pOSITIoN . Latitude and
longitude of tracking station given in
tenths of a degree.
(2) NEAREST DATA - Accuracy of fix
based on distance (nautical miles) from the
fix position to the nearest synoptic report
or to the average distance of reports in data
sparse cases.
9
OF TROPICAL
SUMMARY
CHAPTERIII
1. WESTERN
NORTH PACIFIC TROPICAL
CYCLONES
CYCLONES
oped to typhoon (TY) stage, only 4 reached
the 130 kt (67 m/see) intensity necessary to
be classified as a super typhoon (ST). This
season, beginning with Typhoon Bess, tropical
cyclones attaining tropical storm strength
or greater were assigned names on an alternating male/female basis. This change was a
result of the 1979 Tropical Cyclone
Conference, and the list of names can be
found in CINCPACINST 3140.lN CH-1. A similar but different series of cyclone names is
used for eastern North Pacific and North
Atlantic cyclones. Each tropical cyclone’s
During 1979, the western North Pacific
experienced a below normal year of tropical
cyclone activity with a total of 28 cyclones
[Table 3-1). By comparison, 1978 was a near
normal year with 32 cyclones and 1977 was a
near record low year with a total of 21
cyclones. Five significant tropical cyclones
never developed beyond tropical depression
(TD) sta9e, and nine developed into troPical
storms (TS). Of the 14 cyclones that devel-
WESTERN NORTH PACIFIC
TABLE 3-1.
1979 SIGNIFICANT TROPICAL CYCLONES
—CYCLONE
—TYPE
06
07
08
09
;:
12
13
14
25
26
27
28
TD
TS
TY
TY
TS
TV
TS
TS
TY
::
TS
TD
TV
TS
NAME
ALICE
BESS
CECIL
DOT
TD-05
ELLIS
FAYE
TD-OB
HOPE
GORDON
TD-11
IRVING
JUDY
TO-14
KEN
LOLA
MAc
NANCY
OWEN
PAMELA
ROGER
SARAH
TIP
VERA
WAYNE
TO-26
ABBY
BEN
PERIOD
OF WARNING
01
20
11
10
23
01
01
24
27
26
03
09
16
18
01
02
15
19
22
25
03
04
05
02
08
01
01
21
JAN-14
MAR-25
APR-20
MAY-16
MAY-24
JUL-06
JUL-06
JUL-25
JUL-03
JUL-29
AUG-06
AUG-18
AUG-26
AUG-20
SEP-04
SEP-08
SEP-24
SEP-22
SEP-01
SEP-26
OCT-07
OCT-15
OCT-19
NOV-07
NOV-13
DEC-02
DEC-14
DEC-23
JAN
MAR
APR
MAY
MAY
JUL
JUL
JUL
AUG
JUL
AUG
AUG
AUG
AUG
SEP
SEP
SEP
SEP
OCT
SEP
OCT
OCT
OCT
NOV
NOV
DEC
DEC
DEC
1979 TOTALS
MAX
SFC
WIND
MIN
OBS
—SLP
NUMBER
OF
WARNINGS
;
6
6
:;
85
40
930
958
965
984
998
955
998
1004
898
980
997
954
887
1006
985
950
984
993
918
1002
985
929
870
915
990
998
951
990
51
1:
110
90
80
CALENDAR
DAYS OF
WARNING
14
1:
4
1%
;:
1:
11
3
5
1%
20
60
90
1;
;
12
16
6
6
i:
110
45
45
110
165
140
50
1:
3
1?;
60
1:
149*
::
24
2!
20
3:
;:
3B
39
9
x
35
14
37
1:
43
60
23
22
5:
10
DISTANCE
TRAVELLED
2597
1804
2535
2876
2170
1612
1837
1264
3928
1058
1088
2732
2502
605
1418
129B
1831
528
2151
984
1920
1194
3972
1868
1559
1070
4044
2245
695
*OVERLAPPING DAYS INCLUDED ONLY ONCE IN SUM.
..
--
-
Table 3-2 provides further information
on the monthly distribution of tropical
cyclones and statistics on Tropical Cyclone
Formation Alerts and Warnings. Even though
there were 4 fewer cvclones this season
compared to last sea~on, there were 18 more
warning days.
maximum sUrfaCe wind (MAX SFC WwD), in knots,
and minimum observed sea-level pressure {MIN
OBS SLP), in millibars, were obtained from
best estimates of all available data. The
distance travelled,in nautical miles, was
calculated from th”eJTWC official best
track (see Annex A).
TABLE 3-2.
1979 SIGNIFICANT TROPICAL CYCLONE STATISTICS
WESTERN
NORTH PACIFIC
(199i::)
JAN
FEB
TROPICAL
OPPRESSIONS
0000101
TROPICAL STOFMS
O
0
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
OEC
TOTAL
20001
0
0
1
0
2
0
4
1
1
1
5
4.8
10
10.0
18.0
32.8
TYPHOONS
1011002
22211
13
ALL CYCLONES
1011205
46323
28
(1959-78) AVERAGE
0.6
FORMATION ALERTS
23 of the 27 (85%) Formation Alert Events developed into tropical cyclones.
0.4
0.6
0.9
1.4
2.1
5.2
6*B
6.0
4.8
2.7
1.3
5 of the 28 (18%) tropical cyclones did not have a Formation Alert.
WARNINGS
Number of warning days:
149
Number of warning days with 2 cyclones:
38
Number of warning days with 3 or more cyclones:
.
11
5
32.8
.,.
-..
–+ :
..-
.
.
..,.-
-,,
-,.
.
+--+-
-+--t
.,.
.
.
.,.
.-.,
..-
-..
..
.
Y4P.
.
- -.,
-
-----
-.
MAJUR(
-—+-*
--t--
,
+--..1---{---+
,..
”’”-
,.
.
.-
.
i
<:
I
?’””
.
t
t
L
,..
11,
5++
.x
2,.
.=O.
.
1
“wit
--vpwf?h
z.
.i.
.
k-++--+-++”&4--+4+4
T-u
j-t--+-+--++.+
I
.
$&J
+- ‘i,—
/-’-+
1
+“.
---t-–
I–
:;(
+
‘\
‘X::w::
.’
.
..+
A“’+-+--+4
+.
G
.
.
++--++
13
105°
1Iv
115”
120”
125°
lW
135-
14’$
i45~
150”
155”
, .-,.---
-—,——-165” -
.-T
-
-.
175.
--r-.—.
-.-?.
-
~
-i“1:
:~
‘
j
1--1 !
170”
160”
1
I
--la%
4---+
-+ t- -4-
t
“1[
+--,
,
1,
T
I -+
I
+-!----
--4-
t- -+---r , -k --+-G t-
+-+
J.
WESTERN
NORTH PACIFIC
TYPHOONS
+- i -1-k
–i–-+
,i
1979
+4-I --*
“’hiti?tf
“IfJr
I
r
f
+
--t-- l---t
-4-II
1
--1--4
‘IL
--+-+---
.+.. .+
..++.*
+
10
t
1“s
Km
, ., .+.. ,—
I
1m-
11~~:
+–-++
“w-r[’+7=%+=-=-
-P----+--
WI–I
--
+--!-
+ -+--
!
-+—F 4-{
-- -+-+
4.””,
+
-l.-l{ l-h-L
, ... ., ...
.&+.
.. .
.1.-
–t
–,
:
i
1-
:1
~
‘D”
H
-+-i
--l-+
.4
T
+J-+
I
~-’
@
.—+t-
++
..’
~
.
*
I
)
:
~
.-,--+.,
4--+++—++—+— #+.-!@.,+.+
,’
..%..
~li{
\...,_,..,.. t.. ..++.++
h.-%
- --k...
155
lGO$
_++.+
;,
--+—+
+
“.:
~
.L.4–i._., ... .. . _.. ....
165°
170~
___
175*
/.
1’+
1 ..”
1
I
,,
!l:f!
t
!
,,
I
I
]’jd:
+
I
+=++-”’k”+’’””7.
1-?
t
,.
I
T,
~”;’”
15
T,
“—r7————
TYPHOON ALICE
Typhoon Alice, the first tropical cyclone
first
of the 1979 season, was actually
sighted as a tropical disturbance on the 27th
of December 1978. Being over the Gilbert
Islands quite close to the equator, the potential for development was considered poor.
A tropical cyclone formation alert was issued
at 03002 1 January 1979 when satellite data
showed the disturbance progressively increasing in organization. Soon after, the suspect
area accelerated northwest to higher latitudes where development conditions were more
favorable, and by 0118002, tropical storm
Alice was named. Post-analysis showed that
the tropical depression stage began near
O1OOOOZ at low latitudes, contrary to the
general rule that cyclones do not form close
to the equator.
Although a climatologically unfavored
period for western North Pacific tropical
cyclone development, the fact that Alice did
form supports the non-existence of a definitive “typhoon season” for WESTPAC; tropical
cyclones are possible anytime of the year.
The greatest forecasting difficulties and
concomitant large forecast errors occurred
during Alice’s formative and dissipating
stages. Double intensification also contributed to Alice’s notoriety.
Early in her lifetime, Alice meandered
through the Marshall Islands as if determined
to visit each island. One week later, on 12
January 1979, President Carter declared the
Narshall Islands a major disaster area.
A satellite reconnaissance fix at
0221332 showed Alice had moved northeastward
when forecast to continue northwestward.
Being a fix on a poorly defined satellite
verbatim;
image (PCN 6), it was not taken
continued to be forecast.
northwest
movement
An aircraft reconnaissance fix at 0300532
confirmed the earlier satellite fix as did a
follow-on O3O31OZ aircraft fix. Postanalysis revealed that a mid-latitude, shortwave trough passed north of Alice during
this time period. The trough extended deep
enough into the tropics to weaken the midtropospheric ridge. This weakness permitted
a southward intrusion of mid-latitude westerlies into Alice’s vicinity, temporarily
steering her northeastward. As the shortwave trough continued eastward, the subtropical ridge quickly reestablished itself
north of Alice producing strong easterly
steering flow, temporarily accelerating her
from 4 to 10 kt (8 to 19 km/hr) toward the
northwest when continued northeast movement
was forecast. During this time, decision
makers on Enewetak (also within the Marshall
Islands), noting the low forecast confidence
stated on prognostic reasoning messages, kept
a condition of readiness which paid off.
(01)
tic data and satellite imagery (Fig. 3-01-1)
indicated that an approaching frontal shearline was the responsible agent. The shearline began interacting with Alice while she
was southeast of Guam. As Alice neared Guam,
radar data from Andersen AFB and aircraft
data indicated that Alice’s previously welldefined wall cloud became larger and somewhat
less organized. Cooler, drier air north of
the shear-line was likely responsible for
this weakening trend. A weakness in the subtropical ridge vertically above the shearline apparently allowed for Alice’s northward
deviation.
The most unusual portion of Alice’s track
occurred during the final 3 days of Alicels
life. Based on interpretation of PE progs,
the subtropical ridge was expected to persist
and maintain Alice in the easterlies. As a
result, the JTWC forecasts (supported by the
majority of objective forecast aids) indicated westward movement until 1200002, 18 hours
after Alice had actually begun tracking
northwestward. The subtropical ridge weakened in response to a long-wave trough deepening over eastern Asia. Easterly steering
currents in Alice’s vicinity diminished and
veered in direction, permitting a more northward track. Alice reached a secondary intensity maximum of 100 kt (51 m/see)
during
this period due to her slowing in speed of
movement, the increased absolute vorticity
of higher latitudes and good outflow aloft.
By the 13th, Alice turned northeastward
and began weakening rapidly. The subtropical
ridge was now completely severed and upperair westerlies were shearing Alice significantly in the vertical. Close proximity of
yet another frontal shear-line contributed
to further weakening. The biggest surprise,
however, came when Alice’s low-level circulation turned almost 180 degrees back toward
the west at about 1312002 under the influence
of strong, low-level easterlies and weakened
rapidly in the strong, vertical-shear environment
t. As a result of vertical decoupling,
Alice as a shallow depression, dissipated
during the following 12-hour period.
From the 6th to the llth, Alice traveled
due west. On the 8th, Alice attained 110 kt
(57m/see) intensity and simultaneously accelerated to a speed of 14 kt (26 km/hr) (the
fastest observed along track), whereupon she
began weakening slowly.
During the 9th, Alice began an unexpected
northward movement trend and showed further
weakening. Post-analysis of low-level synop-
FIGUR& 3-0?-1.
zg
TyphoonA.!iwmaghtg withthe
9 Januahy1979,
end o~ a ~hon-tddmaz-fine,
HMsPiJnageJuJl
~:
IA
.
~,,
.
..
.
.
.
..-
,,,
...
e:
$“.- ... .
,..
-..
-“’”’
...
..-
““”””
.-
-,.
“’””
.%
t
d
+_+
+.....+..
.+..-.+_+__+..+.-+.-+-+
-..
~“”’f
4“”’’””
~
.,, t
11
+..
.
w
VI
,.
3
+...~...+
..–
~...+. p.+-+-–.
i..+–+-.-.+.–Z
~:
-..
i%
z
i
‘T-77
‘ ‘Li’
-
.
.
.
.
.
.
.
.
Iii
.
. .
..
.,.
.
,.O”
. .
.
-&t–i...
0,
.
o”...
-.
.$
.
..,,
..o@
lf. .m
,..
-4-+-+
,..
.
.
s
m
.
++-+-+-
.+—++
.:”.
0
.@ Z..
$
;:::
,..
,8-!
‘.,
-+—t——i
,3
.
1
:+,
m..
1
-.$_
.
N.
‘ -t
---
~i$i
.
-:3
f
:“
i!
,..
.4.
‘2
\.~.
~~~~
- 1–+QI--I-
tih:.$
!
++--t+--
TYPHOON BESS
Since 1959, only three typhoons have
developed over the Western Pacific in March.
Of these three, only Bess developed in the
last decade with Typhoon Tess developing in
1961 and Typhoon Sally in 1967. Tropical
cyclone development in March is usually inhibited by a southward adjustment in the sub–
tropical ridge axis. Although not recognized
in advance, Typhoon Bess’ development paralleled Typhoon Tess, which developed in the
eastern Caroline Islands and reached tropical
depression strength near Woleai Atoll. Continuing northwestward between Guam and Yap,
both recurved northward near 135E (Fig. 3-021) before dissipating north of 20N under the
influence of a strong vertical shear.
(02)
developing systems, 162207z satellite imagery
showed a significant decrease in the mid- to
LIPPer-leVelconvective organization, while
the synoptic analysis continued to support a
weak circulation southeast of Guam. Continuing to pulsate, the suspect area presented
a curious, but intensified upper-level convective pattern on 172151z and 172333Z satellite imagery. Synoptic analysis at 180000z
indicated that, in addition to the circulation near 3.5N 147.5E, a secondary low had
developed on the slow moving wave axis near
7.lN 150.OE and that the earlier ill-defined
convection had been associated with these two
circulations. As this secondary low track=
northward up the wave axis, increased cyclon-
FIGURE3-02-2. ln@zted.imagetyohuezy eamt.g
development
h.tage
06 Eebb, 16 Mamch 1979,1109Z.
.StzeamLine
pattexn.i.nabzteb
an uppe4-levd o.YuXcgctona. A Auzdace cihcu?a.tion
had not yat
developed. lUMSPAnagu2gl
ic shear between strong easterly flow north
of the wave and weak equatorial westerlies
south of the wave caused the northern circulation to become the dominant center as the
initial low weakened. Simultaneously, the
UPPer-leVel anticyclone intensified, producing an excellent outflow signature on 182315Z
satellite imagery (Fig. 3-02-3). Although a
formation alert Was issued based on 182315Z
satellite imagery,,continued rapid development did not occur as expected. Aircraft
data at 200259Z found strong enhanced easterly flow of 20-30 kt (10-15 m/see) to the
northeast, but only weak cyclonic flow to the
south and east. Aircraft reports finally
confirmed tropical storm strength early on
the 21st (Fig. 3-02-4), five days after Bess
was initially observed.
nom%oebfuwd
FIGURE3-02-1. TyphoonBtibtzacki.ng
bealueenGuamandYapo..t8lzZ
(15km//vL],
21 Mu.t.eh
1979, 01032. SU.teui.’teimag#Lyeaptumd .inowabd
o~ani.za.tion
in Zha convective
bandingju.b.t
pziimto
&bb
JIcudL@
.tZO@d
A9M1. &t!?ktb.@.
(wsPinkzg’wd
Synoptic data at 160000Z suggested the
existence of a weak surface circulation near
3.ON 152.5E at the base of a wave in the
easterly flow. satellite imagery at 160119z
indicated that an ill-defined area of convection existed near the surface circulation.
By 161109Z, however, increased upper-level
organization suggested development of a weak
200 mb anticyclone (Fig. 3-02-2). Increased
curvature in the mid-level convective cloud
pattern hinted at the possibility of tropical
cyclone formation. As often observed in weak
19
FIGfJRE
3-02-3. ln@vwd .i.mug~04 Typhoon%ebh
developing
uncb gooduppeJL-&vdou&Wow whkh d
u.&dLe
kaom .tIic
A odhwd
.z%tough the nwthweb.t,
J8 Ma.wh-1979,
‘Z315Z.(lMSPimagvyl
Sea Surface Temperature (SST) PlaYs a
vital role in the development and maintenance
of tropical cyclones. A study by Charles P.
Guard (1979) indicates $hat tropical cyclones
which move over water cooler than 26C are
less likely to intensify due to a reduction
in latent heat. The study further states
that tropical cyclones which develop prior to
June intensify up to 10 kt (5 m/see) after
recurvature. This intensification, if experienced, will occur within the 12-24 hour
period following recurvature. Typhoon Bess
followed this recurvature pattern. The axis
of recurvature was crossed at 2300002. slow
intensification occurred over the next 18
hours with Bess reaching her maximum intensity of 90 kt (46 m/see) at 2318002. Bess
maintained 90 kt (46 m/see) for 18 hours end
then rapidly weakened, dissipating by
2500002. SST analyses during 24-27 March
(Fig. 3-02-5) indicate that the area in
which Bess weakened from 90-60 kt (46-31 m/
see) in a six-hour period corresponds closely
to the location of water cooler than 26c.
The reduction of latent heat input, coupled
with increased vertical shear produced by
strong westerlies aloft, literally sheared
Bess apart during the final 12-18 hcurs.
20
-.
2?
4
25°
2
21
-,!
+-–-l---
<’
,..
I>wl
,..
i
,.
L
t“
\’
.t“
..—
1’
“,
,
@n”
T
+
“+:”
l-=--R-d=”’Y--J--J
-$:=’:‘“~
~‘-?+%
1:
,’
..’~\
‘.
jv
+- -t-
t---
4--
i-
‘=
+..
t“,n’”
-+-t+-t
+,..
I ~-I- [:”1
~.+-
T
t
T“L
,
LOUT
Y
‘..
~ ‘:
m
W
TYPHOON CECIL
Typhoon Cecil, the first tropical
cyclone of 1979 in the Northwest Pacific
given a male name, generated in mid-April
from an easterly wave over the Philippine
Sea. Cecil was forecast very well while on a
climatological west-northwest track toward
the central Philippines. Overallr post-analysis statistics showed that mean forecast
errors were better than long-term averages.
Nevertheless, JTNC warnings failed to forecast the crucial recurvature point in Cecilts
track. Was there sufficient evidence to
forecast this recurvature 24-48 hours in
advance?
(03)
synoptic and climatological data indicated a
west-northwestward track over the Philippines
with recurvature late in the forecast period
in the South China Sea as Cecil tracked to
the vicinity of 15N. Post-analysis, however,
revealed that the ridge axis east of the
Philippines abruptly shifted south between
1612002 and 1700002 with westerly winds intruding far to the south over the South China
Sea. This pattern shift caused Cecil to
recurve much earlier than anticipated. Within 48 hours, Cecil was well east of Luzon
(Fig. 3-03-2). The ridge axis shift was the
vital piece of information not present in
anY of the available prognostic tools. Thus ,
it appears even in post-analysis that forecasting of Cecil’s recurvature 36 hours in
advance was beyond state-of-the-art
capabilities.
Post-analysis showed that recurvature
occurred 36 hours after the 1512002 best
track position. Satellite imagery (Fig. 303-1) located Cecil just south of Samar. At
this time, the 500 mb subtropical ridge axis
was at 17N with a small high pressure cell
located over IiorthernLuzon. The 500 mb 36hour PE prog maintained the ridge, Steering
techniques based on this synoptic situation
indicated westward movement for 72 hours.
Analog techniques indicated west-northwestward movemen~. As a matter of fact, no
objective forecast technique indicated recurvature prior to entrance into the South
China Sea. The climatological average location of the 500 mb ridge axis is along 15N
for April over the Philippines and the climatological recurvature point is 15-17N. Both
F@.uLe3-03-1. ln@ated imagay o{ TgphoonCw.it
36 how ptih .tokeuuw~e
withmaxi.nwm
huata.ined
wina206 80 kt [41 m/hec], 75 Apti 1979,1225z,
(DMSPimagezy)
FIGURE3-03-2. Ceciladtexnmucvalwce wLth
w.i.d o{ 50 kt {26m/bee),
19 Ap/L.U
J979,00142. (lXLSP
imag~y)
maximum hti~d
23
TROPICAL
STORM DOT
TRACK TC - 04
“t 10BESTMAY-16
MAY 1979
40 KTs
MAX
SFC
WIND
~
.+ MINIMUM SLP 984 MBS
..
“+I
.+
SHAN HA!O
~
,
.~
‘+”=”+”
+
t.,
,,\<,,
,
.
,,.
:~.
::
“+’””’’’”’””
.+,
.
F
.+’~
110”
; +
l“
I
-.,
.
Y
“:::
.._
-i30?~
1,,
.
.
;..
-
,
,..
1150ti”t[j~
+
‘:’.
‘“
:H<.
‘“”’
../~2&A~A,,
,
;..
.ai
=
/
-.b.
.:.
..nxn:
-:’
‘ ‘nnniQ~’
”;
“CHI?HI
~~
i
-“MA
‘.
,--
~
t3;’-
b.
-
IWO JIMA
‘. -’0’::
:“+:-
T
.;@.
‘.:
.(
,.
-
y“,
LEGEND
W
06
A
B
C
+.-
. . .
1 I
I
●
MANtl
**
-—
+
O
w
● ● ●
I
!
““’
-;
b
5“”
,-—,-,
1..
,
*
*
k
HOUR
BEST
TRACK
SPEED
OF MOVEMENT
INTENSITY
POSITION
TROPICAL
POSIT
AT XX/OOOOZ
DISTURBANCE
TROPICAL
DEPRESSION
TROPICAL
STORM
TYPHOON
SUPER
TYPHOON
START
SUPER
TYPHOON
END
EXTRATROPICAL
DISSIPATING
STAGE
FIRST
WARNING
ISSUED
LAST
WARNING
ISSUED
+’+
:T:.
i
“
1o”,
4+
I
.,.
,,.
+t-
‘+.
”
“+””
T
:I:i.
T RUK
,+
/+’\
+
“=’tz
:!i’r-%1
I
I
10
115”
L!\.
120”
l-,
K
125”
,
1
130”
135”
14CY
145”
150”
24
..-
-.
TROPICAL STORK DOT
(04)
TS Dot slowly formed in an area of broad,
low-level easterlies, high surface pressures,
and strong upper-level shear. The conditions
for significant tropical cyclone development
were poor while the system existed east of
the Philippine Islands. After crossing the
Philippines, however, Dot reached troP1cal
storm strength while over the South China
Sea.
FIGURE3-04-2. rtop.ku.t Ston.m Vo.twhdk MzluuJ&J
ManL&z, 72 Mug 1979, 2353Z.
(oMsPimugwy)
,~ti
26
t’”~”””t”
i..
.
t,
.-
}.+. . ..J.
“1,
;-:~:
TROPICAL
DEPRESSION
~
i.;.
05
. .
TC-05
23 MAY-24 MAY1979
MAX SFC WIND
30 KTS
0
..#p.
.p
;
]
.;ey~
-1
BEST TRACK
!
{
,
I
“y”
~
t
1
T.
t“.
.
MINIMUM
SLP
“-.vj ”””:
-
998MBS
1-
–+-+307
:
.
.@
$ f
--:”’
14
●
!
:!;:
~.“
1
_e.(””.
~..
“;.
...;
~“:
35°
*\.
i’”’”:
., . .
. .
.
.
~“:”
“’:
‘:!:::’.
i..
..-*.
+I k19
●
J ..L
I
I
.kd
!.
\v-
B3’0?’0;
I !.! , {15
.
I
...+...’.
d .“
l?
+1
&ml-L
. . .
s
-’x.
1 —.
●
#7.
+
~
(/!!
.j.
j
o*
-—
*
0
~w
..j
..4
.i
I
1 . . . . .
04
A
B
C
.---’1
J-.
. l..
I.m-----FCFN13
~
/y
80
SAiPAd
#.
“+””””+’”
1,.
-
,
I
I
I
-T”’
$GA,0f7.
-
[
.
HOUR
BEST TRACK POSIT
SPEED
OF MOVEMENT
INTENSITY
POSITION
AT XX/OOOOZ
TROPIC CAL DISTURBANCE
TROPK CAL DEPRESSION
TROPI( CAL STORM
TYPH iOON
SUPEk““ ‘Wmufin”
, , rnvw,m
.,“’ART
SUPER
TYPHOON
ENI
EXTRATROPICAL
“
‘ATING STAGE
,.,. r,.,,.,––
,e’z,
,Erl”
,JJ”.
mm,,.”
ISSUED
RNING
1’””].,
,’”
~
~:::::
++“-”I
~
11. .>L
I
..,.
. . . . .
3’
J
05”
,-
I
lKY
175°
120°
130”
125°
135”
I
140”
.-
1
An
L
1
145”
26
..
..
MONSOON/TROPICAL DEPRESSION
Early season disturbances in the South
China Sea, as discussed by Ramage (1971), may
develop as a result of active monsoon troughs
which extend eastward across Southeast Asia
into the South China Sea (SCS). During late
May, increased convergence in the enhanced
southwest monsoon flow produced a significant
increase in convection across the SCS, and
several weak surface circulations were noted
along the monsoon trough between Hainan
Island and northern Luzon. Surface/gradient
level synoptic analysis at 1700002 confirmed
the existence of an elongated pressure trough
with several 1005 mb centers. The main circulation, located northezst of the Paracel
Islands, was actually north of the main convective area which covered most of the SCS
south of the trough. Characteristics of SCS
monsoon depressions include: strong enhanced
southwesterly flow with light winds near the
depression center: large areas bf convection
associated with convergence in t’hesouthwesterly flow with little curvature in
flat s~lrface
towards the center: a relatively
pressure regime of large areal extent; and.
a mid-tropospheric cyclonic circulation over
the area (Ramage, 1971). These conditions
were observed in this area.
(05)
Initially, TD 05 drifted southwestward
east of the Paracel Islands. By 2000002 a
slow, eastward-tracking 500 mh short-wave
over central China caused TD 05 to accelerate
northeastward. As TD 05 accelerated,
increased cyclonic shear at the surface
southeast of Taiwan caused the system to
transition from a monsoon depression to a
tropical depression with a small anticyclonic
outflow center evident aloft. (Many SCS monsoon depressions never make this transition,
usually dissipating after 3-4 days.) Totally
divorced from the monsoon trough, TD 05
tracked eastward through the Bashi Channel
and then along the remnants of a weak frontal
boundary. TD 05 was not forecast to intensify significantly, but it merged with an
extratropical frontal boundary near 22.ON
124.8E and produced an improved satellite
signature at 2300182 (Fig. 3-05-1) which included a banding-type eye. (Banding-type
eyes are usually characteristic of more
intense tropical cyclones.) Synoptic analyses during the life of TD 05 never indicated
an intensity above 30 kt (15 m/see). The
lowest pressure recorded was 998 mb measured
by a ship close to the circulation center.
This pressure equates to approximately 32 kt
L’
-’6””-
.. .
#--
-“”
.
. .
“e”””
:..
.
. ..
n+L
-..
+.
,..
H
f.:
,..
{-..
~
2
.
.
o
-t--’--t-
,.1 --{.---1
,..
-1
+-.,
bb..
.
0
:
:Mi-+-;.-.
t‘-!--i- g
...
.
&?
,.
‘.
t
‘1 -1
L.
..1
H
..+.._
*-_
i.-}+..-+.
L
‘{
%G-il$%Qa&-+--+4--’----’-””””+d ‘ ‘ P=@R’““‘-+’ +“””{
81
jf#+j-”j::-+pf,:-:’3:::1:0
/
.,.
TYPHOON ELLIS
The tropical disturbance, which later
became Typhoon Ellis, was first noted on
satellite and synoptic data on 25 June 1979.
The surface/gradient-level analysis showed
that a broad monsoon trough had developed
between Guam and the Philippine Islands. At
upper-levels, a Tropical Upper Tropospheric
Trough (TUTT) was oriented northeastsouthwest between the Volcano Islands and
the central Philippine Islands. This TUTT
allowed excellent upper-level outflow to the
northeast and was expected to induce intensification of the tropical disturbance
southeast of the TUTT axis. Therefore, a
Tropical Cyclone Formation Alert (TCFA) was
issued for the area valid at 2700002.
However, significant development did not
occur. Reconnaissance aircraft could find
only a very broad surface circulation with
relatively high surface pressures. The
surface circulation drifted under the TUTT
and the associated convection was suppressed;
development was thereby thwarted. Based on
the superposition of the TUTT and the surface
circulation and the fact that the overall
satellite signature had not improved, the
TCFA was cancelled at 2820002.
(06)
For his entire-lifetime, Ellis followed
an uncomplicated, classic west-northwest
track at near climatological speeds ranging
from 9-14 kt (17-26 km/hr). Post-analysis
indicates that Ellis was moving tinderthe
influence of the east-southeasterly steering
flow on the southern edge of the subtropical
mid-tropospheric ridge. Ellis ‘ nearly
straight track is due primarily to the fact
that this ridge did not change in intensity
or orientation during the period.
Ellis reached typhoon strength at
0212002 and a maximum intensity of 85 kt
(44 m/see) at 0300002 (Fig. 3-06-1), Continued intensification was anticipated, but
a slow weakening trend was actually
observed. As with Tropical Storm Faye, this
weakening was associated with a drastic
change in the upper-level flow pattern.
During Ellis’ developing stage, the TUTT
was located to the north-northwest and was
providing the necessary outflow channel to
the northeast. By 0200002, however, an
uPPer-level anticYclone over central China
began
to ridge
the northeast.
eastward,
Strong
forcing
the
TUTT
to
upper-level northeasterly winds associated with this anticyclone began to exert pressure on Ellis,
shearing the convective activity to the
southwest. Continuing west-northwest in
this shearing environment, Ellis weakened
steadily. By the time he was in the South
China Sea, Ellis had weakened to tropical
storm strength and was a completely exposed
low-level circulation (Fig. 3-06-2).
The area was closely monitored, and when
satellite imagery showed increased convective development and surface data showed
decreasing pressures and increasing winds, a
second TCFA was issued valid at 3006002.
Subsequent aircraft investigation revealed a
minimum sea-level pressure of 1000 mb and
surface winds in excess of 35 kt (18 m/see).
Based on this new information, the first
warning on TS Ellis was issued at O1OOOOZ
July . Ellis was in a favorable position at
thattime and steady intensification occurred
over the next 2 days.
With winds of 54 kt (26 m/sec)r Ellis
made landfall on the Chinese coast at
0600002, 164 nm (296 km) southwest of Hong
Kong and dissipated rapidly over land thereafter.
FIGURE3-06-2. Tmp&a..LSzhtm E.f.fAa an expohed
.&xo-leveLc
dm@dionin.theSouth
ChinaSU, 5Ju4
1979,O1OIZ.
(uusP.inw.9wly
@omuet5, Nw, C-!aJd2
A8, RP]
FIGURE3-06-1. TyphoonEtl.iJ
l-?t~.t]
at mzxZnwm
0~ 85 k.t (44 M/beC], 2 J&y 1979,2356Z.
.i.n.ten@.!
TS Faye (@ht) b developing notiho~ (Uoleai.
foMSPinlag’a.g)
28
. .
.
.
.4.
-..
.
-..
.
.
T’
.
+
-
J.
TROPICAL
STORM FAYE
!“’”
BEST TRACK TC-07
01 JUL- 06 JUL 1979
MAX SFC WIND
40KTs
SLP
I )
4
+.:!-’A
150°
MINIMUM
1
.t .
lC
155°
998 MBS
!:”’
i
“1
30
.-
-.
TROPICAL STORM FAYE
FIGURE
3-07-1. l@pe,t-leu&
4~e
020000Z
J1l.@
1979.
(07)
ana.tybiA
at
Tropical Storm Faye proved a most interesting case study, not because it developed
into an intense tropical cyclone, but because
typhoon intensity was not attained as forecast.
TD 07 was first analyzed as a closed
surface circulation about 800 nm (1482 lob)
southeast of Guam on the 28th of June. The
associated convective activity remained disorganized until 0112002 July. At that time a
TUTT cell developed north of the system;
thereby providing an excellent upper-level
Outflow channel to the northeast (Fig. 3-071). The wind data plotted in figures 3-07-1,
-3 and -5 are a combination of RAOBS, AIIWPS
and satellite-derived winds for the 250 mb to
150 mb levels.
Diffluence over TD 07 was extensive and
well-defined. The satellite signature also
showed improved outflow (Fig. 3-07-2), and
further intensification was expected.
FIGURE 3-07-2. The .ttopica.t
deptu~ionzhat WA .to
become 1S Faye,02 IL@ 1979, 00222.
[OMSP.intugtiy)
31
.-F.
...?
.“ .O%f:]
.-r Y.-l-
.,-1-..
+
1
u-t
!
.i
,~.1
!
1:
---
.
I
1..
1
.-L. I..
,
-t-
.J?-.
m- I
..), ~
‘
.?
.4.
. ..+.
FIGURE3-07-3. fkXX?h-hVfLt
0512002Ju@ 1979;’
.,ZW.
T
b.tXWnLh“ e anatub.ihat
The flow pattern over the depression.
(TD 07) remained favorable for development
for the next two days and tropical storm
intensity was reached by 0318002. Continued
intensification was still anticipated with
typhoon strength forecast within 18 hours.
Instead of intensification, however,
Faye weakened. Post-analysis shows that
Faye’s weakening, and subsequent dissipation,
was linked to a radical change in the upperlevel flow pattern. Whereas figure 3-07-1
shows a tropical cyclone in excellent position for intensification, figure 3-07-3 shows
just the opposite. By 0512002, a large
UpPePkVel
anticyclone over China was beginning to build southeastward into the western
Pacific toward Faye. Faye’s outflow channel
to the north became restricted and her lowlevel circulation center became exposed
(Fig. 3-07-4). The mid- to upper-level
centers and the associated convection were
sheared off to the southwest by increased
northeasterly winds at the upper-levels.
82
FIGURE3-07-4. TO07 [FAYE1,05 J(LLY1979,120’22.
have begun to
Stzonguppat-levet notiheaA&xt&A
dea.z odd the convection
to the Aou.thwti.t.
m8PiJno4Wy,
Moon.t%htlkbllall
.1 . . .
+
+
,
,,,
I .
\-K
,“”
I
.
fl
I
7-
1-
P’-!’’’’”:
:X%’’(’V
-1--.
1.111
I-—I
I
xl- %
.
!“,+(-’’-$?c
.,
.-,
: f
—.,
(.
-:-
FIG((T?E3-07-5. UppG’L-&Ut?l
&WI.&I~
0612002 July 1979.
W@ib.d
&
Displacement between surface and upperlevel centers was observed often during the
1979 season (e.g., see discussions on Hope,
Irving, Ellis). Development is usually
arrested in this situation, until the system
becomes aligned in the vertical. In the case
of TS Faye, the upper-level pattern failed to
improve. Figure 3-07-5 shows that by 0612002
the upper-level ridge had intruded as far
east as Guam and that northeast winds aloft
had increased to 50 kt (26 m/see). At that
time, Faye’s low-level circulation was fully
exposed (Fig. 3-07-6).
This exposed low-level circulation
meandered northwestward for two days and
eventually dissipated northeast of Luzon.
The short history of Tropical Storm Faye
is an excellent example of premature dissipation induced by strong vertical wind shear.
FIGURE3-07-6. TV 07 (FAYE]& nowa @Mj expaAed
Low-Levetukwtation, 06 Ju.&j 1979, 15182.
(vMsPhnogtu2y,
33
Moon.ugld
v.i.wd]
t
-~+—+–-
1
-k
t
r-,
-,,
i’-’
-P44--t+--}-
l..
*._ +.....
-t -+-
.
t+
. .
+
I
,0I
b
.t’--+----i--i+-i--++--+st-
,
<*
.-
\’
}&
-
-.
+“”,A””t’’”t”
●
..,’
., ,...8,
..--..
,,
‘m
--$-–E -+–t-i--l- ---+s +–,0. .
,.,
.x
,g. ,
c)
.,,
,,,
.
.
,. -.,
t
,.. . -..
.,
-.
.
t“”
.--..
.-..
’+”.”
.(.
.(i ---
.
~“
1-
,-
,..
..
.,
*.
.b
$..
“i
..
.
d..
P
[$
-:’
..
L...
.
w(i.
{:/) : ~~~~~~
‘- Y ‘J--if’
TROPICAI,DEPRESSION 08
For the greater part of its life, TD 08
was an exposed low-level circulation with
the major convective activity detached to
the north of the surface center
(Fig. 3-08-1). Aircraft reconnaissance
confirmed an exposed surface circulation
approximately 100 nm (185 km) south of the
convective center at 241016z.
TD 08 was not expected to intensify to
trOplCal storm strength as a result of
str0n9 Ve:t+cal shear which began on 231200Z.
However, lnltial warnings were issued based
on the forecast track which indicated
passage directly over Okinawa.
post-analysis indicated that the calm.
wind center did indeed track over Okinawa
with most of the convective activity track.
i.ng well north of the island.
FIGURE3-og-I. ln@.w&.&g~~~
~ Og ~~
tiemily oIj20 kt [37m/bee), 24 Juty 1979,~244Z.
TV 08’A241200Z6u@cc centm [e) b depkted
h.c&.tLvea%
&q@ce dtipae
poti
[=)
and 700 mb
ad.&uz&.kepoti (x].
(VMSp~Uy]
35
TYPHOON
HOPE
BEST TRACK TC-09
27 JUL-03AUG
1979
MAX SFC WIND 130 KTS
MINIMUM
SLP 898
+
.- 1:5”
MBS
i-
.
155°
t’
27rn6Z
+ ++-i-I
-t--l
)5 -;
~1f /
Ii
w
@’o,~&
/:M
]
,
““”:””””.
~..
f
t
“’t
..,.
k
~ +lH
LEGEND
06
HOUR
BEST
TRACK
SPEED
OF MOVEMENT
B
C
o..
. . .
~
o
*
● ☛☛
,..
;
,.-
-.
I!iJ:i:
Ii L?
&l
k:8’8”A!*:
‘-
~;y..
,~
:
,
Y—
~,
.
.,
‘-
T
‘-,
-0/
-.
&
-
/
:
]
WLEfl
.
.
.
:
:
~:;
.:
.
..
:
TI?UK
”””’
.
.
.
.
.
-:
~
,..
~v.
.+””
t:*:
:~::::
.
I..
#“
0:
.-:
:.:-
-:::
lR/l*z.-t4’
i
r
:
‘.%%>
;’k’
.1.
PiLAU
~25””~’”
*7=* ~ “r :Jio;oo :
Py
POSIT
INTENSITY
POSITION
AT XX/OOOOZ
TROPICAL
DISTURBANCE
TROPICAL
DEPRESSION
TROPICAL
STORM
TYPHOON
SUPER
TYPHOON
STJ ART
SUPER
TYPHOON
END
EXTRATROPICAL
DISSIPATING
STAGE
FIRST
WARNING
ISSUED
LAST
WARNING
ISSUED
--
)
/3 ~ id
:
r ,
--,,
. .7..
,/
o
A
: ‘S&A
“
+
~
M
‘-”’qyj+:!j:,.,
~#K+::
t
.<:
-:
II761+: 27-76’’$”;
.W’
,3:.’$3+’96”’/
$’fi
:::
“‘~”f
;,j7,tl
...,,,,,
1-
,
:;
..;
>
.*6
:’ -fil
“
.
.
;::’::::;’,:::
..+
.
.
..i.
.
.
;:
...1....’
.
.
..i..;.
:’i:::i
.
‘-U..
,..
i“.--+
.L
85”
. . .
“cl
t
...
.
,..
..
...
...
.
4. ..!,..
. ..+..
,
,
..
.
..-
.
.
.
.
. -..
.
.
.
..
,
.
.
.
.
,
.
.
.
.-
,
L(’%
. -..
,.
.
...
.-
.
- ‘!’
-.
..
.
.
PT. * LAIR
.,
- ‘-..
‘S
B NOGKOK. >
.8. \ ,
:: “(” ).
~J~s t“
.(’.
:.”
-:’:-!,.
f
:dq+y:
/
,1-
.-
.:
:
.,,
‘
::-
-.:”
::-
.
.
%j?j
...’
:;D
;“. Q
:;
~
~
‘A
36
.
SUPER TYPHOON HOPE
The disturbance which eventually
developed into the first super typhoon of
1979 became evident on satellite imagery at
2500002 July as a focal point of cumulus
banding. Future intensification was indicated as the disturbance was situated within
an area of strong upper-level diffluence associated with the southern periphery of an
east-west oriented TUT1’. This outflow mech–
anism aloft, combined with an improved satellite signature, dictated issuance of a
Tropical Cyclone Formation Alert at 2507512;
the alert box described an area southwest of
Guam . Subsequent aircraft reconnaissance at
2509002 described a cyclonic circulation with
wind speeds of 15-25 kt (8-lo m/see) and a
central pressure of 1004 mb centered near
11.lN 144.5E. Based on this aircraft data
and the proximity to Guam, the first warning
on TD 09 (Hope) was issued at 251200Z.
By 280000z, Tropical Storm Gordon had
mcved into the Luzon Straits. Due to the
orographic blocking of the Philippine land
mass, the majority of the strong southwest
monsoonal flow was diverted into Hope. This
increased low-level inflow coupled with
decreasing upper-level shear resulted in a
much improved vertical structure with feederband activity developing in the south;
2820522 aircraft reconnaissance supported
this improved organization trend. Postanalysis indicates that TD 09 (Hope) could
have been upgraded to tropical storm intensity 12-24 hours prior to the warning upgrade
at 2900002, as 35-45 kt (18-23 m/see) winds
were reported in feederband activity as much
as 24 hours earlier (Fig. 3-09-1). By
290920z, a well-defined eye with a central
surface pressure of 972 mb and 65-70 kt
(33-36 m/see) surface winds were reported by
aircraft data; the 2912002 warning upgraded
Hope to a typhoon.
From the 25th through the 26th of July,
while TD 09 (Hope) tracked to the westnorthwest; the TUTT axis shifted northward
and strong upper-level northeast flow dominated the area. The resultant shear produced
by this uni-directional upper-level flow
displaced the convective activity to the
southwest of the surface circulation, indicating a loss of vertical alignment and subsequent weakening. By 2706002, the center of
the convective activity was displaced 120 nm
(222 km) southwest of the low-level circulation center. Surface analyses, at this time,
indicated the southwest monsoonal flow was
being channeled principally into Tropical
Storm Gordon located 750 nm (1389 km) to the
northwest of TD 09 (Hope). With further
weakening of Hope expected, a final warning
was issued at 270451z advising that the area
would be closely monitored for possible
FIGURE 3-09-1.
TJwp-LcczLSomI
Hope L7i.gh.t)
&iztop&M.L
Gotin[Q&]~ 100m
(09)
regeneration. Post-analysis showed that from
L71200Z through 2800002, the TUTT weakened
with resultant reduced shear over TD 09
(Hope). Conditions for development being
improved, reorganization took place and TD 09
kegan to develop. Unfortunately, the improver.entin the surface circulation went unn~ticed as it occurred during the night when
only infrared satellite imagery, on which
low-level clouds are difficult to disting~ish, was available. An aircraft investigation on the morning of the 28th reported a
surface pressure of 999 mb with 45-50 kt
(23-27 m/see) winds in the heavy convective
activity to the southwest of the surface
center. A warning was issued at 280221Z
indicating the regeneration of TD 09 (Hope).
bxotutl&t’&rlbLtg570 m
[1056 km] noLthtaato6Guam, 29 Ju..?g1979, 02192.
(lg5 km) wtoA
Hong Kong. (0h13p@~I
37
The 2912002 200 mb analysis indicated
the TUTT had again established itself north
Df Hope. Due to the east-west orientation of
the TUTT, strong westerly flow along its
southern periphery enhanced Hope’s upperlevel anticyclonic outflow. Aircraft reconnaissance
at 2920312 indicated a sharp
decrease in surface pressure to 961 mb with
the temperature/dewpoint data correlating to
an equivalent potential temperature (eel of
359X. An empirically derived forecast aid
that relates pressure and ee indicates that
once the traces intersect, rapid intensification can be expected within 18-30 hours (Fig.
3-09-2). The intensification equates to a
possible mean pressure decrease of 44 mb and
a mean wind speed increase of 50-60 kt (2630 m/see). Typhoon Hope verified this study
36 hours after the intersection occurred;
reconnaissance aircraft reported a surface
pressure of 898 mb and wind speeds of 100120 kt (51-62 m/see). By 3112002, Hope
attained super typhoon intensity of 130 kt
(Fig. 3-09-3).
(67 m/see)
MSLP/
FIGURE 3-09-3. ln@vwd imo.g~ 06 ffopc
juAta~fem
dtainingMLpsttyphoon tie.d,tq 06 130 tat
(67 ftt/AeC],
31 Julq 1979,7244Z. [OWSPimaaszu]
-.
THETA
E TRACE
HETA E
390
NIBS
1010
1000
380
990
980
370
970
960
360
950
940
350
93a
920
340
91C
90L
89C
)2
28JUL
122
UUL
29
IZL
uvO=
ILL
““31
30
---
----—
01 AUG
330
!
●
02
FIGURE 3-09-2.
(THETA E (Oe) 1
38
..
---
—
Hope entered the Luzon Straits approximately 4 days after Tropical Storm Gordon.
Hope’s compact wind structure and a slight
weakening trend were noted as Heng Chun (WMO
46752) on the southern tip of Taiwan reported
sustained winds of 40 kt (21 m/see) with
gusts to 86 kt (44 m/see) at 0110002 as Hope
passed 45 nm (83 km) south of the station.
Two persons on the Batanes Islands and one
person on Taiwan were killed as a result OE
the torrential rainfall experienced as Hope
tracked through the Luzon Straits.
Typhoon Hope made landfall less than
10 nm (19 km) north of Hong Kong at 0205302
(Fig. 3-09-4) with maximum sustained winds
of 70 kt (36 m/see) and gusts to 110 kt (57
m/see) reported. Figure 3-09-5 is a time
sequence of the surface observations received
from the Royal Observatory of Hong Kong
during Hope’s passage. Extensive wind and
rain damage, 3 deaths and over 258 injuries
were reparted. Damage to shipping within
Hong Kong harbor was heavy as 17 ships broke
their moorings and 8 ships collided.
FIGURE 3-09-4. Typhoon Hope d 100 k.t (51 m[bec)
.intem-i%g, 3 hoti ptioJL .to c-Lo&tit point06 ap~oaclt
.to HongKong,
”2 AuguA.t
1979,02472. [Ohiwimaglngl
Subsequent to passage over Hong Kongr
Hope moved into southern China and weakened.
The final warning was issued at 0301112 downgrading Hope to tropical storm intensity.
Hope’s uncomplicated northwest track after
development into a typhoon resulted in minimal right-angle track errors with her unexpected acceleration accounting for the
majority of the discrepancy.
Strengthened once again by pre-existing
strong southwest monsoonal flow, Ropereintensified from 0700002 through 0718002 with
maximum
sustained winds of 35 kt (18 m/see)
reported on 0712002 surface analysis. A
tropical cyclone warning was not issued due
to Hope’s proximity to land and her expected
movement into northeastern India within 12
hours. Hope, however, was discussed at
length in the Significant Tropical Weather
Advisory (ABEH PGTW).
Although weakening considerably during
passage over southeast Asia, Hope did maintain a satellite signature and exited into
the northern Bay of Bengal 110 nm (204 km)
southeast of Dacca, Pakistan at 0605002.
45005-
HONGKONG
ST
OBSERVATORY
HOPE
DATE02
JULY 1979 /
TIMES:O1-1OZ
I
02/olz
:~,wl
02/022
9%989
02/04z
02/03z
#$984
~~978
02/06z
02105z
:*
~,.o
02/07z
q:
02/OBZ
f
02/09z
O2I1OZ
>;;4
,.~’
v
G
FIGURE3-09-5. lfou@bu@ce&y
o~ TyphoonHope.
nop.tLc
ob~ctvtiona
@.om.the Roya.tObAIVUJa.tO@ o{
39
HongKong (ROHK]du.%i.ng
pzbbage
+
+
~+-
-t--t
a’:
.
-t;
.
-1.-
“,
-}--+-+ —+
d“
--1--~
.-””
,.
t—
-.
fJ. .
“%
VI
In
.— m
“t
-it
5!’?
+..
.
.
—-t+–+––
0.
-+ “m
g.- 00
0
0
z’
“../3
-1-++tt+-t-k--t++-+
+ t- t-- --
g
“1’’%”1’”
I
+--l
%26
R,. >
d’ :
..+ ; +..–+—
y+
–+
>.—+-t-knk 1’1’
-t+-+--’r+kt-+-+-+
t
1%
~>.,’”t”
l—
TROPICAL STORN GORDON
(lo)
Gordon, the 10th significant tropical
cyclone of 1979, developed in late July in
the monsoon trough near 20N-135E and eventually made landfall east-northeast of Hong
Kong. A stronger sister, Hope (TD 09), followed Gordon several days later on a similar
‘crackinto Hong Kong. Note that TD 09 (Hope)
and TD 10 (Gordon) are alphabetically out of
sequence because TD 10 was upgraded to trop!.cal storm stage before TD 09.
Post-analysis revealed that Gordon
reached tropical storm intensity at the time
of the first warning. CINCPACINST 3140.lN,
section 2.5.1., paragraph b states that warnings will be issued when “maximum sustained
wind speeds are forecast to increase to 34 or
more knots within 48 hours.“ In this case,
there was no lead time between the first
warning and tropical storm stage. Figures
3-10-1 and 3-10-2 illustrate why this
occurred. TD 10 developed rapidly within the
22-hour time period between these figures.
Synoptic data indicated increasing southwest
monsoon flow into the area during this
period; yet no definitive surface circulation
could be located. The most significant finding of the post-analysis was that Gordon
could not be traced back 48 hours prior to
the first warning from available synoptic anti
satellite data, and, therefore, falls into
the category of a rapid developing system.
Gordon’s track took an unexpected jog
northwestward while passing south of Taiwan
(Fig. 3-10-3). (Typhoon Hope took a similar,
but less pronounced, jog.) This northward
adjustment is historically evident from
tropical cyclones that pass south of Taiwan.
The influence of Taiwan’s high mountain
range is thought to be responsible. As
tropical cyclones pass south of Taiwan, they
induce lee-side troughing west of the mountains over the Formosa Strait and track
northwestward in response.
FIGURE3-10-2. Tkop.icaLStozm
Gohdon22 kowu adt~
Figuze3-10-1zshowing .incm.abed deuel.opmaat,
?5 Ju.tg
1979, 23502. A Tzup.&a.t CgctoncFohnwtion
ihbld 6 hou.upti.oh.to
thibtime.
A&?A.twab
[okSPimagayl
S.to?on
Goz.don
in .&b indancg
FIGURE3-10-1. Ttopica.E
to batngdhcubbed on thtSkgn.i@anf
4 hum p.tiofi
8T.topia.t
Weathe/t
Aduboq
[ABEHFGTW),
25 Ju.@ 1979,01512. [UMSPimagVq’)
FIGURE3-10-3. Kaohbi.ung
&
pm2btn&ztion
o~
Gohdonat 2821032a&#t pabbi.ng south06 Tahan.
(Photogtiph COIJW%Y
Ttipti,Tuimn.]
41
0{ .ZhQCemttaZWa.fhut BUJWU,
120”
115”
1lcf
105”
145”
140°
135°
13@
125”
150°
-.
7=
’’’’’’<4’’’’!’’’’’’’”
“t”[\”
””’””’’’”’+’”
““l +)
Y/y
”’’’”.”
!
I
.L
I
...]
~
-.
..’+,.,
--..
.
I
I/
I
!
,
1
J ,f,
,
I
Y..,
-
000
::
—
1A
‘9
r
.,.
●
O
.
4
o
.L
.
.-
..-
+++
● ● ●
-
*
*
,‘?O ,1
,
I
B
c
.#,
“’”T
+“
11
T
.
MINIMUM
-
997
,
,
~
I
- ; ;
MBS
; ;P
i
t
:i”” ‘“t”
,“””’
.
““t
BEST TRACK TC-ll
03 AUG-06 AUG 1979
MAX SFC WIND 25 KTS
SLP
.
CHI%HI
JIMA
,
,“””
.1
,
,
Y-l
-,:,:+”””
J-: ; -.........T .,
~
.,nKJ.:”:
TROPICAL
DEPRESSION
+:-
i
Y---’-7
‘
.
I
i
11’t
?.
INTENSITY
POSITION
TROPICAL
AT XX f’O@?z
DISTURBANCE
:%!%
!%%w’ON
TYPHOON
SUPER
TYPHOON
SUPER
TYPHOON
EXTRATROPICAL
DISSIPATING
FIRST
LAST
,,
. * “9.
&
.
. -..
.+.
.:.
--::::.. . .
-:::.:”:.++’
. .-.
...
..
~....+.
.+
Q:
?.,
.
START
END
, -%-
i
.
.
.
.
.
..~.
.
..+.
.
..i.
..-f
‘}!:!:,}’
.
STAGE
WARNING
WARNING
w.’
,.,
.
.
ISSUED
lssuED
1
;.
:..’
??
.“.
.
-.
-------
)}
.’”
~.a~
?+=-.
,
,
.
L
‘n
.
0“
#
,#2”&
“
-
42
-m
.-
.
TROPICAL DEPRESSION 11
FIGURE 3-il.-l. TILopti&
Oephebbion
11
&
20
k-t
[10
mlaee]
.6upe.timpohed
a-tLotion 06 &@ace cimuhtion cotta aA
CouidaabLe veI&cal bhem etited ouu the bgb&m and m
A.tzength. IUM.SPimugelgl
43
.&vh&Xtj,
5 Augu&t 1979, 21532.
The TU~~boX
(~)
h
by a.ih&ia&&tconn&&ance at 052222Z.
the hwon .thu.t
.Ltdid not developinto.tzopical
htcIVLm
detemi.ned
+
“t’””
‘i:
—
NPHOON
1:
150”
145°
146=
;35’4
130’
125°
120°
115°
-.
IRVING
BEST TRACK TC-12
09 AuG-18AuG1979
MAX SFC WIND 90 KTS
MINIMUM
SLP
954
MBS
I
I
—
~“’
1
,.
-
‘1
—
150°
1:
.
.
T:’
.
I.,
T“
.
.-bn<.
./
*’+4/ /// ‘47s&+.’/?,
Y._JL+=fo.fo
d /
~.
1.$=1-.l. :w.:
l’o
.1 ..d—
=7+
U>=
I
+
/,
1’?W)<WA
.. .
.. ,
“’f-”:’”ld
I
57
i
,
),
::.:;
iI ““”
,
s
,
SAiPA
. .
::G$:
,.
..’
.
‘“””
JL. .i . . .
.
.
“1’
.
. . . . .,. . +.
...+.’...
.y:p.’.
!v.!-
”,t,
.
.
.
,
IN7ENS17Y
30
llIOOZ
,
9
35
11J06Z
18
18+
13
7
7
kJ
45
16+
a
.
.
,
..A
a
,*WK
..
LEGEND
.41
~
,7
‘-r
8
11118Z
,
A
06 HOUR
BEST TRACK
SPEED
OF MOVEMENT
B
INTENSITY
C
..0
--
POSITION
TROPICAL
TRoPICAL
TROPICAL
—
o
+++
: ●O
TYPHOON
SUPER
TYPHOON
START
SUPER
TYPHOON
ENo
EXTRATROPICAL
DISSIPATING
STAGE
17+
40
11/12z
~s<”””
.
t
l“’”’”””
SPEED
.
‘.!:/:.
.
e
wOLEAI
.
.
.
:s;::::~:”~
D7G
:::::
~.
LITHI
M
~~:’”’:~”’
:::
.
6
●
.*
A
#T
FIRST
LAST
POSIT
. .
+
AT XX/OC@OZ
DISTURBANCE
DEPRESSION
STORM
WARNING
WARNING
#
lssuED
ISSUED
..
44
..—
--
TYPHOON IRVING
Surges in the southwest monsoon frequent
the western North Pacific during the early
tropical cyclone season and produce widespread convection from the Malay Peninsula to
as far east as Guam. During the same period,
the 500 mb monsoon trough fluctuates eastward
across the South China Sea (SCS) and occasionally into the Philippine Sea. By late
July 1979, an eastward extension of the midlevel monsoon trough was the main synoptic
feature west of Guam. The 500 mb trough axis
extended along 15N from northern Vietnam
through the central SCS and then eastward
into a quasi-stationary low pressure center
over the Philippine Sea.
(12)
exposed low-level circulation in satellite
imagery with maximum convection located to
the west of the surface center (Fig. 3-12-1).
Ship synoptic data during the same period
indicated that 25-35 kt (13-18 m/see) winds
extended outward 120 nm (222 km) south of the
surface center.
By the llth, the monsoon surge had
weakened and receded westward, leaving a
cut-off 500 mb low over the Philippine Sea
in the vicinity of Irving’s surface circulation. Irving executed a small, tight
cyclonic loop on the llth. During the loop,
vertical alignment between the surface and
the 500 mb center improved, and Irving
intensified to tropical storm intensity.
Simultaneously, a break developed in the
500 mb subtropical ridge to the north, and
Irving tracked north-northwestward towards
the Ryukyu Islands while intensifying further
to typhoon strength. Although originally
forecast to recurve south of Japan, strengthening of the 500 mb ridge southeast of Japan
caused Typhoon Irving to track over the
western East China Sea and accelerate northnortheastward across Korea before merging
with an extratropical frontal boundary north
of Japan.
On 7 August at 1200Z, a developing
surface circulation was observed at the
eastern end of the monsoon trough near 14.lN
137.7E. This weak circulation tracked
cyclonically around the eastern periphery of
the broad 500 mb low pressure center in the
Philippine Sea. Taking on the characteristics of a monsoon depression (Ramage, 1971),
Irving was described in aircraft reconnaissance data received from 9-11 August as a
weak depression with poor vertical alignment
and maximum surface winds located 150 to
180 nm (278 to 333 km) west of the surface
center. At this stage, Irving displayed an
Although not a spectacular typhoon,
Irving’s apparent sinusoidal motion, unusually large wind radii, failure to rapidly
deepen and damage to southern Korea are
noteworthy. Sinusoidal motion of tropical
cyclones has been observed for many years,
especially when short-term movements are
observed by accurate fix platforms such as
land radar (Fig. 3-12-2) and reconnaissance
aircraft. Sinusoidal motion was observed
from 131600Z to 151800z as Irving tracked
north-northwestward through the East China
Sea. Radar reports from the Ryukyu Islands
FIGURE3-12-2. TgphoonIzvingaA been bg the M&U
a%ackednoti-notihwa$a.tffau&n, Taiwan. IILv.ing
and
am
wad actob~ the bouthw Rgukgulb.tandb
acauuztely
ticked by eightk.adak
b.d2.b,14 Augub-t
1979,17002.
(Photogtiph
cowt.tebg
o~ -theCen.thaL
Okz.thezt3uAeAu,TOiPti, Ta&unl
FIGURE 3-12-7. TgphoonIwi.ngab a WZUZfZ
tiopicol
depkebb~on withan expohedlow-levd dw.&uXm,
10 Algubt7979,0126Z. P,tioato intenb.i@7.tion,
obbemed ~he
aiJLCJU&h~COWdbAcZHM conb.iAten.tty
mo.xikm convetionto ihe we,bf
06 -the&@ace
cente.z.
[OM.SP
imagwl.g;
4s
d
‘a
-
2“
aQ
J’
.
16/OOZx
\
t
#
‘a
v
0
0
0
Q
0
4793
47929*
&
931
8
●
:
h.lruuodal
motionin Tgphoon
FIGURE3-12-3. AppoJLd
Dwing‘d notih-notikwa.t
tick &om 1316002to
151800zAuguA.t
aA ob~tzvtd by tandtadah&lzt.ionA
in Zhc Rgukgu IAJ?.ancb.
‘3
clearly indicate that Irving oscillated
about an overall north-northwest track
(Fig. 3-12-3).
Unlike Super Typhoon Hope, Typhoon Irving
(Fig. 3-12-4) did not follow the intensification pattern suggested by JTWC’S Equivalent
Potential Temperature (ee)/Minimum Sea-level
Pressure Study. This study indicates that
sea-level pressure should fall about 44 mb
and maximum surface winds should intensify an
average of 55 kt from the point where the Qe
and pressure curves intersect (see Super
Typhoon Hope, Figure 3-09-2). The reason
why Irving failed to intensify further is
not known.
The relationship between Irving’s surface
.
and 500 mb centers during the earlier stages
of”development produced unusually large
surface wind radii. Synoptic and aircraft
data between 092000Z and 120000Z indicate
that Irving’s maximum wind band actually
existed 150–200 nm (278-370 km) west of the
large, calm-wind surface center. Although
the maximum wind bands did eventually migrate
towards the surface center, the wind radii
remained large for the duration of Irving.
The large wind radii nay be related to
Irving’s developmental interaction with the
500 mb monsoon low and its large areal extent. Irving never became a tight, welldeveloped tropical cyclone. Aircraft reconnaissance during the period of eyewall
development indicated that Irving had a large
30 nm (56 km) diameter eye with the radius of
over 30 kt (15 m/see) winds extending outward 400 nm (741 km) in the eastern semicircle.
Typhoon Irving was the first tropical
to strike Korea in 1979. Rapidly
weakening as he made landfall, Irving spared
southern Korea from the destructive typhoon
force winds he had maintained through most of
the East China Sea. Korea did, however,
receive torrential rains which produced widespread flooding. The hardest hit area was
the island of Cheju Do where 4.3 inches
(109.7rmn)of rain were reported at Cheju.
Official estimates reported 150 dead or missing, 1000-2000 homeless and approximately
10-20 million US dollars damage to food and
agriculture.
cyclone
FIGllRE 3-72-4. A.&%o~h Tgphoon lavhg did not
developaccomii.ng
to .in.tenb.i@a.tian
d.tua!ie4,
Iaving
_
&dpoAAc.46good @dtibandac. t&Ltgand
Otii$hw, 14 Augu.$t 1979, 022gZ.
47
(VUSP .imo.g~]
t
00
* [._,__
I
l_.,+.-+.-
+-a+
,..
J“
: ---.,-t
Q
-i-l
t
.
4
W+
“t
:-LE.d--}-J+-++-
L--l--rbrt’-t-+l
le\&si
+.
I
.J.
+
~,
I
I
)
+
$
.+-+-+
.=?Ylc!x
[.. +fu
~-+--+--+-l--l-+’--+t+$+
—t+++-tt-+
+“-+.
d--llg?.~-v..,+....+.
%T!F--””+.’1”+7FTI
:kiki!
-1-”
k lG%---t-t-l-
--+-
,., —–
!2E!iL_L_-=
Cu
“m
.
‘1‘
.(,.
SUPER TYPHOON JUDY
(13)
FIGURE3-13-1. In@ted~uy
06 .ttopi& titi06 Guam, 16 AugvAt 1979,
bance (Judy) whUe&otihwt
11202. The .&atdenotti%he app.totitie
Lotion
06
by a aeconti~mce
a weak.wcdacecenttid.&cove.ted
aLILOIa@ U.bOld
4 ho#c4ea,t&i#L.[D1.LSP
.inw.gety)
Of all the typhoons of 1979, Judyqs
significance was only surpassed by Super
Typhoon Tip. Judy eventually developed into
the year’s second super typhoon, but more
importantly, she served as a reminder of how
rapidly a minor tropical disturbance can
develop into a dangerous tropical cyclone.
present, but only a few flare-ups of convec
tive activity were noted. Surface circulations were broad, ill-defined and transient
BY 15 August, however, synoptic and
satellite data revealed a tropical disturbance, about 120 nm (222 km) east-northeast
of Truk, which was to eventually become
Typhoon Judy.
Surface synoptic data from the beginning to the middle of August showed that the
area south and east of Guam was fairly
inactive. Good cross-equatorial flow was
This area was closely monitored by JTwC,
and when the satellite signature began to
improve, a Tropical Cyw
Formation Alert
was issued at 1521OOZ.
49
No significant pressure falls were
observed over the area as the disturbance
drifted slowly west-northwestward. A
reconnaissance aircraft at 160700Z was able
to define only a weak surface circulation
witi a MSLP of approximately 1006 mb and
observed surface winds in the south semicircle of 10 kt (5 m/see) or less
(Fig. 3-13-1).
Judy intensified steadily while following a nearly climatological west-northwest
track at 10-12 kt (19-22 km/hr) for the next
24 hours. She reached typhoon strength at
After that, .alongapproximately
180300z.
wave trough in the mid-level westerlies,
moving over Japan toward the Pacific,
fractured the subtropical mid-tropospheric
ridge north of Judy, allowing her to track
more to the northwest.
Rapid intensification was not expected
at that time, but at 161635z, less than 10
hours after the aircraft investigation,
weatier radar at Andersen Air Force Base,
Guam, located a well-defined circulation
center moving west-northwest toward Guam at
15 kt (28 km/hr). Gradient-level wind
reports from Guam, Truk, Palau and Ulithi at
161200Z also showed that the low-level inflow pattern associated with the disturbance
had increased in areal extent. The disturbance continued tracking toward Guam and at
161800Z the center passed over the Naval
Oceanography Command Center (NAVOCEANCOMCEN)r
Guam building on Nimitz Hill (Fig. 3-13-2).
NAVOCEANCOMCEN reported a MSLP of 1001.0 mb
and a wind gust to 51 kt (26 m/see) at that
Based on this “first-hand” informatime.
tion, JTNC issued the first warning on
Tropical Storm Judy at 161900Z. Postanalysis revealed, however, that Judy did
not reach tropical storm strength until
170000Z.
During the next 36-hour period, after
reaching typhoon strength, Judy’s central
pressure dropped 69 mb and she attained
super typhoon strength at 200000z. Her
lowest central pressure, 887 mb, was
measured by a reconnaissance aircraft at
192145Z. Three distinct, concentric wall
clouds were also noted at that time
(Fig. 3-13-3). Super typhoon intensity was
maintained until 201500Z, with gradual
weakening thereafter.
Forecast aids indicated that Judy would
pass to the south of Okinawa, but base w
her persistence track and the deep trb~
%
that existed over Japan at 500 mb, Judy was
forecast to recurve east of Okinawa. The
steering aids were reacting to the mid-level
PE Forecast series which built the ridge
back between Japan and Judy. The numerical
forecasts had not been verifying well up to
that point, and, thus, the well-entrenched
trough was forecast to persist. The numerical forecasts proved to be correct, however,
and Judy did pass south of Okinawa before
beginning to recurve into the East China Sea.
The rapidly intensifying ridge was
expected to drive Judy into the Asiah,uJainland south of Shanghai. The 500 mb Wk>ysis
at 241200Z provided the first indication
that Judy was not going to make landfall.
At that time, she was just off the Chinese
coast, but north of the mid-level ridge axis.
Three-hourly synoptic reports from Sheng-Szu
were watched closely and when the winds
backed from east at 40 kt (21 m/see) to north
at 35 kt (18 m/see) , there was little do~t
that Judy had, in fact, recurved to the
northeast.
As Judy recurved, she was downgraded to
tropical storm strength based on land synoptic data. Transition to an extratropical
system occurred at 261200Z while Judy passed
through the Korea Strait.
Due to being still relatively weak
while passing over Guam, damage there was
insignificant. Damage to Okinawa was also
minimal, even though sustained winds of 40
kt (21 m/see) were experienced for a 28-hour
period. Southern Korea did not fare as well,
however. One hundred eleven people were
killed, over 8,000 houses were inundated, 57
vessels were destroyed and many thousands of
acres of crops were ruined by Judy’s torrential rains and strong winds.
FIGURE 3-13-2. M&oba-toghaph
.tMCCkeCOtiCdd
NAVOCEANCOMCEN, Guam &t&g
the po-fdage 06 TO 13
(Judy)o-tabout 761$002,Augtit1979.
50
51
. J
. . ..-....+.
+
...;.....
.“::.
+
+.
+}.
.:
d
1
’”’
.:
::..
--
--
-’-
-
:--“
~~
-:
:-
-’-
L-
.
!
.
-1
DEPRESSION
14
BEST TRACK TC-14
‘18AUG-20AUG
1979
MAXSFC WIND 20 KTS
-..
,
.+
~
-.
-1- ..,-.
-..
-..
.
.-
.
CHICHI
JIMA.
k
+..
. Wlo”
35°
P..
>.,
.
,“
-’”’”-
1
1.
I
Ujz<.
,20/c
-“”’”/
-“”’-
1(
. ..- .
.#17
●
. . . . ..
-“,,
,- -,
.;
..-
. 4. .,..+...
P.
YAP
Ii’””’
MAJURO
I
LEGEND
t“
w06H0uR
t3E5TTRAcKPoslT
A SPEED OF MOVEMENT
B INTENSITY
C POSITION AT XX/OOOOZ
. . .
TROPICAI DISTURBANCE
● .+
TROPICAL DEPRESSION
-TROPICAL STORM
—
TYPHOON
*
SUPERTYPHOON START
0
SUPER TYPHOON END
+++ EXTRATROPICAL
● **
DISSIPATING STAGE
*
FIRST WARNING ISSUED
*
LAST WARNING ISSUED
~
%
-.
K
i..
~.l
i..
,”.
.
..’.
.1
T
::::.
-::;;.
.:
. -.,
‘T
...
.,.
.
+..
.
.
-:
:::e::
1::::-
..-
:::.-
““”
.-..
-
:::.
““-
.
~....
.:8”
‘“-..
.
..
:::.
.
. . . ...
.:
,..
. .,.
,..
- .,.
..
..:
““”’
.
.
,.
.- .,.
.
.
.
.
.
.
-,. -.
. ...
-.
52
.
““”. .
..
,,,
(
.
-;,:::.
;.
...,-
:::?
‘“. .
.
-::::;
4-,...@TARAWh
. ...
.
““’
,.
.
-
...,.
.
.
53
135°
140
145”
150”
155°
16(Y
165”
170”
175°
54
..
..
TROpICAL STORM KEN (15)
AND TYPHOON LOLA (16)
Ken and Lola developed almost concurrently along the periphery of an upper-level
TUTT . Satellite imagery on 1 September 1979
(Fig. 3-16-1) shows a number of disturbances
organized into a line of convection ringing
the TUTT in question from north of Kadena to
south of Marcus. Ken developed from the
disturbance just east of Kadena. At this
same time, the disturbance which developed
into Lola is south of Marcus and appears
quite weak. The largest and most menacing
middle disturbance northwest of Guam (Fig.
3-16-1) did not develop.
deepened southwestward over the middle disturbance and suppressed its convection. At
the same time, it divided the convective
line into the two distinct systems, Ken and
Lola (Fig. 3-16-2).
After forming, Ken and Lola began to
move in similar recurvature tracks. Ken
tracked northward into the Sea of Japan
of 60 kt
reaching a maxim~ inte~~ity
(31 m/see).
Lola intensified into a typhoon
and eventually transitioned into an extratropical system over the cooler waters east
of Japan.
During the next 48 hours, the TUTT
FIGURE 3-16-1. Lineo~ .ttop.icol
ddtutbancti@.omwhich TS
O1OO39Z Sep 1979. (vMsPimugewl
Ken ond
I .’.
1
“;++ . . . .
FIGURE
1979.
.:../’:”..:/
,
1
3-16-2. Ken at 45 kt [23mf~ec)Awh.&Lty ond
lUMSPimagexy)
. .../
I
Lola at
55
TY Lo&z even.tuutlg devekbped, 3122572 Aug -
‘!
=-=F7F’W,
36 k,t(15m/hec].intenAi_.ty,
0’222212
- 0300032Sep
,.--.. .--.....
,..-..
.. .
L,,
,i:,‘
,,;
,..
r
“ ,100”
.’
‘f: +-’:’”y?<
-.: : :+4
-
w-
A’
B
C
...
●. .
-—
+
O
+++
● , ●
*
*
n-w.
100
1 .-..
.. . . .
2
F“- ‘-:-“:’”“o’”
,*
, *L4
r
;3~.
t.*
‘“s”
‘:5
IWO JIMA
.~.
13cf
.
*..
*..:”
-
, ---
SPEED OF MOVEMENT
INTENSITY
POSITION AT XX/OOOOZ
TROPICAL DISTURBANCE
TROPICAL DEPRESSION
TROPICAL STORM
TYPHOON
SUPERTYPHOON START
SUPER TYPHOON END
EXTRATROPICAL
DISSIPATING STAGE
FIRST WARNING ISSUED
LAST WARNING ISSUED
I
i
J---$
.a
CHICHI
JIMA
105°
1“
:T’F-
.i
&
:
. ..“p’
,“’
t,.
<x
s
I
170”
lla
I
135”
I
14cf
56
-—
‘+.
(17) AND
NANCY (18)
Typhoon Mac developed from a weak
surface circulation northeast of Yap in
September 1979. This circulation tracked
westward, reaching tropical storm intensity
by 1600002. Mac followed the clirnatological intensification rate for tropical
cyclones approaching the Philippines and
reached typhoon intensity prior to making
landfall. Frictional effects caused Mac to
weaken slowly as he tracked across southern
Luzon towards the South China Sea. The
unexpected development of Tropical Storm
Nancy east of H’ai-nanIsland influenced
Mac’s track in the South China Sea.
The unexpected development of a second
tropical cyclone in the South China Sea (SCS)
produced a series of track and intensity
modifications in Typhoon l.lac.Upon exiting
the Philippines, Mac, which was originally
forecast to track west-northwest into the
SCS, began a Fujiwhara interaction (Fig.
3-18-2) with the rapidly developing Tropical
Storm Nancy located near Hai-nan Island.
Instead of tracking west-northwest, Mac
tracked north-northwest, skirting Cubi point
Naval Air Station, Philippines, on his new
track toward Hong Kong. Strong anticyclonic
outflow from Nancy sheared Mac’s convection
towards the southwest with aircraft reconnaissance reporting an exposed low-level
circulation of 30-35 kt (15-18 m/see) intensity on the 20th.
JTWC’S real-time forecasts do not
always reflect the actual intensity of a
tropical cyclone. Rapid intensification or
weakening, peripheral data unavailable due
to geographical restrictions, and tight
maximum wind bands, which are not initially
detected, all reduce the accuracy of intensity estimates provided in tropical cyclone
warnings. These intensity discrepancies
often go unrecognized until discovered
during post-snalysis, as in the case of
Typhoon Mac.
Weak steering currents allowed Nancy to
take a cyclonic track across southern Hai-nan
Island before heading southwestward into
Vietnam. Nancy’s southwestward track towards
landfall forced Mac further north than originally forecast. Mac eventually passed just
south of Hong Kong. Ironically, Nancy’s
development, which caused Mac to track
towards Hong Kong, also helped to spare Hong
Kong from potential typhoon force winds.
Nancy’s upper-level outflow, which dominated
the SCS from 19-23 September, produced
strong vertical shear over Mac and slowed
his rate of reintensification. Typhoon Mac
only reached minimal tropical storm intensity
prior to making landfall west of Hong Kong.
Reanalysis of aircraft reconnaissance
data from 16-18 September indicates that Mac
most probably intensified to typhoon intensity by 1618002. During the period 16-18
September, aircraft reconnaissance at
160503z reported 68 kt (35 m/see) at 1500 ft
(457 m) and 60 kt (31 m/see) on the surface
prior to encountering moderate turbulence
which forced the aircraft to climb through
the overcast stratocumulus cloud layer above.
Subsequent reconnaissance data at 17081OZ
confirmed typhoon intensity by locating
80-90 kt (41-46 m/see) surface winds in a
10-nm (19 km) wide band tucked under the
strong eastern feederband. Mac made landfall prior to the next scheduled aircraft
fix with geographical constraints severely
reducing peripheral data collection.
Although real-time data were available
which indicated Mac had possibly reached
typhoon intensity, the isolated reports of
strong winds were dismissed as gusts associated
with lower velocity sustained winds.
(Aircraft data are occasionally not used
verbatum when they fall outside reasonable
limits after being analyzed with available
surface reports, satellite data intensity
estimates and the JTWC Maximum-Wind MinimumPressure Relationship (Atkinson”and Holliday,
1977) .) During post-analysis, the reconnaissance data were re-examined using an
intensity study of tropical cyclones
crossing
the Philippines (Sikora, 1976).
For typhoons with maximum sustained winds of
less than 80 kt (41 m/s?@, %~study
shows
that an average intensification of 30 kt
can be expected
for trq?ical.
(15 m/see)
cyclones which follow a track similar to
Mac’s. Reanalysis of the period between
151800z and 1800002 shows, in fact, that Mac
intensified to typhoon intensity before
weakening from frictional effects over
Catanduanes Island on 18 September (Fig.
3-17-1).
FIGURE 3-17-1. TyphoonMac a@.z otoming Co.@wlwneA
Lifand,l%if,ippinzb,
16 .se.ptembwt1979,0038Z.
[lM.SPimag’#c!/)
57
t-i
.,,
,..
.Q.
,..
,’,
.
..-
.
..-
.
.,.
+
.
,..
.
.
.
.
.
-.,
--
-.
.4 - .
-r
.. -.,
----
----
----
----
----
-,’
----
-..
,..
i
- -..
,- -.,
..-
.
,..
.,.
.
,..
I
-
.,
+
+
I
b
&
,, I
+
+
I
k“”+++%
“**
+
+’
+
Y
+
+
,,
f;
1
>.
~.,,?:
,..
00
1-
.
-.’-
.,,
-,”’
.;.
z
.
.h:
,.,
‘J””’”
i
h–t––
$
,i
}. -+
—-. .-1.
I
- -,;
-..
:0
.+-
4“<’ 4’
,t Fh t. ,.Q?:,,
,..
., ...-,;
< ““’”
L.-+” ;–.++..
.+
.+
A+LL.4.4
5.
>’::”.,.;,..
;
-b
..-
.
,’
~“(” .,.
T
;\,
, , ,+, *,:,
,..
!iY:.’-
35
cgw
,
t-
.
TROPICAL STORM NANCY
FIGURE 3-18-1.
Ttop.i,cu.L
Stohm
(18)
Nancyat 35 k-t[1~mjbec].inWn&iXyjuAZa&ttm&nd&.tl on the
bou,ikvcnend o~ Hoi-nunTb&lnd, 20 Septemb~ 1979,O143Z. (lMSP.Aqe.tydkom De,tg, lw, Ku&
A%, Okinwz]
m
FIGIRE3-18-2. TyphoonMac and TJwpicaLSZohiI
Nancyunda.goingFujiuham-OvMadion owt t
ChinaSea, 22 Septembwt 1979, 0302Z. TfIe 4&hoIJAa%du be{oheand a@t
picture? tie
&qWLimpObed [00.t4bmckd 24-hoti.&dhV&
),
(o~F’
hmgoly
@om
U&
S,
MU),
Clahk
A8,
RP]
.SOuih
59
120°
,.,
. -.
‘
-
+-
125”
130
135”
14(T
145”
150°
-
160”
155”
:j
+“
:,,
f’
:;
..).
1
+
~...~
I
T“””
,..
‘+””$ .?
T“’””’”””’
*1
~
.4..
L-..L&
OWEN
TYPHOON
-L‘
BEST TRACK TC-19
22 SEP-01 OCT 1979
MAX SFC WIND 110 KTS
MINiMUM
SLP
918
1
-p-
MBS
1
::’t:::.f::f:
-=--h.J.
,,.
3
lGCY
Eti I
$
.
.
PON?Pi
1.
,..
~ AT
IOSITION
1-i’
,.
S,..!.!
XX/OOOOZ
“ROPICAL DISTUJRBANCE
‘ROPICAL DEPRIESSION
!M
‘ROPICAL STOR(
‘YPHOON‘4
ilJPERTYPHOON START
iUPER TYPHOON END
:XTRATROPICAL
DISSIPATING STAGE
‘IRST WARNING ISSUED
.AST WARNING ISSUED
I
1..
.L.
+.,
.
+
-L..+.
60
..
,..
TYPHOON OWEN
the 2212002 analyses at 500 mb and 200 mb
superimposed. An upper-level trough is
evident on the 200 mb analysis just west of
the cyclone. Southerly winds of 50 kt
(26 m/see) were observed on the eastern
periphery of the trough. Considerable
vertical shear existed in the layer from
500 mb to 200 mb.
It
appears that the
steering and depth of this upper-level
trough rather than 500 mb steering was the
dominant feature in Owen’s movement. Under
its influence, Owen tracked generally northward throughout his lifetime, although
undergoing major changes in speed. He
slowed to a barely perceptible l-kt
(2 km/hr) movement just northeast of Okinawa
(at the latitude of the subtropical ridge
axis) and then dramatically accelerated to
24 kt (44 km/hr) 36 hours later under vertically consistent westerly steering. At this
time, Owen made landfall near Osaka, Japan
and began weakening in intensity while still
accelerating to 47 kt (87 km/hr). Eventually, he transitioned into an extratropical system but not before reaching a
maximum intensity of 110 kt (57 m/see)
(Fig. 3-19-3) on 26 September.
Typhoon Owen developed from a disturbance which tracked south of Guam during
20 September 1979. Two days later, satellite imagery (Fig. 3-19-1) showed that the
system was organizing at the same time that
aircraft reconnaissance data indicated a
definite surface circulation with a 1000 mb
central pressure. This prompted JTWC to
issue a tropical depression warning or.the
system at 2200002.
During the 2 days prior to and 1 day
after 22 September, the syetenrmoved on a
generally westward track at 5 to 8 kt
This speed and direction
(9 to 15 km/hr).
was in good agreement with climatological
tracks. Also, the 500 mb analysis showed a
strong subtropical ridge which indicated
westward steering. Based on this information, JTWC forecast westward movement for
the first 8 warnings. However, Owen
unexpectedly turned sharply to the north
and began moving at speeds of 15 kt
(28 km/hr).
Post-analysis revealed a possible
son for this movement. Figure 3-19-2
reashows
FIGURE 3-19-/.
(19)
Typhoon(kuen
m a
1979,23262.
bfWICL?,
21 S@embex
61
.tJLOpica,t
diA.tr.vl-
(vMsP&lllgVly)
.-
11.5”
/“
.. /--
1?0”
I
130”
125”
I
1
140”
135°
/’
t’
I
J
150°
145*
155”
I
.J+=-.J4E<~
4.
.1
82
./
-L
. . .- .
K(,
.
1
MANI
T
.... ..,, !~++i!-~%1’ti
X-’4f
-!--+==
.
J’
-a.
‘-%-.4---
-+3
,
2
6+
.
+’.”.
.
w
.9+ . . . .
w.’
1-
“t
‘0.wnukz4a
tipicddqau44ion
&caZed
neaz 13N 137E.
at2hid
..C-ri.
* +j . ...+..
.1- .
.
?:. . ...+.
.timeanduku
..
C.-ri.
#
f+..
FIGURE 3-”19-2,
Sf@4.&&
500 Mb .i.40ti
LZh.&2k
“-?.inm uWhcfewnti&zh@ti] and200mbbtzau2he
Septemben 1979.
(thin .2im.6)adwz.!
at 2212002,
.
%,.
.
9
.
.
.
.
,.
.
.
“$..,
-.
62
“.
..-
FIGURE3-19-3. Typhoon cluenal mur.inum.intmtiy
110 !d [57m/4ccJ,26 Wptembti 1979, 0145Z.
[W.SP lnwgay)
63
o~
,
120°
115”
135”
130”
125°
.. . Y
145°
140”
\
...
,
. -..
L-
-
;,
.
I
I
:?
+
.1.
.
TROPICAL
STORM
PAMELA
BEST TRACK TC-20
25 SEP-26 SEP 1979
MAX SFC WIND 45 KTs
J;
--
64
I ‘-Z
150”
155°
TROPICAL STORM PAMELA
Developing at the apex of a wave in the
easterly flow in late September 1979,
Tropical Storm Pamela tracked westward,
north of the Mariana Islands, and dissipated
in Typhoon Owen’s eastern feeder band under
strong vertical shear (Fig. 3-20-1).
(20)
transient wind.band of 60 kt (31 m/see)
north and east of the surface center. The
ARWO on this mission indicated that surface
winds may have been even higher than the
reported 60 kt (31 m/see) . Subsequent
aircraft investigations were not able to
locate winds greater than 25 kt (13 m/see).
The occurrence of maximum winds which
exceed the range of the JTWC tropical
cyclone pressure-wind relationship is
encountered several times each season.
Although several explanations have been
offered for these anomalies, none have been
substantiated.
A JTWC pressure-wind relationship study
(Atkinson and Holliday, 1977) suggested
TS Pamela’s maximum intensity should have
ranged between 25-30 kt (13-15 m/see) for
the concomitant 1002-1003 mb minimum sealevel
pressure reported. Instead, aircraft
data at 2508272 reported a very narrow,
FIGURE 3-20-1. TJLop.i&ttStomn
PamtiuLt.hmaxinum
hubzhi.ned
winch06 45 /&t(23mfhec],24 Scptemba
1979,2232.?.Tht expohedIm-tevct cAm&tion m
a MM.& o~ &Czongvemticat~heti pzoduced by Typhoon
Cwen. (m3P.inMglM.lJ
65
115”
120”
I
13C7
125°
135”
14@
.4-
:i”.:,. ::::
-f
I’i#’
--
149
150”
155°
I
i
r
TROPICAL
STORM
ROGER
BEST TRACK TC ’21
030CT-070CT
1979
MAX SFCWIND45HS
MINIMUM
.. fi.
-
.
.
t
. .
“.’
i
SLP 985
MBS
f.,
~-....
. ..’....
>A
I
. .,,
I
..
I
+..
.,...+4
.. .,.,.
.
&
.
.T.
7-”
&
115°”
-
:,8>
t
..
●
1
-rw.
1
MANIL h
:“:-
;$kf$<
.,.
. . ..L
. ..-
I
j#’”-
,..
61
,
-
~.
r+~:.
em+
. ...+...
.*,
SPEEO
INTENS:TY
-“””{”:’~”Y-%”.-I-B”
.
.
.
.
.
.
-:::::
- -..
*
3
!
’03.
:“”;=oy:’f
““ t“””.+,”,
,
I
,
;:
137
+22
.
d
.
.
.
i7::-
,
. -..
t
.-
:::-
>.- . . .
. .-.
.- .
. . .-..
40
9
04/12Z
40
WOL
+21
Et’!
,.
10
04J18Z
.
.
●
,
13
04/06z
.
+
-..
.
.-
.
.
.
.
.
.t
.
.
.
..
.
.
. .- -.,
a
.
.
.
- -.
.TRU<K .
”.”
-..’
.
-.
. ..----. .- -..
- -.
.
::::
. ...+....OTG
:::
-’wo
“MA --&A;cu~
-“’
“~’&”
;35-:+
;5.”
~. x...
. . ..lp(. .:l~: “::
/ ~
.
:: ::’.:
i
.-
5.
. .- -..
06-
.
) W.
. --..
1
m
-“”
-
.+
,
x
.-
I
I
Hid::::
I;’::::
,
<.
w::., :. :“Ha:
: :~’g 4’~:6:
. .... .. ~....
,
-“
..~
++””
!.
--
>..’
2
T 1P . @ ,*
.,,.+...
11
“+:
0
+
ul,l~
.
.
.
.
.
.
.
.
PON:F
.
.
45
12
05/ooz
45
+20
12
05106Z
45
11
+
;~.:
+19137
.
.
.
?.
.
.-.
LEGEND
j
~
06
HOUR BEST TRACK POSIT
SPEED OF MOVEMENT
INTENSITY
POSITION AT XX/ODOOZ
o..
TROPICAL DISTURBANCE
● **
TROPICAL DEPRESSION
-TROPICAL STORM
—
TYPHOON
*
SUPERTYPHOON START
O
SUPERTYPHOON END
+6+ EXTRATROPICAL
t ● * DISSIPATING STAGE
*
FIRST WARNING ISSUED
*
LAST WARNING ISSUED
A
B
C
66
--
-.
TROPICAL STORM ROGER
As Typhoon Owen began recurving toward
Japan, activity increased in the monsoon
trough that extended over the Caroline
Islands. The increased activity was noted
in the Significant Tropical Weather Advisory
(AEEH PGTW) on 28 September. For the next 5
days, 2 weak surface circulations and
associated cloud clusters within the broad
trough, one southwest of Guam and the other
southeast of Guam, were closely monitored.
As Owen began weakening over Japan, the
southwest monsoon flow into the trough
oriented NW-SE increased on 30 September,
and a line of strong convective activity
developed from the southern Philippines to a
position south of Guam.
(21)
030220z
reported a surface pressure of
998 mb and estimated surface winds of 40 kt
(21 m/see) in a band of strong southwesterly
flow 60 nm (111 km) south of the surface
center. The aircraft also observed a calm
wind center at the surface of 30 nm (56 km)
in diameter with clear skies over the area.
Synoptic and satellite data at 0312002
indicated that TD 21 was beginning to
separate from the broad trough as convective
activity was becoming more directly associated with the circulation center (Fig.
3-21-1). TD 21 was upgraded to a tropical
storm at 06002 on 4 October based on 35 kt
(18 m/see) surface winds and a 982 m sealevel pressure reported by aircraft reconnaissance at 0403082. Post-analysis indicates tropical storm intensity was attained
6 hours earlier.
Post-analysis indicated the existence
of a weak circulation southwest of Guam
which was to become Tropical Storm Roger.
During the entire time preceding the
issuance of the first warning on Roger,
JTWC’S attention was focused on another area
of major convective activity 5° west of the
circulation center which was associated with
strong low-level convergence and cyclonic
shear. Gradient-level winds at Yap of 56 kt
(29 m/see), Palau 52 kt (27 m/see) and Guam
28 kt (14 m/see) are indicative of the
strong low-level winds around the periphery
of the trough. Thus, the initial and the
reissued formation alerts (0206002 Ott and
0222002 Ott) covered the area of heavy
convective activi%y rather than the actual
surface circulation center.
A break in the mid-tropospheric subtropical ridge north of Roger existed as
Owen recurved over Japan. The strong midlevel southeasterly steering current along
the southwestern periphery of the ridge was
responsible for Roger’s 15 to 20 kt ‘(8to 10
m/see) northwestward movement. The ridge
retreated eastward between OOOOZ and 12002
on 4 October as a mid-level trough deepened
over Korea. The loss of definitive steering
flow permitted Roger to execute a cyclonic
loop. After emerging from the loop, Roger
continued on a northwestward track until
north of the ridge axis, after which he
accelerated north-northeastward. Extratropical transition was complete by 070600z
as Roger merged with a cold front south of
Japan.
Numbered warnings began at 0600z on
3 October when a reconnaissance aircraft at
.
FIGURE 3-21-1. TJLopi.ca-L
StOJOIIRoget d 35 k-t[lgml~ec]
.inienb.i.ty
04 Octobtz1979,0054Z. (OLL$P
inugeqjl
87
~~~
~
113
+
11+
~
115
+++++
116
115
116
117
118
121
120
119
+
03+
%
●
✎☛
.“
1
●
~16
f“
-“’”””-
J-J-J-
-1-L
108
~
04112Z
04/18Z
05/ooz
05/06Z
05112Z
05/18Z
06100Z
06/06z
06/ 1ZZ
06/18Z
07/ooz
07/06z
0711ZZ
-
““”
109
110
111
~
lNTENSITY
30
07118Z
5
35
5
08/@3z
40
4
08f06Z
40
3
08/1 2Z
40
2
2
08/18Z
40
1
7
4
09/1 2Z
45
75
lo/12z
,
a
4
70
5
65
4
65
60
4
60
13/06Z
5
110
60
13/12Z
6
100
13/18z
60
-L-l-
J119
410
121
120
TYPHOON
125
SARAH
BEST TRACK TC-22
04 OCT - 150CT
1979
MAX SFC WIND no KTS
50
MINIMUM
35
SLP
929
MBS
LEGEND
5
20
~
A
B
C
06
HOUR
BEST TRACK
SPEED
OF MOVEMENT
INTENSITY
*,.
POSITION
AT XX/OOOOZ
TROPICAL
DISTURBANCE
TROPICAL
DEPRESSION
TROPICAL
STORM
TYPHOON
SUPER
TYPHOON
START
SUPER
TYPHOON
END
EXTRATROPICAL
DISSIPATING
STAGE
A
A
FIRST
LAST
. . .
A
13/ooz
8
5
5
15/ooz
75
12118Z
50
14118z
6
12/12z
55
5
14/12Z
5
90
INTENS IT\
14106Z
75
12/06Z
~
6
90
121WZ
117
14/ooz
100
85
11/18z
75
QTG_
100
3
110
3
3
INTENSITY
11112Z
75
3
10IO6Z
~
3
95
10IOOZ
114
11106Z
75
4
60
1lIOOZ
90
5
4
09/ 18Z
50
1
75
85
09/06Z
1
10I18Z
75
6
40
1
-
3
2
09/ooz
40
2
9
3
3
J--L-L
-I--I-
4113
112
. ●.
-—
O
44+
WARNING
WARNING
ISSUED
ISSUED
POSIT
TYPHOON SASAH
Typhoon Sarah spawned in the monsoonal
trough during late September 1979, This
trough extended from the southwestern
portion of the South China Sea toward Luzon.
A northeast monsoon surge existed north of
the trough, while the southwest monsoon
dominated the area south of the trough. The
circulation was steered initially by the
southwest monsoon and then later by the first
northeast surge of the fall from the Asian
mainland. During the last few days of
September, the circulation meandered slowly
toward Luzon under the influence of the
southwest monsoon, and then looped over Luzon
during the first three days of October as a
mid-tropospheric short-wave trough moved
eastward north of Luzon. Once the short-wave
trough had moved east of the circulation, the
northeast surge intensified and became more
of an influence as the circulation finished
its loop and began its south-southwest track.
(22)
source of food, fresh water, and other
necessities for survival. Four deaths were
attributed to Sarah. On 8 October, Sarah
finally began to track westward and the
weather finally cleared over Palawan Island
and the central Philippines. Sarah’s change
in track was due to the strengthening of the
mid-tropospheric ridge north of Sarah from
Luzon across the South China Sea into Asia.
Aircraft reconnaissance early on the 9th
reported that Sarah’s structure had become
better organized. Earlier aircraft reported
that Sarah was not vertically aligned; but
on the 9th, the mid-level center had become
vertically aligned with the surface center.
With vertical alignment and improved upperlevel outflow, Sarah’s intensity increased
to 110 kt (57 m/see) as ahe became a most
impressive storm. This is in contrast to
her unusual origin.
After Sarah reached peak intensity early
on 10 Octoberr she began to slowly weaken as
On 5 and 6 October, Sarah, now a tropical storm, apparently was again influenced
by another mid-tropospheric short-wave trough
which moved across Sarah’s longitudinal
position and induced the brief eastward
movement in her track. At this time, the
southwest monsoon also increased in intensity
and may have been another factor in steering
Sarah eastward. For almost the entire
period that Sarah was tracking southward,
there was a weakness in the mid-tropospheric
ridge between the Philippines and the Asian
mainland, enabling Sarahts track to be
influenced by short-wave troughs. This
weakness in the ridge resulted in midtropospheric flow that was too weak to
significantly affect the steering of Sarah.
This weakness allowed the surface winds to
dictate Sarah’s direction of motion through
the first 8 days of October. Figures 3-22-1
and 3-22-2 illustrate the surface and midlevel flow patterns which influenced Sarah
during this phase of her track.
During Sarah’s depression stage, strong
easterlies in the upper-troposphere
restricted Sarahss outflow to the northeast,
thus inhibiting development into a tropical
storm. As Sarah ‘proceeded southward, the
easterlies decreased in strength, outflow
increased, and Sarah intensified to tropical
storm and then typhoon strength. It is very
interesting to note that Sarah intensified
to typhoon strength while tracking southward
which is quite unusual for a tropical
cyclone. Several aircraft reconnaissance
flights reported that Sarah had attained
typhoon strength even though her cloud
structure was not well organized.
FIGURE3-22-3. StihwLth bO k-t (31 mf~ec) In.twu.i.ty
one day pfkOh to land@l ovct V&tnonI, 13 O@obe.z
1979,01362. (lM.SPlnlag’Wd
During the first several days of
to
October when Sarah was -s@w ~oping
typhoon strength and rnovYngsouth, Palawan
Island and the central Philippines were
battered by high winds and rain. Thes~
areas were inundated by flooding and landslides which caused massive crop damage and
death. Many vil~ges were cut off from any
FIG(/RES
3-22-1
and
3-22-2cuteon
do.t.&Luin9
she tracked west-northwestward (Fig. 3-22-3).
Sarah continued on a west-northwest track
until dissipation over Vietnam on 17 October.
After 20 days, she dissipated within 300 nm
(556 km) of her origin as a monsoon
depression on 28 September.
pugti.
88
.1”
$“
.U1.
.
,.. 1++’”’””’;
. 1“’”
T“
70
—+
vE
u
-0
-d
+--ft-i--j++++
N+--++
474+-+4-AL--IL
+-*w&w
. ,
,
1
1
71
t
.
120°
125”
TYPHOON
lti
135”
140”
145”
150”
155°
16
]
TIP
,,
BEST TRACK TC-23
05 OCT-190CT
1979
MAX SFC WIND 165 KTS
~
.
.:;
t:
!
~
““t””
t
1
-- t--t-+
!
LEGEND
++
A
06
HOUR
BEST
TRACK
SPEED
OF MOVEMENT
POSIT
+
B
C
INTENSITY
POSITION
AT XX/OOOOZ
DISTURBANCE
. DO TROPICAL
●●.
TROPICAL
DEPRESSION
-TROPICAL
STORM
—
TYPHOON
+
SUPER
TYPHOON
START
O
SUPER
TYPHOON
END
e#
EXTRATROPICAL
● ●*
DlsslpATING
STAGE
A
A
,-.
.7iP
.
.
.
FIRST
LAST
DTG
——
04/002
04/062
04/12z
04/18z
05/002
05/062
05/12z
05/18z
06/OOZ
06/06z
06/122
06/182
07/002
07/062
07/12z
07/18z
08/OOZ
.
SPEED
INTENSITY
—
20
11
25
25
25
25
25
30
7
6
7
7
10
12
3
4
6
7
3
10
,..
.
‘.&.#. 1 ,4=?”
.~-
1+= 1:4
~ml::~~l
135
I$f
\
9+
+’\+
+9
+++
6+
1
40
40
40
40
40
40
7+
+
6+
+
5+
-1-
..”
TCFA~/o
*
41*0
“
4
!
30
35
35
35
4
3
3
lfl 52
ISSUED
ISSUED
.
+
150
10+
WARNING
WARNING
-j#
&
05/oozZ2
1$31$4
&
+..~\.~L\
42
+d””fj
““l
:]::
:.
J”$JQ
~.”
72
..
..
.
.
SUPER TYPHOON TIP
Super Typhoon Tip was the most significant typhoon of the 1979 season, and
possibly the most significant tropical
cyclone this century. Forty aircraft reconnaissance missions were flown on Tip, which
produced 60 fixes, and thus made it one of
the most closely watched cyclones in recent
memory. Aircraft and synoptic data showed
that Tip achieved the lowest sea-level
pressure ever observed in a tropical cyclone
(870 mb) and also had the largest circulation pattern on record (nearly 1200 nm
(2222 km) in diameter).
TS Tip’s surface position dur’~ngthis period,
The best track is based almost entirely on
aircraft surface positions, because the
satellite fixes were based on upper-level
outflow centers, and even the 700 mb center,
as observed by aircraft reconnaissance, was
considerably displaced from the surface
center. Changes in the surface wind direction reported by Truk assisted JTWC in
monitoring TS Tip during this period of
erratic behavior.
Post-analysis shows that Tip’s slow
development and early erratic behavior are
related to the weak, yet extensive circulation patterns that were associated with
TS Roger. While near Truk, TS Tip was still
competing with TS Roger for strong southerly
surface inflow and, until the 8th, was coming
out second best. During the period of
erratic movement, JTWC continued to forecast
a northwestward track with passage south of
Guam . These forecasts were based primarily
on the mid-level steering winds observed at
Guam and obtained by the reconnaissance
aircraft. These fairly strong winds were
from the southeast and were expected to steer
Tip toward Guam. However, at this stage of
development, Tip was evidently too far south
of this wind band and the steering in the
immediate vicinity of Tip remained weak.
Satellite and synoptic data during the
early part of October revealed an active
monsoon trough that extended from the
Marshall Islands through the Caroline
Islands to Luzon. Three distinct circulations developed in this trough: One near
Manila, which would become Typhoon Sarah;
another southwest of Guam, which would become Tropical Storm Roger; and the last
between Truk and Ponape, which was destined
to become Super Typhoon Tip.
It is not possible to discuss the
development of Tip without, at the same
time, examining the development of TS Roger.
The surface analysis for 0300002 showed the
three circulations in the monsoon trough with
strong cross-equatorial flow, most of which
was feeding into TS Roger. This situation
was enhanced, in part, by an extratropical
trough north of Roger over Southern Japan.
The split in the surface flow pattern near
Guam tended to keep Tip from developing
rapidly while southeast of Guam. The upperlevel analysis at the same time showed a
large anticyclone north of Guam in close
association with TS Roger and a developing
TUTT cell about 300 nm (556 km) east of
Marcus Island. The TUTT cell was moving
slowly westward. Only strong upper-level
northeasterliea existed over Truk and Ponape.
On 8 October, the expected northwest
movement began. Roger was far to the north
becoming extratropical, and the southerly
winds that had been flowing north began to
veer toward Tip. The TUTT cell earlier near
Marcus Island migrated to a position northwest of Guam, affording Tip an excellent
outflow channel to the north. Synoptic and
subsequent aircraft data revealed that the
southeasterly mid-level winds finally began
to influence TS Tip, and the 0802082 aircraft
fix confirmed that Tip was heading toward
Guam at approximately 13 kt (24 km/hr). The
minimum sea level pressure dropped to 995 mb
and surface winds were 40 kt (21 m/see).
The satellite signature of the tropical
disturbance near Truk continued to show
improvement despite the initially unfavorable upper-air pattern. A Tropical Cyclone
Formation Alert was issued at 0409002, when
a reconnaissance aircraft found a closed
surface circulation about 120 nm (222 km)
southeast of Truk with a MSLP of 1003.9 mb
and a maximum observed surface wind of 25 kt
(13 rdsec).
\
Tropical Storm Tip continued to intensify
and accelerate, eventually to 20 kt
(37 km/hr) as he headed toward Guam. Until
6 hours before reaching Guam, Tip’s persistence track and JTWC’S forecasts indicated
that he would pass directly over the center
of the island. Six hours before expected
landfall, however, reconnaissance aircraft
and radar ‘positions from Andersen AFB showed
that TS Tip had turned to the west. Tip
actually passed south of Guam, reaching CPA
at about 25 nm (46 km) south of the southern
end of-the island at -O91O15Z. Maximum winds
of 48 kt (25 m/see) with gusts to 64 kt
(33 m/see) were recorded at the Naval
Oceanography Command Center on Nimitz Hill.
Andersen AFB recorded 6.5 inches of rain
between 0818002 and 09180GZ, and an additional 2.61 inches between 0918002 and 0919002.
A reconnaissance aircraft fixed t%e
disturbance the following day about 100 nm
(185 km) southeast of the previous position.
Based on indications of continual development, the first warning on TD 23 was issued
at 0500002. Although the surface pressure
did not drop significantly, the observed
surface winds did increase, and as a result,
TD 23 was upgraded to Tropical Storm Tip at
0600002.
During the period from 0500002 to
0718002, TS Tip gave the JTWC forecasters a
striking example of what the term “erratic
movement” really means. TS Tip first
executed a cyclonic loop southeast of Truk,
then accelerated to the northwest, only to
stall and meander to a position south of
Truk. It was difficult to keep track of
. .
(23)
Shortly after passing Guam, Tip reached
typhoon strength and continued on a basic
west-northwest track. The analyses over the
next few days showed that Typhoon Tip was
moving into an area of strong upper-level
divergence which appeared to cover most of
73
the western Pacific. Rapid intensification
was forecast based upon the favorable
uPPer-leVel Pattern and the continued drop
in surface pressure as observed by the
reconnaissance aircraft. Intensification
was much more rapid than expected, however,
as the pressure between the 9th and the llth
dropped 98 mb to 898 mb. Tip reached super
typhoon strength at that time with maximum
winds of 130 kt (67 m/see) reported by aircraft reconnaissance. The surface analyses
revealed that the circulation pattern
associated with Typhoon Tip had increased to
a diameter of 1200 nm (2222 km) which broke
the previous record of 720 nm (1333 km) set
by Typhoon Merge in August 1951.
Super Typhoon Tip intensified still
further, and at 120353Z, a reconnaissance
aircraft recorded the lowest sea-level
pressure ever observed in a tropical cyclone:
870 mb. This was 6 mb lower than the previous record set by Super Typhoon June in
November 1975. The 700 mb height was 1944
meters and the 700 mb temperature within the
eye was an exceptionally high 30° C
(Fig. 3-23-l). The Aerial Reconnaissance
Weather Officer (ARWO) on that particular
mission remarked that “...one unusual
feature was the spiral striations on the
wall cloud. It looked like a double helix
spiraling from the base of the wall cloud to
the top, making about two revolutions in
FIGURE3-23-1. SupeJLTgphoonTip bhoI.tl.y
befoze the
06 ~70mb wu obbehvd by htconn&i4&znce
a-i.kuqft,12 Octobw 1979, 0012Z. [UMSP .imUgelgl.
aecoti MSIP
74
climbing.“1 Tip maintained super typhoon
strength for the next 54 hours while moving
to the northwest at between 3 and 7 kt
(6 and 13 km/hr). Estimated maximum wind
intensity of 165 kt (85 m/see) was reached
at 1206002.
Steering forecast aids were useless during
this period because they merely steered Tip
in his own large storm-induced flow. Persistence and climatology became the primary
forecast aids during this stage in Tip’s
life.
The immense circulation pattern associated with Typhoon Tip extended from the
surface through 500 mb (and probably higher)
and essentially split the subtropical midtropospheric ridge south of Japan. This
would have allowed an average typhoon to
recurve sharply to the north, but Tip was an
atypical system and the northwestward movement persisted for the next three days.
From the 13th to the l?th, the radius of
surface and gradient-level 30 kt (15 m/see)
or greater winds extended over 600 nm
(1111 km) from Typhoon Tip’s center. The
radius of over 50 kt (26 m/see) winds was
over 150 nm (278 km) (Fig. 3-23-2). The
aircraft reconnaissance data likewise showed
that 700 mb winds of 105 kt (54 m/see)
existed more than 120 nm (222 km) from Tip’s
center during this per<od (Fiq...
3-23-3).
r
t+’
150°
.
.
*
I
.
II
.
.
J03+’
‘1
.
I
97,
,
The 140000ZO&but 1979bu%fa.ce
(~)/gwfkn-t-leuet
[ddd+
) wind dataand
Wtibute andgb.d in the u&&.i.tyo P Sup&t Typhoon
Tip.
Ui.nd.5peed4 ake.in Iumt.6.
lPATRICK W. GIESE, Capt, USAF:
Uission ARwO.
75
.
12s[
.
FIGURE 3-23-2.
.
1
1
1
I
,
13
1
E
1:
1:
.
20 N-
E
-20 N
>m
“m
3
*
m
/
-19N
19Nd
/
\
.
2
\y
/
&
18N-
–18N
42205Z
141915
/\
/“
4
2
m’
1.
17N.
-17N
2
1’
)----
16N
–16N
0
—15N
15N
E
130E
131E
132 E
1
134 E
E
FIGURE 3-23-3.
Plot0~wit
heCOtiAWICe&
&@m fit26thtitin into”
SupehTyphoon T.i.p on
15 Octoben 1979.Tkp’b po4i.tion4 we &ixed at
141915Z cnd142205Z.
Windbahh ohe the meawuod
700mbw&A. The .tw d.@.t o~ the wind dinectbt
2.3 U%O p20tied
LUWI the wind tahb6.
CUZti no 700 mb tui.nd data aw.L&b.&.
An “m” i.ndi-
.-
“.
..
After the 17th, Tip began to weaken .as
the large circulation pattern began to
shrin~. This, together with the effects of
a mid-level trough moving toward Japan from
china, caused Tip to begin tracking north-.
By the 18th, he was accelerating to
ward.
the northeast under the influence of the.
increased mid-level southwesterlies.
The majority of the severe damage
occurred in Japan where the agricultural and
fishing industries sustained losses into the
millions of dollars. Flooding from Tip’s
rains also breached a fuel retaining wall at
Camp Fuji, west-northwest of Yokosuka. The
fuel caught fire causing 68 casualties,
including 11 deaths, among the U.S.
Marines
stationed there.
During recurvature, Tip passed within 35 nm
(65 km) of Kadena AB on Okinawa, which
reported maximum sustained winds of 38 kt
(20 m/see) with gusts to 61 kt (31m/see).
Considering the size and strength of
Super Typhoon Tip, the Western Pacific faired
well. Luckily, the maximum intensity was
reached while the system was still far from
any inhabited areas. The potential for mass
destruction was always there, but from a
strictly meteorological standpoint, Tip was
also a thing of great beauty. One of the
Aerial Reconnaissance Weather Officers
stated, shortly after she returned from a
mission, that “...the second penetration was
beyond description. This is unquestionably
the most awe-inspiring storm I have ever
observed. In the 2+ hours that transpired
between the first and second fixes, the moon
had risen sufficiently to shine into the eye
through an 8 nm clear area at the top of the
eyewall. To eay it was spectacular is
totally inadequate...’awesome’ is a little
closer.”l
At approximately 1901OOZ, after reaching
a forward speed of between 35 and 45 kt
(65 and 83 km/hr), Typhoon Tip, with maximum
winds of 70 kt (36 m/see) , made landfall on
the Japanese island of Honshu, about 60 nm
(111 km) south of Osaka. Synoptic and radar
data from stations on the island showed that
Tip niaintaineda speed in excess of 45 kt
(83 km/hr) as he passed to the north of Tokyo
and eastward into the Pacific Ocean. According to satellite imagery, Tip completed
extratropical transition over Honehu.
The extratropical low pressure center
(the remnants of Tip) maintained winds of
storm force, 48 kt (25 m/see) , until the 21st
when it moved to a position east of Kamchatka
and finally began to fill rapidly.
lCAROL L. BELT, lLT, USAF:
Mission ARWO.
n
-4
SUPER
TYPHOON
VERA
Vera, the fourth aridfinal super typhoon
of 1979, originated in an active nearequatorial trough (NET) which extended
through the Caroline and Marsh&ll Islands.
Vera was first analyzed as a weak surface
circulation 100 nm (185 km) southeast of
Ponape on 27 October and was included on
JTWC’S Significant Tropical Weather Advisory
(ABEH PGTw) for the next 4 days as it
remained in the NET. Low-level inflowduring
this period was split between several weak
eddies.
(24)
The island chain began restricting lowIevel inflow as Vera continued northwestward
toward northern Luzon. Vera made landfall
north of Tarigtig Point packing winds of
90 kt (46 m/see).
After landfall, the onset of enhanced
low-level northeasterly flow over the Taiwan
Straits coupled with strong upper-level
southwesterlies over the Philippines resulted
in vertical disorganization and rapid weakening of Vera. Radar and aircraft reports
indicated the low-level circulation continued
to track northwestward over the Cagayan River
valley and exit into the South China Sea near
Culili Point south of Laoag.’ The upper-level
circulation sheared off near Tuguegarao and
was tracked using satellite imagery northward
over Aparri then east-northeastward into the
Philippine Sea. Surface synoptic and ship
reports at 0700002 indicated that a secondary
surface center existed near Baguio. At the
same time, the primary center was crossing
the Cordillera Central Mountain range 95 nm
(176 km) to the north (Fig. 3-24-l).
By 3000002, synoptic data indicated that
the low-level inflow was now concentrated
into the developing cyclone. Meanwhiler the
convective activity increased rapidly over
a 24-hour period from 31OOOOZ to O1OOOOZ. A
Tropical Cyclone Formation Alert was issued
at O1OOOOZ November based on increased
upper-level outflow and a continued decrease
in surface pressure.
Aircraft reconnaissance at O121OOZ found
an ill-defined circulation center with a
central pressure of 1004 mb and estimated
surface winds of 15 kt (8 m/see). Numbered
warnings began at 0200002 based on an improved satellite signature. Rapid intensification occurred, and TD 24 was upgraded
to Tropical Storm Vera 6 hours later. Vera
continued to intensify, reaching typhoon
strength by 00002 on 3 November while 190 nm
(352 km) south-southeast of Yap. At this
time, the 200 mb analysis revealed that a
large upper-lkwel anticyclone, previously
located northwest of Vera at O1OOOOZ, was
weakening and was no longer restricting
Vera’s outflow to the north. By 0200002,
the anticyclone situated over Vera had
become the dominant upper-level synoptic
feature over the western Pacific.
After exiting into the South China Sea,
the strong northeast monsoon flow accelerated
Vera southwestward, and the final warning
was issued at 12002 on the 7th downgrading
Vera to a tropical depression.
.
From the time of the first warning until
her approach to the Philippines northeast of
Ssmar, Vera moved on a virtually straight
west-northwest track. The major influence
on her movement was the unusually strong
mid-tropospheric subtropical ridge over the
western Pacific. The strength of the
easterly current south of the ridge steered
Vera at forward speeds of 20 to 22 kt
(37 to 41 km/hr)--almost twice the climatological average--as she passed 35 nm (65 km)
south of Yap. As a result, although 3TWC’S
forecast tracks were consistent and accurate,
forecast forward speeds lagged behind Vera’s
actual speeds. The underestimates were
considerable during the early stages of
acceleration.
..“
.“
.
.
.
.
.“
●
$LOwU IEvlI
mm
Vera continued to intensify during her
west-northwestward acceleration and reached
super typhoon intensity only 18 hours after
being upgraded to a typhoon. Reconnaissance
aircraft reports indicated Vera maintained
super typhoon strength for over 24 hours
before weakening as she approached
Catanduanes Island. The peak wind reported
on Catanduanes Island was 50 kt (26 m/see)
at 0512002 as Vera passed just off the coast.
FIGURE 3-24-1.
Ttackb
Otf
hW-f!W&
Od
Uppt?k-&W&
a@m Zhe uppex-lkvd h hmtcd add OVJW
notihw Luzon. Sgnopticand bh.ip JLepoZtb at 0700002
Novonbtiindicate~econdd.ylow-Levelcente.t
neat
Bagu.io
[WMO9~328)l.inditied
bg a 4~1.
Tht
LZJW .&uL&x&d
by bO.t.id
do.tb
.
0700002UULWZ pO&itiOnb
wute.u
(ti.nd
Apu.db OJu2.inkno.tb.
79
8
x
00
.
–t-+
!“,
,,. a”;.!”
‘+
;
-1
~
8
S#e
~g
,.
-+-
.s.
=....:
~
(e ~.
o
‘:
,..
+—t—ti—
t
I
t’.
m“
l--!--l-. -
+-4
,.
,0.
+x
t..+,
~,
k
z..
0
i
P:
_.,
~-a
=!
.
I
+..
--1-.
---1-
–i–--l.
-–t
t l“”
.-F--t-i
-..
I
t..,+.
““lV’I’
+
“:”$0”0””:
;$:”
““’
~~
.
-65
.
.
~..
—T—
.,
(“
-CT
_
.
-3A
-E—
>
(“J”
.,.
.
\
,L/-
-+– +--
-:-~i-~~
““m
I
6
-1
,..
-- i--l
z,.
-0+ +-t---
-1
----i
t.
-1-
“<
7-
.\
-–
s!
--+
..,.
“7
L;
\.
./,
- -+-—t——+—+
T
Y
““\”
.,
+.+
+-. ....+
– –t –-l--+—+—
.
.
‘–-t-—--,++.
..T..
.
,..
;
t.:+
.....
....-,?*,
. ./..,..
, ---–t-+-+-+t
.+
rr
‘~$
,;
....
g
,..........
, ... ....
Fx 1...Pi?
‘1
“s
,0
~-—r—
.T,8,, [“:‘
-1--
TROPICAL STOF.MWAYNE
Tropical Strom Wayne was first detected
as a mid-level circulation on satellite
imagery in early November. Figure 3-25-1
shows the broad cloud structure associated
with the system. Aircraft reconnaissance
around this period showed that the disturbance was most developed at mid-levels.
Wayne moved northward initially and began
developing a more definitive surface circulation which became evident in synoptic Eata
on 7 November.
Wayne lasted only a relatively short time, but he still proved to be one
of the more difficult storms to forecas<;for
1979.
Philippines. At the same time, strong shear
did weaken Wayne as it tracked toward the
Philippines (Figure 3-25-2) and dissipation
occurred as he made landfall over Luzon.
JTWC’S
first forecasts called for
recurvature. They were based on the 0800002
November 500 mb synoptic situation which
showed a weakness in the subtropical ridge
with westerlies extending south to 23°N
latitude. Steering flow at all levels,
however, was not consistent and strong lowlevel easterlies prevented Wayne from
recurving toward the east. On 9 November, an
extratropical system with accompanying
surface frontogenesis developed north of
Wayne. This caused a break in the otherwise
persistent easterly flow and Wayne began to
track northward. JTWC forecasts again
reflected recurvature and called for early
dissipation due to the strong shear from
low-level easterlies and upper-level
westerlies. Tbe extratropical system moved
rapidly eastward bypassing Wayne. By
11 Novemberr strong northeasterlies had once
again been established, and Wayne turned
back to the west, ultimately, tracking
west-southwest toward the central
FIGURE 3-25-2. Tzopicd StMm Wayne wedening
@Long bhea.tab i% approached the Ptippinti,
12 Nouembe~ 1979, C1OOZ.
(lJMsPillag!aiJ)
FKWRE 3-25-1. Ui.b.i2u&nce.btageo&
Waynewhenthe b~b&JfI wub mainlfj
ti,on,
6 Novembti 1979, 120ilZ.
81
TZOp.&t.tStom”
a mi.d-tevet
[OMSP
lmag~]
ciJLcuPa-
due to
j,:
1 .1/
1.
“:
t
BEST TRACK TC-26
01 DEC-02 DEC 1979
MAX SFC WIND 30 KTS
~
MINIMUM
SLP
998MBS
!-’=
,. -,.
.,,
“““
. .
. .
.
....
‘s84
- ----
--
.4
I
?*
.- .A:
:”:-
.
.
--’
. -- .
;;5”, :
:
: ;;&;:;,
.. .
.“:”:
.
--’””
.
-----
.
‘-”””’
‘“
“
:
. .. . . . .
-- me”’ :
“’
.,
: .-:.’
-
-“”””’
..’
Y:P.
‘*L*u
.o~-+”;
-.”.
‘“””
““
w)oz
..-
“--
-“
.
.
““@.@::::,
i,,
‘-”’””
.
...?-.
-.
Wo,Efl
I
.,.-
.-
-..
.
I
,
-..
.
..
.
.
.
- -
I
e , I
I
I
I
KOSRAE
LEGEND
i
~...
.,
1 . . .
]
;
*
..L.
..
’”--”’
.-
.“
y, ~
tf
!9
BEST TRACK
POSIT
SPEED
OF MOVEMENT
INTENSITY
POSITION
AT XX/OOOOZ
TROPICAL DISTURBANCE
C TROPICAL DEPRESSION
-TROPICAL STORM
—
TYPHOON
SUPSRTYPHOON START
O
SUPERTYPHOON END
4+-9 EXTRATROPICAL
● ● ●
DISSIPATING STAGE
*
FIRST WARNING ISSUED
LAST WARNING ISSUED
-
.
.
. -..
.
. -..
;::
+.
.
.
l:....
.
--..-
*
.f~
1
-.,
ti
“!
-.
.
.
.
.
.
.
.
.K.
.
;:;;
‘~
. - ~’
. -.
155”
150”.
::::T-
.,
.
.
-- “-.,’,:
-..
.
.
.
..
.
‘-’”””
--””’”
.- ...,
.
.
.. . .
,,
\
.
:;
““”%.”
?o%~
-“”””
- ““
.. . .
..*
,g$%
345”
.
,.
I“;
*
14CY
‘.;:’:
.
.-
135”
. +...+.-,]
~:’pt:’
●●
L .+$:”:
3@
.
06 HOUR
A
B
C
. . .
s
“.””””
-I-
lG@
.
.
. .
:.,
--”’””
--’””’
.. .
.
.
..
.
.
165”
.
“
-----
.
~
170”
82
.—.
TROPICAL Depression 26
FIGURE 3-26-2.
.&l&&akle
Tkop.Lcd @YW?.Abbn
26 deuetoped
c&u&zti.on and .&@w&@d
huk~ace
an
ah
a .tMCked nok.th-notthwti-. A Ahip,aYtanALti.ng
the mea, pabbed though the AtonmCW.WL and
JLepotied
35 !zt[lg mfaec]w.indb
in heavg &howe)LA.
on Aynop.tic
d~,
the ,@u.t WoAn.Lng
WA bbued
BLued
on TzopicalVepwbbion 26, bti 35 h.t-oa-gk~ti w.LndA
we
nevtitepotiedagain. Thi.A
photo~houu TkcJp&at
?ephtidbn
26 at .@ maxinndn convective
inten.hi.tg,
1979, 2237Z.
(lXtj’P hag~}
30 Novmba
83
–+-+-1
,..
,,,
.
-.
.
- .,.
,. A
‘
.
-“al_ ~ ,
l!
1.
t
w.”
.
Z%-/10
,., -.
\’””
●
.
‘
+
. --..
.- -
--..
,
II
-,.
+-.
m
I
,1
,
!
,
1’
,
,
1
I
1
-,
I
,
.
100{
t “.lA;,
+k,
*.,
‘DLL
:1”’
. .
‘I
“&til
‘.s$1
,,,
●
:@<;,Lw~?
,.
1;
a3nssl 9NIN8VM
Lsvl
a3nSSl 9NINUVM lSWJ
39V1S 9NllVdlSSla
lV>ldOULVUlX3
aN3 NOOHdAl U3dllS
lzWIS NOOHdAl a3dIlS
+
~
● * ●
+++
O
-
,
,
,..
~ Qll
,
.
.
+’+
.
.
.
.
:::0.
q,pw; - h dl
,,{,,
!,-
t:::.:
.
..
.
..
.
.
.
.
.
“?
~“: ::
-.
/
~
,J+’
f:::
1.
.
.::~;
- -Vyyzo
IHX17
@
,.
-
- -/”’-
‘“””
‘“”
-
~+’
t
:
.
i:::i::::
.
m...
!“’’*i”””’l””’j”.l
CIW
.. .
~,~
1111
~NIM
LZ-X
i:::i::::hhk
llSOd XXWl
I
1
0=
8
- .,,
..-
ll.
-1’-
4
.
6fbt
ZOOOO/XX lV NOlllSOd
3
A11SN31NI
a
13dS V
1S39 WIOH 90 Imd
,
‘N’:::: L--’iLt& -dii’iui+m?
I
~“w,N,w
~~s
)(VW
33am-33a
10
)13VM 1S39
1-
A98V NOOHdAl
T
+
I
TYPHOON ABBY
(27)
up being unusual. On our way inbound for
the supplemental fix, there was no problem
reading winds at flight level or on the
surface. Winds were 20-25 kt the entire
way. An area of thunderstorm activity
became visible ahead of us. As we neared
it, the doppler indicated that the 700 mb
center was in the middle of the thunderstorm.
Not eager to go find this out, we went back
to find the surface center.
Enroute, we saw
surface winds in excess of 35 kt which led
us to a fairly disorganized surface center
east of the main thunderstorm.
just
Over
it
was a fairly small light and variable wind
center. Radar showed little curvature in
the shower pattern, but the surface winds
did indicate a weak,circulation existed at
this first position. NO weather existed to
the east of our first fix, and this position
was right on the JTWC forecast track. On
the second fix, things had changed. As we
came in the second time, we encountered
considerable precipitation. Doppler and
search radar indicated a center with a
possible wall cloud forming considerably
west of our first fix. Winds were stronger
at flight level and we penetrated a wall
cloud of about 80% coverage. When we broke
through, we encountered our strongest winds
at flight level. The surface center was
under the eastern wall cloud with a small
light and variable wind center at 700 mb
centered in the eye. Lightning started in
the eastern wall cloud and spread around the
Abby, the last typhoon of the 1979
season, developed over the Marshall Islands
during early December. Abby proved to be an
unusual cyclone in several ways. Throughout
much of Typhoon Abby’s existence, Abby was
not vertically aligned. Aircraft reconnaissance located the mid-level circulation
center displaced as much as 55 nm (102 km)
from the surface center. At one point, two
centers were identified; a point to be discussed later. In addition, Abby fluctuated
between tropical depression and tropical
storm strength several times before
reaching typhoon strength 10 days after
formation.
Within 24 hours of the first warning,
aircraft reconnaissance observed surface
winds of 45 kt (23 m/see) and a sea-level
pressure of 996 mb. The surface and 700-mb
centers were displaced by 12 nm (22 km).
Abby continued to intensify to 60 kt
(31 m/see) on 4 October while increasing the
displacement between the surface and 700-mb
centers.
Abby deviated from a westward track to
a north-northwestward track on”3 December
with a reduced forwartispeed of movement.
The temporary northward movement was associated with a deepening mid-tropospheric
trough which moved rapidly northeastward
away from Japan on 1 December. ~by resumed
a westward track with increased forward speed
after the trough axis passed east of Abby
late on the 3rd.
All available information (climatology,
analog aids, analyses and numerical forecasts)
indicated continued intensification as
Abby tracked towards Guam. This expected
intensification was reflected in JTWC warnings during this period. Howeverr the
opposite occurred. As Abby moved west of
Truk, she weakened to less than tropical
storm strength. An upper tropospheric anticyclone north of Abby restricted Abby’s
outflow and resulted in the observed weakening (Fig. 3-27-l). By 7 December, Abby
reintensified”to minimum tropical storm
strength as she moved westward and away from
the influence of the restricting anticyclone.
Abby then tracked west-northwestward under
the influence of a mid-tropospheric long-wave
trouglioriented along 142E. As the trough
moved east of Abby, the subtropical midtropospheric ridge again built eastward,
providing a mechanism which steered Abby
towards the west-southwest. During the 8th,
Abby once again weakened to less than
tropical storm strength and increased her
forward speed of movement.
Abby was not vertically aligned from
the issuance of the first warning through
the 9th. On the 9th, aircraft reconnaissance
making a supplemental fix at 06172 observed
that Abby possessed multiple 700 mb centers.
By the time of entry into &by for a levied
08302 fix, only one well organized, intensifying center was found. The following is a
storm mission summary by the Aerial Reconnaissance Weather Officer (ARWO), w~~~de
the double penetration into Abby:
mission started out as a normal fix but ended
FIGURE3-27-2. Typhoon Abby’balooout$?owcen.tw
OJW indicated by cwLouM,9 Oecembez 1979,0144z.
[VW’ imagw) Figute3-27-1d on nextpage.
FIGURE3-27-J ~ on ~o-%xuing
puge,
85
~.~
1“
t..
ilm.-J,..’,
,.
i
i
mm-
i+-+-+-
~Y2
:
,
,\l
,
#
‘+~:
1200 mb &?.ILP.MItine aJU2@
04 Guam which gxedhj
.te&&&ted
;
!
.. -.,.
I
;fi
..
“
I
%4
>,
!?T’t’+7@’f++
‘=-’FF’WRE3-’7-’” ...J.-.L..L
....M&~~noMT””o’T””
T
notihtwt
AIREFS d
mtell+e-devtd ,[,
~
)*
d 060000z WC57LWI
1’+17 aqTyphoon Abby ’b OU.?3%W.
@~ $e 250mb ~0 150 mb ~ev~.
UIC moat
I
dominant
cIW2C@Ont
,
. . . ... ., “,,+.,.
\
r
Y
+,-d : .+ *
,,,
.,
~
b,
,..
I
-
I
.
eye. Our drop was made as close to the
surface center as was possible and indicated
a good 988 mb sea-level pressure. The 700
mb height was down 72 meters from the first
fix. The positions were 85 miles apart
causing me to believe that two centers
existed for a short time with the latter
becoming the predominate one. The pressure
profile seems to indicate this theory....”l
Satellite imagery at 0901442 also indicated
the possible existence of multiple outflow
centers (Fig. 3-27-2). While Abby was
reorganizing into a single center, she
began to reintensify to tropical storm
strength. By the 10th, Abby had attained
typhoon strength which made her the last
typhoon of the decade.
A mid-tropospheric short-wave trough
moved from mainland China into the Sea of
Japan and deepened on the 10th. In response
to the short-wave trough, the subtropical
mid-tropospheric ridge again receded eastward north of Abby. The interaction of
these two synoptic features allowed Abby to
again track northwest. On the llth, Typhoon
Abby recurved in response to another midtropospheric short-wave trough, which
extended further south than the trough on
the 10th. This last trough in the series
moved into the northern part of the South
China Sea and deepened, causing Abby to
finally follow a recurvature track.
Typically, recurving typhoons have
their maximum intensities either less than
12 hours after recurvature or prior to
recurvature (Riehl, 1971) . Abby, however,
did not reach maximum intensity until 36
hours after recurvature. By 13 December,
Typhoon Abby reached maximum intensity of
110 kt (57 m/see) with a minimum sea-level
pressure of’951 mb (Fig. 3-27-3). AS Abby
continued toward the east-northeast, she
approached a regime of very strong westerlies
in the middle-and upper-troposphere. The
strong westerlies induced Abby’s acceleration
lCHARLES
B.
STANFIELD,
L%Pt,
USAF:
Mission
ARWO .
87
TROPICAL STORM
BEN
(28)
FIGURE 3-2~-l. Tzop.Zcol StomI Ben at 40 kt
(21 ItI/bCC] h.tenbi.tij, 2~ (ktobe,t
1979, 00592.
Ben WA Zhe .tiu.t
tiopicd cgcbne h the uw.tatn
Mona%?audic dwing 1979. [m.w .onag+vy]
89
2. NORTH INDIAN
OCEAN TROPICAL CYCLONES
seasons between the northeast and southwest
monsoon periods were the favored “cyclone
seasons” (Table 3-4). This was an above
normal season with most activity occurring
during the fall transition per~od.
Durina 1979.
troDical
.––
—. 7 significant
cyclones occurred in the North Indian Ocean
area (Table 3-3). As usual, the transition
TABLE 3-3
NORTH
INDIANOCEAN
1979 SIGNIFICANT TROPICAL CYCLONES
CYCLONE
TC
TC
TC
TC
TC
TC
TC
PERIOD OF WARNING
17-79
18-79
22-79
23-79
24-79
25-79
26-79
06
18
21
27
29
16
23
MAY-12
JUN-20
SEP-23
SEP-25
OCT-01
NOV-17
NOV-25
CALENDAR
OAYS OF
WARNING
MAX
SFC
WIND
EST
MIN
—SLP
NUMBER
OF
WARNINGS
7
3
3
5
4
85
50
25
55
35
26
;
::
967
985
1000
980
995
994
995
t4AY
JUN
SEP
SEP
NOV
NOV
NOV
1267
581
694
1108
720
547
1071
::
;:
7:
,24*
1979 TOTALS
OISTANCE
TRAVEL LEO
93
●OVERLAPPING OAYS INCLUDED ONLY ONCE IN SUM.
TABLE 3-4.
1979 SIGNIFICANT TROPICAL CYCLONE STATISTICS
NORTH
INOIAN OCEAN
JAN
FEB
MAR
APR
MAY
JUN
ALL CYCLONES
o
0
0
0
1
1
00
(1971-78) AVERAGE*
0.1
0
0
0.3
0.5
0.3
0
FORMATION ALERTS
7 of the B (87%) Formation Alert Events developed into numbered cyclones.
WARNINGS
Number of warning days:
JUL
AUG
0
SEP
OCT
NOV
OEC
TOTAL
2
1
2
0
7
0.4
O.B
1.4
0.3
4
25
Number of warning days with 2 cyclones:
3
Number of warning days with 3 or more cyclones:
O
●Frcm 1971 through 1974, only Bay of Bengal cyclones were considered; the JTWC area of responsibility was
extended in 1975 to include Arabian Sea cyclones.
90
+..
.
.
.
.
[
.+.
.
. . .
. . .
. . .
. . ,. [
YCp:n+..
1~
.
w
.
.
.
.
.
.
.
.
.
.
.
.
. +3.
“s-7
~.
Ml”’
J.-
/:,
L
-.
.
.
.
.
7
+
t“/K’7t
..
.
,
,
.-..
k
.’>.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.-
,-
.
.
.-
.
.-
.,.
.
.
.
.
,+4,
,
.
.-
-..
.
.
,-
.
.
.
.
,-
.
.
.
.
.
..
.
.
.
.
,.
.
.
.
.
-.
.
.
.
.
.-..
,
.
15°
.
..
.
.
.
.-
.
..
.
.
.
.
.
.
.
.
.-..
.
.
.
.
.
-.,.
.
I
1
. .
,,.
r
,,.
.
.
.
.
.
.
.
.
.
.
.-
t
.
.
.
,,,
.
-..
,
.
.,.
.
,.,
,
.,,
-.,,
.
.
.,.
,
...
.
.
.
.,.
.
.,.
.
,,,
.
.,.
.
1
.
.
,.4,
..+.
.
..
.
.
.
.-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
#.,
.
.-
.
.-
55”
.
.
.-
.
.
.
t
1
.,..
...
,
t
60”
.
..-
.
-..
.
.
,
.
..,.
.
,..
.
.,.
.
...
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
,. .
.
.
.
.“. .
.
.
.
,.
.
.
.
--.,
65°
.-.
-..
.
.
.
<
--..
.-
.
.
.
.
.
..
.
.
.
.
.
..-
.
,,,
.
.,O
.
,
.,.
.
,..
.-
,
...
,
.,
I
,
,-
.
,
m“
.
75°
.
.
.
#
f
1
t
Em
I
.
1
}0”+
.
.
.
1
.
.
J\p#–/ 7
1
I
.
.
=Y’-Y’V”U”w“)”’+
”””+
.
,
w
,
.
.
: o“:
.,.
.
““+”
.
.
.
.
1 c Z%p’9
”””t”””’-t””””to
.
.
-.,
.
.
.
.
.
t:o’+
/,
Jc
.
-..
85°
!
‘.
.
-..
.
.-
.
.
1
#
0°
.,.
.
.
.
..
.
.
.
.-
.
.
.-
-..
.-
.
,
90°
.
..,.
.
.
.
.
,
95°
. %:
.
.
.
.
t
5“
G“
@
Lr.
.
.:
.,.
.
.
.
.
.
Y
-m
J--
.
IQ
.-..
.
.
.
. ..
.
1
.
.
. --..
.
.
.
.
.
.
.
.
..l.
.
RI
1
~
..\.
. K<
“O
. . . .
“*
+kk—+——
J-....
. t-?-
{:-;,<%
,,
*.-“
[
. . . . .. . . . .
T-r’’
t’xr”“’x”’
%
“a
,“-,
00
r-
L.
92
,..
,U.
I
,..
>
.
*,
.0.
.
.
G“””””””
.
. .
.
.
.
.
.“
. .
.
t
. .-..
..(!
e..
.
.
.
>.
.
.
.
.
.
““
.
.
.
‘N-,
.
.
.
.
.
. .
.
.
”
.
$
.+
.,..
.
.
. .
- -----
-“.””
-..
‘Q
.
.
.
.
.
.
. .
--...’-
.
-“”.
. t
- -.
. .
.
..-
~
~
,.
,.
. .
. .
. .
. .
. .
.-$.. --. . ..- --.:. . -. ----- . . . . .
,.
. .
. .
. .
t+-.. .
. .
...-.’
“’-N-””””””’
%
. .
..-
.iw .
. ....
l-u... ...
.).
. -.
..
TC
17-79
TC 17-79 was the only significant tropical cyclone in the Bay of Bengal during the
1979 spring transition season. Attainin9
typhoon intensity, TC 17-79 was the most
destructive cyclone in India since TC 22-77
(Nov 1977) which, coincidentally, followed
a similar track.
began tracking slowly to the southeast possibly initiating a Fujiwhara type interaction.
By 080000z, a mid-level anticyclone had
formed in the northern Bay of Bengal with
east-northeasterly steering flow over TC 1779 resulting in a west-southwest forecast
track. From 080000z through 090000Z, while
TC 17-79 intensified (Fig. 3-29), the dominant steering flow shifted to the south then
southeast as the mid-level ridge was replaced
by a trough and the upper-level trough dug
southward over India. AS a result of this
shift in steering flow, TC 17-79 executed a
tight cyclonic loop from 0800002 to 081800Z.
From 7 through 9 May, though satellite fix
position accuracies improved due to the
formation of a well-defined eye, forecast
errors increased appreciably due to the erratic movement.
A Tropical Cyclone Formation Alert and
the first warning were precipitated by synoptic reports received from ships participating
in the First GARP Global Experiment (FGGE).
At 1200Z on 6 May, these ships’ observations
defined a cyclonic circulation near 07N-088E
with reported surface pressures near 1003 mb
and wind speeds of 20-25 kt (10-12 m/see) .
The first warning on TC 17-79 was issued at
061507z.
From 060000z through 061200Z, a strong
mid-tropospheric ridge extended westward
along 15N with southeast steering flow dominating TC 17-79% movement. During the same
time period, a short-wave trough, evident at
both middle and upper levels, was deepening
over India. Interaction between this ridging
and troughing resulted in a loss of definitive steering flow in the vicinity of
‘lC17-79, producing an erratic north and then
south track. Also during this time, TC 16-79
located in the southern Indian Ocean about
750-800 nm (1389-1481 Ioa)to the southwest,
By 091200Z, southeast steering flow became dominant with TC 17-79 oscillating about
a northwest track until making landfall over
India (Fig. 3-30). TC 17-79 struck the east
central coast of India at 120800Z, 45 nm
(83 km) north of NellOre with maximum sustained winds of 80 kt (41 m/see). Twenty-one
deaths occurred-and--over800,000 persons were
left homeless as a result of TC 17-79’s
passage over the Nellore district.
FIGURE 3-30. TC 17-79 @t
p4.ioIc
to making 1$.n@@
ouem mt
ccnakzl India with 80 fat [41 m/heel
in.twify,
7’Zhky 1979, 05562. (l?MSP.imagvuj @m
AFUIJC, O{{@
AF8, Ncbmfza)
FIGURE 3-29. TC 17-79 kth weU-de@ted M18U’.O2?
&gnaaime O!LUL@the MMJ2C cyc-f!onic
.&op,8 w
1979,05282. [DK$P~my@mAFWC,
066wJZAF8,
Neb/uzAka]
93
“o
ccl
b -y
i=
;?
.
.
‘5 ‘
“g
.
.-
.
~.
-.
..
.
.
‘t””’
.
.,.
.
.
--“””’“$”- -“”’”“
--“-’”-
.
,
.
.
.
.
.
.
.%.
.,.
.
.
.
.
.
L
.. .
.- -..
Ci
”””’”
..---. .- -..
.
,.-
,T
.
-:;::
. .
.
.
.
..-
. . -U:;
. . . .: :k
. . . . ii..,. ..,.
1
..““
.
.-
-..
-..
.Lf)8
‘a)’
. .
““”’”-”’”” +
.
.
xl-
.
.
““””%
.,.’
.
.“”,
.
.
‘:
. .
. . . . .. . . ..- -. . ..- -,,
.
-::::-::.::;
::::’:
::::::
::::::
--..
. . . . .. . . .
z
”
., ... .... .... .... ..-.
.t
.
.
.
: ::
. -..
.
.
.
.
..
“-
.
.
.
.-
_?
..-
..
.
. -O0 .
544”””””
,E:
..-.
.
1
.
‘“”””“’:”’‘“””
-.
..
..-
I
.
1
.
.
. ----.- . ..-
kl
I
. ----.
. . .
)-
$J
,--
;:
.
+?
1
.
.
.
.
‘“”
‘“
‘-y “
“o
.
~gv:
.
.
.
rk,
.
‘~’~”
:.
- -.
..
.
2’””
: :::::-
--+
““”””
.
.
.
“o
:
.
..-
.
.
.-
-.....
-::::-
-!.
““””’
‘
!
.
.
.
.
.
.
.
.
.
-::-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
.
.
-3
0
&
~
m
a)
b
?0
F-
??
()
00
0
-,~
--
:::::
--;;;:
-o
:
:
--;;;;
-;:
-
:“:::
:
-.::.::
--’”””
w
0o“
:
-
~
--’
-b
--’
“-’””-
“
“m
..
...‘L& ~~o,
:7 ‘1:
..- \}):
. . . .
.
M
, [,,,,:
?L4M33L-.V
-t
-?’j“
r
Q-’
“$
~
,..
,..
N
~ )’‘
.,. r - ~-l
.
7 . . . . .. . . . .
. -.-. . . .
. . . . .,.
m
Q~~
!34
..
TC 18-79
tion, a surge in the monsoonal flow occurred
and a low-level jet could be traced from the
.Somalicoast extending eastward across the
entire Arabian Sea. The strength and persistence of this feature aided the formation
of TC 18-79 in the cyclonic shear side of the
wind maximum. As TC 18-79 intensified and
moved westward, the southwesterly flow
strengthened to a point where 65 kt (33 m/
see) surface winds were observed 600 nm
(1111 km) away from TC 18-79’s center.
Examination of the visual data of Figure
3-31 shows cloud streets indicative of this
strong low-level flow from 05N to 12N between
The gale area persisted durinq
55E to 62E.
TC 18-79”s dissipation over land, weakening
gradually with time. Interestingly, postanalysis reveals the maximum winds in the
gale area exceeded the maximum sustained
winds estimated in TC 18-79’s center.
TC 18-79 began 1714002 June 1979 as a
monsoon depression in the Arabian Sea and
tracked virtually westward throughout its
life, finally dissipating over the Oman coast
(Fig. 3-31). Althouqh TC 18-79’s movement
was confined to a narrow 2-degree latitudinal
band, the extent of the meteorological hazard
from gale force winds encompassed roughly
half of the Arabian Sea. .These gale force
winds were produced by the interaction of
TC 18-79 with the normal southwest monsoonal
flow over the Arabian Sea.
During this season, a climatological
low-level wind maximum develops off the coast
of Somali. Normal wind speeds can reach 3540 kt (18-21 m/see), but the gale area is
generally localized near the coast. However,
beginning 2 days prior to TC 18-79’s formd-
n coab.t
FIGURE3-31. TC 18-79&mated jut 066 the
wLthga.&~omt@kdA to ~/tcAOU7%,20 June T
1 79,
07312. Suptipobed
ahe bhi.p ohbemw.tiw
at 2006002.
(V$KPkagag@
omAFQ3c,
O@t-tAF8,
!@kutil
95
+
55°
1
60”
,
1
- ‘--
-
iix
65°
A
\ -1
-
70”
1
-,
‘r”-”
‘(;
-
J
1
}.””
t
“+”
...
.
I
.
.
.
,.
t
.
-.
.
-”--”
.
+“”\”+
.
t
.
.
I
“ Wwklt
“
..’.....
.
hj ~ .’ $.
1
. .
..
.
..
.
.
“
MINIMUM
/-
SLP 980
. ...,.
.
.,.
.. . . . . .. . .
. . . . -. . . . .- -..
.
.
.
.
.
.
.
.
I
I
.,.
-.
.
.
.
-----
50
2-76)
.
---.
-..
45°
2 (NEW
.
.
7’.
.-
-..
1
.
.
.
-----
.
1
t
.
.
.
.
.
.
.
.
.
#
55°
-..
.
.
.
.
.
.
.
.- . .
. .- -.
. .
.
.-
.
.
I
,
.
.
.,..
..
,
60°
.
”-” i{l;
~ ‘+-
‘“”””-
.
.
L-
.
-“”””,
!
. -..
.-
i
“t “
:.
.
.
.
10I3’
.
,’
.
.
.
t “ “
.
.
‘n;%“ -uA\’
“~-~_”~
““.
-L
~ -r.
~~
-..
.
---
. .- -..
.
-..
:0:
.
.
.
. . -..
.
. .. . .
.
~
- .
----i
,-,-.
MBS
.
“% “
.
.
BESTTRACK TC23-79
21 SEP- 25SEP 1979
MAX SFC WIND 55 KTS
.
-=
95”
w
85”
,
--+?-T *
.
..
.//.
::”-
.?
. .
. .
..-
....
..
-.->.
.
H
kL-2-L7
rr--
“::Yw’ i
. . . . --.. . ,- -.. “’
. . .. . . ..
.
‘“”
R&~( $“”””-
‘-’”
‘,}-~~t~”)[t’”]t
LZ3.
.
8@
-1-t-r
“1”””
‘“
75°
““/’”-
- -“””””
-x-
r ,
!
--
.
I
!
65°
-’.’-
.
. .
.
-..’.
-1-’. .
LEGEND
~
06
HOUR BEST TRACK POSIT
A SPEED OF MOVEMENT
B INTENSITY
C POSITION AT XX/0200Z
000 TROPICAL DISTURBANCE
. . . TROPICAL DEPRESSION
-TROPICAL STORM
—
TYPHOON
+
SUPERTYPHOON START
O
SUPERTYPHOON END
+.$+ EXTRATROPICAL
● . ● DISSIPATING STAGE
*
FIRST WARNING ISSUED
*
LAST WARNING ISSUED
,. -..
.,
. .
.. .
.
.. .
. -..<.
t
I
8(Y
..-
-..
. .- -..
BESTTRACK TC 22-79
21 SEP-23SEP 1979
MAX SFC WIND 25 KTS
MINIMUM
+o’t—t—
Ill!
. . . ....
. . . .. . .
. . .- -..
.- . . .
1
I 1
!
85°
SLP 1000
.
.
.
.
1
....1
r,,,
. .
-..
-..
-..
90°
MBS
. . .
. .. ..-
.
-w .
5°
.
.
.
-%
.. .
. .
-..
-..
,
95°
.
.
0°
.
. %:
. .
.
, , 5“
-00”
co
Y2
45°
55°
60”
65°
-->!’
+>.
I
.
.“’
-
“
-l
.
5-”-
70°
. .,,
.
+-”
..
,
.
..
75”
.
..
JJ-
(J .
80
.
.
.
.
.
.
‘r’i’’”-
.
.
.
.
.
...+...
L.A
“
‘
~
85°
(
. ~....<,
.~.
-,
-K.k
-“?
.
.
.
.
.
,..
.
.,,L
t
“=t%t+k~-+4~.
.
.
.
..J-.
-;:::-
.
1
BESTTRACK TC25-79
16 NOV - 17 NOV 1979
MAX SFC WIND 40 KTS
,
“
.
MINIMUM
SLP 994
.
. . .. . ‘ 40—
I
.
.
L
‘-r’””’
-Y.
.
-
.
l!o~+
.,,
--
.
~
-.
-.
.
..-
-.
.
..-
...
-.
.
..-
-.
.
..-
.
-’””-
...+...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
MINIMUM
j+:,
r~
51P 995
.
.
;
i
25°
*T
MBS
.
ti
,
k
.
.
.
k
-A....&..
TCFA~”
l\
~
.
.
.
.
.
..-
..
.
.
.
.
.,.
-“””-
-“”””-
I
~
.
. . . .
-..
.
.
.
I
~,f”
~’” -q--?/
,q
.A--J-
.,.
.
+.
.
. .,.
100”
33”
.!.
4..
w
u
.
95°
-:::
. ... ..-
. . . . .
-.,
.
...._
MBS
.
7-–
BESTTRACK TC 24-79
29 OCT -01 NOV 1979
MAX SFC WIND 35 KTS
1
t
.
—-7--
.--’
-
“ - ‘“”’-
‘w
.
.
.
.
. -..
.
.
.
-’”
“.”””-
5“
LEGEND
~
/
.
.
.
.
..
.
.
.
.
.
.
.
.
-.
.
.
.
,
A
B
C
000
.,.
...
--
“.”””
1- ‘“’””.
-.
.
.
.
.
—
+
06 HOUR BEST TRACK POSIT
SPEED OF MOVEMENT
INTENSITY
POSITION AT XX/0200Z
TROPICAL DISTURBANCE
TROPICAL DEPRESSION
TROPICAL sTorcM
TYPHOON
SUPERTYPHOON START
.
--.
.
..
.
..
.
.
..-
-.
.
..-
.
.
.
..-
.
.
..-
-.
.
.
.
.
..,.
. -.
-,
.,..
.
...,.
.
...
.
.
.
.
.
.
.
.
.
+
.
0°
...
.
.
.-
.,.
.
.
..
.
.
.
.-
.
,
- -,,
.
.
..
.
.
.
.
. ...
.
.
.-
.
.
,+.
,.,
,
,,,
$;
co
JO
$5°
95°
60°
65°
70”
1
“\”
.
.
. .-.
“ “ - “’.’”\
“\”””
-“”””
%
“J”
‘ -“.”
1
r
./.
““
f’
?-@-.-”-
1
.-
.
80’
.
..-
““.
(. -~RtiH( “~,: ;..-
1
75”
85”
,
:.
. >.<.
---
.
;+~fl
-.-k%
-
--
‘--~
. .
.
..-
-.
.. .
.
. -----
.
. --,
.
. .
.,.
. -- .
.
. . - -..
. -----
.
. .. .
.
---. -- .
.
BESTTRACK TC 26-79
.23 NOV-25NOV 1979
MAX SFC WIND 30 KTS
.
.
.
MINIMUM
.
..-
.
.
; ~k-
‘“”
q+fi.
~J=j:
::
->-+
: ~J‘;
“~
“R~
.D:&i
‘-”
; 25A4z
.
Iocf
:+
~
‘0
);
-
-“”’
7- ..
:
‘ii
~ ‘“.,.[ ”
“ “-””
SLP 995 MBS
. ..>”
I
. ~ --,”~ ~ --’.
. . -- .
95”
=i,Q=”-
{
.
m
1
)..
.-L.
?
‘J
;fx’ --“-”=0
S..
.J
.
.
..J
.+..,-
k&I-d
4..
I
45”
/.+
1
. .
t
..+.
.$
I
I
5ff
55°
‘-i
I
I
,
,..
.
t“””’t”
. . . .+””+’
LEGEND
. .
l-406
H0uRBEsT TRACK POSH
A SPEED OFMOVEMENT
B INTENSITY
C POSITION AT XX/0200Z
. . .
TROPICAL DISTURBANCE
. . . TROPICAL DEPRESSION
-TROPICAL STORM
—
TYPHOON
+
SUPERTYPHOON START
o
SUPERTYPHOON END
+++ EXTRATROPICAL
● .+
DISSIPATING STAGE
FIRST WARNING ISSUED
LAST WARNING ISSUED
*
I
60°
....#.-
J
65°
70°
36”
..,.
. . .
. . .
-..
I
75°
I
1
. .- . .
. . -. .
. . ..-.
.
.
.
,
I
,
80
.
.
.
.
.
.
II
~B .
.
I
.
. .. .
.
. .- -..
. .. .
.
.
*’”-
-“”’-
8Z’””
,..
!
I
~ y
1
1
. .-
‘“”’””
. ...’.
1
-.%
)
9 o“
.
,
95°
J5”
?OOO
~
26-79
FIGURE 3-32. TC 26-79 a on expowd &X.U-&Vd
&JW.LNowmba
1979, 04552.
[VM3P Anaguy
@om
AFG%oc, 06@tt AFE, N@uulu}
IluXon,24
99
CHAPTER IZ
SUMMARY
OF FORECAST VERIFICATION
1. ANNUAL FORECAST VERIFICATION
and are disDlaved in Table 4-1. Annual mean
errors for ;ll-tropical cyclones are listed
in Table 4-2 for comparison. Frequency
distributions of the vector errors for 24-,
48-, and 72-hour forecasts on all 1979
tropical cyclones are shown in Figure 4-1.
Annual mean vector errors are graphed in
Figure 4-2.
Western North Pacific Area
a.
Forecast positions at warning times
and 24-, 48-, and i’2-hourvalid times were
verified against corresponding best tracks.
Vector errors and right angle errors for
individual tropical cyclones were calculated
TARLE
CYCLONE
:::
17.
18.
19.
20.
21.
22.
23.
TY ALICE
TX BESS
TY CECIL
TS DMI
TD-05
TY ELLIS
TS FAYE
TD-08
TS GORlY3N
TS 350PE
TD-11
TY IRV2NG
ST JUDY
TD-14
TS RSN
TY LOLA
TY NAc
TS NANCY
TX OWRN
TS PAMELA
TS ROGER
TY SARAR
ST TIP
24.
25.
26.
27.
28.
ST VSRA
TS WAYNE
TY ASBY
TD-26
TS BEN
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
ii:
9LL FORECASTS
4-1.
FORSCA8T
POSIT
ERROR
18
;:
23
12
25
35
43
23
23
47
26
18
33
:2
23
28
25
::
;:
43
27
31
21
34
25
TAEIJ? 4-2.
WARNING
ST ANGLB
SRROR
#
POSIT
ERROR
WmW8
105
114
51
11
15
11
16
12
21
21
20
12
16
30
17
12
19
13
10
16
19
15
22
19
16
15
20
14
17
21
40
24
6
22
20
5
13
33
14
38
39
16
i;
60
23
22
52
6
1::
158
71
138
195
129
134
144
163
105
157
116
8S
93
116
146
254
195
61
135
14s
170
164
55
1s
10
81
16
ANNUAL
1:
23
35
14
37
6
83
73
62
1;:
57
86
70
90
75
94
98
51
43
60
64
66
86
78
15
93
:!
69
115
108
28
89
124
695
MEAN
24 HOUR
RT ANGLS
ERROR
FORECAST
77
VECTOR
1971
1972
111
117
1973
1974
1975
1976
1977
1978
1979
108
120
138
117
148
127
124
48 HOUR
POSIT Rl ANGL8
ERROR
ERROR
——
#
NRNGS
47
17
37
23
3
18
17
4
9
29
10
34
36
5
10
21
27
9
33
2
13
39
56
19
16
48
3
6
591
FmiF
WRNGS
ERROR
72 FIR
ST ANGLE
ERROR
—
#
WRNGS
—
222
265
191
244
175
164
131
171
43
13
33
20
338
34s
320
315
271
240
215
257
145
167
396
173
266
138
286
173
296
278
172
196
216
250
103
185
180
113
99
;8
2%
138
118
111
148
152
1s6
158
14
14
3.
5
23
6
30
27
1
7
19
19
4
29
449
376
171
441
277
278
188
129
344
213
1
21
2
26
23
415
2s7
279
227
327
195
236
227
219
256
3
14
19
1
25
251
110
259
249
362
286
108
86
142
111
295
19s
9
34
52
15
12
39
303
143
345
385
443
338
178
107
214
247
413
21s
4
27
48
11
4
26
316
223
368
3;:
121
140
287
16
2
226
151
471
39
9
::
ERRORS FOR THE WESTERN NORTH PACIFIC.
72-HR
48-SIR
24-HR
YEAR
PACIFICSIGNIFICANT
TROPICALCYCLONES.
ERROR SUM14APXFOR THE 1979 WESTSRN NORTR
VECTOR
RIGHT AWGLE
VECTOR
RIGHT ANGLE
64
72
212
245
118
146
317
381
177
210
74
78
84
71
83
75
77
197
226
288
230
283
271
226
134
157
181
132
157
179
151
253
348
450
338
407
410
316
162
245
290
202
228
297
223
RIGHT ANGLE
100
1
100
200
300
aa
600
500
NAUTICAL
MILE
700
800
900
1000
1100
700
800
900
1000
1100
700
Boo
900
Woo
lWO+
ERROR
50
40
N
i
B 30
E
R
j
I
: 20
s
E
s
10
0
100
200
300
400
600
500
NAUTICAL
MILE
ER~
50
w
40
N
i
: 30
R
~
:
20
s
:
10
0
100
200
300
400
FIGURE 4-7.
i%e.quency d&t4ibtin
tiptcal
cgcbnti
in
600
50+3
NAIJtlCAL
MILE
ERROR
and 72-hmLJL
ofj 1979 24-,
48-,
.i%z we.b-twus NoJ@L Pa&fic.
101
60JlW.&t
Vb3X%t
VULCW
150a &
@3ni&.#u
WESTPAC FORECAST ERRORS
0(
NM
500
B
450
~1
400
35
350
300
30
25
250
10
200
15
150
10
100
5
50
D
1971
1972
1973
FIGURE 4-’2. Annual
1974
umtoz mo.u
1976
1975
(m] 60JLd.t cydonu
102
1979
1980
in the wc!h?xn Nom%
Pau@.
1977
1978
Intensity verification statistics
for all significant tropical cyclones in the
western North Pacific area are depicted in
Figures 4-3 and 4-4. The average absolute
magnitude of the intensity error as well as
the intensity bias (algebraic average) are
graphically depicted. An analysis of the
errors indicates that JTWC intensity forecasts often lag true intensity. In intensi-
fying situations, JTWC underforecasts, while
in weakening situations JTWC overforecasts.
This causes a large average magnitude error,
but a small average bias. Verification of
intensity forecasts by objective aids is
also depicted in Figures 4-3 and 4-4. (An
explanation of the objective forecasting
aids is found in this chapter, Section 2Comparison of Objective Techniques.)
KTS
40
I(TS
40
30
30
20
20
10
10
0
I
Q
0
-10 ~
HRS
- KEY JTWC —
CLIM -----C:T;:
.--=..-..
----ECR _
-lo
24
48
72
HRS
24
48
72
/
FIGuRE 4-3.
FIGURE4-4. Compal.i40n
0{ aw.kagcintenbtiyVM.oti
(btiti) dotd-t Cy&OYZ&4 -in tit
w.?A.teh.n NonthPac.ifjic.
CompoAiAon
oh ave.kagc
intenA.&yehAom4
(mzgtie) AohaU cyctontiin .thc
wtitctnNo&thPac.@c.
103
b.
North
Indian
Ocean
Area
area.
Table 4-4 contains the annual
average of forecast errors back through 1971.
Vector errors are plotted in Figure 4-5.
Seventy-two hour forecast errors were
evaluated for the first time in 1979.
Ocean
Forecast positions at Warning times
and 24-, 48-, and 72-hour valid times were
verified by the same methods used for the
western North Pacific area. Table 4-3 is
the forecast error summary for the significant tropical cyclones in the North Indian
FORSCAST
SRROR SUMRRY FOR TSS 1979MATS
SIGN.7FICAWT
TROPICAL
CYCLONES.
TARLE 4-3.
WAP3i2NG
POSIT
ERROR
CYCK)WE
TC
TC
TC
TC
TC
TC
TC
17-79
18-79
22-79
23-79
24-79
25-79
26-79
ALL FOSECASTS
ST ANGLE
EPJtOR
139
137
122
160
190
189
14a
151
;:
31
26
12
10
14
13
8
10
46
24
93
17
24
34
21
WSNGS
.—
tOSZT
sRROR
1::
103
B3
22
1
7
9
9
4
5
233
363
170
253
482
121
163
192
284
122
104
332
73
21
18
4
3
5
5
1
2
99
63
270
202
38
ERROR
95
78
90
ANNUAL
M23AN
FORECAST ERRORS FOR THE NORTH
was not included prior to 197S).
TARLE 4-4.
232
1971
107>
-----
101
---
77A
“-.
99
182
137
145
138
122
133
151
1973
1974
1975
1976
1977
1978
1979
INDIAN
:;
108
94
86
99
INDIAN
112
299
238
228
204
292
202
270
160
146
144
159
214
128
202
FORECAST
#
WRNGS
—
346
296
14
773
1036
629
902
2
1
437
371
17
ERROR
.—
(the Arabian Sea
72-HR
410
292
OCEAN
72 HOUR
RT mGLE
ERROR
Posm
s
wRNGS
OCEAN
RIGHT ANGLE
VECTOR
RIGHT ANGLE
VECTOR
E“
ERROR
—.
48-HR
24-HR
YEAR
I
POSIT
=R
.—
INDIANOCEAN
48 HOUR
24 EOUR
#
WRNGS
::
54
48
48
50
52
I
Forecast intensities were not
verified.
VECTOR
RIGHT ANGLE
437
371
ERROE3
NM
NM
500
500
437
) 72HR
43NR4 i+
400
10
400
“\
‘s
‘\.
300
a*
—
—
—
300
h3NR
200
200
1 )y2
%*
.
13?-, *,<
~:m,-,
,38
b,=,-,,
~z?-s-’.’i
~
.*.-:4
J24H’
100
100
0
1;2;1
1972
[4)
1973
(41
1974
<1)
197s
(6)
1976
(s)
197
(5)’
19
(4T
F3so
o
w
ABABIAN SEA NOI’ INCWCSD PRIOR TO 1975
FIGUKE4-5.
A&
mean vec.tot eA.ZOZA /nml doa ul-t CY~Onti
kn fie No~
In~n
Ocean.
704
.-.
-.
2. COMPARISON
a.
OF OBJECTIVE
TECHNIQUES
cyclone forecast positions and intensity
changes for initial latitude/longitude
positions. The data are arranged by months
and are based on historical data which
includes 1945 to 1973. This detailed climatology replaced the previous JTWC climatology
on 1 September 1980.
General
Objective techniques used by JTNC
are divided into four main categories:
(1) climatological and analog techniques;
(2) extrapolation; (3) steering techniques;
and (4) a dynamic model. The analog technique provides three movement forecasts:
one for straight moving cyclones, one for
recurving cyclones and one which combines
the tracks of straight, recurving and
cyclones that do not meet the criteria of
straight or recurving analogs. All techniques were executed using the operational
data available at warning time.
b.
(5) 12-HR EXTRAPOLATION - A track
through the current warning position and the
12-hour old preliminary best track position
is linearly extrapolated to 24 and 48 hours.
(6) HPAC - The 24- and 48-hour
forecast positions are derived by averaging
the 24- and 48-hour positions from the 12hour EXTRAPOLATION track and the CLIM track.
Description of Objective Techniques
(7) INJAH74 - Analog program for
the North Indian Ocean similar to TYFN75,
except tracks are not segregated.
(1) TYFN75 - Analog program which
scans history tapes for cyclones similar
(within a specified acceptance envelope) to
the current cyclone. Three 24-, 48-, and
72-hour position and intensity forecasts are
provided (straight, recurve and combined).
(8) TYAN - w updated analog program
which combines TYFN75 and INJAH74.
(9) CYCLOPS - An updated version
of the MOHATT program which has the capability to select steering forecasts at the
1000, 850, 700, 500, 400, 300 and 200 mb
levels.
(2) MOHATT 700/500 - Steering
program which advects a point vortex on a
preselected analysis and smoothed prognostic
field at designated levels in 6-hour time
steps through 72 hours. Utilizing the previous 12-hour history position, MOHATT computes the 12-hour forecast error and applies
a bias correction to the forecast position.
c.
Testing and Results
of selected
techniques
A comparison
is included
in Table 4-5 for all western
North Pacific
cyclones and in Table 4-6 for
Indian Ocean cyclones. In Tables 4-5 and
4-6, *,x-~lsvorefers to techniques listed
horizontally across the top, while “Y-AXIS”
refers to techniques listed vertically.
The example in Table 4-5 compares CONB to
MH70.
In the 425 cases available
for
comparison, the average 24-hour vector error
was 134 nm for COMB and 160 nm for NH70.
The difference of 26 nm is shown in the
lower right. (Differences are not always
exact due to computational round off.)
(3) TCM- The Tropical Cyclone
Forecast model is a coarse mesh (220 km) PE
Model, with the digitized storm warning
position bogused in the 850 mb wind and
temperature fields of the FLENUMOCEANCEN
Global Band Analysis. Hemispheric forecast
data are used on the boundaries.
(4) CLIM - A climatological aid in
the form of 24-, 48-, and 72-hour tropical
105
TABLE 4-5.
24 HR FCSTS
STATISTICS
FOR YEAR
~
~
!4wJl
mm
_
Q3!m
~
Q
~
Qy
w
:. . . . . . ..-y..-. .-..----::
X-AX13 ;
:-~
;
~&&.:
m:
JTHC 591 124
124
0
STA4 ;;: 1;;
;;; 153
0
RECR 516 127
139 12
489 153
136 -16
524 139
139
0
;.”..-—--...”.”.*
.); ~-=
:
_
i D—
Y-x
:
:-
~:-clm
~.
:
~!
j
i
. . . . .. . .. .. .
L“”””..——..”.”
CLIMB;4J 124
10
514 153
133 -19
509 139
135 -3
551 135
135
0 /
b4i70435 123
159 36
407 150
8
158
399 136 L.4?&j.l.; 445 15$
163 26 ;;~i;
158
0
t4i50425 124
158 35
396 152
157
5
~.
136
25
413 135
159 24
430 159
1S7 -1
434 157
157
0
TCWI 121 122
132 10
111 152
134 -16
104 128
146 18
115 127
141 14
96 148
143 -4
%
138
142
4
124 136
136
0
CLIM 305 129
150 20
282 165
142 -22
265 152
150 -1
;;9J 145
3
245 170
149 -20
245 162
150 -11
93 144
153
9
315 150
150
0
XTRP 572 124
150 26
521 152
146 -5
511 138
153 15
538 133
150 17
439 159
145 -13
431 154
145 -12
124 136
6
142
309 150
168 18
584 149
149
0
HPAC 559 124
134 10
514 152
129 -23
501 137
135 -2
527 13;
134
434 158
133 -24
426 158
132 -25
124 136
129 -6
309 150
138 -II
571 150
134 -15
571 134
134
0
JTUC :~6 226
0
STFi4437 224
309 85
462 306
306
0
RICR 415 232
247 15
422 306
248 -57
440 252
252
0
C(M8 440 225
244 20
449 306
243 -62
430 2:;
243
f~
?3+70 ;;: 22:
;4J 30;
323 249
318 69
347 243
310 67
359 30$
308
0
!Oi50 330 220
299 79
339 305
296 -8
320 247
297 50
345 242
297 55
345 310
292 -17
35$ 295
0
295
TCJ43
97 314
255 -57
::;
2?: 2;?
2:! ‘H
2]: ~;;
2::
;:$ 257
0
CLIM ;;: 2;;
249 330
243 -86
222 276
251 -25
247 265
252 -12
20S 337
242 -94
206 294
242 -51
75 272
260 -1I
263 250
250
0
XTRP ;;; 224
67
450 3M
290 -13
430 249
298 49
454 241
292 51
351 309
295 -13
353 296
291 -4
101 255
311 56
260 249
325 76
485 291
291
0
HPAC ;;; 223
9
442 305
231 -74
418 246
235 -10
442 242
233 -7
345 300
231 -75
346 295
228 -66
101 255
245 -9
260 249
235 -!3
471 291
233 -57
2fi 2;;
STATISTICS
72
FOR YEAR
JTUC
JT14C;;:
Hi70-u3FA2T
STRA
700-2f3PKG
@4J50-K3nTr 500+9PKG
mt3-’LKu1mLCYcCmr
an’l ——
xLFP—12-wJR-cN
3!PM2-lEuJcFxIfemm —
244
0
(CNz-ww)
471 233
233
0
FCSTS
HR
RECR
2@i70
CC468
HH50
TCMO
CLIM
316
0
STRA338 315 381 453
443 129 453 0
RECR
319
346
456
360
349
327
331
-3
348-107
349
CO148
343
328
316
12
370
452
343-109
:::
:;;
::;
340
0
MH70
230
471
325
147
260
474
236
488
362
126
269
475
352
122
464
10
5W50 227 329 254 467
482 153 481 14
TCMO 73 314
347 33
0
:;;
473
0
234 364 257 355 259 469 265 486
488 124 482 127 479 10 486 0
78 445 69 351
376 -68 393 41
78 359 61 543 62 484 84 372
380 22 4131-141 396 -87 372 0
CLIM :;: 308 208 494 179 357 204 366 161 506 164 483 64 389 218 332
7 333-160 338 -18 334 -31 329-176 331-151 353 -34 332 0
106
.
7.
.
.
STATISTICS
FOR
INJA
JTWC
JTWC
24 HR
YEAR
FCSTS
MN70
MH50
TcMO
XTRP
............................................
:Nu.lBm
:
X-zixm
:
:
:
cl?
mam~
~
:
:
:
CASES
:
Emm:
:
..~
.. .............+
.... ................
;
/ :
.
Y-AXIS
:
180
:
..* :
: TKTiNICUE
E
0
Di%$&E
;
/“
:
Y-x
?..”...:...
=...s ..”
:
lZR132R
.
:
S...................A ....................175 ;...uup..p
-1:173:
0:
......... .......
63
151
151
INJA
48
125
134
-7
52
127
127
0
MH70
28
173
159
14
27
175
132
44
30
180
MH50
27
167
158
9
26
164
132
32
Z9
173
TCMO
2
164
43
121
2
164
53
111
2
164
73
91
16;
l;
XTRP
61
146
147
0
52
130
127
3
30
148
180
-32
29
149
173
-23
2 164
14 -150
65
148
148
0
HPAC
40
135
148
-12
32
128
134
-5
16
146
179
-31
15
148
175
-26
2 164
43 -120
40
135
145
-9
STATISTICS
0
FOR
JTWC
MH70
INJA
MH50
INJA
26
227
252
-24
26
227
227
0
MH70
14
360
332
28
9
365
273
91
15
340
340
0
PIH50
13
407
338
69
8
447
298
149
14
388
331
57
14
388
388
0
0
34:
2:;
34;
&
00
:0
XTRP
1
343
HPAC
343
0
XTRP
36
259
272
-12
25
243
235
8
15
243
340
-96
14 388
252 -135
1 343
110 -232
37
255
255
0
HPAC
23
231
270
-38
18
224
235
-11
8
233
310
-76
7 424
249 -174
1 343
86 -256
24
225
269
-43
STATISTICS FOR YEAR
72 HR FCSTS
INJA
NH50
MH70
JTWC
17
437
437
0
INJA
12
262
350
-57
12
292
292
0
MH70
2 876
460 -415
1
263
361
-97
2
460
460
0
MH50
2
838
1
1033
361
672
2
838
460
378
876
-37
135
0
. .
... .. ......... ............
:
;JIW-@FICIAL
JT$KFORKXST
:
:
; INJA- ANAI&X (llU3AH74)
:
; MH70 - IKHA1’T 700-MS Pm
:
; MH50 - Imi?frT 500-MEI Pm
:
: X7!FlP- 12-HOUR EQT@KIATI~
:HPAckEA!J0F2fIT@AlJD Uml’w3Y:
% .....................................................i
270
0
JTWC
40
135
.
38
270
‘o
0
164
0
TCMO
JTWC
TCMO
2
164
HR FCSTS
48
YEAR
HPAc
2
838
838
0
TABLE 4-6.
1!37
24
225
225
0
CHAPTER Z
1.
JTWC
APPLIED
TROPICAL CYCLONE
RESEARCH SUMMARY
RESEARCH
Part of the mission of the Joint Typhoon
Warning Center is to conduct applied tropical
cyclor.eresearch as time and resources
permit. The purpose of this research is to
improve the timeliness and accuracy of operational forecasts. During 1979, there was
continued effort to convert and update operational programs and to streamline operational
procedures for compatibility with the Naval
Environmental Display Station. The following
abstracts summarize the year’s applied
research projects which were completed or are
still in progress.
OBJECTIVE TROFICAL CYCLONE INITIAL
POSITIONING WITH A WEIGHTED LEAST SQUARES
ALGORITHM
(Lubeck, O. M. and Shewchuk, J. D. .
NAVOCtiNCOMChN/JTWC)
Recent studies indicate tropical cyclone
forecast errors through 72 hours can be
reduced by more accurate initial warning
positions. This study developed an objective
and standardized method of determining
initial position based on all available fix
information. A least squares algorithm was
used on available fix data with a weighting
scheme which is inversely proportional to the
stated fix accuracies. The results of this
objective method showed no significant
improvement over the current subjective
method. Therefore, this method was not
incorporated into operational procedures.
This method, however, produces an improved
tropical cyclone “best track” and was incorporated into JTWC’S post-analysis procedures.
ESTABLISHMENT OF THE JTWC TROPICAL CYCLONE
DATA BASE
(Curry, W. T. and Matsumoto, C. R.,
NAVOCEANCOMCEN/JTWC)
A data base of 6-hour best track
positions
(intensities,
direction
and speed
of movement)
and 24-, 48-, and
72-hour
objective technique and official JTWC forecasts for each tropical cyclone in the
western North Pacific, Arabian Sea and Bay of
Bengal from 1966 through 1978 has been
established on FLENUMOCEANCEN computer I.HSS
storage systems. Tropical cyclone fix data
(position, intensities, platform, etc.) for
each tropical cyclone from 1966 through 1977
remain to be added. This climetological data
base will be maintained on disk and tape
files at FLENUMOCEANCEN Monterey, California
and updated annually.
EQUIVALENT POTENTIAL TEMPERATURR/MINIMUM
SEA-LEVEL PRESSURE RELATIONHIPS FOR FORECASTING TROPICAL CYCLONE INTENSIFICATION
(Dunnavan, G. M., NAVOCEANCOMCEN/JTWC)
The relationship between equivalent
potential temperature at 700 mb in the center
of developing tropical cyclones and associated intensity changes was explored by
Sikora (ATR 1975), Milwer (ATR 1976), and
Hasse!xock (ATR 1977). The Sikora and Milwer
studies produced conflicting results, but the
Hassebrock study showed some sk+.11in forecasting explosive and rapid deepening when
1977 and 1978 tropical cyclones were evaluated. Evaluation of 1979 tropical cyclones
again showed that the Hassebrock technique
has some skill. Unfortunately, dewpoint
data from aircraft reconnaissance missions
from earlier years are not readily available
at JTWC, so it has been difficult to increase
the data base. The Hassebrock stuclywill be
applied to 1980 tropical cyclones and aay
cyclones przor to 1976 for which data are
available. The data base may then be large
enough to draw some definite conclusions.
NEDS/COMPUTER APPLICATIONS
(Staff, NAVOCEANCOMCEN/JTWC)
have been
JTWC’S objective techniques
converted
by contractors
to execute
on
A NEDS graphic
FLENUMOCEANCEN
computers.
capability
is being
developed
to depict
forecast tracks
from objective
techniques.
Evaluation
and monitoring
of program
conversion will continue
in 1980.
TROPICAL
CYCLONE 141NIMUMSEA-LRVEL PRESSURE
- MAXII’4UM
SUSTAINED WIND RELATIONSHIP
(Lubeck, O. M. and Shewchuk, J. D.,
NAVOCEANCOMCEN/JTWC)
A related study of equivalent
potential
temperature was also started. A comparison
was made of past 12- and 24-hour changes in
equivalent potential temperature in the eye
of a tropical cyclone with the subsequent
12- and 24-hour changes in 700 mb height.
These correlations proved inconclusive, again
due to the small initial data base. An
attempt will be made to obtain more data for
this study also.
The Dressure-wind
relationship developed
.—.
by Atkinson and Holliday (1977), Tiopical Cyclone Minimum Sea Level Pressure - Maximum
Sustained Wind Relationship for western North
Pacific, is a primary tool used to determine
troRical cyclone intensities for JTWC operations. This relationship was re-evaluated
and tested with an independent data set. The
study produced no significant differences or
changes. Therefore, the current Atkinson and
Holliday relationship will continue to be
use?.at JTWC. Other regression equations
using case-dependent latitude and environmental pressure (versus 101IJ~) as predictors were also tested. These predictors did
not improve the maximum sustained windmininuunsea-level pressure relationship.
108
.
BASIC STREAMLINE
ANALYSIS
AND TROPICAL
CYCLONE FORECASTING TECHNIQUE GUIDE
A more sophisticated TCM is being developed jointly by NEPRF and NRL and is expected to become operational in 1981. This TCM
includes the effects of surface friction,
cumulus clouds and latent and sensible heat
transfer from the ocean. Preliminary tests
indicate that these improvements may reduce
forecast track errors by 15% to 20% when
compared to the one-way interactive TCM.
(Guay, G. A., NAVOCEANCOMCEN/STWC)
A case study, based on an active
tropical cyclone period, is being developed.
The study will be worked into a training
guide for new forecasters and will include
basic streamline analysis procedures as well
as tropical cyclone forecasting techniques.
The case study will also be integrated into
STORMEX training (training scenario for
DET 4 HQ AwS, 54 WRS, DET 1 lWW, JTWC, and
AJTWC personnel).
IMPROVEMENT AND EXTENSION
TROPICAL CYC1,ONEWIND DISTRIBUTION
(Tsui, T., Brody, L.R., and Brand, S.,
NEPRF)
The wind distribution around tropical
cyclones for the warnings issued by the JTWC
from 1966 through 1977 have been compiled and
edited into a unique data set. An analysis
of the wind radii shows the asymmetrical nature of the radii of 30 kt and 50 kt winds
around tropical cyclones as a function of the
characteristics of the storm. A statistical
forecast model to predict the asymmetric wind
distribution has been developed.
OF THE iJTWC
CLIMATOLOGY
(Shewchuk, J. D., NAVOCEANCOMCEN/JTWC)
Climatology
forecast
aid
is
for
an
JTWC.
important
objective
A new
climatology
was developed for the western North Pacific
which provides position and intensity forecast information for 24-, 48- and 72-hour
intervals. Pertinent statistical information
is produced by month for each latitude/
longitude of available historical data, which
includes 1945 to 1973.
Similar
climatological
information
TROPICAL
TROPICAL CYCLONE RESEARCH AT OR UNDER
CONTRACT TO THE NAVAL ENVIRONMENTAL
PREDICTION
RESEARCH FACILITY
(NEPW),
MONTEREY,
CALIFORNIA
CYCLONE
PROBABILITIES
is a
Tropical cyclone strike probability
method for determining probabilities up
through 72 hours that a tropical cyclone will
come within specified distances around geographic points of interest to the user. This
program can be used as an aid for operational
decisions associated with tropical cyclone
evasion, evacuation and base preparedness.
Strike probability output is presently being
evaluated by a number of Navy and Air Force
meteorologists and operational customers in
WESTPAC. Other applications of strike probability that are presently being developed include geographic depictions, wind probabilities and strike probabilities for EASTPAC.
NEPRF RESEARCH
TROPICAL
STRIKE
(Brand, S., NEPRP and Jarrell, J.D.,
Science Applications Inc.)
is
being developed for the North and South
Indian Oceans and the western South Pacific.
The periods of available historical daia are
1900-1970, 1900-1969 and 1900-1971, respectively.
2.
CYCLONE
MODELING
A STATISTICALLY DERIVED PREDICTION
PROCEDURX FOR TROPICAL CYCLONE GENESIS
(Hodur, R.M., NEPRF and Madala, R., NRL)
A one-way interactive
Tropical
Cyclone
Model (TCM) is being evaluated operationally.
This model differs from the original channeled TCM, that has been used for the past
three years, in two ways. First, hemispheric forecast data are used on the boundaries as opposed to the channel boundaries
used in the original TCM. Second, a new
bogus is used to represent the storm based
on the observed maximum wind. This latter
change has cut the average initial position
error by 59% to 15 nm. The one-way interactive TCM average forecast errors at 48.,60
and 72 hr are 8%, 14% and 21% less than the
channel model, respectively, for Pacific
cyclones through August 1979. Both TCMS
have about the same average forecast errors
at 12, 24 and 36 hr.
(Perrone, T., Lowe, P., Rabe, K., and
Brand, S., NEPFU’)
A statistical experiment using stepwise
discriminant analysis was conducted to determine algorithms to be applied to daily,
operationally-available meteorological analyses. Parameters identified as potential
predictors of tropical cyclone formation
were statistically examined to determine
their tropical cyclone genesis prediction
capability and were found to possess substantial prowise to predict tropical storm
formation 24, 48 and 72 hours prior to
occurrence.
109
EXTREME
SEA. STATES
(Rabe,
WITHIN A TYPHOON
AIRBORNE EXPENDABLE
BATHYTHERMOGRAPH
OBSERVATIONS
1MMEDIATEL%
BEFORS AND AFTER
(AUG 75)
PASSAGE OF TYPHOON PHYLLIS
K., and Brand, S., NEPRF)
(Schramm, W.G., NEPRP and NAVPGSCOL)
Extremely high sea states are known to
occur to the right of the direction of movement in typhoons. A well-documented case of
such extre~e sea heights in the western North
Pacific was examined and compared with results from a numerical spectral ocean wave
model. The wind and sea state field of the
numerical model compared favorably with the
observed data. M examination was also made
to determine how extreme sea states relate to
tropical cyclone intensity, forward speed of
movement, and circulation size or wind distribution. The results indicated that all
three are important with the intensity being
the primary factor, speed of movement being
of secondary importance and circulation size
or wind distribution being the least important factor.
Ocean
typhoon
thermal
was
analyzed
response
on
to
the
an
intense
basis
of
data
collected during the passage of Typhoon
Phyllis (Aug 75) in the Philippine Sea. A
unique data set was collected using calibrated Airborne Expendable Bathythermographs
dropped from a Navy P-3 aircraft. There
were three flights: the first, 14 hours
before storm passage, the second 10 hours
after passage, and the third two days later.
The results indicate a dramatic upward movement of isotherms, relative to the sea
surface, in a narrow band under the storm
path, with a reversal toward pre-typhoon
conditions within three days.
NESOSCALE EFFECTS OF TOPOGRAPHY ON
TROPICAL CYCLONE ASSOCIATED SURFACE
TROPICAL CYCLONE ORIGIN, MOVEMENT AND
INTENSITY CHARACTERISTICS BASED ON DATA
CONPOSITING TECHNIQUES
WINDS
(Brand, s. and Chambers, R., NEPRF,
Woo, H., Cermak, J., and Lou, I., Colorado
State University, and Danard, M., University
of Waterloo)
(Gray, W.M., Colorado State University)
Observational studies using large amounts
of compcxiitedrawinsonde, satellite and aircraft flight data have been performed to
analyze global aspects of tropical cyclone
‘occurrences. The data were used to study
the physical processes of tropical cyclone
genesis, tropical cyclone intensity changes,
environmental factors influencing tropical
cyclone turning motion 24-36 hours before the
turn takes place, tropical cyclone intensity
determination from upper-tropospheric reconxiaissance,and the diurnal variations of
vertical motion in tropical weather systems.
An analysis was made of the influence of
topography on tropical cyclone associated
strong surface wind conditions for Subic
Bay, Republic of the Philippines by means
of an environmental wind tunnel. Surface
flow patterns were deduced by smoke and
surface oil films, while isotach and gust
values were obtained by hot wire anemometers. The laboratory results show the
significant effects of the mountainous
regions surrounding the Subic Bay harbor
complex and indicate preferred sheltered
locations. The results were compared with
synoptic observations and a high resolution
(0.19 nm) diagnostic, one-level, primitive
equation model. Where direct comparison
could be made, all techniques appeared to
show qualitative agreement.
IMPROVED UPPER-LEVEL TROPICAL CYCLONE
STEERING TECHNIQ.JES
(Hamilton, H., Systems and Applied
Sciences Corporation)
Current automated objective steering
forecast techniques incorporating HATRACK
and MOHATT algorithms are operationally
termed CYCLOPS and may be run in analysis or
prognosis modes at seven different atmospheric levels including 1000 mb, 850 mb,
700 mb, 500 mb, 400 mb, 300 mb and 200 mb.
Since tropical cyclones vary greatly in areal
and vertical extent and may be representatively steered at varying atmospheric levels
dependent on state of development/intensity,
continuing research is ongoing which will
attempt to identify, given certain tropical
cyclone input parameters, a “best” steering
level or a “weighted scheme” that takes into
account several steering levels.
TYPHOOE HAVEN STUDIES
(Stevenson, G.A. and Brand, S., NEPRF)
The l?vnhoonHavens Research Proaram, the
results of which have been summarized in
NEPRF Technical Paper 5-76, has been resumed.
COMSEVENTHFLT has identified an additional 12
ports and harbors for evaluation as typhoon
havens. Work has commenced on Palau, Saipan
and Tinian.
A.;
110
..-
.-
-
.
3
u
*
1-
,
$
c,
I
Ir-1-N*-in
mso.
*+
---
----
*.-A
.+ .4-
-N*
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...*.*+..
. r-m
. . :.:mm:~m~c.:
. . . . . . . . . . . 00. .
10
. . ..mmmmiw.
m4. .I t- r-I.*.::
e.m-emma::mm
m*m.
mm*r4m
.u?fomumlflfl
~.nononn,onn
O
f.m.
mnm
CUC-C.
ooem.
mmm..
r--ma
---.--
mm=-++e.mmm
.nr-r-m
ma.
u.*u.
.3.
cD.aa3Aoo*m
. . . . . . . . . . . . . . . . . . .m”l. .Uloulou-lo.nm.
. . . . . . . . . m.Alnom=oo,
. . . . . . .n!nrl
. . .m.amknoomeooul
. . . . . . . . . . .Inulo
. ..
7
z..
.
.
o+.
--------
Lrcu.=u-cccircuc
--,
----
-.--r....
=C-c>xw
utrcu=
Ctcr--axmm
.
r-f-
Lru-cclrcuu
*-.*=O3*C
---------
----A.
------
---
N
mmm!nas.a
----
ccc.
CCu-’u-c<c
C.ma’-m.
+m
---
------------
mm’-m
”-r-m<+@Na?=mmmrurln!
cemmac-m-rw
m.mmcmmrv.lm!m
U. -*-C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
u.c’.
- mm=.=..=-N NNNCUNNNN
- -- N!W-NNNNN
mmm.
4
.Ulrlruu-.
rr.rmrlmfu.r
.
.cc,
,fa.
F-ud
C.<
.F.
.I-.Kr-a. -. W-*
U’ACCW-CCU
I-A@.
UUt-&ULCC
. . . . . . . . . . . . . . . . . . . . ...*...
. . . . . . . . . . . . . . . . . . . . . . . . . . .
m*.
r-min.7 mm-s-.
f-.
.o.
o t-em.
m-.
mmt.
.I-r. oo.oaa*+a
0
. ..ma.
a.
. 44
. . . . . . . . . .a.e.c
. . ..m
mm..
IIImm m.......
.mm~mrwmmmmmm
mmm.
--------,-.----------------------. . . . . . .
ee.ae,nmmor-t-m
C.cc.=ee.lrmn
.
.
;
Cc<cu. fcuucc.rr,
,wN!-m*.
c=.
me.
.
. - %--------
!nmlw.
nmw l-.:
. . . . . . .
.W*N.
=Y=.
.
-la.
nlmmmril-.
. . . . . . . . . .
.
-N NNNNNNWN
----.-+++
-------
-
.
.
-!rJru*. . .
.
.
-*
.
.
fi-mo
. . .
.
,.#---
*m--.-l
. . . .
-N NN-NNNNm
FI mr.le-tllulaaao~
----------------
e c.O.---m
. . . . .
o----
000000
m7.
WN.
NN NNNNNw.
N. Iw?4 NNP4NNNNNNNx
I-4
MNINIWNN N..
N=o
QWSOO
N..-mno~N=0
-Wm04NS.aNS
OC!Nm.aNW.*
o-.
o..-.
.e
--o.--a=-.-=
Oa-e-.---.’mJ
wmJfurl-3m
r-,**
----------------------------------.0 ...0.00
-=
..0
-- ..--.=-..--.
.-+.0-..
.*u.
..nn,
nn aa
aar-1--l-snms%m
. . . . ...0.. --...-==.
e.eooo
. --1
--1------+---l-l-l.
----------.=.
.=00000
00...-..0000
NNW.
aNr-m
r-No
. . . . . .
+.o AQ *.=
.r<r
<r<
-! -------
.“.Jm G.aaI.
.
.
o
N
e
.
a,h.c, -en - = .==-.<--<
o<m’tu.
cunem
.rdncl-<ue
r..
I.Cu?ti.furc
u-c
,.,
.0,,.
. . ..
0.$.
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
.c
.oemu
mm.om>.om.
m-oa.
t.-omem-o
aam
I-I-t-f-o QoQf-Pc.
s
.c.f<<r<.
c’. .r<<
lrwlr!f!r.rm@lJ*4
#*de
**!-.-!-,-r
.%m@. ml-.f-r
l--!----------.--.-4.----------------.---.-.--
z.-:fi.
:m.
.
F- Ar”-.
----------
@n-.
.
.
&.u”).
? . . . ....u.w.4w.-*N
4 ---------5-. .-WNWA J--. = 0.=....=.
s ----------X.-O.....==.
I
N
:
1-
.
c,mlr-.-feac.
c m.-q-.jc.
. . . . . . . . . . . . . . . . . . . . . .
e-cm
G.cuu, r..o Jl.n ..**
.Dr-hmo-im
*.
Fl,wmmmm,.lmm
In
Snm, .lm
mm..+
------------------
.: .. =.:===.,:
. . . . . . . . ,-:
. . ~-:::====
. . . . . . . . .=========
. . . . . . . . ,.
.
.
11,
,,,
,
.CCCCCCCQ4J.
. . . . . .
=Ooooce
,T
.
m
*
c.
In
.
P
22
m
8
l-i
g
n,
g
g
~
T
*l-
‘5
z
.
r
.
O,,,
.
==
. .
.
.
.
.
. .
.
.
.
.
.
.
.
.
>. 2.=
,,t8
.c’==
Cccc.
cc-=c.
=.=. C.=.=.=.
.<
=,=,
. . . . . . . .......+
=.=,=5.==.V,111*:,:88**
**t,,
.
->>=.
. . . cc. . Ccccc.
. . . . . . .ccc
. . . . .. ..==
.. ..
. . .
C.ccc.
=0== =====.=.
S.=.=.=.C,=.
.
>>>>.
tt,
........ CC. .. c.cc..
.
. . . . ..
’ae.so
Qeoooe-=..Oe.=..’o.o
0..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.*.
.o.
oe’ao
C.ceo.e.-0-0.000’000
00.
.
.
:
:=...=.
.
. . . . .
< . =.<.....=
.
:,.<::.=.
-?:
.- . .
.
,.,
=.=.=.=.=.
. ..=,
.-.,. .=::::
. ..=
. .===
.====C
. ..=
. .=C,
.=.=.=.=.
. .c.cccc.
,=
z.rv
,=
mm.
---
.==
-r.,.=.=.
=.=,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 0.00.00000
o.ao-o-.eoo
oe.o.a:~:’7.ao
-
.J ..>-.>=>..
U,.J3,101,
‘r
3
k
;
~;
-,
=,,
,,
$,0,,,,
,,,
,,11
.
.
.
,0,,1
<e<
. .
.
.
.
r-c*!-.
61
.
.
r<
’3m*
m=
. . . . . ..
. . . . . . . . . =.=..=::::
. . . . ........
.. .. . . .. .. . . . . . . .. .. .. ...=.....
.
----------
-------
----
--W&,*?lOLISWONU*020N+”2W
-----------------.. l-.-!-
J mo<mom,
. . . . .
::> .
x“. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
m-cc.
’=c.
.n
C2Ccccc=cc,
o c’=occ=co~:
:-m:
,,.
. . . . 0===.
. . . . o=. . ’am
. . 0=0
. ..
,*
: ”.=”=’=.=’ ~.=”=”=”=.=.=’=”o“>.e.~’=moe
. .
:-”
&
;.
:
3
,-------
J..
,.+.,
*,
. . . . . . .
..J”...--.FIN-w
-------------------
.
.
..
...=
”-=
..,..0
,C=c=
7
Cc
:
.
T.
,=
.?
.
(7?=
.,,
--
‘,7
.
&$:;-o
.m
.
.2
=oFJlu-:-,
.*
Fl -
t
. .,
1.
:
s.,
2C,
;
...,..
CC Z......
.
. . . . . . . . . . .
C.r=rrfifr,=
-..-...
,-”. ... r,nr
. . . . . .
==========
~
.
.
.
. .
. .
===
.
:
1
:
c..
.
. .
e...
.
. . . ... .. .
Z=cc.
:
.
. . . .
Imo..o.eo-o.o
Cltllloll
l,,
.
.
,,
.
0.
cc
.
. .. .
.
m
m
:
u72,12z
U7?>187
07?Duol
072 UU6Z
072D12L
072~18/
L172(130z
L)72106z
072 T1.?z
072118L
072tLuuz
07ZUU6Z
072d121
u721j18/
072+(10z
07291Jb7
072412z
lM. H 1 {2.7
V I 31.=,
> 1+!3.6
139.7
19.
19.
19.9
20.2
?0.4
?O.
?O.
?0.8
1?8.7
1>7.5
,
b
176.
?
1?5. ?
174.7
20.8 1>2. ”
?U. Q 1?1.7
?1.3 ]>0..
?2.0 l?O. ,
2?.3 i18. R
?2.7 117.).
?3.1 lt6. n
114.7
U.*
O.n
0.0
0.0
20. ?
20.5
20. $
?0.7
20.7
20.3
?O. R
?0.3
22. n
22. q
22. h
23.1 !16.7
23.7 115. ?
u.
u.
u.
0.
30.
3U.
33.
4U.
+().
b5;
in.
>5.
>5.
as.
au.
*5.
3(2.
V;T
-0.
-o.
-0.
-o.
M7NI
0.
u.
u.
0.
45.
e;.
b.
Q.
$
,.
17.
13.
23.
-~.
-10.
-5.
-i.
-1o.
-10.
-1o.
-5.
0.
3::
5.
0.
1::
30.
0.
lu.
DS1
0.0
0.0
tI. o
0.1)
0.
D.
30.
90.
?5.
-u.
-u.
-u.
-“.
20+.
24+.
43.
5U.
bY.
7b.
0:,?
40:(1
0:
116.2
05.
120.
20.’4
llS.M
To. 13<. 2G.
>4.6
0.0
O.n
o.n
0.0
llM.
?
rl. n
l!. n
,1.1,
n.o
,?5.
o.
o.
0,
o.
0.0
?1..
,1 .,,
127.7
?2. K 126. H
>1.6
>1.7
?1.7
>]. &
,2, .0
121.6
110.7
11*.
)
20.0
0.
43.
45.
*5.
211.
-u.
-u.
-u.
-u.
n.
0.
n.
. .
-G.
.]”.
=]<.
.10.
-’+.
K.
1~.
c.
n.
n.
6.
n.
n.,)
0.!1
U.(I
0.0
0:11 U.u
0.()
O.IJ
2, .,,
125,2
>&. / 124.3
?-+. n 118,5
?1.4
117.8
>>.11
115.8
n.{)
O.lz
O.(I U.o
n.11
n.o
“,0
0.0
0.1s
0.0
0.0
0.0
0.0
0.0
0.0
0.0
u.
u.
o.
0.
31).
5U.
3U.
5U.
50.
0.
0.
u.
-u.
-o.
-u.
-u.
3.5.
3?3.
63.
100.
69.
-o.
-o.
-o.
-o.
-o.
-u.
-o.
-c’ .
u.
u.
lz.
0.
0.
d[Nl)
0.
0.
0.
0.
-5.
0.
0.
5.
30.
0.
0.
0.
0.
0.
0.
0.
0.
0.0
0.0
(!.0
n.o
0.0
0.0
0.0
0:;)
Z<. b 1/2.4
n.o
n.o
0.0
0.0
11. o
n.o
*.O
(1.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.(7
0.0
0.0
O.u
0.0
0.0
0.0
0.0
0.
0.
0.
o.
-0.
-0.
-n,
0.
0.
n.
-0.
0.
40.
0.
13.
0.
0.
60. 469.
0.
0.
0.
0.
o.
0.
::
0.
0.
0.
0.
.0.
-0.
-o.
-n.
.0.
-0.
.0.
-o.
-0.
-0.
-0.
-0.
0.
n.
0.
n.
n.
a.
0.
13.
if-
.=
E
==
.=..=
.. . ... . .. . . . .
c.===
,-,-
.0
.-000
11111*111
. . . . . . .. . .. .. .. .. ..
Zccecu-w
;:::~~e-oo.e
--
-----
.
. . cGc
. . . Kc.J.
. . . . @. <.Jc”lrc
. . . . . . ccc
. ..
;
.
s
.m. o.>
==mo
-. ’win, -,1.-.llrdwdw
Lo JIJ1.
=
.N.-.xm.
xm
. . . . . . . . . . . . . . . . . .
c:.f.r.tire.cc
, ---..--..-,-.
..mmhcr-r.
cc-ccc
.
. . . . . . . .
QO”oe.-.m
-------
C.u-u’.
x,-”xr.
*,..
cr.
m.ll
--
,r J,.I r-c”
. . . . . . . . .
O“?r-mmm
.-me
?-.----mm
.
.C.
C**
X.
U**
.tm+.
-nt
. . . . . . . . . . . . . . . . . .
. ..c.-.
>r.
r nl-mm-=mrd.
mm,vm!m,m,mlm!m
r., ,w,-d, wcu
--?-----------
z==.
,Ce.
cc.
c{,
-r..-=.==
. . . . . . . . . . . . . . . . . .
=C cc.<.mx-.l
‘i-.===
lvr.J.
mJ,-.Jr.JnlnJlwfu
i--.-.---..
U
CC CC C4R*.
”CC
. ...’==<
.
. . . . . . . . . . . . . . . . . .
.a.
.ln*Q.5mamc
N’-lo.
.ao
-------km
,“:.
C,!
C..
CG **J**C
CC CSC=S
. . . . . . . . . . . ..!*....
Gccc+a.za=
ccc
Ccc
ccc
--.--*A
:CIIOOUUI1*
=
1
:.
,r
2
.
.
.
‘
.
.
EC
E
;:
.
y
Ni-ulvlx
I**llllllV
wlu!wwrul
u-- --1
411
I
wlmr!mee
+~~~~
,
.
.
. .*...*****
NNNNNWWNN.
Wu-ul-.
.
.
.
---o
,,811s
.-t--=c=
.
*.**
.
.
. .
oo
=
arcu-caoe
c=.
. . . . . . . . . . . . . . . .
i-+r.
.sa.
ccc.
----------
-*---I===.==m?-
. . . . . . .
. .. . .. . . .. . . . . . .. . ... . .. . .
.xe . .. .. .. ..lmu.
. . . . lm
. -. .U?eeua!mln.
. . . . . . . . ..m
- ..mw.
. . . . . ..=
..0
.
. . . . .
in . . . ..om
c*l#ell*ti
. +--------
me.*
.--.(WIW Nnmlfummm
mmt-+t-ommcno
- maar-mm-.
r.l-c--m,-!-!.
Eaeo*a*a&ur
. . . . . . . . . . . . . . . . . . . . ..
c+=.
.-.+
m-.aoomeemo
r-?-r-mammal-l-mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m+.
rdiwm-.
m.nm
mnr-m
Ne.
-*a.
= 0 -ma.*-*c
a.rb-we-vua-+c-.s
Lral-eclxn#,
loll
Lruff*r*.
*R.-.
F u-c
nu-nnn,-l-dlmcww
.----
mr-r-m*mc.
-m.
-----
,nm.aoeemm-loo*a**lnm,nmma
--------
Ou.
<-a.
m ---------
f-a
.4rt-*-4ulr
<*<
=.sc-<nl-.ccnt
mm.<
. . . . . . . . . . . . . . . . . . . . . .
F..
a+f+.-r.w+rm
tc+r-mr<+++r
mmmmmww.
.m. w
NNNNNNNNNNNN
. . . . . . . . . . . . . . . . . . . . . . *.**.*.-.
CCcccc.
. . .
. . .
.cm.
-
.C.
.ccc-r.
.u.
.-r-a
nsfiuu.
a.
.K*-ealr
**Oar-.
*me&.s.
vc
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.a.
.a-.aamminmw
.+*m
I-0. ma+aun
aa
*mm*e**emnn
mmn.
.nn.-.
lm.rim,-l”m!-lwwfu
NNNNNWWNCW!WN
(uml.
nllwwcuiumrdfu
Ntwlmlwn
-------.-,-----------------------------
o.000om-.mmm
. . . . . . . . . . . . . . ...*
ccccuc
cce.
.c.a.aoeemeee
.
CC.
:
.
‘%:
z
.
x
:1-
m>
.
. ..I- ...*-’
nl
T.
a
.
n..
**m
X
.
z$:”~miy?i
SUPER
RFST
MO/04/HO
0815.122
081518Z
#[Nl)
lU.5
11.3
11. d
12.3
lz. d
13.3
13.8
14.2
1+.5
15.0
15.7
1s1..
150.1
1119.”
16.6
17.1
17.6
18.2
19.0
19.7
1-s8.
>
20.5
21.3
134..
133.
22:2
?2.7
23.1
?3.4
Z&,z
24.3
?4.6
?4.4
24.4
24.5
25.1
25. s
26.9
27.5
20.2
28.7
29.3
?9. B
30. *
30.9
31.4
31.8
32.5
33.2
33.9
34. *
,M?.llvlj
lQAIY
p351T
1<
P9STT
0.0
o.n
o.
0.
Q.n
1?
0.0
13. n
1=, 0.0
o.n
15
O.n
0.0
?=, 0.0
3n 13.5 164.5
167.6
11.6.1
144.7
143..
]42.7
0.
0.
)3.9 1$.?.7
14. ? 1$2.,.
u.
35.
!30 .
40.
)+.5
13.0
1s..4
lb. n
16.8
17. b
140. ~
{39.6
13fl. Q
137.6
1’37.3
136.4
45.
50.
55.
ml.
70.
75.
173:7
132.6
131.0
131.1
19.2
19.9
19.7
20.2
21.3
22;?
13s.7
135. ~
134.6
13407
133. a
~33.7
110.
115.
123.
130.
135.
135.
23.1
23.3
23. +
132. R
131.7
131.0
135.
130.
130.6
1?9.6
1?8.0
2+.0
24.5
24.7
3<
3=,
141.1
14.0.0
139. n
137. ?
1’16.&
135. *
135,1
134.7
a
]>8.0
1?7.5
127.0
1?6. ?
]75.6
1?4.7
123.7
1?3.7
1?2. Q
172./,
1?2.6
1?2.7
]?3.1
I?3.
A
1.24.>
1?5.1
176.1
1??.1
12s. =,
10IT
lnn
95
Qo
90
R5
85
8=,
*5
lsll
I)n
70
bn
5%
5s
5n
40
30
?5
2%
20
24;6
24.4
2+.3
24. q
25.8
26.7
27.5
28.0
22.. FI
23.5
29.3
30.6
30.9
31.4
32. o
32.3
33.6
34.6
O.n
,z7.
n
127.7
21.
0.
0.
24.
40.
126.9
176.1
125.7
I?*.
A
123.7
123.0
122.7
122.7
122. -4
122.’7
122.7
1 23.=,
124.1
125. ?
126.7
127.6
O.n
5.
16.
1?.
21.
0.
o.
5.
5.
5.
0.
0.
5.
0.
5.
15.
15.
-5.
-5.
-5.
90.
11.
t35
.
$35.
00.
B5.
so.
BO.
‘so
.
70.
65.
55.
55.
50.
+5.
*O.
35.
15.
16.
-5:
21.
5.
20.
-5.
0.
o.
15.
12. -10.
-5.
24.
%
o.
41”L
#ANG
AVG FORFC4S1
P05x 7 FFW)R
AVG RIG4T
4WLE
E?w)Q AVG lNTrN517f
MdGVTTUOF
E!4Roa
hVG IN7FNS11Y
fiTA5
NUMdER
OF FWWCAS7<
5.
Ei.
11.
120.
130. A 115.
129. A 115.
128.7 115.
18.
12.
6.
1.
30
M, >Iotl F( lHELA>I
EN12J*s
0>1
61.41
*1W
-0.
n.
o.1)
o.
-0.
n.
0.0
0.
-0.
(1.
n.<>
0.
11.()
-v.
n.
0.
-u.
n.
n.,,
0.
109.
16. u 14.. ?
60.
1..
62.
=.
lb. % 13..
?
an.
16.7 13’7.4
5/.
.IR.
ho.
b5.
111.
.]C.
16.7
13=...
*5.
i)d.
.2s.
17. > 13..
%
75.
● 3=..
101.
17. ? 136.3
125.
.b#l.
?5.
18.1
13?.1
18.7
\3?. A
B5 .
9>.
.3=..
121.
.4..
19.4
132.6
H5.
99.
n.
130.
?0.6
13?.1
10’4.
-%.
?L. ? 131. % 130.
81.
n.
72.7
131. ? 133.
5J .
10.
135.
?2. -4
13?.7
jr.,
89.
?4.5
137. ? IJ5.
91.
2=..
>5.6
131. S 135.
20.
120.
76.6 13n.7
139.
16.
121.
?5.1
126. s 115:
1<.
b.
>4. $ 12R. O 110.
lr..
160.
?4.0
)30. I. )05.
125.
76.6
127. IT 100.
1..
116.
]<.
lUO.
77.0
12=..7
bj.
63.
92!I.
75..
124..
40.
78. ● 2..
25.6
12*.6
151. .2..
?5. n 126.1
60.
8*. ● 2..
35.
>6. Q 12?.3
70.
49. *in.
77.0
12-4.1
50.
5B. =?n.
79.7
121.5
1(30. .]s.
*5.
30.1
120.7
.::
17.
2*.
21.
1;:
16.
39.
33.
-0.
-5.
0.
-5.
-5.
0.
5,
5.
0.
0.
.9 RECASTS
>lk-.4n
48-P(3
105.
173.
Fsl.
133.
29.
16.
-7.
-3.
36
27
Pn~lI
0.n
0.0
C1. n
0.0
O.n
30. k
-s1.7
32.2
120.1
120. -4
120. ?
12.G 120.6
32.. 12n.~
-42..12?.7
74.7
36.7
o.n
0.0
0.0
O,n
)26.,3
127.7
n.n
n.n
0.0
fi.o
MO/~A/HR
0818002
0B1K062
081$122
Oalelez
0819002
ee1906z
0819122
0819182
0820002
0B200bZ
IINI)
RJS17
13.5 166.6’ 1~
?n
13.9 166. ?
20
1+.5 165.6
15.3 165.2
16.1 1<4.6
17.1 163.0
18.1 163.11
19.2 152.0
20.0 160.0
21.0 159.6
10
26
dM4u1w
TQ~c~
POST 7
dlN>
11.11
o.
0.0
20.
13.9
166. ?
20.
1$.6
166.7
20.
I*.
R 165.6
20.
15.7
164. ?
20.
17.0
153..
20.
17.3
163.1
20.
19.4
162.2
21J.
19.5
160. A
20.
19.9
160.1
AVG FORrCASl
,PIT51T
FQI?OR
Avb ?IGHI
ANGLE
EaOOR
AVG INTFNS1l
Y N4Gq1Tl10F
ERQOa
AVG INTFNS177
i3f A5
NUM6iR
OF FoREcasT<
A,’L
wnw~
73.
19.
;:
/2
TQROQS
OST IAIN)
-o.
0.
s.
o.
35.
39.
25.
3.
17.
43.
41.
77.
0.
.0.
0.
L
5.
10.
10.
w%
05
00
4Y-lia
29s.
119.
30.
30.
I
:!:
25.
25.
25.
0,
0.
0.
0.
-u.
-u.
n.
n.
DEPRESSION
74.6
?7.3
7R.3
70. ?
77-M
7k:7
7..7
?n.1
20.7
7?.7
?7.7
27.0
130.5
133.2
133.0
130. b
125.3
125.7
127.7
125.7
124.5
122.1
121. V
121.5
Xl.?
121.0
>n. ? 120.6
31.7 119.4
0,11
0.0
n.o
0.0
n.o
n.o
0.0
n.n
n.n
n.n
n.1]
n.o
n.o
0.0
0.0
0.(3
0.0
0.0
0.0
0.0
0.0
O.u
0.0
0.0
0.0
0.0
0.
u.
u.
13.
0.
-o.
-0.
-o.
-o.
-0.
192.
0.
0.
0.
0.
?!3.
-2::
70.
.40.
.45.
.45.
1%
??1.
257.
?3?.
%9;
*O. ?&5,
% . ?-47.
I35. 106.
)3>.
Q7 .
fu.
75.
/,.
Lb.
85.
135.
62.
R?..
]55.
1 K.. 3?3.
]3,. 375.
36U.
-50.
21.9
.45.
21.6
?>.5
27.9
?f.. o
?<.3
‘?6.2
27.7
27.3
?Q. b
30.5
31.8
3).3
30.0
3?.5
31.2
31.6
20.9
-50:
-45 .
-35.
15.
25.
35.
35.
40.
45.
20.
170;
20:
)00.
>b:
15.
+0. 175.
5.
9(I. 1?7.
5.
90.
Q1.
10.
73. .30.
?0 .
-20.
ad. 177. -10.
3!3.114. -25.
50.
104.
+0.
.15.
215. -25.
-o.
0.
-o.
0.
-o.
0.
-u.
0.
0.
-o.
135.
2>.
0.
IJ.
0.
13.
o.
0.
0.
u.
u.
0.
0.
0.
0.
-o.
-o.
-o.
-o.
-o.
-o.
-o.
-o.
..0
2..1
7?.9
20. s
21.1
o.
0.
0.
0.
0.
0.
0.
0.
VOOcCII%T
43!.)4
0.0
0.11
(J.”
0.”
0.0
1s2.9
1.*1.4
1~>.~
1.?7.0
1P6. +
llIkl
0.
0.
0.
0.
0.
85.
55.
d5.
85.
85.
l&b.7 90.
)25.7 90.
175.8 95.
1/5.3 %.
12f3.5135.
l?~.9 135.
1?3-7 1.25.
1*0.3 125.
137.] 125.
1.17.2115.
i?b; j
1/5.8
1?7.;
l’?b. i
1/5-]
119.9
3n.1
0.0
11.0
0.0
0.0
n.o
113-7
0:0
0.0
0.0
0.0
O.n
n:lj 0.0
0.0
0.0
n.o
n.o
n.o
,).0
n.o
0.0
0.0
():0
(I.O
0.0
Qsr s!-+)
0.
-0.
-0.
n.
u.
-0.
0.
-0.
-0.
210.
1,+.
?.8.
175.
-+12.
>F,6.
>*7.
2>+.
lQH.
60.
131.
?*O.
?51.
I..
Q.
700.
95. 616.
90. 75?.
.e3. 170.
8s. 7)6.
80. 109.
75. s42.
25. 175.
25. >,5.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.
0.
-0.
-n.
-0.
-o.
-0.
-0.
-o.
-o.
-0.
-0.
-o.
-0.
-0.
-0.
-n .
-0.
-0.
Il.
-’u.
-6-,.
-50.
-50.
-60.
-30.
-?0.
-=$.
-5.
6{1.
65.
3-,.
40.
40.
30.
10.
In.
5.
15.
>n.
?0.
-30.
->=,.
a.
n.
n.
n.
n.
(1.
0.
0.
0.
n.
().
n.
n.
n.
n.
n.
n.
14
FOUECA5 t
EN13WS
Pn<~l
W[.io
0s1
*IWO
O.n
n.n
o.
-u.
n.
in.
30.
13U.
15. i 16..~
]0.
16.0
16&. M
30.
162.
]=..
30.
209.
16.1
16?.7
17.6
\61.
Q
30.
Lb>.
26.
15.
12U.
5.
19.3
1611. ?
-0.
n.
O.n
n.n
o.
0.0
0.0
O.n
:7 QFCAS7S
157.
43.
12.
12.
40.
30.
30.
134. ● 1=..
144. .26.
1s1. ..?n.
187. .]0.
-s.
247.
16!.
n.
+i.
n.
6b.
s.
-u.
m.
n.
-u.
n.u
0.0
O.t)
0.0
0.(,
0.0
!3.()
0.0
0.11
0.0
7(?.I4
36.8
IQ. +
3*.5
1 ..6
33.0
1..)!
30.9
,0.3
30.0
lf+.3
30.1
?n. u 12’).0
7...7
}29.1
?1.1
12H.2
7>.4
129.5
77. + i29.
o
76.1) 129.5
Po$It
n.o
11.0
,3.0
,,.0
7?-+R
277.
21-4.
98.
-1.
?3
TROPICAL
BESf
JUDY
2.
ERRoAS
051
hTrAl
-o.
::
-o.
-n.
o.
-o.
0.
-o.
0.
?1.
5.
13.
65.
12’.
5.
30.
5.
35.
0,
19.
0.
42.
-15.
-10.
18.
12.
-]5.
,1!’3>
TYPEWN
7>-+8
O.
n.
n.
0.
‘7
0.0
0.0
0.0
413 HOllN
Unlln
0.
0.
0.
-u.
-u.
-u.
0.
0.
n.
FoRFCAST
FQ.3n.7S
41N0
-o.
0.
?06.
30.
-o.
0.
-o.
0.
-o.
0.
-o.
0.
-0.
0.
-0.
0.
-0.
0.
-o.
0.
Pnsl r
MIND
(I.O
0.0
o.
1 A.+
i61.
B
60.
n.o
0.0
u.
n.11
o.
0.0
0.0
0.
n.o
0.0
0.
n.n
0.0
u.
0.0
0.0
o.
n.(,
0.0
0.
n.,)
0.0
0.
n.!)
r)sr
72 -IJUH
Posit
FnoFca%T
#IUJ
0.0
n.o
0.0
0.0
0.
0.
n.o
41.0
n.o
0.0
0.0
0.0
0.
0.
0.
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.
0.
0.
0.
0.
nS1
14TN1)
-0.
-0.
.0.
-o.
-o.
-0.
.0.
n.
n.
t).
n.
a.
0.
n.
-o.
-Il.
-0.
n.
n.
(7.
..a
.
(Jo
.
--*IZ
::q:y
_-,;
In
-1
GO
. .
O.OOO.
. . . .
.
.
Ow.
. . .
h--.
. .
.
. .
.
~..
.. ~... . . . . . .
.
.
..e-z~
. . ..U
= .;
-a
~:. . ===.
.=.
. . . . . . .
a ..nu139aa.
s.3=
. . . . . . . . . . . ..C
i
ii
.
.
.
.
..===
. . .
.
$ 1,,,,,,,,,,:
eea..aee..e.
. . . . .
.
s..=
. .
.
.
.
.
.
.
.
.
.
,,,
.
=;========
. . . . . .
,,,
.*eaoo.
. . . .
.
.
...=
..”
,t=~
.
o.aa*
. ..-
..*OQ
..tiee=.~=..
. . . . . .
.
. . . . . . .
-1.7.3.ze-*umelJ
-------- mcocomm-l.-----.wm
(se..
. . .
.. .. .. .. .. .. .. .. .. ..
*-J
. . . . . .
NLu*m**rv*-l
--------J-l -l.
O’.
. .
--
x;
.
:
;
i?
z
g
m
..C
X,.).J
!“V.JU”
UVJ
4, UV”
0...=.
==.==.=>
,..
s,.n
J,.Jl ..=.
.J7. . . . J;======
.= .==;
..
.............. ........... ............ ......
*
A d. ”.”..---’
V.J,)JA.IJA
*A”,
,,,
,,,
#,,>
@lll#*#ll#ll
,1,
,WDVA
V-.
4J**>”*LI*
..000
ooa.
e -.-..erv-+
UT.ul+.a..
.uom
.Wowcru
a...
O.
C.O.
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..+
.Pwlnu.
*.me
YG-btJ-.3
O.mem+.
v
000000=00”!”!”!
U..I”-QQ”,”!=U
.,”,”lcc~=e=ce
===OZ
.
. . . . . . . . . ---s0=”4
.. .. ....
...
.... ......
. . . . . . . . . . . . ..w
;
z
.
>.
.
r.c.
.
.
.
.-o
----
.
r-f--
--------
Ut-oagmsam<u
. . . . . .
.
.
------
.
.
+..,~
--o
.
mm.
--
UK.=!.
. . .
nnn ma.
-r----n-l
.
mc. mu. mmmmo
- Flmmm
-ANeI-NNIWNNNN.!NN
.
.C.mm.=m=
.
-------
cmcr-udh
. . . .
11.nar-r-mmm
.
. . . . . . . . . . . . .aoa=o,neonos
. . . . . . . . . . .........*..
oomomm.
<Au.
. . .
. . . . . . ------
.mamm.mmmmfumluluwfw
mNe.u.menu.mmo
.r---
zan.nnmomn.nnc.
-,IJIUOJ,
WN-I.**
cc.
-------
. . . . . . .
.mr-.
+mmmmmmmmmm
,..
. ..—
+
*
,r-
:Ommw:m
$&.
-1;
.Zcc.
. . . cccc=c.
. . . . . . . c. COecc
. ... .
:
C,
I* II, ,*
III
Illlt
.Lnoc.oo.e.a..
. . . . . . . . . . . .0000
. ... .
.2000. . . .0....-0
. . . . . . . . OO.o. ... .
.
.
.
.
.
.
.
. . . .
(:oaonm
.
.
.C ccc
. . . .
:0000
.
.
**t
.
c! 01
.
.
.
.
..*.*..
a--..=.
.
. .
as>
.
.
.2C. . . ... . CC.
. . . C. G.$lr.
. . .* ..*.
.c.
.
.
w
Ccccccccc=c.
.
. . . . . . .
..c. .oeo’aoa:
Uzn . . . ..=
$IWC. ,1*,*1111,
m 5
< . .
c,
.
. . . .
Lnnaoemoa.=oe
r+
N
z=-or.
-..
+xa.
-. -----m
r-~c
C.
CC
~m.
w.-oo-mo. OO.=. .OO
.
. . . . . . . . . . . . . .. . .
.
O.=
000
. . t...
CC CCC
CC
*
:
;
.
.
.
.
. . .
..oo-oo
ll::~llt:
.
.
.
.
. .
o..
. . . . .
=oaooeooo
1*11111
.
.
.
e..==
. . . . .
...00
#1#
Ill
..””””””
.
#1,
.
.Zsc)==oelnee.’=
. . . . . . . . . . . ce.
. . . .=eeeeeec.
.. . ...
--;
.
.
Inoo
cll,
.
,
O.
.
cc
.
.
.
0”””-=
.
C..OOOSO.
+0”=”
.
z
CC.
.
.
.
.
.
.
ccc..
. .
c..
c”.
.
.
---
.
.
.
.
.
.
.
.
.
G
.
.
00
==
.
.
.
.
.
.
00
.
CC
..O
,,
.
. . . . .
fcc
c=
.
CC=s
.
.cc
.
. . . . . . . . .
===r.
ao
,.,
,+m
m,,
.
..,+.*
.
.
.
.
=.=.:;;.=..
.
,,,
.
. .
=Ccc.
.
C.
.
.
.
0000:4:=0.0
.
.
.
.
.
’=--= ~’”=--
.
.
~= =. . . ...= .==
4,
. . . . . . . . . ,,
.
m
.
.
r-
.
:
rccc.
- ::
.-!
UT. .
Uxn>.
y.la,
?
.
N.
.
;:
m“
:
~.=.=.=.=:
g
w
-4
.
●
.
.
.
.
.
..
. .
.
.
=.-=.0.
. ...*
.
.
.
.
.
.
.
.
--. .
.
.
.
..a
. .
.
=...
. .
1111181118891
-Oooeaa--.o
. . . . . . . .
.
.
33>>.
==-=>=>3
. . . . . . . . . .
Os =.000=0=00
.oeo.
. . .
..-.
.-.0-.00
. . . . .
.
. ..m
.==.%
..m
oow
.
.
.
.oc.
. .
.
-..00UI
. . .
=-
+
u
(,3
::
.
1>
.
.5Z
..C
.
a.
=.=
. . . . .
=030=2
. . . . . .
. . . . . .
.=*
.000....0
. . . . . .
.
..353>=.
. . . . . . .
33
. 3 .=...=.-=
. . . 0 . .
. . . . . .
S=.=.a==..a=>=
..s
. .
.
8111
.
.
.
*t
.QQO...-D..
. . . . .
. . . .
-.*-..4.-4.
.
.
8181814
.
>;;3
.
N. . .
.03>
.e
. . 000
. . . . . . .
0 = 0000-=-.=
==..>===
. . .
.
-.
+.?.:::z~w
. . . . . . . .
. ...?.
a.*.
w-..
.
----.-
.
0000
-4ul*w”
. . . . . . . .
>>
S>-J.
*-J
.oa.u+=+,mmun
-------(D O.”e+l.l!.lw--.
. . . . . . .
n
%
;
~
z
z
g
e
*
-----------.
.
0
>uuoovnu
+
. .
0+
.
.
.
1,1
mJ-,
.
.
G
.
.
.
.
.
I’n
. .
.
w
u
.
.L?U
o. .
P>3
. . .
-urtu
. . .
.
IA.
.
..-..0000.
. . . .
.
.
.
.
.
.
:
.
.-..
.
.
s=O.
. . .
811111111111
. - . . . .
. . . . . .
.
-.s0
. .
.
. ...00
. . . .
.
.
0
.
.
-. . ..-*.....
. . . . . . . .. ..
.
2
,,!I!I,
II
II
o.a.a--eaoo.o.o
m
. . . . . . . .
.
..
>3>3>> 3.>==;
. . . . . . . . . . . .
=.=.=x
,= .=.=
>>.33nn
. . . .
.
-w,::::
,,lllommw+L.
CCeccct.
. . . . . .
-..-1-
*W
C.000-u!”l”!”l”!
. . . . . . .
.Vwv.
.v
.o=cJ-Ln.m*u
-. . . . . . . . . . . .
. ..=..+.>..
0
------W*+**WW
.===,
>-4=-!,
x.
. . . . . . . . . . . .
.=.
..
VCO CO-4
#r.JF-.
‘aCe-oil==u,”u. . . . . .
..ew
Q..dwkJ@
oe.
Lnhl.
.3-uu
. . . . . . . . . . . .
>>>>
nJrunJNNm
N--OOrurdrvr
w”-...
. . . . . . . . . .
=0. .,4=.-.0
.-W?------,vNnlmwlvwrvrt,h,h
n
,-,-----------u.=’
-*
LLk
L*L
n
e --a=-----c
.wN-Oa
N’--.
a &o
F. NN*NF.I.N,
W N%rw
2
NORTH INDLAN OCEAN CYCLONE TRACK
DATA
Tc
8EST
Mo/u&/MR
0505082
050514i
0505202
0506022
050 NJ13Z
050614z
050620z
0507022
0507082
0507142
0507?OZ
050a02z
050iio8z
050a14z
Osob?oz
0509022
05090az
0509142
0509202
O51OO2Z
O51OO8Z
051014Z
o51O2OZ
051102z
05110$32
0511142
051120Z
0512022
051?082
051214z
0512202
PDsIT
Wrkn
6.3
‘- ”
90.4
1=,
?0
2!7
.“.
6.4
6.5
b.6
7.0
7.5
i’. 6
7.1
6.7
89.7
R9. I
F3B.6
e13. A
25
25
317
30
90.0
m7. R
57. ?
36
60
65
6.7
6.4
5.0
R6 . f.
86.1
RfJ. n
5.9
6.5
7;1
7.6
8.2
R6.4
86.6
86.6
F16.?
R6. J
u5. q
.?5:?
*4.6
*4.7
U3.7
*3.7
82.7
*2.3
81.7
91.2
no.11
90.1
9.2
10.3
11.2
11.7
12.3
12.7
13.0
13.4
13.7
14.1
1+.5
15. ?
16.0
17.0
w& ftv TNG
TR&cK
5n
bn
60
60
*G
b5
60
60
6S
70
75
75
75
MO
79. >
7.9.1
POSTT
0.0
0.0
0.0
0.0
0.0
7.2
7.4
7.9
7.?
7.6
7.5
6.Q
5.6
5.?
5.9
7.3
7.r!
0.8
10.4
10.9
11.6
12.1
12.7
13.1
13.2
14.2
1+.1
1$. $
14. R
15.2
17.0
D.n
O.n
0.0
o.n
O.n
07.7
87. <
W,.n
87. ?
07.1
86. I.
Eb. O
96. n
.s5.4
06.7
06.7
85. R
05.6
B5.7
04. ?
E3. Q
83.4
83.4
UINI
o.
0.
0.
0.
3::
30.
35.
35.
40.
*5.
50.
60.
60.
bO .
65.
65.
60.
60.
65.
75.
75.
T5 .
Bo.
90.
95.
95.
90.
85.
60.
50,
82. A
82.3
80.0
80. n
2.0.5
80. s
79a
7a.1
AI’L
WNNG
AVG FORFC4S1
.POSIT
FRRoR
AVG i71GM1 ANOLE E?QtN?
AVG INTFr451Tr
MAGvT70DF
ERROR
4VG IN7FNSIT7
tlIA%
NUMdER
nf’ FORECASTS
26
ERR(-3S
OST WI N-J
o.
-o.
0:
-o.
0.
-o.
-o .
-o.
45.
3?.
49.
42.
61.
72.
66.
0.
0.
0.
0.
u.
o.
0.
0.
30.
98.
73.
19.
30.
0.
0.
0.
0.
0.
0.
0.
30.
8.
25.
19.
21.
12.
a.
12.
55.
23.
18.
33.
59.
0.
PnSl
O.n
0.0
o.n
9.I.
8.7
9.0
9.~
7.(.
4,Q
5.7
a.a
9.0
Io. ti
12.2
!0.
10.
10.
5.
0.
0.
FM? Ec4STS
48-H?
>6-*R
16.
77.
2.
2.
26
1’39.
95.
9.
-5.
22
233.
192.
13.
-11.
la
41ES7
MARWThJG
7R4cK
wINn
66.4 -?5
65. q
30
64. ~
30
64.17 35
63.1
40
61. R
w
60.7
50
50
59.4
517
59.6
58.11 5n
s7. n
4n
S6.6
?%
56.1
2n
55.7
1s
POST T
0.0
O.n
0.0
0.0
18.3
18.4
18.2
18.5
18.7
lE.7
la.5
19.0
19.4
19.8
20.0
?0.5
IIIM?
o.
0.
2&
65.7
64.0
63. %
62.6
61.7
59.0
5.9.A
58.1
59. n
58.7
56. u
55.6
FORFC&ST
PO=,l T FQQnQ
RIGHT
4WGLE E?nOR
AVG IN7F14Sl
Tf M6Gw1TIILIE
AVG INTFNSIIY
RrAs
NUW3ER
nF FORECASTS
A8.
ERRo?
24.
b.
6.
]7
-o.
-0.
40.
+0.
+S.
+5.
50.
50.
50.
50.
50.
45.
35.
34.
56.
40.
38.
70.
1!7.
59.
29.
69.
92.
4].
25.
25.
61”L
U+(NG
AVG
AVG
0$7
0.0
0:
i’:
5.
5.
0.
0.
0.
0.
0.
;::
15.
10.
F’3REc&STS
ba.ff?
>4-.6R
737.
363.
0.0
0.0
)9.5
19.6
19. A
19.7
?0.0
‘20.7
.?O.?
O.n
0.0
O.n
O.n
o.n
64.6
66.1
6?.3
5~.3
5*.6
57.1
54.1
n.11
O.n
O.fi
0.0
0.0
n.
0,
5.
2s.
● 3”.
=20.
n.
0.
n.
n.
FO14ECfiSt
EUR3NS
0s1
JI*IO
-0 .
0.
-u.
50. 23M.
n.
G.
55. 248.
n.
5.
5.
30.
30.
n.
0.
..
53. 17(J.
5.5. 4b.
50.
bb.
30.
25.
7>-,*
n.
286.
4
.Zn.
.] =..
*1<.
~.
In.
?b3. -1%
?%9. -15.
7G7. -1o.
1s5. -1o.
113:
315.
470.
511.
6-49.
26?.
191.
111,
70.
101.
132.
)?0:
178.
-0.
-o .
-o.
.0.
-o.
-o.
-o.
-0.
s.
10.
.10.
0.
-5.
-5.
.10.
.15.
.J5.
-30.
.20.
.25,
.10.
0.
0.
0.
0.
0.
0.
0.
0.
0.
92
.Iw#
FOQFCbCT
Po< It
WIND
o.
0.0
0.0
n.o
0.
0.0
0.0
0.
0.0
0.
0.0
n.o
0.
n.o
0.0
12.0
w4. i3 55.
HQ.3
17.7
55.
17.3
69.7
65.
1>.6
.’). $
65.
l&. o
VO.7
70.
11.0
75.
.a. B
Q.b
t6. T
50.
+7.1
70.
~.3
?6. ]
70.
%.5
5.4
70.
-0.5
60.
‘a.4 fB.7
11.0
?tl.7 50.
t8. Q
1?.7
45.
!8.9
13.3
30.
0.
0.0
0.0
n.o
0.
0.0
0.
n.o
0.0
0.
:::
0:0
0.
0.0
0.
n.o
0.0
0.0
0.
0.0
0.0
0.
0.0
0.0
0.
0.0
n.o
0.
0.0
0.
n.o
0.0
0.
fi. o
0.0
“s1
.0.
.0.
-0.
-0.
-0.
?01.
d 1 Ml)
n.
n.
0.
0.
0.
.5.
.5.
n.
155.
3?3.
3nFJ.
6>0.
377.
612!.
573.
500.
=,71.
17!3.
%4.
leli.
?76.
-0.
-0.
-0.
-. 0
.0.
.0.
-0.
-0.
-0.
-0.
-0.
-0.
.5.
.5.
0.
-?s.
-]0.
-15.
-}5.
-?0.
--40.
-]5.
-w.
a.
o.
(1.
0.
n.
o.
0.
0.
0.
0.
0.
18-79
WIVO
0.
0.
O.(I
78.
7
n.
=..
=..
5.
n.
HO!, % FoRFCAST
ER+rI?S
0S1
dINl)
0.
0.
-o.
0.
-o.
0.
-o.
-o.
Pns I T
U[ND
n.a
0.0
0.
n.u
0.0
0.
n.o
0.0
0.
n.o
0.0
0.
n.u
0.0
0.
84.5
10. I
45.
fi
84.1
+5.
an. ?
)). ?
35.
88.2
5,.
10.5
65.
17.0
89.0
70.
a6.7
I\.
k
55..
%0.0
R.?
ao. z
4.9
70.
70.
79.2
K.11
=,.4
a4. o
70.
0.,1
65.
al. s
b5.
)n.3
al. j
el. z
11.9
50.
55.
17.0
80.8
ao. o
bO.
13.0
l?. ] 79.6
55.
l&. n
50.
79.4
1*. S
79.8
50.
n.o
0.0
0.
(7.(3
0.0
0.
0.0
0.0
0.
0.0
rl. o
0.
n.u
0.0
0.
rl. n
0.0
0.
n.o
0.0
0.
n.o
0.0
0.
+a HO,IR
MoI*M
PIX17
wIN7
68
IND
n.
n.
n.
0.
0.
-G .
*in.
-6 .
.]<.
● 10.
n.
-K.
●
77..IR
366,
206.
1?.
-12.
}*
rRRn?s
Pw.17
17. i
17.9
12!.0
16.0
]a.2
la.2
la. O
18.$
Ia. a
19.1
19.2
19.5
19.8
20.1
14&.
184.
254.
330.
275.
70. lai.
70. 161.
b5. 114.
*2.
60.
al.n 60. b t..
81.6 85. 75.
81.2 85. 42.
85.
81.6
34.
an..a H5.
25.
en.=!
64.
t05.
70.
30.
7P. ?
7*.5
30.
64.
0.0
-0 .
0.
0.0
-u .
0.
0.0
-(3.
0.
n.n
-u .
0.
TC
MO/O&/HR
061714z
0617?oz
0618022
0b1008Z
0b181+Z
0b1820Z
061902z
0619u IIz
0b1314Z
061920z
0620022
062009z
0620142
062020z
i29.
14s.
262.
179.
222.
04.7
ab. t
a?.=,
a7.7
12.3
lZ. C
13.2
13.7
14.3
!4.2
16.6
16.0
0.(!
O.n
0.0
O.n
5.
10.
O>r
-u .
-o.
-u.
-u.
-u.
60.
6,0
0.
0.
SOUECASt
EURWS
*IWJ
0.!7
o.
tl. n
0.
11, n
0.
n.n
0.
n.n
3::
SK. m
a=,. %
35.
0$? .?
● 5.
87.=!
43.
50.
a7. Q
a+. a
60.
a-4.7
65.
a3.6
67.4
65.
as. q
65.
8.7
8.$!
$
wmlu
1
O.n
O.n
0.
17-79
0
131
o.
0.
o.
o.
0.
77.
11*.
-o.
-(J.
-u.
-0.
-u.
G.
5.
in.
=.
G.
n.
n.
0.
0.
n.
00517
uINO
FOWFCb5T
FQ4Q?S
7)S7 dIND
n.o
n.o
?1.5
7?. o
??.6
?1.6
0.0
0.0
65. o
64a
63.5
56.5
0.
“.
60.
60.
6u.
40.
n.o
n.n
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.
l).
0.
0.
0.
0.
0.
0.
-o.
-o.
476.
4Ft2.
445.
lno.
-o.
-o.
-o.
-o.
-0.
-0.
-o.
-o.
0.
0.
20.
35.
40.
25.
0.
0.
0.
0.
0.
0.
0.
0.
*2
Posit
n.o
0.0
n.o
0.0
n.o
0.0
n.o
n.o
n.o
n.o
0.0
0.0
0.0
n.o
KNIR
FOOFCQST
UIVO
nsr
-0.
-0.
-0.
0.0
0.
0.0
0.0
0.0
0.0
U.o
0.0
0.0
0.0
0.
0.
0.
0.
0.
o.
0.
0.
0.
-0.
-0.
-0.
-0.
-0.
.0.
0.0
0.0
0.0
0.0
0.
0.
0.
0.
.0.
-0.
-0.
-0.
0.0
-0.
Ill Ml)
-Il.
n.
0.
0.
0.
0.
0.
0.
n.
n.
n.
0.
0.
0.
?
.
m...
.
.
.
.
A.M +44,
-nJnJIAlwwwer
UIU!mowtrmvm.
. . . . . . .
.
.=.>>..=.
. . 000
. . . . .
-40
CP.*WL4
aa=
. . . .
.0.000
.
.
.
.
. . . .
. . . .
. ...>
.00-.-.2
. . . .
oc. .a.
. .
. . . . . .
>=
.
.
.
J
z
s
+
owNLo
.
------------------------.UJmm.
muecnww
**
WWWNNW
. . . . . . . . . . . . . . . . . .“
Omec.
a*=ew
O U’1.lm.
.
w’. ..m
‘mm
M.9-w-Nw.
mmmoeo.
. . . . . . . . . . . . .
UIUlulu!knv.
..co
. . . . .
J>
AI DJ.
Nnl-lw!vlv
--*.OO-****
. . . . . .
eoc-um-a-lmu
.
---------
0 .
.
000000
.
.
.=3.
. .
..0..-
>.
>..
. . . . ..m
.000000
0.000.... . . .
. .
1811111111111s
. 0=00000-0
. . . . . . .
.
.
0--00000.0.
.
.
. .
.
.
-...4
. ...”
.Oo=o
. . . .
..
. .
000-.
:
2.
.
*L
.
.4
**2owl
. . .
. . . . . . . . . . . . . . . .
. -
==s>>3=.
. . . . .
. -0.000000
.
.-.-2
. . . . . . . . . . . .000..>~
.. -..-.-0
------ -C
O=*ST
. . . . ...0
. .
-N.
uulw!dlurv
Oullm-oom’=wwv
+c’.7wulm*8N
. . . . . . .
.mul
QtJ u...
:
m
m
;
;
x
m
z
F3KST
Mo/D4/Ho
1029022
1029uIAZ
1023142
10292OZ
103uu2z
103uu8Z
1030142
10302OZ
1031022
103 II38Z
1031142
10312OZ
1101O2Z
11 U108Z
110114Z
12.4
1.?.0
13.1
13. *
13.5
13. $
13.0
12.7
12.5
12.5
12.7
JIN1
0.
0.
20.
25.
25.
25.
25.
v~s T r
O.rl
0.0
().0
0.0
Q9. k
12.5
8’3.0
13. -5
13.6
t3R.7
88.7
12.6
97.0
12.5
13.0
86.5
13.4
84. A
13.9
83. s
13. Q
82. R
62..
13. R
12.7
81. n
12.7
79.*
79./!
12.7
25.
25.
68.
76.
FORFCASI
Posl r FewrIR
RSG~r
A$4GLE EW?OR
INTFNSITY
M4GNr TlJr)f
ERRDQ
2.
-?.
13
AVG INTFNSIIY
81As
NUMSER
OF FOREC4STS
=RRoes
D5T kfr
-0,
-o.
21.
66,
77.
65.
105.
59.
30.
33.
54.
7?.
13.
17.
17.
30.
30.
30.
30.
20.
15.
?.I’L
MUNG
AVG
AqG
AVG
24-79
n.n
n.n
8u. n
W.?
o.
0.
60.
*O.
35.
30.
30.
35.
35.
25.
.?0.
0.
0.
0.
0,
<4 R”!8JG
TRficK
WINP
P3s IT
11.1
90. *
?n
11.7
Qo.1
?0
12.2
12.4
TC
N>
0.
0.
0.
0.
0.
0.
-::
-5.
-;:
-5.
0.
0.
0.
F’)REc,a5TS
>6-40
68.H3
68?.
190.
I 62.
332.
6.
l].
4.
7.
*
5
O.n
O.n
16..
16.0
15. s
13.2
12.0
14.0
ls. -4
15. P
15.1
0.0
0.0
O.n
0.0
87.5
!Sh.7
W.5
67...
B,l. H
00.1
7.2.?
11.0
(,. ,,
0.0
-u.
-u.
Z5U.
.251.
192.
163.
215.
121.
16{.
19r.
144.
-0.
-u .
-0 .
-0 .
n.
n.
1%.
1..
5.
n.
-G.
n.
=..
=..
G.
n.
h.
n.
m.
Pn51 :T
n.{)
0.0
0.0
0.0
la.,)
91.9
10.6
90.2
17.’?
87.5
14.1
84.9
14.6
t35.1
IT.o
0.0
n.rl
0.0
n.o
0.0
n.1>
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n,o
0.0
WIND
u.
0.
30.
30.
+0.
35,
>,.
a.
0.
0.
0.
0.
0.
0.
0.
n;;
-0.
.0.
633.
673.
49?.
?c)5.
3=.5.
.0.
.0.
-o.
-0.
-0.
-0.
-0.
.0.
;It’m
0.
0.
-5 .
+.
10.
15.
20.
0,
0.
0.
0.
0.
0.
0.
0.
PO<!
n.o
n.o
I*.
M
n.o
n.o
..0
0.0
n.o
n.o
0.0
0.0
0.0
fl. o
n.o
n.o
t
0.0
0.0
95.8
0.0
0.0
0.0
0.0
0.0
0.0
U.o
0.0
0.0
0-0
0.0
0.0
UIV3
?s1
0.
.0.
0.
-0.
15.1036.
0,
-o.
-0.
0.
0.
-0.
0.
.0.
0.
-0.
0.
-0.
0.
-0.
0.
-0.
0.
-0.
0.
-n.
0.
-0.
0.
-o.
NIM>
n.
n.
0.
1) .
0.
[i.
n.
n.
o.
0.
I).
0.
n.
n.
(3.
7?-+1
10-+6.
9.?.
0.
0.
1
!l!C 25-79
SEST
Mu/04/HR
111+027
1114082
111+142
111+202
1115(222
111!X!8Z
1115142
1115202
11)602z
1116082
1116142
1116202
111702z
ll17u8z
11171+2
1117202
llleo2z
AVG
AVG
hVG
PosIT
12.3
12.0
13.0
13.3
13.6
13.9
14.2
14.6
15.0
15.6
16.4
17.3
18.2
1s.8
19.6
20.3
21.3
wTN71
2n
?0.1
20
70.0
*9. Q
20
69. R
20
&9. n
217
69. *
2<
69.8
30
69. U
30
69.0
3q
40
70.0
70. ?
46
40
70.6
70. ? 60
70.1
70.1
70. ?
70.
b
PoSr
0.0
0.0
0.0
0.0
O.n
0.0
0.0
0.0
15.0
14.6
14.6
17.3
3<
18.1
17.9
30
25
15
19.7
20.3
0.0
FORcCfiSr
PO-IT
FRQ”R
I?IGHT
ANGLE
E?DoR
INTFNSI
Ty M4GV1TIJOF
ERRoQ
AVG INTFi’ASITY
I17As
MUM8ER
nF F9RECtISTQ
2&
,& RrmNG
TRKK
WINO
0.0
0:
O.n
0.
0.
0.0
0.
o.n
0.
O.n
0.
O.n
0.
o.n
0.0
0.
40.
70.0
40.
69.7
+0.
69.7
60..
TO. R
4U.
71. =
35.
T1.Q
30.
70.1
25.
70.7
0.
0.0
T
ERmm?s
Oil
wIN>
-o.
-o.
0.
-o.
0.
-o.
0.
-o.
0.
-o.
-o.
::
-o.
0.
-o.
5.
6.
0.
62.
0.
111.
0.
23.
0.
-74.
0.
115.
0.
6,
0.
0.
o.
-o.
61’L
WHNG
r1QEc6S7S
24-@
=.0.
76.
189.
103.
14.
1.
6
1.
1.
R
+8-H3
121.
73.
45.
*5.
1
MrOIR
FORECASI
EIO(O*S
OST *IWO
-u.
‘n.
-u.
n.
n.
-w.
-L1.
. .
-0.
. .
-u.
n.
-a .
n.
Pns TT
*lMf2
n.n
o.
O.n
II.(I
0.
0.0
n.lr
0.
0.0
n.o
0.
O.n
11. n
0,
0.0
0.
O.n
0.0
n.o
0.
0.0
17.0
7:::
4::
6Q. O
45.
15. A
;::
191.
15. *
?O. ?
0.0
o.n
0.0
O,n
O.n
23Y.
252.
-0.
-u.
-u .
-0.
-u.
O.n
boa
7b.7
n.o
0.0
0.0
n.o
n.n
45.
0,
o.
0.
0.
o.
o.
77-IR
0.
Il.
n.
n.
0
133
n.
=..
10.
]<.
.2=..
n.
0.
n.
n.
+8 ISOIIII
DrISIT
0.0
0.0
0.0
n.u
n.u
n.n
n.o
0.!3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10.5
71. +
n.1)
O.u
n.n
0.0
0.0
0.0
6.0
0.0
!3.[) 0.0
0.0
n.fl
n.o
0.0
n.o
0.0
FnnFc&5T
Fe?o*s
DST tiIND
-o.
0.
-0.
0.
-0.
0.
-0.
0.
UINO
0.
0.
0.
0.
u.
-0.
u.
-u.
0.
.0.
u.
-0.
60. 1?1.
0.
o.
0.
0.
45.
?2
17. o
0.0
0.0
n.o
0.0
n.o
0.0
0.0
0.0
u.
0.
0.
-0.
-0.
-0.
0.
0.
0.
n.o
0.0
0.0
0.
0.
0.
0.
0.
-o.
-o.
-o.
-o.
.0.
0.
0.
0.
0.
0.
0.0
0.0
0.0
n.o
n.o
.IXJR
U.o
O.u
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.u
0.0
0.0
0.0
Fnrrrca$r
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
nSl
UTWO
-0.
-0.
-0.
-0.
.0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
n.
0.
0.
n.
0.
0.
IT.
n.
0.
il.
o.
0.
n.
n.
0.
n.
n.
,
.
.s=.
>,0
..mmm
=s+
E,*sa=
. . . . . . .
..D
===
. . .
s==
.
e.6..e.mee
. . . . . . . .
3>>.
=.====3
===’=’==
. . ...0..
2=’.
=.==s
-woe
. . . .
U43
.
5
:
.
.
.
>Ls
.
.
.
Yn>
.
.
.
.
.
.
.
.
==.>>>>.>.=.>
,::
-.
.S~
. ..=’
. . .
.
.
3 .
. .
.
----.-=
. . .
.
0000
. . .
.,
.
3.3.
. .
.
.
.
.
.
3 .
. .
. .
. .
.
.
0---=----=4
. . . . .
.
.
.
.
.
.
...2
. ..C
...”
.
s>>.>.;:=
. . . .*=.3======
. .=====>====
. . . . . . ..*Uc=~
‘S.a....”=”aea=
>>>>
. . .
~
:,
g
.-oooa%x:l&:
. . . . . . . . . .o=.000o-.o~.-.=
.. .. ..
;
-.
I* I1l:ZWW
4,1
11111,
,,,
omm
cc. ccc~:ocvz
n
.CCC.
O*
C’CC.
. . . . . . . . . . . . . . . . .
..->>
..=.
. .
==.
.
-----
..-ru
. . .
.=J>==UV.
.. .. ..
i
.
.
ANNEX
1. WESTERN NORTH PACIFIC CYCLONE
DATA
NOTICE
- THE ASTERISKS
(
●)
B
TROPICAL CYCLONE
FIX
DATA
FIX
INDICATE
FI~S
UNREFFS2SENTATIVS
AND
NoT
USED
FOR
BEST
TRACK
PURPOSES.
TYPHCY3N ALICE
CBIEI ! 71S C:IXE5
T,M:
FIA
Mu.
.
{7)
1
<
3
*
.>
b
7
d
Y
10
11
12
13
14
1>
lb
17
18
::
?1
i?.?
23
26
25
26
21
2s
29
30
31
32
33
3+
35
36
37
30
39
40
41
6.?
43
4+
45
46
47
*I3
.49
50
51
52
5.I
54
5>
56
57
w
59
60
61
62
63
64
6>
●
bb
“67
68
69
~u
?1
72
73
7*
75
●
7b
●
71
71S
UV~>4K
8CC?Y
1 (?. ?E
]*Q.5E
lb7.3E
lh6.. llE
]+G. SE
PC.4
Pew
P~N
b
h
h
Pcv
PCM
b
6
0?0351
07 LJ!301
071?18
0>1400
022133
07d31Ll
07 L1741
071?00
0>1$40
(3-42115
03.?150
0/,0042
o&u350
o&u*57
06200?
107.5E
Ih7.
LIE
1h7. oc
]h7.4E
lh7.7E
1(.7.3E
lbrl. oE
16P.3E
Ifi?.l
E
16u.6E
Pr4
PrN
PrN
PCN
PCN
Pcv
Prw
Prv
Pcv
6
6
o
b
d
6
6
h
6
Prv
5
06<05B
064026
IL.c..5E
PCN
Pcw
Pcv
Ptv
b
4
4
3
PCN
Pcv
Prv
Pcv
6
b
*
1
Pcv
PC*
2
2
31 U.+OIJ
1011236
011+19
01<151
0, Z33b
<t,7Fl
co+4qsM,~
! Ilk
lb7. bE
167.1
E
167.4E
16!=.. (IE
1*5. OE
ii,*.5E
lf.3.7F
11.7.6F
lb?. +E
lkl .7E
16n. flE
15q.7E
ISO..?E
0k1247
of.1923
062205
\5n.l
E
157.9E
/?.5
/7.0
T2.
/7.0
13.5/
3.5
T3.0,3.
PGIU
KGuC
PHIK
PGTU
PGl#
KGtiC
PGTU
KG#C
PGTw
/S O. O/24HRG
/0].EI/2Wf?<
Pill.s
PG7d
PHIK
PGTU
PHIK
O /131 .h/24HRG
or,.234B
070350
07090+
157.4E
157. OE
15 f,.3E
071013
071047
071?30
07??147
oqol12
0aU92b
0s0926
15%. BE
15=..7E
15%.3E
15?.2E
1s7.5E
151.2[
157. IE
lS1. OE
]5,1. )E
l?.17N
l?. ON
12.13U
11. W
11. ?N 14R.6E
)1. W
147.5E
17.3hl 146.7E
I?. %1 145.7E
l??.+M }b=,.2E
11.9N 1*7.3E
]?. !3.,14?.6E
12.4.! lbn. ZE
]7. >. 140.9E
I&o.4E
101136
l?. %
17. ?N 16n. lE
1.71317
IoZ127
12.3N 13Q.3E
in’?127
1?.3,! 139.3E
1?.3.! 130.1 E
102236
110159
12.7M 13R.7E
1,1008
l?. WJ 13s. OE
111008
13.0$4 13s. OE
111118
13. 0.1 137.8E
1)1041
13.3.! 13-I.7E
1I2107
13.6N 137.5E
112108
13.7N 137.4E
112218
13.6N 137.1 E
1701+]
14.0,8 }37. IE
170141
13. W! 137. IE
170~+8
15. ?N 136.6E
170949
lb. 9,,. 136.3E
171100
15. ON 136. ?E
15.lbJ 136.4E
171+23
l?.20+13 15. &bJ 136.6E
1=..bw 136.7E
1723+3
1?092!5 16.7N 137.5E
170!229 16.7.! 137.6E
1310+?
]6. qN 137.7E
13160E. 14.3N \37.4E
13.5/3.5
T4.
o/4.
/DO.
cl /00.
PGT#
PGT#
PGTN
PGTW
PHIK
PGT#
PGTti
PGTU
PGT d
PGTM
PG7U
j/2bHRC
j/23HR<
Prw 2
PC.N 1
Pcu
1
PcN
2
PCN
2
Prv
Pc$i
Prw
2
2
1
PCN
Prv
1
5
PCN 6
PCN 5
P(Y
2
PCN 5
PC% 4
PCM 6
Pcu
b
Pew *
Pcv
1
PC*
1
Pcw *
PCN
Pcv
6
1
PCN
Pfx
Pcb4
Pcv
PCM
PCN
2
1
2
2
1
1
Pcw
Pcv
PCN
Pcv
Pcq
1
2
1
.?
2
PC*
Pcv
Pcw
PCN
PC*
PCN
PCN
2
1
1
6
~
6
4
Pcv
PCN
5
3
Pcw
Prv
PC.4
Pcv
b
2
6
6
SITE
PGT#
PGT#
T?.
12.
16 R.IIE
0<0350
0G0339
061305
0G1943
Of.000b
0AU923
0$.0922
oqlo29
o*i353
0C12025
0VO054
000906
091011
041335
00225$
lno?17
ln094b
ln094b
COn E
15.0/5.0
T6.
o/6.
/D1.
o /01.
o/2
PGTd
PG7M
PG7W
f,HR<
o/24HRQ
DvsP_47
O*<P37
T+.5/5.5
/u]
T3.5/4.5
/ul.
T4.
/w0,5/19HRc
o,,.5
.3/27MR<
o/23HRs
T3.5/3.5
/SO.
O/23HR<
73.5,3.5
/s13.13/25HRG
74.0/4.0
/so.
INII
Ods
PGTW
P141K
PGTti
PHIK
PGTU
PGTU
PGTU
PGTU
PGTM
ROON
PGT!I
PGTW
PG7U
PGTU
PGTW
PGTU
PGTu
PGTW
PGT M
ROOM
PG7U
PGTU
PGlti
RPUK
PG7U
PG7#
PGT#
ROOM
PGTN
PGTM
PGTU
P6T u
ROON
PGTti
RPMK
PGTW
o{2RHRc
RPMK
.;g;;
T3.5,3.5
/SO.
PGTM
PGTd
PGTd
PGTM
UDON
PGIU
PGTU
O/2hHR%
135
*
●
f9
bO
81
82
b3
B4
85
1?2026
1-4Z02B
1?232 j
1* LI105
lao909
1403rA9
142307
1*. ?U
16. IN,
Ibn.lc
13 f..1E
If).
ti
1*. ON
17. bN
16. ?.J
17. IN
136.6E
136.4E
14..7E
135. +E
137.lE
Pcu
Pcv
P<w
PcN
Pcv
5
3
6
b
5
Pcv
,PCN
b
3
Du5D37
DM5P?7
r?.
0/3.0
T1.
O/2.
/w I . 5/24tA13c
O /wl.
o/.26HR$
AI ICOAFT
TTME
(7)
FTX
POSITIOM
1
2
3
*
5
6
7
0>0115
0715?0
0-40053
5.-W
6.~N
7,2N
030310
o&l)?]o
o&15z3
051302
7.7N
16R.5E
167.6E
lfs4. OE
16R.3E
M
0.316?3
0602S9
061213
ok1627
07UO08
070?56
Q.3N
Q . s.,
10.3N
In. $*
167. flE
16 f..2E
1b_4.3E
163.lE
11. %
1?. 1.(
12.2M
12.3N
12. *N
12.5N
12. ?M
l?. W
12.%1
)2. lV
12. nl
161. oE
15Q.2F
15.7. OE
157.6E
157. OE
154.7E
FIX
NG.
1:
11
12
13
i+
15
16
17
18
;:
21
22
23
2*
25
Eb
21
::
30
31
32
::
35
36
3’/
38
39
40
● 1
42
+3
071+07
071820
07~0+0
Onoolo
Oqoz+?
OR130?
on150B
0S2Z49
0Q0202
000601
000940
09163+
11.9N
U.*
]~.~N
12.1
12. IN
17.18,
11.7!4
1%.?*
1017*2
102105
liu?lo
12.3N
l?.3N
I?.5M
13.3”
13.3U
1’3.9W
14. ON
16. %
15. IN
15. ?N
15. *N
15. ?W
Ih.lw
16.3w
)6.5N
lh. lN
111245
111530
121059
1.=1906
172013
I 300?8
1?0253
13122.6
171517
1*000*
140308
156.2E
153.5E
157. F5E
152.4E
14q. $3E
16Q.6E
.E4n&
147.46
N lb6.6E
00205*
1 no 6+.5
1?0106
1702s+
FLT
LVL
146.1
]46.8E
E
167.6E
1*1.8E
130.2E
139.2E
13n.5E
137.6E
137.3F
i37.1
E
137. OE
136.5E
13 F..5E
136.77,
136. IAE
13A.7E
137.2E
137. ZE
136.7E
136.2E
15130F1
700Nb
700UU
7!30Mn
700M8
700V3
HGT
794R
>97-4
9934
9?4?
7ooMe
7noW
7’931
>0+7
700MN
7qOMH
?170wH
7170MB
7110u6
700Hh
7!70PW
7’OOW
700H8
7i30W
7825
7807
7763
>76?
?674
7b46
7561
747*
7477
9544
;:oofi
7ooMh
7+aGMU
7i30nL4
70016B
700wB
-700W
7110un
71roHB
700H8
700!4u
7nouH
7130W
7fioMti
7130MS
7f10MM
71TOW
7001.W
7no Mn
700MS
700MM
700MU
700qH
790MU
700M13
?537
7690
>743
>17%
9771
>84=!
?857
?849
9847
>804
76tlR
>646
>60.
7597
>56?
?b73
?625
Y77r3
>766
>761
2859
7925
7959
-4017
7126
3145
08S
MSLP
986
984
982
983
983
972
969
96!3
963
MtIx-sFC-WqO
VEL/RRG/FING
160
35
55
$5
55
120
060
310
15
60
b5
340
961
9*9
937
930
928
938
935
Q54
957
w
964
974
973
970
965
953
949
943
90
.s
?0
14
110 ?50
90 180
95 ?10
10
030
090
95
360
120
150
150
938
966
965
963
1?0
8
8
961
977
60
65
030
090
35
15
50
30
33U
350
?0
30
97!5
989
1005
Ilh-jficl
rims,
(71
Flu
1
2
.5
;
6
r
n
9
10
11
12
13
1*
15
16
030330
olob20
0’3(3730
0?0930
0-60330
0-41130
oq2z30
0,1J130
0A0530
06(J730
0,U500
040030
0’0900
0,0?30
061000
o&lloo
17
10
0*1130
000635
::
21
OQO51O
00U535
09ublo
4cr#Y
7.7u
168.2E
a.+N
*.?N
71.5hJ
n.=Jw
8.6N
Q.l W
‘9.3,!
9.6u
9. bf.!
q.bu
0.5.J
‘+.$.
9.5w
O.%W
16R. oE
16R.2E
16R.2E
16U. ?E
16n. ?E
167.7E
1*7.4E
167.6E
167.6E
167.5E
167.5E
lb7.
?E
?67. IE
167. lE
o.%
lkI..9E
Q.%
l?.3N
I?.3w
l?.3N
lfYA. ME
Ib6.
ME
)4&.7E
Ib4.7E
].?.
146.5E
?N
LAMO
LA.,0
LANO
LA.,0
Lfik4D
LA.JII
LAhlCl
LAUD
Lfi.,il
LAND
LA?JO
LAUO
LA.lC)
LAND
L13N0
LAUD
LAWI
LA.u3
P!30R
LauO
LA.1i3
LAVD
PWR
P-ION
PqUH
EYE
SHAPE
??0
1160
?10
72
60
60
1 An
n=.n
+10
)30
52
53
56
74
290
ldcl
Oeo
31U
2UU
0+0
19*
!00
1?0
(l&n
79
70
!37
FJa
3*IJ
b30
3(IO
EYF
oIa14
~v~
kCC07
NAU, WET
oRlEN-
100
102
96
wSN
No.
131t, u/ T4110N
lno
O*IJ
090
lpb
Olo
17)5 300
1*O
1]5
060
115
60 090
)30 3bU
70 W(3
75 XM3
107
050
090
94 230
160
90 040
Iln
87 OAU
) =.0
99 0’)0
3%11
86 2M0
0/.0
90 330
Ofu
)n~
io5
8 Rn
00 lUO
000
85 3*O
?>0
~~o I 50
150
?70
110
1?0
134 0>0
17{1
90 090
lno
83 360
110
65 03U
non
40 3*O
100
170
67
040
57 2s0
lhn ● 5 !340
140 35 330
110
,,0
010
100 330
100 170
130 060
60
65
FIXES
WF.X-FLI-LVL-*ND
lllR/#EL/dHG/tiNG
65
93
RODN
PGTd
PGTd
PGT#
RODN
PGTli
PGTu
Oti<pw.
DM<D3%
Duqu37
rlblqP-47
Du$P36
+23
.1.?
2
+Ii
+13
.11
:
311
zn
m
2’4
In
20
n7n
Onn
170
lAn
1?0
060
3*
o-4n
130
•,
4
C112Ct ILAR
ELLIPTICAL
35
3(3
?0
010
.13
.10
ELLIOT
25
15
030
.12
IC4L
CLRC, ILAR
CIRC,,LaR
27
17
CIRC!PLAR
15
CIRCNLAR
7
4
4
ELLIPrl
CIR&fMR
CIRC,ILAR
CIRC,,L&R
ELLXDIICIIL
CIRC,,L&R
CIRC,,L&R
3
5
.Ii
25 15
3(3
30
35
25
20
17
CIRC[,LAR
CLRC,,L&R
CL13C[ILAR
13
C1RC,,Lti13
10
.19
● 19
.21
+15
.2$
+22
+14
.20
.?*
.Y.2j.
●
15
C&l
18
020
13
.23
.23
.la
+11
040
+25
13
11
+10
● 1O
● 1?
● 12
● 8
B
● 13
● 1U
● 9
*lo
+11
● lo
+11
.20
+10
CiliC,,LAR
13
411
2
CIRCIILhR
in
● la
+13
11
1-?
12
13
13
14
14
14
15
15
lb
16
lr
17
●
+1?
+23
.19
.19
C112CIIL4R
10
Iu
●
+1*
● 13
.12
. 5
● 6
*LO
*11
+11
3
1
2
3
3
b
7
.11
. B
+10
● e
.11
+1+
.13
.10
.11
● 13
● 23
*1U .22
● 1,? +19
+1? +15
.1* +16
● I? +1?
.20
*12 +21
.15,
*I2 +21
.21
*I1 ● 22
.10 +16
12
in
s
+25
.15
.16
.13
+i7
.11
+15
.15
.1*
.17
.16
Id
Id
1’4
20
?1
●
?3
?3
23
2+
?4
?5
?s
?6
?6
?6
?7
?7
1Q
28
W
29
29
5
STIES
aAnnm.CoOE
bswbU
TL)UFt
POOR
FblR
F*1U
PQO17
P?UH
Ft.lR
P,OR
PqOR
GI)OO
GOOD
Gnoo
0000
FAIR
FaIN
PIWR
POUR
Pn.lR
COMMENTS
9.7W
PSLIL
PCtiL
P*BL
PcUL
P5FJL
PCLiL
PCBL
PcHL
CMTU
CW7R
FvF
CWU
CNTll
CNTU
CNTU
CUTR
PSBL
PcF3L
9s13L
PCIIL
P<Ii!_
PWJL
CNTH
FvF
FvF
svr
FvF
FVF
Pq#L
PSBL
P<13L
UALL
FvF
CNTM
PN7kF
rI n vsB
MALL
PI n
167.7E
167.7E,
167.7EI
167.7E,
>.67.7E
167.7E
1 67.7E
167.7E
167.7E
167.7E
167.7E’
167.7E
157.7E
167.7E
167.7E
167.7E
167. ?E,
16 b.9E
I $$.9E
16+.9E
8.7u
B.7W
0.7B. 7N
0. 7U
0. 7U
B.7U
B.7w
a.7u
8.7U
e.7N
8.7N
8.7N
VSBL
2.rw
0.7Ssw.
S#-N
NNE
8.7W
13. W
13.6BI
13. *9I
13. W
q13h6
Q1366
01366
91366
Q1366
91366
t?l366
Q13S6
91366
91366
q] 365
q 1366
q] 366
91346
913F16
01366
Q 1366
L31?la
91216
912,8
~l?le
16$.9E
136
.
..
22
23
24
25
26
21
28
29
30
0QIJ535
000705
000735
0?!)905
12.3.!
LAW
LA.!O
o~1335
00 J$lu
LAbJII
LAq O
LAWI
LAWI
I-AND
LAND
LAWI
LAND
LAND
LAUD
LAwD
LAWB
LA,,9
LAW)
091435
0+1510
OQIE.35
091510
0Q1635
LA?JO
LA.(O
LAw)
LAM3
LAM)
OOv U5
030310
000335
OQ1O1O
001035
OQI1O5
0.31135
0G1205
0,1235
(391320
38
39
40
41
42
1?. ?.!
17. WJ
17,4U
12.3.,
P?LW
PqOR
Pqoa
D90R
F&lR
PqOR
F&l R
P130R
Fb. IR
FAIR
Fall?
Gi3U0
F&l Al
6FIOLI
GnOO
FF.l R
F.l Ili
F41U
uALL
WALL
U4LL
MALL
uALL
wALL
IAALL
WALL
wALL
WdLL
wbLL
ufiLL
dt,LL
29
>0
W
GnOD
HVY
HVY
HVY
HVY
HWY
HUV
FAIR
Fal R
FAIR
737
13.W
till
vSEL
SSW-U
c1 n VSBL
SSW-NNE
PI O VSEL
SSM-ti
m n VSBL
SSW-NNW
(7L0 SSW-NNE
c1 O W-N
cLf)
SW-)A
CL o SSU.AA-NNE
Cl O S-M-NE
CLFI S. NNA.-NE
CLll S-N
<su-NNE
<-MU
R*P
CIR
*ALL
MALL
We
OPEM
CLF3 OPEN
AT7FNUATION
bTTFNUATI
ON
AT7FNuATION
ATTENUATION
ATTENUATION
ATTFMuATION
~
ZNE-S-Sti
13. (IW
13.6?4
13. AN
13.6N
13.6u
13. bN
13.9u
13.6U
13.6w
13.613. bu
13. bN
1313.6W
13. bN
13.6N
13.6*
13. ew
13.**
13.6*
146.9E
14$.9E
1*$.9E
1**.9E
1+6.9E
1~6.9E
16+.9E
1w6.9E
lb$.9E
1+$.9E
l+&.9S
14$.9E
14*.13E
16$.9s
16$.9C
164.9F
16$.9i
14 Q.9i
l*&.9E
1+6.9E
16+.9E
.-
+..*+
c-<.--.=:
---
●
-.
---
NN$l*rnrl
\
:.++..+*+
-r
-lrl**a
A----
Y’>-------
●
7
*
s
1
:
*.
.
:
%
‘
TYPHOON
C6TEII
Flx
?40,
llb-
CECIL
CIXES
TIME
(7 I
1
0,??25
2
3
*
5
6
?
0c123+9
oa233i
101212
102314
11 U31U
SITE
3.13U 14?.6E
3.6U ]A-4.6~
+.1*, lJ+l.7E
6. 3.1 lb fi. bE
f,.a,, 130. OE
6.6U 13n. HE
6.*N 13n.3E
6.3N 13 fl.5E
6.3U 13i7.3[
134.4E
6*W
7.ohl 137.6E
?.nbl 137.4E
7.n.1 l%.l E
7.lu 136.*E
4. 7U 13/,.6E
6.W
136.7E
?.ITN 136. eE
7. 1,1 13S. bE
134.5E
7.W
110?11
Y
111155
~
111$3+
1(3
111+36
11
lld151
12
]12256
13
1,0134
14
1>013+
1>
1?0135
lb
l?l$ib
17
1>1+16
16
172131
19
170020
20
lau?55
ZL
1>1011
22
111119
?3
131337
.24
171358
25
1-41355
26
1’42111
27
1GUOU2
.2M
1.0?39
23
140?39
140239
30
31
140?52
3?
141263
33
I*li.zcl
34
1*1321
35
141521
36
142233
3i
142344
3d
1s32?1
39
1=.U221
●U
1=.093.2
.41
151?25
62
15150?
43
15150?
++
1<2?13
45
1%??13
46
140ZU3
+7
16132u3 1?. 1.! 171. (IE
*6
IM3Z03
11.%!
173.1 IF
49
I?7.4E
lf.1053 1?.7.,
161053
l?.3*!
127.5E
%
1610s3
I?.%*
1?7. $E
52
lhi?oa
l?.7N
1?7.2E
53
16144+
17.7*!
1?7. ?F
54
1!31+46 17.7,1
127. fJE
55
1*2153
I?. CJU I?I.9E
5b
162153
1?.3.1
129. IIE
57
170050
I?. +N I?7.3E
58
13.?u 127. ?E
170326
93 171033 13. qM l??.3E
60
171033
1 1.7w
127.5E
61
171332
13. Qw I??. *E
62
11. s., 12>.4E
17142b
63
171508
t4. lN 1z7.4E
b+
171606
13. ?.J 1?7.3E
65
14.3.,
17?. HE
172133
66
lnL!032 14.5M
127. JE
67
lqo30B
14. qN l?l.
i’E
68
lRo300
14.5M
127.2E
69
I?A.2E
1!31013 I’+.4N
7!3 }ClL3i4
14.7u
123.7E
71
1.3154? 15.7N
124.6E
72
15.5N
I?6.7E
1*1549
73
19001+
16.%,
1?5.1
E
74
190249
17. IN
l?<.2E
75
1W?49
17. ?.1 12s.7E
76
190953
17.7N
I?6.5E
??
IQ1531
19.5N
I?7.2E
7tJ 101531
lfl.3N
I?7.
bE
79
120. OE
1.3<357 21 .1.!
90
192357
ZO.9N
12Q.2E
2?.5N
137. UE
200933
:;
2(71?3s 21.6N
133. ?E
b3
2ni?3B
2?. %u 1 ‘47.7E
84
2n1513
24.5.1
1.36. bE
85
201513
23.7v
134.5[
86
2n1313
2?. qw 137.6E
B?
2nZ33S
2?.9N
J37,. *E
70.
”,0.0
PGIu
TU.0,13. (J
rl.
o/1,”
/$0.
o/2%HRe
/nl.3/?&tln5
71.;
/Qu.5/Z&MRC
/1.5
73.0/
3.0
PG1 w
PGT*
P1j Tll
PGTd
INI1
.)SS
INII
34s
074 EOUE
OF
04Ta
o/3.
o
lNII
JdS
r3.
o/-i.
o.
[Ntl
2.ss
T3.
n/-5.l3
/$13.13 /2 bHRc
T3.5/3.
j
r4.
o.
/1)0.5
T4.5i4.5-/Bl
Pf3T#
PG114
PGTw
PGTM
7?OON
RPMK
PGltl
PGT#
Roov
PGIN
RPUK
PGJd
PGTU
PG1 U
ROIJV
UPMK
PGTU
PGIM
PGTW
RPMK
PGT@
PGTIA
PGrd
/26HR<
.o/2?tiR%
Tb.5,&.5_/1)
].o,24Hl?<
SPLI
T*. P/4.5
T3. @/4. o
14.0/4.0
● .tRS
I
ROON
PGTU
RPM!(
ROO!4
PGTN
RPM<
9GTd
R130W
RPM%
PGrU
ROON
PG1 w
PGTti
RPHK
F40LP4
/w O.5/2diR.
/.4] .5/2,3HRei
lNII
PGTd
RODN
PGIW
P61U
RPMK
PG7M
PGTw
RODW
PGIu
RPMK
PGtw
ROL3M
PGld
PGTd
/nl.5/23HH5
T3.
o/4.
STOQM
JOS
T4. o/6.
o /5,1. o/24HR<
14.5,4.5
/0] .3,21HU<
T6. j/4.5 */1)0 .~/22HU<
RPMK
PGIN
ROOM
PGTW
RPAIK
N/4
72.5/3.5
T3. o/6.
73.0/4.0
/wl
o./”]
/wl.
.5/2sHRs
.5/3nHRc
S./2 fiH7tC
T3.5./3.5
T3. o,3.
/01.
o /50.
o/2+HRQ
o/~’HRc
UJG
TO
TFDu INATO*
ROOY
PGTH
PGT#
RPM<
ROOV
PGTIA
ROON
RoOM
PGTd
flP13K
P(ITM
PGrU
R(7ON
PGTU
1200$4
PGld
PGru
T2.5Jz.5
T3.13/3.5/WO.5/26URS
EAPuSEU
1 LC
qYs IEM
015 S,?41F(J
PGr#
RPMK
ROON
PGrd
PGId
m
*
9
.4
-s ”..
-..
Jl**Alklv-lmaarJ
..---.V.
4 .
.
.
.6.
R12CUAF1
14
,.J .
llM<
(7)
,.,
rLr
t.VL
1500FI
7nnMu
r?,
-4u9n
7U1]
>974
?’+5?
-iu35
1002
3127
1004
,ICC*Y
!-AN13
LAalD
LA. ICI
LA. tD
LA 10
LA,ILI
LA, !9
LA* III
LA*!O
LA.10
LAW
LAW
1-4<?33
17/303
1-+2330
I..
(J33
14U1O,
1.0135
160205
16U?35
16 U3135
160+10
140632
1AZ3*6
P,otl
9nuR
P?OH
F61H
Fdl R
F.41H
25
30
160
18U
55
50
9FJk
15
15
360
100
30
30
?5 310 1?0
25 )40
50
T,rl:
(7!
1
t
3
lhl?ou
17 UOIIU
1712!30
.Ix
ms~rrm,
?0.0%, I?9. IIE
27. 1., 133. (IF
27. r3N 16n.5E
IN TENS1l
ESTIMATE
Fnlti
Filn
CIRC, ILA?
CIRCllL&?
CI!?CIILA3
C19CIILA<
C1RClfLb3
CIGCIILA?
CInCl)Lh?
CIRCIIL133
F41H
G’30D
6.300
P!-luk
Cl RCtlLb3
cIRCIIL&?
CIRC!ILA?
CIRCIILA?
23
::
V
710
7+0
0?0
110
3<4,
~lrl
1611
34
30
16u
IX!
35
3?
39
150
3>U
2(U
ELLIPTICAL
ELLIDTi
v:aREs
T
367A
{NM)
CtL
OR IENTAT ION
k V.
clllt/
Mw
w).
.lII
.iz.]0
3n
?0
36o
.19
.15
.10
30
70
360
+ 9
.]3
.1?
.1!
.2+
.11
+2+
. 9
32 31U
?s 290
●
5
b
6
6
u
8
Flvts
<lTF
EYE
stl&PE
COMMENTS
P<HL
CFNTER
CkJTQ
STNWY
EvE
SYW3DTT?
Flk
*O.
.YE
Di4.f
EYE
SFla?k
Oa>m
TTW:
(71
E5
M6T
7n0Mti
717n Ml!
7nL3M”
TnoMn
7130W
la
,0.
F[x
01 hN
SINCE
UN6
HMO No.
LdST
l?EPWIT
15.2N
15.2N
15.2u
15.29J
15. ?94
15.215.2u
15.2N
15.2u
15.2M
15.2*
15.2N
FTXES
COUAIEWIS
120
60
60
742
...
120.6E
120.65
120.6EP
12 D.6E
120.6E,
120.6E
120.6E
li?O.6E
120.6Ei
120.6E
1.20.6E,
IZO.6E
983>7
98397
C18377
983?7
983?7
Q83?7
003??
r#33?7
q8377
983?7
oe327
W3 327
‘23tOPI_
SATEI
F[x
N(J .
:
3
4
5
6
7
a
1;
11
12
13
1*
15
lb
17
in
19
20
FIX
MO.
$
3
*
5
b
7
B
9
10
11
TTUE
(7)
CIX
P051TIOfI
210311
?70035
114.2E
l] R.oE
2?0253
2?0253
?*UUIR
2.0235
23u235
?-410?2
27102Z
?3125+
2?i;
i6
?31516
2%?121
2321?1
llR.3f
lIR.5E
2koooo
240216
24u216
2.1000
261OU2
241002
T,*E
(7J
2-40200
2-,0200
Z?uboo
230400
230500
2-3 U5.00
210600
2aObO0
2?u700
2_+u90D
2>1500
124.6E
125.3E
12<.5[
l?r.. fIE
12e. oE
129. oE
129.7E
23. ?kJ 12’3.8E
2-4.1 N 137. OE
24.6U
133.5E
24. %
13?. TE
25. bb, 13?.l
E
25.1 N 13_i. LIE
27.7.,
136. OE
28. ON 135.7E
27.1N
136. OE
?2. m
22. ?rA
2?.3N
22.3.s
??.6v
2?.4v
22. $,,
27’. *N
2?.5M
2?. =PJ
23.6N
12.5.1 E
125.1
E
12=,.7E
12%.7E
1?6. oE
12/.. OE
126.2E
1?6.2E
126.6i
I?#,.9E
129.5E
PCN
Pcq
Pcq
Prf4
PCN
Pcu
PCN
PCM
PCN
PC’+
PCN
PCM
PrN
Pcw
5
3
3
3
3
4
3
3
3
3
5
5
5
5
PCN
PCM
5
3
Pcw
PCN
PCN
Pcv
3
5
3
s
Rboae
NU ,
1
?
TIM:
(7)
21 UOO0
2,1200
FaXES
T1.5/l.5
11 .011.0
11.5/
1.5
11.5/
1.5
T2.5/z.5-/fll
/so.
T2.5,?.5
/01.
T1.
n/].
/all.
ods
ads
IN]T
3dS
P$N
L14sEn
r)/24MRc
o/?&HR<
EYr
DI&M
IN I T
LldS/UPR
1?61 I
CNSS
TOllF~
LANO
LANO
LAND
L AVD
?1s72
10!T?3
?1s12
?ITQ42
so51i
50716
5091+
50612
LANO
LAVO
LANO
LAMO
LAvO
LA!40
LAvO
JOR72
-45/41
?7Q12
?f27Rl
?*R42
?4s11
?1///
s0816
50s19
50814
S0911
S0822
50816
40522
FIXE6
M:4REST
(NM)
BANDS
I VL
COMNENIS
60
60
143
CONMENT S
.
RPNK
PGTM
RPMK
ROON
PGT#
P($TM
ROON
PGT#
RKSiI
PGTu
ROOM
PGTM
PGTW
RPMK
PGTN
PGTM
RI(SO
PGTU
ROON
RKSO
m41)nu-cOUE
Aqu@
04TA
ON CR
O/21tiRS
O
EYE
SHAPE
6cckY
INrr
INIT
SITE
.s/2bHRq
11 .5,2.5
T2. O/?.0
INTENSITV
ES71MATE
lQ. OU 116.OE
20.0,, 115. nE
05
C3MMFNTS
SYU03TIC
FIX
I ?TF
t,crw
s..
!005 TTTOM
DEPRESS1ON
)T40WI
PoSITio+l
2+. w
i?*.3N
26. S*
26.3N
24. IM
2+.3M
24.8U
24.3w
26.8N
24. LIAI
?6.lAI
~Z3.3E,
126.2E,
~25.3El
12$.2E~
I z5.3E.
1 -2$.2V
i 23’.3E,
1,24.2EI
1z5.3E,
?25.3E1
127.7E$
qIrr
Uuo
Mo.
,79?7
479’78
,79?7
,7*’TS
,7W7
● 7918
47W7
+TW21
479?T
4197T
,7977
TYPES(X3N
C6TEI
FIx
TIME,
w.
{7)
El
9
10
11
260019
261119
261641
270001
270?00
270047
271102
272120
272363
2Q0141
2FI1OO8
12
13
14
15
16
11
la
19
20
21
2!31225
2n1423
2$32325
291?00
2Q2307
3nl150
301346
31T220B
“O1OO31
010227
4
5
6
7
22
23
24
25
zb
27
28
29
30
31
32
33
34
35
36
37
38
39
40
59
60
61
62
63
b4
65
66
0!0227
011050
0i1050
011313
011313
011509
011509
012148
040013
CIX
P05TT10M
5.9V
‘3. Di
.S.9V
‘?. nu
.3.7N
R.6w
P.7N
11.3N
RN
0>2?49
040300
0$031$
041131
061555
061555
042230
050101
050255
0=,0256
0=.1110
051110
O’+13*3
051537
0=,2210
od210
0600+3
060237
o/23HR<
PGT#
PGTd
PGTd
6
6
b
5
70.0/(
Pcw
Pcw
e
9
TO. O/0.
Pcv
Pcu
Pm
PCN
Pcv
Pcq
PCN
PCN
Pcq
Pru
Pc%
Pch
PCN
PCN
IJCN
Pcv
b
b
b
5
3
>
b
b
6
b
El
5
5
]
b
3
PCN
IJ!!N
Pcu
PCW
Pcq
Pcw
PC*
PCN
Pcq
5
d
4
6
5
5
3
5
5
TQ.0,4.
o
/c)l.
o/21HR<
Pcw
Pcw
Pcv
P17M
PCN
Pcu
PCN
Pcu
PrN
PCN
Pcv
Pcti
1
b
6
6
6
3
5
5
3
4
3
3
T5.13/5.
o
/r12.
n/28HRc
T4.5/3.5
73. O/4.
/wl.
O./W?
F’cv
PCN
PCN
PCN
Pcw
PCN
PCY
PCN
PC*
PCN
Prv
Pcw
5
3
3
3
3
*
3
3
5
5
s
5
T3.
s/3.5
74.
s/4.
14.7N
14.5W
]6. bN
14.1 N
14.%!
129. IE
12R.4E
1 ?5. OE
I%U.3E
l?n.l
E
1?!4.5E
12n.l
E
127. IE
12 fi.6E
12A.6E
126.4E
I?l.5E
171?.6E
120.4E
11’Q.4E
211. lN
llfI.
OE
217. ?M 118. IE
II A.3E
20. lN
2(!.
OW 116. OE
11<.8E
20. lN
20.7.,
1115.9E
20.5N
114.3E
11+.5E
20.4.1
20.6MI
113.7E
20.7N
113.7E
21.7*4
111.8E
111.7E
21.5N
21 .5,,
111. *E
21. +W lln.
OE
.). ss
T1. fl/l.O /nl.
PCM
PcN
PC*
Pcw
1317.7E
1317.7E
13n.2E
13n.l
E
SITE
O/?4HHC
6
5
5
13n.9E
CJ.4MFFJTS
I TIE
O /50.
PCN
Pcv
PCN
137.4E
131.5E
131.3E
131. OE
F,IXES
PGIw
PGTd
PGru
PGTti
PGTU
PGTU
PGTU
PGTU
PGTd
PGTU
PGTII
PGTti
PGTW
PGTd
PGTM
PGTW
13s.9E
13a.6E
13$1.4E
I llF
3NII
5
5
b
b
b
5
b
13. %
13.2N
12. *W
13.7N
~~.8N
13.9N
13.7M
13.’W
I?.6N
IH.7U
lR.9.8
IQ. W
19. W
5&TFl
P@J
PCN
PCN
PCM
PCN
Pcf4
PCN
12.IN
17?.
QN 13R.6E
13.??J13R.7E
12.5N 136. OE
12.9U 133.6E
13.7N 13=..2C
13.7N 13?.6E
13.9U 13?.3E
13.7*I137.7E
040137
0?0155
070209
020209 14.5V
0?0209 14.61’J
0?1029 15. OU
071255 15.1 W
021$50 15. lW
021451 15.3.!
07212B 1=1. OW
02212’4 15.9N
0?2356 16.0,1
070137 16.2A!
0$1009 17. $W
011237 17. R.J
0?1632 lfl.l N
031632 18.IM
032249 1*.6.
COOE
13q.3E
141.7E
13Q. OE
1413.4E
14n.3E
139.5E
139. *E
11.6N 13u.7E
11.
0Vn?4K
ecc QY
ELLIS
10. OJII.O
rO. o/n.
o
fs17.
3.0 /so.
o/26uRc
P0S513\E
SECOUnAUY
10.8N
139.6E
o/26HRc
PGT d
PGTII
IN I I Lids
c1 UP
UPR Lub
n117Fl
?2.0/2.0
tjPR
T3.0/3.
T4.5/4.5
Lv\
RPMK
PG1 d
RoD!4
PGlbl
RoDN
PGIU
RW4K
nu
F.NT I/clhNUING
RPMK
PGIU
ROov
RPUK
PGTW
RP)U(
ROON
PGTU
PfiTu
RPMK
PGTU
UPNK
PGTd
PGTU
RPMK
PGTU
PGTW
PGTVI
RPMK
ROI)W
O /1)2. O/26HRc
/D O.j/2.HRC
INIT
06s
c1 UP
74.0/4.0.
o/21HRQ
.0/21
HRC
RPMK
EXPUSiIJ
1 LCC
EXP05ELI
I LCC
%-/Ul.
OF
O/2%HR<
ExPdSELI
1 LCC
WELL 3CF1NED
N/A
T2.
NF
/D O.5/24HRS
j/?.5-/w2.6/2?HR~
144
OJC
?0
1 I cc
TFsMINA1OK
Ot.NSE
CIJNV
ROON
RoON
RP14K
ROOW
RPMK
RPM!(
RPMK
ROow
ROON
RPMK
RODN
RPMK
PGTU
RPMK
ROON
RKSO
Nwwn
l-----lNnlnJnJ
IT. *0.
. . . . . . .
WWWUWIUIJU
Zz=zzzzzzzrzz
\
\
\
..\\\
\\\l.n,ne
JILn
\..
lu.. \\aror,JNN\
\\.n\\\**.o
e*\
X.w,
,,.o..
w,,
,,
\\.
\.,
.rb
a\,\
---*rm*cr.
(? v.
. . . . . . .
UC.”
u.o2
\
e
.
>Y.7.
>3--.IS
4.4
n*
JTJl\=>Jlm
J,-aria,
,oo.d?-+mx.
..-.
,,-,
JI-M
-:,
\\\
w,
\-.,-,---P,
.,
-P
.*.
----
.-l--
Lr,
*l.
enJN w::
.+***.,
.*ww.
:::
...+
eQ--leew
‘9
●
. ..+....,.
- “,---,--*wuuJ.
. ..
---,-e!J-
,
.a
L
L. N-
Wuw.
-.
.-I-
u’w
L.nolwom
V.d.
m
. . . . .
a-mea
FIF. lmmm
1-,-----
4. U’4AII.I
. . . . .
=0=.!=.
22.?22
v*
.Dmw*mw*
x
mJ~
E
e
N
w
I-IW
”!m
.*,
+...*
.nl
.
. ..ulrvcmc4
●
~
-*
. .
a.22
. ..*...*
. . . ..
-c--4
”lu.
*-J
. .
*s
uN.-
.
.
-
++ .*.+
N.
---w
W**8W*
. . . . . . . . .
=OU.
*W.”01-UIS
ZZZZZZ2ZZZ2Z
..0-...
-.
mwN--=l==na .
* **
----*.nJ-.
-+
.- ,:,
-L.U.
..,---------------..
LCAI,
UKYKG3>LUN
(JU
tAtEl
FIX
Nv.
TTMZ
(7J
202333
211?20
271ZU?
2?.2302
2-31012
2.114$
2-41303
271328
●✛
2+2111
10
●
* 11
* 1?
* 13
● 14
● 15
● 16
● )7
●
●
●
●
*
18
19
20
21
2Z
::
25
232245
2A0145
26u209
2&0210
260951
261?4+
.241307
2i1651
2.14S1
2=,0005
2=,0126
2RO151
2=.0151
2=,1226
2=,1250
251+33
252350
252350
260133
260314
DVn7AK
bccw
●
,.WC
l-u.4EPCN
0,3.
13.5M
136.5E
139.8E
lH.9M
20. >N
1313. bE
130.4E
213.3M
2t7.5N
20.5N
Z?. rm
.??.4w
13R.9E
139.7E
13R.6E
137. OE
136.6E
23. s?N
23. rlN
2?. ?N
24. qN
24. CIM
.?4.9N
2S. >N
25. oN
25.6$4
26. ?u
26.6N
26.5N
30.7N
30.7.,
13G.l
E
134. SE
134.8E
134. Of
13Q.6E
13?.5E
137.9E
133. OE
130.9E
1311.4E
13n.l
E
12 Q.EIE
I?7.6E
177.5E
30. q?I
31.6N
3i. fMJ
32.4w
37. qN
127. *E
125. ?E
1?5.5E
1?6.4E
I?+.3E
PCY
PCV
PCN
Pcv
PrN
5
‘s
6
5
6
6
PCN
PCN
PCN
Pcv
PCN
PCN
6
5
5
5
5
5
PcN
PCN
Pcti
PCN
PCM
Prw
5
3
b
6
5
5
Pcw
Pcti
Pcw
PCN
PcN
Pm
Pcbl
P~N
PCN
P(X
PCN
5
5
5
5
5
5
5
5
5
5
3
To.
rj,
CODE
L TTF
S4TFI
o.o
1
T T13E
{7)
2410]6
FTX
00 SfTION
23.
IN
133.5E
OMF,P’V.
OMSPW.
1
2
3
4
5
b
T
TTME
(7J
240000
241200
2=.0000
251200
240000
,?6i MMI
2mJ00(]
FIX
P05TTTON
z1.5N
23.5+!
24.5M
?q. nu
3]. oN
33. fiu
?6.0,,
136. OE
133. OC
I? ’+.9E
]?T.5E
]2+,.5E
I?6. OE
17t,. QF
T1.
o/l.
11.0/
o
/so.
t VI
PGTU
PGTW
IN I [
2dS/LLCr
735N
1*07E
INII
N4GHTIMF
POSS13LE
08S
SECnNr)ARY
27.
ON
o/4.
O/%.
o
O-/D2.
0MSP75
OMSP-46
o/24HRc
08S
MSLP
OdS
RODN
PGTII
PGTU
P6TU
INIT
OdS
RKSO
PGTM
PGTU
RKSO
OUSD’W
0MSP35
om5*35
?oOMS
3127
1004
MaX-SFC-UVO
YEL/mT4G/RqG
15
I1O
120
FIxES
Mbl-FLT-LVL-dNn
olIs/VEL/13RG/dNG
150
15
obO
F1XE6
MEaREST
otTA
(N141
13n.3E
PGTU
PGTU
PGTli
PGTM
PGTM
RPHK
PGIU
PGTU
PGTU
PGTM
PGIIs
RoOt4
@GTU
PGTU
PQTU
INII
DMS916
T4.
T2.
PGTN
PGTN
PGTM
oAlsP-V3
0“CP35
iiM@i7
oM<P-4h
OMSCI-?Q
0MSPW5
o/2?HRc
1.0
70043
liGT
COMMENTS
60
E
20
20
15
15
1(1
PGTU
INIT
Ods
CI
si4Wi/l#PR
Owwwl
OUSP-4?
Dw-o?h
71 .0/1.0
FLT
LVL
I16TENSTTV
ESTIMATE
SITE
tlMSP_W!
S’fWl=TIC
FIX
NO.
COUMFNTS
t ITt
&lqCIUFT
FIX
NLI .
FTXES
60
60
60
60
60
An
147
ACrRV
NAVZMI?T
in
?
10
EvE
SHAPE
EVE OR IENOIAU/TATIOU
kYr
0(1?/
+l@.
TEwP
(r,
Iqf
0?,/5<1
)*B
.+ss4
w.
I
,<
-------- . . . .
FIX
TTMS
NO.
[7)
i
2
3
4
a
6
r
n
*
10
11
;$
1+
15
16
17
18
19
20
21
22
FII
NO.
1
2
3
4
;
7
s
9
10
11
lZ
13
16
15
lb
ir
18
19
20
21
22
23
2+
●
25
26
27
28
29
30
31
.32
33
34
3;
3b
3?
3d
33
40
41
42
.33
2=.0929
2=,2113
?60509
2F.I13k3
27.1$30
262025
27?3U7
281933
2H2052
200715
200320
2015ua
202031
3n0615
3nu925
3n1?33
30.2? .25
3,1)b*9
310910
31 Z149
010743
0)0306
7UO”3
H6T
FLT
I.VL
10. wJ
11.2N
11.5.1
L1. qu
12.3N
l?. %
16. Iu
)6.9.,
16.7.,
1(,.6w
16.6k
16.7+
16.3N
17.lu
17.lu
IS,7KJ
)8.64
144.5E
I+?. *E
141.7E
161.3E
130.8E
160.OE
137. VE
135.7E
136.7E
13!$.5E
13=.2E
136. IE
13a. tlE
13?. ?E
137.4E
13n.2E
lxJ.7E
1’9.3N 127.6E
1’9.4N
126.91
2q,5w
1.??.7E
21. !3N IE’I.
lE
21. ?N 120.8E
1500F1
1500F1
7noMH
7nolA*
7nowu
1511nFl
790MM
?170uti
1005
1000
1000
1002.
700NH
7*owtl
995
999
736s
7110MH
7!70141+
7noMti
7170Mlf
7013ML4
700MH
7i30Mn
7QoMtl
7noub
SAb&
2{?*
?765
7556
?509
7?OMLI
700MH
700MU
TIWE
(7)
010000
Olulou
01u150
010300
010350
010500
O1O5OU
0)0500
010550
010500
01 U500
Olubou
0i0550
0)0700
010700
010700
O1O3IJO
01 U930
01 U3U0
010300
010400
010330
011 DOO
011000
011200
011300
011600
011500
011600
011700
ot1900
011940
011900
012000
012100
O1L1OU
070100
O7U1OO
0>0200
0>0300
0213300
07 U*OLI
0>0+00
0?0;00
P057T1DN
20.%1
20.7M
2(I. 7,1
213.5W
20.7*
213. +U
213.5u
?n. rw
2Q.5.J
2n. qk.
2n.7N
21, QN
20.7N
20. e*
NbDa13
l?-4.
nE
127.9E
1?7.5E
I?7. ZE
127. OE
127. OE
121. OE
12?. OE
1?1 .5E
121.8E
121,8E
121.8E
121.3E
121.5E
?I:IP1 121.5E
z?. %
121 .bE
21.2N
l?l.3E
?I1. qu l?n. HE
21. ?N l?l.
OE
?]. IN I?O.2C
21. ?W 170. YE
2,1. QN l?n.2E
12(1.9E
1211.7E
I?n.l
E
?l .7.$
2?.19J
?I.7U
21.7,<
?l.3N
21.9U
27.3N
2?. =,.
2?.$N
2?.4u
2?.4N
22.;N
2?.
22.
+N
*.,
lln.7E
110.4E
110. OE
IIn.
?E
IIn.
+E
]112. lE
ll~.lE
117.9E
117.7E
117. *E
117.5E
l) A.2E
116. IE
II C.7E
]1<.2E
11=1.2E
114.8E
114. HE
114.3E
30s
MSLP
DC?RY
972
965
961
934
926
9i2
998
9(32
917
9?0
EYE
SHAPE
LAW
LAWO
LA$@
IJWO
LAND
LANO
LAMO
L MO
LA.,D
LA.,0
LAWO
L k.+o
LAVO
LANO
mvi-%~c-wvo ~6~-FLT-L$L-..AP
?5 310 1?0
25 nso
50
15 050
?0
15 130 100
10
50
080
120
50
15
+0 100
75 3+0
70 130
qO
95
95
60
’35
95
100
140
95
100
30
70
?0
360
n90
170
?20
140
?60
360
110
060
n60
30
15
12
50
5
20
10
?0
30
?0
FYc
Dta M
=,
LANO
LANO
LANC3
LAVO
LA@3
LANO
LANO
=,
1
71MZ
{7)
LAND
LAWI
LA.J9
LA*I9
LA.!O
LAW!
(.AWJ
LAW
LAND
LANll
LAMJD
241200
lg.5u
(1?1
lb7.
OE
38
28
31
i.w
>’30
‘+10
I*n
11.
3A0
17
50
30
30
41
69
“%n
50
1-4771}
milt)
170
730
nln
170
000
72
66
75
85
no
75
110
130
147
134
120
86
31U
Oru
42n
●n
050
lAU
3U0
210
140
070
270
90
&2h
30
30
]r.
120
20
310
060
110
3b0
090
17U
3U0
CIRC#,LAR
ELLIPr
Ic4L
ELLIPTICAL
ELLIPTICAL
CIRC, )LAR
CIRCItLAR
ciRC,,LAR
CIRC,,LAR
CltiC, JLAR
i?an13n-coL3E
a<wan
TL31AF6
71</1
{f/(/
31s?1
?07s)
30711
53023
527]b
52914
‘5=.%1
52519
n
~
E1.LIPT]CbL
0>0
360
0’?0
110
200
2*O
1:
Ill
15
16
;n
IR
16
LAVO
LAh,D
LAWJ
LA*)O
LAWO
LAU9
LANO
LAPAO
L AIOQ
SRTAIAI
CWERLAT
Is
oE@2FE<
4////
/////
S0 IRA,
t7vEf7LA t’
15
OEqQEES
15
////f
//f/l
5303/
/t//( I/t//
v~biJEST
n&7A
{NV)
FIXES
COt4MENl S
100
149
340
6
8
E
160
140
140
511.=
WMO No.
/////
103II3
//11/
?5/1/
3
.25 .23 +23 ?3
.?5 +?1 ?8
.11 ● 9
+1/ .]3 ● 3
.10 + 7
.25 +?3
.12 .11
7s
.17 + 9
.11 .13 +10
+15 ● IO
.Il!.17 .10
.13 ● I5
.13 .13 +15
.19 +15
.1? ,16 ● 13
+]5 +16
.11 ●15 ● 15
.15 ● I6
.1? +27 ● I?
*1M .20 ● ]7
*1* .15 ?Ib
.1* .17 .1?
COWIEN7S
71///
LCIN13
LAW3
I. Ah!D
INTENSTTV
?STIMAIE
CIX
00%111
070
1/.6
t 60
FYE 0RIEt4OIa./TATl
OU
EvE
SU4?E
1
5
=,
SYMI=TIC
FIx
NO.
ACPeY
NAv/MF
n, U/ UEL/3HG/dNG
VZL/RRG/0W3
1+.2-J
2s. 18!
14.2N
1+.2N
14.2N
?2. *W
14.2U
?*. ON
1+.2N
i?*.lNu
?2.6N
?5. IN
1*.2N
?2.6N
1 2Z.7E
121.6E
122.7E
l?Z.7E
122.7E
120.3E
122.7E.
121.6E
122.7E
121.6E
120.3E
121.6E
122.7E,
120.30
?4. IWJ
?5. IN
?$. UU
16.3*
?*. IIU
.?2.6m
121.6E,
121.6E,
12L.6E,
120.6E
1.?l.6C
120.3E,
121.6E
120.6E
121.6E.
120.3E
120.3E
120.3f
120.3E
120.3E
120.3ES
120.3E
l? O.3EJ
?’5. IN
16.3*
24. OU
P2.691
?2.6N
?2.6N
22.6U
22..5N
?2.6M
22.6W
22.6*
?6.3W
22.6N
22. bm
?2.6u
22.3u
?2.3N
22. bN
?2.3N
?2.3M
22. *N
22.3N
?2.3M
?2.3bI
120.6E
120.3E,
120.3E
120.3E,
t 1 +*2E
lIb.2E
120.3E
11$.2E
llb.2E
11$.2E
11$.2E
11$.2E
11+.2E
I)en]
66SQ6
082-41
Qa?ll
Q8.231
46764
Q8?31
466q9
Qe?a 1
bb6Q9
46764
666Q6
QE231
66?44
6b609
4bb06
46609
qLt3?l
b6bQ9
46764
4bb46
083?1
+66*9
+6764
46764
46764
66764
66764
bb7b4
,b?bb
+6?44
66770
4b764
4b764
66764
asons
45005
46744
65005
65005
65065
450n5
650n5
●sons
b
b
(
7
n
8
v
v
10
IIJ
11
II
12
13
13
TROPICAL
ST03N4 GORDON
~6TEll lTF FIXLS
kCr3Y
?%1?2;
251250
251+33
?52?1?
2523>0
260107
ZhLJl~3
2fiu133
2*123?
2613+0
261616
1.3.. HE
]?o.4E
l?o.2E
] 7c,.l#;
2AZ33?
27U230
270?55
l?,..3E
27u?55
?7025b
?71033
271329
271537
271537
201J05b
2UO?11
2uu?37
?.0237
znlo13
2M131o
2R1310
2’?1 338
2Q1;19
2.2253
2.2253
290038
I?A.2E
I?G.7E
2qIJ151
2Qu21il
200219
291134
2ql13+
231319
2u1320
l?A.2Z
I? I.. I7E
1?6.7E
l?-+.6E
27.3N
?7.5!1
1>3. +F
1?6.1!
l?l.7E
]?1.6[
IZ1.2F
121.41
I?A.7E
110.9E
lIS.9E
??. *w
?7. +N
?-!. rl.t
7>,5W
110.6E
llq.5E
]]6.5E
,17.6E
117..2i
?7. ?. 117. OE
?7. Q., Ih. +c
27.%.
2?.7,,
?,. fm
2>.9.
??. av
23.
IN
l/..
fE
IA.9E
l&.9E
14. lE
14. IE
UVq2&K
Pru
Prw
P-v
0
5
3
%-v
Prv
Pru
PC*
P(-N
PCM
Prv
Pcw
9
3
3
3
9
3
5
>
PCN
Prv
PC*
Prv
Pcv
PI-N
PC.4
Prv
PC.J
Pi-v
P,v
5
3
3
b
3
b
5
3
5
5
3
Prv
Pcv
PC*
PCu
PrN
PC*
PI-N
Pcv
Pcv
PC*
PCN
Prv
Pcv
PCN
Prv
P?w
Prv
1
1
1
5
b
5
5
5
5
5
1
1
1
1
>
6
3
Prw
5
LJ*MFNTS
CODE
lNI
12. O/Z. U
r2.
r2.
nf2.
o/?.0
o
/91
15130FI
700MH
15QOFI
100MII
7rIOMH
7noMw
7.30Mti
700MH
TT,%
(7)
L?4LIAIT
ZI.nw
?n. ai!
7.?.>M
Zl+uboo
29050D
?QU700
?RU90U
2UIJ3UU
2M1UUD
2nL100
2’a12uu
2.13(Jo
?Mlboo
2+1 500
2.1600
2r117011
2q19UD
2.1300
71. n, I 121. IE
21. n.
I? I.IE
?l .?.!
I?..
RE
?1..,$
]2n.7E
2.<000
2.21UU
2QUOO0
20u3uo
2as15UL!
2*U+OU
?.)1+20
?2. %.
27.7<
?>.+.
lln.l
E
117. qE
I17,3F
27.9N
llf..9E
L Ahag
LA”9
LA.,3
LAVD
LA.J9
LA.J13
L ,t.,0
LA*IO
LAN13
!. A., o
LAW3
LAND
LA,.)0
LAMD
LA.JD
LA,,O
L AtiO
LAhIO
LAh,O
?3.1.
?3. lN
?3.1.,
116.4F
11%, HE
114.4F
L&vO
LAWO
LA.,0
21.3.
21 .5.,
?l .7.,
/?.0.,
17n.6E
l?n.5E
)?o.6E
1213.3E
2~.?N
2?,3.,
7?. bN
?7. 5,)
?7. =,,,
l?n. OE
11o.’7E
I1o. +E
])cJ. I)E
IIn.9E
2J.5.
?7.;
lln.
11”.
.,
hE
eE
I
Oms
UP
ITHS
PGTW
PGTU
PG1 w
PGTU
PGT#
PGTU
PGTU
PGld
1100*
PGTW
PGTW
PGTM
PGTN
RPMK
PGTM
RKSO
ROOM
PGTII
PGTU
.r3/25HlfG
r2.0/?. o
r3.
!l/3.
o
EXPn<FII
LLCC
/r)l.11/2\HRc
c1
UP
ROO$4
lTPMK
74.0/
6.0
/nl,
O/??HRC
BANUIVG
c1
12. 5/3.3
T300/3.0Tb.13,b.
o./5u.
T3.
%/’wlo.5/24HRQ
n/3.
INIT
,CC*Y
50
050
?0
9Q4
50
320
50
&o
330
020
30
$0
50
EYE
SHAPE
50
6S
040
30
?0
150
FT
Uum
FIxES
*dx-FLT-LVL-d
I) Tu/b’EL/BHG/@Mfi
997
991
983
9s1
975
3’SS
D/22HRc
M4X-<FC-MV0
VZL/RRG/UWG
3006
3U03
2947
7926
ROOU
PGT#
PGTU
RKSO
PGTN
PGTw
RPMil
RoON
PGTW
ROON
RPMK
PGIIA
RPMK
RKSO
PGT14
ROON
RPMK
RKSO
PGTM
FYE
/w I.5/27HR<
c1
-4U65
?L163
TYPE
SA4L
EYG
01. fm
1?n
Ol?n
070
l,n
Ill)
*5
39
35
*O
54
51
53
45
1<0
o>u
050
320
330
OLO
● VU
040
ito
UAIMIL$-COOE
b<waU
TODFk
1.A.12
27i?50
2UU2(IU
2nu31)u
I?l.9E
12).2E
17).
lE
IN)
c1
INI1
Sds
pAQr IFd.Lv
IN I I WS
FLT
I VL
260S27
262036
26215?
?7UY1O
27u9+a
27193b
2721a
Z
2HJ 050
*$ GH1]MF
71 .0/1.0
AtaCwb
TTM5
(7)
I
SITE
Nn
Accwv
NAV/MFT
EYE
s!ihPE
EVC OR IEN1314w/TATION
2n
&T(l
60
3=.
420
kYF
tEMP
(c,
0(17/
I Ufl DP/%5T
.25
.1?
2R
3(7
t2n
CIUCIIL&R
ELLIPTICAL
COMMENTS
5
40
?5
010
.lI
.l~
5
1nq13
lno}z
5s/h3
6=,163
7n400
627o9
73111
7301U
72013
/////
●25
22. oN
22.6N
?2.6N
?2. bN
?2.6N
?2.3w
?2.3w
?2.3N
?2.3N
22.3N
?9
●lo
+11
●12
●1+
+11
wbotl Q
POS?TTOW
?5.1*
?5.lW
?5. lN
22.6N
?2. 6*
?2. hN
?2.ON
?2.6U
?2.6N
?2.6W
22.6W
??.6N
?2.6N
?2. eM
?2.6N
LA,JO
ILA,,3
.2s
+13
.25
.12
.11
+1$
+17
.15
USN
No.
2
3
3
4
4
b
5
b
<Ilr
W40 Wo.
121.6E
6 b S*6
b66Qb
66406
l?l.6E
121.6E
120.3E
120.3E
120.3E
120.3E
120.3E
120.3E
120.3E
l?O.3E
120.3E
120.3E
120.3E
120.3E
170.3E
120.3E
12 D.3E
12 D.3C
120.3E
116.2E
ll\.2E
lIt.2E
ll&.2E
11 4.2E
k67k4
46764
66?44
66744
46744
b67d4
66764
66764
467k4
66744
46744
46?64
46764
467b4
b67b4
46764
66764
.
450135
4SQ135
45fio5
45005
65005
150
..
.-
DEPRESSION
TROPICAL
.I1
<bTEt I lTF FST.ES
TIME
{7)
$
5
.
b
7
8
.
*
9
lU
11
● 12
● 13
+ 14
● la
●
●
16
*
17
1s
19
●
20
21
3’2
23
●
●
2*
25
26
27
2Ll
29
30
31
32
33
FIX
Ooslrlob.1
0Vi33AK
071317
12.
135.3E
Prv
e
13;ml:::
13.4N
l?.. ?w
14.5.!
14. ?,,
13).2E
1311.4E
131. OE
1311.2E
P~bi
?CN
PCN
Prw
5
b
h
b
16.
130.3E
PC*
PC’4
Pcw
3
5
6
Pcv
Pcv
PrN
5
3
PcN
PCN
Pcu
Pcv
Pcw
PcN
S
b
5
5
3
3
070953
071150
02125s
011510
071510
0.003?
060139
O6U?1O
060210
0bOi133
041?33
041314
0AI+51
041+s1
044?14
0=,0014
050120
05015.i
05.0151
051256
051602
051633
052153
052153
0=,2356
0s,0243
0AU31$
0A0314
06103+
061317
Iv
Sccmy
%J
13.3N
14. w
178.9E
13 fi.3E
15.13N
177.7E
l?n.l E
15.7”
15.2w 12n.l E
l!i.bv 1213. IE
15.9v
1+. $.1
IAo=m
16.5N
16. ?u
11.9u
l?.?-
127. OE
126.3E
12’A.3E
l? f..0E
125.9E
1z6.2E
1?7.8E
17.7u
17. *N
IR. nN
IR.9M
19. ?N
]Q+O.J
12n. OE
lz’R. OE
1?6.9E
I?A.2E
125.2E
1?5. SE
lH. CW
]’+.3.,
18.5.,
1’9.3,,
IQ.3N
]0.3N
12?.8E
I?3.6E
127.9E
173. SE
12_4. +E
123.5E
21.1A,
21 .0.,
177.
CJ.IMFNTS
cODE
TO. ( ,0.0
●
5
b
71 S!!
(7)
5
PC* 5
Pctib
Pcw 5
Pcq 5
PC*
PI-M
b
3
b
A
5
PC*
PCN
Pc$l
5
5
5
11 .0/1.0
OE
PC*
PCN
PCN
5
5
5
TO. O/P,.
119.6E
PCN
5
FL1
LVL
?130*M
7f10H6
15noFr
1500F1
700MH
15130F1
O?Ubl S
032200
04~1/6
05u B15
05<130
052222
1
TNTEN51TY
ESTIMATE
0>u600
‘? 060600
17.0.0
2n.7..
13 f,. OE
171.9E
15
]5
IMF
rvs
PGIw
PGTw
P6TU
RPMK
PGTti
12.0/7.0
Ti. O/l.
I LCC
RODN
PGTd
PGTW
RPM!(
PGTN
RODN
RoON
RPMK
/S0.
O
I?frl
Ws
iNIf
Ods
/s0.
O
70043
tiGT
08s
MSLP
?099
-4U79
1003
1004
109-+
PGT ,1
PGTIA
ROOM
PGT!d
PGT #
PGT!i
PGT14
PGTd
RPMK
PGIw
PGTN
PGT#
PGTU
ROON
PGTII
JdS
EXPOSSB
lUO1
997
1001
1007
14ax-13FC. uMO
“:t/#IG,
I?” G
10
730
VT.3REST
0f,7A
INSI)
RKSO
ROOM
FXXES
f4n X- FL T-LVL-*?An
“,t?, #EL/eI(6/IfqG
68
?70
]S 150
30 180
?5 060
jO
$0
50
?0 360
+
06tt
?70
l!n
?%0
ofin
SYW3>TTC
Fl&
NO.
MS
[rut
PcY
Pcv
PCN
FIX
POS1TIOVJ
X@T
IfIll
PGTU
RODN
PGTd
Jl?C9&FT
FIx
)40 .
iNJ I
SITE
15 ObU
4U
12 330
10
30 1150 35
2s0b0
60
2s 150
10
15330
%
FIXES
CO14MLNIS
120
30
151
ACr12V
NA”,l#FT
%
%
%
5
6 15
q
5
-4 Ill
●
7
EVE
SHAPE
EVE oQl ENOI4.UTATIOU
ILYF TEMP
IC,
ollf/
IV/
DPKsT
+15
‘4
E
w .
+11
.13
+
+
+25
.23
+?3
+25
28
,6
28
+25
+.25
>7
2
2
+
5
b
b
-1*=Qo
. . . . . . . . --------------V,wvw’w’w.wlvmlwv
VnJNvv\,
uw.vvww
t. fiJTJim
JlJl>>4>
-4>.
>>>>>
444
. . . . . . . . . . . . . . . . . . . . .
o--l
Wml.J+ -ma+
‘0--s
+s.0
Immmmmmmmmm
mrmmmmmrnmmmm
-----*’WV
.C .95
. . . . . .
J,.$’+mz
mmmmmm
# --------.*-l,*,>>4
. . . . . . . . .
-.4.
-J . . .
Zz.
zzzz
??
--------.Wvvw-d!ve.lvwwv
+<r>.
oseoso
. . . . . . . . .
m’+-awwmw
mmmmmm.mmm
.
W..VWVNWNW
WW,VWN
----- “--------J- J.
4 - 4 . ...--..>
.>.
%>.
..
+.+4
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
s’. -++s+
.J. .JJ-..14J
*=.
c--Jm.l--J4J4
,..O.
ZZz?.
z=
?L.?<?zz
Zzzzzzz
?Z<zczc
.;.
-x
~
:.
-1-
-+
.-.
->,,,
...--.-.”
✍✍✍✍
w------Q’U,--*-U,*U,?
. .+.+,..+..
--a.wnlo.wlv-v,.ee
+ +. .**..
: ;:;:;:::
., +*......
~
-U.a:mw
----’.-N*W W- W-WU8
+.
.++..
. . ...+...
.
w
.+
::
..+
-
.&U
*
Ea.%%
.
N-IV.
“tlulI.
● ✎ ✎ ✎
11+’
11>
~lb
llt
118
11$
1.?2
123
124
*12,
126
*L27
*128
123
13(3
131
132
133
134
135
136
137
i3n
139
140
1=,0035
150100
1=,11135
15U?O0
l: U??OO
1=,U?35
15U30U
I+U300
I’=,U31O
150500
1< U6U(3
1W535
150700
l~U7L0
lSU73j
1<U800
150900
150300
>50300
1G1OOO
l~lloo
151100
IKL1OO
151200
151200
1=1300
161300
151600
151600
1%1500
1<17U0
15190U
1<1330
152151
1<2335
fll-
Pow?
PquR
PnOK
I?4.3E
1>6.3E
12A.5E
P<
c?JT14
EVE Hnvc
3220
PsUL
CNTW
6///3
53611
EvF MuG
P<FIL
6!//4
3620
CNTW
53*I*
EVF Mnut? 3b20
P<13L CWTW
EYE MnVG 3120
Cn
f./I/- 5322d
.12r..2E
127. W
12+.2E
12=..OE
173.7E
IZ?. HE
IZ1. mf
27.
27.
77.
?N
IN
-W
27.2w
23. m
27. %
27.5%!
27.5hJ
27.5N
27. (W
27.3w
27.9N
?Y. ?u
2Y.5N
2.Q.3M
2Q. ?c4
25. bN
121.9E
1?’?. *E
I??.
UE
}23. BE
l??. RE
123.9E
173.7E
I? ’+. YE
l??. tiE
1?3.9E
124. OE
17b. OE
I??.8E
1?3.8E
l?A. OE
12-4. RE
124.2E
Pqhl.
60
Cbllq
F,I#13 72%39
EYE
STUQ
EvE
SIUR
EYF
)3flVG3210
EvF
MnUG
32)0
EVE
ArnvG
3210
Gf3Ull
G’30LI
PrIOR
EvE
EvE
EVF,
EvE
NAV
Mfiul? 13215
Mnufi
u120
M(luG 3620
MOUG 3620
ACCllUAcY
6NM
P@u
P<HL
?o’a73 5o130rl
,-AtJ9
LAND
I-Am
Lam
LAv(3
LAN13
LhlD
LAND
LANiI
LANO
LAAJO
LA.113
LANO
L&NO
4CFT
ACF 7
LAhJO
Sll
F&l H
%/)43
58/43
50000
53609
6//4@
=,0211
FAIR
Fdlil
FhIR
I.//l*
50013U
68!!4
53b06
ChTW
T3!PHDON .3UOI’
eArEl I lTF FJXES
FIX
NO.
1
2
3
4
;
i
8
1:
II
1?
13
14
15
lb
17
la
!:
21
22
23
;:
2b
27
28
29
3U
31
32
33
34
35
3b
27
TTI#I
(7)
1.31310
152239
1+.1120
16213*
17U055
170132
170133
171015
171155
171+1$
171616
172114
172345
17?345
iRO03b
1HI)1336
lRU1l$
1R0956
1R1?26
1s1355
1Q1356
1*1*55
10?054
1#2327
190159
100237
10U237
10023$
laIzo9
10125EI
IQ1337
IQ1519
19151?
19Z03*
I ?23139
2rIu140
217 U1*0
Cl
POS1l
C3NMFNTS
,5”.l
E
13.7,1
11. ?W 15”.4E
II.%!
14=,.4E
16b.l
E
13.lu
13. %
143.2E
14?.9E
13.9N
14. lW 147.9E
13. ?.1 tbn. HE
16 D.3E
14.4.4
14. bN 160.5E
16tl.4E
14.9N
15. $W
15.4N
1’5. &N
1<.6N
15.5U
15.6N
]3R.7E
13s06E
13R.7E
13R.5E
16. *W
\A.7u
17. 1.1
16.5.$
16.7u
17.9U
18. ?.,
l!!. %
1 ,!. i.!
]4. =,.,
]0.6.8
lQ.7.,
1.1.9.!
137.6E
137.1
E
137. fIE
137.2E
137. OE
136. IE
13G. HE
13=. bE
1%.5E
138.5E
13r2.4E
135.SE
134.9F
13b. bE
13b.7E
?9. n.Q 131.. RE
IQ. ?.I 1.lb.7E
l’a.7.,
)34. *E
?O. =au 134.4E
13a.6E
?1 .3M
21.6N
133.6E
21.5*
13?.6E
TO. O/O.
Ei
T3.
o
n/3.
13.0/
/113.
lNII
Jds
EDGC
0$
INI
06s
o/27HRc
3.0
I
PA7A
SITE
PGTU
PGT#
PGTM
PGTU
PGTM
PGTM
rTPMrr
PGTW
PGTM
PGIU
14.0/4.0
T4. O/4.0
r4.
rT,&.
T6.
n /6.0
T6.0,6,0
/D1.
o/23HRc
f)l.
o/23HR<
[NII
o./
/02.
/1)1.5
Jds
o/24HR<
/26HRc
Q.wvl
Ouso-w
T5. n/K.
r7. o/7.
T6.1386.
O /ul.
o /01.
O
o/24H!+C
o/Z3HRG
OUWJ-45
Du$P3S
OUWI-4 I
0W?9.W.
QMSP3”
OW<PW
155
ROON
PGIU
PGT#
ROON
PGTH
RPMK
PGTri
PGTM
PGTM
PGr!4
RoO+A
RPMK
PGTW
PGTW
PGT #
RPIIK
PGTM
PGTW
PGTII
PGTW
PGT!A
RPMU
ROON
PGIU
PGTU
XNI ;
ads
24.8N
?6.3N
26.4N
?4. W
76.3*
?b. *u
?6. IIN
?6.8W
?b.4N
1?5.3E
125.8C
127.8E
12S.3E
1 25. t3E
i27.
rlE
125.3E
123.3.E
2+.8+!
?6.3N
?4. HN
?4. Ru
?6.3M
?6.2?4. HN
?b.3N
?6. Iw
?6.3N
2*. H*
26.3N
26.3N
26.3*
?6.3N
F&lfl
SOPER
,27.8S
12$..61
26.3N
?6.4N
?6. w
?$.8u
?b.3N
EVE MnVG 2920
PsBL
CNTN
PqRL
CUTN
‘in
?b.4m
26.3*
2b.4w
1?7.8E
1?7.8E
125. r3i
12T.8E
127.8E
125.3E
1.?5.21E
125..3E
125.8E
125.3E
12s..3E.
125. ef
127.7E
~25.3E
12b.6E
12j.3L.
126.8E
125.3E
I?5. $3E
IZ5.51E
I ?5”. SE
1z5.8E
rmi-.
mm.
F
Jm-lJm
-------
--------
“WWNVN..
WW.NNJU
N$un)wwww.
.r.>>m-4>n*.
..
P.**444d
. . . . . . . . . . . . . . . . . . . .
No-Q-1
mm**o
Ou*w
NO
.mmmmm
mmmmmmmmmmm
-------
--------
--------
------
-------
-------
-------
$wwww
NW.NUWW%NWW
WNWVN’VN%!WN”J
Nlwruw%ml!w.
xnlw NNWNWN.VW,VWNV
~~~-.~dnsm
nmmm.n>>>m
3.>-43+
Uvuvwvuvvv
u.vvv4Jd-4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m@m’m*m=m-Jom
w-1--J =Nuu4m
-J-I -J= Z4 -U.-N
ul!DQ-.s*ea
*a-J
Oz*w
mmmmmmmmmmm
mmmmmmmmm.
m mm.mmmmmmmmm
mrmmmmm”mm”m
-------
-------
------
-------
WNN.V. NWVVWV
Uuuuuuudwu.
+.-4-4.
r.. .o>oococ
. . -------. . . . . . . . . . . . . . . . . . . . . .
**-1-i-N.IWNW~_JOmt
ac---s+
.m”mmmrmmmmm
..mmmmmmmmm
.
.
Uwlwwuu
.
-uvuv
. . . .
J.
. .
. ---------- -aa - m+m”m
mm>
“mmmmm.
.
RI(S(3
PG7U
RPMK
RI(SD
RO03
FIX
NO.
1
2
3
*
a
b
?
m
9
lU
11
1?
13
1+
1>
16
17
Is
19
Zu
21
22
23
24
2>
26
11*E
(7)
Po=,,
CTX
11OI,
1 &?j*l
170303
17 U,505
1 720+s
Iaoss$
1F70Y45
1R1332
1%21$9
101036
191921
IW2145
2(30500
2.0963
20’??59
2103OO
210503
?1 oe*2
212?06
2jUl17
2,U?47
27u650
22095B
271?32
27??00
230600
?30010
75.2,,
25. f.N
26. q,,
l?h.2E
1 ?=..9E
I?4.3E
27.1
I?4.2E
N
FLT
LVL
7UU.3
I16T
08s
lqs~P
700MS
7170MH
7170Mti
7onuH
7noMH
700MB
700MM
7130Mti
700L4U
7!10MH
700!48
7noMH
700MH
7ooMn
7qOM6
‘306Q
?U41
1025
>99?
>707
>717
>411
?336
?295
>121
>UY)
729]
998
700AIH
70nMLi
700MH
7(31W413
7noMtl
7130Mti
7170MB
7110MLI
7110M6
7aoMu
7170MH
>613
?61+
7670
767q
7b6&
76711
?bbs
>636
?b67
3669
>66q
?3811
2;79
?611
995
qqh
987
956
956
922
?]4
909
889
987
?08
919
9+0
965
965
944
952
951
953
94~
948
946
952
950
35
35
60
70
65
110
360
090
090
770
6’5
320
70
15
16
15
10
5
55
>60
12
70
130
;0
060
030
280
100
0.?0
3
4
a
b
7
5!
1:
11
:$
1*
15
16
}1
18
19
20
,?1
22
23
:;
:;
28
29
30
31
32
::
35
36
37
38
39
40
lTME
(7)
161635
lk1710
161935
I6LO1O
16?135
?10600
210700
210300
21 U900
210300
210*00
211 OOII
211100
211100
211200
211200
211300
2? 1300
211600
211 boo
211500
211500
211500
211500
211700
211700
21180U
211300
211300
211310
ZiZOOO
212000
212100
212100
21 Z200
214200
212300
Zx!ooo
2X3000
.2>0100
Z’?o?ou
2?0300
2>0300
22U400
2?0400
27.U500
2>u500
270500
=lV
POSV710N
I&=,.lE
13.11.I
llbb.9E
144.5E
13.5.4
14b. ?E
13.5N
141. !4E
1~.*N
?3. *N 13n.3E
24. ON 13n.4E
2*. ON ]3n.2E
13n. ?E
24.7N
24. lW 130. IE
130. iE
24.1*,
26. IU 129. HE
24. nN l?O.HE
?6.1 N 12’J.7E
?4. ON 12’+.4E
24. lN
l?O.5E
24. QDJ 12q.3E
l?Q.4E
24. IN
24.1 N I?Q.2E
120.2E
26.1*1
I?Q.l
E
24.lu
I?Q.l
E
24. IN
I?9.2E
2+. m
24. IW 1?17.9E
!3.2N
2&.3M
2b. ?u
2b.3v
?4. ?\,
74. -W
2&. a
12R.9E
12R.7E
1?8.9E
12R.5E
]? ft.7E
12H.5E
Z4. -+U l?R.6E
17n.5E
24.4hJ
1217.3E
24.3M
24. *.U Izm.3E
2b. zN 1?17.2E
24. 3W 17Q.3E
12R. OE
24.3w
24.
3N
1Z7.9E
127.9F.
1z7.7E
127.5E
127.5E
127.2E
177.2E
[27.3E
I??.lc
127.2E
1?7.3E
RAOAQ
LANO
LAND
LANO
LANO
LANO
LAI.30
LAh10
LANO
LAMO
LANO
LANO
LANO
LANO
LAMO
LANO
LANO
LANO
LANO
LANO
LAVO
LANO
LANO
LA, *O
LANO
LAtiO
LANO
LAMO
LAUO
LAVO
LANO
LANO
LAUD
LAb30
LA*O
LANO
LAvO
LA,)O
LANO
LANII
LAMO
LA*IO
LANO
L&40
LAW3
LANO
LAMO
LAVO
LANO
O*O
Of,a
I (4.3
170
()?0
100
95
as
95
360
360
350
030
35
300
55
120
150
Ian
Inn
55 060
130
}?n
+0
140
?113
aceRY
EYE
S14APE
FaIR
F*1R
ELL1P71CAL
FAIR
F.3i R
CIRCULA?
CIRCllL&?
5+
$6
kb
61
04
90
93
90
92
108
110
136
110
030
1=
?
3>0
090
090
90
1*
? 10
‘410
1.
<13
<?
280
140
EYF
?JIail
91
,12
6
5
+11 ● 11
,11 +10
.12 +1+
.1s ● I1
.13
.19
● IO
CIRCHLAR
CIUCIILAR
5
7
●1J
,Ih
+lB
.23
●17
+18
C113C, IL&R
5
● 1J
CIRCULAR
CIRCULAR
1:
25
+1s
.1*
● 1Q
CIRCULAR
30
● 1*
io
CIRCIJL4R
.l~
●18
CIRCIILAR
35
gn
15
30
CIRCULAR
20
CIRCIJLAR
15
(c)
14SN
DP/wT
+lH
NO.
.12
2
:
3
●
6
5
5
6
7
?
8
a
9
9
76
.]5
● 34 ● 1B
.2$..15
.19 +18
.19 ● IS
.18 .]?
.lB *14
● 2O *15
.19 *15
+Ib
+19
●I*
10
10
11
11
11
12
12
13
13
I*
16
.16
+16
● I7
● 15
● 15
.16
.14 .16
.16 *15
,11 +19 ● I6
+16,● I5
.16 .16 +1S
050
ot10
140
TEMP
1w
.18
+1)
CLRCIILN3
CARCIILAU
C1RCUL6R
330
%
7?
2moqx?
260
170 1:
: ;
160%52
270
%=,?
030
7.?
27U 1:
7 2
?5 120
65
6S
011*/
5
84 1.?0 ~A
30
q8 010
+17
75 170
76 270
3n
71 360 ~5.7
El 200
3n
78 030 820
78 020 t4?
1+ 220
90 010
100 ?60
~A>Aw
FIX
NU .
E!’r
EYE
S!LAPE
FIXES
nanom.coOE
A<UAU TL30FF
-45
?0
-imu/*
3t3q42
351//
4////
53022
527o9
35///
5301U
7=,//0
52412
NF6
4xrs
u#Ll
In/s
CLO
@TR
NFG
t3PFN SW-N
blat I CLO OPEN
EvE
)413Vn 2620
EvE
H13vG
2720
EvE
M!lUG
2720
EYE
M13uI? 2720
ofloD
GnOD
G900
FdlR
<///2
72611
5//#1
7271u
FdIR
GnoD
5///2
727o7
5///2
72806
GtiOO
POOR
s~!lz
7040s
Wt/3
73107
POOR
PI)06
3=./#3
EvE
Mf3uG
2720
EYE
140uR
2720
EvE
M7v71
2720
EvE
M13VII
2720
EvE
Mow!?
2720
EVE
STM7t
73307
PnOR
?5!!3 72909
Pnoa
w{~l 727o6
Gf100
f.//#l72611
EVE N13u62715
Pr)OR
<///1 726o9
PnOR
PnOR
PqOR
P!30R
3///2
-4~ft2
??rn+
3///1
4.////
??R14
6///1
EYE
EYE
Mi3UG
MnVR
.2715
2715
EvE
EvE
U13W6 272o
MOVG 273o
EvE
MOWS 2320
72719
7250r
PnOR
5////
72511
5000U
5330L!
72405
157
R~OaR
POSXTTONI
COMMEIATS
Sw
ANO
ME
?6:1N
26. Iu
?6. 1*
?6. lW
26.3*
26.lN
26. IN
26.1 N
26. in
?6. IN
26.lu
26. IN
26.lN
26.lN
26.1x!
26. IN
26. IN
26. lU
?6.lw
26.lu
26.lu
26. IM
26.lu
26. IN
26. lN
26.lw
26. lW
.?6.lAI
26. IN
\ +$.9E
1+6,9EI
t 46.9EI
1+*.9E~
16&9E0
127.7E
>27.7EI
127.7E
121.7E
127,7E,
127.7EI
v27.7E,
12?. 7E.
127.7EE
12?.7E+
127.7E1
!27.7E
127.7E
127.7EI
127.7E!
127.7El
~27.7E,
12?.7E,
127.7E,
127.7E4
12?.7EI
)27.7E1
127.7E!
~27.7E~
127.7E
127.7E,
127.7P
12r.7E
12T.7E,
127.7Ec
127.7E
127.7E
127.7E
127.7Ef
12r.7El
26. IN
?6.1!4
’26. IN
2$. *N
76.lu
24.3u
2*. eN
?6.lu
127.7E
127.7E4
727.7E
125.3E’
127.7E,
12$.2E
125.3E,
\27 .7E
13.6W
13.6N
13.6M
13.6M
13.6N
.26. IM
i?6.ls
26. Iw
?6. IN
26. iM
76. IN
n’
.31
WAO No.
Q1218
01218
q121a
!Al?la
ql?le
679!37
b?w+?
679%7
479~7
4?W7
&7977
479~7
47937
67997
47+3’?7
479-37
4??97
679-7
670??
479-7
47997
67977
.7*W
47977
&7? ’37
b7977
4rm7
479’+7
47077
+7W7
47937
&7v37
679!37
479’4?
479-3?
474-57
67~37
47W47
679?7
47937
679!37
67937
479-7
473?7
b? 937
●7918
679?7
●7937
*.
.
..
:
L-
:
0
.
wg
:
..- .
,,1
z. .
*-
.
.
--*..
ccc
-
nifiru
-.-l-l
. . .
~1.mlurii
*.++
●
ml
irl,t.
●
-1
*-*M
Uc
**N**
Ooomo
. ..n
.
.
.
.
,.,
,>
● *nus--m
me>
00--.WN
. . ------
TYPHCX3N MAC
SArEI [ 1’7F FJXES
FIR
No.
TIME,
(7)
1
2
3
+
●
●
140008
LAO030
l&0917
161?50
141*94
162157
1L2350
Il.
%
11.9,1
11.5N
11.9*
17.0.,
12. ?N
I?. ?u
13/..5E
13A.5E
13&.9E
134.7f
134.2E
13?.6E
133. OE
151037
15123?
1%. ~w
1?.9,8
131 .6E
130. sE
151?5?
151346
1=,1527
152136
1s2137
152332
160133
160227
161017
lf.lo17
161?1+
162117
170114
17U11+
170957
171355
171356
17223s
lnlJo30
1ROZ37
lm0237
lallle
li?.5N
13n. OE
12. ?N 131.9E
17. ?N 131. OE
12Q. IE
I?.9N
13. ON I?q. LIE
I?o. OE
l?.3N
13.5,,
l?R.8E
13. hu 12.3.7E
1?7.3E
13.6U
13.9N
127. OE
]3. ?N 126.3E
l?~.2E
1401W
13. (V.! l?<. +E
12s. BE
11.6M
l?=..3E
13.9U
13. ?N 125. uE
13. $N \2<.2E
124.*E
13.8M
123. EIE
13.6W
l?l.
st
13.7N
I-4.4W
127. *E
13. ?.1 1?7.3E
%
37
lR1ll
B
1131320
tR1336
181337
1R?21B
lnt218
13.3.J
13. ?M
13.2U
13.3.1
13.7N
13. %-J
38
39
lQoo20
19021L3
:
7
B
v
10
11
12
13
1+
15
lb
17
1s
19
20
21
22
23
2*
25
26
27
E
30
31
32
33
3*
ao
● +1
. 6?.
● 43
● ●*
● 45
● 46
● 47
s 48
● 4*
50
●
●
FIX
PO ST TI(lM
Z;
53
5+
55
56
57
%
59
60
61
62
63
64
65
66
67
60
69
70
71
72
73
-/4
75
76
77
70
7U
ii
el
02
83
8*
85
86
lQOZIU
10105L+
10105B
1Q1302
101313
1Q1317
101318
10?157
102157
102157
20U1$4
201J159
200159
20103B
2012++
2111Q39
2014&0
2n2137
202313
210116
210126
2r0160
210321
21101B
2,1421
2il+21
212258
212258
2701OB
270302
270302
2?113?
2?1$0?
271$02
292232!
2?0050
210050
270263
2?0243
2-41118
271119
231342
2q1343
231363
232216
2bO031
240?26
l??.7E
12772E
122.3E
12?. ?E
l?l.5E
]21.4E
)21*IE
12n.7F
13. ?M
13.7*
1-4.7.
11.5.1
13. ?V
13.7N
13.5N
12n. @E
l?O.6E
110.7E
llfl.8E
lln.6E
ItO.3E
lIQ.8E
14.5U II R.4E
14.7N 117,8E
13. W
II FI.2E
16. %
lln.8E
16.8N llri.9E
16. W
II J7. IIE
17.5M llfl. sE
17.5N 1)7.7E
17.7M 117.5E
17.9W llR.3E
lJI.4N 117.3E
18.4* 117.7E
117.3E
1F3.7N
117.7E
lR.9N
117.2E
19. (3w llK.61E
19.6N
117.4E
19.4N
117.lE
19.4N
116.9E
19.4N
116.6E
2fI.4N
116.4E
213.4w
116.6E
20.9w
llh.4E
llf,.lE
20.13N
217.3Uilf,.8E
20.6N 116.9E
21.3V 116.2E
21.*N 116.7E
21.4N 114.5E
21.5bJ114.5E
21.5u 114.1 E
21.9N 113.9E
Iq.?u
22.?M 11’+.4E
22.IN 113.9E
22.IN 11-4.6E
22.6N lI?.3E
22.lhJ113.13E
??.5N I1?.8E
22.5N I1?.9E
22.% 117.8E
&ccL2Y
VVr3?4K
CO17E
%aTfl
OJIT.O
lNII
Prw
5
Pcv
Prv
5
5
Pcu
PCN
Pcu
Pc.d
PC*
Prv
PC!
s
5
5
5
!5
b
5
PC*
Pcq
Pcq
6
5
5
TO.5/o.5
/00.5
Pct4
PcN
3
5
11.0/1.0
/S O. O/26HRG
PI-N
Pcti
PCM
Pcq
5
5
2
e
pCN
PCN
PC*
Pcu
Pcv
PCM
5
6
5
9
5
5
12.5/2.5
12.0/?.0
/01.5
/01.5
PCY
PCM
Pcw
PC*
PCN
Pcq
P12hl
5
6
!?
3
3
4
0
T3.5/3.5-/D
13.5/3.5
l.cI/23iiRQ
/D1.5/24HRC
PCN
PCN
PC.4
PCY
5
5
5
6
PC*
o
PcN 5
P@4 5
Prv
5
PC*
6
PC*
5
PCM 5
PCN 5
PCM 5
Pcv
5
PC*
5
PCN 5
PC*
b
Prq
3
pCN 3
Pcq
3
PcN 5
Pcw 5
PCW 6
PCu
Pcu
PC$4
Pcv
PC4
PCN
PCN
PC+
PCN
PCN
PCN
5
5
5
3
5
5
3
5
5
b
5
PCN
Pcu
Pcv
PCN
Pcls
5
5
5
5
5
Pcv
5
TO.
72.5/3
T2.5f3.
[
PGT14
PG1 W
PGT#
PGTti
PGTU
RPMK
PGT#
RPMK
PGTti
PGI#
Dds
/IA1.
RoON
RoDN
RPMK
PGTW
PGTti
PGIU
PGTd
PGTU
RPtlK
PGTU
PG7M
PGTU
RPMK
PGIU
RPNU
ROON
RPMK
PG7#
RPM!(
RDON
RPWU
ROL3N
PGTU
RPMK
PGT#
RPMU
PGTU
PGT)I
SIP15U
/26HR<
/24HR<
INIT
3dS
PSBL
Z*O
o/?4MRq
o/241N3<
o/24HR<
/U1.5/t4HRC
/tiO.5/2bHR<
/h.l.
o/24HRc
11.0/
1.0
71.0/?.0
T1. OJI.5
/SO. O/24HliC
/ul.0f24HRc
/so.
o/24tiRc
CNTM
&l
153N
l~U6E
ROON
UPUU
ROW
PGTM
ROOM
RPMK
PGTu
PGTd
ROON
RPM%
ROOq
RPMK
PGrd
PGTU
PGTU
RPMI(
ROON
PGT W
QCN3.4
i30DN
RPMK
PGIw
RoOP4
PGTu
T2.
o/2.
73.0/3.0
o-/I3l
/02.
.O/24tiRC
o/2514Rc
PSN
5
72.0/2.0
72. s/3.0
T2.5/2.5-
PCN
PCN
PCN
PCN
Pcv
PCN
3
5
6
b
5
6
5
i)ds
/24nRc
1].0/,?.0
12.0/?.0
T).5/2.5
5
s
3
.5+/wl.
o /ul.
T2.5/3.5
Pcv
PCN
SITE
/ol.13/24HRs
T3.5?3.5
PCN
PCN
PCN
INI
O
T0.01L3.
11.0/1.0
COdMFNTs
t lTE
11.5/2.5
BSO
/s0.
o/26HRc
/uO.5/23HRQ
IN I I
/ul.
o/24HRs
W@
ON EXTQ4P
oF
cLI)
LINFs
RP16K
ROOM
flpMK
ROON
RPMK
ROON
RP15K
ROON
ROOV
RPM’K
RPMK
ROIM4
PGIU
ROON
RPMK
RPSIU
ROOV
74P*6
ROOM
PGIU
RKSO
RP16K
ROOM
,l?CIUFT
FIx
NO.
1
?
J
4
3
Q
(
6
1:
)1
12
13
lb
FIX
NO.
i
3
*
5
b
7
M
1:
i:
13
14
15
lb
17
16
19
20
21
22
23
2+
25
26
2r
28
29
::
32
33
36
35
36
37
38
39
40
41
42
43
46
45
46
47
48
49
5U
51
52
53
5*
55
I,m:
(7 I
lfiu503
17U507
179919
Ingi]]
IOl!).lb
IRZO*?
1Q0929
?ndoo~
2A1330U
2019-33
?.2151
210619
210906
212100
TTME
[7)
171959
172300
172300
1s!0?00
lqlo30
1.1100
1I!L1OO
ISllzoll
1R13UU
ln1500
ln1530
181 bL10
IRZ1*5
1R2230
1R2255
191205
191300
101300
1’?133>
101*00
1V2200
20UOO0
2000+0
2OV1OO
200100
2,’70130
200300
21705U0
2.0700
200800
20U900
2171200
220?00
27U?O0
27UbO0
2>0900
?71200
221300
2?1400
2>2100
2=.2300
2.0000
23U?O0
230300
2?0600
230900
2’?1200
231500
231300
2?2000
2-+2100
2.!2200
260000
26U1OO
260300
rrx
~051T11Wl
13.7.,
13.6%,
1?.9.
I 1. 6.,
]?. q.,
1 +.5.’
14.7”1
{6.?,,
17.&u
17. ?w
)*.
)N
1 +.1,!
lq. ?.,
21 .0.)
l?H. oE
l?5. hF
12=.. %
I??.’JE
I?].
YE
l?l.7E
1.?n.3E
110. IE
1(..
RE
lIR.
IE
11*.
lE
119. OE
117.5E
111..1E
!les
MSLP
FLT
l.ql
700MH
700MW
7“OMt+
7“OW
790MH
7nnuli
7oowi
7110.4H
7,113Mv
?noMti
700MI!
700blu
15170FT
15nOF C
7U5A
IO*3
7056
79b)
?032
3066
50
ao
7101
?lllfl
-+DM7
7u61
?1367
7097
-410
1005
1000
20
60
60
997
998
999
?0
60
60
090
350
070
.,...
PO S1TIOPI
I 12b.3E
I?3.9E
12’5.5E
127.9E
127.9E
13. flM 1?7.6E
127.9E
13.7MI
17?.7E
13.5U
13.7*
13.8U
14.5V
13.3N
13.7N
13.6”)
122.7E
l?.6W 1?7.6E
11. 5,1 127.3E
l?.6W l??.5E
13.0.1 171.6E
1-+..3W121.5E
121 .4E
1217.5E
l?n.4E
l?n.2E
lZn. *E
12n. OE
1)9.
*E
llv.
OE
16.3N
lln.5E
16.qN
lh.lw IIs.
RE
17.%4 lIl?.5E
16. 7.8 II R.7E
16. ?N llR.9E
17.0.1 lln.6E
]7. ?.! lln.5E
]7.3N lln.7E
1 ?.3W Ile.7E
17. SU lln.4E
2n.6kl 11’+. HE
211.5u 11<.9E
15. nw
16.17U
2fI.5N 11(.. OE
?0.’7.111%.9E
?13.9N 11=..5E
20.9N
?O.9U
21. ?N
21.4N
115. SE
115.5E
114.7E
114.6E
114.5E
114.3E
21. bN
21.6N
114. IE
21.6N
113.8E
21.7N
lI?.7E
21.7N
113.9E
21 .9hl
22. ?W 113.8E
39.3N
113.3E
22.’iN
117. OE
22. 3W 117. OE
117. OE
2?.3.4
117.7E
2?.3N
lI?.6E
22.3W
22.3u
lI?.6E
RAUAR
Yc, X-~FC-Ww3
“:L/qRG,
R”G
,4cctlY
050
10
110
90 360
bO 3b0
EYC
SHAPE
30
30
75
30
FIxES
UX-FLT-LVL-4Nn
,) fQ/VEL/IjUG/*NG
EYE
sn4PE
FYI
oRlEN3TaU/TATION
*SN
Nf).
171)
1/,0
.Ib
)00
!700
370
.15
.It
350
man
350
070
31
60
?4
20
37
Err
til&M
ACCRV
$AtIV/Ufl
050
16
?
%
3L.U 420
A
5
4
090 .btl ●
3UU
*S
10 10
070
bn
2n
1
eanns.cOOE
A%W4H TOOFF
.15
+11
.1”
+13
+16.
.15
.11
.11
+11
+ 0
● 9
.11
.11
.io
.11
.1!
.1s
+11
+11 ● +
.13 ● e
.1? .10
.15 ● 9
.26
+26
$Ilr
16AoaR
COMNENTS
PI) S* TIOW
MMO *O.
=,,UQ%
&cFr
L6ND
LAAIO
LbvO
LANO
LAPJO
LAvO
LAND
LANO
LAWI
LANO
LAPlO
LAVO
LAhiCl
LAWO
LAN13
LA40
LA*,O
LANO
LAW)
LA.,D
LA.,0
L ANO
LAWO
LAND
LAND
LANO
LAvO
LAVO
LAF40
Cawo
LANO
LA,JO
LANO
LANO
LAASO
LAhIO
LANO
LANO
LAwO
LAuO
LAVO
LA.!O
LANO
LANO
LANO
LAAJO
LANO
LANO
LANO
LANO
LAqO
LANO
LANO
LA*IL7
28
.2
4
4
b
7
7
9
)0
12
I*
]4
15
15
16
F41R
FAIR
F&l R
P130R
POOR
Pf3i3u
CIRCIJLA?
CIRCIJLA?
CIRCIILAP
CIRCIILA?
CIRCIJLA?
10710
4//1/
?n?4/
?5/1/
) 068/
?5///
/!66/
/////
/////
5211r3
~///l
///1/
/////
/////
t oh?/
10s6/
70?)/
117’6/
//1//
/////
?27//
52703
l$.l
M 123.
16.3N
120.
InA// 5////
10+?/ 62916
10~1/ 630//
10aO/ 6////
1nc1325////
17167!I
5/f //
5////
>nhl/
4561/ 6/1//
61//2 //1#/
6///2 1////
65/// ////1
A!I////////
6oI/I /i/{/
wKl13 5//00
40913 54*OU
4175?353106
405?3 53007
6n5?3 53001
S0SS2 329o6
5///2 52906
s//~2 52906
5///2 529o3
61//2 /////
///// /////
6//1/ /////
sri9121////
/////
///{/
/////
5/!11
6////
/11//
////1
Ia3. oE1
11+,2E1
16.3M
16.3!J
1’20.6E,
120.6EI
1,20 .6EI
16:3M
15.2N
16.3M
16.3*
16.3FI
16.3AI
16.3M
16.3u
16.3AI
16.3u
16.3N
16.3N
16.3N
16.3M
16.3N
22.3u
22.3u
22.3N
22.3M
Z2:3N
?2.3M
22.3M
22 .3U
22.3u
22.3N
22.3u
22.3u
?2.3N
22.3AJ
?2.3U
22.3AI
22.3u
22. 3N
22.3N
22. 3U
22. 3U
22.3u
22.3u
5
5////
6//)/
%////
14,1u
2Z.3M
lb.3N
16.3N
16.3*
1*.lN
16.3w
lS.2U
15.2u
IS.2U
15.2N
15-2w
15
1s
15
5
5
OE’
bEi
,7864((
983?1
IZO.6EI
120.6EI
123. OEI
120.6El
120.6EI
~20.6El
120.6El
t20,6El
t 20.6E!
120.6El
120. 6EI
120.6E,
lzO.6EI
120.6E1
]20.6EI
120.6E1
120.6EI
120.6EI
120.6E(
120.6El
t20.6El
120.6EI
1.20.6EI
i20.6E!
116,2EI
116.2EI
116.2EI
1 1$.2EI
11+.2EI
11+. 2E1
114.2E1
tl$.2E
1 I b.2E!
I 1$.2EI
1 1%2EI
ilh2El
1 l&2EI
;]$.2E
Ilh2EI
11$.2E,
114.2E,
114.2E,
1 I $.2EI
il$.2El
1 1$m2E!
116.2E1
11$.2E1
;5004
450n*
bsonb
65004
450n5
.
104
-.
TYPHOON
OWEN
.,iTE1 I lTF
FII
w.
.
T,M:
17)
1
21d140
21 1?25
2) ZI17
●
$
*
●
a
6
●
*
●
.,
lj
,?12326
270120
2>0357
271209
2>12217
*
10
11
12
1.s
14
13
2?1?20
22E057
2723UB
230102
2?0102
2?u.)37
231201
●
●
1
lb
17
lb
19
20
21
2?
23
2+
25
2b
;7
2B
.?9
3U
31
32
35
36
37
3LI
3*
40
41
42
63
64
4>
46
67
48
*9
5U
51
52
53
5+
55
56
57
5B
s’)
6U
61
62
63
64
e5
bb
67
68
b9
7U
?1
7’?
73
?b
7?
7U
79
t3u
2a203b
2&u031
2&u03,?
2&U042
Z+U043
<’U9L7
260!317
241313
261314
241324
?61324
262157
262158
26.2158
2=,U01+
26(3203
2s0205
2=,lo3a
251933
2512S6
25131J6
2<13U5
262137
262137
2r,014b
2AUl*b
26 U141J
261013
261016
261238
261?38
241?+6
261Z4b
26124b
262117
26Z117
,?A233!J
2h233tl
27u127
.?713127
27!3127
27u95tl
270959
271220
271226
271 ?27
27 J227
27L057
27.4037
272320
211010Y
2.UIUY
2w0337
ZQ1119
2ql?u2
2171207
2A12U7
?qdu3.7
20U02b
2QUOk3
2qo?30
2qlosEi
2013?5
??13?5
201330
20/155
=1X
Do’iTTllT?d
130. YE
l?O.+E
136.9E
136. bE
13.S.7E
137.2s
136.4E
13..5E
13A. ?E
13<.9E
13G.7E
135. *E
L31..5E
13G.6E
13A.2E
14. 6.! 13%.5E
134.7E
lfl. %
]6.7. ? lW. OE
13F. OE
16.9.J
lh. qv 13u.7F
lM.7.!
137.7E
1 .l.7u
13-3.3E
131.2E
1’?.4.,
132.7E
1’3.3.1
]>,2.,
137.7E
l’J.l
N 13?. ]E
?Il: 9*
13).2E
213.7,.1
?n, *v
21 .0.0
21 .3.1
2? .?.!
?l .?.,
?l .3.,
27. !3.!
24.3.,
?3. “N
23.1.,
?2.9.
.tCcet’
Dv??al(
Pcv
3
PCN 5
Pcv
3
PCN 3
PCN 3
Pcu
5
Pcv
>
Pcv 3
PC*
s
PrN
Y
PrN
!3
Prq
3
Prv
3
PrN
0
PI-N 3
PrN
5
Prw
5
Pcv
5
PI-V 3
P6W 3
PCN 5
Prw 5
PC*
3
Pcq 5
PC*
5
Pr?4 5
Pry
3
12 Q.flE
1>0.9E
PI-N
Prv
PC*
Prv
PCN
Pcv
Pcv
Pcv
Prv
3
3
3
3
1
1
1
1
2
I?Q.7E
17Q.2E
120. ?E
PC4
PC*
Pcw
1
1
1
PCN
PC.4
Prv
PrN
Pru
Prv
Pc?i
1
1
1
1
1
1
1
Pru
Pr-v
Pcu
PCM
PC*
PCN
Prti
Vrv
Prv
PCM
Prv
PrN
PCN
Prv
Prw
Pcw
Prv
I
3
3
1
1
1
1
1
1
I
I
1
1
1
1
1
1
PCN
Pr4
PC*
Prv
Pru
PI-M
Pc.i
PI-N
PC.J
1
1
1
1
I
1
1
I
1
PC*
Pru
Pcv
Prv
Pcv
Prq
d
3
1
1
1
1
13n.9E
130. vE
13n. HE
13n. bE
130.54
1’2L). 7E
120.7E
Pcv
P..J
1
1
I-’rv
Pc.i
Prv
Pry
Prv
Prq
lJr~
3
3
3
3
b
>
a
T1.
n/I.
c(),,E
5urFl!
FIXES
llk
o
12.0/?.0
INI
/ol.
o/?.
o
13.0/3.0
13.0/3.0
T*.
o/.$.
1 00S
INI
/132.
o/23Wic
/f31.
q/?bHRs
I
/n2.
ROOV
PGTM
PGTM
RPM!(
PG7ti
P.ST*
PGTII
PGTW
RPlfIc
PG711
PGTW
RODN
PGTU
ROON
RP?tK
PGTN
PGTU
ROOM
RPNK
PGld
ROOV
PGTU
PGTN
RoON
PGT#
RODD4
PGTU
RPHK
Jds
cl/2>tlRc
14.5,6.5
/nl.5/?&HRc
r$.5/4.5
/1>1 .5/29iRc
ROON
PGTU
RPMK
RPMK
ROOV
PGTtI
PGTM
RODN
PGTU
RODW
Tb. n/6.
O /111 .j/24HR<
76. (7/6.0
/131 .5/?5HR=
EYE
r5. n,6.
T5.1)/f,.
rb. O/6.
o /M1.
O /#1.
O /110.
o/??HR<
o/ Z?HRC
5/? ITHR~
,k.
o
/til.
r7/2aHK.
o
/’+11 .j/26HRC
o,=,.
‘T4.5/5.
r4.
r,6..5
r4.
fl/4.
NLIt
VStTL
RPMK
PGT4
13KS9
PGTd
Ooow
PGT#
ROOV
RPMK
PGTW
RODN
ROON
PGTd
PGIIA
RPt3!t
PGTN
R(3OW
PGTII
ROL3N
PGT d
PGTU
RoUW
PGT#
ROON
PGTU
/w13.5/2?HR<
r*.5/4.5
T+. 5,6.5
SITE
PGTi+
PGT U
PGT d
PG1 II
PGT#
PGIW
PGlti
PGFd
)ss
INII
o
Nls
n/?3HRc
TU. O/71. (J
12.0/?.0
/S O. O/?6HR.
T2.
CMMP
/s.13. o/26HR<
o
,4.5,4.5
166
INI
I
36S
INI
I
Jds
INI
I
.3SS
RKSO
PG lM
PGT!J
RKsO
ROD*
RI(SO
RPMK
PGTli
QOON
RKS!3
PGTti
ROON
RPMK
PGTU
PGIU
RPM%
Roo%
..
51 -iCur-l
FIX
*O.
*
1,?4<
[7)
:
3
+
2?”3]5
?>OY33
?2J904
272?13
2?U630
;
230901
7
m
?-31+23
232?16
1:
11
12
13
14
15
lb
17
i5
19
20
21
22
23
24
25
26
27
28
29
3U
31
32
33
3*
.1X
‘0$111
FI. T
:!$1
13<t.5E
137. H[
137. ?E
137. OF
136.7E
136. *E
13?. HE
13<. *F
1 34. PE
?60603
2L, IJY5LI
?61910
262155
260733
26,)306
261131
260033
.?ALI?22
2Q21*2
3000u6
317U200
3nu921
3n; &u
3f7.llN
31. ?N
32.9N
1500FI
1500FI
7noMu
1500F1
1500FT
7Q0Mtl
700vti
7nnf4ti
7n,3un
7?OMH
7“0hlH
7o04t!
7(70MH
7“0!48
?0 OMH
999
10I32
,5
15
>50
?90
$5
30
1002
399
15
70
15
n6u
150
0
30
?5
ho 090
5s 100
$5 n90
n
$5
17<1
30
?077
qu.11
TU15
7997
7!)2,
3U01
7827
?2.3?
7701
100?
765.3
,375
949
918
?4V-+
,*I$
,38?
7110u*
711014.Y
700Mti
7n0Mtl
7rlomn
rnomti
7“clMlJ
2>94
?b3?
?5Y9
,b9R
,b97
,69ti
,70,
l?o.7E
]?!Q. HE
]3n.3E
7170?4H
7noM13
700MU
700MM
7’70MM
]31.lE
13’). *E
131. HE
133. *E
700MM
7(70MM
7ootw
71313Mli
768?
7bElj
76.85
7bBq
?606
970?
7707
,70,
7b9c
I?o.4E
12n. bE
IW.7E
l<?.6E
120.7E
I?9.9E
IZO. HE
120. HE
,70.7E
2821*7
?90048
2011216
2QU662
?OU54B
EvI
SH4PE
I VL
717clb!ti
7nowH
700MM
’260330
262146
270?40
27$>348
2.3U112
2R0315
2RO*14
2RU1335.
990
967
+?2
919
942
953
954
952
95?
956
954
957
5
0
8
3
3
3
15
18
90 0+0
qO 360
Qo 110
30 050
100
?50
>0 330
Go ?50
90
90
70
50
170
?70
190
?30
50
so
70
090
040
(I9U
65 040
70 75U
65 (750
+0 090
65 770
60
90
100
90
060
160
?50
310
72
35
30
1 ?0
50
L
2
3
+
5
b
:
1:
11
12
13
1$
15
16
17
18
19
20
21
22
23
2$
25
26
.?7
28
29
3U
31
32
33
34
3’3
3b
37
38
39
TIME
(7)
25Z1OO
2s2200
25<300
2523(Ao
260000
2F.UIOO
26 LISO0
260200
2.0200
26U300
2(,0300
Zf. u$oo
260500
260500
260500
260500
2AU700
2607U0
260800
260300
2hu900
2A1OUO
2A1OOO
2(.1100
2.41100
761200
261200
261300
261300
261600
2A1600
2h15uo
27.1500
2J,15u0
261700
2617(JD
2f,19u0
241300
261900
EYE
PO% T71GU
Z?.9N
?3.l!J
23. ?N
23.3u
2-+. ?)4
23.1 U
23..2M
23.3rA
23.3N
23. %J
?3. ?N
24.5V
Z3. =IN
?4. +N
23. <.(
23.5,8
?3. 7N
23. ?U
23.6hJ
.?3.6N
120.3E
17q.3E
IZO.2E
171?.2E
1Z9.2E
l?O. IE
129. OE
12cJ. OE
12q. OE
]Zq. OE
l?cI.OE
121?. OE
129. oE
I?9.1
E
IZQ.l
E
12Q. OE
I?Q. ?E
12Q.3E
12Q.l E
]20.2E
12’2.2E
23.7u
170.2E
21.6.
12q.l
E
23.7w
23. qNl 12q.3E
I?o. ?E
23.7w
?3. Qkl 170.2E
?E
23. 3N ]79.
24.13.J
120. ?E
24.0,1
l?q.2E
l?o.3E
24.lu
?4.0,,
12cI.3E
]zo.3E
24.?.
l?cI.2E
2h.2kt
?4. 3N ]20.2E
I?Q.3E
24.3rJ
24.3N
12cI.3E
?4. 3., lm.3E
?4. 4.8 12Q.3E
120. *E
24.5V
RAUAq
I-ANO
LAW)
1-P.,MD
LAwO
LAVO
LAND
LAND
LA@
LAW)
LA.40
LA?AO
LAwO
LAWO
LAqO
LA.JO
LAVO
LAkIO
LAVO
LAUC
LAtAO
LAND
LAND
LA?D
LAW3
LAW
LA.,0
LAIAO
LAtAD
LAUD
LAUO
LANO
LAW
LAMD
LA.JO
LANO
‘A,, O
LA.,0
LAVO
LAMO
!CCRY
SHAPE
1%.
nfill
n&n
I 7$U
1A(I
2.,1
lUJI
EYF
DIa M
160
Y
45
46
50
Ido
.?10
120
110
0W3
400
1 lb<)
65
0S3
5n
CIRCIILAR
CIRC,,L&R
3otD
300
90
95
84
60
70
61
65
70
81
75
70
75
64
64
33U
250
230
Z7LI
I Yu
CIRC!ILhR
CIRCULAR
Cl) MCENTRIC
CIRC!]LAR
CIRCt!LAR
ELLIPT1C4L
ELLIPr
IC4L
25
12
20
20
35
?Sn
ELLIPTICAL
C1RC11L4R
25
2
1 =.0
.iTn
, C,n
?71>
1*
O*O
230
27U
O*U
(390
0<0
26U
UYQ
CIRCUL4R
CIRCULAR
ELL1Pr1C4L
CIRCULAR
CIRCIILAR
CIRCIILAR
llU
?70
100 lbo
la 010
60
3b0
70
10
GOOD
Gf30Ll
P mnu-COUE
A<W4R 10DFF
65//2
501//
35//1
70204
CO!IMENTS
3225
EvE
MnvG
3610
EYE
MFIuf7
3210
EvE
EvE
MflVn
Mnwn
020S
0205
EvE
EYE
S7NB
STU71
EvE
HOWG
020S
EvE
EvE
M(WG
Mnvr7
0205
3610
EvE
EvE
M71UG 3610
MOVG 3610
70603
‘JO
PnOR
P.30R
75/11
GflDl)
MOUG
’10
?7!41 1
GoOD
F-IOR
73605
70
%=.,11 7olob
55/11 736o6
Gr30D
GqOD
?n
=.%/11
S%tll
31/11
G3UD
G.laD
u SN
No.
180
10
15
030
220
15
120
10
310
12
15
9
10
.?*
+2b
.25
+2b
+22
+25
+2b
.23
.23
+14
.25
.25
.~+a
.]1
.13
+10
.10
.lt
● I3
.15.
● 1O
.10
+IM
.19
.13
+
+
.1P
.13
+15 +14
.20 ●I3
.1s
.19
.15
.1*
.16
.)*
.Ib
.16
+16
● lb
.17
.15
.17
.17
.15’
.16
.16.
.17
.17
.1A
.15
.1*
.17
+le
.!*
.lb
?9
?7
4
6
●15
● 7
10
.16
11
11
12
13
13
13
14
Is
15
15
16
16
17
17
17
Ie
.15
● I6
+16
●13
●1S
+1s
.15 +12
.16, ● 12
.19. .10
.17
.
6
7oho5
70105
736o3
?0
?0
3//n
a//l
7020+
1 7030b
li4D. !4
POSI TrONI
?6.2M
26.2bI
?6.2N
26.3u
26.2u
26.2N
*6.
w
26.2PI
26. Iu
26.2N
26.3u
26. Iu
26.2u
26. lM
?6. IAI
i?6.2u
26.2bI
26. lm
26;1N
26.2N
26. lb!
26. IN
?6.2u
26.2u
26. IN
?6. lU
26.2N
26: lN
26.2u
26. 2M
26.lAI
26.lN
76.226.2N
26.2M
26.lm
26.lN
26.226.2N
;
3
3
4
+
5
5
6
6
7
7
8
8
9
9
9
FTTES
EvE
Gnol)
O/loo
Y
CIRCIIL&e
CIRCIILdR
-40
-40
-40
Zo
3ku
1.?
2>0
79
1]0
95
Pqon
onoll
POUR
OR IEN-
7U IUIJ
63 U*O
75 Q60
POOH
6130D
EVE
OI&”/TATION
16 lUO
2U 3s0
2d 31U
la OJJIA
30
?0
30
1 ?0
1?0
$0
30
15
?0
5
9A>Au
F1a
NEJ.
FIXES
127.71E,
~?7. r3El
~27.6iEI
1 ?6.8EI
127.8EI
i27.41El
1 ?6w8E+
127.8EI
1.27*7EI
\ ?7 .8EI
?25.14EI
127.7EI
127*BE
127.7EI
127.7E
127*8E,
1.27*8EI
~27.7EI
127.7E$
c31TF
UMO No.
479?7
679’+7
67Q3?
47999
47**7
47997
4*9
47*?7
479’37
479~7
47999
,7w47
47997
127.7E$
IZ7.7E9
!27. IJEI
127.8E!
127.7EI
127.7EI
127.6EI
\27.7EI
127.8EI
1.27.8EI
12 T.7EI
127.7E,
~27.6EI
479*7
479’37
6793?
679~7
479??
●7**?
479%7
479*7
67977
679’?7
475!-7
47*37
47*’37
47* ’37
+7*%7
679~7
67’9’37
67*%7
67937
479’47
127.8EI
127.8EI
127.7EI
i27.7E
127.8E
127.8E;
479’47
47*37
675+37
47*%7
67’?~?
479-3?
127.8EI
,..
CCw
*,.
I
.
<4TEl
FIX
No.
r,u:
,1X
(7)
$$05, 1 ) [,,:
eCCQY
~V’)zaK
c(TOE
q&TFl
I lTC
F,IXk S
1 ITk
cJ*qFNrs
SITE
PGTU
PGT*
PGIH
PGT d
PGT M
PGTU
RPMK
PGTll
PGTu
s
*
FIK
Nu.
,1X
Ol)$rrl[w
2505?7
?5<222
2%2?s9
2bl13U7
cLT
l.vL
,Uuq?
HGT
0t7S
MSLP
70CIMH
?151
lon4
10I34
15noF1
7130vH
15110F1
15QOFI
21, u504
312$7
1003
1003
*bx-<FC-dvD
VEL/HRG/UqG
50
?5
20
?5
15
100
050
360
060
150
35
30
50
50
?0
TROPICAL
160
130
1?0
150
?7n
5*
16
20
1?
21
STORM
100
Oau
3bo
luO
llU
3G
3n
6“
60
4(I
7
5
EYC
S156PE
rY[
OR IEWol&./TATIow
L)Vq>,l(
{7)
1
2
3
e
5
b
7
8
Y
Ill
Ii
12
13
16
15
16
ir
18
19
2U
21
22
23
2+
2>
26
2r
26
29
3(3
31
32
071233
0?1213
07<036
032313
06U055
o&uo55
060917
0bl15+
041155
042157
0* L155)
0<0036
051J217
13q0217
0<0217
05131T
U=,131?
0’31317
0s1319
051319
0%2137
069018
0601ss
or. u15$
060158
061017
061018
O<lolb
0(,1257
061301
061301
o/, tl17
13.%
1~.lw
2n.9N
21).5w
2Q.9.,
20.9.,
21. eN
21. TN
21 .4,,
20. W
21,.3.9
?n. nm
Z’o.m
711. OU
?n.3.>
21 .7.!
21 .7.,
21. *N
21. %
21. *U
23.6N
cODE
S4TFI
.26
6 11)
1!3 5
CL14MFNT.S
13<.7E
13n.6E
136.9E
136.4E
]3G.7E
13=..6E
13=..2E
11 .5/1.5
0MSD39
nM<0a7
133.4E
13-4. SE
133.1[
133.6E
137. fIE
133.3E
133.5E
13?.3E
13=..6E
)3<.6E
135. TE
13=,. *E
13=..7E
134. qE
135. OE
27.3N
24. *N i35.
OE
24. lN
35. IE
2&. ?U
35. OE
W.. f.w
34.6E
26. RN
34.2E
3G.6E
25. nN
3=,.4E
2T.3v
3%.lE
27.1 N
?6. QM
3=..4E
Ze. nw
36.3[
INI
r
?ds
o
T1.0)2.
o
73.
n,3.
fJ
T3.
i3,3.
o
/01.
/wl.
o/22HR<
o/?4HRc
0)4S037
0M<P?7
0.%9-46
CJWWV4
Ouso >0
Omsolo
O*W 39
Owqtl ?Cl
Ouqo-ig
0USO?6
DUGP36
INI
I
Ods
0MqP37
DMqPIA
D$MPW
Du%rvl
OMSD?Q
0.s037
171
EOGE
W
E& POSEO
IN]
I
i3ds
lNI
I
Ods
,22
.2!4 .~j,
SITE
p6rw
PG7U
PGTM
PGIU
PGrw
RPMK
PGTM
RODM
PGTW
DUSP~O
D* GP3f,
T2. o/2.
73.5,3.5
lEPW! ,1-,
IW/
DP/ssT
7
+2J
+11 + 7
RWER
I TTk
krr
o!lT/
+16+
3
%
TIM<
FIX
NO.
●
krrQy
MAu, MFT
MA1-FLT-LVL-*NI)
l,, M/vEL/LINti/dNG
MT4
I LCC
PGTU
RODN
PGTU
PGTU
RPMK
ROOM
PGTM
RODN
RKSO
RPMU
PGTU
PGT#
PGTU
RPU6
P(3Tu
RKSO
T4KS0
RPMK
PGTW
RKSO
PGTti
RPHK
PGTW
●
8
qo
USN
w-l.
J-
FJ-F?5.
IJ-vnvu-lr
,
S@
95
96
97
96
99
100
Loi
10.?
103
104
105
Lob
107
108
10?
ilo
111
112
Fix
121139
I>l+zb
1714?6
122?3s
172239
1?0136
1-40307
130307
1-s1119
1-41119
1-41$01
171607
1,0116
160?4EI
:bo?613
14S058
i6105e
1$1348
141348
141359
142339
160229
150?29
7,ME
{7)
1
051001
2
3
$
5
b
7
M
060342
070203
07(2$31
ORU21O
0R0512
090$05
1130142
1(30+22
110131
1)03+3
1?0700
170923
FIK
NO.
1
2
3
4
5
T7M5
17)
041200
061300
0,1300
Oil BOO
060000
13.3N
13.6w
13.6*
13. ON
13.2N
13. lN
13. ?W
13.3N
]3.6N
13.5N
13.4N
13.7N
13.5w
13.6w
13. ut
I?. *E
17. EIE
17.3E
1705E
17.4E
17.3E
1>.6E
11.7E
11).
~E
.211.6E
lll.l
E
11o.7E
Pc+i
PCM
Pcw
PCN
Pcv
PCN
PCN
PC*
PC*
PCN
4
J
5
b
3
5
1
1
3
3
PCN
PCN
PcM
3
3
5
3
3
Y
3
5
13.’w
.lln.7E
I1o.7E
12.3N
13.3u
13. ?M
113Q. OE
IOQ.5E
IOQ.2E
PCN
PC!
Pcu
PcfA
PCN
13. ow
13.1 N
]3.7N
10Q.6E
100..2E
10R.7E
PCM
PcN
PCN
5
3
5
13. %J
1.?*3N
1137.9E
107. SE
PCY
PCY
5
5-
FIX
POSTTION
12.6w
12. *N
12’?M
12.2M
11.3N
11.IM
11.3N
11.5N
11.7N
12. ON
12. OW
L?.9N
13.1 N
11’4.3E
llQ.7E
119.4E
119.3E
llQ.2E
110.2E
117.9E
116.5E
116. *E
1)5.4E
115.2E
111.6E
113. *E
Frx
P09TTION
14.
13.
IN
Ru
16. ON
13. oJ
13.6FJ
119.5E
11o.2E
lIQ.
OE
13.5/4.5
T5.
/M1 .O/2.+HRC
o/5.
12.5/
o
3.5
/D1
.5/25HRs
/ul.
n/2&HRc
T+. fl/5.O./Wl. O/26H7F?
DW<WS7
DU<P37
Du$E27
DMSP39
13u$u76
OMSP?.
TINE
{7)
7Joq3
HGT
06s
MSLP
7!30MB
7noMLl
7noNtI
7n061n
7nOMH
7noMH
700MM
?017
-4055
>994
?970
2920
>92?
776 I
991
996
7QOMU
700MB
7t3014ti
700ML4
700HB
700MU
7*96
>+BrF
7737
7733
77b6
77LA4
ACCRY
LANO
LANO
LANO
LANO
LANO
’385
*82
3E!0
960
929
959
962
MF.x-FLT-Lv
Mhx-qFC-MwO
VEL/8RG/UWG
65
60
50
75
75
45
30
100
100
50
65
65
45
360
010
030
330
300
(380
I +0
060
180
070
130
f180
180
011200
0?0000
0-40000
061200
14.5M
15.
15.
14.
120.5E
ON 121.
ov 121.
ot.J lIQ.
oE
uE
RE
L-9Nn
1)1 U/ VEL/LiRG/dNl?
50
50
11
10
?0
5
10
5
7
50
?5
?0
30
3?n
40
2 Io
010
360
210
3bo
2.?0
O*O
060
Inn 101
150
93
070 115 020
1?0
73 060
!360 74 320
740
70 1*O
110
63 040
EYE
SHAPE
4CC!?V
NAv/MET
3n
3 r,
16
-+
-4
.
4
4
5
in
20
2
1
?
2
5
EYE
SM&?E
EYE OR ICN D1a./7ATIoN
$4SN
NO.
2:
.Ii
.Ii
.k’j
.1!
●17
.13
.15
+1$
.1?
.1$
.13
● 9
● 3
. 3
● 5
. E
+ 9
4 e
15
.11
+25
.25
● IO
. +
12
+14
+’lj .11
.14
.]6
CL14CIIL&R
CIRCIILAR
CIRCULAR
CIRC(ILAR
CIRCULAR
CLRCIILAR
CISICtILhR
CIRCNLAR
20
20
20
10
CIRCIjLAR
CIRC,,LAR
+14
.13
.
UAO&R
POS!11OY
CO16MENT5
16. JM
16.3N
16.3N
16.3M
13.7N
CXRCOLA?
INTENSITY
ESTIMATE
Plx
P02.lTION
RPMK
ROOY
RODN
qpw(
RPMK
RPM<
RODN
ROUV
RPHU
PGT#
DWW=4W
OUCD-47
SYUO=TIC
FIX
No.
13PMK
129MK
Rol)v
RPMK
ROON
RPMK
RPMK
ROOV
RPMK
RPHti
RPMK
RoON
FL?
LVL
Rt30AR
I1o.7E
I1o.8E
0“<017
LWSOW
L3*5P?9
DMS977
Dws037
DM~03A
DMSIV?Q
DMSPICI
1
3
*
4
5
5
6
7
7
B
8
9
9
b
SITF
Uuo
l?o.6E
120.6E,
~20.6Ec
120.6E
lLIO.6E.
FIXES
COMMENTS
10
10
10
15
●
174
.
No.
@3?l
08371
Q33371
w33?l
,8665
,.,
JIJln
,,
..,,
Jln?.
.
.
.
,
V*
Zz
.Z”
.
WI-U
. . .
aaaaaauaaaeo
Oaa
. . .
.
. .
. . . . . . . .
!“W!WNNNNNN
!VNNNNN
------.
-------mmmmmmmmmwww
m-m
Zz.?zzzzzzzzzz
.
--t-~..-.-.
Wwwl.lwuwwwwww
-------
mmm
.,,
e.m-wul
. . . . . . .
**muem’L?*’3u*ee
mmmmr.tmmmmmmm
“-l’mcc=w N*omm
***n.n
-------, -----,** -..
.. m......+.n >>.
.0
c
g~
-
.
.-4
..
.
--..”..,..*.*
bJ”
AL.l”w
ainmnc-r.
-aa
. . . .
. . . . .
● Lt@N*xwww
“Illmmvm”mm
● *9
WWUWNN
“II--..4...8*
. . . .
. . . .
-l--..J*-J
>-l?
Zzzz,zzczz
moQQ5DDna
ru.-.
..= NN.
l.Iwrv . . ..r.llv
.,-. -,- L-. L.J*U
mNNN!vm.
m-
-- ...,-.
.
SUPER
TYPHOON
caTEl
FIX
W.
t lTF
VERA
F,TXLS
TIFIE
t!cc RY
(7)
3i231b
01 U02b
010s14
011126
011158
012055
01225B
020001
10
11
12
13
M
15
Ib
17
lM
19
20
21
22
23
24
25
2b
27
2S
29
30
31
32
.33
34
35
36
1T
38
33
60
+1.
42
43
44
4s
46
47
48
49
FIX
NO.
1
2
3
6
5
6
z
8
9
10
11
12
13
14
0?0?35
0?1140
0?124B
0?1?+6
0?203*
IJ30021
030021
030129
O-509L4
0-51228
0?1229
0?1302
0-9.2155
040003
060110
040110
041035
061244
0612+5
0L1351
0k2135
042135
050126
050?3?
050232
051015
OS 226
051332
o;i332
O<i*OB
057256
060108
060i09
060213
060213
060956
061312
061350
061351
062236
0700s0
070153
0+0156
071116
071332
0RO032
6*>Q
ra.7hJ
6.C3N
h. 3.N
6. 3.1
6.QN
6.?N
6.6N
7,>N
7.?N
7.1 N
6.W
7.5V
9.3N
7.QN
R.?N
‘?. ON
Q.?u
9.4MJ
CI.?N
lQ.5V
10.5N
10.5.J
1(3.5.,
11.4.J
11. qM
11.7M
11. QN
12. kN
I?.5N
12.9N
13. IN
13. IN
14.1 U
14. *W
14.6N
;A,5M
14.5lS.61’J
15.6N
lS.6N
15.7.,
15.9N
16.7N
17.1 U
17.7N
;7.2N
1.9.3N
lR. sN
)7.9W
lR. bN
lU.7N
16.9M
(7J
0?0625
0>0s00
030753
.031933
0?2049
060507
OASOO
062225
050bl
B
0=.0702
05do17
0=,2232
0s0620
062001
14Q. uE
14 R.9E
lbR.3E
167. oE
147.2E
146.7E
14A. OE
Pcw
PC?4
PCN
pCN
PC%
Pcv
Pcv
5
5
b
5
5
5
5
145.7E
1Q3.9E
14>. bE
lfI’1.4E
14?.2E
141.5E
141 .(2E
l&I.l
E
14n.7E
137.8E
137. IE
131.2E
136.9C
13_4. SIE
133. OE
137.7E
137. *E
I?9.7E
12Q. OE
l? FI.8E
12R.7E
12ii. hE
li%.5E
125.9E
125.9E
12<.8E
124.4E
123.9E
123.6E
1’23. IE
124. IE
1’27.9E
1?3.1
E
127.*E
12?.3E
12?.5E
1’??.2E
127.2E
12?.3E
127.3E
l?l.5E
I’?l.7E
121.7E
121 .7E
1’2?.lE
F’CM
Pcw
PCM
PCM
PCN
PCN
5
3
?.
5
6
3
Pcw
PCM
P@d
P~q
3
3
3
6
PC*
Pcv
Pcw
Pcw
Pc.i
PCN
b
5
6
1
1
1
PCN
Pcw
Pcti
PCN
PCN
PCN
PC*
TJcw
PCN
Pcw
Pcw
PCv
Pcq
Pcq
1
2
1
2
2
1
1
1
1
1
2
1
1
1
PCM
Pcq
PCN
PC*
Pcw
1
3
3
3
1
Pcw
Pcu
1
3
PcN
PCN
Pcq
PCN
PcN
PcN
PC*
PCN
Pcw
Pcw
5
5
3
3
5
5
5
1
5
5
lI?.8E
lfJ.lN 116.5E
TTi4E,
FIX
Dostlrotl
7.4%
JI.6u
S.%4
In.lv
1+4.5E
13q.3E
13R. *E
136.’(E
in.?hl 134,3E
11.13N 131.5E
m.A
1%.h
l?.5N
13.2N
13.6%
lS.l
N
15.1 N
16.3N
17. RU
L3V~?AK
126.5E
12=1.lE
lE’4. HE
123.3E
127.7E
12?.3E
121 .6E
FLT
LVL
lSn OFT
100lo+
?nosrm
7nclMn
7floMm
7004B
‘%Omu
7130MH
~OOMW
7110MH
7nOMH
7i30Mti
71TL3MH
7noMn
T1.
O/l.
12.7)/
cO13C
Fll
TTE
O
7.0 /131,0
13.5/
3.5
T3. o/3.
o
T5.
Stl
o/5.0
/f)l.
Ods
o-/r31.
14.5,5.5
T5.5/6.5-/Wl
/wl.
.o-/so.
INII
06S
?97]
?94b
?72n
?643
?39q
>J+s
737?
>413
>410
2557
?587
7647
RODN
PGTd
PGT!J
PGrd
PGTU
ROD*
PGTd
POT u
PGTW
PGId
RPM<
PGl#
PGTU
RODN
PGTW
PGTW
RPHK
RPMK
ROOV
RPMK
PGTW
PGTM
INIT
Ot$S
/27HRC
o/26HRq
Soow
PGTd
RPMK
ROON
PGTM
ROON
RODN
!3/z7HRG
.o/23HRG
o/24HR<
RPMK
PGTxI
PGTU
RPSIK
ROOFS
ROOM
PGTU
RPMK
PGTU
RPMK
PGTU
PGTU
/w2. o/24MRq
O /U 1. 5/25HRG
ApRN7
700q3
I16T
Ptirli
PGT16
PGIII
PGTtI
PGT#
PGTW
PGT#
PGTd
PGT#
P6TW
PGTW
RPM<
PGTU
o/25t5Rc
/130.3
rb. o,6.
10.5,,$.5
1+.0/5.0
T3. o,4.
I
UP
+/n2;0/24HR5
T5.5,6.5
o/f!
INI
cl
/24HRc
T5.13,5.13
Tb.
SITE
OBS
)tSLP
M&x-sFC-wqO
VEL/RRG/RVG
3q4
50 130
70 090
Mb X-FL T-L VL-d Nn
1)1F?/ YEL/BMG/iiNG
7
5
982
9*5
915
9]9
941
130 ?70
130 .110
3
5
1ZO 330
130 050
130 3+0
3
7
4
b5 060
100 050
LLcC
$0
35
160
750
I=.0
1?n
‘5?0
IRrr
+?1)
?6
65
46
73
120
125
170
060
240
020
Ouo
270
110
AWRY
NAu/uE7
211
30
1:
In
5
G. 2
6?
52
5 5
53
1
6
EYf
ORIENOI4WTATION
CIRCOLAR
CIRC,,LAR
CIRCIILAR
CIRC(JLAR
17
211
R
R
CONCENTRIC
25
70
CI*C,,LAR
CIRC,ILAR
CIRC,,LhR
CIIiCULAR
1:
3n
120
l@G@Wl~~
111
lUO
1<
I 7n
116
050
1?
8
5
1’30
I ail
100
103
!35
210
110
070
in
3n
2s
L
4
5
130
S2
020
6n
2
2
1
III
“5
n
EvE
SH4PE
4
2
@vr
r3uf/
TEMPI
IW
.21
,2$
●22
.1!
.1$
+15
.1+
+10
+ B
● 11
.1!! .19
.12 ● Z5
.+9
.14 .19
.16
.16 .16
.]5
.1!! ● 15
tr,
0P7<sT
IKN
!40.
2
4
6
5
5
6
7
7
8
8
Y
Y
10
11
+ n
+13
44
● I4
+12
.15
.15
● 15
.15 + 4
..
.
178
-.
...
FYF
SHAPE
accwi
14
15
lb
17
16
19
20
21
22
23
24
25
2b
27
2U
29
● 30
● 31
32
33
0. U71b
050,00
6CFT
LA.10
050505
05 U5UIJ
0=.0500
05U500
0=,0530
O’6U700
050700
0=.0900
05V500
OG09U0
o~u+oo
OCUYOO
O<lnoo
0<1100
QGi3(fo
051600
05151JIJ
0619(70
051940
nc,19ulJ
nql.A&3
06.?00;
05<035
0%?110
0%2135
0s2215
062?35
0s<300
0%?300
I%4M
052300
L/1.Jo
L,4W3
!LA.10
LAl10
LbVO
LA.01
LANO
LAV9
LA.ID
LA40
LAW
LA.ID
I-A,JD
LA.1O
LA. ID
LA.10
LAL, D
LAUD
LAWO
LAUO
LAP1O
i_AwJ
LA-II
LAUO
LA.#0
LAW)
LAND
LAND
LANO
LA.+D
LANO
LAMO
LA~JO
LAW3
I-AVO
LANO
LAVO
LAN9
LAVO
LA,1O
LA?60
LANO
LAV9
060000
O6U1OO
OIJJ1OO
0N3ZO0
01,U200
or. u300
0A03Du
04.0400
0+.0600
06u630
060500
06u600
060500
06 U70EI
OC.0930
061200
061500
061500
061900
061900
070100
07U200
070300
07U300
070500
070500
070700
070900
FIX
No.
TIFIE
<7)
:
3
+
5
b
7
B
Y
200000
291200
3nuooo
3ni200
310000
3) L200
071200
Orloooo
0Q1200
15.6w
i5. Iv
I?7.7E
127. UE
;;7.6E
1-,.7N l?P.9E
1=..W
127.5E
15. qkr I??.9E
1%.9N
16. oN
16. ?N
127.4E
127.9E
1?7.3 IE
1/).24
16.3.,
~6.~U
1’27.3E
I?7.
!3E
1?7.2E
16.5N
lh. bti
127.
179.
16.5U
16.5N
16.7v
17.3N
17. *N
17. *w
16.7”
1?7.5E
1?7.3E
127.1
E
127.1
E
l??.
OE
121. QE
l??.4E
17.9N
IR. nv
113. lW
la.lw
l?l.
IE
120.7E
1Z17.6E
I?c.8E
..
bE
*E
lS.2N
lR.3.J
l’2n.4E
170. IE
1%4N
117. _iu
l?n. ?E
lIQ.9E
=1X
00 S1110-
6.17U
h.nti
S.nu
fl. n.
C1. nti
6.0,,
17.0.,
15.5* I
15. nN
1511.5E
15(,.5E
IW. OE
15~. OE
151. OE
l+cI.oE
lIR. OE
lt7.5E
117. UF
EYC
ola M
w4MW-COL3E
2.SV. W TOLJFr
?n!4/1
3(31//
10)11 53406
7,)1.,1/
/////
1n543 5351>
?nl,// 5302L!
?s7/u 54s3>
70711 5331J
7n211 53309
?06~/ 53325
7061 / 5312>
?0711 529?1
PO?) 1 52921
?07// 53314
?01// /////
?n?’al 5471*
?n>ll
117-43Z
10412
s3212
5.34]+
53414
Pfwlr
P!301?
P-ON
PnOR
P.3DR
P9UR
P1OU
POOR
Pqon
vow
907?/
5////
Io=, *3 5320+
>0?//
5(//1
10s63
5352LI
L AuO
LANO
LAVD
LA.N O
LANO
LAN(3
LA!AO
LAW
Lbci71
LA-JO
LAWO
LA~JO
LA*KA
LAb!O
LAW
JNrENSTTV
ug13RcsT
FsTTMATE
DATA
05
(35
10
05
10
15
30
2U
15
//1//
112%5
INN)
10?)1
1n543
10?11
1 05+3
5////
5341U
5//)/
5341 L
10s43
1o137/
10543
\n7bf
1 IV4*3
53+11
+3606
53409
4340s
53513
InR’+/
?1 ?+3
16n170
65///
45//1
65///
1071/
?0781
70751
?0341
45///
45/1/
53///
35?42
60///
53210
527//
5270$
7281/
728//
/11//
53+06
52713
52915
52913
/////
/////
/////
e42/t
728//
COHNENIS
320
90
75
;:
120
179
S(1F
CO!4MENr5
Wqo
10.3N
12+.0<.
123. OE
123. OE
l?t.3E
123. OE.
124.3E
12hoE
IZ3. OE
16.lw
1+. IN
14. W
14.IU
14. uN
10.3w
16.lu
14.lN
1+. ON
14. ON
l+.l
N
I+. (WI
16.13*
14.1*
1+.lh
14.1*
14.lN
14.lN
15.2N
15.2*
15.2N
15.2M
15.2u
15.2bl
15.2*
15.2M
15.2N
16.3N
14.lN
15.2u
16.36!
16.3N
14.1*
16.3u
14. IN
16.3N
16.3M
14.1 N
16.3M
14. IU
16.3AI
14.1 N
123. OE
lzt.3C.
t2s.3E
123. OE
126.3E
12t.3E
123. OEI
123. OE
123. OE
}23. OE
123. OE
120.6E
120.6E
120.6E
120.6E
IzO.6EI
120.6E
IZO.6C
120.6E.
IzO.6E
120.6fi
123. OE
120.6t
lzO.6E,
123. OE.
120.6E
123. OE
120.6E.
123. OE,
120.6E1
120.6E.
123. OE
120.6E
123. OE,
120.6E,
123. OE
16.3N
16.3N
16.3u
16.3bI
16.361
16.3*
16.3M
16.316.3DJ
16.3N
16.3M
16.3N
i?O.6E
120.6E!
120.6E1
120.6E
120.6E,
120.6E!
12 D.6EI
lzO.6E1
“120.6E.
120.6E,
120.6E
120.6E$
16.3N
16.3M
16.3M
t20.6E,
120,6El
T20.6C,
1*.lu
No.
54*W
98566
Qf)*60
*lsb&o
!35647
Q8b40
.+gb47
Q@b46
Qn$ao
CJ8640
.q8647
98647
98&+0
@3&47
w3b47
$?tJb40
Q8*41J
Q8640
90440
Q.9440
903?7
003?7
003?7
05L3?7
5!83??
08377
98327
q83?7
QB3?7
003?1
Q8A60
083?7
9B3P1
qElb*o
963?1
#+866Q
@3?l
Qnbbo
Q9321
993>1
96M40
q8321
‘qB44c7
qe3?l
9B@o
qB3?l
98321
983?1
(383?1
*83>1
?!8321
r183?l
983?1
t383?l
qa3?l
Q243Z1
Q83?1
q83?I
ee371
9837 t
8
b
--N
m-l-.
m
r’fio
.N
mmom
-..-4----
m-.n**!T.
nl--.
--.
-------● **+++.++.
*
~mq
7..
.
. +....++..
**.
.
---● *..
<*U-W**
No.
.CU-WUU-
..mm-mo!m
ccc
,-mru-m
.
Ulrn=euc
,
r
*
I,!
r.*
l--
.n.
2ZT2Z7222Z22
.,..0-.-...
. .
. .
.
.f.L.r.r*?Cra
AN-1.
.
.
.-m.
.
.
.-l-
.
.
r-i.
--’u
-,.-1.
s
.
TROPICAL
~
BEN
c4TEt t 3TF F,lXES
F1 x
NO.
TTME
(71
1
.?
3
*
5
b
2,iO13+
.?”1217
210059
210114
2,011$
2113*O
7
‘$
Iu
11
12
13
1+
211355
211355
211356
2700+1
270236
2712237
2?gb5Z
271322
1>
2?1336
10
17
lM
19
20
21
22
21u OZ3
2’313?04
23u217
2?0217
230640
231304
2?1317
DVO?AK
lIQ.l
SaTFI I ITE
T2.0/2.0T2.
n/?.
o
DUSD76
INIT
o.=.@3Q
OUSPXV
D“cc26
INI
:
3
a
:
3
*
3
b
7
OdS
PGT#
ROON
RPHK
KOWC
L3ds
PGTU
PGTU
PGTd
E
11’7..?E
11o.3E
llQ. W.
15.7U
16. ?u II Q.7E
llQ.3E
1+.5.1
14.0*
I?l.3E
20. nu I?7.9E
20. OU lZt..
lE
PGTU
KGMC
PGTV
PG7W
7130q2
11.5u
I?. $w
13. bN
15.5W
12s. BE
12?.3E
llQ.
ME
IIQ.
W
OBS
M&x-sFC-UqD
VZL/4RG/*VG
TIME
{7)
mbX-FLT-LVL-*Mn
nlM/VEL/dti6/*NG
1?5.
?E
I?<.
ZE
LAMD
LA9i0
l?.
II.
12..2E
I?-i. QE
LAW
LAND
oM
*N
11. RN
13.5,,
123. *E
]10.9E
LAND
LAND
1%. ?N
110.4E
LA*JO
EVE
ORIEN_
0]4WTATt
ON
Evr
rw?/
WSN
TE16PI (CI
IW
OP,/WT
No.
992
50
030
?0
, On
46
330
6n
6
5
.11
● 11
1
996
395
50
70
70
360
720
020
IO
10
12
>lo
l~n
17n
38
72
56
1.20
Obo
090
6!I
IS
1<
3
1
7
b
3
7
.13
.10
●
B
9
2
4
6
CCRV
17. I)N
1>.0,,
EYE
SHAPE
?LMr
=1X
21110b
211200
211300
22 IJ1OO
2?1900
ACCRV
NA*/MEl
MSLP
-+013
-V25?
290710
2109*o
f IXES
rlGT
wA~A”
FIX
NO.
I
INlr
TTME
17)
210620
212225
270913
2?2239
PGTU
PG7U
PGIU
pGrd
RPMK
ROOti
PGTti
L3dS
D Wcmm
oMs-3Dusmau
AT ?CIJAFT
FIX
No.
SITE
0.=J7VJ
0.%9-4.
11 .7.1 1 3>.0[
11.7U 13n.9E
1?7. flE
11. i.
II .=,.* 126. QE
11 .$.1 ]? f,.7E
11 .7.! 1?3.8E
11.6.4 123. RE
11. bu 17?.7E
11.6N IZ-!. BE
1?.4$4 1?1 .*E
13. IN 121. OE
1?. 5.1 I?O.9E
13.6N 110, +E
13. qN
13. q.,
l’i.9N
CO17E
EYF
SHAPE
EY=
D16M
CIRCIJL4?
CIRCIJLA?
25
●
F7XES
a&l105f-cOOE
A5U6U
TOUFF
ln51/
1!3510
!?013
l(la?o
?=,2>0
Fbltl
CIRCIILAR
/////
5////
5271*
52bl B
52b2U
7R
CO16MENTS
RAO.i R
Pnsfr!ov
10.3N
10.3U
10.3u
10.3N
10.3N
15.2U
IS.2N
<lTF
Iwo
12$. oE
12b. oE
12$. oE
12 b.oE,
12c. oE
120.6,S
120.6EI
No.
.?85S6
qEIS&6
q8f146
98%6
@J646
903??
98377
784
..
.
r-
2
c
.
lz
Ii,
x.
l-:
.
g“
.
:<
mm
.
m
.
.
m
.
c:.
● *
-@Jr.-.+ln.n.a*-
.
..
.
.
InLn
. .
. .
-.>
.
.
. . ...... .. .. ....
u
.
*
.
wlllulld”l.lww
Iuwwwl.lldwu.
uw .Uwluklldwwwuid
WWIIJ
I.Iwl.l
.!m=*om*N1-N*Flm
● mNOO=-O
*m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.-.-c
a..
e LTeumaur<lrt
Lf+.aac.aava’naem
Fl-’
m&l--=Cco mm
aa
-=.
l-e&e&
.naa’4.
** Q.* ’L*a
*1-rr-.
’ae
wd*l.l**r-m*o’se
22 ZZ2Z222Z
-t-a+-=**~-ff
. . . . . . . . . .
Uoc’!r==-=mer
.-.
.N
twfu iv--IU.--.
. .
. . . . . .N*.al.’l.
o.
Lcl.*.
-a
Owrum.
-m00=. *04.m
*N*
wa - m* I-w *a-.*-*
,n**
+--000---0=
0-nnrin&&titiw
FI-*F
F*****
NNN, OJNNWNN
-m NNNNN
ZZZ22Z2ZZZ2ZZ
Zz?zzzzzzzzzz
● **.-..
CI*N
--*N
i-mom.m-em-.h
. . . . . . . . . . . . . . . . . . . . . .
r.l N****
m*u!lclil*
*.?a-*G+m*u@.=u
. ..-.
--.
.+.4 . . .-! .. . . . . ... ..
I-.
.4..
!U** . . . . . .
IJI+**+N+N--00m
NO**m
m*d*Lc.
*Q Am-*
.s. Om-n*.a.
. -0..-4-.---00---0.00Uueewee=c
ccc---.
-A-.-+
AIw N(u(u NNNNNNNNNN
1.
CONTRACTIONS
AC&W
ICAO
Aircraft Control and Warning
System
International Civil Aviation
Organization
IR
Infrared
ACCRY
Accuracy
KM
Kilometer(s)
ACFT
Aircraft
KT
Knot(s)
AIREP
Aircraft Weather Report(s)
(Cormnericaland Military)
LLCC
Low Level Circulation Center
LVL
Leve1
M
Meter(s)
ANT
Antenna
APT
Automatic Picture Transmission
M/SEC
Meters per Second
ARWO
Aerial Reconnaissance Weather
Officer
MAX
Maximum
ATT
Attenuation
MB
Millibar(s)
AVG
Average
MET
Meteorological
AWN
Automated Weather Network
MIN
Minimum
BRG
Bearing
MOHATT
Modified Hatrack
CDO
Central Dense Overcast
MSN
Mission
CI
Current Intensity
NAV
Navigational
CLD
Cloud
NAVPGSCOL
Naval Postgraduate School
CLSD
Closed
NEDN
Naval Environmental Data Network
CNTR
Center
mm
Naval Environmental Display
Station
CONF
Confidence (number)
NEPRF
CPA
Closest Point of Approach
Naval Environmental Prediction
Research Facility
DEG
Degree(s)
NESS
National Environmental Satellite
Service
DIAM
Diameter
NET
Near Equatorial Trough
DIR
Direction
NM
Nautical Mile(s)
DMSP
Defense Meteorological Satellite
Program
NOAA
National Oceanic and Atmospheric
Administration
EASTPAC
Eastern Pacific
ELEV
Elevation
FLT
Flight
GOES
Geostationary Operational
Environmental Satellite
HATRACK
Hurricane and Typhoon Tracking
(numerical forecast)
HGT
Height
HPAC
Mean of XTRP and Climatology
HU
Hurricane
HR
Hour (s)
HVY
Heavy
NRL
Naval Research Laboratory
NTCC
Naval Telecommunications Center
OBS
Observation(s)
PCN
Position Code Number
PE
Primitive Equation
PSBL
Possible
PTLY
Partly
QUAD
Quadrant
RADOB
Radar Observation
RECON
Reconnaissance
188
-.
-.
.
-.
RNG
Range
F2?D
Rapid
SAT
Satellite
SFC
Surface
EPHEMERIS - Position of a body (satellite) in space as a function of time. When
no geographical reference is available for
gridding satellite imagery, then only ephemeris gridding is possible which is solely
based on the theoretical satellite position
and is susceptible to errors from satellite
pitch, orbit eccentricity and the nonspherical earth.
SLP (MSLP) Sea Level Pressure (Minim~ Sea
Level Pressure)
SMS
Synchronous Meteorological
Satellite
SPOL
Spiral Overlay
SRP
Selective Reconnaissance Program
STNRY
Stationary
SST
Sea Surface Temperature
ST
Super Typhoon
TC
Tropical Cyclone
TCARC
Tropical Cyclone Aircraft Reconnaissance Coordinator
TCM
Tropical Cyclone Model
TD
Tropical Depression
TIROS
Television Infrared Observation
Satellite
TS
Tropical Storm
TY
Typhoon
TUTT
Tropical Upper Tropospheric
Trough (Sadler, 1976)
VEL
Velocity
VIS
Visual
VSBL
Visible
WESTPAC
Western Pacific
WNo
World Meteorological Organization
WND
Wind
WRS
Weather Reconnaissance Squadron
XTKP
Extrapolation
z
Zulu Time (Greenwich mean time)
EXPLOSIVE DEEPENING - A decrease in the
minimum sea level pressure of a tropical
cyclone of 2.5 mb/hr for 12 hrs or %.0 ti/hr
for 6 hrs (ATR 1971).
EXTRATROPICAL - A term used in warnings
and trop~cal summaries to indicate that a
cyclone has lost its “tropical” characteristics. The term implies both poleward displacement from the tropics and the conversion
of the cyclone’s primary energy sources from
release of latent heat of condensation to
baroclinic processes. The term carries no
implications as to strength or size.
EYE - “EYE” is used to describe the
cent=
area of a tropical cyclone when it
is more than half surrounded by wall cloud.
FUJIWHARA EFFECT - An interaction in
which tropical cyclones within about 700 nm
of each o~her be~in to rotate cyclonically
about one another. When intense tropical
cyclones are within about 400 nm of each
other, they may also begin to move closer to
each other.
MAXIMUM SUSTAINED WIND - Maximum surface
wind speed averaged over a l-minute period
of time. Peak gusts over water average 20
to 25 percent higher than sustained wind.
RAPID DEEPENING - A decrease in the
minimum sea level pressure of a tropical
cyclone of 1.25 mb/hr for 24 hrs [ATR 1971).
RECURVATURE - The turning of a tropical
cyclone from an initial path toward the west
of northwest to the north then northeast.
SIGNIFICANT TROPICAL CYCLONE - A tropical
cyclone becomes “significant” with the issuance of the first numbered warning by the
responsible warning agency.
SUPER TYPHOON/HURRICANE - A typhoon/
hurricane in which the maximum sustained
surface wind (l-minute mean) is 130 kt or
greater.
TROPICAL CYCLONE - A nonfrOntal low
pressure system of synoptic scale developing
over tropical or subtropical waters and
having a definite organized circulation.
.
2.
DEFINITIONS
TROPICAL CYCLONE AIRCRAFT RECONNAISSANCE
COORDINATOR - A CINCPACAF representative
desiccated to levv troPical cyclone aircraf; weather rec~nnai~sance requirements on
reconnaissance units within a designated area
of the PACOM and to function as coordinator
between CINCPACAF, aircraft weather reconnaissance units, and the appropriate typhoon/
hurricane warning center.
BEST TRACK - A subjectively smoothed
path, versus a precise and very erratic fixto-fix path, used to rePresent troPical
cyclone movement.
CENTER - The axis or pivot of a trOpiCal
cyclone. Usually determined by wind, temperature or pressure distribution.
CYCLONE - A closed atmospheric circulation rotating about an area of low pressure
(counterclockwise in the northern hemisphere)
TROPICAL DEPRESSION - A tropical cyclone
in whxch the maxmmun sustained surface wind
(l-minute mean) is 33 kt or less.
1%9
TROPICAL DISTURBANCE
- A discrete system
-—
of apparently orqanlzed convection--qenerally
100 tO 300 m~les-in diameter--originating inthe tropics or subtropics, having a nonfrontal migratory character, and having maintained its identity for 24 hours or more.
It may or may not be associated with a
detectable perturbation of the wind field.
As such, it is the basic generic designation
which, in successive stages of intensification, may be classified as a tropical depression, tropical storm or typhoon (hurricane).
3. REFERENCES
Atkinson, G. D., and Holliday, C. R., 1977:
Tropical Cyclone Minimum Sea Level Pressure Maximum Sustained Wind Relationship for
Western North Pacific, Monthly Weather
Review, Vol. 105, No. 4, pp. 421-27 (also
FLEWEACEN TECH NOTE: JTWC 75-l).
Dvorak, V. F., 1973: A Technigue for the
Analysis and Forecasting of Tropical Cyclone
Intensities from Satellite Pictures, NOAA TM
NESS 45, 19 pp.
TROPICAL STORM - A tropical cyclone with
maximum susta~ned surface winds (l-minute
mean) in the range of 34 to 63 kt, inclusive.
Guard, C. P., 1979: The Intensity of
Recurving Western North Pacific Tropical
Cyclones: A New Look. Unpublished, 33 pp.
(available from NAVOCEANCOMCEN/JTWC, .
COMNAVMAR, BOX 17, FPO SF 96630).
TROPICAL UPPER TROPOSPHERIC TROUGH (TUTT)
- “A dominant climatological system, and a
daily synoptic feature, of the summer season
over the tropical North Atlantic, North
Pacific and South Pacific Oceans,” from
Sadler, James C., Feb. 1976: Tropical
Cyclone Initiation by the Tropical Upper
Tropospheric Trough. (NAVENvp~DRSCHFAc
Technical Paper No. 2-76)
Ramage, C. S., 1971: Monsoon Meteorologyr
Academic Press, 253 pp.
Riehl, H., 1971: Intensity of Recurving
Typhoons, NAVWEASERSCHFAC Technical Paper
No. 3-71, 11 pp.
TYPHOON/HURRICANE - A tropical cyclone in
which the maximum sustained surface wind (lminute mean) is 64 kt or greater. West of
180 degrees longitude they are called
typhoons and east of 180 degrees they are
called hurricanes. Foreign governments use
these or other terms for tropical cyclones
and may apply different intensity criteria.
Sadler, J. C., 1976: Tropical Cyclone
Initiation by the Tropical Upper Tropospheric
Trough, NAVENVPREDRSCHFAC Technical Paper
No. 2-76, 103 pp.
Sikora, C. R., 1976: A Reevaluation of the
Changes in Speed and Intensity of Tropical
the Philippines, FLEWEACEN
Cyclones Crossing
TECH NOTE: JTWC 76-2, 11 pp.
WALL CLOUD - An organized band of cumuliform clouds immediately surrounding the central area of a tropical cyclone. The wall
cloud may entirely enclose the eye or only
partially surround the center.
190
--
..
I-1
w
-.
z-
i=
i=
UNCLAssI~
iECURITY
CLASSIFICATION
OF
REPORT
?.
REPORT
PAGE
(W’hen Data
DOCUMENTATION
(and
Entered)
PAGE
NUMOER
]2. GOVT
flrmual Typhoon
!.TITLE
THIS
1979
Report
ACCESSION
NC
I
5.
.%btitfe)
TYPEOF
REPORT&
PERIOD
COVERED
!nnual (JAN-DEC 1979)
kNNUAL TYPHOON REPORT 1979
S.PERFORMING
B.
).
Performing
organization
NAME
AND
ADDRESS
CONTRACT
ORG.
REPORT
NUMBER
ORGRANTNUMBER(@
10.
PROGRAM
ELEMENT,PROJECT,
AREA&
WORK UNIT
NUMBERS
12.
REPORT
TASK
J. S. Naval Oceanography Command Center/Joint
ryphoon Warning Center (NAVOCEANCOMCEN/JTWC)
?PO San Francisco 96630
1. CONTROLLING
OFFICE
NAME
AND
ADDRESS
13.
14.MONITORING
1S.
AGENCY
NAME
& ADDRESS(ff
djfferctttfmm
OATE
1979
J. S. Naval Oceanography Command Center/Joint
ryphoon Warning Center (NAVOCEANCOMCEN/JTWC)
?PO San Francisco 96630
NUMBEROF
PAGES
191
CtmtrOllin~Offiee)
SECUFUTY
CLASS.
(efthiarePOti)
UNCLASSIFIED
iSa
6.
DISTR18UTIONS
TATEMENT
(efthfa
DECLASSIFICATION/DOWNGRADING
SCHEDULE
Repc@)
Lpproved for public release; distribution unlimited.
7.
DISTRIBUTION
8.
SUPPLEMENTARY
D.
KEY
WORDS
ST ATEMEF4T
(o fthoabattact
emtexedfn
B10cki?0,
ifdifforemt
fr&n
R.pat)
NOTES
(ConNnuoon
rmverae
●ide lfIIec*aa8?y
mdidmtlw
by blmlrnumbw)
:ropical cyclones
Tropical storms
:ropical cyclone forecasting
Tropical depressions
:ropical cyclone research
Typhoons
kopical cyclone steering model
Meteorological satellite
‘ropical cyclone fix data
Aircraft reconnaissance
●ideifnee.aaq
mdidmtiw
bybfocknumborj
1 ABSTRACT (C~tfnUOrnrevwae
mnual publication summarizing the tropical cyclone season in the western
Iorth Pacific, Bay of Bengal and Arabian Sea. A brief narrative is given .on
!ach significant tropical cyclone including the best track. All reconnaissance
Iata used to construct the best tracks are provided. Forecast verification
~ata and statistics for the JTWC are summarized. Research efforts at the
‘TWC and NEPRF are discussed briefly.
DD ,~:j$~
1473
~DITloN
oFl Nov651sossoLETE
S/N
O1O2-O14-66O1I
UNCLASSIFIED
SECURITY CMSSIFICATION
0FTt41SPAGE
mmDataBttt@?d)
,E+ZVWITY
CLASSIFICATION
OF
THIS
PAGE(Whem
Data
Enterad)
b
SECURITY
CLASSIFICATION
OF
THIS
PAGE~oII
.-
D~a
Jfnti@
..
.
.
r.
I
I
I
I
1
1
1
.I . . . . . . . . . .
I
A
I
M
.
.
...
.
[.)1
t:: .,.
: :
.
.,,,,
,~~~~~
.-
.
,,:
..,,,,
...
-
... ,,,
,::,
.,
,::
,,,
I
.,.
.,.
..
.
..
.
.
.
.
,.,
,. . .
~“”
.
.
.
.
: .{ ””””
3d
.-
-,
,50.
16
0.
!7 0.
.. ”””
2“’””
.,,
..
:“’””
““”’
..,,.
4.0+
-04
.,.
. ..
.
.
.
..
..
...
..
..
‘
““r
~
.,
~ ~~~~~~
...
.-
.,
...
,’.
...
+
I
.
.,,
,,,
.,,
,,
...
,’H’
&..
-----
“;:””
:,,
~.,.
/.
..
,
4..
.’ 4.
t,..
,.
...
,,
--
.,.
,304
.
.
.
----.
...’
..
.
4
..
..
..
(?; “’””
!m.””’
..
r
..
14
.. . . . .
,
‘. s ::
.
... . :
,6...
m ~ .2,
:20.!
H2VI
&
..
.,,
..
...
..
t3Lw
:30.!
i
,W“’”
..
,a.
..
t-i30q
..
,,,
,70,
,,
..
.. ::”
~ .;
-..
<
,,,
,,,
,%JG+iNSK+4
ISIANO
-+.—-
i
,
r
r
-10-I
‘Y
- -—+—
7“6
~’
!,;;;, t : ‘CENTRAL
T
‘“”’~”
““
PACIFIC+=&---=
-,0—
.+--l‘-‘+EASTERN P,ACIFIC ~“~,; ~“=+:::
....
.
.,
i. . . . .
!,, . .
.
.
,..
.
.-—
..
.. ,’.
::’1 0“::: :: ’f”::;
:::: f;::
c;l~b~rin:
: ‘f: ~~ :
::::
...
....
....
.,’
!+‘ : ‘:::
:::”
“‘:‘:;‘v
Areasof Responsibility- Central and
Eastern pacific Hurricane Centers
:::~